Datasets:

Modalities:
Text
Formats:
json
ArXiv:
Libraries:
Datasets
pandas
License:
File size: 3,897 Bytes
2457bd6
 
 
37c4076
2457bd6
 
f6d5c55
2457bd6
f6d5c55
37c4076
2457bd6
 
f6d5c55
2457bd6
f6d5c55
37c4076
2457bd6
 
f6d5c55
2457bd6
f6d5c55
37c4076
2457bd6
 
f6d5c55
2457bd6
f6d5c55
37c4076
 
 
f6d5c55
37c4076
f6d5c55
37c4076
 
 
f6d5c55
37c4076
f6d5c55
37c4076
 
 
f6d5c55
37c4076
f6d5c55
37c4076
 
 
f6d5c55
37c4076
f6d5c55
 
 
 
 
 
 
 
 
2457bd6
e8b2595
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
37c4076
 
f6d5c55
37c4076
 
 
 
 
 
e8b2595
37c4076
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e8b2595
 
 
f6d5c55
 
 
 
 
 
 
 
e8b2595
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
---
license: apache-2.0
configs:
- config_name: english-full
  data_files:
  - split: train
    path: english/train.jsonl
  - split: test
    path: english/test.jsonl
- config_name: english-qi
  data_files:
  - split: train
    path: english/qi_train.jsonl
  - split: test
    path: english/qi_test.jsonl
- config_name: english-dp
  data_files:
  - split: train
    path: english/dp_train.jsonl
  - split: test
    path: english/dp_test.jsonl
- config_name: english-custom
  data_files:
  - split: train
    path: english/custom_train.jsonl
  - split: test
    path: english/custom_test.jsonl
- config_name: french-full
  data_files:
  - split: train
    path: french/train.jsonl
  - split: test
    path: french/test.jsonl
- config_name: french-qi
  data_files:
  - split: train
    path: french/qi_train.jsonl
  - split: test
    path: french/qi_test.jsonl
- config_name: french-dp
  data_files:
  - split: train
    path: french/dp_train.jsonl
  - split: test
    path: french/dp_test.jsonl
- config_name: french-custom
  data_files:
  - split: train
    path: french/custom_train.jsonl
  - split: test
    path: french/custom_test.jsonl
task_categories:
- multiple-choice
language:
- fr
- en
tags:
- medical question answering
pretty_name: ecn-qa
---


# Model Card for Raidium ECN-QA

The dataset is introduced in the paper "Efficient Medical Question Answering with Knowledge-Augmented Question Generation".

Paper: [https://arxiv.org/abs/2405.14654](https://arxiv.org/abs/2405.14654)

## Dataset Details


### Dataset Description

The dataset contains medical questions of different types. It was built from passed ECN exams (french medical examination) and questions created by [FreeCN](https://www.freecn.io/).
The questions can be:
- IQ (individual question) containing a question and several propositions that can be right or wrong
- Custom which are IQ created by FreeCN
- PQ (progressive questions) containing a case with an introduction and several following questions with multiple propositions

There are two versions of this dataset: the **french** and the **english** versions.
The  **french** split is the original dataset version.


### Use this dataset

To access the full dataset in french or english
```python
from datasets import load_dataset

# Login using e.g. `huggingface-cli login` to access this dataset
ds_french = load_dataset("raidium/ECN-QA", "french-full")
ds_english = load_dataset("raidium/ECN-QA", "english-full")
```

You can also access subsets of the dataset

```python
# French version
ds_french_qi = load_dataset("raidium/ECN-QA", "french-qi")
ds_french_dp = load_dataset("raidium/ECN-QA", "french-dp")
ds_french_custom = load_dataset("raidium/ECN-QA", "french-custom")
# English version
ds_english_qi = load_dataset("raidium/ECN-QA", "english-qi")
ds_english_dp = load_dataset("raidium/ECN-QA", "english-dp")
ds_english_custom = load_dataset("raidium/ECN-QA", "english-custom")

```
- **Developed by:** Raidium
- **License:** Apache 2.0


### Warnings

- Some questions require images to be answered. They have not been filtered out in this dataset, to it is impossible to get 100% accuracy on this dataset.
- The english version is an automated translation (using Azure Translation api), hence, it might contain translation errors.


### Dataset Sources

<!-- Provide the basic links for the model. -->

- **Repository:** [https://github.com/raidium-med/MQG]
- **Paper:**  [https://arxiv.org/abs/2405.14654](https://arxiv.org/abs/2405.14654)


## Citation


**BibTeX:**
```
@article{khlaut2024efficient,
  title={Efficient Medical Question Answering with Knowledge-Augmented Question Generation},
  author={Khlaut, Julien and Dancette, Corentin and Ferreres, Elodie and Bennani, Alaedine and H{\'e}rent, Paul and Manceron, Pierre},
  journal={Clinical NLP Workshop, NAACL 2024},
  year={2024}
}
```

## Dataset Card Contact

julien.khlaut at raidium.fr