File size: 4,017 Bytes
6f4e2b6 16f6032 6f4e2b6 16f6032 6f4e2b6 16f6032 6f4e2b6 58be895 6f4e2b6 58be895 6f4e2b6 58be895 6f4e2b6 58be895 6f4e2b6 58be895 6f4e2b6 4b9bb52 dc144a2 6f4e2b6 581a7d6 6f4e2b6 16f6032 6f4e2b6 dc144a2 6f4e2b6 4b9bb52 6f4e2b6 16f6032 6f4e2b6 af0f917 6f4e2b6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 |
import json
import datasets
import pandas as pd
from huggingface_hub.file_download import hf_hub_url
try:
import lzma as xz
except ImportError:
import pylzma as xz
datasets.logging.set_verbosity_info()
logger = datasets.logging.get_logger(__name__)
_DESCRIPTION ="""\
"""
_HOMEPAGE = ""
_LICENSE = ""
_CITATION = ""
_URL = {
'data/'
}
_LANGUAGES = [
"fr","it","es","en","de","pt"
]
_TYPES = [
"laws", "judgements"
]
_SOURCES = [
"MultiLegalPile", "Wipolex", "Jug", "BVA", "CC", "IP", "SCOTUS", "SwissJudgementPrediction"
"Gesetz", "Constitution", "CivilCode", "CriminalCode",
]
_HIGHEST_NUMBER_OF_SHARDS = 4
class MultiLegalSBDConfig(datasets.BuilderConfig):
def __init__(self, name:str, **kwargs):
super( MultiLegalSBDConfig, self).__init__(**kwargs)
self.name = name
self.language = name.split("_")[0]
self.type = name.split("_")[1]
class MultiLegalSBD(datasets.GeneratorBasedBuilder):
BUILDER_CONFIG_CLASS = MultiLegalSBDConfig
BUILDER_CONFIGS = [
MultiLegalSBDConfig(f"{language}_{type}")
for language in _LANGUAGES + ['all']
for type in _TYPES + ["all"]
]
DEFAULT_CONFIG_NAME = 'all_all'
def _info(self):
features = datasets.Features(
{
"text": datasets.Value("string"),
"spans": [
{
"start": datasets.Value("int64"),
"end": datasets.Value("int64"),
"label": datasets.Value("string"),
"token_start": datasets.Value("int64"),
"token_end": datasets.Value("int64")
}
],
"tokens": [
{
"text": datasets.Value("string"),
"start": datasets.Value("int64"),
"end": datasets.Value("int64"),
"id": datasets.Value("int64"),
"ws": datasets.Value("bool")
}
],
"source": datasets.Value("string")
}
)
return datasets.DatasetInfo(
description=_DESCRIPTION,
features = features,
homepage = _HOMEPAGE,
citation=_CITATION
)
def _split_generators(self, dl_manager):
languages = _LANGUAGES if self.config.language == "all" else [self.config.language]
types = _TYPES if self.config.type == 'all' else [self.config.type]
split_generators = []
for split in [datasets.Split.TRAIN]:
filepaths = []
for language in languages:
for type in types:
for shard in range(_HIGHEST_NUMBER_OF_SHARDS):
try:
filepaths.append(dl_manager.download((f'data/{language}_{type}_{shard}.jsonl.xz')))
except:
break
split_generators.append(
datasets.SplitGenerator(name=split, gen_kwargs={'filepaths': filepaths})
)
return split_generators
def _generate_examples(self,filepaths):
id_ = 0
for filepath in filepaths:
if filepath:
logger.info("Generating examples from = %s", filepath)
try:
with xz.open(open(filepath,'rb'), 'rt', encoding='utf-8') as f:
json_list = list(f)
for json_str in json_list:
example = json.loads(json_str)
if example is not None and isinstance(example, dict):
yield id_, example
id_ +=1
except Exception:
logger.exception("Error while processing file %s", filepath)
|