# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import datasets import pandas as pd _CITATION = """""" _DESCRIPTION = """""" _HOMEPAGE = "" _LICENSE = "" _URLS = { "qa": { "train": "data/qa/train.csv", "validation": "data/qa/validation.csv", "test": "data/qa/test.csv", "all": "data/qa/qa.csv", }, "passages": { "train": "data/passages/train.tsv", "validation": "data/passages/validation.tsv", "test": "data/passages/test.tsv", "all": "data/passages/passages.tsv" }, } _CONFIGS = {} _CONFIGS["qa"] = { "description": "Answer bar exam questions", "features": { "idx": datasets.Value("string"), "dataset": datasets.Value("string"), "example_id": datasets.Value("string"), "prompt_id": datasets.Value("string"), "source": datasets.Value("string"), "subject": datasets.Value("string"), "question_number": datasets.Value("string"), "prompt": datasets.Value("string"), "question": datasets.Value("string"), "choice_a": datasets.Value("string"), "choice_b": datasets.Value("string"), "choice_c": datasets.Value("string"), "choice_d": datasets.Value("string"), "answer": datasets.Value("string"), "gold_passage": datasets.Value("string"), "gold_idx": datasets.Value("string"), }, "license": None, } _CONFIGS["passages"] = { "description": "Passage corpus of bar exam question explanations, Wex definitions and primary sources, and caselaw", "features": { "idx": datasets.Value("string"), "source": datasets.Value("string"), "faiss_id": datasets.Value("string"), "case_id": datasets.Value("string"), "absolute_paragraph_id": datasets.Value("string"), "opinion_id": datasets.Value("string"), "relative_paragraph_id": datasets.Value("string"), "text": datasets.Value("string"), }, "license": None, } class BarExamQA(datasets.GeneratorBasedBuilder): """Legal retrieval/QA dataset for the multistate bar exam""" BUILDER_CONFIGS = [ datasets.BuilderConfig( name=task, version=datasets.Version("1.0.0"), description=task, ) for task in _CONFIGS ] def _info(self): features = _CONFIGS[self.config.name]["features"] return datasets.DatasetInfo( description=_DESCRIPTION, features=datasets.Features(features), homepage=_HOMEPAGE, citation=_CITATION, license=_CONFIGS[self.config.name]["license"], ) def _split_generators(self, dl_manager): downloaded_file_dir = dl_manager.download_and_extract(_URLS[self.config.name]) splits = [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={ "fpath": downloaded_file_dir["train"], "name": self.config.name, }, ), datasets.SplitGenerator( name=datasets.Split.VALIDATION, gen_kwargs={ "fpath": downloaded_file_dir["validation"], "name": self.config.name, }, ), datasets.SplitGenerator( name=datasets.Split.TEST, gen_kwargs={ "fpath": downloaded_file_dir["test"], "name": self.config.name, }, ), ] return splits def _generate_examples(self, fpath, name): """Yields examples as (key, example) tuples.""" if name in ["qa"]: data = pd.read_csv(fpath) data = data.to_dict(orient="records") for id_line, example in enumerate(data): yield id_line, example if name in ["passages"]: data = pd.read_csv(fpath, sep='\t') data = data.to_dict(orient="records") for id_line, example in enumerate(data): yield id_line, example