File size: 8,449 Bytes
4e9ea54 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 |
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import requests
import datasets
_DESCRIPTION = """\
United States governmental agencies often make proposed regulations open to the public for comment.
Proposed regulations are organized into "dockets". This dataset will use Regulation.gov public API
to aggregate and clean public comments for dockets that mention opioid use.
Each example will consist of one docket, and include metadata such as docket id, docket title, etc.
Each docket entry will also include information about the top 10 comments, including comment metadata
and comment text.
"""
# Homepage URL of the dataset
_HOMEPAGE = "https://www.regulations.gov/"
# URL to download the dataset
_URLS = {"url": "https://huggingface.co/datasets/ro-h/regulatory_comments/raw/main/docket_comments_all.json"}
class RegulationsDataFetcher:
API_KEY = "IsH1c1CAB0CR8spovnnx2INbLz8gQlVkbmXYII2z" #'4T29l93SvmnyNCVFZUFzSfUqTq6k7S0Wqn93sLcH'
BASE_COMMENT_URL = 'https://api.regulations.gov/v4/comments'
BASE_DOCKET_URL = 'https://api.regulations.gov/v4/dockets/'
HEADERS = {
'X-Api-Key': API_KEY,
'Content-Type': 'application/json'
}
def __init__(self, docket_id):
self.docket_id = docket_id
self.docket_url = self.BASE_DOCKET_URL + docket_id
self.dataset = []
def fetch_comments(self):
"""Fetch a single page of 25 comments."""
url = f'{self.BASE_COMMENT_URL}?filter[docketId]={self.docket_id}&page[number]=1&page[size]=25'
response = requests.get(url, headers=self.HEADERS)
if response.status_code == 200:
return response.json()
else:
print(f'Failed to retrieve comments: {response.status_code}')
return None
def get_docket_info(self):
"""Get docket information."""
response = requests.get(self.docket_url, headers=self.HEADERS)
if response.status_code == 200:
docket_data = response.json()
return (docket_data['data']['attributes']['agencyId'],
docket_data['data']['attributes']['title'],
docket_data['data']['attributes']['modifyDate'],
docket_data['data']['attributes']['docketType'],
docket_data['data']['attributes']['keywords'])
else:
print(f'Failed to retrieve docket info: {response.status_code}')
return None
def fetch_comment_details(self, comment_url):
"""Fetch detailed information of a comment."""
response = requests.get(comment_url, headers=self.HEADERS)
if response.status_code == 200:
return response.json()
else:
print(f'Failed to retrieve comment details: {response.status_code}')
return None
def collect_data(self):
"""Collect data and reshape into nested dictionary format."""
data = self.fetch_comments()
docket_info = self.get_docket_info()
# Initialize the nested dictionary structure
nested_data = {
"id": self.docket_id,
"title": docket_info[1] if docket_info else "Unknown Title",
"context": docket_info[2] if docket_info else "Unknown Context",
"purpose": docket_info[3],
"keywords": docket_info[4],
"comments": []
}
if data and 'data' in data:
for comment in data['data']:
comment_details = self.fetch_comment_details(comment['links']['self'])
if comment_details and 'data' in comment_details and 'attributes' in comment_details['data']:
comment_data = comment_details['data']['attributes']
nested_comment = {
"text": comment_data.get('comment', ''),
"comment_id": comment['id'],
"comment_url": comment['links']['self'],
"comment_date": comment['attributes']['postedDate'],
"comment_title": comment['attributes']['title'],
"commenter_fname": comment_data.get('firstName', ''),
"commenter_lname": comment_data.get('lastName', ''),
"comment_length": len(comment_data.get('comment', '')) if comment_data.get('comment') is not None else 0
}
nested_data["comments"].append(nested_comment)
if len(nested_data["comments"]) >= 10:
break
return nested_data
class RegComments(datasets.GeneratorBasedBuilder):
VERSION = datasets.Version("1.1.0")
# Method to define the structure of the dataset
def _info(self):
# Defining the structure of the dataset
features = datasets.Features({
"id": datasets.Value("string"),
"title": datasets.Value("string"),
"context": datasets.Value("string"),
"purpose": datasets.Value("string"),
"keywords": datasets.Sequence(datasets.Value("string")),
"comments": datasets.Sequence({
"text": datasets.Value("string"),
"comment_id": datasets.Value("string"),
"comment_url": datasets.Value("string"),
"comment_date": datasets.Value("string"),
"comment_title": datasets.Value("string"),
"commenter_fname": datasets.Value("string"),
"commenter_lname": datasets.Value("string"),
"comment_length": datasets.Value("int32")
})
})
# Returning the dataset structure
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE
)
def _split_generators(self, dl_manager):
# Expect an API key to be passed as a parameter
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"search_terms": opioid_related_terms,
"api_key": self.config.api_key, # Use the API key provided by the user
},
),
]
def _generate_examples(self, search_terms, api_key):
# Iterate over each search term to fetch relevant dockets
for term in search_terms:
docket_ids = get_docket_ids(term, api_key) # Pass the API key here
for docket_id in docket_ids:
fetcher = RegulationsDataFetcher(docket_id, api_key) # Initialize with the API key
docket_data = fetcher.collect_data()
if len(docket_data["comments"]) != 0:
yield docket_id, docket_data
# Modify the get_docket_ids function to accept an API key
def get_docket_ids(search_term, api_key):
url = f"https://api.regulations.gov/v4/dockets"
params = {
'filter[searchTerm]': search_term,
'api_key': api_key
}
response = requests.get(url, params=params)
if response.status_code == 200:
data = response.json()
dockets = data['data']
docket_ids = [docket['id'] for docket in dockets]
return docket_ids
else:
return f"Error: {response.status_code}"
opioid_related_terms = [
# Types of Opioids
"opioids",
"heroin",
"morphine",
"fentanyl",
"methadone",
"oxycodone",
"hydrocodone",
"codeine",
"tramadol",
"prescription opioids",
# Withdrawal Support
"lofexidine",
"buprenorphine",
"naloxone",
# Related Phrases
"opioid epidemic",
"opioid abuse",
"opioid crisis",
"opioid overdose"
"opioid tolerance",
"opioid treatment program",
"medication assisted treatment",
]
|