"""Dataset for the Judgment Prediction task.""" | |
import csv | |
import json | |
import lzma | |
import os | |
import datasets | |
try: | |
import lzma as xz | |
except ImportError: | |
import pylzma as xz | |
# TODO: Add BibTeX citation | |
# Find for instance the citation on arxiv or on the dataset repo/website | |
_CITATION = """\ | |
@InProceedings{huggingface:dataset, | |
title = {A great new dataset}, | |
author={huggingface, Inc. | |
}, | |
year={2020} | |
} | |
""" | |
# You can copy an official description | |
_DESCRIPTION = """\ | |
This dataset contains court decision for judgment prediction task. | |
""" | |
# TODO: Add a link to an official homepage for the dataset here | |
_HOMEPAGE = "" | |
# TODO: Add the licence for the dataset here if you can find it | |
_LICENSE = "" | |
# The HuggingFace Datasets library doesn't host the datasets but only points to the original files. | |
# This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method) | |
_URLS = { | |
"full": "https://huggingface.co/datasets/rcds/judgment_prediction/resolve/main/data/huggingface" | |
} | |
class JudgmentPrediction(datasets.GeneratorBasedBuilder): | |
"""This dataset contains court decision for judgment prediction task.""" | |
VERSION = datasets.Version("1.1.0") | |
# This is an example of a dataset with multiple configurations. | |
# If you don't want/need to define several sub-sets in your dataset, | |
# just remove the BUILDER_CONFIG_CLASS and the BUILDER_CONFIGS attributes. | |
# If you need to make complex sub-parts in the datasets with configurable options | |
# You can create your own builder configuration class to store attribute, inheriting from datasets.BuilderConfig | |
# BUILDER_CONFIG_CLASS = MyBuilderConfig | |
# You will be able to load one or the other configurations in the following list with | |
# data = datasets.load_dataset('my_dataset', 'first_domain') | |
# data = datasets.load_dataset('my_dataset', 'second_domain') | |
BUILDER_CONFIGS = [ | |
datasets.BuilderConfig(name="full", version=VERSION, description="This part of my dataset covers the whole dataset"), | |
] | |
DEFAULT_CONFIG_NAME = "full" # It's not mandatory to have a default configuration. Just use one if it make sense. | |
def _info(self): | |
if self.config.name == "full": # This is the name of the configuration selected in BUILDER_CONFIGS above | |
features = datasets.Features( | |
{ | |
"decision_id": datasets.Value("string"), | |
"facts": datasets.Value("string"), | |
"considerations": datasets.Value("string"), | |
"label": datasets.Value("string"), | |
"law_area": datasets.Value("string"), | |
"language": datasets.Value("string"), | |
"year": datasets.Value("int32"), | |
"court": datasets.Value("string"), | |
"chamber": datasets.Value("string"), | |
"canton": datasets.Value("string"), | |
"region": datasets.Value("string") | |
# These are the features of your dataset like images, labels ... | |
} | |
) | |
return datasets.DatasetInfo( | |
# This is the description that will appear on the datasets page. | |
description=_DESCRIPTION, | |
# This defines the different columns of the dataset and their types | |
features=features, # Here we define them above because they are different between the two configurations | |
# If there's a common (input, target) tuple from the features, uncomment supervised_keys line below and | |
# specify them. They'll be used if as_supervised=True in builder.as_dataset. | |
# supervised_keys=("sentence", "label"), | |
# Homepage of the dataset for documentation | |
# homepage=_HOMEPAGE, | |
# License for the dataset if available | |
# license=_LICENSE, | |
# Citation for the dataset | |
# citation=_CITATION, | |
) | |
def _split_generators(self, dl_manager): | |
# If several configurations are possible (listed in BUILDER_CONFIGS), the configuration selected by the user is in self.config.name | |
# dl_manager is a datasets.download.DownloadManager that can be used to download and extract URLS | |
# It can accept any type or nested list/dict and will give back the same structure with the url replaced with path to local files. | |
# By default the archives will be extracted and a path to a cached folder where they are extracted is returned instead of the archive | |
urls = _URLS[self.config.name] | |
filepath_train = dl_manager.download(os.path.join(urls, "train.jsonl.xz")) | |
filepath_validation = dl_manager.download(os.path.join(urls, "validation.jsonl.xz")) | |
filepath_test = dl_manager.download(os.path.join(urls, "test.jsonl.xz")) | |
return [ | |
datasets.SplitGenerator( | |
name=datasets.Split.TRAIN, | |
# These kwargs will be passed to _generate_examples | |
gen_kwargs={ | |
"filepath": filepath_train, | |
"split": "train", | |
}, | |
), | |
datasets.SplitGenerator( | |
name=datasets.Split.VALIDATION, | |
# These kwargs will be passed to _generate_examples | |
gen_kwargs={ | |
"filepath": filepath_validation, | |
"split": "validation", | |
}, | |
), | |
datasets.SplitGenerator( | |
name=datasets.Split.TEST, | |
# These kwargs will be passed to _generate_examples | |
gen_kwargs={ | |
"filepath": filepath_test, | |
"split": "test" | |
}, | |
) | |
] | |
# method parameters are unpacked from `gen_kwargs` as given in `_split_generators` | |
def _generate_examples(self, filepath, split): | |
# The `key` is for legacy reasons (tfds) and is not important in itself, but must be unique for each example. | |
line_counter = 0 | |
try: | |
with xz.open(open(filepath, "rb"), "rt", encoding="utf-8") as f: | |
for id, line in enumerate(f): | |
line_counter += 1 | |
if line: | |
data = json.loads(line) | |
if self.config.name == "full": | |
yield id, { | |
"decision_id": data["decision_id"], | |
"facts": data["facts"], | |
"considerations": data["considerations"], | |
"label": data["label"], | |
"law_area": data["law_area"], | |
"language": data["language"], | |
"year": data["year"], | |
"court": data["court"], | |
"chamber": data["chamber"], | |
"canton": data["canton"], | |
"region": data["region"] | |
} | |
except lzma.LZMAError as e: | |
print(split, e) | |
if line_counter == 0: | |
raise e | |