fix readme
Browse files
README.md
CHANGED
@@ -5,51 +5,27 @@ license:
|
|
5 |
- other
|
6 |
multilinguality:
|
7 |
- monolingual
|
8 |
-
|
|
|
|
|
9 |
---
|
10 |
|
11 |
# Dataset Card for "relbert/t_rex_relation_similarity"
|
12 |
## Dataset Description
|
13 |
-
- **Repository:** [
|
14 |
- **Paper:** [https://aclanthology.org/L18-1544/](https://aclanthology.org/L18-1544/)
|
15 |
-
- **Dataset:** T-REX
|
16 |
|
17 |
## Dataset Summary
|
18 |
This is the clean version of [T-REX](https://aclanthology.org/L18-1544/) converted into relation similarity dataset format.
|
19 |
The original dataset is [`relbert/t_rex`](https://huggingface.co/datasets/relbert/t_rex).
|
20 |
|
21 |
-
- statistics of the train/validation split
|
22 |
-
|
23 |
-
| data | num of relation types (train) | average num of positive pairs (train) | average num of negative pairs (train) | num of relation types (validation) | average num of positive pairs (validation) | average num of negative pairs (validation) |
|
24 |
-
|:-------------------------------|--------------------------------:|----------------------------------------:|----------------------------------------:|-------------------------------------:|---------------------------------------------:|---------------------------------------------:|
|
25 |
-
| min_entity_1_max_predicate_100 | 208 | 34 | 7041 | 133 | 6 | 781 |
|
26 |
-
| min_entity_1_max_predicate_50 | 204 | 20 | 4111 | 113 | 4 | 455 |
|
27 |
-
| min_entity_1_max_predicate_25 | 202 | 12 | 2346 | 71 | 3 | 259 |
|
28 |
-
| min_entity_1_max_predicate_10 | 192 | 6 | 1128 | 25 | 2 | 125 |
|
29 |
-
| min_entity_2_max_predicate_100 | 188 | 26 | 4847 | 107 | 5 | 537 |
|
30 |
-
| min_entity_2_max_predicate_50 | 184 | 16 | 2986 | 85 | 3 | 331 |
|
31 |
-
| min_entity_2_max_predicate_25 | 181 | 9 | 1702 | 51 | 3 | 188 |
|
32 |
-
| min_entity_2_max_predicate_10 | 171 | 5 | 853 | 13 | 2 | 94 |
|
33 |
-
| min_entity_3_max_predicate_100 | 166 | 22 | 3637 | 82 | 5 | 402 |
|
34 |
-
| min_entity_3_max_predicate_50 | 157 | 15 | 2321 | 66 | 3 | 257 |
|
35 |
-
| min_entity_3_max_predicate_25 | 156 | 9 | 1381 | 37 | 3 | 152 |
|
36 |
-
| min_entity_3_max_predicate_10 | 148 | 4 | 684 | 17 | 2 | 75 |
|
37 |
-
| min_entity_4_max_predicate_100 | 150 | 20 | 2975 | 73 | 4 | 329 |
|
38 |
-
| min_entity_4_max_predicate_50 | 145 | 14 | 1975 | 56 | 3 | 219 |
|
39 |
-
| min_entity_4_max_predicate_25 | 141 | 9 | 1212 | 34 | 3 | 133 |
|
40 |
-
| min_entity_4_max_predicate_10 | 128 | 4 | 599 | 14 | 2 | 66 |
|
41 |
-
|
42 |
-
- statistics of the test split
|
43 |
-
|
44 |
-
| num of relation types (test) | average num of positive pairs (test) | average num of negative pairs (test) |
|
45 |
-
|-------------------------------:|---------------------------------------:|---------------------------------------:|
|
46 |
-
| 24 | 5 | 117 |
|
47 |
-
|
48 |
|
49 |
## Dataset Structure
|
50 |
### Data Instances
|
51 |
-
An example looks as follows.
|
52 |
-
|
|
|
53 |
{
|
54 |
"relation_type": "[Airline] has a hub in [Location]",
|
55 |
"positives": [["Korean Air", "Seoul"], ["Asiana Airlines", "Seoul"], ["Cathay Pacific", "Hong Kong"], ["Dragonair", "Hong Kong"], ["Qantas", "Singapore"], ["Air China", "Beijing"], ["Singapore Airlines", "Singapore"]],
|
@@ -57,6 +33,27 @@ An example looks as follows.
|
|
57 |
}
|
58 |
```
|
59 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
60 |
## Citation Information
|
61 |
```
|
62 |
@inproceedings{elsahar2018t,
|
|
|
5 |
- other
|
6 |
multilinguality:
|
7 |
- monolingual
|
8 |
+
size_categories:
|
9 |
+
- n<1K
|
10 |
+
pretty_name: T-REX for relational similarity
|
11 |
---
|
12 |
|
13 |
# Dataset Card for "relbert/t_rex_relation_similarity"
|
14 |
## Dataset Description
|
15 |
+
- **Repository:** [RelBERT](https://github.com/asahi417/relbert)
|
16 |
- **Paper:** [https://aclanthology.org/L18-1544/](https://aclanthology.org/L18-1544/)
|
17 |
+
- **Dataset:** T-REX for relational similarity
|
18 |
|
19 |
## Dataset Summary
|
20 |
This is the clean version of [T-REX](https://aclanthology.org/L18-1544/) converted into relation similarity dataset format.
|
21 |
The original dataset is [`relbert/t_rex`](https://huggingface.co/datasets/relbert/t_rex).
|
22 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
|
24 |
## Dataset Structure
|
25 |
### Data Instances
|
26 |
+
An example of `train` looks as follows.
|
27 |
+
|
28 |
+
```shell
|
29 |
{
|
30 |
"relation_type": "[Airline] has a hub in [Location]",
|
31 |
"positives": [["Korean Air", "Seoul"], ["Asiana Airlines", "Seoul"], ["Cathay Pacific", "Hong Kong"], ["Dragonair", "Hong Kong"], ["Qantas", "Singapore"], ["Air China", "Beijing"], ["Singapore Airlines", "Singapore"]],
|
|
|
33 |
}
|
34 |
```
|
35 |
|
36 |
+
### Data Splits
|
37 |
+
|
38 |
+
| name | train | validation | test |
|
39 |
+
|:----------------------------------------------|--------:|-------------:|-------:|
|
40 |
+
| filter_unified.min_entity_1_max_predicate_100 | 208 | 133 | 24 |
|
41 |
+
| filter_unified.min_entity_1_max_predicate_50 | 204 | 113 | 24 |
|
42 |
+
| filter_unified.min_entity_1_max_predicate_25 | 202 | 71 | 24 |
|
43 |
+
| filter_unified.min_entity_1_max_predicate_10 | 192 | 25 | 24 |
|
44 |
+
| filter_unified.min_entity_2_max_predicate_100 | 188 | 107 | 24 |
|
45 |
+
| filter_unified.min_entity_2_max_predicate_50 | 184 | 85 | 24 |
|
46 |
+
| filter_unified.min_entity_2_max_predicate_25 | 181 | 51 | 24 |
|
47 |
+
| filter_unified.min_entity_2_max_predicate_10 | 171 | 13 | 24 |
|
48 |
+
| filter_unified.min_entity_3_max_predicate_100 | 166 | 82 | 24 |
|
49 |
+
| filter_unified.min_entity_3_max_predicate_50 | 157 | 66 | 24 |
|
50 |
+
| filter_unified.min_entity_3_max_predicate_25 | 156 | 37 | 24 |
|
51 |
+
| filter_unified.min_entity_3_max_predicate_10 | 148 | 17 | 24 |
|
52 |
+
| filter_unified.min_entity_4_max_predicate_100 | 150 | 73 | 24 |
|
53 |
+
| filter_unified.min_entity_4_max_predicate_50 | 145 | 56 | 24 |
|
54 |
+
| filter_unified.min_entity_4_max_predicate_25 | 141 | 34 | 24 |
|
55 |
+
| filter_unified.min_entity_4_max_predicate_10 | 128 | 14 | 24 |
|
56 |
+
|
57 |
## Citation Information
|
58 |
```
|
59 |
@inproceedings{elsahar2018t,
|