import datasets import numpy as np from PIL import Image _DSPRITES_URL = "https://github.com/google-deepmind/dsprites-dataset/raw/refs/heads/master/dsprites_ndarray_co1sh3sc6or40x32y32_64x64.npz" class DSprites(datasets.GeneratorBasedBuilder): """dSprites dataset: 3x6x40x32x32 factor combinations, 64x64 binary images.""" VERSION = datasets.Version("1.0.0") def _info(self): return datasets.DatasetInfo( description=( "Color dSprites dataset: procedurally generated 2D shapes dataset with known ground-truth factors, " "commonly used for disentangled representation learning. " "This is the ColorDSprites variant, where each object is randomly colored per sample, " "while background remains black. " "Factors: color (1), shape (3), scale (6), orientation (40), position X (32), position Y (32). " "Images are 64x64 RGB." ), features=datasets.Features( { "image": datasets.Image(), # (64, 64), grayscale "index": datasets.Value("int32"), # index of the image "label": datasets.Sequence(datasets.Value("int32")), # 6 factor indices (classes) "label_values": datasets.Sequence(datasets.Value("float32")), # 6 factor continuous values "color": datasets.Value("int32"), # color index (always 0) "shape": datasets.Value("int32"), # shape index (0-2) "scale": datasets.Value("int32"), # scale index (0-5) "orientation": datasets.Value("int32"), # orientation index (0-39) "posX": datasets.Value("int32"), # posX index (0-31) "posY": datasets.Value("int32"), # posY index (0-31) "colorValue": datasets.Value("float64"), # color index (always 0) "shapeValue": datasets.Value("float64"), # shape index (0-2) "scaleValue": datasets.Value("float64"), # scale index (0-5) "orientationValue": datasets.Value("float64"), # orientation index (0-39) "posXValue": datasets.Value("float64"), # posX index (0-31) "posYValue": datasets.Value("float64"), # posY index (0-31) "colorRGB": datasets.Sequence(datasets.Value("float32")), } ), supervised_keys=("image", "label"), homepage="https://github.com/google-research/disentanglement_lib/tree/master", license="apache-2.0", citation="""@inproceedings{locatello2019challenging, title={Challenging Common Assumptions in the Unsupervised Learning of Disentangled Representations}, author={Locatello, Francesco and Bauer, Stefan and Lucic, Mario and Raetsch, Gunnar and Gelly, Sylvain and Sch{\"o}lkopf, Bernhard and Bachem, Olivier}, booktitle={International Conference on Machine Learning}, pages={4114--4124}, year={2019} }""", ) def _split_generators(self, dl_manager): npz_path = dl_manager.download(_DSPRITES_URL) return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={"npz_path": npz_path}, ), ] def _generate_examples(self, npz_path): # Load npz data = np.load(npz_path, allow_pickle=True) images = data["imgs"] # shape: (737280, 64, 64), uint8 latents_classes = data["latents_classes"] # shape: (737280, 6), int64 latents_values = data["latents_values"] # shape: (737280, 6), float64 # Iterate over images for idx in range(len(images)): img = images[idx] # (64, 64), uint8 img = img.astype(np.float32) / 1.0 color_rgb = np.random.uniform(0.5, 1.0, size=(3,)) img_rgb = (img[..., None] * color_rgb) * 255 img_pil = Image.fromarray(img_rgb.astype(np.uint8), mode="RGB") factors_classes = latents_classes[idx].tolist() # [color_idx, shape_idx, scale_idx, orientation_idx, posX_idx, posY_idx] factors_values = latents_values[idx].tolist() yield idx, { "image": img_pil, "index": idx, "label": factors_classes, "label_values": factors_values, "color": factors_classes[0], # always 0 "shape": factors_classes[1], "scale": factors_classes[2], "orientation": factors_classes[3], "posX": factors_classes[4], "posY": factors_classes[5], "colorValue": factors_values[0], # always 0.0 "shapeValue": factors_values[1], "scaleValue": factors_values[2], "orientationValue": factors_values[3], "posXValue": factors_values[4], "posYValue": factors_values[5], "colorRGB": color_rgb.tolist(), # [R, G, B], ∈ [0.5,1.0] }