Datasets:
ArXiv:
License:
Update medianomaly.py
Browse files- medianomaly.py +38 -2
medianomaly.py
CHANGED
@@ -1,6 +1,7 @@
|
|
1 |
import os
|
2 |
import json
|
3 |
import datasets
|
|
|
4 |
|
5 |
_DESCRIPTION = """\
|
6 |
MedIAnomaly is a benchmark for evaluating anomaly detection methods on seven diverse medical imaging datasets:
|
@@ -38,7 +39,7 @@ _URLS = {
|
|
38 |
|
39 |
config_names = {"rsna": "RSNA", "vincxr": "VinCXR",
|
40 |
"brats2021": "BraTS2021", "braintumor": "BrainTumor",
|
41 |
-
"camelyon16": "Camelyon16", "
|
42 |
"lag": "LAG"}
|
43 |
|
44 |
class Medianomaly(datasets.GeneratorBasedBuilder):
|
@@ -140,6 +141,16 @@ class Medianomaly(datasets.GeneratorBasedBuilder):
|
|
140 |
"samples": "test", "base_dir": data_dir, "config": config_name
|
141 |
}),
|
142 |
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
143 |
|
144 |
def _generate_examples(self, samples, base_dir, config):
|
145 |
if config in ["rsna", "vincxr", "braintumor", "lag"]:
|
@@ -225,5 +236,30 @@ class Medianomaly(datasets.GeneratorBasedBuilder):
|
|
225 |
}
|
226 |
idx += 1
|
227 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
228 |
|
229 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import os
|
2 |
import json
|
3 |
import datasets
|
4 |
+
import pandas as pd
|
5 |
|
6 |
_DESCRIPTION = """\
|
7 |
MedIAnomaly is a benchmark for evaluating anomaly detection methods on seven diverse medical imaging datasets:
|
|
|
39 |
|
40 |
config_names = {"rsna": "RSNA", "vincxr": "VinCXR",
|
41 |
"brats2021": "BraTS2021", "braintumor": "BrainTumor",
|
42 |
+
"camelyon16": "Camelyon16", "isic2018_task3": "ISIC2018_Task3",
|
43 |
"lag": "LAG"}
|
44 |
|
45 |
class Medianomaly(datasets.GeneratorBasedBuilder):
|
|
|
141 |
"samples": "test", "base_dir": data_dir, "config": config_name
|
142 |
}),
|
143 |
]
|
144 |
+
elif config_name == "isic2018_task3":
|
145 |
+
data_dir = os.path.join(archive_path, config_names[config_name])
|
146 |
+
return [
|
147 |
+
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={
|
148 |
+
"samples": "train", "base_dir": data_dir, "config": config_name
|
149 |
+
}),
|
150 |
+
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={
|
151 |
+
"samples": "test", "base_dir": data_dir, "config": config_name
|
152 |
+
}),
|
153 |
+
]
|
154 |
|
155 |
def _generate_examples(self, samples, base_dir, config):
|
156 |
if config in ["rsna", "vincxr", "braintumor", "lag"]:
|
|
|
236 |
}
|
237 |
idx += 1
|
238 |
|
239 |
+
elif config == "isic2018_task3":
|
240 |
+
if samples == "train":
|
241 |
+
img_dir = os.path.join(base_dir, "ISIC2018_Task3_Training_Input")
|
242 |
+
label_dir = os.path.join(base_dir, "ISIC2018_Task3_Training_GroundTruth")
|
243 |
+
label_file = os.path.join(label_dir, "ISIC2018_Task3_Training_GroundTruth.csv")
|
244 |
+
else:
|
245 |
+
img_dir = os.path.join(base_dir, "ISIC2018_Task3_Test_Input")
|
246 |
+
label_dir = os.path.join(base_dir, "ISIC2018_Task3_Test_GroundTruth")
|
247 |
+
label_file = os.path.join(label_dir, "ISIC2018_Task3_Test_GroundTruth.csv")
|
248 |
+
|
249 |
+
df = pd.read_csv(label_file)
|
250 |
+
for idx, row in df.iterrows():
|
251 |
+
image_id = row["image"]
|
252 |
+
image_path = os.path.join(img_dir, f"{image_id}.jpg")
|
253 |
+
label_vector = row.iloc[1:].astype(int).tolist()
|
254 |
|
255 |
+
yield idx, {
|
256 |
+
"image": image_path,
|
257 |
+
"labels": label_vector,
|
258 |
+
"MEL": label_vector[0],
|
259 |
+
"NV": label_vector[1],
|
260 |
+
"BCC": label_vector[2],
|
261 |
+
"AKIEC": label_vector[3],
|
262 |
+
"BKL": label_vector[4],
|
263 |
+
"DF": label_vector[5],
|
264 |
+
"VASC": label_vector[6],
|
265 |
+
}
|