File size: 9,566 Bytes
4e9ea54 083b21d 4e9ea54 0821c02 4e9ea54 93cbd74 4215748 93cbd74 4215748 93cbd74 4215748 4e9ea54 cf669b7 4e9ea54 cf669b7 4e9ea54 cf669b7 4e9ea54 cf669b7 4e9ea54 a633346 a98db89 a633346 4e9ea54 cf669b7 4e9ea54 a633346 a98db89 a633346 4e9ea54 cf669b7 4e9ea54 cf669b7 4e9ea54 083b21d 4e9ea54 083b21d d664719 4e9ea54 083b21d d664719 4e9ea54 083b21d 4e9ea54 ff81fc0 4e9ea54 82b195a 4e9ea54 0024344 82b195a 4e9ea54 083b21d 4e9ea54 82b195a 4e9ea54 083b21d 82b195a 083b21d 82b195a 0024344 d152bd8 82b195a d152bd8 82b195a 4e9ea54 cf669b7 083b21d 0821c02 24ff7e7 0821c02 24ff7e7 586c1f2 4e9ea54 0821c02 4e9ea54 0821c02 93cbd74 0821c02 586c1f2 0821c02 4e9ea54 ac7b0e0 4e9ea54 93cbd74 4e9ea54 0821c02 24ff7e7 0821c02 4e9ea54 0821c02 24ff7e7 4e9ea54 24ff7e7 4e9ea54 24ff7e7 cf669b7 db36a72 904abf8 d664719 a98db89 d664719 904abf8 4e9ea54 db36a72 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 |
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import requests
import re
import datasets
from datasets import BuilderConfig
_DESCRIPTION = """\
United States governmental agencies often make proposed regulations open to the public for comment.
Proposed regulations are organized into "dockets". This dataset will use Regulation.gov public API
to aggregate and clean public comments for dockets that mention opioid use.
Each example will consist of one docket, and include metadata such as docket id, docket title, etc.
Each docket entry will also include information about the top 10 comments, including comment metadata
and comment text.
"""
# Homepage URL of the dataset
_HOMEPAGE = "https://www.regulations.gov/"
_CITATION = """@misc{ro_huang_regulatory_2023-1,
author = {{Ro Huang}},
date = {2023-03-19},
publisher = {Hugging Face},
title = {Regulatory Comments {API} Call},
url = {https://huggingface.co/datasets/ro-h/regulatory_comments_api},
version = {1.1.4},
bdsk-url-1 = {https://huggingface.co/datasets/ro-h/regulatory_comments_api}}
"""
class RegulationsDataFetcher:
BASE_COMMENT_URL = 'https://api.regulations.gov/v4/comments'
BASE_DOCKET_URL = 'https://api.regulations.gov/v4/dockets/'
def __init__(self, docket_id, api_key):
self.docket_id = docket_id
self.api_key = api_key
self.docket_url = self.BASE_DOCKET_URL + docket_id
self.headers = {
'X-Api-Key': self.api_key,
'Content-Type': 'application/json'
}
def fetch_comments(self):
"""Fetch a single page of 25 comments."""
url = f'{self.BASE_COMMENT_URL}?filter[docketId]={self.docket_id}&page[number]=1&page[size]=25'
response = requests.get(url, headers=self.headers)
if response.status_code == 200:
return response.json()
elif response.status_code == 429:
print(f'API Rate Limit Reached.')
return None
else:
print(f'Failed to retrieve comments: {response.status_code}')
return None
def get_docket_info(self):
"""Get docket information."""
response = requests.get(self.docket_url, headers=self.headers)
if response.status_code == 200:
docket_data = response.json()
return (docket_data['data']['attributes']['agencyId'],
docket_data['data']['attributes']['title'],
docket_data['data']['attributes']['modifyDate'],
docket_data['data']['attributes']['docketType'],
docket_data['data']['attributes']['keywords'])
elif response.status_code == 429:
print(f'API Rate Limit Reached.')
return None
else:
print(f'Failed to retrieve docket info: {response.status_code}')
return None
def fetch_comment_details(self, comment_url):
"""Fetch detailed information of a comment."""
response = requests.get(comment_url, headers=self.headers)
if response.status_code == 200:
return response.json()
else:
print(f'Failed to retrieve comment details: {response.status_code}')
return None
def collect_data(self):
"""Collect data and reshape into nested dictionary format."""
data = self.fetch_comments()
if not data:
return None
docket_info = self.get_docket_info()
if not docket_info:
return None
# Starting out with docket information
nested_data = {
"id": self.docket_id,
"agency": self.docket_id.split('-')[0],
"title": docket_info[1] if docket_info else "Unknown Title",
"update_date": docket_info[2].split('T')[0] if docket_info and docket_info[2] else "Unknown Update Date",
"update_time": docket_info[2].split('T')[1].strip('Z') if docket_info and docket_info[2] and 'T' in docket_info[2] else "Unknown Update Time",
"purpose": docket_info[3],
"keywords": docket_info[4],
"comments": []
}
# Going into each docket for comment information
if 'data' in data:
for comment in data['data']:
if len(nested_data["comments"]) >= 10:
break
comment_details = self.fetch_comment_details(comment['links']['self'])
if 'data' in comment_details and 'attributes' in comment_details['data']:
comment_data = comment_details['data']['attributes']
# Basic comment text cleaning
comment_text = (comment_data.get('comment', '') or '').strip()
comment_text = comment_text.replace("<br/>", "").replace("<span style='padding-left: 30px'></span>", "")
comment_text = re.sub(r'&[^;]+;', '', comment_text)
# Recording detailed comment information
if (comment_text and "attached" not in comment_text.lower() and "attachment" not in comment_text.lower() and comment_text.lower() != "n/a"):
nested_comment = {
"text": comment_text,
"comment_id": comment['id'],
"comment_url": comment['links']['self'],
"comment_date": comment['attributes']['postedDate'].split('T')[0],
"comment_time": comment['attributes']['postedDate'].split('T')[1].strip('Z'),
"commenter_fname": ((comment_data.get('firstName') or 'Anonymous').split(',')[0]).capitalize(),
"commenter_lname": ((comment_data.get('lastName') or 'Anonymous').split(',')[0]).capitalize(),
"comment_length": len(comment_text) if comment_text is not None else 0
}
nested_data["comments"].append(nested_comment)
return nested_data
class RegCommentsAPIConfig(BuilderConfig):
def __init__(self, api_key=None, docket_ids = None, **kwargs):
self.api_key = api_key
self.docket_ids = docket_ids
super(RegCommentsAPIConfig, self).__init__(**kwargs)
class RegCommentsAPI(datasets.GeneratorBasedBuilder):
VERSION = datasets.Version("1.1.0")
BUILDER_CONFIGS = [
RegCommentsAPIConfig(
name="default",
version=datasets.Version("1.0.0"),
description="Dataset of regulatory comments"
)
]
BUILDER_CONFIG_CLASS = RegCommentsAPIConfig
# Method to define the structure of the dataset
def _info(self):
# Defining the structure of the dataset
features = datasets.Features({
"id": datasets.Value("string"),
"agency": datasets.Value("string"),
"title": datasets.Value("string"),
"context": datasets.Value("string"),
"purpose": datasets.Value("string"),
"keywords": datasets.Sequence(datasets.Value("string")),
"comments": datasets.Sequence({
"text": datasets.Value("string"),
"comment_id": datasets.Value("string"),
"comment_url": datasets.Value("string"),
"comment_date": datasets.Value("string"),
"commenter_fname": datasets.Value("string"),
"commenter_lname": datasets.Value("string"),
"comment_length": datasets.Value("int32")
})
})
# Returning the dataset structure
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
citation = _CITATION
)
def _split_generators(self, dl_manager):
# Retrieve the API key from the builder's config
api_key = self.config.api_key
docket_ids = self.config.docket_ids
# Define your dataset's splits. In this case, only a training split.
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"api_key": api_key, # Pass the API key to the generator function
"docket_ids": docket_ids
},
),
]
def _generate_examples(self, api_key, docket_ids):
# Iterate over each search term to fetch relevant dockets
dockets = docket_ids
for docket_id in dockets:
fetcher = RegulationsDataFetcher(docket_id, api_key) # Initialize with the API key
docket_data = fetcher.collect_data()
if docket_data is None:
print(f"Stopping Data Collection.")
break
if len(docket_data["comments"]) != 0:
yield docket_id, docket_data
|