Datasets:

ArXiv:
License:
haodoz0118 commited on
Commit
f0bc58b
·
verified ·
1 Parent(s): d1e788c

Upload README.md

Browse files
Files changed (1) hide show
  1. README.md +188 -0
README.md ADDED
@@ -0,0 +1,188 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ ---
4
+ # Dataset Card for MedIAnomaly
5
+
6
+ ## Dataset Description
7
+
8
+ **MedIAnomaly** is a benchmark designed to evaluate anomaly detection methods in the medical imaging domain. It provides a standardized evaluation protocol across **seven real-world medical image datasets**, including both **image-level anomaly classification (AnoCls)** and **pixel-level anomaly segmentation (AnoSeg)** tasks.
9
+
10
+ All datasets follow a **one-class training setting**, where **only normal (non-anomalous) images are available in the training set**, and the **test set includes both normal and abnormal cases**. This reflects real-world scenarios where anomalies are rare and not annotated during training.
11
+
12
+ The benchmark includes a total of **seven datasets**, spanning across various imaging modalities (X-ray, MRI, fundus, dermatoscopy, histopathology), and ensures unified data format and preprocessing to support fair and reproducible comparison of anomaly detection methods.
13
+
14
+ ## Dataset Source
15
+ - **Homepage**: [https://github.com/caiyu6666/MedIAnomaly](https://github.com/caiyu6666/MedIAnomaly)
16
+ - **License**: [Apache License 2.0](http://www.apache.org/licenses/LICENSE-2.0)
17
+ - **Paper**: Yu Cai et al. _MedIAnomaly: A Comparative Study of Anomaly Detection in Medical Images_, arXiv 2024.
18
+
19
+ ## Dataset Structure
20
+
21
+ | Dataset | Modality | Task | 𝒟<sub>train</sub> | 𝒟<sub>test</sub> (Normal+Abnormal) |
22
+ |--------------|-----------------------|-------------------|------------------|----------------------------|
23
+ | RSNA | Chest X-ray | AnoCls | 3851 | 1000 + 1000 |
24
+ | VinDr-CXR | Chest X-ray | AnoCls | 4000 | 1000 + 1000 |
25
+ | Brain Tumor | Brain MRI | AnoCls | 1000 | 600 + 600 |
26
+ | LAG | Retinal fundus image | AnoCls | 1500 | 811 + 811 |
27
+ | ISIC2018 | Dermatoscopic image | AnoCls | 6705 | 909 + 603 |
28
+ | Camelyon16 | Histopathology image | AnoCls | 5088 | 1120 + 1113 |
29
+ | BraTS2021 | Brain MRI | AnoCls & AnoSeg | 4211 | 828 + 1948 |
30
+
31
+ ### Notes on Dataset-Specific Definitions
32
+
33
+ - **RSNA**: Training images are all normal chest X-rays. Test set contains a balanced mix of normal and pneumonia images.
34
+ - **VinDr-CXR**: Training set consists only of normal chest X-rays. Test set includes both normal and abnormal findings.
35
+ - **Brain Tumor**: MRI scans. All training samples are healthy brains; test set contains normal and tumor cases.
36
+ - **LAG**: Retinal fundus images. Training set includes only normal cases; glaucomatous images appear in test set.
37
+ - **ISIC2018**: One-hot multi-label data. Only images with `NV = 1` and all other labels = 0 are considered **normal**. All others (with any other disease present) are considered **abnormal**.
38
+ - **Camelyon16**: Histopathological whole-slide patches. Training includes only benign tissue. Abnormal cancerous regions are tested.
39
+ - **BraTS2021**: Brain MRI for both classification and segmentation. Training includes only normal images. Test set includes tumor cases with segmentation masks.
40
+
41
+ ## Example Usage
42
+
43
+ ### RSNA
44
+ ```python
45
+ from datasets import load_dataset
46
+
47
+ dataset = load_dataset("randall-lab/medianomaly", name="rsna", split="train", trust_remote_code=True)
48
+ # dataset = load_dataset("randall-lab/medianomaly", name="rsna", split="test", trust_remote_code=True)
49
+
50
+ # View a sample
51
+ example = dataset[0]
52
+ image = example["image"]
53
+ label = example["label"] # "normal" or "abnormal"
54
+
55
+ image.show()
56
+ print(f"Label: {label}")
57
+ ```
58
+
59
+ ### Vin-CXR
60
+ ```python
61
+ from datasets import load_dataset
62
+
63
+ dataset = load_dataset("randall-lab/medianomaly", name="vincxr", split="train", trust_remote_code=True)
64
+ # dataset = load_dataset("randall-lab/medianomaly", name="vincxr", split="test", trust_remote_code=True)
65
+
66
+ # View a sample
67
+ example = dataset[0]
68
+ image = example["image"]
69
+ label = example["label"] # "normal" or "abnormal"
70
+
71
+ image.show()
72
+ print(f"Label: {label}")
73
+ ```
74
+
75
+ ### Brain Tumor
76
+ ```python
77
+ from datasets import load_dataset
78
+
79
+ dataset = load_dataset("randall-lab/medianomaly", name="braintumor", split="train", trust_remote_code=True)
80
+ # dataset = load_dataset("randall-lab/medianomaly", name="braintumor", split="test", trust_remote_code=True)
81
+
82
+ # View a sample
83
+ example = dataset[0]
84
+ image = example["image"]
85
+ label = example["label"] # "normal" or "abnormal"
86
+
87
+ image.show()
88
+ print(f"Label: {label}")
89
+ ```
90
+
91
+ ### LAG
92
+ ```python
93
+ from datasets import load_dataset
94
+
95
+ dataset = load_dataset("randall-lab/medianomaly", name="lag", split="train", trust_remote_code=True)
96
+ # dataset = load_dataset("randall-lab/medianomaly", name="lag", split="test", trust_remote_code=True)
97
+
98
+ # View a sample
99
+ example = dataset[0]
100
+ image = example["image"]
101
+ label = example["label"] # "normal" or "abnormal"
102
+
103
+ image.show()
104
+ print(f"Label: {label}")
105
+ ```
106
+
107
+ ### Camelyon16
108
+ ```python
109
+ from datasets import load_dataset
110
+
111
+ dataset = load_dataset("randall-lab/medianomaly", name="camelyon16", split="train", trust_remote_code=True)
112
+ # dataset = load_dataset("randall-lab/medianomaly", name="camelyon16", split="test", trust_remote_code=True)
113
+
114
+ # View a sample
115
+ example = dataset[0]
116
+ image = example["image"]
117
+ label = example["label"] # "normal" or "abnormal"
118
+
119
+ image.show()
120
+ print(f"Label: {label}")
121
+ ```
122
+
123
+ ### BraTS2021
124
+ ```python
125
+ from datasets import load_dataset
126
+
127
+ # Train
128
+ dataset = load_dataset("randall-lab/medianomaly", name="brats2021", split="train", trust_remote_code=True)
129
+
130
+ example = dataset[0]
131
+ image = example["image"]
132
+ label = example["label"] # "normal" or "abnormal"
133
+
134
+ image.show()
135
+ print(f"Label: {label}")
136
+
137
+ # Test
138
+ dataset = load_dataset("randall-lab/medianomaly", name="brats2021", split="test", trust_remote_code=True)
139
+
140
+ example = dataset[828] # >= 828 is abnormal images with seg mask
141
+ image = example["image"]
142
+ label = example["label"] # "normal" or "abnormal"
143
+ anno = example["annotation"] # None if label is 0, seg mask if label is 1
144
+
145
+ image.show()
146
+ anno.show()
147
+ print(f"Label: {label}")
148
+ ```
149
+
150
+ ### ISIC2018
151
+ ```python
152
+ from datasets import load_dataset
153
+
154
+ dataset = load_dataset("randall-lab/medianomaly", name="isic2018_task3", split="train", trust_remote_code=True)
155
+ # dataset = load_dataset("randall-lab/medianomaly", name="isic2018_task3", split="test", trust_remote_code=True)
156
+
157
+ # View a sample
158
+ example = dataset[0]
159
+ image = example["image"]
160
+ label = example["label"] # "normal" or "abnormal"
161
+ labels = example["labels"] # one-hot multi label for different disease [MEL, NV, BCC, AKIEC, BKL, DF, VASC]
162
+
163
+ # Individual binary class labels (0 or 1)
164
+ mel_label = example["MEL"]
165
+ nv_label = example["NV"]
166
+ bcc_label = example["BCC"]
167
+ akiec_label = example["AKIEC"]
168
+ bkl_label = example["BKL"]
169
+ df_label = example["DF"]
170
+ vasc_label = example["VASC"]
171
+
172
+ image.show()
173
+ print(f"Label: {label}")
174
+ ```
175
+
176
+ If you are using colab, you should update datasets to avoid errors
177
+ ```
178
+ pip install -U datasets
179
+ ```
180
+ ## Citation
181
+ ```
182
+ @article{cai2024medianomaly,
183
+ title={MedIAnomaly: A comparative study of anomaly detection in medical images},
184
+ author={Cai, Yu and Zhang, Weiwen and Chen, Hao and Cheng, Kwang-Ting},
185
+ journal={arXiv preprint arXiv:2404.04518},
186
+ year={2024}
187
+ }
188
+ ```