File size: 13,951 Bytes
dc50279 657aafe aea1f1f 944ee5f 5e438fc cd0efed e3d65f2 2e33f66 b14157c 67b44d3 a3f3d45 0129f3f 51ad6c2 fbca0aa 0cad4ee 3578147 0d05a17 657aafe aea1f1f 944ee5f 5e438fc cd0efed e3d65f2 2e33f66 b14157c 67b44d3 a3f3d45 0129f3f 51ad6c2 fbca0aa 0cad4ee 3578147 0d05a17 a7d73e0 77c4503 a7d73e0 2f301ac a7d73e0 e188723 42b3dcc 77c4503 a59b3b2 74f16c3 77c4503 0bb5805 a7d73e0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 |
---
license: apache-2.0
task_categories:
- automatic-speech-recognition
- text-to-speech
language:
- en
pretty_name: Technical Indian English
size_categories:
- 1K<n<10K
configs:
- config_name: default
data_files:
- split: train_0
path: data/train_0-*
- split: train_1
path: data/train_1-*
- split: train_2
path: data/train_2-*
- split: train_3
path: data/train_3-*
- split: train_4
path: data/train_4-*
- split: train_5
path: data/train_5-*
- split: train_6
path: data/train_6-*
- split: train_7
path: data/train_7-*
- split: train_8
path: data/train_8-*
- split: train_9
path: data/train_9-*
- split: train_10
path: data/train_10-*
- split: train_11
path: data/train_11-*
- split: train_12
path: data/train_12-*
- split: train_13
path: data/train_13-*
- split: train_14
path: data/train_14-*
- split: train_15
path: data/train_15-*
dataset_info:
features:
- name: audio
struct:
- name: array
sequence:
sequence: float32
- name: path
dtype: string
- name: sampling_rate
dtype: int64
- name: split
dtype: string
- name: ID
dtype: string
- name: Transcript
dtype: string
- name: Normalised_Transcript
dtype: string
- name: Speech_Duration_seconds
dtype: float64
- name: Speaker_ID
dtype: int64
- name: Gender
dtype: string
- name: Caste
dtype: string
- name: Year_Class
dtype: string
- name: Speech_Class
dtype: string
- name: Discipline_Group
dtype: string
- name: Native_Region
dtype: string
- name: Topic
dtype: string
splits:
- name: train_0
num_bytes: 159596908
num_examples: 100
- name: train_1
num_bytes: 154466417
num_examples: 100
- name: train_2
num_bytes: 164830755
num_examples: 100
- name: train_3
num_bytes: 163846670
num_examples: 100
- name: train_4
num_bytes: 158878351
num_examples: 100
- name: train_5
num_bytes: 161562786
num_examples: 100
- name: train_6
num_bytes: 168529715
num_examples: 100
- name: train_7
num_bytes: 163769246
num_examples: 100
- name: train_8
num_bytes: 152866617
num_examples: 100
- name: train_9
num_bytes: 171234967
num_examples: 100
- name: train_10
num_bytes: 155676874
num_examples: 100
- name: train_11
num_bytes: 166546675
num_examples: 100
- name: train_12
num_bytes: 154204346
num_examples: 100
- name: train_13
num_bytes: 161604831
num_examples: 100
- name: train_14
num_bytes: 163285492
num_examples: 100
- name: train_15
num_bytes: 156010091
num_examples: 100
download_size: 2582392859
dataset_size: 2576910741
---
# Dataset Card for TIE_Shorts
## Table of Contents
- [Table of Contents](#table-of-contents)
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Repository:** https://github.com/raianand1991/TIE
- **Paper:** https://arxiv.org/abs/2307.10587
- **Point of Contact:** [[email protected]](mailto:[email protected])
### Dataset Summary
TIE_shorts is a derived version of the [Technical Indian English (TIE)](https://github.com/raianand1991/TIE) dataset, a large-scale speech dataset (~ 8K hours) originally consisting of approximately 750 GB of content
sourced from the [NPTEL](https://nptel.ac.in/) platform. The original TIE dataset contains around 9.8K technical lectures in English delivered by instructors from various regions across India,
with each lecture averaging about 50 minutes. These lectures cover a wide range of technical subjects and capture diverse linguistic features characteristic of Indian
English.
The TIE_shorts version (~ 70 hours audio and 600K ground-truth tokens) was created to facilitate efficient training and usage in speech processing tasks by providing shorter audio samples. In TIE_shorts,
consecutive audio snippets from the original dataset were merged based on timestamps, with a condition that the final merged audio should not exceed 30 seconds in duration.
This process results in 25–30 second audio clips, each accompanied by a corresponding ground-truth transcript. This approach retains the linguistic diversity of the original
dataset while significantly reducing the size and complexity, making TIE_shorts ideal for Automatic Speech Recognition (ASR) and other speech-to-text applications.
As the dataset consisting of approximately 9.8K files spoken by 331 speakers from diverse demographics across the Indian population, this data is also well-suited for speaker identification and text-to-speech (TTS) training applications.
### Example usage
VoxPopuli contains labelled data for 18 languages. To load a specific language pass its name as a config name:
```python
from datasets import load_dataset
voxpopuli_croatian = load_dataset("facebook/voxpopuli", "hr")
```
To load all the languages in a single dataset use "multilang" config name:
```python
voxpopuli_all = load_dataset("facebook/voxpopuli", "multilang")
```
To load a specific set of languages, use "multilang" config name and pass a list of required languages to `languages` parameter:
```python
voxpopuli_slavic = load_dataset("facebook/voxpopuli", "multilang", languages=["hr", "sk", "sl", "cs", "pl"])
```
To load accented English data, use "en_accented" config name:
```python
voxpopuli_accented = load_dataset("facebook/voxpopuli", "en_accented")
```
**Note that L2 English subset contains only `test` split.**
### Supported Tasks and Leaderboards
* automatic-speech-recognition: The dataset can be used to train a model for Automatic Speech Recognition (ASR). The model is presented with an audio file and asked to transcribe the audio file to written text. The most common evaluation metric is the word error rate (WER).
Accented English subset can also be used for research in ASR for accented speech (15 L2 accents)
### Languages
VoxPopuli contains labelled (transcribed) data for 18 languages:
| Language | Code | Transcribed Hours | Transcribed Speakers | Transcribed Tokens |
|:---:|:---:|:---:|:---:|:---:|
| English | En | 543 | 1313 | 4.8M |
| German | De | 282 | 531 | 2.3M |
| French | Fr | 211 | 534 | 2.1M |
| Spanish | Es | 166 | 305 | 1.6M |
| Polish | Pl | 111 | 282 | 802K |
| Italian | It | 91 | 306 | 757K |
| Romanian | Ro | 89 | 164 | 739K |
| Hungarian | Hu | 63 | 143 | 431K |
| Czech | Cs | 62 | 138 | 461K |
| Dutch | Nl | 53 | 221 | 488K |
| Finnish | Fi | 27 | 84 | 160K |
| Croatian | Hr | 43 | 83 | 337K |
| Slovak | Sk | 35 | 96 | 270K |
| Slovene | Sl | 10 | 45 | 76K |
| Estonian | Et | 3 | 29 | 18K |
| Lithuanian | Lt | 2 | 21 | 10K |
| Total | | 1791 | 4295 | 15M |
Accented speech transcribed data has 15 various L2 accents:
| Accent | Code | Transcribed Hours | Transcribed Speakers |
|:---:|:---:|:---:|:---:|
| Dutch | en_nl | 3.52 | 45 |
| German | en_de | 3.52 | 84 |
| Czech | en_cs | 3.30 | 26 |
| Polish | en_pl | 3.23 | 33 |
| French | en_fr | 2.56 | 27 |
| Hungarian | en_hu | 2.33 | 23 |
| Finnish | en_fi | 2.18 | 20 |
| Romanian | en_ro | 1.85 | 27 |
| Slovak | en_sk | 1.46 | 17 |
| Spanish | en_es | 1.42 | 18 |
| Italian | en_it | 1.11 | 15 |
| Estonian | en_et | 1.08 | 6 |
| Lithuanian | en_lt | 0.65 | 7 |
| Croatian | en_hr | 0.42 | 9 |
| Slovene | en_sl | 0.25 | 7 |
## Dataset Structure
### Data Instances
```python
{
'audio_id': '20180206-0900-PLENARY-15-hr_20180206-16:10:06_5',
'language': 11, # "hr"
'audio': {
'path': '/home/polina/.cache/huggingface/datasets/downloads/extracted/44aedc80bb053f67f957a5f68e23509e9b181cc9e30c8030f110daaedf9c510e/train_part_0/20180206-0900-PLENARY-15-hr_20180206-16:10:06_5.wav',
'array': array([-0.01434326, -0.01055908, 0.00106812, ..., 0.00646973], dtype=float32),
'sampling_rate': 16000
},
'raw_text': '',
'normalized_text': 'poast genitalnog sakaenja ena u europi tek je jedna od manifestacija takve tetne politike.',
'gender': 'female',
'speaker_id': '119431',
'is_gold_transcript': True,
'accent': 'None'
}
```
### Data Fields
* `audio_id` (string) - id of audio segment
* `language` (datasets.ClassLabel) - numerical id of audio segment
* `audio` (datasets.Audio) - a dictionary containing the path to the audio, the decoded audio array, and the sampling rate. In non-streaming mode (default), the path points to the locally extracted audio. In streaming mode, the path is the relative path of an audio inside its archive (as files are not downloaded and extracted locally).
* `raw_text` (string) - original (orthographic) audio segment text
* `normalized_text` (string) - normalized audio segment transcription
* `gender` (string) - gender of speaker
* `speaker_id` (string) - id of speaker
* `is_gold_transcript` (bool) - ?
* `accent` (string) - type of accent, for example "en_lt", if applicable, else "None".
### Data Splits
All configs (languages) except for accented English contain data in three splits: train, validation and test. Accented English `en_accented` config contains only test split.
## Dataset Creation
### Curation Rationale
[More Information Needed]
### Source Data
The raw data is collected from 2009-2020 [European Parliament event recordings](https://multimedia.europarl.europa.eu/en/home)
#### Initial Data Collection and Normalization
The VoxPopuli transcribed set comes from aligning the full-event source speech audio with the transcripts for plenary sessions. Official timestamps
are available for locating speeches by speaker in the full session, but they are frequently inaccurate, resulting in truncation of the speech or mixture
of fragments from the preceding or the succeeding speeches. To calibrate the original timestamps,
we perform speaker diarization (SD) on the full-session audio using pyannote.audio (Bredin et al.2020) and adopt the nearest SD timestamps (by L1 distance to the original ones) instead for segmentation.
Full-session audios are segmented into speech paragraphs by speaker, each of which has a transcript available.
The speech paragraphs have an average duration of 197 seconds, which leads to significant. We hence further segment these paragraphs into utterances with a
maximum duration of 20 seconds. We leverage speech recognition (ASR) systems to force-align speech paragraphs to the given transcripts.
The ASR systems are TDS models (Hannun et al., 2019) trained with ASG criterion (Collobert et al., 2016) on audio tracks from in-house deidentified video data.
The resulting utterance segments may have incorrect transcriptions due to incomplete raw transcripts or inaccurate ASR force-alignment.
We use the predictions from the same ASR systems as references and filter the candidate segments by a maximum threshold of 20% character error rate(CER).
#### Who are the source language producers?
Speakers are participants of the European Parliament events, many of them are EU officials.
### Annotations
#### Annotation process
[More Information Needed]
#### Who are the annotators?
[More Information Needed]
### Personal and Sensitive Information
[More Information Needed]
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed]
### Discussion of Biases
Gender speakers distribution is imbalanced, percentage of female speakers is mostly lower than 50% across languages, with the minimum of 15% for the Lithuanian language data.
VoxPopuli includes all available speeches from the 2009-2020 EP events without any selections on the topics or speakers.
The speech contents represent the standpoints of the speakers in the EP events, many of which are EU officials.
### Other Known Limitations
## Additional Information
### Dataset Curators
[More Information Needed]
### Licensing Information
The dataset is distributet under CC0 license, see also [European Parliament's legal notice](https://www.europarl.europa.eu/legal-notice/en/) for the raw data.
### Citation Information
Please cite this paper:
```bibtex
@inproceedings{wang-etal-2021-voxpopuli,
title = "{V}ox{P}opuli: A Large-Scale Multilingual Speech Corpus for Representation Learning, Semi-Supervised Learning and Interpretation",
author = "Wang, Changhan and
Riviere, Morgane and
Lee, Ann and
Wu, Anne and
Talnikar, Chaitanya and
Haziza, Daniel and
Williamson, Mary and
Pino, Juan and
Dupoux, Emmanuel",
booktitle = "Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)",
month = aug,
year = "2021",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.acl-long.80",
pages = "993--1003",
}
```
### Contributions
Thanks to [@polinaeterna](https://github.com/polinaeterna) for adding this dataset. |