Datasets:
File size: 3,897 Bytes
2457bd6 37c4076 2457bd6 f6d5c55 2457bd6 f6d5c55 37c4076 2457bd6 f6d5c55 2457bd6 f6d5c55 37c4076 2457bd6 f6d5c55 2457bd6 f6d5c55 37c4076 2457bd6 f6d5c55 2457bd6 f6d5c55 37c4076 f6d5c55 37c4076 f6d5c55 37c4076 f6d5c55 37c4076 f6d5c55 37c4076 f6d5c55 37c4076 f6d5c55 37c4076 f6d5c55 37c4076 f6d5c55 2457bd6 e8b2595 37c4076 f6d5c55 37c4076 e8b2595 37c4076 e8b2595 f6d5c55 e8b2595 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 |
---
license: apache-2.0
configs:
- config_name: english-full
data_files:
- split: train
path: english/train.jsonl
- split: test
path: english/test.jsonl
- config_name: english-qi
data_files:
- split: train
path: english/qi_train.jsonl
- split: test
path: english/qi_test.jsonl
- config_name: english-dp
data_files:
- split: train
path: english/dp_train.jsonl
- split: test
path: english/dp_test.jsonl
- config_name: english-custom
data_files:
- split: train
path: english/custom_train.jsonl
- split: test
path: english/custom_test.jsonl
- config_name: french-full
data_files:
- split: train
path: french/train.jsonl
- split: test
path: french/test.jsonl
- config_name: french-qi
data_files:
- split: train
path: french/qi_train.jsonl
- split: test
path: french/qi_test.jsonl
- config_name: french-dp
data_files:
- split: train
path: french/dp_train.jsonl
- split: test
path: french/dp_test.jsonl
- config_name: french-custom
data_files:
- split: train
path: french/custom_train.jsonl
- split: test
path: french/custom_test.jsonl
task_categories:
- multiple-choice
language:
- fr
- en
tags:
- medical question answering
pretty_name: ecn-qa
---
# Model Card for Raidium ECN-QA
The dataset is introduced in the paper "Efficient Medical Question Answering with Knowledge-Augmented Question Generation".
Paper: [https://arxiv.org/abs/2405.14654](https://arxiv.org/abs/2405.14654)
## Dataset Details
### Dataset Description
The dataset contains medical questions of different types. It was built from passed ECN exams (french medical examination) and questions created by [FreeCN](https://www.freecn.io/).
The questions can be:
- IQ (individual question) containing a question and several propositions that can be right or wrong
- Custom which are IQ created by FreeCN
- PQ (progressive questions) containing a case with an introduction and several following questions with multiple propositions
There are two versions of this dataset: the **french** and the **english** versions.
The **french** split is the original dataset version.
### Use this dataset
To access the full dataset in french or english
```python
from datasets import load_dataset
# Login using e.g. `huggingface-cli login` to access this dataset
ds_french = load_dataset("raidium/ECN-QA", "french-full")
ds_english = load_dataset("raidium/ECN-QA", "english-full")
```
You can also access subsets of the dataset
```python
# French version
ds_french_qi = load_dataset("raidium/ECN-QA", "french-qi")
ds_french_dp = load_dataset("raidium/ECN-QA", "french-dp")
ds_french_custom = load_dataset("raidium/ECN-QA", "french-custom")
# English version
ds_english_qi = load_dataset("raidium/ECN-QA", "english-qi")
ds_english_dp = load_dataset("raidium/ECN-QA", "english-dp")
ds_english_custom = load_dataset("raidium/ECN-QA", "english-custom")
```
- **Developed by:** Raidium
- **License:** Apache 2.0
### Warnings
- Some questions require images to be answered. They have not been filtered out in this dataset, to it is impossible to get 100% accuracy on this dataset.
- The english version is an automated translation (using Azure Translation api), hence, it might contain translation errors.
### Dataset Sources
<!-- Provide the basic links for the model. -->
- **Repository:** [https://github.com/raidium-med/MQG]
- **Paper:** [https://arxiv.org/abs/2405.14654](https://arxiv.org/abs/2405.14654)
## Citation
**BibTeX:**
```
@article{khlaut2024efficient,
title={Efficient Medical Question Answering with Knowledge-Augmented Question Generation},
author={Khlaut, Julien and Dancette, Corentin and Ferreres, Elodie and Bennani, Alaedine and H{\'e}rent, Paul and Manceron, Pierre},
journal={Clinical NLP Workshop, NAACL 2024},
year={2024}
}
```
## Dataset Card Contact
julien.khlaut at raidium.fr |