Update dsprites.py
Browse files- dsprites.py +73 -57
dsprites.py
CHANGED
@@ -1,79 +1,95 @@
|
|
1 |
-
import numpy as np
|
2 |
import datasets
|
3 |
-
|
|
|
4 |
|
|
|
5 |
|
6 |
class DSprites(datasets.GeneratorBasedBuilder):
|
7 |
-
"""
|
8 |
|
9 |
VERSION = datasets.Version("1.0.0")
|
10 |
|
11 |
def _info(self):
|
12 |
-
features = datasets.Features(
|
13 |
-
{
|
14 |
-
"image": datasets.Image(),
|
15 |
-
"orientation": datasets.Value("float"),
|
16 |
-
"shape": datasets.ClassLabel(names=["square", "ellipse", "heart"]),
|
17 |
-
"scale": datasets.Value("float"),
|
18 |
-
"color": datasets.ClassLabel(names=["white"]),
|
19 |
-
"position_x": datasets.Value("float"),
|
20 |
-
"position_y": datasets.Value("float"),
|
21 |
-
}
|
22 |
-
)
|
23 |
-
|
24 |
-
homepage = "https://github.com/deepmind/dsprites-dataset"
|
25 |
-
license = "zlib/libpng"
|
26 |
return datasets.DatasetInfo(
|
27 |
-
description=
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
)
|
39 |
|
40 |
def _split_generators(self, dl_manager):
|
41 |
-
|
42 |
-
|
43 |
-
)
|
44 |
return [
|
45 |
datasets.SplitGenerator(
|
46 |
name=datasets.Split.TRAIN,
|
47 |
-
gen_kwargs={"
|
48 |
-
),
|
49 |
-
datasets.SplitGenerator(
|
50 |
-
name=datasets.Split.TEST,
|
51 |
-
gen_kwargs={"archive": archive, "split": "test"},
|
52 |
),
|
53 |
]
|
54 |
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
images =
|
59 |
-
|
|
|
|
|
|
|
|
|
|
|
60 |
|
61 |
-
|
62 |
-
|
63 |
-
train_indices, test_indices = train_test_split(indices, test_size=0.3, random_state=42)
|
64 |
|
65 |
-
|
66 |
-
|
67 |
-
elif split == "test":
|
68 |
-
selected_indices = test_indices
|
69 |
|
70 |
-
|
71 |
-
|
72 |
-
"
|
73 |
-
"
|
74 |
-
"
|
75 |
-
"
|
76 |
-
"
|
77 |
-
"
|
78 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
79 |
}
|
|
|
|
|
1 |
import datasets
|
2 |
+
import numpy as np
|
3 |
+
from PIL import Image
|
4 |
|
5 |
+
_DSPRITES_URL = "https://github.com/deepmind/dsprites-dataset/raw/master/dsprites_ndarray_co1sh3sc6or40x32x32_64x64.npz"
|
6 |
|
7 |
class DSprites(datasets.GeneratorBasedBuilder):
|
8 |
+
"""dSprites dataset: 3x6x40x32x32 factor combinations, 64x64 binary images."""
|
9 |
|
10 |
VERSION = datasets.Version("1.0.0")
|
11 |
|
12 |
def _info(self):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
return datasets.DatasetInfo(
|
14 |
+
description=(
|
15 |
+
"dSprites dataset: procedurally generated 2D shapes dataset with known ground-truth factors, "
|
16 |
+
"commonly used for disentangled representation learning. "
|
17 |
+
"Factors: color (1), shape (3), scale (6), orientation (40), position X (32), position Y (32). "
|
18 |
+
"Images are 64x64 binary black-and-white."
|
19 |
+
),
|
20 |
+
features=datasets.Features(
|
21 |
+
{
|
22 |
+
"image": datasets.Image(), # (64, 64), grayscale
|
23 |
+
"index": datasets.Value("int32"), # index of the image
|
24 |
+
"label": datasets.Sequence(datasets.Value("int32")), # 6 factor indices (classes)
|
25 |
+
"label_values": datasets.Sequence(datasets.Value("float32")), # 6 factor continuous values
|
26 |
+
"color": datasets.Value("int32"), # color index (always 0)
|
27 |
+
"shape": datasets.Value("int32"), # shape index (0-2)
|
28 |
+
"scale": datasets.Value("int32"), # scale index (0-5)
|
29 |
+
"orientation": datasets.Value("int32"), # orientation index (0-39)
|
30 |
+
"posX": datasets.Value("int32"), # posX index (0-31)
|
31 |
+
"posY": datasets.Value("int32"), # posY index (0-31)
|
32 |
+
"colorValue": datasets.Value("float64"), # color index (always 0)
|
33 |
+
"shapeValue": datasets.Value("float64"), # shape index (0-2)
|
34 |
+
"scaleValue": datasets.Value("float64"), # scale index (0-5)
|
35 |
+
"orientationValue": datasets.Value("float64"), # orientation index (0-39)
|
36 |
+
"posXValue": datasets.Value("float64"), # posX index (0-31)
|
37 |
+
"posYValue": datasets.Value("float64"), # posY index (0-31)
|
38 |
+
}
|
39 |
+
),
|
40 |
+
supervised_keys=("image", "label"),
|
41 |
+
homepage="https://github.com/google-deepmind/dsprites-dataset",
|
42 |
+
license="zlib/libpng License",
|
43 |
+
citation="""@inproceedings{higgins2017beta,
|
44 |
+
title={beta-vae: Learning basic visual concepts with a constrained variational framework},
|
45 |
+
author={Higgins, Irina and Matthey, Loic and Pal, Arka and Burgess, Christopher and Glorot, Xavier and Botvinick, Matthew and Mohamed, Shakir and Lerchner, Alexander},
|
46 |
+
booktitle={International conference on learning representations},
|
47 |
+
year={2017}
|
48 |
+
}""",
|
49 |
)
|
50 |
|
51 |
def _split_generators(self, dl_manager):
|
52 |
+
npz_path = dl_manager.download(_DSPRITES_URL)
|
53 |
+
|
|
|
54 |
return [
|
55 |
datasets.SplitGenerator(
|
56 |
name=datasets.Split.TRAIN,
|
57 |
+
gen_kwargs={"npz_path": npz_path},
|
|
|
|
|
|
|
|
|
58 |
),
|
59 |
]
|
60 |
|
61 |
+
def _generate_examples(self, npz_path):
|
62 |
+
# Load npz
|
63 |
+
data = np.load(npz_path, allow_pickle=True)
|
64 |
+
images = data["imgs"] # shape: (737280, 64, 64), uint8
|
65 |
+
latents_classes = data["latents_classes"] # shape: (737280, 6), int64
|
66 |
+
latents_values = data["latents_values"] # shape: (737280, 6), float64
|
67 |
+
|
68 |
+
# Iterate over images
|
69 |
+
for idx in range(len(images)):
|
70 |
+
img = images[idx] # (64, 64), uint8
|
71 |
|
72 |
+
# Convert to PIL image, keep grayscale mode
|
73 |
+
img_pil = Image.fromarray(img, mode="L")
|
|
|
74 |
|
75 |
+
factors_classes = latents_classes[idx].tolist() # [color_idx, shape_idx, scale_idx, orientation_idx, posX_idx, posY_idx]
|
76 |
+
factors_values = latents_values[idx].tolist()
|
|
|
|
|
77 |
|
78 |
+
yield idx, {
|
79 |
+
"image": img_pil,
|
80 |
+
"index": idx,
|
81 |
+
"label": factors_classes,
|
82 |
+
"label_values": factors_values,
|
83 |
+
"color": factors_classes[0], # always 0
|
84 |
+
"shape": factors_classes[1],
|
85 |
+
"scale": factors_classes[2],
|
86 |
+
"orientation": factors_classes[3],
|
87 |
+
"posX": factors_classes[4],
|
88 |
+
"posY": factors_classes[5],
|
89 |
+
"colorValue": factors_values[0], # always 0.0
|
90 |
+
"shapeValue": factors_values[1],
|
91 |
+
"scaleValue": factors_values[2],
|
92 |
+
"orientationValue": factors_values[3],
|
93 |
+
"posXValue": factors_values[4],
|
94 |
+
"posYValue": factors_values[5],
|
95 |
}
|