# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # TODO: Address all TODOs and remove all explanatory comments """TODO: Add a description here.""" import csv import json import os import datasets import gzip # TODO: Add BibTeX citation # Find for instance the citation on arxiv or on the dataset repo/website _CITATION = """\ @InProceedings{huggingface:dataset, title = {A great new dataset}, author={huggingface, Inc. }, year={2020} } """ # TODO: Add description of the dataset here # You can copy an official description _DESCRIPTION = """\ This new dataset is designed to solve this great NLP task and is crafted with a lot of care. """ # TODO: Add a link to an official homepage for the dataset here _HOMEPAGE = "" # TODO: Add the licence for the dataset here if you can find it _LICENSE = "" # TODO: Add link to the official dataset URLs here # The HuggingFace Datasets library doesn't host the datasets but only points to the original files. # This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method) _URLS = "https://huggingface.co/datasets/khalidalt/subscene/resolve/main/{Lang}/{Lang}_subscene_{split}{index}.json.gz" _N_FILES_PER_SPLIT = { 'arabic': {'train':33 }, } _LangID = ['arabic'] # TODO: Name of the dataset usually matches the script name with CamelCase instead of snake_case class SubsceneConfig(datasets.BuilderConfig): """ Builder config for Subscene Dataset. """ def __init__(self, subset, **kwargs): super(SubsceneConfig, self).__init__(**kwargs) if subset !="all": self.subset = [subset] else: self.subset = _LangID class Subscene(datasets.GeneratorBasedBuilder): """TODO: Short description of my dataset.""" VERSION = datasets.Version("1.1.0") BUILDER_CONFIGS_CLASS = SubsceneConfig BUILDER_CONFIGS = [ SubsceneConfig(name=subset, subset=subset, version=datasets.Version("1.1.0", ""), description='') for subset in _LangID ] def _info(self): # information about the datasets and feature type of the datasets items. features = datasets.Features( { "subtitle_name": datasets.Value("string"), "file_name": datasets.Value("string"), "transcript": datasets.Value("string"), } ) return datasets.DatasetInfo( description=_DESCRIPTION, features=features, homepage=_HOMEPAGE, # License for the dataset if available license=_LICENSE, # Citation for the dataset citation=_CITATION, ) def _split_generators(self, dl_manager): #split = 'train' #print("Split") data_urls = {} for split in ['train']: #'validation']: #if self.config.subset = "all": data_urls[split] = [ _URLS.format( Lang = subset, split='validation' if split=='_val' else '', index = i, ) for subset in self.config.subset for i in range(_N_FILES_PER_SPLIT[subset][split]) ] train_downloaded_files = dl_manager.download(data_urls["train"]) #validation_downloaded_files = dl_manager.download(data_urls["validation"]) return [ datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepaths": train_downloaded_files}), #datasets.SplitGenerator( # name=datasets.Split.VALIDATION, gen_kwargs={"filepaths": validation_downloaded_files} #), ] # method parameters are unpacked from `gen_kwargs` as given in `_split_generators` def _generate_examples(self, filepaths): id_ = 0 for filepath in filepaths: with gzip.open(open(filepath,"rb"), "rt", encoding = "utf-8") as f: for row in f: if row: data = json.loads(row) yield id_, data id_ +=1