dainis-boumber commited on
Commit
8613997
·
1 Parent(s): 37831c2

Upload gdds.py

Browse files
Files changed (1) hide show
  1. sms/gdds.py +135 -0
sms/gdds.py ADDED
@@ -0,0 +1,135 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+
3
+
4
+ import csv
5
+ import json
6
+ import os
7
+ import sys
8
+ import datasets
9
+
10
+
11
+ # TODO: Add BibTeX citation
12
+ # Find for instance the citation on arxiv or on the dataset repo/website
13
+ _CITATION = """\
14
+ TODO: Add citation here
15
+ """
16
+
17
+ # TODO: Add description of the dataset here
18
+ # You can copy an official description
19
+ _DESCRIPTION = """\
20
+ This new dataset is designed to solve this great NLP task and is crafted with a lot of care.
21
+ """
22
+
23
+ # TODO: Add a link to an official homepage for the dataset here
24
+ _HOMEPAGE = ""
25
+
26
+ # TODO: Add the licence for the dataset here if you can find it
27
+ _LICENSE = ""
28
+
29
+
30
+
31
+ # TODO: Name of the dataset usually matches the script name with CamelCase instead of snake_case
32
+ class GDDS(datasets.GeneratorBasedBuilder):
33
+ """TODO: Short description of my dataset."""
34
+
35
+ VERSION = datasets.Version("2.1.0")
36
+
37
+ # This is an example of a dataset with multiple configurations.
38
+ # If you don't want/need to define several sub-sets in your dataset,
39
+ # just remove the BUILDER_CONFIG_CLASS and the BUILDER_CONFIGS attributes.
40
+
41
+ # If you need to make complex sub-parts in the datasets with configurable options
42
+ # You can create your own builder configuration class to store attribute, inheriting from datasets.BuilderConfig
43
+ # BUILDER_CONFIG_CLASS = MyBuilderConfig
44
+
45
+ # You will be able to load one or the other configurations in the following list with
46
+ # data = datasets.load_dataset('my_dataset', 'first_domain')
47
+ # data = datasets.load_dataset('my_dataset', 'second_domain')
48
+ BUILDER_CONFIGS = [
49
+ datasets.BuilderConfig(name="fake_news", version=VERSION, description="This part of my dataset covers a first domain"),
50
+ datasets.BuilderConfig(name="job_scams", version=VERSION, description="This part of my dataset covers a second domain"),
51
+ datasets.BuilderConfig(name="phishing", version=VERSION, description="This part of my dataset covers a second domain"),
52
+ datasets.BuilderConfig(name="political_statements", version=VERSION, description="This part of my dataset covers a first domain"),
53
+ datasets.BuilderConfig(name="product_reviews", version=VERSION, description="This part of my dataset covers a second domain"),
54
+ datasets.BuilderConfig(name="sms", version=VERSION, description="This part of my dataset covers a second domain"),
55
+ datasets.BuilderConfig(name="twitter_rumours", version=VERSION, description="This part of my dataset covers a first domain"),
56
+ ]
57
+
58
+ def _info(self):
59
+ # TODO: This method specifies the datasets.DatasetInfo object which contains informations and typings for the dataset
60
+ features = datasets.Features(
61
+ {
62
+ "text": datasets.Value("string"),
63
+ "label": datasets.ClassLabel(num_classes=2)
64
+ # These are the features of your dataset like images, labels ...
65
+ }
66
+ )
67
+ return datasets.DatasetInfo(
68
+ # This is the description that will appear on the datasets page.
69
+ description=_DESCRIPTION,
70
+ # This defines the different columns of the dataset and their types
71
+ features=features, # Here we define them above because they are different between the two configurations
72
+ # If there's a common (input, target) tuple from the features, uncomment supervised_keys line below and
73
+ # specify them. They'll be used if as_supervised=True in builder.as_dataset.
74
+ # supervised_keys=("sentence", "label"),
75
+ # Homepage of the dataset for documentation
76
+ homepage=_HOMEPAGE,
77
+ # License for the dataset if available
78
+ license=_LICENSE,
79
+ # Citation for the dataset
80
+ citation=_CITATION,
81
+ )
82
+
83
+ def _split_generators(self, dl_manager):
84
+ # TODO: This method is tasked with downloading/extracting the data and defining the splits depending on the configuration
85
+ # If several configurations are possible (listed in BUILDER_CONFIGS), the configuration selected by the user is in self.config.name
86
+
87
+ # dl_manager is a datasets.download.DownloadManager that can be used to download and extract URLS
88
+ # It can accept any type or nested list/dict and will give back the same structure with the url replaced with path to local files.
89
+ # By default the archives will be extracted and a path to a cached folder where they are extracted is returned instead of the archive
90
+ urls = {
91
+ "train": self.config.name+"/train.jsonl",
92
+ "test": self.config.name+"/test.jsonl",
93
+ "validate": self.config.name+"/validate.jsonl",
94
+ }
95
+ data_dir = dl_manager.download_and_extract(urls)
96
+
97
+ return [
98
+ datasets.SplitGenerator(
99
+ name=datasets.Split.TRAIN,
100
+ # These kwargs will be passed to _generate_examples
101
+ gen_kwargs={
102
+ "filepath": os.path.join(data_dir, "train.jsonl"),
103
+ "split": "train",
104
+ },
105
+ ),
106
+ datasets.SplitGenerator(
107
+ name=datasets.Split.VALIDATION,
108
+ # These kwargs will be passed to _generate_examples
109
+ gen_kwargs={
110
+ "filepath": os.path.join(data_dir, "validate.jsonl"),
111
+ "split": "dev",
112
+ },
113
+ ),
114
+ datasets.SplitGenerator(
115
+ name=datasets.Split.TEST,
116
+ # These kwargs will be passed to _generate_examples
117
+ gen_kwargs={
118
+ "filepath": os.path.join(data_dir, "test.jsonl"),
119
+ "split": "test"
120
+ },
121
+ ),
122
+ ]
123
+
124
+ # method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
125
+ def _generate_examples(self, filepath, split):
126
+ # TODO: This method handles input defined in _split_generators to yield (key, example) tuples from the dataset.
127
+ # The `key` is for legacy reasons (tfds) and is not important in itself, but must be unique for each example.
128
+ with open(filepath, encoding="utf-8") as f:
129
+ for key, row in enumerate(f):
130
+ data = json.loads(row)
131
+ yield key, {
132
+ "text": data["text"],
133
+ "label": "" if split == "test" else data["label"],
134
+ }
135
+