asahi417 commited on
Commit
e2c3b09
1 Parent(s): 0e849bb

fix readme

Browse files
Files changed (1) hide show
  1. README.md +29 -32
README.md CHANGED
@@ -5,51 +5,27 @@ license:
5
  - other
6
  multilinguality:
7
  - monolingual
8
- pretty_name: t_rex
 
 
9
  ---
10
 
11
  # Dataset Card for "relbert/t_rex_relation_similarity"
12
  ## Dataset Description
13
- - **Repository:** [https://hadyelsahar.github.io/t-rex/](https://hadyelsahar.github.io/t-rex/)
14
  - **Paper:** [https://aclanthology.org/L18-1544/](https://aclanthology.org/L18-1544/)
15
- - **Dataset:** T-REX
16
 
17
  ## Dataset Summary
18
  This is the clean version of [T-REX](https://aclanthology.org/L18-1544/) converted into relation similarity dataset format.
19
  The original dataset is [`relbert/t_rex`](https://huggingface.co/datasets/relbert/t_rex).
20
 
21
- - statistics of the train/validation split
22
-
23
- | data | num of relation types (train) | average num of positive pairs (train) | average num of negative pairs (train) | num of relation types (validation) | average num of positive pairs (validation) | average num of negative pairs (validation) |
24
- |:-------------------------------|--------------------------------:|----------------------------------------:|----------------------------------------:|-------------------------------------:|---------------------------------------------:|---------------------------------------------:|
25
- | min_entity_1_max_predicate_100 | 208 | 34 | 7041 | 133 | 6 | 781 |
26
- | min_entity_1_max_predicate_50 | 204 | 20 | 4111 | 113 | 4 | 455 |
27
- | min_entity_1_max_predicate_25 | 202 | 12 | 2346 | 71 | 3 | 259 |
28
- | min_entity_1_max_predicate_10 | 192 | 6 | 1128 | 25 | 2 | 125 |
29
- | min_entity_2_max_predicate_100 | 188 | 26 | 4847 | 107 | 5 | 537 |
30
- | min_entity_2_max_predicate_50 | 184 | 16 | 2986 | 85 | 3 | 331 |
31
- | min_entity_2_max_predicate_25 | 181 | 9 | 1702 | 51 | 3 | 188 |
32
- | min_entity_2_max_predicate_10 | 171 | 5 | 853 | 13 | 2 | 94 |
33
- | min_entity_3_max_predicate_100 | 166 | 22 | 3637 | 82 | 5 | 402 |
34
- | min_entity_3_max_predicate_50 | 157 | 15 | 2321 | 66 | 3 | 257 |
35
- | min_entity_3_max_predicate_25 | 156 | 9 | 1381 | 37 | 3 | 152 |
36
- | min_entity_3_max_predicate_10 | 148 | 4 | 684 | 17 | 2 | 75 |
37
- | min_entity_4_max_predicate_100 | 150 | 20 | 2975 | 73 | 4 | 329 |
38
- | min_entity_4_max_predicate_50 | 145 | 14 | 1975 | 56 | 3 | 219 |
39
- | min_entity_4_max_predicate_25 | 141 | 9 | 1212 | 34 | 3 | 133 |
40
- | min_entity_4_max_predicate_10 | 128 | 4 | 599 | 14 | 2 | 66 |
41
-
42
- - statistics of the test split
43
-
44
- | num of relation types (test) | average num of positive pairs (test) | average num of negative pairs (test) |
45
- |-------------------------------:|---------------------------------------:|---------------------------------------:|
46
- | 24 | 5 | 117 |
47
-
48
 
49
  ## Dataset Structure
50
  ### Data Instances
51
- An example looks as follows.
52
- ```
 
53
  {
54
  "relation_type": "[Airline] has a hub in [Location]",
55
  "positives": [["Korean Air", "Seoul"], ["Asiana Airlines", "Seoul"], ["Cathay Pacific", "Hong Kong"], ["Dragonair", "Hong Kong"], ["Qantas", "Singapore"], ["Air China", "Beijing"], ["Singapore Airlines", "Singapore"]],
@@ -57,6 +33,27 @@ An example looks as follows.
57
  }
58
  ```
59
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
60
  ## Citation Information
61
  ```
62
  @inproceedings{elsahar2018t,
 
5
  - other
6
  multilinguality:
7
  - monolingual
8
+ size_categories:
9
+ - n<1K
10
+ pretty_name: T-REX for relational similarity
11
  ---
12
 
13
  # Dataset Card for "relbert/t_rex_relation_similarity"
14
  ## Dataset Description
15
+ - **Repository:** [RelBERT](https://github.com/asahi417/relbert)
16
  - **Paper:** [https://aclanthology.org/L18-1544/](https://aclanthology.org/L18-1544/)
17
+ - **Dataset:** T-REX for relational similarity
18
 
19
  ## Dataset Summary
20
  This is the clean version of [T-REX](https://aclanthology.org/L18-1544/) converted into relation similarity dataset format.
21
  The original dataset is [`relbert/t_rex`](https://huggingface.co/datasets/relbert/t_rex).
22
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
23
 
24
  ## Dataset Structure
25
  ### Data Instances
26
+ An example of `train` looks as follows.
27
+
28
+ ```shell
29
  {
30
  "relation_type": "[Airline] has a hub in [Location]",
31
  "positives": [["Korean Air", "Seoul"], ["Asiana Airlines", "Seoul"], ["Cathay Pacific", "Hong Kong"], ["Dragonair", "Hong Kong"], ["Qantas", "Singapore"], ["Air China", "Beijing"], ["Singapore Airlines", "Singapore"]],
 
33
  }
34
  ```
35
 
36
+ ### Data Splits
37
+
38
+ | name | train | validation | test |
39
+ |:----------------------------------------------|--------:|-------------:|-------:|
40
+ | filter_unified.min_entity_1_max_predicate_100 | 208 | 133 | 24 |
41
+ | filter_unified.min_entity_1_max_predicate_50 | 204 | 113 | 24 |
42
+ | filter_unified.min_entity_1_max_predicate_25 | 202 | 71 | 24 |
43
+ | filter_unified.min_entity_1_max_predicate_10 | 192 | 25 | 24 |
44
+ | filter_unified.min_entity_2_max_predicate_100 | 188 | 107 | 24 |
45
+ | filter_unified.min_entity_2_max_predicate_50 | 184 | 85 | 24 |
46
+ | filter_unified.min_entity_2_max_predicate_25 | 181 | 51 | 24 |
47
+ | filter_unified.min_entity_2_max_predicate_10 | 171 | 13 | 24 |
48
+ | filter_unified.min_entity_3_max_predicate_100 | 166 | 82 | 24 |
49
+ | filter_unified.min_entity_3_max_predicate_50 | 157 | 66 | 24 |
50
+ | filter_unified.min_entity_3_max_predicate_25 | 156 | 37 | 24 |
51
+ | filter_unified.min_entity_3_max_predicate_10 | 148 | 17 | 24 |
52
+ | filter_unified.min_entity_4_max_predicate_100 | 150 | 73 | 24 |
53
+ | filter_unified.min_entity_4_max_predicate_50 | 145 | 56 | 24 |
54
+ | filter_unified.min_entity_4_max_predicate_25 | 141 | 34 | 24 |
55
+ | filter_unified.min_entity_4_max_predicate_10 | 128 | 14 | 24 |
56
+
57
  ## Citation Information
58
  ```
59
  @inproceedings{elsahar2018t,