haodoz0118 commited on
Commit
02911ae
·
verified ·
1 Parent(s): fb14b70

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +86 -0
README.md ADDED
@@ -0,0 +1,86 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: cc-by-4.0
3
+ ---
4
+ # Dataset Card for MPI3D-toy
5
+
6
+ ## Dataset Description
7
+
8
+ The **MPI3D-toy dataset** is a **synthetically rendered image dataset** designed for benchmarking algorithms in **disentangled representation learning** and **unsupervised representation learning**. It is part of the broader MPI3D dataset suite, which also includes **realistic simulated** and **real-world** variants.
9
+
10
+ The **toy version** was generated using a **simplified computer graphics renderer** (Quicksilver hardware renderer in Autodesk 3ds Max), based on CAD models of a physical robotic setup. This allows researchers to systematically study **sim-to-real transfer** and the effect of simulation fidelity.
11
+
12
+ All images depict **physical 3D objects** that would be manipulated by a robotic platform, under **controlled variations of 7 known factors**:
13
+
14
+ - Object color (6 values)
15
+ - Object shape (6 values)
16
+ - Object size (2 values)
17
+ - Camera height (3 values)
18
+ - Background color (3 values)
19
+ - Robotic arm horizontal axis (40 values)
20
+ - Robotic arm vertical axis (40 values)
21
+
22
+ The dataset contains **1,036,800 images** at a resolution of **64×64 pixels**, representing the full Cartesian product of these factors. All factors are **identical** to those used in the realistic and real-world versions of MPI3D, enabling direct comparisons between different levels of simulation fidelity.
23
+
24
+ ## Dataset Source
25
+ - **Homepage**: [https://github.com/rr-learning/disentanglement_dataset](https://github.com/rr-learning/disentanglement_dataset)
26
+ - **License**: [Creative Commons Attribution 4.0 International](https://creativecommons.org/licenses/by/4.0/)
27
+ - **Paper**: Muhammad Waleed Gondal et al. _On the Transfer of Inductive Bias from Simulation to the Real World: A New Disentanglement Dataset_. NeurIPS 2019.
28
+
29
+ ## Dataset Structure
30
+
31
+ |Factors|Possible Values|
32
+ |---|---|
33
+ |object_color|white=0, green=1, red=2, blue=3, brown=4, olive=5|
34
+ |object_shape|cone=0, cube=1, cylinder=2, hexagonal=3, pyramid=4, sphere=5|
35
+ |object_size|small=0, large=1|
36
+ |camera_height|top=0, center=1, bottom=2|
37
+ |background_color|purple=0, sea green=1, salmon=2|
38
+ |horizontal_axis (DOF1)|0,...,39|
39
+ |vertical_axis (DOF2)|0,...,39|
40
+
41
+ Each image corresponds to a unique combination of these 7 factors. The images are stored in a **row-major order** (fastest-changing factor is `vertical_axis`, slowest-changing factor is `object_color`).
42
+
43
+ ### Why no train/test split?
44
+ The MPI3D-toy dataset does not provide an official train/test split. It is designed for **representation learning research**, where the goal is to learn disentangled and interpretable latent factors. Since the dataset is a complete Cartesian product of all factor combinations, models typically require access to the full dataset to explore factor-wise variations.
45
+
46
+ ## Example Usage
47
+
48
+ Below is a quick example of how to load this dataset via the Hugging Face Datasets library:
49
+
50
+ ```python
51
+ from datasets import load_dataset
52
+
53
+ # Load the dataset
54
+ dataset = load_dataset("your-hf-namespace/mpi3d_toy", split="train", trust_remote_code=True)
55
+
56
+ # Access a sample from the dataset
57
+ example = dataset[0]
58
+ image = example["image"]
59
+ label = example["label"] # [object_color: 0, object_shape: 0, object_size: 0, camera_height: 0, background_color: 0, horizontal_axis: 0, vertical_axis: 0]
60
+ color = example["color"] # 0
61
+ shape = example["shape"] # 0
62
+ size = example["size"] # 0
63
+ height = example["height"] # 0
64
+ background = example["background"] # 0
65
+ dof1 = example["dof1"] # 0
66
+ dof2 = example["dof2"] # 0
67
+
68
+
69
+ image.show() # Display the image
70
+ print(f"Label (factors): {label}")
71
+ ```
72
+ If you are using colab, you should update datasets to avoid errors
73
+ ```
74
+ pip install -U datasets
75
+ ```
76
+
77
+ ## Citation
78
+ ```
79
+ @article{gondal2019transfer,
80
+ title={On the transfer of inductive bias from simulation to the real world: a new disentanglement dataset},
81
+ author={Gondal, Muhammad Waleed and Wuthrich, Manuel and Miladinovic, Djordje and Locatello, Francesco and Breidt, Martin and Volchkov, Valentin and Akpo, Joel and Bachem, Olivier and Sch{\"o}lkopf, Bernhard and Bauer, Stefan},
82
+ journal={Advances in Neural Information Processing Systems},
83
+ volume={32},
84
+ year={2019}
85
+ }
86
+ ```