dainis-boumber commited on
Commit
a10de65
·
1 Parent(s): d7450fa

created loading script

Browse files
Files changed (1) hide show
  1. gdds.py +609 -0
gdds.py ADDED
@@ -0,0 +1,609 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import json
2
+ import os
3
+
4
+ import datasets
5
+
6
+
7
+ _SUPER_GLUE_CITATION = """\
8
+ """
9
+
10
+ _GLUE_DESCRIPTION = """\
11
+ SuperGLUE (https://super.gluebenchmark.com/) is a new benchmark styled after
12
+ GLUE with a new set of more difficult language understanding tasks, improved
13
+ resources, and a new public leaderboard.
14
+ """
15
+
16
+ _BOOLQ_DESCRIPTION = """\
17
+ BoolQ (Boolean Questions, Clark et al., 2019a) is a QA task where each example consists of a short
18
+ passage and a yes/no question about the passage. The questions are provided anonymously and
19
+ unsolicited by users of the Google search engine, and afterwards paired with a paragraph from a
20
+ Wikipedia article containing the answer. Following the original work, we evaluate with accuracy."""
21
+
22
+ _CB_DESCRIPTION = """\
23
+ The CommitmentBank (De Marneffe et al., 2019) is a corpus of short texts in which at least
24
+ one sentence contains an embedded clause. Each of these embedded clauses is annotated with the
25
+ degree to which we expect that the person who wrote the text is committed to the truth of the clause.
26
+ The resulting task framed as three-class textual entailment on examples that are drawn from the Wall
27
+ Street Journal, fiction from the British National Corpus, and Switchboard. Each example consists
28
+ of a premise containing an embedded clause and the corresponding hypothesis is the extraction of
29
+ that clause. We use a subset of the data that had inter-annotator agreement above 0.85. The data is
30
+ imbalanced (relatively fewer neutral examples), so we evaluate using accuracy and F1, where for
31
+ multi-class F1 we compute the unweighted average of the F1 per class."""
32
+
33
+ _COPA_DESCRIPTION = """\
34
+ The Choice Of Plausible Alternatives (COPA, Roemmele et al., 2011) dataset is a causal
35
+ reasoning task in which a system is given a premise sentence and two possible alternatives. The
36
+ system must choose the alternative which has the more plausible causal relationship with the premise.
37
+ The method used for the construction of the alternatives ensures that the task requires causal reasoning
38
+ to solve. Examples either deal with alternative possible causes or alternative possible effects of the
39
+ premise sentence, accompanied by a simple question disambiguating between the two instance
40
+ types for the model. All examples are handcrafted and focus on topics from online blogs and a
41
+ photography-related encyclopedia. Following the recommendation of the authors, we evaluate using
42
+ accuracy."""
43
+
44
+ _RECORD_DESCRIPTION = """\
45
+ (Reading Comprehension with Commonsense Reasoning Dataset, Zhang et al., 2018) is a
46
+ multiple-choice QA task. Each example consists of a news article and a Cloze-style question about
47
+ the article in which one entity is masked out. The system must predict the masked out entity from a
48
+ given list of possible entities in the provided passage, where the same entity may be expressed using
49
+ multiple different surface forms, all of which are considered correct. Articles are drawn from CNN
50
+ and Daily Mail. Following the original work, we evaluate with max (over all mentions) token-level
51
+ F1 and exact match (EM)."""
52
+
53
+ _RTE_DESCRIPTION = """\
54
+ The Recognizing Textual Entailment (RTE) datasets come from a series of annual competitions
55
+ on textual entailment, the problem of predicting whether a given premise sentence entails a given
56
+ hypothesis sentence (also known as natural language inference, NLI). RTE was previously included
57
+ in GLUE, and we use the same data and format as before: We merge data from RTE1 (Dagan
58
+ et al., 2006), RTE2 (Bar Haim et al., 2006), RTE3 (Giampiccolo et al., 2007), and RTE5 (Bentivogli
59
+ et al., 2009). All datasets are combined and converted to two-class classification: entailment and
60
+ not_entailment. Of all the GLUE tasks, RTE was among those that benefited from transfer learning
61
+ the most, jumping from near random-chance performance (~56%) at the time of GLUE's launch to
62
+ 85% accuracy (Liu et al., 2019c) at the time of writing. Given the eight point gap with respect to
63
+ human performance, however, the task is not yet solved by machines, and we expect the remaining
64
+ gap to be difficult to close."""
65
+
66
+ _MULTIRC_DESCRIPTION = """\
67
+ The Multi-Sentence Reading Comprehension dataset (MultiRC, Khashabi et al., 2018)
68
+ is a true/false question-answering task. Each example consists of a context paragraph, a question
69
+ about that paragraph, and a list of possible answers to that question which must be labeled as true or
70
+ false. Question-answering (QA) is a popular problem with many datasets. We use MultiRC because
71
+ of a number of desirable properties: (i) each question can have multiple possible correct answers,
72
+ so each question-answer pair must be evaluated independent of other pairs, (ii) the questions are
73
+ designed such that answering each question requires drawing facts from multiple context sentences,
74
+ and (iii) the question-answer pair format more closely matches the API of other SuperGLUE tasks
75
+ than span-based extractive QA does. The paragraphs are drawn from seven domains including news,
76
+ fiction, and historical text."""
77
+
78
+ _WIC_DESCRIPTION = """\
79
+ The Word-in-Context (WiC, Pilehvar and Camacho-Collados, 2019) dataset supports a word
80
+ sense disambiguation task cast as binary classification over sentence pairs. Given two sentences and a
81
+ polysemous (sense-ambiguous) word that appears in both sentences, the task is to determine whether
82
+ the word is used with the same sense in both sentences. Sentences are drawn from WordNet (Miller,
83
+ 1995), VerbNet (Schuler, 2005), and Wiktionary. We follow the original work and evaluate using
84
+ accuracy."""
85
+
86
+ _WSC_DESCRIPTION = """\
87
+ The Winograd Schema Challenge (WSC, Levesque et al., 2012) is a reading comprehension
88
+ task in which a system must read a sentence with a pronoun and select the referent of that pronoun
89
+ from a list of choices. Given the difficulty of this task and the headroom still left, we have included
90
+ WSC in SuperGLUE and recast the dataset into its coreference form. The task is cast as a binary
91
+ classification problem, as opposed to N-multiple choice, in order to isolate the model's ability to
92
+ understand the coreference links within a sentence as opposed to various other strategies that may
93
+ come into play in multiple choice conditions. With that in mind, we create a split with 65% negative
94
+ majority class in the validation set, reflecting the distribution of the hidden test set, and 52% negative
95
+ class in the training set. The training and validation examples are drawn from the original Winograd
96
+ Schema dataset (Levesque et al., 2012), as well as those distributed by the affiliated organization
97
+ Commonsense Reasoning. The test examples are derived from fiction books and have been shared
98
+ with us by the authors of the original dataset. Previously, a version of WSC recast as NLI as included
99
+ in GLUE, known as WNLI. No substantial progress was made on WNLI, with many submissions
100
+ opting to submit only majority class predictions. WNLI was made especially difficult due to an
101
+ adversarial train/dev split: Premise sentences that appeared in the training set sometimes appeared
102
+ in the development set with a different hypothesis and a flipped label. If a system memorized the
103
+ training set without meaningfully generalizing, which was easy due to the small size of the training
104
+ set, it could perform far below chance on the development set. We remove this adversarial design
105
+ in the SuperGLUE version of WSC by ensuring that no sentences are shared between the training,
106
+ validation, and test sets.
107
+ However, the validation and test sets come from different domains, with the validation set consisting
108
+ of ambiguous examples such that changing one non-noun phrase word will change the coreference
109
+ dependencies in the sentence. The test set consists only of more straightforward examples, with a
110
+ high number of noun phrases (and thus more choices for the model), but low to no ambiguity."""
111
+
112
+ _AXB_DESCRIPTION = """\
113
+ An expert-constructed,
114
+ diagnostic dataset that automatically tests models for a broad range of linguistic, commonsense, and
115
+ world knowledge. Each example in this broad-coverage diagnostic is a sentence pair labeled with
116
+ a three-way entailment relation (entailment, neutral, or contradiction) and tagged with labels that
117
+ indicate the phenomena that characterize the relationship between the two sentences. Submissions
118
+ to the GLUE leaderboard are required to include predictions from the submission's MultiNLI
119
+ classifier on the diagnostic dataset, and analyses of the results were shown alongside the main
120
+ leaderboard. Since this broad-coverage diagnostic task has proved difficult for top models, we retain
121
+ it in SuperGLUE. However, since MultiNLI is not part of SuperGLUE, we collapse contradiction
122
+ and neutral into a single not_entailment label, and request that submissions include predictions
123
+ on the resulting set from the model used for the RTE task.
124
+ """
125
+
126
+ _AXG_DESCRIPTION = """\
127
+ Winogender is designed to measure gender
128
+ bias in coreference resolution systems. We use the Diverse Natural Language Inference Collection
129
+ (DNC; Poliak et al., 2018) version that casts Winogender as a textual entailment task. Each example
130
+ consists of a premise sentence with a male or female pronoun and a hypothesis giving a possible
131
+ antecedent of the pronoun. Examples occur in minimal pairs, where the only difference between
132
+ an example and its pair is the gender of the pronoun in the premise. Performance on Winogender
133
+ is measured with both accuracy and the gender parity score: the percentage of minimal pairs for
134
+ which the predictions are the same. We note that a system can trivially obtain a perfect gender parity
135
+ score by guessing the same class for all examples, so a high gender parity score is meaningless unless
136
+ accompanied by high accuracy. As a diagnostic test of gender bias, we view the schemas as having high
137
+ positive predictive value and low negative predictive value; that is, they may demonstrate the presence
138
+ of gender bias in a system, but not prove its absence.
139
+ """
140
+
141
+ _BOOLQ_CITATION = """\
142
+ @inproceedings{clark2019boolq,
143
+ title={BoolQ: Exploring the Surprising Difficulty of Natural Yes/No Questions},
144
+ author={Clark, Christopher and Lee, Kenton and Chang, Ming-Wei, and Kwiatkowski, Tom and Collins, Michael, and Toutanova, Kristina},
145
+ booktitle={NAACL},
146
+ year={2019}
147
+ }"""
148
+
149
+ _CB_CITATION = """\
150
+ @article{de marneff_simons_tonhauser_2019,
151
+ title={The CommitmentBank: Investigating projection in naturally occurring discourse},
152
+ journal={proceedings of Sinn und Bedeutung 23},
153
+ author={De Marneff, Marie-Catherine and Simons, Mandy and Tonhauser, Judith},
154
+ year={2019}
155
+ }"""
156
+
157
+ _COPA_CITATION = """\
158
+ @inproceedings{roemmele2011choice,
159
+ title={Choice of plausible alternatives: An evaluation of commonsense causal reasoning},
160
+ author={Roemmele, Melissa and Bejan, Cosmin Adrian and Gordon, Andrew S},
161
+ booktitle={2011 AAAI Spring Symposium Series},
162
+ year={2011}
163
+ }"""
164
+
165
+ _RECORD_CITATION = """\
166
+ @article{zhang2018record,
167
+ title={Record: Bridging the gap between human and machine commonsense reading comprehension},
168
+ author={Zhang, Sheng and Liu, Xiaodong and Liu, Jingjing and Gao, Jianfeng and Duh, Kevin and Van Durme, Benjamin},
169
+ journal={arXiv preprint arXiv:1810.12885},
170
+ year={2018}
171
+ }"""
172
+
173
+ _RTE_CITATION = """\
174
+ @inproceedings{dagan2005pascal,
175
+ title={The PASCAL recognising textual entailment challenge},
176
+ author={Dagan, Ido and Glickman, Oren and Magnini, Bernardo},
177
+ booktitle={Machine Learning Challenges Workshop},
178
+ pages={177--190},
179
+ year={2005},
180
+ organization={Springer}
181
+ }
182
+ @inproceedings{bar2006second,
183
+ title={The second pascal recognising textual entailment challenge},
184
+ author={Bar-Haim, Roy and Dagan, Ido and Dolan, Bill and Ferro, Lisa and Giampiccolo, Danilo and Magnini, Bernardo and Szpektor, Idan},
185
+ booktitle={Proceedings of the second PASCAL challenges workshop on recognising textual entailment},
186
+ volume={6},
187
+ number={1},
188
+ pages={6--4},
189
+ year={2006},
190
+ organization={Venice}
191
+ }
192
+ @inproceedings{giampiccolo2007third,
193
+ title={The third pascal recognizing textual entailment challenge},
194
+ author={Giampiccolo, Danilo and Magnini, Bernardo and Dagan, Ido and Dolan, Bill},
195
+ booktitle={Proceedings of the ACL-PASCAL workshop on textual entailment and paraphrasing},
196
+ pages={1--9},
197
+ year={2007},
198
+ organization={Association for Computational Linguistics}
199
+ }
200
+ @inproceedings{bentivogli2009fifth,
201
+ title={The Fifth PASCAL Recognizing Textual Entailment Challenge.},
202
+ author={Bentivogli, Luisa and Clark, Peter and Dagan, Ido and Giampiccolo, Danilo},
203
+ booktitle={TAC},
204
+ year={2009}
205
+ }"""
206
+
207
+ _MULTIRC_CITATION = """\
208
+ @inproceedings{MultiRC2018,
209
+ author = {Daniel Khashabi and Snigdha Chaturvedi and Michael Roth and Shyam Upadhyay and Dan Roth},
210
+ title = {Looking Beyond the Surface:A Challenge Set for Reading Comprehension over Multiple Sentences},
211
+ booktitle = {Proceedings of North American Chapter of the Association for Computational Linguistics (NAACL)},
212
+ year = {2018}
213
+ }"""
214
+
215
+ _WIC_CITATION = """\
216
+ @article{DBLP:journals/corr/abs-1808-09121,
217
+ author={Mohammad Taher Pilehvar and os{\'{e}} Camacho{-}Collados},
218
+ title={WiC: 10, 000 Example Pairs for Evaluating Context-Sensitive Representations},
219
+ journal={CoRR},
220
+ volume={abs/1808.09121},
221
+ year={2018},
222
+ url={http://arxiv.org/abs/1808.09121},
223
+ archivePrefix={arXiv},
224
+ eprint={1808.09121},
225
+ timestamp={Mon, 03 Sep 2018 13:36:40 +0200},
226
+ biburl={https://dblp.org/rec/bib/journals/corr/abs-1808-09121},
227
+ bibsource={dblp computer science bibliography, https://dblp.org}
228
+ }"""
229
+
230
+ _WSC_CITATION = """\
231
+ @inproceedings{levesque2012winograd,
232
+ title={The winograd schema challenge},
233
+ author={Levesque, Hector and Davis, Ernest and Morgenstern, Leora},
234
+ booktitle={Thirteenth International Conference on the Principles of Knowledge Representation and Reasoning},
235
+ year={2012}
236
+ }"""
237
+
238
+ _AXG_CITATION = """\
239
+ @inproceedings{rudinger-EtAl:2018:N18,
240
+ author = {Rudinger, Rachel and Naradowsky, Jason and Leonard, Brian and {Van Durme}, Benjamin},
241
+ title = {Gender Bias in Coreference Resolution},
242
+ booktitle = {Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies},
243
+ month = {June},
244
+ year = {2018},
245
+ address = {New Orleans, Louisiana},
246
+ publisher = {Association for Computational Linguistics}
247
+ }
248
+ """
249
+
250
+
251
+ class SuperGlueConfig(datasets.BuilderConfig):
252
+ """BuilderConfig for SuperGLUE."""
253
+
254
+ def __init__(self, **kwargs):
255
+ """BuilderConfig for SuperGLUE.
256
+ Args:
257
+ features: `list[string]`, list of the features that will appear in the
258
+ feature dict. Should not include "label".
259
+ data_url: `string`, url to download the zip file from.
260
+ citation: `string`, citation for the data set.
261
+ url: `string`, url for information about the data set.
262
+ label_classes: `list[string]`, the list of classes for the label if the
263
+ label is present as a string. Non-string labels will be cast to either
264
+ 'False' or 'True'.
265
+ **kwargs: keyword arguments forwarded to super.
266
+ """
267
+ # Version history:
268
+ # 1.0.3: Fix not including entity position in ReCoRD.
269
+ # 1.0.2: Fixed non-nondeterminism in ReCoRD.
270
+ # 1.0.1: Change from the pre-release trial version of SuperGLUE (v1.9) to
271
+ # the full release (v2.0).
272
+ # 1.0.0: S3 (new shuffling, sharding and slicing mechanism).
273
+ # 0.0.2: Initial version.
274
+ super(SuperGlueConfig, self).__init__(version=datasets.Version("1.0.3"), **kwargs)
275
+ self.features = datasets.Features({"text": datasets.Value("string"), "label":datasets.Value("int32")})
276
+ self.label_classes = [0, 1]
277
+
278
+
279
+ class SuperGlue(datasets.GeneratorBasedBuilder):
280
+ """The SuperGLUE benchmark."""
281
+
282
+ BUILDER_CONFIGS = [
283
+ SuperGlueConfig(
284
+ name="fake_news",
285
+ description=_BOOLQ_DESCRIPTION,
286
+ ),
287
+ SuperGlueConfig(
288
+ name="job_scams",
289
+ description=_CB_DESCRIPTION,
290
+ ),
291
+ SuperGlueConfig(
292
+ name="phishing",
293
+ description=_COPA_DESCRIPTION,
294
+ ),
295
+ SuperGlueConfig(
296
+ name="political_statements",
297
+ description=_MULTIRC_DESCRIPTION,
298
+ ),
299
+ SuperGlueConfig(
300
+ name="product_reviews",
301
+ description=_RECORD_DESCRIPTION,
302
+ ),
303
+ SuperGlueConfig(
304
+ name="sms",
305
+ description=_RTE_DESCRIPTION,
306
+ ),
307
+ SuperGlueConfig(
308
+ name="twitter_rumours",
309
+ description=_WIC_DESCRIPTION,
310
+ ),
311
+ ]
312
+
313
+ def _info(self):
314
+ features = {feature: datasets.Value("string") for feature in self.config.features}
315
+
316
+ features["label"] = datasets.features.ClassLabel(names=self.config.label_classes)
317
+
318
+ return datasets.DatasetInfo(
319
+ description=_GLUE_DESCRIPTION + self.config.description,
320
+ features=datasets.Features(features),
321
+ )
322
+
323
+ def _split_generators(self, dl_manager):
324
+ return [
325
+ datasets.SplitGenerator(
326
+ name=datasets.Split.TRAIN,
327
+ gen_kwargs={
328
+ "data_file": os.path.join(self.config.name, "train.jsonl"),
329
+ "split": datasets.Split.TRAIN,
330
+ },
331
+ ),
332
+ datasets.SplitGenerator(
333
+ name=datasets.Split.VALIDATION,
334
+ gen_kwargs={
335
+ "data_file": os.path.join(self.config.name, "validation.jsonl"),
336
+ "split": datasets.Split.VALIDATION,
337
+ },
338
+ ),
339
+ datasets.SplitGenerator(
340
+ name=datasets.Split.TEST,
341
+ gen_kwargs={
342
+ "data_file": os.path.join(self.config.name, "test.jsonl"),
343
+ "split": datasets.Split.TEST,
344
+ },
345
+ ),
346
+ ]
347
+
348
+ def _generate_examples(self, data_file, split):
349
+ with open(data_file, encoding="utf-8") as f:
350
+ for line in f:
351
+ row = json.loads(line)
352
+
353
+ if self.config.name == "multirc":
354
+ paragraph = row["passage"]
355
+ for question in paragraph["questions"]:
356
+ for answer in question["answers"]:
357
+ label = answer.get("label")
358
+ key = "%s_%s_%s" % (row["idx"], question["idx"], answer["idx"])
359
+ yield key, {
360
+ "paragraph": paragraph["text"],
361
+ "question": question["question"],
362
+ "answer": answer["text"],
363
+ "label": -1 if label is None else _cast_label(bool(label)),
364
+ "idx": {"paragraph": row["idx"], "question": question["idx"], "answer": answer["idx"]},
365
+ }
366
+ elif self.config.name == "record":
367
+ passage = row["passage"]
368
+ entity_texts, entity_spans = _get_record_entities(passage)
369
+ for qa in row["qas"]:
370
+ yield qa["idx"], {
371
+ "passage": passage["text"],
372
+ "query": qa["query"],
373
+ "entities": entity_texts,
374
+ "entity_spans": entity_spans,
375
+ "answers": _get_record_answers(qa),
376
+ "idx": {"passage": row["idx"], "query": qa["idx"]},
377
+ }
378
+ else:
379
+ if self.config.name.startswith("wsc"):
380
+ row.update(row["target"])
381
+ example = {feature: row[feature] for feature in self.config.features}
382
+ if self.config.name == "wsc.fixed":
383
+ example = _fix_wst(example)
384
+ example["idx"] = row["idx"]
385
+
386
+ if "label" in row:
387
+ if self.config.name == "copa":
388
+ example["label"] = "choice2" if row["label"] else "choice1"
389
+ else:
390
+ example["label"] = _cast_label(row["label"])
391
+ else:
392
+ assert split == datasets.Split.TEST, row
393
+ example["label"] = -1
394
+ yield example["idx"], example
395
+
396
+
397
+ def _fix_wst(ex):
398
+ """Fixes most cases where spans are not actually substrings of text."""
399
+
400
+ def _fix_span_text(k):
401
+ """Fixes a single span."""
402
+ text = ex[k + "_text"]
403
+ index = ex[k + "_index"]
404
+
405
+ if text in ex["text"]:
406
+ return
407
+
408
+ if text in ("Kamenev and Zinoviev", "Kamenev, Zinoviev, and Stalin"):
409
+ # There is no way to correct these examples since the subjects have
410
+ # intervening text.
411
+ return
412
+
413
+ if "theyscold" in text:
414
+ ex["text"].replace("theyscold", "they scold")
415
+ ex["span2_index"] = 10
416
+ # Make sure case of the first words match.
417
+ first_word = ex["text"].split()[index]
418
+ if first_word[0].islower():
419
+ text = text[0].lower() + text[1:]
420
+ else:
421
+ text = text[0].upper() + text[1:]
422
+ # Remove punctuation in span.
423
+ text = text.rstrip(".")
424
+ # Replace incorrect whitespace character in span.
425
+ text = text.replace("\n", " ")
426
+ ex[k + "_text"] = text
427
+ assert ex[k + "_text"] in ex["text"], ex
428
+
429
+ _fix_span_text("span1")
430
+ _fix_span_text("span2")
431
+ return ex
432
+
433
+
434
+ def _cast_label(label):
435
+ """Converts the label into the appropriate string version."""
436
+ if isinstance(label, str):
437
+ return label
438
+ elif isinstance(label, bool):
439
+ return "True" if label else "False"
440
+ elif isinstance(label, int):
441
+ assert label in (0, 1)
442
+ return str(label)
443
+ else:
444
+ raise ValueError("Invalid label format.")
445
+
446
+
447
+ def _get_record_entities(passage):
448
+ """Returns the unique set of entities."""
449
+ text = passage["text"]
450
+ entity_spans = list()
451
+ for entity in passage["entities"]:
452
+ entity_text = text[entity["start"] : entity["end"] + 1]
453
+ entity_spans.append({"text": entity_text, "start": entity["start"], "end": entity["end"] + 1})
454
+ entity_spans = sorted(entity_spans, key=lambda e: e["start"]) # sort by start index
455
+ entity_texts = set(e["text"] for e in entity_spans) # for backward compatability
456
+ return entity_texts, entity_spans
457
+
458
+
459
+ def _get_record_answers(qa):
460
+ """Returns the unique set of answers."""
461
+ if "answers" not in qa:
462
+ return []
463
+ answers = set()
464
+ for answer in qa["answers"]:
465
+ answers.add(answer["text"])
466
+ return sorted(answers)
467
+
468
+
469
+ # Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
470
+ #
471
+ # Licensed under the Apache License, Version 2.0 (the "License");
472
+ # you may not use this file except in compliance with the License.
473
+ # You may obtain a copy of the License at
474
+ #
475
+ # http://www.apache.org/licenses/LICENSE-2.0
476
+ #
477
+ # Unless required by applicable law or agreed to in writing, software
478
+ # distributed under the License is distributed on an "AS IS" BASIS,
479
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
480
+ # See the License for the specific language governing permissions and
481
+ # limitations under the License.
482
+ # TODO: Address all TODOs and remove all explanatory comments
483
+ """TODO: Add a description here."""
484
+
485
+
486
+ import csv
487
+ import json
488
+ import os
489
+
490
+ import datasets
491
+
492
+
493
+ # TODO: Add BibTeX citation
494
+ # Find for instance the citation on arxiv or on the dataset repo/website
495
+ _CITATION = """\
496
+ TODO: Add citation here
497
+ """
498
+
499
+ # TODO: Add description of the dataset here
500
+ # You can copy an official description
501
+ _DESCRIPTION = """\
502
+ This new dataset is designed to solve this great NLP task and is crafted with a lot of care.
503
+ """
504
+
505
+ # TODO: Add a link to an official homepage for the dataset here
506
+ _HOMEPAGE = ""
507
+
508
+ # TODO: Add the licence for the dataset here if you can find it
509
+ _LICENSE = ""
510
+
511
+
512
+ # TODO: Name of the dataset usually matches the script name with CamelCase instead of snake_case
513
+ class NewDataset(datasets.GeneratorBasedBuilder):
514
+ """TODO: Short description of my dataset."""
515
+
516
+ VERSION = datasets.Version("2.1.0")
517
+
518
+ # This is an example of a dataset with multiple configurations.
519
+ # If you don't want/need to define several sub-sets in your dataset,
520
+ # just remove the BUILDER_CONFIG_CLASS and the BUILDER_CONFIGS attributes.
521
+
522
+ # If you need to make complex sub-parts in the datasets with configurable options
523
+ # You can create your own builder configuration class to store attribute, inheriting from datasets.BuilderConfig
524
+ # BUILDER_CONFIG_CLASS = MyBuilderConfig
525
+
526
+ # You will be able to load one or the other configurations in the following list with
527
+ # data = datasets.load_dataset('my_dataset', 'first_domain')
528
+ # data = datasets.load_dataset('my_dataset', 'second_domain')
529
+ BUILDER_CONFIGS = [
530
+ datasets.BuilderConfig(name="fake_news", version=VERSION, description="This part of my dataset covers a first domain"),
531
+ datasets.BuilderConfig(name="job_scams", version=VERSION, description="This part of my dataset covers a second domain"),
532
+ datasets.BuilderConfig(name="phishing", version=VERSION, description="This part of my dataset covers a second domain"),
533
+ datasets.BuilderConfig(name="political_statements", version=VERSION, description="This part of my dataset covers a first domain"),
534
+ datasets.BuilderConfig(name="product_reviews", version=VERSION, description="This part of my dataset covers a second domain"),
535
+ datasets.BuilderConfig(name="sms", version=VERSION, description="This part of my dataset covers a second domain"),
536
+ datasets.BuilderConfig(name="twitter_rumours", version=VERSION, description="This part of my dataset covers a first domain"),
537
+ ]
538
+
539
+ def _info(self):
540
+ # TODO: This method specifies the datasets.DatasetInfo object which contains informations and typings for the dataset
541
+ features = datasets.Features(
542
+ {
543
+ "text": datasets.Value("string"),
544
+ "label": datasets.ClassLabel(num_classes=2)
545
+ # These are the features of your dataset like images, labels ...
546
+ }
547
+ )
548
+ return datasets.DatasetInfo(
549
+ # This is the description that will appear on the datasets page.
550
+ description=_DESCRIPTION,
551
+ # This defines the different columns of the dataset and their types
552
+ features=features, # Here we define them above because they are different between the two configurations
553
+ # If there's a common (input, target) tuple from the features, uncomment supervised_keys line below and
554
+ # specify them. They'll be used if as_supervised=True in builder.as_dataset.
555
+ # supervised_keys=("sentence", "label"),
556
+ # Homepage of the dataset for documentation
557
+ homepage=_HOMEPAGE,
558
+ # License for the dataset if available
559
+ license=_LICENSE,
560
+ # Citation for the dataset
561
+ citation=_CITATION,
562
+ )
563
+
564
+ def _split_generators(self, dl_manager):
565
+ # TODO: This method is tasked with downloading/extracting the data and defining the splits depending on the configuration
566
+ # If several configurations are possible (listed in BUILDER_CONFIGS), the configuration selected by the user is in self.config.name
567
+
568
+ # dl_manager is a datasets.download.DownloadManager that can be used to download and extract URLS
569
+ # It can accept any type or nested list/dict and will give back the same structure with the url replaced with path to local files.
570
+ # By default the archives will be extracted and a path to a cached folder where they are extracted is returned instead of the archive
571
+ return [
572
+ datasets.SplitGenerator(
573
+ name=datasets.Split.TRAIN,
574
+ # These kwargs will be passed to _generate_examples
575
+ gen_kwargs={
576
+ "filepath": os.path.join(self.config.name, "train.jsonl"),
577
+ "split": "train",
578
+ },
579
+ ),
580
+ datasets.SplitGenerator(
581
+ name=datasets.Split.VALIDATION,
582
+ # These kwargs will be passed to _generate_examples
583
+ gen_kwargs={
584
+ "filepath": os.path.join(self.config.name, "validate.jsonl"),
585
+ "split": "dev",
586
+ },
587
+ ),
588
+ datasets.SplitGenerator(
589
+ name=datasets.Split.TEST,
590
+ # These kwargs will be passed to _generate_examples
591
+ gen_kwargs={
592
+ "filepath": os.path.join(self.config.name, "test.jsonl"),
593
+ "split": "test"
594
+ },
595
+ ),
596
+ ]
597
+
598
+ # method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
599
+ def _generate_examples(self, filepath, split):
600
+ # TODO: This method handles input defined in _split_generators to yield (key, example) tuples from the dataset.
601
+ # The `key` is for legacy reasons (tfds) and is not important in itself, but must be unique for each example.
602
+ with open(filepath, encoding="utf-8") as f:
603
+ for key, row in enumerate(f):
604
+ data = json.loads(row)
605
+ yield key, {
606
+ "text": data["text"],
607
+ "label": "" if split == "test" else data["label"],
608
+ }
609
+