Datasets:
revanth7667
commited on
Commit
·
6a0acc8
1
Parent(s):
10ce0ea
updated population and created mortality files
Browse files- .01_Data/02_Processed/02_Mortality.parquet +0 -0
- 02_Codes/01_population_eda.ipynb +386 -400
- 02_Codes/02_population_script.py +4 -4
- 02_Codes/03_mortality_eda.ipynb +1640 -0
- 02_Codes/04_mortality_script.py +122 -0
.01_Data/02_Processed/02_Mortality.parquet
ADDED
Binary file (62.3 kB). View file
|
|
02_Codes/01_population_eda.ipynb
CHANGED
@@ -51,78 +51,78 @@
|
|
51 |
" </thead>\n",
|
52 |
" <tbody>\n",
|
53 |
" <tr>\n",
|
54 |
-
" <th>
|
55 |
" <td>NaN</td>\n",
|
56 |
-
" <td>
|
57 |
-
" <td>
|
58 |
-
" <td>
|
59 |
-
" <td>
|
60 |
-
" <td>
|
61 |
-
" <td>
|
62 |
-
" <td>
|
63 |
" </tr>\n",
|
64 |
" <tr>\n",
|
65 |
-
" <th>
|
66 |
" <td>NaN</td>\n",
|
67 |
-
" <td>
|
68 |
-
" <td>
|
69 |
-
" <td>
|
70 |
-
" <td>
|
71 |
-
" <td>
|
72 |
-
" <td>
|
73 |
-
" <td>
|
74 |
" </tr>\n",
|
75 |
" <tr>\n",
|
76 |
-
" <th>
|
77 |
" <td>NaN</td>\n",
|
78 |
-
" <td>
|
79 |
-
" <td>
|
80 |
-
" <td>
|
81 |
-
" <td>
|
82 |
-
" <td>
|
83 |
-
" <td>
|
84 |
-
" <td>
|
85 |
" </tr>\n",
|
86 |
" <tr>\n",
|
87 |
-
" <th>
|
88 |
" <td>NaN</td>\n",
|
89 |
-
" <td>
|
90 |
-
" <td>
|
91 |
-
" <td>
|
92 |
-
" <td>
|
93 |
-
" <td>
|
94 |
-
" <td>
|
95 |
-
" <td>
|
96 |
" </tr>\n",
|
97 |
" <tr>\n",
|
98 |
-
" <th>
|
99 |
" <td>NaN</td>\n",
|
100 |
-
" <td>
|
101 |
-
" <td>
|
102 |
-
" <td>
|
103 |
-
" <td>
|
104 |
-
" <td>
|
105 |
-
" <td>
|
106 |
-
" <td>
|
107 |
" </tr>\n",
|
108 |
" </tbody>\n",
|
109 |
"</table>\n",
|
110 |
"</div>"
|
111 |
],
|
112 |
"text/plain": [
|
113 |
-
" Notes State State Code
|
114 |
-
"
|
115 |
-
"
|
116 |
-
"
|
117 |
-
"
|
118 |
-
"
|
119 |
"\n",
|
120 |
" Yearly July 1st Estimates Yearly July 1st Estimates Code Population \n",
|
121 |
-
"
|
122 |
-
"
|
123 |
-
"
|
124 |
-
"
|
125 |
-
"
|
126 |
]
|
127 |
},
|
128 |
"execution_count": 2,
|
@@ -132,7 +132,7 @@
|
|
132 |
],
|
133 |
"source": [
|
134 |
"# Load Raw Data File\n",
|
135 |
-
"df = pd.read_csv(\"
|
136 |
"df.sample(5)"
|
137 |
]
|
138 |
},
|
@@ -450,73 +450,73 @@
|
|
450 |
" </thead>\n",
|
451 |
" <tbody>\n",
|
452 |
" <tr>\n",
|
453 |
-
" <th>
|
454 |
-
" <td>
|
455 |
-
" <td>
|
456 |
-
" <td>
|
457 |
-
" <td>
|
458 |
-
" <td>2003.0</td>\n",
|
459 |
-
" <td>2003.0</td>\n",
|
460 |
-
" <td>6987</td>\n",
|
461 |
-
" </tr>\n",
|
462 |
-
" <tr>\n",
|
463 |
-
" <th>39888</th>\n",
|
464 |
-
" <td>Wisconsin</td>\n",
|
465 |
-
" <td>55.0</td>\n",
|
466 |
-
" <td>Door County, WI</td>\n",
|
467 |
-
" <td>55029.0</td>\n",
|
468 |
-
" <td>2007.0</td>\n",
|
469 |
-
" <td>2007.0</td>\n",
|
470 |
-
" <td>27957</td>\n",
|
471 |
-
" </tr>\n",
|
472 |
-
" <tr>\n",
|
473 |
-
" <th>4159</th>\n",
|
474 |
-
" <td>Connecticut</td>\n",
|
475 |
-
" <td>9.0</td>\n",
|
476 |
-
" <td>Tolland County, CT</td>\n",
|
477 |
-
" <td>9013.0</td>\n",
|
478 |
" <td>2015.0</td>\n",
|
479 |
" <td>2015.0</td>\n",
|
480 |
-
" <td>
|
481 |
" </tr>\n",
|
482 |
" <tr>\n",
|
483 |
-
" <th>
|
484 |
-
" <td>
|
485 |
-
" <td>
|
486 |
-
" <td>
|
487 |
-
" <td>
|
488 |
-
" <td>
|
489 |
-
" <td>
|
490 |
-
" <td>
|
491 |
" </tr>\n",
|
492 |
" <tr>\n",
|
493 |
-
" <th>
|
494 |
-
" <td>
|
495 |
-
" <td>
|
496 |
-
" <td>
|
497 |
-
" <td>
|
498 |
-
" <td>
|
499 |
-
" <td>
|
500 |
-
" <td>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
501 |
" </tr>\n",
|
502 |
" </tbody>\n",
|
503 |
"</table>\n",
|
504 |
"</div>"
|
505 |
],
|
506 |
"text/plain": [
|
507 |
-
"
|
508 |
-
"
|
509 |
-
"
|
510 |
-
"
|
511 |
-
"
|
512 |
-
"
|
513 |
"\n",
|
514 |
" Yearly July 1st Estimates Yearly July 1st Estimates Code Population \n",
|
515 |
-
"
|
516 |
-
"
|
517 |
-
"
|
518 |
-
"
|
519 |
-
"
|
520 |
]
|
521 |
},
|
522 |
"execution_count": 8,
|
@@ -640,73 +640,73 @@
|
|
640 |
" </thead>\n",
|
641 |
" <tbody>\n",
|
642 |
" <tr>\n",
|
643 |
-
" <th>
|
644 |
-
" <td>
|
645 |
-
" <td>
|
646 |
-
" <td>
|
647 |
-
" <td>
|
648 |
-
" <td>
|
649 |
-
" <td>
|
650 |
-
" <td>
|
651 |
" </tr>\n",
|
652 |
" <tr>\n",
|
653 |
-
" <th>
|
654 |
-
" <td>
|
655 |
-
" <td>
|
656 |
-
" <td>
|
657 |
-
" <td>
|
658 |
-
" <td>
|
659 |
-
" <td>
|
660 |
-
" <td>
|
661 |
" </tr>\n",
|
662 |
" <tr>\n",
|
663 |
-
" <th>
|
664 |
-
" <td>
|
665 |
-
" <td>
|
666 |
-
" <td>
|
667 |
-
" <td>
|
668 |
-
" <td>
|
669 |
-
" <td>
|
670 |
-
" <td>
|
671 |
" </tr>\n",
|
672 |
" <tr>\n",
|
673 |
-
" <th>
|
674 |
-
" <td>
|
675 |
-
" <td>
|
676 |
-
" <td>
|
677 |
-
" <td>
|
678 |
-
" <td>
|
679 |
-
" <td>
|
680 |
-
" <td>
|
681 |
" </tr>\n",
|
682 |
" <tr>\n",
|
683 |
-
" <th>
|
684 |
-
" <td>
|
685 |
-
" <td>
|
686 |
-
" <td>
|
687 |
-
" <td>
|
688 |
-
" <td>
|
689 |
-
" <td>
|
690 |
-
" <td>
|
691 |
" </tr>\n",
|
692 |
" </tbody>\n",
|
693 |
"</table>\n",
|
694 |
"</div>"
|
695 |
],
|
696 |
"text/plain": [
|
697 |
-
"
|
698 |
-
"
|
699 |
-
"
|
700 |
-
"
|
701 |
-
"
|
702 |
-
"
|
703 |
"\n",
|
704 |
" Yearly July 1st Estimates Yearly July 1st Estimates Code Population \n",
|
705 |
-
"
|
706 |
-
"
|
707 |
-
"
|
708 |
-
"
|
709 |
-
"
|
710 |
]
|
711 |
},
|
712 |
"execution_count": 12,
|
@@ -814,68 +814,61 @@
|
|
814 |
" </thead>\n",
|
815 |
" <tbody>\n",
|
816 |
" <tr>\n",
|
817 |
-
" <th>
|
818 |
-
" <td>
|
819 |
-
" <td>
|
820 |
-
" <td>
|
821 |
-
" <td>
|
822 |
-
" <td>
|
823 |
-
" <td>
|
824 |
" </tr>\n",
|
825 |
" <tr>\n",
|
826 |
-
" <th>
|
827 |
-
" <td>
|
828 |
-
" <td>
|
829 |
-
" <td>
|
830 |
-
" <td>
|
831 |
-
" <td>
|
832 |
-
" <td>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
833 |
" </tr>\n",
|
834 |
" <tr>\n",
|
835 |
-
" <th>
|
836 |
" <td>Tennessee</td>\n",
|
837 |
" <td>47</td>\n",
|
838 |
" <td>Clay County, TN</td>\n",
|
839 |
" <td>47027</td>\n",
|
840 |
-
" <td>
|
841 |
-
" <td>
|
842 |
-
" </tr>\n",
|
843 |
-
" <tr>\n",
|
844 |
-
" <th>25762</th>\n",
|
845 |
-
" <td>North Carolina</td>\n",
|
846 |
-
" <td>37</td>\n",
|
847 |
-
" <td>Swain County, NC</td>\n",
|
848 |
-
" <td>37173</td>\n",
|
849 |
-
" <td>2012</td>\n",
|
850 |
-
" <td>14054</td>\n",
|
851 |
" </tr>\n",
|
852 |
" <tr>\n",
|
853 |
-
" <th>
|
854 |
-
" <td>
|
855 |
-
" <td>
|
856 |
-
" <td>
|
857 |
-
" <td>
|
858 |
" <td>2015</td>\n",
|
859 |
-
" <td>
|
860 |
" </tr>\n",
|
861 |
" </tbody>\n",
|
862 |
"</table>\n",
|
863 |
"</div>"
|
864 |
],
|
865 |
"text/plain": [
|
866 |
-
"
|
867 |
-
"
|
868 |
-
"
|
869 |
-
"
|
870 |
-
"
|
871 |
-
"
|
872 |
-
"\n",
|
873 |
-
" Population \n",
|
874 |
-
"14210 14809 \n",
|
875 |
-
"30045 205359 \n",
|
876 |
-
"31810 7668 \n",
|
877 |
-
"25762 14054 \n",
|
878 |
-
"20357 17427 "
|
879 |
]
|
880 |
},
|
881 |
"execution_count": 15,
|
@@ -920,34 +913,34 @@
|
|
920 |
" </thead>\n",
|
921 |
" <tbody>\n",
|
922 |
" <tr>\n",
|
923 |
-
" <th>
|
924 |
-
" <td>
|
925 |
-
" <td>
|
926 |
-
" <td>
|
927 |
" </tr>\n",
|
928 |
" <tr>\n",
|
929 |
-
" <th>
|
930 |
-
" <td>
|
931 |
-
" <td>
|
932 |
-
" <td>
|
933 |
" </tr>\n",
|
934 |
" <tr>\n",
|
935 |
-
" <th>
|
936 |
-
" <td>
|
937 |
-
" <td>
|
938 |
-
" <td>
|
939 |
" </tr>\n",
|
940 |
" <tr>\n",
|
941 |
-
" <th>
|
942 |
-
" <td>
|
943 |
-
" <td>
|
944 |
-
" <td>
|
945 |
" </tr>\n",
|
946 |
" <tr>\n",
|
947 |
-
" <th>
|
948 |
-
" <td>
|
949 |
-
" <td>
|
950 |
-
" <td>
|
951 |
" </tr>\n",
|
952 |
" </tbody>\n",
|
953 |
"</table>\n",
|
@@ -955,11 +948,11 @@
|
|
955 |
],
|
956 |
"text/plain": [
|
957 |
" BUYER_COUNTY BUYER_STATE countyfips\n",
|
958 |
-
"
|
959 |
-
"
|
960 |
-
"
|
961 |
-
"
|
962 |
-
"
|
963 |
]
|
964 |
},
|
965 |
"execution_count": 16,
|
@@ -969,7 +962,7 @@
|
|
969 |
],
|
970 |
"source": [
|
971 |
"# maps with fips for proper county names\n",
|
972 |
-
"fips = pd.read_csv(\"
|
973 |
"fips.sample(5)"
|
974 |
]
|
975 |
},
|
@@ -1743,68 +1736,68 @@
|
|
1743 |
" </thead>\n",
|
1744 |
" <tbody>\n",
|
1745 |
" <tr>\n",
|
1746 |
-
" <th>
|
1747 |
-
" <td>
|
1748 |
-
" <td>
|
1749 |
-
" <td>
|
1750 |
-
" <td>
|
1751 |
-
" <td>
|
1752 |
-
" <td>
|
1753 |
-
" <td>
|
1754 |
-
" <td>
|
1755 |
-
" <td>
|
1756 |
" <td>both</td>\n",
|
1757 |
" </tr>\n",
|
1758 |
" <tr>\n",
|
1759 |
-
" <th>
|
1760 |
-
" <td>
|
1761 |
-
" <td>
|
1762 |
-
" <td>
|
1763 |
-
" <td>
|
1764 |
-
" <td>
|
1765 |
-
" <td>
|
1766 |
-
" <td>
|
1767 |
-
" <td>
|
1768 |
-
" <td>
|
1769 |
" <td>both</td>\n",
|
1770 |
" </tr>\n",
|
1771 |
" <tr>\n",
|
1772 |
-
" <th>
|
1773 |
-
" <td>
|
1774 |
-
" <td>
|
1775 |
-
" <td>
|
1776 |
-
" <td>
|
1777 |
-
" <td>
|
1778 |
-
" <td>
|
1779 |
-
" <td>
|
1780 |
-
" <td>
|
1781 |
-
" <td>
|
1782 |
" <td>both</td>\n",
|
1783 |
" </tr>\n",
|
1784 |
" <tr>\n",
|
1785 |
-
" <th>
|
1786 |
-
" <td>
|
1787 |
-
" <td>
|
1788 |
-
" <td>
|
1789 |
-
" <td>
|
1790 |
" <td>2007</td>\n",
|
1791 |
-
" <td>
|
1792 |
-
" <td>
|
1793 |
-
" <td>
|
1794 |
-
" <td>
|
1795 |
" <td>both</td>\n",
|
1796 |
" </tr>\n",
|
1797 |
" <tr>\n",
|
1798 |
-
" <th>
|
1799 |
-
" <td>
|
1800 |
-
" <td>
|
1801 |
-
" <td>
|
1802 |
-
" <td>
|
1803 |
-
" <td>
|
1804 |
-
" <td>
|
1805 |
-
" <td>
|
1806 |
-
" <td>
|
1807 |
-
" <td>
|
1808 |
" <td>both</td>\n",
|
1809 |
" </tr>\n",
|
1810 |
" </tbody>\n",
|
@@ -1812,19 +1805,19 @@
|
|
1812 |
"</div>"
|
1813 |
],
|
1814 |
"text/plain": [
|
1815 |
-
"
|
1816 |
-
"
|
1817 |
-
"
|
1818 |
-
"
|
1819 |
-
"
|
1820 |
-
"
|
1821 |
"\n",
|
1822 |
-
" Population
|
1823 |
-
"
|
1824 |
-
"
|
1825 |
-
"
|
1826 |
-
"
|
1827 |
-
"
|
1828 |
]
|
1829 |
},
|
1830 |
"execution_count": 23,
|
@@ -1903,46 +1896,46 @@
|
|
1903 |
" </thead>\n",
|
1904 |
" <tbody>\n",
|
1905 |
" <tr>\n",
|
1906 |
-
" <th>
|
1907 |
-
" <td>
|
1908 |
-
" <td>
|
1909 |
-
" <td>
|
1910 |
" </tr>\n",
|
1911 |
" <tr>\n",
|
1912 |
-
" <th>
|
1913 |
-
" <td>
|
1914 |
-
" <td>
|
1915 |
-
" <td>
|
1916 |
" </tr>\n",
|
1917 |
" <tr>\n",
|
1918 |
-
" <th>
|
1919 |
-
" <td>
|
1920 |
-
" <td>
|
1921 |
-
" <td>
|
1922 |
" </tr>\n",
|
1923 |
" <tr>\n",
|
1924 |
-
" <th>
|
1925 |
-
" <td>
|
1926 |
-
" <td>
|
1927 |
-
" <td>
|
1928 |
" </tr>\n",
|
1929 |
" <tr>\n",
|
1930 |
-
" <th>
|
1931 |
-
" <td>
|
1932 |
-
" <td>
|
1933 |
-
" <td>
|
1934 |
" </tr>\n",
|
1935 |
" </tbody>\n",
|
1936 |
"</table>\n",
|
1937 |
"</div>"
|
1938 |
],
|
1939 |
"text/plain": [
|
1940 |
-
"
|
1941 |
-
"
|
1942 |
-
"
|
1943 |
-
"
|
1944 |
-
"
|
1945 |
-
"
|
1946 |
]
|
1947 |
},
|
1948 |
"execution_count": 25,
|
@@ -1951,7 +1944,7 @@
|
|
1951 |
}
|
1952 |
],
|
1953 |
"source": [
|
1954 |
-
"abbreviations = pd.read_csv(\"
|
1955 |
"abbreviations.sample(5)"
|
1956 |
]
|
1957 |
},
|
@@ -2006,61 +1999,61 @@
|
|
2006 |
" </thead>\n",
|
2007 |
" <tbody>\n",
|
2008 |
" <tr>\n",
|
2009 |
-
" <th>
|
2010 |
-
" <td>
|
2011 |
-
" <td>
|
2012 |
-
" <td>
|
2013 |
" <td>2011</td>\n",
|
2014 |
-
" <td>
|
2015 |
-
" <td>
|
2016 |
" </tr>\n",
|
2017 |
" <tr>\n",
|
2018 |
-
" <th>
|
2019 |
-
" <td>
|
2020 |
-
" <td>
|
2021 |
-
" <td>
|
2022 |
-
" <td>
|
2023 |
-
" <td>
|
2024 |
-
" <td>
|
2025 |
" </tr>\n",
|
2026 |
" <tr>\n",
|
2027 |
-
" <th>
|
2028 |
-
" <td>
|
2029 |
-
" <td>
|
2030 |
-
" <td>
|
2031 |
" <td>2011</td>\n",
|
2032 |
-
" <td>
|
2033 |
-
" <td>
|
2034 |
" </tr>\n",
|
2035 |
" <tr>\n",
|
2036 |
-
" <th>
|
2037 |
-
" <td>
|
2038 |
-
" <td>
|
2039 |
-
" <td>
|
2040 |
-
" <td>
|
2041 |
-
" <td>
|
2042 |
-
" <td>
|
2043 |
" </tr>\n",
|
2044 |
" <tr>\n",
|
2045 |
-
" <th>
|
2046 |
-
" <td>
|
2047 |
-
" <td>
|
2048 |
-
" <td>
|
2049 |
-
" <td>
|
2050 |
-
" <td>
|
2051 |
-
" <td>
|
2052 |
" </tr>\n",
|
2053 |
" </tbody>\n",
|
2054 |
"</table>\n",
|
2055 |
"</div>"
|
2056 |
],
|
2057 |
"text/plain": [
|
2058 |
-
"
|
2059 |
-
"
|
2060 |
-
"
|
2061 |
-
"
|
2062 |
-
"
|
2063 |
-
"
|
2064 |
]
|
2065 |
},
|
2066 |
"execution_count": 27,
|
@@ -2117,61 +2110,61 @@
|
|
2117 |
" </thead>\n",
|
2118 |
" <tbody>\n",
|
2119 |
" <tr>\n",
|
2120 |
-
" <th>
|
2121 |
-
" <td>
|
2122 |
-
" <td>
|
2123 |
-
" <td>
|
2124 |
-
" <td>
|
2125 |
-
" <td>
|
2126 |
-
" <td>
|
2127 |
" </tr>\n",
|
2128 |
" <tr>\n",
|
2129 |
-
" <th>
|
2130 |
" <td>Tennessee</td>\n",
|
2131 |
" <td>TN</td>\n",
|
2132 |
-
" <td>
|
2133 |
-
" <td>
|
2134 |
-
" <td>
|
2135 |
-
" <td>
|
2136 |
" </tr>\n",
|
2137 |
" <tr>\n",
|
2138 |
-
" <th>
|
2139 |
-
" <td>
|
2140 |
-
" <td>
|
2141 |
-
" <td>
|
2142 |
-
" <td>
|
2143 |
-
" <td>
|
2144 |
-
" <td>
|
2145 |
" </tr>\n",
|
2146 |
" <tr>\n",
|
2147 |
-
" <th>
|
2148 |
-
" <td>
|
2149 |
-
" <td>
|
2150 |
-
" <td>
|
2151 |
-
" <td>
|
2152 |
-
" <td>
|
2153 |
-
" <td>
|
2154 |
" </tr>\n",
|
2155 |
" <tr>\n",
|
2156 |
-
" <th>
|
2157 |
-
" <td>
|
2158 |
-
" <td>
|
2159 |
-
" <td>
|
2160 |
-
" <td>
|
2161 |
-
" <td>
|
2162 |
-
" <td>
|
2163 |
" </tr>\n",
|
2164 |
" </tbody>\n",
|
2165 |
"</table>\n",
|
2166 |
"</div>"
|
2167 |
],
|
2168 |
"text/plain": [
|
2169 |
-
"
|
2170 |
-
"
|
2171 |
-
"
|
2172 |
-
"
|
2173 |
-
"
|
2174 |
-
"
|
2175 |
]
|
2176 |
},
|
2177 |
"execution_count": 28,
|
@@ -2230,13 +2223,6 @@
|
|
2230 |
"source": [
|
2231 |
"df5.info()"
|
2232 |
]
|
2233 |
-
},
|
2234 |
-
{
|
2235 |
-
"cell_type": "code",
|
2236 |
-
"execution_count": null,
|
2237 |
-
"metadata": {},
|
2238 |
-
"outputs": [],
|
2239 |
-
"source": []
|
2240 |
}
|
2241 |
],
|
2242 |
"metadata": {
|
|
|
51 |
" </thead>\n",
|
52 |
" <tbody>\n",
|
53 |
" <tr>\n",
|
54 |
+
" <th>20844</th>\n",
|
55 |
" <td>NaN</td>\n",
|
56 |
+
" <td>Montana</td>\n",
|
57 |
+
" <td>30.0</td>\n",
|
58 |
+
" <td>Beaverhead County, MT</td>\n",
|
59 |
+
" <td>30001.0</td>\n",
|
60 |
+
" <td>2008.0</td>\n",
|
61 |
+
" <td>2008.0</td>\n",
|
62 |
+
" <td>9166</td>\n",
|
63 |
" </tr>\n",
|
64 |
" <tr>\n",
|
65 |
+
" <th>419</th>\n",
|
66 |
" <td>NaN</td>\n",
|
67 |
+
" <td>Alabama</td>\n",
|
68 |
+
" <td>1.0</td>\n",
|
69 |
+
" <td>Hale County, AL</td>\n",
|
70 |
+
" <td>1065.0</td>\n",
|
71 |
+
" <td>2006.0</td>\n",
|
72 |
+
" <td>2006.0</td>\n",
|
73 |
+
" <td>16427</td>\n",
|
74 |
" </tr>\n",
|
75 |
" <tr>\n",
|
76 |
+
" <th>14805</th>\n",
|
77 |
" <td>NaN</td>\n",
|
78 |
+
" <td>Louisiana</td>\n",
|
79 |
+
" <td>22.0</td>\n",
|
80 |
+
" <td>Franklin Parish, LA</td>\n",
|
81 |
+
" <td>22041.0</td>\n",
|
82 |
+
" <td>2014.0</td>\n",
|
83 |
+
" <td>2014.0</td>\n",
|
84 |
+
" <td>20441</td>\n",
|
85 |
" </tr>\n",
|
86 |
" <tr>\n",
|
87 |
+
" <th>1416</th>\n",
|
88 |
" <td>NaN</td>\n",
|
89 |
+
" <td>Arizona</td>\n",
|
90 |
+
" <td>4.0</td>\n",
|
91 |
+
" <td>Maricopa County, AZ</td>\n",
|
92 |
+
" <td>4013.0</td>\n",
|
93 |
+
" <td>2015.0</td>\n",
|
94 |
+
" <td>2015.0</td>\n",
|
95 |
+
" <td>4174423</td>\n",
|
96 |
" </tr>\n",
|
97 |
" <tr>\n",
|
98 |
+
" <th>8090</th>\n",
|
99 |
" <td>NaN</td>\n",
|
100 |
+
" <td>Illinois</td>\n",
|
101 |
+
" <td>17.0</td>\n",
|
102 |
+
" <td>Edgar County, IL</td>\n",
|
103 |
+
" <td>17045.0</td>\n",
|
104 |
+
" <td>2007.0</td>\n",
|
105 |
+
" <td>2007.0</td>\n",
|
106 |
+
" <td>18929</td>\n",
|
107 |
" </tr>\n",
|
108 |
" </tbody>\n",
|
109 |
"</table>\n",
|
110 |
"</div>"
|
111 |
],
|
112 |
"text/plain": [
|
113 |
+
" Notes State State Code County County Code \\\n",
|
114 |
+
"20844 NaN Montana 30.0 Beaverhead County, MT 30001.0 \n",
|
115 |
+
"419 NaN Alabama 1.0 Hale County, AL 1065.0 \n",
|
116 |
+
"14805 NaN Louisiana 22.0 Franklin Parish, LA 22041.0 \n",
|
117 |
+
"1416 NaN Arizona 4.0 Maricopa County, AZ 4013.0 \n",
|
118 |
+
"8090 NaN Illinois 17.0 Edgar County, IL 17045.0 \n",
|
119 |
"\n",
|
120 |
" Yearly July 1st Estimates Yearly July 1st Estimates Code Population \n",
|
121 |
+
"20844 2008.0 2008.0 9166 \n",
|
122 |
+
"419 2006.0 2006.0 16427 \n",
|
123 |
+
"14805 2014.0 2014.0 20441 \n",
|
124 |
+
"1416 2015.0 2015.0 4174423 \n",
|
125 |
+
"8090 2007.0 2007.0 18929 "
|
126 |
]
|
127 |
},
|
128 |
"execution_count": 2,
|
|
|
132 |
],
|
133 |
"source": [
|
134 |
"# Load Raw Data File\n",
|
135 |
+
"df = pd.read_csv(\"../.01_Data/01_Raw/raw_population.txt\", sep=\"\\t\")\n",
|
136 |
"df.sample(5)"
|
137 |
]
|
138 |
},
|
|
|
450 |
" </thead>\n",
|
451 |
" <tbody>\n",
|
452 |
" <tr>\n",
|
453 |
+
" <th>28339</th>\n",
|
454 |
+
" <td>Oklahoma</td>\n",
|
455 |
+
" <td>40.0</td>\n",
|
456 |
+
" <td>McClain County, OK</td>\n",
|
457 |
+
" <td>40087.0</td>\n",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
458 |
" <td>2015.0</td>\n",
|
459 |
" <td>2015.0</td>\n",
|
460 |
+
" <td>37981</td>\n",
|
461 |
" </tr>\n",
|
462 |
" <tr>\n",
|
463 |
+
" <th>23032</th>\n",
|
464 |
+
" <td>New Hampshire</td>\n",
|
465 |
+
" <td>33.0</td>\n",
|
466 |
+
" <td>Cheshire County, NH</td>\n",
|
467 |
+
" <td>33005.0</td>\n",
|
468 |
+
" <td>2012.0</td>\n",
|
469 |
+
" <td>2012.0</td>\n",
|
470 |
+
" <td>76957</td>\n",
|
471 |
" </tr>\n",
|
472 |
" <tr>\n",
|
473 |
+
" <th>13840</th>\n",
|
474 |
+
" <td>Kentucky</td>\n",
|
475 |
+
" <td>21.0</td>\n",
|
476 |
+
" <td>Letcher County, KY</td>\n",
|
477 |
+
" <td>21133.0</td>\n",
|
478 |
+
" <td>2011.0</td>\n",
|
479 |
+
" <td>2011.0</td>\n",
|
480 |
+
" <td>24375</td>\n",
|
481 |
+
" </tr>\n",
|
482 |
+
" <tr>\n",
|
483 |
+
" <th>8898</th>\n",
|
484 |
+
" <td>Illinois</td>\n",
|
485 |
+
" <td>17.0</td>\n",
|
486 |
+
" <td>Schuyler County, IL</td>\n",
|
487 |
+
" <td>17169.0</td>\n",
|
488 |
+
" <td>2009.0</td>\n",
|
489 |
+
" <td>2009.0</td>\n",
|
490 |
+
" <td>7489</td>\n",
|
491 |
+
" </tr>\n",
|
492 |
+
" <tr>\n",
|
493 |
+
" <th>18087</th>\n",
|
494 |
+
" <td>Minnesota</td>\n",
|
495 |
+
" <td>27.0</td>\n",
|
496 |
+
" <td>Stearns County, MN</td>\n",
|
497 |
+
" <td>27145.0</td>\n",
|
498 |
+
" <td>2007.0</td>\n",
|
499 |
+
" <td>2007.0</td>\n",
|
500 |
+
" <td>146591</td>\n",
|
501 |
" </tr>\n",
|
502 |
" </tbody>\n",
|
503 |
"</table>\n",
|
504 |
"</div>"
|
505 |
],
|
506 |
"text/plain": [
|
507 |
+
" State State Code County County Code \\\n",
|
508 |
+
"28339 Oklahoma 40.0 McClain County, OK 40087.0 \n",
|
509 |
+
"23032 New Hampshire 33.0 Cheshire County, NH 33005.0 \n",
|
510 |
+
"13840 Kentucky 21.0 Letcher County, KY 21133.0 \n",
|
511 |
+
"8898 Illinois 17.0 Schuyler County, IL 17169.0 \n",
|
512 |
+
"18087 Minnesota 27.0 Stearns County, MN 27145.0 \n",
|
513 |
"\n",
|
514 |
" Yearly July 1st Estimates Yearly July 1st Estimates Code Population \n",
|
515 |
+
"28339 2015.0 2015.0 37981 \n",
|
516 |
+
"23032 2012.0 2012.0 76957 \n",
|
517 |
+
"13840 2011.0 2011.0 24375 \n",
|
518 |
+
"8898 2009.0 2009.0 7489 \n",
|
519 |
+
"18087 2007.0 2007.0 146591 "
|
520 |
]
|
521 |
},
|
522 |
"execution_count": 8,
|
|
|
640 |
" </thead>\n",
|
641 |
" <tbody>\n",
|
642 |
" <tr>\n",
|
643 |
+
" <th>3169</th>\n",
|
644 |
+
" <td>California</td>\n",
|
645 |
+
" <td>06</td>\n",
|
646 |
+
" <td>Trinity County, CA</td>\n",
|
647 |
+
" <td>06105</td>\n",
|
648 |
+
" <td>2013</td>\n",
|
649 |
+
" <td>2013.0</td>\n",
|
650 |
+
" <td>13427</td>\n",
|
651 |
" </tr>\n",
|
652 |
" <tr>\n",
|
653 |
+
" <th>13252</th>\n",
|
654 |
+
" <td>Kentucky</td>\n",
|
655 |
+
" <td>21</td>\n",
|
656 |
+
" <td>Carter County, KY</td>\n",
|
657 |
+
" <td>21043</td>\n",
|
658 |
+
" <td>2008</td>\n",
|
659 |
+
" <td>2008.0</td>\n",
|
660 |
+
" <td>27752</td>\n",
|
661 |
" </tr>\n",
|
662 |
" <tr>\n",
|
663 |
+
" <th>39311</th>\n",
|
664 |
+
" <td>West Virginia</td>\n",
|
665 |
+
" <td>54</td>\n",
|
666 |
+
" <td>Marion County, WV</td>\n",
|
667 |
+
" <td>54049</td>\n",
|
668 |
+
" <td>2015</td>\n",
|
669 |
+
" <td>2015.0</td>\n",
|
670 |
+
" <td>56815</td>\n",
|
671 |
" </tr>\n",
|
672 |
" <tr>\n",
|
673 |
+
" <th>25647</th>\n",
|
674 |
+
" <td>North Carolina</td>\n",
|
675 |
+
" <td>37</td>\n",
|
676 |
+
" <td>Robeson County, NC</td>\n",
|
677 |
+
" <td>37155</td>\n",
|
678 |
+
" <td>2014</td>\n",
|
679 |
+
" <td>2014.0</td>\n",
|
680 |
+
" <td>134920</td>\n",
|
681 |
" </tr>\n",
|
682 |
" <tr>\n",
|
683 |
+
" <th>16468</th>\n",
|
684 |
+
" <td>Michigan</td>\n",
|
685 |
+
" <td>26</td>\n",
|
686 |
+
" <td>Houghton County, MI</td>\n",
|
687 |
+
" <td>26061</td>\n",
|
688 |
+
" <td>2013</td>\n",
|
689 |
+
" <td>2013.0</td>\n",
|
690 |
+
" <td>36691</td>\n",
|
691 |
" </tr>\n",
|
692 |
" </tbody>\n",
|
693 |
"</table>\n",
|
694 |
"</div>"
|
695 |
],
|
696 |
"text/plain": [
|
697 |
+
" State State Code County County Code \\\n",
|
698 |
+
"3169 California 06 Trinity County, CA 06105 \n",
|
699 |
+
"13252 Kentucky 21 Carter County, KY 21043 \n",
|
700 |
+
"39311 West Virginia 54 Marion County, WV 54049 \n",
|
701 |
+
"25647 North Carolina 37 Robeson County, NC 37155 \n",
|
702 |
+
"16468 Michigan 26 Houghton County, MI 26061 \n",
|
703 |
"\n",
|
704 |
" Yearly July 1st Estimates Yearly July 1st Estimates Code Population \n",
|
705 |
+
"3169 2013 2013.0 13427 \n",
|
706 |
+
"13252 2008 2008.0 27752 \n",
|
707 |
+
"39311 2015 2015.0 56815 \n",
|
708 |
+
"25647 2014 2014.0 134920 \n",
|
709 |
+
"16468 2013 2013.0 36691 "
|
710 |
]
|
711 |
},
|
712 |
"execution_count": 12,
|
|
|
814 |
" </thead>\n",
|
815 |
" <tbody>\n",
|
816 |
" <tr>\n",
|
817 |
+
" <th>20737</th>\n",
|
818 |
+
" <td>Missouri</td>\n",
|
819 |
+
" <td>29</td>\n",
|
820 |
+
" <td>Vernon County, MO</td>\n",
|
821 |
+
" <td>29217</td>\n",
|
822 |
+
" <td>2005</td>\n",
|
823 |
+
" <td>20722</td>\n",
|
824 |
" </tr>\n",
|
825 |
" <tr>\n",
|
826 |
+
" <th>34648</th>\n",
|
827 |
+
" <td>Texas</td>\n",
|
828 |
+
" <td>48</td>\n",
|
829 |
+
" <td>Knox County, TX</td>\n",
|
830 |
+
" <td>48275</td>\n",
|
831 |
+
" <td>2006</td>\n",
|
832 |
+
" <td>3788</td>\n",
|
833 |
+
" </tr>\n",
|
834 |
+
" <tr>\n",
|
835 |
+
" <th>8311</th>\n",
|
836 |
+
" <td>Illinois</td>\n",
|
837 |
+
" <td>17</td>\n",
|
838 |
+
" <td>Jasper County, IL</td>\n",
|
839 |
+
" <td>17079</td>\n",
|
840 |
+
" <td>2007</td>\n",
|
841 |
+
" <td>9776</td>\n",
|
842 |
" </tr>\n",
|
843 |
" <tr>\n",
|
844 |
+
" <th>31809</th>\n",
|
845 |
" <td>Tennessee</td>\n",
|
846 |
" <td>47</td>\n",
|
847 |
" <td>Clay County, TN</td>\n",
|
848 |
" <td>47027</td>\n",
|
849 |
+
" <td>2014</td>\n",
|
850 |
+
" <td>7626</td>\n",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
851 |
" </tr>\n",
|
852 |
" <tr>\n",
|
853 |
+
" <th>14247</th>\n",
|
854 |
+
" <td>Kentucky</td>\n",
|
855 |
+
" <td>21</td>\n",
|
856 |
+
" <td>Pike County, KY</td>\n",
|
857 |
+
" <td>21195</td>\n",
|
858 |
" <td>2015</td>\n",
|
859 |
+
" <td>61831</td>\n",
|
860 |
" </tr>\n",
|
861 |
" </tbody>\n",
|
862 |
"</table>\n",
|
863 |
"</div>"
|
864 |
],
|
865 |
"text/plain": [
|
866 |
+
" State State_Code County County_Code Year Population\n",
|
867 |
+
"20737 Missouri 29 Vernon County, MO 29217 2005 20722\n",
|
868 |
+
"34648 Texas 48 Knox County, TX 48275 2006 3788\n",
|
869 |
+
"8311 Illinois 17 Jasper County, IL 17079 2007 9776\n",
|
870 |
+
"31809 Tennessee 47 Clay County, TN 47027 2014 7626\n",
|
871 |
+
"14247 Kentucky 21 Pike County, KY 21195 2015 61831"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
872 |
]
|
873 |
},
|
874 |
"execution_count": 15,
|
|
|
913 |
" </thead>\n",
|
914 |
" <tbody>\n",
|
915 |
" <tr>\n",
|
916 |
+
" <th>237</th>\n",
|
917 |
+
" <td>TUOLUMNE</td>\n",
|
918 |
+
" <td>CA</td>\n",
|
919 |
+
" <td>6109</td>\n",
|
920 |
" </tr>\n",
|
921 |
" <tr>\n",
|
922 |
+
" <th>2652</th>\n",
|
923 |
+
" <td>KIMBLE</td>\n",
|
924 |
+
" <td>TX</td>\n",
|
925 |
+
" <td>48267</td>\n",
|
926 |
" </tr>\n",
|
927 |
" <tr>\n",
|
928 |
+
" <th>2053</th>\n",
|
929 |
+
" <td>COLUMBIANA</td>\n",
|
930 |
+
" <td>OH</td>\n",
|
931 |
+
" <td>39029</td>\n",
|
932 |
" </tr>\n",
|
933 |
" <tr>\n",
|
934 |
+
" <th>2963</th>\n",
|
935 |
+
" <td>GRANT</td>\n",
|
936 |
+
" <td>WA</td>\n",
|
937 |
+
" <td>53025</td>\n",
|
938 |
" </tr>\n",
|
939 |
" <tr>\n",
|
940 |
+
" <th>492</th>\n",
|
941 |
+
" <td>OGLETHORPE</td>\n",
|
942 |
+
" <td>GA</td>\n",
|
943 |
+
" <td>13221</td>\n",
|
944 |
" </tr>\n",
|
945 |
" </tbody>\n",
|
946 |
"</table>\n",
|
|
|
948 |
],
|
949 |
"text/plain": [
|
950 |
" BUYER_COUNTY BUYER_STATE countyfips\n",
|
951 |
+
"237 TUOLUMNE CA 6109\n",
|
952 |
+
"2652 KIMBLE TX 48267\n",
|
953 |
+
"2053 COLUMBIANA OH 39029\n",
|
954 |
+
"2963 GRANT WA 53025\n",
|
955 |
+
"492 OGLETHORPE GA 13221"
|
956 |
]
|
957 |
},
|
958 |
"execution_count": 16,
|
|
|
962 |
],
|
963 |
"source": [
|
964 |
"# maps with fips for proper county names\n",
|
965 |
+
"fips = pd.read_csv(\"../.01_Data/01_Raw/county_fips.csv\")\n",
|
966 |
"fips.sample(5)"
|
967 |
]
|
968 |
},
|
|
|
1736 |
" </thead>\n",
|
1737 |
" <tbody>\n",
|
1738 |
" <tr>\n",
|
1739 |
+
" <th>33059</th>\n",
|
1740 |
+
" <td>Texas</td>\n",
|
1741 |
+
" <td>48</td>\n",
|
1742 |
+
" <td>Coryell County, TX</td>\n",
|
1743 |
+
" <td>48099</td>\n",
|
1744 |
+
" <td>2003</td>\n",
|
1745 |
+
" <td>71364</td>\n",
|
1746 |
+
" <td>CORYELL</td>\n",
|
1747 |
+
" <td>TX</td>\n",
|
1748 |
+
" <td>48099</td>\n",
|
1749 |
" <td>both</td>\n",
|
1750 |
" </tr>\n",
|
1751 |
" <tr>\n",
|
1752 |
+
" <th>32136</th>\n",
|
1753 |
+
" <td>Tennessee</td>\n",
|
1754 |
+
" <td>47</td>\n",
|
1755 |
+
" <td>Robertson County, TN</td>\n",
|
1756 |
+
" <td>47147</td>\n",
|
1757 |
+
" <td>2003</td>\n",
|
1758 |
+
" <td>57682</td>\n",
|
1759 |
+
" <td>ROBERTSON</td>\n",
|
1760 |
+
" <td>TN</td>\n",
|
1761 |
+
" <td>47147</td>\n",
|
1762 |
" <td>both</td>\n",
|
1763 |
" </tr>\n",
|
1764 |
" <tr>\n",
|
1765 |
+
" <th>24181</th>\n",
|
1766 |
+
" <td>New York</td>\n",
|
1767 |
+
" <td>36</td>\n",
|
1768 |
+
" <td>Yates County, NY</td>\n",
|
1769 |
+
" <td>36123</td>\n",
|
1770 |
+
" <td>2004</td>\n",
|
1771 |
+
" <td>25008</td>\n",
|
1772 |
+
" <td>YATES</td>\n",
|
1773 |
+
" <td>NY</td>\n",
|
1774 |
+
" <td>36123</td>\n",
|
1775 |
" <td>both</td>\n",
|
1776 |
" </tr>\n",
|
1777 |
" <tr>\n",
|
1778 |
+
" <th>25432</th>\n",
|
1779 |
+
" <td>North Carolina</td>\n",
|
1780 |
+
" <td>37</td>\n",
|
1781 |
+
" <td>Wayne County, NC</td>\n",
|
1782 |
+
" <td>37191</td>\n",
|
1783 |
" <td>2007</td>\n",
|
1784 |
+
" <td>118942</td>\n",
|
1785 |
+
" <td>WAYNE</td>\n",
|
1786 |
+
" <td>NC</td>\n",
|
1787 |
+
" <td>37191</td>\n",
|
1788 |
" <td>both</td>\n",
|
1789 |
" </tr>\n",
|
1790 |
" <tr>\n",
|
1791 |
+
" <th>1498</th>\n",
|
1792 |
+
" <td>Arkansas</td>\n",
|
1793 |
+
" <td>05</td>\n",
|
1794 |
+
" <td>Jackson County, AR</td>\n",
|
1795 |
+
" <td>05067</td>\n",
|
1796 |
+
" <td>2006</td>\n",
|
1797 |
+
" <td>18092</td>\n",
|
1798 |
+
" <td>JACKSON</td>\n",
|
1799 |
+
" <td>AR</td>\n",
|
1800 |
+
" <td>05067</td>\n",
|
1801 |
" <td>both</td>\n",
|
1802 |
" </tr>\n",
|
1803 |
" </tbody>\n",
|
|
|
1805 |
"</div>"
|
1806 |
],
|
1807 |
"text/plain": [
|
1808 |
+
" State State_Code County County_Code Year \\\n",
|
1809 |
+
"33059 Texas 48 Coryell County, TX 48099 2003 \n",
|
1810 |
+
"32136 Tennessee 47 Robertson County, TN 47147 2003 \n",
|
1811 |
+
"24181 New York 36 Yates County, NY 36123 2004 \n",
|
1812 |
+
"25432 North Carolina 37 Wayne County, NC 37191 2007 \n",
|
1813 |
+
"1498 Arkansas 05 Jackson County, AR 05067 2006 \n",
|
1814 |
"\n",
|
1815 |
+
" Population BUYER_COUNTY BUYER_STATE countyfips _merge \n",
|
1816 |
+
"33059 71364 CORYELL TX 48099 both \n",
|
1817 |
+
"32136 57682 ROBERTSON TN 47147 both \n",
|
1818 |
+
"24181 25008 YATES NY 36123 both \n",
|
1819 |
+
"25432 118942 WAYNE NC 37191 both \n",
|
1820 |
+
"1498 18092 JACKSON AR 05067 both "
|
1821 |
]
|
1822 |
},
|
1823 |
"execution_count": 23,
|
|
|
1896 |
" </thead>\n",
|
1897 |
" <tbody>\n",
|
1898 |
" <tr>\n",
|
1899 |
+
" <th>16</th>\n",
|
1900 |
+
" <td>Kansas</td>\n",
|
1901 |
+
" <td>Kans.</td>\n",
|
1902 |
+
" <td>KS</td>\n",
|
1903 |
" </tr>\n",
|
1904 |
" <tr>\n",
|
1905 |
+
" <th>5</th>\n",
|
1906 |
+
" <td>Colorado</td>\n",
|
1907 |
+
" <td>Colo.</td>\n",
|
1908 |
+
" <td>CO</td>\n",
|
1909 |
" </tr>\n",
|
1910 |
" <tr>\n",
|
1911 |
+
" <th>34</th>\n",
|
1912 |
+
" <td>North Dakota</td>\n",
|
1913 |
+
" <td>N.D.</td>\n",
|
1914 |
+
" <td>ND</td>\n",
|
1915 |
" </tr>\n",
|
1916 |
" <tr>\n",
|
1917 |
+
" <th>10</th>\n",
|
1918 |
+
" <td>Georgia</td>\n",
|
1919 |
+
" <td>Ga.</td>\n",
|
1920 |
+
" <td>GA</td>\n",
|
1921 |
" </tr>\n",
|
1922 |
" <tr>\n",
|
1923 |
+
" <th>14</th>\n",
|
1924 |
+
" <td>Indiana</td>\n",
|
1925 |
+
" <td>Ind.</td>\n",
|
1926 |
+
" <td>IN</td>\n",
|
1927 |
" </tr>\n",
|
1928 |
" </tbody>\n",
|
1929 |
"</table>\n",
|
1930 |
"</div>"
|
1931 |
],
|
1932 |
"text/plain": [
|
1933 |
+
" state abbrev code\n",
|
1934 |
+
"16 Kansas Kans. KS\n",
|
1935 |
+
"5 Colorado Colo. CO\n",
|
1936 |
+
"34 North Dakota N.D. ND\n",
|
1937 |
+
"10 Georgia Ga. GA\n",
|
1938 |
+
"14 Indiana Ind. IN"
|
1939 |
]
|
1940 |
},
|
1941 |
"execution_count": 25,
|
|
|
1944 |
}
|
1945 |
],
|
1946 |
"source": [
|
1947 |
+
"abbreviations = pd.read_csv(\"../.01_Data/01_Raw/state_abbreviations.csv\")\n",
|
1948 |
"abbreviations.sample(5)"
|
1949 |
]
|
1950 |
},
|
|
|
1999 |
" </thead>\n",
|
2000 |
" <tbody>\n",
|
2001 |
" <tr>\n",
|
2002 |
+
" <th>16193</th>\n",
|
2003 |
+
" <td>Michigan</td>\n",
|
2004 |
+
" <td>LAPEER</td>\n",
|
2005 |
+
" <td>26087</td>\n",
|
2006 |
" <td>2011</td>\n",
|
2007 |
+
" <td>88095</td>\n",
|
2008 |
+
" <td>MI</td>\n",
|
2009 |
" </tr>\n",
|
2010 |
" <tr>\n",
|
2011 |
+
" <th>24405</th>\n",
|
2012 |
+
" <td>North Carolina</td>\n",
|
2013 |
+
" <td>CASWELL</td>\n",
|
2014 |
+
" <td>37033</td>\n",
|
2015 |
+
" <td>2007</td>\n",
|
2016 |
+
" <td>23914</td>\n",
|
2017 |
+
" <td>NC</td>\n",
|
2018 |
" </tr>\n",
|
2019 |
" <tr>\n",
|
2020 |
+
" <th>17883</th>\n",
|
2021 |
+
" <td>Mississippi</td>\n",
|
2022 |
+
" <td>ATTALA</td>\n",
|
2023 |
+
" <td>28007</td>\n",
|
2024 |
" <td>2011</td>\n",
|
2025 |
+
" <td>19386</td>\n",
|
2026 |
+
" <td>MS</td>\n",
|
2027 |
" </tr>\n",
|
2028 |
" <tr>\n",
|
2029 |
+
" <th>30476</th>\n",
|
2030 |
+
" <td>South Dakota</td>\n",
|
2031 |
+
" <td>CLARK</td>\n",
|
2032 |
+
" <td>46025</td>\n",
|
2033 |
+
" <td>2007</td>\n",
|
2034 |
+
" <td>3711</td>\n",
|
2035 |
+
" <td>SD</td>\n",
|
2036 |
" </tr>\n",
|
2037 |
" <tr>\n",
|
2038 |
+
" <th>37845</th>\n",
|
2039 |
+
" <td>Virginia</td>\n",
|
2040 |
+
" <td>NORFOLK CITY</td>\n",
|
2041 |
+
" <td>51710</td>\n",
|
2042 |
+
" <td>2005</td>\n",
|
2043 |
+
" <td>239650</td>\n",
|
2044 |
+
" <td>VA</td>\n",
|
2045 |
" </tr>\n",
|
2046 |
" </tbody>\n",
|
2047 |
"</table>\n",
|
2048 |
"</div>"
|
2049 |
],
|
2050 |
"text/plain": [
|
2051 |
+
" State BUYER_COUNTY County_Code Year Population State_Code\n",
|
2052 |
+
"16193 Michigan LAPEER 26087 2011 88095 MI\n",
|
2053 |
+
"24405 North Carolina CASWELL 37033 2007 23914 NC\n",
|
2054 |
+
"17883 Mississippi ATTALA 28007 2011 19386 MS\n",
|
2055 |
+
"30476 South Dakota CLARK 46025 2007 3711 SD\n",
|
2056 |
+
"37845 Virginia NORFOLK CITY 51710 2005 239650 VA"
|
2057 |
]
|
2058 |
},
|
2059 |
"execution_count": 27,
|
|
|
2110 |
" </thead>\n",
|
2111 |
" <tbody>\n",
|
2112 |
" <tr>\n",
|
2113 |
+
" <th>16301</th>\n",
|
2114 |
+
" <td>Michigan</td>\n",
|
2115 |
+
" <td>MI</td>\n",
|
2116 |
+
" <td>MARQUETTE</td>\n",
|
2117 |
+
" <td>26103</td>\n",
|
2118 |
+
" <td>2015</td>\n",
|
2119 |
+
" <td>67357</td>\n",
|
2120 |
" </tr>\n",
|
2121 |
" <tr>\n",
|
2122 |
+
" <th>31393</th>\n",
|
2123 |
" <td>Tennessee</td>\n",
|
2124 |
" <td>TN</td>\n",
|
2125 |
+
" <td>COFFEE</td>\n",
|
2126 |
+
" <td>47031</td>\n",
|
2127 |
+
" <td>2014</td>\n",
|
2128 |
+
" <td>53555</td>\n",
|
2129 |
" </tr>\n",
|
2130 |
" <tr>\n",
|
2131 |
+
" <th>21251</th>\n",
|
2132 |
+
" <td>Nebraska</td>\n",
|
2133 |
+
" <td>NE</td>\n",
|
2134 |
+
" <td>BUFFALO</td>\n",
|
2135 |
+
" <td>31019</td>\n",
|
2136 |
+
" <td>2012</td>\n",
|
2137 |
+
" <td>47642</td>\n",
|
2138 |
" </tr>\n",
|
2139 |
" <tr>\n",
|
2140 |
+
" <th>16206</th>\n",
|
2141 |
+
" <td>Michigan</td>\n",
|
2142 |
+
" <td>MI</td>\n",
|
2143 |
+
" <td>LEELANAU</td>\n",
|
2144 |
+
" <td>26089</td>\n",
|
2145 |
+
" <td>2011</td>\n",
|
2146 |
+
" <td>21428</td>\n",
|
2147 |
" </tr>\n",
|
2148 |
" <tr>\n",
|
2149 |
+
" <th>6815</th>\n",
|
2150 |
+
" <td>Idaho</td>\n",
|
2151 |
+
" <td>ID</td>\n",
|
2152 |
+
" <td>BANNOCK</td>\n",
|
2153 |
+
" <td>16005</td>\n",
|
2154 |
+
" <td>2006</td>\n",
|
2155 |
+
" <td>78491</td>\n",
|
2156 |
" </tr>\n",
|
2157 |
" </tbody>\n",
|
2158 |
"</table>\n",
|
2159 |
"</div>"
|
2160 |
],
|
2161 |
"text/plain": [
|
2162 |
+
" State State_Code County County_Code Year Population\n",
|
2163 |
+
"16301 Michigan MI MARQUETTE 26103 2015 67357\n",
|
2164 |
+
"31393 Tennessee TN COFFEE 47031 2014 53555\n",
|
2165 |
+
"21251 Nebraska NE BUFFALO 31019 2012 47642\n",
|
2166 |
+
"16206 Michigan MI LEELANAU 26089 2011 21428\n",
|
2167 |
+
"6815 Idaho ID BANNOCK 16005 2006 78491"
|
2168 |
]
|
2169 |
},
|
2170 |
"execution_count": 28,
|
|
|
2223 |
"source": [
|
2224 |
"df5.info()"
|
2225 |
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2226 |
}
|
2227 |
],
|
2228 |
"metadata": {
|
02_Codes/02_population_script.py
CHANGED
@@ -4,9 +4,9 @@ import pandas as pd
|
|
4 |
pd.set_option("mode.copy_on_write", True)
|
5 |
|
6 |
# reading the raw files
|
7 |
-
df = pd.read_csv("01_Data/01_Raw/raw_population.txt", sep="\t")
|
8 |
-
fips = pd.read_csv("01_Data/01_Raw/county_fips.csv")
|
9 |
-
abbreviations = pd.read_csv("01_Data/01_Raw/state_abbreviations.csv")
|
10 |
|
11 |
# ------------------------------------------
|
12 |
# dropping the unnecessary columns
|
@@ -133,4 +133,4 @@ df5 = df5[
|
|
133 |
# ------------------------------------------
|
134 |
|
135 |
# Writing to Parquet
|
136 |
-
df5.to_parquet("01_Data/02_processed/01_Population.parquet", index=False)
|
|
|
4 |
pd.set_option("mode.copy_on_write", True)
|
5 |
|
6 |
# reading the raw files
|
7 |
+
df = pd.read_csv(".01_Data/01_Raw/raw_population.txt", sep="\t")
|
8 |
+
fips = pd.read_csv(".01_Data/01_Raw/county_fips.csv")
|
9 |
+
abbreviations = pd.read_csv(".01_Data/01_Raw/state_abbreviations.csv")
|
10 |
|
11 |
# ------------------------------------------
|
12 |
# dropping the unnecessary columns
|
|
|
133 |
# ------------------------------------------
|
134 |
|
135 |
# Writing to Parquet
|
136 |
+
df5.to_parquet(".01_Data/02_processed/01_Population.parquet", index=False)
|
02_Codes/03_mortality_eda.ipynb
ADDED
@@ -0,0 +1,1640 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": 1,
|
6 |
+
"metadata": {},
|
7 |
+
"outputs": [],
|
8 |
+
"source": [
|
9 |
+
"# Impoting required packages\n",
|
10 |
+
"import pandas as pd\n",
|
11 |
+
"import numpy as np\n",
|
12 |
+
"import zipfile\n",
|
13 |
+
"\n",
|
14 |
+
"# setting default option\n",
|
15 |
+
"pd.set_option(\"mode.copy_on_write\", True)"
|
16 |
+
]
|
17 |
+
},
|
18 |
+
{
|
19 |
+
"cell_type": "code",
|
20 |
+
"execution_count": 2,
|
21 |
+
"metadata": {},
|
22 |
+
"outputs": [
|
23 |
+
{
|
24 |
+
"data": {
|
25 |
+
"text/plain": [
|
26 |
+
"['Underlying Cause of Death, 2009.txt',\n",
|
27 |
+
" '__MACOSX/',\n",
|
28 |
+
" '__MACOSX/._Underlying Cause of Death, 2009.txt',\n",
|
29 |
+
" 'Underlying Cause of Death, 2008.txt',\n",
|
30 |
+
" 'Underlying Cause of Death, 2003.txt',\n",
|
31 |
+
" 'Underlying Cause of Death, 2014.txt',\n",
|
32 |
+
" 'Underlying Cause of Death, 2015.txt',\n",
|
33 |
+
" 'Underlying Cause of Death, 2005.txt',\n",
|
34 |
+
" 'Underlying Cause of Death, 2011.txt',\n",
|
35 |
+
" 'Underlying Cause of Death, 2010.txt',\n",
|
36 |
+
" 'Underlying Cause of Death, 2004.txt',\n",
|
37 |
+
" 'Underlying Cause of Death, 2012.txt',\n",
|
38 |
+
" 'Underlying Cause of Death, 2006.txt',\n",
|
39 |
+
" 'Underlying Cause of Death, 2007.txt',\n",
|
40 |
+
" 'Underlying Cause of Death, 2013.txt']"
|
41 |
+
]
|
42 |
+
},
|
43 |
+
"execution_count": 2,
|
44 |
+
"metadata": {},
|
45 |
+
"output_type": "execute_result"
|
46 |
+
}
|
47 |
+
],
|
48 |
+
"source": [
|
49 |
+
"# View the files present in the Zip file\n",
|
50 |
+
"z = zipfile.ZipFile(\"../.01_Data/01_Raw/raw_mortality.zip\")\n",
|
51 |
+
"z.namelist()"
|
52 |
+
]
|
53 |
+
},
|
54 |
+
{
|
55 |
+
"cell_type": "code",
|
56 |
+
"execution_count": 3,
|
57 |
+
"metadata": {},
|
58 |
+
"outputs": [
|
59 |
+
{
|
60 |
+
"data": {
|
61 |
+
"text/plain": [
|
62 |
+
"['Underlying Cause of Death, 2003.txt',\n",
|
63 |
+
" 'Underlying Cause of Death, 2004.txt',\n",
|
64 |
+
" 'Underlying Cause of Death, 2005.txt',\n",
|
65 |
+
" 'Underlying Cause of Death, 2006.txt',\n",
|
66 |
+
" 'Underlying Cause of Death, 2007.txt',\n",
|
67 |
+
" 'Underlying Cause of Death, 2008.txt',\n",
|
68 |
+
" 'Underlying Cause of Death, 2009.txt',\n",
|
69 |
+
" 'Underlying Cause of Death, 2010.txt',\n",
|
70 |
+
" 'Underlying Cause of Death, 2011.txt',\n",
|
71 |
+
" 'Underlying Cause of Death, 2012.txt',\n",
|
72 |
+
" 'Underlying Cause of Death, 2013.txt',\n",
|
73 |
+
" 'Underlying Cause of Death, 2014.txt',\n",
|
74 |
+
" 'Underlying Cause of Death, 2015.txt']"
|
75 |
+
]
|
76 |
+
},
|
77 |
+
"execution_count": 3,
|
78 |
+
"metadata": {},
|
79 |
+
"output_type": "execute_result"
|
80 |
+
}
|
81 |
+
],
|
82 |
+
"source": [
|
83 |
+
"# creating list of files which start with \"Underlying\" so as to ignore system files\n",
|
84 |
+
"file_list = sorted([f for f in z.namelist() if f.startswith(\"Underlying\")])\n",
|
85 |
+
"file_list"
|
86 |
+
]
|
87 |
+
},
|
88 |
+
{
|
89 |
+
"cell_type": "code",
|
90 |
+
"execution_count": 4,
|
91 |
+
"metadata": {},
|
92 |
+
"outputs": [
|
93 |
+
{
|
94 |
+
"data": {
|
95 |
+
"text/html": [
|
96 |
+
"<div>\n",
|
97 |
+
"<style scoped>\n",
|
98 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
99 |
+
" vertical-align: middle;\n",
|
100 |
+
" }\n",
|
101 |
+
"\n",
|
102 |
+
" .dataframe tbody tr th {\n",
|
103 |
+
" vertical-align: top;\n",
|
104 |
+
" }\n",
|
105 |
+
"\n",
|
106 |
+
" .dataframe thead th {\n",
|
107 |
+
" text-align: right;\n",
|
108 |
+
" }\n",
|
109 |
+
"</style>\n",
|
110 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
111 |
+
" <thead>\n",
|
112 |
+
" <tr style=\"text-align: right;\">\n",
|
113 |
+
" <th></th>\n",
|
114 |
+
" <th>Notes</th>\n",
|
115 |
+
" <th>County</th>\n",
|
116 |
+
" <th>County Code</th>\n",
|
117 |
+
" <th>Year</th>\n",
|
118 |
+
" <th>Year Code</th>\n",
|
119 |
+
" <th>Drug/Alcohol Induced Cause</th>\n",
|
120 |
+
" <th>Drug/Alcohol Induced Cause Code</th>\n",
|
121 |
+
" <th>Deaths</th>\n",
|
122 |
+
" </tr>\n",
|
123 |
+
" </thead>\n",
|
124 |
+
" <tbody>\n",
|
125 |
+
" <tr>\n",
|
126 |
+
" <th>3308</th>\n",
|
127 |
+
" <td>NaN</td>\n",
|
128 |
+
" <td>Union County, TN</td>\n",
|
129 |
+
" <td>47173.0</td>\n",
|
130 |
+
" <td>2003.0</td>\n",
|
131 |
+
" <td>2003.0</td>\n",
|
132 |
+
" <td>All other non-drug and non-alcohol causes</td>\n",
|
133 |
+
" <td>O9</td>\n",
|
134 |
+
" <td>165.0</td>\n",
|
135 |
+
" </tr>\n",
|
136 |
+
" <tr>\n",
|
137 |
+
" <th>2597</th>\n",
|
138 |
+
" <td>NaN</td>\n",
|
139 |
+
" <td>Rutherford County, NC</td>\n",
|
140 |
+
" <td>37161.0</td>\n",
|
141 |
+
" <td>2003.0</td>\n",
|
142 |
+
" <td>2003.0</td>\n",
|
143 |
+
" <td>All other non-drug and non-alcohol causes</td>\n",
|
144 |
+
" <td>O9</td>\n",
|
145 |
+
" <td>731.0</td>\n",
|
146 |
+
" </tr>\n",
|
147 |
+
" <tr>\n",
|
148 |
+
" <th>717</th>\n",
|
149 |
+
" <td>NaN</td>\n",
|
150 |
+
" <td>Glascock County, GA</td>\n",
|
151 |
+
" <td>13125.0</td>\n",
|
152 |
+
" <td>2003.0</td>\n",
|
153 |
+
" <td>2003.0</td>\n",
|
154 |
+
" <td>All other non-drug and non-alcohol causes</td>\n",
|
155 |
+
" <td>O9</td>\n",
|
156 |
+
" <td>40.0</td>\n",
|
157 |
+
" </tr>\n",
|
158 |
+
" <tr>\n",
|
159 |
+
" <th>2261</th>\n",
|
160 |
+
" <td>NaN</td>\n",
|
161 |
+
" <td>Hillsborough County, NH</td>\n",
|
162 |
+
" <td>33011.0</td>\n",
|
163 |
+
" <td>2003.0</td>\n",
|
164 |
+
" <td>2003.0</td>\n",
|
165 |
+
" <td>Drug poisonings (overdose) Unintentional (X40-...</td>\n",
|
166 |
+
" <td>D1</td>\n",
|
167 |
+
" <td>23.0</td>\n",
|
168 |
+
" </tr>\n",
|
169 |
+
" <tr>\n",
|
170 |
+
" <th>3181</th>\n",
|
171 |
+
" <td>NaN</td>\n",
|
172 |
+
" <td>McPherson County, SD</td>\n",
|
173 |
+
" <td>46089.0</td>\n",
|
174 |
+
" <td>2003.0</td>\n",
|
175 |
+
" <td>2003.0</td>\n",
|
176 |
+
" <td>All other non-drug and non-alcohol causes</td>\n",
|
177 |
+
" <td>O9</td>\n",
|
178 |
+
" <td>39.0</td>\n",
|
179 |
+
" </tr>\n",
|
180 |
+
" </tbody>\n",
|
181 |
+
"</table>\n",
|
182 |
+
"</div>"
|
183 |
+
],
|
184 |
+
"text/plain": [
|
185 |
+
" Notes County County Code Year Year Code \\\n",
|
186 |
+
"3308 NaN Union County, TN 47173.0 2003.0 2003.0 \n",
|
187 |
+
"2597 NaN Rutherford County, NC 37161.0 2003.0 2003.0 \n",
|
188 |
+
"717 NaN Glascock County, GA 13125.0 2003.0 2003.0 \n",
|
189 |
+
"2261 NaN Hillsborough County, NH 33011.0 2003.0 2003.0 \n",
|
190 |
+
"3181 NaN McPherson County, SD 46089.0 2003.0 2003.0 \n",
|
191 |
+
"\n",
|
192 |
+
" Drug/Alcohol Induced Cause \\\n",
|
193 |
+
"3308 All other non-drug and non-alcohol causes \n",
|
194 |
+
"2597 All other non-drug and non-alcohol causes \n",
|
195 |
+
"717 All other non-drug and non-alcohol causes \n",
|
196 |
+
"2261 Drug poisonings (overdose) Unintentional (X40-... \n",
|
197 |
+
"3181 All other non-drug and non-alcohol causes \n",
|
198 |
+
"\n",
|
199 |
+
" Drug/Alcohol Induced Cause Code Deaths \n",
|
200 |
+
"3308 O9 165.0 \n",
|
201 |
+
"2597 O9 731.0 \n",
|
202 |
+
"717 O9 40.0 \n",
|
203 |
+
"2261 D1 23.0 \n",
|
204 |
+
"3181 O9 39.0 "
|
205 |
+
]
|
206 |
+
},
|
207 |
+
"execution_count": 4,
|
208 |
+
"metadata": {},
|
209 |
+
"output_type": "execute_result"
|
210 |
+
}
|
211 |
+
],
|
212 |
+
"source": [
|
213 |
+
"# read a single file to understand structure and cleaning rules required\n",
|
214 |
+
"test = pd.read_csv(z.open(file_list[0]), sep=\"\\t\")\n",
|
215 |
+
"test.sample(5)"
|
216 |
+
]
|
217 |
+
},
|
218 |
+
{
|
219 |
+
"cell_type": "code",
|
220 |
+
"execution_count": 5,
|
221 |
+
"metadata": {},
|
222 |
+
"outputs": [
|
223 |
+
{
|
224 |
+
"name": "stdout",
|
225 |
+
"output_type": "stream",
|
226 |
+
"text": [
|
227 |
+
"<class 'pandas.core.frame.DataFrame'>\n",
|
228 |
+
"RangeIndex: 4102 entries, 0 to 4101\n",
|
229 |
+
"Data columns (total 8 columns):\n",
|
230 |
+
" # Column Non-Null Count Dtype \n",
|
231 |
+
"--- ------ -------------- ----- \n",
|
232 |
+
" 0 Notes 15 non-null object \n",
|
233 |
+
" 1 County 4087 non-null object \n",
|
234 |
+
" 2 County Code 4087 non-null float64\n",
|
235 |
+
" 3 Year 4087 non-null float64\n",
|
236 |
+
" 4 Year Code 4087 non-null float64\n",
|
237 |
+
" 5 Drug/Alcohol Induced Cause 4087 non-null object \n",
|
238 |
+
" 6 Drug/Alcohol Induced Cause Code 4087 non-null object \n",
|
239 |
+
" 7 Deaths 4087 non-null float64\n",
|
240 |
+
"dtypes: float64(4), object(4)\n",
|
241 |
+
"memory usage: 256.5+ KB\n"
|
242 |
+
]
|
243 |
+
}
|
244 |
+
],
|
245 |
+
"source": [
|
246 |
+
"test.info()"
|
247 |
+
]
|
248 |
+
},
|
249 |
+
{
|
250 |
+
"cell_type": "code",
|
251 |
+
"execution_count": 6,
|
252 |
+
"metadata": {},
|
253 |
+
"outputs": [
|
254 |
+
{
|
255 |
+
"data": {
|
256 |
+
"text/html": [
|
257 |
+
"<div>\n",
|
258 |
+
"<style scoped>\n",
|
259 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
260 |
+
" vertical-align: middle;\n",
|
261 |
+
" }\n",
|
262 |
+
"\n",
|
263 |
+
" .dataframe tbody tr th {\n",
|
264 |
+
" vertical-align: top;\n",
|
265 |
+
" }\n",
|
266 |
+
"\n",
|
267 |
+
" .dataframe thead th {\n",
|
268 |
+
" text-align: right;\n",
|
269 |
+
" }\n",
|
270 |
+
"</style>\n",
|
271 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
272 |
+
" <thead>\n",
|
273 |
+
" <tr style=\"text-align: right;\">\n",
|
274 |
+
" <th></th>\n",
|
275 |
+
" <th>Notes</th>\n",
|
276 |
+
" <th>County</th>\n",
|
277 |
+
" <th>County Code</th>\n",
|
278 |
+
" <th>Year</th>\n",
|
279 |
+
" <th>Year Code</th>\n",
|
280 |
+
" <th>Drug/Alcohol Induced Cause</th>\n",
|
281 |
+
" <th>Drug/Alcohol Induced Cause Code</th>\n",
|
282 |
+
" <th>Deaths</th>\n",
|
283 |
+
" </tr>\n",
|
284 |
+
" </thead>\n",
|
285 |
+
" <tbody>\n",
|
286 |
+
" <tr>\n",
|
287 |
+
" <th>4087</th>\n",
|
288 |
+
" <td>---</td>\n",
|
289 |
+
" <td>NaN</td>\n",
|
290 |
+
" <td>NaN</td>\n",
|
291 |
+
" <td>NaN</td>\n",
|
292 |
+
" <td>NaN</td>\n",
|
293 |
+
" <td>NaN</td>\n",
|
294 |
+
" <td>NaN</td>\n",
|
295 |
+
" <td>NaN</td>\n",
|
296 |
+
" </tr>\n",
|
297 |
+
" <tr>\n",
|
298 |
+
" <th>4088</th>\n",
|
299 |
+
" <td>Dataset: Underlying Cause of Death, 1999-2017</td>\n",
|
300 |
+
" <td>NaN</td>\n",
|
301 |
+
" <td>NaN</td>\n",
|
302 |
+
" <td>NaN</td>\n",
|
303 |
+
" <td>NaN</td>\n",
|
304 |
+
" <td>NaN</td>\n",
|
305 |
+
" <td>NaN</td>\n",
|
306 |
+
" <td>NaN</td>\n",
|
307 |
+
" </tr>\n",
|
308 |
+
" <tr>\n",
|
309 |
+
" <th>4089</th>\n",
|
310 |
+
" <td>Query Parameters:</td>\n",
|
311 |
+
" <td>NaN</td>\n",
|
312 |
+
" <td>NaN</td>\n",
|
313 |
+
" <td>NaN</td>\n",
|
314 |
+
" <td>NaN</td>\n",
|
315 |
+
" <td>NaN</td>\n",
|
316 |
+
" <td>NaN</td>\n",
|
317 |
+
" <td>NaN</td>\n",
|
318 |
+
" </tr>\n",
|
319 |
+
" <tr>\n",
|
320 |
+
" <th>4090</th>\n",
|
321 |
+
" <td>Group By: County; Year; Drug/Alcohol Induced C...</td>\n",
|
322 |
+
" <td>NaN</td>\n",
|
323 |
+
" <td>NaN</td>\n",
|
324 |
+
" <td>NaN</td>\n",
|
325 |
+
" <td>NaN</td>\n",
|
326 |
+
" <td>NaN</td>\n",
|
327 |
+
" <td>NaN</td>\n",
|
328 |
+
" <td>NaN</td>\n",
|
329 |
+
" </tr>\n",
|
330 |
+
" <tr>\n",
|
331 |
+
" <th>4091</th>\n",
|
332 |
+
" <td>Show Totals: Disabled</td>\n",
|
333 |
+
" <td>NaN</td>\n",
|
334 |
+
" <td>NaN</td>\n",
|
335 |
+
" <td>NaN</td>\n",
|
336 |
+
" <td>NaN</td>\n",
|
337 |
+
" <td>NaN</td>\n",
|
338 |
+
" <td>NaN</td>\n",
|
339 |
+
" <td>NaN</td>\n",
|
340 |
+
" </tr>\n",
|
341 |
+
" <tr>\n",
|
342 |
+
" <th>4092</th>\n",
|
343 |
+
" <td>Show Zero Values: Disabled</td>\n",
|
344 |
+
" <td>NaN</td>\n",
|
345 |
+
" <td>NaN</td>\n",
|
346 |
+
" <td>NaN</td>\n",
|
347 |
+
" <td>NaN</td>\n",
|
348 |
+
" <td>NaN</td>\n",
|
349 |
+
" <td>NaN</td>\n",
|
350 |
+
" <td>NaN</td>\n",
|
351 |
+
" </tr>\n",
|
352 |
+
" <tr>\n",
|
353 |
+
" <th>4093</th>\n",
|
354 |
+
" <td>Show Suppressed: False</td>\n",
|
355 |
+
" <td>NaN</td>\n",
|
356 |
+
" <td>NaN</td>\n",
|
357 |
+
" <td>NaN</td>\n",
|
358 |
+
" <td>NaN</td>\n",
|
359 |
+
" <td>NaN</td>\n",
|
360 |
+
" <td>NaN</td>\n",
|
361 |
+
" <td>NaN</td>\n",
|
362 |
+
" </tr>\n",
|
363 |
+
" <tr>\n",
|
364 |
+
" <th>4094</th>\n",
|
365 |
+
" <td>---</td>\n",
|
366 |
+
" <td>NaN</td>\n",
|
367 |
+
" <td>NaN</td>\n",
|
368 |
+
" <td>NaN</td>\n",
|
369 |
+
" <td>NaN</td>\n",
|
370 |
+
" <td>NaN</td>\n",
|
371 |
+
" <td>NaN</td>\n",
|
372 |
+
" <td>NaN</td>\n",
|
373 |
+
" </tr>\n",
|
374 |
+
" <tr>\n",
|
375 |
+
" <th>4095</th>\n",
|
376 |
+
" <td>Help: See http://wonder.cdc.gov/wonder/help/uc...</td>\n",
|
377 |
+
" <td>NaN</td>\n",
|
378 |
+
" <td>NaN</td>\n",
|
379 |
+
" <td>NaN</td>\n",
|
380 |
+
" <td>NaN</td>\n",
|
381 |
+
" <td>NaN</td>\n",
|
382 |
+
" <td>NaN</td>\n",
|
383 |
+
" <td>NaN</td>\n",
|
384 |
+
" </tr>\n",
|
385 |
+
" <tr>\n",
|
386 |
+
" <th>4096</th>\n",
|
387 |
+
" <td>---</td>\n",
|
388 |
+
" <td>NaN</td>\n",
|
389 |
+
" <td>NaN</td>\n",
|
390 |
+
" <td>NaN</td>\n",
|
391 |
+
" <td>NaN</td>\n",
|
392 |
+
" <td>NaN</td>\n",
|
393 |
+
" <td>NaN</td>\n",
|
394 |
+
" <td>NaN</td>\n",
|
395 |
+
" </tr>\n",
|
396 |
+
" <tr>\n",
|
397 |
+
" <th>4097</th>\n",
|
398 |
+
" <td>Suggested Citation: Centers for Disease Contro...</td>\n",
|
399 |
+
" <td>NaN</td>\n",
|
400 |
+
" <td>NaN</td>\n",
|
401 |
+
" <td>NaN</td>\n",
|
402 |
+
" <td>NaN</td>\n",
|
403 |
+
" <td>NaN</td>\n",
|
404 |
+
" <td>NaN</td>\n",
|
405 |
+
" <td>NaN</td>\n",
|
406 |
+
" </tr>\n",
|
407 |
+
" <tr>\n",
|
408 |
+
" <th>4098</th>\n",
|
409 |
+
" <td>1999-2017 on CDC WONDER Online Database, relea...</td>\n",
|
410 |
+
" <td>NaN</td>\n",
|
411 |
+
" <td>NaN</td>\n",
|
412 |
+
" <td>NaN</td>\n",
|
413 |
+
" <td>NaN</td>\n",
|
414 |
+
" <td>NaN</td>\n",
|
415 |
+
" <td>NaN</td>\n",
|
416 |
+
" <td>NaN</td>\n",
|
417 |
+
" </tr>\n",
|
418 |
+
" <tr>\n",
|
419 |
+
" <th>4099</th>\n",
|
420 |
+
" <td>compiled from data provided by the 57 vital st...</td>\n",
|
421 |
+
" <td>NaN</td>\n",
|
422 |
+
" <td>NaN</td>\n",
|
423 |
+
" <td>NaN</td>\n",
|
424 |
+
" <td>NaN</td>\n",
|
425 |
+
" <td>NaN</td>\n",
|
426 |
+
" <td>NaN</td>\n",
|
427 |
+
" <td>NaN</td>\n",
|
428 |
+
" </tr>\n",
|
429 |
+
" <tr>\n",
|
430 |
+
" <th>4100</th>\n",
|
431 |
+
" <td>at http://wonder.cdc.gov/ucd-icd10.html on Oct...</td>\n",
|
432 |
+
" <td>NaN</td>\n",
|
433 |
+
" <td>NaN</td>\n",
|
434 |
+
" <td>NaN</td>\n",
|
435 |
+
" <td>NaN</td>\n",
|
436 |
+
" <td>NaN</td>\n",
|
437 |
+
" <td>NaN</td>\n",
|
438 |
+
" <td>NaN</td>\n",
|
439 |
+
" </tr>\n",
|
440 |
+
" <tr>\n",
|
441 |
+
" <th>4101</th>\n",
|
442 |
+
" <td>---</td>\n",
|
443 |
+
" <td>NaN</td>\n",
|
444 |
+
" <td>NaN</td>\n",
|
445 |
+
" <td>NaN</td>\n",
|
446 |
+
" <td>NaN</td>\n",
|
447 |
+
" <td>NaN</td>\n",
|
448 |
+
" <td>NaN</td>\n",
|
449 |
+
" <td>NaN</td>\n",
|
450 |
+
" </tr>\n",
|
451 |
+
" </tbody>\n",
|
452 |
+
"</table>\n",
|
453 |
+
"</div>"
|
454 |
+
],
|
455 |
+
"text/plain": [
|
456 |
+
" Notes County County Code \\\n",
|
457 |
+
"4087 --- NaN NaN \n",
|
458 |
+
"4088 Dataset: Underlying Cause of Death, 1999-2017 NaN NaN \n",
|
459 |
+
"4089 Query Parameters: NaN NaN \n",
|
460 |
+
"4090 Group By: County; Year; Drug/Alcohol Induced C... NaN NaN \n",
|
461 |
+
"4091 Show Totals: Disabled NaN NaN \n",
|
462 |
+
"4092 Show Zero Values: Disabled NaN NaN \n",
|
463 |
+
"4093 Show Suppressed: False NaN NaN \n",
|
464 |
+
"4094 --- NaN NaN \n",
|
465 |
+
"4095 Help: See http://wonder.cdc.gov/wonder/help/uc... NaN NaN \n",
|
466 |
+
"4096 --- NaN NaN \n",
|
467 |
+
"4097 Suggested Citation: Centers for Disease Contro... NaN NaN \n",
|
468 |
+
"4098 1999-2017 on CDC WONDER Online Database, relea... NaN NaN \n",
|
469 |
+
"4099 compiled from data provided by the 57 vital st... NaN NaN \n",
|
470 |
+
"4100 at http://wonder.cdc.gov/ucd-icd10.html on Oct... NaN NaN \n",
|
471 |
+
"4101 --- NaN NaN \n",
|
472 |
+
"\n",
|
473 |
+
" Year Year Code Drug/Alcohol Induced Cause \\\n",
|
474 |
+
"4087 NaN NaN NaN \n",
|
475 |
+
"4088 NaN NaN NaN \n",
|
476 |
+
"4089 NaN NaN NaN \n",
|
477 |
+
"4090 NaN NaN NaN \n",
|
478 |
+
"4091 NaN NaN NaN \n",
|
479 |
+
"4092 NaN NaN NaN \n",
|
480 |
+
"4093 NaN NaN NaN \n",
|
481 |
+
"4094 NaN NaN NaN \n",
|
482 |
+
"4095 NaN NaN NaN \n",
|
483 |
+
"4096 NaN NaN NaN \n",
|
484 |
+
"4097 NaN NaN NaN \n",
|
485 |
+
"4098 NaN NaN NaN \n",
|
486 |
+
"4099 NaN NaN NaN \n",
|
487 |
+
"4100 NaN NaN NaN \n",
|
488 |
+
"4101 NaN NaN NaN \n",
|
489 |
+
"\n",
|
490 |
+
" Drug/Alcohol Induced Cause Code Deaths \n",
|
491 |
+
"4087 NaN NaN \n",
|
492 |
+
"4088 NaN NaN \n",
|
493 |
+
"4089 NaN NaN \n",
|
494 |
+
"4090 NaN NaN \n",
|
495 |
+
"4091 NaN NaN \n",
|
496 |
+
"4092 NaN NaN \n",
|
497 |
+
"4093 NaN NaN \n",
|
498 |
+
"4094 NaN NaN \n",
|
499 |
+
"4095 NaN NaN \n",
|
500 |
+
"4096 NaN NaN \n",
|
501 |
+
"4097 NaN NaN \n",
|
502 |
+
"4098 NaN NaN \n",
|
503 |
+
"4099 NaN NaN \n",
|
504 |
+
"4100 NaN NaN \n",
|
505 |
+
"4101 NaN NaN "
|
506 |
+
]
|
507 |
+
},
|
508 |
+
"execution_count": 6,
|
509 |
+
"metadata": {},
|
510 |
+
"output_type": "execute_result"
|
511 |
+
}
|
512 |
+
],
|
513 |
+
"source": [
|
514 |
+
"# viewing the rows which have non-null values in Notes column\n",
|
515 |
+
"test[test[\"Notes\"].notnull()]"
|
516 |
+
]
|
517 |
+
},
|
518 |
+
{
|
519 |
+
"cell_type": "markdown",
|
520 |
+
"metadata": {},
|
521 |
+
"source": [
|
522 |
+
"We can clean notes in a similar was as we did for the other dataset"
|
523 |
+
]
|
524 |
+
},
|
525 |
+
{
|
526 |
+
"cell_type": "code",
|
527 |
+
"execution_count": 7,
|
528 |
+
"metadata": {},
|
529 |
+
"outputs": [],
|
530 |
+
"source": [
|
531 |
+
"# read data from all the files and append to list\n",
|
532 |
+
"df_list = []\n",
|
533 |
+
"for file in file_list:\n",
|
534 |
+
" # read individual files\n",
|
535 |
+
" df_temp = pd.read_csv(z.open(file), sep=\"\\t\")\n",
|
536 |
+
"\n",
|
537 |
+
" # drop the notes columns and remove rows with null values in State column\n",
|
538 |
+
" df_temp.drop(columns=[\"Notes\"], inplace=True)\n",
|
539 |
+
" df_temp.dropna(subset=[\"County\"], inplace=True)\n",
|
540 |
+
"\n",
|
541 |
+
" # add the cleaned temp Df to the main list\n",
|
542 |
+
" df_list.append(df_temp)"
|
543 |
+
]
|
544 |
+
},
|
545 |
+
{
|
546 |
+
"cell_type": "code",
|
547 |
+
"execution_count": 8,
|
548 |
+
"metadata": {},
|
549 |
+
"outputs": [
|
550 |
+
{
|
551 |
+
"data": {
|
552 |
+
"text/html": [
|
553 |
+
"<div>\n",
|
554 |
+
"<style scoped>\n",
|
555 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
556 |
+
" vertical-align: middle;\n",
|
557 |
+
" }\n",
|
558 |
+
"\n",
|
559 |
+
" .dataframe tbody tr th {\n",
|
560 |
+
" vertical-align: top;\n",
|
561 |
+
" }\n",
|
562 |
+
"\n",
|
563 |
+
" .dataframe thead th {\n",
|
564 |
+
" text-align: right;\n",
|
565 |
+
" }\n",
|
566 |
+
"</style>\n",
|
567 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
568 |
+
" <thead>\n",
|
569 |
+
" <tr style=\"text-align: right;\">\n",
|
570 |
+
" <th></th>\n",
|
571 |
+
" <th>County</th>\n",
|
572 |
+
" <th>County Code</th>\n",
|
573 |
+
" <th>Year</th>\n",
|
574 |
+
" <th>Year Code</th>\n",
|
575 |
+
" <th>Drug/Alcohol Induced Cause</th>\n",
|
576 |
+
" <th>Drug/Alcohol Induced Cause Code</th>\n",
|
577 |
+
" <th>Deaths</th>\n",
|
578 |
+
" </tr>\n",
|
579 |
+
" </thead>\n",
|
580 |
+
" <tbody>\n",
|
581 |
+
" <tr>\n",
|
582 |
+
" <th>32856</th>\n",
|
583 |
+
" <td>Sequoyah County, OK</td>\n",
|
584 |
+
" <td>40135.0</td>\n",
|
585 |
+
" <td>2010.0</td>\n",
|
586 |
+
" <td>2010.0</td>\n",
|
587 |
+
" <td>Drug poisonings (overdose) Unintentional (X40-...</td>\n",
|
588 |
+
" <td>D1</td>\n",
|
589 |
+
" <td>11.0</td>\n",
|
590 |
+
" </tr>\n",
|
591 |
+
" <tr>\n",
|
592 |
+
" <th>11096</th>\n",
|
593 |
+
" <td>Stark County, OH</td>\n",
|
594 |
+
" <td>39151.0</td>\n",
|
595 |
+
" <td>2005.0</td>\n",
|
596 |
+
" <td>2005.0</td>\n",
|
597 |
+
" <td>Drug poisonings (overdose) Unintentional (X40-...</td>\n",
|
598 |
+
" <td>D1</td>\n",
|
599 |
+
" <td>16.0</td>\n",
|
600 |
+
" </tr>\n",
|
601 |
+
" <tr>\n",
|
602 |
+
" <th>48071</th>\n",
|
603 |
+
" <td>Butte County, CA</td>\n",
|
604 |
+
" <td>6007.0</td>\n",
|
605 |
+
" <td>2014.0</td>\n",
|
606 |
+
" <td>2014.0</td>\n",
|
607 |
+
" <td>All other alcohol-induced causes</td>\n",
|
608 |
+
" <td>A9</td>\n",
|
609 |
+
" <td>42.0</td>\n",
|
610 |
+
" </tr>\n",
|
611 |
+
" <tr>\n",
|
612 |
+
" <th>2822</th>\n",
|
613 |
+
" <td>Garfield County, OK</td>\n",
|
614 |
+
" <td>40047.0</td>\n",
|
615 |
+
" <td>2003.0</td>\n",
|
616 |
+
" <td>2003.0</td>\n",
|
617 |
+
" <td>All other non-drug and non-alcohol causes</td>\n",
|
618 |
+
" <td>O9</td>\n",
|
619 |
+
" <td>676.0</td>\n",
|
620 |
+
" </tr>\n",
|
621 |
+
" <tr>\n",
|
622 |
+
" <th>35841</th>\n",
|
623 |
+
" <td>Terrebonne Parish, LA</td>\n",
|
624 |
+
" <td>22109.0</td>\n",
|
625 |
+
" <td>2011.0</td>\n",
|
626 |
+
" <td>2011.0</td>\n",
|
627 |
+
" <td>All other non-drug and non-alcohol causes</td>\n",
|
628 |
+
" <td>O9</td>\n",
|
629 |
+
" <td>952.0</td>\n",
|
630 |
+
" </tr>\n",
|
631 |
+
" </tbody>\n",
|
632 |
+
"</table>\n",
|
633 |
+
"</div>"
|
634 |
+
],
|
635 |
+
"text/plain": [
|
636 |
+
" County County Code Year Year Code \\\n",
|
637 |
+
"32856 Sequoyah County, OK 40135.0 2010.0 2010.0 \n",
|
638 |
+
"11096 Stark County, OH 39151.0 2005.0 2005.0 \n",
|
639 |
+
"48071 Butte County, CA 6007.0 2014.0 2014.0 \n",
|
640 |
+
"2822 Garfield County, OK 40047.0 2003.0 2003.0 \n",
|
641 |
+
"35841 Terrebonne Parish, LA 22109.0 2011.0 2011.0 \n",
|
642 |
+
"\n",
|
643 |
+
" Drug/Alcohol Induced Cause \\\n",
|
644 |
+
"32856 Drug poisonings (overdose) Unintentional (X40-... \n",
|
645 |
+
"11096 Drug poisonings (overdose) Unintentional (X40-... \n",
|
646 |
+
"48071 All other alcohol-induced causes \n",
|
647 |
+
"2822 All other non-drug and non-alcohol causes \n",
|
648 |
+
"35841 All other non-drug and non-alcohol causes \n",
|
649 |
+
"\n",
|
650 |
+
" Drug/Alcohol Induced Cause Code Deaths \n",
|
651 |
+
"32856 D1 11.0 \n",
|
652 |
+
"11096 D1 16.0 \n",
|
653 |
+
"48071 A9 42.0 \n",
|
654 |
+
"2822 O9 676.0 \n",
|
655 |
+
"35841 O9 952.0 "
|
656 |
+
]
|
657 |
+
},
|
658 |
+
"execution_count": 8,
|
659 |
+
"metadata": {},
|
660 |
+
"output_type": "execute_result"
|
661 |
+
}
|
662 |
+
],
|
663 |
+
"source": [
|
664 |
+
"# create the dataframe\n",
|
665 |
+
"df = pd.concat(df_list, ignore_index=True)\n",
|
666 |
+
"df.sample(5)"
|
667 |
+
]
|
668 |
+
},
|
669 |
+
{
|
670 |
+
"cell_type": "code",
|
671 |
+
"execution_count": 9,
|
672 |
+
"metadata": {},
|
673 |
+
"outputs": [
|
674 |
+
{
|
675 |
+
"data": {
|
676 |
+
"text/plain": [
|
677 |
+
"County 0\n",
|
678 |
+
"County Code 0\n",
|
679 |
+
"Year 0\n",
|
680 |
+
"Year Code 0\n",
|
681 |
+
"Drug/Alcohol Induced Cause 0\n",
|
682 |
+
"Drug/Alcohol Induced Cause Code 0\n",
|
683 |
+
"Deaths 0\n",
|
684 |
+
"dtype: int64"
|
685 |
+
]
|
686 |
+
},
|
687 |
+
"execution_count": 9,
|
688 |
+
"metadata": {},
|
689 |
+
"output_type": "execute_result"
|
690 |
+
}
|
691 |
+
],
|
692 |
+
"source": [
|
693 |
+
"# check for null values\n",
|
694 |
+
"df.isnull().sum()"
|
695 |
+
]
|
696 |
+
},
|
697 |
+
{
|
698 |
+
"cell_type": "code",
|
699 |
+
"execution_count": 10,
|
700 |
+
"metadata": {},
|
701 |
+
"outputs": [
|
702 |
+
{
|
703 |
+
"name": "stdout",
|
704 |
+
"output_type": "stream",
|
705 |
+
"text": [
|
706 |
+
"<class 'pandas.core.frame.DataFrame'>\n",
|
707 |
+
"RangeIndex: 57241 entries, 0 to 57240\n",
|
708 |
+
"Data columns (total 7 columns):\n",
|
709 |
+
" # Column Non-Null Count Dtype \n",
|
710 |
+
"--- ------ -------------- ----- \n",
|
711 |
+
" 0 County 57241 non-null object \n",
|
712 |
+
" 1 County Code 57241 non-null float64\n",
|
713 |
+
" 2 Year 57241 non-null float64\n",
|
714 |
+
" 3 Year Code 57241 non-null float64\n",
|
715 |
+
" 4 Drug/Alcohol Induced Cause 57241 non-null object \n",
|
716 |
+
" 5 Drug/Alcohol Induced Cause Code 57241 non-null object \n",
|
717 |
+
" 6 Deaths 57241 non-null object \n",
|
718 |
+
"dtypes: float64(3), object(4)\n",
|
719 |
+
"memory usage: 3.1+ MB\n"
|
720 |
+
]
|
721 |
+
}
|
722 |
+
],
|
723 |
+
"source": [
|
724 |
+
"df.info()"
|
725 |
+
]
|
726 |
+
},
|
727 |
+
{
|
728 |
+
"cell_type": "code",
|
729 |
+
"execution_count": 11,
|
730 |
+
"metadata": {},
|
731 |
+
"outputs": [],
|
732 |
+
"source": [
|
733 |
+
"# Cleaning the data\n",
|
734 |
+
"df2 = df.copy()\n",
|
735 |
+
"\n",
|
736 |
+
"# Pad county code with 0 for consistency with other data sets\n",
|
737 |
+
"df2[\"County Code\"] = df2[\"County Code\"].astype(int).astype(str).str.zfill(5)\n",
|
738 |
+
"\n",
|
739 |
+
"# Convert Year to Int\n",
|
740 |
+
"df2[\"Year\"] = df2[\"Year\"].astype(int)\n",
|
741 |
+
"\n",
|
742 |
+
"# Convert Deaths to Int\n",
|
743 |
+
"df2[\"Deaths\"] = df2[\"Deaths\"].replace(\"Missing\", np.nan)\n",
|
744 |
+
"df2[\"Deaths\"] = (\n",
|
745 |
+
" df2[\"Deaths\"].astype(float).astype(\"Int64\")\n",
|
746 |
+
") # making it as int64 so that we retain null values"
|
747 |
+
]
|
748 |
+
},
|
749 |
+
{
|
750 |
+
"cell_type": "code",
|
751 |
+
"execution_count": 12,
|
752 |
+
"metadata": {},
|
753 |
+
"outputs": [
|
754 |
+
{
|
755 |
+
"data": {
|
756 |
+
"text/plain": [
|
757 |
+
"array(['All other non-drug and non-alcohol causes',\n",
|
758 |
+
" 'Drug poisonings (overdose) Unintentional (X40-X44)',\n",
|
759 |
+
" 'All other alcohol-induced causes',\n",
|
760 |
+
" 'All other drug-induced causes',\n",
|
761 |
+
" 'Drug poisonings (overdose) Suicide (X60-X64)',\n",
|
762 |
+
" 'Drug poisonings (overdose) Undetermined (Y10-Y14)',\n",
|
763 |
+
" 'Alcohol poisonings (overdose) (X45, X65, Y15)',\n",
|
764 |
+
" 'Drug poisonings (overdose) Homicide (X85)'], dtype=object)"
|
765 |
+
]
|
766 |
+
},
|
767 |
+
"execution_count": 12,
|
768 |
+
"metadata": {},
|
769 |
+
"output_type": "execute_result"
|
770 |
+
}
|
771 |
+
],
|
772 |
+
"source": [
|
773 |
+
"# Check the causes of death present\n",
|
774 |
+
"df2[\"Drug/Alcohol Induced Cause\"].unique()"
|
775 |
+
]
|
776 |
+
},
|
777 |
+
{
|
778 |
+
"cell_type": "code",
|
779 |
+
"execution_count": 13,
|
780 |
+
"metadata": {},
|
781 |
+
"outputs": [],
|
782 |
+
"source": [
|
783 |
+
"# Filter the data to only include drug related deaths\n",
|
784 |
+
"required_causes = [\n",
|
785 |
+
" \"Drug poisonings (overdose) Unintentional (X40-X44)\",\n",
|
786 |
+
" \"All other drug-induced causes\",\n",
|
787 |
+
" \"Drug poisonings (overdose) Homicide (X85)\",\n",
|
788 |
+
" \"Drug poisonings (overdose) Suicide (X60-X64)\",\n",
|
789 |
+
" \"Drug poisonings (overdose) Undetermined (Y10-Y14)\",\n",
|
790 |
+
"]"
|
791 |
+
]
|
792 |
+
},
|
793 |
+
{
|
794 |
+
"cell_type": "code",
|
795 |
+
"execution_count": 14,
|
796 |
+
"metadata": {},
|
797 |
+
"outputs": [],
|
798 |
+
"source": [
|
799 |
+
"df3 = df2[df2[\"Drug/Alcohol Induced Cause\"].isin(required_causes)]"
|
800 |
+
]
|
801 |
+
},
|
802 |
+
{
|
803 |
+
"cell_type": "code",
|
804 |
+
"execution_count": 15,
|
805 |
+
"metadata": {},
|
806 |
+
"outputs": [],
|
807 |
+
"source": [
|
808 |
+
"# remove extra columns\n",
|
809 |
+
"df3.drop(columns=[\"Year Code\", \"Drug/Alcohol Induced Cause Code\"], inplace=True)"
|
810 |
+
]
|
811 |
+
},
|
812 |
+
{
|
813 |
+
"cell_type": "code",
|
814 |
+
"execution_count": 16,
|
815 |
+
"metadata": {},
|
816 |
+
"outputs": [
|
817 |
+
{
|
818 |
+
"data": {
|
819 |
+
"text/html": [
|
820 |
+
"<div>\n",
|
821 |
+
"<style scoped>\n",
|
822 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
823 |
+
" vertical-align: middle;\n",
|
824 |
+
" }\n",
|
825 |
+
"\n",
|
826 |
+
" .dataframe tbody tr th {\n",
|
827 |
+
" vertical-align: top;\n",
|
828 |
+
" }\n",
|
829 |
+
"\n",
|
830 |
+
" .dataframe thead th {\n",
|
831 |
+
" text-align: right;\n",
|
832 |
+
" }\n",
|
833 |
+
"</style>\n",
|
834 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
835 |
+
" <thead>\n",
|
836 |
+
" <tr style=\"text-align: right;\">\n",
|
837 |
+
" <th></th>\n",
|
838 |
+
" <th>County</th>\n",
|
839 |
+
" <th>County Code</th>\n",
|
840 |
+
" <th>Year</th>\n",
|
841 |
+
" <th>Drug/Alcohol Induced Cause</th>\n",
|
842 |
+
" <th>Deaths</th>\n",
|
843 |
+
" </tr>\n",
|
844 |
+
" </thead>\n",
|
845 |
+
" <tbody>\n",
|
846 |
+
" <tr>\n",
|
847 |
+
" <th>30939</th>\n",
|
848 |
+
" <td>Wabash County, IN</td>\n",
|
849 |
+
" <td>18169</td>\n",
|
850 |
+
" <td>2010</td>\n",
|
851 |
+
" <td>Drug poisonings (overdose) Unintentional (X40-...</td>\n",
|
852 |
+
" <td>10</td>\n",
|
853 |
+
" </tr>\n",
|
854 |
+
" <tr>\n",
|
855 |
+
" <th>36770</th>\n",
|
856 |
+
" <td>Cayuga County, NY</td>\n",
|
857 |
+
" <td>36011</td>\n",
|
858 |
+
" <td>2011</td>\n",
|
859 |
+
" <td>Drug poisonings (overdose) Unintentional (X40-...</td>\n",
|
860 |
+
" <td>10</td>\n",
|
861 |
+
" </tr>\n",
|
862 |
+
" <tr>\n",
|
863 |
+
" <th>2317</th>\n",
|
864 |
+
" <td>Passaic County, NJ</td>\n",
|
865 |
+
" <td>34031</td>\n",
|
866 |
+
" <td>2003</td>\n",
|
867 |
+
" <td>Drug poisonings (overdose) Unintentional (X40-...</td>\n",
|
868 |
+
" <td>28</td>\n",
|
869 |
+
" </tr>\n",
|
870 |
+
" <tr>\n",
|
871 |
+
" <th>9869</th>\n",
|
872 |
+
" <td>Frederick County, MD</td>\n",
|
873 |
+
" <td>24021</td>\n",
|
874 |
+
" <td>2005</td>\n",
|
875 |
+
" <td>Drug poisonings (overdose) Undetermined (Y10-Y14)</td>\n",
|
876 |
+
" <td>13</td>\n",
|
877 |
+
" </tr>\n",
|
878 |
+
" <tr>\n",
|
879 |
+
" <th>22426</th>\n",
|
880 |
+
" <td>Boyd County, KY</td>\n",
|
881 |
+
" <td>21019</td>\n",
|
882 |
+
" <td>2008</td>\n",
|
883 |
+
" <td>Drug poisonings (overdose) Unintentional (X40-...</td>\n",
|
884 |
+
" <td>24</td>\n",
|
885 |
+
" </tr>\n",
|
886 |
+
" </tbody>\n",
|
887 |
+
"</table>\n",
|
888 |
+
"</div>"
|
889 |
+
],
|
890 |
+
"text/plain": [
|
891 |
+
" County County Code Year \\\n",
|
892 |
+
"30939 Wabash County, IN 18169 2010 \n",
|
893 |
+
"36770 Cayuga County, NY 36011 2011 \n",
|
894 |
+
"2317 Passaic County, NJ 34031 2003 \n",
|
895 |
+
"9869 Frederick County, MD 24021 2005 \n",
|
896 |
+
"22426 Boyd County, KY 21019 2008 \n",
|
897 |
+
"\n",
|
898 |
+
" Drug/Alcohol Induced Cause Deaths \n",
|
899 |
+
"30939 Drug poisonings (overdose) Unintentional (X40-... 10 \n",
|
900 |
+
"36770 Drug poisonings (overdose) Unintentional (X40-... 10 \n",
|
901 |
+
"2317 Drug poisonings (overdose) Unintentional (X40-... 28 \n",
|
902 |
+
"9869 Drug poisonings (overdose) Undetermined (Y10-Y14) 13 \n",
|
903 |
+
"22426 Drug poisonings (overdose) Unintentional (X40-... 24 "
|
904 |
+
]
|
905 |
+
},
|
906 |
+
"execution_count": 16,
|
907 |
+
"metadata": {},
|
908 |
+
"output_type": "execute_result"
|
909 |
+
}
|
910 |
+
],
|
911 |
+
"source": [
|
912 |
+
"df3.sample(5)"
|
913 |
+
]
|
914 |
+
},
|
915 |
+
{
|
916 |
+
"cell_type": "code",
|
917 |
+
"execution_count": 17,
|
918 |
+
"metadata": {},
|
919 |
+
"outputs": [],
|
920 |
+
"source": [
|
921 |
+
"# renaming columns\n",
|
922 |
+
"df3.rename(\n",
|
923 |
+
" columns={\"Drug/Alcohol Induced Cause\": \"Cause\", \"County Code\": \"County_Code\"},\n",
|
924 |
+
" inplace=True,\n",
|
925 |
+
")"
|
926 |
+
]
|
927 |
+
},
|
928 |
+
{
|
929 |
+
"cell_type": "code",
|
930 |
+
"execution_count": 18,
|
931 |
+
"metadata": {},
|
932 |
+
"outputs": [],
|
933 |
+
"source": [
|
934 |
+
"# use fips file to generate proper county name and state\n",
|
935 |
+
"fips = pd.read_csv(\"../.01_Data/01_Raw/county_fips.csv\")\n",
|
936 |
+
"fips[\"countyfips\"] = fips[\"countyfips\"].astype(str).str.zfill(5)"
|
937 |
+
]
|
938 |
+
},
|
939 |
+
{
|
940 |
+
"cell_type": "code",
|
941 |
+
"execution_count": 19,
|
942 |
+
"metadata": {},
|
943 |
+
"outputs": [
|
944 |
+
{
|
945 |
+
"data": {
|
946 |
+
"text/html": [
|
947 |
+
"<div>\n",
|
948 |
+
"<style scoped>\n",
|
949 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
950 |
+
" vertical-align: middle;\n",
|
951 |
+
" }\n",
|
952 |
+
"\n",
|
953 |
+
" .dataframe tbody tr th {\n",
|
954 |
+
" vertical-align: top;\n",
|
955 |
+
" }\n",
|
956 |
+
"\n",
|
957 |
+
" .dataframe thead th {\n",
|
958 |
+
" text-align: right;\n",
|
959 |
+
" }\n",
|
960 |
+
"</style>\n",
|
961 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
962 |
+
" <thead>\n",
|
963 |
+
" <tr style=\"text-align: right;\">\n",
|
964 |
+
" <th></th>\n",
|
965 |
+
" <th>County</th>\n",
|
966 |
+
" <th>County_Code</th>\n",
|
967 |
+
" <th>Year</th>\n",
|
968 |
+
" <th>Cause</th>\n",
|
969 |
+
" <th>Deaths</th>\n",
|
970 |
+
" <th>BUYER_COUNTY</th>\n",
|
971 |
+
" <th>BUYER_STATE</th>\n",
|
972 |
+
" <th>countyfips</th>\n",
|
973 |
+
" <th>_merge</th>\n",
|
974 |
+
" </tr>\n",
|
975 |
+
" </thead>\n",
|
976 |
+
" <tbody>\n",
|
977 |
+
" <tr>\n",
|
978 |
+
" <th>1799</th>\n",
|
979 |
+
" <td>Hidalgo County, TX</td>\n",
|
980 |
+
" <td>48215</td>\n",
|
981 |
+
" <td>2005</td>\n",
|
982 |
+
" <td>All other drug-induced causes</td>\n",
|
983 |
+
" <td>10</td>\n",
|
984 |
+
" <td>HIDALGO</td>\n",
|
985 |
+
" <td>TX</td>\n",
|
986 |
+
" <td>48215</td>\n",
|
987 |
+
" <td>both</td>\n",
|
988 |
+
" </tr>\n",
|
989 |
+
" <tr>\n",
|
990 |
+
" <th>9215</th>\n",
|
991 |
+
" <td>Greenville County, SC</td>\n",
|
992 |
+
" <td>45045</td>\n",
|
993 |
+
" <td>2014</td>\n",
|
994 |
+
" <td>Drug poisonings (overdose) Suicide (X60-X64)</td>\n",
|
995 |
+
" <td>10</td>\n",
|
996 |
+
" <td>GREENVILLE</td>\n",
|
997 |
+
" <td>SC</td>\n",
|
998 |
+
" <td>45045</td>\n",
|
999 |
+
" <td>both</td>\n",
|
1000 |
+
" </tr>\n",
|
1001 |
+
" <tr>\n",
|
1002 |
+
" <th>2843</th>\n",
|
1003 |
+
" <td>St. Clair County, IL</td>\n",
|
1004 |
+
" <td>17163</td>\n",
|
1005 |
+
" <td>2007</td>\n",
|
1006 |
+
" <td>Drug poisonings (overdose) Unintentional (X40-...</td>\n",
|
1007 |
+
" <td>15</td>\n",
|
1008 |
+
" <td>SAINT CLAIR</td>\n",
|
1009 |
+
" <td>IL</td>\n",
|
1010 |
+
" <td>17163</td>\n",
|
1011 |
+
" <td>both</td>\n",
|
1012 |
+
" </tr>\n",
|
1013 |
+
" <tr>\n",
|
1014 |
+
" <th>1063</th>\n",
|
1015 |
+
" <td>Northampton County, PA</td>\n",
|
1016 |
+
" <td>42095</td>\n",
|
1017 |
+
" <td>2004</td>\n",
|
1018 |
+
" <td>Drug poisonings (overdose) Unintentional (X40-...</td>\n",
|
1019 |
+
" <td>16</td>\n",
|
1020 |
+
" <td>NORTHAMPTON</td>\n",
|
1021 |
+
" <td>PA</td>\n",
|
1022 |
+
" <td>42095</td>\n",
|
1023 |
+
" <td>both</td>\n",
|
1024 |
+
" </tr>\n",
|
1025 |
+
" <tr>\n",
|
1026 |
+
" <th>4368</th>\n",
|
1027 |
+
" <td>Newton County, GA</td>\n",
|
1028 |
+
" <td>13217</td>\n",
|
1029 |
+
" <td>2009</td>\n",
|
1030 |
+
" <td>Drug poisonings (overdose) Unintentional (X40-...</td>\n",
|
1031 |
+
" <td>13</td>\n",
|
1032 |
+
" <td>NEWTON</td>\n",
|
1033 |
+
" <td>GA</td>\n",
|
1034 |
+
" <td>13217</td>\n",
|
1035 |
+
" <td>both</td>\n",
|
1036 |
+
" </tr>\n",
|
1037 |
+
" </tbody>\n",
|
1038 |
+
"</table>\n",
|
1039 |
+
"</div>"
|
1040 |
+
],
|
1041 |
+
"text/plain": [
|
1042 |
+
" County County_Code Year \\\n",
|
1043 |
+
"1799 Hidalgo County, TX 48215 2005 \n",
|
1044 |
+
"9215 Greenville County, SC 45045 2014 \n",
|
1045 |
+
"2843 St. Clair County, IL 17163 2007 \n",
|
1046 |
+
"1063 Northampton County, PA 42095 2004 \n",
|
1047 |
+
"4368 Newton County, GA 13217 2009 \n",
|
1048 |
+
"\n",
|
1049 |
+
" Cause Deaths BUYER_COUNTY \\\n",
|
1050 |
+
"1799 All other drug-induced causes 10 HIDALGO \n",
|
1051 |
+
"9215 Drug poisonings (overdose) Suicide (X60-X64) 10 GREENVILLE \n",
|
1052 |
+
"2843 Drug poisonings (overdose) Unintentional (X40-... 15 SAINT CLAIR \n",
|
1053 |
+
"1063 Drug poisonings (overdose) Unintentional (X40-... 16 NORTHAMPTON \n",
|
1054 |
+
"4368 Drug poisonings (overdose) Unintentional (X40-... 13 NEWTON \n",
|
1055 |
+
"\n",
|
1056 |
+
" BUYER_STATE countyfips _merge \n",
|
1057 |
+
"1799 TX 48215 both \n",
|
1058 |
+
"9215 SC 45045 both \n",
|
1059 |
+
"2843 IL 17163 both \n",
|
1060 |
+
"1063 PA 42095 both \n",
|
1061 |
+
"4368 GA 13217 both "
|
1062 |
+
]
|
1063 |
+
},
|
1064 |
+
"execution_count": 19,
|
1065 |
+
"metadata": {},
|
1066 |
+
"output_type": "execute_result"
|
1067 |
+
}
|
1068 |
+
],
|
1069 |
+
"source": [
|
1070 |
+
"# merge with fips\n",
|
1071 |
+
"# performing left join to get the county names\n",
|
1072 |
+
"df4 = pd.merge(\n",
|
1073 |
+
" df3,\n",
|
1074 |
+
" fips,\n",
|
1075 |
+
" how=\"left\",\n",
|
1076 |
+
" left_on=\"County_Code\",\n",
|
1077 |
+
" right_on=\"countyfips\",\n",
|
1078 |
+
" validate=\"m:1\",\n",
|
1079 |
+
" indicator=True,\n",
|
1080 |
+
")\n",
|
1081 |
+
"df4.sample(5)"
|
1082 |
+
]
|
1083 |
+
},
|
1084 |
+
{
|
1085 |
+
"cell_type": "code",
|
1086 |
+
"execution_count": 20,
|
1087 |
+
"metadata": {},
|
1088 |
+
"outputs": [
|
1089 |
+
{
|
1090 |
+
"data": {
|
1091 |
+
"text/plain": [
|
1092 |
+
"_merge\n",
|
1093 |
+
"both 10432\n",
|
1094 |
+
"left_only 0\n",
|
1095 |
+
"right_only 0\n",
|
1096 |
+
"Name: count, dtype: int64"
|
1097 |
+
]
|
1098 |
+
},
|
1099 |
+
"execution_count": 20,
|
1100 |
+
"metadata": {},
|
1101 |
+
"output_type": "execute_result"
|
1102 |
+
}
|
1103 |
+
],
|
1104 |
+
"source": [
|
1105 |
+
"# Validate if merge went well\n",
|
1106 |
+
"df4[\"_merge\"].value_counts()"
|
1107 |
+
]
|
1108 |
+
},
|
1109 |
+
{
|
1110 |
+
"cell_type": "code",
|
1111 |
+
"execution_count": 21,
|
1112 |
+
"metadata": {},
|
1113 |
+
"outputs": [],
|
1114 |
+
"source": [
|
1115 |
+
"# select required colums\n",
|
1116 |
+
"df5 = df4[[\"BUYER_STATE\", \"BUYER_COUNTY\", \"County_Code\", \"Year\", \"Cause\", \"Deaths\"]]\n",
|
1117 |
+
"\n",
|
1118 |
+
"# rename columns\n",
|
1119 |
+
"df5 = df5.rename(columns={\"BUYER_COUNTY\": \"County\", \"BUYER_STATE\": \"State_Code\"})"
|
1120 |
+
]
|
1121 |
+
},
|
1122 |
+
{
|
1123 |
+
"cell_type": "code",
|
1124 |
+
"execution_count": 22,
|
1125 |
+
"metadata": {},
|
1126 |
+
"outputs": [
|
1127 |
+
{
|
1128 |
+
"data": {
|
1129 |
+
"text/html": [
|
1130 |
+
"<div>\n",
|
1131 |
+
"<style scoped>\n",
|
1132 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
1133 |
+
" vertical-align: middle;\n",
|
1134 |
+
" }\n",
|
1135 |
+
"\n",
|
1136 |
+
" .dataframe tbody tr th {\n",
|
1137 |
+
" vertical-align: top;\n",
|
1138 |
+
" }\n",
|
1139 |
+
"\n",
|
1140 |
+
" .dataframe thead th {\n",
|
1141 |
+
" text-align: right;\n",
|
1142 |
+
" }\n",
|
1143 |
+
"</style>\n",
|
1144 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
1145 |
+
" <thead>\n",
|
1146 |
+
" <tr style=\"text-align: right;\">\n",
|
1147 |
+
" <th></th>\n",
|
1148 |
+
" <th>State_Code</th>\n",
|
1149 |
+
" <th>County</th>\n",
|
1150 |
+
" <th>County_Code</th>\n",
|
1151 |
+
" <th>Year</th>\n",
|
1152 |
+
" <th>Cause</th>\n",
|
1153 |
+
" <th>Deaths</th>\n",
|
1154 |
+
" </tr>\n",
|
1155 |
+
" </thead>\n",
|
1156 |
+
" <tbody>\n",
|
1157 |
+
" <tr>\n",
|
1158 |
+
" <th>2201</th>\n",
|
1159 |
+
" <td>MI</td>\n",
|
1160 |
+
" <td>BERRIEN</td>\n",
|
1161 |
+
" <td>26021</td>\n",
|
1162 |
+
" <td>2006</td>\n",
|
1163 |
+
" <td>Drug poisonings (overdose) Unintentional (X40-...</td>\n",
|
1164 |
+
" <td>21</td>\n",
|
1165 |
+
" </tr>\n",
|
1166 |
+
" <tr>\n",
|
1167 |
+
" <th>3238</th>\n",
|
1168 |
+
" <td>TN</td>\n",
|
1169 |
+
" <td>BRADLEY</td>\n",
|
1170 |
+
" <td>47011</td>\n",
|
1171 |
+
" <td>2007</td>\n",
|
1172 |
+
" <td>Drug poisonings (overdose) Unintentional (X40-...</td>\n",
|
1173 |
+
" <td>23</td>\n",
|
1174 |
+
" </tr>\n",
|
1175 |
+
" <tr>\n",
|
1176 |
+
" <th>8909</th>\n",
|
1177 |
+
" <td>MS</td>\n",
|
1178 |
+
" <td>MADISON</td>\n",
|
1179 |
+
" <td>28089</td>\n",
|
1180 |
+
" <td>2014</td>\n",
|
1181 |
+
" <td>Drug poisonings (overdose) Unintentional (X40-...</td>\n",
|
1182 |
+
" <td>12</td>\n",
|
1183 |
+
" </tr>\n",
|
1184 |
+
" <tr>\n",
|
1185 |
+
" <th>7578</th>\n",
|
1186 |
+
" <td>AZ</td>\n",
|
1187 |
+
" <td>MARICOPA</td>\n",
|
1188 |
+
" <td>04013</td>\n",
|
1189 |
+
" <td>2013</td>\n",
|
1190 |
+
" <td>Drug poisonings (overdose) Undetermined (Y10-Y14)</td>\n",
|
1191 |
+
" <td>89</td>\n",
|
1192 |
+
" </tr>\n",
|
1193 |
+
" <tr>\n",
|
1194 |
+
" <th>5624</th>\n",
|
1195 |
+
" <td>SC</td>\n",
|
1196 |
+
" <td>OCONEE</td>\n",
|
1197 |
+
" <td>45073</td>\n",
|
1198 |
+
" <td>2010</td>\n",
|
1199 |
+
" <td>Drug poisonings (overdose) Unintentional (X40-...</td>\n",
|
1200 |
+
" <td>16</td>\n",
|
1201 |
+
" </tr>\n",
|
1202 |
+
" </tbody>\n",
|
1203 |
+
"</table>\n",
|
1204 |
+
"</div>"
|
1205 |
+
],
|
1206 |
+
"text/plain": [
|
1207 |
+
" State_Code County County_Code Year \\\n",
|
1208 |
+
"2201 MI BERRIEN 26021 2006 \n",
|
1209 |
+
"3238 TN BRADLEY 47011 2007 \n",
|
1210 |
+
"8909 MS MADISON 28089 2014 \n",
|
1211 |
+
"7578 AZ MARICOPA 04013 2013 \n",
|
1212 |
+
"5624 SC OCONEE 45073 2010 \n",
|
1213 |
+
"\n",
|
1214 |
+
" Cause Deaths \n",
|
1215 |
+
"2201 Drug poisonings (overdose) Unintentional (X40-... 21 \n",
|
1216 |
+
"3238 Drug poisonings (overdose) Unintentional (X40-... 23 \n",
|
1217 |
+
"8909 Drug poisonings (overdose) Unintentional (X40-... 12 \n",
|
1218 |
+
"7578 Drug poisonings (overdose) Undetermined (Y10-Y14) 89 \n",
|
1219 |
+
"5624 Drug poisonings (overdose) Unintentional (X40-... 16 "
|
1220 |
+
]
|
1221 |
+
},
|
1222 |
+
"execution_count": 22,
|
1223 |
+
"metadata": {},
|
1224 |
+
"output_type": "execute_result"
|
1225 |
+
}
|
1226 |
+
],
|
1227 |
+
"source": [
|
1228 |
+
"df5.sample(5)"
|
1229 |
+
]
|
1230 |
+
},
|
1231 |
+
{
|
1232 |
+
"cell_type": "code",
|
1233 |
+
"execution_count": 23,
|
1234 |
+
"metadata": {},
|
1235 |
+
"outputs": [
|
1236 |
+
{
|
1237 |
+
"data": {
|
1238 |
+
"text/html": [
|
1239 |
+
"<div>\n",
|
1240 |
+
"<style scoped>\n",
|
1241 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
1242 |
+
" vertical-align: middle;\n",
|
1243 |
+
" }\n",
|
1244 |
+
"\n",
|
1245 |
+
" .dataframe tbody tr th {\n",
|
1246 |
+
" vertical-align: top;\n",
|
1247 |
+
" }\n",
|
1248 |
+
"\n",
|
1249 |
+
" .dataframe thead th {\n",
|
1250 |
+
" text-align: right;\n",
|
1251 |
+
" }\n",
|
1252 |
+
"</style>\n",
|
1253 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
1254 |
+
" <thead>\n",
|
1255 |
+
" <tr style=\"text-align: right;\">\n",
|
1256 |
+
" <th></th>\n",
|
1257 |
+
" <th>state</th>\n",
|
1258 |
+
" <th>abbrev</th>\n",
|
1259 |
+
" <th>code</th>\n",
|
1260 |
+
" </tr>\n",
|
1261 |
+
" </thead>\n",
|
1262 |
+
" <tbody>\n",
|
1263 |
+
" <tr>\n",
|
1264 |
+
" <th>13</th>\n",
|
1265 |
+
" <td>Illinois</td>\n",
|
1266 |
+
" <td>Ill.</td>\n",
|
1267 |
+
" <td>IL</td>\n",
|
1268 |
+
" </tr>\n",
|
1269 |
+
" <tr>\n",
|
1270 |
+
" <th>40</th>\n",
|
1271 |
+
" <td>South Carolina</td>\n",
|
1272 |
+
" <td>S.C.</td>\n",
|
1273 |
+
" <td>SC</td>\n",
|
1274 |
+
" </tr>\n",
|
1275 |
+
" <tr>\n",
|
1276 |
+
" <th>10</th>\n",
|
1277 |
+
" <td>Georgia</td>\n",
|
1278 |
+
" <td>Ga.</td>\n",
|
1279 |
+
" <td>GA</td>\n",
|
1280 |
+
" </tr>\n",
|
1281 |
+
" <tr>\n",
|
1282 |
+
" <th>34</th>\n",
|
1283 |
+
" <td>North Dakota</td>\n",
|
1284 |
+
" <td>N.D.</td>\n",
|
1285 |
+
" <td>ND</td>\n",
|
1286 |
+
" </tr>\n",
|
1287 |
+
" <tr>\n",
|
1288 |
+
" <th>38</th>\n",
|
1289 |
+
" <td>Pennsylvania</td>\n",
|
1290 |
+
" <td>Pa.</td>\n",
|
1291 |
+
" <td>PA</td>\n",
|
1292 |
+
" </tr>\n",
|
1293 |
+
" </tbody>\n",
|
1294 |
+
"</table>\n",
|
1295 |
+
"</div>"
|
1296 |
+
],
|
1297 |
+
"text/plain": [
|
1298 |
+
" state abbrev code\n",
|
1299 |
+
"13 Illinois Ill. IL\n",
|
1300 |
+
"40 South Carolina S.C. SC\n",
|
1301 |
+
"10 Georgia Ga. GA\n",
|
1302 |
+
"34 North Dakota N.D. ND\n",
|
1303 |
+
"38 Pennsylvania Pa. PA"
|
1304 |
+
]
|
1305 |
+
},
|
1306 |
+
"execution_count": 23,
|
1307 |
+
"metadata": {},
|
1308 |
+
"output_type": "execute_result"
|
1309 |
+
}
|
1310 |
+
],
|
1311 |
+
"source": [
|
1312 |
+
"# Add state names to maitain consistency with population data\n",
|
1313 |
+
"abbreviations = pd.read_csv(\"../.01_Data/01_Raw/state_abbreviations.csv\")\n",
|
1314 |
+
"abbreviations.sample(5)"
|
1315 |
+
]
|
1316 |
+
},
|
1317 |
+
{
|
1318 |
+
"cell_type": "code",
|
1319 |
+
"execution_count": 24,
|
1320 |
+
"metadata": {},
|
1321 |
+
"outputs": [],
|
1322 |
+
"source": [
|
1323 |
+
"# rename colums to match with the main dataframe\n",
|
1324 |
+
"abbreviations = abbreviations.rename(\n",
|
1325 |
+
" columns={\n",
|
1326 |
+
" \"state\": \"State\",\n",
|
1327 |
+
" \"code\": \"State_Code\",\n",
|
1328 |
+
" }\n",
|
1329 |
+
")"
|
1330 |
+
]
|
1331 |
+
},
|
1332 |
+
{
|
1333 |
+
"cell_type": "code",
|
1334 |
+
"execution_count": 25,
|
1335 |
+
"metadata": {},
|
1336 |
+
"outputs": [
|
1337 |
+
{
|
1338 |
+
"data": {
|
1339 |
+
"text/html": [
|
1340 |
+
"<div>\n",
|
1341 |
+
"<style scoped>\n",
|
1342 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
1343 |
+
" vertical-align: middle;\n",
|
1344 |
+
" }\n",
|
1345 |
+
"\n",
|
1346 |
+
" .dataframe tbody tr th {\n",
|
1347 |
+
" vertical-align: top;\n",
|
1348 |
+
" }\n",
|
1349 |
+
"\n",
|
1350 |
+
" .dataframe thead th {\n",
|
1351 |
+
" text-align: right;\n",
|
1352 |
+
" }\n",
|
1353 |
+
"</style>\n",
|
1354 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
1355 |
+
" <thead>\n",
|
1356 |
+
" <tr style=\"text-align: right;\">\n",
|
1357 |
+
" <th></th>\n",
|
1358 |
+
" <th>State_Code</th>\n",
|
1359 |
+
" <th>County</th>\n",
|
1360 |
+
" <th>County_Code</th>\n",
|
1361 |
+
" <th>Year</th>\n",
|
1362 |
+
" <th>Cause</th>\n",
|
1363 |
+
" <th>Deaths</th>\n",
|
1364 |
+
" <th>State</th>\n",
|
1365 |
+
" <th>_merge</th>\n",
|
1366 |
+
" </tr>\n",
|
1367 |
+
" </thead>\n",
|
1368 |
+
" <tbody>\n",
|
1369 |
+
" <tr>\n",
|
1370 |
+
" <th>6372</th>\n",
|
1371 |
+
" <td>OH</td>\n",
|
1372 |
+
" <td>DELAWARE</td>\n",
|
1373 |
+
" <td>39041</td>\n",
|
1374 |
+
" <td>2011</td>\n",
|
1375 |
+
" <td>Drug poisonings (overdose) Unintentional (X40-...</td>\n",
|
1376 |
+
" <td>11</td>\n",
|
1377 |
+
" <td>Ohio</td>\n",
|
1378 |
+
" <td>both</td>\n",
|
1379 |
+
" </tr>\n",
|
1380 |
+
" <tr>\n",
|
1381 |
+
" <th>5339</th>\n",
|
1382 |
+
" <td>MI</td>\n",
|
1383 |
+
" <td>WASHTENAW</td>\n",
|
1384 |
+
" <td>26161</td>\n",
|
1385 |
+
" <td>2010</td>\n",
|
1386 |
+
" <td>Drug poisonings (overdose) Undetermined (Y10-Y14)</td>\n",
|
1387 |
+
" <td>19</td>\n",
|
1388 |
+
" <td>Michigan</td>\n",
|
1389 |
+
" <td>both</td>\n",
|
1390 |
+
" </tr>\n",
|
1391 |
+
" <tr>\n",
|
1392 |
+
" <th>8433</th>\n",
|
1393 |
+
" <td>WV</td>\n",
|
1394 |
+
" <td>WAYNE</td>\n",
|
1395 |
+
" <td>54099</td>\n",
|
1396 |
+
" <td>2013</td>\n",
|
1397 |
+
" <td>Drug poisonings (overdose) Unintentional (X40-...</td>\n",
|
1398 |
+
" <td>17</td>\n",
|
1399 |
+
" <td>West Virginia</td>\n",
|
1400 |
+
" <td>both</td>\n",
|
1401 |
+
" </tr>\n",
|
1402 |
+
" <tr>\n",
|
1403 |
+
" <th>4737</th>\n",
|
1404 |
+
" <td>OR</td>\n",
|
1405 |
+
" <td>CLACKAMAS</td>\n",
|
1406 |
+
" <td>41005</td>\n",
|
1407 |
+
" <td>2009</td>\n",
|
1408 |
+
" <td>Drug poisonings (overdose) Unintentional (X40-...</td>\n",
|
1409 |
+
" <td>32</td>\n",
|
1410 |
+
" <td>Oregon</td>\n",
|
1411 |
+
" <td>both</td>\n",
|
1412 |
+
" </tr>\n",
|
1413 |
+
" <tr>\n",
|
1414 |
+
" <th>93</th>\n",
|
1415 |
+
" <td>CO</td>\n",
|
1416 |
+
" <td>LARIMER</td>\n",
|
1417 |
+
" <td>08069</td>\n",
|
1418 |
+
" <td>2003</td>\n",
|
1419 |
+
" <td>Drug poisonings (overdose) Unintentional (X40-...</td>\n",
|
1420 |
+
" <td>13</td>\n",
|
1421 |
+
" <td>Colorado</td>\n",
|
1422 |
+
" <td>both</td>\n",
|
1423 |
+
" </tr>\n",
|
1424 |
+
" </tbody>\n",
|
1425 |
+
"</table>\n",
|
1426 |
+
"</div>"
|
1427 |
+
],
|
1428 |
+
"text/plain": [
|
1429 |
+
" State_Code County County_Code Year \\\n",
|
1430 |
+
"6372 OH DELAWARE 39041 2011 \n",
|
1431 |
+
"5339 MI WASHTENAW 26161 2010 \n",
|
1432 |
+
"8433 WV WAYNE 54099 2013 \n",
|
1433 |
+
"4737 OR CLACKAMAS 41005 2009 \n",
|
1434 |
+
"93 CO LARIMER 08069 2003 \n",
|
1435 |
+
"\n",
|
1436 |
+
" Cause Deaths \\\n",
|
1437 |
+
"6372 Drug poisonings (overdose) Unintentional (X40-... 11 \n",
|
1438 |
+
"5339 Drug poisonings (overdose) Undetermined (Y10-Y14) 19 \n",
|
1439 |
+
"8433 Drug poisonings (overdose) Unintentional (X40-... 17 \n",
|
1440 |
+
"4737 Drug poisonings (overdose) Unintentional (X40-... 32 \n",
|
1441 |
+
"93 Drug poisonings (overdose) Unintentional (X40-... 13 \n",
|
1442 |
+
"\n",
|
1443 |
+
" State _merge \n",
|
1444 |
+
"6372 Ohio both \n",
|
1445 |
+
"5339 Michigan both \n",
|
1446 |
+
"8433 West Virginia both \n",
|
1447 |
+
"4737 Oregon both \n",
|
1448 |
+
"93 Colorado both "
|
1449 |
+
]
|
1450 |
+
},
|
1451 |
+
"execution_count": 25,
|
1452 |
+
"metadata": {},
|
1453 |
+
"output_type": "execute_result"
|
1454 |
+
}
|
1455 |
+
],
|
1456 |
+
"source": [
|
1457 |
+
"# Merge\n",
|
1458 |
+
"df6 = pd.merge(\n",
|
1459 |
+
" df5,\n",
|
1460 |
+
" abbreviations[[\"State\", \"State_Code\"]],\n",
|
1461 |
+
" how=\"left\",\n",
|
1462 |
+
" on=\"State_Code\",\n",
|
1463 |
+
" validate=\"m:1\",\n",
|
1464 |
+
" indicator=True,\n",
|
1465 |
+
")\n",
|
1466 |
+
"df6.sample(5)"
|
1467 |
+
]
|
1468 |
+
},
|
1469 |
+
{
|
1470 |
+
"cell_type": "code",
|
1471 |
+
"execution_count": 26,
|
1472 |
+
"metadata": {},
|
1473 |
+
"outputs": [
|
1474 |
+
{
|
1475 |
+
"data": {
|
1476 |
+
"text/plain": [
|
1477 |
+
"_merge\n",
|
1478 |
+
"both 10432\n",
|
1479 |
+
"left_only 0\n",
|
1480 |
+
"right_only 0\n",
|
1481 |
+
"Name: count, dtype: int64"
|
1482 |
+
]
|
1483 |
+
},
|
1484 |
+
"execution_count": 26,
|
1485 |
+
"metadata": {},
|
1486 |
+
"output_type": "execute_result"
|
1487 |
+
}
|
1488 |
+
],
|
1489 |
+
"source": [
|
1490 |
+
"# Validate if merge went well\n",
|
1491 |
+
"df6[\"_merge\"].value_counts()"
|
1492 |
+
]
|
1493 |
+
},
|
1494 |
+
{
|
1495 |
+
"cell_type": "markdown",
|
1496 |
+
"metadata": {},
|
1497 |
+
"source": [
|
1498 |
+
"In script file we dont need the merge indicator column, so it will not be used there"
|
1499 |
+
]
|
1500 |
+
},
|
1501 |
+
{
|
1502 |
+
"cell_type": "code",
|
1503 |
+
"execution_count": 27,
|
1504 |
+
"metadata": {},
|
1505 |
+
"outputs": [
|
1506 |
+
{
|
1507 |
+
"data": {
|
1508 |
+
"text/html": [
|
1509 |
+
"<div>\n",
|
1510 |
+
"<style scoped>\n",
|
1511 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
1512 |
+
" vertical-align: middle;\n",
|
1513 |
+
" }\n",
|
1514 |
+
"\n",
|
1515 |
+
" .dataframe tbody tr th {\n",
|
1516 |
+
" vertical-align: top;\n",
|
1517 |
+
" }\n",
|
1518 |
+
"\n",
|
1519 |
+
" .dataframe thead th {\n",
|
1520 |
+
" text-align: right;\n",
|
1521 |
+
" }\n",
|
1522 |
+
"</style>\n",
|
1523 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
1524 |
+
" <thead>\n",
|
1525 |
+
" <tr style=\"text-align: right;\">\n",
|
1526 |
+
" <th></th>\n",
|
1527 |
+
" <th>State</th>\n",
|
1528 |
+
" <th>State_Code</th>\n",
|
1529 |
+
" <th>County</th>\n",
|
1530 |
+
" <th>County_Code</th>\n",
|
1531 |
+
" <th>Year</th>\n",
|
1532 |
+
" <th>Cause</th>\n",
|
1533 |
+
" <th>Deaths</th>\n",
|
1534 |
+
" </tr>\n",
|
1535 |
+
" </thead>\n",
|
1536 |
+
" <tbody>\n",
|
1537 |
+
" <tr>\n",
|
1538 |
+
" <th>2398</th>\n",
|
1539 |
+
" <td>Ohio</td>\n",
|
1540 |
+
" <td>OH</td>\n",
|
1541 |
+
" <td>TRUMBULL</td>\n",
|
1542 |
+
" <td>39155</td>\n",
|
1543 |
+
" <td>2006</td>\n",
|
1544 |
+
" <td>Drug poisonings (overdose) Unintentional (X40-...</td>\n",
|
1545 |
+
" <td>30</td>\n",
|
1546 |
+
" </tr>\n",
|
1547 |
+
" <tr>\n",
|
1548 |
+
" <th>5703</th>\n",
|
1549 |
+
" <td>Utah</td>\n",
|
1550 |
+
" <td>UT</td>\n",
|
1551 |
+
" <td>DAVIS</td>\n",
|
1552 |
+
" <td>49011</td>\n",
|
1553 |
+
" <td>2010</td>\n",
|
1554 |
+
" <td>Drug poisonings (overdose) Unintentional (X40-...</td>\n",
|
1555 |
+
" <td>22</td>\n",
|
1556 |
+
" </tr>\n",
|
1557 |
+
" <tr>\n",
|
1558 |
+
" <th>10208</th>\n",
|
1559 |
+
" <td>South Carolina</td>\n",
|
1560 |
+
" <td>SC</td>\n",
|
1561 |
+
" <td>AIKEN</td>\n",
|
1562 |
+
" <td>45003</td>\n",
|
1563 |
+
" <td>2015</td>\n",
|
1564 |
+
" <td>Drug poisonings (overdose) Unintentional (X40-...</td>\n",
|
1565 |
+
" <td>30</td>\n",
|
1566 |
+
" </tr>\n",
|
1567 |
+
" <tr>\n",
|
1568 |
+
" <th>242</th>\n",
|
1569 |
+
" <td>Maryland</td>\n",
|
1570 |
+
" <td>MD</td>\n",
|
1571 |
+
" <td>PRINCE GEORGES</td>\n",
|
1572 |
+
" <td>24033</td>\n",
|
1573 |
+
" <td>2003</td>\n",
|
1574 |
+
" <td>Drug poisonings (overdose) Unintentional (X40-...</td>\n",
|
1575 |
+
" <td>14</td>\n",
|
1576 |
+
" </tr>\n",
|
1577 |
+
" <tr>\n",
|
1578 |
+
" <th>1250</th>\n",
|
1579 |
+
" <td>California</td>\n",
|
1580 |
+
" <td>CA</td>\n",
|
1581 |
+
" <td>MARIN</td>\n",
|
1582 |
+
" <td>06041</td>\n",
|
1583 |
+
" <td>2005</td>\n",
|
1584 |
+
" <td>Drug poisonings (overdose) Undetermined (Y10-Y14)</td>\n",
|
1585 |
+
" <td>16</td>\n",
|
1586 |
+
" </tr>\n",
|
1587 |
+
" </tbody>\n",
|
1588 |
+
"</table>\n",
|
1589 |
+
"</div>"
|
1590 |
+
],
|
1591 |
+
"text/plain": [
|
1592 |
+
" State State_Code County County_Code Year \\\n",
|
1593 |
+
"2398 Ohio OH TRUMBULL 39155 2006 \n",
|
1594 |
+
"5703 Utah UT DAVIS 49011 2010 \n",
|
1595 |
+
"10208 South Carolina SC AIKEN 45003 2015 \n",
|
1596 |
+
"242 Maryland MD PRINCE GEORGES 24033 2003 \n",
|
1597 |
+
"1250 California CA MARIN 06041 2005 \n",
|
1598 |
+
"\n",
|
1599 |
+
" Cause Deaths \n",
|
1600 |
+
"2398 Drug poisonings (overdose) Unintentional (X40-... 30 \n",
|
1601 |
+
"5703 Drug poisonings (overdose) Unintentional (X40-... 22 \n",
|
1602 |
+
"10208 Drug poisonings (overdose) Unintentional (X40-... 30 \n",
|
1603 |
+
"242 Drug poisonings (overdose) Unintentional (X40-... 14 \n",
|
1604 |
+
"1250 Drug poisonings (overdose) Undetermined (Y10-Y14) 16 "
|
1605 |
+
]
|
1606 |
+
},
|
1607 |
+
"execution_count": 27,
|
1608 |
+
"metadata": {},
|
1609 |
+
"output_type": "execute_result"
|
1610 |
+
}
|
1611 |
+
],
|
1612 |
+
"source": [
|
1613 |
+
"# reorder columns to match population data\n",
|
1614 |
+
"df6 = df6[[\"State\", \"State_Code\", \"County\", \"County_Code\", \"Year\", \"Cause\", \"Deaths\"]]\n",
|
1615 |
+
"df6.sample(5)"
|
1616 |
+
]
|
1617 |
+
}
|
1618 |
+
],
|
1619 |
+
"metadata": {
|
1620 |
+
"kernelspec": {
|
1621 |
+
"display_name": "base",
|
1622 |
+
"language": "python",
|
1623 |
+
"name": "python3"
|
1624 |
+
},
|
1625 |
+
"language_info": {
|
1626 |
+
"codemirror_mode": {
|
1627 |
+
"name": "ipython",
|
1628 |
+
"version": 3
|
1629 |
+
},
|
1630 |
+
"file_extension": ".py",
|
1631 |
+
"mimetype": "text/x-python",
|
1632 |
+
"name": "python",
|
1633 |
+
"nbconvert_exporter": "python",
|
1634 |
+
"pygments_lexer": "ipython3",
|
1635 |
+
"version": "3.11.5"
|
1636 |
+
}
|
1637 |
+
},
|
1638 |
+
"nbformat": 4,
|
1639 |
+
"nbformat_minor": 2
|
1640 |
+
}
|
02_Codes/04_mortality_script.py
ADDED
@@ -0,0 +1,122 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Impoting required packages
|
2 |
+
import pandas as pd
|
3 |
+
import numpy as np
|
4 |
+
import zipfile
|
5 |
+
|
6 |
+
# setting default option
|
7 |
+
pd.set_option("mode.copy_on_write", True)
|
8 |
+
|
9 |
+
# ------------------------------------------
|
10 |
+
# reading the files
|
11 |
+
z = zipfile.ZipFile(".01_Data/01_Raw/raw_mortality.zip")
|
12 |
+
fips = pd.read_csv(".01_Data/01_Raw/county_fips.csv")
|
13 |
+
abbreviations = pd.read_csv(".01_Data/01_Raw/state_abbreviations.csv")
|
14 |
+
|
15 |
+
# extracting list of files from Zip folder to read
|
16 |
+
# using files starting with "Underlying" so as to ignore system files
|
17 |
+
file_list = sorted([f for f in z.namelist() if f.startswith("Underlying")])
|
18 |
+
|
19 |
+
|
20 |
+
# ------------------------------------------
|
21 |
+
# read data selected files and append to list
|
22 |
+
df_list = []
|
23 |
+
for file in file_list:
|
24 |
+
# read individual files
|
25 |
+
df_temp = pd.read_csv(z.open(file), sep="\t")
|
26 |
+
|
27 |
+
# drop the notes columns and remove rows with null values in County column
|
28 |
+
df_temp.drop(columns=["Notes"], inplace=True)
|
29 |
+
df_temp.dropna(subset=["County"], inplace=True)
|
30 |
+
|
31 |
+
# add the cleaned temp Df to the main list
|
32 |
+
df_list.append(df_temp)
|
33 |
+
|
34 |
+
# ------------------------------------------
|
35 |
+
# create the dataframe
|
36 |
+
df = pd.concat(df_list, ignore_index=True)
|
37 |
+
|
38 |
+
# ------------------------------------------
|
39 |
+
# Correcting Data Types for columns
|
40 |
+
df2 = df.copy()
|
41 |
+
|
42 |
+
# Pad county code with 0 for consistency with other data sets
|
43 |
+
df2["County Code"] = df2["County Code"].astype(int).astype(str).str.zfill(5)
|
44 |
+
|
45 |
+
# padding fips to have consistency
|
46 |
+
fips["countyfips"] = fips["countyfips"].astype(str).str.zfill(5)
|
47 |
+
|
48 |
+
# Convert Year to Int
|
49 |
+
df2["Year"] = df2["Year"].astype(int)
|
50 |
+
|
51 |
+
# Convert Deaths to Int
|
52 |
+
df2["Deaths"] = df2["Deaths"].replace("Missing", np.nan)
|
53 |
+
df2["Deaths"] = (
|
54 |
+
df2["Deaths"].astype(float).astype("Int64")
|
55 |
+
) # making it as int64 so that we retain null values for later analysis
|
56 |
+
|
57 |
+
# ------------------------------------------
|
58 |
+
|
59 |
+
# Store only the rows related drugs, modify this list later if required
|
60 |
+
required_causes = [
|
61 |
+
"Drug poisonings (overdose) Unintentional (X40-X44)",
|
62 |
+
"All other drug-induced causes",
|
63 |
+
"Drug poisonings (overdose) Homicide (X85)",
|
64 |
+
"Drug poisonings (overdose) Suicide (X60-X64)",
|
65 |
+
"Drug poisonings (overdose) Undetermined (Y10-Y14)",
|
66 |
+
]
|
67 |
+
|
68 |
+
# ------------------------------------------------------
|
69 |
+
# create and optimize subset data
|
70 |
+
df3 = df2[df2["Drug/Alcohol Induced Cause"].isin(required_causes)]
|
71 |
+
|
72 |
+
# remove extra columns
|
73 |
+
df3.drop(columns=["Year Code", "Drug/Alcohol Induced Cause Code"], inplace=True)
|
74 |
+
|
75 |
+
# renaming columns
|
76 |
+
df3.rename(
|
77 |
+
columns={"Drug/Alcohol Induced Cause": "Cause", "County Code": "County_Code"},
|
78 |
+
inplace=True,
|
79 |
+
)
|
80 |
+
|
81 |
+
# ------------------------------------------------------
|
82 |
+
# mapping with fips for proper county names and state name
|
83 |
+
df4 = pd.merge(
|
84 |
+
df3,
|
85 |
+
fips,
|
86 |
+
how="left",
|
87 |
+
left_on="County_Code",
|
88 |
+
right_on="countyfips",
|
89 |
+
validate="m:1",
|
90 |
+
indicator=True,
|
91 |
+
)
|
92 |
+
|
93 |
+
# --------------------------------------------------------
|
94 |
+
# Prepare final DF for saving
|
95 |
+
# select required colums
|
96 |
+
df5 = df4[["BUYER_STATE", "BUYER_COUNTY", "County_Code", "Year", "Cause", "Deaths"]]
|
97 |
+
|
98 |
+
# rename columns
|
99 |
+
df5 = df5.rename(columns={"BUYER_COUNTY": "County", "BUYER_STATE": "State_Code"})
|
100 |
+
|
101 |
+
abbreviations = abbreviations.rename(
|
102 |
+
columns={
|
103 |
+
"state": "State",
|
104 |
+
"code": "State_Code",
|
105 |
+
}
|
106 |
+
)
|
107 |
+
|
108 |
+
# merge with abbreviations
|
109 |
+
df6 = pd.merge(
|
110 |
+
df5,
|
111 |
+
abbreviations[["State", "State_Code"]],
|
112 |
+
how="left",
|
113 |
+
on="State_Code",
|
114 |
+
validate="m:1",
|
115 |
+
)
|
116 |
+
|
117 |
+
# reorder columns to match population data
|
118 |
+
df6 = df6[["State", "State_Code", "County", "County_Code", "Year", "Cause", "Deaths"]]
|
119 |
+
|
120 |
+
# ------------------------------------------
|
121 |
+
# Writing to Parquet
|
122 |
+
df6.to_parquet(".01_Data/02_Processed/02_Mortality.parquet", index=False)
|