|
import json |
|
|
|
import datasets |
|
import pandas as pd |
|
from huggingface_hub.file_download import hf_hub_url |
|
|
|
try: |
|
import lzma as xz |
|
except ImportError: |
|
import pylzma as xz |
|
|
|
datasets.logging.set_verbosity_info() |
|
logger = datasets.logging.get_logger(__name__) |
|
|
|
_DESCRIPTION ="""\ |
|
|
|
""" |
|
|
|
_HOMEPAGE = "" |
|
|
|
_LICENSE = "" |
|
|
|
_CITATION = "" |
|
|
|
_URL = { |
|
'data/' |
|
} |
|
_LANGUAGES = [ |
|
"de", "fr", "it", "swiss", "en" |
|
] |
|
|
|
|
|
class MultiLegalNegConfig(datasets.BuilderConfig): |
|
|
|
def __init__(self, name:str, **kwargs): |
|
super( MultiLegalNegConfig, self).__init__(**kwargs) |
|
self.name = name |
|
self.language = name.split("_")[0] |
|
|
|
class MultiLegalNeg(datasets.GeneratorBasedBuilder): |
|
|
|
BUILDER_CONFIG_CLASS = MultiLegalNegConfig |
|
|
|
BUILDER_CONFIGS = [ |
|
MultiLegalNegConfig(f"{language}") |
|
for language in _LANGUAGES + ['all'] |
|
] |
|
DEFAULT_CONFIG_NAME = 'all_all' |
|
def _info(self): |
|
features = datasets.Features( |
|
{ |
|
"text": datasets.Value("string"), |
|
"spans": [ |
|
{ |
|
"start": datasets.Value("int64"), |
|
"end": datasets.Value("int64"), |
|
"token_start": datasets.Value("int64"), |
|
"token_end": datasets.Value("int64"), |
|
"label": datasets.Value("string") |
|
} |
|
], |
|
"tokens": [ |
|
{ |
|
"text": datasets.Value("string"), |
|
"start": datasets.Value("int64"), |
|
"end": datasets.Value("int64"), |
|
"id": datasets.Value("int64"), |
|
"ws": datasets.Value("bool") |
|
} |
|
] |
|
} |
|
) |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features = features, |
|
homepage = _HOMEPAGE, |
|
citation=_CITATION |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
languages = _LANGUAGES if self.config.language == "all" else [self.config.language] |
|
|
|
data_files = { |
|
"train": [ |
|
"data/train/it_train.jsonl.xz", |
|
"data/train/fr_train.jsonl.xz", |
|
"data/train/de_train.jsonl.xz", |
|
"data/train/swiss_train.jsonl.xz", |
|
"data/train/en_sherlock_train.jsonl.xz", |
|
"data/train/en_sfu_train.jsonl.xz", |
|
"data/train/en_bioscope_train.jsonl.xz" |
|
], |
|
"test": [ |
|
"data/test/it_test.jsonl.xz", |
|
"data/test/fr_test.jsonl.xz", |
|
"data/test/de_test.jsonl.xz", |
|
"data/test/swiss_test.jsonl.xz", |
|
"data/test/en_sherlock_test.jsonl.xz", |
|
"data/test/en_sfu_test.jsonl.xz", |
|
"data/test/en_bioscope_test.jsonl.xz" |
|
], |
|
"validation": [ |
|
"data/validation/it_validation.jsonl.xz", |
|
"data/validation/fr_validation.jsonl.xz", |
|
"data/validation/de_validation.jsonl.xz", |
|
"data/validation/swiss_validation.jsonl.xz", |
|
"data/validation/en_sherlock_validation.jsonl.xz", |
|
"data/validation/en_sfu_validation.jsonl.xz", |
|
"data/validation/en_bioscope_validation.jsonl.xz" |
|
] |
|
} |
|
|
|
split_generators = [] |
|
for split in data_files.keys(): |
|
filepaths = [] |
|
for file_name in data_files[split]: |
|
try: |
|
filepaths.append(dl_manager.download((f'{file_name}'))) |
|
except: |
|
break |
|
split_generators.append(datasets.SplitGenerator(name=split, gen_kwargs={'filepaths': filepaths})) |
|
|
|
return split_generators |
|
|
|
def _generate_examples(self, data): |
|
id_ = 0 |
|
for filepath in filepaths: |
|
if filepath: |
|
logger.info("Generating examples from = %s", filepath) |
|
try: |
|
with xz.open(open(filepath,'rb'), 'rt', encoding='utf-8') as f: |
|
json_list = list(f) |
|
|
|
for json_str in json_list: |
|
example = json.loads(json_str) |
|
if example is not None and isinstance(example, dict): |
|
yield id_, example |
|
id_ +=1 |
|
|
|
except Exception: |
|
logger.exception("Error while processing file %s", filepath) |