|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from pathlib import Path |
|
from random import shuffle |
|
|
|
import datasets |
|
|
|
|
|
_CITATION = """\ |
|
@InProceedings{huggingface:dataset, |
|
title = {A bark detection dataset with positive and negative samples of 1 second}, |
|
author={Rodrigo Marcos García}, |
|
year={2024} |
|
} |
|
""" |
|
|
|
|
|
|
|
_DESCRIPTION = """\ |
|
This is a bark detection dataset with positive and negative samples of 1 second |
|
""" |
|
|
|
_HOMEPAGE = "https://huggingface.co/datasets/rmarcosg/bark-detection" |
|
|
|
_LICENSE = "Apache 2.0" |
|
|
|
|
|
class BarkDetection(datasets.GeneratorBasedBuilder): |
|
|
|
VERSION = datasets.Version("0.0.1") |
|
|
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=datasets.Features( |
|
{ |
|
"file": datasets.Value("string"), |
|
"audio": datasets.Audio(sampling_rate=44_100), |
|
"label": datasets.Value("string"), |
|
} |
|
), |
|
supervised_keys=("file", "label"), |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"filepath": "train", |
|
"split": "train", |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
gen_kwargs={ |
|
"filepath": "validation", |
|
"split": "validation", |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={ |
|
"filepath": "test", |
|
"split": "test" |
|
}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, archive_path, split): |
|
"""Yields examples.""" |
|
key = 0 |
|
audio_files_dir = Path(archive_path) / split |
|
for audio_file_path in shuffle(audio_files_dir.glob("*/*.wav")): |
|
filename = audio_file_path.stem |
|
label = audio_file_path.parent.stem |
|
yield key, { |
|
"file": filename, |
|
"audio": str(audio_file_path), |
|
"label": label, |
|
} |
|
key += 1 |
|
|