|
import datasets |
|
import numpy as np |
|
from PIL import Image |
|
|
|
_MPI3D_URL = "https://huggingface.co/datasets/waleedgondal/mpi3d/resolve/main/mpi3d_realistic.npz" |
|
|
|
class MPI3DRealistic(datasets.GeneratorBasedBuilder): |
|
"""MPI3D Realistic dataset: 6x6x2x3x3x40x40 factor combinations, 64x64 RGB images.""" |
|
|
|
VERSION = datasets.Version("1.0.0") |
|
|
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
description=( |
|
"MPI3D Realistic dataset: high-fidelity photorealistic synthetic images of physical 3D objects, " |
|
"rendered with a physically-based renderer under controlled variations of 7 known factors of variation. " |
|
"Images are 64x64 RGB (downsampled from original resolution for benchmarking). " |
|
"Factors: object color (6), object shape (6), object size (2), camera height (3), " |
|
"background color (3), robotic arm DOF1 (40), robotic arm DOF2 (40). " |
|
"Images were generated using CAD models and realistic lighting/materials to closely match real-world images. " |
|
"The images are ordered as the Cartesian product of the factors in row-major order." |
|
), |
|
features=datasets.Features( |
|
{ |
|
"image": datasets.Image(), |
|
"index": datasets.Value("int32"), |
|
"label": datasets.Sequence(datasets.Value("int32")), |
|
"color": datasets.Value("int32"), |
|
"shape": datasets.Value("int32"), |
|
"size": datasets.Value("int32"), |
|
"height": datasets.Value("int32"), |
|
"background": datasets.Value("int32"), |
|
"dof1": datasets.Value("int32"), |
|
"dof2": datasets.Value("int32"), |
|
} |
|
), |
|
supervised_keys=("image", "label"), |
|
homepage="https://github.com/rr-learning/disentanglement_dataset", |
|
license="Creative Commons Attribution 4.0 International", |
|
citation="""@article{gondal2019transfer, |
|
title={On the transfer of inductive bias from simulation to the real world: a new disentanglement dataset}, |
|
author={Gondal, Muhammad Waleed and Wuthrich, Manuel and Miladinovic, Djordje and Locatello, Francesco and Breidt, Martin and Volchkov, Valentin and Akpo, Joel and Bachem, Olivier and Sch{\"o}lkopf, Bernhard and Bauer, Stefan}, |
|
journal={Advances in Neural Information Processing Systems}, |
|
volume={32}, |
|
year={2019} |
|
}""", |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
npz_path = dl_manager.download(_MPI3D_URL) |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={"npz_path": npz_path}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, npz_path): |
|
|
|
data = np.load(npz_path) |
|
images = data["images"] |
|
|
|
factor_sizes = np.array([6, 6, 2, 3, 3, 40, 40]) |
|
factor_bases = np.cumprod([1] + list(factor_sizes[::-1]))[::-1][1:] |
|
|
|
def index_to_factors(index): |
|
factors = [] |
|
for base, size in zip(factor_bases, factor_sizes): |
|
factor = (index // base) % size |
|
factors.append(int(factor)) |
|
return factors |
|
|
|
|
|
for idx in range(len(images)): |
|
img = images[idx] |
|
img_pil = Image.fromarray(img) |
|
|
|
factors = index_to_factors(idx) |
|
|
|
yield idx, { |
|
"image": img_pil, |
|
"index": idx, |
|
"label": factors, |
|
"color": factors[0], |
|
"shape": factors[1], |
|
"size": factors[2], |
|
"height": factors[3], |
|
"background": factors[4], |
|
"dof1": factors[5], |
|
"dof2": factors[6], |
|
} |
|
|