Datasets:
rcds
/

Modalities:
Text
ArXiv:
Libraries:
Datasets
License:
vr commited on
Commit
e95f34e
·
1 Parent(s): 1b01a66

adapting readme

Browse files
Files changed (1) hide show
  1. README.md +8 -19
README.md CHANGED
@@ -6,7 +6,7 @@ license: cc-by-sa-4.0
6
  ## Introduction
7
  The main subset contains cases to be classified into the four main areas of law: Public, Civil, Criminal and Social
8
 
9
- A portion of the cases from the main areas Public, Civil and Criminal can be classified further into sub-areas:
10
  ```
11
  "public": ['Tax', 'Urban Planning and Environmental', 'Expropriation', 'Public Administration', 'Other Fiscal'],
12
  "civil": ['Rental and Lease', 'Employment Contract', 'Bankruptcy', 'Family', 'Competition and Antitrust', 'Intellectual Property'],
@@ -20,21 +20,10 @@ A portion of the cases from the main areas Public, Civil and Criminal can be cla
20
  * validation: 36'882
21
  * test: 97'676
22
 
23
- ### Sub-area datasets
24
- #### Civil dataset
25
- * train: 2'170
26
- * validation: 772
27
- * test: 1'980
28
-
29
- #### Criminal dataset
30
- * train: 5'333
31
- * validation: 1'540
32
- * test: 3'526
33
-
34
- #### Public dataset
35
- * train: 2'972
36
- * validation: 882
37
- * test: 3'081
38
 
39
 
40
  ## Load datasets
@@ -42,9 +31,9 @@ Load the main dataset:
42
  ```python
43
  dataset = load_dataset("rcds/swiss_law_area_prediction")
44
  ```
45
- Load the dataset with the sub-areas of Civil law:
46
  ```python
47
- dataset = load_dataset("rcds/swiss_law_area_prediction", "civil")
48
  ```
49
 
50
  ## Columns
@@ -61,7 +50,7 @@ dataset = load_dataset("rcds/swiss_law_area_prediction", "civil")
61
  - canton: canton of the decision
62
  - region: region of the decision
63
 
64
- ### Sub-area datasets
65
  - decision_id: unique identifier for the decision
66
  - facts: facts section of the decision
67
  - considerations: considerations section of the decision
 
6
  ## Introduction
7
  The main subset contains cases to be classified into the four main areas of law: Public, Civil, Criminal and Social
8
 
9
+ A portion of the cases can be classified further into sub-areas:
10
  ```
11
  "public": ['Tax', 'Urban Planning and Environmental', 'Expropriation', 'Public Administration', 'Other Fiscal'],
12
  "civil": ['Rental and Lease', 'Employment Contract', 'Bankruptcy', 'Family', 'Competition and Antitrust', 'Intellectual Property'],
 
20
  * validation: 36'882
21
  * test: 97'676
22
 
23
+ ### Sub-area dataset
24
+ * train: 10'475
25
+ * validation: 3194
26
+ * test: 8587
 
 
 
 
 
 
 
 
 
 
 
27
 
28
 
29
  ## Load datasets
 
31
  ```python
32
  dataset = load_dataset("rcds/swiss_law_area_prediction")
33
  ```
34
+ Load the dataset with the sub-areas:
35
  ```python
36
+ dataset = load_dataset("rcds/swiss_law_area_prediction", "sub_area")
37
  ```
38
 
39
  ## Columns
 
50
  - canton: canton of the decision
51
  - region: region of the decision
52
 
53
+ ### Sub-area dataset
54
  - decision_id: unique identifier for the decision
55
  - facts: facts section of the decision
56
  - considerations: considerations section of the decision