--- license: apache-2.0 --- # Dataset Card for Color dSprites ## Dataset Description The **Color dSprites dataset** is a **synthetic 2D shapes dataset** designed for benchmarking algorithms in **disentangled representation learning** and **unsupervised representation learning**. It is a variant of the original **dSprites dataset** introduced in the β-VAE paper. In this version, each object is randomly colored per sample, while the background remains black. This allows researchers to evaluate **robustness to color variation** and assess how well models can learn disentangled representations under color transformations. The dataset consists of procedurally generated images of 2D sprites, under controlled variations of **6 known factors of variation**: - Object color (1 value in original dSprites, but here a random RGB color ∈ [0.5,1.0] is applied to each object at runtime) - Object shape (3 values: square, ellipse, heart) - Object scale (6 values) - Object orientation (40 values) - Object position X (32 values) - Object position Y (32 values) All possible combinations of these factors are present exactly once, generating a total of **737,280 images** at a resolution of **64×64 pixels**. Each image is provided along with **Discrete latent classes** (indices for each factor), **Continuous latent values** and **Actual object color used (colorRGB field)**. These variants allow systematic testing under **random color of object**. ![Dataset Visualization](https://huggingface.co/datasets/randall-lab/dsprites-color/resolve/main/animation0.gif) The dataset is commonly used for **benchmarking disentanglement learning**, and can be used in conjunction with other variants: - [randall-lab/dsprites (default, grayscale)](https://huggingface.co/datasets/randall-lab/dsprites) - [randall-lab/dsprites-noisy](https://huggingface.co/datasets/randall-lab/dsprites-noisy) - [randall-lab/dsprites-scream](https://huggingface.co/datasets/randall-lab/dsprites-scream) ## Dataset Source - **Homepage**: [https://github.com/google-research/disentanglement_lib/](https://github.com/google-research/disentanglement_lib/tree/master) - **License**: Apache License 2.0 - **Paper**: Francesco Locatello et al. _Challenging Common Assumptions in the Unsupervised Learning of Disentangled Representations_. ICML 2019. ## Dataset Structure |Factors|Possible Classes (Indices)|Values| |---|---|---| |color|white=0 (original label, fixed)|Random RGB color ∈ [0.5,1.0] stored in `colorRGB`| |shape|square=0, ellipse=1, heart=2|1.0, 2.0, 3.0 (categorical)| |scale|0,...,5|[0.5, 1.0] linearly spaced (6 values)| |orientation|0,...,39|[0, 2π] radians (40 values)| |posX|0,...,31|[0, 1] normalized position (32 values)| |posY|0,...,31|[0, 1] normalized position (32 values)| **Note:** In this Color variant, the `color` and `colorValue` fields remain 0 to match the original dSprites format. The **actual applied color** is provided in `colorRGB`, a list of `[R, G, B]` values ∈ [0.5,1.0]. Each image corresponds to a unique combination of these 6 factors. The images are stored in a **row-major order** (fastest-changing factor is `posY`, slowest-changing factor is `color`). ### Why no train/test split? The Color dSprites dataset does not provide an official train/test split. It is designed for **representation learning research**, where the goal is to learn disentangled and interpretable latent factors. Since the dataset is a complete Cartesian product of all factor combinations, models typically require access to the full dataset to explore factor-wise variations. ## Example Usage Below is a quick example of how to load this dataset via the Hugging Face Datasets library: ```python from datasets import load_dataset # Load the dataset dataset = load_dataset("randall-lab/dsprites-color", split="train", trust_remote_code=True) # Access a sample from the dataset example = dataset[0] image = example["image"] label = example["label"] # [color_idx, shape_idx, scale_idx, orientation_idx, posX_idx, posY_idx] label_values = example["label_values"] # corresponding continuous values colorRGB = example["colorRGB"] # Actual RGB color used in this sample # Label Classes color = example["color"] # 0 shape = example["shape"] # 0-2 scale = example["scale"] # 0-5 orientation = example["orientation"] # 0-39 posX = example["posX"] # 0-31 posY = example["posY"] # 0-31 # Label Values color_value = example["colorValue"] # 1 shape_value = example["shapeValue"] # 1.0, 2.0, 3.0 scale_value = example["scaleValue"] # [0.5, 1] orientation_value = example["orientationValue"] # [0, 2π] posX_value = example["posXValue"] # [0, 1] posY_value = example["posYValue"] # [0, 1] # Actual color applied to object print(f"Actual RGB color: {colorRGB}") image.show() # Display the image print(f"Label (factors): {label}") print(f"Label values (factors): {label_values}") ``` If you are using colab, you should update datasets to avoid errors ``` pip install -U datasets ``` ## Citation ``` @inproceedings{locatello2019challenging, title={Challenging Common Assumptions in the Unsupervised Learning of Disentangled Representations}, author={Locatello, Francesco and Bauer, Stefan and Lucic, Mario and Raetsch, Gunnar and Gelly, Sylvain and Sch{\"o}lkopf, Bernhard and Bachem, Olivier}, booktitle={International Conference on Machine Learning}, pages={4114--4124}, year={2019} } ```