File size: 4,696 Bytes
4246981 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 |
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import datasets
import pandas as pd
_CITATION = """"""
_DESCRIPTION = """"""
_HOMEPAGE = ""
_LICENSE = ""
_URLS = {
"qa": {
"train": "data/qa/train.csv",
"validation": "data/qa/validation.csv",
"test": "data/qa/test.csv",
"all": "data/qa/qa.csv",
},
"passages": {
"train": "data/passages/train.tsv",
"validation": "data/passages/validation.tsv",
"test": "data/passages/test.tsv",
"all": "data/passages/passages.tsv"
},
}
_CONFIGS = {}
_CONFIGS["qa"] = {
"description": "Answer bar exam questions",
"features": {
"idx": datasets.Value("string"),
"dataset": datasets.Value("string"),
"example_id": datasets.Value("string"),
"prompt_id": datasets.Value("string"),
"source": datasets.Value("string"),
"subject": datasets.Value("string"),
"question_number": datasets.Value("string"),
"prompt": datasets.Value("string"),
"question": datasets.Value("string"),
"choice_a": datasets.Value("string"),
"choice_b": datasets.Value("string"),
"choice_c": datasets.Value("string"),
"choice_d": datasets.Value("string"),
"answer": datasets.Value("string"),
"gold_passage": datasets.Value("string"),
"gold_idx": datasets.Value("string"),
},
"license": None,
}
_CONFIGS["passages"] = {
"description": "Passage corpus of bar exam question explanations, Wex definitions and primary sources, and caselaw",
"features": {
"idx": datasets.Value("string"),
"source": datasets.Value("string"),
"faiss_id": datasets.Value("string"),
"case_id": datasets.Value("string"),
"absolute_paragraph_id": datasets.Value("string"),
"opinion_id": datasets.Value("string"),
"relative_paragraph_id": datasets.Value("string"),
"text": datasets.Value("string"),
},
"license": None,
}
class BarExamQA(datasets.GeneratorBasedBuilder):
"""Legal retrieval/QA dataset for the multistate bar exam"""
BUILDER_CONFIGS = [
datasets.BuilderConfig(
name=task, version=datasets.Version("1.0.0"), description=task,
)
for task in _CONFIGS
]
def _info(self):
features = _CONFIGS[self.config.name]["features"]
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features(features),
homepage=_HOMEPAGE,
citation=_CITATION,
license=_CONFIGS[self.config.name]["license"],
)
def _split_generators(self, dl_manager):
downloaded_file_dir = dl_manager.download_and_extract(_URLS[self.config.name])
splits = [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"fpath": downloaded_file_dir["train"],
"name": self.config.name,
},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={
"fpath": downloaded_file_dir["validation"],
"name": self.config.name,
},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"fpath": downloaded_file_dir["test"],
"name": self.config.name,
},
),
]
return splits
def _generate_examples(self, fpath, name):
"""Yields examples as (key, example) tuples."""
if name in ["qa"]:
data = pd.read_csv(fpath)
data = data.to_dict(orient="records")
for id_line, example in enumerate(data):
yield id_line, example
if name in ["passages"]:
data = pd.read_csv(fpath, sep='\t')
data = data.to_dict(orient="records")
for id_line, example in enumerate(data):
yield id_line, example
|