dainis-boumber commited on
Commit
5759e63
1 Parent(s): 21bb89e

Upload gdds.py

Browse files
Files changed (1) hide show
  1. gdds.py +7 -490
gdds.py CHANGED
@@ -1,492 +1,8 @@
1
- import json
2
- import os
3
-
4
- import datasets
5
-
6
-
7
- _SUPER_GLUE_CITATION = """\
8
- """
9
-
10
- _GLUE_DESCRIPTION = """\
11
- SuperGLUE (https://super.gluebenchmark.com/) is a new benchmark styled after
12
- GLUE with a new set of more difficult language understanding tasks, improved
13
- resources, and a new public leaderboard.
14
- """
15
-
16
- _BOOLQ_DESCRIPTION = """\
17
- BoolQ (Boolean Questions, Clark et al., 2019a) is a QA task where each example consists of a short
18
- passage and a yes/no question about the passage. The questions are provided anonymously and
19
- unsolicited by users of the Google search engine, and afterwards paired with a paragraph from a
20
- Wikipedia article containing the answer. Following the original work, we evaluate with accuracy."""
21
-
22
- _CB_DESCRIPTION = """\
23
- The CommitmentBank (De Marneffe et al., 2019) is a corpus of short texts in which at least
24
- one sentence contains an embedded clause. Each of these embedded clauses is annotated with the
25
- degree to which we expect that the person who wrote the text is committed to the truth of the clause.
26
- The resulting task framed as three-class textual entailment on examples that are drawn from the Wall
27
- Street Journal, fiction from the British National Corpus, and Switchboard. Each example consists
28
- of a premise containing an embedded clause and the corresponding hypothesis is the extraction of
29
- that clause. We use a subset of the data that had inter-annotator agreement above 0.85. The data is
30
- imbalanced (relatively fewer neutral examples), so we evaluate using accuracy and F1, where for
31
- multi-class F1 we compute the unweighted average of the F1 per class."""
32
-
33
- _COPA_DESCRIPTION = """\
34
- The Choice Of Plausible Alternatives (COPA, Roemmele et al., 2011) dataset is a causal
35
- reasoning task in which a system is given a premise sentence and two possible alternatives. The
36
- system must choose the alternative which has the more plausible causal relationship with the premise.
37
- The method used for the construction of the alternatives ensures that the task requires causal reasoning
38
- to solve. Examples either deal with alternative possible causes or alternative possible effects of the
39
- premise sentence, accompanied by a simple question disambiguating between the two instance
40
- types for the model. All examples are handcrafted and focus on topics from online blogs and a
41
- photography-related encyclopedia. Following the recommendation of the authors, we evaluate using
42
- accuracy."""
43
-
44
- _RECORD_DESCRIPTION = """\
45
- (Reading Comprehension with Commonsense Reasoning Dataset, Zhang et al., 2018) is a
46
- multiple-choice QA task. Each example consists of a news article and a Cloze-style question about
47
- the article in which one entity is masked out. The system must predict the masked out entity from a
48
- given list of possible entities in the provided passage, where the same entity may be expressed using
49
- multiple different surface forms, all of which are considered correct. Articles are drawn from CNN
50
- and Daily Mail. Following the original work, we evaluate with max (over all mentions) token-level
51
- F1 and exact match (EM)."""
52
-
53
- _RTE_DESCRIPTION = """\
54
- The Recognizing Textual Entailment (RTE) datasets come from a series of annual competitions
55
- on textual entailment, the problem of predicting whether a given premise sentence entails a given
56
- hypothesis sentence (also known as natural language inference, NLI). RTE was previously included
57
- in GLUE, and we use the same data and format as before: We merge data from RTE1 (Dagan
58
- et al., 2006), RTE2 (Bar Haim et al., 2006), RTE3 (Giampiccolo et al., 2007), and RTE5 (Bentivogli
59
- et al., 2009). All datasets are combined and converted to two-class classification: entailment and
60
- not_entailment. Of all the GLUE tasks, RTE was among those that benefited from transfer learning
61
- the most, jumping from near random-chance performance (~56%) at the time of GLUE's launch to
62
- 85% accuracy (Liu et al., 2019c) at the time of writing. Given the eight point gap with respect to
63
- human performance, however, the task is not yet solved by machines, and we expect the remaining
64
- gap to be difficult to close."""
65
-
66
- _MULTIRC_DESCRIPTION = """\
67
- The Multi-Sentence Reading Comprehension dataset (MultiRC, Khashabi et al., 2018)
68
- is a true/false question-answering task. Each example consists of a context paragraph, a question
69
- about that paragraph, and a list of possible answers to that question which must be labeled as true or
70
- false. Question-answering (QA) is a popular problem with many datasets. We use MultiRC because
71
- of a number of desirable properties: (i) each question can have multiple possible correct answers,
72
- so each question-answer pair must be evaluated independent of other pairs, (ii) the questions are
73
- designed such that answering each question requires drawing facts from multiple context sentences,
74
- and (iii) the question-answer pair format more closely matches the API of other SuperGLUE tasks
75
- than span-based extractive QA does. The paragraphs are drawn from seven domains including news,
76
- fiction, and historical text."""
77
-
78
- _WIC_DESCRIPTION = """\
79
- The Word-in-Context (WiC, Pilehvar and Camacho-Collados, 2019) dataset supports a word
80
- sense disambiguation task cast as binary classification over sentence pairs. Given two sentences and a
81
- polysemous (sense-ambiguous) word that appears in both sentences, the task is to determine whether
82
- the word is used with the same sense in both sentences. Sentences are drawn from WordNet (Miller,
83
- 1995), VerbNet (Schuler, 2005), and Wiktionary. We follow the original work and evaluate using
84
- accuracy."""
85
-
86
- _WSC_DESCRIPTION = """\
87
- The Winograd Schema Challenge (WSC, Levesque et al., 2012) is a reading comprehension
88
- task in which a system must read a sentence with a pronoun and select the referent of that pronoun
89
- from a list of choices. Given the difficulty of this task and the headroom still left, we have included
90
- WSC in SuperGLUE and recast the dataset into its coreference form. The task is cast as a binary
91
- classification problem, as opposed to N-multiple choice, in order to isolate the model's ability to
92
- understand the coreference links within a sentence as opposed to various other strategies that may
93
- come into play in multiple choice conditions. With that in mind, we create a split with 65% negative
94
- majority class in the validation set, reflecting the distribution of the hidden test set, and 52% negative
95
- class in the training set. The training and validation examples are drawn from the original Winograd
96
- Schema dataset (Levesque et al., 2012), as well as those distributed by the affiliated organization
97
- Commonsense Reasoning. The test examples are derived from fiction books and have been shared
98
- with us by the authors of the original dataset. Previously, a version of WSC recast as NLI as included
99
- in GLUE, known as WNLI. No substantial progress was made on WNLI, with many submissions
100
- opting to submit only majority class predictions. WNLI was made especially difficult due to an
101
- adversarial train/dev split: Premise sentences that appeared in the training set sometimes appeared
102
- in the development set with a different hypothesis and a flipped label. If a system memorized the
103
- training set without meaningfully generalizing, which was easy due to the small size of the training
104
- set, it could perform far below chance on the development set. We remove this adversarial design
105
- in the SuperGLUE version of WSC by ensuring that no sentences are shared between the training,
106
- validation, and test sets.
107
- However, the validation and test sets come from different domains, with the validation set consisting
108
- of ambiguous examples such that changing one non-noun phrase word will change the coreference
109
- dependencies in the sentence. The test set consists only of more straightforward examples, with a
110
- high number of noun phrases (and thus more choices for the model), but low to no ambiguity."""
111
-
112
- _AXB_DESCRIPTION = """\
113
- An expert-constructed,
114
- diagnostic dataset that automatically tests models for a broad range of linguistic, commonsense, and
115
- world knowledge. Each example in this broad-coverage diagnostic is a sentence pair labeled with
116
- a three-way entailment relation (entailment, neutral, or contradiction) and tagged with labels that
117
- indicate the phenomena that characterize the relationship between the two sentences. Submissions
118
- to the GLUE leaderboard are required to include predictions from the submission's MultiNLI
119
- classifier on the diagnostic dataset, and analyses of the results were shown alongside the main
120
- leaderboard. Since this broad-coverage diagnostic task has proved difficult for top models, we retain
121
- it in SuperGLUE. However, since MultiNLI is not part of SuperGLUE, we collapse contradiction
122
- and neutral into a single not_entailment label, and request that submissions include predictions
123
- on the resulting set from the model used for the RTE task.
124
- """
125
-
126
- _AXG_DESCRIPTION = """\
127
- Winogender is designed to measure gender
128
- bias in coreference resolution systems. We use the Diverse Natural Language Inference Collection
129
- (DNC; Poliak et al., 2018) version that casts Winogender as a textual entailment task. Each example
130
- consists of a premise sentence with a male or female pronoun and a hypothesis giving a possible
131
- antecedent of the pronoun. Examples occur in minimal pairs, where the only difference between
132
- an example and its pair is the gender of the pronoun in the premise. Performance on Winogender
133
- is measured with both accuracy and the gender parity score: the percentage of minimal pairs for
134
- which the predictions are the same. We note that a system can trivially obtain a perfect gender parity
135
- score by guessing the same class for all examples, so a high gender parity score is meaningless unless
136
- accompanied by high accuracy. As a diagnostic test of gender bias, we view the schemas as having high
137
- positive predictive value and low negative predictive value; that is, they may demonstrate the presence
138
- of gender bias in a system, but not prove its absence.
139
- """
140
-
141
- _BOOLQ_CITATION = """\
142
- @inproceedings{clark2019boolq,
143
- title={BoolQ: Exploring the Surprising Difficulty of Natural Yes/No Questions},
144
- author={Clark, Christopher and Lee, Kenton and Chang, Ming-Wei, and Kwiatkowski, Tom and Collins, Michael, and Toutanova, Kristina},
145
- booktitle={NAACL},
146
- year={2019}
147
- }"""
148
-
149
- _CB_CITATION = """\
150
- @article{de marneff_simons_tonhauser_2019,
151
- title={The CommitmentBank: Investigating projection in naturally occurring discourse},
152
- journal={proceedings of Sinn und Bedeutung 23},
153
- author={De Marneff, Marie-Catherine and Simons, Mandy and Tonhauser, Judith},
154
- year={2019}
155
- }"""
156
-
157
- _COPA_CITATION = """\
158
- @inproceedings{roemmele2011choice,
159
- title={Choice of plausible alternatives: An evaluation of commonsense causal reasoning},
160
- author={Roemmele, Melissa and Bejan, Cosmin Adrian and Gordon, Andrew S},
161
- booktitle={2011 AAAI Spring Symposium Series},
162
- year={2011}
163
- }"""
164
-
165
- _RECORD_CITATION = """\
166
- @article{zhang2018record,
167
- title={Record: Bridging the gap between human and machine commonsense reading comprehension},
168
- author={Zhang, Sheng and Liu, Xiaodong and Liu, Jingjing and Gao, Jianfeng and Duh, Kevin and Van Durme, Benjamin},
169
- journal={arXiv preprint arXiv:1810.12885},
170
- year={2018}
171
- }"""
172
-
173
- _RTE_CITATION = """\
174
- @inproceedings{dagan2005pascal,
175
- title={The PASCAL recognising textual entailment challenge},
176
- author={Dagan, Ido and Glickman, Oren and Magnini, Bernardo},
177
- booktitle={Machine Learning Challenges Workshop},
178
- pages={177--190},
179
- year={2005},
180
- organization={Springer}
181
- }
182
- @inproceedings{bar2006second,
183
- title={The second pascal recognising textual entailment challenge},
184
- author={Bar-Haim, Roy and Dagan, Ido and Dolan, Bill and Ferro, Lisa and Giampiccolo, Danilo and Magnini, Bernardo and Szpektor, Idan},
185
- booktitle={Proceedings of the second PASCAL challenges workshop on recognising textual entailment},
186
- volume={6},
187
- number={1},
188
- pages={6--4},
189
- year={2006},
190
- organization={Venice}
191
- }
192
- @inproceedings{giampiccolo2007third,
193
- title={The third pascal recognizing textual entailment challenge},
194
- author={Giampiccolo, Danilo and Magnini, Bernardo and Dagan, Ido and Dolan, Bill},
195
- booktitle={Proceedings of the ACL-PASCAL workshop on textual entailment and paraphrasing},
196
- pages={1--9},
197
- year={2007},
198
- organization={Association for Computational Linguistics}
199
- }
200
- @inproceedings{bentivogli2009fifth,
201
- title={The Fifth PASCAL Recognizing Textual Entailment Challenge.},
202
- author={Bentivogli, Luisa and Clark, Peter and Dagan, Ido and Giampiccolo, Danilo},
203
- booktitle={TAC},
204
- year={2009}
205
- }"""
206
-
207
- _MULTIRC_CITATION = """\
208
- @inproceedings{MultiRC2018,
209
- author = {Daniel Khashabi and Snigdha Chaturvedi and Michael Roth and Shyam Upadhyay and Dan Roth},
210
- title = {Looking Beyond the Surface:A Challenge Set for Reading Comprehension over Multiple Sentences},
211
- booktitle = {Proceedings of North American Chapter of the Association for Computational Linguistics (NAACL)},
212
- year = {2018}
213
- }"""
214
-
215
- _WIC_CITATION = """\
216
- @article{DBLP:journals/corr/abs-1808-09121,
217
- author={Mohammad Taher Pilehvar and os{\'{e}} Camacho{-}Collados},
218
- title={WiC: 10, 000 Example Pairs for Evaluating Context-Sensitive Representations},
219
- journal={CoRR},
220
- volume={abs/1808.09121},
221
- year={2018},
222
- url={http://arxiv.org/abs/1808.09121},
223
- archivePrefix={arXiv},
224
- eprint={1808.09121},
225
- timestamp={Mon, 03 Sep 2018 13:36:40 +0200},
226
- biburl={https://dblp.org/rec/bib/journals/corr/abs-1808-09121},
227
- bibsource={dblp computer science bibliography, https://dblp.org}
228
- }"""
229
-
230
- _WSC_CITATION = """\
231
- @inproceedings{levesque2012winograd,
232
- title={The winograd schema challenge},
233
- author={Levesque, Hector and Davis, Ernest and Morgenstern, Leora},
234
- booktitle={Thirteenth International Conference on the Principles of Knowledge Representation and Reasoning},
235
- year={2012}
236
- }"""
237
-
238
- _AXG_CITATION = """\
239
- @inproceedings{rudinger-EtAl:2018:N18,
240
- author = {Rudinger, Rachel and Naradowsky, Jason and Leonard, Brian and {Van Durme}, Benjamin},
241
- title = {Gender Bias in Coreference Resolution},
242
- booktitle = {Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies},
243
- month = {June},
244
- year = {2018},
245
- address = {New Orleans, Louisiana},
246
- publisher = {Association for Computational Linguistics}
247
- }
248
- """
249
-
250
-
251
- class SuperGlueConfig(datasets.BuilderConfig):
252
- """BuilderConfig for SuperGLUE."""
253
-
254
- def __init__(self, **kwargs):
255
- """BuilderConfig for SuperGLUE.
256
- Args:
257
- features: `list[string]`, list of the features that will appear in the
258
- feature dict. Should not include "label".
259
- data_url: `string`, url to download the zip file from.
260
- citation: `string`, citation for the data set.
261
- url: `string`, url for information about the data set.
262
- label_classes: `list[string]`, the list of classes for the label if the
263
- label is present as a string. Non-string labels will be cast to either
264
- 'False' or 'True'.
265
- **kwargs: keyword arguments forwarded to super.
266
- """
267
- # Version history:
268
- # 1.0.3: Fix not including entity position in ReCoRD.
269
- # 1.0.2: Fixed non-nondeterminism in ReCoRD.
270
- # 1.0.1: Change from the pre-release trial version of SuperGLUE (v1.9) to
271
- # the full release (v2.0).
272
- # 1.0.0: S3 (new shuffling, sharding and slicing mechanism).
273
- # 0.0.2: Initial version.
274
- super(SuperGlueConfig, self).__init__(version=datasets.Version("1.0.3"), **kwargs)
275
- self.features = datasets.Features({"text": datasets.Value("string"), "label":datasets.Value("int32")})
276
- self.label_classes = [0, 1]
277
-
278
-
279
- class SuperGlue(datasets.GeneratorBasedBuilder):
280
- """The SuperGLUE benchmark."""
281
-
282
- BUILDER_CONFIGS = [
283
- SuperGlueConfig(
284
- name="fake_news",
285
- description=_BOOLQ_DESCRIPTION,
286
- ),
287
- SuperGlueConfig(
288
- name="job_scams",
289
- description=_CB_DESCRIPTION,
290
- ),
291
- SuperGlueConfig(
292
- name="phishing",
293
- description=_COPA_DESCRIPTION,
294
- ),
295
- SuperGlueConfig(
296
- name="political_statements",
297
- description=_MULTIRC_DESCRIPTION,
298
- ),
299
- SuperGlueConfig(
300
- name="product_reviews",
301
- description=_RECORD_DESCRIPTION,
302
- ),
303
- SuperGlueConfig(
304
- name="sms",
305
- description=_RTE_DESCRIPTION,
306
- ),
307
- SuperGlueConfig(
308
- name="twitter_rumours",
309
- description=_WIC_DESCRIPTION,
310
- ),
311
- ]
312
-
313
- def _info(self):
314
- features = {feature: datasets.Value("string") for feature in self.config.features}
315
-
316
- features["label"] = datasets.features.ClassLabel(names=self.config.label_classes)
317
-
318
- return datasets.DatasetInfo(
319
- description=_GLUE_DESCRIPTION + self.config.description,
320
- features=datasets.Features(features),
321
- )
322
-
323
- def _split_generators(self, dl_manager):
324
- return [
325
- datasets.SplitGenerator(
326
- name=datasets.Split.TRAIN,
327
- gen_kwargs={
328
- "data_file": os.path.join(self.config.name, "train.jsonl"),
329
- "split": datasets.Split.TRAIN,
330
- },
331
- ),
332
- datasets.SplitGenerator(
333
- name=datasets.Split.VALIDATION,
334
- gen_kwargs={
335
- "data_file": os.path.join(self.config.name, "validation.jsonl"),
336
- "split": datasets.Split.VALIDATION,
337
- },
338
- ),
339
- datasets.SplitGenerator(
340
- name=datasets.Split.TEST,
341
- gen_kwargs={
342
- "data_file": os.path.join(self.config.name, "test.jsonl"),
343
- "split": datasets.Split.TEST,
344
- },
345
- ),
346
- ]
347
-
348
- def _generate_examples(self, data_file, split):
349
- with open(data_file, encoding="utf-8") as f:
350
- for line in f:
351
- row = json.loads(line)
352
-
353
- if self.config.name == "multirc":
354
- paragraph = row["passage"]
355
- for question in paragraph["questions"]:
356
- for answer in question["answers"]:
357
- label = answer.get("label")
358
- key = "%s_%s_%s" % (row["idx"], question["idx"], answer["idx"])
359
- yield key, {
360
- "paragraph": paragraph["text"],
361
- "question": question["question"],
362
- "answer": answer["text"],
363
- "label": -1 if label is None else _cast_label(bool(label)),
364
- "idx": {"paragraph": row["idx"], "question": question["idx"], "answer": answer["idx"]},
365
- }
366
- elif self.config.name == "record":
367
- passage = row["passage"]
368
- entity_texts, entity_spans = _get_record_entities(passage)
369
- for qa in row["qas"]:
370
- yield qa["idx"], {
371
- "passage": passage["text"],
372
- "query": qa["query"],
373
- "entities": entity_texts,
374
- "entity_spans": entity_spans,
375
- "answers": _get_record_answers(qa),
376
- "idx": {"passage": row["idx"], "query": qa["idx"]},
377
- }
378
- else:
379
- if self.config.name.startswith("wsc"):
380
- row.update(row["target"])
381
- example = {feature: row[feature] for feature in self.config.features}
382
- if self.config.name == "wsc.fixed":
383
- example = _fix_wst(example)
384
- example["idx"] = row["idx"]
385
-
386
- if "label" in row:
387
- if self.config.name == "copa":
388
- example["label"] = "choice2" if row["label"] else "choice1"
389
- else:
390
- example["label"] = _cast_label(row["label"])
391
- else:
392
- assert split == datasets.Split.TEST, row
393
- example["label"] = -1
394
- yield example["idx"], example
395
-
396
-
397
- def _fix_wst(ex):
398
- """Fixes most cases where spans are not actually substrings of text."""
399
-
400
- def _fix_span_text(k):
401
- """Fixes a single span."""
402
- text = ex[k + "_text"]
403
- index = ex[k + "_index"]
404
-
405
- if text in ex["text"]:
406
- return
407
-
408
- if text in ("Kamenev and Zinoviev", "Kamenev, Zinoviev, and Stalin"):
409
- # There is no way to correct these examples since the subjects have
410
- # intervening text.
411
- return
412
-
413
- if "theyscold" in text:
414
- ex["text"].replace("theyscold", "they scold")
415
- ex["span2_index"] = 10
416
- # Make sure case of the first words match.
417
- first_word = ex["text"].split()[index]
418
- if first_word[0].islower():
419
- text = text[0].lower() + text[1:]
420
- else:
421
- text = text[0].upper() + text[1:]
422
- # Remove punctuation in span.
423
- text = text.rstrip(".")
424
- # Replace incorrect whitespace character in span.
425
- text = text.replace("\n", " ")
426
- ex[k + "_text"] = text
427
- assert ex[k + "_text"] in ex["text"], ex
428
-
429
- _fix_span_text("span1")
430
- _fix_span_text("span2")
431
- return ex
432
-
433
-
434
- def _cast_label(label):
435
- """Converts the label into the appropriate string version."""
436
- if isinstance(label, str):
437
- return label
438
- elif isinstance(label, bool):
439
- return "True" if label else "False"
440
- elif isinstance(label, int):
441
- assert label in (0, 1)
442
- return str(label)
443
- else:
444
- raise ValueError("Invalid label format.")
445
-
446
-
447
- def _get_record_entities(passage):
448
- """Returns the unique set of entities."""
449
- text = passage["text"]
450
- entity_spans = list()
451
- for entity in passage["entities"]:
452
- entity_text = text[entity["start"] : entity["end"] + 1]
453
- entity_spans.append({"text": entity_text, "start": entity["start"], "end": entity["end"] + 1})
454
- entity_spans = sorted(entity_spans, key=lambda e: e["start"]) # sort by start index
455
- entity_texts = set(e["text"] for e in entity_spans) # for backward compatability
456
- return entity_texts, entity_spans
457
-
458
-
459
- def _get_record_answers(qa):
460
- """Returns the unique set of answers."""
461
- if "answers" not in qa:
462
- return []
463
- answers = set()
464
- for answer in qa["answers"]:
465
- answers.add(answer["text"])
466
- return sorted(answers)
467
-
468
-
469
- # Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
470
- #
471
- # Licensed under the Apache License, Version 2.0 (the "License");
472
- # you may not use this file except in compliance with the License.
473
- # You may obtain a copy of the License at
474
- #
475
- # http://www.apache.org/licenses/LICENSE-2.0
476
- #
477
- # Unless required by applicable law or agreed to in writing, software
478
- # distributed under the License is distributed on an "AS IS" BASIS,
479
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
480
- # See the License for the specific language governing permissions and
481
- # limitations under the License.
482
- # TODO: Address all TODOs and remove all explanatory comments
483
- """TODO: Add a description here."""
484
-
485
 
486
  import csv
487
  import json
488
  import os
489
-
490
  import datasets
491
 
492
 
@@ -510,7 +26,7 @@ _LICENSE = ""
510
 
511
 
512
  # TODO: Name of the dataset usually matches the script name with CamelCase instead of snake_case
513
- class NewDataset(datasets.GeneratorBasedBuilder):
514
  """TODO: Short description of my dataset."""
515
 
516
  VERSION = datasets.Version("2.1.0")
@@ -568,12 +84,13 @@ class NewDataset(datasets.GeneratorBasedBuilder):
568
  # dl_manager is a datasets.download.DownloadManager that can be used to download and extract URLS
569
  # It can accept any type or nested list/dict and will give back the same structure with the url replaced with path to local files.
570
  # By default the archives will be extracted and a path to a cached folder where they are extracted is returned instead of the archive
 
571
  return [
572
  datasets.SplitGenerator(
573
  name=datasets.Split.TRAIN,
574
  # These kwargs will be passed to _generate_examples
575
  gen_kwargs={
576
- "filepath": os.path.join(self.config.name, "train.jsonl"),
577
  "split": "train",
578
  },
579
  ),
@@ -581,15 +98,15 @@ class NewDataset(datasets.GeneratorBasedBuilder):
581
  name=datasets.Split.VALIDATION,
582
  # These kwargs will be passed to _generate_examples
583
  gen_kwargs={
584
- "filepath": os.path.join(self.config.name, "validate.jsonl"),
585
  "split": "dev",
586
  },
587
  ),
588
  datasets.SplitGenerator(
589
  name=datasets.Split.TEST,
590
- # These kwargs will be passed to _generate_examples
591
  gen_kwargs={
592
- "filepath": os.path.join(self.config.name, "test.jsonl"),
593
  "split": "test"
594
  },
595
  ),
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
 
2
  import csv
3
  import json
4
  import os
5
+ import sys
6
  import datasets
7
 
8
 
 
26
 
27
 
28
  # TODO: Name of the dataset usually matches the script name with CamelCase instead of snake_case
29
+ class GDDS(datasets.GeneratorBasedBuilder):
30
  """TODO: Short description of my dataset."""
31
 
32
  VERSION = datasets.Version("2.1.0")
 
84
  # dl_manager is a datasets.download.DownloadManager that can be used to download and extract URLS
85
  # It can accept any type or nested list/dict and will give back the same structure with the url replaced with path to local files.
86
  # By default the archives will be extracted and a path to a cached folder where they are extracted is returned instead of the archive
87
+ script_directory = os.path.dirname(os.path.abspath(sys.argv[0]))
88
  return [
89
  datasets.SplitGenerator(
90
  name=datasets.Split.TRAIN,
91
  # These kwargs will be passed to _generate_examples
92
  gen_kwargs={
93
+ "filepath": os.path.join(script_directory, self.config.name, "train.jsonl"),
94
  "split": "train",
95
  },
96
  ),
 
98
  name=datasets.Split.VALIDATION,
99
  # These kwargs will be passed to _generate_examples
100
  gen_kwargs={
101
+ "filepath": os.path.join(script_directory, self.config.name, "validate.jsonl"),
102
  "split": "dev",
103
  },
104
  ),
105
  datasets.SplitGenerator(
106
  name=datasets.Split.TEST,
107
+ # These kwargs will be passed to _generate_examples
108
  gen_kwargs={
109
+ "filepath": os.path.join(script_directory, self.config.name, "test.jsonl"),
110
  "split": "test"
111
  },
112
  ),