|
import csv |
|
import json |
|
import os |
|
import sys |
|
import datasets |
|
|
|
|
|
|
|
_CITATION = """ |
|
TODO: Add citation here |
|
""" |
|
|
|
_DESCRIPTION = """ |
|
DIFrauD -- Domain Independent Fraud Detection dataset -- is a labeled corpus containing over 95000 samples |
|
of deceptive and truthful texts from 7 independent domains. |
|
""" |
|
|
|
_HOMEPAGE = "http://cs.uh.edu/~rmverma/ra2.html" |
|
|
|
_LICENSE = """ |
|
Copyright 2023 University of Houston |
|
|
|
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files |
|
(the “Software”), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, |
|
publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, |
|
subject to the following conditions: |
|
|
|
The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. |
|
|
|
THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES |
|
OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE |
|
LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR |
|
IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. |
|
""" |
|
|
|
|
|
class DIFrauD(datasets.GeneratorBasedBuilder): |
|
"""Multi-Domain Deception -- a Large English Text Corpus""" |
|
|
|
VERSION = datasets.Version("2.1.0") |
|
|
|
BUILDER_CONFIGS = [ |
|
datasets.BuilderConfig(name="fake_news", version=VERSION, description="Fake News domain"), |
|
datasets.BuilderConfig(name="job_scams", version=VERSION, description="Online Job Scams"), |
|
datasets.BuilderConfig(name="phishing", version=VERSION, description="Email phishing attacks"), |
|
datasets.BuilderConfig(name="political_statements", version=VERSION, description="Statements by various politicians"), |
|
datasets.BuilderConfig(name="product_reviews", version=VERSION, description="Amazon product reviews"), |
|
datasets.BuilderConfig(name="sms", version=VERSION, description="SMS spam and phishing attacks"), |
|
datasets.BuilderConfig(name="twitter_rumours", version=VERSION, |
|
description="Collection of rumours from twitter spanning several years and topics"), |
|
] |
|
|
|
def _info(self): |
|
|
|
features = datasets.Features( |
|
{ |
|
"text": datasets.Value("string"), |
|
"label": datasets.Value("string"), |
|
|
|
} |
|
) |
|
return datasets.DatasetInfo( |
|
|
|
description=_DESCRIPTION, |
|
|
|
features=features, |
|
|
|
|
|
supervised_keys=("text", "label"), |
|
|
|
homepage=_HOMEPAGE, |
|
|
|
license=_LICENSE, |
|
|
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
|
|
|
|
|
|
|
|
|
|
|
|
urls = { |
|
"train": self.config.name+"/train.jsonl", |
|
"test": self.config.name+"/test.jsonl", |
|
"validation": self.config.name+"/validation.jsonl", |
|
} |
|
data_dir = dl_manager.download_and_extract(urls) |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
|
|
gen_kwargs={ |
|
"filepath": os.path.join(data_dir['train']), |
|
"split": "train", |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
gen_kwargs={ |
|
"filepath": os.path.join(data_dir['validation']), |
|
"split": "validation", |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={ |
|
"filepath": os.path.join(data_dir['test']), |
|
"split": "test" |
|
}, |
|
), |
|
] |
|
|
|
|
|
def _generate_examples(self, filepath, split): |
|
|
|
|
|
with open(filepath, encoding="utf-8") as f: |
|
for key, row in enumerate(f): |
|
data = json.loads(row) |
|
yield key, { |
|
"text": data["text"], |
|
"label": "" if split == "test" else data["label"], |
|
} |
|
|
|
|