{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "# Importing required packages\n", "import pandas as pd\n", "\n", "# setting default option\n", "pd.set_option(\"mode.copy_on_write\", True)" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
NotesStateState CodeCountyCounty CodeYearly July 1st EstimatesYearly July 1st Estimates CodePopulation
13280NaNKentucky21.0Christian County, KY21047.02010.02010.074145
12354NaNKansas20.0Marion County, KS20115.02007.02007.012707
21061NaNMontana30.0Glacier County, MT30035.02004.02004.013388
5447NaNGeorgia13.0Cherokee County, GA13057.02003.02003.0165585
17285NaNMinnesota27.0Cass County, MN27021.02011.02011.028383
\n", "
" ], "text/plain": [ " Notes State State Code County County Code \\\n", "13280 NaN Kentucky 21.0 Christian County, KY 21047.0 \n", "12354 NaN Kansas 20.0 Marion County, KS 20115.0 \n", "21061 NaN Montana 30.0 Glacier County, MT 30035.0 \n", "5447 NaN Georgia 13.0 Cherokee County, GA 13057.0 \n", "17285 NaN Minnesota 27.0 Cass County, MN 27021.0 \n", "\n", " Yearly July 1st Estimates Yearly July 1st Estimates Code Population \n", "13280 2010.0 2010.0 74145 \n", "12354 2007.0 2007.0 12707 \n", "21061 2004.0 2004.0 13388 \n", "5447 2003.0 2003.0 165585 \n", "17285 2011.0 2011.0 28383 " ] }, "execution_count": 2, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# Load Raw Data File\n", "df = pd.read_csv(\"../01_Data/01_Raw/raw_population.txt\", sep=\"\\t\")\n", "df.sample(5)" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\n", "RangeIndex: 41037 entries, 0 to 41036\n", "Data columns (total 8 columns):\n", " # Column Non-Null Count Dtype \n", "--- ------ -------------- ----- \n", " 0 Notes 100 non-null object \n", " 1 State 40937 non-null object \n", " 2 State Code 40937 non-null float64\n", " 3 County 40937 non-null object \n", " 4 County Code 40937 non-null float64\n", " 5 Yearly July 1st Estimates 40937 non-null float64\n", " 6 Yearly July 1st Estimates Code 40937 non-null float64\n", " 7 Population 40937 non-null object \n", "dtypes: float64(4), object(4)\n", "memory usage: 2.5+ MB\n" ] } ], "source": [ "df.info()" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
NotesStateState CodeCountyCounty CodeYearly July 1st EstimatesYearly July 1st Estimates CodePopulation
40937---NaNNaNNaNNaNNaNNaNNaN
40938Dataset: Bridged-Race Population Estimates 199...NaNNaNNaNNaNNaNNaNNaN
40939Query Parameters:NaNNaNNaNNaNNaNNaNNaN
40940Yearly July 1st Estimates: 2003; 2004; 2005; 2...NaNNaNNaNNaNNaNNaNNaN
40941Group By: State; County; Yearly July 1st Estim...NaNNaNNaNNaNNaNNaNNaN
...........................
41032City are available only for the years prior to...NaNNaNNaNNaNNaNNaNNaN
410331999 and 2000 due to the addition of population.NaNNaNNaNNaNNaNNaNNaN
4103420. South Boston City, Virginia (FIPS code 517...NaNNaNNaNNaNNaNNaNNaN
41035June 30, 1995. This change was made retroactiv...NaNNaNNaNNaNNaNNaNNaN
41036have been reported with Halifax County since y...NaNNaNNaNNaNNaNNaNNaN
\n", "

100 rows × 8 columns

\n", "
" ], "text/plain": [ " Notes State State Code \\\n", "40937 --- NaN NaN \n", "40938 Dataset: Bridged-Race Population Estimates 199... NaN NaN \n", "40939 Query Parameters: NaN NaN \n", "40940 Yearly July 1st Estimates: 2003; 2004; 2005; 2... NaN NaN \n", "40941 Group By: State; County; Yearly July 1st Estim... NaN NaN \n", "... ... ... ... \n", "41032 City are available only for the years prior to... NaN NaN \n", "41033 1999 and 2000 due to the addition of population. NaN NaN \n", "41034 20. South Boston City, Virginia (FIPS code 517... NaN NaN \n", "41035 June 30, 1995. This change was made retroactiv... NaN NaN \n", "41036 have been reported with Halifax County since y... NaN NaN \n", "\n", " County County Code Yearly July 1st Estimates \\\n", "40937 NaN NaN NaN \n", "40938 NaN NaN NaN \n", "40939 NaN NaN NaN \n", "40940 NaN NaN NaN \n", "40941 NaN NaN NaN \n", "... ... ... ... \n", "41032 NaN NaN NaN \n", "41033 NaN NaN NaN \n", "41034 NaN NaN NaN \n", "41035 NaN NaN NaN \n", "41036 NaN NaN NaN \n", "\n", " Yearly July 1st Estimates Code Population \n", "40937 NaN NaN \n", "40938 NaN NaN \n", "40939 NaN NaN \n", "40940 NaN NaN \n", "40941 NaN NaN \n", "... ... ... \n", "41032 NaN NaN \n", "41033 NaN NaN \n", "41034 NaN NaN \n", "41035 NaN NaN \n", "41036 NaN NaN \n", "\n", "[100 rows x 8 columns]" ] }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# View the rows which have text values in notes column\n", "df[df[\"Notes\"].notnull()]" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [], "source": [ "# droping notes column\n", "df1 = df.drop(columns=[\"Notes\"])" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [], "source": [ "# removing the rows with na values generated due to Notes, using state column for reference\n", "df1 = df1.dropna(subset=[\"State\"])" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [], "source": [ "# dropping alaska\n", "df1 = df1[df1[\"State\"] != \"Alaska\"]" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
StateState CodeCountyCounty CodeYearly July 1st EstimatesYearly July 1st Estimates CodePopulation
22685Nebraska31.0Thurston County, NE31173.02003.02003.06987
39888Wisconsin55.0Door County, WI55029.02007.02007.027957
4159Connecticut9.0Tolland County, CT9013.02015.02015.0151815
20889Montana30.0Broadwater County, MT30007.02014.02014.05657
36855Virginia51.0Bland County, VA51021.02003.02003.06913
\n", "
" ], "text/plain": [ " State State Code County County Code \\\n", "22685 Nebraska 31.0 Thurston County, NE 31173.0 \n", "39888 Wisconsin 55.0 Door County, WI 55029.0 \n", "4159 Connecticut 9.0 Tolland County, CT 9013.0 \n", "20889 Montana 30.0 Broadwater County, MT 30007.0 \n", "36855 Virginia 51.0 Bland County, VA 51021.0 \n", "\n", " Yearly July 1st Estimates Yearly July 1st Estimates Code Population \n", "22685 2003.0 2003.0 6987 \n", "39888 2007.0 2007.0 27957 \n", "4159 2015.0 2015.0 151815 \n", "20889 2014.0 2014.0 5657 \n", "36855 2003.0 2003.0 6913 " ] }, "execution_count": 8, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df1.sample(5)" ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\n", "Index: 40495 entries, 0 to 40936\n", "Data columns (total 7 columns):\n", " # Column Non-Null Count Dtype \n", "--- ------ -------------- ----- \n", " 0 State 40495 non-null object \n", " 1 State Code 40495 non-null float64\n", " 2 County 40495 non-null object \n", " 3 County Code 40495 non-null float64\n", " 4 Yearly July 1st Estimates 40495 non-null float64\n", " 5 Yearly July 1st Estimates Code 40495 non-null float64\n", " 6 Population 40495 non-null object \n", "dtypes: float64(4), object(3)\n", "memory usage: 2.5+ MB\n" ] } ], "source": [ "df1.info()" ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "True" ] }, "execution_count": 10, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# validate if yealry estimate and estimate code are same\n", "df1[\"Yearly July 1st Estimates\"].equals(df1[\"Yearly July 1st Estimates Code\"])" ] }, { "cell_type": "code", "execution_count": 11, "metadata": {}, "outputs": [], "source": [ "# Correcting Data Types\n", "df2 = df1.copy()\n", "\n", "# Saving state code as padded string\n", "df2[\"State Code\"] = df2[\"State Code\"].astype(int).astype(str).str.zfill(2)\n", "\n", "# Saving county code as padded string\n", "df2[\"County Code\"] = df2[\"County Code\"].astype(int).astype(str).str.zfill(5)\n", "\n", "# Converting Year to Integer\n", "df2[\"Yearly July 1st Estimates\"] = df2[\"Yearly July 1st Estimates\"].astype(int)\n", "\n", "# Converting Population to Integer\n", "# replacing the missing values with 0 for now\n", "df2[\"Population\"] = df2[\"Population\"].replace(\"Missing\", 0)\n", "df2[\"Population\"] = df2[\"Population\"].astype(int)" ] }, { "cell_type": "code", "execution_count": 12, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
StateState CodeCountyCounty CodeYearly July 1st EstimatesYearly July 1st Estimates CodePopulation
9811Indiana18Monroe County, IN1810520122012.0141570
30855South Dakota46Brule County, SD4601520092009.05184
38764Washington53Lincoln County, WA5304320142014.010224
34257Texas48Hidalgo County, TX4821520052005.0674982
14148Kentucky21Nicholas County, KY2118120072007.07143
\n", "
" ], "text/plain": [ " State State Code County County Code \\\n", "9811 Indiana 18 Monroe County, IN 18105 \n", "30855 South Dakota 46 Brule County, SD 46015 \n", "38764 Washington 53 Lincoln County, WA 53043 \n", "34257 Texas 48 Hidalgo County, TX 48215 \n", "14148 Kentucky 21 Nicholas County, KY 21181 \n", "\n", " Yearly July 1st Estimates Yearly July 1st Estimates Code Population \n", "9811 2012 2012.0 141570 \n", "30855 2009 2009.0 5184 \n", "38764 2014 2014.0 10224 \n", "34257 2005 2005.0 674982 \n", "14148 2007 2007.0 7143 " ] }, "execution_count": 12, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df2.sample(5)" ] }, { "cell_type": "code", "execution_count": 13, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\n", "Index: 40495 entries, 0 to 40936\n", "Data columns (total 7 columns):\n", " # Column Non-Null Count Dtype \n", "--- ------ -------------- ----- \n", " 0 State 40495 non-null object \n", " 1 State Code 40495 non-null object \n", " 2 County 40495 non-null object \n", " 3 County Code 40495 non-null object \n", " 4 Yearly July 1st Estimates 40495 non-null int64 \n", " 5 Yearly July 1st Estimates Code 40495 non-null float64\n", " 6 Population 40495 non-null int64 \n", "dtypes: float64(1), int64(2), object(4)\n", "memory usage: 2.5+ MB\n" ] } ], "source": [ "df2.info()" ] }, { "cell_type": "code", "execution_count": 14, "metadata": {}, "outputs": [], "source": [ "df3 = df2.copy()\n", "\n", "# rename columns\n", "df3 = df3.rename(\n", " columns={\n", " \"Yearly July 1st Estimates\": \"Year\",\n", " \"State Code\": \"State_Code\",\n", " \"County Code\": \"County_Code\",\n", " }\n", ")\n", "\n", "# reorder columns\n", "df3 = df3[\n", " [\n", " \"State\",\n", " \"State_Code\",\n", " \"County\",\n", " \"County_Code\",\n", " \"Year\",\n", " \"Population\",\n", " ]\n", "]" ] }, { "cell_type": "code", "execution_count": 15, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
StateState_CodeCountyCounty_CodeYearPopulation
14210Kentucky21Pendleton County, KY21191200414809
30045Pennsylvania42Washington County, PA421252005205359
31810Tennessee47Clay County, TN4702720157668
25762North Carolina37Swain County, NC37173201214054
20357Missouri29Pemiscot County, MO29155201517427
\n", "
" ], "text/plain": [ " State State_Code County County_Code Year \\\n", "14210 Kentucky 21 Pendleton County, KY 21191 2004 \n", "30045 Pennsylvania 42 Washington County, PA 42125 2005 \n", "31810 Tennessee 47 Clay County, TN 47027 2015 \n", "25762 North Carolina 37 Swain County, NC 37173 2012 \n", "20357 Missouri 29 Pemiscot County, MO 29155 2015 \n", "\n", " Population \n", "14210 14809 \n", "30045 205359 \n", "31810 7668 \n", "25762 14054 \n", "20357 17427 " ] }, "execution_count": 15, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df3.sample(5)" ] }, { "cell_type": "code", "execution_count": 16, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
BUYER_COUNTYBUYER_STATEcountyfips
1937JONESNC37103
3083MARQUETTEWI55077
564CLEARWATERID16035
722HANCOCKIN18059
1229ALLEGANMI26005
\n", "
" ], "text/plain": [ " BUYER_COUNTY BUYER_STATE countyfips\n", "1937 JONES NC 37103\n", "3083 MARQUETTE WI 55077\n", "564 CLEARWATER ID 16035\n", "722 HANCOCK IN 18059\n", "1229 ALLEGAN MI 26005" ] }, "execution_count": 16, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# maps with fips for proper county names\n", "fips = pd.read_csv(\"../01_Data/01_Raw/county_fips.csv\")\n", "fips.sample(5)" ] }, { "cell_type": "code", "execution_count": 17, "metadata": {}, "outputs": [], "source": [ "# padding fips to have consistency\n", "fips[\"countyfips\"] = fips[\"countyfips\"].astype(str).str.zfill(5)" ] }, { "cell_type": "code", "execution_count": 18, "metadata": {}, "outputs": [], "source": [ "# performing left join to get the county names\n", "df4 = pd.merge(\n", " df3,\n", " fips,\n", " how=\"left\",\n", " left_on=\"County_Code\",\n", " right_on=\"countyfips\",\n", " validate=\"m:1\",\n", " indicator=True,\n", ")" ] }, { "cell_type": "code", "execution_count": 19, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "_merge\n", "both 40456\n", "left_only 39\n", "right_only 0\n", "Name: count, dtype: int64" ] }, "execution_count": 19, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# validate match for all rows\n", "df4[\"_merge\"].value_counts()" ] }, { "cell_type": "code", "execution_count": 20, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
StateState_CodeCountyCounty_CodeYearPopulationBUYER_COUNTYBUYER_STATEcountyfips_merge
1690Arkansas05Montgomery County, AR0509720039239NaNNaNNaNleft_only
1691Arkansas05Montgomery County, AR0509720049334NaNNaNNaNleft_only
1692Arkansas05Montgomery County, AR0509720059358NaNNaNNaNleft_only
1693Arkansas05Montgomery County, AR0509720069437NaNNaNNaNleft_only
1694Arkansas05Montgomery County, AR0509720079478NaNNaNNaNleft_only
1695Arkansas05Montgomery County, AR0509720089573NaNNaNNaNleft_only
1696Arkansas05Montgomery County, AR0509720099490NaNNaNNaNleft_only
1697Arkansas05Montgomery County, AR0509720109515NaNNaNNaNleft_only
1698Arkansas05Montgomery County, AR0509720119404NaNNaNNaNleft_only
1699Arkansas05Montgomery County, AR0509720129344NaNNaNNaNleft_only
1700Arkansas05Montgomery County, AR0509720139254NaNNaNNaNleft_only
1701Arkansas05Montgomery County, AR0509720149163NaNNaNNaNleft_only
1702Arkansas05Montgomery County, AR0509720159029NaNNaNNaNleft_only
6747Hawaii15Kalawao County, HI150052003127NaNNaNNaNleft_only
6748Hawaii15Kalawao County, HI150052004117NaNNaNNaNleft_only
6749Hawaii15Kalawao County, HI150052005114NaNNaNNaNleft_only
6750Hawaii15Kalawao County, HI150052006109NaNNaNNaNleft_only
6751Hawaii15Kalawao County, HI150052007105NaNNaNNaNleft_only
6752Hawaii15Kalawao County, HI15005200899NaNNaNNaNleft_only
6753Hawaii15Kalawao County, HI15005200993NaNNaNNaNleft_only
6754Hawaii15Kalawao County, HI15005201090NaNNaNNaNleft_only
6755Hawaii15Kalawao County, HI15005201190NaNNaNNaNleft_only
6756Hawaii15Kalawao County, HI15005201289NaNNaNNaNleft_only
6757Hawaii15Kalawao County, HI15005201389NaNNaNNaNleft_only
6758Hawaii15Kalawao County, HI15005201489NaNNaNNaNleft_only
6759Hawaii15Kalawao County, HI15005201588NaNNaNNaNleft_only
30979South Dakota46Oglala Lakota County, SD46102200312993NaNNaNNaNleft_only
30980South Dakota46Oglala Lakota County, SD46102200412983NaNNaNNaNleft_only
30981South Dakota46Oglala Lakota County, SD46102200513150NaNNaNNaNleft_only
30982South Dakota46Oglala Lakota County, SD46102200613404NaNNaNNaNleft_only
30983South Dakota46Oglala Lakota County, SD46102200713345NaNNaNNaNleft_only
30984South Dakota46Oglala Lakota County, SD46102200813368NaNNaNNaNleft_only
30985South Dakota46Oglala Lakota County, SD46102200913425NaNNaNNaNleft_only
30986South Dakota46Oglala Lakota County, SD46102201013636NaNNaNNaNleft_only
30987South Dakota46Oglala Lakota County, SD46102201113897NaNNaNNaNleft_only
30988South Dakota46Oglala Lakota County, SD46102201214041NaNNaNNaNleft_only
30989South Dakota46Oglala Lakota County, SD46102201314130NaNNaNNaNleft_only
30990South Dakota46Oglala Lakota County, SD46102201414217NaNNaNNaNleft_only
30991South Dakota46Oglala Lakota County, SD46102201514364NaNNaNNaNleft_only
\n", "
" ], "text/plain": [ " State State_Code County County_Code Year \\\n", "1690 Arkansas 05 Montgomery County, AR 05097 2003 \n", "1691 Arkansas 05 Montgomery County, AR 05097 2004 \n", "1692 Arkansas 05 Montgomery County, AR 05097 2005 \n", "1693 Arkansas 05 Montgomery County, AR 05097 2006 \n", "1694 Arkansas 05 Montgomery County, AR 05097 2007 \n", "1695 Arkansas 05 Montgomery County, AR 05097 2008 \n", "1696 Arkansas 05 Montgomery County, AR 05097 2009 \n", "1697 Arkansas 05 Montgomery County, AR 05097 2010 \n", "1698 Arkansas 05 Montgomery County, AR 05097 2011 \n", "1699 Arkansas 05 Montgomery County, AR 05097 2012 \n", "1700 Arkansas 05 Montgomery County, AR 05097 2013 \n", "1701 Arkansas 05 Montgomery County, AR 05097 2014 \n", "1702 Arkansas 05 Montgomery County, AR 05097 2015 \n", "6747 Hawaii 15 Kalawao County, HI 15005 2003 \n", "6748 Hawaii 15 Kalawao County, HI 15005 2004 \n", "6749 Hawaii 15 Kalawao County, HI 15005 2005 \n", "6750 Hawaii 15 Kalawao County, HI 15005 2006 \n", "6751 Hawaii 15 Kalawao County, HI 15005 2007 \n", "6752 Hawaii 15 Kalawao County, HI 15005 2008 \n", "6753 Hawaii 15 Kalawao County, HI 15005 2009 \n", "6754 Hawaii 15 Kalawao County, HI 15005 2010 \n", "6755 Hawaii 15 Kalawao County, HI 15005 2011 \n", "6756 Hawaii 15 Kalawao County, HI 15005 2012 \n", "6757 Hawaii 15 Kalawao County, HI 15005 2013 \n", "6758 Hawaii 15 Kalawao County, HI 15005 2014 \n", "6759 Hawaii 15 Kalawao County, HI 15005 2015 \n", "30979 South Dakota 46 Oglala Lakota County, SD 46102 2003 \n", "30980 South Dakota 46 Oglala Lakota County, SD 46102 2004 \n", "30981 South Dakota 46 Oglala Lakota County, SD 46102 2005 \n", "30982 South Dakota 46 Oglala Lakota County, SD 46102 2006 \n", "30983 South Dakota 46 Oglala Lakota County, SD 46102 2007 \n", "30984 South Dakota 46 Oglala Lakota County, SD 46102 2008 \n", "30985 South Dakota 46 Oglala Lakota County, SD 46102 2009 \n", "30986 South Dakota 46 Oglala Lakota County, SD 46102 2010 \n", "30987 South Dakota 46 Oglala Lakota County, SD 46102 2011 \n", "30988 South Dakota 46 Oglala Lakota County, SD 46102 2012 \n", "30989 South Dakota 46 Oglala Lakota County, SD 46102 2013 \n", "30990 South Dakota 46 Oglala Lakota County, SD 46102 2014 \n", "30991 South Dakota 46 Oglala Lakota County, SD 46102 2015 \n", "\n", " Population BUYER_COUNTY BUYER_STATE countyfips _merge \n", "1690 9239 NaN NaN NaN left_only \n", "1691 9334 NaN NaN NaN left_only \n", "1692 9358 NaN NaN NaN left_only \n", "1693 9437 NaN NaN NaN left_only \n", "1694 9478 NaN NaN NaN left_only \n", "1695 9573 NaN NaN NaN left_only \n", "1696 9490 NaN NaN NaN left_only \n", "1697 9515 NaN NaN NaN left_only \n", "1698 9404 NaN NaN NaN left_only \n", "1699 9344 NaN NaN NaN left_only \n", "1700 9254 NaN NaN NaN left_only \n", "1701 9163 NaN NaN NaN left_only \n", "1702 9029 NaN NaN NaN left_only \n", "6747 127 NaN NaN NaN left_only \n", "6748 117 NaN NaN NaN left_only \n", "6749 114 NaN NaN NaN left_only \n", "6750 109 NaN NaN NaN left_only \n", "6751 105 NaN NaN NaN left_only \n", "6752 99 NaN NaN NaN left_only \n", "6753 93 NaN NaN NaN left_only \n", "6754 90 NaN NaN NaN left_only \n", "6755 90 NaN NaN NaN left_only \n", "6756 89 NaN NaN NaN left_only \n", "6757 89 NaN NaN NaN left_only \n", "6758 89 NaN NaN NaN left_only \n", "6759 88 NaN NaN NaN left_only \n", "30979 12993 NaN NaN NaN left_only \n", "30980 12983 NaN NaN NaN left_only \n", "30981 13150 NaN NaN NaN left_only \n", "30982 13404 NaN NaN NaN left_only \n", "30983 13345 NaN NaN NaN left_only \n", "30984 13368 NaN NaN NaN left_only \n", "30985 13425 NaN NaN NaN left_only \n", "30986 13636 NaN NaN NaN left_only \n", "30987 13897 NaN NaN NaN left_only \n", "30988 14041 NaN NaN NaN left_only \n", "30989 14130 NaN NaN NaN left_only \n", "30990 14217 NaN NaN NaN left_only \n", "30991 14364 NaN NaN NaN left_only " ] }, "execution_count": 20, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# Check for unmatched rows\n", "df4[(df4[\"_merge\"] == \"left_only\")]" ] }, { "cell_type": "code", "execution_count": 21, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "array(['Montgomery County, AR', 'Kalawao County, HI',\n", " 'Oglala Lakota County, SD'], dtype=object)" ] }, "execution_count": 21, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df4[(df4[\"_merge\"] == \"left_only\")][\"County\"].unique()" ] }, { "cell_type": "code", "execution_count": 22, "metadata": {}, "outputs": [], "source": [ "# Manual Correction\n", "df4.loc[df4[\"County\"] == \"Montgomery County, AR\", \"BUYER_COUNTY\"] = \"MONTGOMERY\"\n", "df4.loc[df4[\"County\"] == \"Kalawao County, HI\", \"BUYER_COUNTY\"] = \"KALAWAO\"\n", "df4.loc[df4[\"County\"] == \"Oglala Lakota County, SD\", \"BUYER_COUNTY\"] = \"OGLALA LAKOTA\"" ] }, { "cell_type": "code", "execution_count": 23, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
StateState_CodeCountyCounty_CodeYearPopulationBUYER_COUNTYBUYER_STATEcountyfips_merge
13500Kentucky21McLean County, KY2114920099566MCLEANKY21149both
28137Oklahoma40Pottawatomie County, OK40125200868752POTTAWATOMIEOK40125both
26396Ohio39Crawford County, OH39033200943921CRAWFORDOH39033both
26602Ohio39Hardin County, OH39065200732132HARDINOH39065both
20230Missouri29Stoddard County, MO29207200530240STODDARDMO29207both
\n", "
" ], "text/plain": [ " State State_Code County County_Code Year \\\n", "13500 Kentucky 21 McLean County, KY 21149 2009 \n", "28137 Oklahoma 40 Pottawatomie County, OK 40125 2008 \n", "26396 Ohio 39 Crawford County, OH 39033 2009 \n", "26602 Ohio 39 Hardin County, OH 39065 2007 \n", "20230 Missouri 29 Stoddard County, MO 29207 2005 \n", "\n", " Population BUYER_COUNTY BUYER_STATE countyfips _merge \n", "13500 9566 MCLEAN KY 21149 both \n", "28137 68752 POTTAWATOMIE OK 40125 both \n", "26396 43921 CRAWFORD OH 39033 both \n", "26602 32132 HARDIN OH 39065 both \n", "20230 30240 STODDARD MO 29207 both " ] }, "execution_count": 23, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df4.sample(5)" ] }, { "cell_type": "code", "execution_count": 24, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\n", "RangeIndex: 40495 entries, 0 to 40494\n", "Data columns (total 10 columns):\n", " # Column Non-Null Count Dtype \n", "--- ------ -------------- ----- \n", " 0 State 40495 non-null object \n", " 1 State_Code 40495 non-null object \n", " 2 County 40495 non-null object \n", " 3 County_Code 40495 non-null object \n", " 4 Year 40495 non-null int64 \n", " 5 Population 40495 non-null int64 \n", " 6 BUYER_COUNTY 40495 non-null object \n", " 7 BUYER_STATE 40456 non-null object \n", " 8 countyfips 40456 non-null object \n", " 9 _merge 40495 non-null category\n", "dtypes: category(1), int64(2), object(7)\n", "memory usage: 2.8+ MB\n" ] } ], "source": [ "# Final Verification\n", "df4.info()" ] }, { "cell_type": "code", "execution_count": 25, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
stateabbrevcode
23MinnesotaMinn.MN
30New JerseyN.J.NJ
3ArkansasArk.AR
28NevadaNev.NV
18LouisianaLa.LA
\n", "
" ], "text/plain": [ " state abbrev code\n", "23 Minnesota Minn. MN\n", "30 New Jersey N.J. NJ\n", "3 Arkansas Ark. AR\n", "28 Nevada Nev. NV\n", "18 Louisiana La. LA" ] }, "execution_count": 25, "metadata": {}, "output_type": "execute_result" } ], "source": [ "abbreviations = pd.read_csv(\"../01_Data/01_Raw/state_abbreviations.csv\")\n", "abbreviations.sample(5)" ] }, { "cell_type": "code", "execution_count": 26, "metadata": {}, "outputs": [], "source": [ "# rename colums to match with the main dataframe\n", "abbreviations = abbreviations.rename(\n", " columns={\n", " \"state\": \"State\",\n", " \"code\": \"State_Code\",\n", " }\n", ")" ] }, { "cell_type": "code", "execution_count": 27, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
StateBUYER_COUNTYCounty_CodeYearPopulationState_Code
33041TexasCONCHO4809520114121TX
9306IndianaMADISON180952014129773IN
27074OhioPUTNAM39137201134386OH
39655WisconsinKEWAUNEE55061200820636WI
28895PennsylvaniaBRADFORD42015201263005PA
\n", "
" ], "text/plain": [ " State BUYER_COUNTY County_Code Year Population State_Code\n", "33041 Texas CONCHO 48095 2011 4121 TX\n", "9306 Indiana MADISON 18095 2014 129773 IN\n", "27074 Ohio PUTNAM 39137 2011 34386 OH\n", "39655 Wisconsin KEWAUNEE 55061 2008 20636 WI\n", "28895 Pennsylvania BRADFORD 42015 2012 63005 PA" ] }, "execution_count": 27, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# select required columns\n", "df5 = pd.merge(\n", " df4[[\"State\", \"BUYER_COUNTY\", \"County_Code\", \"Year\", \"Population\"]],\n", " abbreviations[[\"State\", \"State_Code\"]],\n", " how=\"left\",\n", " left_on=\"State\",\n", " right_on=\"State\",\n", " validate=\"m:1\",\n", ")\n", "df5.sample(5)" ] }, { "cell_type": "code", "execution_count": 28, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
StateState_CodeCountyCounty_CodeYearPopulation
38099WashingtonWACLALLAM53009201271791
31623TennesseeTNHANCOCK4706720106796
19983MissouriMOPOLK29167200529308
33149TexasTXDALLAM4811120157301
12855KentuckyKYCLARK21049201435643
\n", "
" ], "text/plain": [ " State State_Code County County_Code Year Population\n", "38099 Washington WA CLALLAM 53009 2012 71791\n", "31623 Tennessee TN HANCOCK 47067 2010 6796\n", "19983 Missouri MO POLK 29167 2005 29308\n", "33149 Texas TX DALLAM 48111 2015 7301\n", "12855 Kentucky KY CLARK 21049 2014 35643" ] }, "execution_count": 28, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# rename columns\n", "df5 = df5.rename(\n", " columns={\n", " \"BUYER_COUNTY\": \"County\",\n", " }\n", ")\n", "\n", "# reorder columns\n", "df5 = df5[\n", " [\n", " \"State\",\n", " \"State_Code\",\n", " \"County\",\n", " \"County_Code\",\n", " \"Year\",\n", " \"Population\",\n", " ]\n", "]\n", "\n", "df5.sample(5)" ] }, { "cell_type": "code", "execution_count": 29, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\n", "RangeIndex: 40495 entries, 0 to 40494\n", "Data columns (total 6 columns):\n", " # Column Non-Null Count Dtype \n", "--- ------ -------------- ----- \n", " 0 State 40495 non-null object\n", " 1 State_Code 40495 non-null object\n", " 2 County 40495 non-null object\n", " 3 County_Code 40495 non-null object\n", " 4 Year 40495 non-null int64 \n", " 5 Population 40495 non-null int64 \n", "dtypes: int64(2), object(4)\n", "memory usage: 1.9+ MB\n" ] } ], "source": [ "df5.info()" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "base", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.11.5" } }, "nbformat": 4, "nbformat_minor": 2 }