File size: 6,705 Bytes
7d5136d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
from PIL import Image, ImageDraw, ImageFont
import torch
from typing import Tuple, List, Dict, Union, Optional
import torch.utils.data as data
from tqdm import tqdm 
import copy 

# Typings
_TYPING_BOX = Tuple[float, float, float, float]
_TYPING_IMAGES = List[Dict[str, int]]
_TYPING_ANNOTATIONS = List[Dict[str, Union[int, _TYPING_BOX]]]
_TYPING_CATEGORIES = List[Dict[str, Union[int, str]]]
_TYPING_JSON_COCO = Dict[
    str, Union[_TYPING_IMAGES, _TYPING_ANNOTATIONS, _TYPING_CATEGORIES]
]
_TYPING_BOX = Tuple[float, float, float, float]
_TYPING_SCORES = List[float]
_TYPING_LABELS = List[int]
_TYPING_BOXES = List[_TYPING_BOX]
_TYPING_PRED_REF = Union[_TYPING_SCORES, _TYPING_LABELS, _TYPING_BOXES]
_TYPING_PREDICTION = Dict[str, _TYPING_PRED_REF]

_acc_box_format = ['xywh', 'xyx2y2']

def draw_rectangles(
    image: Image,
    boxes,
    box_format='xyx2y2',
    color_bbx=(255, 0, 0),
    color_txt=(255, 255, 255),
    thickness=1,
    labels=None,
    confidences=None,
    draw_confidence=True,
):
    """
    Draw rectangles around objects in an image.

    Args:
        image (Image): Image object to draw on.
        boxes (List[torch.Tensor]): List of bounding boxes in (xywh or xyx2y2) format.
        color_bbx (Tuple[int, int, int]): RGB color tuple for bounding box outlines. Default \
            is (255, 0, 0) (red).
        color_txt (Tuple[int, int, int]): RGB color tuple for text. Default is \
            (255, 255, 255) (white).
        thickness (int): Thickness of the bounding box outline. Default is 1.
        labels (List[str]): List of labels for each object. Default is None.
        confidences (List[float]): List of confidences for each object. Default is None.
        draw_confidence (bool): Whether to draw confidence values. Default is True.

    Returns:
        Image: Image with rectangles drawn around objects.
    """
    # boxes: (x,y,x2,y2)
    # color: (RGB)
    # https://pillow.readthedocs.io/en/stable/handbook/text-anchors.html
    # https://pillow.readthedocs.io/en/stable/reference/ImageFont.html
    
    assert box_format in _acc_box_format, "box_format must be {}".format(_acc_box_format)
    offset = 0.05
    font = ImageFont.load_default()
    
    # Make clones to avoid overwriting the original data
    if boxes is not None:
        if isinstance(boxes, torch.Tensor):
            _boxes = copy.deepcopy(boxes).tolist()
        elif isinstance(boxes, list):
            _boxes = copy.deepcopy(boxes)
    else: 
        _boxes = None
        
    if confidences is not None:
        if isinstance(confidences, torch.Tensor):
            _confidences = copy.deepcopy(confidences).tolist()
        elif isinstance(confidences, list):
            _confidences = copy.deepcopy(confidences)
    else:
        _confidences = None
        draw_confidence = False
        _confidences = ["" for i in _boxes]

    ret_image = image.copy()
    img_draw = ImageDraw.Draw(ret_image)
    for box, label, confidence in zip(_boxes, labels, _confidences):
        if box_format == "xywh":
            # convert to xyx2y2
            box[2] = box[0]+box[2]
            box[3] = box[1]+box[3]
        text = f"{label}"
        if draw_confidence:
            text += f" ({100*confidence:.2f}%)"
        text = " " + text + " "
        _, _, txt_w, txt_h = font.getbbox(text)
        offset_y = txt_h * offset
        x, y, _, _ = box
        box_txt = (x, y - txt_h - (2 * offset_y), x + txt_w, y)
        pos_text = (x, y - txt_h - (offset_y))

        # Draws rectangle around object
        img_draw.rectangle(box, outline=color_bbx, width=thickness)
        # Draws filled rectangle for text
        img_draw.rectangle(box_txt, fill=color_bbx, width=thickness)
        # Draws text
        img_draw.text(pos_text, text, fill=color_txt, anchor="ma", font=font)

    return ret_image

def val_formatted_anns(
    image_id: int, objects: _TYPING_PREDICTION, feat_name: str = "category"
) -> List[_TYPING_PREDICTION]:
    """
    This function formats annotations the same way they are for training, without the need \
        for data augmentation.

    Args:
        image_id (int): The id of the image.
        objects (_TYPING_PREDICTION): The dictionary containing object annotations.
        feat_name (str): The name of the feature containing the category id.
    Returns:
        List[Dict[str, Union[int, _TYPING_BOX]]]: List of dictionaries with formatted annotations.
    """
    annotations = []
    for i in range(0, len(objects["id"])):
        new_ann = {
            "id": objects["id"][i],
            "category_id": objects[feat_name][i],
            "iscrowd": objects["iscrowd"][i],
            "image_id": image_id,
            "area": objects["area"][i],
            "bbox": objects["bbox"][i],
        }
        annotations.append(new_ann)

    return annotations

def create_json_COCO_format(
    dataset: data.Dataset, round_approx: Optional[int] = None
) -> Tuple[Dict[int, int], _TYPING_JSON_COCO]:
    """
    Function to create a JSON in COCO format.

    Args:
        dataset (Dataset): The dataset to be converted to COCO format.
        round_approx (Optional[int]): The number of decimal places to round the boxes.

    Returns:
        A tuple of a dictionary mapping image_id to index in dataset and a dictionary \
            in COCO format.
    """
    feature = dataset.features["objects"].feature
    
    # Look for the feature name
    for feat_name in ["category", "label"]:
        if feat_name in feature:
            break
    categories = feature[feat_name].names
    
    id2label = {index: x for index, x in enumerate(categories, start=0)}
    categories_json = [
        {"supercategory": "none", "id": id, "name": id2label[id]} for id in id2label
    ]

    output_json = {}
    output_json["images"] = []
    output_json["annotations"] = []

    # Collecting outputs from dataset
    ids_mapping = {}
    pbar = tqdm(dataset, desc="Collecting ground-truth annotations from dataset")
    for idx, example in enumerate(pbar):
        
        ids_mapping[example["image_id"]] = idx

        ann = val_formatted_anns(example["image_id"], example["objects"], feat_name)
        output_json["images"].append(
            {
                "id": example["image_id"],
                "width": example["image"].width,
                "height": example["image"].height,
            }
        )
        if round_approx is not None:
            for annotation in ann:
                annotation["bbox"] = [round(val, round_approx) for val in annotation["bbox"]]
            
        output_json["annotations"].extend(ann)
        
    output_json["categories"] = categories_json

    return ids_mapping, output_json