|
import datasets |
|
import numpy as np |
|
from PIL import Image |
|
|
|
_DSPRITES_URL = "https://github.com/google-deepmind/dsprites-dataset/raw/refs/heads/master/dsprites_ndarray_co1sh3sc6or40x32y32_64x64.npz" |
|
|
|
class DSprites(datasets.GeneratorBasedBuilder): |
|
"""dSprites dataset: 3x6x40x32x32 factor combinations, 64x64 binary images.""" |
|
|
|
VERSION = datasets.Version("1.0.0") |
|
|
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
description=( |
|
"dSprites dataset: procedurally generated 2D shapes dataset with known ground-truth factors, " |
|
"commonly used for disentangled representation learning. " |
|
"Factors: color (1), shape (3), scale (6), orientation (40), position X (32), position Y (32). " |
|
"Images are 64x64 binary black-and-white." |
|
), |
|
features=datasets.Features( |
|
{ |
|
"image": datasets.Image(), |
|
"index": datasets.Value("int32"), |
|
"label": datasets.Sequence(datasets.Value("int32")), |
|
"label_values": datasets.Sequence(datasets.Value("float32")), |
|
"color": datasets.Value("int32"), |
|
"shape": datasets.Value("int32"), |
|
"scale": datasets.Value("int32"), |
|
"orientation": datasets.Value("int32"), |
|
"posX": datasets.Value("int32"), |
|
"posY": datasets.Value("int32"), |
|
"colorValue": datasets.Value("float64"), |
|
"shapeValue": datasets.Value("float64"), |
|
"scaleValue": datasets.Value("float64"), |
|
"orientationValue": datasets.Value("float64"), |
|
"posXValue": datasets.Value("float64"), |
|
"posYValue": datasets.Value("float64"), |
|
} |
|
), |
|
supervised_keys=("image", "label"), |
|
homepage="https://github.com/google-deepmind/dsprites-dataset", |
|
license="zlib/libpng License", |
|
citation="""@inproceedings{higgins2017beta, |
|
title={beta-vae: Learning basic visual concepts with a constrained variational framework}, |
|
author={Higgins, Irina and Matthey, Loic and Pal, Arka and Burgess, Christopher and Glorot, Xavier and Botvinick, Matthew and Mohamed, Shakir and Lerchner, Alexander}, |
|
booktitle={International conference on learning representations}, |
|
year={2017} |
|
}""", |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
npz_path = dl_manager.download(_DSPRITES_URL) |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={"npz_path": npz_path}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, npz_path): |
|
|
|
data = np.load(npz_path, allow_pickle=True) |
|
images = data["imgs"] |
|
latents_classes = data["latents_classes"] |
|
latents_values = data["latents_values"] |
|
|
|
|
|
for idx in range(len(images)): |
|
img = images[idx] |
|
img = img * 255 |
|
|
|
img_pil = Image.fromarray(img, mode="L") |
|
|
|
factors_classes = latents_classes[idx].tolist() |
|
factors_values = latents_values[idx].tolist() |
|
|
|
yield idx, { |
|
"image": img_pil, |
|
"index": idx, |
|
"label": factors_classes, |
|
"label_values": factors_values, |
|
"color": factors_classes[0], |
|
"shape": factors_classes[1], |
|
"scale": factors_classes[2], |
|
"orientation": factors_classes[3], |
|
"posX": factors_classes[4], |
|
"posY": factors_classes[5], |
|
"colorValue": factors_values[0], |
|
"shapeValue": factors_values[1], |
|
"scaleValue": factors_values[2], |
|
"orientationValue": factors_values[3], |
|
"posXValue": factors_values[4], |
|
"posYValue": factors_values[5], |
|
} |
|
|