Datasets:
rcds
/

Modalities:
Text
ArXiv:
Libraries:
Datasets
License:
File size: 5,586 Bytes
ade05dc
 
c74baf8
 
 
 
 
 
 
 
 
 
209750a
c74baf8
 
 
 
 
 
ade05dc
 
c74baf8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d637f98
adea3e3
d637f98
adea3e3
 
 
 
 
 
c74baf8
ade05dc
c74baf8
ade05dc
c74baf8
ade05dc
c74baf8
209750a
 
 
 
 
 
 
 
c74baf8
 
ade05dc
adea3e3
 
 
 
d637f98
adea3e3
 
 
 
 
 
c74baf8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c71fd4e
c74baf8
c71fd4e
 
 
 
 
 
 
 
c74baf8
 
c71fd4e
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
---
license: cc-by-sa-4.0
annotations_creators:
- machine-generated
language:
- de
- fr
- it
language_creators:
- expert-generated
multilinguality:
- multilingual
pretty_name: Law Area Prediction
size_categories:
- 100K<n<1M
source_datasets:
- original
task_categories:
- text-classification
---

# Dataset Card for Law Area Prediction

## Table of Contents
- [Table of Contents](#table-of-contents)
- [Dataset Description](#dataset-description)
  - [Dataset Summary](#dataset-summary)
  - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
  - [Languages](#languages)
- [Dataset Structure](#dataset-structure)
  - [Data Instances](#data-instances)
  - [Data Fields](#data-fields)
  - [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
  - [Curation Rationale](#curation-rationale)
  - [Source Data](#source-data)
  - [Annotations](#annotations)
  - [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
  - [Social Impact of Dataset](#social-impact-of-dataset)
  - [Discussion of Biases](#discussion-of-biases)
  - [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
  - [Dataset Curators](#dataset-curators)
  - [Licensing Information](#licensing-information)
  - [Citation Information](#citation-information)
  - [Contributions](#contributions)

## Dataset Description

- **Homepage:**
- **Repository:**
- **Paper:**
- **Leaderboard:**
- **Point of Contact:**

### Dataset Summary

The dataset contains cases to be classified into the four main areas of law: Public, Civil, Criminal and Social

These can be classified further into sub-areas:
```
"public": ['Tax', 'Urban Planning and Environmental', 'Expropriation', 'Public Administration', 'Other Fiscal'],
"civil": ['Rental and Lease', 'Employment Contract', 'Bankruptcy', 'Family', 'Competition and Antitrust', 'Intellectual Property'],
'criminal': ['Substantive Criminal', 'Criminal Procedure']
```

### Supported Tasks and Leaderboards

Law Area Prediction can be used as text classification task

### Languages

Switzerland has four official languages with three languages German, French and Italian being represenated. The decisions are written by the judges and clerks in the language of the proceedings.


| Language   | Subset     | Number of Documents| 
|------------|------------|--------------------|  
| German     | **de**     | 127K               |
| French     | **fr**     | 156K               |
| Italian    | **it**     | 46K                |


## Dataset Structure

- decision_id: unique identifier for the decision
- facts: facts section of the decision
- considerations: considerations section of the decision
- law_area: label of the decision (main area of law)
- law_sub_area: sub area of law of the decision
- language: language of the decision
- year: year of the decision
- court: court of the decision
- chamber: chamber of the decision
- canton: canton of the decision
- region: region of the decision

### Data Fields
[More Information Needed]
### Data Instances
[More Information Needed]
### Data Fields
[More Information Needed]
### Data Splits

The dataset was split date-stratisfied
- Train: 2002-2015
- Validation: 2016-2017
- Test: 2018-2022

## Dataset Creation
### Curation Rationale
### Source Data
#### Initial Data Collection and Normalization

The original data are published from the Swiss Federal Supreme Court (https://www.bger.ch) in unprocessed formats (HTML). The documents were downloaded from the Entscheidsuche portal (https://entscheidsuche.ch) in HTML. 

#### Who are the source language producers?

The decisions are written by the judges and clerks in the language of the proceedings.

### Annotations
#### Annotation process
#### Who are the annotators?
### Personal and Sensitive Information

The dataset contains publicly available court decisions from the Swiss Federal Supreme Court. Personal or sensitive information has been anonymized by the court before publication according to the following guidelines: https://www.bger.ch/home/juridiction/anonymisierungsregeln.html.

## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed]
### Discussion of Biases
[More Information Needed]
### Other Known Limitations
[More Information Needed]
## Additional Information
### Dataset Curators
[More Information Needed]
### Licensing Information

We release the data under CC-BY-4.0 which complies with the court licensing (https://www.bger.ch/files/live/sites/bger/files/pdf/de/urteilsveroeffentlichung_d.pdf)
© Swiss Federal Supreme Court, 2002-2022

The copyright for the editorial content of this website and the consolidated texts, which is owned by the Swiss Federal Supreme Court, is licensed under the Creative Commons Attribution 4.0 International licence. This means that you can re-use the content provided you acknowledge the source and indicate any changes you have made.
Source: https://www.bger.ch/files/live/sites/bger/files/pdf/de/urteilsveroeffentlichung_d.pdf

### Citation Information

Please cite our [ArXiv-Preprint](https://arxiv.org/abs/2306.09237)
```
@misc{rasiah2023scale,
      title={SCALE: Scaling up the Complexity for Advanced Language Model Evaluation}, 
      author={Vishvaksenan Rasiah and Ronja Stern and Veton Matoshi and Matthias Stürmer and Ilias Chalkidis and Daniel E. Ho and Joel Niklaus},
      year={2023},
      eprint={2306.09237},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}
```

### Contributions