rish16 commited on
Commit
b0a33ec
·
1 Parent(s): 1013717

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +24 -2
README.md CHANGED
@@ -6,8 +6,17 @@ license: mit
6
  We provide the train, dev, and test sets. For more details, find our report [here](https://github.com/rish-16/cs4248-project/blob/main/CS4248_Group19_Final_Report.pdf).
7
 
8
  ## Dataset details
 
9
 
 
 
 
 
 
 
 
10
 
 
11
 
12
  ## Download Instructions
13
  To access MLe-SNLI, you can use the HuggingFace Datasets API to load the dataset:
@@ -16,13 +25,26 @@ To access MLe-SNLI, you can use the HuggingFace Datasets API to load the dataset
16
  from datasets import load_dataset
17
 
18
  mle_snli = load_dataset("rish16/MLe-SNLI") # loads a DatasetDict object
 
19
  train_data = mle_snli['train'] # 500K samples (100K per lang)
20
  dev_data = mle_snli['dev'] # 49120 samples (9824 per lang)
21
  test_data = mle_snli['test'] # 49120 samples (9824 per lang)
22
 
23
-
24
  print (mle_snli)
25
  """
26
-
 
 
 
 
 
 
 
 
 
 
 
 
 
27
  """
28
  ```
 
6
  We provide the train, dev, and test sets. For more details, find our report [here](https://github.com/rish-16/cs4248-project/blob/main/CS4248_Group19_Final_Report.pdf).
7
 
8
  ## Dataset details
9
+ MLe-SNLI contains 500K training (`train`) samples of premise-hypothesis pairs along with their associated label and explanation. We take 100K training samples from the original e-SNLI (Camburu et al., 2018) dataset and translate them into 4 other languages (Spanish, German, Dutch, and French). We do the same for all 9824 testing (`test`) and validation (`dev`) samples, giving us 49120 samples for both `test` and `dev` splits.
10
 
11
+ | Column | Description |
12
+ |-----------------|---------------------------------------------------------------------------------|
13
+ | `premise` | Natural language premise sentence |
14
+ | `hypothesis` | Natural language hypothesis sentence |
15
+ | `label` | From `entailment`, `contradiction`, or `neutral` |
16
+ | `explanation_1` | Natural language justification for `label` |
17
+ | `language` | From English (`en`), Spanish (`es`), German (`de`), Dutch (`nl`), French (`fr`) |
18
 
19
+ > **WARNING:** the translation quality of MLe-SNLI may be compromised for some natural language samples because of quality issues in the original e-SNLI dataset that were not addressed in our [work](https://github.com/rish-16/cs4248-project). Use it at your own discretion.
20
 
21
  ## Download Instructions
22
  To access MLe-SNLI, you can use the HuggingFace Datasets API to load the dataset:
 
25
  from datasets import load_dataset
26
 
27
  mle_snli = load_dataset("rish16/MLe-SNLI") # loads a DatasetDict object
28
+
29
  train_data = mle_snli['train'] # 500K samples (100K per lang)
30
  dev_data = mle_snli['dev'] # 49120 samples (9824 per lang)
31
  test_data = mle_snli['test'] # 49120 samples (9824 per lang)
32
 
 
33
  print (mle_snli)
34
  """
35
+ DatasetDict({
36
+ train: Dataset({
37
+ features: ['premise', 'hypothesis', 'label', 'explanation_1', 'language'],
38
+ num_rows: 500000
39
+ })
40
+ test: Dataset({
41
+ features: ['premise', 'hypothesis', 'label', 'explanation_1', 'language'],
42
+ num_rows: 49120
43
+ })
44
+ validation: Dataset({
45
+ features: ['premise', 'hypothesis', 'label', 'explanation_1', 'language'],
46
+ num_rows: 49210
47
+ })
48
+ })
49
  """
50
  ```