Datasets:
File size: 6,705 Bytes
7d5136d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 |
from PIL import Image, ImageDraw, ImageFont
import torch
from typing import Tuple, List, Dict, Union, Optional
import torch.utils.data as data
from tqdm import tqdm
import copy
# Typings
_TYPING_BOX = Tuple[float, float, float, float]
_TYPING_IMAGES = List[Dict[str, int]]
_TYPING_ANNOTATIONS = List[Dict[str, Union[int, _TYPING_BOX]]]
_TYPING_CATEGORIES = List[Dict[str, Union[int, str]]]
_TYPING_JSON_COCO = Dict[
str, Union[_TYPING_IMAGES, _TYPING_ANNOTATIONS, _TYPING_CATEGORIES]
]
_TYPING_BOX = Tuple[float, float, float, float]
_TYPING_SCORES = List[float]
_TYPING_LABELS = List[int]
_TYPING_BOXES = List[_TYPING_BOX]
_TYPING_PRED_REF = Union[_TYPING_SCORES, _TYPING_LABELS, _TYPING_BOXES]
_TYPING_PREDICTION = Dict[str, _TYPING_PRED_REF]
_acc_box_format = ['xywh', 'xyx2y2']
def draw_rectangles(
image: Image,
boxes,
box_format='xyx2y2',
color_bbx=(255, 0, 0),
color_txt=(255, 255, 255),
thickness=1,
labels=None,
confidences=None,
draw_confidence=True,
):
"""
Draw rectangles around objects in an image.
Args:
image (Image): Image object to draw on.
boxes (List[torch.Tensor]): List of bounding boxes in (xywh or xyx2y2) format.
color_bbx (Tuple[int, int, int]): RGB color tuple for bounding box outlines. Default \
is (255, 0, 0) (red).
color_txt (Tuple[int, int, int]): RGB color tuple for text. Default is \
(255, 255, 255) (white).
thickness (int): Thickness of the bounding box outline. Default is 1.
labels (List[str]): List of labels for each object. Default is None.
confidences (List[float]): List of confidences for each object. Default is None.
draw_confidence (bool): Whether to draw confidence values. Default is True.
Returns:
Image: Image with rectangles drawn around objects.
"""
# boxes: (x,y,x2,y2)
# color: (RGB)
# https://pillow.readthedocs.io/en/stable/handbook/text-anchors.html
# https://pillow.readthedocs.io/en/stable/reference/ImageFont.html
assert box_format in _acc_box_format, "box_format must be {}".format(_acc_box_format)
offset = 0.05
font = ImageFont.load_default()
# Make clones to avoid overwriting the original data
if boxes is not None:
if isinstance(boxes, torch.Tensor):
_boxes = copy.deepcopy(boxes).tolist()
elif isinstance(boxes, list):
_boxes = copy.deepcopy(boxes)
else:
_boxes = None
if confidences is not None:
if isinstance(confidences, torch.Tensor):
_confidences = copy.deepcopy(confidences).tolist()
elif isinstance(confidences, list):
_confidences = copy.deepcopy(confidences)
else:
_confidences = None
draw_confidence = False
_confidences = ["" for i in _boxes]
ret_image = image.copy()
img_draw = ImageDraw.Draw(ret_image)
for box, label, confidence in zip(_boxes, labels, _confidences):
if box_format == "xywh":
# convert to xyx2y2
box[2] = box[0]+box[2]
box[3] = box[1]+box[3]
text = f"{label}"
if draw_confidence:
text += f" ({100*confidence:.2f}%)"
text = " " + text + " "
_, _, txt_w, txt_h = font.getbbox(text)
offset_y = txt_h * offset
x, y, _, _ = box
box_txt = (x, y - txt_h - (2 * offset_y), x + txt_w, y)
pos_text = (x, y - txt_h - (offset_y))
# Draws rectangle around object
img_draw.rectangle(box, outline=color_bbx, width=thickness)
# Draws filled rectangle for text
img_draw.rectangle(box_txt, fill=color_bbx, width=thickness)
# Draws text
img_draw.text(pos_text, text, fill=color_txt, anchor="ma", font=font)
return ret_image
def val_formatted_anns(
image_id: int, objects: _TYPING_PREDICTION, feat_name: str = "category"
) -> List[_TYPING_PREDICTION]:
"""
This function formats annotations the same way they are for training, without the need \
for data augmentation.
Args:
image_id (int): The id of the image.
objects (_TYPING_PREDICTION): The dictionary containing object annotations.
feat_name (str): The name of the feature containing the category id.
Returns:
List[Dict[str, Union[int, _TYPING_BOX]]]: List of dictionaries with formatted annotations.
"""
annotations = []
for i in range(0, len(objects["id"])):
new_ann = {
"id": objects["id"][i],
"category_id": objects[feat_name][i],
"iscrowd": objects["iscrowd"][i],
"image_id": image_id,
"area": objects["area"][i],
"bbox": objects["bbox"][i],
}
annotations.append(new_ann)
return annotations
def create_json_COCO_format(
dataset: data.Dataset, round_approx: Optional[int] = None
) -> Tuple[Dict[int, int], _TYPING_JSON_COCO]:
"""
Function to create a JSON in COCO format.
Args:
dataset (Dataset): The dataset to be converted to COCO format.
round_approx (Optional[int]): The number of decimal places to round the boxes.
Returns:
A tuple of a dictionary mapping image_id to index in dataset and a dictionary \
in COCO format.
"""
feature = dataset.features["objects"].feature
# Look for the feature name
for feat_name in ["category", "label"]:
if feat_name in feature:
break
categories = feature[feat_name].names
id2label = {index: x for index, x in enumerate(categories, start=0)}
categories_json = [
{"supercategory": "none", "id": id, "name": id2label[id]} for id in id2label
]
output_json = {}
output_json["images"] = []
output_json["annotations"] = []
# Collecting outputs from dataset
ids_mapping = {}
pbar = tqdm(dataset, desc="Collecting ground-truth annotations from dataset")
for idx, example in enumerate(pbar):
ids_mapping[example["image_id"]] = idx
ann = val_formatted_anns(example["image_id"], example["objects"], feat_name)
output_json["images"].append(
{
"id": example["image_id"],
"width": example["image"].width,
"height": example["image"].height,
}
)
if round_approx is not None:
for annotation in ann:
annotation["bbox"] = [round(val, round_approx) for val in annotation["bbox"]]
output_json["annotations"].extend(ann)
output_json["categories"] = categories_json
return ids_mapping, output_json
|