|
import datasets |
|
import numpy as np |
|
import os |
|
from PIL import Image |
|
|
|
_SHAPES3D_URL = "https://huggingface.co/datasets/randall-lab/shapes3d/resolve/main/shapes3d.npz" |
|
|
|
class Shapes3D(datasets.GeneratorBasedBuilder): |
|
"""Shapes3D dataset: 10x10x10x8x4x15 factor combinations, 64x64 RGB images.""" |
|
|
|
VERSION = datasets.Version("1.0.0") |
|
|
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
description=( |
|
"Shapes3D dataset: procedurally generated images of 3D shapes with 6 independent factors of variation. " |
|
"Commonly used for disentangled representation learning. " |
|
"Factors: floor hue (10), wall hue (10), object hue (10), scale (8), shape (4), orientation (15). " |
|
"Images are stored as the Cartesian product of the factors in row-major order." |
|
), |
|
features=datasets.Features( |
|
{ |
|
"image": datasets.Image(), |
|
"index": datasets.Value("int32"), |
|
"label": datasets.Sequence(datasets.Value("float64")), |
|
"label_index": datasets.Sequence(datasets.Value("int64")), |
|
"floor": datasets.Value("float64"), |
|
"wall": datasets.Value("float64"), |
|
"object": datasets.Value("float64"), |
|
"scale": datasets.Value("float64"), |
|
"shape": datasets.Value("float64"), |
|
"orientation": datasets.Value("float64"), |
|
"floor_idx": datasets.Value("int32"), |
|
"wall_idx": datasets.Value("int32"), |
|
"object_idx": datasets.Value("int32"), |
|
"scale_idx": datasets.Value("int32"), |
|
"shape_idx": datasets.Value("int32"), |
|
"orientation_idx": datasets.Value("int32"), |
|
} |
|
), |
|
supervised_keys=("image", "label"), |
|
homepage="https://github.com/google-deepmind/3dshapes-dataset/", |
|
license="apache-2.0", |
|
citation="""@InProceedings{pmlr-v80-kim18b, |
|
title = {Disentangling by Factorising}, |
|
author = {Kim, Hyunjik and Mnih, Andriy}, |
|
booktitle = {Proceedings of the 35th International Conference on Machine Learning}, |
|
pages = {2649--2658}, |
|
year = {2018}, |
|
editor = {Dy, Jennifer and Krause, Andreas}, |
|
volume = {80}, |
|
series = {Proceedings of Machine Learning Research}, |
|
month = {10--15 Jul}, |
|
publisher = {PMLR}, |
|
pdf = {http://proceedings.mlr.press/v80/kim18b/kim18b.pdf}, |
|
url = {https://proceedings.mlr.press/v80/kim18b.html} |
|
}""", |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
npz_path = dl_manager.download(_SHAPES3D_URL) |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={"npz_path": npz_path}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, npz_path): |
|
|
|
data = np.load(npz_path) |
|
images = data["images"] |
|
labels = data["labels"] |
|
|
|
|
|
factor_sizes = np.array([10, 10, 10, 8, 4, 15]) |
|
factor_bases = np.cumprod([1] + list(factor_sizes[::-1]))[::-1][1:] |
|
|
|
def index_to_factors(index): |
|
factors = [] |
|
for base, size in zip(factor_bases, factor_sizes): |
|
factor = (index // base) % size |
|
factors.append(int(factor)) |
|
return factors |
|
|
|
|
|
for idx in range(len(images)): |
|
img = images[idx] |
|
img_pil = Image.fromarray(img) |
|
|
|
label_value = labels[idx].tolist() |
|
label_index = index_to_factors(idx) |
|
|
|
yield idx, { |
|
"image": img_pil, |
|
"index": idx, |
|
"label": label_value, |
|
"label_index": label_index, |
|
"floor": label_value[0], |
|
"wall": label_value[1], |
|
"object": label_value[2], |
|
"scale": label_value[3], |
|
"shape": label_value[4], |
|
"orientation": label_value[5], |
|
"floor_idx": label_index[0], |
|
"wall_idx": label_index[1], |
|
"object_idx": label_index[2], |
|
"scale_idx": label_index[3], |
|
"shape_idx": label_index[4], |
|
"orientation_idx": label_index[5], |
|
} |
|
|