Datasets:

ArXiv:
License:
medianomaly / medianomaly.py
haodoz0118's picture
Update medianomaly.py
d1e788c verified
import os
import json
import datasets
import pandas as pd
_DESCRIPTION = """\
MedIAnomaly is a benchmark for evaluating anomaly detection methods on seven diverse medical imaging datasets:
RSNA, VinCXR, BrainTumor, LAG, ISIC2018_Task3, Camelyon16, and BraTS2021. It supports both image-level
classification and pixel-level segmentation tasks.
All datasets follow a consistent one-class learning protocol: the training set contains only normal (non-anomalous)
images, while the test set includes both normal and abnormal cases. This setting is designed to reflect real-world
scenarios where anomalous samples are rare or unavailable during training. MedIAnomaly provides standardized preprocessing, train/test splits, and label formats to facilitate fair comparison
across methods.
"""
_HOMEPAGE = "https://github.com/caiyu6666/MedIAnomaly/tree/main"
_CITATION = """\
@article{cai2024medianomaly,
title={MedIAnomaly: A comparative study of anomaly detection in medical images},
author={Cai, Yu and Zhang, Weiwen and Chen, Hao and Cheng, Kwang-Ting},
journal={arXiv preprint arXiv:2404.04518},
year={2024}
}
"""
_BASE_URL = "https://huggingface.co/datasets/randall-lab/medianomaly/resolve/main"
_URLS = {
"rsna": f"{_BASE_URL}/rsna.tar",
"brats2021": f"{_BASE_URL}/brats2021.tar",
"braintumor": f"{_BASE_URL}/braintumor.tar",
"camelyon16": f"{_BASE_URL}/camelyon16.tar",
"isic2018_task3": f"{_BASE_URL}/isic2018.tar",
"lag": f"{_BASE_URL}/lag.tar",
"vincxr": f"{_BASE_URL}/vincxr.tar",
}
config_names = {"rsna": "RSNA", "vincxr": "VinCXR",
"brats2021": "BraTS2021", "braintumor": "BrainTumor",
"camelyon16": "Camelyon16", "isic2018_task3": "ISIC2018_Task3",
"lag": "LAG"}
class Medianomaly(datasets.GeneratorBasedBuilder):
BUILDER_CONFIGS = [
datasets.BuilderConfig(name="rsna", version=datasets.Version("1.0.0"), description="RSNA Pneumonia dataset."),
datasets.BuilderConfig(name="brats2021", version=datasets.Version("1.0.0"), description="BraTS2021 brain tumor dataset."),
datasets.BuilderConfig(name="braintumor", version=datasets.Version("1.0.0"), description="BrainTumor MRI dataset."),
datasets.BuilderConfig(name="camelyon16", version=datasets.Version("1.0.0"), description="Camelyon16 histopathology dataset."),
datasets.BuilderConfig(name="isic2018_task3", version=datasets.Version("1.0.0"), description="ISIC 2018 melanoma classification dataset."),
datasets.BuilderConfig(name="lag", version=datasets.Version("1.0.0"), description="LAG (glaucoma detection) fundus dataset."),
datasets.BuilderConfig(name="vincxr", version=datasets.Version("1.0.0"), description="VinCXR chest X-ray dataset."),
]
def _info(self):
config_name = self.config.name.lower()
if config_name in ["rsna", "vincxr", "braintumor", "lag", "camelyon16"]:
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features({
"image": datasets.Image(),
"label": datasets.ClassLabel(names=["normal", "abnormal"]),
}),
supervised_keys=("image", "label"),
homepage=_HOMEPAGE,
license="apache-2.0",
citation=_CITATION,
)
elif config_name == "brats2021":
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features({
"image": datasets.Image(),
"label": datasets.ClassLabel(names=["normal", "abnormal"]),
"annotation": datasets.Image(),
}),
supervised_keys=("image", "label"),
homepage=_HOMEPAGE,
license="apache-2.0",
citation=_CITATION,
)
elif config_name == "isic2018_task3":
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features({
"image": datasets.Image(),
"label": datasets.ClassLabel(names=["normal", "abnormal"]),
"labels": datasets.Sequence(datasets.Value("int32")),
"MEL": datasets.ClassLabel(names=["melanoma", "non-melanoma"]),
"NV": datasets.ClassLabel(names=["nevus", "non-nevus"]),
"BCC": datasets.ClassLabel(names=["basal cell carcinoma", "non-basal cell carcinoma"]),
"AKIEC": datasets.ClassLabel(names=["actinic keratosis", "non-actinic keratosis"]),
"BKL": datasets.ClassLabel(names=["benign keratosis", "non-benign keratosis"]),
"VASC": datasets.ClassLabel(names=["vascular lesion", "non-vascular lesion"]),
"DF": datasets.ClassLabel(names=["dermatofibroma", "non-dermatofibroma"]),
}),
supervised_keys=("image", "label"),
homepage=_HOMEPAGE,
license="apache-2.0",
citation=_CITATION,
)
else:
raise NotImplementedError(f"{config_name} is not implemented in Medianomaly.")
def _split_generators(self, dl_manager):
config_name = self.config.name.lower()
if config_name not in _URLS:
raise NotImplementedError(f"{config_name} is not implemented in Medianomaly.")
archive_path = dl_manager.download_and_extract(_URLS[config_name])
if config_name in ["rsna", "vincxr", "braintumor", "lag"]:
data_dir = os.path.join(archive_path, config_names[config_name])
with open(os.path.join(data_dir, "data.json"), "r") as f:
metadata = json.load(f)
return [
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={
"samples": metadata["train"], "base_dir": data_dir, "config": config_name
}),
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={
"samples": metadata["test"], "base_dir": data_dir, "config": config_name
}),
]
elif config_name == "brats2021":
data_dir = os.path.join(archive_path, config_names[config_name])
return [
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={
"samples": "train", "base_dir": data_dir, "config": config_name
}),
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={
"samples": "test", "base_dir": data_dir, "config": config_name
}),
]
elif config_name == "camelyon16":
data_dir = os.path.join(archive_path, config_names[config_name])
return [
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={
"samples": "train", "base_dir": data_dir, "config": config_name
}),
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={
"samples": "test", "base_dir": data_dir, "config": config_name
}),
]
elif config_name == "isic2018_task3":
data_dir = os.path.join(archive_path, config_names[config_name])
return [
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={
"samples": "train", "base_dir": data_dir, "config": config_name
}),
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={
"samples": "test", "base_dir": data_dir, "config": config_name
}),
]
def _generate_examples(self, samples, base_dir, config):
if config in ["rsna", "vincxr", "braintumor", "lag"]:
base_dir = os.path.join(base_dir, "images")
for label_str, items in samples.items(): # only "0" in train, "0"/"1" in test
label = int(label_str)
for idx, item in enumerate(items):
image_path = os.path.join(base_dir, item)
yield idx, {
"image": image_path,
"label": label,
}
elif config == "brats2021":
if samples == "train":
base_dir = os.path.join(base_dir, "train")
for idx, item in enumerate(os.listdir(base_dir)):
image_path = os.path.join(base_dir, item)
yield idx, {
"image": image_path,
"label": 0, # All training images are normal
}
elif samples == "test":
image_dir_normal = os.path.join(base_dir, "test", "normal")
image_dir_tumor = os.path.join(base_dir, "test", "tumor")
annot_dir = os.path.join(base_dir, "test", "annotation")
idx = 0
for fname in os.listdir(image_dir_normal):
if fname.endswith(".png"):
image_path = os.path.join(image_dir_normal, fname)
yield idx, {
"image": image_path,
"label": 0,
"annotation": None,
}
idx += 1
for fname in os.listdir(image_dir_tumor):
if fname.endswith(".png"):
image_path = os.path.join(image_dir_tumor, fname)
annot_name = fname.replace("flair", "seg")
annot_path = os.path.join(annot_dir, annot_name)
yield idx, {
"image": image_path,
"label": 1,
"annotation": annot_path,
}
idx += 1
elif config == "camelyon16":
if samples == "train":
base_dir = os.path.join(base_dir, "train")
base_dir = os.path.join(base_dir, "good")
for idx, item in enumerate(os.listdir(base_dir)):
image_path = os.path.join(base_dir, item)
yield idx, {
"image": image_path,
"label": 0, # All training images are normal
}
elif samples == "test":
base_dir = os.path.join(base_dir, "test")
good_dir = os.path.join(base_dir, "good")
ungood_dir = os.path.join(base_dir, "Ungood")
idx = 0
for item in os.listdir(good_dir):
if item.endswith(".png"):
image_path = os.path.join(good_dir, item)
yield idx, {
"image": image_path,
"label": 0,
}
idx += 1
for item in os.listdir(ungood_dir):
if item.endswith(".png"):
image_path = os.path.join(ungood_dir, item)
yield idx, {
"image": image_path,
"label": 1,
}
idx += 1
elif config == "isic2018_task3":
if samples == "train":
img_dir = os.path.join(base_dir, "ISIC2018_Task3_Training_Input")
label_dir = os.path.join(base_dir, "ISIC2018_Task3_Training_GroundTruth")
label_file = os.path.join(label_dir, "ISIC2018_Task3_Training_GroundTruth.csv")
else:
img_dir = os.path.join(base_dir, "ISIC2018_Task3_Test_Input")
label_dir = os.path.join(base_dir, "ISIC2018_Task3_Test_GroundTruth")
label_file = os.path.join(label_dir, "ISIC2018_Task3_Test_GroundTruth.csv")
df = pd.read_csv(label_file)
for idx, row in df.iterrows():
image_id = row["image"]
image_path = os.path.join(img_dir, f"{image_id}.jpg")
if not os.path.exists(image_path):
continue
label_vector = row.iloc[1:].astype(int).tolist()
yield idx, {
"image": image_path,
"label": 0 if label_vector == [0, 1, 0, 0, 0, 0, 0] else 1,
"labels": label_vector,
"MEL": label_vector[0],
"NV": label_vector[1],
"BCC": label_vector[2],
"AKIEC": label_vector[3],
"BKL": label_vector[4],
"DF": label_vector[5],
"VASC": label_vector[6],
}