Datasets:

ArXiv:
License:
haodoz0118 commited on
Commit
b649179
·
verified ·
1 Parent(s): d7ee8ad

Update medianomaly.py

Browse files
Files changed (1) hide show
  1. medianomaly.py +38 -2
medianomaly.py CHANGED
@@ -1,6 +1,7 @@
1
  import os
2
  import json
3
  import datasets
 
4
 
5
  _DESCRIPTION = """\
6
  MedIAnomaly is a benchmark for evaluating anomaly detection methods on seven diverse medical imaging datasets:
@@ -38,7 +39,7 @@ _URLS = {
38
 
39
  config_names = {"rsna": "RSNA", "vincxr": "VinCXR",
40
  "brats2021": "BraTS2021", "braintumor": "BrainTumor",
41
- "camelyon16": "Camelyon16", "isic2018": "ISIC2018_Task3",
42
  "lag": "LAG"}
43
 
44
  class Medianomaly(datasets.GeneratorBasedBuilder):
@@ -140,6 +141,16 @@ class Medianomaly(datasets.GeneratorBasedBuilder):
140
  "samples": "test", "base_dir": data_dir, "config": config_name
141
  }),
142
  ]
 
 
 
 
 
 
 
 
 
 
143
 
144
  def _generate_examples(self, samples, base_dir, config):
145
  if config in ["rsna", "vincxr", "braintumor", "lag"]:
@@ -225,5 +236,30 @@ class Medianomaly(datasets.GeneratorBasedBuilder):
225
  }
226
  idx += 1
227
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
228
 
229
-
 
 
 
 
 
 
 
 
 
 
 
1
  import os
2
  import json
3
  import datasets
4
+ import pandas as pd
5
 
6
  _DESCRIPTION = """\
7
  MedIAnomaly is a benchmark for evaluating anomaly detection methods on seven diverse medical imaging datasets:
 
39
 
40
  config_names = {"rsna": "RSNA", "vincxr": "VinCXR",
41
  "brats2021": "BraTS2021", "braintumor": "BrainTumor",
42
+ "camelyon16": "Camelyon16", "isic2018_task3": "ISIC2018_Task3",
43
  "lag": "LAG"}
44
 
45
  class Medianomaly(datasets.GeneratorBasedBuilder):
 
141
  "samples": "test", "base_dir": data_dir, "config": config_name
142
  }),
143
  ]
144
+ elif config_name == "isic2018_task3":
145
+ data_dir = os.path.join(archive_path, config_names[config_name])
146
+ return [
147
+ datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={
148
+ "samples": "train", "base_dir": data_dir, "config": config_name
149
+ }),
150
+ datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={
151
+ "samples": "test", "base_dir": data_dir, "config": config_name
152
+ }),
153
+ ]
154
 
155
  def _generate_examples(self, samples, base_dir, config):
156
  if config in ["rsna", "vincxr", "braintumor", "lag"]:
 
236
  }
237
  idx += 1
238
 
239
+ elif config == "isic2018_task3":
240
+ if samples == "train":
241
+ img_dir = os.path.join(base_dir, "ISIC2018_Task3_Training_Input")
242
+ label_dir = os.path.join(base_dir, "ISIC2018_Task3_Training_GroundTruth")
243
+ label_file = os.path.join(label_dir, "ISIC2018_Task3_Training_GroundTruth.csv")
244
+ else:
245
+ img_dir = os.path.join(base_dir, "ISIC2018_Task3_Test_Input")
246
+ label_dir = os.path.join(base_dir, "ISIC2018_Task3_Test_GroundTruth")
247
+ label_file = os.path.join(label_dir, "ISIC2018_Task3_Test_GroundTruth.csv")
248
+
249
+ df = pd.read_csv(label_file)
250
+ for idx, row in df.iterrows():
251
+ image_id = row["image"]
252
+ image_path = os.path.join(img_dir, f"{image_id}.jpg")
253
+ label_vector = row.iloc[1:].astype(int).tolist()
254
 
255
+ yield idx, {
256
+ "image": image_path,
257
+ "labels": label_vector,
258
+ "MEL": label_vector[0],
259
+ "NV": label_vector[1],
260
+ "BCC": label_vector[2],
261
+ "AKIEC": label_vector[3],
262
+ "BKL": label_vector[4],
263
+ "DF": label_vector[5],
264
+ "VASC": label_vector[6],
265
+ }