dsprites / dsprites.py
haodoz0118's picture
Update dsprites.py
7e9ae69 verified
import datasets
import numpy as np
from PIL import Image
_DSPRITES_URL = "https://github.com/google-deepmind/dsprites-dataset/raw/refs/heads/master/dsprites_ndarray_co1sh3sc6or40x32y32_64x64.npz"
class DSprites(datasets.GeneratorBasedBuilder):
"""dSprites dataset: 3x6x40x32x32 factor combinations, 64x64 binary images."""
VERSION = datasets.Version("1.0.0")
def _info(self):
return datasets.DatasetInfo(
description=(
"dSprites dataset: procedurally generated 2D shapes dataset with known ground-truth factors, "
"commonly used for disentangled representation learning. "
"Factors: color (1), shape (3), scale (6), orientation (40), position X (32), position Y (32). "
"Images are 64x64 binary black-and-white."
),
features=datasets.Features(
{
"image": datasets.Image(), # (64, 64), grayscale
"index": datasets.Value("int32"), # index of the image
"label": datasets.Sequence(datasets.Value("int32")), # 6 factor indices (classes)
"label_values": datasets.Sequence(datasets.Value("float32")), # 6 factor continuous values
"color": datasets.Value("int32"), # color index (always 0)
"shape": datasets.Value("int32"), # shape index (0-2)
"scale": datasets.Value("int32"), # scale index (0-5)
"orientation": datasets.Value("int32"), # orientation index (0-39)
"posX": datasets.Value("int32"), # posX index (0-31)
"posY": datasets.Value("int32"), # posY index (0-31)
"colorValue": datasets.Value("float64"), # color index (always 0)
"shapeValue": datasets.Value("float64"), # shape index (0-2)
"scaleValue": datasets.Value("float64"), # scale index (0-5)
"orientationValue": datasets.Value("float64"), # orientation index (0-39)
"posXValue": datasets.Value("float64"), # posX index (0-31)
"posYValue": datasets.Value("float64"), # posY index (0-31)
}
),
supervised_keys=("image", "label"),
homepage="https://github.com/google-deepmind/dsprites-dataset",
license="zlib/libpng License",
citation="""@inproceedings{higgins2017beta,
title={beta-vae: Learning basic visual concepts with a constrained variational framework},
author={Higgins, Irina and Matthey, Loic and Pal, Arka and Burgess, Christopher and Glorot, Xavier and Botvinick, Matthew and Mohamed, Shakir and Lerchner, Alexander},
booktitle={International conference on learning representations},
year={2017}
}""",
)
def _split_generators(self, dl_manager):
npz_path = dl_manager.download(_DSPRITES_URL)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={"npz_path": npz_path},
),
]
def _generate_examples(self, npz_path):
# Load npz
data = np.load(npz_path, allow_pickle=True)
images = data["imgs"] # shape: (737280, 64, 64), uint8
latents_classes = data["latents_classes"] # shape: (737280, 6), int64
latents_values = data["latents_values"] # shape: (737280, 6), float64
# Iterate over images
for idx in range(len(images)):
img = images[idx] # (64, 64), uint8
img = img * 255
# Convert to PIL image, keep grayscale mode
img_pil = Image.fromarray(img, mode="L")
factors_classes = latents_classes[idx].tolist() # [color_idx, shape_idx, scale_idx, orientation_idx, posX_idx, posY_idx]
factors_values = latents_values[idx].tolist()
yield idx, {
"image": img_pil,
"index": idx,
"label": factors_classes,
"label_values": factors_values,
"color": factors_classes[0], # always 0
"shape": factors_classes[1],
"scale": factors_classes[2],
"orientation": factors_classes[3],
"posX": factors_classes[4],
"posY": factors_classes[5],
"colorValue": factors_values[0], # always 0.0
"shapeValue": factors_values[1],
"scaleValue": factors_values[2],
"orientationValue": factors_values[3],
"posXValue": factors_values[4],
"posYValue": factors_values[5],
}