raianand commited on
Commit
88b2cf5
1 Parent(s): 58adcac

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +7 -205
README.md CHANGED
@@ -117,220 +117,22 @@ As the dataset consisting of approximately 9.8K files spoken by 331 speakers fro
117
 
118
  ### Example usage
119
 
120
- VoxPopuli contains labelled data for 18 languages. To load a specific language pass its name as a config name:
121
 
 
122
  ```python
123
  from datasets import load_dataset
124
 
125
- voxpopuli_croatian = load_dataset("facebook/voxpopuli", "hr")
126
  ```
127
 
128
- To load all the languages in a single dataset use "multilang" config name:
129
 
130
  ```python
131
- voxpopuli_all = load_dataset("facebook/voxpopuli", "multilang")
 
 
132
  ```
133
 
134
- To load a specific set of languages, use "multilang" config name and pass a list of required languages to `languages` parameter:
135
 
136
- ```python
137
- voxpopuli_slavic = load_dataset("facebook/voxpopuli", "multilang", languages=["hr", "sk", "sl", "cs", "pl"])
138
- ```
139
-
140
- To load accented English data, use "en_accented" config name:
141
-
142
- ```python
143
- voxpopuli_accented = load_dataset("facebook/voxpopuli", "en_accented")
144
- ```
145
-
146
- **Note that L2 English subset contains only `test` split.**
147
-
148
-
149
- ### Supported Tasks and Leaderboards
150
-
151
- * automatic-speech-recognition: The dataset can be used to train a model for Automatic Speech Recognition (ASR). The model is presented with an audio file and asked to transcribe the audio file to written text. The most common evaluation metric is the word error rate (WER).
152
-
153
- Accented English subset can also be used for research in ASR for accented speech (15 L2 accents)
154
-
155
- ### Languages
156
-
157
- VoxPopuli contains labelled (transcribed) data for 18 languages:
158
-
159
- | Language | Code | Transcribed Hours | Transcribed Speakers | Transcribed Tokens |
160
- |:---:|:---:|:---:|:---:|:---:|
161
- | English | En | 543 | 1313 | 4.8M |
162
- | German | De | 282 | 531 | 2.3M |
163
- | French | Fr | 211 | 534 | 2.1M |
164
- | Spanish | Es | 166 | 305 | 1.6M |
165
- | Polish | Pl | 111 | 282 | 802K |
166
- | Italian | It | 91 | 306 | 757K |
167
- | Romanian | Ro | 89 | 164 | 739K |
168
- | Hungarian | Hu | 63 | 143 | 431K |
169
- | Czech | Cs | 62 | 138 | 461K |
170
- | Dutch | Nl | 53 | 221 | 488K |
171
- | Finnish | Fi | 27 | 84 | 160K |
172
- | Croatian | Hr | 43 | 83 | 337K |
173
- | Slovak | Sk | 35 | 96 | 270K |
174
- | Slovene | Sl | 10 | 45 | 76K |
175
- | Estonian | Et | 3 | 29 | 18K |
176
- | Lithuanian | Lt | 2 | 21 | 10K |
177
- | Total | | 1791 | 4295 | 15M |
178
-
179
-
180
- Accented speech transcribed data has 15 various L2 accents:
181
-
182
- | Accent | Code | Transcribed Hours | Transcribed Speakers |
183
- |:---:|:---:|:---:|:---:|
184
- | Dutch | en_nl | 3.52 | 45 |
185
- | German | en_de | 3.52 | 84 |
186
- | Czech | en_cs | 3.30 | 26 |
187
- | Polish | en_pl | 3.23 | 33 |
188
- | French | en_fr | 2.56 | 27 |
189
- | Hungarian | en_hu | 2.33 | 23 |
190
- | Finnish | en_fi | 2.18 | 20 |
191
- | Romanian | en_ro | 1.85 | 27 |
192
- | Slovak | en_sk | 1.46 | 17 |
193
- | Spanish | en_es | 1.42 | 18 |
194
- | Italian | en_it | 1.11 | 15 |
195
- | Estonian | en_et | 1.08 | 6 |
196
- | Lithuanian | en_lt | 0.65 | 7 |
197
- | Croatian | en_hr | 0.42 | 9 |
198
- | Slovene | en_sl | 0.25 | 7 |
199
-
200
- ## Dataset Structure
201
-
202
- ### Data Instances
203
-
204
- ```python
205
- {
206
- 'audio_id': '20180206-0900-PLENARY-15-hr_20180206-16:10:06_5',
207
- 'language': 11, # "hr"
208
- 'audio': {
209
- 'path': '/home/polina/.cache/huggingface/datasets/downloads/extracted/44aedc80bb053f67f957a5f68e23509e9b181cc9e30c8030f110daaedf9c510e/train_part_0/20180206-0900-PLENARY-15-hr_20180206-16:10:06_5.wav',
210
- 'array': array([-0.01434326, -0.01055908, 0.00106812, ..., 0.00646973], dtype=float32),
211
- 'sampling_rate': 16000
212
- },
213
- 'raw_text': '',
214
- 'normalized_text': 'poast genitalnog sakaenja ena u europi tek je jedna od manifestacija takve tetne politike.',
215
- 'gender': 'female',
216
- 'speaker_id': '119431',
217
- 'is_gold_transcript': True,
218
- 'accent': 'None'
219
- }
220
- ```
221
-
222
- ### Data Fields
223
-
224
- * `audio_id` (string) - id of audio segment
225
- * `language` (datasets.ClassLabel) - numerical id of audio segment
226
- * `audio` (datasets.Audio) - a dictionary containing the path to the audio, the decoded audio array, and the sampling rate. In non-streaming mode (default), the path points to the locally extracted audio. In streaming mode, the path is the relative path of an audio inside its archive (as files are not downloaded and extracted locally).
227
- * `raw_text` (string) - original (orthographic) audio segment text
228
- * `normalized_text` (string) - normalized audio segment transcription
229
- * `gender` (string) - gender of speaker
230
- * `speaker_id` (string) - id of speaker
231
- * `is_gold_transcript` (bool) - ?
232
- * `accent` (string) - type of accent, for example "en_lt", if applicable, else "None".
233
-
234
- ### Data Splits
235
-
236
- All configs (languages) except for accented English contain data in three splits: train, validation and test. Accented English `en_accented` config contains only test split.
237
-
238
- ## Dataset Creation
239
-
240
- ### Curation Rationale
241
-
242
- [More Information Needed]
243
-
244
- ### Source Data
245
-
246
- The raw data is collected from 2009-2020 [European Parliament event recordings](https://multimedia.europarl.europa.eu/en/home)
247
-
248
- #### Initial Data Collection and Normalization
249
-
250
- The VoxPopuli transcribed set comes from aligning the full-event source speech audio with the transcripts for plenary sessions. Official timestamps
251
- are available for locating speeches by speaker in the full session, but they are frequently inaccurate, resulting in truncation of the speech or mixture
252
- of fragments from the preceding or the succeeding speeches. To calibrate the original timestamps,
253
- we perform speaker diarization (SD) on the full-session audio using pyannote.audio (Bredin et al.2020) and adopt the nearest SD timestamps (by L1 distance to the original ones) instead for segmentation.
254
- Full-session audios are segmented into speech paragraphs by speaker, each of which has a transcript available.
255
-
256
- The speech paragraphs have an average duration of 197 seconds, which leads to significant. We hence further segment these paragraphs into utterances with a
257
- maximum duration of 20 seconds. We leverage speech recognition (ASR) systems to force-align speech paragraphs to the given transcripts.
258
- The ASR systems are TDS models (Hannun et al., 2019) trained with ASG criterion (Collobert et al., 2016) on audio tracks from in-house deidentified video data.
259
-
260
- The resulting utterance segments may have incorrect transcriptions due to incomplete raw transcripts or inaccurate ASR force-alignment.
261
- We use the predictions from the same ASR systems as references and filter the candidate segments by a maximum threshold of 20% character error rate(CER).
262
-
263
- #### Who are the source language producers?
264
-
265
- Speakers are participants of the European Parliament events, many of them are EU officials.
266
-
267
- ### Annotations
268
-
269
- #### Annotation process
270
-
271
- [More Information Needed]
272
-
273
- #### Who are the annotators?
274
-
275
- [More Information Needed]
276
-
277
- ### Personal and Sensitive Information
278
-
279
- [More Information Needed]
280
-
281
- ## Considerations for Using the Data
282
-
283
- ### Social Impact of Dataset
284
-
285
- [More Information Needed]
286
-
287
- ### Discussion of Biases
288
-
289
- Gender speakers distribution is imbalanced, percentage of female speakers is mostly lower than 50% across languages, with the minimum of 15% for the Lithuanian language data.
290
-
291
- VoxPopuli includes all available speeches from the 2009-2020 EP events without any selections on the topics or speakers.
292
- The speech contents represent the standpoints of the speakers in the EP events, many of which are EU officials.
293
-
294
-
295
- ### Other Known Limitations
296
-
297
-
298
- ## Additional Information
299
-
300
- ### Dataset Curators
301
-
302
- [More Information Needed]
303
-
304
- ### Licensing Information
305
-
306
- The dataset is distributet under CC0 license, see also [European Parliament's legal notice](https://www.europarl.europa.eu/legal-notice/en/) for the raw data.
307
-
308
- ### Citation Information
309
-
310
- Please cite this paper:
311
-
312
- ```bibtex
313
- @inproceedings{wang-etal-2021-voxpopuli,
314
- title = "{V}ox{P}opuli: A Large-Scale Multilingual Speech Corpus for Representation Learning, Semi-Supervised Learning and Interpretation",
315
- author = "Wang, Changhan and
316
- Riviere, Morgane and
317
- Lee, Ann and
318
- Wu, Anne and
319
- Talnikar, Chaitanya and
320
- Haziza, Daniel and
321
- Williamson, Mary and
322
- Pino, Juan and
323
- Dupoux, Emmanuel",
324
- booktitle = "Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)",
325
- month = aug,
326
- year = "2021",
327
- address = "Online",
328
- publisher = "Association for Computational Linguistics",
329
- url = "https://aclanthology.org/2021.acl-long.80",
330
- pages = "993--1003",
331
- }
332
- ```
333
-
334
- ### Contributions
335
 
336
- Thanks to [@polinaeterna](https://github.com/polinaeterna) for adding this dataset.
 
117
 
118
  ### Example usage
119
 
120
+ The TIE_Shorts dataset provides labeled audio data with metadata, including fields like Speaker ID, Gender, Caste, Native Region, and more. You can load the dataset with different configurations to access specific data subsets.:
121
 
122
+ To load the entire TIE_Shorts dataset, use the following code:
123
  ```python
124
  from datasets import load_dataset
125
 
126
+ tie_shorts = load_dataset("raianand/TIE_shorts")
127
  ```
128
 
129
+ To load only a specific split (such as train, test, or validation), use:
130
 
131
  ```python
132
+ tie_shorts_train = load_dataset("raianand/TIE_shorts", split="train")
133
+ tie_shorts_test = load_dataset("raianand/TIE_shorts", split="test")
134
+ tie_shorts_validation = load_dataset("raianand/TIE_shorts", split="validation")
135
  ```
136
 
 
137
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
138