Create bark_detection.py
Browse files- bark_detection.py +63 -0
bark_detection.py
ADDED
@@ -0,0 +1,63 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""A bark detection dataset"""
|
2 |
+
|
3 |
+
import csv
|
4 |
+
|
5 |
+
import datasets
|
6 |
+
|
7 |
+
|
8 |
+
_CITATION = """\
|
9 |
+
@InProceedings{huggingface:dataset,
|
10 |
+
title = {A bark detection dataset with positive and negative samples of 1 second},
|
11 |
+
author={Rodrigo Marcos García},
|
12 |
+
year={2024}
|
13 |
+
}
|
14 |
+
"""
|
15 |
+
|
16 |
+
|
17 |
+
|
18 |
+
_DESCRIPTION = """\
|
19 |
+
This is a bark detection dataset with positive and negative samples of 1 second
|
20 |
+
"""
|
21 |
+
|
22 |
+
_HOMEPAGE = "https://huggingface.co/datasets/rmarcosg/bark-detection"
|
23 |
+
|
24 |
+
_LICENSE = "Apache 2.0"
|
25 |
+
|
26 |
+
|
27 |
+
class BarkDetection(datasets.GeneratorBasedBuilder):
|
28 |
+
|
29 |
+
VERSION = datasets.Version("0.0.1")
|
30 |
+
|
31 |
+
def _info(self):
|
32 |
+
return datasets.DatasetInfo(
|
33 |
+
description=_DESCRIPTION,
|
34 |
+
homepage=_HOMEPAGE,
|
35 |
+
license=_LICENSE,
|
36 |
+
citation=_CITATION,
|
37 |
+
)
|
38 |
+
|
39 |
+
def _split_generators(self, dl_manager):
|
40 |
+
|
41 |
+
return [
|
42 |
+
datasets.SplitGenerator(
|
43 |
+
name=datasets.Split.TRAIN,
|
44 |
+
gen_kwargs={
|
45 |
+
"filepath": "train",
|
46 |
+
"split": "train",
|
47 |
+
},
|
48 |
+
),
|
49 |
+
datasets.SplitGenerator(
|
50 |
+
name=datasets.Split.VALIDATION,
|
51 |
+
gen_kwargs={
|
52 |
+
"filepath": "validation",
|
53 |
+
"split": "validation",
|
54 |
+
},
|
55 |
+
),
|
56 |
+
datasets.SplitGenerator(
|
57 |
+
name=datasets.Split.TEST,
|
58 |
+
gen_kwargs={
|
59 |
+
"filepath": "test",
|
60 |
+
"split": "test"
|
61 |
+
},
|
62 |
+
),
|
63 |
+
]
|