File size: 3,799 Bytes
959866c 5e289ea 959866c 26e5e47 959866c ba4e7ed c407202 ba4e7ed 959866c d41d796 5e289ea 959866c a2ba1af 959866c a2ba1af 959866c d41d796 959866c a2ba1af 959866c a2ba1af 959866c 5e289ea 959866c f402610 959866c 4cc6ab0 959866c 6bbcc40 959866c d8115c8 26e5e47 968cc4e 26e5e47 ba4e7ed 26e5e47 ba4e7ed 26e5e47 959866c 5a49f7c 26e5e47 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 |
import json
import datasets
import pandas as pd
from huggingface_hub.file_download import hf_hub_url
from collections import OrderedDict
try:
import lzma as xz
except ImportError:
import pylzma as xz
datasets.logging.set_verbosity_info()
logger = datasets.logging.get_logger(__name__)
_DESCRIPTION ="""\
"""
_HOMEPAGE = ""
_LICENSE = ""
_CITATION = ""
_URL = {
'data/'
}
_LANGUAGES = [
"de", "fr", "it", "swiss", "en"
]
_SUBSETS = [
"_sherlock", "_sfu", "_bioscope", ""
]
_BUILDS = ['de', 'fr', 'it', 'swiss', 'en_bioscope', 'en_sherlock', 'en_sfu', 'en_all', 'all_all']
class MultiLegalNegConfig(datasets.BuilderConfig):
def __init__(self, name:str, **kwargs):
super( MultiLegalNegConfig, self).__init__(**kwargs)
self.name = name
self.language = name.split("_")[0]
self.subset = f'_{name.split("_")[1]}' if len(name.split("_"))==2 else ""
class MultiLegalNeg(datasets.GeneratorBasedBuilder):
BUILDER_CONFIG_CLASS = MultiLegalNegConfig
BUILDER_CONFIGS = [
MultiLegalNegConfig(f"{build}") for build in _BUILDS
]
def _info(self):
features = datasets.Features(
{
"text": datasets.Value("string"),
"spans": [
{
"start": datasets.Value("int64"),
"end": datasets.Value("int64"),
"token_start": datasets.Value("int64"),
"token_end": datasets.Value("int64"),
"label": datasets.Value("string")
}
],
"tokens": [
{
"text": datasets.Value("string"),
"start": datasets.Value("int64"),
"end": datasets.Value("int64"),
"id": datasets.Value("int64"),
"ws": datasets.Value("bool")
}
]
}
)
return datasets.DatasetInfo(
description=_DESCRIPTION,
features = features,
homepage = _HOMEPAGE,
citation=_CITATION
)
def _split_generators(self, dl_manager):
languages = _LANGUAGES if self.config.language == "all" else [self.config.language]
subsets = _SUBSETS if self.config.subset == "_all" else [self.config.subset]
split_generators = []
for split in [datasets.Split.TRAIN, datasets.Split.TEST, datasets.Split.TRAIN, datasets.Split.VALIDATION]:
filepaths = []
for language in languages:
for subset in subsets:
try:
filepaths.append(dl_manager.download((f'data/{split}/{language}{subset}_{split}.jsonl.xz')))
except:
break
split_generators.append(datasets.SplitGenerator(name=split, gen_kwargs={'filepaths': filepaths}))
return split_generators
def _generate_examples(self, filepaths):
id_ = 0
for filepath in filepaths:
if filepath:
logger.info("Generating examples from = %s", filepath)
try:
with xz.open(open(filepath,'rb'), 'rt', encoding='utf-8') as f:
json_list = list(f)
for json_str in json_list:
example = json.loads(json_str)
if example is not None and isinstance(example, dict):
yield id_, example
id_ +=1
except Exception:
logger.exception("Error while processing file %s", filepath) |