haodoz0118 commited on
Commit
0b00e69
·
verified ·
1 Parent(s): f58ebbc

Upload 3 files

Browse files
Files changed (3) hide show
  1. README.md +81 -0
  2. complex1.gif +3 -0
  3. mpi3d-complex.py +92 -0
README.md ADDED
@@ -0,0 +1,81 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: cc-by-4.0
3
+ ---
4
+ # Dataset Card for MPI3D-complex
5
+
6
+ ## Dataset Description
7
+
8
+ The **MPI3D-complex dataset** is a **real-world image dataset** of **complex everyday objects**, designed for benchmarking algorithms in **disentangled representation learning** and **robustness to object variability**. It is an **extension** of the broader MPI3D dataset suite, which also includes [synthetic toy](https://huggingface.co/datasets/randall-lab/mpi3d-toy), [realistic simulated](https://huggingface.co/datasets/randall-lab/mpi3d-realistic), and [real-world geometric shape](https://huggingface.co/datasets/randall-lab/mpi3d-real) variants.
9
+
10
+ The **complex version** was recorded using the same **robotic platform** as the other MPI3D datasets, but with a new set of **real-world objects** (coffee-cup, tennis-ball, croissant, beer-cup) and a reduced color set. Images were captured using **real cameras**, with realistic lighting and background conditions. This allows researchers to assess how well models trained on simpler domains generalize to more complex object appearances.
11
+
12
+ All images depict **real-world objects** under **controlled variations of 7 known factors**:
13
+
14
+ - Object color (4 values)
15
+ - Object shape (4 values)
16
+ - Object size (2 values)
17
+ - Camera height (3 values)
18
+ - Background color (3 values)
19
+ - Robotic arm horizontal axis (40 values)
20
+ - Robotic arm vertical axis (40 values)
21
+
22
+ The dataset contains **460,800 images** at a resolution of **64×64 pixels**. The factors of variation are consistent with the other MPI3D datasets, but with **different factor sizes** for object shape and color.
23
+ ![Dataset Visualization](https://huggingface.co/datasets/randall-lab/mpi3d-complex/resolve/main/complex1.gif)
24
+
25
+ ## Dataset Source
26
+ - **Homepage**: [https://github.com/rr-learning/disentanglement_dataset](https://github.com/rr-learning/disentanglement_dataset)
27
+ - **License**: [Creative Commons Attribution 4.0 International](https://creativecommons.org/licenses/by/4.0/)
28
+ - **Paper**: Muhammad Waleed Gondal et al. _On the Transfer of Inductive Bias from Simulation to the Real World: A New Disentanglement Dataset_. NeurIPS 2019.
29
+
30
+ ## Dataset Structure
31
+ |Factors|Possible Values|
32
+ |---|---|
33
+ |object_color|yellow=0, green=1, olive=2, red=3|
34
+ |object_shape|coffee-cup=0, tennis-ball=1, croissant=2, beer-cup=3|
35
+ |object_size|small=0, large=1|
36
+ |camera_height|top=0, center=1, bottom=2|
37
+ |background_color|purple=0, sea green=1, salmon=2|
38
+ |horizontal_axis (DOF1)|0,...,39|
39
+ |vertical_axis (DOF2)|0,...,39|
40
+
41
+ Each image corresponds to a unique combination of these 7 factors. The images are stored in a **row-major order** (fastest-changing factor is `vertical_axis`, slowest-changing factor is `object_color`).
42
+
43
+ ### Why no train/test split?
44
+ The MPI3D-complex dataset does not provide an official train/test split. It is designed for **representation learning research** and for testing **robustness to object complexity and appearance variation**. Since the dataset is a complete Cartesian product of all factor combinations, models typically require access to the full dataset to explore factor-wise variations.
45
+
46
+ ## Example Usage
47
+ Below is a quick example of how to load this dataset via the Hugging Face Datasets library:
48
+ ```python
49
+ from datasets import load_dataset
50
+
51
+ # Load the dataset
52
+ dataset = load_dataset("randall-lab/mpi3d-complex", split="train", trust_remote_code=True)
53
+ # Access a sample from the dataset
54
+ example = dataset[0]
55
+ image = example["image"]
56
+ label = example["label"] # [object_color: 0, object_shape: 0, object_size: 0, camera_height: 0, background_color: 0, horizontal_axis: 0, vertical_axis: 0]
57
+ color = example["color"] # 0
58
+ shape = example["shape"] # 0
59
+ size = example["size"] # 0
60
+ height = example["height"] # 0
61
+ background = example["background"] # 0
62
+ dof1 = example["dof1"] # 0
63
+ dof2 = example["dof2"] # 0
64
+
65
+ image.show() # Display the image
66
+ print(f"Label (factors): {label}")
67
+ ```
68
+ If you are using colab, you should update datasets to avoid errors
69
+ ```
70
+ pip install -U datasets
71
+ ```
72
+ ## Citation
73
+ ```
74
+ @article{gondal2019transfer,
75
+ title={On the transfer of inductive bias from simulation to the real world: a new disentanglement dataset},
76
+ author={Gondal, Muhammad Waleed and Wuthrich, Manuel and Miladinovic, Djordje and Locatello, Francesco and Breidt, Martin and Volchkov, Valentin and Akpo, Joel and Bachem, Olivier and Sch{\"o}lkopf, Bernhard and Bauer, Stefan},
77
+ journal={Advances in Neural Information Processing Systems},
78
+ volume={32},
79
+ year={2019}
80
+ }
81
+ ```
complex1.gif ADDED

Git LFS Details

  • SHA256: 5db6b29f518d1ac2ccf785623007ac85fd8a7c61fe7ca1676878761456fa1ad3
  • Pointer size: 131 Bytes
  • Size of remote file: 720 kB
mpi3d-complex.py ADDED
@@ -0,0 +1,92 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import datasets
2
+ import numpy as np
3
+ from PIL import Image
4
+
5
+ _MPI3D_URL = "https://drive.google.com/file/d/1Tp8eTdHxgUMtsZv5uAoYAbJR1BOa_OQm/view?usp=sharing"
6
+
7
+ class MPI3DComplex(datasets.GeneratorBasedBuilder):
8
+ """MPI3D Complex dataset: 4x4x2x3x3x40x40 factor combinations, 64x64 RGB images."""
9
+
10
+ VERSION = datasets.Version("1.0.0")
11
+
12
+ def _info(self):
13
+ return datasets.DatasetInfo(
14
+ description=(
15
+ "MPI3D Complex dataset: real-world images of complex everyday objects (coffee-cup, tennis-ball, "
16
+ "croissant, beer-cup) manipulated by a robotic platform under controlled variations of 7 known factors. "
17
+ "Images are 64x64 RGB (downsampled). "
18
+ "Factors: object color (4), object shape (4), object size (2), camera height (3), "
19
+ "background color (3), robotic arm DOF1 (40), robotic arm DOF2 (40). "
20
+ "Images were captured using real cameras, introducing realistic noise and lighting conditions. "
21
+ "The images are ordered as the Cartesian product of the factors in row-major order."
22
+ ),
23
+ features=datasets.Features(
24
+ {
25
+ "image": datasets.Image(), # (64, 64, 3)
26
+ "index": datasets.Value("int32"), # index of the image
27
+ "label": datasets.Sequence(datasets.Value("int32")), # 7 factor indices
28
+ "color": datasets.Value("int32"), # object color index (0-3)
29
+ "shape": datasets.Value("int32"), # object shape index (0-3)
30
+ "size": datasets.Value("int32"), # object size index (0-1)
31
+ "height": datasets.Value("int32"), # camera height index (0-2)
32
+ "background": datasets.Value("int32"), # background color index (0-2)
33
+ "dof1": datasets.Value("int32"), # robotic arm DOF1 index (0-39)
34
+ "dof2": datasets.Value("int32"), # robotic arm DOF2 index (0-39)
35
+ }
36
+ ),
37
+ supervised_keys=("image", "label"),
38
+ homepage="https://github.com/rr-learning/disentanglement_dataset",
39
+ license="Creative Commons Attribution 4.0 International",
40
+ citation="""@article{gondal2019transfer,
41
+ title={On the transfer of inductive bias from simulation to the real world: a new disentanglement dataset},
42
+ author={Gondal, Muhammad Waleed and Wuthrich, Manuel and Miladinovic, Djordje and Locatello, Francesco and Breidt, Martin and Volchkov, Valentin and Akpo, Joel and Bachem, Olivier and Sch{\"o}lkopf, Bernhard and Bauer, Stefan},
43
+ journal={Advances in Neural Information Processing Systems},
44
+ volume={32},
45
+ year={2019}
46
+ }""",
47
+ )
48
+
49
+ def _split_generators(self, dl_manager):
50
+ npz_path = dl_manager.download(_MPI3D_URL)
51
+
52
+ return [
53
+ datasets.SplitGenerator(
54
+ name=datasets.Split.TRAIN,
55
+ gen_kwargs={"npz_path": npz_path},
56
+ ),
57
+ ]
58
+
59
+ def _generate_examples(self, npz_path):
60
+ # Load npz
61
+ data = np.load(npz_path)
62
+ images = data["images"] # shape: (460800, 64, 64, 3)
63
+
64
+ factor_sizes = np.array([4, 4, 2, 3, 3, 40, 40]) # key change for complex
65
+ factor_bases = np.cumprod([1] + list(factor_sizes[::-1]))[::-1][1:]
66
+
67
+ def index_to_factors(index):
68
+ factors = []
69
+ for base, size in zip(factor_bases, factor_sizes):
70
+ factor = (index // base) % size
71
+ factors.append(int(factor))
72
+ return factors
73
+
74
+ # Iterate over images
75
+ for idx in range(len(images)):
76
+ img = images[idx]
77
+ img_pil = Image.fromarray(img)
78
+
79
+ factors = index_to_factors(idx)
80
+
81
+ yield idx, {
82
+ "image": img_pil,
83
+ "index": idx,
84
+ "label": factors,
85
+ "color": factors[0],
86
+ "shape": factors[1],
87
+ "size": factors[2],
88
+ "height": factors[3],
89
+ "background": factors[4],
90
+ "dof1": factors[5],
91
+ "dof2": factors[6],
92
+ }