asahi417 commited on
Commit
b641054
·
1 Parent(s): a77bc32

fix readme

Browse files
add_new_analogy.py CHANGED
@@ -1,6 +1,6 @@
1
  import json
2
  import os
3
- from itertools import combinations
4
  from random import shuffle, seed
5
  from datasets import load_dataset
6
 
@@ -14,50 +14,68 @@ from datasets import load_dataset
14
  # f.write("\n".join([json.dumps(i) for i in analogy_data]))
15
 
16
 
17
- # # create analogy from `relbert/t_rex_relational_similarity`
18
- # data = load_dataset("relbert/t_rex_relational_similarity", "filter_unified.min_entity_1_max_predicate_100", split="test")
19
- # analogy_data = []
20
- # for i in data:
21
- # if len(i['positives']) < 2:
22
- # continue
23
- # for m, (q, c) in enumerate(combinations(i['positives'], 2)):
24
- # if m > 5:
25
- # break
26
- # negative = i['negatives']
27
- # for n in range(6):
28
- # seed(n)
29
- # shuffle(negative)
30
- # analogy_data.append({
31
- # "stem": q, "choice": [c] + negative[:5], "answer": 0, "prefix": i["relation_type"]
32
- # })
33
- # os.makedirs("dataset/t_rex_relational_similarity", exist_ok=True)
34
- # with open("dataset/t_rex_relational_similarity/test.jsonl", "w") as f:
35
- # f.write("\n".join([json.dumps(i) for i in analogy_data]))
36
- #
37
- # data = load_dataset("relbert/t_rex_relational_similarity", "filter_unified.min_entity_4_max_predicate_100", split="validation")
38
- # analogy_data = []
39
- # for i in data:
40
- # if len(i['positives']) < 5:
41
- # continue
42
- # for m, (q, c) in enumerate(combinations(i['positives'], 2)):
43
- # if m > 5:
44
- # break
45
- # negative = i['negatives']
46
- # for n in range(3):
47
- # seed(n)
48
- # shuffle(negative)
49
- # analogy_data.append({
50
- # "stem": q, "choice": [c] + negative[:5], "answer": 0, "prefix": i["relation_type"]
51
- # })
52
- # os.makedirs("dataset/t_rex_relational_similarity", exist_ok=True)
53
- # with open("dataset/t_rex_relational_similarity/valid.jsonl", "w") as f:
54
- # f.write("\n".join([json.dumps(i) for i in analogy_data]))
 
 
 
 
 
 
 
 
 
 
55
 
56
  # create analogy from `relbert/conceptnet_relational_similarity`
57
  for s in ['test', 'validation']:
58
  data = load_dataset("relbert/conceptnet_relational_similarity", split=s)
 
 
 
 
 
 
59
  analogy_data = []
60
- for i in data:
 
 
61
  if len(i['positives']) < 2:
62
  continue
63
  for m, (q, c) in enumerate(combinations(i['positives'], 2)):
@@ -68,7 +86,7 @@ for s in ['test', 'validation']:
68
  seed(n)
69
  shuffle(negative)
70
  analogy_data.append({
71
- "stem": q, "choice": [c] + negative[:5], "answer": 0, "prefix": i["relation_type"]
72
  })
73
  print(len(analogy_data))
74
  os.makedirs("dataset/conceptnet_relational_similarity", exist_ok=True)
 
1
  import json
2
  import os
3
+ from itertools import combinations, chain
4
  from random import shuffle, seed
5
  from datasets import load_dataset
6
 
 
14
  # f.write("\n".join([json.dumps(i) for i in analogy_data]))
15
 
16
 
17
+ # create analogy from `relbert/t_rex_relational_similarity`
18
+ data = load_dataset("relbert/t_rex_relational_similarity", "filter_unified.min_entity_1_max_predicate_100", split="test")
19
+ df = data.to_pandas()
20
+ df['negatives'] = [list(chain(
21
+ *[[y.tolist() for y in x.tolist()] for x in df[df.relation_type != i]['positives'].tolist()] +
22
+ [[y.tolist() for y in x.tolist()] for x in df[df.relation_type == i]['negatives'].tolist()])) for i in
23
+ df['relation_type']]
24
+ analogy_data = []
25
+ for _, i in df.iterrows():
26
+ if len(i['positives']) < 2:
27
+ continue
28
+ for m, (q, c) in enumerate(combinations(i['positives'], 2)):
29
+ if m > 5:
30
+ break
31
+ negative = i['negatives']
32
+ for n in range(6):
33
+ seed(n)
34
+ shuffle(negative)
35
+ analogy_data.append({
36
+ "stem": q.tolist(), "choice": [c.tolist()] + negative[:5], "answer": 0, "prefix": i["relation_type"]
37
+ })
38
+ os.makedirs("dataset/t_rex_relational_similarity", exist_ok=True)
39
+ with open("dataset/t_rex_relational_similarity/test.jsonl", "w") as f:
40
+ f.write("\n".join([json.dumps(i) for i in analogy_data]))
41
+
42
+ data = load_dataset("relbert/t_rex_relational_similarity", "filter_unified.min_entity_4_max_predicate_100", split="validation")
43
+ df = data.to_pandas()
44
+ df['negatives'] = [list(chain(
45
+ *[[y.tolist() for y in x.tolist()] for x in df[df.relation_type != i]['positives'].tolist()] +
46
+ [[y.tolist() for y in x.tolist()] for x in df[df.relation_type == i]['negatives'].tolist()])) for i in
47
+ df['relation_type']]
48
+ analogy_data = []
49
+ for _, i in df.iterrows():
50
+ if len(i['positives']) < 5:
51
+ continue
52
+ for m, (q, c) in enumerate(combinations(i['positives'], 2)):
53
+ if m > 5:
54
+ break
55
+ negative = i['negatives']
56
+ for n in range(3):
57
+ seed(n)
58
+ shuffle(negative)
59
+ analogy_data.append({
60
+ "stem": q.tolist(), "choice": [c.tolist()] + negative[:5], "answer": 0, "prefix": i["relation_type"]
61
+ })
62
+ os.makedirs("dataset/t_rex_relational_similarity", exist_ok=True)
63
+ with open("dataset/t_rex_relational_similarity/valid.jsonl", "w") as f:
64
+ f.write("\n".join([json.dumps(i) for i in analogy_data]))
65
 
66
  # create analogy from `relbert/conceptnet_relational_similarity`
67
  for s in ['test', 'validation']:
68
  data = load_dataset("relbert/conceptnet_relational_similarity", split=s)
69
+ df = data.to_pandas()
70
+ df['negatives'] = [list(chain(
71
+ *[[y.tolist() for y in x.tolist()] for x in df[df.relation_type != i]['positives'].tolist()] +
72
+ [[y.tolist() for y in x.tolist()] for x in df[df.relation_type == i]['negatives'].tolist()])) for i in
73
+ df['relation_type']]
74
+
75
  analogy_data = []
76
+
77
+ for _, i in df.iterrows():
78
+
79
  if len(i['positives']) < 2:
80
  continue
81
  for m, (q, c) in enumerate(combinations(i['positives'], 2)):
 
86
  seed(n)
87
  shuffle(negative)
88
  analogy_data.append({
89
+ "stem": q.tolist(), "choice": [c.tolist()] + negative[:5], "answer": 0, "prefix": i["relation_type"]
90
  })
91
  print(len(analogy_data))
92
  os.makedirs("dataset/conceptnet_relational_similarity", exist_ok=True)
dataset/conceptnet_relational_similarity/test.jsonl CHANGED
The diff for this file is too large to render. See raw diff
 
dataset/conceptnet_relational_similarity/valid.jsonl CHANGED
The diff for this file is too large to render. See raw diff
 
dataset/t_rex_relational_similarity/test.jsonl CHANGED
The diff for this file is too large to render. See raw diff
 
dataset/t_rex_relational_similarity/valid.jsonl CHANGED
The diff for this file is too large to render. See raw diff