rsdmu commited on
Commit
f26539d
·
verified ·
1 Parent(s): 12b7db0

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +30 -2
README.md CHANGED
@@ -1,9 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  # StreetReview Dataset
2
 
3
- ![StreetReview Banner](https://example.com/banner.jpg)
4
 
5
  ## Overview
6
 
 
7
  **StreetReview** is a curated dataset designed to evaluate the inclusivity, accessibility, aesthetics, and practicality of urban streetscapes, particularly in a multicultural city context. Focused on Montréal, Canada, the dataset combines diverse demographic evaluations with rich metadata and street-view imagery. It aims to advance research in urban planning, public space design, and machine learning applications for creating inclusive and user-friendly urban environments.
8
 
9
  ## Table of Contents
@@ -163,4 +191,4 @@ For inquiries, contact:
163
 
164
  ---
165
 
166
- © 2024 RSDMU. All rights reserved.
 
1
+ ---
2
+ datasets:
3
+ - rsdmu/streetreview
4
+ task_categories:
5
+ - zero-shot-classification
6
+ - image-classification
7
+ - image-segmentation
8
+ - image-feature-extraction
9
+ tags:
10
+ - urban-planning
11
+ - montreal
12
+ - publicspace
13
+ - inclusivity
14
+ - accessibility
15
+ - participatory
16
+ license: cc-by-4.0
17
+ language:
18
+ - en
19
+ size_categories:
20
+ - 1K<n<10K
21
+ pretty_name: Street Review Dataset
22
+ annotations_creators:
23
+ - crowdsourced
24
+ - expert-generated
25
+ ---
26
+
27
+
28
  # StreetReview Dataset
29
 
30
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/657d0fd583543a061b23b027/8rTxCdOovDoGAGjTYVSMw.png)
31
 
32
  ## Overview
33
 
34
+
35
  **StreetReview** is a curated dataset designed to evaluate the inclusivity, accessibility, aesthetics, and practicality of urban streetscapes, particularly in a multicultural city context. Focused on Montréal, Canada, the dataset combines diverse demographic evaluations with rich metadata and street-view imagery. It aims to advance research in urban planning, public space design, and machine learning applications for creating inclusive and user-friendly urban environments.
36
 
37
  ## Table of Contents
 
191
 
192
  ---
193
 
194
+ © 2024 RSDMU. All rights reserved.