Datasets:

ArXiv:
License:
haodoz0118 commited on
Commit
2383c68
·
verified ·
1 Parent(s): 64c2f22

Upload medianomaly.py

Browse files
Files changed (1) hide show
  1. medianomaly.py +93 -0
medianomaly.py ADDED
@@ -0,0 +1,93 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import json
3
+ from PIL import Image
4
+ import datasets
5
+
6
+ _DESCRIPTION = """\
7
+ MedIAnomaly is a benchmark for evaluating anomaly detection methods on seven diverse medical imaging datasets:
8
+ RSNA, VinCXR, BrainTumor, LAG, ISIC2018_Task3, Camelyon16, and BraTS2021. It supports both image-level
9
+ classification and pixel-level segmentation tasks.
10
+
11
+ All datasets follow a consistent one-class learning protocol: the training set contains only normal (non-anomalous)
12
+ images, while the test set includes both normal and abnormal cases. This setting is designed to reflect real-world
13
+ scenarios where anomalous samples are rare or unavailable during training. MedIAnomaly provides standardized preprocessing, train/test splits, and label formats to facilitate fair comparison
14
+ across methods.
15
+ """
16
+
17
+ _HOMEPAGE = "https://github.com/caiyu6666/MedIAnomaly/tree/main"
18
+
19
+ _CITATION = """\
20
+ @article{cai2024medianomaly,
21
+ title={MedIAnomaly: A comparative study of anomaly detection in medical images},
22
+ author={Cai, Yu and Zhang, Weiwen and Chen, Hao and Cheng, Kwang-Ting},
23
+ journal={arXiv preprint arXiv:2404.04518},
24
+ year={2024}
25
+ }
26
+ """
27
+
28
+ _BASE_URL = "https://huggingface.co/datasets/randall-lab/medianomaly/resolve/main"
29
+
30
+ _URLS = {
31
+ "rsna": f"{_BASE_URL}/rsna.tar",
32
+ "brats2021": f"{_BASE_URL}/brats2021.tar",
33
+ "braintumor": f"{_BASE_URL}/braintumor.tar",
34
+ "camelyon16": f"{_BASE_URL}/camelyon16.tar",
35
+ "isic2018": f"{_BASE_URL}/isic2018.tar",
36
+ "lag": f"{_BASE_URL}/lag.tar",
37
+ "vincxr": f"{_BASE_URL}/vincxr.tar",
38
+ }
39
+
40
+ class Medianomaly(datasets.GeneratorBasedBuilder):
41
+ BUILDER_CONFIGS = [
42
+ datasets.BuilderConfig(name="rsna", version=datasets.Version("1.0.0"), description="RSNA Pneumonia dataset."),
43
+ datasets.BuilderConfig(name="brats2021", version=datasets.Version("1.0.0"), description="BraTS2021 brain tumor dataset."),
44
+ datasets.BuilderConfig(name="braintumor", version=datasets.Version("1.0.0"), description="BrainTumor MRI dataset."),
45
+ datasets.BuilderConfig(name="camelyon16", version=datasets.Version("1.0.0"), description="Camelyon16 histopathology dataset."),
46
+ datasets.BuilderConfig(name="isic2018_task3", version=datasets.Version("1.0.0"), description="ISIC 2018 melanoma classification dataset."),
47
+ datasets.BuilderConfig(name="lag", version=datasets.Version("1.0.0"), description="LAG (glaucoma detection) fundus dataset."),
48
+ datasets.BuilderConfig(name="vincxr", version=datasets.Version("1.0.0"), description="VinCXR chest X-ray dataset."),
49
+ ]
50
+
51
+ def _info(self):
52
+ return datasets.DatasetInfo(
53
+ description=_DESCRIPTION,
54
+ features=datasets.Features({
55
+ "image": datasets.Image(),
56
+ "label": datasets.ClassLabel(names=["normal", "abnormal"]),
57
+ }),
58
+ supervised_keys=("image", "label"),
59
+ homepage=_HOMEPAGE,
60
+ license="apache-2.0",
61
+ citation=_CITATION,
62
+ )
63
+
64
+ def _split_generators(self, dl_manager):
65
+ config_name = self.config.name.lower()
66
+ if config_name not in _URLS:
67
+ raise NotImplementedError(f"{config_name} is not implemented in Medianomaly.")
68
+ archive_path = dl_manager.download_and_extract(_URLS[config_name])
69
+
70
+ if config_name == "rsna":
71
+ data_dir = os.path.join(archive_path, config_name)
72
+ with open(os.path.join(data_dir, "data.json"), "r") as f:
73
+ metadata = json.load(f)
74
+ return [
75
+ datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={
76
+ "samples": metadata["train"], "base_dir": data_dir, "config": config_name
77
+ }),
78
+ datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={
79
+ "samples": metadata["test"], "base_dir": data_dir, "config": config_name
80
+ }),
81
+ ]
82
+
83
+
84
+ def _generate_examples(self, samples, base_dir, config):
85
+ if config == "rsna":
86
+ for label_str, items in samples.items(): # only "0" in train, "0"/"1" in test
87
+ label = int(label_str)
88
+ for idx, item in enumerate(items):
89
+ image_path = os.path.join(base_dir, item["image"])
90
+ yield idx, {
91
+ "image": image_path,
92
+ "label": label,
93
+ }