Datasets:
vr
commited on
Commit
·
e95f34e
1
Parent(s):
1b01a66
adapting readme
Browse files
README.md
CHANGED
@@ -6,7 +6,7 @@ license: cc-by-sa-4.0
|
|
6 |
## Introduction
|
7 |
The main subset contains cases to be classified into the four main areas of law: Public, Civil, Criminal and Social
|
8 |
|
9 |
-
A portion of the cases
|
10 |
```
|
11 |
"public": ['Tax', 'Urban Planning and Environmental', 'Expropriation', 'Public Administration', 'Other Fiscal'],
|
12 |
"civil": ['Rental and Lease', 'Employment Contract', 'Bankruptcy', 'Family', 'Competition and Antitrust', 'Intellectual Property'],
|
@@ -20,21 +20,10 @@ A portion of the cases from the main areas Public, Civil and Criminal can be cla
|
|
20 |
* validation: 36'882
|
21 |
* test: 97'676
|
22 |
|
23 |
-
### Sub-area
|
24 |
-
|
25 |
-
*
|
26 |
-
*
|
27 |
-
* test: 1'980
|
28 |
-
|
29 |
-
#### Criminal dataset
|
30 |
-
* train: 5'333
|
31 |
-
* validation: 1'540
|
32 |
-
* test: 3'526
|
33 |
-
|
34 |
-
#### Public dataset
|
35 |
-
* train: 2'972
|
36 |
-
* validation: 882
|
37 |
-
* test: 3'081
|
38 |
|
39 |
|
40 |
## Load datasets
|
@@ -42,9 +31,9 @@ Load the main dataset:
|
|
42 |
```python
|
43 |
dataset = load_dataset("rcds/swiss_law_area_prediction")
|
44 |
```
|
45 |
-
Load the dataset with the sub-areas
|
46 |
```python
|
47 |
-
dataset = load_dataset("rcds/swiss_law_area_prediction", "
|
48 |
```
|
49 |
|
50 |
## Columns
|
@@ -61,7 +50,7 @@ dataset = load_dataset("rcds/swiss_law_area_prediction", "civil")
|
|
61 |
- canton: canton of the decision
|
62 |
- region: region of the decision
|
63 |
|
64 |
-
### Sub-area
|
65 |
- decision_id: unique identifier for the decision
|
66 |
- facts: facts section of the decision
|
67 |
- considerations: considerations section of the decision
|
|
|
6 |
## Introduction
|
7 |
The main subset contains cases to be classified into the four main areas of law: Public, Civil, Criminal and Social
|
8 |
|
9 |
+
A portion of the cases can be classified further into sub-areas:
|
10 |
```
|
11 |
"public": ['Tax', 'Urban Planning and Environmental', 'Expropriation', 'Public Administration', 'Other Fiscal'],
|
12 |
"civil": ['Rental and Lease', 'Employment Contract', 'Bankruptcy', 'Family', 'Competition and Antitrust', 'Intellectual Property'],
|
|
|
20 |
* validation: 36'882
|
21 |
* test: 97'676
|
22 |
|
23 |
+
### Sub-area dataset
|
24 |
+
* train: 10'475
|
25 |
+
* validation: 3194
|
26 |
+
* test: 8587
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
|
28 |
|
29 |
## Load datasets
|
|
|
31 |
```python
|
32 |
dataset = load_dataset("rcds/swiss_law_area_prediction")
|
33 |
```
|
34 |
+
Load the dataset with the sub-areas:
|
35 |
```python
|
36 |
+
dataset = load_dataset("rcds/swiss_law_area_prediction", "sub_area")
|
37 |
```
|
38 |
|
39 |
## Columns
|
|
|
50 |
- canton: canton of the decision
|
51 |
- region: region of the decision
|
52 |
|
53 |
+
### Sub-area dataset
|
54 |
- decision_id: unique identifier for the decision
|
55 |
- facts: facts section of the decision
|
56 |
- considerations: considerations section of the decision
|