fix readme
Browse files
add_new_analogy.py
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
import json
|
2 |
import os
|
3 |
-
from itertools import combinations
|
4 |
from random import shuffle, seed
|
5 |
from datasets import load_dataset
|
6 |
|
@@ -14,50 +14,68 @@ from datasets import load_dataset
|
|
14 |
# f.write("\n".join([json.dumps(i) for i in analogy_data]))
|
15 |
|
16 |
|
17 |
-
#
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
55 |
|
56 |
# create analogy from `relbert/conceptnet_relational_similarity`
|
57 |
for s in ['test', 'validation']:
|
58 |
data = load_dataset("relbert/conceptnet_relational_similarity", split=s)
|
|
|
|
|
|
|
|
|
|
|
|
|
59 |
analogy_data = []
|
60 |
-
|
|
|
|
|
61 |
if len(i['positives']) < 2:
|
62 |
continue
|
63 |
for m, (q, c) in enumerate(combinations(i['positives'], 2)):
|
@@ -68,7 +86,7 @@ for s in ['test', 'validation']:
|
|
68 |
seed(n)
|
69 |
shuffle(negative)
|
70 |
analogy_data.append({
|
71 |
-
"stem": q, "choice": [c] + negative[:5], "answer": 0, "prefix": i["relation_type"]
|
72 |
})
|
73 |
print(len(analogy_data))
|
74 |
os.makedirs("dataset/conceptnet_relational_similarity", exist_ok=True)
|
|
|
1 |
import json
|
2 |
import os
|
3 |
+
from itertools import combinations, chain
|
4 |
from random import shuffle, seed
|
5 |
from datasets import load_dataset
|
6 |
|
|
|
14 |
# f.write("\n".join([json.dumps(i) for i in analogy_data]))
|
15 |
|
16 |
|
17 |
+
# create analogy from `relbert/t_rex_relational_similarity`
|
18 |
+
data = load_dataset("relbert/t_rex_relational_similarity", "filter_unified.min_entity_1_max_predicate_100", split="test")
|
19 |
+
df = data.to_pandas()
|
20 |
+
df['negatives'] = [list(chain(
|
21 |
+
*[[y.tolist() for y in x.tolist()] for x in df[df.relation_type != i]['positives'].tolist()] +
|
22 |
+
[[y.tolist() for y in x.tolist()] for x in df[df.relation_type == i]['negatives'].tolist()])) for i in
|
23 |
+
df['relation_type']]
|
24 |
+
analogy_data = []
|
25 |
+
for _, i in df.iterrows():
|
26 |
+
if len(i['positives']) < 2:
|
27 |
+
continue
|
28 |
+
for m, (q, c) in enumerate(combinations(i['positives'], 2)):
|
29 |
+
if m > 5:
|
30 |
+
break
|
31 |
+
negative = i['negatives']
|
32 |
+
for n in range(6):
|
33 |
+
seed(n)
|
34 |
+
shuffle(negative)
|
35 |
+
analogy_data.append({
|
36 |
+
"stem": q.tolist(), "choice": [c.tolist()] + negative[:5], "answer": 0, "prefix": i["relation_type"]
|
37 |
+
})
|
38 |
+
os.makedirs("dataset/t_rex_relational_similarity", exist_ok=True)
|
39 |
+
with open("dataset/t_rex_relational_similarity/test.jsonl", "w") as f:
|
40 |
+
f.write("\n".join([json.dumps(i) for i in analogy_data]))
|
41 |
+
|
42 |
+
data = load_dataset("relbert/t_rex_relational_similarity", "filter_unified.min_entity_4_max_predicate_100", split="validation")
|
43 |
+
df = data.to_pandas()
|
44 |
+
df['negatives'] = [list(chain(
|
45 |
+
*[[y.tolist() for y in x.tolist()] for x in df[df.relation_type != i]['positives'].tolist()] +
|
46 |
+
[[y.tolist() for y in x.tolist()] for x in df[df.relation_type == i]['negatives'].tolist()])) for i in
|
47 |
+
df['relation_type']]
|
48 |
+
analogy_data = []
|
49 |
+
for _, i in df.iterrows():
|
50 |
+
if len(i['positives']) < 5:
|
51 |
+
continue
|
52 |
+
for m, (q, c) in enumerate(combinations(i['positives'], 2)):
|
53 |
+
if m > 5:
|
54 |
+
break
|
55 |
+
negative = i['negatives']
|
56 |
+
for n in range(3):
|
57 |
+
seed(n)
|
58 |
+
shuffle(negative)
|
59 |
+
analogy_data.append({
|
60 |
+
"stem": q.tolist(), "choice": [c.tolist()] + negative[:5], "answer": 0, "prefix": i["relation_type"]
|
61 |
+
})
|
62 |
+
os.makedirs("dataset/t_rex_relational_similarity", exist_ok=True)
|
63 |
+
with open("dataset/t_rex_relational_similarity/valid.jsonl", "w") as f:
|
64 |
+
f.write("\n".join([json.dumps(i) for i in analogy_data]))
|
65 |
|
66 |
# create analogy from `relbert/conceptnet_relational_similarity`
|
67 |
for s in ['test', 'validation']:
|
68 |
data = load_dataset("relbert/conceptnet_relational_similarity", split=s)
|
69 |
+
df = data.to_pandas()
|
70 |
+
df['negatives'] = [list(chain(
|
71 |
+
*[[y.tolist() for y in x.tolist()] for x in df[df.relation_type != i]['positives'].tolist()] +
|
72 |
+
[[y.tolist() for y in x.tolist()] for x in df[df.relation_type == i]['negatives'].tolist()])) for i in
|
73 |
+
df['relation_type']]
|
74 |
+
|
75 |
analogy_data = []
|
76 |
+
|
77 |
+
for _, i in df.iterrows():
|
78 |
+
|
79 |
if len(i['positives']) < 2:
|
80 |
continue
|
81 |
for m, (q, c) in enumerate(combinations(i['positives'], 2)):
|
|
|
86 |
seed(n)
|
87 |
shuffle(negative)
|
88 |
analogy_data.append({
|
89 |
+
"stem": q.tolist(), "choice": [c.tolist()] + negative[:5], "answer": 0, "prefix": i["relation_type"]
|
90 |
})
|
91 |
print(len(analogy_data))
|
92 |
os.makedirs("dataset/conceptnet_relational_similarity", exist_ok=True)
|
dataset/conceptnet_relational_similarity/test.jsonl
CHANGED
The diff for this file is too large to render.
See raw diff
|
|
dataset/conceptnet_relational_similarity/valid.jsonl
CHANGED
The diff for this file is too large to render.
See raw diff
|
|
dataset/t_rex_relational_similarity/test.jsonl
CHANGED
The diff for this file is too large to render.
See raw diff
|
|
dataset/t_rex_relational_similarity/valid.jsonl
CHANGED
The diff for this file is too large to render.
See raw diff
|
|