haodoz0118 commited on
Commit
8620e7b
·
verified ·
1 Parent(s): 7427563

Upload 2 files

Browse files
Files changed (2) hide show
  1. README.md +97 -0
  2. shapes3d.py +112 -0
README.md ADDED
@@ -0,0 +1,97 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ ---
4
+ # Dataset Card for 3dshapes
5
+
6
+ ## Dataset Description
7
+
8
+ The **3dshapes dataset** is a **synthetic 3D object image dataset** designed for benchmarking algorithms in **disentangled representation learning** and **unsupervised representation learning**.
9
+
10
+ It was introduced in the **FactorVAE** paper [[Kim & Mnih, ICML 2018](https://proceedings.mlr.press/v80/kim18b.html)], as one of the standard testbeds for learning interpretable and disentangled latent factors. The dataset consists of images of **3D procedurally generated scenes**, where 6 **ground-truth independent factors of variation** are explicitly controlled:
11
+
12
+ - **Floor color** (hue)
13
+ - **Wall color** (hue)
14
+ - **Object color** (hue)
15
+ - **Object size** (scale)
16
+ - **Object shape** (categorical)
17
+ - **Object orientation** (rotation angle)
18
+
19
+ **3dshapes is generated as a full Cartesian product of all factor combinations**, making it perfectly suited for systematic evaluation of disentanglement. The dataset contains **480,000 images** at a resolution of **64×64 pixels**, covering **all possible combinations of the 6 factors exactly once**. The images are stored in **row-major order** according to the factor sweep, enabling precise control over factor-based evaluation.
20
+ ![Dataset Visualization](https://huggingface.co/datasets/randall-lab/shapes3d/resolve/main/3dshapes.gif)
21
+
22
+ ## Dataset Source
23
+ - **Homepage**: [https://github.com/deepmind/3dshapes-dataset](https://github.com/deepmind/3dshapes-dataset)
24
+ - **License**: [Apache License 2.0](http://www.apache.org/licenses/LICENSE-2.0)
25
+ - **Paper**: Hyunjik Kim & Andriy Mnih. _Disentangling by Factorising_. ICML 2018.
26
+
27
+ ## Dataset Structure
28
+ |Factors|Possible Values|
29
+ |---|---|
30
+ |floor_color (hue)| 10 values linearly spaced in [0, 1] |
31
+ |wall_color (hue)| 10 values linearly spaced in [0, 1] |
32
+ |object_color (hue)| 10 values linearly spaced in [0, 1] |
33
+ |scale| 8 values linearly spaced in [0.75, 1.25] |
34
+ |shape| 4 values: 0, 1, 2, 3 |
35
+ |orientation| 15 values linearly spaced in [-30, 30] |
36
+
37
+ Each image corresponds to a unique combination of these **6 factors**. The images are stored in a **row-major order** (fastest-changing factor is `orientation`, slowest-changing factor is `floor_color`).
38
+
39
+ ### Why no train/test split?
40
+ The 3dshapes dataset does not provide an official train/test split. It is designed for **representation learning research**, where the goal is to learn disentangled and interpretable latent factors. Since the dataset is a **complete Cartesian product of all factor combinations**, models typically require access to the full dataset to explore factor-wise variations.
41
+
42
+ ## Example Usage
43
+ Below is a quick example of how to load this dataset via the Hugging Face Datasets library:
44
+ ```python
45
+ from datasets import load_dataset
46
+
47
+ # Load the dataset
48
+ dataset = load_dataset("YOUR_HF_REPO/shapes3d", split="train", trust_remote_code=True)
49
+
50
+ # Access a sample from the dataset
51
+ example = dataset[0]
52
+ image = example["image"]
53
+ label = example["label"] # Value labels: [floor_hue, wall_hue, object_hue, scale, shape, orientation]
54
+ label_index = example["label_index"] # Index labels: [floor_idx, wall_idx, object_idx, scale_idx, shape_idx, orientation_idx]
55
+
56
+ # Label Value
57
+ floor_value = example["floor"] # 0-1
58
+ wall_value = example["wall"] # 0-1
59
+ object_value = example["object"] # 0-1
60
+ scale_value = example["scale"] # 0.75-1.25
61
+ shape_value = example["shape"] # 0,1,2,3
62
+ orientation_value = example["orientation"] # -30 - 30
63
+
64
+ # Label index
65
+ floor_idx = example["floor_idx"] # 0-9
66
+ wall_idx = example["wall_idx"] # 0-9
67
+ object_idx = example["object_idx"] # 0-9
68
+ scale_idx = example["scale_idx"] # 0-7
69
+ shape_idx = example["shape_idx"] # 0-3
70
+ orientation_idx = example["orientation_idx"] # 0-14
71
+
72
+ image.show() # Display the image
73
+ print(f"Label (factor values): {label}")
74
+ print(f"Label (factor indices): {label_index}")
75
+ ```
76
+ If you are using colab, you should update datasets to avoid errors
77
+ ```
78
+ pip install -U datasets
79
+ ```
80
+ ## Citation
81
+ ```
82
+ @InProceedings{pmlr-v80-kim18b,
83
+ title = {Disentangling by Factorising},
84
+ author = {Kim, Hyunjik and Mnih, Andriy},
85
+ booktitle = {Proceedings of the 35th International Conference on Machine Learning},
86
+ pages = {2649--2658},
87
+ year = {2018},
88
+ editor = {Dy, Jennifer and Krause, Andreas},
89
+ volume = {80},
90
+ series = {Proceedings of Machine Learning Research},
91
+ month = {10--15 Jul},
92
+ publisher = {PMLR},
93
+ pdf = {http://proceedings.mlr.press/v80/kim18b/kim18b.pdf},
94
+ url = {https://proceedings.mlr.press/v80/kim18b.html},
95
+ abstract = {We define and address the problem of unsupervised learning of disentangled representations on data generated from independent factors of variation. We propose FactorVAE, a method that disentangles by encouraging the distribution of representations to be factorial and hence independent across the dimensions. We show that it improves upon beta-VAE by providing a better trade-off between disentanglement and reconstruction quality and being more robust to the number of training iterations. Moreover, we highlight the problems of a commonly used disentanglement metric and introduce a new metric that does not suffer from them.}
96
+ }
97
+ ```
shapes3d.py ADDED
@@ -0,0 +1,112 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import datasets
2
+ import numpy as np
3
+ import os
4
+ from PIL import Image
5
+
6
+ _SHAPES3D_URL = "https://huggingface.co/datasets/randall-lab/shapes3d/resolve/main/shapes3d.npz"
7
+
8
+ class Shapes3D(datasets.GeneratorBasedBuilder):
9
+ """Shapes3D dataset: 10x10x10x8x4x15 factor combinations, 64x64 RGB images."""
10
+
11
+ VERSION = datasets.Version("1.0.0")
12
+
13
+ def _info(self):
14
+ return datasets.DatasetInfo(
15
+ description=(
16
+ "Shapes3D dataset: procedurally generated images of 3D shapes with 6 independent factors of variation. "
17
+ "Commonly used for disentangled representation learning. "
18
+ "Factors: floor hue (10), wall hue (10), object hue (10), scale (8), shape (4), orientation (15). "
19
+ "Images are stored as the Cartesian product of the factors in row-major order."
20
+ ),
21
+ features=datasets.Features(
22
+ {
23
+ "image": datasets.Image(), # (64, 64, 3)
24
+ "index": datasets.Value("int32"), # index of the image
25
+ "label": datasets.Sequence(datasets.Value("float32")), # 6 factor values (continuous)
26
+ "label_index": datasets.Sequence(datasets.Value("int32")), # 6 factor indices
27
+ "floor": datasets.Value("float32"), # value of floor (0-1)
28
+ "wall": datasets.Value("float32"), # value of wall (0-1)
29
+ "object": datasets.Value("float32"), # value of object (0-1)
30
+ "scale": datasets.Value("float32"), # value of scale (0.75-1.25)
31
+ "shape": datasets.Value("float32"), # value of shape (0-3)
32
+ "orientation": datasets.Value("float32"), # value of orientation (-30 to 30)
33
+ "floor_idx": datasets.Value("int32"),
34
+ "wall_idx": datasets.Value("int32"),
35
+ "object_idx": datasets.Value("int32"),
36
+ "scale_idx": datasets.Value("int32"),
37
+ "shape_idx": datasets.Value("int32"),
38
+ "orientation_idx": datasets.Value("int32"),
39
+ }
40
+ ),
41
+ supervised_keys=("image", "label"),
42
+ homepage="https://github.com/google-deepmind/3dshapes-dataset/",
43
+ license="apache-2.0",
44
+ citation="""@InProceedings{pmlr-v80-kim18b,
45
+ title = {Disentangling by Factorising},
46
+ author = {Kim, Hyunjik and Mnih, Andriy},
47
+ booktitle = {Proceedings of the 35th International Conference on Machine Learning},
48
+ pages = {2649--2658},
49
+ year = {2018},
50
+ editor = {Dy, Jennifer and Krause, Andreas},
51
+ volume = {80},
52
+ series = {Proceedings of Machine Learning Research},
53
+ month = {10--15 Jul},
54
+ publisher = {PMLR},
55
+ pdf = {http://proceedings.mlr.press/v80/kim18b/kim18b.pdf},
56
+ url = {https://proceedings.mlr.press/v80/kim18b.html}
57
+ }""",
58
+ )
59
+
60
+ def _split_generators(self, dl_manager):
61
+ npz_path = dl_manager.download(_SHAPES3D_URL)
62
+
63
+ return [
64
+ datasets.SplitGenerator(
65
+ name=datasets.Split.TRAIN,
66
+ gen_kwargs={"npz_path": npz_path},
67
+ ),
68
+ ]
69
+
70
+ def _generate_examples(self, npz_path):
71
+ # Load npz
72
+ data = np.load(npz_path)
73
+ images = data["images"] # (480000, 64, 64, 3)
74
+ labels = data["labels"] # (480000, 6)
75
+
76
+ # Define factor sizes (from README / paper)
77
+ factor_sizes = np.array([10, 10, 10, 8, 4, 15])
78
+ factor_bases = np.cumprod([1] + list(factor_sizes[::-1]))[::-1][1:]
79
+
80
+ def index_to_factors(index):
81
+ factors = []
82
+ for base, size in zip(factor_bases, factor_sizes):
83
+ factor = (index // base) % size
84
+ factors.append(int(factor))
85
+ return factors
86
+
87
+ # Iterate over images
88
+ for idx in range(len(images)):
89
+ img = images[idx]
90
+ img_pil = Image.fromarray(img)
91
+
92
+ label_value = labels[idx].tolist()
93
+ label_index = index_to_factors(idx)
94
+
95
+ yield idx, {
96
+ "image": img_pil,
97
+ "index": idx,
98
+ "label": label_value,
99
+ "label_index": label_index,
100
+ "floor": label_value[0],
101
+ "wall": label_value[1],
102
+ "object": label_value[2],
103
+ "scale": label_value[3],
104
+ "shape": label_value[4],
105
+ "orientation": label_value[5],
106
+ "floor_idx": label_index[0],
107
+ "wall_idx": label_index[1],
108
+ "object_idx": label_index[2],
109
+ "scale_idx": label_index[3],
110
+ "shape_idx": label_index[4],
111
+ "orientation_idx": label_index[5],
112
+ }