File size: 4,719 Bytes
6f4e2b6 dc144a2 6f4e2b6 dc144a2 6f4e2b6 dc144a2 6f4e2b6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 |
import datasets
from huggingface_hub.file_download import hf_hub_url
import glob
import json
import pandas as pd
try:
import lzma as xz
except ImportError:
import pylzma as xz
datasets.logging.set_verbosity_info()
logger = datasets.logging.get_logger(__name__)
_DESCRIPTION ="""\
"""
_HOMEPAGE = ""
_LICENSE = ""
_CITATION = ""
_URL = {
'data/'
}
_LANGUAGES = [
"fr","it","es","en","de","pt"
]
_TYPES = [
"laws", "judgements"
]
_SOURCES = [
"MultiLegalPile", "Wipolex", "Jug", "BVA", "CC", "IP", "SCOTUS", "SwissJudgementPrediction"
"Gesetz", "Constitution", "CivilCode", "CriminalCode",
]
"""
see https://huggingface.co/datasets/joelito/MultiLegalPile_Wikipedia_Filtered/blob/main/MultiLegalPile_Wikipedia_Filtered.py
"""
_HIGHEST_NUMBER_OF_SHARDS = 4
class MultilingualSBDConfig(datasets.BuilderConfig):
def __init__(self, name:str, **kwargs):
super( MultilingualSBDConfig, self).__init__(**kwargs)
self.name = name
self.language = name.split("_")[0]
self.type = name.split("_")[1]
#self.source = name.split("_")[2]
class MultilingualSBD(datasets.GeneratorBasedBuilder):
BUILDER_CONFIG_CLASS = MultilingualSBDConfig
BUILDER_CONFIGS = [
MultilingualSBDConfig(f"{language}_{type}")
for language in _LANGUAGES + ['all']
for type in _TYPES + ["all"]
]
DEFAULT_CONFIG_NAME = 'all_all'
def _info(self):
features = datasets.Features(
{
#"language": datasets.Value("string"), #in _LANGUAGES
#"type": datasets.Value("string"), # in _TYPES
#"subtype": datasets.Value("string"), # in _SUBTYPES
"text": datasets.Value("string"),
"source": datasets.Value("string"),
"spans": [
{
"start": datasets.Value("int64"),
"end": datasets.Value("int64"),
"token_start": datasets.Value("int64"),
"token_end": datasets.Value("int64"),
"label": datasets.Value("string")
}
],
"tokens": [
{
"text": datasets.Value("string"),
"start": datasets.Value("int64"),
"end": datasets.Value("int64"),
"id": datasets.Value("int64"),
"ws": datasets.Value("bool")
}
]
}
)
return datasets.DatasetInfo(
description=_DESCRIPTION,
features = features,
homepage = _HOMEPAGE,
citation=_CITATION
)
def _split_generators(self, dl_manager):
def download_url(filename):
url = hf_hub_url(
repo_id="tbrugger/Multilingual-SBD",
filename = f'data/{filename}.jsonl.xz',
repo_type='dataset'
)
return dl_manager.download(url)
languages = _LANGUAGES if self.config.language == "all" else [self.config.language]
types = _TYPES if self.config.type == 'all' else [self.config.type]
#sources = _SOURCES if self.config.source == 'all' else [self.config.source]
split_generators = []
for split in [datasets.Split.TRAIN]:
filepaths = []
for language in languages:
for type in types:
for shard in range(_HIGHEST_NUMBER_OF_SHARDS):
try:
filepaths.append(download_url(f'{language}_{type}_{shard}'))
except:
break
split_generators.append(
datasets.SplitGenerator(name=split, gen_kwargs={'filepaths': filepaths})
)
return split_generators
def _generate_examples(self,filepaths):
id_ = 0
for filepath in filepaths:
if filepath:
logger.info("Generating examples from = %s", filepath)
try:
with xz.open(open(filepath,'rb'), 'rt', encoding='utf-8') as f:
json_list = list(f)
for json_str in json_list:
example = json.loads(json_str)
if example is not None and isinstance(example, dict):
yield id_, example
id_ +=1
except Exception:
logger.exception("Error while processing file %s", filepath)
|