Datasets:

ArXiv:
License:
haodoz0118 commited on
Commit
1918cf7
·
verified ·
1 Parent(s): 0d2ce8f

Update medianomaly.py

Browse files
Files changed (1) hide show
  1. medianomaly.py +144 -13
medianomaly.py CHANGED
@@ -53,17 +53,54 @@ class Medianomaly(datasets.GeneratorBasedBuilder):
53
  ]
54
 
55
  def _info(self):
56
- return datasets.DatasetInfo(
57
- description=_DESCRIPTION,
58
- features=datasets.Features({
59
- "image": datasets.Image(),
60
- "label": datasets.ClassLabel(names=["normal", "abnormal"]),
61
- }),
62
- supervised_keys=("image", "label"),
63
- homepage=_HOMEPAGE,
64
- license="apache-2.0",
65
- citation=_CITATION,
66
- )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
67
 
68
  def _split_generators(self, dl_manager):
69
  config_name = self.config.name.lower()
@@ -83,7 +120,26 @@ class Medianomaly(datasets.GeneratorBasedBuilder):
83
  "samples": metadata["test"], "base_dir": data_dir, "config": config_name
84
  }),
85
  ]
86
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
87
 
88
  def _generate_examples(self, samples, base_dir, config):
89
  if config in ["rsna", "vincxr", "braintumor", "lag"]:
@@ -95,4 +151,79 @@ class Medianomaly(datasets.GeneratorBasedBuilder):
95
  yield idx, {
96
  "image": image_path,
97
  "label": label,
98
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
53
  ]
54
 
55
  def _info(self):
56
+ config_name = self.config.name.lower()
57
+ if config_name in ["rsna", "vincxr", "braintumor", "lag", "camelyon16"]:
58
+ return datasets.DatasetInfo(
59
+ description=_DESCRIPTION,
60
+ features=datasets.Features({
61
+ "image": datasets.Image(),
62
+ "label": datasets.ClassLabel(names=["normal", "abnormal"]),
63
+ }),
64
+ supervised_keys=("image", "label"),
65
+ homepage=_HOMEPAGE,
66
+ license="apache-2.0",
67
+ citation=_CITATION,
68
+ )
69
+ elif config_name == "brats2021":
70
+ return datasets.DatasetInfo(
71
+ description=_DESCRIPTION,
72
+ features=datasets.Features({
73
+ "image": datasets.Image(),
74
+ "label": datasets.ClassLabel(names=["normal", "abnormal"]),
75
+ "annotation": datasets.Image(),
76
+ }),
77
+ supervised_keys=("image", "label"),
78
+ homepage=_HOMEPAGE,
79
+ license="apache-2.0",
80
+ citation=_CITATION,
81
+ )
82
+ elif config_name == "isic2018_task3":
83
+ return datasets.DatasetInfo(
84
+ description=_DESCRIPTION,
85
+ features=datasets.Features({
86
+ "image": datasets.Image(),
87
+ "labels": datasets.Sequence(datasets.Value("int32")),
88
+ "MEL": datasets.ClassLabel(names=["melanoma", "non-melanoma"]),
89
+ "NV": datasets.ClassLabel(names=["nevus", "non-nevus"]),
90
+ "BCC": datasets.ClassLabel(names=["basal cell carcinoma", "non-basal cell carcinoma"]),
91
+ "AKIEC": datasets.ClassLabel(names=["actinic keratosis", "non-actinic keratosis"]),
92
+ "BKL": datasets.ClassLabel(names=["benign keratosis", "non-benign keratosis"]),
93
+ "VASC": datasets.ClassLabel(names=["vascular lesion", "non-vascular lesion"]),
94
+ "DF": datasets.ClassLabel(names=["dermatofibroma", "non-dermatofibroma"]),
95
+ }),
96
+ supervised_keys=("image", "labels"),
97
+ homepage=_HOMEPAGE,
98
+ license="apache-2.0",
99
+ citation=_CITATION,
100
+ )
101
+ else:
102
+ raise NotImplementedError(f"{config_name} is not implemented in Medianomaly.")
103
+
104
 
105
  def _split_generators(self, dl_manager):
106
  config_name = self.config.name.lower()
 
120
  "samples": metadata["test"], "base_dir": data_dir, "config": config_name
121
  }),
122
  ]
123
+ elif config_name == "brats2021":
124
+ data_dir = os.path.join(archive_path, config_names[config_name])
125
+ return [
126
+ datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={
127
+ "samples": "train", "base_dir": data_dir, "config": config_name
128
+ }),
129
+ datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={
130
+ "samples": "test", "base_dir": data_dir, "config": config_name
131
+ }),
132
+ ]
133
+ elif config_name == "camelyon16":
134
+ data_dir = os.path.join(archive_path, config_names[config_name])
135
+ return [
136
+ datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={
137
+ "samples": "train", "base_dir": data_dir, "config": config_name
138
+ }),
139
+ datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={
140
+ "samples": "test", "base_dir": data_dir, "config": config_name
141
+ }),
142
+ ]
143
 
144
  def _generate_examples(self, samples, base_dir, config):
145
  if config in ["rsna", "vincxr", "braintumor", "lag"]:
 
151
  yield idx, {
152
  "image": image_path,
153
  "label": label,
154
+ }
155
+
156
+ elif config == "brats2021":
157
+ if samples == "train":
158
+ base_dir = os.path.join(base_dir, "train")
159
+ for idx, item in enumerate(os.listdir(base_dir)):
160
+ image_path = os.path.join(base_dir, item)
161
+ yield idx, {
162
+ "image": image_path,
163
+ "label": 0, # All training images are normal
164
+ }
165
+ elif samples == "test":
166
+ image_dir_normal = os.path.join(base_dir, "test", "normal")
167
+ image_dir_tumor = os.path.join(base_dir, "test", "tumor")
168
+ annot_dir = os.path.join(base_dir, "test", "annotation")
169
+
170
+ idx = 0
171
+ for fname in os.listdir(image_dir_normal):
172
+ if fname.endswith(".png"):
173
+ image_path = os.path.join(image_dir_normal, fname)
174
+ yield idx, {
175
+ "image": image_path,
176
+ "label": 0,
177
+ "annotation": None,
178
+ }
179
+ idx += 1
180
+
181
+ for fname in os.listdir(image_dir_tumor):
182
+ if fname.endswith(".png"):
183
+ image_path = os.path.join(image_dir_tumor, fname)
184
+ annot_name = fname.replace("flair", "seg")
185
+ annot_path = os.path.join(annot_dir, annot_name)
186
+
187
+ yield idx, {
188
+ "image": image_path,
189
+ "label": 1,
190
+ "annotation": annot_path,
191
+ }
192
+ idx += 1
193
+
194
+ elif config == "camelyon16":
195
+ if samples == "train":
196
+ base_dir = os.path.join(base_dir, "train")
197
+ base_dir = os.path.join(base_dir, "good")
198
+ for idx, item in enumerate(os.listdir(base_dir)):
199
+ image_path = os.path.join(base_dir, item)
200
+ yield idx, {
201
+ "image": image_path,
202
+ "label": 0, # All training images are normal
203
+ }
204
+ elif samples == "test":
205
+ base_dir = os.path.join(base_dir, "test")
206
+ good_dir = os.path.join(base_dir, "good")
207
+ ungood_dir = os.path.join(base_dir, "ungood")
208
+
209
+ idx = 0
210
+ for item in os.listdir(good_dir):
211
+ if item.endswith(".png"):
212
+ image_path = os.path.join(base_dir, item)
213
+ yield idx, {
214
+ "image": image_path,
215
+ "label": 0,
216
+ }
217
+ idx += 1
218
+
219
+ for item in os.listdir(ungood_dir):
220
+ if item.endswith(".png"):
221
+ image_path = os.path.join(base_dir, item)
222
+ yield idx, {
223
+ "image": image_path,
224
+ "label": 1,
225
+ }
226
+ idx += 1
227
+
228
+
229
+