import json import datasets import pandas as pd from huggingface_hub.file_download import hf_hub_url try: import lzma as xz except ImportError: import pylzma as xz datasets.logging.set_verbosity_info() logger = datasets.logging.get_logger(__name__) _DESCRIPTION ="""\ """ _HOMEPAGE = "" _LICENSE = "" _CITATION = "" _URL = { 'data/' } _LANGUAGES = [ "de", "fr", "it", "swiss", "en" ] class MultiLegalNegConfig(datasets.BuilderConfig): def __init__(self, name:str, **kwargs): super( MultiLegalNegConfig, self).__init__(**kwargs) self.name = name self.language = name.split("_")[0] class MultiLegalNeg(datasets.GeneratorBasedBuilder): BUILDER_CONFIG_CLASS = MultiLegalNegConfig BUILDER_CONFIGS = [ MultiLegalNegConfig(f"{language}") for language in _LANGUAGES + ['all'] ] DEFAULT_CONFIG_NAME = 'all_all' def _info(self): features = datasets.Features( { "text": datasets.Value("string"), "spans": [ { "start": datasets.Value("int64"), "end": datasets.Value("int64"), "token_start": datasets.Value("int64"), "token_end": datasets.Value("int64"), "label": datasets.Value("string") } ], "tokens": [ { "text": datasets.Value("string"), "start": datasets.Value("int64"), "end": datasets.Value("int64"), "id": datasets.Value("int64"), "ws": datasets.Value("bool") } ] } ) return datasets.DatasetInfo( description=_DESCRIPTION, features = features, homepage = _HOMEPAGE, citation=_CITATION ) def _split_generators(self, dl_manager): languages = _LANGUAGES if self.config.language == "all" else [self.config.language] data_files = { "train": [ "data/train/it_train.jsonl.xz", "data/train/fr_train.jsonl.xz", "data/train/de_train.jsonl.xz", "data/train/swiss_train.jsonl.xz", "data/train/en_sherlock_train.jsonl.xz", "data/train/en_sfu_train.jsonl.xz", "data/train/en_bioscope_train.jsonl.xz" ], "test": [ "data/test/it_test.jsonl.xz", "data/test/fr_test.jsonl.xz", "data/test/de_test.jsonl.xz", "data/test/swiss_test.jsonl.xz", "data/test/en_sherlock_test.jsonl.xz", "data/test/en_sfu_test.jsonl.xz", "data/test/en_bioscope_test.jsonl.xz" ], "validation": [ "data/validation/it_validation.jsonl.xz", "data/validation/fr_validation.jsonl.xz", "data/validation/de_validation.jsonl.xz", "data/validation/swiss_validation.jsonl.xz", "data/validation/en_sherlock_validation.jsonl.xz", "data/validation/en_sfu_validation.jsonl.xz", "data/validation/en_bioscope_validation.jsonl.xz" ] } split_generators = [] for split in data_files.keys(): filepaths = [] for file_name in data_files[split]: try: filepaths.append(dl_manager.download((f'{file_name}'))) except: break split_generators.append(datasets.SplitGenerator(name=split, gen_kwargs={'filepaths': filepaths})) return split_generators def _generate_examples(self, data): id_ = 0 for filepath in filepaths: if filepath: logger.info("Generating examples from = %s", filepath) try: with xz.open(open(filepath,'rb'), 'rt', encoding='utf-8') as f: json_list = list(f) for json_str in json_list: example = json.loads(json_str) if example is not None and isinstance(example, dict): yield id_, example id_ +=1 except Exception: logger.exception("Error while processing file %s", filepath)