Datasets:

ArXiv:
leonleyang commited on
Commit
bb9c3ad
·
verified ·
1 Parent(s): 7f4cc12

Create kmnist.py

Browse files
Files changed (1) hide show
  1. kmnist.py +84 -0
kmnist.py ADDED
@@ -0,0 +1,84 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import datasets
3
+ from PIL import Image
4
+
5
+
6
+ class KMNIST(datasets.GeneratorBasedBuilder):
7
+ """Kuzushiji-MNIST and Kuzushiji-49 datasets."""
8
+ VERSION = datasets.Version("1.0.0")
9
+
10
+ BUILDER_CONFIGS = [
11
+ datasets.BuilderConfig(name="kmnist", description="Kuzushiji-MNIST dataset with 10 classes."),
12
+ datasets.BuilderConfig(name="k49mnist", description="Kuzushiji-49 dataset with 49 classes."),
13
+ ]
14
+
15
+ def _info(self):
16
+ if self.config.name == "kmnist":
17
+ num_classes = 10
18
+ else:
19
+ num_classes = 49
20
+ return datasets.DatasetInfo(
21
+ description="Kuzushiji-MNIST and Kuzushiji-49 datasets.",
22
+ features=datasets.Features({
23
+ "image": datasets.Image(), # Automatically converts to PIL.Image
24
+ "label": datasets.ClassLabel(num_classes=num_classes),
25
+ }),
26
+ supervised_keys=("image", "label"),
27
+ license="CC BY-SA 4.0",
28
+ homepage="https://github.com/rois-codh/kmnist",
29
+ citation="""
30
+ @online{clanuwat2018deep,
31
+ author = {Tarin Clanuwat and Mikel Bober-Irizar and Asanobu Kitamoto and Alex Lamb and Kazuaki Yamamoto and David Ha},
32
+ title = {Deep Learning for Classical Japanese Literature},
33
+ date = {2018-12-03},
34
+ year = {2018},
35
+ eprintclass = {cs.CV},
36
+ eprinttype = {arXiv},
37
+ eprint = {cs.CV/1812.01718},
38
+ }
39
+ """
40
+ )
41
+
42
+ def _split_generators(self, dl_manager):
43
+ urls = {
44
+ "kmnist": {
45
+ "train_imgs": "http://codh.rois.ac.jp/kmnist/dataset/kmnist/kmnist-train-imgs.npz",
46
+ "train_labels": "http://codh.rois.ac.jp/kmnist/dataset/kmnist/kmnist-train-labels.npz",
47
+ "test_imgs": "http://codh.rois.ac.jp/kmnist/dataset/kmnist/kmnist-test-imgs.npz",
48
+ "test_labels": "http://codh.rois.ac.jp/kmnist/dataset/kmnist/kmnist-test-labels.npz",
49
+ },
50
+ "k49mnist": {
51
+ "train_imgs": "http://codh.rois.ac.jp/kmnist/dataset/k49/k49-train-imgs.npz",
52
+ "train_labels": "http://codh.rois.ac.jp/kmnist/dataset/k49/k49-train-labels.npz",
53
+ "test_imgs": "http://codh.rois.ac.jp/kmnist/dataset/k49/k49-test-imgs.npz",
54
+ "test_labels": "http://codh.rois.ac.jp/kmnist/dataset/k49/k49-test-labels.npz",
55
+ },
56
+ }
57
+ selected_urls = urls[self.config.name]
58
+ downloaded_files = dl_manager.download(selected_urls)
59
+
60
+ return [
61
+ datasets.SplitGenerator(
62
+ name=datasets.Split.TRAIN,
63
+ gen_kwargs={
64
+ "images_path": downloaded_files["train_imgs"],
65
+ "labels_path": downloaded_files["train_labels"]
66
+ }
67
+ ),
68
+ datasets.SplitGenerator(
69
+ name=datasets.Split.TEST,
70
+ gen_kwargs={
71
+ "images_path": downloaded_files["test_imgs"],
72
+ "labels_path": downloaded_files["test_labels"]
73
+ }
74
+ ),
75
+ ]
76
+
77
+ def _generate_examples(self, images_path, labels_path):
78
+ images = np.load(images_path)["arr_0"]
79
+ labels = np.load(labels_path)["arr_0"]
80
+
81
+ for idx, (image, label) in enumerate(zip(images, labels)):
82
+ # Convert each image to a PIL.Image object
83
+ image = Image.fromarray(image, mode="L") # Mode "L" for grayscale images
84
+ yield idx, {"image": image, "label": int(label)}