Update README.md
Browse filesupdate with correct dataset info
README.md
CHANGED
@@ -1,391 +1,392 @@
|
|
1 |
-
---
|
2 |
-
configs:
|
3 |
-
- config_name: "10_shot_rlw"
|
4 |
-
data_files:
|
5 |
-
- split: dev
|
6 |
-
path: "10_shot_rlw/dev.*"
|
7 |
-
- split: ood_cons_count_10
|
8 |
-
path: "10_shot_rlw/ood_cons_count_10.*"
|
9 |
-
- split: ood_cons_count_3
|
10 |
-
path: "10_shot_rlw/ood_cons_count_3.*"
|
11 |
-
- split: ood_cons_count_5
|
12 |
-
path: "10_shot_rlw/ood_cons_count_5.*"
|
13 |
-
- split: ood_cons_count_7
|
14 |
-
path: "10_shot_rlw/ood_cons_count_7.*"
|
15 |
-
- split: ood_cons_len_10
|
16 |
-
path: "10_shot_rlw/ood_cons_len_10.*"
|
17 |
-
- split: ood_cons_len_3
|
18 |
-
path: "10_shot_rlw/ood_cons_len_3.*"
|
19 |
-
- split: ood_cons_len_5
|
20 |
-
path: "10_shot_rlw/ood_cons_len_5.*"
|
21 |
-
- split: ood_cons_len_7
|
22 |
-
path: "10_shot_rlw/ood_cons_len_7.*"
|
23 |
-
- split: ood_lexical
|
24 |
-
path: "10_shot_rlw/ood_lexical.*"
|
25 |
-
- split: test
|
26 |
-
path: "10_shot_rlw/test.*"
|
27 |
-
- split: train
|
28 |
-
path: "10_shot_rlw/train.*"
|
29 |
-
- config_name: "1_shot_eng"
|
30 |
-
data_files:
|
31 |
-
- split: dev
|
32 |
-
path: "1_shot_eng/dev.*"
|
33 |
-
- split: ood_cons_count_3
|
34 |
-
path: "1_shot_eng/ood_cons_count_3.*"
|
35 |
-
- split: ood_cons_count_5
|
36 |
-
path: "1_shot_eng/ood_cons_count_5.*"
|
37 |
-
- split: ood_cons_len_3
|
38 |
-
path: "1_shot_eng/ood_cons_len_3.*"
|
39 |
-
- split: ood_cons_len_5
|
40 |
-
path: "1_shot_eng/ood_cons_len_5.*"
|
41 |
-
- split: ood_lexical
|
42 |
-
path: "1_shot_eng/ood_lexical.*"
|
43 |
-
- split: other_tasks_id
|
44 |
-
path: "1_shot_eng/other_tasks_id.*"
|
45 |
-
- split: other_tasks_ood
|
46 |
-
path: "1_shot_eng/other_tasks_ood.*"
|
47 |
-
- split: test
|
48 |
-
path: "1_shot_eng/test.*"
|
49 |
-
- split: train
|
50 |
-
path: "1_shot_eng/train.*"
|
51 |
-
- config_name: "1_shot_rlw"
|
52 |
-
data_files:
|
53 |
-
- split: dev
|
54 |
-
path: "1_shot_rlw/dev.*"
|
55 |
-
- split: ood_cons_count_10
|
56 |
-
path: "1_shot_rlw/ood_cons_count_10.*"
|
57 |
-
- split: ood_cons_count_3
|
58 |
-
path: "1_shot_rlw/ood_cons_count_3.*"
|
59 |
-
- split: ood_cons_count_5
|
60 |
-
path: "1_shot_rlw/ood_cons_count_5.*"
|
61 |
-
- split: ood_cons_count_7
|
62 |
-
path: "1_shot_rlw/ood_cons_count_7.*"
|
63 |
-
- split: ood_cons_len_10
|
64 |
-
path: "1_shot_rlw/ood_cons_len_10.*"
|
65 |
-
- split: ood_cons_len_3
|
66 |
-
path: "1_shot_rlw/ood_cons_len_3.*"
|
67 |
-
- split: ood_cons_len_5
|
68 |
-
path: "1_shot_rlw/ood_cons_len_5.*"
|
69 |
-
- split: ood_cons_len_7
|
70 |
-
path: "1_shot_rlw/ood_cons_len_7.*"
|
71 |
-
- split: ood_lexical
|
72 |
-
path: "1_shot_rlw/ood_lexical.*"
|
73 |
-
- split: test
|
74 |
-
path: "1_shot_rlw/test.*"
|
75 |
-
- split: train
|
76 |
-
path: "1_shot_rlw/train.*"
|
77 |
-
- config_name: "1_shot_rlw_10x"
|
78 |
-
data_files:
|
79 |
-
- split: dev
|
80 |
-
path: "1_shot_rlw_10x/dev.*"
|
81 |
-
- split: ood_cons_count_10
|
82 |
-
path: "1_shot_rlw_10x/ood_cons_count_10.*"
|
83 |
-
- split: ood_cons_count_3
|
84 |
-
path: "1_shot_rlw_10x/ood_cons_count_3.*"
|
85 |
-
- split: ood_cons_count_5
|
86 |
-
path: "1_shot_rlw_10x/ood_cons_count_5.*"
|
87 |
-
- split: ood_cons_count_7
|
88 |
-
path: "1_shot_rlw_10x/ood_cons_count_7.*"
|
89 |
-
- split: ood_cons_len_10
|
90 |
-
path: "1_shot_rlw_10x/ood_cons_len_10.*"
|
91 |
-
- split: ood_cons_len_3
|
92 |
-
path: "1_shot_rlw_10x/ood_cons_len_3.*"
|
93 |
-
- split: ood_cons_len_5
|
94 |
-
path: "1_shot_rlw_10x/ood_cons_len_5.*"
|
95 |
-
- split: ood_cons_len_7
|
96 |
-
path: "1_shot_rlw_10x/ood_cons_len_7.*"
|
97 |
-
- split: ood_lexical
|
98 |
-
path: "1_shot_rlw_10x/ood_lexical.*"
|
99 |
-
- split: test
|
100 |
-
path: "1_shot_rlw_10x/test.*"
|
101 |
-
- split: train
|
102 |
-
path: "1_shot_rlw_10x/train.*"
|
103 |
-
- config_name: "2_shot_rlw"
|
104 |
-
data_files:
|
105 |
-
- split: dev
|
106 |
-
path: "2_shot_rlw/dev.*"
|
107 |
-
- split: ood_cons_count_10
|
108 |
-
path: "2_shot_rlw/ood_cons_count_10.*"
|
109 |
-
- split: ood_cons_count_3
|
110 |
-
path: "2_shot_rlw/ood_cons_count_3.*"
|
111 |
-
- split: ood_cons_count_5
|
112 |
-
path: "2_shot_rlw/ood_cons_count_5.*"
|
113 |
-
- split: ood_cons_count_7
|
114 |
-
path: "2_shot_rlw/ood_cons_count_7.*"
|
115 |
-
- split: ood_cons_len_10
|
116 |
-
path: "2_shot_rlw/ood_cons_len_10.*"
|
117 |
-
- split: ood_cons_len_3
|
118 |
-
path: "2_shot_rlw/ood_cons_len_3.*"
|
119 |
-
- split: ood_cons_len_5
|
120 |
-
path: "2_shot_rlw/ood_cons_len_5.*"
|
121 |
-
- split: ood_cons_len_7
|
122 |
-
path: "2_shot_rlw/ood_cons_len_7.*"
|
123 |
-
- split: ood_lexical
|
124 |
-
path: "2_shot_rlw/ood_lexical.*"
|
125 |
-
- split: test
|
126 |
-
path: "2_shot_rlw/test.*"
|
127 |
-
- split: train
|
128 |
-
path: "2_shot_rlw/train.*"
|
129 |
-
- config_name: "3_shot_rlw"
|
130 |
-
data_files:
|
131 |
-
- split: dev
|
132 |
-
path: "3_shot_rlw/dev.*"
|
133 |
-
- split: ood_cons_count_10
|
134 |
-
path: "3_shot_rlw/ood_cons_count_10.*"
|
135 |
-
- split: ood_cons_count_3
|
136 |
-
path: "3_shot_rlw/ood_cons_count_3.*"
|
137 |
-
- split: ood_cons_count_5
|
138 |
-
path: "3_shot_rlw/ood_cons_count_5.*"
|
139 |
-
- split: ood_cons_count_7
|
140 |
-
path: "3_shot_rlw/ood_cons_count_7.*"
|
141 |
-
- split: ood_cons_len_10
|
142 |
-
path: "3_shot_rlw/ood_cons_len_10.*"
|
143 |
-
- split: ood_cons_len_3
|
144 |
-
path: "3_shot_rlw/ood_cons_len_3.*"
|
145 |
-
- split: ood_cons_len_5
|
146 |
-
path: "3_shot_rlw/ood_cons_len_5.*"
|
147 |
-
- split: ood_cons_len_7
|
148 |
-
path: "3_shot_rlw/ood_cons_len_7.*"
|
149 |
-
- split: ood_lexical
|
150 |
-
path: "3_shot_rlw/ood_lexical.*"
|
151 |
-
- split: test
|
152 |
-
path: "3_shot_rlw/test.*"
|
153 |
-
- split: train
|
154 |
-
path: "3_shot_rlw/train.*"
|
155 |
-
- config_name: "5_shot_rlw"
|
156 |
-
data_files:
|
157 |
-
- split: dev
|
158 |
-
path: "5_shot_rlw/dev.*"
|
159 |
-
- split: ood_cons_count_10
|
160 |
-
path: "5_shot_rlw/ood_cons_count_10.*"
|
161 |
-
- split: ood_cons_count_3
|
162 |
-
path: "5_shot_rlw/ood_cons_count_3.*"
|
163 |
-
- split: ood_cons_count_5
|
164 |
-
path: "5_shot_rlw/ood_cons_count_5.*"
|
165 |
-
- split: ood_cons_count_7
|
166 |
-
path: "5_shot_rlw/ood_cons_count_7.*"
|
167 |
-
- split: ood_cons_len_10
|
168 |
-
path: "5_shot_rlw/ood_cons_len_10.*"
|
169 |
-
- split: ood_cons_len_3
|
170 |
-
path: "5_shot_rlw/ood_cons_len_3.*"
|
171 |
-
- split: ood_cons_len_5
|
172 |
-
path: "5_shot_rlw/ood_cons_len_5.*"
|
173 |
-
- split: ood_cons_len_7
|
174 |
-
path: "5_shot_rlw/ood_cons_len_7.*"
|
175 |
-
- split: ood_lexical
|
176 |
-
path: "5_shot_rlw/ood_lexical.*"
|
177 |
-
- split: test
|
178 |
-
path: "5_shot_rlw/test.*"
|
179 |
-
- split: train
|
180 |
-
path: "5_shot_rlw/train.*"
|
181 |
-
|
182 |
-
annotations_creators:
|
183 |
-
- machine-generated
|
184 |
-
language:
|
185 |
-
- en
|
186 |
-
language_creators:
|
187 |
-
- machine-generated
|
188 |
-
license:
|
189 |
-
- other
|
190 |
-
multilinguality:
|
191 |
-
- monolingual
|
192 |
-
pretty_name: Templatic Generation Tasks for In-Context Learning Research
|
193 |
-
size_categories:
|
194 |
-
- 10K<n<100K
|
195 |
-
- 1K<n<10K
|
196 |
-
- n<1K
|
197 |
-
source_datasets:
|
198 |
-
- original
|
199 |
-
tags:
|
200 |
-
- seq2seq
|
201 |
-
task_categories:
|
202 |
-
- text2text-generation
|
203 |
-
task_ids: []
|
204 |
-
---
|
205 |
-
# Dataset Card for Active/Passive/Logical Transforms
|
206 |
-
|
207 |
-
## Table of Contents
|
208 |
-
- [Dataset Description](#dataset-description)
|
209 |
-
- [Dataset Summary](#dataset-summary)
|
210 |
-
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
|
211 |
-
- [Languages](#languages)
|
212 |
-
- [Dataset Structure](#dataset-structure)
|
213 |
-
- [Dataset Subsets (Tasks)](#data-tasks)
|
214 |
-
- [Dataset Splits](#data-splits)
|
215 |
-
- [Data Instances](#data-instances)
|
216 |
-
- [Data Fields](#data-fields)
|
217 |
-
- [Dataset Creation](#dataset-creation)
|
218 |
-
- [Curation Rationale](#curation-rationale)
|
219 |
-
- [Source Data](#source-data)
|
220 |
-
- [Annotations](#annotations)
|
221 |
-
- [Personal and Sensitive Information](#personal-and-sensitive-information)
|
222 |
-
- [Considerations for Using the Data](#considerations-for-using-the-data)
|
223 |
-
- [Social Impact of Dataset](#social-impact-of-dataset)
|
224 |
-
- [Discussion of Biases](#discussion-of-biases)
|
225 |
-
- [Other Known Limitations](#other-known-limitations)
|
226 |
-
- [Additional Information](#additional-information)
|
227 |
-
- [Dataset Curators](#dataset-curators)
|
228 |
-
- [Licensing Information](#licensing-information)
|
229 |
-
- [Citation Information](#citation-information)
|
230 |
-
- [Contributions](#contributions)
|
231 |
-
|
232 |
-
## Dataset Description
|
233 |
-
|
234 |
-
- **Homepage:**
|
235 |
-
- **Repository:**
|
236 |
-
- **Paper:**
|
237 |
-
- **Leaderboard:**
|
238 |
-
- **Point of Contact:** [Roland Fernandez](mailto:[email protected])
|
239 |
-
|
240 |
-
### Dataset Summary
|
241 |
-
|
242 |
-
This dataset is a synthetic dataset containing a set of templatic generation tasks using both English and random 2-letter words.
|
243 |
-
|
244 |
-
### Supported Tasks and Leaderboards
|
245 |
-
|
246 |
-
[TBD]
|
247 |
-
|
248 |
-
### Languages
|
249 |
-
|
250 |
-
All data is in English or random 2-letter words.
|
251 |
-
|
252 |
-
## Dataset Structure
|
253 |
-
|
254 |
-
The dataset consists of several subsets, or tasks. Each task contains a train split, a dev split, and a
|
255 |
-
test split, and multiple out-of-distribution splits.
|
256 |
-
|
257 |
-
Each sample in a split contains a source string, a target string, and an annotation string (describing the sample).
|
258 |
-
|
259 |
-
### Dataset Subsets (Tasks)
|
260 |
-
The dataset consists of the following tasks:
|
261 |
-
|
262 |
-
```
|
263 |
-
- 1_shot_rlw (1 example input/output pair, a test input, and the gold output, all using random 2-letter words)
|
264 |
-
- 1_shot_eng (same as 1_shot_rlw but using English words).
|
265 |
-
- 1_shot_rlw_10x (same as 1_shot_rlw, but with 10x the training samples)
|
266 |
-
- 2_shot_rlw (2 example input/output pairs, a test input, and the gold output, all using random 2-letter words)
|
267 |
-
- 3_shot_rlw (3 example input/output pairs, a test input, and the gold output, all using random 2-letter words)
|
268 |
-
- 5_shot_rlw (5 example input/output pairs, a test input, and the gold output, all using random 2-letter words)
|
269 |
-
- 10_shot_rtw (10 example input/output pairs, a test input, and the gold output, all using random 2-letter words)
|
270 |
-
```
|
271 |
-
|
272 |
-
### Data Splits
|
273 |
-
|
274 |
-
Most tasks have the following splits:
|
275 |
-
- train
|
276 |
-
- dev
|
277 |
-
- test
|
278 |
-
- ood_lexical
|
279 |
-
- ood_cons_count_3
|
280 |
-
- ood_cons_count_5
|
281 |
-
- ood_cons_count_7
|
282 |
-
- ood_cons_count_10
|
283 |
-
- ood_cons_len_3
|
284 |
-
- ood_cons_len_5
|
285 |
-
- ood_cons_len_7
|
286 |
-
- ood_cons_len_10
|
287 |
-
|
288 |
-
Here is a table showing how the number of examples varies by split (for most tasks):
|
289 |
-
|
290 |
-
| Dataset Split | Number of Instances in Split |
|
291 |
-
| ------------- | ------------------------------------------- |
|
292 |
-
| train | 280,000 |
|
293 |
-
| dev | 35,000 |
|
294 |
-
| test | 35,000 |
|
295 |
-
| ood_* | 84,000 |
|
296 |
-
|
297 |
-
|
298 |
-
### Data Instances
|
299 |
-
|
300 |
-
Each sample consits of a source, target, and annotation string (all tab separated).
|
301 |
-
|
302 |
-
Here is an example from the *train* split of the *1_shot_eng* task:
|
303 |
-
|
304 |
-
```
|
305 |
-
{
|
306 |
-
'raw': 'Q any mouse ) ; bear A any mouse & . Q road ) ; building A road & . {"cons_count": "Q2A1", "cons_len": "Q21.Q11"}'
|
307 |
-
|
308 |
-
'source': 'Q any mouse ) ; bear A any mouse & . Q road ) ; building A',
|
309 |
-
'target': 'road & .',
|
310 |
-
'annotation': '{"cons_count": "Q2A1", "cons_len": "Q21.Q11"}'
|
311 |
-
}
|
312 |
-
```
|
313 |
-
|
314 |
-
### Data Fields
|
315 |
-
|
316 |
-
- `source`: the string containing the N-shot examples and the test cue
|
317 |
-
- `target`: the string containing the desired (gold) output
|
318 |
-
- `annotation`: the string describing the example (as a python or JSON dictionary)
|
319 |
-
|
320 |
-
## Dataset Creation
|
321 |
-
|
322 |
-
### Curation Rationale
|
323 |
-
|
324 |
-
We wanted a dataset that would test in-context (and from scratch) learning of abstract, semantic-free symbolic transformations,
|
325 |
-
based on a random template for each example. The dataset is designed to test 3 types of out of distribution generalization:
|
326 |
-
|
327 |
-
- lexical - known words used in new contexts (relative to train split)
|
328 |
-
- length - train split uses constituents of 1, 2, or 4 words; OOD splits use 3, 5, 7, or 10 words
|
329 |
-
- count - train split uses 1, 2, or 4 constituents; OOD splits use 3, 5, 7, or 10 constituents
|
330 |
-
|
331 |
-
### Source Data
|
332 |
-
|
333 |
-
[N/A]
|
334 |
-
|
335 |
-
#### Initial Data Collection and Normalization
|
336 |
-
|
337 |
-
[N/A]
|
338 |
-
|
339 |
-
#### Who are the source language producers?
|
340 |
-
|
341 |
-
The dataset by generated from templates designed by Paul Smolensky and Roland Fernandez.
|
342 |
-
|
343 |
-
### Annotations
|
344 |
-
|
345 |
-
Besides the source and target strings, each sample contains an annotation string that describes the sample.
|
346 |
-
|
347 |
-
#### Annotation process
|
348 |
-
|
349 |
-
The annotation columns were generated from each sample template.
|
350 |
-
|
351 |
-
#### Who are the annotators?
|
352 |
-
|
353 |
-
[N/A]
|
354 |
-
|
355 |
-
### Personal and Sensitive Information
|
356 |
-
|
357 |
-
No names or other sensitive information are included in the data.
|
358 |
-
|
359 |
-
## Considerations for Using the Data
|
360 |
-
|
361 |
-
### Social Impact of Dataset
|
362 |
-
|
363 |
-
The purpose of this dataset is to research how LLM and from-scratch model can learn to solve templatic generation tasks.
|
364 |
-
|
365 |
-
### Discussion of Biases
|
366 |
-
|
367 |
-
[TBD]
|
368 |
-
|
369 |
-
### Other Known Limitations
|
370 |
-
|
371 |
-
[TBD]
|
372 |
-
|
373 |
-
## Additional Information
|
374 |
-
|
375 |
-
The internal name of this dataset is nc_tgt_v11. Also see DATASET_INFO.md and GRAMMAR.md files.
|
376 |
-
|
377 |
-
### Dataset Curators
|
378 |
-
|
379 |
-
The dataset by generated from templates designed by Paul Smolensky and Roland Fernandez.
|
380 |
-
|
381 |
-
### Licensing Information
|
382 |
-
|
383 |
-
This dataset is released under the [Permissive 2.0 license](https://cdla.dev/permissive-2-0/).
|
384 |
-
|
385 |
-
### Citation Information
|
386 |
-
|
387 |
-
[TBD]
|
388 |
-
|
389 |
-
### Contributions
|
390 |
-
|
391 |
-
Thanks to [The Neurocompositional AI group at Microsoft Research](https://www.microsoft.com/en-us/research/project/neurocompositional-ai/) for creating and adding this dataset.
|
|
|
|
1 |
+
---
|
2 |
+
configs:
|
3 |
+
- config_name: "10_shot_rlw"
|
4 |
+
data_files:
|
5 |
+
- split: dev
|
6 |
+
path: "10_shot_rlw/dev.*"
|
7 |
+
- split: ood_cons_count_10
|
8 |
+
path: "10_shot_rlw/ood_cons_count_10.*"
|
9 |
+
- split: ood_cons_count_3
|
10 |
+
path: "10_shot_rlw/ood_cons_count_3.*"
|
11 |
+
- split: ood_cons_count_5
|
12 |
+
path: "10_shot_rlw/ood_cons_count_5.*"
|
13 |
+
- split: ood_cons_count_7
|
14 |
+
path: "10_shot_rlw/ood_cons_count_7.*"
|
15 |
+
- split: ood_cons_len_10
|
16 |
+
path: "10_shot_rlw/ood_cons_len_10.*"
|
17 |
+
- split: ood_cons_len_3
|
18 |
+
path: "10_shot_rlw/ood_cons_len_3.*"
|
19 |
+
- split: ood_cons_len_5
|
20 |
+
path: "10_shot_rlw/ood_cons_len_5.*"
|
21 |
+
- split: ood_cons_len_7
|
22 |
+
path: "10_shot_rlw/ood_cons_len_7.*"
|
23 |
+
- split: ood_lexical
|
24 |
+
path: "10_shot_rlw/ood_lexical.*"
|
25 |
+
- split: test
|
26 |
+
path: "10_shot_rlw/test.*"
|
27 |
+
- split: train
|
28 |
+
path: "10_shot_rlw/train.*"
|
29 |
+
- config_name: "1_shot_eng"
|
30 |
+
data_files:
|
31 |
+
- split: dev
|
32 |
+
path: "1_shot_eng/dev.*"
|
33 |
+
- split: ood_cons_count_3
|
34 |
+
path: "1_shot_eng/ood_cons_count_3.*"
|
35 |
+
- split: ood_cons_count_5
|
36 |
+
path: "1_shot_eng/ood_cons_count_5.*"
|
37 |
+
- split: ood_cons_len_3
|
38 |
+
path: "1_shot_eng/ood_cons_len_3.*"
|
39 |
+
- split: ood_cons_len_5
|
40 |
+
path: "1_shot_eng/ood_cons_len_5.*"
|
41 |
+
- split: ood_lexical
|
42 |
+
path: "1_shot_eng/ood_lexical.*"
|
43 |
+
- split: other_tasks_id
|
44 |
+
path: "1_shot_eng/other_tasks_id.*"
|
45 |
+
- split: other_tasks_ood
|
46 |
+
path: "1_shot_eng/other_tasks_ood.*"
|
47 |
+
- split: test
|
48 |
+
path: "1_shot_eng/test.*"
|
49 |
+
- split: train
|
50 |
+
path: "1_shot_eng/train.*"
|
51 |
+
- config_name: "1_shot_rlw"
|
52 |
+
data_files:
|
53 |
+
- split: dev
|
54 |
+
path: "1_shot_rlw/dev.*"
|
55 |
+
- split: ood_cons_count_10
|
56 |
+
path: "1_shot_rlw/ood_cons_count_10.*"
|
57 |
+
- split: ood_cons_count_3
|
58 |
+
path: "1_shot_rlw/ood_cons_count_3.*"
|
59 |
+
- split: ood_cons_count_5
|
60 |
+
path: "1_shot_rlw/ood_cons_count_5.*"
|
61 |
+
- split: ood_cons_count_7
|
62 |
+
path: "1_shot_rlw/ood_cons_count_7.*"
|
63 |
+
- split: ood_cons_len_10
|
64 |
+
path: "1_shot_rlw/ood_cons_len_10.*"
|
65 |
+
- split: ood_cons_len_3
|
66 |
+
path: "1_shot_rlw/ood_cons_len_3.*"
|
67 |
+
- split: ood_cons_len_5
|
68 |
+
path: "1_shot_rlw/ood_cons_len_5.*"
|
69 |
+
- split: ood_cons_len_7
|
70 |
+
path: "1_shot_rlw/ood_cons_len_7.*"
|
71 |
+
- split: ood_lexical
|
72 |
+
path: "1_shot_rlw/ood_lexical.*"
|
73 |
+
- split: test
|
74 |
+
path: "1_shot_rlw/test.*"
|
75 |
+
- split: train
|
76 |
+
path: "1_shot_rlw/train.*"
|
77 |
+
- config_name: "1_shot_rlw_10x"
|
78 |
+
data_files:
|
79 |
+
- split: dev
|
80 |
+
path: "1_shot_rlw_10x/dev.*"
|
81 |
+
- split: ood_cons_count_10
|
82 |
+
path: "1_shot_rlw_10x/ood_cons_count_10.*"
|
83 |
+
- split: ood_cons_count_3
|
84 |
+
path: "1_shot_rlw_10x/ood_cons_count_3.*"
|
85 |
+
- split: ood_cons_count_5
|
86 |
+
path: "1_shot_rlw_10x/ood_cons_count_5.*"
|
87 |
+
- split: ood_cons_count_7
|
88 |
+
path: "1_shot_rlw_10x/ood_cons_count_7.*"
|
89 |
+
- split: ood_cons_len_10
|
90 |
+
path: "1_shot_rlw_10x/ood_cons_len_10.*"
|
91 |
+
- split: ood_cons_len_3
|
92 |
+
path: "1_shot_rlw_10x/ood_cons_len_3.*"
|
93 |
+
- split: ood_cons_len_5
|
94 |
+
path: "1_shot_rlw_10x/ood_cons_len_5.*"
|
95 |
+
- split: ood_cons_len_7
|
96 |
+
path: "1_shot_rlw_10x/ood_cons_len_7.*"
|
97 |
+
- split: ood_lexical
|
98 |
+
path: "1_shot_rlw_10x/ood_lexical.*"
|
99 |
+
- split: test
|
100 |
+
path: "1_shot_rlw_10x/test.*"
|
101 |
+
- split: train
|
102 |
+
path: "1_shot_rlw_10x/train.*"
|
103 |
+
- config_name: "2_shot_rlw"
|
104 |
+
data_files:
|
105 |
+
- split: dev
|
106 |
+
path: "2_shot_rlw/dev.*"
|
107 |
+
- split: ood_cons_count_10
|
108 |
+
path: "2_shot_rlw/ood_cons_count_10.*"
|
109 |
+
- split: ood_cons_count_3
|
110 |
+
path: "2_shot_rlw/ood_cons_count_3.*"
|
111 |
+
- split: ood_cons_count_5
|
112 |
+
path: "2_shot_rlw/ood_cons_count_5.*"
|
113 |
+
- split: ood_cons_count_7
|
114 |
+
path: "2_shot_rlw/ood_cons_count_7.*"
|
115 |
+
- split: ood_cons_len_10
|
116 |
+
path: "2_shot_rlw/ood_cons_len_10.*"
|
117 |
+
- split: ood_cons_len_3
|
118 |
+
path: "2_shot_rlw/ood_cons_len_3.*"
|
119 |
+
- split: ood_cons_len_5
|
120 |
+
path: "2_shot_rlw/ood_cons_len_5.*"
|
121 |
+
- split: ood_cons_len_7
|
122 |
+
path: "2_shot_rlw/ood_cons_len_7.*"
|
123 |
+
- split: ood_lexical
|
124 |
+
path: "2_shot_rlw/ood_lexical.*"
|
125 |
+
- split: test
|
126 |
+
path: "2_shot_rlw/test.*"
|
127 |
+
- split: train
|
128 |
+
path: "2_shot_rlw/train.*"
|
129 |
+
- config_name: "3_shot_rlw"
|
130 |
+
data_files:
|
131 |
+
- split: dev
|
132 |
+
path: "3_shot_rlw/dev.*"
|
133 |
+
- split: ood_cons_count_10
|
134 |
+
path: "3_shot_rlw/ood_cons_count_10.*"
|
135 |
+
- split: ood_cons_count_3
|
136 |
+
path: "3_shot_rlw/ood_cons_count_3.*"
|
137 |
+
- split: ood_cons_count_5
|
138 |
+
path: "3_shot_rlw/ood_cons_count_5.*"
|
139 |
+
- split: ood_cons_count_7
|
140 |
+
path: "3_shot_rlw/ood_cons_count_7.*"
|
141 |
+
- split: ood_cons_len_10
|
142 |
+
path: "3_shot_rlw/ood_cons_len_10.*"
|
143 |
+
- split: ood_cons_len_3
|
144 |
+
path: "3_shot_rlw/ood_cons_len_3.*"
|
145 |
+
- split: ood_cons_len_5
|
146 |
+
path: "3_shot_rlw/ood_cons_len_5.*"
|
147 |
+
- split: ood_cons_len_7
|
148 |
+
path: "3_shot_rlw/ood_cons_len_7.*"
|
149 |
+
- split: ood_lexical
|
150 |
+
path: "3_shot_rlw/ood_lexical.*"
|
151 |
+
- split: test
|
152 |
+
path: "3_shot_rlw/test.*"
|
153 |
+
- split: train
|
154 |
+
path: "3_shot_rlw/train.*"
|
155 |
+
- config_name: "5_shot_rlw"
|
156 |
+
data_files:
|
157 |
+
- split: dev
|
158 |
+
path: "5_shot_rlw/dev.*"
|
159 |
+
- split: ood_cons_count_10
|
160 |
+
path: "5_shot_rlw/ood_cons_count_10.*"
|
161 |
+
- split: ood_cons_count_3
|
162 |
+
path: "5_shot_rlw/ood_cons_count_3.*"
|
163 |
+
- split: ood_cons_count_5
|
164 |
+
path: "5_shot_rlw/ood_cons_count_5.*"
|
165 |
+
- split: ood_cons_count_7
|
166 |
+
path: "5_shot_rlw/ood_cons_count_7.*"
|
167 |
+
- split: ood_cons_len_10
|
168 |
+
path: "5_shot_rlw/ood_cons_len_10.*"
|
169 |
+
- split: ood_cons_len_3
|
170 |
+
path: "5_shot_rlw/ood_cons_len_3.*"
|
171 |
+
- split: ood_cons_len_5
|
172 |
+
path: "5_shot_rlw/ood_cons_len_5.*"
|
173 |
+
- split: ood_cons_len_7
|
174 |
+
path: "5_shot_rlw/ood_cons_len_7.*"
|
175 |
+
- split: ood_lexical
|
176 |
+
path: "5_shot_rlw/ood_lexical.*"
|
177 |
+
- split: test
|
178 |
+
path: "5_shot_rlw/test.*"
|
179 |
+
- split: train
|
180 |
+
path: "5_shot_rlw/train.*"
|
181 |
+
|
182 |
+
annotations_creators:
|
183 |
+
- machine-generated
|
184 |
+
language:
|
185 |
+
- en
|
186 |
+
language_creators:
|
187 |
+
- machine-generated
|
188 |
+
license:
|
189 |
+
- other
|
190 |
+
multilinguality:
|
191 |
+
- monolingual
|
192 |
+
pretty_name: Templatic Generation Tasks for In-Context Learning Research
|
193 |
+
size_categories:
|
194 |
+
- 10K<n<100K
|
195 |
+
- 1K<n<10K
|
196 |
+
- n<1K
|
197 |
+
source_datasets:
|
198 |
+
- original
|
199 |
+
tags:
|
200 |
+
- seq2seq
|
201 |
+
task_categories:
|
202 |
+
- text2text-generation
|
203 |
+
task_ids: []
|
204 |
+
---
|
205 |
+
# Dataset Card for Active/Passive/Logical Transforms
|
206 |
+
|
207 |
+
## Table of Contents
|
208 |
+
- [Dataset Description](#dataset-description)
|
209 |
+
- [Dataset Summary](#dataset-summary)
|
210 |
+
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
|
211 |
+
- [Languages](#languages)
|
212 |
+
- [Dataset Structure](#dataset-structure)
|
213 |
+
- [Dataset Subsets (Tasks)](#data-tasks)
|
214 |
+
- [Dataset Splits](#data-splits)
|
215 |
+
- [Data Instances](#data-instances)
|
216 |
+
- [Data Fields](#data-fields)
|
217 |
+
- [Dataset Creation](#dataset-creation)
|
218 |
+
- [Curation Rationale](#curation-rationale)
|
219 |
+
- [Source Data](#source-data)
|
220 |
+
- [Annotations](#annotations)
|
221 |
+
- [Personal and Sensitive Information](#personal-and-sensitive-information)
|
222 |
+
- [Considerations for Using the Data](#considerations-for-using-the-data)
|
223 |
+
- [Social Impact of Dataset](#social-impact-of-dataset)
|
224 |
+
- [Discussion of Biases](#discussion-of-biases)
|
225 |
+
- [Other Known Limitations](#other-known-limitations)
|
226 |
+
- [Additional Information](#additional-information)
|
227 |
+
- [Dataset Curators](#dataset-curators)
|
228 |
+
- [Licensing Information](#licensing-information)
|
229 |
+
- [Citation Information](#citation-information)
|
230 |
+
- [Contributions](#contributions)
|
231 |
+
|
232 |
+
## Dataset Description
|
233 |
+
|
234 |
+
- **Homepage:**
|
235 |
+
- **Repository:**
|
236 |
+
- **Paper:**
|
237 |
+
- **Leaderboard:**
|
238 |
+
- **Point of Contact:** [Roland Fernandez](mailto:[email protected])
|
239 |
+
|
240 |
+
### Dataset Summary
|
241 |
+
|
242 |
+
This dataset is a synthetic dataset containing a set of templatic generation tasks using both English and random 2-letter words.
|
243 |
+
|
244 |
+
### Supported Tasks and Leaderboards
|
245 |
+
|
246 |
+
[TBD]
|
247 |
+
|
248 |
+
### Languages
|
249 |
+
|
250 |
+
All data is in English or random 2-letter words.
|
251 |
+
|
252 |
+
## Dataset Structure
|
253 |
+
|
254 |
+
The dataset consists of several subsets, or tasks. Each task contains a train split, a dev split, and a
|
255 |
+
test split, and multiple out-of-distribution splits.
|
256 |
+
|
257 |
+
Each sample in a split contains a source string, a target string, and an annotation string (describing the sample).
|
258 |
+
|
259 |
+
### Dataset Subsets (Tasks)
|
260 |
+
The dataset consists of the following tasks:
|
261 |
+
|
262 |
+
```
|
263 |
+
- 1_shot_rlw (1 example input/output pair, a test input, and the gold output, all using random 2-letter words)
|
264 |
+
- 1_shot_eng (same as 1_shot_rlw but using English words).
|
265 |
+
- 1_shot_rlw_10x (same as 1_shot_rlw, but with 10x the training samples)
|
266 |
+
- 2_shot_rlw (2 example input/output pairs, a test input, and the gold output, all using random 2-letter words)
|
267 |
+
- 3_shot_rlw (3 example input/output pairs, a test input, and the gold output, all using random 2-letter words)
|
268 |
+
- 5_shot_rlw (5 example input/output pairs, a test input, and the gold output, all using random 2-letter words)
|
269 |
+
- 10_shot_rtw (10 example input/output pairs, a test input, and the gold output, all using random 2-letter words)
|
270 |
+
```
|
271 |
+
|
272 |
+
### Data Splits
|
273 |
+
|
274 |
+
Most tasks have the following splits:
|
275 |
+
- train
|
276 |
+
- dev
|
277 |
+
- test
|
278 |
+
- ood_lexical
|
279 |
+
- ood_cons_count_3
|
280 |
+
- ood_cons_count_5
|
281 |
+
- ood_cons_count_7
|
282 |
+
- ood_cons_count_10
|
283 |
+
- ood_cons_len_3
|
284 |
+
- ood_cons_len_5
|
285 |
+
- ood_cons_len_7
|
286 |
+
- ood_cons_len_10
|
287 |
+
|
288 |
+
Here is a table showing how the number of examples varies by split (for most tasks):
|
289 |
+
|
290 |
+
| Dataset Split | Number of Instances in Split |
|
291 |
+
| ------------- | ------------------------------------------- |
|
292 |
+
| train | 280,000 |
|
293 |
+
| dev | 35,000 |
|
294 |
+
| test | 35,000 |
|
295 |
+
| ood_* | 84,000 |
|
296 |
+
|
297 |
+
|
298 |
+
### Data Instances
|
299 |
+
|
300 |
+
Each sample consits of a source, target, and annotation string (all tab separated).
|
301 |
+
|
302 |
+
Here is an example from the *train* split of the *1_shot_eng* task:
|
303 |
+
|
304 |
+
```
|
305 |
+
{
|
306 |
+
'raw': 'Q any mouse ) ; bear A any mouse & . Q road ) ; building A road & . {"cons_count": "Q2A1", "cons_len": "Q21.Q11"}'
|
307 |
+
|
308 |
+
'source': 'Q any mouse ) ; bear A any mouse & . Q road ) ; building A',
|
309 |
+
'target': 'road & .',
|
310 |
+
'annotation': '{"cons_count": "Q2A1", "cons_len": "Q21.Q11"}'
|
311 |
+
}
|
312 |
+
```
|
313 |
+
|
314 |
+
### Data Fields
|
315 |
+
|
316 |
+
- `source`: the string containing the N-shot examples and the test cue
|
317 |
+
- `target`: the string containing the desired (gold) output
|
318 |
+
- `annotation`: the string describing the example (as a python or JSON dictionary)
|
319 |
+
|
320 |
+
## Dataset Creation
|
321 |
+
|
322 |
+
### Curation Rationale
|
323 |
+
|
324 |
+
We wanted a dataset that would test in-context (and from scratch) learning of abstract, semantic-free symbolic transformations,
|
325 |
+
based on a random template for each example. The dataset is designed to test 3 types of out of distribution generalization:
|
326 |
+
|
327 |
+
- lexical - known words used in new contexts (relative to train split)
|
328 |
+
- length - train split uses constituents of 1, 2, or 4 words; OOD splits use 3, 5, 7, or 10 words
|
329 |
+
- count - train split uses 1, 2, or 4 constituents; OOD splits use 3, 5, 7, or 10 constituents
|
330 |
+
|
331 |
+
### Source Data
|
332 |
+
|
333 |
+
[N/A]
|
334 |
+
|
335 |
+
#### Initial Data Collection and Normalization
|
336 |
+
|
337 |
+
[N/A]
|
338 |
+
|
339 |
+
#### Who are the source language producers?
|
340 |
+
|
341 |
+
The dataset by generated from templates designed by Paul Smolensky and Roland Fernandez.
|
342 |
+
|
343 |
+
### Annotations
|
344 |
+
|
345 |
+
Besides the source and target strings, each sample contains an annotation string that describes the sample.
|
346 |
+
|
347 |
+
#### Annotation process
|
348 |
+
|
349 |
+
The annotation columns were generated from each sample template.
|
350 |
+
|
351 |
+
#### Who are the annotators?
|
352 |
+
|
353 |
+
[N/A]
|
354 |
+
|
355 |
+
### Personal and Sensitive Information
|
356 |
+
|
357 |
+
No names or other sensitive information are included in the data.
|
358 |
+
|
359 |
+
## Considerations for Using the Data
|
360 |
+
|
361 |
+
### Social Impact of Dataset
|
362 |
+
|
363 |
+
The purpose of this dataset is to research how LLM and from-scratch model can learn to solve templatic generation tasks.
|
364 |
+
|
365 |
+
### Discussion of Biases
|
366 |
+
|
367 |
+
[TBD]
|
368 |
+
|
369 |
+
### Other Known Limitations
|
370 |
+
|
371 |
+
[TBD]
|
372 |
+
|
373 |
+
## Additional Information
|
374 |
+
|
375 |
+
The internal name of this dataset is nc_tgt_v11. Also see DATASET_INFO.md and GRAMMAR.md files.
|
376 |
+
|
377 |
+
### Dataset Curators
|
378 |
+
|
379 |
+
The dataset by generated from templates designed by Paul Smolensky and Roland Fernandez.
|
380 |
+
|
381 |
+
### Licensing Information
|
382 |
+
|
383 |
+
This dataset is released under the [Permissive 2.0 license](https://cdla.dev/permissive-2-0/).
|
384 |
+
|
385 |
+
### Citation Information
|
386 |
+
|
387 |
+
[TBD]
|
388 |
+
|
389 |
+
### Contributions
|
390 |
+
|
391 |
+
Thanks to [The Neurocompositional AI group at Microsoft Research](https://www.microsoft.com/en-us/research/project/neurocompositional-ai/) for creating and adding this dataset.
|
392 |
+
|