import datasets import numpy as np from PIL import Image _MPI3D_URL = "https://huggingface.co/datasets/randall-lab/mpi3d-complex/resolve/main/real3d_complicated_shapes_ordered.npz" class MPI3DComplex(datasets.GeneratorBasedBuilder): """MPI3D Complex dataset: 4x4x2x3x3x40x40 factor combinations, 64x64 RGB images.""" VERSION = datasets.Version("1.0.0") def _info(self): return datasets.DatasetInfo( description=( "MPI3D Complex dataset: real-world images of complex everyday objects (coffee-cup, tennis-ball, " "croissant, beer-cup) manipulated by a robotic platform under controlled variations of 7 known factors. " "Images are 64x64 RGB (downsampled). " "Factors: object color (4), object shape (4), object size (2), camera height (3), " "background color (3), robotic arm DOF1 (40), robotic arm DOF2 (40). " "Images were captured using real cameras, introducing realistic noise and lighting conditions. " "The images are ordered as the Cartesian product of the factors in row-major order." ), features=datasets.Features( { "image": datasets.Image(), # (64, 64, 3) "index": datasets.Value("int32"), # index of the image "label": datasets.Sequence(datasets.Value("int32")), # 7 factor indices "color": datasets.Value("int32"), # object color index (0-3) "shape": datasets.Value("int32"), # object shape index (0-3) "size": datasets.Value("int32"), # object size index (0-1) "height": datasets.Value("int32"), # camera height index (0-2) "background": datasets.Value("int32"), # background color index (0-2) "dof1": datasets.Value("int32"), # robotic arm DOF1 index (0-39) "dof2": datasets.Value("int32"), # robotic arm DOF2 index (0-39) } ), supervised_keys=("image", "label"), homepage="https://github.com/rr-learning/disentanglement_dataset", license="Creative Commons Attribution 4.0 International", citation="""@article{gondal2019transfer, title={On the transfer of inductive bias from simulation to the real world: a new disentanglement dataset}, author={Gondal, Muhammad Waleed and Wuthrich, Manuel and Miladinovic, Djordje and Locatello, Francesco and Breidt, Martin and Volchkov, Valentin and Akpo, Joel and Bachem, Olivier and Sch{\"o}lkopf, Bernhard and Bauer, Stefan}, journal={Advances in Neural Information Processing Systems}, volume={32}, year={2019} }""", ) def _split_generators(self, dl_manager): npz_path = dl_manager.download(_MPI3D_URL) return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={"npz_path": npz_path}, ), ] def _generate_examples(self, npz_path): # Load npz data = np.load(npz_path) images = data["images"] # shape: (460800, 64, 64, 3) factor_sizes = np.array([4, 4, 2, 3, 3, 40, 40]) # key change for complex factor_bases = np.cumprod([1] + list(factor_sizes[::-1]))[::-1][1:] def index_to_factors(index): factors = [] for base, size in zip(factor_bases, factor_sizes): factor = (index // base) % size factors.append(int(factor)) return factors # Iterate over images for idx in range(len(images)): img = images[idx] img_pil = Image.fromarray(img) factors = index_to_factors(idx) yield idx, { "image": img_pil, "index": idx, "label": factors, "color": factors[0], "shape": factors[1], "size": factors[2], "height": factors[3], "background": factors[4], "dof1": factors[5], "dof2": factors[6], }