Commit
·
cbeab7f
1
Parent(s):
55efc54
Support streaming mlsum dataset (#4574)
Browse files* Fix streaming for servers not supporting HTTP range requests
* Support streaming mlsum dataset
* Update metadata JSON
* Update dummy data
* Fix summarization task tag
* Unpin s3fs to allow fsspec>2021.08.01
* Revert workaround once fsspec>2021.08.01 is allowed
* Pin min fsspec version with fixed BlockSizeError
* Pin min versions for s3fs, aiobotocore, boto3, botocore
* Update compatible minimum requirements
Commit from https://github.com/huggingface/datasets/commit/612377be3fb306b1551dd5e0687f09ff2956d583
- README.md +2 -1
- dataset_infos.json +1 -1
- dummy/de/1.0.0/dummy_data.zip +2 -2
- dummy/es/1.0.0/dummy_data.zip +2 -2
- dummy/fr/1.0.0/dummy_data.zip +2 -2
- dummy/ru/1.0.0/dummy_data.zip +2 -2
- dummy/tu/1.0.0/dummy_data.zip +2 -2
- mlsum.py +14 -33
README.md
CHANGED
@@ -20,12 +20,13 @@ source_datasets:
|
|
20 |
- extended|cnn_dailymail
|
21 |
- original
|
22 |
task_categories:
|
|
|
23 |
- translation
|
24 |
- text-classification
|
25 |
task_ids:
|
|
|
26 |
- multi-class-classification
|
27 |
- multi-label-classification
|
28 |
-
- summarization
|
29 |
- topic-classification
|
30 |
paperswithcode_id: mlsum
|
31 |
pretty_name: MLSUM
|
|
|
20 |
- extended|cnn_dailymail
|
21 |
- original
|
22 |
task_categories:
|
23 |
+
- summarization
|
24 |
- translation
|
25 |
- text-classification
|
26 |
task_ids:
|
27 |
+
- news-articles-summarization
|
28 |
- multi-class-classification
|
29 |
- multi-label-classification
|
|
|
30 |
- topic-classification
|
31 |
paperswithcode_id: mlsum
|
32 |
pretty_name: MLSUM
|
dataset_infos.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"de": {"description": "We present MLSUM, the first large-scale MultiLingual SUMmarization dataset. \nObtained from online newspapers, it contains 1.5M+ article/summary pairs in five different languages -- namely, French, German, Spanish, Russian, Turkish. \nTogether with English newspapers from the popular CNN/Daily mail dataset, the collected data form a large scale multilingual dataset which can enable new research directions for the text summarization community. \nWe report cross-lingual comparative analyses based on state-of-the-art systems. \nThese highlight existing biases which motivate the use of a multi-lingual dataset. \n", "citation": "@article{scialom2020mlsum,\n title={MLSUM: The Multilingual Summarization Corpus},\n author={Scialom, Thomas and Dray, Paul-Alexis and Lamprier, Sylvain and Piwowarski, Benjamin and Staiano, Jacopo},\n journal={arXiv preprint arXiv:2004.14900},\n year={2020}\n}\n", "homepage": "", "license": "", "features": {"text": {"dtype": "string", "id": null, "_type": "Value"}, "summary": {"dtype": "string", "id": null, "_type": "Value"}, "topic": {"dtype": "string", "id": null, "_type": "Value"}, "url": {"dtype": "string", "id": null, "_type": "Value"}, "title": {"dtype": "string", "id": null, "_type": "Value"}, "date": {"dtype": "string", "id": null, "_type": "Value"}}, "supervised_keys": null, "builder_name": "mlsum", "config_name": "de", "version": {"version_str": "1.0.0", "description": null, "datasets_version_to_prepare": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 846960392, "num_examples": 220887, "dataset_name": "mlsum"}, "validation": {"name": "validation", "num_bytes": 47119589, "num_examples": 11394, "dataset_name": "mlsum"}, "test": {"name": "test", "num_bytes": 46847660, "num_examples": 10701, "dataset_name": "mlsum"}}, "download_checksums": {"https://gitlab.lip6.fr/scialom/mlsum_data/-/raw/master/MLSUM/de_test.zip": {"num_bytes": 17741147, "checksum": "447e3b1839ab94d5700cc2aedc0b52521404865b2589656acc90a654ed0de4ff"}, "https://gitlab.lip6.fr/scialom/mlsum_data/-/raw/master/MLSUM/de_train.zip": {"num_bytes": 311059697, "checksum": "88e788437bae48af6b3d18a554af4b2794cc6143a137df3f56daa91a37e3ea7e"}, "https://gitlab.lip6.fr/scialom/mlsum_data/-/raw/master/MLSUM/de_val.zip": {"num_bytes": 17771216, "checksum": "732620c32e1d3f393ee3193f57f1217d8549499eb4906e144252aaab39aa910b"}}, "download_size": 346572060, "dataset_size": 940927641, "size_in_bytes": 1287499701}, "es": {"description": "We present MLSUM, the first large-scale MultiLingual SUMmarization dataset. \nObtained from online newspapers, it contains 1.5M+ article/summary pairs in five different languages -- namely, French, German, Spanish, Russian, Turkish. \nTogether with English newspapers from the popular CNN/Daily mail dataset, the collected data form a large scale multilingual dataset which can enable new research directions for the text summarization community. \nWe report cross-lingual comparative analyses based on state-of-the-art systems. \nThese highlight existing biases which motivate the use of a multi-lingual dataset. \n", "citation": "@article{scialom2020mlsum,\n title={MLSUM: The Multilingual Summarization Corpus},\n author={Scialom, Thomas and Dray, Paul-Alexis and Lamprier, Sylvain and Piwowarski, Benjamin and Staiano, Jacopo},\n journal={arXiv preprint arXiv:2004.14900},\n year={2020}\n}\n", "homepage": "", "license": "", "features": {"text": {"dtype": "string", "id": null, "_type": "Value"}, "summary": {"dtype": "string", "id": null, "_type": "Value"}, "topic": {"dtype": "string", "id": null, "_type": "Value"}, "url": {"dtype": "string", "id": null, "_type": "Value"}, "title": {"dtype": "string", "id": null, "_type": "Value"}, "date": {"dtype": "string", "id": null, "_type": "Value"}}, "supervised_keys": null, "builder_name": "mlsum", "config_name": "es", "version": {"version_str": "1.0.0", "description": null, "datasets_version_to_prepare": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 1214558950, "num_examples": 266367, "dataset_name": "mlsum"}, "validation": {"name": "validation", "num_bytes": 50643448, "num_examples": 10358, "dataset_name": "mlsum"}, "test": {"name": "test", "num_bytes": 71263713, "num_examples": 13920, "dataset_name": "mlsum"}}, "download_checksums": {"https://gitlab.lip6.fr/scialom/mlsum_data/-/raw/master/MLSUM/es_test.zip": {"num_bytes": 27386169, "checksum": "177cfcf358bc4aa9bce2753b8e9de4f6eb41d2c30b1a99ef29d64e70537a1c0d"}, "https://gitlab.lip6.fr/scialom/mlsum_data/-/raw/master/MLSUM/es_train.zip": {"num_bytes": 466443036, "checksum": "a01f4b4b873aa6cdeae15952a22ede2146734d0b60e7297470a35956507c863a"}, "https://gitlab.lip6.fr/scialom/mlsum_data/-/raw/master/MLSUM/es_val.zip": {"num_bytes": 19483214, "checksum": "e38fce9950008ec4b48963692891c4c94d51a1e307286fb596e093aeb1230c92"}}, "download_size": 513312419, "dataset_size": 1336466111, "size_in_bytes": 1849778530}, "fr": {"description": "We present MLSUM, the first large-scale MultiLingual SUMmarization dataset. \nObtained from online newspapers, it contains 1.5M+ article/summary pairs in five different languages -- namely, French, German, Spanish, Russian, Turkish. \nTogether with English newspapers from the popular CNN/Daily mail dataset, the collected data form a large scale multilingual dataset which can enable new research directions for the text summarization community. \nWe report cross-lingual comparative analyses based on state-of-the-art systems. \nThese highlight existing biases which motivate the use of a multi-lingual dataset. \n", "citation": "@article{scialom2020mlsum,\n title={MLSUM: The Multilingual Summarization Corpus},\n author={Scialom, Thomas and Dray, Paul-Alexis and Lamprier, Sylvain and Piwowarski, Benjamin and Staiano, Jacopo},\n journal={arXiv preprint arXiv:2004.14900},\n year={2020}\n}\n", "homepage": "", "license": "", "features": {"text": {"dtype": "string", "id": null, "_type": "Value"}, "summary": {"dtype": "string", "id": null, "_type": "Value"}, "topic": {"dtype": "string", "id": null, "_type": "Value"}, "url": {"dtype": "string", "id": null, "_type": "Value"}, "title": {"dtype": "string", "id": null, "_type": "Value"}, "date": {"dtype": "string", "id": null, "_type": "Value"}}, "supervised_keys": null, "builder_name": "mlsum", "config_name": "fr", "version": {"version_str": "1.0.0", "description": null, "datasets_version_to_prepare": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 1471965974, "num_examples": 392902, "dataset_name": "mlsum"}, "validation": {"name": "validation", "num_bytes": 70413260, "num_examples": 16059, "dataset_name": "mlsum"}, "test": {"name": "test", "num_bytes": 69660336, "num_examples": 15828, "dataset_name": "mlsum"}}, "download_checksums": {"https://gitlab.lip6.fr/scialom/mlsum_data/-/raw/master/MLSUM/fr_test.zip": {"num_bytes": 26753725, "checksum": "7954f97de0f3839421e7c4aba38c72cc052771bc795cbca211ca2faea7d7d3b8"}, "https://gitlab.lip6.fr/scialom/mlsum_data/-/raw/master/MLSUM/fr_train.zip": {"num_bytes": 566354864, "checksum": "0ac483d3722219ca633c0f614622d64bc4c71e05f1bfb576a9e99b08de5801ba"}, "https://gitlab.lip6.fr/scialom/mlsum_data/-/raw/master/MLSUM/fr_val.zip": {"num_bytes": 26879418, "checksum": "755956e3ee4ae7c5da388286e7226a55bf5a0802482dee241899af319394300d"}}, "download_size": 619988007, "dataset_size": 1612039570, "size_in_bytes": 2232027577}, "ru": {"description": "We present MLSUM, the first large-scale MultiLingual SUMmarization dataset. \nObtained from online newspapers, it contains 1.5M+ article/summary pairs in five different languages -- namely, French, German, Spanish, Russian, Turkish. \nTogether with English newspapers from the popular CNN/Daily mail dataset, the collected data form a large scale multilingual dataset which can enable new research directions for the text summarization community. \nWe report cross-lingual comparative analyses based on state-of-the-art systems. \nThese highlight existing biases which motivate the use of a multi-lingual dataset. \n", "citation": "@article{scialom2020mlsum,\n title={MLSUM: The Multilingual Summarization Corpus},\n author={Scialom, Thomas and Dray, Paul-Alexis and Lamprier, Sylvain and Piwowarski, Benjamin and Staiano, Jacopo},\n journal={arXiv preprint arXiv:2004.14900},\n year={2020}\n}\n", "homepage": "", "license": "", "features": {"text": {"dtype": "string", "id": null, "_type": "Value"}, "summary": {"dtype": "string", "id": null, "_type": "Value"}, "topic": {"dtype": "string", "id": null, "_type": "Value"}, "url": {"dtype": "string", "id": null, "_type": "Value"}, "title": {"dtype": "string", "id": null, "_type": "Value"}, "date": {"dtype": "string", "id": null, "_type": "Value"}}, "supervised_keys": null, "builder_name": "mlsum", "config_name": "ru", "version": {"version_str": "1.0.0", "description": null, "datasets_version_to_prepare": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 257389569, "num_examples": 25556, "dataset_name": "mlsum"}, "validation": {"name": "validation", "num_bytes": 9128521, "num_examples": 750, "dataset_name": "mlsum"}, "test": {"name": "test", "num_bytes": 9656422, "num_examples": 757, "dataset_name": "mlsum"}}, "download_checksums": {"https://gitlab.lip6.fr/scialom/mlsum_data/-/raw/master/MLSUM/ru_test.zip": {"num_bytes": 3710826, "checksum": "769e009716f952cffb9cd6b722b8606cdd620e43a6559f1f05b1f0626d43b979"}, "https://gitlab.lip6.fr/scialom/mlsum_data/-/raw/master/MLSUM/ru_train.zip": {"num_bytes": 98998463, "checksum": "225cd04763d6d1d760d9819e9808b052cd6e45fa94ed5e1950c67fa7cf997a72"}, "https://gitlab.lip6.fr/scialom/mlsum_data/-/raw/master/MLSUM/ru_val.zip": {"num_bytes": 3506501, "checksum": "afd47b28ba023450669ed96029295027dc32dc8c71507e9c27748bb89a3924bb"}}, "download_size": 106215790, "dataset_size": 276174512, "size_in_bytes": 382390302}, "tu": {"description": "We present MLSUM, the first large-scale MultiLingual SUMmarization dataset. \nObtained from online newspapers, it contains 1.5M+ article/summary pairs in five different languages -- namely, French, German, Spanish, Russian, Turkish. \nTogether with English newspapers from the popular CNN/Daily mail dataset, the collected data form a large scale multilingual dataset which can enable new research directions for the text summarization community. \nWe report cross-lingual comparative analyses based on state-of-the-art systems. \nThese highlight existing biases which motivate the use of a multi-lingual dataset. \n", "citation": "@article{scialom2020mlsum,\n title={MLSUM: The Multilingual Summarization Corpus},\n author={Scialom, Thomas and Dray, Paul-Alexis and Lamprier, Sylvain and Piwowarski, Benjamin and Staiano, Jacopo},\n journal={arXiv preprint arXiv:2004.14900},\n year={2020}\n}\n", "homepage": "", "license": "", "features": {"text": {"dtype": "string", "id": null, "_type": "Value"}, "summary": {"dtype": "string", "id": null, "_type": "Value"}, "topic": {"dtype": "string", "id": null, "_type": "Value"}, "url": {"dtype": "string", "id": null, "_type": "Value"}, "title": {"dtype": "string", "id": null, "_type": "Value"}, "date": {"dtype": "string", "id": null, "_type": "Value"}}, "supervised_keys": null, "builder_name": "mlsum", "config_name": "tu", "version": {"version_str": "1.0.0", "description": null, "datasets_version_to_prepare": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 641623383, "num_examples": 249277, "dataset_name": "mlsum"}, "validation": {"name": "validation", "num_bytes": 25530709, "num_examples": 11565, "dataset_name": "mlsum"}, "test": {"name": "test", "num_bytes": 27830260, "num_examples": 12775, "dataset_name": "mlsum"}}, "download_checksums": {"https://gitlab.lip6.fr/scialom/mlsum_data/-/raw/master/MLSUM/tu_test.zip": {"num_bytes": 9525991, "checksum": "31ea869addf0dd483ef7446bdd1167b25a890d1ed1f9a48e74a67eebc731f463"}, "https://gitlab.lip6.fr/scialom/mlsum_data/-/raw/master/MLSUM/tu_train.zip": {"num_bytes": 229214838, "checksum": "cc8daf8a104fd362296276744d5a5b304c4e21aff7b4ffa761be2f3b7f531f8a"}, "https://gitlab.lip6.fr/scialom/mlsum_data/-/raw/master/MLSUM/tu_val.zip": {"num_bytes": 8751987, "checksum": "b39680a7dd648c970e03a7abf2c63b569c23f2b3f09dc0ae2fca8b7ad8f08b12"}}, "download_size": 247492816, "dataset_size": 694984352, "size_in_bytes": 942477168}}
|
|
|
1 |
+
{"de": {"description": "We present MLSUM, the first large-scale MultiLingual SUMmarization dataset.\nObtained from online newspapers, it contains 1.5M+ article/summary pairs in five different languages -- namely, French, German, Spanish, Russian, Turkish.\nTogether with English newspapers from the popular CNN/Daily mail dataset, the collected data form a large scale multilingual dataset which can enable new research directions for the text summarization community.\nWe report cross-lingual comparative analyses based on state-of-the-art systems.\nThese highlight existing biases which motivate the use of a multi-lingual dataset.\n", "citation": "@article{scialom2020mlsum,\n title={MLSUM: The Multilingual Summarization Corpus},\n author={Scialom, Thomas and Dray, Paul-Alexis and Lamprier, Sylvain and Piwowarski, Benjamin and Staiano, Jacopo},\n journal={arXiv preprint arXiv:2004.14900},\n year={2020}\n}\n", "homepage": "", "license": "", "features": {"text": {"dtype": "string", "id": null, "_type": "Value"}, "summary": {"dtype": "string", "id": null, "_type": "Value"}, "topic": {"dtype": "string", "id": null, "_type": "Value"}, "url": {"dtype": "string", "id": null, "_type": "Value"}, "title": {"dtype": "string", "id": null, "_type": "Value"}, "date": {"dtype": "string", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": null, "task_templates": null, "builder_name": "mlsum", "config_name": "de", "version": {"version_str": "1.0.0", "description": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 846959840, "num_examples": 220887, "dataset_name": "mlsum"}, "validation": {"name": "validation", "num_bytes": 47119541, "num_examples": 11394, "dataset_name": "mlsum"}, "test": {"name": "test", "num_bytes": 46847612, "num_examples": 10701, "dataset_name": "mlsum"}}, "download_checksums": {"https://gitlab.lip6.fr/scialom/mlsum_data/-/raw/master/MLSUM/de_train.jsonl": {"num_bytes": 905470695, "checksum": "989ba44a56faa347d235a9e78877ed1376696012fedd880e1319d0dc484eab92"}, "https://gitlab.lip6.fr/scialom/mlsum_data/-/raw/master/MLSUM/de_val.jsonl": {"num_bytes": 50325428, "checksum": "1adf4d0417e24ac06270bc433fae59b419c903cf8f261cf9df58ccac9cd64ab7"}, "https://gitlab.lip6.fr/scialom/mlsum_data/-/raw/master/MLSUM/de_test.jsonl": {"num_bytes": 50018031, "checksum": "cc50a14c672d677a5571c2a3997dd25f8e389952fd8d4edeedb204578574f758"}}, "download_size": 1005814154, "post_processing_size": null, "dataset_size": 940926993, "size_in_bytes": 1946741147}, "es": {"description": "We present MLSUM, the first large-scale MultiLingual SUMmarization dataset.\nObtained from online newspapers, it contains 1.5M+ article/summary pairs in five different languages -- namely, French, German, Spanish, Russian, Turkish.\nTogether with English newspapers from the popular CNN/Daily mail dataset, the collected data form a large scale multilingual dataset which can enable new research directions for the text summarization community.\nWe report cross-lingual comparative analyses based on state-of-the-art systems.\nThese highlight existing biases which motivate the use of a multi-lingual dataset.\n", "citation": "@article{scialom2020mlsum,\n title={MLSUM: The Multilingual Summarization Corpus},\n author={Scialom, Thomas and Dray, Paul-Alexis and Lamprier, Sylvain and Piwowarski, Benjamin and Staiano, Jacopo},\n journal={arXiv preprint arXiv:2004.14900},\n year={2020}\n}\n", "homepage": "", "license": "", "features": {"text": {"dtype": "string", "id": null, "_type": "Value"}, "summary": {"dtype": "string", "id": null, "_type": "Value"}, "topic": {"dtype": "string", "id": null, "_type": "Value"}, "url": {"dtype": "string", "id": null, "_type": "Value"}, "title": {"dtype": "string", "id": null, "_type": "Value"}, "date": {"dtype": "string", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": null, "task_templates": null, "builder_name": "mlsum", "config_name": "es", "version": {"version_str": "1.0.0", "description": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 1214558302, "num_examples": 266367, "dataset_name": "mlsum"}, "validation": {"name": "validation", "num_bytes": 50643400, "num_examples": 10358, "dataset_name": "mlsum"}, "test": {"name": "test", "num_bytes": 71263665, "num_examples": 13920, "dataset_name": "mlsum"}}, "download_checksums": {"https://gitlab.lip6.fr/scialom/mlsum_data/-/raw/master/MLSUM/es_train.jsonl": {"num_bytes": 1323607428, "checksum": "416352aae3fb03e91ab2f0ffad78dc12008221344650780c45c9420cc965bc76"}, "https://gitlab.lip6.fr/scialom/mlsum_data/-/raw/master/MLSUM/es_val.jsonl": {"num_bytes": 55106773, "checksum": "d869bd630943edaf17091ae042804066ae4f6acec2a91cfa57b3ef58c04d89fe"}, "https://gitlab.lip6.fr/scialom/mlsum_data/-/raw/master/MLSUM/es_test.jsonl": {"num_bytes": 77496953, "checksum": "3d79b32b1abb84df7efb7a908ca072e6095b33a975204693812918a7b5440bcd"}}, "download_size": 1456211154, "post_processing_size": null, "dataset_size": 1336465367, "size_in_bytes": 2792676521}, "fr": {"description": "We present MLSUM, the first large-scale MultiLingual SUMmarization dataset.\nObtained from online newspapers, it contains 1.5M+ article/summary pairs in five different languages -- namely, French, German, Spanish, Russian, Turkish.\nTogether with English newspapers from the popular CNN/Daily mail dataset, the collected data form a large scale multilingual dataset which can enable new research directions for the text summarization community.\nWe report cross-lingual comparative analyses based on state-of-the-art systems.\nThese highlight existing biases which motivate the use of a multi-lingual dataset.\n", "citation": "@article{scialom2020mlsum,\n title={MLSUM: The Multilingual Summarization Corpus},\n author={Scialom, Thomas and Dray, Paul-Alexis and Lamprier, Sylvain and Piwowarski, Benjamin and Staiano, Jacopo},\n journal={arXiv preprint arXiv:2004.14900},\n year={2020}\n}\n", "homepage": "", "license": "", "features": {"text": {"dtype": "string", "id": null, "_type": "Value"}, "summary": {"dtype": "string", "id": null, "_type": "Value"}, "topic": {"dtype": "string", "id": null, "_type": "Value"}, "url": {"dtype": "string", "id": null, "_type": "Value"}, "title": {"dtype": "string", "id": null, "_type": "Value"}, "date": {"dtype": "string", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": null, "task_templates": null, "builder_name": "mlsum", "config_name": "fr", "version": {"version_str": "1.0.0", "description": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 1471965014, "num_examples": 392902, "dataset_name": "mlsum"}, "validation": {"name": "validation", "num_bytes": 70413212, "num_examples": 16059, "dataset_name": "mlsum"}, "test": {"name": "test", "num_bytes": 69660288, "num_examples": 15828, "dataset_name": "mlsum"}}, "download_checksums": {"https://gitlab.lip6.fr/scialom/mlsum_data/-/raw/master/MLSUM/fr_train.jsonl": {"num_bytes": 1686967395, "checksum": "bd2df28b3df5e6152ac87772789e9e5c5d65c6a3bcd8f3c753d823e18f1ac10f"}, "https://gitlab.lip6.fr/scialom/mlsum_data/-/raw/master/MLSUM/fr_val.jsonl": {"num_bytes": 81755034, "checksum": "7b3f0f8666b318de4974b6ea62d2cb8b123e2ed927a6c7e54ae582313724d7a2"}, "https://gitlab.lip6.fr/scialom/mlsum_data/-/raw/master/MLSUM/fr_test.jsonl": {"num_bytes": 80843135, "checksum": "07b9495357ce92d386cbff57aef6140befbedbc8137334c0a3b3d6d89d2ee3e2"}}, "download_size": 1849565564, "post_processing_size": null, "dataset_size": 1612038514, "size_in_bytes": 3461604078}, "ru": {"description": "We present MLSUM, the first large-scale MultiLingual SUMmarization dataset.\nObtained from online newspapers, it contains 1.5M+ article/summary pairs in five different languages -- namely, French, German, Spanish, Russian, Turkish.\nTogether with English newspapers from the popular CNN/Daily mail dataset, the collected data form a large scale multilingual dataset which can enable new research directions for the text summarization community.\nWe report cross-lingual comparative analyses based on state-of-the-art systems.\nThese highlight existing biases which motivate the use of a multi-lingual dataset.\n", "citation": "@article{scialom2020mlsum,\n title={MLSUM: The Multilingual Summarization Corpus},\n author={Scialom, Thomas and Dray, Paul-Alexis and Lamprier, Sylvain and Piwowarski, Benjamin and Staiano, Jacopo},\n journal={arXiv preprint arXiv:2004.14900},\n year={2020}\n}\n", "homepage": "", "license": "", "features": {"text": {"dtype": "string", "id": null, "_type": "Value"}, "summary": {"dtype": "string", "id": null, "_type": "Value"}, "topic": {"dtype": "string", "id": null, "_type": "Value"}, "url": {"dtype": "string", "id": null, "_type": "Value"}, "title": {"dtype": "string", "id": null, "_type": "Value"}, "date": {"dtype": "string", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": null, "task_templates": null, "builder_name": "mlsum", "config_name": "ru", "version": {"version_str": "1.0.0", "description": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 257389497, "num_examples": 25556, "dataset_name": "mlsum"}, "validation": {"name": "validation", "num_bytes": 9128497, "num_examples": 750, "dataset_name": "mlsum"}, "test": {"name": "test", "num_bytes": 9656398, "num_examples": 757, "dataset_name": "mlsum"}}, "download_checksums": {"https://gitlab.lip6.fr/scialom/mlsum_data/-/raw/master/MLSUM/ru_train.jsonl": {"num_bytes": 714056813, "checksum": "f5073d94688405b5b0079e81d5e729e54184025e1cc8b9775258f27e62d92bcf"}, "https://gitlab.lip6.fr/scialom/mlsum_data/-/raw/master/MLSUM/ru_val.jsonl": {"num_bytes": 25345347, "checksum": "c19c30f75e9830f5026905d6e67b046e13b3bb7210dc15254c3fed5ef4c32424"}, "https://gitlab.lip6.fr/scialom/mlsum_data/-/raw/master/MLSUM/ru_test.jsonl": {"num_bytes": 26823947, "checksum": "19e64d27a555605a75f774492f6525d65fa259db37af0fead8d4eb614d289e68"}}, "download_size": 766226107, "post_processing_size": null, "dataset_size": 276174392, "size_in_bytes": 1042400499}, "tu": {"description": "We present MLSUM, the first large-scale MultiLingual SUMmarization dataset.\nObtained from online newspapers, it contains 1.5M+ article/summary pairs in five different languages -- namely, French, German, Spanish, Russian, Turkish.\nTogether with English newspapers from the popular CNN/Daily mail dataset, the collected data form a large scale multilingual dataset which can enable new research directions for the text summarization community.\nWe report cross-lingual comparative analyses based on state-of-the-art systems.\nThese highlight existing biases which motivate the use of a multi-lingual dataset.\n", "citation": "@article{scialom2020mlsum,\n title={MLSUM: The Multilingual Summarization Corpus},\n author={Scialom, Thomas and Dray, Paul-Alexis and Lamprier, Sylvain and Piwowarski, Benjamin and Staiano, Jacopo},\n journal={arXiv preprint arXiv:2004.14900},\n year={2020}\n}\n", "homepage": "", "license": "", "features": {"text": {"dtype": "string", "id": null, "_type": "Value"}, "summary": {"dtype": "string", "id": null, "_type": "Value"}, "topic": {"dtype": "string", "id": null, "_type": "Value"}, "url": {"dtype": "string", "id": null, "_type": "Value"}, "title": {"dtype": "string", "id": null, "_type": "Value"}, "date": {"dtype": "string", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": null, "task_templates": null, "builder_name": "mlsum", "config_name": "tu", "version": {"version_str": "1.0.0", "description": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 641622783, "num_examples": 249277, "dataset_name": "mlsum"}, "validation": {"name": "validation", "num_bytes": 25530661, "num_examples": 11565, "dataset_name": "mlsum"}, "test": {"name": "test", "num_bytes": 27830212, "num_examples": 12775, "dataset_name": "mlsum"}}, "download_checksums": {"https://gitlab.lip6.fr/scialom/mlsum_data/-/raw/master/MLSUM/tu_train.jsonl": {"num_bytes": 870364512, "checksum": "51c4d951b147e62d9f725e59d2dbfefee33387e246cf8490ce827c98c6ca9489"}, "https://gitlab.lip6.fr/scialom/mlsum_data/-/raw/master/MLSUM/tu_val.jsonl": {"num_bytes": 34390982, "checksum": "d353e88d0875c6a8245f30c3920a9ce43d5e7b03cc2a77a45cf1b8f37a97161c"}, "https://gitlab.lip6.fr/scialom/mlsum_data/-/raw/master/MLSUM/tu_test.jsonl": {"num_bytes": 37553466, "checksum": "43eed825edc1799b482885f862162a4349dcc3739fe2b407a5259ba6dc6c2344"}}, "download_size": 942308960, "post_processing_size": null, "dataset_size": 694983656, "size_in_bytes": 1637292616}}
|
dummy/de/1.0.0/dummy_data.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a23ab2c7ab6dcc7a95f2fedfba55b53e1bca8ff6d0bd931ad4e9770552756f57
|
3 |
+
size 25711
|
dummy/es/1.0.0/dummy_data.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4709e09c79315dfbcafd55923b5e1942dfd332966f189613ff90ddba7a6726d0
|
3 |
+
size 29055
|
dummy/fr/1.0.0/dummy_data.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:13c007fd024a235b5115592abf0ea4b11b6e74a7b8b33dc0d0c255ff344b49fe
|
3 |
+
size 25457
|
dummy/ru/1.0.0/dummy_data.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a2879090d9491dd44d0a7e06f378d8ab4dbde854eab8179e1bb46c45145d663b
|
3 |
+
size 44217
|
dummy/tu/1.0.0/dummy_data.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a6592f282f2c665ffba9ab0c84de2ded84c02d8c55c230196a442e847d807e81
|
3 |
+
size 10359
|
mlsum.py
CHANGED
@@ -1,5 +1,4 @@
|
|
1 |
import json
|
2 |
-
import os
|
3 |
|
4 |
import datasets
|
5 |
|
@@ -20,7 +19,8 @@ Together with English newspapers from the popular CNN/Daily mail dataset, the co
|
|
20 |
We report cross-lingual comparative analyses based on state-of-the-art systems.
|
21 |
These highlight existing biases which motivate the use of a multi-lingual dataset.
|
22 |
"""
|
23 |
-
|
|
|
24 |
_LANG = ["de", "es", "fr", "ru", "tu"]
|
25 |
|
26 |
|
@@ -65,49 +65,30 @@ class Mlsum(datasets.GeneratorBasedBuilder):
|
|
65 |
# dl_manager is a datasets.download.DownloadManager that can be used to
|
66 |
# download and extract URLs
|
67 |
|
68 |
-
lang =
|
69 |
urls_to_download = {
|
70 |
-
"
|
71 |
-
"
|
72 |
-
"
|
73 |
}
|
74 |
-
downloaded_files = dl_manager.
|
75 |
|
76 |
return [
|
77 |
datasets.SplitGenerator(
|
78 |
-
name=
|
79 |
-
# These kwargs will be passed to _generate_examples
|
80 |
-
gen_kwargs={
|
81 |
-
"filepath": os.path.join(downloaded_files["train"], lang + "_train.jsonl"),
|
82 |
-
"lang": lang,
|
83 |
-
},
|
84 |
-
),
|
85 |
-
datasets.SplitGenerator(
|
86 |
-
name=datasets.Split.VALIDATION,
|
87 |
-
# These kwargs will be passed to _generate_examples
|
88 |
gen_kwargs={
|
89 |
-
"filepath":
|
90 |
-
"lang": lang,
|
91 |
},
|
92 |
-
)
|
93 |
-
datasets.
|
94 |
-
name=datasets.Split.TEST,
|
95 |
-
# These kwargs will be passed to _generate_examples
|
96 |
-
gen_kwargs={
|
97 |
-
"filepath": os.path.join(downloaded_files["test"], lang + "_test.jsonl"),
|
98 |
-
"lang": lang,
|
99 |
-
},
|
100 |
-
),
|
101 |
]
|
102 |
|
103 |
-
def _generate_examples(self, filepath
|
104 |
"""Yields examples."""
|
105 |
with open(filepath, encoding="utf-8") as f:
|
106 |
-
|
107 |
-
for line in f:
|
108 |
data = json.loads(line)
|
109 |
-
|
110 |
-
yield i, {
|
111 |
"text": data["text"],
|
112 |
"summary": data["summary"],
|
113 |
"topic": data["topic"],
|
|
|
1 |
import json
|
|
|
2 |
|
3 |
import datasets
|
4 |
|
|
|
19 |
We report cross-lingual comparative analyses based on state-of-the-art systems.
|
20 |
These highlight existing biases which motivate the use of a multi-lingual dataset.
|
21 |
"""
|
22 |
+
|
23 |
+
_URL = "https://gitlab.lip6.fr/scialom/mlsum_data/-/raw/master/MLSUM"
|
24 |
_LANG = ["de", "es", "fr", "ru", "tu"]
|
25 |
|
26 |
|
|
|
65 |
# dl_manager is a datasets.download.DownloadManager that can be used to
|
66 |
# download and extract URLs
|
67 |
|
68 |
+
lang = self.config.name
|
69 |
urls_to_download = {
|
70 |
+
"train": f"{_URL}/{lang}_train.jsonl",
|
71 |
+
"validation": f"{_URL}/{lang}_val.jsonl",
|
72 |
+
"test": f"{_URL}/{lang}_test.jsonl",
|
73 |
}
|
74 |
+
downloaded_files = dl_manager.download(urls_to_download)
|
75 |
|
76 |
return [
|
77 |
datasets.SplitGenerator(
|
78 |
+
name=split,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
79 |
gen_kwargs={
|
80 |
+
"filepath": downloaded_files[split],
|
|
|
81 |
},
|
82 |
+
)
|
83 |
+
for split in [datasets.Split.TRAIN, datasets.Split.VALIDATION, datasets.Split.TEST]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
84 |
]
|
85 |
|
86 |
+
def _generate_examples(self, filepath):
|
87 |
"""Yields examples."""
|
88 |
with open(filepath, encoding="utf-8") as f:
|
89 |
+
for id_, line in enumerate(f):
|
|
|
90 |
data = json.loads(line)
|
91 |
+
yield id_, {
|
|
|
92 |
"text": data["text"],
|
93 |
"summary": data["summary"],
|
94 |
"topic": data["topic"],
|