|
|
|
|
|
|
|
|
|
|
|
file_names = [ |
|
"adjudications.txt", |
|
"blog.txt", |
|
"books.txt", |
|
"emails.txt", |
|
"fbl.txt", |
|
"laws.txt", |
|
"mbl.txt", |
|
"radio_tv_news.txt", |
|
"school_essays.txt", |
|
"scienceweb.txt", |
|
"webmedia.txt", |
|
"websites.txt", |
|
"written-to-be-spoken.txt" |
|
] |
|
|
|
def read_file(file_name): |
|
data = [] |
|
sentence = [] |
|
with open(file_name) as fh: |
|
for line in fh.readlines(): |
|
if not line.strip() and sentence: |
|
data.append(sentence) |
|
sentence = [] |
|
continue |
|
parts = line.strip().split() |
|
if len(parts) >= 2: |
|
w, t = parts[0], parts[1] |
|
sentence.append((w, t)) |
|
return data |
|
|
|
|
|
from collections import defaultdict |
|
def calc_stats(data): |
|
stats = defaultdict(int) |
|
for sent in data: |
|
stats["n_sentences"] += 1 |
|
for token, label in sent: |
|
stats[label] += 1 |
|
return stats |
|
|
|
|
|
import pprint |
|
def get_total_stats(): |
|
total_stats = defaultdict(int) |
|
for file_name in file_names: |
|
d = read_file("data/"+file_name) |
|
stats = calc_stats(d) |
|
|
|
|
|
for k, v in stats.items(): |
|
total_stats[k] += v |
|
|
|
|
|
return total_stats |
|
|
|
import random |
|
random.seed(1) |
|
|
|
def check_if_not_done(stats, total_stats, target): |
|
for k, v in total_stats.items(): |
|
if v * target > stats[k]: |
|
return True |
|
return False |
|
|
|
def create_splits(train=0.8, test=0.1, dev=0.1): |
|
train_data = [] |
|
test_data = [] |
|
dev_data = [] |
|
|
|
total_stats = get_total_stats() |
|
|
|
for file_name in file_names: |
|
train_stats = defaultdict(int) |
|
test_stats = defaultdict(int) |
|
dev_stats = defaultdict(int) |
|
|
|
d = read_file("data/"+file_name) |
|
stats = calc_stats(d) |
|
random.shuffle(d) |
|
|
|
file_train = [] |
|
file_test = [] |
|
file_dev = [] |
|
|
|
for sent in d: |
|
if check_if_not_done(test_stats, stats, test): |
|
|
|
use = False |
|
for token in sent: |
|
w, tag = token |
|
if tag == 'O': |
|
continue |
|
if test_stats[tag] < test * stats[tag] - 5: |
|
use = True |
|
if test_stats['n_sentences'] < test * stats['n_sentences'] - 5: |
|
use = True |
|
if use: |
|
file_test.append(sent) |
|
test_stats['n_sentences'] += 1 |
|
for w, t in sent: |
|
test_stats[t] += 1 |
|
elif check_if_not_done(dev_stats, stats, dev): |
|
|
|
use = False |
|
for token in sent: |
|
w, tag = token |
|
if tag == 'O': |
|
continue |
|
if dev_stats[tag] < dev * stats[tag] - 5: |
|
use = True |
|
if dev_stats['n_sentences'] < dev * stats['n_sentences'] - 5: |
|
use = True |
|
if use: |
|
file_dev.append(sent) |
|
dev_stats['n_sentences'] += 1 |
|
for w, t in sent: |
|
dev_stats[t] += 1 |
|
else: |
|
file_train.append(sent) |
|
train_stats['n_sentences'] += 1 |
|
for w, t in sent: |
|
train_stats[t] += 1 |
|
else: |
|
file_train.append(sent) |
|
train_stats['n_sentences'] += 1 |
|
for w, t in sent: |
|
train_stats[t] += 1 |
|
try: |
|
assert len(d) == len(file_train) + len(file_dev) + len(file_test) |
|
except: |
|
import pdb; pdb.set_trace() |
|
train_data += file_train |
|
test_data += file_test |
|
dev_data += file_dev |
|
|
|
return train_data, test_data, dev_data |
|
|
|
train, test, dev = create_splits() |
|
|
|
total_stats = get_total_stats() |
|
print("---- total -----") |
|
pprint.pprint(total_stats) |
|
print("----- test ----") |
|
test_stats = calc_stats(test) |
|
pprint.pprint(test_stats) |
|
print("----- dev ----") |
|
dev_stats = calc_stats(dev) |
|
pprint.pprint(dev_stats) |
|
print("----- train ----") |
|
train_stats = calc_stats(train) |
|
pprint.pprint(train_stats) |
|
|
|
|
|
with open("train.txt", "w") as outf: |
|
for sent in train: |
|
for w, t in sent: |
|
outf.writelines(f"{w} {t}\n") |
|
outf.writelines("\n") |
|
|
|
|
|
with open("test.txt", "w") as outf: |
|
for sent in test: |
|
for w, t in sent: |
|
outf.writelines(f"{w} {t}\n") |
|
outf.writelines("\n") |
|
|
|
|
|
with open("dev.txt", "w") as outf: |
|
for sent in dev: |
|
for w, t in sent: |
|
outf.writelines(f"{w} {t}\n") |
|
outf.writelines("\n") |