prompt
stringlengths 162
4.26M
| response
stringlengths 109
5.16M
|
---|---|
Generate the Verilog code corresponding to the following Chisel files.
File Buffer.scala:
// See LICENSE.SiFive for license details.
package freechips.rocketchip.tilelink
import chisel3._
import org.chipsalliance.cde.config._
import org.chipsalliance.diplomacy._
import org.chipsalliance.diplomacy.lazymodule._
import freechips.rocketchip.diplomacy.BufferParams
class TLBufferNode (
a: BufferParams,
b: BufferParams,
c: BufferParams,
d: BufferParams,
e: BufferParams)(implicit valName: ValName) extends TLAdapterNode(
clientFn = { p => p.v1copy(minLatency = p.minLatency + b.latency + c.latency) },
managerFn = { p => p.v1copy(minLatency = p.minLatency + a.latency + d.latency) }
) {
override lazy val nodedebugstring = s"a:${a.toString}, b:${b.toString}, c:${c.toString}, d:${d.toString}, e:${e.toString}"
override def circuitIdentity = List(a,b,c,d,e).forall(_ == BufferParams.none)
}
class TLBuffer(
a: BufferParams,
b: BufferParams,
c: BufferParams,
d: BufferParams,
e: BufferParams)(implicit p: Parameters) extends LazyModule
{
def this(ace: BufferParams, bd: BufferParams)(implicit p: Parameters) = this(ace, bd, ace, bd, ace)
def this(abcde: BufferParams)(implicit p: Parameters) = this(abcde, abcde)
def this()(implicit p: Parameters) = this(BufferParams.default)
val node = new TLBufferNode(a, b, c, d, e)
lazy val module = new Impl
class Impl extends LazyModuleImp(this) {
def headBundle = node.out.head._2.bundle
override def desiredName = (Seq("TLBuffer") ++ node.out.headOption.map(_._2.bundle.shortName)).mkString("_")
(node.in zip node.out) foreach { case ((in, edgeIn), (out, edgeOut)) =>
out.a <> a(in .a)
in .d <> d(out.d)
if (edgeOut.manager.anySupportAcquireB && edgeOut.client.anySupportProbe) {
in .b <> b(out.b)
out.c <> c(in .c)
out.e <> e(in .e)
} else {
in.b.valid := false.B
in.c.ready := true.B
in.e.ready := true.B
out.b.ready := true.B
out.c.valid := false.B
out.e.valid := false.B
}
}
}
}
object TLBuffer
{
def apply() (implicit p: Parameters): TLNode = apply(BufferParams.default)
def apply(abcde: BufferParams) (implicit p: Parameters): TLNode = apply(abcde, abcde)
def apply(ace: BufferParams, bd: BufferParams)(implicit p: Parameters): TLNode = apply(ace, bd, ace, bd, ace)
def apply(
a: BufferParams,
b: BufferParams,
c: BufferParams,
d: BufferParams,
e: BufferParams)(implicit p: Parameters): TLNode =
{
val buffer = LazyModule(new TLBuffer(a, b, c, d, e))
buffer.node
}
def chain(depth: Int, name: Option[String] = None)(implicit p: Parameters): Seq[TLNode] = {
val buffers = Seq.fill(depth) { LazyModule(new TLBuffer()) }
name.foreach { n => buffers.zipWithIndex.foreach { case (b, i) => b.suggestName(s"${n}_${i}") } }
buffers.map(_.node)
}
def chainNode(depth: Int, name: Option[String] = None)(implicit p: Parameters): TLNode = {
chain(depth, name)
.reduceLeftOption(_ :*=* _)
.getOrElse(TLNameNode("no_buffer"))
}
}
File Nodes.scala:
// See LICENSE.SiFive for license details.
package freechips.rocketchip.tilelink
import chisel3._
import chisel3.experimental.SourceInfo
import org.chipsalliance.cde.config._
import org.chipsalliance.diplomacy._
import org.chipsalliance.diplomacy.nodes._
import freechips.rocketchip.util.{AsyncQueueParams,RationalDirection}
case object TLMonitorBuilder extends Field[TLMonitorArgs => TLMonitorBase](args => new TLMonitor(args))
object TLImp extends NodeImp[TLMasterPortParameters, TLSlavePortParameters, TLEdgeOut, TLEdgeIn, TLBundle]
{
def edgeO(pd: TLMasterPortParameters, pu: TLSlavePortParameters, p: Parameters, sourceInfo: SourceInfo) = new TLEdgeOut(pd, pu, p, sourceInfo)
def edgeI(pd: TLMasterPortParameters, pu: TLSlavePortParameters, p: Parameters, sourceInfo: SourceInfo) = new TLEdgeIn (pd, pu, p, sourceInfo)
def bundleO(eo: TLEdgeOut) = TLBundle(eo.bundle)
def bundleI(ei: TLEdgeIn) = TLBundle(ei.bundle)
def render(ei: TLEdgeIn) = RenderedEdge(colour = "#000000" /* black */, label = (ei.manager.beatBytes * 8).toString)
override def monitor(bundle: TLBundle, edge: TLEdgeIn): Unit = {
val monitor = Module(edge.params(TLMonitorBuilder)(TLMonitorArgs(edge)))
monitor.io.in := bundle
}
override def mixO(pd: TLMasterPortParameters, node: OutwardNode[TLMasterPortParameters, TLSlavePortParameters, TLBundle]): TLMasterPortParameters =
pd.v1copy(clients = pd.clients.map { c => c.v1copy (nodePath = node +: c.nodePath) })
override def mixI(pu: TLSlavePortParameters, node: InwardNode[TLMasterPortParameters, TLSlavePortParameters, TLBundle]): TLSlavePortParameters =
pu.v1copy(managers = pu.managers.map { m => m.v1copy (nodePath = node +: m.nodePath) })
}
trait TLFormatNode extends FormatNode[TLEdgeIn, TLEdgeOut]
case class TLClientNode(portParams: Seq[TLMasterPortParameters])(implicit valName: ValName) extends SourceNode(TLImp)(portParams) with TLFormatNode
case class TLManagerNode(portParams: Seq[TLSlavePortParameters])(implicit valName: ValName) extends SinkNode(TLImp)(portParams) with TLFormatNode
case class TLAdapterNode(
clientFn: TLMasterPortParameters => TLMasterPortParameters = { s => s },
managerFn: TLSlavePortParameters => TLSlavePortParameters = { s => s })(
implicit valName: ValName)
extends AdapterNode(TLImp)(clientFn, managerFn) with TLFormatNode
case class TLJunctionNode(
clientFn: Seq[TLMasterPortParameters] => Seq[TLMasterPortParameters],
managerFn: Seq[TLSlavePortParameters] => Seq[TLSlavePortParameters])(
implicit valName: ValName)
extends JunctionNode(TLImp)(clientFn, managerFn) with TLFormatNode
case class TLIdentityNode()(implicit valName: ValName) extends IdentityNode(TLImp)() with TLFormatNode
object TLNameNode {
def apply(name: ValName) = TLIdentityNode()(name)
def apply(name: Option[String]): TLIdentityNode = apply(ValName(name.getOrElse("with_no_name")))
def apply(name: String): TLIdentityNode = apply(Some(name))
}
case class TLEphemeralNode()(implicit valName: ValName) extends EphemeralNode(TLImp)()
object TLTempNode {
def apply(): TLEphemeralNode = TLEphemeralNode()(ValName("temp"))
}
case class TLNexusNode(
clientFn: Seq[TLMasterPortParameters] => TLMasterPortParameters,
managerFn: Seq[TLSlavePortParameters] => TLSlavePortParameters)(
implicit valName: ValName)
extends NexusNode(TLImp)(clientFn, managerFn) with TLFormatNode
abstract class TLCustomNode(implicit valName: ValName)
extends CustomNode(TLImp) with TLFormatNode
// Asynchronous crossings
trait TLAsyncFormatNode extends FormatNode[TLAsyncEdgeParameters, TLAsyncEdgeParameters]
object TLAsyncImp extends SimpleNodeImp[TLAsyncClientPortParameters, TLAsyncManagerPortParameters, TLAsyncEdgeParameters, TLAsyncBundle]
{
def edge(pd: TLAsyncClientPortParameters, pu: TLAsyncManagerPortParameters, p: Parameters, sourceInfo: SourceInfo) = TLAsyncEdgeParameters(pd, pu, p, sourceInfo)
def bundle(e: TLAsyncEdgeParameters) = new TLAsyncBundle(e.bundle)
def render(e: TLAsyncEdgeParameters) = RenderedEdge(colour = "#ff0000" /* red */, label = e.manager.async.depth.toString)
override def mixO(pd: TLAsyncClientPortParameters, node: OutwardNode[TLAsyncClientPortParameters, TLAsyncManagerPortParameters, TLAsyncBundle]): TLAsyncClientPortParameters =
pd.copy(base = pd.base.v1copy(clients = pd.base.clients.map { c => c.v1copy (nodePath = node +: c.nodePath) }))
override def mixI(pu: TLAsyncManagerPortParameters, node: InwardNode[TLAsyncClientPortParameters, TLAsyncManagerPortParameters, TLAsyncBundle]): TLAsyncManagerPortParameters =
pu.copy(base = pu.base.v1copy(managers = pu.base.managers.map { m => m.v1copy (nodePath = node +: m.nodePath) }))
}
case class TLAsyncAdapterNode(
clientFn: TLAsyncClientPortParameters => TLAsyncClientPortParameters = { s => s },
managerFn: TLAsyncManagerPortParameters => TLAsyncManagerPortParameters = { s => s })(
implicit valName: ValName)
extends AdapterNode(TLAsyncImp)(clientFn, managerFn) with TLAsyncFormatNode
case class TLAsyncIdentityNode()(implicit valName: ValName) extends IdentityNode(TLAsyncImp)() with TLAsyncFormatNode
object TLAsyncNameNode {
def apply(name: ValName) = TLAsyncIdentityNode()(name)
def apply(name: Option[String]): TLAsyncIdentityNode = apply(ValName(name.getOrElse("with_no_name")))
def apply(name: String): TLAsyncIdentityNode = apply(Some(name))
}
case class TLAsyncSourceNode(sync: Option[Int])(implicit valName: ValName)
extends MixedAdapterNode(TLImp, TLAsyncImp)(
dFn = { p => TLAsyncClientPortParameters(p) },
uFn = { p => p.base.v1copy(minLatency = p.base.minLatency + sync.getOrElse(p.async.sync)) }) with FormatNode[TLEdgeIn, TLAsyncEdgeParameters] // discard cycles in other clock domain
case class TLAsyncSinkNode(async: AsyncQueueParams)(implicit valName: ValName)
extends MixedAdapterNode(TLAsyncImp, TLImp)(
dFn = { p => p.base.v1copy(minLatency = p.base.minLatency + async.sync) },
uFn = { p => TLAsyncManagerPortParameters(async, p) }) with FormatNode[TLAsyncEdgeParameters, TLEdgeOut]
// Rationally related crossings
trait TLRationalFormatNode extends FormatNode[TLRationalEdgeParameters, TLRationalEdgeParameters]
object TLRationalImp extends SimpleNodeImp[TLRationalClientPortParameters, TLRationalManagerPortParameters, TLRationalEdgeParameters, TLRationalBundle]
{
def edge(pd: TLRationalClientPortParameters, pu: TLRationalManagerPortParameters, p: Parameters, sourceInfo: SourceInfo) = TLRationalEdgeParameters(pd, pu, p, sourceInfo)
def bundle(e: TLRationalEdgeParameters) = new TLRationalBundle(e.bundle)
def render(e: TLRationalEdgeParameters) = RenderedEdge(colour = "#00ff00" /* green */)
override def mixO(pd: TLRationalClientPortParameters, node: OutwardNode[TLRationalClientPortParameters, TLRationalManagerPortParameters, TLRationalBundle]): TLRationalClientPortParameters =
pd.copy(base = pd.base.v1copy(clients = pd.base.clients.map { c => c.v1copy (nodePath = node +: c.nodePath) }))
override def mixI(pu: TLRationalManagerPortParameters, node: InwardNode[TLRationalClientPortParameters, TLRationalManagerPortParameters, TLRationalBundle]): TLRationalManagerPortParameters =
pu.copy(base = pu.base.v1copy(managers = pu.base.managers.map { m => m.v1copy (nodePath = node +: m.nodePath) }))
}
case class TLRationalAdapterNode(
clientFn: TLRationalClientPortParameters => TLRationalClientPortParameters = { s => s },
managerFn: TLRationalManagerPortParameters => TLRationalManagerPortParameters = { s => s })(
implicit valName: ValName)
extends AdapterNode(TLRationalImp)(clientFn, managerFn) with TLRationalFormatNode
case class TLRationalIdentityNode()(implicit valName: ValName) extends IdentityNode(TLRationalImp)() with TLRationalFormatNode
object TLRationalNameNode {
def apply(name: ValName) = TLRationalIdentityNode()(name)
def apply(name: Option[String]): TLRationalIdentityNode = apply(ValName(name.getOrElse("with_no_name")))
def apply(name: String): TLRationalIdentityNode = apply(Some(name))
}
case class TLRationalSourceNode()(implicit valName: ValName)
extends MixedAdapterNode(TLImp, TLRationalImp)(
dFn = { p => TLRationalClientPortParameters(p) },
uFn = { p => p.base.v1copy(minLatency = 1) }) with FormatNode[TLEdgeIn, TLRationalEdgeParameters] // discard cycles from other clock domain
case class TLRationalSinkNode(direction: RationalDirection)(implicit valName: ValName)
extends MixedAdapterNode(TLRationalImp, TLImp)(
dFn = { p => p.base.v1copy(minLatency = 1) },
uFn = { p => TLRationalManagerPortParameters(direction, p) }) with FormatNode[TLRationalEdgeParameters, TLEdgeOut]
// Credited version of TileLink channels
trait TLCreditedFormatNode extends FormatNode[TLCreditedEdgeParameters, TLCreditedEdgeParameters]
object TLCreditedImp extends SimpleNodeImp[TLCreditedClientPortParameters, TLCreditedManagerPortParameters, TLCreditedEdgeParameters, TLCreditedBundle]
{
def edge(pd: TLCreditedClientPortParameters, pu: TLCreditedManagerPortParameters, p: Parameters, sourceInfo: SourceInfo) = TLCreditedEdgeParameters(pd, pu, p, sourceInfo)
def bundle(e: TLCreditedEdgeParameters) = new TLCreditedBundle(e.bundle)
def render(e: TLCreditedEdgeParameters) = RenderedEdge(colour = "#ffff00" /* yellow */, e.delay.toString)
override def mixO(pd: TLCreditedClientPortParameters, node: OutwardNode[TLCreditedClientPortParameters, TLCreditedManagerPortParameters, TLCreditedBundle]): TLCreditedClientPortParameters =
pd.copy(base = pd.base.v1copy(clients = pd.base.clients.map { c => c.v1copy (nodePath = node +: c.nodePath) }))
override def mixI(pu: TLCreditedManagerPortParameters, node: InwardNode[TLCreditedClientPortParameters, TLCreditedManagerPortParameters, TLCreditedBundle]): TLCreditedManagerPortParameters =
pu.copy(base = pu.base.v1copy(managers = pu.base.managers.map { m => m.v1copy (nodePath = node +: m.nodePath) }))
}
case class TLCreditedAdapterNode(
clientFn: TLCreditedClientPortParameters => TLCreditedClientPortParameters = { s => s },
managerFn: TLCreditedManagerPortParameters => TLCreditedManagerPortParameters = { s => s })(
implicit valName: ValName)
extends AdapterNode(TLCreditedImp)(clientFn, managerFn) with TLCreditedFormatNode
case class TLCreditedIdentityNode()(implicit valName: ValName) extends IdentityNode(TLCreditedImp)() with TLCreditedFormatNode
object TLCreditedNameNode {
def apply(name: ValName) = TLCreditedIdentityNode()(name)
def apply(name: Option[String]): TLCreditedIdentityNode = apply(ValName(name.getOrElse("with_no_name")))
def apply(name: String): TLCreditedIdentityNode = apply(Some(name))
}
case class TLCreditedSourceNode(delay: TLCreditedDelay)(implicit valName: ValName)
extends MixedAdapterNode(TLImp, TLCreditedImp)(
dFn = { p => TLCreditedClientPortParameters(delay, p) },
uFn = { p => p.base.v1copy(minLatency = 1) }) with FormatNode[TLEdgeIn, TLCreditedEdgeParameters] // discard cycles from other clock domain
case class TLCreditedSinkNode(delay: TLCreditedDelay)(implicit valName: ValName)
extends MixedAdapterNode(TLCreditedImp, TLImp)(
dFn = { p => p.base.v1copy(minLatency = 1) },
uFn = { p => TLCreditedManagerPortParameters(delay, p) }) with FormatNode[TLCreditedEdgeParameters, TLEdgeOut]
File LazyModuleImp.scala:
package org.chipsalliance.diplomacy.lazymodule
import chisel3.{withClockAndReset, Module, RawModule, Reset, _}
import chisel3.experimental.{ChiselAnnotation, CloneModuleAsRecord, SourceInfo}
import firrtl.passes.InlineAnnotation
import org.chipsalliance.cde.config.Parameters
import org.chipsalliance.diplomacy.nodes.Dangle
import scala.collection.immutable.SortedMap
/** Trait describing the actual [[Module]] implementation wrapped by a [[LazyModule]].
*
* This is the actual Chisel module that is lazily-evaluated in the second phase of Diplomacy.
*/
sealed trait LazyModuleImpLike extends RawModule {
/** [[LazyModule]] that contains this instance. */
val wrapper: LazyModule
/** IOs that will be automatically "punched" for this instance. */
val auto: AutoBundle
/** The metadata that describes the [[HalfEdge]]s which generated [[auto]]. */
protected[diplomacy] val dangles: Seq[Dangle]
// [[wrapper.module]] had better not be accessed while LazyModules are still being built!
require(
LazyModule.scope.isEmpty,
s"${wrapper.name}.module was constructed before LazyModule() was run on ${LazyModule.scope.get.name}"
)
/** Set module name. Defaults to the containing LazyModule's desiredName. */
override def desiredName: String = wrapper.desiredName
suggestName(wrapper.suggestedName)
/** [[Parameters]] for chisel [[Module]]s. */
implicit val p: Parameters = wrapper.p
/** instantiate this [[LazyModule]], return [[AutoBundle]] and a unconnected [[Dangle]]s from this module and
* submodules.
*/
protected[diplomacy] def instantiate(): (AutoBundle, List[Dangle]) = {
// 1. It will recursively append [[wrapper.children]] into [[chisel3.internal.Builder]],
// 2. return [[Dangle]]s from each module.
val childDangles = wrapper.children.reverse.flatMap { c =>
implicit val sourceInfo: SourceInfo = c.info
c.cloneProto.map { cp =>
// If the child is a clone, then recursively set cloneProto of its children as well
def assignCloneProtos(bases: Seq[LazyModule], clones: Seq[LazyModule]): Unit = {
require(bases.size == clones.size)
(bases.zip(clones)).map { case (l, r) =>
require(l.getClass == r.getClass, s"Cloned children class mismatch ${l.name} != ${r.name}")
l.cloneProto = Some(r)
assignCloneProtos(l.children, r.children)
}
}
assignCloneProtos(c.children, cp.children)
// Clone the child module as a record, and get its [[AutoBundle]]
val clone = CloneModuleAsRecord(cp.module).suggestName(c.suggestedName)
val clonedAuto = clone("auto").asInstanceOf[AutoBundle]
// Get the empty [[Dangle]]'s of the cloned child
val rawDangles = c.cloneDangles()
require(rawDangles.size == clonedAuto.elements.size)
// Assign the [[AutoBundle]] fields of the cloned record to the empty [[Dangle]]'s
val dangles = (rawDangles.zip(clonedAuto.elements)).map { case (d, (_, io)) => d.copy(dataOpt = Some(io)) }
dangles
}.getOrElse {
// For non-clones, instantiate the child module
val mod = try {
Module(c.module)
} catch {
case e: ChiselException => {
println(s"Chisel exception caught when instantiating ${c.name} within ${this.name} at ${c.line}")
throw e
}
}
mod.dangles
}
}
// Ask each node in this [[LazyModule]] to call [[BaseNode.instantiate]].
// This will result in a sequence of [[Dangle]] from these [[BaseNode]]s.
val nodeDangles = wrapper.nodes.reverse.flatMap(_.instantiate())
// Accumulate all the [[Dangle]]s from this node and any accumulated from its [[wrapper.children]]
val allDangles = nodeDangles ++ childDangles
// Group [[allDangles]] by their [[source]].
val pairing = SortedMap(allDangles.groupBy(_.source).toSeq: _*)
// For each [[source]] set of [[Dangle]]s of size 2, ensure that these
// can be connected as a source-sink pair (have opposite flipped value).
// Make the connection and mark them as [[done]].
val done = Set() ++ pairing.values.filter(_.size == 2).map {
case Seq(a, b) =>
require(a.flipped != b.flipped)
// @todo <> in chisel3 makes directionless connection.
if (a.flipped) {
a.data <> b.data
} else {
b.data <> a.data
}
a.source
case _ => None
}
// Find all [[Dangle]]s which are still not connected. These will end up as [[AutoBundle]] [[IO]] ports on the module.
val forward = allDangles.filter(d => !done(d.source))
// Generate [[AutoBundle]] IO from [[forward]].
val auto = IO(new AutoBundle(forward.map { d => (d.name, d.data, d.flipped) }: _*))
// Pass the [[Dangle]]s which remained and were used to generate the [[AutoBundle]] I/O ports up to the [[parent]] [[LazyModule]]
val dangles = (forward.zip(auto.elements)).map { case (d, (_, io)) =>
if (d.flipped) {
d.data <> io
} else {
io <> d.data
}
d.copy(dataOpt = Some(io), name = wrapper.suggestedName + "_" + d.name)
}
// Push all [[LazyModule.inModuleBody]] to [[chisel3.internal.Builder]].
wrapper.inModuleBody.reverse.foreach {
_()
}
if (wrapper.shouldBeInlined) {
chisel3.experimental.annotate(new ChiselAnnotation {
def toFirrtl = InlineAnnotation(toNamed)
})
}
// Return [[IO]] and [[Dangle]] of this [[LazyModuleImp]].
(auto, dangles)
}
}
/** Actual description of a [[Module]] which can be instantiated by a call to [[LazyModule.module]].
*
* @param wrapper
* the [[LazyModule]] from which the `.module` call is being made.
*/
class LazyModuleImp(val wrapper: LazyModule) extends Module with LazyModuleImpLike {
/** Instantiate hardware of this `Module`. */
val (auto, dangles) = instantiate()
}
/** Actual description of a [[RawModule]] which can be instantiated by a call to [[LazyModule.module]].
*
* @param wrapper
* the [[LazyModule]] from which the `.module` call is being made.
*/
class LazyRawModuleImp(val wrapper: LazyModule) extends RawModule with LazyModuleImpLike {
// These wires are the default clock+reset for all LazyModule children.
// It is recommended to drive these even if you manually drive the [[clock]] and [[reset]] of all of the
// [[LazyRawModuleImp]] children.
// Otherwise, anonymous children ([[Monitor]]s for example) will not have their [[clock]] and/or [[reset]] driven properly.
/** drive clock explicitly. */
val childClock: Clock = Wire(Clock())
/** drive reset explicitly. */
val childReset: Reset = Wire(Reset())
// the default is that these are disabled
childClock := false.B.asClock
childReset := chisel3.DontCare
def provideImplicitClockToLazyChildren: Boolean = false
val (auto, dangles) =
if (provideImplicitClockToLazyChildren) {
withClockAndReset(childClock, childReset) { instantiate() }
} else {
instantiate()
}
}
File MixedNode.scala:
package org.chipsalliance.diplomacy.nodes
import chisel3.{Data, DontCare, Wire}
import chisel3.experimental.SourceInfo
import org.chipsalliance.cde.config.{Field, Parameters}
import org.chipsalliance.diplomacy.ValName
import org.chipsalliance.diplomacy.sourceLine
/** One side metadata of a [[Dangle]].
*
* Describes one side of an edge going into or out of a [[BaseNode]].
*
* @param serial
* the global [[BaseNode.serial]] number of the [[BaseNode]] that this [[HalfEdge]] connects to.
* @param index
* the `index` in the [[BaseNode]]'s input or output port list that this [[HalfEdge]] belongs to.
*/
case class HalfEdge(serial: Int, index: Int) extends Ordered[HalfEdge] {
import scala.math.Ordered.orderingToOrdered
def compare(that: HalfEdge): Int = HalfEdge.unapply(this).compare(HalfEdge.unapply(that))
}
/** [[Dangle]] captures the `IO` information of a [[LazyModule]] and which two [[BaseNode]]s the [[Edges]]/[[Bundle]]
* connects.
*
* [[Dangle]]s are generated by [[BaseNode.instantiate]] using [[MixedNode.danglesOut]] and [[MixedNode.danglesIn]] ,
* [[LazyModuleImp.instantiate]] connects those that go to internal or explicit IO connections in a [[LazyModule]].
*
* @param source
* the source [[HalfEdge]] of this [[Dangle]], which captures the source [[BaseNode]] and the port `index` within
* that [[BaseNode]].
* @param sink
* sink [[HalfEdge]] of this [[Dangle]], which captures the sink [[BaseNode]] and the port `index` within that
* [[BaseNode]].
* @param flipped
* flip or not in [[AutoBundle.makeElements]]. If true this corresponds to `danglesOut`, if false it corresponds to
* `danglesIn`.
* @param dataOpt
* actual [[Data]] for the hardware connection. Can be empty if this belongs to a cloned module
*/
case class Dangle(source: HalfEdge, sink: HalfEdge, flipped: Boolean, name: String, dataOpt: Option[Data]) {
def data = dataOpt.get
}
/** [[Edges]] is a collection of parameters describing the functionality and connection for an interface, which is often
* derived from the interconnection protocol and can inform the parameterization of the hardware bundles that actually
* implement the protocol.
*/
case class Edges[EI, EO](in: Seq[EI], out: Seq[EO])
/** A field available in [[Parameters]] used to determine whether [[InwardNodeImp.monitor]] will be called. */
case object MonitorsEnabled extends Field[Boolean](true)
/** When rendering the edge in a graphical format, flip the order in which the edges' source and sink are presented.
*
* For example, when rendering graphML, yEd by default tries to put the source node vertically above the sink node, but
* [[RenderFlipped]] inverts this relationship. When a particular [[LazyModule]] contains both source nodes and sink
* nodes, flipping the rendering of one node's edge will usual produce a more concise visual layout for the
* [[LazyModule]].
*/
case object RenderFlipped extends Field[Boolean](false)
/** The sealed node class in the package, all node are derived from it.
*
* @param inner
* Sink interface implementation.
* @param outer
* Source interface implementation.
* @param valName
* val name of this node.
* @tparam DI
* Downward-flowing parameters received on the inner side of the node. It is usually a brunch of parameters
* describing the protocol parameters from a source. For an [[InwardNode]], it is determined by the connected
* [[OutwardNode]]. Since it can be connected to multiple sources, this parameter is always a Seq of source port
* parameters.
* @tparam UI
* Upward-flowing parameters generated by the inner side of the node. It is usually a brunch of parameters describing
* the protocol parameters of a sink. For an [[InwardNode]], it is determined itself.
* @tparam EI
* Edge Parameters describing a connection on the inner side of the node. It is usually a brunch of transfers
* specified for a sink according to protocol.
* @tparam BI
* Bundle type used when connecting to the inner side of the node. It is a hardware interface of this sink interface.
* It should extends from [[chisel3.Data]], which represents the real hardware.
* @tparam DO
* Downward-flowing parameters generated on the outer side of the node. It is usually a brunch of parameters
* describing the protocol parameters of a source. For an [[OutwardNode]], it is determined itself.
* @tparam UO
* Upward-flowing parameters received by the outer side of the node. It is usually a brunch of parameters describing
* the protocol parameters from a sink. For an [[OutwardNode]], it is determined by the connected [[InwardNode]].
* Since it can be connected to multiple sinks, this parameter is always a Seq of sink port parameters.
* @tparam EO
* Edge Parameters describing a connection on the outer side of the node. It is usually a brunch of transfers
* specified for a source according to protocol.
* @tparam BO
* Bundle type used when connecting to the outer side of the node. It is a hardware interface of this source
* interface. It should extends from [[chisel3.Data]], which represents the real hardware.
*
* @note
* Call Graph of [[MixedNode]]
* - line `β`: source is process by a function and generate pass to others
* - Arrow `β`: target of arrow is generated by source
*
* {{{
* (from the other node)
* ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ[[InwardNode.uiParams]]ββββββββββββββ
* β β
* (binding node when elaboration) [[OutwardNode.uoParams]]ββββββββββββββββββββββββ[[MixedNode.mapParamsU]]ββββββββββββ β
* [[InwardNode.accPI]] β β β
* β β (based on protocol) β
* β β [[MixedNode.inner.edgeI]] β
* β β β β
* β β β β
* (immobilize after elaboration) (inward port from [[OutwardNode]]) β β β
* [[InwardNode.iBindings]]βββ [[MixedNode.iDirectPorts]]βββββββββββββββββββββ[[MixedNode.iPorts]] [[InwardNode.uiParams]] β
* β β β β β β
* β β β [[OutwardNode.doParams]] β β
* β β β (from the other node) β β
* β β β β β β
* β β β β β β
* β β β ββββββββββ¬βββββββββββββββ€ β
* β β β β β β
* β β β β (based on protocol) β
* β β β β [[MixedNode.inner.edgeI]] β
* β β β β β β
* β β (from the other node) β β β
* β ββββ[[OutwardNode.oPortMapping]] [[OutwardNode.oStar]] β [[MixedNode.edgesIn]]ββββ β
* β β β β β β β
* β β β β β [[MixedNode.in]] β
* β β β β β β β
* β (solve star connection) β β β [[MixedNode.bundleIn]]βββ β
* ββββ[[MixedNode.resolveStar]]βββΌββββββββββββββββββββββββββββββ€ ββββββββββββββββββββββββββββββββββββββ β
* β β β [[MixedNode.bundleOut]]ββ β β
* β β β β β β β
* β β β β [[MixedNode.out]] β β
* β β β β β β β
* β ββββββ[[InwardNode.iPortMapping]] [[InwardNode.iStar]] [[MixedNode.edgesOut]]βββ β β
* β β (from the other node) β β β
* β β β β β β
* β β β [[MixedNode.outer.edgeO]] β β
* β β β (based on protocol) β β
* β β β β β β
* β β β ββββββββββββββββββββββββββββββββββββββββββ€ β β
* β β β β β β β
* β β β β β β β
* β β β β β β β
* (immobilize after elaboration)β β β β β β
* [[OutwardNode.oBindings]]ββ [[MixedNode.oDirectPorts]]ββββ[[MixedNode.oPorts]] [[OutwardNode.doParams]] β β
* β (inward port from [[OutwardNode]]) β β β β
* β βββββββββββββββββββββββββββββββββββββββββββ€ β β β
* β β β β β β
* β β β β β β
* [[OutwardNode.accPO]] β β β β β
* (binding node when elaboration) β [[InwardNode.diParams]]ββββββ[[MixedNode.mapParamsD]]βββββββββββββββββββββββββββββ β β
* β β β β
* β ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ β
* ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
* }}}
*/
abstract class MixedNode[DI, UI, EI, BI <: Data, DO, UO, EO, BO <: Data](
val inner: InwardNodeImp[DI, UI, EI, BI],
val outer: OutwardNodeImp[DO, UO, EO, BO]
)(
implicit valName: ValName)
extends BaseNode
with NodeHandle[DI, UI, EI, BI, DO, UO, EO, BO]
with InwardNode[DI, UI, BI]
with OutwardNode[DO, UO, BO] {
// Generate a [[NodeHandle]] with inward and outward node are both this node.
val inward = this
val outward = this
/** Debug info of nodes binding. */
def bindingInfo: String = s"""$iBindingInfo
|$oBindingInfo
|""".stripMargin
/** Debug info of ports connecting. */
def connectedPortsInfo: String = s"""${oPorts.size} outward ports connected: [${oPorts.map(_._2.name).mkString(",")}]
|${iPorts.size} inward ports connected: [${iPorts.map(_._2.name).mkString(",")}]
|""".stripMargin
/** Debug info of parameters propagations. */
def parametersInfo: String = s"""${doParams.size} downstream outward parameters: [${doParams.mkString(",")}]
|${uoParams.size} upstream outward parameters: [${uoParams.mkString(",")}]
|${diParams.size} downstream inward parameters: [${diParams.mkString(",")}]
|${uiParams.size} upstream inward parameters: [${uiParams.mkString(",")}]
|""".stripMargin
/** For a given node, converts [[OutwardNode.accPO]] and [[InwardNode.accPI]] to [[MixedNode.oPortMapping]] and
* [[MixedNode.iPortMapping]].
*
* Given counts of known inward and outward binding and inward and outward star bindings, return the resolved inward
* stars and outward stars.
*
* This method will also validate the arguments and throw a runtime error if the values are unsuitable for this type
* of node.
*
* @param iKnown
* Number of known-size ([[BIND_ONCE]]) input bindings.
* @param oKnown
* Number of known-size ([[BIND_ONCE]]) output bindings.
* @param iStar
* Number of unknown size ([[BIND_STAR]]) input bindings.
* @param oStar
* Number of unknown size ([[BIND_STAR]]) output bindings.
* @return
* A Tuple of the resolved number of input and output connections.
*/
protected[diplomacy] def resolveStar(iKnown: Int, oKnown: Int, iStar: Int, oStar: Int): (Int, Int)
/** Function to generate downward-flowing outward params from the downward-flowing input params and the current output
* ports.
*
* @param n
* The size of the output sequence to generate.
* @param p
* Sequence of downward-flowing input parameters of this node.
* @return
* A `n`-sized sequence of downward-flowing output edge parameters.
*/
protected[diplomacy] def mapParamsD(n: Int, p: Seq[DI]): Seq[DO]
/** Function to generate upward-flowing input parameters from the upward-flowing output parameters [[uiParams]].
*
* @param n
* Size of the output sequence.
* @param p
* Upward-flowing output edge parameters.
* @return
* A n-sized sequence of upward-flowing input edge parameters.
*/
protected[diplomacy] def mapParamsU(n: Int, p: Seq[UO]): Seq[UI]
/** @return
* The sink cardinality of the node, the number of outputs bound with [[BIND_QUERY]] summed with inputs bound with
* [[BIND_STAR]].
*/
protected[diplomacy] lazy val sinkCard: Int = oBindings.count(_._3 == BIND_QUERY) + iBindings.count(_._3 == BIND_STAR)
/** @return
* The source cardinality of this node, the number of inputs bound with [[BIND_QUERY]] summed with the number of
* output bindings bound with [[BIND_STAR]].
*/
protected[diplomacy] lazy val sourceCard: Int =
iBindings.count(_._3 == BIND_QUERY) + oBindings.count(_._3 == BIND_STAR)
/** @return list of nodes involved in flex bindings with this node. */
protected[diplomacy] lazy val flexes: Seq[BaseNode] =
oBindings.filter(_._3 == BIND_FLEX).map(_._2) ++ iBindings.filter(_._3 == BIND_FLEX).map(_._2)
/** Resolves the flex to be either source or sink and returns the offset where the [[BIND_STAR]] operators begin
* greedily taking up the remaining connections.
*
* @return
* A value >= 0 if it is sink cardinality, a negative value for source cardinality. The magnitude of the return
* value is not relevant.
*/
protected[diplomacy] lazy val flexOffset: Int = {
/** Recursively performs a depth-first search of the [[flexes]], [[BaseNode]]s connected to this node with flex
* operators. The algorithm bottoms out when we either get to a node we have already visited or when we get to a
* connection that is not a flex and can set the direction for us. Otherwise, recurse by visiting the `flexes` of
* each node in the current set and decide whether they should be added to the set or not.
*
* @return
* the mapping of [[BaseNode]] indexed by their serial numbers.
*/
def DFS(v: BaseNode, visited: Map[Int, BaseNode]): Map[Int, BaseNode] = {
if (visited.contains(v.serial) || !v.flexibleArityDirection) {
visited
} else {
v.flexes.foldLeft(visited + (v.serial -> v))((sum, n) => DFS(n, sum))
}
}
/** Determine which [[BaseNode]] are involved in resolving the flex connections to/from this node.
*
* @example
* {{{
* a :*=* b :*=* c
* d :*=* b
* e :*=* f
* }}}
*
* `flexSet` for `a`, `b`, `c`, or `d` will be `Set(a, b, c, d)` `flexSet` for `e` or `f` will be `Set(e,f)`
*/
val flexSet = DFS(this, Map()).values
/** The total number of :*= operators where we're on the left. */
val allSink = flexSet.map(_.sinkCard).sum
/** The total number of :=* operators used when we're on the right. */
val allSource = flexSet.map(_.sourceCard).sum
require(
allSink == 0 || allSource == 0,
s"The nodes ${flexSet.map(_.name)} which are inter-connected by :*=* have ${allSink} :*= operators and ${allSource} :=* operators connected to them, making it impossible to determine cardinality inference direction."
)
allSink - allSource
}
/** @return A value >= 0 if it is sink cardinality, a negative value for source cardinality. */
protected[diplomacy] def edgeArityDirection(n: BaseNode): Int = {
if (flexibleArityDirection) flexOffset
else if (n.flexibleArityDirection) n.flexOffset
else 0
}
/** For a node which is connected between two nodes, select the one that will influence the direction of the flex
* resolution.
*/
protected[diplomacy] def edgeAritySelect(n: BaseNode, l: => Int, r: => Int): Int = {
val dir = edgeArityDirection(n)
if (dir < 0) l
else if (dir > 0) r
else 1
}
/** Ensure that the same node is not visited twice in resolving `:*=`, etc operators. */
private var starCycleGuard = false
/** Resolve all the star operators into concrete indicies. As connections are being made, some may be "star"
* connections which need to be resolved. In some way to determine how many actual edges they correspond to. We also
* need to build up the ranges of edges which correspond to each binding operator, so that We can apply the correct
* edge parameters and later build up correct bundle connections.
*
* [[oPortMapping]]: `Seq[(Int, Int)]` where each item is the range of edges corresponding to that oPort (binding
* operator). [[iPortMapping]]: `Seq[(Int, Int)]` where each item is the range of edges corresponding to that iPort
* (binding operator). [[oStar]]: `Int` the value to return for this node `N` for any `N :*= foo` or `N :*=* foo :*=
* bar` [[iStar]]: `Int` the value to return for this node `N` for any `foo :=* N` or `bar :=* foo :*=* N`
*/
protected[diplomacy] lazy val (
oPortMapping: Seq[(Int, Int)],
iPortMapping: Seq[(Int, Int)],
oStar: Int,
iStar: Int
) = {
try {
if (starCycleGuard) throw StarCycleException()
starCycleGuard = true
// For a given node N...
// Number of foo :=* N
// + Number of bar :=* foo :*=* N
val oStars = oBindings.count { case (_, n, b, _, _) =>
b == BIND_STAR || (b == BIND_FLEX && edgeArityDirection(n) < 0)
}
// Number of N :*= foo
// + Number of N :*=* foo :*= bar
val iStars = iBindings.count { case (_, n, b, _, _) =>
b == BIND_STAR || (b == BIND_FLEX && edgeArityDirection(n) > 0)
}
// 1 for foo := N
// + bar.iStar for bar :*= foo :*=* N
// + foo.iStar for foo :*= N
// + 0 for foo :=* N
val oKnown = oBindings.map { case (_, n, b, _, _) =>
b match {
case BIND_ONCE => 1
case BIND_FLEX => edgeAritySelect(n, 0, n.iStar)
case BIND_QUERY => n.iStar
case BIND_STAR => 0
}
}.sum
// 1 for N := foo
// + bar.oStar for N :*=* foo :=* bar
// + foo.oStar for N :=* foo
// + 0 for N :*= foo
val iKnown = iBindings.map { case (_, n, b, _, _) =>
b match {
case BIND_ONCE => 1
case BIND_FLEX => edgeAritySelect(n, n.oStar, 0)
case BIND_QUERY => n.oStar
case BIND_STAR => 0
}
}.sum
// Resolve star depends on the node subclass to implement the algorithm for this.
val (iStar, oStar) = resolveStar(iKnown, oKnown, iStars, oStars)
// Cumulative list of resolved outward binding range starting points
val oSum = oBindings.map { case (_, n, b, _, _) =>
b match {
case BIND_ONCE => 1
case BIND_FLEX => edgeAritySelect(n, oStar, n.iStar)
case BIND_QUERY => n.iStar
case BIND_STAR => oStar
}
}.scanLeft(0)(_ + _)
// Cumulative list of resolved inward binding range starting points
val iSum = iBindings.map { case (_, n, b, _, _) =>
b match {
case BIND_ONCE => 1
case BIND_FLEX => edgeAritySelect(n, n.oStar, iStar)
case BIND_QUERY => n.oStar
case BIND_STAR => iStar
}
}.scanLeft(0)(_ + _)
// Create ranges for each binding based on the running sums and return
// those along with resolved values for the star operations.
(oSum.init.zip(oSum.tail), iSum.init.zip(iSum.tail), oStar, iStar)
} catch {
case c: StarCycleException => throw c.copy(loop = context +: c.loop)
}
}
/** Sequence of inward ports.
*
* This should be called after all star bindings are resolved.
*
* Each element is: `j` Port index of this binding in the Node's [[oPortMapping]] on the other side of the binding.
* `n` Instance of inward node. `p` View of [[Parameters]] where this connection was made. `s` Source info where this
* connection was made in the source code.
*/
protected[diplomacy] lazy val oDirectPorts: Seq[(Int, InwardNode[DO, UO, BO], Parameters, SourceInfo)] =
oBindings.flatMap { case (i, n, _, p, s) =>
// for each binding operator in this node, look at what it connects to
val (start, end) = n.iPortMapping(i)
(start until end).map { j => (j, n, p, s) }
}
/** Sequence of outward ports.
*
* This should be called after all star bindings are resolved.
*
* `j` Port index of this binding in the Node's [[oPortMapping]] on the other side of the binding. `n` Instance of
* outward node. `p` View of [[Parameters]] where this connection was made. `s` [[SourceInfo]] where this connection
* was made in the source code.
*/
protected[diplomacy] lazy val iDirectPorts: Seq[(Int, OutwardNode[DI, UI, BI], Parameters, SourceInfo)] =
iBindings.flatMap { case (i, n, _, p, s) =>
// query this port index range of this node in the other side of node.
val (start, end) = n.oPortMapping(i)
(start until end).map { j => (j, n, p, s) }
}
// Ephemeral nodes ( which have non-None iForward/oForward) have in_degree = out_degree
// Thus, there must exist an Eulerian path and the below algorithms terminate
@scala.annotation.tailrec
private def oTrace(
tuple: (Int, InwardNode[DO, UO, BO], Parameters, SourceInfo)
): (Int, InwardNode[DO, UO, BO], Parameters, SourceInfo) = tuple match {
case (i, n, p, s) => n.iForward(i) match {
case None => (i, n, p, s)
case Some((j, m)) => oTrace((j, m, p, s))
}
}
@scala.annotation.tailrec
private def iTrace(
tuple: (Int, OutwardNode[DI, UI, BI], Parameters, SourceInfo)
): (Int, OutwardNode[DI, UI, BI], Parameters, SourceInfo) = tuple match {
case (i, n, p, s) => n.oForward(i) match {
case None => (i, n, p, s)
case Some((j, m)) => iTrace((j, m, p, s))
}
}
/** Final output ports after all stars and port forwarding (e.g. [[EphemeralNode]]s) have been resolved.
*
* Each Port is a tuple of:
* - Numeric index of this binding in the [[InwardNode]] on the other end.
* - [[InwardNode]] on the other end of this binding.
* - A view of [[Parameters]] where the binding occurred.
* - [[SourceInfo]] for source-level error reporting.
*/
lazy val oPorts: Seq[(Int, InwardNode[DO, UO, BO], Parameters, SourceInfo)] = oDirectPorts.map(oTrace)
/** Final input ports after all stars and port forwarding (e.g. [[EphemeralNode]]s) have been resolved.
*
* Each Port is a tuple of:
* - numeric index of this binding in [[OutwardNode]] on the other end.
* - [[OutwardNode]] on the other end of this binding.
* - a view of [[Parameters]] where the binding occurred.
* - [[SourceInfo]] for source-level error reporting.
*/
lazy val iPorts: Seq[(Int, OutwardNode[DI, UI, BI], Parameters, SourceInfo)] = iDirectPorts.map(iTrace)
private var oParamsCycleGuard = false
protected[diplomacy] lazy val diParams: Seq[DI] = iPorts.map { case (i, n, _, _) => n.doParams(i) }
protected[diplomacy] lazy val doParams: Seq[DO] = {
try {
if (oParamsCycleGuard) throw DownwardCycleException()
oParamsCycleGuard = true
val o = mapParamsD(oPorts.size, diParams)
require(
o.size == oPorts.size,
s"""Diplomacy has detected a problem with your graph:
|At the following node, the number of outward ports should equal the number of produced outward parameters.
|$context
|$connectedPortsInfo
|Downstreamed inward parameters: [${diParams.mkString(",")}]
|Produced outward parameters: [${o.mkString(",")}]
|""".stripMargin
)
o.map(outer.mixO(_, this))
} catch {
case c: DownwardCycleException => throw c.copy(loop = context +: c.loop)
}
}
private var iParamsCycleGuard = false
protected[diplomacy] lazy val uoParams: Seq[UO] = oPorts.map { case (o, n, _, _) => n.uiParams(o) }
protected[diplomacy] lazy val uiParams: Seq[UI] = {
try {
if (iParamsCycleGuard) throw UpwardCycleException()
iParamsCycleGuard = true
val i = mapParamsU(iPorts.size, uoParams)
require(
i.size == iPorts.size,
s"""Diplomacy has detected a problem with your graph:
|At the following node, the number of inward ports should equal the number of produced inward parameters.
|$context
|$connectedPortsInfo
|Upstreamed outward parameters: [${uoParams.mkString(",")}]
|Produced inward parameters: [${i.mkString(",")}]
|""".stripMargin
)
i.map(inner.mixI(_, this))
} catch {
case c: UpwardCycleException => throw c.copy(loop = context +: c.loop)
}
}
/** Outward edge parameters. */
protected[diplomacy] lazy val edgesOut: Seq[EO] =
(oPorts.zip(doParams)).map { case ((i, n, p, s), o) => outer.edgeO(o, n.uiParams(i), p, s) }
/** Inward edge parameters. */
protected[diplomacy] lazy val edgesIn: Seq[EI] =
(iPorts.zip(uiParams)).map { case ((o, n, p, s), i) => inner.edgeI(n.doParams(o), i, p, s) }
/** A tuple of the input edge parameters and output edge parameters for the edges bound to this node.
*
* If you need to access to the edges of a foreign Node, use this method (in/out create bundles).
*/
lazy val edges: Edges[EI, EO] = Edges(edgesIn, edgesOut)
/** Create actual Wires corresponding to the Bundles parameterized by the outward edges of this node. */
protected[diplomacy] lazy val bundleOut: Seq[BO] = edgesOut.map { e =>
val x = Wire(outer.bundleO(e)).suggestName(s"${valName.value}Out")
// TODO: Don't care unconnected forwarded diplomatic signals for compatibility issue,
// In the future, we should add an option to decide whether allowing unconnected in the LazyModule
x := DontCare
x
}
/** Create actual Wires corresponding to the Bundles parameterized by the inward edges of this node. */
protected[diplomacy] lazy val bundleIn: Seq[BI] = edgesIn.map { e =>
val x = Wire(inner.bundleI(e)).suggestName(s"${valName.value}In")
// TODO: Don't care unconnected forwarded diplomatic signals for compatibility issue,
// In the future, we should add an option to decide whether allowing unconnected in the LazyModule
x := DontCare
x
}
private def emptyDanglesOut: Seq[Dangle] = oPorts.zipWithIndex.map { case ((j, n, _, _), i) =>
Dangle(
source = HalfEdge(serial, i),
sink = HalfEdge(n.serial, j),
flipped = false,
name = wirePrefix + "out",
dataOpt = None
)
}
private def emptyDanglesIn: Seq[Dangle] = iPorts.zipWithIndex.map { case ((j, n, _, _), i) =>
Dangle(
source = HalfEdge(n.serial, j),
sink = HalfEdge(serial, i),
flipped = true,
name = wirePrefix + "in",
dataOpt = None
)
}
/** Create the [[Dangle]]s which describe the connections from this node output to other nodes inputs. */
protected[diplomacy] def danglesOut: Seq[Dangle] = emptyDanglesOut.zipWithIndex.map { case (d, i) =>
d.copy(dataOpt = Some(bundleOut(i)))
}
/** Create the [[Dangle]]s which describe the connections from this node input from other nodes outputs. */
protected[diplomacy] def danglesIn: Seq[Dangle] = emptyDanglesIn.zipWithIndex.map { case (d, i) =>
d.copy(dataOpt = Some(bundleIn(i)))
}
private[diplomacy] var instantiated = false
/** Gather Bundle and edge parameters of outward ports.
*
* Accessors to the result of negotiation to be used within [[LazyModuleImp]] Code. Should only be used within
* [[LazyModuleImp]] code or after its instantiation has completed.
*/
def out: Seq[(BO, EO)] = {
require(
instantiated,
s"$name.out should not be called until after instantiation of its parent LazyModule.module has begun"
)
bundleOut.zip(edgesOut)
}
/** Gather Bundle and edge parameters of inward ports.
*
* Accessors to the result of negotiation to be used within [[LazyModuleImp]] Code. Should only be used within
* [[LazyModuleImp]] code or after its instantiation has completed.
*/
def in: Seq[(BI, EI)] = {
require(
instantiated,
s"$name.in should not be called until after instantiation of its parent LazyModule.module has begun"
)
bundleIn.zip(edgesIn)
}
/** Actually instantiate this node during [[LazyModuleImp]] evaluation. Mark that it's safe to use the Bundle wires,
* instantiate monitors on all input ports if appropriate, and return all the dangles of this node.
*/
protected[diplomacy] def instantiate(): Seq[Dangle] = {
instantiated = true
if (!circuitIdentity) {
(iPorts.zip(in)).foreach { case ((_, _, p, _), (b, e)) => if (p(MonitorsEnabled)) inner.monitor(b, e) }
}
danglesOut ++ danglesIn
}
protected[diplomacy] def cloneDangles(): Seq[Dangle] = emptyDanglesOut ++ emptyDanglesIn
/** Connects the outward part of a node with the inward part of this node. */
protected[diplomacy] def bind(
h: OutwardNode[DI, UI, BI],
binding: NodeBinding
)(
implicit p: Parameters,
sourceInfo: SourceInfo
): Unit = {
val x = this // x := y
val y = h
sourceLine(sourceInfo, " at ", "")
val i = x.iPushed
val o = y.oPushed
y.oPush(
i,
x,
binding match {
case BIND_ONCE => BIND_ONCE
case BIND_FLEX => BIND_FLEX
case BIND_STAR => BIND_QUERY
case BIND_QUERY => BIND_STAR
}
)
x.iPush(o, y, binding)
}
/* Metadata for printing the node graph. */
def inputs: Seq[(OutwardNode[DI, UI, BI], RenderedEdge)] = (iPorts.zip(edgesIn)).map { case ((_, n, p, _), e) =>
val re = inner.render(e)
(n, re.copy(flipped = re.flipped != p(RenderFlipped)))
}
/** Metadata for printing the node graph */
def outputs: Seq[(InwardNode[DO, UO, BO], RenderedEdge)] = oPorts.map { case (i, n, _, _) => (n, n.inputs(i)._2) }
}
| module TLBuffer_a32d64s1k3z4u_2( // @[Buffer.scala:40:9]
input clock, // @[Buffer.scala:40:9]
input reset, // @[Buffer.scala:40:9]
output auto_in_a_ready, // @[LazyModuleImp.scala:107:25]
input auto_in_a_valid, // @[LazyModuleImp.scala:107:25]
input [2:0] auto_in_a_bits_opcode, // @[LazyModuleImp.scala:107:25]
input [3:0] auto_in_a_bits_size, // @[LazyModuleImp.scala:107:25]
input [31:0] auto_in_a_bits_address, // @[LazyModuleImp.scala:107:25]
input [7:0] auto_in_a_bits_mask, // @[LazyModuleImp.scala:107:25]
input [63:0] auto_in_a_bits_data, // @[LazyModuleImp.scala:107:25]
input auto_in_d_ready, // @[LazyModuleImp.scala:107:25]
output auto_in_d_valid, // @[LazyModuleImp.scala:107:25]
output [2:0] auto_in_d_bits_opcode, // @[LazyModuleImp.scala:107:25]
output [1:0] auto_in_d_bits_param, // @[LazyModuleImp.scala:107:25]
output [3:0] auto_in_d_bits_size, // @[LazyModuleImp.scala:107:25]
output auto_in_d_bits_source, // @[LazyModuleImp.scala:107:25]
output [2:0] auto_in_d_bits_sink, // @[LazyModuleImp.scala:107:25]
output auto_in_d_bits_denied, // @[LazyModuleImp.scala:107:25]
output [63:0] auto_in_d_bits_data, // @[LazyModuleImp.scala:107:25]
output auto_in_d_bits_corrupt, // @[LazyModuleImp.scala:107:25]
input auto_out_a_ready, // @[LazyModuleImp.scala:107:25]
output auto_out_a_valid, // @[LazyModuleImp.scala:107:25]
output [2:0] auto_out_a_bits_opcode, // @[LazyModuleImp.scala:107:25]
output [2:0] auto_out_a_bits_param, // @[LazyModuleImp.scala:107:25]
output [3:0] auto_out_a_bits_size, // @[LazyModuleImp.scala:107:25]
output auto_out_a_bits_source, // @[LazyModuleImp.scala:107:25]
output [31:0] auto_out_a_bits_address, // @[LazyModuleImp.scala:107:25]
output [7:0] auto_out_a_bits_mask, // @[LazyModuleImp.scala:107:25]
output [63:0] auto_out_a_bits_data, // @[LazyModuleImp.scala:107:25]
output auto_out_a_bits_corrupt, // @[LazyModuleImp.scala:107:25]
output auto_out_d_ready, // @[LazyModuleImp.scala:107:25]
input auto_out_d_valid, // @[LazyModuleImp.scala:107:25]
input [2:0] auto_out_d_bits_opcode, // @[LazyModuleImp.scala:107:25]
input [1:0] auto_out_d_bits_param, // @[LazyModuleImp.scala:107:25]
input [3:0] auto_out_d_bits_size, // @[LazyModuleImp.scala:107:25]
input auto_out_d_bits_source, // @[LazyModuleImp.scala:107:25]
input [2:0] auto_out_d_bits_sink, // @[LazyModuleImp.scala:107:25]
input auto_out_d_bits_denied, // @[LazyModuleImp.scala:107:25]
input [63:0] auto_out_d_bits_data, // @[LazyModuleImp.scala:107:25]
input auto_out_d_bits_corrupt // @[LazyModuleImp.scala:107:25]
);
wire auto_in_a_valid_0 = auto_in_a_valid; // @[Buffer.scala:40:9]
wire [2:0] auto_in_a_bits_opcode_0 = auto_in_a_bits_opcode; // @[Buffer.scala:40:9]
wire [3:0] auto_in_a_bits_size_0 = auto_in_a_bits_size; // @[Buffer.scala:40:9]
wire [31:0] auto_in_a_bits_address_0 = auto_in_a_bits_address; // @[Buffer.scala:40:9]
wire [7:0] auto_in_a_bits_mask_0 = auto_in_a_bits_mask; // @[Buffer.scala:40:9]
wire [63:0] auto_in_a_bits_data_0 = auto_in_a_bits_data; // @[Buffer.scala:40:9]
wire auto_in_d_ready_0 = auto_in_d_ready; // @[Buffer.scala:40:9]
wire auto_out_a_ready_0 = auto_out_a_ready; // @[Buffer.scala:40:9]
wire auto_out_d_valid_0 = auto_out_d_valid; // @[Buffer.scala:40:9]
wire [2:0] auto_out_d_bits_opcode_0 = auto_out_d_bits_opcode; // @[Buffer.scala:40:9]
wire [1:0] auto_out_d_bits_param_0 = auto_out_d_bits_param; // @[Buffer.scala:40:9]
wire [3:0] auto_out_d_bits_size_0 = auto_out_d_bits_size; // @[Buffer.scala:40:9]
wire auto_out_d_bits_source_0 = auto_out_d_bits_source; // @[Buffer.scala:40:9]
wire [2:0] auto_out_d_bits_sink_0 = auto_out_d_bits_sink; // @[Buffer.scala:40:9]
wire auto_out_d_bits_denied_0 = auto_out_d_bits_denied; // @[Buffer.scala:40:9]
wire [63:0] auto_out_d_bits_data_0 = auto_out_d_bits_data; // @[Buffer.scala:40:9]
wire auto_out_d_bits_corrupt_0 = auto_out_d_bits_corrupt; // @[Buffer.scala:40:9]
wire auto_in_a_bits_source = 1'h0; // @[Decoupled.scala:362:21]
wire auto_in_a_bits_corrupt = 1'h0; // @[Decoupled.scala:362:21]
wire nodeIn_a_bits_source = 1'h0; // @[Decoupled.scala:362:21]
wire nodeIn_a_bits_corrupt = 1'h0; // @[Decoupled.scala:362:21]
wire [2:0] auto_in_a_bits_param = 3'h0; // @[Decoupled.scala:362:21]
wire nodeIn_a_ready; // @[MixedNode.scala:551:17]
wire [2:0] nodeIn_a_bits_param = 3'h0; // @[Decoupled.scala:362:21]
wire nodeIn_a_valid = auto_in_a_valid_0; // @[Buffer.scala:40:9]
wire [2:0] nodeIn_a_bits_opcode = auto_in_a_bits_opcode_0; // @[Buffer.scala:40:9]
wire [3:0] nodeIn_a_bits_size = auto_in_a_bits_size_0; // @[Buffer.scala:40:9]
wire [31:0] nodeIn_a_bits_address = auto_in_a_bits_address_0; // @[Buffer.scala:40:9]
wire [7:0] nodeIn_a_bits_mask = auto_in_a_bits_mask_0; // @[Buffer.scala:40:9]
wire [63:0] nodeIn_a_bits_data = auto_in_a_bits_data_0; // @[Buffer.scala:40:9]
wire nodeIn_d_ready = auto_in_d_ready_0; // @[Buffer.scala:40:9]
wire nodeIn_d_valid; // @[MixedNode.scala:551:17]
wire [2:0] nodeIn_d_bits_opcode; // @[MixedNode.scala:551:17]
wire [1:0] nodeIn_d_bits_param; // @[MixedNode.scala:551:17]
wire [3:0] nodeIn_d_bits_size; // @[MixedNode.scala:551:17]
wire nodeIn_d_bits_source; // @[MixedNode.scala:551:17]
wire [2:0] nodeIn_d_bits_sink; // @[MixedNode.scala:551:17]
wire nodeIn_d_bits_denied; // @[MixedNode.scala:551:17]
wire [63:0] nodeIn_d_bits_data; // @[MixedNode.scala:551:17]
wire nodeIn_d_bits_corrupt; // @[MixedNode.scala:551:17]
wire nodeOut_a_ready = auto_out_a_ready_0; // @[Buffer.scala:40:9]
wire nodeOut_a_valid; // @[MixedNode.scala:542:17]
wire [2:0] nodeOut_a_bits_opcode; // @[MixedNode.scala:542:17]
wire [2:0] nodeOut_a_bits_param; // @[MixedNode.scala:542:17]
wire [3:0] nodeOut_a_bits_size; // @[MixedNode.scala:542:17]
wire nodeOut_a_bits_source; // @[MixedNode.scala:542:17]
wire [31:0] nodeOut_a_bits_address; // @[MixedNode.scala:542:17]
wire [7:0] nodeOut_a_bits_mask; // @[MixedNode.scala:542:17]
wire [63:0] nodeOut_a_bits_data; // @[MixedNode.scala:542:17]
wire nodeOut_a_bits_corrupt; // @[MixedNode.scala:542:17]
wire nodeOut_d_ready; // @[MixedNode.scala:542:17]
wire nodeOut_d_valid = auto_out_d_valid_0; // @[Buffer.scala:40:9]
wire [2:0] nodeOut_d_bits_opcode = auto_out_d_bits_opcode_0; // @[Buffer.scala:40:9]
wire [1:0] nodeOut_d_bits_param = auto_out_d_bits_param_0; // @[Buffer.scala:40:9]
wire [3:0] nodeOut_d_bits_size = auto_out_d_bits_size_0; // @[Buffer.scala:40:9]
wire nodeOut_d_bits_source = auto_out_d_bits_source_0; // @[Buffer.scala:40:9]
wire [2:0] nodeOut_d_bits_sink = auto_out_d_bits_sink_0; // @[Buffer.scala:40:9]
wire nodeOut_d_bits_denied = auto_out_d_bits_denied_0; // @[Buffer.scala:40:9]
wire [63:0] nodeOut_d_bits_data = auto_out_d_bits_data_0; // @[Buffer.scala:40:9]
wire nodeOut_d_bits_corrupt = auto_out_d_bits_corrupt_0; // @[Buffer.scala:40:9]
wire auto_in_a_ready_0; // @[Buffer.scala:40:9]
wire [2:0] auto_in_d_bits_opcode_0; // @[Buffer.scala:40:9]
wire [1:0] auto_in_d_bits_param_0; // @[Buffer.scala:40:9]
wire [3:0] auto_in_d_bits_size_0; // @[Buffer.scala:40:9]
wire auto_in_d_bits_source_0; // @[Buffer.scala:40:9]
wire [2:0] auto_in_d_bits_sink_0; // @[Buffer.scala:40:9]
wire auto_in_d_bits_denied_0; // @[Buffer.scala:40:9]
wire [63:0] auto_in_d_bits_data_0; // @[Buffer.scala:40:9]
wire auto_in_d_bits_corrupt_0; // @[Buffer.scala:40:9]
wire auto_in_d_valid_0; // @[Buffer.scala:40:9]
wire [2:0] auto_out_a_bits_opcode_0; // @[Buffer.scala:40:9]
wire [2:0] auto_out_a_bits_param_0; // @[Buffer.scala:40:9]
wire [3:0] auto_out_a_bits_size_0; // @[Buffer.scala:40:9]
wire auto_out_a_bits_source_0; // @[Buffer.scala:40:9]
wire [31:0] auto_out_a_bits_address_0; // @[Buffer.scala:40:9]
wire [7:0] auto_out_a_bits_mask_0; // @[Buffer.scala:40:9]
wire [63:0] auto_out_a_bits_data_0; // @[Buffer.scala:40:9]
wire auto_out_a_bits_corrupt_0; // @[Buffer.scala:40:9]
wire auto_out_a_valid_0; // @[Buffer.scala:40:9]
wire auto_out_d_ready_0; // @[Buffer.scala:40:9]
assign auto_in_a_ready_0 = nodeIn_a_ready; // @[Buffer.scala:40:9]
assign auto_in_d_valid_0 = nodeIn_d_valid; // @[Buffer.scala:40:9]
assign auto_in_d_bits_opcode_0 = nodeIn_d_bits_opcode; // @[Buffer.scala:40:9]
assign auto_in_d_bits_param_0 = nodeIn_d_bits_param; // @[Buffer.scala:40:9]
assign auto_in_d_bits_size_0 = nodeIn_d_bits_size; // @[Buffer.scala:40:9]
assign auto_in_d_bits_source_0 = nodeIn_d_bits_source; // @[Buffer.scala:40:9]
assign auto_in_d_bits_sink_0 = nodeIn_d_bits_sink; // @[Buffer.scala:40:9]
assign auto_in_d_bits_denied_0 = nodeIn_d_bits_denied; // @[Buffer.scala:40:9]
assign auto_in_d_bits_data_0 = nodeIn_d_bits_data; // @[Buffer.scala:40:9]
assign auto_in_d_bits_corrupt_0 = nodeIn_d_bits_corrupt; // @[Buffer.scala:40:9]
assign auto_out_a_valid_0 = nodeOut_a_valid; // @[Buffer.scala:40:9]
assign auto_out_a_bits_opcode_0 = nodeOut_a_bits_opcode; // @[Buffer.scala:40:9]
assign auto_out_a_bits_param_0 = nodeOut_a_bits_param; // @[Buffer.scala:40:9]
assign auto_out_a_bits_size_0 = nodeOut_a_bits_size; // @[Buffer.scala:40:9]
assign auto_out_a_bits_source_0 = nodeOut_a_bits_source; // @[Buffer.scala:40:9]
assign auto_out_a_bits_address_0 = nodeOut_a_bits_address; // @[Buffer.scala:40:9]
assign auto_out_a_bits_mask_0 = nodeOut_a_bits_mask; // @[Buffer.scala:40:9]
assign auto_out_a_bits_data_0 = nodeOut_a_bits_data; // @[Buffer.scala:40:9]
assign auto_out_a_bits_corrupt_0 = nodeOut_a_bits_corrupt; // @[Buffer.scala:40:9]
assign auto_out_d_ready_0 = nodeOut_d_ready; // @[Buffer.scala:40:9]
TLMonitor_61 monitor ( // @[Nodes.scala:27:25]
.clock (clock),
.reset (reset),
.io_in_a_ready (nodeIn_a_ready), // @[MixedNode.scala:551:17]
.io_in_a_valid (nodeIn_a_valid), // @[MixedNode.scala:551:17]
.io_in_a_bits_opcode (nodeIn_a_bits_opcode), // @[MixedNode.scala:551:17]
.io_in_a_bits_size (nodeIn_a_bits_size), // @[MixedNode.scala:551:17]
.io_in_a_bits_address (nodeIn_a_bits_address), // @[MixedNode.scala:551:17]
.io_in_a_bits_mask (nodeIn_a_bits_mask), // @[MixedNode.scala:551:17]
.io_in_a_bits_data (nodeIn_a_bits_data), // @[MixedNode.scala:551:17]
.io_in_d_ready (nodeIn_d_ready), // @[MixedNode.scala:551:17]
.io_in_d_valid (nodeIn_d_valid), // @[MixedNode.scala:551:17]
.io_in_d_bits_opcode (nodeIn_d_bits_opcode), // @[MixedNode.scala:551:17]
.io_in_d_bits_param (nodeIn_d_bits_param), // @[MixedNode.scala:551:17]
.io_in_d_bits_size (nodeIn_d_bits_size), // @[MixedNode.scala:551:17]
.io_in_d_bits_source (nodeIn_d_bits_source), // @[MixedNode.scala:551:17]
.io_in_d_bits_sink (nodeIn_d_bits_sink), // @[MixedNode.scala:551:17]
.io_in_d_bits_denied (nodeIn_d_bits_denied), // @[MixedNode.scala:551:17]
.io_in_d_bits_data (nodeIn_d_bits_data), // @[MixedNode.scala:551:17]
.io_in_d_bits_corrupt (nodeIn_d_bits_corrupt) // @[MixedNode.scala:551:17]
); // @[Nodes.scala:27:25]
Queue2_TLBundleA_a32d64s1k3z4u_1 nodeOut_a_q ( // @[Decoupled.scala:362:21]
.clock (clock),
.reset (reset),
.io_enq_ready (nodeIn_a_ready),
.io_enq_valid (nodeIn_a_valid), // @[MixedNode.scala:551:17]
.io_enq_bits_opcode (nodeIn_a_bits_opcode), // @[MixedNode.scala:551:17]
.io_enq_bits_size (nodeIn_a_bits_size), // @[MixedNode.scala:551:17]
.io_enq_bits_address (nodeIn_a_bits_address), // @[MixedNode.scala:551:17]
.io_enq_bits_mask (nodeIn_a_bits_mask), // @[MixedNode.scala:551:17]
.io_enq_bits_data (nodeIn_a_bits_data), // @[MixedNode.scala:551:17]
.io_deq_ready (nodeOut_a_ready), // @[MixedNode.scala:542:17]
.io_deq_valid (nodeOut_a_valid),
.io_deq_bits_opcode (nodeOut_a_bits_opcode),
.io_deq_bits_param (nodeOut_a_bits_param),
.io_deq_bits_size (nodeOut_a_bits_size),
.io_deq_bits_source (nodeOut_a_bits_source),
.io_deq_bits_address (nodeOut_a_bits_address),
.io_deq_bits_mask (nodeOut_a_bits_mask),
.io_deq_bits_data (nodeOut_a_bits_data),
.io_deq_bits_corrupt (nodeOut_a_bits_corrupt)
); // @[Decoupled.scala:362:21]
Queue2_TLBundleD_a32d64s1k3z4u_1 nodeIn_d_q ( // @[Decoupled.scala:362:21]
.clock (clock),
.reset (reset),
.io_enq_ready (nodeOut_d_ready),
.io_enq_valid (nodeOut_d_valid), // @[MixedNode.scala:542:17]
.io_enq_bits_opcode (nodeOut_d_bits_opcode), // @[MixedNode.scala:542:17]
.io_enq_bits_param (nodeOut_d_bits_param), // @[MixedNode.scala:542:17]
.io_enq_bits_size (nodeOut_d_bits_size), // @[MixedNode.scala:542:17]
.io_enq_bits_source (nodeOut_d_bits_source), // @[MixedNode.scala:542:17]
.io_enq_bits_sink (nodeOut_d_bits_sink), // @[MixedNode.scala:542:17]
.io_enq_bits_denied (nodeOut_d_bits_denied), // @[MixedNode.scala:542:17]
.io_enq_bits_data (nodeOut_d_bits_data), // @[MixedNode.scala:542:17]
.io_enq_bits_corrupt (nodeOut_d_bits_corrupt), // @[MixedNode.scala:542:17]
.io_deq_ready (nodeIn_d_ready), // @[MixedNode.scala:551:17]
.io_deq_valid (nodeIn_d_valid),
.io_deq_bits_opcode (nodeIn_d_bits_opcode),
.io_deq_bits_param (nodeIn_d_bits_param),
.io_deq_bits_size (nodeIn_d_bits_size),
.io_deq_bits_source (nodeIn_d_bits_source),
.io_deq_bits_sink (nodeIn_d_bits_sink),
.io_deq_bits_denied (nodeIn_d_bits_denied),
.io_deq_bits_data (nodeIn_d_bits_data),
.io_deq_bits_corrupt (nodeIn_d_bits_corrupt)
); // @[Decoupled.scala:362:21]
assign auto_in_a_ready = auto_in_a_ready_0; // @[Buffer.scala:40:9]
assign auto_in_d_valid = auto_in_d_valid_0; // @[Buffer.scala:40:9]
assign auto_in_d_bits_opcode = auto_in_d_bits_opcode_0; // @[Buffer.scala:40:9]
assign auto_in_d_bits_param = auto_in_d_bits_param_0; // @[Buffer.scala:40:9]
assign auto_in_d_bits_size = auto_in_d_bits_size_0; // @[Buffer.scala:40:9]
assign auto_in_d_bits_source = auto_in_d_bits_source_0; // @[Buffer.scala:40:9]
assign auto_in_d_bits_sink = auto_in_d_bits_sink_0; // @[Buffer.scala:40:9]
assign auto_in_d_bits_denied = auto_in_d_bits_denied_0; // @[Buffer.scala:40:9]
assign auto_in_d_bits_data = auto_in_d_bits_data_0; // @[Buffer.scala:40:9]
assign auto_in_d_bits_corrupt = auto_in_d_bits_corrupt_0; // @[Buffer.scala:40:9]
assign auto_out_a_valid = auto_out_a_valid_0; // @[Buffer.scala:40:9]
assign auto_out_a_bits_opcode = auto_out_a_bits_opcode_0; // @[Buffer.scala:40:9]
assign auto_out_a_bits_param = auto_out_a_bits_param_0; // @[Buffer.scala:40:9]
assign auto_out_a_bits_size = auto_out_a_bits_size_0; // @[Buffer.scala:40:9]
assign auto_out_a_bits_source = auto_out_a_bits_source_0; // @[Buffer.scala:40:9]
assign auto_out_a_bits_address = auto_out_a_bits_address_0; // @[Buffer.scala:40:9]
assign auto_out_a_bits_mask = auto_out_a_bits_mask_0; // @[Buffer.scala:40:9]
assign auto_out_a_bits_data = auto_out_a_bits_data_0; // @[Buffer.scala:40:9]
assign auto_out_a_bits_corrupt = auto_out_a_bits_corrupt_0; // @[Buffer.scala:40:9]
assign auto_out_d_ready = auto_out_d_ready_0; // @[Buffer.scala:40:9]
endmodule |
Generate the Verilog code corresponding to the following Chisel files.
File Monitor.scala:
// See LICENSE.SiFive for license details.
package freechips.rocketchip.tilelink
import chisel3._
import chisel3.util._
import chisel3.experimental.SourceLine
import org.chipsalliance.cde.config._
import org.chipsalliance.diplomacy._
import freechips.rocketchip.diplomacy.EnableMonitors
import freechips.rocketchip.formal.{MonitorDirection, IfThen, Property, PropertyClass, TestplanTestType, TLMonitorStrictMode}
import freechips.rocketchip.util.PlusArg
case class TLMonitorArgs(edge: TLEdge)
abstract class TLMonitorBase(args: TLMonitorArgs) extends Module
{
val io = IO(new Bundle {
val in = Input(new TLBundle(args.edge.bundle))
})
def legalize(bundle: TLBundle, edge: TLEdge, reset: Reset): Unit
legalize(io.in, args.edge, reset)
}
object TLMonitor {
def apply(enable: Boolean, node: TLNode)(implicit p: Parameters): TLNode = {
if (enable) {
EnableMonitors { implicit p => node := TLEphemeralNode()(ValName("monitor")) }
} else { node }
}
}
class TLMonitor(args: TLMonitorArgs, monitorDir: MonitorDirection = MonitorDirection.Monitor) extends TLMonitorBase(args)
{
require (args.edge.params(TLMonitorStrictMode) || (! args.edge.params(TestplanTestType).formal))
val cover_prop_class = PropertyClass.Default
//Like assert but can flip to being an assumption for formal verification
def monAssert(cond: Bool, message: String): Unit =
if (monitorDir == MonitorDirection.Monitor) {
assert(cond, message)
} else {
Property(monitorDir, cond, message, PropertyClass.Default)
}
def assume(cond: Bool, message: String): Unit =
if (monitorDir == MonitorDirection.Monitor) {
assert(cond, message)
} else {
Property(monitorDir.flip, cond, message, PropertyClass.Default)
}
def extra = {
args.edge.sourceInfo match {
case SourceLine(filename, line, col) => s" (connected at $filename:$line:$col)"
case _ => ""
}
}
def visible(address: UInt, source: UInt, edge: TLEdge) =
edge.client.clients.map { c =>
!c.sourceId.contains(source) ||
c.visibility.map(_.contains(address)).reduce(_ || _)
}.reduce(_ && _)
def legalizeFormatA(bundle: TLBundleA, edge: TLEdge): Unit = {
//switch this flag to turn on diplomacy in error messages
def diplomacyInfo = if (true) "" else "\nThe diplomacy information for the edge is as follows:\n" + edge.formatEdge + "\n"
monAssert (TLMessages.isA(bundle.opcode), "'A' channel has invalid opcode" + extra)
// Reuse these subexpressions to save some firrtl lines
val source_ok = edge.client.contains(bundle.source)
val is_aligned = edge.isAligned(bundle.address, bundle.size)
val mask = edge.full_mask(bundle)
monAssert (visible(edge.address(bundle), bundle.source, edge), "'A' channel carries an address illegal for the specified bank visibility")
//The monitor doesnβt check for acquire T vs acquire B, it assumes that acquire B implies acquire T and only checks for acquire B
//TODO: check for acquireT?
when (bundle.opcode === TLMessages.AcquireBlock) {
monAssert (edge.master.emitsAcquireB(bundle.source, bundle.size) && edge.slave.supportsAcquireBSafe(edge.address(bundle), bundle.size), "'A' channel carries AcquireBlock type which is unexpected using diplomatic parameters" + diplomacyInfo + extra)
monAssert (edge.master.supportsProbe(edge.source(bundle), bundle.size) && edge.slave.emitsProbeSafe(edge.address(bundle), bundle.size), "'A' channel carries AcquireBlock from a client which does not support Probe" + diplomacyInfo + extra)
monAssert (source_ok, "'A' channel AcquireBlock carries invalid source ID" + diplomacyInfo + extra)
monAssert (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'A' channel AcquireBlock smaller than a beat" + extra)
monAssert (is_aligned, "'A' channel AcquireBlock address not aligned to size" + extra)
monAssert (TLPermissions.isGrow(bundle.param), "'A' channel AcquireBlock carries invalid grow param" + extra)
monAssert (~bundle.mask === 0.U, "'A' channel AcquireBlock contains invalid mask" + extra)
monAssert (!bundle.corrupt, "'A' channel AcquireBlock is corrupt" + extra)
}
when (bundle.opcode === TLMessages.AcquirePerm) {
monAssert (edge.master.emitsAcquireB(bundle.source, bundle.size) && edge.slave.supportsAcquireBSafe(edge.address(bundle), bundle.size), "'A' channel carries AcquirePerm type which is unexpected using diplomatic parameters" + diplomacyInfo + extra)
monAssert (edge.master.supportsProbe(edge.source(bundle), bundle.size) && edge.slave.emitsProbeSafe(edge.address(bundle), bundle.size), "'A' channel carries AcquirePerm from a client which does not support Probe" + diplomacyInfo + extra)
monAssert (source_ok, "'A' channel AcquirePerm carries invalid source ID" + diplomacyInfo + extra)
monAssert (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'A' channel AcquirePerm smaller than a beat" + extra)
monAssert (is_aligned, "'A' channel AcquirePerm address not aligned to size" + extra)
monAssert (TLPermissions.isGrow(bundle.param), "'A' channel AcquirePerm carries invalid grow param" + extra)
monAssert (bundle.param =/= TLPermissions.NtoB, "'A' channel AcquirePerm requests NtoB" + extra)
monAssert (~bundle.mask === 0.U, "'A' channel AcquirePerm contains invalid mask" + extra)
monAssert (!bundle.corrupt, "'A' channel AcquirePerm is corrupt" + extra)
}
when (bundle.opcode === TLMessages.Get) {
monAssert (edge.master.emitsGet(bundle.source, bundle.size), "'A' channel carries Get type which master claims it can't emit" + diplomacyInfo + extra)
monAssert (edge.slave.supportsGetSafe(edge.address(bundle), bundle.size, None), "'A' channel carries Get type which slave claims it can't support" + diplomacyInfo + extra)
monAssert (source_ok, "'A' channel Get carries invalid source ID" + diplomacyInfo + extra)
monAssert (is_aligned, "'A' channel Get address not aligned to size" + extra)
monAssert (bundle.param === 0.U, "'A' channel Get carries invalid param" + extra)
monAssert (bundle.mask === mask, "'A' channel Get contains invalid mask" + extra)
monAssert (!bundle.corrupt, "'A' channel Get is corrupt" + extra)
}
when (bundle.opcode === TLMessages.PutFullData) {
monAssert (edge.master.emitsPutFull(bundle.source, bundle.size) && edge.slave.supportsPutFullSafe(edge.address(bundle), bundle.size), "'A' channel carries PutFull type which is unexpected using diplomatic parameters" + diplomacyInfo + extra)
monAssert (source_ok, "'A' channel PutFull carries invalid source ID" + diplomacyInfo + extra)
monAssert (is_aligned, "'A' channel PutFull address not aligned to size" + extra)
monAssert (bundle.param === 0.U, "'A' channel PutFull carries invalid param" + extra)
monAssert (bundle.mask === mask, "'A' channel PutFull contains invalid mask" + extra)
}
when (bundle.opcode === TLMessages.PutPartialData) {
monAssert (edge.master.emitsPutPartial(bundle.source, bundle.size) && edge.slave.supportsPutPartialSafe(edge.address(bundle), bundle.size), "'A' channel carries PutPartial type which is unexpected using diplomatic parameters" + extra)
monAssert (source_ok, "'A' channel PutPartial carries invalid source ID" + diplomacyInfo + extra)
monAssert (is_aligned, "'A' channel PutPartial address not aligned to size" + extra)
monAssert (bundle.param === 0.U, "'A' channel PutPartial carries invalid param" + extra)
monAssert ((bundle.mask & ~mask) === 0.U, "'A' channel PutPartial contains invalid mask" + extra)
}
when (bundle.opcode === TLMessages.ArithmeticData) {
monAssert (edge.master.emitsArithmetic(bundle.source, bundle.size) && edge.slave.supportsArithmeticSafe(edge.address(bundle), bundle.size), "'A' channel carries Arithmetic type which is unexpected using diplomatic parameters" + extra)
monAssert (source_ok, "'A' channel Arithmetic carries invalid source ID" + diplomacyInfo + extra)
monAssert (is_aligned, "'A' channel Arithmetic address not aligned to size" + extra)
monAssert (TLAtomics.isArithmetic(bundle.param), "'A' channel Arithmetic carries invalid opcode param" + extra)
monAssert (bundle.mask === mask, "'A' channel Arithmetic contains invalid mask" + extra)
}
when (bundle.opcode === TLMessages.LogicalData) {
monAssert (edge.master.emitsLogical(bundle.source, bundle.size) && edge.slave.supportsLogicalSafe(edge.address(bundle), bundle.size), "'A' channel carries Logical type which is unexpected using diplomatic parameters" + extra)
monAssert (source_ok, "'A' channel Logical carries invalid source ID" + diplomacyInfo + extra)
monAssert (is_aligned, "'A' channel Logical address not aligned to size" + extra)
monAssert (TLAtomics.isLogical(bundle.param), "'A' channel Logical carries invalid opcode param" + extra)
monAssert (bundle.mask === mask, "'A' channel Logical contains invalid mask" + extra)
}
when (bundle.opcode === TLMessages.Hint) {
monAssert (edge.master.emitsHint(bundle.source, bundle.size) && edge.slave.supportsHintSafe(edge.address(bundle), bundle.size), "'A' channel carries Hint type which is unexpected using diplomatic parameters" + extra)
monAssert (source_ok, "'A' channel Hint carries invalid source ID" + diplomacyInfo + extra)
monAssert (is_aligned, "'A' channel Hint address not aligned to size" + extra)
monAssert (TLHints.isHints(bundle.param), "'A' channel Hint carries invalid opcode param" + extra)
monAssert (bundle.mask === mask, "'A' channel Hint contains invalid mask" + extra)
monAssert (!bundle.corrupt, "'A' channel Hint is corrupt" + extra)
}
}
def legalizeFormatB(bundle: TLBundleB, edge: TLEdge): Unit = {
monAssert (TLMessages.isB(bundle.opcode), "'B' channel has invalid opcode" + extra)
monAssert (visible(edge.address(bundle), bundle.source, edge), "'B' channel carries an address illegal for the specified bank visibility")
// Reuse these subexpressions to save some firrtl lines
val address_ok = edge.manager.containsSafe(edge.address(bundle))
val is_aligned = edge.isAligned(bundle.address, bundle.size)
val mask = edge.full_mask(bundle)
val legal_source = Mux1H(edge.client.find(bundle.source), edge.client.clients.map(c => c.sourceId.start.U)) === bundle.source
when (bundle.opcode === TLMessages.Probe) {
assume (edge.master.supportsProbe(edge.source(bundle), bundle.size) && edge.slave.emitsProbeSafe(edge.address(bundle), bundle.size), "'B' channel carries Probe type which is unexpected using diplomatic parameters" + extra)
assume (address_ok, "'B' channel Probe carries unmanaged address" + extra)
assume (legal_source, "'B' channel Probe carries source that is not first source" + extra)
assume (is_aligned, "'B' channel Probe address not aligned to size" + extra)
assume (TLPermissions.isCap(bundle.param), "'B' channel Probe carries invalid cap param" + extra)
assume (bundle.mask === mask, "'B' channel Probe contains invalid mask" + extra)
assume (!bundle.corrupt, "'B' channel Probe is corrupt" + extra)
}
when (bundle.opcode === TLMessages.Get) {
monAssert (edge.master.supportsGet(edge.source(bundle), bundle.size) && edge.slave.emitsGetSafe(edge.address(bundle), bundle.size), "'B' channel carries Get type which is unexpected using diplomatic parameters" + extra)
monAssert (address_ok, "'B' channel Get carries unmanaged address" + extra)
monAssert (legal_source, "'B' channel Get carries source that is not first source" + extra)
monAssert (is_aligned, "'B' channel Get address not aligned to size" + extra)
monAssert (bundle.param === 0.U, "'B' channel Get carries invalid param" + extra)
monAssert (bundle.mask === mask, "'B' channel Get contains invalid mask" + extra)
monAssert (!bundle.corrupt, "'B' channel Get is corrupt" + extra)
}
when (bundle.opcode === TLMessages.PutFullData) {
monAssert (edge.master.supportsPutFull(edge.source(bundle), bundle.size) && edge.slave.emitsPutFullSafe(edge.address(bundle), bundle.size), "'B' channel carries PutFull type which is unexpected using diplomatic parameters" + extra)
monAssert (address_ok, "'B' channel PutFull carries unmanaged address" + extra)
monAssert (legal_source, "'B' channel PutFull carries source that is not first source" + extra)
monAssert (is_aligned, "'B' channel PutFull address not aligned to size" + extra)
monAssert (bundle.param === 0.U, "'B' channel PutFull carries invalid param" + extra)
monAssert (bundle.mask === mask, "'B' channel PutFull contains invalid mask" + extra)
}
when (bundle.opcode === TLMessages.PutPartialData) {
monAssert (edge.master.supportsPutPartial(edge.source(bundle), bundle.size) && edge.slave.emitsPutPartialSafe(edge.address(bundle), bundle.size), "'B' channel carries PutPartial type which is unexpected using diplomatic parameters" + extra)
monAssert (address_ok, "'B' channel PutPartial carries unmanaged address" + extra)
monAssert (legal_source, "'B' channel PutPartial carries source that is not first source" + extra)
monAssert (is_aligned, "'B' channel PutPartial address not aligned to size" + extra)
monAssert (bundle.param === 0.U, "'B' channel PutPartial carries invalid param" + extra)
monAssert ((bundle.mask & ~mask) === 0.U, "'B' channel PutPartial contains invalid mask" + extra)
}
when (bundle.opcode === TLMessages.ArithmeticData) {
monAssert (edge.master.supportsArithmetic(edge.source(bundle), bundle.size) && edge.slave.emitsArithmeticSafe(edge.address(bundle), bundle.size), "'B' channel carries Arithmetic type unsupported by master" + extra)
monAssert (address_ok, "'B' channel Arithmetic carries unmanaged address" + extra)
monAssert (legal_source, "'B' channel Arithmetic carries source that is not first source" + extra)
monAssert (is_aligned, "'B' channel Arithmetic address not aligned to size" + extra)
monAssert (TLAtomics.isArithmetic(bundle.param), "'B' channel Arithmetic carries invalid opcode param" + extra)
monAssert (bundle.mask === mask, "'B' channel Arithmetic contains invalid mask" + extra)
}
when (bundle.opcode === TLMessages.LogicalData) {
monAssert (edge.master.supportsLogical(edge.source(bundle), bundle.size) && edge.slave.emitsLogicalSafe(edge.address(bundle), bundle.size), "'B' channel carries Logical type unsupported by client" + extra)
monAssert (address_ok, "'B' channel Logical carries unmanaged address" + extra)
monAssert (legal_source, "'B' channel Logical carries source that is not first source" + extra)
monAssert (is_aligned, "'B' channel Logical address not aligned to size" + extra)
monAssert (TLAtomics.isLogical(bundle.param), "'B' channel Logical carries invalid opcode param" + extra)
monAssert (bundle.mask === mask, "'B' channel Logical contains invalid mask" + extra)
}
when (bundle.opcode === TLMessages.Hint) {
monAssert (edge.master.supportsHint(edge.source(bundle), bundle.size) && edge.slave.emitsHintSafe(edge.address(bundle), bundle.size), "'B' channel carries Hint type unsupported by client" + extra)
monAssert (address_ok, "'B' channel Hint carries unmanaged address" + extra)
monAssert (legal_source, "'B' channel Hint carries source that is not first source" + extra)
monAssert (is_aligned, "'B' channel Hint address not aligned to size" + extra)
monAssert (bundle.mask === mask, "'B' channel Hint contains invalid mask" + extra)
monAssert (!bundle.corrupt, "'B' channel Hint is corrupt" + extra)
}
}
def legalizeFormatC(bundle: TLBundleC, edge: TLEdge): Unit = {
monAssert (TLMessages.isC(bundle.opcode), "'C' channel has invalid opcode" + extra)
val source_ok = edge.client.contains(bundle.source)
val is_aligned = edge.isAligned(bundle.address, bundle.size)
val address_ok = edge.manager.containsSafe(edge.address(bundle))
monAssert (visible(edge.address(bundle), bundle.source, edge), "'C' channel carries an address illegal for the specified bank visibility")
when (bundle.opcode === TLMessages.ProbeAck) {
monAssert (address_ok, "'C' channel ProbeAck carries unmanaged address" + extra)
monAssert (source_ok, "'C' channel ProbeAck carries invalid source ID" + extra)
monAssert (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'C' channel ProbeAck smaller than a beat" + extra)
monAssert (is_aligned, "'C' channel ProbeAck address not aligned to size" + extra)
monAssert (TLPermissions.isReport(bundle.param), "'C' channel ProbeAck carries invalid report param" + extra)
monAssert (!bundle.corrupt, "'C' channel ProbeAck is corrupt" + extra)
}
when (bundle.opcode === TLMessages.ProbeAckData) {
monAssert (address_ok, "'C' channel ProbeAckData carries unmanaged address" + extra)
monAssert (source_ok, "'C' channel ProbeAckData carries invalid source ID" + extra)
monAssert (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'C' channel ProbeAckData smaller than a beat" + extra)
monAssert (is_aligned, "'C' channel ProbeAckData address not aligned to size" + extra)
monAssert (TLPermissions.isReport(bundle.param), "'C' channel ProbeAckData carries invalid report param" + extra)
}
when (bundle.opcode === TLMessages.Release) {
monAssert (edge.master.emitsAcquireB(edge.source(bundle), bundle.size) && edge.slave.supportsAcquireBSafe(edge.address(bundle), bundle.size), "'C' channel carries Release type unsupported by manager" + extra)
monAssert (edge.master.supportsProbe(edge.source(bundle), bundle.size) && edge.slave.emitsProbeSafe(edge.address(bundle), bundle.size), "'C' channel carries Release from a client which does not support Probe" + extra)
monAssert (source_ok, "'C' channel Release carries invalid source ID" + extra)
monAssert (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'C' channel Release smaller than a beat" + extra)
monAssert (is_aligned, "'C' channel Release address not aligned to size" + extra)
monAssert (TLPermissions.isReport(bundle.param), "'C' channel Release carries invalid report param" + extra)
monAssert (!bundle.corrupt, "'C' channel Release is corrupt" + extra)
}
when (bundle.opcode === TLMessages.ReleaseData) {
monAssert (edge.master.emitsAcquireB(edge.source(bundle), bundle.size) && edge.slave.supportsAcquireBSafe(edge.address(bundle), bundle.size), "'C' channel carries ReleaseData type unsupported by manager" + extra)
monAssert (edge.master.supportsProbe(edge.source(bundle), bundle.size) && edge.slave.emitsProbeSafe(edge.address(bundle), bundle.size), "'C' channel carries Release from a client which does not support Probe" + extra)
monAssert (source_ok, "'C' channel ReleaseData carries invalid source ID" + extra)
monAssert (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'C' channel ReleaseData smaller than a beat" + extra)
monAssert (is_aligned, "'C' channel ReleaseData address not aligned to size" + extra)
monAssert (TLPermissions.isReport(bundle.param), "'C' channel ReleaseData carries invalid report param" + extra)
}
when (bundle.opcode === TLMessages.AccessAck) {
monAssert (address_ok, "'C' channel AccessAck carries unmanaged address" + extra)
monAssert (source_ok, "'C' channel AccessAck carries invalid source ID" + extra)
monAssert (is_aligned, "'C' channel AccessAck address not aligned to size" + extra)
monAssert (bundle.param === 0.U, "'C' channel AccessAck carries invalid param" + extra)
monAssert (!bundle.corrupt, "'C' channel AccessAck is corrupt" + extra)
}
when (bundle.opcode === TLMessages.AccessAckData) {
monAssert (address_ok, "'C' channel AccessAckData carries unmanaged address" + extra)
monAssert (source_ok, "'C' channel AccessAckData carries invalid source ID" + extra)
monAssert (is_aligned, "'C' channel AccessAckData address not aligned to size" + extra)
monAssert (bundle.param === 0.U, "'C' channel AccessAckData carries invalid param" + extra)
}
when (bundle.opcode === TLMessages.HintAck) {
monAssert (address_ok, "'C' channel HintAck carries unmanaged address" + extra)
monAssert (source_ok, "'C' channel HintAck carries invalid source ID" + extra)
monAssert (is_aligned, "'C' channel HintAck address not aligned to size" + extra)
monAssert (bundle.param === 0.U, "'C' channel HintAck carries invalid param" + extra)
monAssert (!bundle.corrupt, "'C' channel HintAck is corrupt" + extra)
}
}
def legalizeFormatD(bundle: TLBundleD, edge: TLEdge): Unit = {
assume (TLMessages.isD(bundle.opcode), "'D' channel has invalid opcode" + extra)
val source_ok = edge.client.contains(bundle.source)
val sink_ok = bundle.sink < edge.manager.endSinkId.U
val deny_put_ok = edge.manager.mayDenyPut.B
val deny_get_ok = edge.manager.mayDenyGet.B
when (bundle.opcode === TLMessages.ReleaseAck) {
assume (source_ok, "'D' channel ReleaseAck carries invalid source ID" + extra)
assume (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'D' channel ReleaseAck smaller than a beat" + extra)
assume (bundle.param === 0.U, "'D' channel ReleaseeAck carries invalid param" + extra)
assume (!bundle.corrupt, "'D' channel ReleaseAck is corrupt" + extra)
assume (!bundle.denied, "'D' channel ReleaseAck is denied" + extra)
}
when (bundle.opcode === TLMessages.Grant) {
assume (source_ok, "'D' channel Grant carries invalid source ID" + extra)
assume (sink_ok, "'D' channel Grant carries invalid sink ID" + extra)
assume (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'D' channel Grant smaller than a beat" + extra)
assume (TLPermissions.isCap(bundle.param), "'D' channel Grant carries invalid cap param" + extra)
assume (bundle.param =/= TLPermissions.toN, "'D' channel Grant carries toN param" + extra)
assume (!bundle.corrupt, "'D' channel Grant is corrupt" + extra)
assume (deny_put_ok || !bundle.denied, "'D' channel Grant is denied" + extra)
}
when (bundle.opcode === TLMessages.GrantData) {
assume (source_ok, "'D' channel GrantData carries invalid source ID" + extra)
assume (sink_ok, "'D' channel GrantData carries invalid sink ID" + extra)
assume (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'D' channel GrantData smaller than a beat" + extra)
assume (TLPermissions.isCap(bundle.param), "'D' channel GrantData carries invalid cap param" + extra)
assume (bundle.param =/= TLPermissions.toN, "'D' channel GrantData carries toN param" + extra)
assume (!bundle.denied || bundle.corrupt, "'D' channel GrantData is denied but not corrupt" + extra)
assume (deny_get_ok || !bundle.denied, "'D' channel GrantData is denied" + extra)
}
when (bundle.opcode === TLMessages.AccessAck) {
assume (source_ok, "'D' channel AccessAck carries invalid source ID" + extra)
// size is ignored
assume (bundle.param === 0.U, "'D' channel AccessAck carries invalid param" + extra)
assume (!bundle.corrupt, "'D' channel AccessAck is corrupt" + extra)
assume (deny_put_ok || !bundle.denied, "'D' channel AccessAck is denied" + extra)
}
when (bundle.opcode === TLMessages.AccessAckData) {
assume (source_ok, "'D' channel AccessAckData carries invalid source ID" + extra)
// size is ignored
assume (bundle.param === 0.U, "'D' channel AccessAckData carries invalid param" + extra)
assume (!bundle.denied || bundle.corrupt, "'D' channel AccessAckData is denied but not corrupt" + extra)
assume (deny_get_ok || !bundle.denied, "'D' channel AccessAckData is denied" + extra)
}
when (bundle.opcode === TLMessages.HintAck) {
assume (source_ok, "'D' channel HintAck carries invalid source ID" + extra)
// size is ignored
assume (bundle.param === 0.U, "'D' channel HintAck carries invalid param" + extra)
assume (!bundle.corrupt, "'D' channel HintAck is corrupt" + extra)
assume (deny_put_ok || !bundle.denied, "'D' channel HintAck is denied" + extra)
}
}
def legalizeFormatE(bundle: TLBundleE, edge: TLEdge): Unit = {
val sink_ok = bundle.sink < edge.manager.endSinkId.U
monAssert (sink_ok, "'E' channels carries invalid sink ID" + extra)
}
def legalizeFormat(bundle: TLBundle, edge: TLEdge) = {
when (bundle.a.valid) { legalizeFormatA(bundle.a.bits, edge) }
when (bundle.d.valid) { legalizeFormatD(bundle.d.bits, edge) }
if (edge.client.anySupportProbe && edge.manager.anySupportAcquireB) {
when (bundle.b.valid) { legalizeFormatB(bundle.b.bits, edge) }
when (bundle.c.valid) { legalizeFormatC(bundle.c.bits, edge) }
when (bundle.e.valid) { legalizeFormatE(bundle.e.bits, edge) }
} else {
monAssert (!bundle.b.valid, "'B' channel valid and not TL-C" + extra)
monAssert (!bundle.c.valid, "'C' channel valid and not TL-C" + extra)
monAssert (!bundle.e.valid, "'E' channel valid and not TL-C" + extra)
}
}
def legalizeMultibeatA(a: DecoupledIO[TLBundleA], edge: TLEdge): Unit = {
val a_first = edge.first(a.bits, a.fire)
val opcode = Reg(UInt())
val param = Reg(UInt())
val size = Reg(UInt())
val source = Reg(UInt())
val address = Reg(UInt())
when (a.valid && !a_first) {
monAssert (a.bits.opcode === opcode, "'A' channel opcode changed within multibeat operation" + extra)
monAssert (a.bits.param === param, "'A' channel param changed within multibeat operation" + extra)
monAssert (a.bits.size === size, "'A' channel size changed within multibeat operation" + extra)
monAssert (a.bits.source === source, "'A' channel source changed within multibeat operation" + extra)
monAssert (a.bits.address=== address,"'A' channel address changed with multibeat operation" + extra)
}
when (a.fire && a_first) {
opcode := a.bits.opcode
param := a.bits.param
size := a.bits.size
source := a.bits.source
address := a.bits.address
}
}
def legalizeMultibeatB(b: DecoupledIO[TLBundleB], edge: TLEdge): Unit = {
val b_first = edge.first(b.bits, b.fire)
val opcode = Reg(UInt())
val param = Reg(UInt())
val size = Reg(UInt())
val source = Reg(UInt())
val address = Reg(UInt())
when (b.valid && !b_first) {
monAssert (b.bits.opcode === opcode, "'B' channel opcode changed within multibeat operation" + extra)
monAssert (b.bits.param === param, "'B' channel param changed within multibeat operation" + extra)
monAssert (b.bits.size === size, "'B' channel size changed within multibeat operation" + extra)
monAssert (b.bits.source === source, "'B' channel source changed within multibeat operation" + extra)
monAssert (b.bits.address=== address,"'B' channel addresss changed with multibeat operation" + extra)
}
when (b.fire && b_first) {
opcode := b.bits.opcode
param := b.bits.param
size := b.bits.size
source := b.bits.source
address := b.bits.address
}
}
def legalizeADSourceFormal(bundle: TLBundle, edge: TLEdge): Unit = {
// Symbolic variable
val sym_source = Wire(UInt(edge.client.endSourceId.W))
// TODO: Connect sym_source to a fixed value for simulation and to a
// free wire in formal
sym_source := 0.U
// Type casting Int to UInt
val maxSourceId = Wire(UInt(edge.client.endSourceId.W))
maxSourceId := edge.client.endSourceId.U
// Delayed verison of sym_source
val sym_source_d = Reg(UInt(edge.client.endSourceId.W))
sym_source_d := sym_source
// These will be constraints for FV setup
Property(
MonitorDirection.Monitor,
(sym_source === sym_source_d),
"sym_source should remain stable",
PropertyClass.Default)
Property(
MonitorDirection.Monitor,
(sym_source <= maxSourceId),
"sym_source should take legal value",
PropertyClass.Default)
val my_resp_pend = RegInit(false.B)
val my_opcode = Reg(UInt())
val my_size = Reg(UInt())
val a_first = bundle.a.valid && edge.first(bundle.a.bits, bundle.a.fire)
val d_first = bundle.d.valid && edge.first(bundle.d.bits, bundle.d.fire)
val my_a_first_beat = a_first && (bundle.a.bits.source === sym_source)
val my_d_first_beat = d_first && (bundle.d.bits.source === sym_source)
val my_clr_resp_pend = (bundle.d.fire && my_d_first_beat)
val my_set_resp_pend = (bundle.a.fire && my_a_first_beat && !my_clr_resp_pend)
when (my_set_resp_pend) {
my_resp_pend := true.B
} .elsewhen (my_clr_resp_pend) {
my_resp_pend := false.B
}
when (my_a_first_beat) {
my_opcode := bundle.a.bits.opcode
my_size := bundle.a.bits.size
}
val my_resp_size = Mux(my_a_first_beat, bundle.a.bits.size, my_size)
val my_resp_opcode = Mux(my_a_first_beat, bundle.a.bits.opcode, my_opcode)
val my_resp_opcode_legal = Wire(Bool())
when ((my_resp_opcode === TLMessages.Get) || (my_resp_opcode === TLMessages.ArithmeticData) ||
(my_resp_opcode === TLMessages.LogicalData)) {
my_resp_opcode_legal := (bundle.d.bits.opcode === TLMessages.AccessAckData)
} .elsewhen ((my_resp_opcode === TLMessages.PutFullData) || (my_resp_opcode === TLMessages.PutPartialData)) {
my_resp_opcode_legal := (bundle.d.bits.opcode === TLMessages.AccessAck)
} .otherwise {
my_resp_opcode_legal := (bundle.d.bits.opcode === TLMessages.HintAck)
}
monAssert (IfThen(my_resp_pend, !my_a_first_beat),
"Request message should not be sent with a source ID, for which a response message" +
"is already pending (not received until current cycle) for a prior request message" +
"with the same source ID" + extra)
assume (IfThen(my_clr_resp_pend, (my_set_resp_pend || my_resp_pend)),
"Response message should be accepted with a source ID only if a request message with the" +
"same source ID has been accepted or is being accepted in the current cycle" + extra)
assume (IfThen(my_d_first_beat, (my_a_first_beat || my_resp_pend)),
"Response message should be sent with a source ID only if a request message with the" +
"same source ID has been accepted or is being sent in the current cycle" + extra)
assume (IfThen(my_d_first_beat, (bundle.d.bits.size === my_resp_size)),
"If d_valid is 1, then d_size should be same as a_size of the corresponding request" +
"message" + extra)
assume (IfThen(my_d_first_beat, my_resp_opcode_legal),
"If d_valid is 1, then d_opcode should correspond with a_opcode of the corresponding" +
"request message" + extra)
}
def legalizeMultibeatC(c: DecoupledIO[TLBundleC], edge: TLEdge): Unit = {
val c_first = edge.first(c.bits, c.fire)
val opcode = Reg(UInt())
val param = Reg(UInt())
val size = Reg(UInt())
val source = Reg(UInt())
val address = Reg(UInt())
when (c.valid && !c_first) {
monAssert (c.bits.opcode === opcode, "'C' channel opcode changed within multibeat operation" + extra)
monAssert (c.bits.param === param, "'C' channel param changed within multibeat operation" + extra)
monAssert (c.bits.size === size, "'C' channel size changed within multibeat operation" + extra)
monAssert (c.bits.source === source, "'C' channel source changed within multibeat operation" + extra)
monAssert (c.bits.address=== address,"'C' channel address changed with multibeat operation" + extra)
}
when (c.fire && c_first) {
opcode := c.bits.opcode
param := c.bits.param
size := c.bits.size
source := c.bits.source
address := c.bits.address
}
}
def legalizeMultibeatD(d: DecoupledIO[TLBundleD], edge: TLEdge): Unit = {
val d_first = edge.first(d.bits, d.fire)
val opcode = Reg(UInt())
val param = Reg(UInt())
val size = Reg(UInt())
val source = Reg(UInt())
val sink = Reg(UInt())
val denied = Reg(Bool())
when (d.valid && !d_first) {
assume (d.bits.opcode === opcode, "'D' channel opcode changed within multibeat operation" + extra)
assume (d.bits.param === param, "'D' channel param changed within multibeat operation" + extra)
assume (d.bits.size === size, "'D' channel size changed within multibeat operation" + extra)
assume (d.bits.source === source, "'D' channel source changed within multibeat operation" + extra)
assume (d.bits.sink === sink, "'D' channel sink changed with multibeat operation" + extra)
assume (d.bits.denied === denied, "'D' channel denied changed with multibeat operation" + extra)
}
when (d.fire && d_first) {
opcode := d.bits.opcode
param := d.bits.param
size := d.bits.size
source := d.bits.source
sink := d.bits.sink
denied := d.bits.denied
}
}
def legalizeMultibeat(bundle: TLBundle, edge: TLEdge): Unit = {
legalizeMultibeatA(bundle.a, edge)
legalizeMultibeatD(bundle.d, edge)
if (edge.client.anySupportProbe && edge.manager.anySupportAcquireB) {
legalizeMultibeatB(bundle.b, edge)
legalizeMultibeatC(bundle.c, edge)
}
}
//This is left in for almond which doesn't adhere to the tilelink protocol
@deprecated("Use legalizeADSource instead if possible","")
def legalizeADSourceOld(bundle: TLBundle, edge: TLEdge): Unit = {
val inflight = RegInit(0.U(edge.client.endSourceId.W))
val a_first = edge.first(bundle.a.bits, bundle.a.fire)
val d_first = edge.first(bundle.d.bits, bundle.d.fire)
val a_set = WireInit(0.U(edge.client.endSourceId.W))
when (bundle.a.fire && a_first && edge.isRequest(bundle.a.bits)) {
a_set := UIntToOH(bundle.a.bits.source)
assert(!inflight(bundle.a.bits.source), "'A' channel re-used a source ID" + extra)
}
val d_clr = WireInit(0.U(edge.client.endSourceId.W))
val d_release_ack = bundle.d.bits.opcode === TLMessages.ReleaseAck
when (bundle.d.fire && d_first && edge.isResponse(bundle.d.bits) && !d_release_ack) {
d_clr := UIntToOH(bundle.d.bits.source)
assume((a_set | inflight)(bundle.d.bits.source), "'D' channel acknowledged for nothing inflight" + extra)
}
if (edge.manager.minLatency > 0) {
assume(a_set =/= d_clr || !a_set.orR, s"'A' and 'D' concurrent, despite minlatency > 0" + extra)
}
inflight := (inflight | a_set) & ~d_clr
val watchdog = RegInit(0.U(32.W))
val limit = PlusArg("tilelink_timeout",
docstring="Kill emulation after INT waiting TileLink cycles. Off if 0.")
assert (!inflight.orR || limit === 0.U || watchdog < limit, "TileLink timeout expired" + extra)
watchdog := watchdog + 1.U
when (bundle.a.fire || bundle.d.fire) { watchdog := 0.U }
}
def legalizeADSource(bundle: TLBundle, edge: TLEdge): Unit = {
val a_size_bus_size = edge.bundle.sizeBits + 1 //add one so that 0 is not mapped to anything (size 0 -> size 1 in map, size 0 in map means unset)
val a_opcode_bus_size = 3 + 1 //opcode size is 3, but add so that 0 is not mapped to anything
val log_a_opcode_bus_size = log2Ceil(a_opcode_bus_size)
val log_a_size_bus_size = log2Ceil(a_size_bus_size)
def size_to_numfullbits(x: UInt): UInt = (1.U << x) - 1.U //convert a number to that many full bits
val inflight = RegInit(0.U((2 max edge.client.endSourceId).W)) // size up to avoid width error
inflight.suggestName("inflight")
val inflight_opcodes = RegInit(0.U((edge.client.endSourceId << log_a_opcode_bus_size).W))
inflight_opcodes.suggestName("inflight_opcodes")
val inflight_sizes = RegInit(0.U((edge.client.endSourceId << log_a_size_bus_size).W))
inflight_sizes.suggestName("inflight_sizes")
val a_first = edge.first(bundle.a.bits, bundle.a.fire)
a_first.suggestName("a_first")
val d_first = edge.first(bundle.d.bits, bundle.d.fire)
d_first.suggestName("d_first")
val a_set = WireInit(0.U(edge.client.endSourceId.W))
val a_set_wo_ready = WireInit(0.U(edge.client.endSourceId.W))
a_set.suggestName("a_set")
a_set_wo_ready.suggestName("a_set_wo_ready")
val a_opcodes_set = WireInit(0.U((edge.client.endSourceId << log_a_opcode_bus_size).W))
a_opcodes_set.suggestName("a_opcodes_set")
val a_sizes_set = WireInit(0.U((edge.client.endSourceId << log_a_size_bus_size).W))
a_sizes_set.suggestName("a_sizes_set")
val a_opcode_lookup = WireInit(0.U((a_opcode_bus_size - 1).W))
a_opcode_lookup.suggestName("a_opcode_lookup")
a_opcode_lookup := ((inflight_opcodes) >> (bundle.d.bits.source << log_a_opcode_bus_size.U) & size_to_numfullbits(1.U << log_a_opcode_bus_size.U)) >> 1.U
val a_size_lookup = WireInit(0.U((1 << log_a_size_bus_size).W))
a_size_lookup.suggestName("a_size_lookup")
a_size_lookup := ((inflight_sizes) >> (bundle.d.bits.source << log_a_size_bus_size.U) & size_to_numfullbits(1.U << log_a_size_bus_size.U)) >> 1.U
val responseMap = VecInit(Seq(TLMessages.AccessAck, TLMessages.AccessAck, TLMessages.AccessAckData, TLMessages.AccessAckData, TLMessages.AccessAckData, TLMessages.HintAck, TLMessages.Grant, TLMessages.Grant))
val responseMapSecondOption = VecInit(Seq(TLMessages.AccessAck, TLMessages.AccessAck, TLMessages.AccessAckData, TLMessages.AccessAckData, TLMessages.AccessAckData, TLMessages.HintAck, TLMessages.GrantData, TLMessages.Grant))
val a_opcodes_set_interm = WireInit(0.U(a_opcode_bus_size.W))
a_opcodes_set_interm.suggestName("a_opcodes_set_interm")
val a_sizes_set_interm = WireInit(0.U(a_size_bus_size.W))
a_sizes_set_interm.suggestName("a_sizes_set_interm")
when (bundle.a.valid && a_first && edge.isRequest(bundle.a.bits)) {
a_set_wo_ready := UIntToOH(bundle.a.bits.source)
}
when (bundle.a.fire && a_first && edge.isRequest(bundle.a.bits)) {
a_set := UIntToOH(bundle.a.bits.source)
a_opcodes_set_interm := (bundle.a.bits.opcode << 1.U) | 1.U
a_sizes_set_interm := (bundle.a.bits.size << 1.U) | 1.U
a_opcodes_set := (a_opcodes_set_interm) << (bundle.a.bits.source << log_a_opcode_bus_size.U)
a_sizes_set := (a_sizes_set_interm) << (bundle.a.bits.source << log_a_size_bus_size.U)
monAssert(!inflight(bundle.a.bits.source), "'A' channel re-used a source ID" + extra)
}
val d_clr = WireInit(0.U(edge.client.endSourceId.W))
val d_clr_wo_ready = WireInit(0.U(edge.client.endSourceId.W))
d_clr.suggestName("d_clr")
d_clr_wo_ready.suggestName("d_clr_wo_ready")
val d_opcodes_clr = WireInit(0.U((edge.client.endSourceId << log_a_opcode_bus_size).W))
d_opcodes_clr.suggestName("d_opcodes_clr")
val d_sizes_clr = WireInit(0.U((edge.client.endSourceId << log_a_size_bus_size).W))
d_sizes_clr.suggestName("d_sizes_clr")
val d_release_ack = bundle.d.bits.opcode === TLMessages.ReleaseAck
when (bundle.d.valid && d_first && edge.isResponse(bundle.d.bits) && !d_release_ack) {
d_clr_wo_ready := UIntToOH(bundle.d.bits.source)
}
when (bundle.d.fire && d_first && edge.isResponse(bundle.d.bits) && !d_release_ack) {
d_clr := UIntToOH(bundle.d.bits.source)
d_opcodes_clr := size_to_numfullbits(1.U << log_a_opcode_bus_size.U) << (bundle.d.bits.source << log_a_opcode_bus_size.U)
d_sizes_clr := size_to_numfullbits(1.U << log_a_size_bus_size.U) << (bundle.d.bits.source << log_a_size_bus_size.U)
}
when (bundle.d.valid && d_first && edge.isResponse(bundle.d.bits) && !d_release_ack) {
val same_cycle_resp = bundle.a.valid && a_first && edge.isRequest(bundle.a.bits) && (bundle.a.bits.source === bundle.d.bits.source)
assume(((inflight)(bundle.d.bits.source)) || same_cycle_resp, "'D' channel acknowledged for nothing inflight" + extra)
when (same_cycle_resp) {
assume((bundle.d.bits.opcode === responseMap(bundle.a.bits.opcode)) ||
(bundle.d.bits.opcode === responseMapSecondOption(bundle.a.bits.opcode)), "'D' channel contains improper opcode response" + extra)
assume((bundle.a.bits.size === bundle.d.bits.size), "'D' channel contains improper response size" + extra)
} .otherwise {
assume((bundle.d.bits.opcode === responseMap(a_opcode_lookup)) ||
(bundle.d.bits.opcode === responseMapSecondOption(a_opcode_lookup)), "'D' channel contains improper opcode response" + extra)
assume((bundle.d.bits.size === a_size_lookup), "'D' channel contains improper response size" + extra)
}
}
when(bundle.d.valid && d_first && a_first && bundle.a.valid && (bundle.a.bits.source === bundle.d.bits.source) && !d_release_ack) {
assume((!bundle.d.ready) || bundle.a.ready, "ready check")
}
if (edge.manager.minLatency > 0) {
assume(a_set_wo_ready =/= d_clr_wo_ready || !a_set_wo_ready.orR, s"'A' and 'D' concurrent, despite minlatency > 0" + extra)
}
inflight := (inflight | a_set) & ~d_clr
inflight_opcodes := (inflight_opcodes | a_opcodes_set) & ~d_opcodes_clr
inflight_sizes := (inflight_sizes | a_sizes_set) & ~d_sizes_clr
val watchdog = RegInit(0.U(32.W))
val limit = PlusArg("tilelink_timeout",
docstring="Kill emulation after INT waiting TileLink cycles. Off if 0.")
monAssert (!inflight.orR || limit === 0.U || watchdog < limit, "TileLink timeout expired" + extra)
watchdog := watchdog + 1.U
when (bundle.a.fire || bundle.d.fire) { watchdog := 0.U }
}
def legalizeCDSource(bundle: TLBundle, edge: TLEdge): Unit = {
val c_size_bus_size = edge.bundle.sizeBits + 1 //add one so that 0 is not mapped to anything (size 0 -> size 1 in map, size 0 in map means unset)
val c_opcode_bus_size = 3 + 1 //opcode size is 3, but add so that 0 is not mapped to anything
val log_c_opcode_bus_size = log2Ceil(c_opcode_bus_size)
val log_c_size_bus_size = log2Ceil(c_size_bus_size)
def size_to_numfullbits(x: UInt): UInt = (1.U << x) - 1.U //convert a number to that many full bits
val inflight = RegInit(0.U((2 max edge.client.endSourceId).W))
val inflight_opcodes = RegInit(0.U((edge.client.endSourceId << log_c_opcode_bus_size).W))
val inflight_sizes = RegInit(0.U((edge.client.endSourceId << log_c_size_bus_size).W))
inflight.suggestName("inflight")
inflight_opcodes.suggestName("inflight_opcodes")
inflight_sizes.suggestName("inflight_sizes")
val c_first = edge.first(bundle.c.bits, bundle.c.fire)
val d_first = edge.first(bundle.d.bits, bundle.d.fire)
c_first.suggestName("c_first")
d_first.suggestName("d_first")
val c_set = WireInit(0.U(edge.client.endSourceId.W))
val c_set_wo_ready = WireInit(0.U(edge.client.endSourceId.W))
val c_opcodes_set = WireInit(0.U((edge.client.endSourceId << log_c_opcode_bus_size).W))
val c_sizes_set = WireInit(0.U((edge.client.endSourceId << log_c_size_bus_size).W))
c_set.suggestName("c_set")
c_set_wo_ready.suggestName("c_set_wo_ready")
c_opcodes_set.suggestName("c_opcodes_set")
c_sizes_set.suggestName("c_sizes_set")
val c_opcode_lookup = WireInit(0.U((1 << log_c_opcode_bus_size).W))
val c_size_lookup = WireInit(0.U((1 << log_c_size_bus_size).W))
c_opcode_lookup := ((inflight_opcodes) >> (bundle.d.bits.source << log_c_opcode_bus_size.U) & size_to_numfullbits(1.U << log_c_opcode_bus_size.U)) >> 1.U
c_size_lookup := ((inflight_sizes) >> (bundle.d.bits.source << log_c_size_bus_size.U) & size_to_numfullbits(1.U << log_c_size_bus_size.U)) >> 1.U
c_opcode_lookup.suggestName("c_opcode_lookup")
c_size_lookup.suggestName("c_size_lookup")
val c_opcodes_set_interm = WireInit(0.U(c_opcode_bus_size.W))
val c_sizes_set_interm = WireInit(0.U(c_size_bus_size.W))
c_opcodes_set_interm.suggestName("c_opcodes_set_interm")
c_sizes_set_interm.suggestName("c_sizes_set_interm")
when (bundle.c.valid && c_first && edge.isRequest(bundle.c.bits)) {
c_set_wo_ready := UIntToOH(bundle.c.bits.source)
}
when (bundle.c.fire && c_first && edge.isRequest(bundle.c.bits)) {
c_set := UIntToOH(bundle.c.bits.source)
c_opcodes_set_interm := (bundle.c.bits.opcode << 1.U) | 1.U
c_sizes_set_interm := (bundle.c.bits.size << 1.U) | 1.U
c_opcodes_set := (c_opcodes_set_interm) << (bundle.c.bits.source << log_c_opcode_bus_size.U)
c_sizes_set := (c_sizes_set_interm) << (bundle.c.bits.source << log_c_size_bus_size.U)
monAssert(!inflight(bundle.c.bits.source), "'C' channel re-used a source ID" + extra)
}
val c_probe_ack = bundle.c.bits.opcode === TLMessages.ProbeAck || bundle.c.bits.opcode === TLMessages.ProbeAckData
val d_clr = WireInit(0.U(edge.client.endSourceId.W))
val d_clr_wo_ready = WireInit(0.U(edge.client.endSourceId.W))
val d_opcodes_clr = WireInit(0.U((edge.client.endSourceId << log_c_opcode_bus_size).W))
val d_sizes_clr = WireInit(0.U((edge.client.endSourceId << log_c_size_bus_size).W))
d_clr.suggestName("d_clr")
d_clr_wo_ready.suggestName("d_clr_wo_ready")
d_opcodes_clr.suggestName("d_opcodes_clr")
d_sizes_clr.suggestName("d_sizes_clr")
val d_release_ack = bundle.d.bits.opcode === TLMessages.ReleaseAck
when (bundle.d.valid && d_first && edge.isResponse(bundle.d.bits) && d_release_ack) {
d_clr_wo_ready := UIntToOH(bundle.d.bits.source)
}
when (bundle.d.fire && d_first && edge.isResponse(bundle.d.bits) && d_release_ack) {
d_clr := UIntToOH(bundle.d.bits.source)
d_opcodes_clr := size_to_numfullbits(1.U << log_c_opcode_bus_size.U) << (bundle.d.bits.source << log_c_opcode_bus_size.U)
d_sizes_clr := size_to_numfullbits(1.U << log_c_size_bus_size.U) << (bundle.d.bits.source << log_c_size_bus_size.U)
}
when (bundle.d.valid && d_first && edge.isResponse(bundle.d.bits) && d_release_ack) {
val same_cycle_resp = bundle.c.valid && c_first && edge.isRequest(bundle.c.bits) && (bundle.c.bits.source === bundle.d.bits.source)
assume(((inflight)(bundle.d.bits.source)) || same_cycle_resp, "'D' channel acknowledged for nothing inflight" + extra)
when (same_cycle_resp) {
assume((bundle.d.bits.size === bundle.c.bits.size), "'D' channel contains improper response size" + extra)
} .otherwise {
assume((bundle.d.bits.size === c_size_lookup), "'D' channel contains improper response size" + extra)
}
}
when(bundle.d.valid && d_first && c_first && bundle.c.valid && (bundle.c.bits.source === bundle.d.bits.source) && d_release_ack && !c_probe_ack) {
assume((!bundle.d.ready) || bundle.c.ready, "ready check")
}
if (edge.manager.minLatency > 0) {
when (c_set_wo_ready.orR) {
assume(c_set_wo_ready =/= d_clr_wo_ready, s"'C' and 'D' concurrent, despite minlatency > 0" + extra)
}
}
inflight := (inflight | c_set) & ~d_clr
inflight_opcodes := (inflight_opcodes | c_opcodes_set) & ~d_opcodes_clr
inflight_sizes := (inflight_sizes | c_sizes_set) & ~d_sizes_clr
val watchdog = RegInit(0.U(32.W))
val limit = PlusArg("tilelink_timeout",
docstring="Kill emulation after INT waiting TileLink cycles. Off if 0.")
monAssert (!inflight.orR || limit === 0.U || watchdog < limit, "TileLink timeout expired" + extra)
watchdog := watchdog + 1.U
when (bundle.c.fire || bundle.d.fire) { watchdog := 0.U }
}
def legalizeDESink(bundle: TLBundle, edge: TLEdge): Unit = {
val inflight = RegInit(0.U(edge.manager.endSinkId.W))
val d_first = edge.first(bundle.d.bits, bundle.d.fire)
val e_first = true.B
val d_set = WireInit(0.U(edge.manager.endSinkId.W))
when (bundle.d.fire && d_first && edge.isRequest(bundle.d.bits)) {
d_set := UIntToOH(bundle.d.bits.sink)
assume(!inflight(bundle.d.bits.sink), "'D' channel re-used a sink ID" + extra)
}
val e_clr = WireInit(0.U(edge.manager.endSinkId.W))
when (bundle.e.fire && e_first && edge.isResponse(bundle.e.bits)) {
e_clr := UIntToOH(bundle.e.bits.sink)
monAssert((d_set | inflight)(bundle.e.bits.sink), "'E' channel acknowledged for nothing inflight" + extra)
}
// edge.client.minLatency applies to BC, not DE
inflight := (inflight | d_set) & ~e_clr
}
def legalizeUnique(bundle: TLBundle, edge: TLEdge): Unit = {
val sourceBits = log2Ceil(edge.client.endSourceId)
val tooBig = 14 // >16kB worth of flight information gets to be too much
if (sourceBits > tooBig) {
println(s"WARNING: TLMonitor instantiated on a bus with source bits (${sourceBits}) > ${tooBig}; A=>D transaction flight will not be checked")
} else {
if (args.edge.params(TestplanTestType).simulation) {
if (args.edge.params(TLMonitorStrictMode)) {
legalizeADSource(bundle, edge)
legalizeCDSource(bundle, edge)
} else {
legalizeADSourceOld(bundle, edge)
}
}
if (args.edge.params(TestplanTestType).formal) {
legalizeADSourceFormal(bundle, edge)
}
}
if (edge.client.anySupportProbe && edge.manager.anySupportAcquireB) {
// legalizeBCSourceAddress(bundle, edge) // too much state needed to synthesize...
val sinkBits = log2Ceil(edge.manager.endSinkId)
if (sinkBits > tooBig) {
println(s"WARNING: TLMonitor instantiated on a bus with sink bits (${sinkBits}) > ${tooBig}; D=>E transaction flight will not be checked")
} else {
legalizeDESink(bundle, edge)
}
}
}
def legalize(bundle: TLBundle, edge: TLEdge, reset: Reset): Unit = {
legalizeFormat (bundle, edge)
legalizeMultibeat (bundle, edge)
legalizeUnique (bundle, edge)
}
}
File Misc.scala:
// See LICENSE.Berkeley for license details.
// See LICENSE.SiFive for license details.
package freechips.rocketchip.util
import chisel3._
import chisel3.util._
import chisel3.util.random.LFSR
import org.chipsalliance.cde.config.Parameters
import scala.math._
class ParameterizedBundle(implicit p: Parameters) extends Bundle
trait Clocked extends Bundle {
val clock = Clock()
val reset = Bool()
}
object DecoupledHelper {
def apply(rvs: Bool*) = new DecoupledHelper(rvs)
}
class DecoupledHelper(val rvs: Seq[Bool]) {
def fire(exclude: Bool, includes: Bool*) = {
require(rvs.contains(exclude), "Excluded Bool not present in DecoupledHelper! Note that DecoupledHelper uses referential equality for exclusion! If you don't want to exclude anything, use fire()!")
(rvs.filter(_ ne exclude) ++ includes).reduce(_ && _)
}
def fire() = {
rvs.reduce(_ && _)
}
}
object MuxT {
def apply[T <: Data, U <: Data](cond: Bool, con: (T, U), alt: (T, U)): (T, U) =
(Mux(cond, con._1, alt._1), Mux(cond, con._2, alt._2))
def apply[T <: Data, U <: Data, W <: Data](cond: Bool, con: (T, U, W), alt: (T, U, W)): (T, U, W) =
(Mux(cond, con._1, alt._1), Mux(cond, con._2, alt._2), Mux(cond, con._3, alt._3))
def apply[T <: Data, U <: Data, W <: Data, X <: Data](cond: Bool, con: (T, U, W, X), alt: (T, U, W, X)): (T, U, W, X) =
(Mux(cond, con._1, alt._1), Mux(cond, con._2, alt._2), Mux(cond, con._3, alt._3), Mux(cond, con._4, alt._4))
}
/** Creates a cascade of n MuxTs to search for a key value. */
object MuxTLookup {
def apply[S <: UInt, T <: Data, U <: Data](key: S, default: (T, U), mapping: Seq[(S, (T, U))]): (T, U) = {
var res = default
for ((k, v) <- mapping.reverse)
res = MuxT(k === key, v, res)
res
}
def apply[S <: UInt, T <: Data, U <: Data, W <: Data](key: S, default: (T, U, W), mapping: Seq[(S, (T, U, W))]): (T, U, W) = {
var res = default
for ((k, v) <- mapping.reverse)
res = MuxT(k === key, v, res)
res
}
}
object ValidMux {
def apply[T <: Data](v1: ValidIO[T], v2: ValidIO[T]*): ValidIO[T] = {
apply(v1 +: v2.toSeq)
}
def apply[T <: Data](valids: Seq[ValidIO[T]]): ValidIO[T] = {
val out = Wire(Valid(valids.head.bits.cloneType))
out.valid := valids.map(_.valid).reduce(_ || _)
out.bits := MuxCase(valids.head.bits,
valids.map(v => (v.valid -> v.bits)))
out
}
}
object Str
{
def apply(s: String): UInt = {
var i = BigInt(0)
require(s.forall(validChar _))
for (c <- s)
i = (i << 8) | c
i.U((s.length*8).W)
}
def apply(x: Char): UInt = {
require(validChar(x))
x.U(8.W)
}
def apply(x: UInt): UInt = apply(x, 10)
def apply(x: UInt, radix: Int): UInt = {
val rad = radix.U
val w = x.getWidth
require(w > 0)
var q = x
var s = digit(q % rad)
for (i <- 1 until ceil(log(2)/log(radix)*w).toInt) {
q = q / rad
s = Cat(Mux((radix == 10).B && q === 0.U, Str(' '), digit(q % rad)), s)
}
s
}
def apply(x: SInt): UInt = apply(x, 10)
def apply(x: SInt, radix: Int): UInt = {
val neg = x < 0.S
val abs = x.abs.asUInt
if (radix != 10) {
Cat(Mux(neg, Str('-'), Str(' ')), Str(abs, radix))
} else {
val rad = radix.U
val w = abs.getWidth
require(w > 0)
var q = abs
var s = digit(q % rad)
var needSign = neg
for (i <- 1 until ceil(log(2)/log(radix)*w).toInt) {
q = q / rad
val placeSpace = q === 0.U
val space = Mux(needSign, Str('-'), Str(' '))
needSign = needSign && !placeSpace
s = Cat(Mux(placeSpace, space, digit(q % rad)), s)
}
Cat(Mux(needSign, Str('-'), Str(' ')), s)
}
}
private def digit(d: UInt): UInt = Mux(d < 10.U, Str('0')+d, Str(('a'-10).toChar)+d)(7,0)
private def validChar(x: Char) = x == (x & 0xFF)
}
object Split
{
def apply(x: UInt, n0: Int) = {
val w = x.getWidth
(x.extract(w-1,n0), x.extract(n0-1,0))
}
def apply(x: UInt, n1: Int, n0: Int) = {
val w = x.getWidth
(x.extract(w-1,n1), x.extract(n1-1,n0), x.extract(n0-1,0))
}
def apply(x: UInt, n2: Int, n1: Int, n0: Int) = {
val w = x.getWidth
(x.extract(w-1,n2), x.extract(n2-1,n1), x.extract(n1-1,n0), x.extract(n0-1,0))
}
}
object Random
{
def apply(mod: Int, random: UInt): UInt = {
if (isPow2(mod)) random.extract(log2Ceil(mod)-1,0)
else PriorityEncoder(partition(apply(1 << log2Up(mod*8), random), mod))
}
def apply(mod: Int): UInt = apply(mod, randomizer)
def oneHot(mod: Int, random: UInt): UInt = {
if (isPow2(mod)) UIntToOH(random(log2Up(mod)-1,0))
else PriorityEncoderOH(partition(apply(1 << log2Up(mod*8), random), mod)).asUInt
}
def oneHot(mod: Int): UInt = oneHot(mod, randomizer)
private def randomizer = LFSR(16)
private def partition(value: UInt, slices: Int) =
Seq.tabulate(slices)(i => value < (((i + 1) << value.getWidth) / slices).U)
}
object Majority {
def apply(in: Set[Bool]): Bool = {
val n = (in.size >> 1) + 1
val clauses = in.subsets(n).map(_.reduce(_ && _))
clauses.reduce(_ || _)
}
def apply(in: Seq[Bool]): Bool = apply(in.toSet)
def apply(in: UInt): Bool = apply(in.asBools.toSet)
}
object PopCountAtLeast {
private def two(x: UInt): (Bool, Bool) = x.getWidth match {
case 1 => (x.asBool, false.B)
case n =>
val half = x.getWidth / 2
val (leftOne, leftTwo) = two(x(half - 1, 0))
val (rightOne, rightTwo) = two(x(x.getWidth - 1, half))
(leftOne || rightOne, leftTwo || rightTwo || (leftOne && rightOne))
}
def apply(x: UInt, n: Int): Bool = n match {
case 0 => true.B
case 1 => x.orR
case 2 => two(x)._2
case 3 => PopCount(x) >= n.U
}
}
// This gets used everywhere, so make the smallest circuit possible ...
// Given an address and size, create a mask of beatBytes size
// eg: (0x3, 0, 4) => 0001, (0x3, 1, 4) => 0011, (0x3, 2, 4) => 1111
// groupBy applies an interleaved OR reduction; groupBy=2 take 0010 => 01
object MaskGen {
def apply(addr_lo: UInt, lgSize: UInt, beatBytes: Int, groupBy: Int = 1): UInt = {
require (groupBy >= 1 && beatBytes >= groupBy)
require (isPow2(beatBytes) && isPow2(groupBy))
val lgBytes = log2Ceil(beatBytes)
val sizeOH = UIntToOH(lgSize | 0.U(log2Up(beatBytes).W), log2Up(beatBytes)) | (groupBy*2 - 1).U
def helper(i: Int): Seq[(Bool, Bool)] = {
if (i == 0) {
Seq((lgSize >= lgBytes.asUInt, true.B))
} else {
val sub = helper(i-1)
val size = sizeOH(lgBytes - i)
val bit = addr_lo(lgBytes - i)
val nbit = !bit
Seq.tabulate (1 << i) { j =>
val (sub_acc, sub_eq) = sub(j/2)
val eq = sub_eq && (if (j % 2 == 1) bit else nbit)
val acc = sub_acc || (size && eq)
(acc, eq)
}
}
}
if (groupBy == beatBytes) 1.U else
Cat(helper(lgBytes-log2Ceil(groupBy)).map(_._1).reverse)
}
}
File PlusArg.scala:
// See LICENSE.SiFive for license details.
package freechips.rocketchip.util
import chisel3._
import chisel3.experimental._
import chisel3.util.HasBlackBoxResource
@deprecated("This will be removed in Rocket Chip 2020.08", "Rocket Chip 2020.05")
case class PlusArgInfo(default: BigInt, docstring: String)
/** Case class for PlusArg information
*
* @tparam A scala type of the PlusArg value
* @param default optional default value
* @param docstring text to include in the help
* @param doctype description of the Verilog type of the PlusArg value (e.g. STRING, INT)
*/
private case class PlusArgContainer[A](default: Option[A], docstring: String, doctype: String)
/** Typeclass for converting a type to a doctype string
* @tparam A some type
*/
trait Doctypeable[A] {
/** Return the doctype string for some option */
def toDoctype(a: Option[A]): String
}
/** Object containing implementations of the Doctypeable typeclass */
object Doctypes {
/** Converts an Int => "INT" */
implicit val intToDoctype = new Doctypeable[Int] { def toDoctype(a: Option[Int]) = "INT" }
/** Converts a BigInt => "INT" */
implicit val bigIntToDoctype = new Doctypeable[BigInt] { def toDoctype(a: Option[BigInt]) = "INT" }
/** Converts a String => "STRING" */
implicit val stringToDoctype = new Doctypeable[String] { def toDoctype(a: Option[String]) = "STRING" }
}
class plusarg_reader(val format: String, val default: BigInt, val docstring: String, val width: Int) extends BlackBox(Map(
"FORMAT" -> StringParam(format),
"DEFAULT" -> IntParam(default),
"WIDTH" -> IntParam(width)
)) with HasBlackBoxResource {
val io = IO(new Bundle {
val out = Output(UInt(width.W))
})
addResource("/vsrc/plusarg_reader.v")
}
/* This wrapper class has no outputs, making it clear it is a simulation-only construct */
class PlusArgTimeout(val format: String, val default: BigInt, val docstring: String, val width: Int) extends Module {
val io = IO(new Bundle {
val count = Input(UInt(width.W))
})
val max = Module(new plusarg_reader(format, default, docstring, width)).io.out
when (max > 0.U) {
assert (io.count < max, s"Timeout exceeded: $docstring")
}
}
import Doctypes._
object PlusArg
{
/** PlusArg("foo") will return 42.U if the simulation is run with +foo=42
* Do not use this as an initial register value. The value is set in an
* initial block and thus accessing it from another initial is racey.
* Add a docstring to document the arg, which can be dumped in an elaboration
* pass.
*/
def apply(name: String, default: BigInt = 0, docstring: String = "", width: Int = 32): UInt = {
PlusArgArtefacts.append(name, Some(default), docstring)
Module(new plusarg_reader(name + "=%d", default, docstring, width)).io.out
}
/** PlusArg.timeout(name, default, docstring)(count) will use chisel.assert
* to kill the simulation when count exceeds the specified integer argument.
* Default 0 will never assert.
*/
def timeout(name: String, default: BigInt = 0, docstring: String = "", width: Int = 32)(count: UInt): Unit = {
PlusArgArtefacts.append(name, Some(default), docstring)
Module(new PlusArgTimeout(name + "=%d", default, docstring, width)).io.count := count
}
}
object PlusArgArtefacts {
private var artefacts: Map[String, PlusArgContainer[_]] = Map.empty
/* Add a new PlusArg */
@deprecated(
"Use `Some(BigInt)` to specify a `default` value. This will be removed in Rocket Chip 2020.08",
"Rocket Chip 2020.05"
)
def append(name: String, default: BigInt, docstring: String): Unit = append(name, Some(default), docstring)
/** Add a new PlusArg
*
* @tparam A scala type of the PlusArg value
* @param name name for the PlusArg
* @param default optional default value
* @param docstring text to include in the help
*/
def append[A : Doctypeable](name: String, default: Option[A], docstring: String): Unit =
artefacts = artefacts ++
Map(name -> PlusArgContainer(default, docstring, implicitly[Doctypeable[A]].toDoctype(default)))
/* From plus args, generate help text */
private def serializeHelp_cHeader(tab: String = ""): String = artefacts
.map{ case(arg, info) =>
s"""|$tab+$arg=${info.doctype}\\n\\
|$tab${" "*20}${info.docstring}\\n\\
|""".stripMargin ++ info.default.map{ case default =>
s"$tab${" "*22}(default=${default})\\n\\\n"}.getOrElse("")
}.toSeq.mkString("\\n\\\n") ++ "\""
/* From plus args, generate a char array of their names */
private def serializeArray_cHeader(tab: String = ""): String = {
val prettyTab = tab + " " * 44 // Length of 'static const ...'
s"${tab}static const char * verilog_plusargs [] = {\\\n" ++
artefacts
.map{ case(arg, _) => s"""$prettyTab"$arg",\\\n""" }
.mkString("")++
s"${prettyTab}0};"
}
/* Generate C code to be included in emulator.cc that helps with
* argument parsing based on available Verilog PlusArgs */
def serialize_cHeader(): String =
s"""|#define PLUSARG_USAGE_OPTIONS \"EMULATOR VERILOG PLUSARGS\\n\\
|${serializeHelp_cHeader(" "*7)}
|${serializeArray_cHeader()}
|""".stripMargin
}
File package.scala:
// See LICENSE.SiFive for license details.
package freechips.rocketchip
import chisel3._
import chisel3.util._
import scala.math.min
import scala.collection.{immutable, mutable}
package object util {
implicit class UnzippableOption[S, T](val x: Option[(S, T)]) {
def unzip = (x.map(_._1), x.map(_._2))
}
implicit class UIntIsOneOf(private val x: UInt) extends AnyVal {
def isOneOf(s: Seq[UInt]): Bool = s.map(x === _).orR
def isOneOf(u1: UInt, u2: UInt*): Bool = isOneOf(u1 +: u2.toSeq)
}
implicit class VecToAugmentedVec[T <: Data](private val x: Vec[T]) extends AnyVal {
/** Like Vec.apply(idx), but tolerates indices of mismatched width */
def extract(idx: UInt): T = x((idx | 0.U(log2Ceil(x.size).W)).extract(log2Ceil(x.size) - 1, 0))
}
implicit class SeqToAugmentedSeq[T <: Data](private val x: Seq[T]) extends AnyVal {
def apply(idx: UInt): T = {
if (x.size <= 1) {
x.head
} else if (!isPow2(x.size)) {
// For non-power-of-2 seqs, reflect elements to simplify decoder
(x ++ x.takeRight(x.size & -x.size)).toSeq(idx)
} else {
// Ignore MSBs of idx
val truncIdx =
if (idx.isWidthKnown && idx.getWidth <= log2Ceil(x.size)) idx
else (idx | 0.U(log2Ceil(x.size).W))(log2Ceil(x.size)-1, 0)
x.zipWithIndex.tail.foldLeft(x.head) { case (prev, (cur, i)) => Mux(truncIdx === i.U, cur, prev) }
}
}
def extract(idx: UInt): T = VecInit(x).extract(idx)
def asUInt: UInt = Cat(x.map(_.asUInt).reverse)
def rotate(n: Int): Seq[T] = x.drop(n) ++ x.take(n)
def rotate(n: UInt): Seq[T] = {
if (x.size <= 1) {
x
} else {
require(isPow2(x.size))
val amt = n.padTo(log2Ceil(x.size))
(0 until log2Ceil(x.size)).foldLeft(x)((r, i) => (r.rotate(1 << i) zip r).map { case (s, a) => Mux(amt(i), s, a) })
}
}
def rotateRight(n: Int): Seq[T] = x.takeRight(n) ++ x.dropRight(n)
def rotateRight(n: UInt): Seq[T] = {
if (x.size <= 1) {
x
} else {
require(isPow2(x.size))
val amt = n.padTo(log2Ceil(x.size))
(0 until log2Ceil(x.size)).foldLeft(x)((r, i) => (r.rotateRight(1 << i) zip r).map { case (s, a) => Mux(amt(i), s, a) })
}
}
}
// allow bitwise ops on Seq[Bool] just like UInt
implicit class SeqBoolBitwiseOps(private val x: Seq[Bool]) extends AnyVal {
def & (y: Seq[Bool]): Seq[Bool] = (x zip y).map { case (a, b) => a && b }
def | (y: Seq[Bool]): Seq[Bool] = padZip(x, y).map { case (a, b) => a || b }
def ^ (y: Seq[Bool]): Seq[Bool] = padZip(x, y).map { case (a, b) => a ^ b }
def << (n: Int): Seq[Bool] = Seq.fill(n)(false.B) ++ x
def >> (n: Int): Seq[Bool] = x drop n
def unary_~ : Seq[Bool] = x.map(!_)
def andR: Bool = if (x.isEmpty) true.B else x.reduce(_&&_)
def orR: Bool = if (x.isEmpty) false.B else x.reduce(_||_)
def xorR: Bool = if (x.isEmpty) false.B else x.reduce(_^_)
private def padZip(y: Seq[Bool], z: Seq[Bool]): Seq[(Bool, Bool)] = y.padTo(z.size, false.B) zip z.padTo(y.size, false.B)
}
implicit class DataToAugmentedData[T <: Data](private val x: T) extends AnyVal {
def holdUnless(enable: Bool): T = Mux(enable, x, RegEnable(x, enable))
def getElements: Seq[Element] = x match {
case e: Element => Seq(e)
case a: Aggregate => a.getElements.flatMap(_.getElements)
}
}
/** Any Data subtype that has a Bool member named valid. */
type DataCanBeValid = Data { val valid: Bool }
implicit class SeqMemToAugmentedSeqMem[T <: Data](private val x: SyncReadMem[T]) extends AnyVal {
def readAndHold(addr: UInt, enable: Bool): T = x.read(addr, enable) holdUnless RegNext(enable)
}
implicit class StringToAugmentedString(private val x: String) extends AnyVal {
/** converts from camel case to to underscores, also removing all spaces */
def underscore: String = x.tail.foldLeft(x.headOption.map(_.toLower + "") getOrElse "") {
case (acc, c) if c.isUpper => acc + "_" + c.toLower
case (acc, c) if c == ' ' => acc
case (acc, c) => acc + c
}
/** converts spaces or underscores to hyphens, also lowering case */
def kebab: String = x.toLowerCase map {
case ' ' => '-'
case '_' => '-'
case c => c
}
def named(name: Option[String]): String = {
x + name.map("_named_" + _ ).getOrElse("_with_no_name")
}
def named(name: String): String = named(Some(name))
}
implicit def uintToBitPat(x: UInt): BitPat = BitPat(x)
implicit def wcToUInt(c: WideCounter): UInt = c.value
implicit class UIntToAugmentedUInt(private val x: UInt) extends AnyVal {
def sextTo(n: Int): UInt = {
require(x.getWidth <= n)
if (x.getWidth == n) x
else Cat(Fill(n - x.getWidth, x(x.getWidth-1)), x)
}
def padTo(n: Int): UInt = {
require(x.getWidth <= n)
if (x.getWidth == n) x
else Cat(0.U((n - x.getWidth).W), x)
}
// shifts left by n if n >= 0, or right by -n if n < 0
def << (n: SInt): UInt = {
val w = n.getWidth - 1
require(w <= 30)
val shifted = x << n(w-1, 0)
Mux(n(w), shifted >> (1 << w), shifted)
}
// shifts right by n if n >= 0, or left by -n if n < 0
def >> (n: SInt): UInt = {
val w = n.getWidth - 1
require(w <= 30)
val shifted = x << (1 << w) >> n(w-1, 0)
Mux(n(w), shifted, shifted >> (1 << w))
}
// Like UInt.apply(hi, lo), but returns 0.U for zero-width extracts
def extract(hi: Int, lo: Int): UInt = {
require(hi >= lo-1)
if (hi == lo-1) 0.U
else x(hi, lo)
}
// Like Some(UInt.apply(hi, lo)), but returns None for zero-width extracts
def extractOption(hi: Int, lo: Int): Option[UInt] = {
require(hi >= lo-1)
if (hi == lo-1) None
else Some(x(hi, lo))
}
// like x & ~y, but first truncate or zero-extend y to x's width
def andNot(y: UInt): UInt = x & ~(y | (x & 0.U))
def rotateRight(n: Int): UInt = if (n == 0) x else Cat(x(n-1, 0), x >> n)
def rotateRight(n: UInt): UInt = {
if (x.getWidth <= 1) {
x
} else {
val amt = n.padTo(log2Ceil(x.getWidth))
(0 until log2Ceil(x.getWidth)).foldLeft(x)((r, i) => Mux(amt(i), r.rotateRight(1 << i), r))
}
}
def rotateLeft(n: Int): UInt = if (n == 0) x else Cat(x(x.getWidth-1-n,0), x(x.getWidth-1,x.getWidth-n))
def rotateLeft(n: UInt): UInt = {
if (x.getWidth <= 1) {
x
} else {
val amt = n.padTo(log2Ceil(x.getWidth))
(0 until log2Ceil(x.getWidth)).foldLeft(x)((r, i) => Mux(amt(i), r.rotateLeft(1 << i), r))
}
}
// compute (this + y) % n, given (this < n) and (y < n)
def addWrap(y: UInt, n: Int): UInt = {
val z = x +& y
if (isPow2(n)) z(n.log2-1, 0) else Mux(z >= n.U, z - n.U, z)(log2Ceil(n)-1, 0)
}
// compute (this - y) % n, given (this < n) and (y < n)
def subWrap(y: UInt, n: Int): UInt = {
val z = x -& y
if (isPow2(n)) z(n.log2-1, 0) else Mux(z(z.getWidth-1), z + n.U, z)(log2Ceil(n)-1, 0)
}
def grouped(width: Int): Seq[UInt] =
(0 until x.getWidth by width).map(base => x(base + width - 1, base))
def inRange(base: UInt, bounds: UInt) = x >= base && x < bounds
def ## (y: Option[UInt]): UInt = y.map(x ## _).getOrElse(x)
// Like >=, but prevents x-prop for ('x >= 0)
def >== (y: UInt): Bool = x >= y || y === 0.U
}
implicit class OptionUIntToAugmentedOptionUInt(private val x: Option[UInt]) extends AnyVal {
def ## (y: UInt): UInt = x.map(_ ## y).getOrElse(y)
def ## (y: Option[UInt]): Option[UInt] = x.map(_ ## y)
}
implicit class BooleanToAugmentedBoolean(private val x: Boolean) extends AnyVal {
def toInt: Int = if (x) 1 else 0
// this one's snagged from scalaz
def option[T](z: => T): Option[T] = if (x) Some(z) else None
}
implicit class IntToAugmentedInt(private val x: Int) extends AnyVal {
// exact log2
def log2: Int = {
require(isPow2(x))
log2Ceil(x)
}
}
def OH1ToOH(x: UInt): UInt = (x << 1 | 1.U) & ~Cat(0.U(1.W), x)
def OH1ToUInt(x: UInt): UInt = OHToUInt(OH1ToOH(x))
def UIntToOH1(x: UInt, width: Int): UInt = ~((-1).S(width.W).asUInt << x)(width-1, 0)
def UIntToOH1(x: UInt): UInt = UIntToOH1(x, (1 << x.getWidth) - 1)
def trailingZeros(x: Int): Option[Int] = if (x > 0) Some(log2Ceil(x & -x)) else None
// Fill 1s from low bits to high bits
def leftOR(x: UInt): UInt = leftOR(x, x.getWidth, x.getWidth)
def leftOR(x: UInt, width: Integer, cap: Integer = 999999): UInt = {
val stop = min(width, cap)
def helper(s: Int, x: UInt): UInt =
if (s >= stop) x else helper(s+s, x | (x << s)(width-1,0))
helper(1, x)(width-1, 0)
}
// Fill 1s form high bits to low bits
def rightOR(x: UInt): UInt = rightOR(x, x.getWidth, x.getWidth)
def rightOR(x: UInt, width: Integer, cap: Integer = 999999): UInt = {
val stop = min(width, cap)
def helper(s: Int, x: UInt): UInt =
if (s >= stop) x else helper(s+s, x | (x >> s))
helper(1, x)(width-1, 0)
}
def OptimizationBarrier[T <: Data](in: T): T = {
val barrier = Module(new Module {
val io = IO(new Bundle {
val x = Input(chiselTypeOf(in))
val y = Output(chiselTypeOf(in))
})
io.y := io.x
override def desiredName = s"OptimizationBarrier_${in.typeName}"
})
barrier.io.x := in
barrier.io.y
}
/** Similar to Seq.groupBy except this returns a Seq instead of a Map
* Useful for deterministic code generation
*/
def groupByIntoSeq[A, K](xs: Seq[A])(f: A => K): immutable.Seq[(K, immutable.Seq[A])] = {
val map = mutable.LinkedHashMap.empty[K, mutable.ListBuffer[A]]
for (x <- xs) {
val key = f(x)
val l = map.getOrElseUpdate(key, mutable.ListBuffer.empty[A])
l += x
}
map.view.map({ case (k, vs) => k -> vs.toList }).toList
}
def heterogeneousOrGlobalSetting[T](in: Seq[T], n: Int): Seq[T] = in.size match {
case 1 => List.fill(n)(in.head)
case x if x == n => in
case _ => throw new Exception(s"must provide exactly 1 or $n of some field, but got:\n$in")
}
// HeterogeneousBag moved to standalond diplomacy
@deprecated("HeterogeneousBag has been absorbed into standalone diplomacy library", "rocketchip 2.0.0")
def HeterogeneousBag[T <: Data](elts: Seq[T]) = _root_.org.chipsalliance.diplomacy.nodes.HeterogeneousBag[T](elts)
@deprecated("HeterogeneousBag has been absorbed into standalone diplomacy library", "rocketchip 2.0.0")
val HeterogeneousBag = _root_.org.chipsalliance.diplomacy.nodes.HeterogeneousBag
}
File Parameters.scala:
// See LICENSE.SiFive for license details.
package freechips.rocketchip.diplomacy
import chisel3._
import chisel3.util.{DecoupledIO, Queue, ReadyValidIO, isPow2, log2Ceil, log2Floor}
import freechips.rocketchip.util.ShiftQueue
/** Options for describing the attributes of memory regions */
object RegionType {
// Define the 'more relaxed than' ordering
val cases = Seq(CACHED, TRACKED, UNCACHED, IDEMPOTENT, VOLATILE, PUT_EFFECTS, GET_EFFECTS)
sealed trait T extends Ordered[T] {
def compare(that: T): Int = cases.indexOf(that) compare cases.indexOf(this)
}
case object CACHED extends T // an intermediate agent may have cached a copy of the region for you
case object TRACKED extends T // the region may have been cached by another master, but coherence is being provided
case object UNCACHED extends T // the region has not been cached yet, but should be cached when possible
case object IDEMPOTENT extends T // gets return most recently put content, but content should not be cached
case object VOLATILE extends T // content may change without a put, but puts and gets have no side effects
case object PUT_EFFECTS extends T // puts produce side effects and so must not be combined/delayed
case object GET_EFFECTS extends T // gets produce side effects and so must not be issued speculatively
}
// A non-empty half-open range; [start, end)
case class IdRange(start: Int, end: Int) extends Ordered[IdRange]
{
require (start >= 0, s"Ids cannot be negative, but got: $start.")
require (start <= end, "Id ranges cannot be negative.")
def compare(x: IdRange) = {
val primary = (this.start - x.start).signum
val secondary = (x.end - this.end).signum
if (primary != 0) primary else secondary
}
def overlaps(x: IdRange) = start < x.end && x.start < end
def contains(x: IdRange) = start <= x.start && x.end <= end
def contains(x: Int) = start <= x && x < end
def contains(x: UInt) =
if (size == 0) {
false.B
} else if (size == 1) { // simple comparison
x === start.U
} else {
// find index of largest different bit
val largestDeltaBit = log2Floor(start ^ (end-1))
val smallestCommonBit = largestDeltaBit + 1 // may not exist in x
val uncommonMask = (1 << smallestCommonBit) - 1
val uncommonBits = (x | 0.U(smallestCommonBit.W))(largestDeltaBit, 0)
// the prefix must match exactly (note: may shift ALL bits away)
(x >> smallestCommonBit) === (start >> smallestCommonBit).U &&
// firrtl constant prop range analysis can eliminate these two:
(start & uncommonMask).U <= uncommonBits &&
uncommonBits <= ((end-1) & uncommonMask).U
}
def shift(x: Int) = IdRange(start+x, end+x)
def size = end - start
def isEmpty = end == start
def range = start until end
}
object IdRange
{
def overlaps(s: Seq[IdRange]) = if (s.isEmpty) None else {
val ranges = s.sorted
(ranges.tail zip ranges.init) find { case (a, b) => a overlaps b }
}
}
// An potentially empty inclusive range of 2-powers [min, max] (in bytes)
case class TransferSizes(min: Int, max: Int)
{
def this(x: Int) = this(x, x)
require (min <= max, s"Min transfer $min > max transfer $max")
require (min >= 0 && max >= 0, s"TransferSizes must be positive, got: ($min, $max)")
require (max == 0 || isPow2(max), s"TransferSizes must be a power of 2, got: $max")
require (min == 0 || isPow2(min), s"TransferSizes must be a power of 2, got: $min")
require (max == 0 || min != 0, s"TransferSize 0 is forbidden unless (0,0), got: ($min, $max)")
def none = min == 0
def contains(x: Int) = isPow2(x) && min <= x && x <= max
def containsLg(x: Int) = contains(1 << x)
def containsLg(x: UInt) =
if (none) false.B
else if (min == max) { log2Ceil(min).U === x }
else { log2Ceil(min).U <= x && x <= log2Ceil(max).U }
def contains(x: TransferSizes) = x.none || (min <= x.min && x.max <= max)
def intersect(x: TransferSizes) =
if (x.max < min || max < x.min) TransferSizes.none
else TransferSizes(scala.math.max(min, x.min), scala.math.min(max, x.max))
// Not a union, because the result may contain sizes contained by neither term
// NOT TO BE CONFUSED WITH COVERPOINTS
def mincover(x: TransferSizes) = {
if (none) {
x
} else if (x.none) {
this
} else {
TransferSizes(scala.math.min(min, x.min), scala.math.max(max, x.max))
}
}
override def toString() = "TransferSizes[%d, %d]".format(min, max)
}
object TransferSizes {
def apply(x: Int) = new TransferSizes(x)
val none = new TransferSizes(0)
def mincover(seq: Seq[TransferSizes]) = seq.foldLeft(none)(_ mincover _)
def intersect(seq: Seq[TransferSizes]) = seq.reduce(_ intersect _)
implicit def asBool(x: TransferSizes) = !x.none
}
// AddressSets specify the address space managed by the manager
// Base is the base address, and mask are the bits consumed by the manager
// e.g: base=0x200, mask=0xff describes a device managing 0x200-0x2ff
// e.g: base=0x1000, mask=0xf0f decribes a device managing 0x1000-0x100f, 0x1100-0x110f, ...
case class AddressSet(base: BigInt, mask: BigInt) extends Ordered[AddressSet]
{
// Forbid misaligned base address (and empty sets)
require ((base & mask) == 0, s"Mis-aligned AddressSets are forbidden, got: ${this.toString}")
require (base >= 0, s"AddressSet negative base is ambiguous: $base") // TL2 address widths are not fixed => negative is ambiguous
// We do allow negative mask (=> ignore all high bits)
def contains(x: BigInt) = ((x ^ base) & ~mask) == 0
def contains(x: UInt) = ((x ^ base.U).zext & (~mask).S) === 0.S
// turn x into an address contained in this set
def legalize(x: UInt): UInt = base.U | (mask.U & x)
// overlap iff bitwise: both care (~mask0 & ~mask1) => both equal (base0=base1)
def overlaps(x: AddressSet) = (~(mask | x.mask) & (base ^ x.base)) == 0
// contains iff bitwise: x.mask => mask && contains(x.base)
def contains(x: AddressSet) = ((x.mask | (base ^ x.base)) & ~mask) == 0
// The number of bytes to which the manager must be aligned
def alignment = ((mask + 1) & ~mask)
// Is this a contiguous memory range
def contiguous = alignment == mask+1
def finite = mask >= 0
def max = { require (finite, "Max cannot be calculated on infinite mask"); base | mask }
// Widen the match function to ignore all bits in imask
def widen(imask: BigInt) = AddressSet(base & ~imask, mask | imask)
// Return an AddressSet that only contains the addresses both sets contain
def intersect(x: AddressSet): Option[AddressSet] = {
if (!overlaps(x)) {
None
} else {
val r_mask = mask & x.mask
val r_base = base | x.base
Some(AddressSet(r_base, r_mask))
}
}
def subtract(x: AddressSet): Seq[AddressSet] = {
intersect(x) match {
case None => Seq(this)
case Some(remove) => AddressSet.enumerateBits(mask & ~remove.mask).map { bit =>
val nmask = (mask & (bit-1)) | remove.mask
val nbase = (remove.base ^ bit) & ~nmask
AddressSet(nbase, nmask)
}
}
}
// AddressSets have one natural Ordering (the containment order, if contiguous)
def compare(x: AddressSet) = {
val primary = (this.base - x.base).signum // smallest address first
val secondary = (x.mask - this.mask).signum // largest mask first
if (primary != 0) primary else secondary
}
// We always want to see things in hex
override def toString() = {
if (mask >= 0) {
"AddressSet(0x%x, 0x%x)".format(base, mask)
} else {
"AddressSet(0x%x, ~0x%x)".format(base, ~mask)
}
}
def toRanges = {
require (finite, "Ranges cannot be calculated on infinite mask")
val size = alignment
val fragments = mask & ~(size-1)
val bits = bitIndexes(fragments)
(BigInt(0) until (BigInt(1) << bits.size)).map { i =>
val off = bitIndexes(i).foldLeft(base) { case (a, b) => a.setBit(bits(b)) }
AddressRange(off, size)
}
}
}
object AddressSet
{
val everything = AddressSet(0, -1)
def misaligned(base: BigInt, size: BigInt, tail: Seq[AddressSet] = Seq()): Seq[AddressSet] = {
if (size == 0) tail.reverse else {
val maxBaseAlignment = base & (-base) // 0 for infinite (LSB)
val maxSizeAlignment = BigInt(1) << log2Floor(size) // MSB of size
val step =
if (maxBaseAlignment == 0 || maxBaseAlignment > maxSizeAlignment)
maxSizeAlignment else maxBaseAlignment
misaligned(base+step, size-step, AddressSet(base, step-1) +: tail)
}
}
def unify(seq: Seq[AddressSet], bit: BigInt): Seq[AddressSet] = {
// Pair terms up by ignoring 'bit'
seq.distinct.groupBy(x => x.copy(base = x.base & ~bit)).map { case (key, seq) =>
if (seq.size == 1) {
seq.head // singleton -> unaffected
} else {
key.copy(mask = key.mask | bit) // pair - widen mask by bit
}
}.toList
}
def unify(seq: Seq[AddressSet]): Seq[AddressSet] = {
val bits = seq.map(_.base).foldLeft(BigInt(0))(_ | _)
AddressSet.enumerateBits(bits).foldLeft(seq) { case (acc, bit) => unify(acc, bit) }.sorted
}
def enumerateMask(mask: BigInt): Seq[BigInt] = {
def helper(id: BigInt, tail: Seq[BigInt]): Seq[BigInt] =
if (id == mask) (id +: tail).reverse else helper(((~mask | id) + 1) & mask, id +: tail)
helper(0, Nil)
}
def enumerateBits(mask: BigInt): Seq[BigInt] = {
def helper(x: BigInt): Seq[BigInt] = {
if (x == 0) {
Nil
} else {
val bit = x & (-x)
bit +: helper(x & ~bit)
}
}
helper(mask)
}
}
case class BufferParams(depth: Int, flow: Boolean, pipe: Boolean)
{
require (depth >= 0, "Buffer depth must be >= 0")
def isDefined = depth > 0
def latency = if (isDefined && !flow) 1 else 0
def apply[T <: Data](x: DecoupledIO[T]) =
if (isDefined) Queue(x, depth, flow=flow, pipe=pipe)
else x
def irrevocable[T <: Data](x: ReadyValidIO[T]) =
if (isDefined) Queue.irrevocable(x, depth, flow=flow, pipe=pipe)
else x
def sq[T <: Data](x: DecoupledIO[T]) =
if (!isDefined) x else {
val sq = Module(new ShiftQueue(x.bits, depth, flow=flow, pipe=pipe))
sq.io.enq <> x
sq.io.deq
}
override def toString() = "BufferParams:%d%s%s".format(depth, if (flow) "F" else "", if (pipe) "P" else "")
}
object BufferParams
{
implicit def apply(depth: Int): BufferParams = BufferParams(depth, false, false)
val default = BufferParams(2)
val none = BufferParams(0)
val flow = BufferParams(1, true, false)
val pipe = BufferParams(1, false, true)
}
case class TriStateValue(value: Boolean, set: Boolean)
{
def update(orig: Boolean) = if (set) value else orig
}
object TriStateValue
{
implicit def apply(value: Boolean): TriStateValue = TriStateValue(value, true)
def unset = TriStateValue(false, false)
}
trait DirectedBuffers[T] {
def copyIn(x: BufferParams): T
def copyOut(x: BufferParams): T
def copyInOut(x: BufferParams): T
}
trait IdMapEntry {
def name: String
def from: IdRange
def to: IdRange
def isCache: Boolean
def requestFifo: Boolean
def maxTransactionsInFlight: Option[Int]
def pretty(fmt: String) =
if (from ne to) { // if the subclass uses the same reference for both from and to, assume its format string has an arity of 5
fmt.format(to.start, to.end, from.start, from.end, s""""$name"""", if (isCache) " [CACHE]" else "", if (requestFifo) " [FIFO]" else "")
} else {
fmt.format(from.start, from.end, s""""$name"""", if (isCache) " [CACHE]" else "", if (requestFifo) " [FIFO]" else "")
}
}
abstract class IdMap[T <: IdMapEntry] {
protected val fmt: String
val mapping: Seq[T]
def pretty: String = mapping.map(_.pretty(fmt)).mkString(",\n")
}
File Edges.scala:
// See LICENSE.SiFive for license details.
package freechips.rocketchip.tilelink
import chisel3._
import chisel3.util._
import chisel3.experimental.SourceInfo
import org.chipsalliance.cde.config.Parameters
import freechips.rocketchip.util._
class TLEdge(
client: TLClientPortParameters,
manager: TLManagerPortParameters,
params: Parameters,
sourceInfo: SourceInfo)
extends TLEdgeParameters(client, manager, params, sourceInfo)
{
def isAligned(address: UInt, lgSize: UInt): Bool = {
if (maxLgSize == 0) true.B else {
val mask = UIntToOH1(lgSize, maxLgSize)
(address & mask) === 0.U
}
}
def mask(address: UInt, lgSize: UInt): UInt =
MaskGen(address, lgSize, manager.beatBytes)
def staticHasData(bundle: TLChannel): Option[Boolean] = {
bundle match {
case _:TLBundleA => {
// Do there exist A messages with Data?
val aDataYes = manager.anySupportArithmetic || manager.anySupportLogical || manager.anySupportPutFull || manager.anySupportPutPartial
// Do there exist A messages without Data?
val aDataNo = manager.anySupportAcquireB || manager.anySupportGet || manager.anySupportHint
// Statically optimize the case where hasData is a constant
if (!aDataYes) Some(false) else if (!aDataNo) Some(true) else None
}
case _:TLBundleB => {
// Do there exist B messages with Data?
val bDataYes = client.anySupportArithmetic || client.anySupportLogical || client.anySupportPutFull || client.anySupportPutPartial
// Do there exist B messages without Data?
val bDataNo = client.anySupportProbe || client.anySupportGet || client.anySupportHint
// Statically optimize the case where hasData is a constant
if (!bDataYes) Some(false) else if (!bDataNo) Some(true) else None
}
case _:TLBundleC => {
// Do there eixst C messages with Data?
val cDataYes = client.anySupportGet || client.anySupportArithmetic || client.anySupportLogical || client.anySupportProbe
// Do there exist C messages without Data?
val cDataNo = client.anySupportPutFull || client.anySupportPutPartial || client.anySupportHint || client.anySupportProbe
if (!cDataYes) Some(false) else if (!cDataNo) Some(true) else None
}
case _:TLBundleD => {
// Do there eixst D messages with Data?
val dDataYes = manager.anySupportGet || manager.anySupportArithmetic || manager.anySupportLogical || manager.anySupportAcquireB
// Do there exist D messages without Data?
val dDataNo = manager.anySupportPutFull || manager.anySupportPutPartial || manager.anySupportHint || manager.anySupportAcquireT
if (!dDataYes) Some(false) else if (!dDataNo) Some(true) else None
}
case _:TLBundleE => Some(false)
}
}
def isRequest(x: TLChannel): Bool = {
x match {
case a: TLBundleA => true.B
case b: TLBundleB => true.B
case c: TLBundleC => c.opcode(2) && c.opcode(1)
// opcode === TLMessages.Release ||
// opcode === TLMessages.ReleaseData
case d: TLBundleD => d.opcode(2) && !d.opcode(1)
// opcode === TLMessages.Grant ||
// opcode === TLMessages.GrantData
case e: TLBundleE => false.B
}
}
def isResponse(x: TLChannel): Bool = {
x match {
case a: TLBundleA => false.B
case b: TLBundleB => false.B
case c: TLBundleC => !c.opcode(2) || !c.opcode(1)
// opcode =/= TLMessages.Release &&
// opcode =/= TLMessages.ReleaseData
case d: TLBundleD => true.B // Grant isResponse + isRequest
case e: TLBundleE => true.B
}
}
def hasData(x: TLChannel): Bool = {
val opdata = x match {
case a: TLBundleA => !a.opcode(2)
// opcode === TLMessages.PutFullData ||
// opcode === TLMessages.PutPartialData ||
// opcode === TLMessages.ArithmeticData ||
// opcode === TLMessages.LogicalData
case b: TLBundleB => !b.opcode(2)
// opcode === TLMessages.PutFullData ||
// opcode === TLMessages.PutPartialData ||
// opcode === TLMessages.ArithmeticData ||
// opcode === TLMessages.LogicalData
case c: TLBundleC => c.opcode(0)
// opcode === TLMessages.AccessAckData ||
// opcode === TLMessages.ProbeAckData ||
// opcode === TLMessages.ReleaseData
case d: TLBundleD => d.opcode(0)
// opcode === TLMessages.AccessAckData ||
// opcode === TLMessages.GrantData
case e: TLBundleE => false.B
}
staticHasData(x).map(_.B).getOrElse(opdata)
}
def opcode(x: TLDataChannel): UInt = {
x match {
case a: TLBundleA => a.opcode
case b: TLBundleB => b.opcode
case c: TLBundleC => c.opcode
case d: TLBundleD => d.opcode
}
}
def param(x: TLDataChannel): UInt = {
x match {
case a: TLBundleA => a.param
case b: TLBundleB => b.param
case c: TLBundleC => c.param
case d: TLBundleD => d.param
}
}
def size(x: TLDataChannel): UInt = {
x match {
case a: TLBundleA => a.size
case b: TLBundleB => b.size
case c: TLBundleC => c.size
case d: TLBundleD => d.size
}
}
def data(x: TLDataChannel): UInt = {
x match {
case a: TLBundleA => a.data
case b: TLBundleB => b.data
case c: TLBundleC => c.data
case d: TLBundleD => d.data
}
}
def corrupt(x: TLDataChannel): Bool = {
x match {
case a: TLBundleA => a.corrupt
case b: TLBundleB => b.corrupt
case c: TLBundleC => c.corrupt
case d: TLBundleD => d.corrupt
}
}
def mask(x: TLAddrChannel): UInt = {
x match {
case a: TLBundleA => a.mask
case b: TLBundleB => b.mask
case c: TLBundleC => mask(c.address, c.size)
}
}
def full_mask(x: TLAddrChannel): UInt = {
x match {
case a: TLBundleA => mask(a.address, a.size)
case b: TLBundleB => mask(b.address, b.size)
case c: TLBundleC => mask(c.address, c.size)
}
}
def address(x: TLAddrChannel): UInt = {
x match {
case a: TLBundleA => a.address
case b: TLBundleB => b.address
case c: TLBundleC => c.address
}
}
def source(x: TLDataChannel): UInt = {
x match {
case a: TLBundleA => a.source
case b: TLBundleB => b.source
case c: TLBundleC => c.source
case d: TLBundleD => d.source
}
}
def addr_hi(x: UInt): UInt = x >> log2Ceil(manager.beatBytes)
def addr_lo(x: UInt): UInt =
if (manager.beatBytes == 1) 0.U else x(log2Ceil(manager.beatBytes)-1, 0)
def addr_hi(x: TLAddrChannel): UInt = addr_hi(address(x))
def addr_lo(x: TLAddrChannel): UInt = addr_lo(address(x))
def numBeats(x: TLChannel): UInt = {
x match {
case _: TLBundleE => 1.U
case bundle: TLDataChannel => {
val hasData = this.hasData(bundle)
val size = this.size(bundle)
val cutoff = log2Ceil(manager.beatBytes)
val small = if (manager.maxTransfer <= manager.beatBytes) true.B else size <= (cutoff).U
val decode = UIntToOH(size, maxLgSize+1) >> cutoff
Mux(hasData, decode | small.asUInt, 1.U)
}
}
}
def numBeats1(x: TLChannel): UInt = {
x match {
case _: TLBundleE => 0.U
case bundle: TLDataChannel => {
if (maxLgSize == 0) {
0.U
} else {
val decode = UIntToOH1(size(bundle), maxLgSize) >> log2Ceil(manager.beatBytes)
Mux(hasData(bundle), decode, 0.U)
}
}
}
}
def firstlastHelper(bits: TLChannel, fire: Bool): (Bool, Bool, Bool, UInt) = {
val beats1 = numBeats1(bits)
val counter = RegInit(0.U(log2Up(maxTransfer / manager.beatBytes).W))
val counter1 = counter - 1.U
val first = counter === 0.U
val last = counter === 1.U || beats1 === 0.U
val done = last && fire
val count = (beats1 & ~counter1)
when (fire) {
counter := Mux(first, beats1, counter1)
}
(first, last, done, count)
}
def first(bits: TLChannel, fire: Bool): Bool = firstlastHelper(bits, fire)._1
def first(x: DecoupledIO[TLChannel]): Bool = first(x.bits, x.fire)
def first(x: ValidIO[TLChannel]): Bool = first(x.bits, x.valid)
def last(bits: TLChannel, fire: Bool): Bool = firstlastHelper(bits, fire)._2
def last(x: DecoupledIO[TLChannel]): Bool = last(x.bits, x.fire)
def last(x: ValidIO[TLChannel]): Bool = last(x.bits, x.valid)
def done(bits: TLChannel, fire: Bool): Bool = firstlastHelper(bits, fire)._3
def done(x: DecoupledIO[TLChannel]): Bool = done(x.bits, x.fire)
def done(x: ValidIO[TLChannel]): Bool = done(x.bits, x.valid)
def firstlast(bits: TLChannel, fire: Bool): (Bool, Bool, Bool) = {
val r = firstlastHelper(bits, fire)
(r._1, r._2, r._3)
}
def firstlast(x: DecoupledIO[TLChannel]): (Bool, Bool, Bool) = firstlast(x.bits, x.fire)
def firstlast(x: ValidIO[TLChannel]): (Bool, Bool, Bool) = firstlast(x.bits, x.valid)
def count(bits: TLChannel, fire: Bool): (Bool, Bool, Bool, UInt) = {
val r = firstlastHelper(bits, fire)
(r._1, r._2, r._3, r._4)
}
def count(x: DecoupledIO[TLChannel]): (Bool, Bool, Bool, UInt) = count(x.bits, x.fire)
def count(x: ValidIO[TLChannel]): (Bool, Bool, Bool, UInt) = count(x.bits, x.valid)
def addr_inc(bits: TLChannel, fire: Bool): (Bool, Bool, Bool, UInt) = {
val r = firstlastHelper(bits, fire)
(r._1, r._2, r._3, r._4 << log2Ceil(manager.beatBytes))
}
def addr_inc(x: DecoupledIO[TLChannel]): (Bool, Bool, Bool, UInt) = addr_inc(x.bits, x.fire)
def addr_inc(x: ValidIO[TLChannel]): (Bool, Bool, Bool, UInt) = addr_inc(x.bits, x.valid)
// Does the request need T permissions to be executed?
def needT(a: TLBundleA): Bool = {
val acq_needT = MuxLookup(a.param, WireDefault(Bool(), DontCare))(Array(
TLPermissions.NtoB -> false.B,
TLPermissions.NtoT -> true.B,
TLPermissions.BtoT -> true.B))
MuxLookup(a.opcode, WireDefault(Bool(), DontCare))(Array(
TLMessages.PutFullData -> true.B,
TLMessages.PutPartialData -> true.B,
TLMessages.ArithmeticData -> true.B,
TLMessages.LogicalData -> true.B,
TLMessages.Get -> false.B,
TLMessages.Hint -> MuxLookup(a.param, WireDefault(Bool(), DontCare))(Array(
TLHints.PREFETCH_READ -> false.B,
TLHints.PREFETCH_WRITE -> true.B)),
TLMessages.AcquireBlock -> acq_needT,
TLMessages.AcquirePerm -> acq_needT))
}
// This is a very expensive circuit; use only if you really mean it!
def inFlight(x: TLBundle): (UInt, UInt) = {
val flight = RegInit(0.U(log2Ceil(3*client.endSourceId+1).W))
val bce = manager.anySupportAcquireB && client.anySupportProbe
val (a_first, a_last, _) = firstlast(x.a)
val (b_first, b_last, _) = firstlast(x.b)
val (c_first, c_last, _) = firstlast(x.c)
val (d_first, d_last, _) = firstlast(x.d)
val (e_first, e_last, _) = firstlast(x.e)
val (a_request, a_response) = (isRequest(x.a.bits), isResponse(x.a.bits))
val (b_request, b_response) = (isRequest(x.b.bits), isResponse(x.b.bits))
val (c_request, c_response) = (isRequest(x.c.bits), isResponse(x.c.bits))
val (d_request, d_response) = (isRequest(x.d.bits), isResponse(x.d.bits))
val (e_request, e_response) = (isRequest(x.e.bits), isResponse(x.e.bits))
val a_inc = x.a.fire && a_first && a_request
val b_inc = x.b.fire && b_first && b_request
val c_inc = x.c.fire && c_first && c_request
val d_inc = x.d.fire && d_first && d_request
val e_inc = x.e.fire && e_first && e_request
val inc = Cat(Seq(a_inc, d_inc) ++ (if (bce) Seq(b_inc, c_inc, e_inc) else Nil))
val a_dec = x.a.fire && a_last && a_response
val b_dec = x.b.fire && b_last && b_response
val c_dec = x.c.fire && c_last && c_response
val d_dec = x.d.fire && d_last && d_response
val e_dec = x.e.fire && e_last && e_response
val dec = Cat(Seq(a_dec, d_dec) ++ (if (bce) Seq(b_dec, c_dec, e_dec) else Nil))
val next_flight = flight + PopCount(inc) - PopCount(dec)
flight := next_flight
(flight, next_flight)
}
def prettySourceMapping(context: String): String = {
s"TL-Source mapping for $context:\n${(new TLSourceIdMap(client)).pretty}\n"
}
}
class TLEdgeOut(
client: TLClientPortParameters,
manager: TLManagerPortParameters,
params: Parameters,
sourceInfo: SourceInfo)
extends TLEdge(client, manager, params, sourceInfo)
{
// Transfers
def AcquireBlock(fromSource: UInt, toAddress: UInt, lgSize: UInt, growPermissions: UInt) = {
require (manager.anySupportAcquireB, s"TileLink: No managers visible from this edge support Acquires, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsAcquireBFast(toAddress, lgSize)
val a = Wire(new TLBundleA(bundle))
a.opcode := TLMessages.AcquireBlock
a.param := growPermissions
a.size := lgSize
a.source := fromSource
a.address := toAddress
a.user := DontCare
a.echo := DontCare
a.mask := mask(toAddress, lgSize)
a.data := DontCare
a.corrupt := false.B
(legal, a)
}
def AcquirePerm(fromSource: UInt, toAddress: UInt, lgSize: UInt, growPermissions: UInt) = {
require (manager.anySupportAcquireB, s"TileLink: No managers visible from this edge support Acquires, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsAcquireBFast(toAddress, lgSize)
val a = Wire(new TLBundleA(bundle))
a.opcode := TLMessages.AcquirePerm
a.param := growPermissions
a.size := lgSize
a.source := fromSource
a.address := toAddress
a.user := DontCare
a.echo := DontCare
a.mask := mask(toAddress, lgSize)
a.data := DontCare
a.corrupt := false.B
(legal, a)
}
def Release(fromSource: UInt, toAddress: UInt, lgSize: UInt, shrinkPermissions: UInt): (Bool, TLBundleC) = {
require (manager.anySupportAcquireB, s"TileLink: No managers visible from this edge support Acquires, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsAcquireBFast(toAddress, lgSize)
val c = Wire(new TLBundleC(bundle))
c.opcode := TLMessages.Release
c.param := shrinkPermissions
c.size := lgSize
c.source := fromSource
c.address := toAddress
c.user := DontCare
c.echo := DontCare
c.data := DontCare
c.corrupt := false.B
(legal, c)
}
def Release(fromSource: UInt, toAddress: UInt, lgSize: UInt, shrinkPermissions: UInt, data: UInt, corrupt: Bool): (Bool, TLBundleC) = {
require (manager.anySupportAcquireB, s"TileLink: No managers visible from this edge support Acquires, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsAcquireBFast(toAddress, lgSize)
val c = Wire(new TLBundleC(bundle))
c.opcode := TLMessages.ReleaseData
c.param := shrinkPermissions
c.size := lgSize
c.source := fromSource
c.address := toAddress
c.user := DontCare
c.echo := DontCare
c.data := data
c.corrupt := corrupt
(legal, c)
}
def Release(fromSource: UInt, toAddress: UInt, lgSize: UInt, shrinkPermissions: UInt, data: UInt): (Bool, TLBundleC) =
Release(fromSource, toAddress, lgSize, shrinkPermissions, data, false.B)
def ProbeAck(b: TLBundleB, reportPermissions: UInt): TLBundleC =
ProbeAck(b.source, b.address, b.size, reportPermissions)
def ProbeAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, reportPermissions: UInt): TLBundleC = {
val c = Wire(new TLBundleC(bundle))
c.opcode := TLMessages.ProbeAck
c.param := reportPermissions
c.size := lgSize
c.source := fromSource
c.address := toAddress
c.user := DontCare
c.echo := DontCare
c.data := DontCare
c.corrupt := false.B
c
}
def ProbeAck(b: TLBundleB, reportPermissions: UInt, data: UInt): TLBundleC =
ProbeAck(b.source, b.address, b.size, reportPermissions, data)
def ProbeAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, reportPermissions: UInt, data: UInt, corrupt: Bool): TLBundleC = {
val c = Wire(new TLBundleC(bundle))
c.opcode := TLMessages.ProbeAckData
c.param := reportPermissions
c.size := lgSize
c.source := fromSource
c.address := toAddress
c.user := DontCare
c.echo := DontCare
c.data := data
c.corrupt := corrupt
c
}
def ProbeAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, reportPermissions: UInt, data: UInt): TLBundleC =
ProbeAck(fromSource, toAddress, lgSize, reportPermissions, data, false.B)
def GrantAck(d: TLBundleD): TLBundleE = GrantAck(d.sink)
def GrantAck(toSink: UInt): TLBundleE = {
val e = Wire(new TLBundleE(bundle))
e.sink := toSink
e
}
// Accesses
def Get(fromSource: UInt, toAddress: UInt, lgSize: UInt) = {
require (manager.anySupportGet, s"TileLink: No managers visible from this edge support Gets, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsGetFast(toAddress, lgSize)
val a = Wire(new TLBundleA(bundle))
a.opcode := TLMessages.Get
a.param := 0.U
a.size := lgSize
a.source := fromSource
a.address := toAddress
a.user := DontCare
a.echo := DontCare
a.mask := mask(toAddress, lgSize)
a.data := DontCare
a.corrupt := false.B
(legal, a)
}
def Put(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt): (Bool, TLBundleA) =
Put(fromSource, toAddress, lgSize, data, false.B)
def Put(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, corrupt: Bool): (Bool, TLBundleA) = {
require (manager.anySupportPutFull, s"TileLink: No managers visible from this edge support Puts, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsPutFullFast(toAddress, lgSize)
val a = Wire(new TLBundleA(bundle))
a.opcode := TLMessages.PutFullData
a.param := 0.U
a.size := lgSize
a.source := fromSource
a.address := toAddress
a.user := DontCare
a.echo := DontCare
a.mask := mask(toAddress, lgSize)
a.data := data
a.corrupt := corrupt
(legal, a)
}
def Put(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, mask: UInt): (Bool, TLBundleA) =
Put(fromSource, toAddress, lgSize, data, mask, false.B)
def Put(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, mask: UInt, corrupt: Bool): (Bool, TLBundleA) = {
require (manager.anySupportPutPartial, s"TileLink: No managers visible from this edge support masked Puts, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsPutPartialFast(toAddress, lgSize)
val a = Wire(new TLBundleA(bundle))
a.opcode := TLMessages.PutPartialData
a.param := 0.U
a.size := lgSize
a.source := fromSource
a.address := toAddress
a.user := DontCare
a.echo := DontCare
a.mask := mask
a.data := data
a.corrupt := corrupt
(legal, a)
}
def Arithmetic(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, atomic: UInt, corrupt: Bool = false.B): (Bool, TLBundleA) = {
require (manager.anySupportArithmetic, s"TileLink: No managers visible from this edge support arithmetic AMOs, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsArithmeticFast(toAddress, lgSize)
val a = Wire(new TLBundleA(bundle))
a.opcode := TLMessages.ArithmeticData
a.param := atomic
a.size := lgSize
a.source := fromSource
a.address := toAddress
a.user := DontCare
a.echo := DontCare
a.mask := mask(toAddress, lgSize)
a.data := data
a.corrupt := corrupt
(legal, a)
}
def Logical(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, atomic: UInt, corrupt: Bool = false.B) = {
require (manager.anySupportLogical, s"TileLink: No managers visible from this edge support logical AMOs, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsLogicalFast(toAddress, lgSize)
val a = Wire(new TLBundleA(bundle))
a.opcode := TLMessages.LogicalData
a.param := atomic
a.size := lgSize
a.source := fromSource
a.address := toAddress
a.user := DontCare
a.echo := DontCare
a.mask := mask(toAddress, lgSize)
a.data := data
a.corrupt := corrupt
(legal, a)
}
def Hint(fromSource: UInt, toAddress: UInt, lgSize: UInt, param: UInt) = {
require (manager.anySupportHint, s"TileLink: No managers visible from this edge support Hints, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsHintFast(toAddress, lgSize)
val a = Wire(new TLBundleA(bundle))
a.opcode := TLMessages.Hint
a.param := param
a.size := lgSize
a.source := fromSource
a.address := toAddress
a.user := DontCare
a.echo := DontCare
a.mask := mask(toAddress, lgSize)
a.data := DontCare
a.corrupt := false.B
(legal, a)
}
def AccessAck(b: TLBundleB): TLBundleC = AccessAck(b.source, address(b), b.size)
def AccessAck(fromSource: UInt, toAddress: UInt, lgSize: UInt) = {
val c = Wire(new TLBundleC(bundle))
c.opcode := TLMessages.AccessAck
c.param := 0.U
c.size := lgSize
c.source := fromSource
c.address := toAddress
c.user := DontCare
c.echo := DontCare
c.data := DontCare
c.corrupt := false.B
c
}
def AccessAck(b: TLBundleB, data: UInt): TLBundleC = AccessAck(b.source, address(b), b.size, data)
def AccessAck(b: TLBundleB, data: UInt, corrupt: Bool): TLBundleC = AccessAck(b.source, address(b), b.size, data, corrupt)
def AccessAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt): TLBundleC = AccessAck(fromSource, toAddress, lgSize, data, false.B)
def AccessAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, corrupt: Bool) = {
val c = Wire(new TLBundleC(bundle))
c.opcode := TLMessages.AccessAckData
c.param := 0.U
c.size := lgSize
c.source := fromSource
c.address := toAddress
c.user := DontCare
c.echo := DontCare
c.data := data
c.corrupt := corrupt
c
}
def HintAck(b: TLBundleB): TLBundleC = HintAck(b.source, address(b), b.size)
def HintAck(fromSource: UInt, toAddress: UInt, lgSize: UInt) = {
val c = Wire(new TLBundleC(bundle))
c.opcode := TLMessages.HintAck
c.param := 0.U
c.size := lgSize
c.source := fromSource
c.address := toAddress
c.user := DontCare
c.echo := DontCare
c.data := DontCare
c.corrupt := false.B
c
}
}
class TLEdgeIn(
client: TLClientPortParameters,
manager: TLManagerPortParameters,
params: Parameters,
sourceInfo: SourceInfo)
extends TLEdge(client, manager, params, sourceInfo)
{
private def myTranspose[T](x: Seq[Seq[T]]): Seq[Seq[T]] = {
val todo = x.filter(!_.isEmpty)
val heads = todo.map(_.head)
val tails = todo.map(_.tail)
if (todo.isEmpty) Nil else { heads +: myTranspose(tails) }
}
// Transfers
def Probe(fromAddress: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt) = {
require (client.anySupportProbe, s"TileLink: No clients visible from this edge support probes, but one of these managers tried to issue one: ${manager.managers}")
val legal = client.supportsProbe(toSource, lgSize)
val b = Wire(new TLBundleB(bundle))
b.opcode := TLMessages.Probe
b.param := capPermissions
b.size := lgSize
b.source := toSource
b.address := fromAddress
b.mask := mask(fromAddress, lgSize)
b.data := DontCare
b.corrupt := false.B
(legal, b)
}
def Grant(fromSink: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt): TLBundleD = Grant(fromSink, toSource, lgSize, capPermissions, false.B)
def Grant(fromSink: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt, denied: Bool) = {
val d = Wire(new TLBundleD(bundle))
d.opcode := TLMessages.Grant
d.param := capPermissions
d.size := lgSize
d.source := toSource
d.sink := fromSink
d.denied := denied
d.user := DontCare
d.echo := DontCare
d.data := DontCare
d.corrupt := false.B
d
}
def Grant(fromSink: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt, data: UInt): TLBundleD = Grant(fromSink, toSource, lgSize, capPermissions, data, false.B, false.B)
def Grant(fromSink: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt, data: UInt, denied: Bool, corrupt: Bool) = {
val d = Wire(new TLBundleD(bundle))
d.opcode := TLMessages.GrantData
d.param := capPermissions
d.size := lgSize
d.source := toSource
d.sink := fromSink
d.denied := denied
d.user := DontCare
d.echo := DontCare
d.data := data
d.corrupt := corrupt
d
}
def ReleaseAck(c: TLBundleC): TLBundleD = ReleaseAck(c.source, c.size, false.B)
def ReleaseAck(toSource: UInt, lgSize: UInt, denied: Bool): TLBundleD = {
val d = Wire(new TLBundleD(bundle))
d.opcode := TLMessages.ReleaseAck
d.param := 0.U
d.size := lgSize
d.source := toSource
d.sink := 0.U
d.denied := denied
d.user := DontCare
d.echo := DontCare
d.data := DontCare
d.corrupt := false.B
d
}
// Accesses
def Get(fromAddress: UInt, toSource: UInt, lgSize: UInt) = {
require (client.anySupportGet, s"TileLink: No clients visible from this edge support Gets, but one of these managers would try to issue one: ${manager.managers}")
val legal = client.supportsGet(toSource, lgSize)
val b = Wire(new TLBundleB(bundle))
b.opcode := TLMessages.Get
b.param := 0.U
b.size := lgSize
b.source := toSource
b.address := fromAddress
b.mask := mask(fromAddress, lgSize)
b.data := DontCare
b.corrupt := false.B
(legal, b)
}
def Put(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt): (Bool, TLBundleB) =
Put(fromAddress, toSource, lgSize, data, false.B)
def Put(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, corrupt: Bool): (Bool, TLBundleB) = {
require (client.anySupportPutFull, s"TileLink: No clients visible from this edge support Puts, but one of these managers would try to issue one: ${manager.managers}")
val legal = client.supportsPutFull(toSource, lgSize)
val b = Wire(new TLBundleB(bundle))
b.opcode := TLMessages.PutFullData
b.param := 0.U
b.size := lgSize
b.source := toSource
b.address := fromAddress
b.mask := mask(fromAddress, lgSize)
b.data := data
b.corrupt := corrupt
(legal, b)
}
def Put(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, mask: UInt): (Bool, TLBundleB) =
Put(fromAddress, toSource, lgSize, data, mask, false.B)
def Put(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, mask: UInt, corrupt: Bool): (Bool, TLBundleB) = {
require (client.anySupportPutPartial, s"TileLink: No clients visible from this edge support masked Puts, but one of these managers would try to request one: ${manager.managers}")
val legal = client.supportsPutPartial(toSource, lgSize)
val b = Wire(new TLBundleB(bundle))
b.opcode := TLMessages.PutPartialData
b.param := 0.U
b.size := lgSize
b.source := toSource
b.address := fromAddress
b.mask := mask
b.data := data
b.corrupt := corrupt
(legal, b)
}
def Arithmetic(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, atomic: UInt, corrupt: Bool = false.B) = {
require (client.anySupportArithmetic, s"TileLink: No clients visible from this edge support arithmetic AMOs, but one of these managers would try to request one: ${manager.managers}")
val legal = client.supportsArithmetic(toSource, lgSize)
val b = Wire(new TLBundleB(bundle))
b.opcode := TLMessages.ArithmeticData
b.param := atomic
b.size := lgSize
b.source := toSource
b.address := fromAddress
b.mask := mask(fromAddress, lgSize)
b.data := data
b.corrupt := corrupt
(legal, b)
}
def Logical(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, atomic: UInt, corrupt: Bool = false.B) = {
require (client.anySupportLogical, s"TileLink: No clients visible from this edge support logical AMOs, but one of these managers would try to request one: ${manager.managers}")
val legal = client.supportsLogical(toSource, lgSize)
val b = Wire(new TLBundleB(bundle))
b.opcode := TLMessages.LogicalData
b.param := atomic
b.size := lgSize
b.source := toSource
b.address := fromAddress
b.mask := mask(fromAddress, lgSize)
b.data := data
b.corrupt := corrupt
(legal, b)
}
def Hint(fromAddress: UInt, toSource: UInt, lgSize: UInt, param: UInt) = {
require (client.anySupportHint, s"TileLink: No clients visible from this edge support Hints, but one of these managers would try to request one: ${manager.managers}")
val legal = client.supportsHint(toSource, lgSize)
val b = Wire(new TLBundleB(bundle))
b.opcode := TLMessages.Hint
b.param := param
b.size := lgSize
b.source := toSource
b.address := fromAddress
b.mask := mask(fromAddress, lgSize)
b.data := DontCare
b.corrupt := false.B
(legal, b)
}
def AccessAck(a: TLBundleA): TLBundleD = AccessAck(a.source, a.size)
def AccessAck(a: TLBundleA, denied: Bool): TLBundleD = AccessAck(a.source, a.size, denied)
def AccessAck(toSource: UInt, lgSize: UInt): TLBundleD = AccessAck(toSource, lgSize, false.B)
def AccessAck(toSource: UInt, lgSize: UInt, denied: Bool) = {
val d = Wire(new TLBundleD(bundle))
d.opcode := TLMessages.AccessAck
d.param := 0.U
d.size := lgSize
d.source := toSource
d.sink := 0.U
d.denied := denied
d.user := DontCare
d.echo := DontCare
d.data := DontCare
d.corrupt := false.B
d
}
def AccessAck(a: TLBundleA, data: UInt): TLBundleD = AccessAck(a.source, a.size, data)
def AccessAck(a: TLBundleA, data: UInt, denied: Bool, corrupt: Bool): TLBundleD = AccessAck(a.source, a.size, data, denied, corrupt)
def AccessAck(toSource: UInt, lgSize: UInt, data: UInt): TLBundleD = AccessAck(toSource, lgSize, data, false.B, false.B)
def AccessAck(toSource: UInt, lgSize: UInt, data: UInt, denied: Bool, corrupt: Bool) = {
val d = Wire(new TLBundleD(bundle))
d.opcode := TLMessages.AccessAckData
d.param := 0.U
d.size := lgSize
d.source := toSource
d.sink := 0.U
d.denied := denied
d.user := DontCare
d.echo := DontCare
d.data := data
d.corrupt := corrupt
d
}
def HintAck(a: TLBundleA): TLBundleD = HintAck(a, false.B)
def HintAck(a: TLBundleA, denied: Bool): TLBundleD = HintAck(a.source, a.size, denied)
def HintAck(toSource: UInt, lgSize: UInt): TLBundleD = HintAck(toSource, lgSize, false.B)
def HintAck(toSource: UInt, lgSize: UInt, denied: Bool) = {
val d = Wire(new TLBundleD(bundle))
d.opcode := TLMessages.HintAck
d.param := 0.U
d.size := lgSize
d.source := toSource
d.sink := 0.U
d.denied := denied
d.user := DontCare
d.echo := DontCare
d.data := DontCare
d.corrupt := false.B
d
}
}
| module TLMonitor_55( // @[Monitor.scala:36:7]
input clock, // @[Monitor.scala:36:7]
input reset, // @[Monitor.scala:36:7]
input io_in_a_ready, // @[Monitor.scala:20:14]
input io_in_a_valid, // @[Monitor.scala:20:14]
input [2:0] io_in_a_bits_opcode, // @[Monitor.scala:20:14]
input [2:0] io_in_a_bits_param, // @[Monitor.scala:20:14]
input [2:0] io_in_a_bits_size, // @[Monitor.scala:20:14]
input [3:0] io_in_a_bits_source, // @[Monitor.scala:20:14]
input [31:0] io_in_a_bits_address, // @[Monitor.scala:20:14]
input [7:0] io_in_a_bits_mask, // @[Monitor.scala:20:14]
input io_in_a_bits_corrupt, // @[Monitor.scala:20:14]
input io_in_d_ready, // @[Monitor.scala:20:14]
input io_in_d_valid, // @[Monitor.scala:20:14]
input [2:0] io_in_d_bits_opcode, // @[Monitor.scala:20:14]
input [1:0] io_in_d_bits_param, // @[Monitor.scala:20:14]
input [2:0] io_in_d_bits_size, // @[Monitor.scala:20:14]
input [3:0] io_in_d_bits_source, // @[Monitor.scala:20:14]
input io_in_d_bits_sink, // @[Monitor.scala:20:14]
input io_in_d_bits_denied, // @[Monitor.scala:20:14]
input io_in_d_bits_corrupt // @[Monitor.scala:20:14]
);
wire [31:0] _plusarg_reader_1_out; // @[PlusArg.scala:80:11]
wire [31:0] _plusarg_reader_out; // @[PlusArg.scala:80:11]
wire [12:0] _GEN = {10'h0, io_in_a_bits_size}; // @[package.scala:243:71]
wire _a_first_T_1 = io_in_a_ready & io_in_a_valid; // @[Decoupled.scala:51:35]
reg [2:0] a_first_counter; // @[Edges.scala:229:27]
reg [2:0] opcode; // @[Monitor.scala:387:22]
reg [2:0] param; // @[Monitor.scala:388:22]
reg [2:0] size; // @[Monitor.scala:389:22]
reg [3:0] source; // @[Monitor.scala:390:22]
reg [31:0] address; // @[Monitor.scala:391:22]
reg [2:0] d_first_counter; // @[Edges.scala:229:27]
reg [2:0] opcode_1; // @[Monitor.scala:538:22]
reg [1:0] param_1; // @[Monitor.scala:539:22]
reg [2:0] size_1; // @[Monitor.scala:540:22]
reg [3:0] source_1; // @[Monitor.scala:541:22]
reg sink; // @[Monitor.scala:542:22]
reg denied; // @[Monitor.scala:543:22]
reg [9:0] inflight; // @[Monitor.scala:614:27]
reg [39:0] inflight_opcodes; // @[Monitor.scala:616:35]
reg [39:0] inflight_sizes; // @[Monitor.scala:618:33]
reg [2:0] a_first_counter_1; // @[Edges.scala:229:27]
wire a_first_1 = a_first_counter_1 == 3'h0; // @[Edges.scala:229:27, :231:25]
reg [2:0] d_first_counter_1; // @[Edges.scala:229:27]
wire d_first_1 = d_first_counter_1 == 3'h0; // @[Edges.scala:229:27, :231:25]
wire [15:0] _GEN_0 = {12'h0, io_in_a_bits_source}; // @[OneHot.scala:58:35]
wire _GEN_1 = _a_first_T_1 & a_first_1; // @[Decoupled.scala:51:35]
wire d_release_ack = io_in_d_bits_opcode == 3'h6; // @[Monitor.scala:673:46]
wire _GEN_2 = io_in_d_bits_opcode != 3'h6; // @[Monitor.scala:673:46, :674:74]
wire [15:0] _GEN_3 = {12'h0, io_in_d_bits_source}; // @[OneHot.scala:58:35]
reg [31:0] watchdog; // @[Monitor.scala:709:27]
reg [9:0] inflight_1; // @[Monitor.scala:726:35]
reg [39:0] inflight_sizes_1; // @[Monitor.scala:728:35]
reg [2:0] d_first_counter_2; // @[Edges.scala:229:27]
wire d_first_2 = d_first_counter_2 == 3'h0; // @[Edges.scala:229:27, :231:25]
reg [31:0] watchdog_1; // @[Monitor.scala:818:27] |
Generate the Verilog code corresponding to the following Chisel files.
File MSHR.scala:
/*
* Copyright 2019 SiFive, Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You should have received a copy of LICENSE.Apache2 along with
* this software. If not, you may obtain a copy at
*
* https://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package sifive.blocks.inclusivecache
import chisel3._
import chisel3.util._
import chisel3.experimental.SourceInfo
import freechips.rocketchip.tilelink._
import TLPermissions._
import TLMessages._
import MetaData._
import chisel3.PrintableHelper
import chisel3.experimental.dataview._
class ScheduleRequest(params: InclusiveCacheParameters) extends InclusiveCacheBundle(params)
{
val a = Valid(new SourceARequest(params))
val b = Valid(new SourceBRequest(params))
val c = Valid(new SourceCRequest(params))
val d = Valid(new SourceDRequest(params))
val e = Valid(new SourceERequest(params))
val x = Valid(new SourceXRequest(params))
val dir = Valid(new DirectoryWrite(params))
val reload = Bool() // get next request via allocate (if any)
}
class MSHRStatus(params: InclusiveCacheParameters) extends InclusiveCacheBundle(params)
{
val set = UInt(params.setBits.W)
val tag = UInt(params.tagBits.W)
val way = UInt(params.wayBits.W)
val blockB = Bool()
val nestB = Bool()
val blockC = Bool()
val nestC = Bool()
}
class NestedWriteback(params: InclusiveCacheParameters) extends InclusiveCacheBundle(params)
{
val set = UInt(params.setBits.W)
val tag = UInt(params.tagBits.W)
val b_toN = Bool() // nested Probes may unhit us
val b_toB = Bool() // nested Probes may demote us
val b_clr_dirty = Bool() // nested Probes clear dirty
val c_set_dirty = Bool() // nested Releases MAY set dirty
}
sealed trait CacheState
{
val code = CacheState.index.U
CacheState.index = CacheState.index + 1
}
object CacheState
{
var index = 0
}
case object S_INVALID extends CacheState
case object S_BRANCH extends CacheState
case object S_BRANCH_C extends CacheState
case object S_TIP extends CacheState
case object S_TIP_C extends CacheState
case object S_TIP_CD extends CacheState
case object S_TIP_D extends CacheState
case object S_TRUNK_C extends CacheState
case object S_TRUNK_CD extends CacheState
class MSHR(params: InclusiveCacheParameters) extends Module
{
val io = IO(new Bundle {
val allocate = Flipped(Valid(new AllocateRequest(params))) // refills MSHR for next cycle
val directory = Flipped(Valid(new DirectoryResult(params))) // triggers schedule setup
val status = Valid(new MSHRStatus(params))
val schedule = Decoupled(new ScheduleRequest(params))
val sinkc = Flipped(Valid(new SinkCResponse(params)))
val sinkd = Flipped(Valid(new SinkDResponse(params)))
val sinke = Flipped(Valid(new SinkEResponse(params)))
val nestedwb = Flipped(new NestedWriteback(params))
})
val request_valid = RegInit(false.B)
val request = Reg(new FullRequest(params))
val meta_valid = RegInit(false.B)
val meta = Reg(new DirectoryResult(params))
// Define which states are valid
when (meta_valid) {
when (meta.state === INVALID) {
assert (!meta.clients.orR)
assert (!meta.dirty)
}
when (meta.state === BRANCH) {
assert (!meta.dirty)
}
when (meta.state === TRUNK) {
assert (meta.clients.orR)
assert ((meta.clients & (meta.clients - 1.U)) === 0.U) // at most one
}
when (meta.state === TIP) {
// noop
}
}
// Completed transitions (s_ = scheduled), (w_ = waiting)
val s_rprobe = RegInit(true.B) // B
val w_rprobeackfirst = RegInit(true.B)
val w_rprobeacklast = RegInit(true.B)
val s_release = RegInit(true.B) // CW w_rprobeackfirst
val w_releaseack = RegInit(true.B)
val s_pprobe = RegInit(true.B) // B
val s_acquire = RegInit(true.B) // A s_release, s_pprobe [1]
val s_flush = RegInit(true.B) // X w_releaseack
val w_grantfirst = RegInit(true.B)
val w_grantlast = RegInit(true.B)
val w_grant = RegInit(true.B) // first | last depending on wormhole
val w_pprobeackfirst = RegInit(true.B)
val w_pprobeacklast = RegInit(true.B)
val w_pprobeack = RegInit(true.B) // first | last depending on wormhole
val s_probeack = RegInit(true.B) // C w_pprobeackfirst (mutually exclusive with next two s_*)
val s_grantack = RegInit(true.B) // E w_grantfirst ... CAN require both outE&inD to service outD
val s_execute = RegInit(true.B) // D w_pprobeack, w_grant
val w_grantack = RegInit(true.B)
val s_writeback = RegInit(true.B) // W w_*
// [1]: We cannot issue outer Acquire while holding blockB (=> outA can stall)
// However, inB and outC are higher priority than outB, so s_release and s_pprobe
// may be safely issued while blockB. Thus we must NOT try to schedule the
// potentially stuck s_acquire with either of them (scheduler is all or none).
// Meta-data that we discover underway
val sink = Reg(UInt(params.outer.bundle.sinkBits.W))
val gotT = Reg(Bool())
val bad_grant = Reg(Bool())
val probes_done = Reg(UInt(params.clientBits.W))
val probes_toN = Reg(UInt(params.clientBits.W))
val probes_noT = Reg(Bool())
// When a nested transaction completes, update our meta data
when (meta_valid && meta.state =/= INVALID &&
io.nestedwb.set === request.set && io.nestedwb.tag === meta.tag) {
when (io.nestedwb.b_clr_dirty) { meta.dirty := false.B }
when (io.nestedwb.c_set_dirty) { meta.dirty := true.B }
when (io.nestedwb.b_toB) { meta.state := BRANCH }
when (io.nestedwb.b_toN) { meta.hit := false.B }
}
// Scheduler status
io.status.valid := request_valid
io.status.bits.set := request.set
io.status.bits.tag := request.tag
io.status.bits.way := meta.way
io.status.bits.blockB := !meta_valid || ((!w_releaseack || !w_rprobeacklast || !w_pprobeacklast) && !w_grantfirst)
io.status.bits.nestB := meta_valid && w_releaseack && w_rprobeacklast && w_pprobeacklast && !w_grantfirst
// The above rules ensure we will block and not nest an outer probe while still doing our
// own inner probes. Thus every probe wakes exactly one MSHR.
io.status.bits.blockC := !meta_valid
io.status.bits.nestC := meta_valid && (!w_rprobeackfirst || !w_pprobeackfirst || !w_grantfirst)
// The w_grantfirst in nestC is necessary to deal with:
// acquire waiting for grant, inner release gets queued, outer probe -> inner probe -> deadlock
// ... this is possible because the release+probe can be for same set, but different tag
// We can only demand: block, nest, or queue
assert (!io.status.bits.nestB || !io.status.bits.blockB)
assert (!io.status.bits.nestC || !io.status.bits.blockC)
// Scheduler requests
val no_wait = w_rprobeacklast && w_releaseack && w_grantlast && w_pprobeacklast && w_grantack
io.schedule.bits.a.valid := !s_acquire && s_release && s_pprobe
io.schedule.bits.b.valid := !s_rprobe || !s_pprobe
io.schedule.bits.c.valid := (!s_release && w_rprobeackfirst) || (!s_probeack && w_pprobeackfirst)
io.schedule.bits.d.valid := !s_execute && w_pprobeack && w_grant
io.schedule.bits.e.valid := !s_grantack && w_grantfirst
io.schedule.bits.x.valid := !s_flush && w_releaseack
io.schedule.bits.dir.valid := (!s_release && w_rprobeackfirst) || (!s_writeback && no_wait)
io.schedule.bits.reload := no_wait
io.schedule.valid := io.schedule.bits.a.valid || io.schedule.bits.b.valid || io.schedule.bits.c.valid ||
io.schedule.bits.d.valid || io.schedule.bits.e.valid || io.schedule.bits.x.valid ||
io.schedule.bits.dir.valid
// Schedule completions
when (io.schedule.ready) {
s_rprobe := true.B
when (w_rprobeackfirst) { s_release := true.B }
s_pprobe := true.B
when (s_release && s_pprobe) { s_acquire := true.B }
when (w_releaseack) { s_flush := true.B }
when (w_pprobeackfirst) { s_probeack := true.B }
when (w_grantfirst) { s_grantack := true.B }
when (w_pprobeack && w_grant) { s_execute := true.B }
when (no_wait) { s_writeback := true.B }
// Await the next operation
when (no_wait) {
request_valid := false.B
meta_valid := false.B
}
}
// Resulting meta-data
val final_meta_writeback = WireInit(meta)
val req_clientBit = params.clientBit(request.source)
val req_needT = needT(request.opcode, request.param)
val req_acquire = request.opcode === AcquireBlock || request.opcode === AcquirePerm
val meta_no_clients = !meta.clients.orR
val req_promoteT = req_acquire && Mux(meta.hit, meta_no_clients && meta.state === TIP, gotT)
when (request.prio(2) && (!params.firstLevel).B) { // always a hit
final_meta_writeback.dirty := meta.dirty || request.opcode(0)
final_meta_writeback.state := Mux(request.param =/= TtoT && meta.state === TRUNK, TIP, meta.state)
final_meta_writeback.clients := meta.clients & ~Mux(isToN(request.param), req_clientBit, 0.U)
final_meta_writeback.hit := true.B // chained requests are hits
} .elsewhen (request.control && params.control.B) { // request.prio(0)
when (meta.hit) {
final_meta_writeback.dirty := false.B
final_meta_writeback.state := INVALID
final_meta_writeback.clients := meta.clients & ~probes_toN
}
final_meta_writeback.hit := false.B
} .otherwise {
final_meta_writeback.dirty := (meta.hit && meta.dirty) || !request.opcode(2)
final_meta_writeback.state := Mux(req_needT,
Mux(req_acquire, TRUNK, TIP),
Mux(!meta.hit, Mux(gotT, Mux(req_acquire, TRUNK, TIP), BRANCH),
MuxLookup(meta.state, 0.U(2.W))(Seq(
INVALID -> BRANCH,
BRANCH -> BRANCH,
TRUNK -> TIP,
TIP -> Mux(meta_no_clients && req_acquire, TRUNK, TIP)))))
final_meta_writeback.clients := Mux(meta.hit, meta.clients & ~probes_toN, 0.U) |
Mux(req_acquire, req_clientBit, 0.U)
final_meta_writeback.tag := request.tag
final_meta_writeback.hit := true.B
}
when (bad_grant) {
when (meta.hit) {
// upgrade failed (B -> T)
assert (!meta_valid || meta.state === BRANCH)
final_meta_writeback.hit := true.B
final_meta_writeback.dirty := false.B
final_meta_writeback.state := BRANCH
final_meta_writeback.clients := meta.clients & ~probes_toN
} .otherwise {
// failed N -> (T or B)
final_meta_writeback.hit := false.B
final_meta_writeback.dirty := false.B
final_meta_writeback.state := INVALID
final_meta_writeback.clients := 0.U
}
}
val invalid = Wire(new DirectoryEntry(params))
invalid.dirty := false.B
invalid.state := INVALID
invalid.clients := 0.U
invalid.tag := 0.U
// Just because a client says BtoT, by the time we process the request he may be N.
// Therefore, we must consult our own meta-data state to confirm he owns the line still.
val honour_BtoT = meta.hit && (meta.clients & req_clientBit).orR
// The client asking us to act is proof they don't have permissions.
val excluded_client = Mux(meta.hit && request.prio(0) && skipProbeN(request.opcode, params.cache.hintsSkipProbe), req_clientBit, 0.U)
io.schedule.bits.a.bits.tag := request.tag
io.schedule.bits.a.bits.set := request.set
io.schedule.bits.a.bits.param := Mux(req_needT, Mux(meta.hit, BtoT, NtoT), NtoB)
io.schedule.bits.a.bits.block := request.size =/= log2Ceil(params.cache.blockBytes).U ||
!(request.opcode === PutFullData || request.opcode === AcquirePerm)
io.schedule.bits.a.bits.source := 0.U
io.schedule.bits.b.bits.param := Mux(!s_rprobe, toN, Mux(request.prio(1), request.param, Mux(req_needT, toN, toB)))
io.schedule.bits.b.bits.tag := Mux(!s_rprobe, meta.tag, request.tag)
io.schedule.bits.b.bits.set := request.set
io.schedule.bits.b.bits.clients := meta.clients & ~excluded_client
io.schedule.bits.c.bits.opcode := Mux(meta.dirty, ReleaseData, Release)
io.schedule.bits.c.bits.param := Mux(meta.state === BRANCH, BtoN, TtoN)
io.schedule.bits.c.bits.source := 0.U
io.schedule.bits.c.bits.tag := meta.tag
io.schedule.bits.c.bits.set := request.set
io.schedule.bits.c.bits.way := meta.way
io.schedule.bits.c.bits.dirty := meta.dirty
io.schedule.bits.d.bits.viewAsSupertype(chiselTypeOf(request)) := request
io.schedule.bits.d.bits.param := Mux(!req_acquire, request.param,
MuxLookup(request.param, request.param)(Seq(
NtoB -> Mux(req_promoteT, NtoT, NtoB),
BtoT -> Mux(honour_BtoT, BtoT, NtoT),
NtoT -> NtoT)))
io.schedule.bits.d.bits.sink := 0.U
io.schedule.bits.d.bits.way := meta.way
io.schedule.bits.d.bits.bad := bad_grant
io.schedule.bits.e.bits.sink := sink
io.schedule.bits.x.bits.fail := false.B
io.schedule.bits.dir.bits.set := request.set
io.schedule.bits.dir.bits.way := meta.way
io.schedule.bits.dir.bits.data := Mux(!s_release, invalid, WireInit(new DirectoryEntry(params), init = final_meta_writeback))
// Coverage of state transitions
def cacheState(entry: DirectoryEntry, hit: Bool) = {
val out = WireDefault(0.U)
val c = entry.clients.orR
val d = entry.dirty
switch (entry.state) {
is (BRANCH) { out := Mux(c, S_BRANCH_C.code, S_BRANCH.code) }
is (TRUNK) { out := Mux(d, S_TRUNK_CD.code, S_TRUNK_C.code) }
is (TIP) { out := Mux(c, Mux(d, S_TIP_CD.code, S_TIP_C.code), Mux(d, S_TIP_D.code, S_TIP.code)) }
is (INVALID) { out := S_INVALID.code }
}
when (!hit) { out := S_INVALID.code }
out
}
val p = !params.lastLevel // can be probed
val c = !params.firstLevel // can be acquired
val m = params.inner.client.clients.exists(!_.supports.probe) // can be written (or read)
val r = params.outer.manager.managers.exists(!_.alwaysGrantsT) // read-only devices exist
val f = params.control // flush control register exists
val cfg = (p, c, m, r, f)
val b = r || p // can reach branch state (via probe downgrade or read-only device)
// The cache must be used for something or we would not be here
require(c || m)
val evict = cacheState(meta, !meta.hit)
val before = cacheState(meta, meta.hit)
val after = cacheState(final_meta_writeback, true.B)
def eviction(from: CacheState, cover: Boolean)(implicit sourceInfo: SourceInfo) {
if (cover) {
params.ccover(evict === from.code, s"MSHR_${from}_EVICT", s"State transition from ${from} to evicted ${cfg}")
} else {
assert(!(evict === from.code), cf"State transition from ${from} to evicted should be impossible ${cfg}")
}
if (cover && f) {
params.ccover(before === from.code, s"MSHR_${from}_FLUSH", s"State transition from ${from} to flushed ${cfg}")
} else {
assert(!(before === from.code), cf"State transition from ${from} to flushed should be impossible ${cfg}")
}
}
def transition(from: CacheState, to: CacheState, cover: Boolean)(implicit sourceInfo: SourceInfo) {
if (cover) {
params.ccover(before === from.code && after === to.code, s"MSHR_${from}_${to}", s"State transition from ${from} to ${to} ${cfg}")
} else {
assert(!(before === from.code && after === to.code), cf"State transition from ${from} to ${to} should be impossible ${cfg}")
}
}
when ((!s_release && w_rprobeackfirst) && io.schedule.ready) {
eviction(S_BRANCH, b) // MMIO read to read-only device
eviction(S_BRANCH_C, b && c) // you need children to become C
eviction(S_TIP, true) // MMIO read || clean release can lead to this state
eviction(S_TIP_C, c) // needs two clients || client + mmio || downgrading client
eviction(S_TIP_CD, c) // needs two clients || client + mmio || downgrading client
eviction(S_TIP_D, true) // MMIO write || dirty release lead here
eviction(S_TRUNK_C, c) // acquire for write
eviction(S_TRUNK_CD, c) // dirty release then reacquire
}
when ((!s_writeback && no_wait) && io.schedule.ready) {
transition(S_INVALID, S_BRANCH, b && m) // only MMIO can bring us to BRANCH state
transition(S_INVALID, S_BRANCH_C, b && c) // C state is only possible if there are inner caches
transition(S_INVALID, S_TIP, m) // MMIO read
transition(S_INVALID, S_TIP_C, false) // we would go S_TRUNK_C instead
transition(S_INVALID, S_TIP_CD, false) // acquire does not cause dirty immediately
transition(S_INVALID, S_TIP_D, m) // MMIO write
transition(S_INVALID, S_TRUNK_C, c) // acquire
transition(S_INVALID, S_TRUNK_CD, false) // acquire does not cause dirty immediately
transition(S_BRANCH, S_INVALID, b && p) // probe can do this (flushes run as evictions)
transition(S_BRANCH, S_BRANCH_C, b && c) // acquire
transition(S_BRANCH, S_TIP, b && m) // prefetch write
transition(S_BRANCH, S_TIP_C, false) // we would go S_TRUNK_C instead
transition(S_BRANCH, S_TIP_CD, false) // acquire does not cause dirty immediately
transition(S_BRANCH, S_TIP_D, b && m) // MMIO write
transition(S_BRANCH, S_TRUNK_C, b && c) // acquire
transition(S_BRANCH, S_TRUNK_CD, false) // acquire does not cause dirty immediately
transition(S_BRANCH_C, S_INVALID, b && c && p)
transition(S_BRANCH_C, S_BRANCH, b && c) // clean release (optional)
transition(S_BRANCH_C, S_TIP, b && c && m) // prefetch write
transition(S_BRANCH_C, S_TIP_C, false) // we would go S_TRUNK_C instead
transition(S_BRANCH_C, S_TIP_D, b && c && m) // MMIO write
transition(S_BRANCH_C, S_TIP_CD, false) // going dirty means we must shoot down clients
transition(S_BRANCH_C, S_TRUNK_C, b && c) // acquire
transition(S_BRANCH_C, S_TRUNK_CD, false) // acquire does not cause dirty immediately
transition(S_TIP, S_INVALID, p)
transition(S_TIP, S_BRANCH, p) // losing TIP only possible via probe
transition(S_TIP, S_BRANCH_C, false) // we would go S_TRUNK_C instead
transition(S_TIP, S_TIP_C, false) // we would go S_TRUNK_C instead
transition(S_TIP, S_TIP_D, m) // direct dirty only via MMIO write
transition(S_TIP, S_TIP_CD, false) // acquire does not make us dirty immediately
transition(S_TIP, S_TRUNK_C, c) // acquire
transition(S_TIP, S_TRUNK_CD, false) // acquire does not make us dirty immediately
transition(S_TIP_C, S_INVALID, c && p)
transition(S_TIP_C, S_BRANCH, c && p) // losing TIP only possible via probe
transition(S_TIP_C, S_BRANCH_C, c && p) // losing TIP only possible via probe
transition(S_TIP_C, S_TIP, c) // probed while MMIO read || clean release (optional)
transition(S_TIP_C, S_TIP_D, c && m) // direct dirty only via MMIO write
transition(S_TIP_C, S_TIP_CD, false) // going dirty means we must shoot down clients
transition(S_TIP_C, S_TRUNK_C, c) // acquire
transition(S_TIP_C, S_TRUNK_CD, false) // acquire does not make us immediately dirty
transition(S_TIP_D, S_INVALID, p)
transition(S_TIP_D, S_BRANCH, p) // losing D is only possible via probe
transition(S_TIP_D, S_BRANCH_C, p && c) // probed while acquire shared
transition(S_TIP_D, S_TIP, p) // probed while MMIO read || outer probe.toT (optional)
transition(S_TIP_D, S_TIP_C, false) // we would go S_TRUNK_C instead
transition(S_TIP_D, S_TIP_CD, false) // we would go S_TRUNK_CD instead
transition(S_TIP_D, S_TRUNK_C, p && c) // probed while acquired
transition(S_TIP_D, S_TRUNK_CD, c) // acquire
transition(S_TIP_CD, S_INVALID, c && p)
transition(S_TIP_CD, S_BRANCH, c && p) // losing D is only possible via probe
transition(S_TIP_CD, S_BRANCH_C, c && p) // losing D is only possible via probe
transition(S_TIP_CD, S_TIP, c && p) // probed while MMIO read || outer probe.toT (optional)
transition(S_TIP_CD, S_TIP_C, false) // we would go S_TRUNK_C instead
transition(S_TIP_CD, S_TIP_D, c) // MMIO write || clean release (optional)
transition(S_TIP_CD, S_TRUNK_C, c && p) // probed while acquire
transition(S_TIP_CD, S_TRUNK_CD, c) // acquire
transition(S_TRUNK_C, S_INVALID, c && p)
transition(S_TRUNK_C, S_BRANCH, c && p) // losing TIP only possible via probe
transition(S_TRUNK_C, S_BRANCH_C, c && p) // losing TIP only possible via probe
transition(S_TRUNK_C, S_TIP, c) // MMIO read || clean release (optional)
transition(S_TRUNK_C, S_TIP_C, c) // bounce shared
transition(S_TRUNK_C, S_TIP_D, c) // dirty release
transition(S_TRUNK_C, S_TIP_CD, c) // dirty bounce shared
transition(S_TRUNK_C, S_TRUNK_CD, c) // dirty bounce
transition(S_TRUNK_CD, S_INVALID, c && p)
transition(S_TRUNK_CD, S_BRANCH, c && p) // losing D only possible via probe
transition(S_TRUNK_CD, S_BRANCH_C, c && p) // losing D only possible via probe
transition(S_TRUNK_CD, S_TIP, c && p) // probed while MMIO read || outer probe.toT (optional)
transition(S_TRUNK_CD, S_TIP_C, false) // we would go S_TRUNK_C instead
transition(S_TRUNK_CD, S_TIP_D, c) // dirty release
transition(S_TRUNK_CD, S_TIP_CD, c) // bounce shared
transition(S_TRUNK_CD, S_TRUNK_C, c && p) // probed while acquire
}
// Handle response messages
val probe_bit = params.clientBit(io.sinkc.bits.source)
val last_probe = (probes_done | probe_bit) === (meta.clients & ~excluded_client)
val probe_toN = isToN(io.sinkc.bits.param)
if (!params.firstLevel) when (io.sinkc.valid) {
params.ccover( probe_toN && io.schedule.bits.b.bits.param === toB, "MSHR_PROBE_FULL", "Client downgraded to N when asked only to do B")
params.ccover(!probe_toN && io.schedule.bits.b.bits.param === toB, "MSHR_PROBE_HALF", "Client downgraded to B when asked only to do B")
// Caution: the probe matches us only in set.
// We would never allow an outer probe to nest until both w_[rp]probeack complete, so
// it is safe to just unguardedly update the probe FSM.
probes_done := probes_done | probe_bit
probes_toN := probes_toN | Mux(probe_toN, probe_bit, 0.U)
probes_noT := probes_noT || io.sinkc.bits.param =/= TtoT
w_rprobeackfirst := w_rprobeackfirst || last_probe
w_rprobeacklast := w_rprobeacklast || (last_probe && io.sinkc.bits.last)
w_pprobeackfirst := w_pprobeackfirst || last_probe
w_pprobeacklast := w_pprobeacklast || (last_probe && io.sinkc.bits.last)
// Allow wormhole routing from sinkC if the first request beat has offset 0
val set_pprobeack = last_probe && (io.sinkc.bits.last || request.offset === 0.U)
w_pprobeack := w_pprobeack || set_pprobeack
params.ccover(!set_pprobeack && w_rprobeackfirst, "MSHR_PROBE_SERIAL", "Sequential routing of probe response data")
params.ccover( set_pprobeack && w_rprobeackfirst, "MSHR_PROBE_WORMHOLE", "Wormhole routing of probe response data")
// However, meta-data updates need to be done more cautiously
when (meta.state =/= INVALID && io.sinkc.bits.tag === meta.tag && io.sinkc.bits.data) { meta.dirty := true.B } // !!!
}
when (io.sinkd.valid) {
when (io.sinkd.bits.opcode === Grant || io.sinkd.bits.opcode === GrantData) {
sink := io.sinkd.bits.sink
w_grantfirst := true.B
w_grantlast := io.sinkd.bits.last
// Record if we need to prevent taking ownership
bad_grant := io.sinkd.bits.denied
// Allow wormhole routing for requests whose first beat has offset 0
w_grant := request.offset === 0.U || io.sinkd.bits.last
params.ccover(io.sinkd.bits.opcode === GrantData && request.offset === 0.U, "MSHR_GRANT_WORMHOLE", "Wormhole routing of grant response data")
params.ccover(io.sinkd.bits.opcode === GrantData && request.offset =/= 0.U, "MSHR_GRANT_SERIAL", "Sequential routing of grant response data")
gotT := io.sinkd.bits.param === toT
}
.elsewhen (io.sinkd.bits.opcode === ReleaseAck) {
w_releaseack := true.B
}
}
when (io.sinke.valid) {
w_grantack := true.B
}
// Bootstrap new requests
val allocate_as_full = WireInit(new FullRequest(params), init = io.allocate.bits)
val new_meta = Mux(io.allocate.valid && io.allocate.bits.repeat, final_meta_writeback, io.directory.bits)
val new_request = Mux(io.allocate.valid, allocate_as_full, request)
val new_needT = needT(new_request.opcode, new_request.param)
val new_clientBit = params.clientBit(new_request.source)
val new_skipProbe = Mux(skipProbeN(new_request.opcode, params.cache.hintsSkipProbe), new_clientBit, 0.U)
val prior = cacheState(final_meta_writeback, true.B)
def bypass(from: CacheState, cover: Boolean)(implicit sourceInfo: SourceInfo) {
if (cover) {
params.ccover(prior === from.code, s"MSHR_${from}_BYPASS", s"State bypass transition from ${from} ${cfg}")
} else {
assert(!(prior === from.code), cf"State bypass from ${from} should be impossible ${cfg}")
}
}
when (io.allocate.valid && io.allocate.bits.repeat) {
bypass(S_INVALID, f || p) // Can lose permissions (probe/flush)
bypass(S_BRANCH, b) // MMIO read to read-only device
bypass(S_BRANCH_C, b && c) // you need children to become C
bypass(S_TIP, true) // MMIO read || clean release can lead to this state
bypass(S_TIP_C, c) // needs two clients || client + mmio || downgrading client
bypass(S_TIP_CD, c) // needs two clients || client + mmio || downgrading client
bypass(S_TIP_D, true) // MMIO write || dirty release lead here
bypass(S_TRUNK_C, c) // acquire for write
bypass(S_TRUNK_CD, c) // dirty release then reacquire
}
when (io.allocate.valid) {
assert (!request_valid || (no_wait && io.schedule.fire))
request_valid := true.B
request := io.allocate.bits
}
// Create execution plan
when (io.directory.valid || (io.allocate.valid && io.allocate.bits.repeat)) {
meta_valid := true.B
meta := new_meta
probes_done := 0.U
probes_toN := 0.U
probes_noT := false.B
gotT := false.B
bad_grant := false.B
// These should already be either true or turning true
// We clear them here explicitly to simplify the mux tree
s_rprobe := true.B
w_rprobeackfirst := true.B
w_rprobeacklast := true.B
s_release := true.B
w_releaseack := true.B
s_pprobe := true.B
s_acquire := true.B
s_flush := true.B
w_grantfirst := true.B
w_grantlast := true.B
w_grant := true.B
w_pprobeackfirst := true.B
w_pprobeacklast := true.B
w_pprobeack := true.B
s_probeack := true.B
s_grantack := true.B
s_execute := true.B
w_grantack := true.B
s_writeback := true.B
// For C channel requests (ie: Release[Data])
when (new_request.prio(2) && (!params.firstLevel).B) {
s_execute := false.B
// Do we need to go dirty?
when (new_request.opcode(0) && !new_meta.dirty) {
s_writeback := false.B
}
// Does our state change?
when (isToB(new_request.param) && new_meta.state === TRUNK) {
s_writeback := false.B
}
// Do our clients change?
when (isToN(new_request.param) && (new_meta.clients & new_clientBit) =/= 0.U) {
s_writeback := false.B
}
assert (new_meta.hit)
}
// For X channel requests (ie: flush)
.elsewhen (new_request.control && params.control.B) { // new_request.prio(0)
s_flush := false.B
// Do we need to actually do something?
when (new_meta.hit) {
s_release := false.B
w_releaseack := false.B
// Do we need to shoot-down inner caches?
when ((!params.firstLevel).B && (new_meta.clients =/= 0.U)) {
s_rprobe := false.B
w_rprobeackfirst := false.B
w_rprobeacklast := false.B
}
}
}
// For A channel requests
.otherwise { // new_request.prio(0) && !new_request.control
s_execute := false.B
// Do we need an eviction?
when (!new_meta.hit && new_meta.state =/= INVALID) {
s_release := false.B
w_releaseack := false.B
// Do we need to shoot-down inner caches?
when ((!params.firstLevel).B & (new_meta.clients =/= 0.U)) {
s_rprobe := false.B
w_rprobeackfirst := false.B
w_rprobeacklast := false.B
}
}
// Do we need an acquire?
when (!new_meta.hit || (new_meta.state === BRANCH && new_needT)) {
s_acquire := false.B
w_grantfirst := false.B
w_grantlast := false.B
w_grant := false.B
s_grantack := false.B
s_writeback := false.B
}
// Do we need a probe?
when ((!params.firstLevel).B && (new_meta.hit &&
(new_needT || new_meta.state === TRUNK) &&
(new_meta.clients & ~new_skipProbe) =/= 0.U)) {
s_pprobe := false.B
w_pprobeackfirst := false.B
w_pprobeacklast := false.B
w_pprobeack := false.B
s_writeback := false.B
}
// Do we need a grantack?
when (new_request.opcode === AcquireBlock || new_request.opcode === AcquirePerm) {
w_grantack := false.B
s_writeback := false.B
}
// Becomes dirty?
when (!new_request.opcode(2) && new_meta.hit && !new_meta.dirty) {
s_writeback := false.B
}
}
}
}
File Parameters.scala:
/*
* Copyright 2019 SiFive, Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You should have received a copy of LICENSE.Apache2 along with
* this software. If not, you may obtain a copy at
*
* https://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package sifive.blocks.inclusivecache
import chisel3._
import chisel3.util._
import chisel3.experimental.SourceInfo
import org.chipsalliance.cde.config._
import freechips.rocketchip.diplomacy._
import freechips.rocketchip.tilelink._
import freechips.rocketchip.util._
import freechips.rocketchip.util.property.cover
import scala.math.{min,max}
case class CacheParameters(
level: Int,
ways: Int,
sets: Int,
blockBytes: Int,
beatBytes: Int, // inner
hintsSkipProbe: Boolean)
{
require (ways > 0)
require (sets > 0)
require (blockBytes > 0 && isPow2(blockBytes))
require (beatBytes > 0 && isPow2(beatBytes))
require (blockBytes >= beatBytes)
val blocks = ways * sets
val sizeBytes = blocks * blockBytes
val blockBeats = blockBytes/beatBytes
}
case class InclusiveCachePortParameters(
a: BufferParams,
b: BufferParams,
c: BufferParams,
d: BufferParams,
e: BufferParams)
{
def apply()(implicit p: Parameters, valName: ValName) = LazyModule(new TLBuffer(a, b, c, d, e))
}
object InclusiveCachePortParameters
{
val none = InclusiveCachePortParameters(
a = BufferParams.none,
b = BufferParams.none,
c = BufferParams.none,
d = BufferParams.none,
e = BufferParams.none)
val full = InclusiveCachePortParameters(
a = BufferParams.default,
b = BufferParams.default,
c = BufferParams.default,
d = BufferParams.default,
e = BufferParams.default)
// This removes feed-through paths from C=>A and A=>C
val fullC = InclusiveCachePortParameters(
a = BufferParams.none,
b = BufferParams.none,
c = BufferParams.default,
d = BufferParams.none,
e = BufferParams.none)
val flowAD = InclusiveCachePortParameters(
a = BufferParams.flow,
b = BufferParams.none,
c = BufferParams.none,
d = BufferParams.flow,
e = BufferParams.none)
val flowAE = InclusiveCachePortParameters(
a = BufferParams.flow,
b = BufferParams.none,
c = BufferParams.none,
d = BufferParams.none,
e = BufferParams.flow)
// For innerBuf:
// SinkA: no restrictions, flows into scheduler+putbuffer
// SourceB: no restrictions, flows out of scheduler
// sinkC: no restrictions, flows into scheduler+putbuffer & buffered to bankedStore
// SourceD: no restrictions, flows out of bankedStore/regout
// SinkE: no restrictions, flows into scheduler
//
// ... so while none is possible, you probably want at least flowAC to cut ready
// from the scheduler delay and flowD to ease SourceD back-pressure
// For outerBufer:
// SourceA: must not be pipe, flows out of scheduler
// SinkB: no restrictions, flows into scheduler
// SourceC: pipe is useless, flows out of bankedStore/regout, parameter depth ignored
// SinkD: no restrictions, flows into scheduler & bankedStore
// SourceE: must not be pipe, flows out of scheduler
//
// ... AE take the channel ready into the scheduler, so you need at least flowAE
}
case class InclusiveCacheMicroParameters(
writeBytes: Int, // backing store update granularity
memCycles: Int = 40, // # of L2 clock cycles for a memory round-trip (50ns @ 800MHz)
portFactor: Int = 4, // numSubBanks = (widest TL port * portFactor) / writeBytes
dirReg: Boolean = false,
innerBuf: InclusiveCachePortParameters = InclusiveCachePortParameters.fullC, // or none
outerBuf: InclusiveCachePortParameters = InclusiveCachePortParameters.full) // or flowAE
{
require (writeBytes > 0 && isPow2(writeBytes))
require (memCycles > 0)
require (portFactor >= 2) // for inner RMW and concurrent outer Relase + Grant
}
case class InclusiveCacheControlParameters(
address: BigInt,
beatBytes: Int,
bankedControl: Boolean)
case class InclusiveCacheParameters(
cache: CacheParameters,
micro: InclusiveCacheMicroParameters,
control: Boolean,
inner: TLEdgeIn,
outer: TLEdgeOut)(implicit val p: Parameters)
{
require (cache.ways > 1)
require (cache.sets > 1 && isPow2(cache.sets))
require (micro.writeBytes <= inner.manager.beatBytes)
require (micro.writeBytes <= outer.manager.beatBytes)
require (inner.manager.beatBytes <= cache.blockBytes)
require (outer.manager.beatBytes <= cache.blockBytes)
// Require that all cached address ranges have contiguous blocks
outer.manager.managers.flatMap(_.address).foreach { a =>
require (a.alignment >= cache.blockBytes)
}
// If we are the first level cache, we do not need to support inner-BCE
val firstLevel = !inner.client.clients.exists(_.supports.probe)
// If we are the last level cache, we do not need to support outer-B
val lastLevel = !outer.manager.managers.exists(_.regionType > RegionType.UNCACHED)
require (lastLevel)
// Provision enough resources to achieve full throughput with missing single-beat accesses
val mshrs = InclusiveCacheParameters.all_mshrs(cache, micro)
val secondary = max(mshrs, micro.memCycles - mshrs)
val putLists = micro.memCycles // allow every request to be single beat
val putBeats = max(2*cache.blockBeats, micro.memCycles)
val relLists = 2
val relBeats = relLists*cache.blockBeats
val flatAddresses = AddressSet.unify(outer.manager.managers.flatMap(_.address))
val pickMask = AddressDecoder(flatAddresses.map(Seq(_)), flatAddresses.map(_.mask).reduce(_|_))
def bitOffsets(x: BigInt, offset: Int = 0, tail: List[Int] = List.empty[Int]): List[Int] =
if (x == 0) tail.reverse else bitOffsets(x >> 1, offset + 1, if ((x & 1) == 1) offset :: tail else tail)
val addressMapping = bitOffsets(pickMask)
val addressBits = addressMapping.size
// println(s"addresses: ${flatAddresses} => ${pickMask} => ${addressBits}")
val allClients = inner.client.clients.size
val clientBitsRaw = inner.client.clients.filter(_.supports.probe).size
val clientBits = max(1, clientBitsRaw)
val stateBits = 2
val wayBits = log2Ceil(cache.ways)
val setBits = log2Ceil(cache.sets)
val offsetBits = log2Ceil(cache.blockBytes)
val tagBits = addressBits - setBits - offsetBits
val putBits = log2Ceil(max(putLists, relLists))
require (tagBits > 0)
require (offsetBits > 0)
val innerBeatBits = (offsetBits - log2Ceil(inner.manager.beatBytes)) max 1
val outerBeatBits = (offsetBits - log2Ceil(outer.manager.beatBytes)) max 1
val innerMaskBits = inner.manager.beatBytes / micro.writeBytes
val outerMaskBits = outer.manager.beatBytes / micro.writeBytes
def clientBit(source: UInt): UInt = {
if (clientBitsRaw == 0) {
0.U
} else {
Cat(inner.client.clients.filter(_.supports.probe).map(_.sourceId.contains(source)).reverse)
}
}
def clientSource(bit: UInt): UInt = {
if (clientBitsRaw == 0) {
0.U
} else {
Mux1H(bit, inner.client.clients.filter(_.supports.probe).map(c => c.sourceId.start.U))
}
}
def parseAddress(x: UInt): (UInt, UInt, UInt) = {
val offset = Cat(addressMapping.map(o => x(o,o)).reverse)
val set = offset >> offsetBits
val tag = set >> setBits
(tag(tagBits-1, 0), set(setBits-1, 0), offset(offsetBits-1, 0))
}
def widen(x: UInt, width: Int): UInt = {
val y = x | 0.U(width.W)
assert (y >> width === 0.U)
y(width-1, 0)
}
def expandAddress(tag: UInt, set: UInt, offset: UInt): UInt = {
val base = Cat(widen(tag, tagBits), widen(set, setBits), widen(offset, offsetBits))
val bits = Array.fill(outer.bundle.addressBits) { 0.U(1.W) }
addressMapping.zipWithIndex.foreach { case (a, i) => bits(a) = base(i,i) }
Cat(bits.reverse)
}
def restoreAddress(expanded: UInt): UInt = {
val missingBits = flatAddresses
.map { a => (a.widen(pickMask).base, a.widen(~pickMask)) } // key is the bits to restore on match
.groupBy(_._1)
.view
.mapValues(_.map(_._2))
val muxMask = AddressDecoder(missingBits.values.toList)
val mux = missingBits.toList.map { case (bits, addrs) =>
val widen = addrs.map(_.widen(~muxMask))
val matches = AddressSet
.unify(widen.distinct)
.map(_.contains(expanded))
.reduce(_ || _)
(matches, bits.U)
}
expanded | Mux1H(mux)
}
def dirReg[T <: Data](x: T, en: Bool = true.B): T = {
if (micro.dirReg) RegEnable(x, en) else x
}
def ccover(cond: Bool, label: String, desc: String)(implicit sourceInfo: SourceInfo) =
cover(cond, "CCACHE_L" + cache.level + "_" + label, "MemorySystem;;" + desc)
}
object MetaData
{
val stateBits = 2
def INVALID: UInt = 0.U(stateBits.W) // way is empty
def BRANCH: UInt = 1.U(stateBits.W) // outer slave cache is trunk
def TRUNK: UInt = 2.U(stateBits.W) // unique inner master cache is trunk
def TIP: UInt = 3.U(stateBits.W) // we are trunk, inner masters are branch
// Does a request need trunk?
def needT(opcode: UInt, param: UInt): Bool = {
!opcode(2) ||
(opcode === TLMessages.Hint && param === TLHints.PREFETCH_WRITE) ||
((opcode === TLMessages.AcquireBlock || opcode === TLMessages.AcquirePerm) && param =/= TLPermissions.NtoB)
}
// Does a request prove the client need not be probed?
def skipProbeN(opcode: UInt, hintsSkipProbe: Boolean): Bool = {
// Acquire(toB) and Get => is N, so no probe
// Acquire(*toT) => is N or B, but need T, so no probe
// Hint => could be anything, so probe IS needed, if hintsSkipProbe is enabled, skip probe the same client
// Put* => is N or B, so probe IS needed
opcode === TLMessages.AcquireBlock || opcode === TLMessages.AcquirePerm || opcode === TLMessages.Get || (opcode === TLMessages.Hint && hintsSkipProbe.B)
}
def isToN(param: UInt): Bool = {
param === TLPermissions.TtoN || param === TLPermissions.BtoN || param === TLPermissions.NtoN
}
def isToB(param: UInt): Bool = {
param === TLPermissions.TtoB || param === TLPermissions.BtoB
}
}
object InclusiveCacheParameters
{
val lfsrBits = 10
val L2ControlAddress = 0x2010000
val L2ControlSize = 0x1000
def out_mshrs(cache: CacheParameters, micro: InclusiveCacheMicroParameters): Int = {
// We need 2-3 normal MSHRs to cover the Directory latency
// To fully exploit memory bandwidth-delay-product, we need memCyles/blockBeats MSHRs
max(if (micro.dirReg) 3 else 2, (micro.memCycles + cache.blockBeats - 1) / cache.blockBeats)
}
def all_mshrs(cache: CacheParameters, micro: InclusiveCacheMicroParameters): Int =
// We need a dedicated MSHR for B+C each
2 + out_mshrs(cache, micro)
}
class InclusiveCacheBundle(params: InclusiveCacheParameters) extends Bundle
| module MSHR_8( // @[MSHR.scala:84:7]
input clock, // @[MSHR.scala:84:7]
input reset, // @[MSHR.scala:84:7]
input io_allocate_valid, // @[MSHR.scala:86:14]
input io_allocate_bits_prio_0, // @[MSHR.scala:86:14]
input io_allocate_bits_prio_1, // @[MSHR.scala:86:14]
input io_allocate_bits_prio_2, // @[MSHR.scala:86:14]
input io_allocate_bits_control, // @[MSHR.scala:86:14]
input [2:0] io_allocate_bits_opcode, // @[MSHR.scala:86:14]
input [2:0] io_allocate_bits_param, // @[MSHR.scala:86:14]
input [2:0] io_allocate_bits_size, // @[MSHR.scala:86:14]
input [7:0] io_allocate_bits_source, // @[MSHR.scala:86:14]
input [12:0] io_allocate_bits_tag, // @[MSHR.scala:86:14]
input [5:0] io_allocate_bits_offset, // @[MSHR.scala:86:14]
input [5:0] io_allocate_bits_put, // @[MSHR.scala:86:14]
input [9:0] io_allocate_bits_set, // @[MSHR.scala:86:14]
input io_allocate_bits_repeat, // @[MSHR.scala:86:14]
input io_directory_valid, // @[MSHR.scala:86:14]
input io_directory_bits_dirty, // @[MSHR.scala:86:14]
input [1:0] io_directory_bits_state, // @[MSHR.scala:86:14]
input io_directory_bits_clients, // @[MSHR.scala:86:14]
input [12:0] io_directory_bits_tag, // @[MSHR.scala:86:14]
input io_directory_bits_hit, // @[MSHR.scala:86:14]
input [2:0] io_directory_bits_way, // @[MSHR.scala:86:14]
output io_status_valid, // @[MSHR.scala:86:14]
output [9:0] io_status_bits_set, // @[MSHR.scala:86:14]
output [12:0] io_status_bits_tag, // @[MSHR.scala:86:14]
output [2:0] io_status_bits_way, // @[MSHR.scala:86:14]
output io_status_bits_blockB, // @[MSHR.scala:86:14]
output io_status_bits_nestB, // @[MSHR.scala:86:14]
output io_status_bits_blockC, // @[MSHR.scala:86:14]
output io_status_bits_nestC, // @[MSHR.scala:86:14]
input io_schedule_ready, // @[MSHR.scala:86:14]
output io_schedule_valid, // @[MSHR.scala:86:14]
output io_schedule_bits_a_valid, // @[MSHR.scala:86:14]
output [12:0] io_schedule_bits_a_bits_tag, // @[MSHR.scala:86:14]
output [9:0] io_schedule_bits_a_bits_set, // @[MSHR.scala:86:14]
output [2:0] io_schedule_bits_a_bits_param, // @[MSHR.scala:86:14]
output io_schedule_bits_a_bits_block, // @[MSHR.scala:86:14]
output io_schedule_bits_b_valid, // @[MSHR.scala:86:14]
output [2:0] io_schedule_bits_b_bits_param, // @[MSHR.scala:86:14]
output [12:0] io_schedule_bits_b_bits_tag, // @[MSHR.scala:86:14]
output [9:0] io_schedule_bits_b_bits_set, // @[MSHR.scala:86:14]
output io_schedule_bits_b_bits_clients, // @[MSHR.scala:86:14]
output io_schedule_bits_c_valid, // @[MSHR.scala:86:14]
output [2:0] io_schedule_bits_c_bits_opcode, // @[MSHR.scala:86:14]
output [2:0] io_schedule_bits_c_bits_param, // @[MSHR.scala:86:14]
output [12:0] io_schedule_bits_c_bits_tag, // @[MSHR.scala:86:14]
output [9:0] io_schedule_bits_c_bits_set, // @[MSHR.scala:86:14]
output [2:0] io_schedule_bits_c_bits_way, // @[MSHR.scala:86:14]
output io_schedule_bits_c_bits_dirty, // @[MSHR.scala:86:14]
output io_schedule_bits_d_valid, // @[MSHR.scala:86:14]
output io_schedule_bits_d_bits_prio_0, // @[MSHR.scala:86:14]
output io_schedule_bits_d_bits_prio_1, // @[MSHR.scala:86:14]
output io_schedule_bits_d_bits_prio_2, // @[MSHR.scala:86:14]
output io_schedule_bits_d_bits_control, // @[MSHR.scala:86:14]
output [2:0] io_schedule_bits_d_bits_opcode, // @[MSHR.scala:86:14]
output [2:0] io_schedule_bits_d_bits_param, // @[MSHR.scala:86:14]
output [2:0] io_schedule_bits_d_bits_size, // @[MSHR.scala:86:14]
output [7:0] io_schedule_bits_d_bits_source, // @[MSHR.scala:86:14]
output [12:0] io_schedule_bits_d_bits_tag, // @[MSHR.scala:86:14]
output [5:0] io_schedule_bits_d_bits_offset, // @[MSHR.scala:86:14]
output [5:0] io_schedule_bits_d_bits_put, // @[MSHR.scala:86:14]
output [9:0] io_schedule_bits_d_bits_set, // @[MSHR.scala:86:14]
output [2:0] io_schedule_bits_d_bits_way, // @[MSHR.scala:86:14]
output io_schedule_bits_d_bits_bad, // @[MSHR.scala:86:14]
output io_schedule_bits_e_valid, // @[MSHR.scala:86:14]
output [2:0] io_schedule_bits_e_bits_sink, // @[MSHR.scala:86:14]
output io_schedule_bits_x_valid, // @[MSHR.scala:86:14]
output io_schedule_bits_dir_valid, // @[MSHR.scala:86:14]
output [9:0] io_schedule_bits_dir_bits_set, // @[MSHR.scala:86:14]
output [2:0] io_schedule_bits_dir_bits_way, // @[MSHR.scala:86:14]
output io_schedule_bits_dir_bits_data_dirty, // @[MSHR.scala:86:14]
output [1:0] io_schedule_bits_dir_bits_data_state, // @[MSHR.scala:86:14]
output io_schedule_bits_dir_bits_data_clients, // @[MSHR.scala:86:14]
output [12:0] io_schedule_bits_dir_bits_data_tag, // @[MSHR.scala:86:14]
output io_schedule_bits_reload, // @[MSHR.scala:86:14]
input io_sinkc_valid, // @[MSHR.scala:86:14]
input io_sinkc_bits_last, // @[MSHR.scala:86:14]
input [9:0] io_sinkc_bits_set, // @[MSHR.scala:86:14]
input [12:0] io_sinkc_bits_tag, // @[MSHR.scala:86:14]
input [7:0] io_sinkc_bits_source, // @[MSHR.scala:86:14]
input [2:0] io_sinkc_bits_param, // @[MSHR.scala:86:14]
input io_sinkc_bits_data, // @[MSHR.scala:86:14]
input io_sinkd_valid, // @[MSHR.scala:86:14]
input io_sinkd_bits_last, // @[MSHR.scala:86:14]
input [2:0] io_sinkd_bits_opcode, // @[MSHR.scala:86:14]
input [2:0] io_sinkd_bits_param, // @[MSHR.scala:86:14]
input [3:0] io_sinkd_bits_source, // @[MSHR.scala:86:14]
input [2:0] io_sinkd_bits_sink, // @[MSHR.scala:86:14]
input io_sinkd_bits_denied, // @[MSHR.scala:86:14]
input io_sinke_valid, // @[MSHR.scala:86:14]
input [3:0] io_sinke_bits_sink, // @[MSHR.scala:86:14]
input [9:0] io_nestedwb_set, // @[MSHR.scala:86:14]
input [12:0] io_nestedwb_tag, // @[MSHR.scala:86:14]
input io_nestedwb_b_toN, // @[MSHR.scala:86:14]
input io_nestedwb_b_toB, // @[MSHR.scala:86:14]
input io_nestedwb_b_clr_dirty, // @[MSHR.scala:86:14]
input io_nestedwb_c_set_dirty // @[MSHR.scala:86:14]
);
wire [12:0] final_meta_writeback_tag; // @[MSHR.scala:215:38]
wire final_meta_writeback_clients; // @[MSHR.scala:215:38]
wire [1:0] final_meta_writeback_state; // @[MSHR.scala:215:38]
wire final_meta_writeback_dirty; // @[MSHR.scala:215:38]
wire io_allocate_valid_0 = io_allocate_valid; // @[MSHR.scala:84:7]
wire io_allocate_bits_prio_0_0 = io_allocate_bits_prio_0; // @[MSHR.scala:84:7]
wire io_allocate_bits_prio_1_0 = io_allocate_bits_prio_1; // @[MSHR.scala:84:7]
wire io_allocate_bits_prio_2_0 = io_allocate_bits_prio_2; // @[MSHR.scala:84:7]
wire io_allocate_bits_control_0 = io_allocate_bits_control; // @[MSHR.scala:84:7]
wire [2:0] io_allocate_bits_opcode_0 = io_allocate_bits_opcode; // @[MSHR.scala:84:7]
wire [2:0] io_allocate_bits_param_0 = io_allocate_bits_param; // @[MSHR.scala:84:7]
wire [2:0] io_allocate_bits_size_0 = io_allocate_bits_size; // @[MSHR.scala:84:7]
wire [7:0] io_allocate_bits_source_0 = io_allocate_bits_source; // @[MSHR.scala:84:7]
wire [12:0] io_allocate_bits_tag_0 = io_allocate_bits_tag; // @[MSHR.scala:84:7]
wire [5:0] io_allocate_bits_offset_0 = io_allocate_bits_offset; // @[MSHR.scala:84:7]
wire [5:0] io_allocate_bits_put_0 = io_allocate_bits_put; // @[MSHR.scala:84:7]
wire [9:0] io_allocate_bits_set_0 = io_allocate_bits_set; // @[MSHR.scala:84:7]
wire io_allocate_bits_repeat_0 = io_allocate_bits_repeat; // @[MSHR.scala:84:7]
wire io_directory_valid_0 = io_directory_valid; // @[MSHR.scala:84:7]
wire io_directory_bits_dirty_0 = io_directory_bits_dirty; // @[MSHR.scala:84:7]
wire [1:0] io_directory_bits_state_0 = io_directory_bits_state; // @[MSHR.scala:84:7]
wire io_directory_bits_clients_0 = io_directory_bits_clients; // @[MSHR.scala:84:7]
wire [12:0] io_directory_bits_tag_0 = io_directory_bits_tag; // @[MSHR.scala:84:7]
wire io_directory_bits_hit_0 = io_directory_bits_hit; // @[MSHR.scala:84:7]
wire [2:0] io_directory_bits_way_0 = io_directory_bits_way; // @[MSHR.scala:84:7]
wire io_schedule_ready_0 = io_schedule_ready; // @[MSHR.scala:84:7]
wire io_sinkc_valid_0 = io_sinkc_valid; // @[MSHR.scala:84:7]
wire io_sinkc_bits_last_0 = io_sinkc_bits_last; // @[MSHR.scala:84:7]
wire [9:0] io_sinkc_bits_set_0 = io_sinkc_bits_set; // @[MSHR.scala:84:7]
wire [12:0] io_sinkc_bits_tag_0 = io_sinkc_bits_tag; // @[MSHR.scala:84:7]
wire [7:0] io_sinkc_bits_source_0 = io_sinkc_bits_source; // @[MSHR.scala:84:7]
wire [2:0] io_sinkc_bits_param_0 = io_sinkc_bits_param; // @[MSHR.scala:84:7]
wire io_sinkc_bits_data_0 = io_sinkc_bits_data; // @[MSHR.scala:84:7]
wire io_sinkd_valid_0 = io_sinkd_valid; // @[MSHR.scala:84:7]
wire io_sinkd_bits_last_0 = io_sinkd_bits_last; // @[MSHR.scala:84:7]
wire [2:0] io_sinkd_bits_opcode_0 = io_sinkd_bits_opcode; // @[MSHR.scala:84:7]
wire [2:0] io_sinkd_bits_param_0 = io_sinkd_bits_param; // @[MSHR.scala:84:7]
wire [3:0] io_sinkd_bits_source_0 = io_sinkd_bits_source; // @[MSHR.scala:84:7]
wire [2:0] io_sinkd_bits_sink_0 = io_sinkd_bits_sink; // @[MSHR.scala:84:7]
wire io_sinkd_bits_denied_0 = io_sinkd_bits_denied; // @[MSHR.scala:84:7]
wire io_sinke_valid_0 = io_sinke_valid; // @[MSHR.scala:84:7]
wire [3:0] io_sinke_bits_sink_0 = io_sinke_bits_sink; // @[MSHR.scala:84:7]
wire [9:0] io_nestedwb_set_0 = io_nestedwb_set; // @[MSHR.scala:84:7]
wire [12:0] io_nestedwb_tag_0 = io_nestedwb_tag; // @[MSHR.scala:84:7]
wire io_nestedwb_b_toN_0 = io_nestedwb_b_toN; // @[MSHR.scala:84:7]
wire io_nestedwb_b_toB_0 = io_nestedwb_b_toB; // @[MSHR.scala:84:7]
wire io_nestedwb_b_clr_dirty_0 = io_nestedwb_b_clr_dirty; // @[MSHR.scala:84:7]
wire io_nestedwb_c_set_dirty_0 = io_nestedwb_c_set_dirty; // @[MSHR.scala:84:7]
wire [3:0] io_schedule_bits_a_bits_source = 4'h0; // @[MSHR.scala:84:7]
wire [3:0] io_schedule_bits_c_bits_source = 4'h0; // @[MSHR.scala:84:7]
wire [3:0] io_schedule_bits_d_bits_sink = 4'h0; // @[MSHR.scala:84:7]
wire io_schedule_bits_x_bits_fail = 1'h0; // @[MSHR.scala:84:7]
wire _io_schedule_bits_c_valid_T_2 = 1'h0; // @[MSHR.scala:186:68]
wire _io_schedule_bits_c_valid_T_3 = 1'h0; // @[MSHR.scala:186:80]
wire invalid_dirty = 1'h0; // @[MSHR.scala:268:21]
wire invalid_clients = 1'h0; // @[MSHR.scala:268:21]
wire _excluded_client_T_7 = 1'h0; // @[Parameters.scala:279:137]
wire _after_T_4 = 1'h0; // @[MSHR.scala:323:11]
wire _new_skipProbe_T_6 = 1'h0; // @[Parameters.scala:279:137]
wire _prior_T_4 = 1'h0; // @[MSHR.scala:323:11]
wire [12:0] invalid_tag = 13'h0; // @[MSHR.scala:268:21]
wire [1:0] invalid_state = 2'h0; // @[MSHR.scala:268:21]
wire [1:0] _final_meta_writeback_state_T_11 = 2'h1; // @[MSHR.scala:240:70]
wire allocate_as_full_prio_0 = io_allocate_bits_prio_0_0; // @[MSHR.scala:84:7, :504:34]
wire allocate_as_full_prio_1 = io_allocate_bits_prio_1_0; // @[MSHR.scala:84:7, :504:34]
wire allocate_as_full_prio_2 = io_allocate_bits_prio_2_0; // @[MSHR.scala:84:7, :504:34]
wire allocate_as_full_control = io_allocate_bits_control_0; // @[MSHR.scala:84:7, :504:34]
wire [2:0] allocate_as_full_opcode = io_allocate_bits_opcode_0; // @[MSHR.scala:84:7, :504:34]
wire [2:0] allocate_as_full_param = io_allocate_bits_param_0; // @[MSHR.scala:84:7, :504:34]
wire [2:0] allocate_as_full_size = io_allocate_bits_size_0; // @[MSHR.scala:84:7, :504:34]
wire [7:0] allocate_as_full_source = io_allocate_bits_source_0; // @[MSHR.scala:84:7, :504:34]
wire [12:0] allocate_as_full_tag = io_allocate_bits_tag_0; // @[MSHR.scala:84:7, :504:34]
wire [5:0] allocate_as_full_offset = io_allocate_bits_offset_0; // @[MSHR.scala:84:7, :504:34]
wire [5:0] allocate_as_full_put = io_allocate_bits_put_0; // @[MSHR.scala:84:7, :504:34]
wire [9:0] allocate_as_full_set = io_allocate_bits_set_0; // @[MSHR.scala:84:7, :504:34]
wire _io_status_bits_blockB_T_8; // @[MSHR.scala:168:40]
wire _io_status_bits_nestB_T_4; // @[MSHR.scala:169:93]
wire _io_status_bits_blockC_T; // @[MSHR.scala:172:28]
wire _io_status_bits_nestC_T_5; // @[MSHR.scala:173:39]
wire _io_schedule_valid_T_5; // @[MSHR.scala:193:105]
wire _io_schedule_bits_a_valid_T_2; // @[MSHR.scala:184:55]
wire _io_schedule_bits_a_bits_block_T_5; // @[MSHR.scala:283:91]
wire _io_schedule_bits_b_valid_T_2; // @[MSHR.scala:185:41]
wire [2:0] _io_schedule_bits_b_bits_param_T_3; // @[MSHR.scala:286:41]
wire [12:0] _io_schedule_bits_b_bits_tag_T_1; // @[MSHR.scala:287:41]
wire _io_schedule_bits_b_bits_clients_T_1; // @[MSHR.scala:289:51]
wire _io_schedule_bits_c_valid_T_4; // @[MSHR.scala:186:64]
wire [2:0] _io_schedule_bits_c_bits_opcode_T; // @[MSHR.scala:290:41]
wire [2:0] _io_schedule_bits_c_bits_param_T_1; // @[MSHR.scala:291:41]
wire _io_schedule_bits_d_valid_T_2; // @[MSHR.scala:187:57]
wire [2:0] _io_schedule_bits_d_bits_param_T_9; // @[MSHR.scala:298:41]
wire _io_schedule_bits_e_valid_T_1; // @[MSHR.scala:188:43]
wire _io_schedule_bits_x_valid_T_1; // @[MSHR.scala:189:40]
wire _io_schedule_bits_dir_valid_T_4; // @[MSHR.scala:190:66]
wire _io_schedule_bits_dir_bits_data_T_1_dirty; // @[MSHR.scala:310:41]
wire [1:0] _io_schedule_bits_dir_bits_data_T_1_state; // @[MSHR.scala:310:41]
wire _io_schedule_bits_dir_bits_data_T_1_clients; // @[MSHR.scala:310:41]
wire [12:0] _io_schedule_bits_dir_bits_data_T_1_tag; // @[MSHR.scala:310:41]
wire no_wait; // @[MSHR.scala:183:83]
wire [9:0] io_status_bits_set_0; // @[MSHR.scala:84:7]
wire [12:0] io_status_bits_tag_0; // @[MSHR.scala:84:7]
wire [2:0] io_status_bits_way_0; // @[MSHR.scala:84:7]
wire io_status_bits_blockB_0; // @[MSHR.scala:84:7]
wire io_status_bits_nestB_0; // @[MSHR.scala:84:7]
wire io_status_bits_blockC_0; // @[MSHR.scala:84:7]
wire io_status_bits_nestC_0; // @[MSHR.scala:84:7]
wire io_status_valid_0; // @[MSHR.scala:84:7]
wire [12:0] io_schedule_bits_a_bits_tag_0; // @[MSHR.scala:84:7]
wire [9:0] io_schedule_bits_a_bits_set_0; // @[MSHR.scala:84:7]
wire [2:0] io_schedule_bits_a_bits_param_0; // @[MSHR.scala:84:7]
wire io_schedule_bits_a_bits_block_0; // @[MSHR.scala:84:7]
wire io_schedule_bits_a_valid_0; // @[MSHR.scala:84:7]
wire [2:0] io_schedule_bits_b_bits_param_0; // @[MSHR.scala:84:7]
wire [12:0] io_schedule_bits_b_bits_tag_0; // @[MSHR.scala:84:7]
wire [9:0] io_schedule_bits_b_bits_set_0; // @[MSHR.scala:84:7]
wire io_schedule_bits_b_bits_clients_0; // @[MSHR.scala:84:7]
wire io_schedule_bits_b_valid_0; // @[MSHR.scala:84:7]
wire [2:0] io_schedule_bits_c_bits_opcode_0; // @[MSHR.scala:84:7]
wire [2:0] io_schedule_bits_c_bits_param_0; // @[MSHR.scala:84:7]
wire [12:0] io_schedule_bits_c_bits_tag_0; // @[MSHR.scala:84:7]
wire [9:0] io_schedule_bits_c_bits_set_0; // @[MSHR.scala:84:7]
wire [2:0] io_schedule_bits_c_bits_way_0; // @[MSHR.scala:84:7]
wire io_schedule_bits_c_bits_dirty_0; // @[MSHR.scala:84:7]
wire io_schedule_bits_c_valid_0; // @[MSHR.scala:84:7]
wire io_schedule_bits_d_bits_prio_0_0; // @[MSHR.scala:84:7]
wire io_schedule_bits_d_bits_prio_1_0; // @[MSHR.scala:84:7]
wire io_schedule_bits_d_bits_prio_2_0; // @[MSHR.scala:84:7]
wire io_schedule_bits_d_bits_control_0; // @[MSHR.scala:84:7]
wire [2:0] io_schedule_bits_d_bits_opcode_0; // @[MSHR.scala:84:7]
wire [2:0] io_schedule_bits_d_bits_param_0; // @[MSHR.scala:84:7]
wire [2:0] io_schedule_bits_d_bits_size_0; // @[MSHR.scala:84:7]
wire [7:0] io_schedule_bits_d_bits_source_0; // @[MSHR.scala:84:7]
wire [12:0] io_schedule_bits_d_bits_tag_0; // @[MSHR.scala:84:7]
wire [5:0] io_schedule_bits_d_bits_offset_0; // @[MSHR.scala:84:7]
wire [5:0] io_schedule_bits_d_bits_put_0; // @[MSHR.scala:84:7]
wire [9:0] io_schedule_bits_d_bits_set_0; // @[MSHR.scala:84:7]
wire [2:0] io_schedule_bits_d_bits_way_0; // @[MSHR.scala:84:7]
wire io_schedule_bits_d_bits_bad_0; // @[MSHR.scala:84:7]
wire io_schedule_bits_d_valid_0; // @[MSHR.scala:84:7]
wire [2:0] io_schedule_bits_e_bits_sink_0; // @[MSHR.scala:84:7]
wire io_schedule_bits_e_valid_0; // @[MSHR.scala:84:7]
wire io_schedule_bits_x_valid_0; // @[MSHR.scala:84:7]
wire io_schedule_bits_dir_bits_data_dirty_0; // @[MSHR.scala:84:7]
wire [1:0] io_schedule_bits_dir_bits_data_state_0; // @[MSHR.scala:84:7]
wire io_schedule_bits_dir_bits_data_clients_0; // @[MSHR.scala:84:7]
wire [12:0] io_schedule_bits_dir_bits_data_tag_0; // @[MSHR.scala:84:7]
wire [9:0] io_schedule_bits_dir_bits_set_0; // @[MSHR.scala:84:7]
wire [2:0] io_schedule_bits_dir_bits_way_0; // @[MSHR.scala:84:7]
wire io_schedule_bits_dir_valid_0; // @[MSHR.scala:84:7]
wire io_schedule_bits_reload_0; // @[MSHR.scala:84:7]
wire io_schedule_valid_0; // @[MSHR.scala:84:7]
reg request_valid; // @[MSHR.scala:97:30]
assign io_status_valid_0 = request_valid; // @[MSHR.scala:84:7, :97:30]
reg request_prio_0; // @[MSHR.scala:98:20]
assign io_schedule_bits_d_bits_prio_0_0 = request_prio_0; // @[MSHR.scala:84:7, :98:20]
reg request_prio_1; // @[MSHR.scala:98:20]
assign io_schedule_bits_d_bits_prio_1_0 = request_prio_1; // @[MSHR.scala:84:7, :98:20]
reg request_prio_2; // @[MSHR.scala:98:20]
assign io_schedule_bits_d_bits_prio_2_0 = request_prio_2; // @[MSHR.scala:84:7, :98:20]
reg request_control; // @[MSHR.scala:98:20]
assign io_schedule_bits_d_bits_control_0 = request_control; // @[MSHR.scala:84:7, :98:20]
reg [2:0] request_opcode; // @[MSHR.scala:98:20]
assign io_schedule_bits_d_bits_opcode_0 = request_opcode; // @[MSHR.scala:84:7, :98:20]
reg [2:0] request_param; // @[MSHR.scala:98:20]
reg [2:0] request_size; // @[MSHR.scala:98:20]
assign io_schedule_bits_d_bits_size_0 = request_size; // @[MSHR.scala:84:7, :98:20]
reg [7:0] request_source; // @[MSHR.scala:98:20]
assign io_schedule_bits_d_bits_source_0 = request_source; // @[MSHR.scala:84:7, :98:20]
reg [12:0] request_tag; // @[MSHR.scala:98:20]
assign io_status_bits_tag_0 = request_tag; // @[MSHR.scala:84:7, :98:20]
assign io_schedule_bits_a_bits_tag_0 = request_tag; // @[MSHR.scala:84:7, :98:20]
assign io_schedule_bits_d_bits_tag_0 = request_tag; // @[MSHR.scala:84:7, :98:20]
reg [5:0] request_offset; // @[MSHR.scala:98:20]
assign io_schedule_bits_d_bits_offset_0 = request_offset; // @[MSHR.scala:84:7, :98:20]
reg [5:0] request_put; // @[MSHR.scala:98:20]
assign io_schedule_bits_d_bits_put_0 = request_put; // @[MSHR.scala:84:7, :98:20]
reg [9:0] request_set; // @[MSHR.scala:98:20]
assign io_status_bits_set_0 = request_set; // @[MSHR.scala:84:7, :98:20]
assign io_schedule_bits_a_bits_set_0 = request_set; // @[MSHR.scala:84:7, :98:20]
assign io_schedule_bits_b_bits_set_0 = request_set; // @[MSHR.scala:84:7, :98:20]
assign io_schedule_bits_c_bits_set_0 = request_set; // @[MSHR.scala:84:7, :98:20]
assign io_schedule_bits_d_bits_set_0 = request_set; // @[MSHR.scala:84:7, :98:20]
assign io_schedule_bits_dir_bits_set_0 = request_set; // @[MSHR.scala:84:7, :98:20]
reg meta_valid; // @[MSHR.scala:99:27]
reg meta_dirty; // @[MSHR.scala:100:17]
assign io_schedule_bits_c_bits_dirty_0 = meta_dirty; // @[MSHR.scala:84:7, :100:17]
reg [1:0] meta_state; // @[MSHR.scala:100:17]
reg meta_clients; // @[MSHR.scala:100:17]
wire _meta_no_clients_T = meta_clients; // @[MSHR.scala:100:17, :220:39]
wire evict_c = meta_clients; // @[MSHR.scala:100:17, :315:27]
wire before_c = meta_clients; // @[MSHR.scala:100:17, :315:27]
reg [12:0] meta_tag; // @[MSHR.scala:100:17]
assign io_schedule_bits_c_bits_tag_0 = meta_tag; // @[MSHR.scala:84:7, :100:17]
reg meta_hit; // @[MSHR.scala:100:17]
reg [2:0] meta_way; // @[MSHR.scala:100:17]
assign io_status_bits_way_0 = meta_way; // @[MSHR.scala:84:7, :100:17]
assign io_schedule_bits_c_bits_way_0 = meta_way; // @[MSHR.scala:84:7, :100:17]
assign io_schedule_bits_d_bits_way_0 = meta_way; // @[MSHR.scala:84:7, :100:17]
assign io_schedule_bits_dir_bits_way_0 = meta_way; // @[MSHR.scala:84:7, :100:17]
wire [2:0] final_meta_writeback_way = meta_way; // @[MSHR.scala:100:17, :215:38]
reg s_rprobe; // @[MSHR.scala:121:33]
reg w_rprobeackfirst; // @[MSHR.scala:122:33]
reg w_rprobeacklast; // @[MSHR.scala:123:33]
reg s_release; // @[MSHR.scala:124:33]
reg w_releaseack; // @[MSHR.scala:125:33]
reg s_pprobe; // @[MSHR.scala:126:33]
reg s_acquire; // @[MSHR.scala:127:33]
reg s_flush; // @[MSHR.scala:128:33]
reg w_grantfirst; // @[MSHR.scala:129:33]
reg w_grantlast; // @[MSHR.scala:130:33]
reg w_grant; // @[MSHR.scala:131:33]
reg w_pprobeackfirst; // @[MSHR.scala:132:33]
reg w_pprobeacklast; // @[MSHR.scala:133:33]
reg w_pprobeack; // @[MSHR.scala:134:33]
reg s_grantack; // @[MSHR.scala:136:33]
reg s_execute; // @[MSHR.scala:137:33]
reg w_grantack; // @[MSHR.scala:138:33]
reg s_writeback; // @[MSHR.scala:139:33]
reg [2:0] sink; // @[MSHR.scala:147:17]
assign io_schedule_bits_e_bits_sink_0 = sink; // @[MSHR.scala:84:7, :147:17]
reg gotT; // @[MSHR.scala:148:17]
reg bad_grant; // @[MSHR.scala:149:22]
assign io_schedule_bits_d_bits_bad_0 = bad_grant; // @[MSHR.scala:84:7, :149:22]
reg probes_done; // @[MSHR.scala:150:24]
reg probes_toN; // @[MSHR.scala:151:23]
reg probes_noT; // @[MSHR.scala:152:23]
wire _io_status_bits_blockB_T = ~meta_valid; // @[MSHR.scala:99:27, :168:28]
wire _io_status_bits_blockB_T_1 = ~w_releaseack; // @[MSHR.scala:125:33, :168:45]
wire _io_status_bits_blockB_T_2 = ~w_rprobeacklast; // @[MSHR.scala:123:33, :168:62]
wire _io_status_bits_blockB_T_3 = _io_status_bits_blockB_T_1 | _io_status_bits_blockB_T_2; // @[MSHR.scala:168:{45,59,62}]
wire _io_status_bits_blockB_T_4 = ~w_pprobeacklast; // @[MSHR.scala:133:33, :168:82]
wire _io_status_bits_blockB_T_5 = _io_status_bits_blockB_T_3 | _io_status_bits_blockB_T_4; // @[MSHR.scala:168:{59,79,82}]
wire _io_status_bits_blockB_T_6 = ~w_grantfirst; // @[MSHR.scala:129:33, :168:103]
wire _io_status_bits_blockB_T_7 = _io_status_bits_blockB_T_5 & _io_status_bits_blockB_T_6; // @[MSHR.scala:168:{79,100,103}]
assign _io_status_bits_blockB_T_8 = _io_status_bits_blockB_T | _io_status_bits_blockB_T_7; // @[MSHR.scala:168:{28,40,100}]
assign io_status_bits_blockB_0 = _io_status_bits_blockB_T_8; // @[MSHR.scala:84:7, :168:40]
wire _io_status_bits_nestB_T = meta_valid & w_releaseack; // @[MSHR.scala:99:27, :125:33, :169:39]
wire _io_status_bits_nestB_T_1 = _io_status_bits_nestB_T & w_rprobeacklast; // @[MSHR.scala:123:33, :169:{39,55}]
wire _io_status_bits_nestB_T_2 = _io_status_bits_nestB_T_1 & w_pprobeacklast; // @[MSHR.scala:133:33, :169:{55,74}]
wire _io_status_bits_nestB_T_3 = ~w_grantfirst; // @[MSHR.scala:129:33, :168:103, :169:96]
assign _io_status_bits_nestB_T_4 = _io_status_bits_nestB_T_2 & _io_status_bits_nestB_T_3; // @[MSHR.scala:169:{74,93,96}]
assign io_status_bits_nestB_0 = _io_status_bits_nestB_T_4; // @[MSHR.scala:84:7, :169:93]
assign _io_status_bits_blockC_T = ~meta_valid; // @[MSHR.scala:99:27, :168:28, :172:28]
assign io_status_bits_blockC_0 = _io_status_bits_blockC_T; // @[MSHR.scala:84:7, :172:28]
wire _io_status_bits_nestC_T = ~w_rprobeackfirst; // @[MSHR.scala:122:33, :173:43]
wire _io_status_bits_nestC_T_1 = ~w_pprobeackfirst; // @[MSHR.scala:132:33, :173:64]
wire _io_status_bits_nestC_T_2 = _io_status_bits_nestC_T | _io_status_bits_nestC_T_1; // @[MSHR.scala:173:{43,61,64}]
wire _io_status_bits_nestC_T_3 = ~w_grantfirst; // @[MSHR.scala:129:33, :168:103, :173:85]
wire _io_status_bits_nestC_T_4 = _io_status_bits_nestC_T_2 | _io_status_bits_nestC_T_3; // @[MSHR.scala:173:{61,82,85}]
assign _io_status_bits_nestC_T_5 = meta_valid & _io_status_bits_nestC_T_4; // @[MSHR.scala:99:27, :173:{39,82}]
assign io_status_bits_nestC_0 = _io_status_bits_nestC_T_5; // @[MSHR.scala:84:7, :173:39]
wire _no_wait_T = w_rprobeacklast & w_releaseack; // @[MSHR.scala:123:33, :125:33, :183:33]
wire _no_wait_T_1 = _no_wait_T & w_grantlast; // @[MSHR.scala:130:33, :183:{33,49}]
wire _no_wait_T_2 = _no_wait_T_1 & w_pprobeacklast; // @[MSHR.scala:133:33, :183:{49,64}]
assign no_wait = _no_wait_T_2 & w_grantack; // @[MSHR.scala:138:33, :183:{64,83}]
assign io_schedule_bits_reload_0 = no_wait; // @[MSHR.scala:84:7, :183:83]
wire _io_schedule_bits_a_valid_T = ~s_acquire; // @[MSHR.scala:127:33, :184:31]
wire _io_schedule_bits_a_valid_T_1 = _io_schedule_bits_a_valid_T & s_release; // @[MSHR.scala:124:33, :184:{31,42}]
assign _io_schedule_bits_a_valid_T_2 = _io_schedule_bits_a_valid_T_1 & s_pprobe; // @[MSHR.scala:126:33, :184:{42,55}]
assign io_schedule_bits_a_valid_0 = _io_schedule_bits_a_valid_T_2; // @[MSHR.scala:84:7, :184:55]
wire _io_schedule_bits_b_valid_T = ~s_rprobe; // @[MSHR.scala:121:33, :185:31]
wire _io_schedule_bits_b_valid_T_1 = ~s_pprobe; // @[MSHR.scala:126:33, :185:44]
assign _io_schedule_bits_b_valid_T_2 = _io_schedule_bits_b_valid_T | _io_schedule_bits_b_valid_T_1; // @[MSHR.scala:185:{31,41,44}]
assign io_schedule_bits_b_valid_0 = _io_schedule_bits_b_valid_T_2; // @[MSHR.scala:84:7, :185:41]
wire _io_schedule_bits_c_valid_T = ~s_release; // @[MSHR.scala:124:33, :186:32]
wire _io_schedule_bits_c_valid_T_1 = _io_schedule_bits_c_valid_T & w_rprobeackfirst; // @[MSHR.scala:122:33, :186:{32,43}]
assign _io_schedule_bits_c_valid_T_4 = _io_schedule_bits_c_valid_T_1; // @[MSHR.scala:186:{43,64}]
assign io_schedule_bits_c_valid_0 = _io_schedule_bits_c_valid_T_4; // @[MSHR.scala:84:7, :186:64]
wire _io_schedule_bits_d_valid_T = ~s_execute; // @[MSHR.scala:137:33, :187:31]
wire _io_schedule_bits_d_valid_T_1 = _io_schedule_bits_d_valid_T & w_pprobeack; // @[MSHR.scala:134:33, :187:{31,42}]
assign _io_schedule_bits_d_valid_T_2 = _io_schedule_bits_d_valid_T_1 & w_grant; // @[MSHR.scala:131:33, :187:{42,57}]
assign io_schedule_bits_d_valid_0 = _io_schedule_bits_d_valid_T_2; // @[MSHR.scala:84:7, :187:57]
wire _io_schedule_bits_e_valid_T = ~s_grantack; // @[MSHR.scala:136:33, :188:31]
assign _io_schedule_bits_e_valid_T_1 = _io_schedule_bits_e_valid_T & w_grantfirst; // @[MSHR.scala:129:33, :188:{31,43}]
assign io_schedule_bits_e_valid_0 = _io_schedule_bits_e_valid_T_1; // @[MSHR.scala:84:7, :188:43]
wire _io_schedule_bits_x_valid_T = ~s_flush; // @[MSHR.scala:128:33, :189:31]
assign _io_schedule_bits_x_valid_T_1 = _io_schedule_bits_x_valid_T & w_releaseack; // @[MSHR.scala:125:33, :189:{31,40}]
assign io_schedule_bits_x_valid_0 = _io_schedule_bits_x_valid_T_1; // @[MSHR.scala:84:7, :189:40]
wire _io_schedule_bits_dir_valid_T = ~s_release; // @[MSHR.scala:124:33, :186:32, :190:34]
wire _io_schedule_bits_dir_valid_T_1 = _io_schedule_bits_dir_valid_T & w_rprobeackfirst; // @[MSHR.scala:122:33, :190:{34,45}]
wire _io_schedule_bits_dir_valid_T_2 = ~s_writeback; // @[MSHR.scala:139:33, :190:70]
wire _io_schedule_bits_dir_valid_T_3 = _io_schedule_bits_dir_valid_T_2 & no_wait; // @[MSHR.scala:183:83, :190:{70,83}]
assign _io_schedule_bits_dir_valid_T_4 = _io_schedule_bits_dir_valid_T_1 | _io_schedule_bits_dir_valid_T_3; // @[MSHR.scala:190:{45,66,83}]
assign io_schedule_bits_dir_valid_0 = _io_schedule_bits_dir_valid_T_4; // @[MSHR.scala:84:7, :190:66]
wire _io_schedule_valid_T = io_schedule_bits_a_valid_0 | io_schedule_bits_b_valid_0; // @[MSHR.scala:84:7, :192:49]
wire _io_schedule_valid_T_1 = _io_schedule_valid_T | io_schedule_bits_c_valid_0; // @[MSHR.scala:84:7, :192:{49,77}]
wire _io_schedule_valid_T_2 = _io_schedule_valid_T_1 | io_schedule_bits_d_valid_0; // @[MSHR.scala:84:7, :192:{77,105}]
wire _io_schedule_valid_T_3 = _io_schedule_valid_T_2 | io_schedule_bits_e_valid_0; // @[MSHR.scala:84:7, :192:105, :193:49]
wire _io_schedule_valid_T_4 = _io_schedule_valid_T_3 | io_schedule_bits_x_valid_0; // @[MSHR.scala:84:7, :193:{49,77}]
assign _io_schedule_valid_T_5 = _io_schedule_valid_T_4 | io_schedule_bits_dir_valid_0; // @[MSHR.scala:84:7, :193:{77,105}]
assign io_schedule_valid_0 = _io_schedule_valid_T_5; // @[MSHR.scala:84:7, :193:105]
wire _io_schedule_bits_dir_bits_data_WIRE_dirty = final_meta_writeback_dirty; // @[MSHR.scala:215:38, :310:71]
wire [1:0] _io_schedule_bits_dir_bits_data_WIRE_state = final_meta_writeback_state; // @[MSHR.scala:215:38, :310:71]
wire _io_schedule_bits_dir_bits_data_WIRE_clients = final_meta_writeback_clients; // @[MSHR.scala:215:38, :310:71]
wire after_c = final_meta_writeback_clients; // @[MSHR.scala:215:38, :315:27]
wire prior_c = final_meta_writeback_clients; // @[MSHR.scala:215:38, :315:27]
wire [12:0] _io_schedule_bits_dir_bits_data_WIRE_tag = final_meta_writeback_tag; // @[MSHR.scala:215:38, :310:71]
wire final_meta_writeback_hit; // @[MSHR.scala:215:38]
wire req_clientBit = request_source == 8'hA0; // @[Parameters.scala:46:9]
wire _req_needT_T = request_opcode[2]; // @[Parameters.scala:269:12]
wire _final_meta_writeback_dirty_T_3 = request_opcode[2]; // @[Parameters.scala:269:12]
wire _req_needT_T_1 = ~_req_needT_T; // @[Parameters.scala:269:{5,12}]
wire _GEN = request_opcode == 3'h5; // @[Parameters.scala:270:13]
wire _req_needT_T_2; // @[Parameters.scala:270:13]
assign _req_needT_T_2 = _GEN; // @[Parameters.scala:270:13]
wire _excluded_client_T_6; // @[Parameters.scala:279:117]
assign _excluded_client_T_6 = _GEN; // @[Parameters.scala:270:13, :279:117]
wire _GEN_0 = request_param == 3'h1; // @[Parameters.scala:270:42]
wire _req_needT_T_3; // @[Parameters.scala:270:42]
assign _req_needT_T_3 = _GEN_0; // @[Parameters.scala:270:42]
wire _final_meta_writeback_clients_T; // @[Parameters.scala:282:11]
assign _final_meta_writeback_clients_T = _GEN_0; // @[Parameters.scala:270:42, :282:11]
wire _io_schedule_bits_d_bits_param_T_7; // @[MSHR.scala:299:79]
assign _io_schedule_bits_d_bits_param_T_7 = _GEN_0; // @[Parameters.scala:270:42]
wire _req_needT_T_4 = _req_needT_T_2 & _req_needT_T_3; // @[Parameters.scala:270:{13,33,42}]
wire _req_needT_T_5 = _req_needT_T_1 | _req_needT_T_4; // @[Parameters.scala:269:{5,16}, :270:33]
wire _GEN_1 = request_opcode == 3'h6; // @[Parameters.scala:271:14]
wire _req_needT_T_6; // @[Parameters.scala:271:14]
assign _req_needT_T_6 = _GEN_1; // @[Parameters.scala:271:14]
wire _req_acquire_T; // @[MSHR.scala:219:36]
assign _req_acquire_T = _GEN_1; // @[Parameters.scala:271:14]
wire _excluded_client_T_1; // @[Parameters.scala:279:12]
assign _excluded_client_T_1 = _GEN_1; // @[Parameters.scala:271:14, :279:12]
wire _req_needT_T_7 = &request_opcode; // @[Parameters.scala:271:52]
wire _req_needT_T_8 = _req_needT_T_6 | _req_needT_T_7; // @[Parameters.scala:271:{14,42,52}]
wire _req_needT_T_9 = |request_param; // @[Parameters.scala:271:89]
wire _req_needT_T_10 = _req_needT_T_8 & _req_needT_T_9; // @[Parameters.scala:271:{42,80,89}]
wire req_needT = _req_needT_T_5 | _req_needT_T_10; // @[Parameters.scala:269:16, :270:70, :271:80]
wire _req_acquire_T_1 = &request_opcode; // @[Parameters.scala:271:52]
wire req_acquire = _req_acquire_T | _req_acquire_T_1; // @[MSHR.scala:219:{36,53,71}]
wire meta_no_clients = ~_meta_no_clients_T; // @[MSHR.scala:220:{25,39}]
wire _req_promoteT_T = &meta_state; // @[MSHR.scala:100:17, :221:81]
wire _req_promoteT_T_1 = meta_no_clients & _req_promoteT_T; // @[MSHR.scala:220:25, :221:{67,81}]
wire _req_promoteT_T_2 = meta_hit ? _req_promoteT_T_1 : gotT; // @[MSHR.scala:100:17, :148:17, :221:{40,67}]
wire req_promoteT = req_acquire & _req_promoteT_T_2; // @[MSHR.scala:219:53, :221:{34,40}]
wire _final_meta_writeback_dirty_T = request_opcode[0]; // @[MSHR.scala:98:20, :224:65]
wire _final_meta_writeback_dirty_T_1 = meta_dirty | _final_meta_writeback_dirty_T; // @[MSHR.scala:100:17, :224:{48,65}]
wire _final_meta_writeback_state_T = request_param != 3'h3; // @[MSHR.scala:98:20, :225:55]
wire _GEN_2 = meta_state == 2'h2; // @[MSHR.scala:100:17, :225:78]
wire _final_meta_writeback_state_T_1; // @[MSHR.scala:225:78]
assign _final_meta_writeback_state_T_1 = _GEN_2; // @[MSHR.scala:225:78]
wire _final_meta_writeback_state_T_12; // @[MSHR.scala:240:70]
assign _final_meta_writeback_state_T_12 = _GEN_2; // @[MSHR.scala:225:78, :240:70]
wire _evict_T_2; // @[MSHR.scala:317:26]
assign _evict_T_2 = _GEN_2; // @[MSHR.scala:225:78, :317:26]
wire _before_T_1; // @[MSHR.scala:317:26]
assign _before_T_1 = _GEN_2; // @[MSHR.scala:225:78, :317:26]
wire _final_meta_writeback_state_T_2 = _final_meta_writeback_state_T & _final_meta_writeback_state_T_1; // @[MSHR.scala:225:{55,64,78}]
wire [1:0] _final_meta_writeback_state_T_3 = _final_meta_writeback_state_T_2 ? 2'h3 : meta_state; // @[MSHR.scala:100:17, :225:{40,64}]
wire _GEN_3 = request_param == 3'h2; // @[Parameters.scala:282:43]
wire _final_meta_writeback_clients_T_1; // @[Parameters.scala:282:43]
assign _final_meta_writeback_clients_T_1 = _GEN_3; // @[Parameters.scala:282:43]
wire _io_schedule_bits_d_bits_param_T_5; // @[MSHR.scala:299:79]
assign _io_schedule_bits_d_bits_param_T_5 = _GEN_3; // @[Parameters.scala:282:43]
wire _final_meta_writeback_clients_T_2 = _final_meta_writeback_clients_T | _final_meta_writeback_clients_T_1; // @[Parameters.scala:282:{11,34,43}]
wire _final_meta_writeback_clients_T_3 = request_param == 3'h5; // @[Parameters.scala:282:75]
wire _final_meta_writeback_clients_T_4 = _final_meta_writeback_clients_T_2 | _final_meta_writeback_clients_T_3; // @[Parameters.scala:282:{34,66,75}]
wire _final_meta_writeback_clients_T_5 = _final_meta_writeback_clients_T_4 & req_clientBit; // @[Parameters.scala:46:9]
wire _final_meta_writeback_clients_T_6 = ~_final_meta_writeback_clients_T_5; // @[MSHR.scala:226:{52,56}]
wire _final_meta_writeback_clients_T_7 = meta_clients & _final_meta_writeback_clients_T_6; // @[MSHR.scala:100:17, :226:{50,52}]
wire _final_meta_writeback_clients_T_8 = ~probes_toN; // @[MSHR.scala:151:23, :232:54]
wire _final_meta_writeback_clients_T_9 = meta_clients & _final_meta_writeback_clients_T_8; // @[MSHR.scala:100:17, :232:{52,54}]
wire _final_meta_writeback_dirty_T_2 = meta_hit & meta_dirty; // @[MSHR.scala:100:17, :236:45]
wire _final_meta_writeback_dirty_T_4 = ~_final_meta_writeback_dirty_T_3; // @[MSHR.scala:236:{63,78}]
wire _final_meta_writeback_dirty_T_5 = _final_meta_writeback_dirty_T_2 | _final_meta_writeback_dirty_T_4; // @[MSHR.scala:236:{45,60,63}]
wire [1:0] _GEN_4 = {1'h1, ~req_acquire}; // @[MSHR.scala:219:53, :238:40]
wire [1:0] _final_meta_writeback_state_T_4; // @[MSHR.scala:238:40]
assign _final_meta_writeback_state_T_4 = _GEN_4; // @[MSHR.scala:238:40]
wire [1:0] _final_meta_writeback_state_T_6; // @[MSHR.scala:239:65]
assign _final_meta_writeback_state_T_6 = _GEN_4; // @[MSHR.scala:238:40, :239:65]
wire _final_meta_writeback_state_T_5 = ~meta_hit; // @[MSHR.scala:100:17, :239:41]
wire [1:0] _final_meta_writeback_state_T_7 = gotT ? _final_meta_writeback_state_T_6 : 2'h1; // @[MSHR.scala:148:17, :239:{55,65}]
wire _final_meta_writeback_state_T_8 = meta_no_clients & req_acquire; // @[MSHR.scala:219:53, :220:25, :244:72]
wire [1:0] _final_meta_writeback_state_T_9 = {1'h1, ~_final_meta_writeback_state_T_8}; // @[MSHR.scala:244:{55,72}]
wire _GEN_5 = meta_state == 2'h1; // @[MSHR.scala:100:17, :240:70]
wire _final_meta_writeback_state_T_10; // @[MSHR.scala:240:70]
assign _final_meta_writeback_state_T_10 = _GEN_5; // @[MSHR.scala:240:70]
wire _io_schedule_bits_c_bits_param_T; // @[MSHR.scala:291:53]
assign _io_schedule_bits_c_bits_param_T = _GEN_5; // @[MSHR.scala:240:70, :291:53]
wire _evict_T_1; // @[MSHR.scala:317:26]
assign _evict_T_1 = _GEN_5; // @[MSHR.scala:240:70, :317:26]
wire _before_T; // @[MSHR.scala:317:26]
assign _before_T = _GEN_5; // @[MSHR.scala:240:70, :317:26]
wire [1:0] _final_meta_writeback_state_T_13 = {_final_meta_writeback_state_T_12, 1'h1}; // @[MSHR.scala:240:70]
wire _final_meta_writeback_state_T_14 = &meta_state; // @[MSHR.scala:100:17, :221:81, :240:70]
wire [1:0] _final_meta_writeback_state_T_15 = _final_meta_writeback_state_T_14 ? _final_meta_writeback_state_T_9 : _final_meta_writeback_state_T_13; // @[MSHR.scala:240:70, :244:55]
wire [1:0] _final_meta_writeback_state_T_16 = _final_meta_writeback_state_T_5 ? _final_meta_writeback_state_T_7 : _final_meta_writeback_state_T_15; // @[MSHR.scala:239:{40,41,55}, :240:70]
wire [1:0] _final_meta_writeback_state_T_17 = req_needT ? _final_meta_writeback_state_T_4 : _final_meta_writeback_state_T_16; // @[Parameters.scala:270:70]
wire _final_meta_writeback_clients_T_10 = ~probes_toN; // @[MSHR.scala:151:23, :232:54, :245:66]
wire _final_meta_writeback_clients_T_11 = meta_clients & _final_meta_writeback_clients_T_10; // @[MSHR.scala:100:17, :245:{64,66}]
wire _final_meta_writeback_clients_T_12 = meta_hit & _final_meta_writeback_clients_T_11; // @[MSHR.scala:100:17, :245:{40,64}]
wire _final_meta_writeback_clients_T_13 = req_acquire & req_clientBit; // @[Parameters.scala:46:9]
wire _final_meta_writeback_clients_T_14 = _final_meta_writeback_clients_T_12 | _final_meta_writeback_clients_T_13; // @[MSHR.scala:245:{40,84}, :246:40]
assign final_meta_writeback_tag = request_prio_2 | request_control ? meta_tag : request_tag; // @[MSHR.scala:98:20, :100:17, :215:38, :223:52, :228:53, :247:30]
wire _final_meta_writeback_clients_T_15 = ~probes_toN; // @[MSHR.scala:151:23, :232:54, :258:54]
wire _final_meta_writeback_clients_T_16 = meta_clients & _final_meta_writeback_clients_T_15; // @[MSHR.scala:100:17, :258:{52,54}]
assign final_meta_writeback_hit = bad_grant ? meta_hit : request_prio_2 | ~request_control; // @[MSHR.scala:98:20, :100:17, :149:22, :215:38, :223:52, :227:34, :228:53, :234:30, :248:30, :251:20, :252:21]
assign final_meta_writeback_dirty = ~bad_grant & (request_prio_2 ? _final_meta_writeback_dirty_T_1 : request_control ? ~meta_hit & meta_dirty : _final_meta_writeback_dirty_T_5); // @[MSHR.scala:98:20, :100:17, :149:22, :215:38, :223:52, :224:{34,48}, :228:53, :229:21, :230:36, :236:{32,60}, :251:20, :252:21]
assign final_meta_writeback_state = bad_grant ? {1'h0, meta_hit} : request_prio_2 ? _final_meta_writeback_state_T_3 : request_control ? (meta_hit ? 2'h0 : meta_state) : _final_meta_writeback_state_T_17; // @[MSHR.scala:98:20, :100:17, :149:22, :215:38, :223:52, :225:{34,40}, :228:53, :229:21, :231:36, :237:{32,38}, :251:20, :252:21, :257:36, :263:36]
assign final_meta_writeback_clients = bad_grant ? meta_hit & _final_meta_writeback_clients_T_16 : request_prio_2 ? _final_meta_writeback_clients_T_7 : request_control ? (meta_hit ? _final_meta_writeback_clients_T_9 : meta_clients) : _final_meta_writeback_clients_T_14; // @[MSHR.scala:98:20, :100:17, :149:22, :215:38, :223:52, :226:{34,50}, :228:53, :229:21, :232:{36,52}, :245:{34,84}, :251:20, :252:21, :258:{36,52}, :264:36]
wire _honour_BtoT_T = meta_clients & req_clientBit; // @[Parameters.scala:46:9]
wire _honour_BtoT_T_1 = _honour_BtoT_T; // @[MSHR.scala:276:{47,64}]
wire honour_BtoT = meta_hit & _honour_BtoT_T_1; // @[MSHR.scala:100:17, :276:{30,64}]
wire _excluded_client_T = meta_hit & request_prio_0; // @[MSHR.scala:98:20, :100:17, :279:38]
wire _excluded_client_T_2 = &request_opcode; // @[Parameters.scala:271:52, :279:50]
wire _excluded_client_T_3 = _excluded_client_T_1 | _excluded_client_T_2; // @[Parameters.scala:279:{12,40,50}]
wire _excluded_client_T_4 = request_opcode == 3'h4; // @[Parameters.scala:279:87]
wire _excluded_client_T_5 = _excluded_client_T_3 | _excluded_client_T_4; // @[Parameters.scala:279:{40,77,87}]
wire _excluded_client_T_8 = _excluded_client_T_5; // @[Parameters.scala:279:{77,106}]
wire _excluded_client_T_9 = _excluded_client_T & _excluded_client_T_8; // @[Parameters.scala:279:106]
wire excluded_client = _excluded_client_T_9 & req_clientBit; // @[Parameters.scala:46:9]
wire [1:0] _io_schedule_bits_a_bits_param_T = meta_hit ? 2'h2 : 2'h1; // @[MSHR.scala:100:17, :282:56]
wire [1:0] _io_schedule_bits_a_bits_param_T_1 = req_needT ? _io_schedule_bits_a_bits_param_T : 2'h0; // @[Parameters.scala:270:70]
assign io_schedule_bits_a_bits_param_0 = {1'h0, _io_schedule_bits_a_bits_param_T_1}; // @[MSHR.scala:84:7, :282:{35,41}]
wire _io_schedule_bits_a_bits_block_T = request_size != 3'h6; // @[MSHR.scala:98:20, :283:51]
wire _io_schedule_bits_a_bits_block_T_1 = request_opcode == 3'h0; // @[MSHR.scala:98:20, :284:55]
wire _io_schedule_bits_a_bits_block_T_2 = &request_opcode; // @[Parameters.scala:271:52]
wire _io_schedule_bits_a_bits_block_T_3 = _io_schedule_bits_a_bits_block_T_1 | _io_schedule_bits_a_bits_block_T_2; // @[MSHR.scala:284:{55,71,89}]
wire _io_schedule_bits_a_bits_block_T_4 = ~_io_schedule_bits_a_bits_block_T_3; // @[MSHR.scala:284:{38,71}]
assign _io_schedule_bits_a_bits_block_T_5 = _io_schedule_bits_a_bits_block_T | _io_schedule_bits_a_bits_block_T_4; // @[MSHR.scala:283:{51,91}, :284:38]
assign io_schedule_bits_a_bits_block_0 = _io_schedule_bits_a_bits_block_T_5; // @[MSHR.scala:84:7, :283:91]
wire _io_schedule_bits_b_bits_param_T = ~s_rprobe; // @[MSHR.scala:121:33, :185:31, :286:42]
wire [1:0] _io_schedule_bits_b_bits_param_T_1 = req_needT ? 2'h2 : 2'h1; // @[Parameters.scala:270:70]
wire [2:0] _io_schedule_bits_b_bits_param_T_2 = request_prio_1 ? request_param : {1'h0, _io_schedule_bits_b_bits_param_T_1}; // @[MSHR.scala:98:20, :286:{61,97}]
assign _io_schedule_bits_b_bits_param_T_3 = _io_schedule_bits_b_bits_param_T ? 3'h2 : _io_schedule_bits_b_bits_param_T_2; // @[MSHR.scala:286:{41,42,61}]
assign io_schedule_bits_b_bits_param_0 = _io_schedule_bits_b_bits_param_T_3; // @[MSHR.scala:84:7, :286:41]
wire _io_schedule_bits_b_bits_tag_T = ~s_rprobe; // @[MSHR.scala:121:33, :185:31, :287:42]
assign _io_schedule_bits_b_bits_tag_T_1 = _io_schedule_bits_b_bits_tag_T ? meta_tag : request_tag; // @[MSHR.scala:98:20, :100:17, :287:{41,42}]
assign io_schedule_bits_b_bits_tag_0 = _io_schedule_bits_b_bits_tag_T_1; // @[MSHR.scala:84:7, :287:41]
wire _io_schedule_bits_b_bits_clients_T = ~excluded_client; // @[MSHR.scala:279:28, :289:53]
assign _io_schedule_bits_b_bits_clients_T_1 = meta_clients & _io_schedule_bits_b_bits_clients_T; // @[MSHR.scala:100:17, :289:{51,53}]
assign io_schedule_bits_b_bits_clients_0 = _io_schedule_bits_b_bits_clients_T_1; // @[MSHR.scala:84:7, :289:51]
assign _io_schedule_bits_c_bits_opcode_T = {2'h3, meta_dirty}; // @[MSHR.scala:100:17, :290:41]
assign io_schedule_bits_c_bits_opcode_0 = _io_schedule_bits_c_bits_opcode_T; // @[MSHR.scala:84:7, :290:41]
assign _io_schedule_bits_c_bits_param_T_1 = _io_schedule_bits_c_bits_param_T ? 3'h2 : 3'h1; // @[MSHR.scala:291:{41,53}]
assign io_schedule_bits_c_bits_param_0 = _io_schedule_bits_c_bits_param_T_1; // @[MSHR.scala:84:7, :291:41]
wire _io_schedule_bits_d_bits_param_T = ~req_acquire; // @[MSHR.scala:219:53, :298:42]
wire [1:0] _io_schedule_bits_d_bits_param_T_1 = {1'h0, req_promoteT}; // @[MSHR.scala:221:34, :300:53]
wire [1:0] _io_schedule_bits_d_bits_param_T_2 = honour_BtoT ? 2'h2 : 2'h1; // @[MSHR.scala:276:30, :301:53]
wire _io_schedule_bits_d_bits_param_T_3 = ~(|request_param); // @[Parameters.scala:271:89]
wire [2:0] _io_schedule_bits_d_bits_param_T_4 = _io_schedule_bits_d_bits_param_T_3 ? {1'h0, _io_schedule_bits_d_bits_param_T_1} : request_param; // @[MSHR.scala:98:20, :299:79, :300:53]
wire [2:0] _io_schedule_bits_d_bits_param_T_6 = _io_schedule_bits_d_bits_param_T_5 ? {1'h0, _io_schedule_bits_d_bits_param_T_2} : _io_schedule_bits_d_bits_param_T_4; // @[MSHR.scala:299:79, :301:53]
wire [2:0] _io_schedule_bits_d_bits_param_T_8 = _io_schedule_bits_d_bits_param_T_7 ? 3'h1 : _io_schedule_bits_d_bits_param_T_6; // @[MSHR.scala:299:79]
assign _io_schedule_bits_d_bits_param_T_9 = _io_schedule_bits_d_bits_param_T ? request_param : _io_schedule_bits_d_bits_param_T_8; // @[MSHR.scala:98:20, :298:{41,42}, :299:79]
assign io_schedule_bits_d_bits_param_0 = _io_schedule_bits_d_bits_param_T_9; // @[MSHR.scala:84:7, :298:41]
wire _io_schedule_bits_dir_bits_data_T = ~s_release; // @[MSHR.scala:124:33, :186:32, :310:42]
assign _io_schedule_bits_dir_bits_data_T_1_dirty = ~_io_schedule_bits_dir_bits_data_T & _io_schedule_bits_dir_bits_data_WIRE_dirty; // @[MSHR.scala:310:{41,42,71}]
assign _io_schedule_bits_dir_bits_data_T_1_state = _io_schedule_bits_dir_bits_data_T ? 2'h0 : _io_schedule_bits_dir_bits_data_WIRE_state; // @[MSHR.scala:310:{41,42,71}]
assign _io_schedule_bits_dir_bits_data_T_1_clients = ~_io_schedule_bits_dir_bits_data_T & _io_schedule_bits_dir_bits_data_WIRE_clients; // @[MSHR.scala:310:{41,42,71}]
assign _io_schedule_bits_dir_bits_data_T_1_tag = _io_schedule_bits_dir_bits_data_T ? 13'h0 : _io_schedule_bits_dir_bits_data_WIRE_tag; // @[MSHR.scala:310:{41,42,71}]
assign io_schedule_bits_dir_bits_data_dirty_0 = _io_schedule_bits_dir_bits_data_T_1_dirty; // @[MSHR.scala:84:7, :310:41]
assign io_schedule_bits_dir_bits_data_state_0 = _io_schedule_bits_dir_bits_data_T_1_state; // @[MSHR.scala:84:7, :310:41]
assign io_schedule_bits_dir_bits_data_clients_0 = _io_schedule_bits_dir_bits_data_T_1_clients; // @[MSHR.scala:84:7, :310:41]
assign io_schedule_bits_dir_bits_data_tag_0 = _io_schedule_bits_dir_bits_data_T_1_tag; // @[MSHR.scala:84:7, :310:41]
wire _evict_T = ~meta_hit; // @[MSHR.scala:100:17, :239:41, :338:32]
wire [3:0] evict; // @[MSHR.scala:314:26]
wire _evict_out_T = ~evict_c; // @[MSHR.scala:315:27, :318:32]
wire [1:0] _GEN_6 = {1'h1, ~meta_dirty}; // @[MSHR.scala:100:17, :319:32]
wire [1:0] _evict_out_T_1; // @[MSHR.scala:319:32]
assign _evict_out_T_1 = _GEN_6; // @[MSHR.scala:319:32]
wire [1:0] _before_out_T_1; // @[MSHR.scala:319:32]
assign _before_out_T_1 = _GEN_6; // @[MSHR.scala:319:32]
wire _evict_T_3 = &meta_state; // @[MSHR.scala:100:17, :221:81, :317:26]
wire [2:0] _GEN_7 = {2'h2, ~meta_dirty}; // @[MSHR.scala:100:17, :319:32, :320:39]
wire [2:0] _evict_out_T_2; // @[MSHR.scala:320:39]
assign _evict_out_T_2 = _GEN_7; // @[MSHR.scala:320:39]
wire [2:0] _before_out_T_2; // @[MSHR.scala:320:39]
assign _before_out_T_2 = _GEN_7; // @[MSHR.scala:320:39]
wire [2:0] _GEN_8 = {2'h3, ~meta_dirty}; // @[MSHR.scala:100:17, :319:32, :320:76]
wire [2:0] _evict_out_T_3; // @[MSHR.scala:320:76]
assign _evict_out_T_3 = _GEN_8; // @[MSHR.scala:320:76]
wire [2:0] _before_out_T_3; // @[MSHR.scala:320:76]
assign _before_out_T_3 = _GEN_8; // @[MSHR.scala:320:76]
wire [2:0] _evict_out_T_4 = evict_c ? _evict_out_T_2 : _evict_out_T_3; // @[MSHR.scala:315:27, :320:{32,39,76}]
wire _evict_T_4 = ~(|meta_state); // @[MSHR.scala:100:17, :104:22, :317:26]
wire _evict_T_5 = ~_evict_T; // @[MSHR.scala:323:11, :338:32]
assign evict = _evict_T_5 ? 4'h8 : _evict_T_1 ? {3'h0, _evict_out_T} : _evict_T_2 ? {2'h0, _evict_out_T_1} : _evict_T_3 ? {1'h0, _evict_out_T_4} : {_evict_T_4, 3'h0}; // @[MSHR.scala:314:26, :317:26, :318:{26,32}, :319:{26,32}, :320:{26,32}, :321:26, :323:{11,17,23}]
wire [3:0] before_0; // @[MSHR.scala:314:26]
wire _before_out_T = ~before_c; // @[MSHR.scala:315:27, :318:32]
wire _before_T_2 = &meta_state; // @[MSHR.scala:100:17, :221:81, :317:26]
wire [2:0] _before_out_T_4 = before_c ? _before_out_T_2 : _before_out_T_3; // @[MSHR.scala:315:27, :320:{32,39,76}]
wire _before_T_3 = ~(|meta_state); // @[MSHR.scala:100:17, :104:22, :317:26]
wire _before_T_4 = ~meta_hit; // @[MSHR.scala:100:17, :239:41, :323:11]
assign before_0 = _before_T_4 ? 4'h8 : _before_T ? {3'h0, _before_out_T} : _before_T_1 ? {2'h0, _before_out_T_1} : _before_T_2 ? {1'h0, _before_out_T_4} : {_before_T_3, 3'h0}; // @[MSHR.scala:314:26, :317:26, :318:{26,32}, :319:{26,32}, :320:{26,32}, :321:26, :323:{11,17,23}]
wire [3:0] after; // @[MSHR.scala:314:26]
wire _GEN_9 = final_meta_writeback_state == 2'h1; // @[MSHR.scala:215:38, :317:26]
wire _after_T; // @[MSHR.scala:317:26]
assign _after_T = _GEN_9; // @[MSHR.scala:317:26]
wire _prior_T; // @[MSHR.scala:317:26]
assign _prior_T = _GEN_9; // @[MSHR.scala:317:26]
wire _after_out_T = ~after_c; // @[MSHR.scala:315:27, :318:32]
wire _GEN_10 = final_meta_writeback_state == 2'h2; // @[MSHR.scala:215:38, :317:26]
wire _after_T_1; // @[MSHR.scala:317:26]
assign _after_T_1 = _GEN_10; // @[MSHR.scala:317:26]
wire _prior_T_1; // @[MSHR.scala:317:26]
assign _prior_T_1 = _GEN_10; // @[MSHR.scala:317:26]
wire [1:0] _GEN_11 = {1'h1, ~final_meta_writeback_dirty}; // @[MSHR.scala:215:38, :319:32]
wire [1:0] _after_out_T_1; // @[MSHR.scala:319:32]
assign _after_out_T_1 = _GEN_11; // @[MSHR.scala:319:32]
wire [1:0] _prior_out_T_1; // @[MSHR.scala:319:32]
assign _prior_out_T_1 = _GEN_11; // @[MSHR.scala:319:32]
wire _after_T_2 = &final_meta_writeback_state; // @[MSHR.scala:215:38, :317:26]
wire [2:0] _GEN_12 = {2'h2, ~final_meta_writeback_dirty}; // @[MSHR.scala:215:38, :319:32, :320:39]
wire [2:0] _after_out_T_2; // @[MSHR.scala:320:39]
assign _after_out_T_2 = _GEN_12; // @[MSHR.scala:320:39]
wire [2:0] _prior_out_T_2; // @[MSHR.scala:320:39]
assign _prior_out_T_2 = _GEN_12; // @[MSHR.scala:320:39]
wire [2:0] _GEN_13 = {2'h3, ~final_meta_writeback_dirty}; // @[MSHR.scala:215:38, :319:32, :320:76]
wire [2:0] _after_out_T_3; // @[MSHR.scala:320:76]
assign _after_out_T_3 = _GEN_13; // @[MSHR.scala:320:76]
wire [2:0] _prior_out_T_3; // @[MSHR.scala:320:76]
assign _prior_out_T_3 = _GEN_13; // @[MSHR.scala:320:76]
wire [2:0] _after_out_T_4 = after_c ? _after_out_T_2 : _after_out_T_3; // @[MSHR.scala:315:27, :320:{32,39,76}]
wire _GEN_14 = final_meta_writeback_state == 2'h0; // @[MSHR.scala:215:38, :317:26]
wire _after_T_3; // @[MSHR.scala:317:26]
assign _after_T_3 = _GEN_14; // @[MSHR.scala:317:26]
wire _prior_T_3; // @[MSHR.scala:317:26]
assign _prior_T_3 = _GEN_14; // @[MSHR.scala:317:26]
assign after = _after_T ? {3'h0, _after_out_T} : _after_T_1 ? {2'h0, _after_out_T_1} : _after_T_2 ? {1'h0, _after_out_T_4} : {_after_T_3, 3'h0}; // @[MSHR.scala:314:26, :317:26, :318:{26,32}, :319:{26,32}, :320:{26,32}, :321:26]
wire probe_bit = io_sinkc_bits_source_0 == 8'hA0; // @[Parameters.scala:46:9]
wire _GEN_15 = probes_done | probe_bit; // @[Parameters.scala:46:9]
wire _last_probe_T; // @[MSHR.scala:459:33]
assign _last_probe_T = _GEN_15; // @[MSHR.scala:459:33]
wire _probes_done_T; // @[MSHR.scala:467:32]
assign _probes_done_T = _GEN_15; // @[MSHR.scala:459:33, :467:32]
wire _last_probe_T_1 = ~excluded_client; // @[MSHR.scala:279:28, :289:53, :459:66]
wire _last_probe_T_2 = meta_clients & _last_probe_T_1; // @[MSHR.scala:100:17, :459:{64,66}]
wire last_probe = _last_probe_T == _last_probe_T_2; // @[MSHR.scala:459:{33,46,64}]
wire _probe_toN_T = io_sinkc_bits_param_0 == 3'h1; // @[Parameters.scala:282:11]
wire _probe_toN_T_1 = io_sinkc_bits_param_0 == 3'h2; // @[Parameters.scala:282:43]
wire _probe_toN_T_2 = _probe_toN_T | _probe_toN_T_1; // @[Parameters.scala:282:{11,34,43}]
wire _probe_toN_T_3 = io_sinkc_bits_param_0 == 3'h5; // @[Parameters.scala:282:75]
wire probe_toN = _probe_toN_T_2 | _probe_toN_T_3; // @[Parameters.scala:282:{34,66,75}]
wire _probes_toN_T = probe_toN & probe_bit; // @[Parameters.scala:46:9]
wire _probes_toN_T_1 = probes_toN | _probes_toN_T; // @[MSHR.scala:151:23, :468:{30,35}]
wire _probes_noT_T = io_sinkc_bits_param_0 != 3'h3; // @[MSHR.scala:84:7, :469:53]
wire _probes_noT_T_1 = probes_noT | _probes_noT_T; // @[MSHR.scala:152:23, :469:{30,53}]
wire _w_rprobeackfirst_T = w_rprobeackfirst | last_probe; // @[MSHR.scala:122:33, :459:46, :470:42]
wire _GEN_16 = last_probe & io_sinkc_bits_last_0; // @[MSHR.scala:84:7, :459:46, :471:55]
wire _w_rprobeacklast_T; // @[MSHR.scala:471:55]
assign _w_rprobeacklast_T = _GEN_16; // @[MSHR.scala:471:55]
wire _w_pprobeacklast_T; // @[MSHR.scala:473:55]
assign _w_pprobeacklast_T = _GEN_16; // @[MSHR.scala:471:55, :473:55]
wire _w_rprobeacklast_T_1 = w_rprobeacklast | _w_rprobeacklast_T; // @[MSHR.scala:123:33, :471:{40,55}]
wire _w_pprobeackfirst_T = w_pprobeackfirst | last_probe; // @[MSHR.scala:132:33, :459:46, :472:42]
wire _w_pprobeacklast_T_1 = w_pprobeacklast | _w_pprobeacklast_T; // @[MSHR.scala:133:33, :473:{40,55}]
wire _set_pprobeack_T = ~(|request_offset); // @[MSHR.scala:98:20, :475:77]
wire _set_pprobeack_T_1 = io_sinkc_bits_last_0 | _set_pprobeack_T; // @[MSHR.scala:84:7, :475:{59,77}]
wire set_pprobeack = last_probe & _set_pprobeack_T_1; // @[MSHR.scala:459:46, :475:{36,59}]
wire _w_pprobeack_T = w_pprobeack | set_pprobeack; // @[MSHR.scala:134:33, :475:36, :476:32]
wire _w_grant_T = ~(|request_offset); // @[MSHR.scala:98:20, :475:77, :490:33]
wire _w_grant_T_1 = _w_grant_T | io_sinkd_bits_last_0; // @[MSHR.scala:84:7, :490:{33,41}]
wire _gotT_T = io_sinkd_bits_param_0 == 3'h0; // @[MSHR.scala:84:7, :493:35]
wire _new_meta_T = io_allocate_valid_0 & io_allocate_bits_repeat_0; // @[MSHR.scala:84:7, :505:40]
wire new_meta_dirty = _new_meta_T ? final_meta_writeback_dirty : io_directory_bits_dirty_0; // @[MSHR.scala:84:7, :215:38, :505:{21,40}]
wire [1:0] new_meta_state = _new_meta_T ? final_meta_writeback_state : io_directory_bits_state_0; // @[MSHR.scala:84:7, :215:38, :505:{21,40}]
wire new_meta_clients = _new_meta_T ? final_meta_writeback_clients : io_directory_bits_clients_0; // @[MSHR.scala:84:7, :215:38, :505:{21,40}]
wire [12:0] new_meta_tag = _new_meta_T ? final_meta_writeback_tag : io_directory_bits_tag_0; // @[MSHR.scala:84:7, :215:38, :505:{21,40}]
wire new_meta_hit = _new_meta_T ? final_meta_writeback_hit : io_directory_bits_hit_0; // @[MSHR.scala:84:7, :215:38, :505:{21,40}]
wire [2:0] new_meta_way = _new_meta_T ? final_meta_writeback_way : io_directory_bits_way_0; // @[MSHR.scala:84:7, :215:38, :505:{21,40}]
wire new_request_prio_0 = io_allocate_valid_0 ? allocate_as_full_prio_0 : request_prio_0; // @[MSHR.scala:84:7, :98:20, :504:34, :506:24]
wire new_request_prio_1 = io_allocate_valid_0 ? allocate_as_full_prio_1 : request_prio_1; // @[MSHR.scala:84:7, :98:20, :504:34, :506:24]
wire new_request_prio_2 = io_allocate_valid_0 ? allocate_as_full_prio_2 : request_prio_2; // @[MSHR.scala:84:7, :98:20, :504:34, :506:24]
wire new_request_control = io_allocate_valid_0 ? allocate_as_full_control : request_control; // @[MSHR.scala:84:7, :98:20, :504:34, :506:24]
wire [2:0] new_request_opcode = io_allocate_valid_0 ? allocate_as_full_opcode : request_opcode; // @[MSHR.scala:84:7, :98:20, :504:34, :506:24]
wire [2:0] new_request_param = io_allocate_valid_0 ? allocate_as_full_param : request_param; // @[MSHR.scala:84:7, :98:20, :504:34, :506:24]
wire [2:0] new_request_size = io_allocate_valid_0 ? allocate_as_full_size : request_size; // @[MSHR.scala:84:7, :98:20, :504:34, :506:24]
wire [7:0] new_request_source = io_allocate_valid_0 ? allocate_as_full_source : request_source; // @[MSHR.scala:84:7, :98:20, :504:34, :506:24]
wire [12:0] new_request_tag = io_allocate_valid_0 ? allocate_as_full_tag : request_tag; // @[MSHR.scala:84:7, :98:20, :504:34, :506:24]
wire [5:0] new_request_offset = io_allocate_valid_0 ? allocate_as_full_offset : request_offset; // @[MSHR.scala:84:7, :98:20, :504:34, :506:24]
wire [5:0] new_request_put = io_allocate_valid_0 ? allocate_as_full_put : request_put; // @[MSHR.scala:84:7, :98:20, :504:34, :506:24]
wire [9:0] new_request_set = io_allocate_valid_0 ? allocate_as_full_set : request_set; // @[MSHR.scala:84:7, :98:20, :504:34, :506:24]
wire _new_needT_T = new_request_opcode[2]; // @[Parameters.scala:269:12]
wire _new_needT_T_1 = ~_new_needT_T; // @[Parameters.scala:269:{5,12}]
wire _GEN_17 = new_request_opcode == 3'h5; // @[Parameters.scala:270:13]
wire _new_needT_T_2; // @[Parameters.scala:270:13]
assign _new_needT_T_2 = _GEN_17; // @[Parameters.scala:270:13]
wire _new_skipProbe_T_5; // @[Parameters.scala:279:117]
assign _new_skipProbe_T_5 = _GEN_17; // @[Parameters.scala:270:13, :279:117]
wire _new_needT_T_3 = new_request_param == 3'h1; // @[Parameters.scala:270:42]
wire _new_needT_T_4 = _new_needT_T_2 & _new_needT_T_3; // @[Parameters.scala:270:{13,33,42}]
wire _new_needT_T_5 = _new_needT_T_1 | _new_needT_T_4; // @[Parameters.scala:269:{5,16}, :270:33]
wire _T_615 = new_request_opcode == 3'h6; // @[Parameters.scala:271:14]
wire _new_needT_T_6; // @[Parameters.scala:271:14]
assign _new_needT_T_6 = _T_615; // @[Parameters.scala:271:14]
wire _new_skipProbe_T; // @[Parameters.scala:279:12]
assign _new_skipProbe_T = _T_615; // @[Parameters.scala:271:14, :279:12]
wire _new_needT_T_7 = &new_request_opcode; // @[Parameters.scala:271:52]
wire _new_needT_T_8 = _new_needT_T_6 | _new_needT_T_7; // @[Parameters.scala:271:{14,42,52}]
wire _new_needT_T_9 = |new_request_param; // @[Parameters.scala:271:89]
wire _new_needT_T_10 = _new_needT_T_8 & _new_needT_T_9; // @[Parameters.scala:271:{42,80,89}]
wire new_needT = _new_needT_T_5 | _new_needT_T_10; // @[Parameters.scala:269:16, :270:70, :271:80]
wire new_clientBit = new_request_source == 8'hA0; // @[Parameters.scala:46:9]
wire _new_skipProbe_T_1 = &new_request_opcode; // @[Parameters.scala:271:52, :279:50]
wire _new_skipProbe_T_2 = _new_skipProbe_T | _new_skipProbe_T_1; // @[Parameters.scala:279:{12,40,50}]
wire _new_skipProbe_T_3 = new_request_opcode == 3'h4; // @[Parameters.scala:279:87]
wire _new_skipProbe_T_4 = _new_skipProbe_T_2 | _new_skipProbe_T_3; // @[Parameters.scala:279:{40,77,87}]
wire _new_skipProbe_T_7 = _new_skipProbe_T_4; // @[Parameters.scala:279:{77,106}]
wire new_skipProbe = _new_skipProbe_T_7 & new_clientBit; // @[Parameters.scala:46:9]
wire [3:0] prior; // @[MSHR.scala:314:26]
wire _prior_out_T = ~prior_c; // @[MSHR.scala:315:27, :318:32]
wire _prior_T_2 = &final_meta_writeback_state; // @[MSHR.scala:215:38, :317:26]
wire [2:0] _prior_out_T_4 = prior_c ? _prior_out_T_2 : _prior_out_T_3; // @[MSHR.scala:315:27, :320:{32,39,76}]
assign prior = _prior_T ? {3'h0, _prior_out_T} : _prior_T_1 ? {2'h0, _prior_out_T_1} : _prior_T_2 ? {1'h0, _prior_out_T_4} : {_prior_T_3, 3'h0}; // @[MSHR.scala:314:26, :317:26, :318:{26,32}, :319:{26,32}, :320:{26,32}, :321:26]
wire _T_574 = io_directory_valid_0 | _new_meta_T; // @[MSHR.scala:84:7, :505:40, :539:28] |
Generate the Verilog code corresponding to the following Chisel files.
File RecFNToRecFN.scala:
/*============================================================================
This Chisel source file is part of a pre-release version of the HardFloat IEEE
Floating-Point Arithmetic Package, by John R. Hauser (with some contributions
from Yunsup Lee and Andrew Waterman, mainly concerning testing).
Copyright 2010, 2011, 2012, 2013, 2014, 2015, 2016 The Regents of the
University of California. All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
1. Redistributions of source code must retain the above copyright notice,
this list of conditions, and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice,
this list of conditions, and the following disclaimer in the documentation
and/or other materials provided with the distribution.
3. Neither the name of the University nor the names of its contributors may
be used to endorse or promote products derived from this software without
specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS "AS IS", AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ARE
DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
=============================================================================*/
package hardfloat
import chisel3._
import consts._
class
RecFNToRecFN(
inExpWidth: Int, inSigWidth: Int, outExpWidth: Int, outSigWidth: Int)
extends chisel3.RawModule
{
val io = IO(new Bundle {
val in = Input(Bits((inExpWidth + inSigWidth + 1).W))
val roundingMode = Input(UInt(3.W))
val detectTininess = Input(UInt(1.W))
val out = Output(Bits((outExpWidth + outSigWidth + 1).W))
val exceptionFlags = Output(Bits(5.W))
})
//------------------------------------------------------------------------
//------------------------------------------------------------------------
val rawIn = rawFloatFromRecFN(inExpWidth, inSigWidth, io.in);
if ((inExpWidth == outExpWidth) && (inSigWidth <= outSigWidth)) {
//--------------------------------------------------------------------
//--------------------------------------------------------------------
io.out := io.in<<(outSigWidth - inSigWidth)
io.exceptionFlags := isSigNaNRawFloat(rawIn) ## 0.U(4.W)
} else {
//--------------------------------------------------------------------
//--------------------------------------------------------------------
val roundAnyRawFNToRecFN =
Module(
new RoundAnyRawFNToRecFN(
inExpWidth,
inSigWidth,
outExpWidth,
outSigWidth,
flRoundOpt_sigMSBitAlwaysZero
))
roundAnyRawFNToRecFN.io.invalidExc := isSigNaNRawFloat(rawIn)
roundAnyRawFNToRecFN.io.infiniteExc := false.B
roundAnyRawFNToRecFN.io.in := rawIn
roundAnyRawFNToRecFN.io.roundingMode := io.roundingMode
roundAnyRawFNToRecFN.io.detectTininess := io.detectTininess
io.out := roundAnyRawFNToRecFN.io.out
io.exceptionFlags := roundAnyRawFNToRecFN.io.exceptionFlags
}
}
File rawFloatFromRecFN.scala:
/*============================================================================
This Chisel source file is part of a pre-release version of the HardFloat IEEE
Floating-Point Arithmetic Package, by John R. Hauser (with some contributions
from Yunsup Lee and Andrew Waterman, mainly concerning testing).
Copyright 2010, 2011, 2012, 2013, 2014, 2015, 2016 The Regents of the
University of California. All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
1. Redistributions of source code must retain the above copyright notice,
this list of conditions, and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice,
this list of conditions, and the following disclaimer in the documentation
and/or other materials provided with the distribution.
3. Neither the name of the University nor the names of its contributors may
be used to endorse or promote products derived from this software without
specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS "AS IS", AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ARE
DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
=============================================================================*/
package hardfloat
import chisel3._
import chisel3.util._
/*----------------------------------------------------------------------------
| In the result, no more than one of 'isNaN', 'isInf', and 'isZero' will be
| set.
*----------------------------------------------------------------------------*/
object rawFloatFromRecFN
{
def apply(expWidth: Int, sigWidth: Int, in: Bits): RawFloat =
{
val exp = in(expWidth + sigWidth - 1, sigWidth - 1)
val isZero = exp(expWidth, expWidth - 2) === 0.U
val isSpecial = exp(expWidth, expWidth - 1) === 3.U
val out = Wire(new RawFloat(expWidth, sigWidth))
out.isNaN := isSpecial && exp(expWidth - 2)
out.isInf := isSpecial && ! exp(expWidth - 2)
out.isZero := isZero
out.sign := in(expWidth + sigWidth)
out.sExp := exp.zext
out.sig := 0.U(1.W) ## ! isZero ## in(sigWidth - 2, 0)
out
}
}
| module RecFNToRecFN_209( // @[RecFNToRecFN.scala:44:5]
input [32:0] io_in, // @[RecFNToRecFN.scala:48:16]
output [32:0] io_out // @[RecFNToRecFN.scala:48:16]
);
wire [32:0] io_in_0 = io_in; // @[RecFNToRecFN.scala:44:5]
wire io_detectTininess = 1'h1; // @[RecFNToRecFN.scala:44:5, :48:16]
wire [2:0] io_roundingMode = 3'h0; // @[RecFNToRecFN.scala:44:5, :48:16]
wire [32:0] _io_out_T = io_in_0; // @[RecFNToRecFN.scala:44:5, :64:35]
wire [4:0] _io_exceptionFlags_T_3; // @[RecFNToRecFN.scala:65:54]
wire [32:0] io_out_0; // @[RecFNToRecFN.scala:44:5]
wire [4:0] io_exceptionFlags; // @[RecFNToRecFN.scala:44:5]
wire [8:0] rawIn_exp = io_in_0[31:23]; // @[rawFloatFromRecFN.scala:51:21]
wire [2:0] _rawIn_isZero_T = rawIn_exp[8:6]; // @[rawFloatFromRecFN.scala:51:21, :52:28]
wire rawIn_isZero = _rawIn_isZero_T == 3'h0; // @[rawFloatFromRecFN.scala:52:{28,53}]
wire rawIn_isZero_0 = rawIn_isZero; // @[rawFloatFromRecFN.scala:52:53, :55:23]
wire [1:0] _rawIn_isSpecial_T = rawIn_exp[8:7]; // @[rawFloatFromRecFN.scala:51:21, :53:28]
wire rawIn_isSpecial = &_rawIn_isSpecial_T; // @[rawFloatFromRecFN.scala:53:{28,53}]
wire _rawIn_out_isNaN_T_1; // @[rawFloatFromRecFN.scala:56:33]
wire _rawIn_out_isInf_T_2; // @[rawFloatFromRecFN.scala:57:33]
wire _rawIn_out_sign_T; // @[rawFloatFromRecFN.scala:59:25]
wire [9:0] _rawIn_out_sExp_T; // @[rawFloatFromRecFN.scala:60:27]
wire [24:0] _rawIn_out_sig_T_3; // @[rawFloatFromRecFN.scala:61:44]
wire rawIn_isNaN; // @[rawFloatFromRecFN.scala:55:23]
wire rawIn_isInf; // @[rawFloatFromRecFN.scala:55:23]
wire rawIn_sign; // @[rawFloatFromRecFN.scala:55:23]
wire [9:0] rawIn_sExp; // @[rawFloatFromRecFN.scala:55:23]
wire [24:0] rawIn_sig; // @[rawFloatFromRecFN.scala:55:23]
wire _rawIn_out_isNaN_T = rawIn_exp[6]; // @[rawFloatFromRecFN.scala:51:21, :56:41]
wire _rawIn_out_isInf_T = rawIn_exp[6]; // @[rawFloatFromRecFN.scala:51:21, :56:41, :57:41]
assign _rawIn_out_isNaN_T_1 = rawIn_isSpecial & _rawIn_out_isNaN_T; // @[rawFloatFromRecFN.scala:53:53, :56:{33,41}]
assign rawIn_isNaN = _rawIn_out_isNaN_T_1; // @[rawFloatFromRecFN.scala:55:23, :56:33]
wire _rawIn_out_isInf_T_1 = ~_rawIn_out_isInf_T; // @[rawFloatFromRecFN.scala:57:{36,41}]
assign _rawIn_out_isInf_T_2 = rawIn_isSpecial & _rawIn_out_isInf_T_1; // @[rawFloatFromRecFN.scala:53:53, :57:{33,36}]
assign rawIn_isInf = _rawIn_out_isInf_T_2; // @[rawFloatFromRecFN.scala:55:23, :57:33]
assign _rawIn_out_sign_T = io_in_0[32]; // @[rawFloatFromRecFN.scala:59:25]
assign rawIn_sign = _rawIn_out_sign_T; // @[rawFloatFromRecFN.scala:55:23, :59:25]
assign _rawIn_out_sExp_T = {1'h0, rawIn_exp}; // @[rawFloatFromRecFN.scala:51:21, :60:27]
assign rawIn_sExp = _rawIn_out_sExp_T; // @[rawFloatFromRecFN.scala:55:23, :60:27]
wire _rawIn_out_sig_T = ~rawIn_isZero; // @[rawFloatFromRecFN.scala:52:53, :61:35]
wire [1:0] _rawIn_out_sig_T_1 = {1'h0, _rawIn_out_sig_T}; // @[rawFloatFromRecFN.scala:61:{32,35}]
wire [22:0] _rawIn_out_sig_T_2 = io_in_0[22:0]; // @[rawFloatFromRecFN.scala:61:49]
assign _rawIn_out_sig_T_3 = {_rawIn_out_sig_T_1, _rawIn_out_sig_T_2}; // @[rawFloatFromRecFN.scala:61:{32,44,49}]
assign rawIn_sig = _rawIn_out_sig_T_3; // @[rawFloatFromRecFN.scala:55:23, :61:44]
assign io_out_0 = _io_out_T; // @[RecFNToRecFN.scala:44:5, :64:35]
wire _io_exceptionFlags_T = rawIn_sig[22]; // @[rawFloatFromRecFN.scala:55:23]
wire _io_exceptionFlags_T_1 = ~_io_exceptionFlags_T; // @[common.scala:82:{49,56}]
wire _io_exceptionFlags_T_2 = rawIn_isNaN & _io_exceptionFlags_T_1; // @[rawFloatFromRecFN.scala:55:23]
assign _io_exceptionFlags_T_3 = {_io_exceptionFlags_T_2, 4'h0}; // @[common.scala:82:46]
assign io_exceptionFlags = _io_exceptionFlags_T_3; // @[RecFNToRecFN.scala:44:5, :65:54]
assign io_out = io_out_0; // @[RecFNToRecFN.scala:44:5]
endmodule |
Generate the Verilog code corresponding to the following Chisel files.
File DescribedSRAM.scala:
// See LICENSE.Berkeley for license details.
// See LICENSE.SiFive for license details.
package freechips.rocketchip.util
import chisel3.{Data, SyncReadMem, Vec}
import chisel3.util.log2Ceil
object DescribedSRAM {
def apply[T <: Data](
name: String,
desc: String,
size: BigInt, // depth
data: T
): SyncReadMem[T] = {
val mem = SyncReadMem(size, data)
mem.suggestName(name)
val granWidth = data match {
case v: Vec[_] => v.head.getWidth
case d => d.getWidth
}
val uid = 0
Annotated.srams(
component = mem,
name = name,
address_width = log2Ceil(size),
data_width = data.getWidth,
depth = size,
description = desc,
write_mask_granularity = granWidth
)
mem
}
}
| module dataArrayWay_3_0( // @[DescribedSRAM.scala:17:26]
input [8:0] RW0_addr,
input RW0_en,
input RW0_clk,
input RW0_wmode,
input [63:0] RW0_wdata,
output [63:0] RW0_rdata
);
dataArrayWay_0_ext dataArrayWay_0_ext ( // @[DescribedSRAM.scala:17:26]
.RW0_addr (RW0_addr),
.RW0_en (RW0_en),
.RW0_clk (RW0_clk),
.RW0_wmode (RW0_wmode),
.RW0_wdata (RW0_wdata),
.RW0_rdata (RW0_rdata)
); // @[DescribedSRAM.scala:17:26]
endmodule |
Generate the Verilog code corresponding to the following Chisel files.
File MSHR.scala:
/*
* Copyright 2019 SiFive, Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You should have received a copy of LICENSE.Apache2 along with
* this software. If not, you may obtain a copy at
*
* https://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package sifive.blocks.inclusivecache
import chisel3._
import chisel3.util._
import chisel3.experimental.SourceInfo
import freechips.rocketchip.tilelink._
import TLPermissions._
import TLMessages._
import MetaData._
import chisel3.PrintableHelper
import chisel3.experimental.dataview._
class ScheduleRequest(params: InclusiveCacheParameters) extends InclusiveCacheBundle(params)
{
val a = Valid(new SourceARequest(params))
val b = Valid(new SourceBRequest(params))
val c = Valid(new SourceCRequest(params))
val d = Valid(new SourceDRequest(params))
val e = Valid(new SourceERequest(params))
val x = Valid(new SourceXRequest(params))
val dir = Valid(new DirectoryWrite(params))
val reload = Bool() // get next request via allocate (if any)
}
class MSHRStatus(params: InclusiveCacheParameters) extends InclusiveCacheBundle(params)
{
val set = UInt(params.setBits.W)
val tag = UInt(params.tagBits.W)
val way = UInt(params.wayBits.W)
val blockB = Bool()
val nestB = Bool()
val blockC = Bool()
val nestC = Bool()
}
class NestedWriteback(params: InclusiveCacheParameters) extends InclusiveCacheBundle(params)
{
val set = UInt(params.setBits.W)
val tag = UInt(params.tagBits.W)
val b_toN = Bool() // nested Probes may unhit us
val b_toB = Bool() // nested Probes may demote us
val b_clr_dirty = Bool() // nested Probes clear dirty
val c_set_dirty = Bool() // nested Releases MAY set dirty
}
sealed trait CacheState
{
val code = CacheState.index.U
CacheState.index = CacheState.index + 1
}
object CacheState
{
var index = 0
}
case object S_INVALID extends CacheState
case object S_BRANCH extends CacheState
case object S_BRANCH_C extends CacheState
case object S_TIP extends CacheState
case object S_TIP_C extends CacheState
case object S_TIP_CD extends CacheState
case object S_TIP_D extends CacheState
case object S_TRUNK_C extends CacheState
case object S_TRUNK_CD extends CacheState
class MSHR(params: InclusiveCacheParameters) extends Module
{
val io = IO(new Bundle {
val allocate = Flipped(Valid(new AllocateRequest(params))) // refills MSHR for next cycle
val directory = Flipped(Valid(new DirectoryResult(params))) // triggers schedule setup
val status = Valid(new MSHRStatus(params))
val schedule = Decoupled(new ScheduleRequest(params))
val sinkc = Flipped(Valid(new SinkCResponse(params)))
val sinkd = Flipped(Valid(new SinkDResponse(params)))
val sinke = Flipped(Valid(new SinkEResponse(params)))
val nestedwb = Flipped(new NestedWriteback(params))
})
val request_valid = RegInit(false.B)
val request = Reg(new FullRequest(params))
val meta_valid = RegInit(false.B)
val meta = Reg(new DirectoryResult(params))
// Define which states are valid
when (meta_valid) {
when (meta.state === INVALID) {
assert (!meta.clients.orR)
assert (!meta.dirty)
}
when (meta.state === BRANCH) {
assert (!meta.dirty)
}
when (meta.state === TRUNK) {
assert (meta.clients.orR)
assert ((meta.clients & (meta.clients - 1.U)) === 0.U) // at most one
}
when (meta.state === TIP) {
// noop
}
}
// Completed transitions (s_ = scheduled), (w_ = waiting)
val s_rprobe = RegInit(true.B) // B
val w_rprobeackfirst = RegInit(true.B)
val w_rprobeacklast = RegInit(true.B)
val s_release = RegInit(true.B) // CW w_rprobeackfirst
val w_releaseack = RegInit(true.B)
val s_pprobe = RegInit(true.B) // B
val s_acquire = RegInit(true.B) // A s_release, s_pprobe [1]
val s_flush = RegInit(true.B) // X w_releaseack
val w_grantfirst = RegInit(true.B)
val w_grantlast = RegInit(true.B)
val w_grant = RegInit(true.B) // first | last depending on wormhole
val w_pprobeackfirst = RegInit(true.B)
val w_pprobeacklast = RegInit(true.B)
val w_pprobeack = RegInit(true.B) // first | last depending on wormhole
val s_probeack = RegInit(true.B) // C w_pprobeackfirst (mutually exclusive with next two s_*)
val s_grantack = RegInit(true.B) // E w_grantfirst ... CAN require both outE&inD to service outD
val s_execute = RegInit(true.B) // D w_pprobeack, w_grant
val w_grantack = RegInit(true.B)
val s_writeback = RegInit(true.B) // W w_*
// [1]: We cannot issue outer Acquire while holding blockB (=> outA can stall)
// However, inB and outC are higher priority than outB, so s_release and s_pprobe
// may be safely issued while blockB. Thus we must NOT try to schedule the
// potentially stuck s_acquire with either of them (scheduler is all or none).
// Meta-data that we discover underway
val sink = Reg(UInt(params.outer.bundle.sinkBits.W))
val gotT = Reg(Bool())
val bad_grant = Reg(Bool())
val probes_done = Reg(UInt(params.clientBits.W))
val probes_toN = Reg(UInt(params.clientBits.W))
val probes_noT = Reg(Bool())
// When a nested transaction completes, update our meta data
when (meta_valid && meta.state =/= INVALID &&
io.nestedwb.set === request.set && io.nestedwb.tag === meta.tag) {
when (io.nestedwb.b_clr_dirty) { meta.dirty := false.B }
when (io.nestedwb.c_set_dirty) { meta.dirty := true.B }
when (io.nestedwb.b_toB) { meta.state := BRANCH }
when (io.nestedwb.b_toN) { meta.hit := false.B }
}
// Scheduler status
io.status.valid := request_valid
io.status.bits.set := request.set
io.status.bits.tag := request.tag
io.status.bits.way := meta.way
io.status.bits.blockB := !meta_valid || ((!w_releaseack || !w_rprobeacklast || !w_pprobeacklast) && !w_grantfirst)
io.status.bits.nestB := meta_valid && w_releaseack && w_rprobeacklast && w_pprobeacklast && !w_grantfirst
// The above rules ensure we will block and not nest an outer probe while still doing our
// own inner probes. Thus every probe wakes exactly one MSHR.
io.status.bits.blockC := !meta_valid
io.status.bits.nestC := meta_valid && (!w_rprobeackfirst || !w_pprobeackfirst || !w_grantfirst)
// The w_grantfirst in nestC is necessary to deal with:
// acquire waiting for grant, inner release gets queued, outer probe -> inner probe -> deadlock
// ... this is possible because the release+probe can be for same set, but different tag
// We can only demand: block, nest, or queue
assert (!io.status.bits.nestB || !io.status.bits.blockB)
assert (!io.status.bits.nestC || !io.status.bits.blockC)
// Scheduler requests
val no_wait = w_rprobeacklast && w_releaseack && w_grantlast && w_pprobeacklast && w_grantack
io.schedule.bits.a.valid := !s_acquire && s_release && s_pprobe
io.schedule.bits.b.valid := !s_rprobe || !s_pprobe
io.schedule.bits.c.valid := (!s_release && w_rprobeackfirst) || (!s_probeack && w_pprobeackfirst)
io.schedule.bits.d.valid := !s_execute && w_pprobeack && w_grant
io.schedule.bits.e.valid := !s_grantack && w_grantfirst
io.schedule.bits.x.valid := !s_flush && w_releaseack
io.schedule.bits.dir.valid := (!s_release && w_rprobeackfirst) || (!s_writeback && no_wait)
io.schedule.bits.reload := no_wait
io.schedule.valid := io.schedule.bits.a.valid || io.schedule.bits.b.valid || io.schedule.bits.c.valid ||
io.schedule.bits.d.valid || io.schedule.bits.e.valid || io.schedule.bits.x.valid ||
io.schedule.bits.dir.valid
// Schedule completions
when (io.schedule.ready) {
s_rprobe := true.B
when (w_rprobeackfirst) { s_release := true.B }
s_pprobe := true.B
when (s_release && s_pprobe) { s_acquire := true.B }
when (w_releaseack) { s_flush := true.B }
when (w_pprobeackfirst) { s_probeack := true.B }
when (w_grantfirst) { s_grantack := true.B }
when (w_pprobeack && w_grant) { s_execute := true.B }
when (no_wait) { s_writeback := true.B }
// Await the next operation
when (no_wait) {
request_valid := false.B
meta_valid := false.B
}
}
// Resulting meta-data
val final_meta_writeback = WireInit(meta)
val req_clientBit = params.clientBit(request.source)
val req_needT = needT(request.opcode, request.param)
val req_acquire = request.opcode === AcquireBlock || request.opcode === AcquirePerm
val meta_no_clients = !meta.clients.orR
val req_promoteT = req_acquire && Mux(meta.hit, meta_no_clients && meta.state === TIP, gotT)
when (request.prio(2) && (!params.firstLevel).B) { // always a hit
final_meta_writeback.dirty := meta.dirty || request.opcode(0)
final_meta_writeback.state := Mux(request.param =/= TtoT && meta.state === TRUNK, TIP, meta.state)
final_meta_writeback.clients := meta.clients & ~Mux(isToN(request.param), req_clientBit, 0.U)
final_meta_writeback.hit := true.B // chained requests are hits
} .elsewhen (request.control && params.control.B) { // request.prio(0)
when (meta.hit) {
final_meta_writeback.dirty := false.B
final_meta_writeback.state := INVALID
final_meta_writeback.clients := meta.clients & ~probes_toN
}
final_meta_writeback.hit := false.B
} .otherwise {
final_meta_writeback.dirty := (meta.hit && meta.dirty) || !request.opcode(2)
final_meta_writeback.state := Mux(req_needT,
Mux(req_acquire, TRUNK, TIP),
Mux(!meta.hit, Mux(gotT, Mux(req_acquire, TRUNK, TIP), BRANCH),
MuxLookup(meta.state, 0.U(2.W))(Seq(
INVALID -> BRANCH,
BRANCH -> BRANCH,
TRUNK -> TIP,
TIP -> Mux(meta_no_clients && req_acquire, TRUNK, TIP)))))
final_meta_writeback.clients := Mux(meta.hit, meta.clients & ~probes_toN, 0.U) |
Mux(req_acquire, req_clientBit, 0.U)
final_meta_writeback.tag := request.tag
final_meta_writeback.hit := true.B
}
when (bad_grant) {
when (meta.hit) {
// upgrade failed (B -> T)
assert (!meta_valid || meta.state === BRANCH)
final_meta_writeback.hit := true.B
final_meta_writeback.dirty := false.B
final_meta_writeback.state := BRANCH
final_meta_writeback.clients := meta.clients & ~probes_toN
} .otherwise {
// failed N -> (T or B)
final_meta_writeback.hit := false.B
final_meta_writeback.dirty := false.B
final_meta_writeback.state := INVALID
final_meta_writeback.clients := 0.U
}
}
val invalid = Wire(new DirectoryEntry(params))
invalid.dirty := false.B
invalid.state := INVALID
invalid.clients := 0.U
invalid.tag := 0.U
// Just because a client says BtoT, by the time we process the request he may be N.
// Therefore, we must consult our own meta-data state to confirm he owns the line still.
val honour_BtoT = meta.hit && (meta.clients & req_clientBit).orR
// The client asking us to act is proof they don't have permissions.
val excluded_client = Mux(meta.hit && request.prio(0) && skipProbeN(request.opcode, params.cache.hintsSkipProbe), req_clientBit, 0.U)
io.schedule.bits.a.bits.tag := request.tag
io.schedule.bits.a.bits.set := request.set
io.schedule.bits.a.bits.param := Mux(req_needT, Mux(meta.hit, BtoT, NtoT), NtoB)
io.schedule.bits.a.bits.block := request.size =/= log2Ceil(params.cache.blockBytes).U ||
!(request.opcode === PutFullData || request.opcode === AcquirePerm)
io.schedule.bits.a.bits.source := 0.U
io.schedule.bits.b.bits.param := Mux(!s_rprobe, toN, Mux(request.prio(1), request.param, Mux(req_needT, toN, toB)))
io.schedule.bits.b.bits.tag := Mux(!s_rprobe, meta.tag, request.tag)
io.schedule.bits.b.bits.set := request.set
io.schedule.bits.b.bits.clients := meta.clients & ~excluded_client
io.schedule.bits.c.bits.opcode := Mux(meta.dirty, ReleaseData, Release)
io.schedule.bits.c.bits.param := Mux(meta.state === BRANCH, BtoN, TtoN)
io.schedule.bits.c.bits.source := 0.U
io.schedule.bits.c.bits.tag := meta.tag
io.schedule.bits.c.bits.set := request.set
io.schedule.bits.c.bits.way := meta.way
io.schedule.bits.c.bits.dirty := meta.dirty
io.schedule.bits.d.bits.viewAsSupertype(chiselTypeOf(request)) := request
io.schedule.bits.d.bits.param := Mux(!req_acquire, request.param,
MuxLookup(request.param, request.param)(Seq(
NtoB -> Mux(req_promoteT, NtoT, NtoB),
BtoT -> Mux(honour_BtoT, BtoT, NtoT),
NtoT -> NtoT)))
io.schedule.bits.d.bits.sink := 0.U
io.schedule.bits.d.bits.way := meta.way
io.schedule.bits.d.bits.bad := bad_grant
io.schedule.bits.e.bits.sink := sink
io.schedule.bits.x.bits.fail := false.B
io.schedule.bits.dir.bits.set := request.set
io.schedule.bits.dir.bits.way := meta.way
io.schedule.bits.dir.bits.data := Mux(!s_release, invalid, WireInit(new DirectoryEntry(params), init = final_meta_writeback))
// Coverage of state transitions
def cacheState(entry: DirectoryEntry, hit: Bool) = {
val out = WireDefault(0.U)
val c = entry.clients.orR
val d = entry.dirty
switch (entry.state) {
is (BRANCH) { out := Mux(c, S_BRANCH_C.code, S_BRANCH.code) }
is (TRUNK) { out := Mux(d, S_TRUNK_CD.code, S_TRUNK_C.code) }
is (TIP) { out := Mux(c, Mux(d, S_TIP_CD.code, S_TIP_C.code), Mux(d, S_TIP_D.code, S_TIP.code)) }
is (INVALID) { out := S_INVALID.code }
}
when (!hit) { out := S_INVALID.code }
out
}
val p = !params.lastLevel // can be probed
val c = !params.firstLevel // can be acquired
val m = params.inner.client.clients.exists(!_.supports.probe) // can be written (or read)
val r = params.outer.manager.managers.exists(!_.alwaysGrantsT) // read-only devices exist
val f = params.control // flush control register exists
val cfg = (p, c, m, r, f)
val b = r || p // can reach branch state (via probe downgrade or read-only device)
// The cache must be used for something or we would not be here
require(c || m)
val evict = cacheState(meta, !meta.hit)
val before = cacheState(meta, meta.hit)
val after = cacheState(final_meta_writeback, true.B)
def eviction(from: CacheState, cover: Boolean)(implicit sourceInfo: SourceInfo) {
if (cover) {
params.ccover(evict === from.code, s"MSHR_${from}_EVICT", s"State transition from ${from} to evicted ${cfg}")
} else {
assert(!(evict === from.code), cf"State transition from ${from} to evicted should be impossible ${cfg}")
}
if (cover && f) {
params.ccover(before === from.code, s"MSHR_${from}_FLUSH", s"State transition from ${from} to flushed ${cfg}")
} else {
assert(!(before === from.code), cf"State transition from ${from} to flushed should be impossible ${cfg}")
}
}
def transition(from: CacheState, to: CacheState, cover: Boolean)(implicit sourceInfo: SourceInfo) {
if (cover) {
params.ccover(before === from.code && after === to.code, s"MSHR_${from}_${to}", s"State transition from ${from} to ${to} ${cfg}")
} else {
assert(!(before === from.code && after === to.code), cf"State transition from ${from} to ${to} should be impossible ${cfg}")
}
}
when ((!s_release && w_rprobeackfirst) && io.schedule.ready) {
eviction(S_BRANCH, b) // MMIO read to read-only device
eviction(S_BRANCH_C, b && c) // you need children to become C
eviction(S_TIP, true) // MMIO read || clean release can lead to this state
eviction(S_TIP_C, c) // needs two clients || client + mmio || downgrading client
eviction(S_TIP_CD, c) // needs two clients || client + mmio || downgrading client
eviction(S_TIP_D, true) // MMIO write || dirty release lead here
eviction(S_TRUNK_C, c) // acquire for write
eviction(S_TRUNK_CD, c) // dirty release then reacquire
}
when ((!s_writeback && no_wait) && io.schedule.ready) {
transition(S_INVALID, S_BRANCH, b && m) // only MMIO can bring us to BRANCH state
transition(S_INVALID, S_BRANCH_C, b && c) // C state is only possible if there are inner caches
transition(S_INVALID, S_TIP, m) // MMIO read
transition(S_INVALID, S_TIP_C, false) // we would go S_TRUNK_C instead
transition(S_INVALID, S_TIP_CD, false) // acquire does not cause dirty immediately
transition(S_INVALID, S_TIP_D, m) // MMIO write
transition(S_INVALID, S_TRUNK_C, c) // acquire
transition(S_INVALID, S_TRUNK_CD, false) // acquire does not cause dirty immediately
transition(S_BRANCH, S_INVALID, b && p) // probe can do this (flushes run as evictions)
transition(S_BRANCH, S_BRANCH_C, b && c) // acquire
transition(S_BRANCH, S_TIP, b && m) // prefetch write
transition(S_BRANCH, S_TIP_C, false) // we would go S_TRUNK_C instead
transition(S_BRANCH, S_TIP_CD, false) // acquire does not cause dirty immediately
transition(S_BRANCH, S_TIP_D, b && m) // MMIO write
transition(S_BRANCH, S_TRUNK_C, b && c) // acquire
transition(S_BRANCH, S_TRUNK_CD, false) // acquire does not cause dirty immediately
transition(S_BRANCH_C, S_INVALID, b && c && p)
transition(S_BRANCH_C, S_BRANCH, b && c) // clean release (optional)
transition(S_BRANCH_C, S_TIP, b && c && m) // prefetch write
transition(S_BRANCH_C, S_TIP_C, false) // we would go S_TRUNK_C instead
transition(S_BRANCH_C, S_TIP_D, b && c && m) // MMIO write
transition(S_BRANCH_C, S_TIP_CD, false) // going dirty means we must shoot down clients
transition(S_BRANCH_C, S_TRUNK_C, b && c) // acquire
transition(S_BRANCH_C, S_TRUNK_CD, false) // acquire does not cause dirty immediately
transition(S_TIP, S_INVALID, p)
transition(S_TIP, S_BRANCH, p) // losing TIP only possible via probe
transition(S_TIP, S_BRANCH_C, false) // we would go S_TRUNK_C instead
transition(S_TIP, S_TIP_C, false) // we would go S_TRUNK_C instead
transition(S_TIP, S_TIP_D, m) // direct dirty only via MMIO write
transition(S_TIP, S_TIP_CD, false) // acquire does not make us dirty immediately
transition(S_TIP, S_TRUNK_C, c) // acquire
transition(S_TIP, S_TRUNK_CD, false) // acquire does not make us dirty immediately
transition(S_TIP_C, S_INVALID, c && p)
transition(S_TIP_C, S_BRANCH, c && p) // losing TIP only possible via probe
transition(S_TIP_C, S_BRANCH_C, c && p) // losing TIP only possible via probe
transition(S_TIP_C, S_TIP, c) // probed while MMIO read || clean release (optional)
transition(S_TIP_C, S_TIP_D, c && m) // direct dirty only via MMIO write
transition(S_TIP_C, S_TIP_CD, false) // going dirty means we must shoot down clients
transition(S_TIP_C, S_TRUNK_C, c) // acquire
transition(S_TIP_C, S_TRUNK_CD, false) // acquire does not make us immediately dirty
transition(S_TIP_D, S_INVALID, p)
transition(S_TIP_D, S_BRANCH, p) // losing D is only possible via probe
transition(S_TIP_D, S_BRANCH_C, p && c) // probed while acquire shared
transition(S_TIP_D, S_TIP, p) // probed while MMIO read || outer probe.toT (optional)
transition(S_TIP_D, S_TIP_C, false) // we would go S_TRUNK_C instead
transition(S_TIP_D, S_TIP_CD, false) // we would go S_TRUNK_CD instead
transition(S_TIP_D, S_TRUNK_C, p && c) // probed while acquired
transition(S_TIP_D, S_TRUNK_CD, c) // acquire
transition(S_TIP_CD, S_INVALID, c && p)
transition(S_TIP_CD, S_BRANCH, c && p) // losing D is only possible via probe
transition(S_TIP_CD, S_BRANCH_C, c && p) // losing D is only possible via probe
transition(S_TIP_CD, S_TIP, c && p) // probed while MMIO read || outer probe.toT (optional)
transition(S_TIP_CD, S_TIP_C, false) // we would go S_TRUNK_C instead
transition(S_TIP_CD, S_TIP_D, c) // MMIO write || clean release (optional)
transition(S_TIP_CD, S_TRUNK_C, c && p) // probed while acquire
transition(S_TIP_CD, S_TRUNK_CD, c) // acquire
transition(S_TRUNK_C, S_INVALID, c && p)
transition(S_TRUNK_C, S_BRANCH, c && p) // losing TIP only possible via probe
transition(S_TRUNK_C, S_BRANCH_C, c && p) // losing TIP only possible via probe
transition(S_TRUNK_C, S_TIP, c) // MMIO read || clean release (optional)
transition(S_TRUNK_C, S_TIP_C, c) // bounce shared
transition(S_TRUNK_C, S_TIP_D, c) // dirty release
transition(S_TRUNK_C, S_TIP_CD, c) // dirty bounce shared
transition(S_TRUNK_C, S_TRUNK_CD, c) // dirty bounce
transition(S_TRUNK_CD, S_INVALID, c && p)
transition(S_TRUNK_CD, S_BRANCH, c && p) // losing D only possible via probe
transition(S_TRUNK_CD, S_BRANCH_C, c && p) // losing D only possible via probe
transition(S_TRUNK_CD, S_TIP, c && p) // probed while MMIO read || outer probe.toT (optional)
transition(S_TRUNK_CD, S_TIP_C, false) // we would go S_TRUNK_C instead
transition(S_TRUNK_CD, S_TIP_D, c) // dirty release
transition(S_TRUNK_CD, S_TIP_CD, c) // bounce shared
transition(S_TRUNK_CD, S_TRUNK_C, c && p) // probed while acquire
}
// Handle response messages
val probe_bit = params.clientBit(io.sinkc.bits.source)
val last_probe = (probes_done | probe_bit) === (meta.clients & ~excluded_client)
val probe_toN = isToN(io.sinkc.bits.param)
if (!params.firstLevel) when (io.sinkc.valid) {
params.ccover( probe_toN && io.schedule.bits.b.bits.param === toB, "MSHR_PROBE_FULL", "Client downgraded to N when asked only to do B")
params.ccover(!probe_toN && io.schedule.bits.b.bits.param === toB, "MSHR_PROBE_HALF", "Client downgraded to B when asked only to do B")
// Caution: the probe matches us only in set.
// We would never allow an outer probe to nest until both w_[rp]probeack complete, so
// it is safe to just unguardedly update the probe FSM.
probes_done := probes_done | probe_bit
probes_toN := probes_toN | Mux(probe_toN, probe_bit, 0.U)
probes_noT := probes_noT || io.sinkc.bits.param =/= TtoT
w_rprobeackfirst := w_rprobeackfirst || last_probe
w_rprobeacklast := w_rprobeacklast || (last_probe && io.sinkc.bits.last)
w_pprobeackfirst := w_pprobeackfirst || last_probe
w_pprobeacklast := w_pprobeacklast || (last_probe && io.sinkc.bits.last)
// Allow wormhole routing from sinkC if the first request beat has offset 0
val set_pprobeack = last_probe && (io.sinkc.bits.last || request.offset === 0.U)
w_pprobeack := w_pprobeack || set_pprobeack
params.ccover(!set_pprobeack && w_rprobeackfirst, "MSHR_PROBE_SERIAL", "Sequential routing of probe response data")
params.ccover( set_pprobeack && w_rprobeackfirst, "MSHR_PROBE_WORMHOLE", "Wormhole routing of probe response data")
// However, meta-data updates need to be done more cautiously
when (meta.state =/= INVALID && io.sinkc.bits.tag === meta.tag && io.sinkc.bits.data) { meta.dirty := true.B } // !!!
}
when (io.sinkd.valid) {
when (io.sinkd.bits.opcode === Grant || io.sinkd.bits.opcode === GrantData) {
sink := io.sinkd.bits.sink
w_grantfirst := true.B
w_grantlast := io.sinkd.bits.last
// Record if we need to prevent taking ownership
bad_grant := io.sinkd.bits.denied
// Allow wormhole routing for requests whose first beat has offset 0
w_grant := request.offset === 0.U || io.sinkd.bits.last
params.ccover(io.sinkd.bits.opcode === GrantData && request.offset === 0.U, "MSHR_GRANT_WORMHOLE", "Wormhole routing of grant response data")
params.ccover(io.sinkd.bits.opcode === GrantData && request.offset =/= 0.U, "MSHR_GRANT_SERIAL", "Sequential routing of grant response data")
gotT := io.sinkd.bits.param === toT
}
.elsewhen (io.sinkd.bits.opcode === ReleaseAck) {
w_releaseack := true.B
}
}
when (io.sinke.valid) {
w_grantack := true.B
}
// Bootstrap new requests
val allocate_as_full = WireInit(new FullRequest(params), init = io.allocate.bits)
val new_meta = Mux(io.allocate.valid && io.allocate.bits.repeat, final_meta_writeback, io.directory.bits)
val new_request = Mux(io.allocate.valid, allocate_as_full, request)
val new_needT = needT(new_request.opcode, new_request.param)
val new_clientBit = params.clientBit(new_request.source)
val new_skipProbe = Mux(skipProbeN(new_request.opcode, params.cache.hintsSkipProbe), new_clientBit, 0.U)
val prior = cacheState(final_meta_writeback, true.B)
def bypass(from: CacheState, cover: Boolean)(implicit sourceInfo: SourceInfo) {
if (cover) {
params.ccover(prior === from.code, s"MSHR_${from}_BYPASS", s"State bypass transition from ${from} ${cfg}")
} else {
assert(!(prior === from.code), cf"State bypass from ${from} should be impossible ${cfg}")
}
}
when (io.allocate.valid && io.allocate.bits.repeat) {
bypass(S_INVALID, f || p) // Can lose permissions (probe/flush)
bypass(S_BRANCH, b) // MMIO read to read-only device
bypass(S_BRANCH_C, b && c) // you need children to become C
bypass(S_TIP, true) // MMIO read || clean release can lead to this state
bypass(S_TIP_C, c) // needs two clients || client + mmio || downgrading client
bypass(S_TIP_CD, c) // needs two clients || client + mmio || downgrading client
bypass(S_TIP_D, true) // MMIO write || dirty release lead here
bypass(S_TRUNK_C, c) // acquire for write
bypass(S_TRUNK_CD, c) // dirty release then reacquire
}
when (io.allocate.valid) {
assert (!request_valid || (no_wait && io.schedule.fire))
request_valid := true.B
request := io.allocate.bits
}
// Create execution plan
when (io.directory.valid || (io.allocate.valid && io.allocate.bits.repeat)) {
meta_valid := true.B
meta := new_meta
probes_done := 0.U
probes_toN := 0.U
probes_noT := false.B
gotT := false.B
bad_grant := false.B
// These should already be either true or turning true
// We clear them here explicitly to simplify the mux tree
s_rprobe := true.B
w_rprobeackfirst := true.B
w_rprobeacklast := true.B
s_release := true.B
w_releaseack := true.B
s_pprobe := true.B
s_acquire := true.B
s_flush := true.B
w_grantfirst := true.B
w_grantlast := true.B
w_grant := true.B
w_pprobeackfirst := true.B
w_pprobeacklast := true.B
w_pprobeack := true.B
s_probeack := true.B
s_grantack := true.B
s_execute := true.B
w_grantack := true.B
s_writeback := true.B
// For C channel requests (ie: Release[Data])
when (new_request.prio(2) && (!params.firstLevel).B) {
s_execute := false.B
// Do we need to go dirty?
when (new_request.opcode(0) && !new_meta.dirty) {
s_writeback := false.B
}
// Does our state change?
when (isToB(new_request.param) && new_meta.state === TRUNK) {
s_writeback := false.B
}
// Do our clients change?
when (isToN(new_request.param) && (new_meta.clients & new_clientBit) =/= 0.U) {
s_writeback := false.B
}
assert (new_meta.hit)
}
// For X channel requests (ie: flush)
.elsewhen (new_request.control && params.control.B) { // new_request.prio(0)
s_flush := false.B
// Do we need to actually do something?
when (new_meta.hit) {
s_release := false.B
w_releaseack := false.B
// Do we need to shoot-down inner caches?
when ((!params.firstLevel).B && (new_meta.clients =/= 0.U)) {
s_rprobe := false.B
w_rprobeackfirst := false.B
w_rprobeacklast := false.B
}
}
}
// For A channel requests
.otherwise { // new_request.prio(0) && !new_request.control
s_execute := false.B
// Do we need an eviction?
when (!new_meta.hit && new_meta.state =/= INVALID) {
s_release := false.B
w_releaseack := false.B
// Do we need to shoot-down inner caches?
when ((!params.firstLevel).B & (new_meta.clients =/= 0.U)) {
s_rprobe := false.B
w_rprobeackfirst := false.B
w_rprobeacklast := false.B
}
}
// Do we need an acquire?
when (!new_meta.hit || (new_meta.state === BRANCH && new_needT)) {
s_acquire := false.B
w_grantfirst := false.B
w_grantlast := false.B
w_grant := false.B
s_grantack := false.B
s_writeback := false.B
}
// Do we need a probe?
when ((!params.firstLevel).B && (new_meta.hit &&
(new_needT || new_meta.state === TRUNK) &&
(new_meta.clients & ~new_skipProbe) =/= 0.U)) {
s_pprobe := false.B
w_pprobeackfirst := false.B
w_pprobeacklast := false.B
w_pprobeack := false.B
s_writeback := false.B
}
// Do we need a grantack?
when (new_request.opcode === AcquireBlock || new_request.opcode === AcquirePerm) {
w_grantack := false.B
s_writeback := false.B
}
// Becomes dirty?
when (!new_request.opcode(2) && new_meta.hit && !new_meta.dirty) {
s_writeback := false.B
}
}
}
}
File Parameters.scala:
/*
* Copyright 2019 SiFive, Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You should have received a copy of LICENSE.Apache2 along with
* this software. If not, you may obtain a copy at
*
* https://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package sifive.blocks.inclusivecache
import chisel3._
import chisel3.util._
import chisel3.experimental.SourceInfo
import org.chipsalliance.cde.config._
import freechips.rocketchip.diplomacy._
import freechips.rocketchip.tilelink._
import freechips.rocketchip.util._
import freechips.rocketchip.util.property.cover
import scala.math.{min,max}
case class CacheParameters(
level: Int,
ways: Int,
sets: Int,
blockBytes: Int,
beatBytes: Int, // inner
hintsSkipProbe: Boolean)
{
require (ways > 0)
require (sets > 0)
require (blockBytes > 0 && isPow2(blockBytes))
require (beatBytes > 0 && isPow2(beatBytes))
require (blockBytes >= beatBytes)
val blocks = ways * sets
val sizeBytes = blocks * blockBytes
val blockBeats = blockBytes/beatBytes
}
case class InclusiveCachePortParameters(
a: BufferParams,
b: BufferParams,
c: BufferParams,
d: BufferParams,
e: BufferParams)
{
def apply()(implicit p: Parameters, valName: ValName) = LazyModule(new TLBuffer(a, b, c, d, e))
}
object InclusiveCachePortParameters
{
val none = InclusiveCachePortParameters(
a = BufferParams.none,
b = BufferParams.none,
c = BufferParams.none,
d = BufferParams.none,
e = BufferParams.none)
val full = InclusiveCachePortParameters(
a = BufferParams.default,
b = BufferParams.default,
c = BufferParams.default,
d = BufferParams.default,
e = BufferParams.default)
// This removes feed-through paths from C=>A and A=>C
val fullC = InclusiveCachePortParameters(
a = BufferParams.none,
b = BufferParams.none,
c = BufferParams.default,
d = BufferParams.none,
e = BufferParams.none)
val flowAD = InclusiveCachePortParameters(
a = BufferParams.flow,
b = BufferParams.none,
c = BufferParams.none,
d = BufferParams.flow,
e = BufferParams.none)
val flowAE = InclusiveCachePortParameters(
a = BufferParams.flow,
b = BufferParams.none,
c = BufferParams.none,
d = BufferParams.none,
e = BufferParams.flow)
// For innerBuf:
// SinkA: no restrictions, flows into scheduler+putbuffer
// SourceB: no restrictions, flows out of scheduler
// sinkC: no restrictions, flows into scheduler+putbuffer & buffered to bankedStore
// SourceD: no restrictions, flows out of bankedStore/regout
// SinkE: no restrictions, flows into scheduler
//
// ... so while none is possible, you probably want at least flowAC to cut ready
// from the scheduler delay and flowD to ease SourceD back-pressure
// For outerBufer:
// SourceA: must not be pipe, flows out of scheduler
// SinkB: no restrictions, flows into scheduler
// SourceC: pipe is useless, flows out of bankedStore/regout, parameter depth ignored
// SinkD: no restrictions, flows into scheduler & bankedStore
// SourceE: must not be pipe, flows out of scheduler
//
// ... AE take the channel ready into the scheduler, so you need at least flowAE
}
case class InclusiveCacheMicroParameters(
writeBytes: Int, // backing store update granularity
memCycles: Int = 40, // # of L2 clock cycles for a memory round-trip (50ns @ 800MHz)
portFactor: Int = 4, // numSubBanks = (widest TL port * portFactor) / writeBytes
dirReg: Boolean = false,
innerBuf: InclusiveCachePortParameters = InclusiveCachePortParameters.fullC, // or none
outerBuf: InclusiveCachePortParameters = InclusiveCachePortParameters.full) // or flowAE
{
require (writeBytes > 0 && isPow2(writeBytes))
require (memCycles > 0)
require (portFactor >= 2) // for inner RMW and concurrent outer Relase + Grant
}
case class InclusiveCacheControlParameters(
address: BigInt,
beatBytes: Int,
bankedControl: Boolean)
case class InclusiveCacheParameters(
cache: CacheParameters,
micro: InclusiveCacheMicroParameters,
control: Boolean,
inner: TLEdgeIn,
outer: TLEdgeOut)(implicit val p: Parameters)
{
require (cache.ways > 1)
require (cache.sets > 1 && isPow2(cache.sets))
require (micro.writeBytes <= inner.manager.beatBytes)
require (micro.writeBytes <= outer.manager.beatBytes)
require (inner.manager.beatBytes <= cache.blockBytes)
require (outer.manager.beatBytes <= cache.blockBytes)
// Require that all cached address ranges have contiguous blocks
outer.manager.managers.flatMap(_.address).foreach { a =>
require (a.alignment >= cache.blockBytes)
}
// If we are the first level cache, we do not need to support inner-BCE
val firstLevel = !inner.client.clients.exists(_.supports.probe)
// If we are the last level cache, we do not need to support outer-B
val lastLevel = !outer.manager.managers.exists(_.regionType > RegionType.UNCACHED)
require (lastLevel)
// Provision enough resources to achieve full throughput with missing single-beat accesses
val mshrs = InclusiveCacheParameters.all_mshrs(cache, micro)
val secondary = max(mshrs, micro.memCycles - mshrs)
val putLists = micro.memCycles // allow every request to be single beat
val putBeats = max(2*cache.blockBeats, micro.memCycles)
val relLists = 2
val relBeats = relLists*cache.blockBeats
val flatAddresses = AddressSet.unify(outer.manager.managers.flatMap(_.address))
val pickMask = AddressDecoder(flatAddresses.map(Seq(_)), flatAddresses.map(_.mask).reduce(_|_))
def bitOffsets(x: BigInt, offset: Int = 0, tail: List[Int] = List.empty[Int]): List[Int] =
if (x == 0) tail.reverse else bitOffsets(x >> 1, offset + 1, if ((x & 1) == 1) offset :: tail else tail)
val addressMapping = bitOffsets(pickMask)
val addressBits = addressMapping.size
// println(s"addresses: ${flatAddresses} => ${pickMask} => ${addressBits}")
val allClients = inner.client.clients.size
val clientBitsRaw = inner.client.clients.filter(_.supports.probe).size
val clientBits = max(1, clientBitsRaw)
val stateBits = 2
val wayBits = log2Ceil(cache.ways)
val setBits = log2Ceil(cache.sets)
val offsetBits = log2Ceil(cache.blockBytes)
val tagBits = addressBits - setBits - offsetBits
val putBits = log2Ceil(max(putLists, relLists))
require (tagBits > 0)
require (offsetBits > 0)
val innerBeatBits = (offsetBits - log2Ceil(inner.manager.beatBytes)) max 1
val outerBeatBits = (offsetBits - log2Ceil(outer.manager.beatBytes)) max 1
val innerMaskBits = inner.manager.beatBytes / micro.writeBytes
val outerMaskBits = outer.manager.beatBytes / micro.writeBytes
def clientBit(source: UInt): UInt = {
if (clientBitsRaw == 0) {
0.U
} else {
Cat(inner.client.clients.filter(_.supports.probe).map(_.sourceId.contains(source)).reverse)
}
}
def clientSource(bit: UInt): UInt = {
if (clientBitsRaw == 0) {
0.U
} else {
Mux1H(bit, inner.client.clients.filter(_.supports.probe).map(c => c.sourceId.start.U))
}
}
def parseAddress(x: UInt): (UInt, UInt, UInt) = {
val offset = Cat(addressMapping.map(o => x(o,o)).reverse)
val set = offset >> offsetBits
val tag = set >> setBits
(tag(tagBits-1, 0), set(setBits-1, 0), offset(offsetBits-1, 0))
}
def widen(x: UInt, width: Int): UInt = {
val y = x | 0.U(width.W)
assert (y >> width === 0.U)
y(width-1, 0)
}
def expandAddress(tag: UInt, set: UInt, offset: UInt): UInt = {
val base = Cat(widen(tag, tagBits), widen(set, setBits), widen(offset, offsetBits))
val bits = Array.fill(outer.bundle.addressBits) { 0.U(1.W) }
addressMapping.zipWithIndex.foreach { case (a, i) => bits(a) = base(i,i) }
Cat(bits.reverse)
}
def restoreAddress(expanded: UInt): UInt = {
val missingBits = flatAddresses
.map { a => (a.widen(pickMask).base, a.widen(~pickMask)) } // key is the bits to restore on match
.groupBy(_._1)
.view
.mapValues(_.map(_._2))
val muxMask = AddressDecoder(missingBits.values.toList)
val mux = missingBits.toList.map { case (bits, addrs) =>
val widen = addrs.map(_.widen(~muxMask))
val matches = AddressSet
.unify(widen.distinct)
.map(_.contains(expanded))
.reduce(_ || _)
(matches, bits.U)
}
expanded | Mux1H(mux)
}
def dirReg[T <: Data](x: T, en: Bool = true.B): T = {
if (micro.dirReg) RegEnable(x, en) else x
}
def ccover(cond: Bool, label: String, desc: String)(implicit sourceInfo: SourceInfo) =
cover(cond, "CCACHE_L" + cache.level + "_" + label, "MemorySystem;;" + desc)
}
object MetaData
{
val stateBits = 2
def INVALID: UInt = 0.U(stateBits.W) // way is empty
def BRANCH: UInt = 1.U(stateBits.W) // outer slave cache is trunk
def TRUNK: UInt = 2.U(stateBits.W) // unique inner master cache is trunk
def TIP: UInt = 3.U(stateBits.W) // we are trunk, inner masters are branch
// Does a request need trunk?
def needT(opcode: UInt, param: UInt): Bool = {
!opcode(2) ||
(opcode === TLMessages.Hint && param === TLHints.PREFETCH_WRITE) ||
((opcode === TLMessages.AcquireBlock || opcode === TLMessages.AcquirePerm) && param =/= TLPermissions.NtoB)
}
// Does a request prove the client need not be probed?
def skipProbeN(opcode: UInt, hintsSkipProbe: Boolean): Bool = {
// Acquire(toB) and Get => is N, so no probe
// Acquire(*toT) => is N or B, but need T, so no probe
// Hint => could be anything, so probe IS needed, if hintsSkipProbe is enabled, skip probe the same client
// Put* => is N or B, so probe IS needed
opcode === TLMessages.AcquireBlock || opcode === TLMessages.AcquirePerm || opcode === TLMessages.Get || (opcode === TLMessages.Hint && hintsSkipProbe.B)
}
def isToN(param: UInt): Bool = {
param === TLPermissions.TtoN || param === TLPermissions.BtoN || param === TLPermissions.NtoN
}
def isToB(param: UInt): Bool = {
param === TLPermissions.TtoB || param === TLPermissions.BtoB
}
}
object InclusiveCacheParameters
{
val lfsrBits = 10
val L2ControlAddress = 0x2010000
val L2ControlSize = 0x1000
def out_mshrs(cache: CacheParameters, micro: InclusiveCacheMicroParameters): Int = {
// We need 2-3 normal MSHRs to cover the Directory latency
// To fully exploit memory bandwidth-delay-product, we need memCyles/blockBeats MSHRs
max(if (micro.dirReg) 3 else 2, (micro.memCycles + cache.blockBeats - 1) / cache.blockBeats)
}
def all_mshrs(cache: CacheParameters, micro: InclusiveCacheMicroParameters): Int =
// We need a dedicated MSHR for B+C each
2 + out_mshrs(cache, micro)
}
class InclusiveCacheBundle(params: InclusiveCacheParameters) extends Bundle
| module MSHR_4( // @[MSHR.scala:84:7]
input clock, // @[MSHR.scala:84:7]
input reset, // @[MSHR.scala:84:7]
input io_allocate_valid, // @[MSHR.scala:86:14]
input io_allocate_bits_prio_0, // @[MSHR.scala:86:14]
input io_allocate_bits_prio_1, // @[MSHR.scala:86:14]
input io_allocate_bits_prio_2, // @[MSHR.scala:86:14]
input io_allocate_bits_control, // @[MSHR.scala:86:14]
input [2:0] io_allocate_bits_opcode, // @[MSHR.scala:86:14]
input [2:0] io_allocate_bits_param, // @[MSHR.scala:86:14]
input [2:0] io_allocate_bits_size, // @[MSHR.scala:86:14]
input [5:0] io_allocate_bits_source, // @[MSHR.scala:86:14]
input [8:0] io_allocate_bits_tag, // @[MSHR.scala:86:14]
input [5:0] io_allocate_bits_offset, // @[MSHR.scala:86:14]
input [5:0] io_allocate_bits_put, // @[MSHR.scala:86:14]
input [10:0] io_allocate_bits_set, // @[MSHR.scala:86:14]
input io_allocate_bits_repeat, // @[MSHR.scala:86:14]
input io_directory_valid, // @[MSHR.scala:86:14]
input io_directory_bits_dirty, // @[MSHR.scala:86:14]
input [1:0] io_directory_bits_state, // @[MSHR.scala:86:14]
input io_directory_bits_clients, // @[MSHR.scala:86:14]
input [8:0] io_directory_bits_tag, // @[MSHR.scala:86:14]
input io_directory_bits_hit, // @[MSHR.scala:86:14]
input [3:0] io_directory_bits_way, // @[MSHR.scala:86:14]
output io_status_valid, // @[MSHR.scala:86:14]
output [10:0] io_status_bits_set, // @[MSHR.scala:86:14]
output [8:0] io_status_bits_tag, // @[MSHR.scala:86:14]
output [3:0] io_status_bits_way, // @[MSHR.scala:86:14]
output io_status_bits_blockB, // @[MSHR.scala:86:14]
output io_status_bits_nestB, // @[MSHR.scala:86:14]
output io_status_bits_blockC, // @[MSHR.scala:86:14]
output io_status_bits_nestC, // @[MSHR.scala:86:14]
input io_schedule_ready, // @[MSHR.scala:86:14]
output io_schedule_valid, // @[MSHR.scala:86:14]
output io_schedule_bits_a_valid, // @[MSHR.scala:86:14]
output [8:0] io_schedule_bits_a_bits_tag, // @[MSHR.scala:86:14]
output [10:0] io_schedule_bits_a_bits_set, // @[MSHR.scala:86:14]
output [2:0] io_schedule_bits_a_bits_param, // @[MSHR.scala:86:14]
output io_schedule_bits_a_bits_block, // @[MSHR.scala:86:14]
output io_schedule_bits_b_valid, // @[MSHR.scala:86:14]
output [2:0] io_schedule_bits_b_bits_param, // @[MSHR.scala:86:14]
output [8:0] io_schedule_bits_b_bits_tag, // @[MSHR.scala:86:14]
output [10:0] io_schedule_bits_b_bits_set, // @[MSHR.scala:86:14]
output io_schedule_bits_b_bits_clients, // @[MSHR.scala:86:14]
output io_schedule_bits_c_valid, // @[MSHR.scala:86:14]
output [2:0] io_schedule_bits_c_bits_opcode, // @[MSHR.scala:86:14]
output [2:0] io_schedule_bits_c_bits_param, // @[MSHR.scala:86:14]
output [8:0] io_schedule_bits_c_bits_tag, // @[MSHR.scala:86:14]
output [10:0] io_schedule_bits_c_bits_set, // @[MSHR.scala:86:14]
output [3:0] io_schedule_bits_c_bits_way, // @[MSHR.scala:86:14]
output io_schedule_bits_c_bits_dirty, // @[MSHR.scala:86:14]
output io_schedule_bits_d_valid, // @[MSHR.scala:86:14]
output io_schedule_bits_d_bits_prio_0, // @[MSHR.scala:86:14]
output io_schedule_bits_d_bits_prio_1, // @[MSHR.scala:86:14]
output io_schedule_bits_d_bits_prio_2, // @[MSHR.scala:86:14]
output io_schedule_bits_d_bits_control, // @[MSHR.scala:86:14]
output [2:0] io_schedule_bits_d_bits_opcode, // @[MSHR.scala:86:14]
output [2:0] io_schedule_bits_d_bits_param, // @[MSHR.scala:86:14]
output [2:0] io_schedule_bits_d_bits_size, // @[MSHR.scala:86:14]
output [5:0] io_schedule_bits_d_bits_source, // @[MSHR.scala:86:14]
output [8:0] io_schedule_bits_d_bits_tag, // @[MSHR.scala:86:14]
output [5:0] io_schedule_bits_d_bits_offset, // @[MSHR.scala:86:14]
output [5:0] io_schedule_bits_d_bits_put, // @[MSHR.scala:86:14]
output [10:0] io_schedule_bits_d_bits_set, // @[MSHR.scala:86:14]
output [3:0] io_schedule_bits_d_bits_way, // @[MSHR.scala:86:14]
output io_schedule_bits_d_bits_bad, // @[MSHR.scala:86:14]
output io_schedule_bits_e_valid, // @[MSHR.scala:86:14]
output [2:0] io_schedule_bits_e_bits_sink, // @[MSHR.scala:86:14]
output io_schedule_bits_x_valid, // @[MSHR.scala:86:14]
output io_schedule_bits_dir_valid, // @[MSHR.scala:86:14]
output [10:0] io_schedule_bits_dir_bits_set, // @[MSHR.scala:86:14]
output [3:0] io_schedule_bits_dir_bits_way, // @[MSHR.scala:86:14]
output io_schedule_bits_dir_bits_data_dirty, // @[MSHR.scala:86:14]
output [1:0] io_schedule_bits_dir_bits_data_state, // @[MSHR.scala:86:14]
output io_schedule_bits_dir_bits_data_clients, // @[MSHR.scala:86:14]
output [8:0] io_schedule_bits_dir_bits_data_tag, // @[MSHR.scala:86:14]
output io_schedule_bits_reload, // @[MSHR.scala:86:14]
input io_sinkc_valid, // @[MSHR.scala:86:14]
input io_sinkc_bits_last, // @[MSHR.scala:86:14]
input [10:0] io_sinkc_bits_set, // @[MSHR.scala:86:14]
input [8:0] io_sinkc_bits_tag, // @[MSHR.scala:86:14]
input [5:0] io_sinkc_bits_source, // @[MSHR.scala:86:14]
input [2:0] io_sinkc_bits_param, // @[MSHR.scala:86:14]
input io_sinkc_bits_data, // @[MSHR.scala:86:14]
input io_sinkd_valid, // @[MSHR.scala:86:14]
input io_sinkd_bits_last, // @[MSHR.scala:86:14]
input [2:0] io_sinkd_bits_opcode, // @[MSHR.scala:86:14]
input [2:0] io_sinkd_bits_param, // @[MSHR.scala:86:14]
input [3:0] io_sinkd_bits_source, // @[MSHR.scala:86:14]
input [2:0] io_sinkd_bits_sink, // @[MSHR.scala:86:14]
input io_sinkd_bits_denied, // @[MSHR.scala:86:14]
input io_sinke_valid, // @[MSHR.scala:86:14]
input [3:0] io_sinke_bits_sink, // @[MSHR.scala:86:14]
input [10:0] io_nestedwb_set, // @[MSHR.scala:86:14]
input [8:0] io_nestedwb_tag, // @[MSHR.scala:86:14]
input io_nestedwb_b_toN, // @[MSHR.scala:86:14]
input io_nestedwb_b_toB, // @[MSHR.scala:86:14]
input io_nestedwb_b_clr_dirty, // @[MSHR.scala:86:14]
input io_nestedwb_c_set_dirty // @[MSHR.scala:86:14]
);
wire [8:0] final_meta_writeback_tag; // @[MSHR.scala:215:38]
wire final_meta_writeback_clients; // @[MSHR.scala:215:38]
wire [1:0] final_meta_writeback_state; // @[MSHR.scala:215:38]
wire final_meta_writeback_dirty; // @[MSHR.scala:215:38]
wire io_allocate_valid_0 = io_allocate_valid; // @[MSHR.scala:84:7]
wire io_allocate_bits_prio_0_0 = io_allocate_bits_prio_0; // @[MSHR.scala:84:7]
wire io_allocate_bits_prio_1_0 = io_allocate_bits_prio_1; // @[MSHR.scala:84:7]
wire io_allocate_bits_prio_2_0 = io_allocate_bits_prio_2; // @[MSHR.scala:84:7]
wire io_allocate_bits_control_0 = io_allocate_bits_control; // @[MSHR.scala:84:7]
wire [2:0] io_allocate_bits_opcode_0 = io_allocate_bits_opcode; // @[MSHR.scala:84:7]
wire [2:0] io_allocate_bits_param_0 = io_allocate_bits_param; // @[MSHR.scala:84:7]
wire [2:0] io_allocate_bits_size_0 = io_allocate_bits_size; // @[MSHR.scala:84:7]
wire [5:0] io_allocate_bits_source_0 = io_allocate_bits_source; // @[MSHR.scala:84:7]
wire [8:0] io_allocate_bits_tag_0 = io_allocate_bits_tag; // @[MSHR.scala:84:7]
wire [5:0] io_allocate_bits_offset_0 = io_allocate_bits_offset; // @[MSHR.scala:84:7]
wire [5:0] io_allocate_bits_put_0 = io_allocate_bits_put; // @[MSHR.scala:84:7]
wire [10:0] io_allocate_bits_set_0 = io_allocate_bits_set; // @[MSHR.scala:84:7]
wire io_allocate_bits_repeat_0 = io_allocate_bits_repeat; // @[MSHR.scala:84:7]
wire io_directory_valid_0 = io_directory_valid; // @[MSHR.scala:84:7]
wire io_directory_bits_dirty_0 = io_directory_bits_dirty; // @[MSHR.scala:84:7]
wire [1:0] io_directory_bits_state_0 = io_directory_bits_state; // @[MSHR.scala:84:7]
wire io_directory_bits_clients_0 = io_directory_bits_clients; // @[MSHR.scala:84:7]
wire [8:0] io_directory_bits_tag_0 = io_directory_bits_tag; // @[MSHR.scala:84:7]
wire io_directory_bits_hit_0 = io_directory_bits_hit; // @[MSHR.scala:84:7]
wire [3:0] io_directory_bits_way_0 = io_directory_bits_way; // @[MSHR.scala:84:7]
wire io_schedule_ready_0 = io_schedule_ready; // @[MSHR.scala:84:7]
wire io_sinkc_valid_0 = io_sinkc_valid; // @[MSHR.scala:84:7]
wire io_sinkc_bits_last_0 = io_sinkc_bits_last; // @[MSHR.scala:84:7]
wire [10:0] io_sinkc_bits_set_0 = io_sinkc_bits_set; // @[MSHR.scala:84:7]
wire [8:0] io_sinkc_bits_tag_0 = io_sinkc_bits_tag; // @[MSHR.scala:84:7]
wire [5:0] io_sinkc_bits_source_0 = io_sinkc_bits_source; // @[MSHR.scala:84:7]
wire [2:0] io_sinkc_bits_param_0 = io_sinkc_bits_param; // @[MSHR.scala:84:7]
wire io_sinkc_bits_data_0 = io_sinkc_bits_data; // @[MSHR.scala:84:7]
wire io_sinkd_valid_0 = io_sinkd_valid; // @[MSHR.scala:84:7]
wire io_sinkd_bits_last_0 = io_sinkd_bits_last; // @[MSHR.scala:84:7]
wire [2:0] io_sinkd_bits_opcode_0 = io_sinkd_bits_opcode; // @[MSHR.scala:84:7]
wire [2:0] io_sinkd_bits_param_0 = io_sinkd_bits_param; // @[MSHR.scala:84:7]
wire [3:0] io_sinkd_bits_source_0 = io_sinkd_bits_source; // @[MSHR.scala:84:7]
wire [2:0] io_sinkd_bits_sink_0 = io_sinkd_bits_sink; // @[MSHR.scala:84:7]
wire io_sinkd_bits_denied_0 = io_sinkd_bits_denied; // @[MSHR.scala:84:7]
wire io_sinke_valid_0 = io_sinke_valid; // @[MSHR.scala:84:7]
wire [3:0] io_sinke_bits_sink_0 = io_sinke_bits_sink; // @[MSHR.scala:84:7]
wire [10:0] io_nestedwb_set_0 = io_nestedwb_set; // @[MSHR.scala:84:7]
wire [8:0] io_nestedwb_tag_0 = io_nestedwb_tag; // @[MSHR.scala:84:7]
wire io_nestedwb_b_toN_0 = io_nestedwb_b_toN; // @[MSHR.scala:84:7]
wire io_nestedwb_b_toB_0 = io_nestedwb_b_toB; // @[MSHR.scala:84:7]
wire io_nestedwb_b_clr_dirty_0 = io_nestedwb_b_clr_dirty; // @[MSHR.scala:84:7]
wire io_nestedwb_c_set_dirty_0 = io_nestedwb_c_set_dirty; // @[MSHR.scala:84:7]
wire [3:0] io_schedule_bits_a_bits_source = 4'h0; // @[MSHR.scala:84:7]
wire [3:0] io_schedule_bits_c_bits_source = 4'h0; // @[MSHR.scala:84:7]
wire [3:0] io_schedule_bits_d_bits_sink = 4'h0; // @[MSHR.scala:84:7]
wire io_schedule_bits_x_bits_fail = 1'h0; // @[MSHR.scala:84:7]
wire _io_schedule_bits_c_valid_T_2 = 1'h0; // @[MSHR.scala:186:68]
wire _io_schedule_bits_c_valid_T_3 = 1'h0; // @[MSHR.scala:186:80]
wire invalid_dirty = 1'h0; // @[MSHR.scala:268:21]
wire invalid_clients = 1'h0; // @[MSHR.scala:268:21]
wire _excluded_client_T_7 = 1'h0; // @[Parameters.scala:279:137]
wire _after_T_4 = 1'h0; // @[MSHR.scala:323:11]
wire _new_skipProbe_T_6 = 1'h0; // @[Parameters.scala:279:137]
wire _prior_T_4 = 1'h0; // @[MSHR.scala:323:11]
wire [8:0] invalid_tag = 9'h0; // @[MSHR.scala:268:21]
wire [1:0] invalid_state = 2'h0; // @[MSHR.scala:268:21]
wire [1:0] _final_meta_writeback_state_T_11 = 2'h1; // @[MSHR.scala:240:70]
wire allocate_as_full_prio_0 = io_allocate_bits_prio_0_0; // @[MSHR.scala:84:7, :504:34]
wire allocate_as_full_prio_1 = io_allocate_bits_prio_1_0; // @[MSHR.scala:84:7, :504:34]
wire allocate_as_full_prio_2 = io_allocate_bits_prio_2_0; // @[MSHR.scala:84:7, :504:34]
wire allocate_as_full_control = io_allocate_bits_control_0; // @[MSHR.scala:84:7, :504:34]
wire [2:0] allocate_as_full_opcode = io_allocate_bits_opcode_0; // @[MSHR.scala:84:7, :504:34]
wire [2:0] allocate_as_full_param = io_allocate_bits_param_0; // @[MSHR.scala:84:7, :504:34]
wire [2:0] allocate_as_full_size = io_allocate_bits_size_0; // @[MSHR.scala:84:7, :504:34]
wire [5:0] allocate_as_full_source = io_allocate_bits_source_0; // @[MSHR.scala:84:7, :504:34]
wire [8:0] allocate_as_full_tag = io_allocate_bits_tag_0; // @[MSHR.scala:84:7, :504:34]
wire [5:0] allocate_as_full_offset = io_allocate_bits_offset_0; // @[MSHR.scala:84:7, :504:34]
wire [5:0] allocate_as_full_put = io_allocate_bits_put_0; // @[MSHR.scala:84:7, :504:34]
wire [10:0] allocate_as_full_set = io_allocate_bits_set_0; // @[MSHR.scala:84:7, :504:34]
wire _io_status_bits_blockB_T_8; // @[MSHR.scala:168:40]
wire _io_status_bits_nestB_T_4; // @[MSHR.scala:169:93]
wire _io_status_bits_blockC_T; // @[MSHR.scala:172:28]
wire _io_status_bits_nestC_T_5; // @[MSHR.scala:173:39]
wire _io_schedule_valid_T_5; // @[MSHR.scala:193:105]
wire _io_schedule_bits_a_valid_T_2; // @[MSHR.scala:184:55]
wire _io_schedule_bits_a_bits_block_T_5; // @[MSHR.scala:283:91]
wire _io_schedule_bits_b_valid_T_2; // @[MSHR.scala:185:41]
wire [2:0] _io_schedule_bits_b_bits_param_T_3; // @[MSHR.scala:286:41]
wire [8:0] _io_schedule_bits_b_bits_tag_T_1; // @[MSHR.scala:287:41]
wire _io_schedule_bits_b_bits_clients_T_1; // @[MSHR.scala:289:51]
wire _io_schedule_bits_c_valid_T_4; // @[MSHR.scala:186:64]
wire [2:0] _io_schedule_bits_c_bits_opcode_T; // @[MSHR.scala:290:41]
wire [2:0] _io_schedule_bits_c_bits_param_T_1; // @[MSHR.scala:291:41]
wire _io_schedule_bits_d_valid_T_2; // @[MSHR.scala:187:57]
wire [2:0] _io_schedule_bits_d_bits_param_T_9; // @[MSHR.scala:298:41]
wire _io_schedule_bits_e_valid_T_1; // @[MSHR.scala:188:43]
wire _io_schedule_bits_x_valid_T_1; // @[MSHR.scala:189:40]
wire _io_schedule_bits_dir_valid_T_4; // @[MSHR.scala:190:66]
wire _io_schedule_bits_dir_bits_data_T_1_dirty; // @[MSHR.scala:310:41]
wire [1:0] _io_schedule_bits_dir_bits_data_T_1_state; // @[MSHR.scala:310:41]
wire _io_schedule_bits_dir_bits_data_T_1_clients; // @[MSHR.scala:310:41]
wire [8:0] _io_schedule_bits_dir_bits_data_T_1_tag; // @[MSHR.scala:310:41]
wire no_wait; // @[MSHR.scala:183:83]
wire [10:0] io_status_bits_set_0; // @[MSHR.scala:84:7]
wire [8:0] io_status_bits_tag_0; // @[MSHR.scala:84:7]
wire [3:0] io_status_bits_way_0; // @[MSHR.scala:84:7]
wire io_status_bits_blockB_0; // @[MSHR.scala:84:7]
wire io_status_bits_nestB_0; // @[MSHR.scala:84:7]
wire io_status_bits_blockC_0; // @[MSHR.scala:84:7]
wire io_status_bits_nestC_0; // @[MSHR.scala:84:7]
wire io_status_valid_0; // @[MSHR.scala:84:7]
wire [8:0] io_schedule_bits_a_bits_tag_0; // @[MSHR.scala:84:7]
wire [10:0] io_schedule_bits_a_bits_set_0; // @[MSHR.scala:84:7]
wire [2:0] io_schedule_bits_a_bits_param_0; // @[MSHR.scala:84:7]
wire io_schedule_bits_a_bits_block_0; // @[MSHR.scala:84:7]
wire io_schedule_bits_a_valid_0; // @[MSHR.scala:84:7]
wire [2:0] io_schedule_bits_b_bits_param_0; // @[MSHR.scala:84:7]
wire [8:0] io_schedule_bits_b_bits_tag_0; // @[MSHR.scala:84:7]
wire [10:0] io_schedule_bits_b_bits_set_0; // @[MSHR.scala:84:7]
wire io_schedule_bits_b_bits_clients_0; // @[MSHR.scala:84:7]
wire io_schedule_bits_b_valid_0; // @[MSHR.scala:84:7]
wire [2:0] io_schedule_bits_c_bits_opcode_0; // @[MSHR.scala:84:7]
wire [2:0] io_schedule_bits_c_bits_param_0; // @[MSHR.scala:84:7]
wire [8:0] io_schedule_bits_c_bits_tag_0; // @[MSHR.scala:84:7]
wire [10:0] io_schedule_bits_c_bits_set_0; // @[MSHR.scala:84:7]
wire [3:0] io_schedule_bits_c_bits_way_0; // @[MSHR.scala:84:7]
wire io_schedule_bits_c_bits_dirty_0; // @[MSHR.scala:84:7]
wire io_schedule_bits_c_valid_0; // @[MSHR.scala:84:7]
wire io_schedule_bits_d_bits_prio_0_0; // @[MSHR.scala:84:7]
wire io_schedule_bits_d_bits_prio_1_0; // @[MSHR.scala:84:7]
wire io_schedule_bits_d_bits_prio_2_0; // @[MSHR.scala:84:7]
wire io_schedule_bits_d_bits_control_0; // @[MSHR.scala:84:7]
wire [2:0] io_schedule_bits_d_bits_opcode_0; // @[MSHR.scala:84:7]
wire [2:0] io_schedule_bits_d_bits_param_0; // @[MSHR.scala:84:7]
wire [2:0] io_schedule_bits_d_bits_size_0; // @[MSHR.scala:84:7]
wire [5:0] io_schedule_bits_d_bits_source_0; // @[MSHR.scala:84:7]
wire [8:0] io_schedule_bits_d_bits_tag_0; // @[MSHR.scala:84:7]
wire [5:0] io_schedule_bits_d_bits_offset_0; // @[MSHR.scala:84:7]
wire [5:0] io_schedule_bits_d_bits_put_0; // @[MSHR.scala:84:7]
wire [10:0] io_schedule_bits_d_bits_set_0; // @[MSHR.scala:84:7]
wire [3:0] io_schedule_bits_d_bits_way_0; // @[MSHR.scala:84:7]
wire io_schedule_bits_d_bits_bad_0; // @[MSHR.scala:84:7]
wire io_schedule_bits_d_valid_0; // @[MSHR.scala:84:7]
wire [2:0] io_schedule_bits_e_bits_sink_0; // @[MSHR.scala:84:7]
wire io_schedule_bits_e_valid_0; // @[MSHR.scala:84:7]
wire io_schedule_bits_x_valid_0; // @[MSHR.scala:84:7]
wire io_schedule_bits_dir_bits_data_dirty_0; // @[MSHR.scala:84:7]
wire [1:0] io_schedule_bits_dir_bits_data_state_0; // @[MSHR.scala:84:7]
wire io_schedule_bits_dir_bits_data_clients_0; // @[MSHR.scala:84:7]
wire [8:0] io_schedule_bits_dir_bits_data_tag_0; // @[MSHR.scala:84:7]
wire [10:0] io_schedule_bits_dir_bits_set_0; // @[MSHR.scala:84:7]
wire [3:0] io_schedule_bits_dir_bits_way_0; // @[MSHR.scala:84:7]
wire io_schedule_bits_dir_valid_0; // @[MSHR.scala:84:7]
wire io_schedule_bits_reload_0; // @[MSHR.scala:84:7]
wire io_schedule_valid_0; // @[MSHR.scala:84:7]
reg request_valid; // @[MSHR.scala:97:30]
assign io_status_valid_0 = request_valid; // @[MSHR.scala:84:7, :97:30]
reg request_prio_0; // @[MSHR.scala:98:20]
assign io_schedule_bits_d_bits_prio_0_0 = request_prio_0; // @[MSHR.scala:84:7, :98:20]
reg request_prio_1; // @[MSHR.scala:98:20]
assign io_schedule_bits_d_bits_prio_1_0 = request_prio_1; // @[MSHR.scala:84:7, :98:20]
reg request_prio_2; // @[MSHR.scala:98:20]
assign io_schedule_bits_d_bits_prio_2_0 = request_prio_2; // @[MSHR.scala:84:7, :98:20]
reg request_control; // @[MSHR.scala:98:20]
assign io_schedule_bits_d_bits_control_0 = request_control; // @[MSHR.scala:84:7, :98:20]
reg [2:0] request_opcode; // @[MSHR.scala:98:20]
assign io_schedule_bits_d_bits_opcode_0 = request_opcode; // @[MSHR.scala:84:7, :98:20]
reg [2:0] request_param; // @[MSHR.scala:98:20]
reg [2:0] request_size; // @[MSHR.scala:98:20]
assign io_schedule_bits_d_bits_size_0 = request_size; // @[MSHR.scala:84:7, :98:20]
reg [5:0] request_source; // @[MSHR.scala:98:20]
assign io_schedule_bits_d_bits_source_0 = request_source; // @[MSHR.scala:84:7, :98:20]
reg [8:0] request_tag; // @[MSHR.scala:98:20]
assign io_status_bits_tag_0 = request_tag; // @[MSHR.scala:84:7, :98:20]
assign io_schedule_bits_a_bits_tag_0 = request_tag; // @[MSHR.scala:84:7, :98:20]
assign io_schedule_bits_d_bits_tag_0 = request_tag; // @[MSHR.scala:84:7, :98:20]
reg [5:0] request_offset; // @[MSHR.scala:98:20]
assign io_schedule_bits_d_bits_offset_0 = request_offset; // @[MSHR.scala:84:7, :98:20]
reg [5:0] request_put; // @[MSHR.scala:98:20]
assign io_schedule_bits_d_bits_put_0 = request_put; // @[MSHR.scala:84:7, :98:20]
reg [10:0] request_set; // @[MSHR.scala:98:20]
assign io_status_bits_set_0 = request_set; // @[MSHR.scala:84:7, :98:20]
assign io_schedule_bits_a_bits_set_0 = request_set; // @[MSHR.scala:84:7, :98:20]
assign io_schedule_bits_b_bits_set_0 = request_set; // @[MSHR.scala:84:7, :98:20]
assign io_schedule_bits_c_bits_set_0 = request_set; // @[MSHR.scala:84:7, :98:20]
assign io_schedule_bits_d_bits_set_0 = request_set; // @[MSHR.scala:84:7, :98:20]
assign io_schedule_bits_dir_bits_set_0 = request_set; // @[MSHR.scala:84:7, :98:20]
reg meta_valid; // @[MSHR.scala:99:27]
reg meta_dirty; // @[MSHR.scala:100:17]
assign io_schedule_bits_c_bits_dirty_0 = meta_dirty; // @[MSHR.scala:84:7, :100:17]
reg [1:0] meta_state; // @[MSHR.scala:100:17]
reg meta_clients; // @[MSHR.scala:100:17]
wire _meta_no_clients_T = meta_clients; // @[MSHR.scala:100:17, :220:39]
wire evict_c = meta_clients; // @[MSHR.scala:100:17, :315:27]
wire before_c = meta_clients; // @[MSHR.scala:100:17, :315:27]
reg [8:0] meta_tag; // @[MSHR.scala:100:17]
assign io_schedule_bits_c_bits_tag_0 = meta_tag; // @[MSHR.scala:84:7, :100:17]
reg meta_hit; // @[MSHR.scala:100:17]
reg [3:0] meta_way; // @[MSHR.scala:100:17]
assign io_status_bits_way_0 = meta_way; // @[MSHR.scala:84:7, :100:17]
assign io_schedule_bits_c_bits_way_0 = meta_way; // @[MSHR.scala:84:7, :100:17]
assign io_schedule_bits_d_bits_way_0 = meta_way; // @[MSHR.scala:84:7, :100:17]
assign io_schedule_bits_dir_bits_way_0 = meta_way; // @[MSHR.scala:84:7, :100:17]
wire [3:0] final_meta_writeback_way = meta_way; // @[MSHR.scala:100:17, :215:38]
reg s_rprobe; // @[MSHR.scala:121:33]
reg w_rprobeackfirst; // @[MSHR.scala:122:33]
reg w_rprobeacklast; // @[MSHR.scala:123:33]
reg s_release; // @[MSHR.scala:124:33]
reg w_releaseack; // @[MSHR.scala:125:33]
reg s_pprobe; // @[MSHR.scala:126:33]
reg s_acquire; // @[MSHR.scala:127:33]
reg s_flush; // @[MSHR.scala:128:33]
reg w_grantfirst; // @[MSHR.scala:129:33]
reg w_grantlast; // @[MSHR.scala:130:33]
reg w_grant; // @[MSHR.scala:131:33]
reg w_pprobeackfirst; // @[MSHR.scala:132:33]
reg w_pprobeacklast; // @[MSHR.scala:133:33]
reg w_pprobeack; // @[MSHR.scala:134:33]
reg s_grantack; // @[MSHR.scala:136:33]
reg s_execute; // @[MSHR.scala:137:33]
reg w_grantack; // @[MSHR.scala:138:33]
reg s_writeback; // @[MSHR.scala:139:33]
reg [2:0] sink; // @[MSHR.scala:147:17]
assign io_schedule_bits_e_bits_sink_0 = sink; // @[MSHR.scala:84:7, :147:17]
reg gotT; // @[MSHR.scala:148:17]
reg bad_grant; // @[MSHR.scala:149:22]
assign io_schedule_bits_d_bits_bad_0 = bad_grant; // @[MSHR.scala:84:7, :149:22]
reg probes_done; // @[MSHR.scala:150:24]
reg probes_toN; // @[MSHR.scala:151:23]
reg probes_noT; // @[MSHR.scala:152:23]
wire _io_status_bits_blockB_T = ~meta_valid; // @[MSHR.scala:99:27, :168:28]
wire _io_status_bits_blockB_T_1 = ~w_releaseack; // @[MSHR.scala:125:33, :168:45]
wire _io_status_bits_blockB_T_2 = ~w_rprobeacklast; // @[MSHR.scala:123:33, :168:62]
wire _io_status_bits_blockB_T_3 = _io_status_bits_blockB_T_1 | _io_status_bits_blockB_T_2; // @[MSHR.scala:168:{45,59,62}]
wire _io_status_bits_blockB_T_4 = ~w_pprobeacklast; // @[MSHR.scala:133:33, :168:82]
wire _io_status_bits_blockB_T_5 = _io_status_bits_blockB_T_3 | _io_status_bits_blockB_T_4; // @[MSHR.scala:168:{59,79,82}]
wire _io_status_bits_blockB_T_6 = ~w_grantfirst; // @[MSHR.scala:129:33, :168:103]
wire _io_status_bits_blockB_T_7 = _io_status_bits_blockB_T_5 & _io_status_bits_blockB_T_6; // @[MSHR.scala:168:{79,100,103}]
assign _io_status_bits_blockB_T_8 = _io_status_bits_blockB_T | _io_status_bits_blockB_T_7; // @[MSHR.scala:168:{28,40,100}]
assign io_status_bits_blockB_0 = _io_status_bits_blockB_T_8; // @[MSHR.scala:84:7, :168:40]
wire _io_status_bits_nestB_T = meta_valid & w_releaseack; // @[MSHR.scala:99:27, :125:33, :169:39]
wire _io_status_bits_nestB_T_1 = _io_status_bits_nestB_T & w_rprobeacklast; // @[MSHR.scala:123:33, :169:{39,55}]
wire _io_status_bits_nestB_T_2 = _io_status_bits_nestB_T_1 & w_pprobeacklast; // @[MSHR.scala:133:33, :169:{55,74}]
wire _io_status_bits_nestB_T_3 = ~w_grantfirst; // @[MSHR.scala:129:33, :168:103, :169:96]
assign _io_status_bits_nestB_T_4 = _io_status_bits_nestB_T_2 & _io_status_bits_nestB_T_3; // @[MSHR.scala:169:{74,93,96}]
assign io_status_bits_nestB_0 = _io_status_bits_nestB_T_4; // @[MSHR.scala:84:7, :169:93]
assign _io_status_bits_blockC_T = ~meta_valid; // @[MSHR.scala:99:27, :168:28, :172:28]
assign io_status_bits_blockC_0 = _io_status_bits_blockC_T; // @[MSHR.scala:84:7, :172:28]
wire _io_status_bits_nestC_T = ~w_rprobeackfirst; // @[MSHR.scala:122:33, :173:43]
wire _io_status_bits_nestC_T_1 = ~w_pprobeackfirst; // @[MSHR.scala:132:33, :173:64]
wire _io_status_bits_nestC_T_2 = _io_status_bits_nestC_T | _io_status_bits_nestC_T_1; // @[MSHR.scala:173:{43,61,64}]
wire _io_status_bits_nestC_T_3 = ~w_grantfirst; // @[MSHR.scala:129:33, :168:103, :173:85]
wire _io_status_bits_nestC_T_4 = _io_status_bits_nestC_T_2 | _io_status_bits_nestC_T_3; // @[MSHR.scala:173:{61,82,85}]
assign _io_status_bits_nestC_T_5 = meta_valid & _io_status_bits_nestC_T_4; // @[MSHR.scala:99:27, :173:{39,82}]
assign io_status_bits_nestC_0 = _io_status_bits_nestC_T_5; // @[MSHR.scala:84:7, :173:39]
wire _no_wait_T = w_rprobeacklast & w_releaseack; // @[MSHR.scala:123:33, :125:33, :183:33]
wire _no_wait_T_1 = _no_wait_T & w_grantlast; // @[MSHR.scala:130:33, :183:{33,49}]
wire _no_wait_T_2 = _no_wait_T_1 & w_pprobeacklast; // @[MSHR.scala:133:33, :183:{49,64}]
assign no_wait = _no_wait_T_2 & w_grantack; // @[MSHR.scala:138:33, :183:{64,83}]
assign io_schedule_bits_reload_0 = no_wait; // @[MSHR.scala:84:7, :183:83]
wire _io_schedule_bits_a_valid_T = ~s_acquire; // @[MSHR.scala:127:33, :184:31]
wire _io_schedule_bits_a_valid_T_1 = _io_schedule_bits_a_valid_T & s_release; // @[MSHR.scala:124:33, :184:{31,42}]
assign _io_schedule_bits_a_valid_T_2 = _io_schedule_bits_a_valid_T_1 & s_pprobe; // @[MSHR.scala:126:33, :184:{42,55}]
assign io_schedule_bits_a_valid_0 = _io_schedule_bits_a_valid_T_2; // @[MSHR.scala:84:7, :184:55]
wire _io_schedule_bits_b_valid_T = ~s_rprobe; // @[MSHR.scala:121:33, :185:31]
wire _io_schedule_bits_b_valid_T_1 = ~s_pprobe; // @[MSHR.scala:126:33, :185:44]
assign _io_schedule_bits_b_valid_T_2 = _io_schedule_bits_b_valid_T | _io_schedule_bits_b_valid_T_1; // @[MSHR.scala:185:{31,41,44}]
assign io_schedule_bits_b_valid_0 = _io_schedule_bits_b_valid_T_2; // @[MSHR.scala:84:7, :185:41]
wire _io_schedule_bits_c_valid_T = ~s_release; // @[MSHR.scala:124:33, :186:32]
wire _io_schedule_bits_c_valid_T_1 = _io_schedule_bits_c_valid_T & w_rprobeackfirst; // @[MSHR.scala:122:33, :186:{32,43}]
assign _io_schedule_bits_c_valid_T_4 = _io_schedule_bits_c_valid_T_1; // @[MSHR.scala:186:{43,64}]
assign io_schedule_bits_c_valid_0 = _io_schedule_bits_c_valid_T_4; // @[MSHR.scala:84:7, :186:64]
wire _io_schedule_bits_d_valid_T = ~s_execute; // @[MSHR.scala:137:33, :187:31]
wire _io_schedule_bits_d_valid_T_1 = _io_schedule_bits_d_valid_T & w_pprobeack; // @[MSHR.scala:134:33, :187:{31,42}]
assign _io_schedule_bits_d_valid_T_2 = _io_schedule_bits_d_valid_T_1 & w_grant; // @[MSHR.scala:131:33, :187:{42,57}]
assign io_schedule_bits_d_valid_0 = _io_schedule_bits_d_valid_T_2; // @[MSHR.scala:84:7, :187:57]
wire _io_schedule_bits_e_valid_T = ~s_grantack; // @[MSHR.scala:136:33, :188:31]
assign _io_schedule_bits_e_valid_T_1 = _io_schedule_bits_e_valid_T & w_grantfirst; // @[MSHR.scala:129:33, :188:{31,43}]
assign io_schedule_bits_e_valid_0 = _io_schedule_bits_e_valid_T_1; // @[MSHR.scala:84:7, :188:43]
wire _io_schedule_bits_x_valid_T = ~s_flush; // @[MSHR.scala:128:33, :189:31]
assign _io_schedule_bits_x_valid_T_1 = _io_schedule_bits_x_valid_T & w_releaseack; // @[MSHR.scala:125:33, :189:{31,40}]
assign io_schedule_bits_x_valid_0 = _io_schedule_bits_x_valid_T_1; // @[MSHR.scala:84:7, :189:40]
wire _io_schedule_bits_dir_valid_T = ~s_release; // @[MSHR.scala:124:33, :186:32, :190:34]
wire _io_schedule_bits_dir_valid_T_1 = _io_schedule_bits_dir_valid_T & w_rprobeackfirst; // @[MSHR.scala:122:33, :190:{34,45}]
wire _io_schedule_bits_dir_valid_T_2 = ~s_writeback; // @[MSHR.scala:139:33, :190:70]
wire _io_schedule_bits_dir_valid_T_3 = _io_schedule_bits_dir_valid_T_2 & no_wait; // @[MSHR.scala:183:83, :190:{70,83}]
assign _io_schedule_bits_dir_valid_T_4 = _io_schedule_bits_dir_valid_T_1 | _io_schedule_bits_dir_valid_T_3; // @[MSHR.scala:190:{45,66,83}]
assign io_schedule_bits_dir_valid_0 = _io_schedule_bits_dir_valid_T_4; // @[MSHR.scala:84:7, :190:66]
wire _io_schedule_valid_T = io_schedule_bits_a_valid_0 | io_schedule_bits_b_valid_0; // @[MSHR.scala:84:7, :192:49]
wire _io_schedule_valid_T_1 = _io_schedule_valid_T | io_schedule_bits_c_valid_0; // @[MSHR.scala:84:7, :192:{49,77}]
wire _io_schedule_valid_T_2 = _io_schedule_valid_T_1 | io_schedule_bits_d_valid_0; // @[MSHR.scala:84:7, :192:{77,105}]
wire _io_schedule_valid_T_3 = _io_schedule_valid_T_2 | io_schedule_bits_e_valid_0; // @[MSHR.scala:84:7, :192:105, :193:49]
wire _io_schedule_valid_T_4 = _io_schedule_valid_T_3 | io_schedule_bits_x_valid_0; // @[MSHR.scala:84:7, :193:{49,77}]
assign _io_schedule_valid_T_5 = _io_schedule_valid_T_4 | io_schedule_bits_dir_valid_0; // @[MSHR.scala:84:7, :193:{77,105}]
assign io_schedule_valid_0 = _io_schedule_valid_T_5; // @[MSHR.scala:84:7, :193:105]
wire _io_schedule_bits_dir_bits_data_WIRE_dirty = final_meta_writeback_dirty; // @[MSHR.scala:215:38, :310:71]
wire [1:0] _io_schedule_bits_dir_bits_data_WIRE_state = final_meta_writeback_state; // @[MSHR.scala:215:38, :310:71]
wire _io_schedule_bits_dir_bits_data_WIRE_clients = final_meta_writeback_clients; // @[MSHR.scala:215:38, :310:71]
wire after_c = final_meta_writeback_clients; // @[MSHR.scala:215:38, :315:27]
wire prior_c = final_meta_writeback_clients; // @[MSHR.scala:215:38, :315:27]
wire [8:0] _io_schedule_bits_dir_bits_data_WIRE_tag = final_meta_writeback_tag; // @[MSHR.scala:215:38, :310:71]
wire final_meta_writeback_hit; // @[MSHR.scala:215:38]
wire req_clientBit = request_source == 6'h28; // @[Parameters.scala:46:9]
wire _req_needT_T = request_opcode[2]; // @[Parameters.scala:269:12]
wire _final_meta_writeback_dirty_T_3 = request_opcode[2]; // @[Parameters.scala:269:12]
wire _req_needT_T_1 = ~_req_needT_T; // @[Parameters.scala:269:{5,12}]
wire _GEN = request_opcode == 3'h5; // @[Parameters.scala:270:13]
wire _req_needT_T_2; // @[Parameters.scala:270:13]
assign _req_needT_T_2 = _GEN; // @[Parameters.scala:270:13]
wire _excluded_client_T_6; // @[Parameters.scala:279:117]
assign _excluded_client_T_6 = _GEN; // @[Parameters.scala:270:13, :279:117]
wire _GEN_0 = request_param == 3'h1; // @[Parameters.scala:270:42]
wire _req_needT_T_3; // @[Parameters.scala:270:42]
assign _req_needT_T_3 = _GEN_0; // @[Parameters.scala:270:42]
wire _final_meta_writeback_clients_T; // @[Parameters.scala:282:11]
assign _final_meta_writeback_clients_T = _GEN_0; // @[Parameters.scala:270:42, :282:11]
wire _io_schedule_bits_d_bits_param_T_7; // @[MSHR.scala:299:79]
assign _io_schedule_bits_d_bits_param_T_7 = _GEN_0; // @[Parameters.scala:270:42]
wire _req_needT_T_4 = _req_needT_T_2 & _req_needT_T_3; // @[Parameters.scala:270:{13,33,42}]
wire _req_needT_T_5 = _req_needT_T_1 | _req_needT_T_4; // @[Parameters.scala:269:{5,16}, :270:33]
wire _GEN_1 = request_opcode == 3'h6; // @[Parameters.scala:271:14]
wire _req_needT_T_6; // @[Parameters.scala:271:14]
assign _req_needT_T_6 = _GEN_1; // @[Parameters.scala:271:14]
wire _req_acquire_T; // @[MSHR.scala:219:36]
assign _req_acquire_T = _GEN_1; // @[Parameters.scala:271:14]
wire _excluded_client_T_1; // @[Parameters.scala:279:12]
assign _excluded_client_T_1 = _GEN_1; // @[Parameters.scala:271:14, :279:12]
wire _req_needT_T_7 = &request_opcode; // @[Parameters.scala:271:52]
wire _req_needT_T_8 = _req_needT_T_6 | _req_needT_T_7; // @[Parameters.scala:271:{14,42,52}]
wire _req_needT_T_9 = |request_param; // @[Parameters.scala:271:89]
wire _req_needT_T_10 = _req_needT_T_8 & _req_needT_T_9; // @[Parameters.scala:271:{42,80,89}]
wire req_needT = _req_needT_T_5 | _req_needT_T_10; // @[Parameters.scala:269:16, :270:70, :271:80]
wire _req_acquire_T_1 = &request_opcode; // @[Parameters.scala:271:52]
wire req_acquire = _req_acquire_T | _req_acquire_T_1; // @[MSHR.scala:219:{36,53,71}]
wire meta_no_clients = ~_meta_no_clients_T; // @[MSHR.scala:220:{25,39}]
wire _req_promoteT_T = &meta_state; // @[MSHR.scala:100:17, :221:81]
wire _req_promoteT_T_1 = meta_no_clients & _req_promoteT_T; // @[MSHR.scala:220:25, :221:{67,81}]
wire _req_promoteT_T_2 = meta_hit ? _req_promoteT_T_1 : gotT; // @[MSHR.scala:100:17, :148:17, :221:{40,67}]
wire req_promoteT = req_acquire & _req_promoteT_T_2; // @[MSHR.scala:219:53, :221:{34,40}]
wire _final_meta_writeback_dirty_T = request_opcode[0]; // @[MSHR.scala:98:20, :224:65]
wire _final_meta_writeback_dirty_T_1 = meta_dirty | _final_meta_writeback_dirty_T; // @[MSHR.scala:100:17, :224:{48,65}]
wire _final_meta_writeback_state_T = request_param != 3'h3; // @[MSHR.scala:98:20, :225:55]
wire _GEN_2 = meta_state == 2'h2; // @[MSHR.scala:100:17, :225:78]
wire _final_meta_writeback_state_T_1; // @[MSHR.scala:225:78]
assign _final_meta_writeback_state_T_1 = _GEN_2; // @[MSHR.scala:225:78]
wire _final_meta_writeback_state_T_12; // @[MSHR.scala:240:70]
assign _final_meta_writeback_state_T_12 = _GEN_2; // @[MSHR.scala:225:78, :240:70]
wire _evict_T_2; // @[MSHR.scala:317:26]
assign _evict_T_2 = _GEN_2; // @[MSHR.scala:225:78, :317:26]
wire _before_T_1; // @[MSHR.scala:317:26]
assign _before_T_1 = _GEN_2; // @[MSHR.scala:225:78, :317:26]
wire _final_meta_writeback_state_T_2 = _final_meta_writeback_state_T & _final_meta_writeback_state_T_1; // @[MSHR.scala:225:{55,64,78}]
wire [1:0] _final_meta_writeback_state_T_3 = _final_meta_writeback_state_T_2 ? 2'h3 : meta_state; // @[MSHR.scala:100:17, :225:{40,64}]
wire _GEN_3 = request_param == 3'h2; // @[Parameters.scala:282:43]
wire _final_meta_writeback_clients_T_1; // @[Parameters.scala:282:43]
assign _final_meta_writeback_clients_T_1 = _GEN_3; // @[Parameters.scala:282:43]
wire _io_schedule_bits_d_bits_param_T_5; // @[MSHR.scala:299:79]
assign _io_schedule_bits_d_bits_param_T_5 = _GEN_3; // @[Parameters.scala:282:43]
wire _final_meta_writeback_clients_T_2 = _final_meta_writeback_clients_T | _final_meta_writeback_clients_T_1; // @[Parameters.scala:282:{11,34,43}]
wire _final_meta_writeback_clients_T_3 = request_param == 3'h5; // @[Parameters.scala:282:75]
wire _final_meta_writeback_clients_T_4 = _final_meta_writeback_clients_T_2 | _final_meta_writeback_clients_T_3; // @[Parameters.scala:282:{34,66,75}]
wire _final_meta_writeback_clients_T_5 = _final_meta_writeback_clients_T_4 & req_clientBit; // @[Parameters.scala:46:9]
wire _final_meta_writeback_clients_T_6 = ~_final_meta_writeback_clients_T_5; // @[MSHR.scala:226:{52,56}]
wire _final_meta_writeback_clients_T_7 = meta_clients & _final_meta_writeback_clients_T_6; // @[MSHR.scala:100:17, :226:{50,52}]
wire _final_meta_writeback_clients_T_8 = ~probes_toN; // @[MSHR.scala:151:23, :232:54]
wire _final_meta_writeback_clients_T_9 = meta_clients & _final_meta_writeback_clients_T_8; // @[MSHR.scala:100:17, :232:{52,54}]
wire _final_meta_writeback_dirty_T_2 = meta_hit & meta_dirty; // @[MSHR.scala:100:17, :236:45]
wire _final_meta_writeback_dirty_T_4 = ~_final_meta_writeback_dirty_T_3; // @[MSHR.scala:236:{63,78}]
wire _final_meta_writeback_dirty_T_5 = _final_meta_writeback_dirty_T_2 | _final_meta_writeback_dirty_T_4; // @[MSHR.scala:236:{45,60,63}]
wire [1:0] _GEN_4 = {1'h1, ~req_acquire}; // @[MSHR.scala:219:53, :238:40]
wire [1:0] _final_meta_writeback_state_T_4; // @[MSHR.scala:238:40]
assign _final_meta_writeback_state_T_4 = _GEN_4; // @[MSHR.scala:238:40]
wire [1:0] _final_meta_writeback_state_T_6; // @[MSHR.scala:239:65]
assign _final_meta_writeback_state_T_6 = _GEN_4; // @[MSHR.scala:238:40, :239:65]
wire _final_meta_writeback_state_T_5 = ~meta_hit; // @[MSHR.scala:100:17, :239:41]
wire [1:0] _final_meta_writeback_state_T_7 = gotT ? _final_meta_writeback_state_T_6 : 2'h1; // @[MSHR.scala:148:17, :239:{55,65}]
wire _final_meta_writeback_state_T_8 = meta_no_clients & req_acquire; // @[MSHR.scala:219:53, :220:25, :244:72]
wire [1:0] _final_meta_writeback_state_T_9 = {1'h1, ~_final_meta_writeback_state_T_8}; // @[MSHR.scala:244:{55,72}]
wire _GEN_5 = meta_state == 2'h1; // @[MSHR.scala:100:17, :240:70]
wire _final_meta_writeback_state_T_10; // @[MSHR.scala:240:70]
assign _final_meta_writeback_state_T_10 = _GEN_5; // @[MSHR.scala:240:70]
wire _io_schedule_bits_c_bits_param_T; // @[MSHR.scala:291:53]
assign _io_schedule_bits_c_bits_param_T = _GEN_5; // @[MSHR.scala:240:70, :291:53]
wire _evict_T_1; // @[MSHR.scala:317:26]
assign _evict_T_1 = _GEN_5; // @[MSHR.scala:240:70, :317:26]
wire _before_T; // @[MSHR.scala:317:26]
assign _before_T = _GEN_5; // @[MSHR.scala:240:70, :317:26]
wire [1:0] _final_meta_writeback_state_T_13 = {_final_meta_writeback_state_T_12, 1'h1}; // @[MSHR.scala:240:70]
wire _final_meta_writeback_state_T_14 = &meta_state; // @[MSHR.scala:100:17, :221:81, :240:70]
wire [1:0] _final_meta_writeback_state_T_15 = _final_meta_writeback_state_T_14 ? _final_meta_writeback_state_T_9 : _final_meta_writeback_state_T_13; // @[MSHR.scala:240:70, :244:55]
wire [1:0] _final_meta_writeback_state_T_16 = _final_meta_writeback_state_T_5 ? _final_meta_writeback_state_T_7 : _final_meta_writeback_state_T_15; // @[MSHR.scala:239:{40,41,55}, :240:70]
wire [1:0] _final_meta_writeback_state_T_17 = req_needT ? _final_meta_writeback_state_T_4 : _final_meta_writeback_state_T_16; // @[Parameters.scala:270:70]
wire _final_meta_writeback_clients_T_10 = ~probes_toN; // @[MSHR.scala:151:23, :232:54, :245:66]
wire _final_meta_writeback_clients_T_11 = meta_clients & _final_meta_writeback_clients_T_10; // @[MSHR.scala:100:17, :245:{64,66}]
wire _final_meta_writeback_clients_T_12 = meta_hit & _final_meta_writeback_clients_T_11; // @[MSHR.scala:100:17, :245:{40,64}]
wire _final_meta_writeback_clients_T_13 = req_acquire & req_clientBit; // @[Parameters.scala:46:9]
wire _final_meta_writeback_clients_T_14 = _final_meta_writeback_clients_T_12 | _final_meta_writeback_clients_T_13; // @[MSHR.scala:245:{40,84}, :246:40]
assign final_meta_writeback_tag = request_prio_2 | request_control ? meta_tag : request_tag; // @[MSHR.scala:98:20, :100:17, :215:38, :223:52, :228:53, :247:30]
wire _final_meta_writeback_clients_T_15 = ~probes_toN; // @[MSHR.scala:151:23, :232:54, :258:54]
wire _final_meta_writeback_clients_T_16 = meta_clients & _final_meta_writeback_clients_T_15; // @[MSHR.scala:100:17, :258:{52,54}]
assign final_meta_writeback_hit = bad_grant ? meta_hit : request_prio_2 | ~request_control; // @[MSHR.scala:98:20, :100:17, :149:22, :215:38, :223:52, :227:34, :228:53, :234:30, :248:30, :251:20, :252:21]
assign final_meta_writeback_dirty = ~bad_grant & (request_prio_2 ? _final_meta_writeback_dirty_T_1 : request_control ? ~meta_hit & meta_dirty : _final_meta_writeback_dirty_T_5); // @[MSHR.scala:98:20, :100:17, :149:22, :215:38, :223:52, :224:{34,48}, :228:53, :229:21, :230:36, :236:{32,60}, :251:20, :252:21]
assign final_meta_writeback_state = bad_grant ? {1'h0, meta_hit} : request_prio_2 ? _final_meta_writeback_state_T_3 : request_control ? (meta_hit ? 2'h0 : meta_state) : _final_meta_writeback_state_T_17; // @[MSHR.scala:98:20, :100:17, :149:22, :215:38, :223:52, :225:{34,40}, :228:53, :229:21, :231:36, :237:{32,38}, :251:20, :252:21, :257:36, :263:36]
assign final_meta_writeback_clients = bad_grant ? meta_hit & _final_meta_writeback_clients_T_16 : request_prio_2 ? _final_meta_writeback_clients_T_7 : request_control ? (meta_hit ? _final_meta_writeback_clients_T_9 : meta_clients) : _final_meta_writeback_clients_T_14; // @[MSHR.scala:98:20, :100:17, :149:22, :215:38, :223:52, :226:{34,50}, :228:53, :229:21, :232:{36,52}, :245:{34,84}, :251:20, :252:21, :258:{36,52}, :264:36]
wire _honour_BtoT_T = meta_clients & req_clientBit; // @[Parameters.scala:46:9]
wire _honour_BtoT_T_1 = _honour_BtoT_T; // @[MSHR.scala:276:{47,64}]
wire honour_BtoT = meta_hit & _honour_BtoT_T_1; // @[MSHR.scala:100:17, :276:{30,64}]
wire _excluded_client_T = meta_hit & request_prio_0; // @[MSHR.scala:98:20, :100:17, :279:38]
wire _excluded_client_T_2 = &request_opcode; // @[Parameters.scala:271:52, :279:50]
wire _excluded_client_T_3 = _excluded_client_T_1 | _excluded_client_T_2; // @[Parameters.scala:279:{12,40,50}]
wire _excluded_client_T_4 = request_opcode == 3'h4; // @[Parameters.scala:279:87]
wire _excluded_client_T_5 = _excluded_client_T_3 | _excluded_client_T_4; // @[Parameters.scala:279:{40,77,87}]
wire _excluded_client_T_8 = _excluded_client_T_5; // @[Parameters.scala:279:{77,106}]
wire _excluded_client_T_9 = _excluded_client_T & _excluded_client_T_8; // @[Parameters.scala:279:106]
wire excluded_client = _excluded_client_T_9 & req_clientBit; // @[Parameters.scala:46:9]
wire [1:0] _io_schedule_bits_a_bits_param_T = meta_hit ? 2'h2 : 2'h1; // @[MSHR.scala:100:17, :282:56]
wire [1:0] _io_schedule_bits_a_bits_param_T_1 = req_needT ? _io_schedule_bits_a_bits_param_T : 2'h0; // @[Parameters.scala:270:70]
assign io_schedule_bits_a_bits_param_0 = {1'h0, _io_schedule_bits_a_bits_param_T_1}; // @[MSHR.scala:84:7, :282:{35,41}]
wire _io_schedule_bits_a_bits_block_T = request_size != 3'h6; // @[MSHR.scala:98:20, :283:51]
wire _io_schedule_bits_a_bits_block_T_1 = request_opcode == 3'h0; // @[MSHR.scala:98:20, :284:55]
wire _io_schedule_bits_a_bits_block_T_2 = &request_opcode; // @[Parameters.scala:271:52]
wire _io_schedule_bits_a_bits_block_T_3 = _io_schedule_bits_a_bits_block_T_1 | _io_schedule_bits_a_bits_block_T_2; // @[MSHR.scala:284:{55,71,89}]
wire _io_schedule_bits_a_bits_block_T_4 = ~_io_schedule_bits_a_bits_block_T_3; // @[MSHR.scala:284:{38,71}]
assign _io_schedule_bits_a_bits_block_T_5 = _io_schedule_bits_a_bits_block_T | _io_schedule_bits_a_bits_block_T_4; // @[MSHR.scala:283:{51,91}, :284:38]
assign io_schedule_bits_a_bits_block_0 = _io_schedule_bits_a_bits_block_T_5; // @[MSHR.scala:84:7, :283:91]
wire _io_schedule_bits_b_bits_param_T = ~s_rprobe; // @[MSHR.scala:121:33, :185:31, :286:42]
wire [1:0] _io_schedule_bits_b_bits_param_T_1 = req_needT ? 2'h2 : 2'h1; // @[Parameters.scala:270:70]
wire [2:0] _io_schedule_bits_b_bits_param_T_2 = request_prio_1 ? request_param : {1'h0, _io_schedule_bits_b_bits_param_T_1}; // @[MSHR.scala:98:20, :286:{61,97}]
assign _io_schedule_bits_b_bits_param_T_3 = _io_schedule_bits_b_bits_param_T ? 3'h2 : _io_schedule_bits_b_bits_param_T_2; // @[MSHR.scala:286:{41,42,61}]
assign io_schedule_bits_b_bits_param_0 = _io_schedule_bits_b_bits_param_T_3; // @[MSHR.scala:84:7, :286:41]
wire _io_schedule_bits_b_bits_tag_T = ~s_rprobe; // @[MSHR.scala:121:33, :185:31, :287:42]
assign _io_schedule_bits_b_bits_tag_T_1 = _io_schedule_bits_b_bits_tag_T ? meta_tag : request_tag; // @[MSHR.scala:98:20, :100:17, :287:{41,42}]
assign io_schedule_bits_b_bits_tag_0 = _io_schedule_bits_b_bits_tag_T_1; // @[MSHR.scala:84:7, :287:41]
wire _io_schedule_bits_b_bits_clients_T = ~excluded_client; // @[MSHR.scala:279:28, :289:53]
assign _io_schedule_bits_b_bits_clients_T_1 = meta_clients & _io_schedule_bits_b_bits_clients_T; // @[MSHR.scala:100:17, :289:{51,53}]
assign io_schedule_bits_b_bits_clients_0 = _io_schedule_bits_b_bits_clients_T_1; // @[MSHR.scala:84:7, :289:51]
assign _io_schedule_bits_c_bits_opcode_T = {2'h3, meta_dirty}; // @[MSHR.scala:100:17, :290:41]
assign io_schedule_bits_c_bits_opcode_0 = _io_schedule_bits_c_bits_opcode_T; // @[MSHR.scala:84:7, :290:41]
assign _io_schedule_bits_c_bits_param_T_1 = _io_schedule_bits_c_bits_param_T ? 3'h2 : 3'h1; // @[MSHR.scala:291:{41,53}]
assign io_schedule_bits_c_bits_param_0 = _io_schedule_bits_c_bits_param_T_1; // @[MSHR.scala:84:7, :291:41]
wire _io_schedule_bits_d_bits_param_T = ~req_acquire; // @[MSHR.scala:219:53, :298:42]
wire [1:0] _io_schedule_bits_d_bits_param_T_1 = {1'h0, req_promoteT}; // @[MSHR.scala:221:34, :300:53]
wire [1:0] _io_schedule_bits_d_bits_param_T_2 = honour_BtoT ? 2'h2 : 2'h1; // @[MSHR.scala:276:30, :301:53]
wire _io_schedule_bits_d_bits_param_T_3 = ~(|request_param); // @[Parameters.scala:271:89]
wire [2:0] _io_schedule_bits_d_bits_param_T_4 = _io_schedule_bits_d_bits_param_T_3 ? {1'h0, _io_schedule_bits_d_bits_param_T_1} : request_param; // @[MSHR.scala:98:20, :299:79, :300:53]
wire [2:0] _io_schedule_bits_d_bits_param_T_6 = _io_schedule_bits_d_bits_param_T_5 ? {1'h0, _io_schedule_bits_d_bits_param_T_2} : _io_schedule_bits_d_bits_param_T_4; // @[MSHR.scala:299:79, :301:53]
wire [2:0] _io_schedule_bits_d_bits_param_T_8 = _io_schedule_bits_d_bits_param_T_7 ? 3'h1 : _io_schedule_bits_d_bits_param_T_6; // @[MSHR.scala:299:79]
assign _io_schedule_bits_d_bits_param_T_9 = _io_schedule_bits_d_bits_param_T ? request_param : _io_schedule_bits_d_bits_param_T_8; // @[MSHR.scala:98:20, :298:{41,42}, :299:79]
assign io_schedule_bits_d_bits_param_0 = _io_schedule_bits_d_bits_param_T_9; // @[MSHR.scala:84:7, :298:41]
wire _io_schedule_bits_dir_bits_data_T = ~s_release; // @[MSHR.scala:124:33, :186:32, :310:42]
assign _io_schedule_bits_dir_bits_data_T_1_dirty = ~_io_schedule_bits_dir_bits_data_T & _io_schedule_bits_dir_bits_data_WIRE_dirty; // @[MSHR.scala:310:{41,42,71}]
assign _io_schedule_bits_dir_bits_data_T_1_state = _io_schedule_bits_dir_bits_data_T ? 2'h0 : _io_schedule_bits_dir_bits_data_WIRE_state; // @[MSHR.scala:310:{41,42,71}]
assign _io_schedule_bits_dir_bits_data_T_1_clients = ~_io_schedule_bits_dir_bits_data_T & _io_schedule_bits_dir_bits_data_WIRE_clients; // @[MSHR.scala:310:{41,42,71}]
assign _io_schedule_bits_dir_bits_data_T_1_tag = _io_schedule_bits_dir_bits_data_T ? 9'h0 : _io_schedule_bits_dir_bits_data_WIRE_tag; // @[MSHR.scala:310:{41,42,71}]
assign io_schedule_bits_dir_bits_data_dirty_0 = _io_schedule_bits_dir_bits_data_T_1_dirty; // @[MSHR.scala:84:7, :310:41]
assign io_schedule_bits_dir_bits_data_state_0 = _io_schedule_bits_dir_bits_data_T_1_state; // @[MSHR.scala:84:7, :310:41]
assign io_schedule_bits_dir_bits_data_clients_0 = _io_schedule_bits_dir_bits_data_T_1_clients; // @[MSHR.scala:84:7, :310:41]
assign io_schedule_bits_dir_bits_data_tag_0 = _io_schedule_bits_dir_bits_data_T_1_tag; // @[MSHR.scala:84:7, :310:41]
wire _evict_T = ~meta_hit; // @[MSHR.scala:100:17, :239:41, :338:32]
wire [3:0] evict; // @[MSHR.scala:314:26]
wire _evict_out_T = ~evict_c; // @[MSHR.scala:315:27, :318:32]
wire [1:0] _GEN_6 = {1'h1, ~meta_dirty}; // @[MSHR.scala:100:17, :319:32]
wire [1:0] _evict_out_T_1; // @[MSHR.scala:319:32]
assign _evict_out_T_1 = _GEN_6; // @[MSHR.scala:319:32]
wire [1:0] _before_out_T_1; // @[MSHR.scala:319:32]
assign _before_out_T_1 = _GEN_6; // @[MSHR.scala:319:32]
wire _evict_T_3 = &meta_state; // @[MSHR.scala:100:17, :221:81, :317:26]
wire [2:0] _GEN_7 = {2'h2, ~meta_dirty}; // @[MSHR.scala:100:17, :319:32, :320:39]
wire [2:0] _evict_out_T_2; // @[MSHR.scala:320:39]
assign _evict_out_T_2 = _GEN_7; // @[MSHR.scala:320:39]
wire [2:0] _before_out_T_2; // @[MSHR.scala:320:39]
assign _before_out_T_2 = _GEN_7; // @[MSHR.scala:320:39]
wire [2:0] _GEN_8 = {2'h3, ~meta_dirty}; // @[MSHR.scala:100:17, :319:32, :320:76]
wire [2:0] _evict_out_T_3; // @[MSHR.scala:320:76]
assign _evict_out_T_3 = _GEN_8; // @[MSHR.scala:320:76]
wire [2:0] _before_out_T_3; // @[MSHR.scala:320:76]
assign _before_out_T_3 = _GEN_8; // @[MSHR.scala:320:76]
wire [2:0] _evict_out_T_4 = evict_c ? _evict_out_T_2 : _evict_out_T_3; // @[MSHR.scala:315:27, :320:{32,39,76}]
wire _evict_T_4 = ~(|meta_state); // @[MSHR.scala:100:17, :104:22, :317:26]
wire _evict_T_5 = ~_evict_T; // @[MSHR.scala:323:11, :338:32]
assign evict = _evict_T_5 ? 4'h8 : _evict_T_1 ? {3'h0, _evict_out_T} : _evict_T_2 ? {2'h0, _evict_out_T_1} : _evict_T_3 ? {1'h0, _evict_out_T_4} : {_evict_T_4, 3'h0}; // @[MSHR.scala:314:26, :317:26, :318:{26,32}, :319:{26,32}, :320:{26,32}, :321:26, :323:{11,17,23}]
wire [3:0] before_0; // @[MSHR.scala:314:26]
wire _before_out_T = ~before_c; // @[MSHR.scala:315:27, :318:32]
wire _before_T_2 = &meta_state; // @[MSHR.scala:100:17, :221:81, :317:26]
wire [2:0] _before_out_T_4 = before_c ? _before_out_T_2 : _before_out_T_3; // @[MSHR.scala:315:27, :320:{32,39,76}]
wire _before_T_3 = ~(|meta_state); // @[MSHR.scala:100:17, :104:22, :317:26]
wire _before_T_4 = ~meta_hit; // @[MSHR.scala:100:17, :239:41, :323:11]
assign before_0 = _before_T_4 ? 4'h8 : _before_T ? {3'h0, _before_out_T} : _before_T_1 ? {2'h0, _before_out_T_1} : _before_T_2 ? {1'h0, _before_out_T_4} : {_before_T_3, 3'h0}; // @[MSHR.scala:314:26, :317:26, :318:{26,32}, :319:{26,32}, :320:{26,32}, :321:26, :323:{11,17,23}]
wire [3:0] after; // @[MSHR.scala:314:26]
wire _GEN_9 = final_meta_writeback_state == 2'h1; // @[MSHR.scala:215:38, :317:26]
wire _after_T; // @[MSHR.scala:317:26]
assign _after_T = _GEN_9; // @[MSHR.scala:317:26]
wire _prior_T; // @[MSHR.scala:317:26]
assign _prior_T = _GEN_9; // @[MSHR.scala:317:26]
wire _after_out_T = ~after_c; // @[MSHR.scala:315:27, :318:32]
wire _GEN_10 = final_meta_writeback_state == 2'h2; // @[MSHR.scala:215:38, :317:26]
wire _after_T_1; // @[MSHR.scala:317:26]
assign _after_T_1 = _GEN_10; // @[MSHR.scala:317:26]
wire _prior_T_1; // @[MSHR.scala:317:26]
assign _prior_T_1 = _GEN_10; // @[MSHR.scala:317:26]
wire [1:0] _GEN_11 = {1'h1, ~final_meta_writeback_dirty}; // @[MSHR.scala:215:38, :319:32]
wire [1:0] _after_out_T_1; // @[MSHR.scala:319:32]
assign _after_out_T_1 = _GEN_11; // @[MSHR.scala:319:32]
wire [1:0] _prior_out_T_1; // @[MSHR.scala:319:32]
assign _prior_out_T_1 = _GEN_11; // @[MSHR.scala:319:32]
wire _after_T_2 = &final_meta_writeback_state; // @[MSHR.scala:215:38, :317:26]
wire [2:0] _GEN_12 = {2'h2, ~final_meta_writeback_dirty}; // @[MSHR.scala:215:38, :319:32, :320:39]
wire [2:0] _after_out_T_2; // @[MSHR.scala:320:39]
assign _after_out_T_2 = _GEN_12; // @[MSHR.scala:320:39]
wire [2:0] _prior_out_T_2; // @[MSHR.scala:320:39]
assign _prior_out_T_2 = _GEN_12; // @[MSHR.scala:320:39]
wire [2:0] _GEN_13 = {2'h3, ~final_meta_writeback_dirty}; // @[MSHR.scala:215:38, :319:32, :320:76]
wire [2:0] _after_out_T_3; // @[MSHR.scala:320:76]
assign _after_out_T_3 = _GEN_13; // @[MSHR.scala:320:76]
wire [2:0] _prior_out_T_3; // @[MSHR.scala:320:76]
assign _prior_out_T_3 = _GEN_13; // @[MSHR.scala:320:76]
wire [2:0] _after_out_T_4 = after_c ? _after_out_T_2 : _after_out_T_3; // @[MSHR.scala:315:27, :320:{32,39,76}]
wire _GEN_14 = final_meta_writeback_state == 2'h0; // @[MSHR.scala:215:38, :317:26]
wire _after_T_3; // @[MSHR.scala:317:26]
assign _after_T_3 = _GEN_14; // @[MSHR.scala:317:26]
wire _prior_T_3; // @[MSHR.scala:317:26]
assign _prior_T_3 = _GEN_14; // @[MSHR.scala:317:26]
assign after = _after_T ? {3'h0, _after_out_T} : _after_T_1 ? {2'h0, _after_out_T_1} : _after_T_2 ? {1'h0, _after_out_T_4} : {_after_T_3, 3'h0}; // @[MSHR.scala:314:26, :317:26, :318:{26,32}, :319:{26,32}, :320:{26,32}, :321:26]
wire probe_bit = io_sinkc_bits_source_0 == 6'h28; // @[Parameters.scala:46:9]
wire _GEN_15 = probes_done | probe_bit; // @[Parameters.scala:46:9]
wire _last_probe_T; // @[MSHR.scala:459:33]
assign _last_probe_T = _GEN_15; // @[MSHR.scala:459:33]
wire _probes_done_T; // @[MSHR.scala:467:32]
assign _probes_done_T = _GEN_15; // @[MSHR.scala:459:33, :467:32]
wire _last_probe_T_1 = ~excluded_client; // @[MSHR.scala:279:28, :289:53, :459:66]
wire _last_probe_T_2 = meta_clients & _last_probe_T_1; // @[MSHR.scala:100:17, :459:{64,66}]
wire last_probe = _last_probe_T == _last_probe_T_2; // @[MSHR.scala:459:{33,46,64}]
wire _probe_toN_T = io_sinkc_bits_param_0 == 3'h1; // @[Parameters.scala:282:11]
wire _probe_toN_T_1 = io_sinkc_bits_param_0 == 3'h2; // @[Parameters.scala:282:43]
wire _probe_toN_T_2 = _probe_toN_T | _probe_toN_T_1; // @[Parameters.scala:282:{11,34,43}]
wire _probe_toN_T_3 = io_sinkc_bits_param_0 == 3'h5; // @[Parameters.scala:282:75]
wire probe_toN = _probe_toN_T_2 | _probe_toN_T_3; // @[Parameters.scala:282:{34,66,75}]
wire _probes_toN_T = probe_toN & probe_bit; // @[Parameters.scala:46:9]
wire _probes_toN_T_1 = probes_toN | _probes_toN_T; // @[MSHR.scala:151:23, :468:{30,35}]
wire _probes_noT_T = io_sinkc_bits_param_0 != 3'h3; // @[MSHR.scala:84:7, :469:53]
wire _probes_noT_T_1 = probes_noT | _probes_noT_T; // @[MSHR.scala:152:23, :469:{30,53}]
wire _w_rprobeackfirst_T = w_rprobeackfirst | last_probe; // @[MSHR.scala:122:33, :459:46, :470:42]
wire _GEN_16 = last_probe & io_sinkc_bits_last_0; // @[MSHR.scala:84:7, :459:46, :471:55]
wire _w_rprobeacklast_T; // @[MSHR.scala:471:55]
assign _w_rprobeacklast_T = _GEN_16; // @[MSHR.scala:471:55]
wire _w_pprobeacklast_T; // @[MSHR.scala:473:55]
assign _w_pprobeacklast_T = _GEN_16; // @[MSHR.scala:471:55, :473:55]
wire _w_rprobeacklast_T_1 = w_rprobeacklast | _w_rprobeacklast_T; // @[MSHR.scala:123:33, :471:{40,55}]
wire _w_pprobeackfirst_T = w_pprobeackfirst | last_probe; // @[MSHR.scala:132:33, :459:46, :472:42]
wire _w_pprobeacklast_T_1 = w_pprobeacklast | _w_pprobeacklast_T; // @[MSHR.scala:133:33, :473:{40,55}]
wire _set_pprobeack_T = ~(|request_offset); // @[MSHR.scala:98:20, :475:77]
wire _set_pprobeack_T_1 = io_sinkc_bits_last_0 | _set_pprobeack_T; // @[MSHR.scala:84:7, :475:{59,77}]
wire set_pprobeack = last_probe & _set_pprobeack_T_1; // @[MSHR.scala:459:46, :475:{36,59}]
wire _w_pprobeack_T = w_pprobeack | set_pprobeack; // @[MSHR.scala:134:33, :475:36, :476:32]
wire _w_grant_T = ~(|request_offset); // @[MSHR.scala:98:20, :475:77, :490:33]
wire _w_grant_T_1 = _w_grant_T | io_sinkd_bits_last_0; // @[MSHR.scala:84:7, :490:{33,41}]
wire _gotT_T = io_sinkd_bits_param_0 == 3'h0; // @[MSHR.scala:84:7, :493:35]
wire _new_meta_T = io_allocate_valid_0 & io_allocate_bits_repeat_0; // @[MSHR.scala:84:7, :505:40]
wire new_meta_dirty = _new_meta_T ? final_meta_writeback_dirty : io_directory_bits_dirty_0; // @[MSHR.scala:84:7, :215:38, :505:{21,40}]
wire [1:0] new_meta_state = _new_meta_T ? final_meta_writeback_state : io_directory_bits_state_0; // @[MSHR.scala:84:7, :215:38, :505:{21,40}]
wire new_meta_clients = _new_meta_T ? final_meta_writeback_clients : io_directory_bits_clients_0; // @[MSHR.scala:84:7, :215:38, :505:{21,40}]
wire [8:0] new_meta_tag = _new_meta_T ? final_meta_writeback_tag : io_directory_bits_tag_0; // @[MSHR.scala:84:7, :215:38, :505:{21,40}]
wire new_meta_hit = _new_meta_T ? final_meta_writeback_hit : io_directory_bits_hit_0; // @[MSHR.scala:84:7, :215:38, :505:{21,40}]
wire [3:0] new_meta_way = _new_meta_T ? final_meta_writeback_way : io_directory_bits_way_0; // @[MSHR.scala:84:7, :215:38, :505:{21,40}]
wire new_request_prio_0 = io_allocate_valid_0 ? allocate_as_full_prio_0 : request_prio_0; // @[MSHR.scala:84:7, :98:20, :504:34, :506:24]
wire new_request_prio_1 = io_allocate_valid_0 ? allocate_as_full_prio_1 : request_prio_1; // @[MSHR.scala:84:7, :98:20, :504:34, :506:24]
wire new_request_prio_2 = io_allocate_valid_0 ? allocate_as_full_prio_2 : request_prio_2; // @[MSHR.scala:84:7, :98:20, :504:34, :506:24]
wire new_request_control = io_allocate_valid_0 ? allocate_as_full_control : request_control; // @[MSHR.scala:84:7, :98:20, :504:34, :506:24]
wire [2:0] new_request_opcode = io_allocate_valid_0 ? allocate_as_full_opcode : request_opcode; // @[MSHR.scala:84:7, :98:20, :504:34, :506:24]
wire [2:0] new_request_param = io_allocate_valid_0 ? allocate_as_full_param : request_param; // @[MSHR.scala:84:7, :98:20, :504:34, :506:24]
wire [2:0] new_request_size = io_allocate_valid_0 ? allocate_as_full_size : request_size; // @[MSHR.scala:84:7, :98:20, :504:34, :506:24]
wire [5:0] new_request_source = io_allocate_valid_0 ? allocate_as_full_source : request_source; // @[MSHR.scala:84:7, :98:20, :504:34, :506:24]
wire [8:0] new_request_tag = io_allocate_valid_0 ? allocate_as_full_tag : request_tag; // @[MSHR.scala:84:7, :98:20, :504:34, :506:24]
wire [5:0] new_request_offset = io_allocate_valid_0 ? allocate_as_full_offset : request_offset; // @[MSHR.scala:84:7, :98:20, :504:34, :506:24]
wire [5:0] new_request_put = io_allocate_valid_0 ? allocate_as_full_put : request_put; // @[MSHR.scala:84:7, :98:20, :504:34, :506:24]
wire [10:0] new_request_set = io_allocate_valid_0 ? allocate_as_full_set : request_set; // @[MSHR.scala:84:7, :98:20, :504:34, :506:24]
wire _new_needT_T = new_request_opcode[2]; // @[Parameters.scala:269:12]
wire _new_needT_T_1 = ~_new_needT_T; // @[Parameters.scala:269:{5,12}]
wire _GEN_17 = new_request_opcode == 3'h5; // @[Parameters.scala:270:13]
wire _new_needT_T_2; // @[Parameters.scala:270:13]
assign _new_needT_T_2 = _GEN_17; // @[Parameters.scala:270:13]
wire _new_skipProbe_T_5; // @[Parameters.scala:279:117]
assign _new_skipProbe_T_5 = _GEN_17; // @[Parameters.scala:270:13, :279:117]
wire _new_needT_T_3 = new_request_param == 3'h1; // @[Parameters.scala:270:42]
wire _new_needT_T_4 = _new_needT_T_2 & _new_needT_T_3; // @[Parameters.scala:270:{13,33,42}]
wire _new_needT_T_5 = _new_needT_T_1 | _new_needT_T_4; // @[Parameters.scala:269:{5,16}, :270:33]
wire _T_615 = new_request_opcode == 3'h6; // @[Parameters.scala:271:14]
wire _new_needT_T_6; // @[Parameters.scala:271:14]
assign _new_needT_T_6 = _T_615; // @[Parameters.scala:271:14]
wire _new_skipProbe_T; // @[Parameters.scala:279:12]
assign _new_skipProbe_T = _T_615; // @[Parameters.scala:271:14, :279:12]
wire _new_needT_T_7 = &new_request_opcode; // @[Parameters.scala:271:52]
wire _new_needT_T_8 = _new_needT_T_6 | _new_needT_T_7; // @[Parameters.scala:271:{14,42,52}]
wire _new_needT_T_9 = |new_request_param; // @[Parameters.scala:271:89]
wire _new_needT_T_10 = _new_needT_T_8 & _new_needT_T_9; // @[Parameters.scala:271:{42,80,89}]
wire new_needT = _new_needT_T_5 | _new_needT_T_10; // @[Parameters.scala:269:16, :270:70, :271:80]
wire new_clientBit = new_request_source == 6'h28; // @[Parameters.scala:46:9]
wire _new_skipProbe_T_1 = &new_request_opcode; // @[Parameters.scala:271:52, :279:50]
wire _new_skipProbe_T_2 = _new_skipProbe_T | _new_skipProbe_T_1; // @[Parameters.scala:279:{12,40,50}]
wire _new_skipProbe_T_3 = new_request_opcode == 3'h4; // @[Parameters.scala:279:87]
wire _new_skipProbe_T_4 = _new_skipProbe_T_2 | _new_skipProbe_T_3; // @[Parameters.scala:279:{40,77,87}]
wire _new_skipProbe_T_7 = _new_skipProbe_T_4; // @[Parameters.scala:279:{77,106}]
wire new_skipProbe = _new_skipProbe_T_7 & new_clientBit; // @[Parameters.scala:46:9]
wire [3:0] prior; // @[MSHR.scala:314:26]
wire _prior_out_T = ~prior_c; // @[MSHR.scala:315:27, :318:32]
wire _prior_T_2 = &final_meta_writeback_state; // @[MSHR.scala:215:38, :317:26]
wire [2:0] _prior_out_T_4 = prior_c ? _prior_out_T_2 : _prior_out_T_3; // @[MSHR.scala:315:27, :320:{32,39,76}]
assign prior = _prior_T ? {3'h0, _prior_out_T} : _prior_T_1 ? {2'h0, _prior_out_T_1} : _prior_T_2 ? {1'h0, _prior_out_T_4} : {_prior_T_3, 3'h0}; // @[MSHR.scala:314:26, :317:26, :318:{26,32}, :319:{26,32}, :320:{26,32}, :321:26]
wire _T_574 = io_directory_valid_0 | _new_meta_T; // @[MSHR.scala:84:7, :505:40, :539:28] |
Generate the Verilog code corresponding to the following Chisel files.
File util.scala:
//******************************************************************************
// Copyright (c) 2015 - 2019, The Regents of the University of California (Regents).
// All Rights Reserved. See LICENSE and LICENSE.SiFive for license details.
//------------------------------------------------------------------------------
//------------------------------------------------------------------------------
//------------------------------------------------------------------------------
// Utility Functions
//------------------------------------------------------------------------------
//------------------------------------------------------------------------------
package boom.v3.util
import chisel3._
import chisel3.util._
import freechips.rocketchip.rocket.Instructions._
import freechips.rocketchip.rocket._
import freechips.rocketchip.util.{Str}
import org.chipsalliance.cde.config.{Parameters}
import freechips.rocketchip.tile.{TileKey}
import boom.v3.common.{MicroOp}
import boom.v3.exu.{BrUpdateInfo}
/**
* Object to XOR fold a input register of fullLength into a compressedLength.
*/
object Fold
{
def apply(input: UInt, compressedLength: Int, fullLength: Int): UInt = {
val clen = compressedLength
val hlen = fullLength
if (hlen <= clen) {
input
} else {
var res = 0.U(clen.W)
var remaining = input.asUInt
for (i <- 0 to hlen-1 by clen) {
val len = if (i + clen > hlen ) (hlen - i) else clen
require(len > 0)
res = res(clen-1,0) ^ remaining(len-1,0)
remaining = remaining >> len.U
}
res
}
}
}
/**
* Object to check if MicroOp was killed due to a branch mispredict.
* Uses "Fast" branch masks
*/
object IsKilledByBranch
{
def apply(brupdate: BrUpdateInfo, uop: MicroOp): Bool = {
return maskMatch(brupdate.b1.mispredict_mask, uop.br_mask)
}
def apply(brupdate: BrUpdateInfo, uop_mask: UInt): Bool = {
return maskMatch(brupdate.b1.mispredict_mask, uop_mask)
}
}
/**
* Object to return new MicroOp with a new BR mask given a MicroOp mask
* and old BR mask.
*/
object GetNewUopAndBrMask
{
def apply(uop: MicroOp, brupdate: BrUpdateInfo)
(implicit p: Parameters): MicroOp = {
val newuop = WireInit(uop)
newuop.br_mask := uop.br_mask & ~brupdate.b1.resolve_mask
newuop
}
}
/**
* Object to return a BR mask given a MicroOp mask and old BR mask.
*/
object GetNewBrMask
{
def apply(brupdate: BrUpdateInfo, uop: MicroOp): UInt = {
return uop.br_mask & ~brupdate.b1.resolve_mask
}
def apply(brupdate: BrUpdateInfo, br_mask: UInt): UInt = {
return br_mask & ~brupdate.b1.resolve_mask
}
}
object UpdateBrMask
{
def apply(brupdate: BrUpdateInfo, uop: MicroOp): MicroOp = {
val out = WireInit(uop)
out.br_mask := GetNewBrMask(brupdate, uop)
out
}
def apply[T <: boom.v3.common.HasBoomUOP](brupdate: BrUpdateInfo, bundle: T): T = {
val out = WireInit(bundle)
out.uop.br_mask := GetNewBrMask(brupdate, bundle.uop.br_mask)
out
}
def apply[T <: boom.v3.common.HasBoomUOP](brupdate: BrUpdateInfo, bundle: Valid[T]): Valid[T] = {
val out = WireInit(bundle)
out.bits.uop.br_mask := GetNewBrMask(brupdate, bundle.bits.uop.br_mask)
out.valid := bundle.valid && !IsKilledByBranch(brupdate, bundle.bits.uop.br_mask)
out
}
}
/**
* Object to check if at least 1 bit matches in two masks
*/
object maskMatch
{
def apply(msk1: UInt, msk2: UInt): Bool = (msk1 & msk2) =/= 0.U
}
/**
* Object to clear one bit in a mask given an index
*/
object clearMaskBit
{
def apply(msk: UInt, idx: UInt): UInt = (msk & ~(1.U << idx))(msk.getWidth-1, 0)
}
/**
* Object to shift a register over by one bit and concat a new one
*/
object PerformShiftRegister
{
def apply(reg_val: UInt, new_bit: Bool): UInt = {
reg_val := Cat(reg_val(reg_val.getWidth-1, 0).asUInt, new_bit.asUInt).asUInt
reg_val
}
}
/**
* Object to shift a register over by one bit, wrapping the top bit around to the bottom
* (XOR'ed with a new-bit), and evicting a bit at index HLEN.
* This is used to simulate a longer HLEN-width shift register that is folded
* down to a compressed CLEN.
*/
object PerformCircularShiftRegister
{
def apply(csr: UInt, new_bit: Bool, evict_bit: Bool, hlen: Int, clen: Int): UInt = {
val carry = csr(clen-1)
val newval = Cat(csr, new_bit ^ carry) ^ (evict_bit << (hlen % clen).U)
newval
}
}
/**
* Object to increment an input value, wrapping it if
* necessary.
*/
object WrapAdd
{
// "n" is the number of increments, so we wrap at n-1.
def apply(value: UInt, amt: UInt, n: Int): UInt = {
if (isPow2(n)) {
(value + amt)(log2Ceil(n)-1,0)
} else {
val sum = Cat(0.U(1.W), value) + Cat(0.U(1.W), amt)
Mux(sum >= n.U,
sum - n.U,
sum)
}
}
}
/**
* Object to decrement an input value, wrapping it if
* necessary.
*/
object WrapSub
{
// "n" is the number of increments, so we wrap to n-1.
def apply(value: UInt, amt: Int, n: Int): UInt = {
if (isPow2(n)) {
(value - amt.U)(log2Ceil(n)-1,0)
} else {
val v = Cat(0.U(1.W), value)
val b = Cat(0.U(1.W), amt.U)
Mux(value >= amt.U,
value - amt.U,
n.U - amt.U + value)
}
}
}
/**
* Object to increment an input value, wrapping it if
* necessary.
*/
object WrapInc
{
// "n" is the number of increments, so we wrap at n-1.
def apply(value: UInt, n: Int): UInt = {
if (isPow2(n)) {
(value + 1.U)(log2Ceil(n)-1,0)
} else {
val wrap = (value === (n-1).U)
Mux(wrap, 0.U, value + 1.U)
}
}
}
/**
* Object to decrement an input value, wrapping it if
* necessary.
*/
object WrapDec
{
// "n" is the number of increments, so we wrap at n-1.
def apply(value: UInt, n: Int): UInt = {
if (isPow2(n)) {
(value - 1.U)(log2Ceil(n)-1,0)
} else {
val wrap = (value === 0.U)
Mux(wrap, (n-1).U, value - 1.U)
}
}
}
/**
* Object to mask off lower bits of a PC to align to a "b"
* Byte boundary.
*/
object AlignPCToBoundary
{
def apply(pc: UInt, b: Int): UInt = {
// Invert for scenario where pc longer than b
// (which would clear all bits above size(b)).
~(~pc | (b-1).U)
}
}
/**
* Object to rotate a signal left by one
*/
object RotateL1
{
def apply(signal: UInt): UInt = {
val w = signal.getWidth
val out = Cat(signal(w-2,0), signal(w-1))
return out
}
}
/**
* Object to sext a value to a particular length.
*/
object Sext
{
def apply(x: UInt, length: Int): UInt = {
if (x.getWidth == length) return x
else return Cat(Fill(length-x.getWidth, x(x.getWidth-1)), x)
}
}
/**
* Object to translate from BOOM's special "packed immediate" to a 32b signed immediate
* Asking for U-type gives it shifted up 12 bits.
*/
object ImmGen
{
import boom.v3.common.{LONGEST_IMM_SZ, IS_B, IS_I, IS_J, IS_S, IS_U}
def apply(ip: UInt, isel: UInt): SInt = {
val sign = ip(LONGEST_IMM_SZ-1).asSInt
val i30_20 = Mux(isel === IS_U, ip(18,8).asSInt, sign)
val i19_12 = Mux(isel === IS_U || isel === IS_J, ip(7,0).asSInt, sign)
val i11 = Mux(isel === IS_U, 0.S,
Mux(isel === IS_J || isel === IS_B, ip(8).asSInt, sign))
val i10_5 = Mux(isel === IS_U, 0.S, ip(18,14).asSInt)
val i4_1 = Mux(isel === IS_U, 0.S, ip(13,9).asSInt)
val i0 = Mux(isel === IS_S || isel === IS_I, ip(8).asSInt, 0.S)
return Cat(sign, i30_20, i19_12, i11, i10_5, i4_1, i0).asSInt
}
}
/**
* Object to get the FP rounding mode out of a packed immediate.
*/
object ImmGenRm { def apply(ip: UInt): UInt = { return ip(2,0) } }
/**
* Object to get the FP function fype from a packed immediate.
* Note: only works if !(IS_B or IS_S)
*/
object ImmGenTyp { def apply(ip: UInt): UInt = { return ip(9,8) } }
/**
* Object to see if an instruction is a JALR.
*/
object DebugIsJALR
{
def apply(inst: UInt): Bool = {
// TODO Chisel not sure why this won't compile
// val is_jalr = rocket.DecodeLogic(inst, List(Bool(false)),
// Array(
// JALR -> Bool(true)))
inst(6,0) === "b1100111".U
}
}
/**
* Object to take an instruction and output its branch or jal target. Only used
* for a debug assert (no where else would we jump straight from instruction
* bits to a target).
*/
object DebugGetBJImm
{
def apply(inst: UInt): UInt = {
// TODO Chisel not sure why this won't compile
//val csignals =
//rocket.DecodeLogic(inst,
// List(Bool(false), Bool(false)),
// Array(
// BEQ -> List(Bool(true ), Bool(false)),
// BNE -> List(Bool(true ), Bool(false)),
// BGE -> List(Bool(true ), Bool(false)),
// BGEU -> List(Bool(true ), Bool(false)),
// BLT -> List(Bool(true ), Bool(false)),
// BLTU -> List(Bool(true ), Bool(false))
// ))
//val is_br :: nothing :: Nil = csignals
val is_br = (inst(6,0) === "b1100011".U)
val br_targ = Cat(Fill(12, inst(31)), Fill(8,inst(31)), inst(7), inst(30,25), inst(11,8), 0.U(1.W))
val jal_targ= Cat(Fill(12, inst(31)), inst(19,12), inst(20), inst(30,25), inst(24,21), 0.U(1.W))
Mux(is_br, br_targ, jal_targ)
}
}
/**
* Object to return the lowest bit position after the head.
*/
object AgePriorityEncoder
{
def apply(in: Seq[Bool], head: UInt): UInt = {
val n = in.size
val width = log2Ceil(in.size)
val n_padded = 1 << width
val temp_vec = (0 until n_padded).map(i => if (i < n) in(i) && i.U >= head else false.B) ++ in
val idx = PriorityEncoder(temp_vec)
idx(width-1, 0) //discard msb
}
}
/**
* Object to determine whether queue
* index i0 is older than index i1.
*/
object IsOlder
{
def apply(i0: UInt, i1: UInt, head: UInt) = ((i0 < i1) ^ (i0 < head) ^ (i1 < head))
}
/**
* Set all bits at or below the highest order '1'.
*/
object MaskLower
{
def apply(in: UInt) = {
val n = in.getWidth
(0 until n).map(i => in >> i.U).reduce(_|_)
}
}
/**
* Set all bits at or above the lowest order '1'.
*/
object MaskUpper
{
def apply(in: UInt) = {
val n = in.getWidth
(0 until n).map(i => (in << i.U)(n-1,0)).reduce(_|_)
}
}
/**
* Transpose a matrix of Chisel Vecs.
*/
object Transpose
{
def apply[T <: chisel3.Data](in: Vec[Vec[T]]) = {
val n = in(0).size
VecInit((0 until n).map(i => VecInit(in.map(row => row(i)))))
}
}
/**
* N-wide one-hot priority encoder.
*/
object SelectFirstN
{
def apply(in: UInt, n: Int) = {
val sels = Wire(Vec(n, UInt(in.getWidth.W)))
var mask = in
for (i <- 0 until n) {
sels(i) := PriorityEncoderOH(mask)
mask = mask & ~sels(i)
}
sels
}
}
/**
* Connect the first k of n valid input interfaces to k output interfaces.
*/
class Compactor[T <: chisel3.Data](n: Int, k: Int, gen: T) extends Module
{
require(n >= k)
val io = IO(new Bundle {
val in = Vec(n, Flipped(DecoupledIO(gen)))
val out = Vec(k, DecoupledIO(gen))
})
if (n == k) {
io.out <> io.in
} else {
val counts = io.in.map(_.valid).scanLeft(1.U(k.W)) ((c,e) => Mux(e, (c<<1)(k-1,0), c))
val sels = Transpose(VecInit(counts map (c => VecInit(c.asBools)))) map (col =>
(col zip io.in.map(_.valid)) map {case (c,v) => c && v})
val in_readys = counts map (row => (row.asBools zip io.out.map(_.ready)) map {case (c,r) => c && r} reduce (_||_))
val out_valids = sels map (col => col.reduce(_||_))
val out_data = sels map (s => Mux1H(s, io.in.map(_.bits)))
in_readys zip io.in foreach {case (r,i) => i.ready := r}
out_valids zip out_data zip io.out foreach {case ((v,d),o) => o.valid := v; o.bits := d}
}
}
/**
* Create a queue that can be killed with a branch kill signal.
* Assumption: enq.valid only high if not killed by branch (so don't check IsKilled on io.enq).
*/
class BranchKillableQueue[T <: boom.v3.common.HasBoomUOP](gen: T, entries: Int, flush_fn: boom.v3.common.MicroOp => Bool = u => true.B, flow: Boolean = true)
(implicit p: org.chipsalliance.cde.config.Parameters)
extends boom.v3.common.BoomModule()(p)
with boom.v3.common.HasBoomCoreParameters
{
val io = IO(new Bundle {
val enq = Flipped(Decoupled(gen))
val deq = Decoupled(gen)
val brupdate = Input(new BrUpdateInfo())
val flush = Input(Bool())
val empty = Output(Bool())
val count = Output(UInt(log2Ceil(entries).W))
})
val ram = Mem(entries, gen)
val valids = RegInit(VecInit(Seq.fill(entries) {false.B}))
val uops = Reg(Vec(entries, new MicroOp))
val enq_ptr = Counter(entries)
val deq_ptr = Counter(entries)
val maybe_full = RegInit(false.B)
val ptr_match = enq_ptr.value === deq_ptr.value
io.empty := ptr_match && !maybe_full
val full = ptr_match && maybe_full
val do_enq = WireInit(io.enq.fire)
val do_deq = WireInit((io.deq.ready || !valids(deq_ptr.value)) && !io.empty)
for (i <- 0 until entries) {
val mask = uops(i).br_mask
val uop = uops(i)
valids(i) := valids(i) && !IsKilledByBranch(io.brupdate, mask) && !(io.flush && flush_fn(uop))
when (valids(i)) {
uops(i).br_mask := GetNewBrMask(io.brupdate, mask)
}
}
when (do_enq) {
ram(enq_ptr.value) := io.enq.bits
valids(enq_ptr.value) := true.B //!IsKilledByBranch(io.brupdate, io.enq.bits.uop)
uops(enq_ptr.value) := io.enq.bits.uop
uops(enq_ptr.value).br_mask := GetNewBrMask(io.brupdate, io.enq.bits.uop)
enq_ptr.inc()
}
when (do_deq) {
valids(deq_ptr.value) := false.B
deq_ptr.inc()
}
when (do_enq =/= do_deq) {
maybe_full := do_enq
}
io.enq.ready := !full
val out = Wire(gen)
out := ram(deq_ptr.value)
out.uop := uops(deq_ptr.value)
io.deq.valid := !io.empty && valids(deq_ptr.value) && !IsKilledByBranch(io.brupdate, out.uop) && !(io.flush && flush_fn(out.uop))
io.deq.bits := out
io.deq.bits.uop.br_mask := GetNewBrMask(io.brupdate, out.uop)
// For flow queue behavior.
if (flow) {
when (io.empty) {
io.deq.valid := io.enq.valid //&& !IsKilledByBranch(io.brupdate, io.enq.bits.uop)
io.deq.bits := io.enq.bits
io.deq.bits.uop.br_mask := GetNewBrMask(io.brupdate, io.enq.bits.uop)
do_deq := false.B
when (io.deq.ready) { do_enq := false.B }
}
}
private val ptr_diff = enq_ptr.value - deq_ptr.value
if (isPow2(entries)) {
io.count := Cat(maybe_full && ptr_match, ptr_diff)
}
else {
io.count := Mux(ptr_match,
Mux(maybe_full,
entries.asUInt, 0.U),
Mux(deq_ptr.value > enq_ptr.value,
entries.asUInt + ptr_diff, ptr_diff))
}
}
// ------------------------------------------
// Printf helper functions
// ------------------------------------------
object BoolToChar
{
/**
* Take in a Chisel Bool and convert it into a Str
* based on the Chars given
*
* @param c_bool Chisel Bool
* @param trueChar Scala Char if bool is true
* @param falseChar Scala Char if bool is false
* @return UInt ASCII Char for "trueChar" or "falseChar"
*/
def apply(c_bool: Bool, trueChar: Char, falseChar: Char = '-'): UInt = {
Mux(c_bool, Str(trueChar), Str(falseChar))
}
}
object CfiTypeToChars
{
/**
* Get a Vec of Strs that can be used for printing
*
* @param cfi_type specific cfi type
* @return Vec of Strs (must be indexed to get specific char)
*/
def apply(cfi_type: UInt) = {
val strings = Seq("----", "BR ", "JAL ", "JALR")
val multiVec = VecInit(for(string <- strings) yield { VecInit(for (c <- string) yield { Str(c) }) })
multiVec(cfi_type)
}
}
object BpdTypeToChars
{
/**
* Get a Vec of Strs that can be used for printing
*
* @param bpd_type specific bpd type
* @return Vec of Strs (must be indexed to get specific char)
*/
def apply(bpd_type: UInt) = {
val strings = Seq("BR ", "JUMP", "----", "RET ", "----", "CALL", "----", "----")
val multiVec = VecInit(for(string <- strings) yield { VecInit(for (c <- string) yield { Str(c) }) })
multiVec(bpd_type)
}
}
object RobTypeToChars
{
/**
* Get a Vec of Strs that can be used for printing
*
* @param rob_type specific rob type
* @return Vec of Strs (must be indexed to get specific char)
*/
def apply(rob_type: UInt) = {
val strings = Seq("RST", "NML", "RBK", " WT")
val multiVec = VecInit(for(string <- strings) yield { VecInit(for (c <- string) yield { Str(c) }) })
multiVec(rob_type)
}
}
object XRegToChars
{
/**
* Get a Vec of Strs that can be used for printing
*
* @param xreg specific register number
* @return Vec of Strs (must be indexed to get specific char)
*/
def apply(xreg: UInt) = {
val strings = Seq(" x0", " ra", " sp", " gp",
" tp", " t0", " t1", " t2",
" s0", " s1", " a0", " a1",
" a2", " a3", " a4", " a5",
" a6", " a7", " s2", " s3",
" s4", " s5", " s6", " s7",
" s8", " s9", "s10", "s11",
" t3", " t4", " t5", " t6")
val multiVec = VecInit(for(string <- strings) yield { VecInit(for (c <- string) yield { Str(c) }) })
multiVec(xreg)
}
}
object FPRegToChars
{
/**
* Get a Vec of Strs that can be used for printing
*
* @param fpreg specific register number
* @return Vec of Strs (must be indexed to get specific char)
*/
def apply(fpreg: UInt) = {
val strings = Seq(" ft0", " ft1", " ft2", " ft3",
" ft4", " ft5", " ft6", " ft7",
" fs0", " fs1", " fa0", " fa1",
" fa2", " fa3", " fa4", " fa5",
" fa6", " fa7", " fs2", " fs3",
" fs4", " fs5", " fs6", " fs7",
" fs8", " fs9", "fs10", "fs11",
" ft8", " ft9", "ft10", "ft11")
val multiVec = VecInit(for(string <- strings) yield { VecInit(for (c <- string) yield { Str(c) }) })
multiVec(fpreg)
}
}
object BoomCoreStringPrefix
{
/**
* Add prefix to BOOM strings (currently only adds the hartId)
*
* @param strs list of strings
* @return String combining the list with the prefix per line
*/
def apply(strs: String*)(implicit p: Parameters) = {
val prefix = "[C" + s"${p(TileKey).tileId}" + "] "
strs.map(str => prefix + str + "\n").mkString("")
}
}
File consts.scala:
//******************************************************************************
// Copyright (c) 2011 - 2018, The Regents of the University of California (Regents).
// All Rights Reserved. See LICENSE and LICENSE.SiFive for license details.
//------------------------------------------------------------------------------
//------------------------------------------------------------------------------
//------------------------------------------------------------------------------
// RISCV Processor Constants
//------------------------------------------------------------------------------
//------------------------------------------------------------------------------
package boom.v3.common.constants
import chisel3._
import chisel3.util._
import org.chipsalliance.cde.config.Parameters
import freechips.rocketchip.util.Str
import freechips.rocketchip.rocket.RVCExpander
/**
* Mixin for issue queue types
*/
trait IQType
{
val IQT_SZ = 3
val IQT_INT = 1.U(IQT_SZ.W)
val IQT_MEM = 2.U(IQT_SZ.W)
val IQT_FP = 4.U(IQT_SZ.W)
val IQT_MFP = 6.U(IQT_SZ.W)
}
/**
* Mixin for scalar operation constants
*/
trait ScalarOpConstants
{
val X = BitPat("b?")
val Y = BitPat("b1")
val N = BitPat("b0")
//************************************
// Extra Constants
// Which branch predictor predicted us
val BSRC_SZ = 2
val BSRC_1 = 0.U(BSRC_SZ.W) // 1-cycle branch pred
val BSRC_2 = 1.U(BSRC_SZ.W) // 2-cycle branch pred
val BSRC_3 = 2.U(BSRC_SZ.W) // 3-cycle branch pred
val BSRC_C = 3.U(BSRC_SZ.W) // core branch resolution
//************************************
// Control Signals
// CFI types
val CFI_SZ = 3
val CFI_X = 0.U(CFI_SZ.W) // Not a CFI instruction
val CFI_BR = 1.U(CFI_SZ.W) // Branch
val CFI_JAL = 2.U(CFI_SZ.W) // JAL
val CFI_JALR = 3.U(CFI_SZ.W) // JALR
// PC Select Signal
val PC_PLUS4 = 0.U(2.W) // PC + 4
val PC_BRJMP = 1.U(2.W) // brjmp_target
val PC_JALR = 2.U(2.W) // jump_reg_target
// Branch Type
val BR_N = 0.U(4.W) // Next
val BR_NE = 1.U(4.W) // Branch on NotEqual
val BR_EQ = 2.U(4.W) // Branch on Equal
val BR_GE = 3.U(4.W) // Branch on Greater/Equal
val BR_GEU = 4.U(4.W) // Branch on Greater/Equal Unsigned
val BR_LT = 5.U(4.W) // Branch on Less Than
val BR_LTU = 6.U(4.W) // Branch on Less Than Unsigned
val BR_J = 7.U(4.W) // Jump
val BR_JR = 8.U(4.W) // Jump Register
// RS1 Operand Select Signal
val OP1_RS1 = 0.U(2.W) // Register Source #1
val OP1_ZERO= 1.U(2.W)
val OP1_PC = 2.U(2.W)
val OP1_X = BitPat("b??")
// RS2 Operand Select Signal
val OP2_RS2 = 0.U(3.W) // Register Source #2
val OP2_IMM = 1.U(3.W) // immediate
val OP2_ZERO= 2.U(3.W) // constant 0
val OP2_NEXT= 3.U(3.W) // constant 2/4 (for PC+2/4)
val OP2_IMMC= 4.U(3.W) // for CSR imm found in RS1
val OP2_X = BitPat("b???")
// Register File Write Enable Signal
val REN_0 = false.B
val REN_1 = true.B
// Is 32b Word or 64b Doubldword?
val SZ_DW = 1
val DW_X = true.B // Bool(xLen==64)
val DW_32 = false.B
val DW_64 = true.B
val DW_XPR = true.B // Bool(xLen==64)
// Memory Enable Signal
val MEN_0 = false.B
val MEN_1 = true.B
val MEN_X = false.B
// Immediate Extend Select
val IS_I = 0.U(3.W) // I-Type (LD,ALU)
val IS_S = 1.U(3.W) // S-Type (ST)
val IS_B = 2.U(3.W) // SB-Type (BR)
val IS_U = 3.U(3.W) // U-Type (LUI/AUIPC)
val IS_J = 4.U(3.W) // UJ-Type (J/JAL)
val IS_X = BitPat("b???")
// Decode Stage Control Signals
val RT_FIX = 0.U(2.W)
val RT_FLT = 1.U(2.W)
val RT_PAS = 3.U(2.W) // pass-through (prs1 := lrs1, etc)
val RT_X = 2.U(2.W) // not-a-register (but shouldn't get a busy-bit, etc.)
// TODO rename RT_NAR
// Micro-op opcodes
// TODO change micro-op opcodes into using enum
val UOPC_SZ = 7
val uopX = BitPat.dontCare(UOPC_SZ)
val uopNOP = 0.U(UOPC_SZ.W)
val uopLD = 1.U(UOPC_SZ.W)
val uopSTA = 2.U(UOPC_SZ.W) // store address generation
val uopSTD = 3.U(UOPC_SZ.W) // store data generation
val uopLUI = 4.U(UOPC_SZ.W)
val uopADDI = 5.U(UOPC_SZ.W)
val uopANDI = 6.U(UOPC_SZ.W)
val uopORI = 7.U(UOPC_SZ.W)
val uopXORI = 8.U(UOPC_SZ.W)
val uopSLTI = 9.U(UOPC_SZ.W)
val uopSLTIU= 10.U(UOPC_SZ.W)
val uopSLLI = 11.U(UOPC_SZ.W)
val uopSRAI = 12.U(UOPC_SZ.W)
val uopSRLI = 13.U(UOPC_SZ.W)
val uopSLL = 14.U(UOPC_SZ.W)
val uopADD = 15.U(UOPC_SZ.W)
val uopSUB = 16.U(UOPC_SZ.W)
val uopSLT = 17.U(UOPC_SZ.W)
val uopSLTU = 18.U(UOPC_SZ.W)
val uopAND = 19.U(UOPC_SZ.W)
val uopOR = 20.U(UOPC_SZ.W)
val uopXOR = 21.U(UOPC_SZ.W)
val uopSRA = 22.U(UOPC_SZ.W)
val uopSRL = 23.U(UOPC_SZ.W)
val uopBEQ = 24.U(UOPC_SZ.W)
val uopBNE = 25.U(UOPC_SZ.W)
val uopBGE = 26.U(UOPC_SZ.W)
val uopBGEU = 27.U(UOPC_SZ.W)
val uopBLT = 28.U(UOPC_SZ.W)
val uopBLTU = 29.U(UOPC_SZ.W)
val uopCSRRW= 30.U(UOPC_SZ.W)
val uopCSRRS= 31.U(UOPC_SZ.W)
val uopCSRRC= 32.U(UOPC_SZ.W)
val uopCSRRWI=33.U(UOPC_SZ.W)
val uopCSRRSI=34.U(UOPC_SZ.W)
val uopCSRRCI=35.U(UOPC_SZ.W)
val uopJ = 36.U(UOPC_SZ.W)
val uopJAL = 37.U(UOPC_SZ.W)
val uopJALR = 38.U(UOPC_SZ.W)
val uopAUIPC= 39.U(UOPC_SZ.W)
//val uopSRET = 40.U(UOPC_SZ.W)
val uopCFLSH= 41.U(UOPC_SZ.W)
val uopFENCE= 42.U(UOPC_SZ.W)
val uopADDIW= 43.U(UOPC_SZ.W)
val uopADDW = 44.U(UOPC_SZ.W)
val uopSUBW = 45.U(UOPC_SZ.W)
val uopSLLIW= 46.U(UOPC_SZ.W)
val uopSLLW = 47.U(UOPC_SZ.W)
val uopSRAIW= 48.U(UOPC_SZ.W)
val uopSRAW = 49.U(UOPC_SZ.W)
val uopSRLIW= 50.U(UOPC_SZ.W)
val uopSRLW = 51.U(UOPC_SZ.W)
val uopMUL = 52.U(UOPC_SZ.W)
val uopMULH = 53.U(UOPC_SZ.W)
val uopMULHU= 54.U(UOPC_SZ.W)
val uopMULHSU=55.U(UOPC_SZ.W)
val uopMULW = 56.U(UOPC_SZ.W)
val uopDIV = 57.U(UOPC_SZ.W)
val uopDIVU = 58.U(UOPC_SZ.W)
val uopREM = 59.U(UOPC_SZ.W)
val uopREMU = 60.U(UOPC_SZ.W)
val uopDIVW = 61.U(UOPC_SZ.W)
val uopDIVUW= 62.U(UOPC_SZ.W)
val uopREMW = 63.U(UOPC_SZ.W)
val uopREMUW= 64.U(UOPC_SZ.W)
val uopFENCEI = 65.U(UOPC_SZ.W)
// = 66.U(UOPC_SZ.W)
val uopAMO_AG = 67.U(UOPC_SZ.W) // AMO-address gen (use normal STD for datagen)
val uopFMV_W_X = 68.U(UOPC_SZ.W)
val uopFMV_D_X = 69.U(UOPC_SZ.W)
val uopFMV_X_W = 70.U(UOPC_SZ.W)
val uopFMV_X_D = 71.U(UOPC_SZ.W)
val uopFSGNJ_S = 72.U(UOPC_SZ.W)
val uopFSGNJ_D = 73.U(UOPC_SZ.W)
val uopFCVT_S_D = 74.U(UOPC_SZ.W)
val uopFCVT_D_S = 75.U(UOPC_SZ.W)
val uopFCVT_S_X = 76.U(UOPC_SZ.W)
val uopFCVT_D_X = 77.U(UOPC_SZ.W)
val uopFCVT_X_S = 78.U(UOPC_SZ.W)
val uopFCVT_X_D = 79.U(UOPC_SZ.W)
val uopCMPR_S = 80.U(UOPC_SZ.W)
val uopCMPR_D = 81.U(UOPC_SZ.W)
val uopFCLASS_S = 82.U(UOPC_SZ.W)
val uopFCLASS_D = 83.U(UOPC_SZ.W)
val uopFMINMAX_S = 84.U(UOPC_SZ.W)
val uopFMINMAX_D = 85.U(UOPC_SZ.W)
// = 86.U(UOPC_SZ.W)
val uopFADD_S = 87.U(UOPC_SZ.W)
val uopFSUB_S = 88.U(UOPC_SZ.W)
val uopFMUL_S = 89.U(UOPC_SZ.W)
val uopFADD_D = 90.U(UOPC_SZ.W)
val uopFSUB_D = 91.U(UOPC_SZ.W)
val uopFMUL_D = 92.U(UOPC_SZ.W)
val uopFMADD_S = 93.U(UOPC_SZ.W)
val uopFMSUB_S = 94.U(UOPC_SZ.W)
val uopFNMADD_S = 95.U(UOPC_SZ.W)
val uopFNMSUB_S = 96.U(UOPC_SZ.W)
val uopFMADD_D = 97.U(UOPC_SZ.W)
val uopFMSUB_D = 98.U(UOPC_SZ.W)
val uopFNMADD_D = 99.U(UOPC_SZ.W)
val uopFNMSUB_D = 100.U(UOPC_SZ.W)
val uopFDIV_S = 101.U(UOPC_SZ.W)
val uopFDIV_D = 102.U(UOPC_SZ.W)
val uopFSQRT_S = 103.U(UOPC_SZ.W)
val uopFSQRT_D = 104.U(UOPC_SZ.W)
val uopWFI = 105.U(UOPC_SZ.W) // pass uop down the CSR pipeline
val uopERET = 106.U(UOPC_SZ.W) // pass uop down the CSR pipeline, also is ERET
val uopSFENCE = 107.U(UOPC_SZ.W)
val uopROCC = 108.U(UOPC_SZ.W)
val uopMOV = 109.U(UOPC_SZ.W) // conditional mov decoded from "add rd, x0, rs2"
// The Bubble Instruction (Machine generated NOP)
// Insert (XOR x0,x0,x0) which is different from software compiler
// generated NOPs which are (ADDI x0, x0, 0).
// Reasoning for this is to let visualizers and stat-trackers differentiate
// between software NOPs and machine-generated Bubbles in the pipeline.
val BUBBLE = (0x4033).U(32.W)
def NullMicroOp()(implicit p: Parameters): boom.v3.common.MicroOp = {
val uop = Wire(new boom.v3.common.MicroOp)
uop := DontCare // Overridden in the following lines
uop.uopc := uopNOP // maybe not required, but helps on asserts that try to catch spurious behavior
uop.bypassable := false.B
uop.fp_val := false.B
uop.uses_stq := false.B
uop.uses_ldq := false.B
uop.pdst := 0.U
uop.dst_rtype := RT_X
val cs = Wire(new boom.v3.common.CtrlSignals())
cs := DontCare // Overridden in the following lines
cs.br_type := BR_N
cs.csr_cmd := freechips.rocketchip.rocket.CSR.N
cs.is_load := false.B
cs.is_sta := false.B
cs.is_std := false.B
uop.ctrl := cs
uop
}
}
/**
* Mixin for RISCV constants
*/
trait RISCVConstants
{
// abstract out instruction decode magic numbers
val RD_MSB = 11
val RD_LSB = 7
val RS1_MSB = 19
val RS1_LSB = 15
val RS2_MSB = 24
val RS2_LSB = 20
val RS3_MSB = 31
val RS3_LSB = 27
val CSR_ADDR_MSB = 31
val CSR_ADDR_LSB = 20
val CSR_ADDR_SZ = 12
// location of the fifth bit in the shamt (for checking for illegal ops for SRAIW,etc.)
val SHAMT_5_BIT = 25
val LONGEST_IMM_SZ = 20
val X0 = 0.U
val RA = 1.U // return address register
// memory consistency model
// The C/C++ atomics MCM requires that two loads to the same address maintain program order.
// The Cortex A9 does NOT enforce load/load ordering (which leads to buggy behavior).
val MCM_ORDER_DEPENDENT_LOADS = true
val jal_opc = (0x6f).U
val jalr_opc = (0x67).U
def GetUop(inst: UInt): UInt = inst(6,0)
def GetRd (inst: UInt): UInt = inst(RD_MSB,RD_LSB)
def GetRs1(inst: UInt): UInt = inst(RS1_MSB,RS1_LSB)
def ExpandRVC(inst: UInt)(implicit p: Parameters): UInt = {
val rvc_exp = Module(new RVCExpander)
rvc_exp.io.in := inst
Mux(rvc_exp.io.rvc, rvc_exp.io.out.bits, inst)
}
// Note: Accepts only EXPANDED rvc instructions
def ComputeBranchTarget(pc: UInt, inst: UInt, xlen: Int)(implicit p: Parameters): UInt = {
val b_imm32 = Cat(Fill(20,inst(31)), inst(7), inst(30,25), inst(11,8), 0.U(1.W))
((pc.asSInt + b_imm32.asSInt).asSInt & (-2).S).asUInt
}
// Note: Accepts only EXPANDED rvc instructions
def ComputeJALTarget(pc: UInt, inst: UInt, xlen: Int)(implicit p: Parameters): UInt = {
val j_imm32 = Cat(Fill(12,inst(31)), inst(19,12), inst(20), inst(30,25), inst(24,21), 0.U(1.W))
((pc.asSInt + j_imm32.asSInt).asSInt & (-2).S).asUInt
}
// Note: Accepts only EXPANDED rvc instructions
def GetCfiType(inst: UInt)(implicit p: Parameters): UInt = {
val bdecode = Module(new boom.v3.exu.BranchDecode)
bdecode.io.inst := inst
bdecode.io.pc := 0.U
bdecode.io.out.cfi_type
}
}
/**
* Mixin for exception cause constants
*/
trait ExcCauseConstants
{
// a memory disambigious misspeculation occurred
val MINI_EXCEPTION_MEM_ORDERING = 16.U
val MINI_EXCEPTION_CSR_REPLAY = 17.U
require (!freechips.rocketchip.rocket.Causes.all.contains(16))
require (!freechips.rocketchip.rocket.Causes.all.contains(17))
}
File issue-slot.scala:
//******************************************************************************
// Copyright (c) 2015 - 2018, The Regents of the University of California (Regents).
// All Rights Reserved. See LICENSE and LICENSE.SiFive for license details.
//------------------------------------------------------------------------------
//------------------------------------------------------------------------------
//------------------------------------------------------------------------------
// RISCV Processor Issue Slot Logic
//--------------------------------------------------------------------------
//------------------------------------------------------------------------------
//
// Note: stores (and AMOs) are "broken down" into 2 uops, but stored within a single issue-slot.
// TODO XXX make a separate issueSlot for MemoryIssueSlots, and only they break apart stores.
// TODO Disable ldspec for FP queue.
package boom.v3.exu
import chisel3._
import chisel3.util._
import org.chipsalliance.cde.config.Parameters
import boom.v3.common._
import boom.v3.util._
import FUConstants._
/**
* IO bundle to interact with Issue slot
*
* @param numWakeupPorts number of wakeup ports for the slot
*/
class IssueSlotIO(val numWakeupPorts: Int)(implicit p: Parameters) extends BoomBundle
{
val valid = Output(Bool())
val will_be_valid = Output(Bool()) // TODO code review, do we need this signal so explicitely?
val request = Output(Bool())
val request_hp = Output(Bool())
val grant = Input(Bool())
val brupdate = Input(new BrUpdateInfo())
val kill = Input(Bool()) // pipeline flush
val clear = Input(Bool()) // entry being moved elsewhere (not mutually exclusive with grant)
val ldspec_miss = Input(Bool()) // Previous cycle's speculative load wakeup was mispredicted.
val wakeup_ports = Flipped(Vec(numWakeupPorts, Valid(new IqWakeup(maxPregSz))))
val pred_wakeup_port = Flipped(Valid(UInt(log2Ceil(ftqSz).W)))
val spec_ld_wakeup = Flipped(Vec(memWidth, Valid(UInt(width=maxPregSz.W))))
val in_uop = Flipped(Valid(new MicroOp())) // if valid, this WILL overwrite an entry!
val out_uop = Output(new MicroOp()) // the updated slot uop; will be shifted upwards in a collasping queue.
val uop = Output(new MicroOp()) // the current Slot's uop. Sent down the pipeline when issued.
val debug = {
val result = new Bundle {
val p1 = Bool()
val p2 = Bool()
val p3 = Bool()
val ppred = Bool()
val state = UInt(width=2.W)
}
Output(result)
}
}
/**
* Single issue slot. Holds a uop within the issue queue
*
* @param numWakeupPorts number of wakeup ports
*/
class IssueSlot(val numWakeupPorts: Int)(implicit p: Parameters)
extends BoomModule
with IssueUnitConstants
{
val io = IO(new IssueSlotIO(numWakeupPorts))
// slot invalid?
// slot is valid, holding 1 uop
// slot is valid, holds 2 uops (like a store)
def is_invalid = state === s_invalid
def is_valid = state =/= s_invalid
val next_state = Wire(UInt()) // the next state of this slot (which might then get moved to a new slot)
val next_uopc = Wire(UInt()) // the next uopc of this slot (which might then get moved to a new slot)
val next_lrs1_rtype = Wire(UInt()) // the next reg type of this slot (which might then get moved to a new slot)
val next_lrs2_rtype = Wire(UInt()) // the next reg type of this slot (which might then get moved to a new slot)
val state = RegInit(s_invalid)
val p1 = RegInit(false.B)
val p2 = RegInit(false.B)
val p3 = RegInit(false.B)
val ppred = RegInit(false.B)
// Poison if woken up by speculative load.
// Poison lasts 1 cycle (as ldMiss will come on the next cycle).
// SO if poisoned is true, set it to false!
val p1_poisoned = RegInit(false.B)
val p2_poisoned = RegInit(false.B)
p1_poisoned := false.B
p2_poisoned := false.B
val next_p1_poisoned = Mux(io.in_uop.valid, io.in_uop.bits.iw_p1_poisoned, p1_poisoned)
val next_p2_poisoned = Mux(io.in_uop.valid, io.in_uop.bits.iw_p2_poisoned, p2_poisoned)
val slot_uop = RegInit(NullMicroOp)
val next_uop = Mux(io.in_uop.valid, io.in_uop.bits, slot_uop)
//-----------------------------------------------------------------------------
// next slot state computation
// compute the next state for THIS entry slot (in a collasping queue, the
// current uop may get moved elsewhere, and a new uop can enter
when (io.kill) {
state := s_invalid
} .elsewhen (io.in_uop.valid) {
state := io.in_uop.bits.iw_state
} .elsewhen (io.clear) {
state := s_invalid
} .otherwise {
state := next_state
}
//-----------------------------------------------------------------------------
// "update" state
// compute the next state for the micro-op in this slot. This micro-op may
// be moved elsewhere, so the "next_state" travels with it.
// defaults
next_state := state
next_uopc := slot_uop.uopc
next_lrs1_rtype := slot_uop.lrs1_rtype
next_lrs2_rtype := slot_uop.lrs2_rtype
when (io.kill) {
next_state := s_invalid
} .elsewhen ((io.grant && (state === s_valid_1)) ||
(io.grant && (state === s_valid_2) && p1 && p2 && ppred)) {
// try to issue this uop.
when (!(io.ldspec_miss && (p1_poisoned || p2_poisoned))) {
next_state := s_invalid
}
} .elsewhen (io.grant && (state === s_valid_2)) {
when (!(io.ldspec_miss && (p1_poisoned || p2_poisoned))) {
next_state := s_valid_1
when (p1) {
slot_uop.uopc := uopSTD
next_uopc := uopSTD
slot_uop.lrs1_rtype := RT_X
next_lrs1_rtype := RT_X
} .otherwise {
slot_uop.lrs2_rtype := RT_X
next_lrs2_rtype := RT_X
}
}
}
when (io.in_uop.valid) {
slot_uop := io.in_uop.bits
assert (is_invalid || io.clear || io.kill, "trying to overwrite a valid issue slot.")
}
// Wakeup Compare Logic
// these signals are the "next_p*" for the current slot's micro-op.
// they are important for shifting the current slot_uop up to an other entry.
val next_p1 = WireInit(p1)
val next_p2 = WireInit(p2)
val next_p3 = WireInit(p3)
val next_ppred = WireInit(ppred)
when (io.in_uop.valid) {
p1 := !(io.in_uop.bits.prs1_busy)
p2 := !(io.in_uop.bits.prs2_busy)
p3 := !(io.in_uop.bits.prs3_busy)
ppred := !(io.in_uop.bits.ppred_busy)
}
when (io.ldspec_miss && next_p1_poisoned) {
assert(next_uop.prs1 =/= 0.U, "Poison bit can't be set for prs1=x0!")
p1 := false.B
}
when (io.ldspec_miss && next_p2_poisoned) {
assert(next_uop.prs2 =/= 0.U, "Poison bit can't be set for prs2=x0!")
p2 := false.B
}
for (i <- 0 until numWakeupPorts) {
when (io.wakeup_ports(i).valid &&
(io.wakeup_ports(i).bits.pdst === next_uop.prs1)) {
p1 := true.B
}
when (io.wakeup_ports(i).valid &&
(io.wakeup_ports(i).bits.pdst === next_uop.prs2)) {
p2 := true.B
}
when (io.wakeup_ports(i).valid &&
(io.wakeup_ports(i).bits.pdst === next_uop.prs3)) {
p3 := true.B
}
}
when (io.pred_wakeup_port.valid && io.pred_wakeup_port.bits === next_uop.ppred) {
ppred := true.B
}
for (w <- 0 until memWidth) {
assert (!(io.spec_ld_wakeup(w).valid && io.spec_ld_wakeup(w).bits === 0.U),
"Loads to x0 should never speculatively wakeup other instructions")
}
// TODO disable if FP IQ.
for (w <- 0 until memWidth) {
when (io.spec_ld_wakeup(w).valid &&
io.spec_ld_wakeup(w).bits === next_uop.prs1 &&
next_uop.lrs1_rtype === RT_FIX) {
p1 := true.B
p1_poisoned := true.B
assert (!next_p1_poisoned)
}
when (io.spec_ld_wakeup(w).valid &&
io.spec_ld_wakeup(w).bits === next_uop.prs2 &&
next_uop.lrs2_rtype === RT_FIX) {
p2 := true.B
p2_poisoned := true.B
assert (!next_p2_poisoned)
}
}
// Handle branch misspeculations
val next_br_mask = GetNewBrMask(io.brupdate, slot_uop)
// was this micro-op killed by a branch? if yes, we can't let it be valid if
// we compact it into an other entry
when (IsKilledByBranch(io.brupdate, slot_uop)) {
next_state := s_invalid
}
when (!io.in_uop.valid) {
slot_uop.br_mask := next_br_mask
}
//-------------------------------------------------------------
// Request Logic
io.request := is_valid && p1 && p2 && p3 && ppred && !io.kill
val high_priority = slot_uop.is_br || slot_uop.is_jal || slot_uop.is_jalr
io.request_hp := io.request && high_priority
when (state === s_valid_1) {
io.request := p1 && p2 && p3 && ppred && !io.kill
} .elsewhen (state === s_valid_2) {
io.request := (p1 || p2) && ppred && !io.kill
} .otherwise {
io.request := false.B
}
//assign outputs
io.valid := is_valid
io.uop := slot_uop
io.uop.iw_p1_poisoned := p1_poisoned
io.uop.iw_p2_poisoned := p2_poisoned
// micro-op will vacate due to grant.
val may_vacate = io.grant && ((state === s_valid_1) || (state === s_valid_2) && p1 && p2 && ppred)
val squash_grant = io.ldspec_miss && (p1_poisoned || p2_poisoned)
io.will_be_valid := is_valid && !(may_vacate && !squash_grant)
io.out_uop := slot_uop
io.out_uop.iw_state := next_state
io.out_uop.uopc := next_uopc
io.out_uop.lrs1_rtype := next_lrs1_rtype
io.out_uop.lrs2_rtype := next_lrs2_rtype
io.out_uop.br_mask := next_br_mask
io.out_uop.prs1_busy := !p1
io.out_uop.prs2_busy := !p2
io.out_uop.prs3_busy := !p3
io.out_uop.ppred_busy := !ppred
io.out_uop.iw_p1_poisoned := p1_poisoned
io.out_uop.iw_p2_poisoned := p2_poisoned
when (state === s_valid_2) {
when (p1 && p2 && ppred) {
; // send out the entire instruction as one uop
} .elsewhen (p1 && ppred) {
io.uop.uopc := slot_uop.uopc
io.uop.lrs2_rtype := RT_X
} .elsewhen (p2 && ppred) {
io.uop.uopc := uopSTD
io.uop.lrs1_rtype := RT_X
}
}
// debug outputs
io.debug.p1 := p1
io.debug.p2 := p2
io.debug.p3 := p3
io.debug.ppred := ppred
io.debug.state := state
}
| module IssueSlot_113( // @[issue-slot.scala:69:7]
input clock, // @[issue-slot.scala:69:7]
input reset, // @[issue-slot.scala:69:7]
output io_valid, // @[issue-slot.scala:73:14]
output io_will_be_valid, // @[issue-slot.scala:73:14]
output io_request, // @[issue-slot.scala:73:14]
output io_request_hp, // @[issue-slot.scala:73:14]
input io_grant, // @[issue-slot.scala:73:14]
input [15:0] io_brupdate_b1_resolve_mask, // @[issue-slot.scala:73:14]
input [15:0] io_brupdate_b1_mispredict_mask, // @[issue-slot.scala:73:14]
input [6:0] io_brupdate_b2_uop_uopc, // @[issue-slot.scala:73:14]
input [31:0] io_brupdate_b2_uop_inst, // @[issue-slot.scala:73:14]
input [31:0] io_brupdate_b2_uop_debug_inst, // @[issue-slot.scala:73:14]
input io_brupdate_b2_uop_is_rvc, // @[issue-slot.scala:73:14]
input [39:0] io_brupdate_b2_uop_debug_pc, // @[issue-slot.scala:73:14]
input [2:0] io_brupdate_b2_uop_iq_type, // @[issue-slot.scala:73:14]
input [9:0] io_brupdate_b2_uop_fu_code, // @[issue-slot.scala:73:14]
input [3:0] io_brupdate_b2_uop_ctrl_br_type, // @[issue-slot.scala:73:14]
input [1:0] io_brupdate_b2_uop_ctrl_op1_sel, // @[issue-slot.scala:73:14]
input [2:0] io_brupdate_b2_uop_ctrl_op2_sel, // @[issue-slot.scala:73:14]
input [2:0] io_brupdate_b2_uop_ctrl_imm_sel, // @[issue-slot.scala:73:14]
input [4:0] io_brupdate_b2_uop_ctrl_op_fcn, // @[issue-slot.scala:73:14]
input io_brupdate_b2_uop_ctrl_fcn_dw, // @[issue-slot.scala:73:14]
input [2:0] io_brupdate_b2_uop_ctrl_csr_cmd, // @[issue-slot.scala:73:14]
input io_brupdate_b2_uop_ctrl_is_load, // @[issue-slot.scala:73:14]
input io_brupdate_b2_uop_ctrl_is_sta, // @[issue-slot.scala:73:14]
input io_brupdate_b2_uop_ctrl_is_std, // @[issue-slot.scala:73:14]
input [1:0] io_brupdate_b2_uop_iw_state, // @[issue-slot.scala:73:14]
input io_brupdate_b2_uop_iw_p1_poisoned, // @[issue-slot.scala:73:14]
input io_brupdate_b2_uop_iw_p2_poisoned, // @[issue-slot.scala:73:14]
input io_brupdate_b2_uop_is_br, // @[issue-slot.scala:73:14]
input io_brupdate_b2_uop_is_jalr, // @[issue-slot.scala:73:14]
input io_brupdate_b2_uop_is_jal, // @[issue-slot.scala:73:14]
input io_brupdate_b2_uop_is_sfb, // @[issue-slot.scala:73:14]
input [15:0] io_brupdate_b2_uop_br_mask, // @[issue-slot.scala:73:14]
input [3:0] io_brupdate_b2_uop_br_tag, // @[issue-slot.scala:73:14]
input [4:0] io_brupdate_b2_uop_ftq_idx, // @[issue-slot.scala:73:14]
input io_brupdate_b2_uop_edge_inst, // @[issue-slot.scala:73:14]
input [5:0] io_brupdate_b2_uop_pc_lob, // @[issue-slot.scala:73:14]
input io_brupdate_b2_uop_taken, // @[issue-slot.scala:73:14]
input [19:0] io_brupdate_b2_uop_imm_packed, // @[issue-slot.scala:73:14]
input [11:0] io_brupdate_b2_uop_csr_addr, // @[issue-slot.scala:73:14]
input [6:0] io_brupdate_b2_uop_rob_idx, // @[issue-slot.scala:73:14]
input [4:0] io_brupdate_b2_uop_ldq_idx, // @[issue-slot.scala:73:14]
input [4:0] io_brupdate_b2_uop_stq_idx, // @[issue-slot.scala:73:14]
input [1:0] io_brupdate_b2_uop_rxq_idx, // @[issue-slot.scala:73:14]
input [6:0] io_brupdate_b2_uop_pdst, // @[issue-slot.scala:73:14]
input [6:0] io_brupdate_b2_uop_prs1, // @[issue-slot.scala:73:14]
input [6:0] io_brupdate_b2_uop_prs2, // @[issue-slot.scala:73:14]
input [6:0] io_brupdate_b2_uop_prs3, // @[issue-slot.scala:73:14]
input [4:0] io_brupdate_b2_uop_ppred, // @[issue-slot.scala:73:14]
input io_brupdate_b2_uop_prs1_busy, // @[issue-slot.scala:73:14]
input io_brupdate_b2_uop_prs2_busy, // @[issue-slot.scala:73:14]
input io_brupdate_b2_uop_prs3_busy, // @[issue-slot.scala:73:14]
input io_brupdate_b2_uop_ppred_busy, // @[issue-slot.scala:73:14]
input [6:0] io_brupdate_b2_uop_stale_pdst, // @[issue-slot.scala:73:14]
input io_brupdate_b2_uop_exception, // @[issue-slot.scala:73:14]
input [63:0] io_brupdate_b2_uop_exc_cause, // @[issue-slot.scala:73:14]
input io_brupdate_b2_uop_bypassable, // @[issue-slot.scala:73:14]
input [4:0] io_brupdate_b2_uop_mem_cmd, // @[issue-slot.scala:73:14]
input [1:0] io_brupdate_b2_uop_mem_size, // @[issue-slot.scala:73:14]
input io_brupdate_b2_uop_mem_signed, // @[issue-slot.scala:73:14]
input io_brupdate_b2_uop_is_fence, // @[issue-slot.scala:73:14]
input io_brupdate_b2_uop_is_fencei, // @[issue-slot.scala:73:14]
input io_brupdate_b2_uop_is_amo, // @[issue-slot.scala:73:14]
input io_brupdate_b2_uop_uses_ldq, // @[issue-slot.scala:73:14]
input io_brupdate_b2_uop_uses_stq, // @[issue-slot.scala:73:14]
input io_brupdate_b2_uop_is_sys_pc2epc, // @[issue-slot.scala:73:14]
input io_brupdate_b2_uop_is_unique, // @[issue-slot.scala:73:14]
input io_brupdate_b2_uop_flush_on_commit, // @[issue-slot.scala:73:14]
input io_brupdate_b2_uop_ldst_is_rs1, // @[issue-slot.scala:73:14]
input [5:0] io_brupdate_b2_uop_ldst, // @[issue-slot.scala:73:14]
input [5:0] io_brupdate_b2_uop_lrs1, // @[issue-slot.scala:73:14]
input [5:0] io_brupdate_b2_uop_lrs2, // @[issue-slot.scala:73:14]
input [5:0] io_brupdate_b2_uop_lrs3, // @[issue-slot.scala:73:14]
input io_brupdate_b2_uop_ldst_val, // @[issue-slot.scala:73:14]
input [1:0] io_brupdate_b2_uop_dst_rtype, // @[issue-slot.scala:73:14]
input [1:0] io_brupdate_b2_uop_lrs1_rtype, // @[issue-slot.scala:73:14]
input [1:0] io_brupdate_b2_uop_lrs2_rtype, // @[issue-slot.scala:73:14]
input io_brupdate_b2_uop_frs3_en, // @[issue-slot.scala:73:14]
input io_brupdate_b2_uop_fp_val, // @[issue-slot.scala:73:14]
input io_brupdate_b2_uop_fp_single, // @[issue-slot.scala:73:14]
input io_brupdate_b2_uop_xcpt_pf_if, // @[issue-slot.scala:73:14]
input io_brupdate_b2_uop_xcpt_ae_if, // @[issue-slot.scala:73:14]
input io_brupdate_b2_uop_xcpt_ma_if, // @[issue-slot.scala:73:14]
input io_brupdate_b2_uop_bp_debug_if, // @[issue-slot.scala:73:14]
input io_brupdate_b2_uop_bp_xcpt_if, // @[issue-slot.scala:73:14]
input [1:0] io_brupdate_b2_uop_debug_fsrc, // @[issue-slot.scala:73:14]
input [1:0] io_brupdate_b2_uop_debug_tsrc, // @[issue-slot.scala:73:14]
input io_brupdate_b2_valid, // @[issue-slot.scala:73:14]
input io_brupdate_b2_mispredict, // @[issue-slot.scala:73:14]
input io_brupdate_b2_taken, // @[issue-slot.scala:73:14]
input [2:0] io_brupdate_b2_cfi_type, // @[issue-slot.scala:73:14]
input [1:0] io_brupdate_b2_pc_sel, // @[issue-slot.scala:73:14]
input [39:0] io_brupdate_b2_jalr_target, // @[issue-slot.scala:73:14]
input [20:0] io_brupdate_b2_target_offset, // @[issue-slot.scala:73:14]
input io_kill, // @[issue-slot.scala:73:14]
input io_clear, // @[issue-slot.scala:73:14]
input io_ldspec_miss, // @[issue-slot.scala:73:14]
input io_wakeup_ports_0_valid, // @[issue-slot.scala:73:14]
input [6:0] io_wakeup_ports_0_bits_pdst, // @[issue-slot.scala:73:14]
input io_wakeup_ports_0_bits_poisoned, // @[issue-slot.scala:73:14]
input io_wakeup_ports_1_valid, // @[issue-slot.scala:73:14]
input [6:0] io_wakeup_ports_1_bits_pdst, // @[issue-slot.scala:73:14]
input io_wakeup_ports_1_bits_poisoned, // @[issue-slot.scala:73:14]
input io_wakeup_ports_2_valid, // @[issue-slot.scala:73:14]
input [6:0] io_wakeup_ports_2_bits_pdst, // @[issue-slot.scala:73:14]
input io_wakeup_ports_2_bits_poisoned, // @[issue-slot.scala:73:14]
input io_wakeup_ports_3_valid, // @[issue-slot.scala:73:14]
input [6:0] io_wakeup_ports_3_bits_pdst, // @[issue-slot.scala:73:14]
input io_wakeup_ports_3_bits_poisoned, // @[issue-slot.scala:73:14]
input io_wakeup_ports_4_valid, // @[issue-slot.scala:73:14]
input [6:0] io_wakeup_ports_4_bits_pdst, // @[issue-slot.scala:73:14]
input io_wakeup_ports_4_bits_poisoned, // @[issue-slot.scala:73:14]
input io_wakeup_ports_5_valid, // @[issue-slot.scala:73:14]
input [6:0] io_wakeup_ports_5_bits_pdst, // @[issue-slot.scala:73:14]
input io_wakeup_ports_5_bits_poisoned, // @[issue-slot.scala:73:14]
input io_wakeup_ports_6_valid, // @[issue-slot.scala:73:14]
input [6:0] io_wakeup_ports_6_bits_pdst, // @[issue-slot.scala:73:14]
input io_wakeup_ports_6_bits_poisoned, // @[issue-slot.scala:73:14]
input io_spec_ld_wakeup_0_valid, // @[issue-slot.scala:73:14]
input [6:0] io_spec_ld_wakeup_0_bits, // @[issue-slot.scala:73:14]
input io_in_uop_valid, // @[issue-slot.scala:73:14]
input [6:0] io_in_uop_bits_uopc, // @[issue-slot.scala:73:14]
input [31:0] io_in_uop_bits_inst, // @[issue-slot.scala:73:14]
input [31:0] io_in_uop_bits_debug_inst, // @[issue-slot.scala:73:14]
input io_in_uop_bits_is_rvc, // @[issue-slot.scala:73:14]
input [39:0] io_in_uop_bits_debug_pc, // @[issue-slot.scala:73:14]
input [2:0] io_in_uop_bits_iq_type, // @[issue-slot.scala:73:14]
input [9:0] io_in_uop_bits_fu_code, // @[issue-slot.scala:73:14]
input [3:0] io_in_uop_bits_ctrl_br_type, // @[issue-slot.scala:73:14]
input [1:0] io_in_uop_bits_ctrl_op1_sel, // @[issue-slot.scala:73:14]
input [2:0] io_in_uop_bits_ctrl_op2_sel, // @[issue-slot.scala:73:14]
input [2:0] io_in_uop_bits_ctrl_imm_sel, // @[issue-slot.scala:73:14]
input [4:0] io_in_uop_bits_ctrl_op_fcn, // @[issue-slot.scala:73:14]
input io_in_uop_bits_ctrl_fcn_dw, // @[issue-slot.scala:73:14]
input [2:0] io_in_uop_bits_ctrl_csr_cmd, // @[issue-slot.scala:73:14]
input io_in_uop_bits_ctrl_is_load, // @[issue-slot.scala:73:14]
input io_in_uop_bits_ctrl_is_sta, // @[issue-slot.scala:73:14]
input io_in_uop_bits_ctrl_is_std, // @[issue-slot.scala:73:14]
input [1:0] io_in_uop_bits_iw_state, // @[issue-slot.scala:73:14]
input io_in_uop_bits_iw_p1_poisoned, // @[issue-slot.scala:73:14]
input io_in_uop_bits_iw_p2_poisoned, // @[issue-slot.scala:73:14]
input io_in_uop_bits_is_br, // @[issue-slot.scala:73:14]
input io_in_uop_bits_is_jalr, // @[issue-slot.scala:73:14]
input io_in_uop_bits_is_jal, // @[issue-slot.scala:73:14]
input io_in_uop_bits_is_sfb, // @[issue-slot.scala:73:14]
input [15:0] io_in_uop_bits_br_mask, // @[issue-slot.scala:73:14]
input [3:0] io_in_uop_bits_br_tag, // @[issue-slot.scala:73:14]
input [4:0] io_in_uop_bits_ftq_idx, // @[issue-slot.scala:73:14]
input io_in_uop_bits_edge_inst, // @[issue-slot.scala:73:14]
input [5:0] io_in_uop_bits_pc_lob, // @[issue-slot.scala:73:14]
input io_in_uop_bits_taken, // @[issue-slot.scala:73:14]
input [19:0] io_in_uop_bits_imm_packed, // @[issue-slot.scala:73:14]
input [11:0] io_in_uop_bits_csr_addr, // @[issue-slot.scala:73:14]
input [6:0] io_in_uop_bits_rob_idx, // @[issue-slot.scala:73:14]
input [4:0] io_in_uop_bits_ldq_idx, // @[issue-slot.scala:73:14]
input [4:0] io_in_uop_bits_stq_idx, // @[issue-slot.scala:73:14]
input [1:0] io_in_uop_bits_rxq_idx, // @[issue-slot.scala:73:14]
input [6:0] io_in_uop_bits_pdst, // @[issue-slot.scala:73:14]
input [6:0] io_in_uop_bits_prs1, // @[issue-slot.scala:73:14]
input [6:0] io_in_uop_bits_prs2, // @[issue-slot.scala:73:14]
input [6:0] io_in_uop_bits_prs3, // @[issue-slot.scala:73:14]
input [4:0] io_in_uop_bits_ppred, // @[issue-slot.scala:73:14]
input io_in_uop_bits_prs1_busy, // @[issue-slot.scala:73:14]
input io_in_uop_bits_prs2_busy, // @[issue-slot.scala:73:14]
input io_in_uop_bits_prs3_busy, // @[issue-slot.scala:73:14]
input io_in_uop_bits_ppred_busy, // @[issue-slot.scala:73:14]
input [6:0] io_in_uop_bits_stale_pdst, // @[issue-slot.scala:73:14]
input io_in_uop_bits_exception, // @[issue-slot.scala:73:14]
input [63:0] io_in_uop_bits_exc_cause, // @[issue-slot.scala:73:14]
input io_in_uop_bits_bypassable, // @[issue-slot.scala:73:14]
input [4:0] io_in_uop_bits_mem_cmd, // @[issue-slot.scala:73:14]
input [1:0] io_in_uop_bits_mem_size, // @[issue-slot.scala:73:14]
input io_in_uop_bits_mem_signed, // @[issue-slot.scala:73:14]
input io_in_uop_bits_is_fence, // @[issue-slot.scala:73:14]
input io_in_uop_bits_is_fencei, // @[issue-slot.scala:73:14]
input io_in_uop_bits_is_amo, // @[issue-slot.scala:73:14]
input io_in_uop_bits_uses_ldq, // @[issue-slot.scala:73:14]
input io_in_uop_bits_uses_stq, // @[issue-slot.scala:73:14]
input io_in_uop_bits_is_sys_pc2epc, // @[issue-slot.scala:73:14]
input io_in_uop_bits_is_unique, // @[issue-slot.scala:73:14]
input io_in_uop_bits_flush_on_commit, // @[issue-slot.scala:73:14]
input io_in_uop_bits_ldst_is_rs1, // @[issue-slot.scala:73:14]
input [5:0] io_in_uop_bits_ldst, // @[issue-slot.scala:73:14]
input [5:0] io_in_uop_bits_lrs1, // @[issue-slot.scala:73:14]
input [5:0] io_in_uop_bits_lrs2, // @[issue-slot.scala:73:14]
input [5:0] io_in_uop_bits_lrs3, // @[issue-slot.scala:73:14]
input io_in_uop_bits_ldst_val, // @[issue-slot.scala:73:14]
input [1:0] io_in_uop_bits_dst_rtype, // @[issue-slot.scala:73:14]
input [1:0] io_in_uop_bits_lrs1_rtype, // @[issue-slot.scala:73:14]
input [1:0] io_in_uop_bits_lrs2_rtype, // @[issue-slot.scala:73:14]
input io_in_uop_bits_frs3_en, // @[issue-slot.scala:73:14]
input io_in_uop_bits_fp_val, // @[issue-slot.scala:73:14]
input io_in_uop_bits_fp_single, // @[issue-slot.scala:73:14]
input io_in_uop_bits_xcpt_pf_if, // @[issue-slot.scala:73:14]
input io_in_uop_bits_xcpt_ae_if, // @[issue-slot.scala:73:14]
input io_in_uop_bits_xcpt_ma_if, // @[issue-slot.scala:73:14]
input io_in_uop_bits_bp_debug_if, // @[issue-slot.scala:73:14]
input io_in_uop_bits_bp_xcpt_if, // @[issue-slot.scala:73:14]
input [1:0] io_in_uop_bits_debug_fsrc, // @[issue-slot.scala:73:14]
input [1:0] io_in_uop_bits_debug_tsrc, // @[issue-slot.scala:73:14]
output [6:0] io_out_uop_uopc, // @[issue-slot.scala:73:14]
output [31:0] io_out_uop_inst, // @[issue-slot.scala:73:14]
output [31:0] io_out_uop_debug_inst, // @[issue-slot.scala:73:14]
output io_out_uop_is_rvc, // @[issue-slot.scala:73:14]
output [39:0] io_out_uop_debug_pc, // @[issue-slot.scala:73:14]
output [2:0] io_out_uop_iq_type, // @[issue-slot.scala:73:14]
output [9:0] io_out_uop_fu_code, // @[issue-slot.scala:73:14]
output [3:0] io_out_uop_ctrl_br_type, // @[issue-slot.scala:73:14]
output [1:0] io_out_uop_ctrl_op1_sel, // @[issue-slot.scala:73:14]
output [2:0] io_out_uop_ctrl_op2_sel, // @[issue-slot.scala:73:14]
output [2:0] io_out_uop_ctrl_imm_sel, // @[issue-slot.scala:73:14]
output [4:0] io_out_uop_ctrl_op_fcn, // @[issue-slot.scala:73:14]
output io_out_uop_ctrl_fcn_dw, // @[issue-slot.scala:73:14]
output [2:0] io_out_uop_ctrl_csr_cmd, // @[issue-slot.scala:73:14]
output io_out_uop_ctrl_is_load, // @[issue-slot.scala:73:14]
output io_out_uop_ctrl_is_sta, // @[issue-slot.scala:73:14]
output io_out_uop_ctrl_is_std, // @[issue-slot.scala:73:14]
output [1:0] io_out_uop_iw_state, // @[issue-slot.scala:73:14]
output io_out_uop_iw_p1_poisoned, // @[issue-slot.scala:73:14]
output io_out_uop_iw_p2_poisoned, // @[issue-slot.scala:73:14]
output io_out_uop_is_br, // @[issue-slot.scala:73:14]
output io_out_uop_is_jalr, // @[issue-slot.scala:73:14]
output io_out_uop_is_jal, // @[issue-slot.scala:73:14]
output io_out_uop_is_sfb, // @[issue-slot.scala:73:14]
output [15:0] io_out_uop_br_mask, // @[issue-slot.scala:73:14]
output [3:0] io_out_uop_br_tag, // @[issue-slot.scala:73:14]
output [4:0] io_out_uop_ftq_idx, // @[issue-slot.scala:73:14]
output io_out_uop_edge_inst, // @[issue-slot.scala:73:14]
output [5:0] io_out_uop_pc_lob, // @[issue-slot.scala:73:14]
output io_out_uop_taken, // @[issue-slot.scala:73:14]
output [19:0] io_out_uop_imm_packed, // @[issue-slot.scala:73:14]
output [11:0] io_out_uop_csr_addr, // @[issue-slot.scala:73:14]
output [6:0] io_out_uop_rob_idx, // @[issue-slot.scala:73:14]
output [4:0] io_out_uop_ldq_idx, // @[issue-slot.scala:73:14]
output [4:0] io_out_uop_stq_idx, // @[issue-slot.scala:73:14]
output [1:0] io_out_uop_rxq_idx, // @[issue-slot.scala:73:14]
output [6:0] io_out_uop_pdst, // @[issue-slot.scala:73:14]
output [6:0] io_out_uop_prs1, // @[issue-slot.scala:73:14]
output [6:0] io_out_uop_prs2, // @[issue-slot.scala:73:14]
output [6:0] io_out_uop_prs3, // @[issue-slot.scala:73:14]
output [4:0] io_out_uop_ppred, // @[issue-slot.scala:73:14]
output io_out_uop_prs1_busy, // @[issue-slot.scala:73:14]
output io_out_uop_prs2_busy, // @[issue-slot.scala:73:14]
output io_out_uop_prs3_busy, // @[issue-slot.scala:73:14]
output io_out_uop_ppred_busy, // @[issue-slot.scala:73:14]
output [6:0] io_out_uop_stale_pdst, // @[issue-slot.scala:73:14]
output io_out_uop_exception, // @[issue-slot.scala:73:14]
output [63:0] io_out_uop_exc_cause, // @[issue-slot.scala:73:14]
output io_out_uop_bypassable, // @[issue-slot.scala:73:14]
output [4:0] io_out_uop_mem_cmd, // @[issue-slot.scala:73:14]
output [1:0] io_out_uop_mem_size, // @[issue-slot.scala:73:14]
output io_out_uop_mem_signed, // @[issue-slot.scala:73:14]
output io_out_uop_is_fence, // @[issue-slot.scala:73:14]
output io_out_uop_is_fencei, // @[issue-slot.scala:73:14]
output io_out_uop_is_amo, // @[issue-slot.scala:73:14]
output io_out_uop_uses_ldq, // @[issue-slot.scala:73:14]
output io_out_uop_uses_stq, // @[issue-slot.scala:73:14]
output io_out_uop_is_sys_pc2epc, // @[issue-slot.scala:73:14]
output io_out_uop_is_unique, // @[issue-slot.scala:73:14]
output io_out_uop_flush_on_commit, // @[issue-slot.scala:73:14]
output io_out_uop_ldst_is_rs1, // @[issue-slot.scala:73:14]
output [5:0] io_out_uop_ldst, // @[issue-slot.scala:73:14]
output [5:0] io_out_uop_lrs1, // @[issue-slot.scala:73:14]
output [5:0] io_out_uop_lrs2, // @[issue-slot.scala:73:14]
output [5:0] io_out_uop_lrs3, // @[issue-slot.scala:73:14]
output io_out_uop_ldst_val, // @[issue-slot.scala:73:14]
output [1:0] io_out_uop_dst_rtype, // @[issue-slot.scala:73:14]
output [1:0] io_out_uop_lrs1_rtype, // @[issue-slot.scala:73:14]
output [1:0] io_out_uop_lrs2_rtype, // @[issue-slot.scala:73:14]
output io_out_uop_frs3_en, // @[issue-slot.scala:73:14]
output io_out_uop_fp_val, // @[issue-slot.scala:73:14]
output io_out_uop_fp_single, // @[issue-slot.scala:73:14]
output io_out_uop_xcpt_pf_if, // @[issue-slot.scala:73:14]
output io_out_uop_xcpt_ae_if, // @[issue-slot.scala:73:14]
output io_out_uop_xcpt_ma_if, // @[issue-slot.scala:73:14]
output io_out_uop_bp_debug_if, // @[issue-slot.scala:73:14]
output io_out_uop_bp_xcpt_if, // @[issue-slot.scala:73:14]
output [1:0] io_out_uop_debug_fsrc, // @[issue-slot.scala:73:14]
output [1:0] io_out_uop_debug_tsrc, // @[issue-slot.scala:73:14]
output [6:0] io_uop_uopc, // @[issue-slot.scala:73:14]
output [31:0] io_uop_inst, // @[issue-slot.scala:73:14]
output [31:0] io_uop_debug_inst, // @[issue-slot.scala:73:14]
output io_uop_is_rvc, // @[issue-slot.scala:73:14]
output [39:0] io_uop_debug_pc, // @[issue-slot.scala:73:14]
output [2:0] io_uop_iq_type, // @[issue-slot.scala:73:14]
output [9:0] io_uop_fu_code, // @[issue-slot.scala:73:14]
output [3:0] io_uop_ctrl_br_type, // @[issue-slot.scala:73:14]
output [1:0] io_uop_ctrl_op1_sel, // @[issue-slot.scala:73:14]
output [2:0] io_uop_ctrl_op2_sel, // @[issue-slot.scala:73:14]
output [2:0] io_uop_ctrl_imm_sel, // @[issue-slot.scala:73:14]
output [4:0] io_uop_ctrl_op_fcn, // @[issue-slot.scala:73:14]
output io_uop_ctrl_fcn_dw, // @[issue-slot.scala:73:14]
output [2:0] io_uop_ctrl_csr_cmd, // @[issue-slot.scala:73:14]
output io_uop_ctrl_is_load, // @[issue-slot.scala:73:14]
output io_uop_ctrl_is_sta, // @[issue-slot.scala:73:14]
output io_uop_ctrl_is_std, // @[issue-slot.scala:73:14]
output [1:0] io_uop_iw_state, // @[issue-slot.scala:73:14]
output io_uop_iw_p1_poisoned, // @[issue-slot.scala:73:14]
output io_uop_iw_p2_poisoned, // @[issue-slot.scala:73:14]
output io_uop_is_br, // @[issue-slot.scala:73:14]
output io_uop_is_jalr, // @[issue-slot.scala:73:14]
output io_uop_is_jal, // @[issue-slot.scala:73:14]
output io_uop_is_sfb, // @[issue-slot.scala:73:14]
output [15:0] io_uop_br_mask, // @[issue-slot.scala:73:14]
output [3:0] io_uop_br_tag, // @[issue-slot.scala:73:14]
output [4:0] io_uop_ftq_idx, // @[issue-slot.scala:73:14]
output io_uop_edge_inst, // @[issue-slot.scala:73:14]
output [5:0] io_uop_pc_lob, // @[issue-slot.scala:73:14]
output io_uop_taken, // @[issue-slot.scala:73:14]
output [19:0] io_uop_imm_packed, // @[issue-slot.scala:73:14]
output [11:0] io_uop_csr_addr, // @[issue-slot.scala:73:14]
output [6:0] io_uop_rob_idx, // @[issue-slot.scala:73:14]
output [4:0] io_uop_ldq_idx, // @[issue-slot.scala:73:14]
output [4:0] io_uop_stq_idx, // @[issue-slot.scala:73:14]
output [1:0] io_uop_rxq_idx, // @[issue-slot.scala:73:14]
output [6:0] io_uop_pdst, // @[issue-slot.scala:73:14]
output [6:0] io_uop_prs1, // @[issue-slot.scala:73:14]
output [6:0] io_uop_prs2, // @[issue-slot.scala:73:14]
output [6:0] io_uop_prs3, // @[issue-slot.scala:73:14]
output [4:0] io_uop_ppred, // @[issue-slot.scala:73:14]
output io_uop_prs1_busy, // @[issue-slot.scala:73:14]
output io_uop_prs2_busy, // @[issue-slot.scala:73:14]
output io_uop_prs3_busy, // @[issue-slot.scala:73:14]
output io_uop_ppred_busy, // @[issue-slot.scala:73:14]
output [6:0] io_uop_stale_pdst, // @[issue-slot.scala:73:14]
output io_uop_exception, // @[issue-slot.scala:73:14]
output [63:0] io_uop_exc_cause, // @[issue-slot.scala:73:14]
output io_uop_bypassable, // @[issue-slot.scala:73:14]
output [4:0] io_uop_mem_cmd, // @[issue-slot.scala:73:14]
output [1:0] io_uop_mem_size, // @[issue-slot.scala:73:14]
output io_uop_mem_signed, // @[issue-slot.scala:73:14]
output io_uop_is_fence, // @[issue-slot.scala:73:14]
output io_uop_is_fencei, // @[issue-slot.scala:73:14]
output io_uop_is_amo, // @[issue-slot.scala:73:14]
output io_uop_uses_ldq, // @[issue-slot.scala:73:14]
output io_uop_uses_stq, // @[issue-slot.scala:73:14]
output io_uop_is_sys_pc2epc, // @[issue-slot.scala:73:14]
output io_uop_is_unique, // @[issue-slot.scala:73:14]
output io_uop_flush_on_commit, // @[issue-slot.scala:73:14]
output io_uop_ldst_is_rs1, // @[issue-slot.scala:73:14]
output [5:0] io_uop_ldst, // @[issue-slot.scala:73:14]
output [5:0] io_uop_lrs1, // @[issue-slot.scala:73:14]
output [5:0] io_uop_lrs2, // @[issue-slot.scala:73:14]
output [5:0] io_uop_lrs3, // @[issue-slot.scala:73:14]
output io_uop_ldst_val, // @[issue-slot.scala:73:14]
output [1:0] io_uop_dst_rtype, // @[issue-slot.scala:73:14]
output [1:0] io_uop_lrs1_rtype, // @[issue-slot.scala:73:14]
output [1:0] io_uop_lrs2_rtype, // @[issue-slot.scala:73:14]
output io_uop_frs3_en, // @[issue-slot.scala:73:14]
output io_uop_fp_val, // @[issue-slot.scala:73:14]
output io_uop_fp_single, // @[issue-slot.scala:73:14]
output io_uop_xcpt_pf_if, // @[issue-slot.scala:73:14]
output io_uop_xcpt_ae_if, // @[issue-slot.scala:73:14]
output io_uop_xcpt_ma_if, // @[issue-slot.scala:73:14]
output io_uop_bp_debug_if, // @[issue-slot.scala:73:14]
output io_uop_bp_xcpt_if, // @[issue-slot.scala:73:14]
output [1:0] io_uop_debug_fsrc, // @[issue-slot.scala:73:14]
output [1:0] io_uop_debug_tsrc, // @[issue-slot.scala:73:14]
output io_debug_p1, // @[issue-slot.scala:73:14]
output io_debug_p2, // @[issue-slot.scala:73:14]
output io_debug_p3, // @[issue-slot.scala:73:14]
output io_debug_ppred, // @[issue-slot.scala:73:14]
output [1:0] io_debug_state // @[issue-slot.scala:73:14]
);
wire io_grant_0 = io_grant; // @[issue-slot.scala:69:7]
wire [15:0] io_brupdate_b1_resolve_mask_0 = io_brupdate_b1_resolve_mask; // @[issue-slot.scala:69:7]
wire [15:0] io_brupdate_b1_mispredict_mask_0 = io_brupdate_b1_mispredict_mask; // @[issue-slot.scala:69:7]
wire [6:0] io_brupdate_b2_uop_uopc_0 = io_brupdate_b2_uop_uopc; // @[issue-slot.scala:69:7]
wire [31:0] io_brupdate_b2_uop_inst_0 = io_brupdate_b2_uop_inst; // @[issue-slot.scala:69:7]
wire [31:0] io_brupdate_b2_uop_debug_inst_0 = io_brupdate_b2_uop_debug_inst; // @[issue-slot.scala:69:7]
wire io_brupdate_b2_uop_is_rvc_0 = io_brupdate_b2_uop_is_rvc; // @[issue-slot.scala:69:7]
wire [39:0] io_brupdate_b2_uop_debug_pc_0 = io_brupdate_b2_uop_debug_pc; // @[issue-slot.scala:69:7]
wire [2:0] io_brupdate_b2_uop_iq_type_0 = io_brupdate_b2_uop_iq_type; // @[issue-slot.scala:69:7]
wire [9:0] io_brupdate_b2_uop_fu_code_0 = io_brupdate_b2_uop_fu_code; // @[issue-slot.scala:69:7]
wire [3:0] io_brupdate_b2_uop_ctrl_br_type_0 = io_brupdate_b2_uop_ctrl_br_type; // @[issue-slot.scala:69:7]
wire [1:0] io_brupdate_b2_uop_ctrl_op1_sel_0 = io_brupdate_b2_uop_ctrl_op1_sel; // @[issue-slot.scala:69:7]
wire [2:0] io_brupdate_b2_uop_ctrl_op2_sel_0 = io_brupdate_b2_uop_ctrl_op2_sel; // @[issue-slot.scala:69:7]
wire [2:0] io_brupdate_b2_uop_ctrl_imm_sel_0 = io_brupdate_b2_uop_ctrl_imm_sel; // @[issue-slot.scala:69:7]
wire [4:0] io_brupdate_b2_uop_ctrl_op_fcn_0 = io_brupdate_b2_uop_ctrl_op_fcn; // @[issue-slot.scala:69:7]
wire io_brupdate_b2_uop_ctrl_fcn_dw_0 = io_brupdate_b2_uop_ctrl_fcn_dw; // @[issue-slot.scala:69:7]
wire [2:0] io_brupdate_b2_uop_ctrl_csr_cmd_0 = io_brupdate_b2_uop_ctrl_csr_cmd; // @[issue-slot.scala:69:7]
wire io_brupdate_b2_uop_ctrl_is_load_0 = io_brupdate_b2_uop_ctrl_is_load; // @[issue-slot.scala:69:7]
wire io_brupdate_b2_uop_ctrl_is_sta_0 = io_brupdate_b2_uop_ctrl_is_sta; // @[issue-slot.scala:69:7]
wire io_brupdate_b2_uop_ctrl_is_std_0 = io_brupdate_b2_uop_ctrl_is_std; // @[issue-slot.scala:69:7]
wire [1:0] io_brupdate_b2_uop_iw_state_0 = io_brupdate_b2_uop_iw_state; // @[issue-slot.scala:69:7]
wire io_brupdate_b2_uop_iw_p1_poisoned_0 = io_brupdate_b2_uop_iw_p1_poisoned; // @[issue-slot.scala:69:7]
wire io_brupdate_b2_uop_iw_p2_poisoned_0 = io_brupdate_b2_uop_iw_p2_poisoned; // @[issue-slot.scala:69:7]
wire io_brupdate_b2_uop_is_br_0 = io_brupdate_b2_uop_is_br; // @[issue-slot.scala:69:7]
wire io_brupdate_b2_uop_is_jalr_0 = io_brupdate_b2_uop_is_jalr; // @[issue-slot.scala:69:7]
wire io_brupdate_b2_uop_is_jal_0 = io_brupdate_b2_uop_is_jal; // @[issue-slot.scala:69:7]
wire io_brupdate_b2_uop_is_sfb_0 = io_brupdate_b2_uop_is_sfb; // @[issue-slot.scala:69:7]
wire [15:0] io_brupdate_b2_uop_br_mask_0 = io_brupdate_b2_uop_br_mask; // @[issue-slot.scala:69:7]
wire [3:0] io_brupdate_b2_uop_br_tag_0 = io_brupdate_b2_uop_br_tag; // @[issue-slot.scala:69:7]
wire [4:0] io_brupdate_b2_uop_ftq_idx_0 = io_brupdate_b2_uop_ftq_idx; // @[issue-slot.scala:69:7]
wire io_brupdate_b2_uop_edge_inst_0 = io_brupdate_b2_uop_edge_inst; // @[issue-slot.scala:69:7]
wire [5:0] io_brupdate_b2_uop_pc_lob_0 = io_brupdate_b2_uop_pc_lob; // @[issue-slot.scala:69:7]
wire io_brupdate_b2_uop_taken_0 = io_brupdate_b2_uop_taken; // @[issue-slot.scala:69:7]
wire [19:0] io_brupdate_b2_uop_imm_packed_0 = io_brupdate_b2_uop_imm_packed; // @[issue-slot.scala:69:7]
wire [11:0] io_brupdate_b2_uop_csr_addr_0 = io_brupdate_b2_uop_csr_addr; // @[issue-slot.scala:69:7]
wire [6:0] io_brupdate_b2_uop_rob_idx_0 = io_brupdate_b2_uop_rob_idx; // @[issue-slot.scala:69:7]
wire [4:0] io_brupdate_b2_uop_ldq_idx_0 = io_brupdate_b2_uop_ldq_idx; // @[issue-slot.scala:69:7]
wire [4:0] io_brupdate_b2_uop_stq_idx_0 = io_brupdate_b2_uop_stq_idx; // @[issue-slot.scala:69:7]
wire [1:0] io_brupdate_b2_uop_rxq_idx_0 = io_brupdate_b2_uop_rxq_idx; // @[issue-slot.scala:69:7]
wire [6:0] io_brupdate_b2_uop_pdst_0 = io_brupdate_b2_uop_pdst; // @[issue-slot.scala:69:7]
wire [6:0] io_brupdate_b2_uop_prs1_0 = io_brupdate_b2_uop_prs1; // @[issue-slot.scala:69:7]
wire [6:0] io_brupdate_b2_uop_prs2_0 = io_brupdate_b2_uop_prs2; // @[issue-slot.scala:69:7]
wire [6:0] io_brupdate_b2_uop_prs3_0 = io_brupdate_b2_uop_prs3; // @[issue-slot.scala:69:7]
wire [4:0] io_brupdate_b2_uop_ppred_0 = io_brupdate_b2_uop_ppred; // @[issue-slot.scala:69:7]
wire io_brupdate_b2_uop_prs1_busy_0 = io_brupdate_b2_uop_prs1_busy; // @[issue-slot.scala:69:7]
wire io_brupdate_b2_uop_prs2_busy_0 = io_brupdate_b2_uop_prs2_busy; // @[issue-slot.scala:69:7]
wire io_brupdate_b2_uop_prs3_busy_0 = io_brupdate_b2_uop_prs3_busy; // @[issue-slot.scala:69:7]
wire io_brupdate_b2_uop_ppred_busy_0 = io_brupdate_b2_uop_ppred_busy; // @[issue-slot.scala:69:7]
wire [6:0] io_brupdate_b2_uop_stale_pdst_0 = io_brupdate_b2_uop_stale_pdst; // @[issue-slot.scala:69:7]
wire io_brupdate_b2_uop_exception_0 = io_brupdate_b2_uop_exception; // @[issue-slot.scala:69:7]
wire [63:0] io_brupdate_b2_uop_exc_cause_0 = io_brupdate_b2_uop_exc_cause; // @[issue-slot.scala:69:7]
wire io_brupdate_b2_uop_bypassable_0 = io_brupdate_b2_uop_bypassable; // @[issue-slot.scala:69:7]
wire [4:0] io_brupdate_b2_uop_mem_cmd_0 = io_brupdate_b2_uop_mem_cmd; // @[issue-slot.scala:69:7]
wire [1:0] io_brupdate_b2_uop_mem_size_0 = io_brupdate_b2_uop_mem_size; // @[issue-slot.scala:69:7]
wire io_brupdate_b2_uop_mem_signed_0 = io_brupdate_b2_uop_mem_signed; // @[issue-slot.scala:69:7]
wire io_brupdate_b2_uop_is_fence_0 = io_brupdate_b2_uop_is_fence; // @[issue-slot.scala:69:7]
wire io_brupdate_b2_uop_is_fencei_0 = io_brupdate_b2_uop_is_fencei; // @[issue-slot.scala:69:7]
wire io_brupdate_b2_uop_is_amo_0 = io_brupdate_b2_uop_is_amo; // @[issue-slot.scala:69:7]
wire io_brupdate_b2_uop_uses_ldq_0 = io_brupdate_b2_uop_uses_ldq; // @[issue-slot.scala:69:7]
wire io_brupdate_b2_uop_uses_stq_0 = io_brupdate_b2_uop_uses_stq; // @[issue-slot.scala:69:7]
wire io_brupdate_b2_uop_is_sys_pc2epc_0 = io_brupdate_b2_uop_is_sys_pc2epc; // @[issue-slot.scala:69:7]
wire io_brupdate_b2_uop_is_unique_0 = io_brupdate_b2_uop_is_unique; // @[issue-slot.scala:69:7]
wire io_brupdate_b2_uop_flush_on_commit_0 = io_brupdate_b2_uop_flush_on_commit; // @[issue-slot.scala:69:7]
wire io_brupdate_b2_uop_ldst_is_rs1_0 = io_brupdate_b2_uop_ldst_is_rs1; // @[issue-slot.scala:69:7]
wire [5:0] io_brupdate_b2_uop_ldst_0 = io_brupdate_b2_uop_ldst; // @[issue-slot.scala:69:7]
wire [5:0] io_brupdate_b2_uop_lrs1_0 = io_brupdate_b2_uop_lrs1; // @[issue-slot.scala:69:7]
wire [5:0] io_brupdate_b2_uop_lrs2_0 = io_brupdate_b2_uop_lrs2; // @[issue-slot.scala:69:7]
wire [5:0] io_brupdate_b2_uop_lrs3_0 = io_brupdate_b2_uop_lrs3; // @[issue-slot.scala:69:7]
wire io_brupdate_b2_uop_ldst_val_0 = io_brupdate_b2_uop_ldst_val; // @[issue-slot.scala:69:7]
wire [1:0] io_brupdate_b2_uop_dst_rtype_0 = io_brupdate_b2_uop_dst_rtype; // @[issue-slot.scala:69:7]
wire [1:0] io_brupdate_b2_uop_lrs1_rtype_0 = io_brupdate_b2_uop_lrs1_rtype; // @[issue-slot.scala:69:7]
wire [1:0] io_brupdate_b2_uop_lrs2_rtype_0 = io_brupdate_b2_uop_lrs2_rtype; // @[issue-slot.scala:69:7]
wire io_brupdate_b2_uop_frs3_en_0 = io_brupdate_b2_uop_frs3_en; // @[issue-slot.scala:69:7]
wire io_brupdate_b2_uop_fp_val_0 = io_brupdate_b2_uop_fp_val; // @[issue-slot.scala:69:7]
wire io_brupdate_b2_uop_fp_single_0 = io_brupdate_b2_uop_fp_single; // @[issue-slot.scala:69:7]
wire io_brupdate_b2_uop_xcpt_pf_if_0 = io_brupdate_b2_uop_xcpt_pf_if; // @[issue-slot.scala:69:7]
wire io_brupdate_b2_uop_xcpt_ae_if_0 = io_brupdate_b2_uop_xcpt_ae_if; // @[issue-slot.scala:69:7]
wire io_brupdate_b2_uop_xcpt_ma_if_0 = io_brupdate_b2_uop_xcpt_ma_if; // @[issue-slot.scala:69:7]
wire io_brupdate_b2_uop_bp_debug_if_0 = io_brupdate_b2_uop_bp_debug_if; // @[issue-slot.scala:69:7]
wire io_brupdate_b2_uop_bp_xcpt_if_0 = io_brupdate_b2_uop_bp_xcpt_if; // @[issue-slot.scala:69:7]
wire [1:0] io_brupdate_b2_uop_debug_fsrc_0 = io_brupdate_b2_uop_debug_fsrc; // @[issue-slot.scala:69:7]
wire [1:0] io_brupdate_b2_uop_debug_tsrc_0 = io_brupdate_b2_uop_debug_tsrc; // @[issue-slot.scala:69:7]
wire io_brupdate_b2_valid_0 = io_brupdate_b2_valid; // @[issue-slot.scala:69:7]
wire io_brupdate_b2_mispredict_0 = io_brupdate_b2_mispredict; // @[issue-slot.scala:69:7]
wire io_brupdate_b2_taken_0 = io_brupdate_b2_taken; // @[issue-slot.scala:69:7]
wire [2:0] io_brupdate_b2_cfi_type_0 = io_brupdate_b2_cfi_type; // @[issue-slot.scala:69:7]
wire [1:0] io_brupdate_b2_pc_sel_0 = io_brupdate_b2_pc_sel; // @[issue-slot.scala:69:7]
wire [39:0] io_brupdate_b2_jalr_target_0 = io_brupdate_b2_jalr_target; // @[issue-slot.scala:69:7]
wire [20:0] io_brupdate_b2_target_offset_0 = io_brupdate_b2_target_offset; // @[issue-slot.scala:69:7]
wire io_kill_0 = io_kill; // @[issue-slot.scala:69:7]
wire io_clear_0 = io_clear; // @[issue-slot.scala:69:7]
wire io_ldspec_miss_0 = io_ldspec_miss; // @[issue-slot.scala:69:7]
wire io_wakeup_ports_0_valid_0 = io_wakeup_ports_0_valid; // @[issue-slot.scala:69:7]
wire [6:0] io_wakeup_ports_0_bits_pdst_0 = io_wakeup_ports_0_bits_pdst; // @[issue-slot.scala:69:7]
wire io_wakeup_ports_0_bits_poisoned_0 = io_wakeup_ports_0_bits_poisoned; // @[issue-slot.scala:69:7]
wire io_wakeup_ports_1_valid_0 = io_wakeup_ports_1_valid; // @[issue-slot.scala:69:7]
wire [6:0] io_wakeup_ports_1_bits_pdst_0 = io_wakeup_ports_1_bits_pdst; // @[issue-slot.scala:69:7]
wire io_wakeup_ports_1_bits_poisoned_0 = io_wakeup_ports_1_bits_poisoned; // @[issue-slot.scala:69:7]
wire io_wakeup_ports_2_valid_0 = io_wakeup_ports_2_valid; // @[issue-slot.scala:69:7]
wire [6:0] io_wakeup_ports_2_bits_pdst_0 = io_wakeup_ports_2_bits_pdst; // @[issue-slot.scala:69:7]
wire io_wakeup_ports_2_bits_poisoned_0 = io_wakeup_ports_2_bits_poisoned; // @[issue-slot.scala:69:7]
wire io_wakeup_ports_3_valid_0 = io_wakeup_ports_3_valid; // @[issue-slot.scala:69:7]
wire [6:0] io_wakeup_ports_3_bits_pdst_0 = io_wakeup_ports_3_bits_pdst; // @[issue-slot.scala:69:7]
wire io_wakeup_ports_3_bits_poisoned_0 = io_wakeup_ports_3_bits_poisoned; // @[issue-slot.scala:69:7]
wire io_wakeup_ports_4_valid_0 = io_wakeup_ports_4_valid; // @[issue-slot.scala:69:7]
wire [6:0] io_wakeup_ports_4_bits_pdst_0 = io_wakeup_ports_4_bits_pdst; // @[issue-slot.scala:69:7]
wire io_wakeup_ports_4_bits_poisoned_0 = io_wakeup_ports_4_bits_poisoned; // @[issue-slot.scala:69:7]
wire io_wakeup_ports_5_valid_0 = io_wakeup_ports_5_valid; // @[issue-slot.scala:69:7]
wire [6:0] io_wakeup_ports_5_bits_pdst_0 = io_wakeup_ports_5_bits_pdst; // @[issue-slot.scala:69:7]
wire io_wakeup_ports_5_bits_poisoned_0 = io_wakeup_ports_5_bits_poisoned; // @[issue-slot.scala:69:7]
wire io_wakeup_ports_6_valid_0 = io_wakeup_ports_6_valid; // @[issue-slot.scala:69:7]
wire [6:0] io_wakeup_ports_6_bits_pdst_0 = io_wakeup_ports_6_bits_pdst; // @[issue-slot.scala:69:7]
wire io_wakeup_ports_6_bits_poisoned_0 = io_wakeup_ports_6_bits_poisoned; // @[issue-slot.scala:69:7]
wire io_spec_ld_wakeup_0_valid_0 = io_spec_ld_wakeup_0_valid; // @[issue-slot.scala:69:7]
wire [6:0] io_spec_ld_wakeup_0_bits_0 = io_spec_ld_wakeup_0_bits; // @[issue-slot.scala:69:7]
wire io_in_uop_valid_0 = io_in_uop_valid; // @[issue-slot.scala:69:7]
wire [6:0] io_in_uop_bits_uopc_0 = io_in_uop_bits_uopc; // @[issue-slot.scala:69:7]
wire [31:0] io_in_uop_bits_inst_0 = io_in_uop_bits_inst; // @[issue-slot.scala:69:7]
wire [31:0] io_in_uop_bits_debug_inst_0 = io_in_uop_bits_debug_inst; // @[issue-slot.scala:69:7]
wire io_in_uop_bits_is_rvc_0 = io_in_uop_bits_is_rvc; // @[issue-slot.scala:69:7]
wire [39:0] io_in_uop_bits_debug_pc_0 = io_in_uop_bits_debug_pc; // @[issue-slot.scala:69:7]
wire [2:0] io_in_uop_bits_iq_type_0 = io_in_uop_bits_iq_type; // @[issue-slot.scala:69:7]
wire [9:0] io_in_uop_bits_fu_code_0 = io_in_uop_bits_fu_code; // @[issue-slot.scala:69:7]
wire [3:0] io_in_uop_bits_ctrl_br_type_0 = io_in_uop_bits_ctrl_br_type; // @[issue-slot.scala:69:7]
wire [1:0] io_in_uop_bits_ctrl_op1_sel_0 = io_in_uop_bits_ctrl_op1_sel; // @[issue-slot.scala:69:7]
wire [2:0] io_in_uop_bits_ctrl_op2_sel_0 = io_in_uop_bits_ctrl_op2_sel; // @[issue-slot.scala:69:7]
wire [2:0] io_in_uop_bits_ctrl_imm_sel_0 = io_in_uop_bits_ctrl_imm_sel; // @[issue-slot.scala:69:7]
wire [4:0] io_in_uop_bits_ctrl_op_fcn_0 = io_in_uop_bits_ctrl_op_fcn; // @[issue-slot.scala:69:7]
wire io_in_uop_bits_ctrl_fcn_dw_0 = io_in_uop_bits_ctrl_fcn_dw; // @[issue-slot.scala:69:7]
wire [2:0] io_in_uop_bits_ctrl_csr_cmd_0 = io_in_uop_bits_ctrl_csr_cmd; // @[issue-slot.scala:69:7]
wire io_in_uop_bits_ctrl_is_load_0 = io_in_uop_bits_ctrl_is_load; // @[issue-slot.scala:69:7]
wire io_in_uop_bits_ctrl_is_sta_0 = io_in_uop_bits_ctrl_is_sta; // @[issue-slot.scala:69:7]
wire io_in_uop_bits_ctrl_is_std_0 = io_in_uop_bits_ctrl_is_std; // @[issue-slot.scala:69:7]
wire [1:0] io_in_uop_bits_iw_state_0 = io_in_uop_bits_iw_state; // @[issue-slot.scala:69:7]
wire io_in_uop_bits_iw_p1_poisoned_0 = io_in_uop_bits_iw_p1_poisoned; // @[issue-slot.scala:69:7]
wire io_in_uop_bits_iw_p2_poisoned_0 = io_in_uop_bits_iw_p2_poisoned; // @[issue-slot.scala:69:7]
wire io_in_uop_bits_is_br_0 = io_in_uop_bits_is_br; // @[issue-slot.scala:69:7]
wire io_in_uop_bits_is_jalr_0 = io_in_uop_bits_is_jalr; // @[issue-slot.scala:69:7]
wire io_in_uop_bits_is_jal_0 = io_in_uop_bits_is_jal; // @[issue-slot.scala:69:7]
wire io_in_uop_bits_is_sfb_0 = io_in_uop_bits_is_sfb; // @[issue-slot.scala:69:7]
wire [15:0] io_in_uop_bits_br_mask_0 = io_in_uop_bits_br_mask; // @[issue-slot.scala:69:7]
wire [3:0] io_in_uop_bits_br_tag_0 = io_in_uop_bits_br_tag; // @[issue-slot.scala:69:7]
wire [4:0] io_in_uop_bits_ftq_idx_0 = io_in_uop_bits_ftq_idx; // @[issue-slot.scala:69:7]
wire io_in_uop_bits_edge_inst_0 = io_in_uop_bits_edge_inst; // @[issue-slot.scala:69:7]
wire [5:0] io_in_uop_bits_pc_lob_0 = io_in_uop_bits_pc_lob; // @[issue-slot.scala:69:7]
wire io_in_uop_bits_taken_0 = io_in_uop_bits_taken; // @[issue-slot.scala:69:7]
wire [19:0] io_in_uop_bits_imm_packed_0 = io_in_uop_bits_imm_packed; // @[issue-slot.scala:69:7]
wire [11:0] io_in_uop_bits_csr_addr_0 = io_in_uop_bits_csr_addr; // @[issue-slot.scala:69:7]
wire [6:0] io_in_uop_bits_rob_idx_0 = io_in_uop_bits_rob_idx; // @[issue-slot.scala:69:7]
wire [4:0] io_in_uop_bits_ldq_idx_0 = io_in_uop_bits_ldq_idx; // @[issue-slot.scala:69:7]
wire [4:0] io_in_uop_bits_stq_idx_0 = io_in_uop_bits_stq_idx; // @[issue-slot.scala:69:7]
wire [1:0] io_in_uop_bits_rxq_idx_0 = io_in_uop_bits_rxq_idx; // @[issue-slot.scala:69:7]
wire [6:0] io_in_uop_bits_pdst_0 = io_in_uop_bits_pdst; // @[issue-slot.scala:69:7]
wire [6:0] io_in_uop_bits_prs1_0 = io_in_uop_bits_prs1; // @[issue-slot.scala:69:7]
wire [6:0] io_in_uop_bits_prs2_0 = io_in_uop_bits_prs2; // @[issue-slot.scala:69:7]
wire [6:0] io_in_uop_bits_prs3_0 = io_in_uop_bits_prs3; // @[issue-slot.scala:69:7]
wire [4:0] io_in_uop_bits_ppred_0 = io_in_uop_bits_ppred; // @[issue-slot.scala:69:7]
wire io_in_uop_bits_prs1_busy_0 = io_in_uop_bits_prs1_busy; // @[issue-slot.scala:69:7]
wire io_in_uop_bits_prs2_busy_0 = io_in_uop_bits_prs2_busy; // @[issue-slot.scala:69:7]
wire io_in_uop_bits_prs3_busy_0 = io_in_uop_bits_prs3_busy; // @[issue-slot.scala:69:7]
wire io_in_uop_bits_ppred_busy_0 = io_in_uop_bits_ppred_busy; // @[issue-slot.scala:69:7]
wire [6:0] io_in_uop_bits_stale_pdst_0 = io_in_uop_bits_stale_pdst; // @[issue-slot.scala:69:7]
wire io_in_uop_bits_exception_0 = io_in_uop_bits_exception; // @[issue-slot.scala:69:7]
wire [63:0] io_in_uop_bits_exc_cause_0 = io_in_uop_bits_exc_cause; // @[issue-slot.scala:69:7]
wire io_in_uop_bits_bypassable_0 = io_in_uop_bits_bypassable; // @[issue-slot.scala:69:7]
wire [4:0] io_in_uop_bits_mem_cmd_0 = io_in_uop_bits_mem_cmd; // @[issue-slot.scala:69:7]
wire [1:0] io_in_uop_bits_mem_size_0 = io_in_uop_bits_mem_size; // @[issue-slot.scala:69:7]
wire io_in_uop_bits_mem_signed_0 = io_in_uop_bits_mem_signed; // @[issue-slot.scala:69:7]
wire io_in_uop_bits_is_fence_0 = io_in_uop_bits_is_fence; // @[issue-slot.scala:69:7]
wire io_in_uop_bits_is_fencei_0 = io_in_uop_bits_is_fencei; // @[issue-slot.scala:69:7]
wire io_in_uop_bits_is_amo_0 = io_in_uop_bits_is_amo; // @[issue-slot.scala:69:7]
wire io_in_uop_bits_uses_ldq_0 = io_in_uop_bits_uses_ldq; // @[issue-slot.scala:69:7]
wire io_in_uop_bits_uses_stq_0 = io_in_uop_bits_uses_stq; // @[issue-slot.scala:69:7]
wire io_in_uop_bits_is_sys_pc2epc_0 = io_in_uop_bits_is_sys_pc2epc; // @[issue-slot.scala:69:7]
wire io_in_uop_bits_is_unique_0 = io_in_uop_bits_is_unique; // @[issue-slot.scala:69:7]
wire io_in_uop_bits_flush_on_commit_0 = io_in_uop_bits_flush_on_commit; // @[issue-slot.scala:69:7]
wire io_in_uop_bits_ldst_is_rs1_0 = io_in_uop_bits_ldst_is_rs1; // @[issue-slot.scala:69:7]
wire [5:0] io_in_uop_bits_ldst_0 = io_in_uop_bits_ldst; // @[issue-slot.scala:69:7]
wire [5:0] io_in_uop_bits_lrs1_0 = io_in_uop_bits_lrs1; // @[issue-slot.scala:69:7]
wire [5:0] io_in_uop_bits_lrs2_0 = io_in_uop_bits_lrs2; // @[issue-slot.scala:69:7]
wire [5:0] io_in_uop_bits_lrs3_0 = io_in_uop_bits_lrs3; // @[issue-slot.scala:69:7]
wire io_in_uop_bits_ldst_val_0 = io_in_uop_bits_ldst_val; // @[issue-slot.scala:69:7]
wire [1:0] io_in_uop_bits_dst_rtype_0 = io_in_uop_bits_dst_rtype; // @[issue-slot.scala:69:7]
wire [1:0] io_in_uop_bits_lrs1_rtype_0 = io_in_uop_bits_lrs1_rtype; // @[issue-slot.scala:69:7]
wire [1:0] io_in_uop_bits_lrs2_rtype_0 = io_in_uop_bits_lrs2_rtype; // @[issue-slot.scala:69:7]
wire io_in_uop_bits_frs3_en_0 = io_in_uop_bits_frs3_en; // @[issue-slot.scala:69:7]
wire io_in_uop_bits_fp_val_0 = io_in_uop_bits_fp_val; // @[issue-slot.scala:69:7]
wire io_in_uop_bits_fp_single_0 = io_in_uop_bits_fp_single; // @[issue-slot.scala:69:7]
wire io_in_uop_bits_xcpt_pf_if_0 = io_in_uop_bits_xcpt_pf_if; // @[issue-slot.scala:69:7]
wire io_in_uop_bits_xcpt_ae_if_0 = io_in_uop_bits_xcpt_ae_if; // @[issue-slot.scala:69:7]
wire io_in_uop_bits_xcpt_ma_if_0 = io_in_uop_bits_xcpt_ma_if; // @[issue-slot.scala:69:7]
wire io_in_uop_bits_bp_debug_if_0 = io_in_uop_bits_bp_debug_if; // @[issue-slot.scala:69:7]
wire io_in_uop_bits_bp_xcpt_if_0 = io_in_uop_bits_bp_xcpt_if; // @[issue-slot.scala:69:7]
wire [1:0] io_in_uop_bits_debug_fsrc_0 = io_in_uop_bits_debug_fsrc; // @[issue-slot.scala:69:7]
wire [1:0] io_in_uop_bits_debug_tsrc_0 = io_in_uop_bits_debug_tsrc; // @[issue-slot.scala:69:7]
wire io_pred_wakeup_port_valid = 1'h0; // @[issue-slot.scala:69:7]
wire slot_uop_uop_is_rvc = 1'h0; // @[consts.scala:269:19]
wire slot_uop_uop_ctrl_fcn_dw = 1'h0; // @[consts.scala:269:19]
wire slot_uop_uop_ctrl_is_load = 1'h0; // @[consts.scala:269:19]
wire slot_uop_uop_ctrl_is_sta = 1'h0; // @[consts.scala:269:19]
wire slot_uop_uop_ctrl_is_std = 1'h0; // @[consts.scala:269:19]
wire slot_uop_uop_iw_p1_poisoned = 1'h0; // @[consts.scala:269:19]
wire slot_uop_uop_iw_p2_poisoned = 1'h0; // @[consts.scala:269:19]
wire slot_uop_uop_is_br = 1'h0; // @[consts.scala:269:19]
wire slot_uop_uop_is_jalr = 1'h0; // @[consts.scala:269:19]
wire slot_uop_uop_is_jal = 1'h0; // @[consts.scala:269:19]
wire slot_uop_uop_is_sfb = 1'h0; // @[consts.scala:269:19]
wire slot_uop_uop_edge_inst = 1'h0; // @[consts.scala:269:19]
wire slot_uop_uop_taken = 1'h0; // @[consts.scala:269:19]
wire slot_uop_uop_prs1_busy = 1'h0; // @[consts.scala:269:19]
wire slot_uop_uop_prs2_busy = 1'h0; // @[consts.scala:269:19]
wire slot_uop_uop_prs3_busy = 1'h0; // @[consts.scala:269:19]
wire slot_uop_uop_ppred_busy = 1'h0; // @[consts.scala:269:19]
wire slot_uop_uop_exception = 1'h0; // @[consts.scala:269:19]
wire slot_uop_uop_bypassable = 1'h0; // @[consts.scala:269:19]
wire slot_uop_uop_mem_signed = 1'h0; // @[consts.scala:269:19]
wire slot_uop_uop_is_fence = 1'h0; // @[consts.scala:269:19]
wire slot_uop_uop_is_fencei = 1'h0; // @[consts.scala:269:19]
wire slot_uop_uop_is_amo = 1'h0; // @[consts.scala:269:19]
wire slot_uop_uop_uses_ldq = 1'h0; // @[consts.scala:269:19]
wire slot_uop_uop_uses_stq = 1'h0; // @[consts.scala:269:19]
wire slot_uop_uop_is_sys_pc2epc = 1'h0; // @[consts.scala:269:19]
wire slot_uop_uop_is_unique = 1'h0; // @[consts.scala:269:19]
wire slot_uop_uop_flush_on_commit = 1'h0; // @[consts.scala:269:19]
wire slot_uop_uop_ldst_is_rs1 = 1'h0; // @[consts.scala:269:19]
wire slot_uop_uop_ldst_val = 1'h0; // @[consts.scala:269:19]
wire slot_uop_uop_frs3_en = 1'h0; // @[consts.scala:269:19]
wire slot_uop_uop_fp_val = 1'h0; // @[consts.scala:269:19]
wire slot_uop_uop_fp_single = 1'h0; // @[consts.scala:269:19]
wire slot_uop_uop_xcpt_pf_if = 1'h0; // @[consts.scala:269:19]
wire slot_uop_uop_xcpt_ae_if = 1'h0; // @[consts.scala:269:19]
wire slot_uop_uop_xcpt_ma_if = 1'h0; // @[consts.scala:269:19]
wire slot_uop_uop_bp_debug_if = 1'h0; // @[consts.scala:269:19]
wire slot_uop_uop_bp_xcpt_if = 1'h0; // @[consts.scala:269:19]
wire slot_uop_cs_fcn_dw = 1'h0; // @[consts.scala:279:18]
wire slot_uop_cs_is_load = 1'h0; // @[consts.scala:279:18]
wire slot_uop_cs_is_sta = 1'h0; // @[consts.scala:279:18]
wire slot_uop_cs_is_std = 1'h0; // @[consts.scala:279:18]
wire [4:0] io_pred_wakeup_port_bits = 5'h0; // @[issue-slot.scala:69:7]
wire [4:0] slot_uop_uop_ctrl_op_fcn = 5'h0; // @[consts.scala:269:19]
wire [4:0] slot_uop_uop_ftq_idx = 5'h0; // @[consts.scala:269:19]
wire [4:0] slot_uop_uop_ldq_idx = 5'h0; // @[consts.scala:269:19]
wire [4:0] slot_uop_uop_stq_idx = 5'h0; // @[consts.scala:269:19]
wire [4:0] slot_uop_uop_ppred = 5'h0; // @[consts.scala:269:19]
wire [4:0] slot_uop_uop_mem_cmd = 5'h0; // @[consts.scala:269:19]
wire [4:0] slot_uop_cs_op_fcn = 5'h0; // @[consts.scala:279:18]
wire [2:0] slot_uop_uop_iq_type = 3'h0; // @[consts.scala:269:19]
wire [2:0] slot_uop_uop_ctrl_op2_sel = 3'h0; // @[consts.scala:269:19]
wire [2:0] slot_uop_uop_ctrl_imm_sel = 3'h0; // @[consts.scala:269:19]
wire [2:0] slot_uop_uop_ctrl_csr_cmd = 3'h0; // @[consts.scala:269:19]
wire [2:0] slot_uop_cs_op2_sel = 3'h0; // @[consts.scala:279:18]
wire [2:0] slot_uop_cs_imm_sel = 3'h0; // @[consts.scala:279:18]
wire [2:0] slot_uop_cs_csr_cmd = 3'h0; // @[consts.scala:279:18]
wire [1:0] slot_uop_uop_ctrl_op1_sel = 2'h0; // @[consts.scala:269:19]
wire [1:0] slot_uop_uop_iw_state = 2'h0; // @[consts.scala:269:19]
wire [1:0] slot_uop_uop_rxq_idx = 2'h0; // @[consts.scala:269:19]
wire [1:0] slot_uop_uop_mem_size = 2'h0; // @[consts.scala:269:19]
wire [1:0] slot_uop_uop_lrs1_rtype = 2'h0; // @[consts.scala:269:19]
wire [1:0] slot_uop_uop_lrs2_rtype = 2'h0; // @[consts.scala:269:19]
wire [1:0] slot_uop_uop_debug_fsrc = 2'h0; // @[consts.scala:269:19]
wire [1:0] slot_uop_uop_debug_tsrc = 2'h0; // @[consts.scala:269:19]
wire [1:0] slot_uop_cs_op1_sel = 2'h0; // @[consts.scala:279:18]
wire [3:0] slot_uop_uop_ctrl_br_type = 4'h0; // @[consts.scala:269:19]
wire [3:0] slot_uop_uop_br_tag = 4'h0; // @[consts.scala:269:19]
wire [3:0] slot_uop_cs_br_type = 4'h0; // @[consts.scala:279:18]
wire [1:0] slot_uop_uop_dst_rtype = 2'h2; // @[consts.scala:269:19]
wire [5:0] slot_uop_uop_pc_lob = 6'h0; // @[consts.scala:269:19]
wire [5:0] slot_uop_uop_ldst = 6'h0; // @[consts.scala:269:19]
wire [5:0] slot_uop_uop_lrs1 = 6'h0; // @[consts.scala:269:19]
wire [5:0] slot_uop_uop_lrs2 = 6'h0; // @[consts.scala:269:19]
wire [5:0] slot_uop_uop_lrs3 = 6'h0; // @[consts.scala:269:19]
wire [63:0] slot_uop_uop_exc_cause = 64'h0; // @[consts.scala:269:19]
wire [6:0] slot_uop_uop_uopc = 7'h0; // @[consts.scala:269:19]
wire [6:0] slot_uop_uop_rob_idx = 7'h0; // @[consts.scala:269:19]
wire [6:0] slot_uop_uop_pdst = 7'h0; // @[consts.scala:269:19]
wire [6:0] slot_uop_uop_prs1 = 7'h0; // @[consts.scala:269:19]
wire [6:0] slot_uop_uop_prs2 = 7'h0; // @[consts.scala:269:19]
wire [6:0] slot_uop_uop_prs3 = 7'h0; // @[consts.scala:269:19]
wire [6:0] slot_uop_uop_stale_pdst = 7'h0; // @[consts.scala:269:19]
wire [11:0] slot_uop_uop_csr_addr = 12'h0; // @[consts.scala:269:19]
wire [19:0] slot_uop_uop_imm_packed = 20'h0; // @[consts.scala:269:19]
wire [15:0] slot_uop_uop_br_mask = 16'h0; // @[consts.scala:269:19]
wire [9:0] slot_uop_uop_fu_code = 10'h0; // @[consts.scala:269:19]
wire [39:0] slot_uop_uop_debug_pc = 40'h0; // @[consts.scala:269:19]
wire [31:0] slot_uop_uop_inst = 32'h0; // @[consts.scala:269:19]
wire [31:0] slot_uop_uop_debug_inst = 32'h0; // @[consts.scala:269:19]
wire _io_valid_T; // @[issue-slot.scala:79:24]
wire _io_will_be_valid_T_4; // @[issue-slot.scala:262:32]
wire _io_request_hp_T; // @[issue-slot.scala:243:31]
wire [6:0] next_uopc; // @[issue-slot.scala:82:29]
wire [1:0] next_state; // @[issue-slot.scala:81:29]
wire [15:0] next_br_mask; // @[util.scala:85:25]
wire _io_out_uop_prs1_busy_T; // @[issue-slot.scala:270:28]
wire _io_out_uop_prs2_busy_T; // @[issue-slot.scala:271:28]
wire _io_out_uop_prs3_busy_T; // @[issue-slot.scala:272:28]
wire _io_out_uop_ppred_busy_T; // @[issue-slot.scala:273:28]
wire [1:0] next_lrs1_rtype; // @[issue-slot.scala:83:29]
wire [1:0] next_lrs2_rtype; // @[issue-slot.scala:84:29]
wire [3:0] io_out_uop_ctrl_br_type_0; // @[issue-slot.scala:69:7]
wire [1:0] io_out_uop_ctrl_op1_sel_0; // @[issue-slot.scala:69:7]
wire [2:0] io_out_uop_ctrl_op2_sel_0; // @[issue-slot.scala:69:7]
wire [2:0] io_out_uop_ctrl_imm_sel_0; // @[issue-slot.scala:69:7]
wire [4:0] io_out_uop_ctrl_op_fcn_0; // @[issue-slot.scala:69:7]
wire io_out_uop_ctrl_fcn_dw_0; // @[issue-slot.scala:69:7]
wire [2:0] io_out_uop_ctrl_csr_cmd_0; // @[issue-slot.scala:69:7]
wire io_out_uop_ctrl_is_load_0; // @[issue-slot.scala:69:7]
wire io_out_uop_ctrl_is_sta_0; // @[issue-slot.scala:69:7]
wire io_out_uop_ctrl_is_std_0; // @[issue-slot.scala:69:7]
wire [6:0] io_out_uop_uopc_0; // @[issue-slot.scala:69:7]
wire [31:0] io_out_uop_inst_0; // @[issue-slot.scala:69:7]
wire [31:0] io_out_uop_debug_inst_0; // @[issue-slot.scala:69:7]
wire io_out_uop_is_rvc_0; // @[issue-slot.scala:69:7]
wire [39:0] io_out_uop_debug_pc_0; // @[issue-slot.scala:69:7]
wire [2:0] io_out_uop_iq_type_0; // @[issue-slot.scala:69:7]
wire [9:0] io_out_uop_fu_code_0; // @[issue-slot.scala:69:7]
wire [1:0] io_out_uop_iw_state_0; // @[issue-slot.scala:69:7]
wire io_out_uop_iw_p1_poisoned_0; // @[issue-slot.scala:69:7]
wire io_out_uop_iw_p2_poisoned_0; // @[issue-slot.scala:69:7]
wire io_out_uop_is_br_0; // @[issue-slot.scala:69:7]
wire io_out_uop_is_jalr_0; // @[issue-slot.scala:69:7]
wire io_out_uop_is_jal_0; // @[issue-slot.scala:69:7]
wire io_out_uop_is_sfb_0; // @[issue-slot.scala:69:7]
wire [15:0] io_out_uop_br_mask_0; // @[issue-slot.scala:69:7]
wire [3:0] io_out_uop_br_tag_0; // @[issue-slot.scala:69:7]
wire [4:0] io_out_uop_ftq_idx_0; // @[issue-slot.scala:69:7]
wire io_out_uop_edge_inst_0; // @[issue-slot.scala:69:7]
wire [5:0] io_out_uop_pc_lob_0; // @[issue-slot.scala:69:7]
wire io_out_uop_taken_0; // @[issue-slot.scala:69:7]
wire [19:0] io_out_uop_imm_packed_0; // @[issue-slot.scala:69:7]
wire [11:0] io_out_uop_csr_addr_0; // @[issue-slot.scala:69:7]
wire [6:0] io_out_uop_rob_idx_0; // @[issue-slot.scala:69:7]
wire [4:0] io_out_uop_ldq_idx_0; // @[issue-slot.scala:69:7]
wire [4:0] io_out_uop_stq_idx_0; // @[issue-slot.scala:69:7]
wire [1:0] io_out_uop_rxq_idx_0; // @[issue-slot.scala:69:7]
wire [6:0] io_out_uop_pdst_0; // @[issue-slot.scala:69:7]
wire [6:0] io_out_uop_prs1_0; // @[issue-slot.scala:69:7]
wire [6:0] io_out_uop_prs2_0; // @[issue-slot.scala:69:7]
wire [6:0] io_out_uop_prs3_0; // @[issue-slot.scala:69:7]
wire [4:0] io_out_uop_ppred_0; // @[issue-slot.scala:69:7]
wire io_out_uop_prs1_busy_0; // @[issue-slot.scala:69:7]
wire io_out_uop_prs2_busy_0; // @[issue-slot.scala:69:7]
wire io_out_uop_prs3_busy_0; // @[issue-slot.scala:69:7]
wire io_out_uop_ppred_busy_0; // @[issue-slot.scala:69:7]
wire [6:0] io_out_uop_stale_pdst_0; // @[issue-slot.scala:69:7]
wire io_out_uop_exception_0; // @[issue-slot.scala:69:7]
wire [63:0] io_out_uop_exc_cause_0; // @[issue-slot.scala:69:7]
wire io_out_uop_bypassable_0; // @[issue-slot.scala:69:7]
wire [4:0] io_out_uop_mem_cmd_0; // @[issue-slot.scala:69:7]
wire [1:0] io_out_uop_mem_size_0; // @[issue-slot.scala:69:7]
wire io_out_uop_mem_signed_0; // @[issue-slot.scala:69:7]
wire io_out_uop_is_fence_0; // @[issue-slot.scala:69:7]
wire io_out_uop_is_fencei_0; // @[issue-slot.scala:69:7]
wire io_out_uop_is_amo_0; // @[issue-slot.scala:69:7]
wire io_out_uop_uses_ldq_0; // @[issue-slot.scala:69:7]
wire io_out_uop_uses_stq_0; // @[issue-slot.scala:69:7]
wire io_out_uop_is_sys_pc2epc_0; // @[issue-slot.scala:69:7]
wire io_out_uop_is_unique_0; // @[issue-slot.scala:69:7]
wire io_out_uop_flush_on_commit_0; // @[issue-slot.scala:69:7]
wire io_out_uop_ldst_is_rs1_0; // @[issue-slot.scala:69:7]
wire [5:0] io_out_uop_ldst_0; // @[issue-slot.scala:69:7]
wire [5:0] io_out_uop_lrs1_0; // @[issue-slot.scala:69:7]
wire [5:0] io_out_uop_lrs2_0; // @[issue-slot.scala:69:7]
wire [5:0] io_out_uop_lrs3_0; // @[issue-slot.scala:69:7]
wire io_out_uop_ldst_val_0; // @[issue-slot.scala:69:7]
wire [1:0] io_out_uop_dst_rtype_0; // @[issue-slot.scala:69:7]
wire [1:0] io_out_uop_lrs1_rtype_0; // @[issue-slot.scala:69:7]
wire [1:0] io_out_uop_lrs2_rtype_0; // @[issue-slot.scala:69:7]
wire io_out_uop_frs3_en_0; // @[issue-slot.scala:69:7]
wire io_out_uop_fp_val_0; // @[issue-slot.scala:69:7]
wire io_out_uop_fp_single_0; // @[issue-slot.scala:69:7]
wire io_out_uop_xcpt_pf_if_0; // @[issue-slot.scala:69:7]
wire io_out_uop_xcpt_ae_if_0; // @[issue-slot.scala:69:7]
wire io_out_uop_xcpt_ma_if_0; // @[issue-slot.scala:69:7]
wire io_out_uop_bp_debug_if_0; // @[issue-slot.scala:69:7]
wire io_out_uop_bp_xcpt_if_0; // @[issue-slot.scala:69:7]
wire [1:0] io_out_uop_debug_fsrc_0; // @[issue-slot.scala:69:7]
wire [1:0] io_out_uop_debug_tsrc_0; // @[issue-slot.scala:69:7]
wire [3:0] io_uop_ctrl_br_type_0; // @[issue-slot.scala:69:7]
wire [1:0] io_uop_ctrl_op1_sel_0; // @[issue-slot.scala:69:7]
wire [2:0] io_uop_ctrl_op2_sel_0; // @[issue-slot.scala:69:7]
wire [2:0] io_uop_ctrl_imm_sel_0; // @[issue-slot.scala:69:7]
wire [4:0] io_uop_ctrl_op_fcn_0; // @[issue-slot.scala:69:7]
wire io_uop_ctrl_fcn_dw_0; // @[issue-slot.scala:69:7]
wire [2:0] io_uop_ctrl_csr_cmd_0; // @[issue-slot.scala:69:7]
wire io_uop_ctrl_is_load_0; // @[issue-slot.scala:69:7]
wire io_uop_ctrl_is_sta_0; // @[issue-slot.scala:69:7]
wire io_uop_ctrl_is_std_0; // @[issue-slot.scala:69:7]
wire [6:0] io_uop_uopc_0; // @[issue-slot.scala:69:7]
wire [31:0] io_uop_inst_0; // @[issue-slot.scala:69:7]
wire [31:0] io_uop_debug_inst_0; // @[issue-slot.scala:69:7]
wire io_uop_is_rvc_0; // @[issue-slot.scala:69:7]
wire [39:0] io_uop_debug_pc_0; // @[issue-slot.scala:69:7]
wire [2:0] io_uop_iq_type_0; // @[issue-slot.scala:69:7]
wire [9:0] io_uop_fu_code_0; // @[issue-slot.scala:69:7]
wire [1:0] io_uop_iw_state_0; // @[issue-slot.scala:69:7]
wire io_uop_iw_p1_poisoned_0; // @[issue-slot.scala:69:7]
wire io_uop_iw_p2_poisoned_0; // @[issue-slot.scala:69:7]
wire io_uop_is_br_0; // @[issue-slot.scala:69:7]
wire io_uop_is_jalr_0; // @[issue-slot.scala:69:7]
wire io_uop_is_jal_0; // @[issue-slot.scala:69:7]
wire io_uop_is_sfb_0; // @[issue-slot.scala:69:7]
wire [15:0] io_uop_br_mask_0; // @[issue-slot.scala:69:7]
wire [3:0] io_uop_br_tag_0; // @[issue-slot.scala:69:7]
wire [4:0] io_uop_ftq_idx_0; // @[issue-slot.scala:69:7]
wire io_uop_edge_inst_0; // @[issue-slot.scala:69:7]
wire [5:0] io_uop_pc_lob_0; // @[issue-slot.scala:69:7]
wire io_uop_taken_0; // @[issue-slot.scala:69:7]
wire [19:0] io_uop_imm_packed_0; // @[issue-slot.scala:69:7]
wire [11:0] io_uop_csr_addr_0; // @[issue-slot.scala:69:7]
wire [6:0] io_uop_rob_idx_0; // @[issue-slot.scala:69:7]
wire [4:0] io_uop_ldq_idx_0; // @[issue-slot.scala:69:7]
wire [4:0] io_uop_stq_idx_0; // @[issue-slot.scala:69:7]
wire [1:0] io_uop_rxq_idx_0; // @[issue-slot.scala:69:7]
wire [6:0] io_uop_pdst_0; // @[issue-slot.scala:69:7]
wire [6:0] io_uop_prs1_0; // @[issue-slot.scala:69:7]
wire [6:0] io_uop_prs2_0; // @[issue-slot.scala:69:7]
wire [6:0] io_uop_prs3_0; // @[issue-slot.scala:69:7]
wire [4:0] io_uop_ppred_0; // @[issue-slot.scala:69:7]
wire io_uop_prs1_busy_0; // @[issue-slot.scala:69:7]
wire io_uop_prs2_busy_0; // @[issue-slot.scala:69:7]
wire io_uop_prs3_busy_0; // @[issue-slot.scala:69:7]
wire io_uop_ppred_busy_0; // @[issue-slot.scala:69:7]
wire [6:0] io_uop_stale_pdst_0; // @[issue-slot.scala:69:7]
wire io_uop_exception_0; // @[issue-slot.scala:69:7]
wire [63:0] io_uop_exc_cause_0; // @[issue-slot.scala:69:7]
wire io_uop_bypassable_0; // @[issue-slot.scala:69:7]
wire [4:0] io_uop_mem_cmd_0; // @[issue-slot.scala:69:7]
wire [1:0] io_uop_mem_size_0; // @[issue-slot.scala:69:7]
wire io_uop_mem_signed_0; // @[issue-slot.scala:69:7]
wire io_uop_is_fence_0; // @[issue-slot.scala:69:7]
wire io_uop_is_fencei_0; // @[issue-slot.scala:69:7]
wire io_uop_is_amo_0; // @[issue-slot.scala:69:7]
wire io_uop_uses_ldq_0; // @[issue-slot.scala:69:7]
wire io_uop_uses_stq_0; // @[issue-slot.scala:69:7]
wire io_uop_is_sys_pc2epc_0; // @[issue-slot.scala:69:7]
wire io_uop_is_unique_0; // @[issue-slot.scala:69:7]
wire io_uop_flush_on_commit_0; // @[issue-slot.scala:69:7]
wire io_uop_ldst_is_rs1_0; // @[issue-slot.scala:69:7]
wire [5:0] io_uop_ldst_0; // @[issue-slot.scala:69:7]
wire [5:0] io_uop_lrs1_0; // @[issue-slot.scala:69:7]
wire [5:0] io_uop_lrs2_0; // @[issue-slot.scala:69:7]
wire [5:0] io_uop_lrs3_0; // @[issue-slot.scala:69:7]
wire io_uop_ldst_val_0; // @[issue-slot.scala:69:7]
wire [1:0] io_uop_dst_rtype_0; // @[issue-slot.scala:69:7]
wire [1:0] io_uop_lrs1_rtype_0; // @[issue-slot.scala:69:7]
wire [1:0] io_uop_lrs2_rtype_0; // @[issue-slot.scala:69:7]
wire io_uop_frs3_en_0; // @[issue-slot.scala:69:7]
wire io_uop_fp_val_0; // @[issue-slot.scala:69:7]
wire io_uop_fp_single_0; // @[issue-slot.scala:69:7]
wire io_uop_xcpt_pf_if_0; // @[issue-slot.scala:69:7]
wire io_uop_xcpt_ae_if_0; // @[issue-slot.scala:69:7]
wire io_uop_xcpt_ma_if_0; // @[issue-slot.scala:69:7]
wire io_uop_bp_debug_if_0; // @[issue-slot.scala:69:7]
wire io_uop_bp_xcpt_if_0; // @[issue-slot.scala:69:7]
wire [1:0] io_uop_debug_fsrc_0; // @[issue-slot.scala:69:7]
wire [1:0] io_uop_debug_tsrc_0; // @[issue-slot.scala:69:7]
wire io_debug_p1_0; // @[issue-slot.scala:69:7]
wire io_debug_p2_0; // @[issue-slot.scala:69:7]
wire io_debug_p3_0; // @[issue-slot.scala:69:7]
wire io_debug_ppred_0; // @[issue-slot.scala:69:7]
wire [1:0] io_debug_state_0; // @[issue-slot.scala:69:7]
wire io_valid_0; // @[issue-slot.scala:69:7]
wire io_will_be_valid_0; // @[issue-slot.scala:69:7]
wire io_request_0; // @[issue-slot.scala:69:7]
wire io_request_hp_0; // @[issue-slot.scala:69:7]
assign io_out_uop_iw_state_0 = next_state; // @[issue-slot.scala:69:7, :81:29]
assign io_out_uop_uopc_0 = next_uopc; // @[issue-slot.scala:69:7, :82:29]
assign io_out_uop_lrs1_rtype_0 = next_lrs1_rtype; // @[issue-slot.scala:69:7, :83:29]
assign io_out_uop_lrs2_rtype_0 = next_lrs2_rtype; // @[issue-slot.scala:69:7, :84:29]
reg [1:0] state; // @[issue-slot.scala:86:22]
assign io_debug_state_0 = state; // @[issue-slot.scala:69:7, :86:22]
reg p1; // @[issue-slot.scala:87:22]
assign io_debug_p1_0 = p1; // @[issue-slot.scala:69:7, :87:22]
wire next_p1 = p1; // @[issue-slot.scala:87:22, :163:25]
reg p2; // @[issue-slot.scala:88:22]
assign io_debug_p2_0 = p2; // @[issue-slot.scala:69:7, :88:22]
wire next_p2 = p2; // @[issue-slot.scala:88:22, :164:25]
reg p3; // @[issue-slot.scala:89:22]
assign io_debug_p3_0 = p3; // @[issue-slot.scala:69:7, :89:22]
wire next_p3 = p3; // @[issue-slot.scala:89:22, :165:25]
reg ppred; // @[issue-slot.scala:90:22]
assign io_debug_ppred_0 = ppred; // @[issue-slot.scala:69:7, :90:22]
wire next_ppred = ppred; // @[issue-slot.scala:90:22, :166:28]
reg p1_poisoned; // @[issue-slot.scala:95:28]
assign io_out_uop_iw_p1_poisoned_0 = p1_poisoned; // @[issue-slot.scala:69:7, :95:28]
assign io_uop_iw_p1_poisoned_0 = p1_poisoned; // @[issue-slot.scala:69:7, :95:28]
reg p2_poisoned; // @[issue-slot.scala:96:28]
assign io_out_uop_iw_p2_poisoned_0 = p2_poisoned; // @[issue-slot.scala:69:7, :96:28]
assign io_uop_iw_p2_poisoned_0 = p2_poisoned; // @[issue-slot.scala:69:7, :96:28]
wire next_p1_poisoned = io_in_uop_valid_0 ? io_in_uop_bits_iw_p1_poisoned_0 : p1_poisoned; // @[issue-slot.scala:69:7, :95:28, :99:29]
wire next_p2_poisoned = io_in_uop_valid_0 ? io_in_uop_bits_iw_p2_poisoned_0 : p2_poisoned; // @[issue-slot.scala:69:7, :96:28, :100:29]
reg [6:0] slot_uop_uopc; // @[issue-slot.scala:102:25]
reg [31:0] slot_uop_inst; // @[issue-slot.scala:102:25]
assign io_out_uop_inst_0 = slot_uop_inst; // @[issue-slot.scala:69:7, :102:25]
assign io_uop_inst_0 = slot_uop_inst; // @[issue-slot.scala:69:7, :102:25]
reg [31:0] slot_uop_debug_inst; // @[issue-slot.scala:102:25]
assign io_out_uop_debug_inst_0 = slot_uop_debug_inst; // @[issue-slot.scala:69:7, :102:25]
assign io_uop_debug_inst_0 = slot_uop_debug_inst; // @[issue-slot.scala:69:7, :102:25]
reg slot_uop_is_rvc; // @[issue-slot.scala:102:25]
assign io_out_uop_is_rvc_0 = slot_uop_is_rvc; // @[issue-slot.scala:69:7, :102:25]
assign io_uop_is_rvc_0 = slot_uop_is_rvc; // @[issue-slot.scala:69:7, :102:25]
reg [39:0] slot_uop_debug_pc; // @[issue-slot.scala:102:25]
assign io_out_uop_debug_pc_0 = slot_uop_debug_pc; // @[issue-slot.scala:69:7, :102:25]
assign io_uop_debug_pc_0 = slot_uop_debug_pc; // @[issue-slot.scala:69:7, :102:25]
reg [2:0] slot_uop_iq_type; // @[issue-slot.scala:102:25]
assign io_out_uop_iq_type_0 = slot_uop_iq_type; // @[issue-slot.scala:69:7, :102:25]
assign io_uop_iq_type_0 = slot_uop_iq_type; // @[issue-slot.scala:69:7, :102:25]
reg [9:0] slot_uop_fu_code; // @[issue-slot.scala:102:25]
assign io_out_uop_fu_code_0 = slot_uop_fu_code; // @[issue-slot.scala:69:7, :102:25]
assign io_uop_fu_code_0 = slot_uop_fu_code; // @[issue-slot.scala:69:7, :102:25]
reg [3:0] slot_uop_ctrl_br_type; // @[issue-slot.scala:102:25]
assign io_out_uop_ctrl_br_type_0 = slot_uop_ctrl_br_type; // @[issue-slot.scala:69:7, :102:25]
assign io_uop_ctrl_br_type_0 = slot_uop_ctrl_br_type; // @[issue-slot.scala:69:7, :102:25]
reg [1:0] slot_uop_ctrl_op1_sel; // @[issue-slot.scala:102:25]
assign io_out_uop_ctrl_op1_sel_0 = slot_uop_ctrl_op1_sel; // @[issue-slot.scala:69:7, :102:25]
assign io_uop_ctrl_op1_sel_0 = slot_uop_ctrl_op1_sel; // @[issue-slot.scala:69:7, :102:25]
reg [2:0] slot_uop_ctrl_op2_sel; // @[issue-slot.scala:102:25]
assign io_out_uop_ctrl_op2_sel_0 = slot_uop_ctrl_op2_sel; // @[issue-slot.scala:69:7, :102:25]
assign io_uop_ctrl_op2_sel_0 = slot_uop_ctrl_op2_sel; // @[issue-slot.scala:69:7, :102:25]
reg [2:0] slot_uop_ctrl_imm_sel; // @[issue-slot.scala:102:25]
assign io_out_uop_ctrl_imm_sel_0 = slot_uop_ctrl_imm_sel; // @[issue-slot.scala:69:7, :102:25]
assign io_uop_ctrl_imm_sel_0 = slot_uop_ctrl_imm_sel; // @[issue-slot.scala:69:7, :102:25]
reg [4:0] slot_uop_ctrl_op_fcn; // @[issue-slot.scala:102:25]
assign io_out_uop_ctrl_op_fcn_0 = slot_uop_ctrl_op_fcn; // @[issue-slot.scala:69:7, :102:25]
assign io_uop_ctrl_op_fcn_0 = slot_uop_ctrl_op_fcn; // @[issue-slot.scala:69:7, :102:25]
reg slot_uop_ctrl_fcn_dw; // @[issue-slot.scala:102:25]
assign io_out_uop_ctrl_fcn_dw_0 = slot_uop_ctrl_fcn_dw; // @[issue-slot.scala:69:7, :102:25]
assign io_uop_ctrl_fcn_dw_0 = slot_uop_ctrl_fcn_dw; // @[issue-slot.scala:69:7, :102:25]
reg [2:0] slot_uop_ctrl_csr_cmd; // @[issue-slot.scala:102:25]
assign io_out_uop_ctrl_csr_cmd_0 = slot_uop_ctrl_csr_cmd; // @[issue-slot.scala:69:7, :102:25]
assign io_uop_ctrl_csr_cmd_0 = slot_uop_ctrl_csr_cmd; // @[issue-slot.scala:69:7, :102:25]
reg slot_uop_ctrl_is_load; // @[issue-slot.scala:102:25]
assign io_out_uop_ctrl_is_load_0 = slot_uop_ctrl_is_load; // @[issue-slot.scala:69:7, :102:25]
assign io_uop_ctrl_is_load_0 = slot_uop_ctrl_is_load; // @[issue-slot.scala:69:7, :102:25]
reg slot_uop_ctrl_is_sta; // @[issue-slot.scala:102:25]
assign io_out_uop_ctrl_is_sta_0 = slot_uop_ctrl_is_sta; // @[issue-slot.scala:69:7, :102:25]
assign io_uop_ctrl_is_sta_0 = slot_uop_ctrl_is_sta; // @[issue-slot.scala:69:7, :102:25]
reg slot_uop_ctrl_is_std; // @[issue-slot.scala:102:25]
assign io_out_uop_ctrl_is_std_0 = slot_uop_ctrl_is_std; // @[issue-slot.scala:69:7, :102:25]
assign io_uop_ctrl_is_std_0 = slot_uop_ctrl_is_std; // @[issue-slot.scala:69:7, :102:25]
reg [1:0] slot_uop_iw_state; // @[issue-slot.scala:102:25]
assign io_uop_iw_state_0 = slot_uop_iw_state; // @[issue-slot.scala:69:7, :102:25]
reg slot_uop_iw_p1_poisoned; // @[issue-slot.scala:102:25]
reg slot_uop_iw_p2_poisoned; // @[issue-slot.scala:102:25]
reg slot_uop_is_br; // @[issue-slot.scala:102:25]
assign io_out_uop_is_br_0 = slot_uop_is_br; // @[issue-slot.scala:69:7, :102:25]
assign io_uop_is_br_0 = slot_uop_is_br; // @[issue-slot.scala:69:7, :102:25]
reg slot_uop_is_jalr; // @[issue-slot.scala:102:25]
assign io_out_uop_is_jalr_0 = slot_uop_is_jalr; // @[issue-slot.scala:69:7, :102:25]
assign io_uop_is_jalr_0 = slot_uop_is_jalr; // @[issue-slot.scala:69:7, :102:25]
reg slot_uop_is_jal; // @[issue-slot.scala:102:25]
assign io_out_uop_is_jal_0 = slot_uop_is_jal; // @[issue-slot.scala:69:7, :102:25]
assign io_uop_is_jal_0 = slot_uop_is_jal; // @[issue-slot.scala:69:7, :102:25]
reg slot_uop_is_sfb; // @[issue-slot.scala:102:25]
assign io_out_uop_is_sfb_0 = slot_uop_is_sfb; // @[issue-slot.scala:69:7, :102:25]
assign io_uop_is_sfb_0 = slot_uop_is_sfb; // @[issue-slot.scala:69:7, :102:25]
reg [15:0] slot_uop_br_mask; // @[issue-slot.scala:102:25]
assign io_uop_br_mask_0 = slot_uop_br_mask; // @[issue-slot.scala:69:7, :102:25]
reg [3:0] slot_uop_br_tag; // @[issue-slot.scala:102:25]
assign io_out_uop_br_tag_0 = slot_uop_br_tag; // @[issue-slot.scala:69:7, :102:25]
assign io_uop_br_tag_0 = slot_uop_br_tag; // @[issue-slot.scala:69:7, :102:25]
reg [4:0] slot_uop_ftq_idx; // @[issue-slot.scala:102:25]
assign io_out_uop_ftq_idx_0 = slot_uop_ftq_idx; // @[issue-slot.scala:69:7, :102:25]
assign io_uop_ftq_idx_0 = slot_uop_ftq_idx; // @[issue-slot.scala:69:7, :102:25]
reg slot_uop_edge_inst; // @[issue-slot.scala:102:25]
assign io_out_uop_edge_inst_0 = slot_uop_edge_inst; // @[issue-slot.scala:69:7, :102:25]
assign io_uop_edge_inst_0 = slot_uop_edge_inst; // @[issue-slot.scala:69:7, :102:25]
reg [5:0] slot_uop_pc_lob; // @[issue-slot.scala:102:25]
assign io_out_uop_pc_lob_0 = slot_uop_pc_lob; // @[issue-slot.scala:69:7, :102:25]
assign io_uop_pc_lob_0 = slot_uop_pc_lob; // @[issue-slot.scala:69:7, :102:25]
reg slot_uop_taken; // @[issue-slot.scala:102:25]
assign io_out_uop_taken_0 = slot_uop_taken; // @[issue-slot.scala:69:7, :102:25]
assign io_uop_taken_0 = slot_uop_taken; // @[issue-slot.scala:69:7, :102:25]
reg [19:0] slot_uop_imm_packed; // @[issue-slot.scala:102:25]
assign io_out_uop_imm_packed_0 = slot_uop_imm_packed; // @[issue-slot.scala:69:7, :102:25]
assign io_uop_imm_packed_0 = slot_uop_imm_packed; // @[issue-slot.scala:69:7, :102:25]
reg [11:0] slot_uop_csr_addr; // @[issue-slot.scala:102:25]
assign io_out_uop_csr_addr_0 = slot_uop_csr_addr; // @[issue-slot.scala:69:7, :102:25]
assign io_uop_csr_addr_0 = slot_uop_csr_addr; // @[issue-slot.scala:69:7, :102:25]
reg [6:0] slot_uop_rob_idx; // @[issue-slot.scala:102:25]
assign io_out_uop_rob_idx_0 = slot_uop_rob_idx; // @[issue-slot.scala:69:7, :102:25]
assign io_uop_rob_idx_0 = slot_uop_rob_idx; // @[issue-slot.scala:69:7, :102:25]
reg [4:0] slot_uop_ldq_idx; // @[issue-slot.scala:102:25]
assign io_out_uop_ldq_idx_0 = slot_uop_ldq_idx; // @[issue-slot.scala:69:7, :102:25]
assign io_uop_ldq_idx_0 = slot_uop_ldq_idx; // @[issue-slot.scala:69:7, :102:25]
reg [4:0] slot_uop_stq_idx; // @[issue-slot.scala:102:25]
assign io_out_uop_stq_idx_0 = slot_uop_stq_idx; // @[issue-slot.scala:69:7, :102:25]
assign io_uop_stq_idx_0 = slot_uop_stq_idx; // @[issue-slot.scala:69:7, :102:25]
reg [1:0] slot_uop_rxq_idx; // @[issue-slot.scala:102:25]
assign io_out_uop_rxq_idx_0 = slot_uop_rxq_idx; // @[issue-slot.scala:69:7, :102:25]
assign io_uop_rxq_idx_0 = slot_uop_rxq_idx; // @[issue-slot.scala:69:7, :102:25]
reg [6:0] slot_uop_pdst; // @[issue-slot.scala:102:25]
assign io_out_uop_pdst_0 = slot_uop_pdst; // @[issue-slot.scala:69:7, :102:25]
assign io_uop_pdst_0 = slot_uop_pdst; // @[issue-slot.scala:69:7, :102:25]
reg [6:0] slot_uop_prs1; // @[issue-slot.scala:102:25]
assign io_out_uop_prs1_0 = slot_uop_prs1; // @[issue-slot.scala:69:7, :102:25]
assign io_uop_prs1_0 = slot_uop_prs1; // @[issue-slot.scala:69:7, :102:25]
reg [6:0] slot_uop_prs2; // @[issue-slot.scala:102:25]
assign io_out_uop_prs2_0 = slot_uop_prs2; // @[issue-slot.scala:69:7, :102:25]
assign io_uop_prs2_0 = slot_uop_prs2; // @[issue-slot.scala:69:7, :102:25]
reg [6:0] slot_uop_prs3; // @[issue-slot.scala:102:25]
assign io_out_uop_prs3_0 = slot_uop_prs3; // @[issue-slot.scala:69:7, :102:25]
assign io_uop_prs3_0 = slot_uop_prs3; // @[issue-slot.scala:69:7, :102:25]
reg [4:0] slot_uop_ppred; // @[issue-slot.scala:102:25]
assign io_out_uop_ppred_0 = slot_uop_ppred; // @[issue-slot.scala:69:7, :102:25]
assign io_uop_ppred_0 = slot_uop_ppred; // @[issue-slot.scala:69:7, :102:25]
reg slot_uop_prs1_busy; // @[issue-slot.scala:102:25]
assign io_uop_prs1_busy_0 = slot_uop_prs1_busy; // @[issue-slot.scala:69:7, :102:25]
reg slot_uop_prs2_busy; // @[issue-slot.scala:102:25]
assign io_uop_prs2_busy_0 = slot_uop_prs2_busy; // @[issue-slot.scala:69:7, :102:25]
reg slot_uop_prs3_busy; // @[issue-slot.scala:102:25]
assign io_uop_prs3_busy_0 = slot_uop_prs3_busy; // @[issue-slot.scala:69:7, :102:25]
reg slot_uop_ppred_busy; // @[issue-slot.scala:102:25]
assign io_uop_ppred_busy_0 = slot_uop_ppred_busy; // @[issue-slot.scala:69:7, :102:25]
reg [6:0] slot_uop_stale_pdst; // @[issue-slot.scala:102:25]
assign io_out_uop_stale_pdst_0 = slot_uop_stale_pdst; // @[issue-slot.scala:69:7, :102:25]
assign io_uop_stale_pdst_0 = slot_uop_stale_pdst; // @[issue-slot.scala:69:7, :102:25]
reg slot_uop_exception; // @[issue-slot.scala:102:25]
assign io_out_uop_exception_0 = slot_uop_exception; // @[issue-slot.scala:69:7, :102:25]
assign io_uop_exception_0 = slot_uop_exception; // @[issue-slot.scala:69:7, :102:25]
reg [63:0] slot_uop_exc_cause; // @[issue-slot.scala:102:25]
assign io_out_uop_exc_cause_0 = slot_uop_exc_cause; // @[issue-slot.scala:69:7, :102:25]
assign io_uop_exc_cause_0 = slot_uop_exc_cause; // @[issue-slot.scala:69:7, :102:25]
reg slot_uop_bypassable; // @[issue-slot.scala:102:25]
assign io_out_uop_bypassable_0 = slot_uop_bypassable; // @[issue-slot.scala:69:7, :102:25]
assign io_uop_bypassable_0 = slot_uop_bypassable; // @[issue-slot.scala:69:7, :102:25]
reg [4:0] slot_uop_mem_cmd; // @[issue-slot.scala:102:25]
assign io_out_uop_mem_cmd_0 = slot_uop_mem_cmd; // @[issue-slot.scala:69:7, :102:25]
assign io_uop_mem_cmd_0 = slot_uop_mem_cmd; // @[issue-slot.scala:69:7, :102:25]
reg [1:0] slot_uop_mem_size; // @[issue-slot.scala:102:25]
assign io_out_uop_mem_size_0 = slot_uop_mem_size; // @[issue-slot.scala:69:7, :102:25]
assign io_uop_mem_size_0 = slot_uop_mem_size; // @[issue-slot.scala:69:7, :102:25]
reg slot_uop_mem_signed; // @[issue-slot.scala:102:25]
assign io_out_uop_mem_signed_0 = slot_uop_mem_signed; // @[issue-slot.scala:69:7, :102:25]
assign io_uop_mem_signed_0 = slot_uop_mem_signed; // @[issue-slot.scala:69:7, :102:25]
reg slot_uop_is_fence; // @[issue-slot.scala:102:25]
assign io_out_uop_is_fence_0 = slot_uop_is_fence; // @[issue-slot.scala:69:7, :102:25]
assign io_uop_is_fence_0 = slot_uop_is_fence; // @[issue-slot.scala:69:7, :102:25]
reg slot_uop_is_fencei; // @[issue-slot.scala:102:25]
assign io_out_uop_is_fencei_0 = slot_uop_is_fencei; // @[issue-slot.scala:69:7, :102:25]
assign io_uop_is_fencei_0 = slot_uop_is_fencei; // @[issue-slot.scala:69:7, :102:25]
reg slot_uop_is_amo; // @[issue-slot.scala:102:25]
assign io_out_uop_is_amo_0 = slot_uop_is_amo; // @[issue-slot.scala:69:7, :102:25]
assign io_uop_is_amo_0 = slot_uop_is_amo; // @[issue-slot.scala:69:7, :102:25]
reg slot_uop_uses_ldq; // @[issue-slot.scala:102:25]
assign io_out_uop_uses_ldq_0 = slot_uop_uses_ldq; // @[issue-slot.scala:69:7, :102:25]
assign io_uop_uses_ldq_0 = slot_uop_uses_ldq; // @[issue-slot.scala:69:7, :102:25]
reg slot_uop_uses_stq; // @[issue-slot.scala:102:25]
assign io_out_uop_uses_stq_0 = slot_uop_uses_stq; // @[issue-slot.scala:69:7, :102:25]
assign io_uop_uses_stq_0 = slot_uop_uses_stq; // @[issue-slot.scala:69:7, :102:25]
reg slot_uop_is_sys_pc2epc; // @[issue-slot.scala:102:25]
assign io_out_uop_is_sys_pc2epc_0 = slot_uop_is_sys_pc2epc; // @[issue-slot.scala:69:7, :102:25]
assign io_uop_is_sys_pc2epc_0 = slot_uop_is_sys_pc2epc; // @[issue-slot.scala:69:7, :102:25]
reg slot_uop_is_unique; // @[issue-slot.scala:102:25]
assign io_out_uop_is_unique_0 = slot_uop_is_unique; // @[issue-slot.scala:69:7, :102:25]
assign io_uop_is_unique_0 = slot_uop_is_unique; // @[issue-slot.scala:69:7, :102:25]
reg slot_uop_flush_on_commit; // @[issue-slot.scala:102:25]
assign io_out_uop_flush_on_commit_0 = slot_uop_flush_on_commit; // @[issue-slot.scala:69:7, :102:25]
assign io_uop_flush_on_commit_0 = slot_uop_flush_on_commit; // @[issue-slot.scala:69:7, :102:25]
reg slot_uop_ldst_is_rs1; // @[issue-slot.scala:102:25]
assign io_out_uop_ldst_is_rs1_0 = slot_uop_ldst_is_rs1; // @[issue-slot.scala:69:7, :102:25]
assign io_uop_ldst_is_rs1_0 = slot_uop_ldst_is_rs1; // @[issue-slot.scala:69:7, :102:25]
reg [5:0] slot_uop_ldst; // @[issue-slot.scala:102:25]
assign io_out_uop_ldst_0 = slot_uop_ldst; // @[issue-slot.scala:69:7, :102:25]
assign io_uop_ldst_0 = slot_uop_ldst; // @[issue-slot.scala:69:7, :102:25]
reg [5:0] slot_uop_lrs1; // @[issue-slot.scala:102:25]
assign io_out_uop_lrs1_0 = slot_uop_lrs1; // @[issue-slot.scala:69:7, :102:25]
assign io_uop_lrs1_0 = slot_uop_lrs1; // @[issue-slot.scala:69:7, :102:25]
reg [5:0] slot_uop_lrs2; // @[issue-slot.scala:102:25]
assign io_out_uop_lrs2_0 = slot_uop_lrs2; // @[issue-slot.scala:69:7, :102:25]
assign io_uop_lrs2_0 = slot_uop_lrs2; // @[issue-slot.scala:69:7, :102:25]
reg [5:0] slot_uop_lrs3; // @[issue-slot.scala:102:25]
assign io_out_uop_lrs3_0 = slot_uop_lrs3; // @[issue-slot.scala:69:7, :102:25]
assign io_uop_lrs3_0 = slot_uop_lrs3; // @[issue-slot.scala:69:7, :102:25]
reg slot_uop_ldst_val; // @[issue-slot.scala:102:25]
assign io_out_uop_ldst_val_0 = slot_uop_ldst_val; // @[issue-slot.scala:69:7, :102:25]
assign io_uop_ldst_val_0 = slot_uop_ldst_val; // @[issue-slot.scala:69:7, :102:25]
reg [1:0] slot_uop_dst_rtype; // @[issue-slot.scala:102:25]
assign io_out_uop_dst_rtype_0 = slot_uop_dst_rtype; // @[issue-slot.scala:69:7, :102:25]
assign io_uop_dst_rtype_0 = slot_uop_dst_rtype; // @[issue-slot.scala:69:7, :102:25]
reg [1:0] slot_uop_lrs1_rtype; // @[issue-slot.scala:102:25]
reg [1:0] slot_uop_lrs2_rtype; // @[issue-slot.scala:102:25]
reg slot_uop_frs3_en; // @[issue-slot.scala:102:25]
assign io_out_uop_frs3_en_0 = slot_uop_frs3_en; // @[issue-slot.scala:69:7, :102:25]
assign io_uop_frs3_en_0 = slot_uop_frs3_en; // @[issue-slot.scala:69:7, :102:25]
reg slot_uop_fp_val; // @[issue-slot.scala:102:25]
assign io_out_uop_fp_val_0 = slot_uop_fp_val; // @[issue-slot.scala:69:7, :102:25]
assign io_uop_fp_val_0 = slot_uop_fp_val; // @[issue-slot.scala:69:7, :102:25]
reg slot_uop_fp_single; // @[issue-slot.scala:102:25]
assign io_out_uop_fp_single_0 = slot_uop_fp_single; // @[issue-slot.scala:69:7, :102:25]
assign io_uop_fp_single_0 = slot_uop_fp_single; // @[issue-slot.scala:69:7, :102:25]
reg slot_uop_xcpt_pf_if; // @[issue-slot.scala:102:25]
assign io_out_uop_xcpt_pf_if_0 = slot_uop_xcpt_pf_if; // @[issue-slot.scala:69:7, :102:25]
assign io_uop_xcpt_pf_if_0 = slot_uop_xcpt_pf_if; // @[issue-slot.scala:69:7, :102:25]
reg slot_uop_xcpt_ae_if; // @[issue-slot.scala:102:25]
assign io_out_uop_xcpt_ae_if_0 = slot_uop_xcpt_ae_if; // @[issue-slot.scala:69:7, :102:25]
assign io_uop_xcpt_ae_if_0 = slot_uop_xcpt_ae_if; // @[issue-slot.scala:69:7, :102:25]
reg slot_uop_xcpt_ma_if; // @[issue-slot.scala:102:25]
assign io_out_uop_xcpt_ma_if_0 = slot_uop_xcpt_ma_if; // @[issue-slot.scala:69:7, :102:25]
assign io_uop_xcpt_ma_if_0 = slot_uop_xcpt_ma_if; // @[issue-slot.scala:69:7, :102:25]
reg slot_uop_bp_debug_if; // @[issue-slot.scala:102:25]
assign io_out_uop_bp_debug_if_0 = slot_uop_bp_debug_if; // @[issue-slot.scala:69:7, :102:25]
assign io_uop_bp_debug_if_0 = slot_uop_bp_debug_if; // @[issue-slot.scala:69:7, :102:25]
reg slot_uop_bp_xcpt_if; // @[issue-slot.scala:102:25]
assign io_out_uop_bp_xcpt_if_0 = slot_uop_bp_xcpt_if; // @[issue-slot.scala:69:7, :102:25]
assign io_uop_bp_xcpt_if_0 = slot_uop_bp_xcpt_if; // @[issue-slot.scala:69:7, :102:25]
reg [1:0] slot_uop_debug_fsrc; // @[issue-slot.scala:102:25]
assign io_out_uop_debug_fsrc_0 = slot_uop_debug_fsrc; // @[issue-slot.scala:69:7, :102:25]
assign io_uop_debug_fsrc_0 = slot_uop_debug_fsrc; // @[issue-slot.scala:69:7, :102:25]
reg [1:0] slot_uop_debug_tsrc; // @[issue-slot.scala:102:25]
assign io_out_uop_debug_tsrc_0 = slot_uop_debug_tsrc; // @[issue-slot.scala:69:7, :102:25]
assign io_uop_debug_tsrc_0 = slot_uop_debug_tsrc; // @[issue-slot.scala:69:7, :102:25]
wire [6:0] next_uop_uopc = io_in_uop_valid_0 ? io_in_uop_bits_uopc_0 : slot_uop_uopc; // @[issue-slot.scala:69:7, :102:25, :103:21]
wire [31:0] next_uop_inst = io_in_uop_valid_0 ? io_in_uop_bits_inst_0 : slot_uop_inst; // @[issue-slot.scala:69:7, :102:25, :103:21]
wire [31:0] next_uop_debug_inst = io_in_uop_valid_0 ? io_in_uop_bits_debug_inst_0 : slot_uop_debug_inst; // @[issue-slot.scala:69:7, :102:25, :103:21]
wire next_uop_is_rvc = io_in_uop_valid_0 ? io_in_uop_bits_is_rvc_0 : slot_uop_is_rvc; // @[issue-slot.scala:69:7, :102:25, :103:21]
wire [39:0] next_uop_debug_pc = io_in_uop_valid_0 ? io_in_uop_bits_debug_pc_0 : slot_uop_debug_pc; // @[issue-slot.scala:69:7, :102:25, :103:21]
wire [2:0] next_uop_iq_type = io_in_uop_valid_0 ? io_in_uop_bits_iq_type_0 : slot_uop_iq_type; // @[issue-slot.scala:69:7, :102:25, :103:21]
wire [9:0] next_uop_fu_code = io_in_uop_valid_0 ? io_in_uop_bits_fu_code_0 : slot_uop_fu_code; // @[issue-slot.scala:69:7, :102:25, :103:21]
wire [3:0] next_uop_ctrl_br_type = io_in_uop_valid_0 ? io_in_uop_bits_ctrl_br_type_0 : slot_uop_ctrl_br_type; // @[issue-slot.scala:69:7, :102:25, :103:21]
wire [1:0] next_uop_ctrl_op1_sel = io_in_uop_valid_0 ? io_in_uop_bits_ctrl_op1_sel_0 : slot_uop_ctrl_op1_sel; // @[issue-slot.scala:69:7, :102:25, :103:21]
wire [2:0] next_uop_ctrl_op2_sel = io_in_uop_valid_0 ? io_in_uop_bits_ctrl_op2_sel_0 : slot_uop_ctrl_op2_sel; // @[issue-slot.scala:69:7, :102:25, :103:21]
wire [2:0] next_uop_ctrl_imm_sel = io_in_uop_valid_0 ? io_in_uop_bits_ctrl_imm_sel_0 : slot_uop_ctrl_imm_sel; // @[issue-slot.scala:69:7, :102:25, :103:21]
wire [4:0] next_uop_ctrl_op_fcn = io_in_uop_valid_0 ? io_in_uop_bits_ctrl_op_fcn_0 : slot_uop_ctrl_op_fcn; // @[issue-slot.scala:69:7, :102:25, :103:21]
wire next_uop_ctrl_fcn_dw = io_in_uop_valid_0 ? io_in_uop_bits_ctrl_fcn_dw_0 : slot_uop_ctrl_fcn_dw; // @[issue-slot.scala:69:7, :102:25, :103:21]
wire [2:0] next_uop_ctrl_csr_cmd = io_in_uop_valid_0 ? io_in_uop_bits_ctrl_csr_cmd_0 : slot_uop_ctrl_csr_cmd; // @[issue-slot.scala:69:7, :102:25, :103:21]
wire next_uop_ctrl_is_load = io_in_uop_valid_0 ? io_in_uop_bits_ctrl_is_load_0 : slot_uop_ctrl_is_load; // @[issue-slot.scala:69:7, :102:25, :103:21]
wire next_uop_ctrl_is_sta = io_in_uop_valid_0 ? io_in_uop_bits_ctrl_is_sta_0 : slot_uop_ctrl_is_sta; // @[issue-slot.scala:69:7, :102:25, :103:21]
wire next_uop_ctrl_is_std = io_in_uop_valid_0 ? io_in_uop_bits_ctrl_is_std_0 : slot_uop_ctrl_is_std; // @[issue-slot.scala:69:7, :102:25, :103:21]
wire [1:0] next_uop_iw_state = io_in_uop_valid_0 ? io_in_uop_bits_iw_state_0 : slot_uop_iw_state; // @[issue-slot.scala:69:7, :102:25, :103:21]
wire next_uop_iw_p1_poisoned = io_in_uop_valid_0 ? io_in_uop_bits_iw_p1_poisoned_0 : slot_uop_iw_p1_poisoned; // @[issue-slot.scala:69:7, :102:25, :103:21]
wire next_uop_iw_p2_poisoned = io_in_uop_valid_0 ? io_in_uop_bits_iw_p2_poisoned_0 : slot_uop_iw_p2_poisoned; // @[issue-slot.scala:69:7, :102:25, :103:21]
wire next_uop_is_br = io_in_uop_valid_0 ? io_in_uop_bits_is_br_0 : slot_uop_is_br; // @[issue-slot.scala:69:7, :102:25, :103:21]
wire next_uop_is_jalr = io_in_uop_valid_0 ? io_in_uop_bits_is_jalr_0 : slot_uop_is_jalr; // @[issue-slot.scala:69:7, :102:25, :103:21]
wire next_uop_is_jal = io_in_uop_valid_0 ? io_in_uop_bits_is_jal_0 : slot_uop_is_jal; // @[issue-slot.scala:69:7, :102:25, :103:21]
wire next_uop_is_sfb = io_in_uop_valid_0 ? io_in_uop_bits_is_sfb_0 : slot_uop_is_sfb; // @[issue-slot.scala:69:7, :102:25, :103:21]
wire [15:0] next_uop_br_mask = io_in_uop_valid_0 ? io_in_uop_bits_br_mask_0 : slot_uop_br_mask; // @[issue-slot.scala:69:7, :102:25, :103:21]
wire [3:0] next_uop_br_tag = io_in_uop_valid_0 ? io_in_uop_bits_br_tag_0 : slot_uop_br_tag; // @[issue-slot.scala:69:7, :102:25, :103:21]
wire [4:0] next_uop_ftq_idx = io_in_uop_valid_0 ? io_in_uop_bits_ftq_idx_0 : slot_uop_ftq_idx; // @[issue-slot.scala:69:7, :102:25, :103:21]
wire next_uop_edge_inst = io_in_uop_valid_0 ? io_in_uop_bits_edge_inst_0 : slot_uop_edge_inst; // @[issue-slot.scala:69:7, :102:25, :103:21]
wire [5:0] next_uop_pc_lob = io_in_uop_valid_0 ? io_in_uop_bits_pc_lob_0 : slot_uop_pc_lob; // @[issue-slot.scala:69:7, :102:25, :103:21]
wire next_uop_taken = io_in_uop_valid_0 ? io_in_uop_bits_taken_0 : slot_uop_taken; // @[issue-slot.scala:69:7, :102:25, :103:21]
wire [19:0] next_uop_imm_packed = io_in_uop_valid_0 ? io_in_uop_bits_imm_packed_0 : slot_uop_imm_packed; // @[issue-slot.scala:69:7, :102:25, :103:21]
wire [11:0] next_uop_csr_addr = io_in_uop_valid_0 ? io_in_uop_bits_csr_addr_0 : slot_uop_csr_addr; // @[issue-slot.scala:69:7, :102:25, :103:21]
wire [6:0] next_uop_rob_idx = io_in_uop_valid_0 ? io_in_uop_bits_rob_idx_0 : slot_uop_rob_idx; // @[issue-slot.scala:69:7, :102:25, :103:21]
wire [4:0] next_uop_ldq_idx = io_in_uop_valid_0 ? io_in_uop_bits_ldq_idx_0 : slot_uop_ldq_idx; // @[issue-slot.scala:69:7, :102:25, :103:21]
wire [4:0] next_uop_stq_idx = io_in_uop_valid_0 ? io_in_uop_bits_stq_idx_0 : slot_uop_stq_idx; // @[issue-slot.scala:69:7, :102:25, :103:21]
wire [1:0] next_uop_rxq_idx = io_in_uop_valid_0 ? io_in_uop_bits_rxq_idx_0 : slot_uop_rxq_idx; // @[issue-slot.scala:69:7, :102:25, :103:21]
wire [6:0] next_uop_pdst = io_in_uop_valid_0 ? io_in_uop_bits_pdst_0 : slot_uop_pdst; // @[issue-slot.scala:69:7, :102:25, :103:21]
wire [6:0] next_uop_prs1 = io_in_uop_valid_0 ? io_in_uop_bits_prs1_0 : slot_uop_prs1; // @[issue-slot.scala:69:7, :102:25, :103:21]
wire [6:0] next_uop_prs2 = io_in_uop_valid_0 ? io_in_uop_bits_prs2_0 : slot_uop_prs2; // @[issue-slot.scala:69:7, :102:25, :103:21]
wire [6:0] next_uop_prs3 = io_in_uop_valid_0 ? io_in_uop_bits_prs3_0 : slot_uop_prs3; // @[issue-slot.scala:69:7, :102:25, :103:21]
wire [4:0] next_uop_ppred = io_in_uop_valid_0 ? io_in_uop_bits_ppred_0 : slot_uop_ppred; // @[issue-slot.scala:69:7, :102:25, :103:21]
wire next_uop_prs1_busy = io_in_uop_valid_0 ? io_in_uop_bits_prs1_busy_0 : slot_uop_prs1_busy; // @[issue-slot.scala:69:7, :102:25, :103:21]
wire next_uop_prs2_busy = io_in_uop_valid_0 ? io_in_uop_bits_prs2_busy_0 : slot_uop_prs2_busy; // @[issue-slot.scala:69:7, :102:25, :103:21]
wire next_uop_prs3_busy = io_in_uop_valid_0 ? io_in_uop_bits_prs3_busy_0 : slot_uop_prs3_busy; // @[issue-slot.scala:69:7, :102:25, :103:21]
wire next_uop_ppred_busy = io_in_uop_valid_0 ? io_in_uop_bits_ppred_busy_0 : slot_uop_ppred_busy; // @[issue-slot.scala:69:7, :102:25, :103:21]
wire [6:0] next_uop_stale_pdst = io_in_uop_valid_0 ? io_in_uop_bits_stale_pdst_0 : slot_uop_stale_pdst; // @[issue-slot.scala:69:7, :102:25, :103:21]
wire next_uop_exception = io_in_uop_valid_0 ? io_in_uop_bits_exception_0 : slot_uop_exception; // @[issue-slot.scala:69:7, :102:25, :103:21]
wire [63:0] next_uop_exc_cause = io_in_uop_valid_0 ? io_in_uop_bits_exc_cause_0 : slot_uop_exc_cause; // @[issue-slot.scala:69:7, :102:25, :103:21]
wire next_uop_bypassable = io_in_uop_valid_0 ? io_in_uop_bits_bypassable_0 : slot_uop_bypassable; // @[issue-slot.scala:69:7, :102:25, :103:21]
wire [4:0] next_uop_mem_cmd = io_in_uop_valid_0 ? io_in_uop_bits_mem_cmd_0 : slot_uop_mem_cmd; // @[issue-slot.scala:69:7, :102:25, :103:21]
wire [1:0] next_uop_mem_size = io_in_uop_valid_0 ? io_in_uop_bits_mem_size_0 : slot_uop_mem_size; // @[issue-slot.scala:69:7, :102:25, :103:21]
wire next_uop_mem_signed = io_in_uop_valid_0 ? io_in_uop_bits_mem_signed_0 : slot_uop_mem_signed; // @[issue-slot.scala:69:7, :102:25, :103:21]
wire next_uop_is_fence = io_in_uop_valid_0 ? io_in_uop_bits_is_fence_0 : slot_uop_is_fence; // @[issue-slot.scala:69:7, :102:25, :103:21]
wire next_uop_is_fencei = io_in_uop_valid_0 ? io_in_uop_bits_is_fencei_0 : slot_uop_is_fencei; // @[issue-slot.scala:69:7, :102:25, :103:21]
wire next_uop_is_amo = io_in_uop_valid_0 ? io_in_uop_bits_is_amo_0 : slot_uop_is_amo; // @[issue-slot.scala:69:7, :102:25, :103:21]
wire next_uop_uses_ldq = io_in_uop_valid_0 ? io_in_uop_bits_uses_ldq_0 : slot_uop_uses_ldq; // @[issue-slot.scala:69:7, :102:25, :103:21]
wire next_uop_uses_stq = io_in_uop_valid_0 ? io_in_uop_bits_uses_stq_0 : slot_uop_uses_stq; // @[issue-slot.scala:69:7, :102:25, :103:21]
wire next_uop_is_sys_pc2epc = io_in_uop_valid_0 ? io_in_uop_bits_is_sys_pc2epc_0 : slot_uop_is_sys_pc2epc; // @[issue-slot.scala:69:7, :102:25, :103:21]
wire next_uop_is_unique = io_in_uop_valid_0 ? io_in_uop_bits_is_unique_0 : slot_uop_is_unique; // @[issue-slot.scala:69:7, :102:25, :103:21]
wire next_uop_flush_on_commit = io_in_uop_valid_0 ? io_in_uop_bits_flush_on_commit_0 : slot_uop_flush_on_commit; // @[issue-slot.scala:69:7, :102:25, :103:21]
wire next_uop_ldst_is_rs1 = io_in_uop_valid_0 ? io_in_uop_bits_ldst_is_rs1_0 : slot_uop_ldst_is_rs1; // @[issue-slot.scala:69:7, :102:25, :103:21]
wire [5:0] next_uop_ldst = io_in_uop_valid_0 ? io_in_uop_bits_ldst_0 : slot_uop_ldst; // @[issue-slot.scala:69:7, :102:25, :103:21]
wire [5:0] next_uop_lrs1 = io_in_uop_valid_0 ? io_in_uop_bits_lrs1_0 : slot_uop_lrs1; // @[issue-slot.scala:69:7, :102:25, :103:21]
wire [5:0] next_uop_lrs2 = io_in_uop_valid_0 ? io_in_uop_bits_lrs2_0 : slot_uop_lrs2; // @[issue-slot.scala:69:7, :102:25, :103:21]
wire [5:0] next_uop_lrs3 = io_in_uop_valid_0 ? io_in_uop_bits_lrs3_0 : slot_uop_lrs3; // @[issue-slot.scala:69:7, :102:25, :103:21]
wire next_uop_ldst_val = io_in_uop_valid_0 ? io_in_uop_bits_ldst_val_0 : slot_uop_ldst_val; // @[issue-slot.scala:69:7, :102:25, :103:21]
wire [1:0] next_uop_dst_rtype = io_in_uop_valid_0 ? io_in_uop_bits_dst_rtype_0 : slot_uop_dst_rtype; // @[issue-slot.scala:69:7, :102:25, :103:21]
wire [1:0] next_uop_lrs1_rtype = io_in_uop_valid_0 ? io_in_uop_bits_lrs1_rtype_0 : slot_uop_lrs1_rtype; // @[issue-slot.scala:69:7, :102:25, :103:21]
wire [1:0] next_uop_lrs2_rtype = io_in_uop_valid_0 ? io_in_uop_bits_lrs2_rtype_0 : slot_uop_lrs2_rtype; // @[issue-slot.scala:69:7, :102:25, :103:21]
wire next_uop_frs3_en = io_in_uop_valid_0 ? io_in_uop_bits_frs3_en_0 : slot_uop_frs3_en; // @[issue-slot.scala:69:7, :102:25, :103:21]
wire next_uop_fp_val = io_in_uop_valid_0 ? io_in_uop_bits_fp_val_0 : slot_uop_fp_val; // @[issue-slot.scala:69:7, :102:25, :103:21]
wire next_uop_fp_single = io_in_uop_valid_0 ? io_in_uop_bits_fp_single_0 : slot_uop_fp_single; // @[issue-slot.scala:69:7, :102:25, :103:21]
wire next_uop_xcpt_pf_if = io_in_uop_valid_0 ? io_in_uop_bits_xcpt_pf_if_0 : slot_uop_xcpt_pf_if; // @[issue-slot.scala:69:7, :102:25, :103:21]
wire next_uop_xcpt_ae_if = io_in_uop_valid_0 ? io_in_uop_bits_xcpt_ae_if_0 : slot_uop_xcpt_ae_if; // @[issue-slot.scala:69:7, :102:25, :103:21]
wire next_uop_xcpt_ma_if = io_in_uop_valid_0 ? io_in_uop_bits_xcpt_ma_if_0 : slot_uop_xcpt_ma_if; // @[issue-slot.scala:69:7, :102:25, :103:21]
wire next_uop_bp_debug_if = io_in_uop_valid_0 ? io_in_uop_bits_bp_debug_if_0 : slot_uop_bp_debug_if; // @[issue-slot.scala:69:7, :102:25, :103:21]
wire next_uop_bp_xcpt_if = io_in_uop_valid_0 ? io_in_uop_bits_bp_xcpt_if_0 : slot_uop_bp_xcpt_if; // @[issue-slot.scala:69:7, :102:25, :103:21]
wire [1:0] next_uop_debug_fsrc = io_in_uop_valid_0 ? io_in_uop_bits_debug_fsrc_0 : slot_uop_debug_fsrc; // @[issue-slot.scala:69:7, :102:25, :103:21]
wire [1:0] next_uop_debug_tsrc = io_in_uop_valid_0 ? io_in_uop_bits_debug_tsrc_0 : slot_uop_debug_tsrc; // @[issue-slot.scala:69:7, :102:25, :103:21]
wire _T_11 = state == 2'h2; // @[issue-slot.scala:86:22, :134:25]
wire _T_7 = io_grant_0 & state == 2'h1 | io_grant_0 & _T_11 & p1 & p2 & ppred; // @[issue-slot.scala:69:7, :86:22, :87:22, :88:22, :90:22, :133:{26,36,52}, :134:{15,25,40,46,52}]
wire _T_12 = io_grant_0 & _T_11; // @[issue-slot.scala:69:7, :134:25, :139:25]
wire _T_14 = io_ldspec_miss_0 & (p1_poisoned | p2_poisoned); // @[issue-slot.scala:69:7, :95:28, :96:28, :140:{28,44}]
wire _GEN = _T_12 & ~_T_14; // @[issue-slot.scala:126:14, :139:{25,51}, :140:{11,28,62}, :141:18]
wire _GEN_0 = io_kill_0 | _T_7; // @[issue-slot.scala:69:7, :102:25, :131:18, :133:52, :134:63, :139:51]
wire _GEN_1 = _GEN_0 | ~(_T_12 & ~_T_14 & p1); // @[issue-slot.scala:87:22, :102:25, :131:18, :134:63, :139:{25,51}, :140:{11,28,62}, :142:17, :143:23]
assign next_uopc = _GEN_1 ? slot_uop_uopc : 7'h3; // @[issue-slot.scala:82:29, :102:25, :131:18, :134:63, :139:51]
assign next_lrs1_rtype = _GEN_1 ? slot_uop_lrs1_rtype : 2'h2; // @[issue-slot.scala:83:29, :102:25, :131:18, :134:63, :139:51]
wire _GEN_2 = _GEN_0 | ~_GEN | p1; // @[issue-slot.scala:87:22, :102:25, :126:14, :131:18, :134:63, :139:51, :140:62, :141:18, :142:17]
assign next_lrs2_rtype = _GEN_2 ? slot_uop_lrs2_rtype : 2'h2; // @[issue-slot.scala:84:29, :102:25, :131:18, :134:63, :139:51, :140:62, :142:17]
wire _p1_T = ~io_in_uop_bits_prs1_busy_0; // @[issue-slot.scala:69:7, :169:11]
wire _p2_T = ~io_in_uop_bits_prs2_busy_0; // @[issue-slot.scala:69:7, :170:11]
wire _p3_T = ~io_in_uop_bits_prs3_busy_0; // @[issue-slot.scala:69:7, :171:11]
wire _ppred_T = ~io_in_uop_bits_ppred_busy_0; // @[issue-slot.scala:69:7, :172:14]
wire _T_22 = io_ldspec_miss_0 & next_p1_poisoned; // @[issue-slot.scala:69:7, :99:29, :175:24]
wire _T_27 = io_ldspec_miss_0 & next_p2_poisoned; // @[issue-slot.scala:69:7, :100:29, :179:24]
wire _T_85 = io_spec_ld_wakeup_0_valid_0 & io_spec_ld_wakeup_0_bits_0 == next_uop_prs1 & next_uop_lrs1_rtype == 2'h0; // @[issue-slot.scala:69:7, :103:21, :209:38, :210:{33,51}, :211:27]
wire _T_93 = io_spec_ld_wakeup_0_valid_0 & io_spec_ld_wakeup_0_bits_0 == next_uop_prs2 & next_uop_lrs2_rtype == 2'h0; // @[issue-slot.scala:69:7, :103:21, :216:38, :217:{33,51}, :218:27] |
Generate the Verilog code corresponding to the following Chisel files.
File MulRecFN.scala:
/*============================================================================
This Chisel source file is part of a pre-release version of the HardFloat IEEE
Floating-Point Arithmetic Package, by John R. Hauser (ported from Verilog to
Chisel by Andrew Waterman).
Copyright 2019, 2020 The Regents of the University of California. All rights
reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
1. Redistributions of source code must retain the above copyright notice,
this list of conditions, and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice,
this list of conditions, and the following disclaimer in the documentation
and/or other materials provided with the distribution.
3. Neither the name of the University nor the names of its contributors may
be used to endorse or promote products derived from this software without
specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS "AS IS", AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ARE
DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
=============================================================================*/
package hardfloat
import chisel3._
import chisel3.util._
import consts._
//----------------------------------------------------------------------------
//----------------------------------------------------------------------------
class MulFullRawFN(expWidth: Int, sigWidth: Int) extends chisel3.RawModule
{
val io = IO(new Bundle {
val a = Input(new RawFloat(expWidth, sigWidth))
val b = Input(new RawFloat(expWidth, sigWidth))
val invalidExc = Output(Bool())
val rawOut = Output(new RawFloat(expWidth, sigWidth*2 - 1))
})
/*------------------------------------------------------------------------
*------------------------------------------------------------------------*/
val notSigNaN_invalidExc = (io.a.isInf && io.b.isZero) || (io.a.isZero && io.b.isInf)
val notNaN_isInfOut = io.a.isInf || io.b.isInf
val notNaN_isZeroOut = io.a.isZero || io.b.isZero
val notNaN_signOut = io.a.sign ^ io.b.sign
val common_sExpOut = io.a.sExp + io.b.sExp - (1<<expWidth).S
val common_sigOut = (io.a.sig * io.b.sig)(sigWidth*2 - 1, 0)
/*------------------------------------------------------------------------
*------------------------------------------------------------------------*/
io.invalidExc := isSigNaNRawFloat(io.a) || isSigNaNRawFloat(io.b) || notSigNaN_invalidExc
io.rawOut.isInf := notNaN_isInfOut
io.rawOut.isZero := notNaN_isZeroOut
io.rawOut.sExp := common_sExpOut
io.rawOut.isNaN := io.a.isNaN || io.b.isNaN
io.rawOut.sign := notNaN_signOut
io.rawOut.sig := common_sigOut
}
class MulRawFN(expWidth: Int, sigWidth: Int) extends chisel3.RawModule
{
val io = IO(new Bundle {
val a = Input(new RawFloat(expWidth, sigWidth))
val b = Input(new RawFloat(expWidth, sigWidth))
val invalidExc = Output(Bool())
val rawOut = Output(new RawFloat(expWidth, sigWidth + 2))
})
val mulFullRaw = Module(new MulFullRawFN(expWidth, sigWidth))
mulFullRaw.io.a := io.a
mulFullRaw.io.b := io.b
io.invalidExc := mulFullRaw.io.invalidExc
io.rawOut := mulFullRaw.io.rawOut
io.rawOut.sig := {
val sig = mulFullRaw.io.rawOut.sig
Cat(sig >> (sigWidth - 2), sig(sigWidth - 3, 0).orR)
}
}
//----------------------------------------------------------------------------
//----------------------------------------------------------------------------
class MulRecFN(expWidth: Int, sigWidth: Int) extends chisel3.RawModule
{
val io = IO(new Bundle {
val a = Input(UInt((expWidth + sigWidth + 1).W))
val b = Input(UInt((expWidth + sigWidth + 1).W))
val roundingMode = Input(UInt(3.W))
val detectTininess = Input(Bool())
val out = Output(UInt((expWidth + sigWidth + 1).W))
val exceptionFlags = Output(UInt(5.W))
})
//------------------------------------------------------------------------
//------------------------------------------------------------------------
val mulRawFN = Module(new MulRawFN(expWidth, sigWidth))
mulRawFN.io.a := rawFloatFromRecFN(expWidth, sigWidth, io.a)
mulRawFN.io.b := rawFloatFromRecFN(expWidth, sigWidth, io.b)
//------------------------------------------------------------------------
//------------------------------------------------------------------------
val roundRawFNToRecFN =
Module(new RoundRawFNToRecFN(expWidth, sigWidth, 0))
roundRawFNToRecFN.io.invalidExc := mulRawFN.io.invalidExc
roundRawFNToRecFN.io.infiniteExc := false.B
roundRawFNToRecFN.io.in := mulRawFN.io.rawOut
roundRawFNToRecFN.io.roundingMode := io.roundingMode
roundRawFNToRecFN.io.detectTininess := io.detectTininess
io.out := roundRawFNToRecFN.io.out
io.exceptionFlags := roundRawFNToRecFN.io.exceptionFlags
}
| module MulFullRawFN_51( // @[MulRecFN.scala:47:7]
input io_a_isNaN, // @[MulRecFN.scala:49:16]
input io_a_isInf, // @[MulRecFN.scala:49:16]
input io_a_isZero, // @[MulRecFN.scala:49:16]
input io_a_sign, // @[MulRecFN.scala:49:16]
input [9:0] io_a_sExp, // @[MulRecFN.scala:49:16]
input [24:0] io_a_sig, // @[MulRecFN.scala:49:16]
input io_b_isNaN, // @[MulRecFN.scala:49:16]
input io_b_isInf, // @[MulRecFN.scala:49:16]
input io_b_isZero, // @[MulRecFN.scala:49:16]
input io_b_sign, // @[MulRecFN.scala:49:16]
input [9:0] io_b_sExp, // @[MulRecFN.scala:49:16]
input [24:0] io_b_sig, // @[MulRecFN.scala:49:16]
output io_invalidExc, // @[MulRecFN.scala:49:16]
output io_rawOut_isNaN, // @[MulRecFN.scala:49:16]
output io_rawOut_isInf, // @[MulRecFN.scala:49:16]
output io_rawOut_isZero, // @[MulRecFN.scala:49:16]
output io_rawOut_sign, // @[MulRecFN.scala:49:16]
output [9:0] io_rawOut_sExp, // @[MulRecFN.scala:49:16]
output [47:0] io_rawOut_sig // @[MulRecFN.scala:49:16]
);
wire io_a_isNaN_0 = io_a_isNaN; // @[MulRecFN.scala:47:7]
wire io_a_isInf_0 = io_a_isInf; // @[MulRecFN.scala:47:7]
wire io_a_isZero_0 = io_a_isZero; // @[MulRecFN.scala:47:7]
wire io_a_sign_0 = io_a_sign; // @[MulRecFN.scala:47:7]
wire [9:0] io_a_sExp_0 = io_a_sExp; // @[MulRecFN.scala:47:7]
wire [24:0] io_a_sig_0 = io_a_sig; // @[MulRecFN.scala:47:7]
wire io_b_isNaN_0 = io_b_isNaN; // @[MulRecFN.scala:47:7]
wire io_b_isInf_0 = io_b_isInf; // @[MulRecFN.scala:47:7]
wire io_b_isZero_0 = io_b_isZero; // @[MulRecFN.scala:47:7]
wire io_b_sign_0 = io_b_sign; // @[MulRecFN.scala:47:7]
wire [9:0] io_b_sExp_0 = io_b_sExp; // @[MulRecFN.scala:47:7]
wire [24:0] io_b_sig_0 = io_b_sig; // @[MulRecFN.scala:47:7]
wire _io_invalidExc_T_7; // @[MulRecFN.scala:66:71]
wire _io_rawOut_isNaN_T; // @[MulRecFN.scala:70:35]
wire notNaN_isInfOut; // @[MulRecFN.scala:59:38]
wire notNaN_isZeroOut; // @[MulRecFN.scala:60:40]
wire notNaN_signOut; // @[MulRecFN.scala:61:36]
wire [9:0] common_sExpOut; // @[MulRecFN.scala:62:48]
wire [47:0] common_sigOut; // @[MulRecFN.scala:63:46]
wire io_rawOut_isNaN_0; // @[MulRecFN.scala:47:7]
wire io_rawOut_isInf_0; // @[MulRecFN.scala:47:7]
wire io_rawOut_isZero_0; // @[MulRecFN.scala:47:7]
wire io_rawOut_sign_0; // @[MulRecFN.scala:47:7]
wire [9:0] io_rawOut_sExp_0; // @[MulRecFN.scala:47:7]
wire [47:0] io_rawOut_sig_0; // @[MulRecFN.scala:47:7]
wire io_invalidExc_0; // @[MulRecFN.scala:47:7]
wire _notSigNaN_invalidExc_T = io_a_isInf_0 & io_b_isZero_0; // @[MulRecFN.scala:47:7, :58:44]
wire _notSigNaN_invalidExc_T_1 = io_a_isZero_0 & io_b_isInf_0; // @[MulRecFN.scala:47:7, :58:76]
wire notSigNaN_invalidExc = _notSigNaN_invalidExc_T | _notSigNaN_invalidExc_T_1; // @[MulRecFN.scala:58:{44,60,76}]
assign notNaN_isInfOut = io_a_isInf_0 | io_b_isInf_0; // @[MulRecFN.scala:47:7, :59:38]
assign io_rawOut_isInf_0 = notNaN_isInfOut; // @[MulRecFN.scala:47:7, :59:38]
assign notNaN_isZeroOut = io_a_isZero_0 | io_b_isZero_0; // @[MulRecFN.scala:47:7, :60:40]
assign io_rawOut_isZero_0 = notNaN_isZeroOut; // @[MulRecFN.scala:47:7, :60:40]
assign notNaN_signOut = io_a_sign_0 ^ io_b_sign_0; // @[MulRecFN.scala:47:7, :61:36]
assign io_rawOut_sign_0 = notNaN_signOut; // @[MulRecFN.scala:47:7, :61:36]
wire [10:0] _common_sExpOut_T = {io_a_sExp_0[9], io_a_sExp_0} + {io_b_sExp_0[9], io_b_sExp_0}; // @[MulRecFN.scala:47:7, :62:36]
wire [9:0] _common_sExpOut_T_1 = _common_sExpOut_T[9:0]; // @[MulRecFN.scala:62:36]
wire [9:0] _common_sExpOut_T_2 = _common_sExpOut_T_1; // @[MulRecFN.scala:62:36]
wire [10:0] _common_sExpOut_T_3 = {_common_sExpOut_T_2[9], _common_sExpOut_T_2} - 11'h100; // @[MulRecFN.scala:62:{36,48}]
wire [9:0] _common_sExpOut_T_4 = _common_sExpOut_T_3[9:0]; // @[MulRecFN.scala:62:48]
assign common_sExpOut = _common_sExpOut_T_4; // @[MulRecFN.scala:62:48]
assign io_rawOut_sExp_0 = common_sExpOut; // @[MulRecFN.scala:47:7, :62:48]
wire [49:0] _common_sigOut_T = {25'h0, io_a_sig_0} * {25'h0, io_b_sig_0}; // @[MulRecFN.scala:47:7, :63:35]
assign common_sigOut = _common_sigOut_T[47:0]; // @[MulRecFN.scala:63:{35,46}]
assign io_rawOut_sig_0 = common_sigOut; // @[MulRecFN.scala:47:7, :63:46]
wire _io_invalidExc_T = io_a_sig_0[22]; // @[common.scala:82:56]
wire _io_invalidExc_T_1 = ~_io_invalidExc_T; // @[common.scala:82:{49,56}]
wire _io_invalidExc_T_2 = io_a_isNaN_0 & _io_invalidExc_T_1; // @[common.scala:82:{46,49}]
wire _io_invalidExc_T_3 = io_b_sig_0[22]; // @[common.scala:82:56]
wire _io_invalidExc_T_4 = ~_io_invalidExc_T_3; // @[common.scala:82:{49,56}]
wire _io_invalidExc_T_5 = io_b_isNaN_0 & _io_invalidExc_T_4; // @[common.scala:82:{46,49}]
wire _io_invalidExc_T_6 = _io_invalidExc_T_2 | _io_invalidExc_T_5; // @[common.scala:82:46]
assign _io_invalidExc_T_7 = _io_invalidExc_T_6 | notSigNaN_invalidExc; // @[MulRecFN.scala:58:60, :66:{45,71}]
assign io_invalidExc_0 = _io_invalidExc_T_7; // @[MulRecFN.scala:47:7, :66:71]
assign _io_rawOut_isNaN_T = io_a_isNaN_0 | io_b_isNaN_0; // @[MulRecFN.scala:47:7, :70:35]
assign io_rawOut_isNaN_0 = _io_rawOut_isNaN_T; // @[MulRecFN.scala:47:7, :70:35]
assign io_invalidExc = io_invalidExc_0; // @[MulRecFN.scala:47:7]
assign io_rawOut_isNaN = io_rawOut_isNaN_0; // @[MulRecFN.scala:47:7]
assign io_rawOut_isInf = io_rawOut_isInf_0; // @[MulRecFN.scala:47:7]
assign io_rawOut_isZero = io_rawOut_isZero_0; // @[MulRecFN.scala:47:7]
assign io_rawOut_sign = io_rawOut_sign_0; // @[MulRecFN.scala:47:7]
assign io_rawOut_sExp = io_rawOut_sExp_0; // @[MulRecFN.scala:47:7]
assign io_rawOut_sig = io_rawOut_sig_0; // @[MulRecFN.scala:47:7]
endmodule |
Generate the Verilog code corresponding to the following Chisel files.
File TilelinkAdapters.scala:
package constellation.protocol
import chisel3._
import chisel3.util._
import constellation.channel._
import constellation.noc._
import constellation.soc.{CanAttachToGlobalNoC}
import org.chipsalliance.cde.config._
import freechips.rocketchip.diplomacy._
import freechips.rocketchip.util._
import freechips.rocketchip.tilelink._
import scala.collection.immutable.{ListMap}
abstract class TLChannelToNoC[T <: TLChannel](gen: => T, edge: TLEdge, idToEgress: Int => Int)(implicit val p: Parameters) extends Module with TLFieldHelper {
val flitWidth = minTLPayloadWidth(gen)
val io = IO(new Bundle {
val protocol = Flipped(Decoupled(gen))
val flit = Decoupled(new IngressFlit(flitWidth))
})
def unique(x: Vector[Boolean]): Bool = (x.filter(x=>x).size <= 1).B
// convert decoupled to irrevocable
val q = Module(new Queue(gen, 1, pipe=true, flow=true))
val protocol = q.io.deq
val has_body = Wire(Bool())
val body_fields = getBodyFields(protocol.bits)
val const_fields = getConstFields(protocol.bits)
val head = edge.first(protocol.bits, protocol.fire)
val tail = edge.last(protocol.bits, protocol.fire)
def requestOH: Seq[Bool]
val body = Cat( body_fields.filter(_.getWidth > 0).map(_.asUInt))
val const = Cat(const_fields.filter(_.getWidth > 0).map(_.asUInt))
val is_body = RegInit(false.B)
io.flit.valid := protocol.valid
protocol.ready := io.flit.ready && (is_body || !has_body)
io.flit.bits.head := head && !is_body
io.flit.bits.tail := tail && (is_body || !has_body)
io.flit.bits.egress_id := Mux1H(requestOH.zipWithIndex.map { case (r, i) =>
r -> idToEgress(i).U
})
io.flit.bits.payload := Mux(is_body, body, const)
when (io.flit.fire && io.flit.bits.head) { is_body := true.B }
when (io.flit.fire && io.flit.bits.tail) { is_body := false.B }
}
abstract class TLChannelFromNoC[T <: TLChannel](gen: => T)(implicit val p: Parameters) extends Module with TLFieldHelper {
val flitWidth = minTLPayloadWidth(gen)
val io = IO(new Bundle {
val protocol = Decoupled(gen)
val flit = Flipped(Decoupled(new EgressFlit(flitWidth)))
})
// Handle size = 1 gracefully (Chisel3 empty range is broken)
def trim(id: UInt, size: Int): UInt = if (size <= 1) 0.U else id(log2Ceil(size)-1, 0)
val protocol = Wire(Decoupled(gen))
val body_fields = getBodyFields(protocol.bits)
val const_fields = getConstFields(protocol.bits)
val is_const = RegInit(true.B)
val const_reg = Reg(UInt(const_fields.map(_.getWidth).sum.W))
val const = Mux(io.flit.bits.head, io.flit.bits.payload, const_reg)
io.flit.ready := (is_const && !io.flit.bits.tail) || protocol.ready
protocol.valid := (!is_const || io.flit.bits.tail) && io.flit.valid
def assign(i: UInt, sigs: Seq[Data]) = {
var t = i
for (s <- sigs.reverse) {
s := t.asTypeOf(s.cloneType)
t = t >> s.getWidth
}
}
assign(const, const_fields)
assign(io.flit.bits.payload, body_fields)
when (io.flit.fire && io.flit.bits.head) { is_const := false.B; const_reg := io.flit.bits.payload }
when (io.flit.fire && io.flit.bits.tail) { is_const := true.B }
}
trait HasAddressDecoder {
// Filter a list to only those elements selected
def filter[T](data: Seq[T], mask: Seq[Boolean]) = (data zip mask).filter(_._2).map(_._1)
val edgeIn: TLEdge
val edgesOut: Seq[TLEdge]
lazy val reacheableIO = edgesOut.map { mp =>
edgeIn.client.clients.exists { c => mp.manager.managers.exists { m =>
c.visibility.exists { ca => m.address.exists { ma =>
ca.overlaps(ma)
}}
}}
}.toVector
lazy val releaseIO = (edgesOut zip reacheableIO).map { case (mp, reachable) =>
reachable && edgeIn.client.anySupportProbe && mp.manager.anySupportAcquireB
}.toVector
def outputPortFn(connectIO: Seq[Boolean]) = {
val port_addrs = edgesOut.map(_.manager.managers.flatMap(_.address))
val routingMask = AddressDecoder(filter(port_addrs, connectIO))
val route_addrs = port_addrs.map(seq => AddressSet.unify(seq.map(_.widen(~routingMask)).distinct))
route_addrs.map(seq => (addr: UInt) => seq.map(_.contains(addr)).reduce(_||_))
}
}
class TLAToNoC(
val edgeIn: TLEdge,
val edgesOut: Seq[TLEdge],
bundle: TLBundleParameters,
slaveToAEgress: Int => Int,
sourceStart: Int
)(implicit p: Parameters) extends TLChannelToNoC(new TLBundleA(bundle), edgeIn, slaveToAEgress)(p) with HasAddressDecoder {
has_body := edgeIn.hasData(protocol.bits) || (~protocol.bits.mask =/= 0.U)
lazy val connectAIO = reacheableIO
lazy val requestOH = outputPortFn(connectAIO).zipWithIndex.map { case (o, j) =>
connectAIO(j).B && (unique(connectAIO) || o(protocol.bits.address))
}
q.io.enq <> io.protocol
q.io.enq.bits.source := io.protocol.bits.source | sourceStart.U
}
class TLAFromNoC(edgeOut: TLEdge, bundle: TLBundleParameters)(implicit p: Parameters) extends TLChannelFromNoC(new TLBundleA(bundle))(p) {
io.protocol <> protocol
when (io.flit.bits.head) { io.protocol.bits.mask := ~(0.U(io.protocol.bits.mask.getWidth.W)) }
}
class TLBToNoC(
edgeOut: TLEdge,
edgesIn: Seq[TLEdge],
bundle: TLBundleParameters,
masterToBIngress: Int => Int
)(implicit p: Parameters) extends TLChannelToNoC(new TLBundleB(bundle), edgeOut, masterToBIngress)(p) {
has_body := edgeOut.hasData(protocol.bits) || (~protocol.bits.mask =/= 0.U)
lazy val inputIdRanges = TLXbar.mapInputIds(edgesIn.map(_.client))
lazy val requestOH = inputIdRanges.map { i => i.contains(protocol.bits.source) }
q.io.enq <> io.protocol
}
class TLBFromNoC(edgeIn: TLEdge, bundle: TLBundleParameters, sourceSize: Int)(implicit p: Parameters) extends TLChannelFromNoC(new TLBundleB(bundle))(p) {
io.protocol <> protocol
io.protocol.bits.source := trim(protocol.bits.source, sourceSize)
when (io.flit.bits.head) { io.protocol.bits.mask := ~(0.U(io.protocol.bits.mask.getWidth.W)) }
}
class TLCToNoC(
val edgeIn: TLEdge,
val edgesOut: Seq[TLEdge],
bundle: TLBundleParameters,
slaveToCEgress: Int => Int,
sourceStart: Int
)(implicit p: Parameters) extends TLChannelToNoC(new TLBundleC(bundle), edgeIn, slaveToCEgress)(p) with HasAddressDecoder {
has_body := edgeIn.hasData(protocol.bits)
lazy val connectCIO = releaseIO
lazy val requestOH = outputPortFn(connectCIO).zipWithIndex.map {
case (o, j) => connectCIO(j).B && (unique(connectCIO) || o(protocol.bits.address))
}
q.io.enq <> io.protocol
q.io.enq.bits.source := io.protocol.bits.source | sourceStart.U
}
class TLCFromNoC(edgeOut: TLEdge, bundle: TLBundleParameters)(implicit p: Parameters) extends TLChannelFromNoC(new TLBundleC(bundle))(p) {
io.protocol <> protocol
}
class TLDToNoC(
edgeOut: TLEdge,
edgesIn: Seq[TLEdge],
bundle: TLBundleParameters,
masterToDIngress: Int => Int,
sourceStart: Int
)(implicit p: Parameters) extends TLChannelToNoC(new TLBundleD(bundle), edgeOut, masterToDIngress)(p) {
has_body := edgeOut.hasData(protocol.bits)
lazy val inputIdRanges = TLXbar.mapInputIds(edgesIn.map(_.client))
lazy val requestOH = inputIdRanges.map { i => i.contains(protocol.bits.source) }
q.io.enq <> io.protocol
q.io.enq.bits.sink := io.protocol.bits.sink | sourceStart.U
}
class TLDFromNoC(edgeIn: TLEdge, bundle: TLBundleParameters, sourceSize: Int)(implicit p: Parameters) extends TLChannelFromNoC(new TLBundleD(bundle))(p)
{
io.protocol <> protocol
io.protocol.bits.source := trim(protocol.bits.source, sourceSize)
}
class TLEToNoC(
val edgeIn: TLEdge,
val edgesOut: Seq[TLEdge],
bundle: TLBundleParameters,
slaveToEEgress: Int => Int
)(implicit p: Parameters) extends TLChannelToNoC(new TLBundleE(bundle), edgeIn, slaveToEEgress)(p) {
has_body := edgeIn.hasData(protocol.bits)
lazy val outputIdRanges = TLXbar.mapOutputIds(edgesOut.map(_.manager))
lazy val requestOH = outputIdRanges.map { o => o.contains(protocol.bits.sink) }
q.io.enq <> io.protocol
}
class TLEFromNoC(edgeOut: TLEdge, bundle: TLBundleParameters, sourceSize: Int)(implicit p: Parameters) extends TLChannelFromNoC(new TLBundleE(bundle))(p) {
io.protocol <> protocol
io.protocol.bits.sink := trim(protocol.bits.sink, sourceSize)
}
| module TLBToNoC_3( // @[TilelinkAdapters.scala:133:7]
input clock, // @[TilelinkAdapters.scala:133:7]
input reset, // @[TilelinkAdapters.scala:133:7]
output io_flit_valid // @[TilelinkAdapters.scala:19:14]
);
Queue1_TLBundleB_a32d64s6k5z4c q ( // @[TilelinkAdapters.scala:26:17]
.clock (clock),
.reset (reset),
.io_enq_ready (/* unused */),
.io_enq_valid (1'h0), // @[Decoupled.scala:51:35]
.io_enq_bits_opcode (3'h0), // @[TilelinkAdapters.scala:19:14, :26:17]
.io_enq_bits_param (2'h0), // @[TilelinkAdapters.scala:19:14, :26:17]
.io_enq_bits_size (4'h0), // @[TilelinkAdapters.scala:19:14, :26:17]
.io_enq_bits_source (6'h0), // @[TilelinkAdapters.scala:19:14, :26:17]
.io_enq_bits_address (32'h0), // @[TilelinkAdapters.scala:19:14, :26:17]
.io_enq_bits_mask (8'h0), // @[TilelinkAdapters.scala:19:14, :26:17]
.io_deq_ready (1'h0), // @[Decoupled.scala:51:35]
.io_deq_valid (io_flit_valid),
.io_deq_bits_opcode (/* unused */),
.io_deq_bits_param (/* unused */),
.io_deq_bits_size (/* unused */),
.io_deq_bits_source (/* unused */),
.io_deq_bits_address (/* unused */),
.io_deq_bits_mask (/* unused */),
.io_deq_bits_data (/* unused */),
.io_deq_bits_corrupt (/* unused */)
); // @[TilelinkAdapters.scala:26:17]
endmodule |
Generate the Verilog code corresponding to the following Chisel files.
File MulRecFN.scala:
/*============================================================================
This Chisel source file is part of a pre-release version of the HardFloat IEEE
Floating-Point Arithmetic Package, by John R. Hauser (ported from Verilog to
Chisel by Andrew Waterman).
Copyright 2019, 2020 The Regents of the University of California. All rights
reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
1. Redistributions of source code must retain the above copyright notice,
this list of conditions, and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice,
this list of conditions, and the following disclaimer in the documentation
and/or other materials provided with the distribution.
3. Neither the name of the University nor the names of its contributors may
be used to endorse or promote products derived from this software without
specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS "AS IS", AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ARE
DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
=============================================================================*/
package hardfloat
import chisel3._
import chisel3.util._
import consts._
//----------------------------------------------------------------------------
//----------------------------------------------------------------------------
class MulFullRawFN(expWidth: Int, sigWidth: Int) extends chisel3.RawModule
{
val io = IO(new Bundle {
val a = Input(new RawFloat(expWidth, sigWidth))
val b = Input(new RawFloat(expWidth, sigWidth))
val invalidExc = Output(Bool())
val rawOut = Output(new RawFloat(expWidth, sigWidth*2 - 1))
})
/*------------------------------------------------------------------------
*------------------------------------------------------------------------*/
val notSigNaN_invalidExc = (io.a.isInf && io.b.isZero) || (io.a.isZero && io.b.isInf)
val notNaN_isInfOut = io.a.isInf || io.b.isInf
val notNaN_isZeroOut = io.a.isZero || io.b.isZero
val notNaN_signOut = io.a.sign ^ io.b.sign
val common_sExpOut = io.a.sExp + io.b.sExp - (1<<expWidth).S
val common_sigOut = (io.a.sig * io.b.sig)(sigWidth*2 - 1, 0)
/*------------------------------------------------------------------------
*------------------------------------------------------------------------*/
io.invalidExc := isSigNaNRawFloat(io.a) || isSigNaNRawFloat(io.b) || notSigNaN_invalidExc
io.rawOut.isInf := notNaN_isInfOut
io.rawOut.isZero := notNaN_isZeroOut
io.rawOut.sExp := common_sExpOut
io.rawOut.isNaN := io.a.isNaN || io.b.isNaN
io.rawOut.sign := notNaN_signOut
io.rawOut.sig := common_sigOut
}
class MulRawFN(expWidth: Int, sigWidth: Int) extends chisel3.RawModule
{
val io = IO(new Bundle {
val a = Input(new RawFloat(expWidth, sigWidth))
val b = Input(new RawFloat(expWidth, sigWidth))
val invalidExc = Output(Bool())
val rawOut = Output(new RawFloat(expWidth, sigWidth + 2))
})
val mulFullRaw = Module(new MulFullRawFN(expWidth, sigWidth))
mulFullRaw.io.a := io.a
mulFullRaw.io.b := io.b
io.invalidExc := mulFullRaw.io.invalidExc
io.rawOut := mulFullRaw.io.rawOut
io.rawOut.sig := {
val sig = mulFullRaw.io.rawOut.sig
Cat(sig >> (sigWidth - 2), sig(sigWidth - 3, 0).orR)
}
}
//----------------------------------------------------------------------------
//----------------------------------------------------------------------------
class MulRecFN(expWidth: Int, sigWidth: Int) extends chisel3.RawModule
{
val io = IO(new Bundle {
val a = Input(UInt((expWidth + sigWidth + 1).W))
val b = Input(UInt((expWidth + sigWidth + 1).W))
val roundingMode = Input(UInt(3.W))
val detectTininess = Input(Bool())
val out = Output(UInt((expWidth + sigWidth + 1).W))
val exceptionFlags = Output(UInt(5.W))
})
//------------------------------------------------------------------------
//------------------------------------------------------------------------
val mulRawFN = Module(new MulRawFN(expWidth, sigWidth))
mulRawFN.io.a := rawFloatFromRecFN(expWidth, sigWidth, io.a)
mulRawFN.io.b := rawFloatFromRecFN(expWidth, sigWidth, io.b)
//------------------------------------------------------------------------
//------------------------------------------------------------------------
val roundRawFNToRecFN =
Module(new RoundRawFNToRecFN(expWidth, sigWidth, 0))
roundRawFNToRecFN.io.invalidExc := mulRawFN.io.invalidExc
roundRawFNToRecFN.io.infiniteExc := false.B
roundRawFNToRecFN.io.in := mulRawFN.io.rawOut
roundRawFNToRecFN.io.roundingMode := io.roundingMode
roundRawFNToRecFN.io.detectTininess := io.detectTininess
io.out := roundRawFNToRecFN.io.out
io.exceptionFlags := roundRawFNToRecFN.io.exceptionFlags
}
| module MulRawFN_52( // @[MulRecFN.scala:75:7]
input io_a_isNaN, // @[MulRecFN.scala:77:16]
input io_a_isInf, // @[MulRecFN.scala:77:16]
input io_a_isZero, // @[MulRecFN.scala:77:16]
input io_a_sign, // @[MulRecFN.scala:77:16]
input [9:0] io_a_sExp, // @[MulRecFN.scala:77:16]
input [24:0] io_a_sig, // @[MulRecFN.scala:77:16]
input io_b_isNaN, // @[MulRecFN.scala:77:16]
input io_b_isInf, // @[MulRecFN.scala:77:16]
input io_b_isZero, // @[MulRecFN.scala:77:16]
input io_b_sign, // @[MulRecFN.scala:77:16]
input [9:0] io_b_sExp, // @[MulRecFN.scala:77:16]
input [24:0] io_b_sig, // @[MulRecFN.scala:77:16]
output io_invalidExc, // @[MulRecFN.scala:77:16]
output io_rawOut_isNaN, // @[MulRecFN.scala:77:16]
output io_rawOut_isInf, // @[MulRecFN.scala:77:16]
output io_rawOut_isZero, // @[MulRecFN.scala:77:16]
output io_rawOut_sign, // @[MulRecFN.scala:77:16]
output [9:0] io_rawOut_sExp, // @[MulRecFN.scala:77:16]
output [26:0] io_rawOut_sig // @[MulRecFN.scala:77:16]
);
wire [47:0] _mulFullRaw_io_rawOut_sig; // @[MulRecFN.scala:84:28]
wire io_a_isNaN_0 = io_a_isNaN; // @[MulRecFN.scala:75:7]
wire io_a_isInf_0 = io_a_isInf; // @[MulRecFN.scala:75:7]
wire io_a_isZero_0 = io_a_isZero; // @[MulRecFN.scala:75:7]
wire io_a_sign_0 = io_a_sign; // @[MulRecFN.scala:75:7]
wire [9:0] io_a_sExp_0 = io_a_sExp; // @[MulRecFN.scala:75:7]
wire [24:0] io_a_sig_0 = io_a_sig; // @[MulRecFN.scala:75:7]
wire io_b_isNaN_0 = io_b_isNaN; // @[MulRecFN.scala:75:7]
wire io_b_isInf_0 = io_b_isInf; // @[MulRecFN.scala:75:7]
wire io_b_isZero_0 = io_b_isZero; // @[MulRecFN.scala:75:7]
wire io_b_sign_0 = io_b_sign; // @[MulRecFN.scala:75:7]
wire [9:0] io_b_sExp_0 = io_b_sExp; // @[MulRecFN.scala:75:7]
wire [24:0] io_b_sig_0 = io_b_sig; // @[MulRecFN.scala:75:7]
wire [26:0] _io_rawOut_sig_T_3; // @[MulRecFN.scala:93:10]
wire io_rawOut_isNaN_0; // @[MulRecFN.scala:75:7]
wire io_rawOut_isInf_0; // @[MulRecFN.scala:75:7]
wire io_rawOut_isZero_0; // @[MulRecFN.scala:75:7]
wire io_rawOut_sign_0; // @[MulRecFN.scala:75:7]
wire [9:0] io_rawOut_sExp_0; // @[MulRecFN.scala:75:7]
wire [26:0] io_rawOut_sig_0; // @[MulRecFN.scala:75:7]
wire io_invalidExc_0; // @[MulRecFN.scala:75:7]
wire [25:0] _io_rawOut_sig_T = _mulFullRaw_io_rawOut_sig[47:22]; // @[MulRecFN.scala:84:28, :93:15]
wire [21:0] _io_rawOut_sig_T_1 = _mulFullRaw_io_rawOut_sig[21:0]; // @[MulRecFN.scala:84:28, :93:37]
wire _io_rawOut_sig_T_2 = |_io_rawOut_sig_T_1; // @[MulRecFN.scala:93:{37,55}]
assign _io_rawOut_sig_T_3 = {_io_rawOut_sig_T, _io_rawOut_sig_T_2}; // @[MulRecFN.scala:93:{10,15,55}]
assign io_rawOut_sig_0 = _io_rawOut_sig_T_3; // @[MulRecFN.scala:75:7, :93:10]
MulFullRawFN_52 mulFullRaw ( // @[MulRecFN.scala:84:28]
.io_a_isNaN (io_a_isNaN_0), // @[MulRecFN.scala:75:7]
.io_a_isInf (io_a_isInf_0), // @[MulRecFN.scala:75:7]
.io_a_isZero (io_a_isZero_0), // @[MulRecFN.scala:75:7]
.io_a_sign (io_a_sign_0), // @[MulRecFN.scala:75:7]
.io_a_sExp (io_a_sExp_0), // @[MulRecFN.scala:75:7]
.io_a_sig (io_a_sig_0), // @[MulRecFN.scala:75:7]
.io_b_isNaN (io_b_isNaN_0), // @[MulRecFN.scala:75:7]
.io_b_isInf (io_b_isInf_0), // @[MulRecFN.scala:75:7]
.io_b_isZero (io_b_isZero_0), // @[MulRecFN.scala:75:7]
.io_b_sign (io_b_sign_0), // @[MulRecFN.scala:75:7]
.io_b_sExp (io_b_sExp_0), // @[MulRecFN.scala:75:7]
.io_b_sig (io_b_sig_0), // @[MulRecFN.scala:75:7]
.io_invalidExc (io_invalidExc_0),
.io_rawOut_isNaN (io_rawOut_isNaN_0),
.io_rawOut_isInf (io_rawOut_isInf_0),
.io_rawOut_isZero (io_rawOut_isZero_0),
.io_rawOut_sign (io_rawOut_sign_0),
.io_rawOut_sExp (io_rawOut_sExp_0),
.io_rawOut_sig (_mulFullRaw_io_rawOut_sig)
); // @[MulRecFN.scala:84:28]
assign io_invalidExc = io_invalidExc_0; // @[MulRecFN.scala:75:7]
assign io_rawOut_isNaN = io_rawOut_isNaN_0; // @[MulRecFN.scala:75:7]
assign io_rawOut_isInf = io_rawOut_isInf_0; // @[MulRecFN.scala:75:7]
assign io_rawOut_isZero = io_rawOut_isZero_0; // @[MulRecFN.scala:75:7]
assign io_rawOut_sign = io_rawOut_sign_0; // @[MulRecFN.scala:75:7]
assign io_rawOut_sExp = io_rawOut_sExp_0; // @[MulRecFN.scala:75:7]
assign io_rawOut_sig = io_rawOut_sig_0; // @[MulRecFN.scala:75:7]
endmodule |
Generate the Verilog code corresponding to the following Chisel files.
File Monitor.scala:
package constellation.channel
import chisel3._
import chisel3.util._
import freechips.rocketchip.diplomacy._
import org.chipsalliance.cde.config.{Parameters}
import freechips.rocketchip.util._
import constellation.noc.{HasNoCParams}
class NoCMonitor(val cParam: ChannelParams)(implicit val p: Parameters) extends Module with HasNoCParams {
val io = IO(new Bundle {
val in = Input(new Channel(cParam))
})
val in_flight = RegInit(VecInit(Seq.fill(cParam.nVirtualChannels) { false.B }))
for (i <- 0 until cParam.srcSpeedup) {
val flit = io.in.flit(i)
when (flit.valid) {
when (flit.bits.head) {
in_flight(flit.bits.virt_channel_id) := true.B
assert (!in_flight(flit.bits.virt_channel_id), "Flit head/tail sequencing is broken")
}
when (flit.bits.tail) {
in_flight(flit.bits.virt_channel_id) := false.B
}
}
val possibleFlows = cParam.possibleFlows
when (flit.valid && flit.bits.head) {
cParam match {
case n: ChannelParams => n.virtualChannelParams.zipWithIndex.foreach { case (v,i) =>
assert(flit.bits.virt_channel_id =/= i.U || v.possibleFlows.toSeq.map(_.isFlow(flit.bits.flow)).orR)
}
case _ => assert(cParam.possibleFlows.toSeq.map(_.isFlow(flit.bits.flow)).orR)
}
}
}
}
File Types.scala:
package constellation.routing
import chisel3._
import chisel3.util._
import org.chipsalliance.cde.config.{Parameters}
import constellation.noc.{HasNoCParams}
import constellation.channel.{Flit}
/** A representation for 1 specific virtual channel in wormhole routing
*
* @param src the source node
* @param vc ID for the virtual channel
* @param dst the destination node
* @param n_vc the number of virtual channels
*/
// BEGIN: ChannelRoutingInfo
case class ChannelRoutingInfo(
src: Int,
dst: Int,
vc: Int,
n_vc: Int
) {
// END: ChannelRoutingInfo
require (src >= -1 && dst >= -1 && vc >= 0, s"Illegal $this")
require (!(src == -1 && dst == -1), s"Illegal $this")
require (vc < n_vc, s"Illegal $this")
val isIngress = src == -1
val isEgress = dst == -1
}
/** Represents the properties of a packet that are relevant for routing
* ingressId and egressId uniquely identify a flow, but vnet and dst are used here
* to simplify the implementation of routingrelations
*
* @param ingressId packet's source ingress point
* @param egressId packet's destination egress point
* @param vNet virtual subnetwork identifier
* @param dst packet's destination node ID
*/
// BEGIN: FlowRoutingInfo
case class FlowRoutingInfo(
ingressId: Int,
egressId: Int,
vNetId: Int,
ingressNode: Int,
ingressNodeId: Int,
egressNode: Int,
egressNodeId: Int,
fifo: Boolean
) {
// END: FlowRoutingInfo
def isFlow(f: FlowRoutingBundle): Bool = {
(f.ingress_node === ingressNode.U &&
f.egress_node === egressNode.U &&
f.ingress_node_id === ingressNodeId.U &&
f.egress_node_id === egressNodeId.U)
}
def asLiteral(b: FlowRoutingBundle): BigInt = {
Seq(
(vNetId , b.vnet_id),
(ingressNode , b.ingress_node),
(ingressNodeId , b.ingress_node_id),
(egressNode , b.egress_node),
(egressNodeId , b.egress_node_id)
).foldLeft(0)((l, t) => {
(l << t._2.getWidth) | t._1
})
}
}
class FlowRoutingBundle(implicit val p: Parameters) extends Bundle with HasNoCParams {
// Instead of tracking ingress/egress ID, track the physical destination id and the offset at the destination
// This simplifies the routing tables
val vnet_id = UInt(log2Ceil(nVirtualNetworks).W)
val ingress_node = UInt(log2Ceil(nNodes).W)
val ingress_node_id = UInt(log2Ceil(maxIngressesAtNode).W)
val egress_node = UInt(log2Ceil(nNodes).W)
val egress_node_id = UInt(log2Ceil(maxEgressesAtNode).W)
}
| module NoCMonitor_114( // @[Monitor.scala:11:7]
input clock, // @[Monitor.scala:11:7]
input reset, // @[Monitor.scala:11:7]
input io_in_flit_0_valid, // @[Monitor.scala:12:14]
input io_in_flit_0_bits_head, // @[Monitor.scala:12:14]
input io_in_flit_0_bits_tail, // @[Monitor.scala:12:14]
input [3:0] io_in_flit_0_bits_flow_ingress_node, // @[Monitor.scala:12:14]
input [1:0] io_in_flit_0_bits_flow_ingress_node_id, // @[Monitor.scala:12:14]
input [3:0] io_in_flit_0_bits_flow_egress_node, // @[Monitor.scala:12:14]
input [2:0] io_in_flit_0_bits_flow_egress_node_id, // @[Monitor.scala:12:14]
input [3:0] io_in_flit_0_bits_virt_channel_id // @[Monitor.scala:12:14]
);
reg in_flight_0; // @[Monitor.scala:16:26]
reg in_flight_1; // @[Monitor.scala:16:26]
reg in_flight_2; // @[Monitor.scala:16:26]
reg in_flight_3; // @[Monitor.scala:16:26]
reg in_flight_4; // @[Monitor.scala:16:26]
reg in_flight_5; // @[Monitor.scala:16:26]
reg in_flight_6; // @[Monitor.scala:16:26]
reg in_flight_7; // @[Monitor.scala:16:26]
reg in_flight_8; // @[Monitor.scala:16:26]
reg in_flight_9; // @[Monitor.scala:16:26]
wire _GEN = io_in_flit_0_bits_virt_channel_id == 4'h0; // @[Monitor.scala:21:46]
wire _GEN_0 = io_in_flit_0_bits_virt_channel_id == 4'h1; // @[Monitor.scala:21:46] |
Generate the Verilog code corresponding to the following Chisel files.
File ShiftReg.scala:
// See LICENSE.SiFive for license details.
package freechips.rocketchip.util
import chisel3._
// Similar to the Chisel ShiftRegister but allows the user to suggest a
// name to the registers that get instantiated, and
// to provide a reset value.
object ShiftRegInit {
def apply[T <: Data](in: T, n: Int, init: T, name: Option[String] = None): T =
(0 until n).foldRight(in) {
case (i, next) => {
val r = RegNext(next, init)
name.foreach { na => r.suggestName(s"${na}_${i}") }
r
}
}
}
/** These wrap behavioral
* shift registers into specific modules to allow for
* backend flows to replace or constrain
* them properly when used for CDC synchronization,
* rather than buffering.
*
* The different types vary in their reset behavior:
* AsyncResetShiftReg -- Asynchronously reset register array
* A W(width) x D(depth) sized array is constructed from D instantiations of a
* W-wide register vector. Functionally identical to AsyncResetSyncrhonizerShiftReg,
* but only used for timing applications
*/
abstract class AbstractPipelineReg(w: Int = 1) extends Module {
val io = IO(new Bundle {
val d = Input(UInt(w.W))
val q = Output(UInt(w.W))
}
)
}
object AbstractPipelineReg {
def apply [T <: Data](gen: => AbstractPipelineReg, in: T, name: Option[String] = None): T = {
val chain = Module(gen)
name.foreach{ chain.suggestName(_) }
chain.io.d := in.asUInt
chain.io.q.asTypeOf(in)
}
}
class AsyncResetShiftReg(w: Int = 1, depth: Int = 1, init: Int = 0, name: String = "pipe") extends AbstractPipelineReg(w) {
require(depth > 0, "Depth must be greater than 0.")
override def desiredName = s"AsyncResetShiftReg_w${w}_d${depth}_i${init}"
val chain = List.tabulate(depth) { i =>
Module (new AsyncResetRegVec(w, init)).suggestName(s"${name}_${i}")
}
chain.last.io.d := io.d
chain.last.io.en := true.B
(chain.init zip chain.tail).foreach { case (sink, source) =>
sink.io.d := source.io.q
sink.io.en := true.B
}
io.q := chain.head.io.q
}
object AsyncResetShiftReg {
def apply [T <: Data](in: T, depth: Int, init: Int = 0, name: Option[String] = None): T =
AbstractPipelineReg(new AsyncResetShiftReg(in.getWidth, depth, init), in, name)
def apply [T <: Data](in: T, depth: Int, name: Option[String]): T =
apply(in, depth, 0, name)
def apply [T <: Data](in: T, depth: Int, init: T, name: Option[String]): T =
apply(in, depth, init.litValue.toInt, name)
def apply [T <: Data](in: T, depth: Int, init: T): T =
apply (in, depth, init.litValue.toInt, None)
}
File SynchronizerReg.scala:
// See LICENSE.SiFive for license details.
package freechips.rocketchip.util
import chisel3._
import chisel3.util.{RegEnable, Cat}
/** These wrap behavioral
* shift and next registers into specific modules to allow for
* backend flows to replace or constrain
* them properly when used for CDC synchronization,
* rather than buffering.
*
*
* These are built up of *ResetSynchronizerPrimitiveShiftReg,
* intended to be replaced by the integrator's metastable flops chains or replaced
* at this level if they have a multi-bit wide synchronizer primitive.
* The different types vary in their reset behavior:
* NonSyncResetSynchronizerShiftReg -- Register array which does not have a reset pin
* AsyncResetSynchronizerShiftReg -- Asynchronously reset register array, constructed from W instantiations of D deep
* 1-bit-wide shift registers.
* SyncResetSynchronizerShiftReg -- Synchronously reset register array, constructed similarly to AsyncResetSynchronizerShiftReg
*
* [Inferred]ResetSynchronizerShiftReg -- TBD reset type by chisel3 reset inference.
*
* ClockCrossingReg -- Not made up of SynchronizerPrimitiveShiftReg. This is for single-deep flops which cross
* Clock Domains.
*/
object SynchronizerResetType extends Enumeration {
val NonSync, Inferred, Sync, Async = Value
}
// Note: this should not be used directly.
// Use the companion object to generate this with the correct reset type mixin.
private class SynchronizerPrimitiveShiftReg(
sync: Int,
init: Boolean,
resetType: SynchronizerResetType.Value)
extends AbstractPipelineReg(1) {
val initInt = if (init) 1 else 0
val initPostfix = resetType match {
case SynchronizerResetType.NonSync => ""
case _ => s"_i${initInt}"
}
override def desiredName = s"${resetType.toString}ResetSynchronizerPrimitiveShiftReg_d${sync}${initPostfix}"
val chain = List.tabulate(sync) { i =>
val reg = if (resetType == SynchronizerResetType.NonSync) Reg(Bool()) else RegInit(init.B)
reg.suggestName(s"sync_$i")
}
chain.last := io.d.asBool
(chain.init zip chain.tail).foreach { case (sink, source) =>
sink := source
}
io.q := chain.head.asUInt
}
private object SynchronizerPrimitiveShiftReg {
def apply (in: Bool, sync: Int, init: Boolean, resetType: SynchronizerResetType.Value): Bool = {
val gen: () => SynchronizerPrimitiveShiftReg = resetType match {
case SynchronizerResetType.NonSync =>
() => new SynchronizerPrimitiveShiftReg(sync, init, resetType)
case SynchronizerResetType.Async =>
() => new SynchronizerPrimitiveShiftReg(sync, init, resetType) with RequireAsyncReset
case SynchronizerResetType.Sync =>
() => new SynchronizerPrimitiveShiftReg(sync, init, resetType) with RequireSyncReset
case SynchronizerResetType.Inferred =>
() => new SynchronizerPrimitiveShiftReg(sync, init, resetType)
}
AbstractPipelineReg(gen(), in)
}
}
// Note: This module may end up with a non-AsyncReset type reset.
// But the Primitives within will always have AsyncReset type.
class AsyncResetSynchronizerShiftReg(w: Int = 1, sync: Int, init: Int)
extends AbstractPipelineReg(w) {
require(sync > 1, s"Sync must be greater than 1, not ${sync}.")
override def desiredName = s"AsyncResetSynchronizerShiftReg_w${w}_d${sync}_i${init}"
val output = Seq.tabulate(w) { i =>
val initBit = ((init >> i) & 1) > 0
withReset(reset.asAsyncReset){
SynchronizerPrimitiveShiftReg(io.d(i), sync, initBit, SynchronizerResetType.Async)
}
}
io.q := Cat(output.reverse)
}
object AsyncResetSynchronizerShiftReg {
def apply [T <: Data](in: T, sync: Int, init: Int, name: Option[String] = None): T =
AbstractPipelineReg(new AsyncResetSynchronizerShiftReg(in.getWidth, sync, init), in, name)
def apply [T <: Data](in: T, sync: Int, name: Option[String]): T =
apply (in, sync, 0, name)
def apply [T <: Data](in: T, sync: Int): T =
apply (in, sync, 0, None)
def apply [T <: Data](in: T, sync: Int, init: T, name: Option[String]): T =
apply(in, sync, init.litValue.toInt, name)
def apply [T <: Data](in: T, sync: Int, init: T): T =
apply (in, sync, init.litValue.toInt, None)
}
// Note: This module may end up with a non-Bool type reset.
// But the Primitives within will always have Bool reset type.
@deprecated("SyncResetSynchronizerShiftReg is unecessary with Chisel3 inferred resets. Use ResetSynchronizerShiftReg which will use the inferred reset type.", "rocket-chip 1.2")
class SyncResetSynchronizerShiftReg(w: Int = 1, sync: Int, init: Int) extends AbstractPipelineReg(w) {
require(sync > 1, s"Sync must be greater than 1, not ${sync}.")
override def desiredName = s"SyncResetSynchronizerShiftReg_w${w}_d${sync}_i${init}"
val output = Seq.tabulate(w) { i =>
val initBit = ((init >> i) & 1) > 0
withReset(reset.asBool){
SynchronizerPrimitiveShiftReg(io.d(i), sync, initBit, SynchronizerResetType.Sync)
}
}
io.q := Cat(output.reverse)
}
object SyncResetSynchronizerShiftReg {
def apply [T <: Data](in: T, sync: Int, init: Int, name: Option[String] = None): T =
if (sync == 0) in else AbstractPipelineReg(new SyncResetSynchronizerShiftReg(in.getWidth, sync, init), in, name)
def apply [T <: Data](in: T, sync: Int, name: Option[String]): T =
apply (in, sync, 0, name)
def apply [T <: Data](in: T, sync: Int): T =
apply (in, sync, 0, None)
def apply [T <: Data](in: T, sync: Int, init: T, name: Option[String]): T =
apply(in, sync, init.litValue.toInt, name)
def apply [T <: Data](in: T, sync: Int, init: T): T =
apply (in, sync, init.litValue.toInt, None)
}
class ResetSynchronizerShiftReg(w: Int = 1, sync: Int, init: Int) extends AbstractPipelineReg(w) {
require(sync > 1, s"Sync must be greater than 1, not ${sync}.")
override def desiredName = s"ResetSynchronizerShiftReg_w${w}_d${sync}_i${init}"
val output = Seq.tabulate(w) { i =>
val initBit = ((init >> i) & 1) > 0
SynchronizerPrimitiveShiftReg(io.d(i), sync, initBit, SynchronizerResetType.Inferred)
}
io.q := Cat(output.reverse)
}
object ResetSynchronizerShiftReg {
def apply [T <: Data](in: T, sync: Int, init: Int, name: Option[String] = None): T =
AbstractPipelineReg(new ResetSynchronizerShiftReg(in.getWidth, sync, init), in, name)
def apply [T <: Data](in: T, sync: Int, name: Option[String]): T =
apply (in, sync, 0, name)
def apply [T <: Data](in: T, sync: Int): T =
apply (in, sync, 0, None)
def apply [T <: Data](in: T, sync: Int, init: T, name: Option[String]): T =
apply(in, sync, init.litValue.toInt, name)
def apply [T <: Data](in: T, sync: Int, init: T): T =
apply (in, sync, init.litValue.toInt, None)
}
class SynchronizerShiftReg(w: Int = 1, sync: Int = 3) extends AbstractPipelineReg(w) {
require(sync > 1, s"Sync must be greater than 1, not ${sync}.")
override def desiredName = s"SynchronizerShiftReg_w${w}_d${sync}"
val output = Seq.tabulate(w) { i =>
SynchronizerPrimitiveShiftReg(io.d(i), sync, false, SynchronizerResetType.NonSync)
}
io.q := Cat(output.reverse)
}
object SynchronizerShiftReg {
def apply [T <: Data](in: T, sync: Int, name: Option[String] = None): T =
if (sync == 0) in else AbstractPipelineReg(new SynchronizerShiftReg(in.getWidth, sync), in, name)
def apply [T <: Data](in: T, sync: Int): T =
apply (in, sync, None)
def apply [T <: Data](in: T): T =
apply (in, 3, None)
}
class ClockCrossingReg(w: Int = 1, doInit: Boolean) extends Module {
override def desiredName = s"ClockCrossingReg_w${w}"
val io = IO(new Bundle{
val d = Input(UInt(w.W))
val q = Output(UInt(w.W))
val en = Input(Bool())
})
val cdc_reg = if (doInit) RegEnable(io.d, 0.U(w.W), io.en) else RegEnable(io.d, io.en)
io.q := cdc_reg
}
object ClockCrossingReg {
def apply [T <: Data](in: T, en: Bool, doInit: Boolean, name: Option[String] = None): T = {
val cdc_reg = Module(new ClockCrossingReg(in.getWidth, doInit))
name.foreach{ cdc_reg.suggestName(_) }
cdc_reg.io.d := in.asUInt
cdc_reg.io.en := en
cdc_reg.io.q.asTypeOf(in)
}
}
| module AsyncResetSynchronizerShiftReg_w1_d3_i0_123( // @[SynchronizerReg.scala:80:7]
input clock, // @[SynchronizerReg.scala:80:7]
input reset, // @[SynchronizerReg.scala:80:7]
input io_d, // @[ShiftReg.scala:36:14]
output io_q // @[ShiftReg.scala:36:14]
);
wire io_d_0 = io_d; // @[SynchronizerReg.scala:80:7]
wire _output_T = reset; // @[SynchronizerReg.scala:86:21]
wire _output_T_1 = io_d_0; // @[SynchronizerReg.scala:80:7, :87:41]
wire output_0; // @[ShiftReg.scala:48:24]
wire io_q_0; // @[SynchronizerReg.scala:80:7]
assign io_q_0 = output_0; // @[SynchronizerReg.scala:80:7]
AsyncResetSynchronizerPrimitiveShiftReg_d3_i0_207 output_chain ( // @[ShiftReg.scala:45:23]
.clock (clock),
.reset (_output_T), // @[SynchronizerReg.scala:86:21]
.io_d (_output_T_1), // @[SynchronizerReg.scala:87:41]
.io_q (output_0)
); // @[ShiftReg.scala:45:23]
assign io_q = io_q_0; // @[SynchronizerReg.scala:80:7]
endmodule |
Generate the Verilog code corresponding to the following Chisel files.
File Nodes.scala:
// See LICENSE.SiFive for license details.
package freechips.rocketchip.tilelink
import chisel3._
import chisel3.experimental.SourceInfo
import org.chipsalliance.cde.config._
import org.chipsalliance.diplomacy._
import org.chipsalliance.diplomacy.nodes._
import freechips.rocketchip.util.{AsyncQueueParams,RationalDirection}
case object TLMonitorBuilder extends Field[TLMonitorArgs => TLMonitorBase](args => new TLMonitor(args))
object TLImp extends NodeImp[TLMasterPortParameters, TLSlavePortParameters, TLEdgeOut, TLEdgeIn, TLBundle]
{
def edgeO(pd: TLMasterPortParameters, pu: TLSlavePortParameters, p: Parameters, sourceInfo: SourceInfo) = new TLEdgeOut(pd, pu, p, sourceInfo)
def edgeI(pd: TLMasterPortParameters, pu: TLSlavePortParameters, p: Parameters, sourceInfo: SourceInfo) = new TLEdgeIn (pd, pu, p, sourceInfo)
def bundleO(eo: TLEdgeOut) = TLBundle(eo.bundle)
def bundleI(ei: TLEdgeIn) = TLBundle(ei.bundle)
def render(ei: TLEdgeIn) = RenderedEdge(colour = "#000000" /* black */, label = (ei.manager.beatBytes * 8).toString)
override def monitor(bundle: TLBundle, edge: TLEdgeIn): Unit = {
val monitor = Module(edge.params(TLMonitorBuilder)(TLMonitorArgs(edge)))
monitor.io.in := bundle
}
override def mixO(pd: TLMasterPortParameters, node: OutwardNode[TLMasterPortParameters, TLSlavePortParameters, TLBundle]): TLMasterPortParameters =
pd.v1copy(clients = pd.clients.map { c => c.v1copy (nodePath = node +: c.nodePath) })
override def mixI(pu: TLSlavePortParameters, node: InwardNode[TLMasterPortParameters, TLSlavePortParameters, TLBundle]): TLSlavePortParameters =
pu.v1copy(managers = pu.managers.map { m => m.v1copy (nodePath = node +: m.nodePath) })
}
trait TLFormatNode extends FormatNode[TLEdgeIn, TLEdgeOut]
case class TLClientNode(portParams: Seq[TLMasterPortParameters])(implicit valName: ValName) extends SourceNode(TLImp)(portParams) with TLFormatNode
case class TLManagerNode(portParams: Seq[TLSlavePortParameters])(implicit valName: ValName) extends SinkNode(TLImp)(portParams) with TLFormatNode
case class TLAdapterNode(
clientFn: TLMasterPortParameters => TLMasterPortParameters = { s => s },
managerFn: TLSlavePortParameters => TLSlavePortParameters = { s => s })(
implicit valName: ValName)
extends AdapterNode(TLImp)(clientFn, managerFn) with TLFormatNode
case class TLJunctionNode(
clientFn: Seq[TLMasterPortParameters] => Seq[TLMasterPortParameters],
managerFn: Seq[TLSlavePortParameters] => Seq[TLSlavePortParameters])(
implicit valName: ValName)
extends JunctionNode(TLImp)(clientFn, managerFn) with TLFormatNode
case class TLIdentityNode()(implicit valName: ValName) extends IdentityNode(TLImp)() with TLFormatNode
object TLNameNode {
def apply(name: ValName) = TLIdentityNode()(name)
def apply(name: Option[String]): TLIdentityNode = apply(ValName(name.getOrElse("with_no_name")))
def apply(name: String): TLIdentityNode = apply(Some(name))
}
case class TLEphemeralNode()(implicit valName: ValName) extends EphemeralNode(TLImp)()
object TLTempNode {
def apply(): TLEphemeralNode = TLEphemeralNode()(ValName("temp"))
}
case class TLNexusNode(
clientFn: Seq[TLMasterPortParameters] => TLMasterPortParameters,
managerFn: Seq[TLSlavePortParameters] => TLSlavePortParameters)(
implicit valName: ValName)
extends NexusNode(TLImp)(clientFn, managerFn) with TLFormatNode
abstract class TLCustomNode(implicit valName: ValName)
extends CustomNode(TLImp) with TLFormatNode
// Asynchronous crossings
trait TLAsyncFormatNode extends FormatNode[TLAsyncEdgeParameters, TLAsyncEdgeParameters]
object TLAsyncImp extends SimpleNodeImp[TLAsyncClientPortParameters, TLAsyncManagerPortParameters, TLAsyncEdgeParameters, TLAsyncBundle]
{
def edge(pd: TLAsyncClientPortParameters, pu: TLAsyncManagerPortParameters, p: Parameters, sourceInfo: SourceInfo) = TLAsyncEdgeParameters(pd, pu, p, sourceInfo)
def bundle(e: TLAsyncEdgeParameters) = new TLAsyncBundle(e.bundle)
def render(e: TLAsyncEdgeParameters) = RenderedEdge(colour = "#ff0000" /* red */, label = e.manager.async.depth.toString)
override def mixO(pd: TLAsyncClientPortParameters, node: OutwardNode[TLAsyncClientPortParameters, TLAsyncManagerPortParameters, TLAsyncBundle]): TLAsyncClientPortParameters =
pd.copy(base = pd.base.v1copy(clients = pd.base.clients.map { c => c.v1copy (nodePath = node +: c.nodePath) }))
override def mixI(pu: TLAsyncManagerPortParameters, node: InwardNode[TLAsyncClientPortParameters, TLAsyncManagerPortParameters, TLAsyncBundle]): TLAsyncManagerPortParameters =
pu.copy(base = pu.base.v1copy(managers = pu.base.managers.map { m => m.v1copy (nodePath = node +: m.nodePath) }))
}
case class TLAsyncAdapterNode(
clientFn: TLAsyncClientPortParameters => TLAsyncClientPortParameters = { s => s },
managerFn: TLAsyncManagerPortParameters => TLAsyncManagerPortParameters = { s => s })(
implicit valName: ValName)
extends AdapterNode(TLAsyncImp)(clientFn, managerFn) with TLAsyncFormatNode
case class TLAsyncIdentityNode()(implicit valName: ValName) extends IdentityNode(TLAsyncImp)() with TLAsyncFormatNode
object TLAsyncNameNode {
def apply(name: ValName) = TLAsyncIdentityNode()(name)
def apply(name: Option[String]): TLAsyncIdentityNode = apply(ValName(name.getOrElse("with_no_name")))
def apply(name: String): TLAsyncIdentityNode = apply(Some(name))
}
case class TLAsyncSourceNode(sync: Option[Int])(implicit valName: ValName)
extends MixedAdapterNode(TLImp, TLAsyncImp)(
dFn = { p => TLAsyncClientPortParameters(p) },
uFn = { p => p.base.v1copy(minLatency = p.base.minLatency + sync.getOrElse(p.async.sync)) }) with FormatNode[TLEdgeIn, TLAsyncEdgeParameters] // discard cycles in other clock domain
case class TLAsyncSinkNode(async: AsyncQueueParams)(implicit valName: ValName)
extends MixedAdapterNode(TLAsyncImp, TLImp)(
dFn = { p => p.base.v1copy(minLatency = p.base.minLatency + async.sync) },
uFn = { p => TLAsyncManagerPortParameters(async, p) }) with FormatNode[TLAsyncEdgeParameters, TLEdgeOut]
// Rationally related crossings
trait TLRationalFormatNode extends FormatNode[TLRationalEdgeParameters, TLRationalEdgeParameters]
object TLRationalImp extends SimpleNodeImp[TLRationalClientPortParameters, TLRationalManagerPortParameters, TLRationalEdgeParameters, TLRationalBundle]
{
def edge(pd: TLRationalClientPortParameters, pu: TLRationalManagerPortParameters, p: Parameters, sourceInfo: SourceInfo) = TLRationalEdgeParameters(pd, pu, p, sourceInfo)
def bundle(e: TLRationalEdgeParameters) = new TLRationalBundle(e.bundle)
def render(e: TLRationalEdgeParameters) = RenderedEdge(colour = "#00ff00" /* green */)
override def mixO(pd: TLRationalClientPortParameters, node: OutwardNode[TLRationalClientPortParameters, TLRationalManagerPortParameters, TLRationalBundle]): TLRationalClientPortParameters =
pd.copy(base = pd.base.v1copy(clients = pd.base.clients.map { c => c.v1copy (nodePath = node +: c.nodePath) }))
override def mixI(pu: TLRationalManagerPortParameters, node: InwardNode[TLRationalClientPortParameters, TLRationalManagerPortParameters, TLRationalBundle]): TLRationalManagerPortParameters =
pu.copy(base = pu.base.v1copy(managers = pu.base.managers.map { m => m.v1copy (nodePath = node +: m.nodePath) }))
}
case class TLRationalAdapterNode(
clientFn: TLRationalClientPortParameters => TLRationalClientPortParameters = { s => s },
managerFn: TLRationalManagerPortParameters => TLRationalManagerPortParameters = { s => s })(
implicit valName: ValName)
extends AdapterNode(TLRationalImp)(clientFn, managerFn) with TLRationalFormatNode
case class TLRationalIdentityNode()(implicit valName: ValName) extends IdentityNode(TLRationalImp)() with TLRationalFormatNode
object TLRationalNameNode {
def apply(name: ValName) = TLRationalIdentityNode()(name)
def apply(name: Option[String]): TLRationalIdentityNode = apply(ValName(name.getOrElse("with_no_name")))
def apply(name: String): TLRationalIdentityNode = apply(Some(name))
}
case class TLRationalSourceNode()(implicit valName: ValName)
extends MixedAdapterNode(TLImp, TLRationalImp)(
dFn = { p => TLRationalClientPortParameters(p) },
uFn = { p => p.base.v1copy(minLatency = 1) }) with FormatNode[TLEdgeIn, TLRationalEdgeParameters] // discard cycles from other clock domain
case class TLRationalSinkNode(direction: RationalDirection)(implicit valName: ValName)
extends MixedAdapterNode(TLRationalImp, TLImp)(
dFn = { p => p.base.v1copy(minLatency = 1) },
uFn = { p => TLRationalManagerPortParameters(direction, p) }) with FormatNode[TLRationalEdgeParameters, TLEdgeOut]
// Credited version of TileLink channels
trait TLCreditedFormatNode extends FormatNode[TLCreditedEdgeParameters, TLCreditedEdgeParameters]
object TLCreditedImp extends SimpleNodeImp[TLCreditedClientPortParameters, TLCreditedManagerPortParameters, TLCreditedEdgeParameters, TLCreditedBundle]
{
def edge(pd: TLCreditedClientPortParameters, pu: TLCreditedManagerPortParameters, p: Parameters, sourceInfo: SourceInfo) = TLCreditedEdgeParameters(pd, pu, p, sourceInfo)
def bundle(e: TLCreditedEdgeParameters) = new TLCreditedBundle(e.bundle)
def render(e: TLCreditedEdgeParameters) = RenderedEdge(colour = "#ffff00" /* yellow */, e.delay.toString)
override def mixO(pd: TLCreditedClientPortParameters, node: OutwardNode[TLCreditedClientPortParameters, TLCreditedManagerPortParameters, TLCreditedBundle]): TLCreditedClientPortParameters =
pd.copy(base = pd.base.v1copy(clients = pd.base.clients.map { c => c.v1copy (nodePath = node +: c.nodePath) }))
override def mixI(pu: TLCreditedManagerPortParameters, node: InwardNode[TLCreditedClientPortParameters, TLCreditedManagerPortParameters, TLCreditedBundle]): TLCreditedManagerPortParameters =
pu.copy(base = pu.base.v1copy(managers = pu.base.managers.map { m => m.v1copy (nodePath = node +: m.nodePath) }))
}
case class TLCreditedAdapterNode(
clientFn: TLCreditedClientPortParameters => TLCreditedClientPortParameters = { s => s },
managerFn: TLCreditedManagerPortParameters => TLCreditedManagerPortParameters = { s => s })(
implicit valName: ValName)
extends AdapterNode(TLCreditedImp)(clientFn, managerFn) with TLCreditedFormatNode
case class TLCreditedIdentityNode()(implicit valName: ValName) extends IdentityNode(TLCreditedImp)() with TLCreditedFormatNode
object TLCreditedNameNode {
def apply(name: ValName) = TLCreditedIdentityNode()(name)
def apply(name: Option[String]): TLCreditedIdentityNode = apply(ValName(name.getOrElse("with_no_name")))
def apply(name: String): TLCreditedIdentityNode = apply(Some(name))
}
case class TLCreditedSourceNode(delay: TLCreditedDelay)(implicit valName: ValName)
extends MixedAdapterNode(TLImp, TLCreditedImp)(
dFn = { p => TLCreditedClientPortParameters(delay, p) },
uFn = { p => p.base.v1copy(minLatency = 1) }) with FormatNode[TLEdgeIn, TLCreditedEdgeParameters] // discard cycles from other clock domain
case class TLCreditedSinkNode(delay: TLCreditedDelay)(implicit valName: ValName)
extends MixedAdapterNode(TLCreditedImp, TLImp)(
dFn = { p => p.base.v1copy(minLatency = 1) },
uFn = { p => TLCreditedManagerPortParameters(delay, p) }) with FormatNode[TLCreditedEdgeParameters, TLEdgeOut]
File LazyModuleImp.scala:
package org.chipsalliance.diplomacy.lazymodule
import chisel3.{withClockAndReset, Module, RawModule, Reset, _}
import chisel3.experimental.{ChiselAnnotation, CloneModuleAsRecord, SourceInfo}
import firrtl.passes.InlineAnnotation
import org.chipsalliance.cde.config.Parameters
import org.chipsalliance.diplomacy.nodes.Dangle
import scala.collection.immutable.SortedMap
/** Trait describing the actual [[Module]] implementation wrapped by a [[LazyModule]].
*
* This is the actual Chisel module that is lazily-evaluated in the second phase of Diplomacy.
*/
sealed trait LazyModuleImpLike extends RawModule {
/** [[LazyModule]] that contains this instance. */
val wrapper: LazyModule
/** IOs that will be automatically "punched" for this instance. */
val auto: AutoBundle
/** The metadata that describes the [[HalfEdge]]s which generated [[auto]]. */
protected[diplomacy] val dangles: Seq[Dangle]
// [[wrapper.module]] had better not be accessed while LazyModules are still being built!
require(
LazyModule.scope.isEmpty,
s"${wrapper.name}.module was constructed before LazyModule() was run on ${LazyModule.scope.get.name}"
)
/** Set module name. Defaults to the containing LazyModule's desiredName. */
override def desiredName: String = wrapper.desiredName
suggestName(wrapper.suggestedName)
/** [[Parameters]] for chisel [[Module]]s. */
implicit val p: Parameters = wrapper.p
/** instantiate this [[LazyModule]], return [[AutoBundle]] and a unconnected [[Dangle]]s from this module and
* submodules.
*/
protected[diplomacy] def instantiate(): (AutoBundle, List[Dangle]) = {
// 1. It will recursively append [[wrapper.children]] into [[chisel3.internal.Builder]],
// 2. return [[Dangle]]s from each module.
val childDangles = wrapper.children.reverse.flatMap { c =>
implicit val sourceInfo: SourceInfo = c.info
c.cloneProto.map { cp =>
// If the child is a clone, then recursively set cloneProto of its children as well
def assignCloneProtos(bases: Seq[LazyModule], clones: Seq[LazyModule]): Unit = {
require(bases.size == clones.size)
(bases.zip(clones)).map { case (l, r) =>
require(l.getClass == r.getClass, s"Cloned children class mismatch ${l.name} != ${r.name}")
l.cloneProto = Some(r)
assignCloneProtos(l.children, r.children)
}
}
assignCloneProtos(c.children, cp.children)
// Clone the child module as a record, and get its [[AutoBundle]]
val clone = CloneModuleAsRecord(cp.module).suggestName(c.suggestedName)
val clonedAuto = clone("auto").asInstanceOf[AutoBundle]
// Get the empty [[Dangle]]'s of the cloned child
val rawDangles = c.cloneDangles()
require(rawDangles.size == clonedAuto.elements.size)
// Assign the [[AutoBundle]] fields of the cloned record to the empty [[Dangle]]'s
val dangles = (rawDangles.zip(clonedAuto.elements)).map { case (d, (_, io)) => d.copy(dataOpt = Some(io)) }
dangles
}.getOrElse {
// For non-clones, instantiate the child module
val mod = try {
Module(c.module)
} catch {
case e: ChiselException => {
println(s"Chisel exception caught when instantiating ${c.name} within ${this.name} at ${c.line}")
throw e
}
}
mod.dangles
}
}
// Ask each node in this [[LazyModule]] to call [[BaseNode.instantiate]].
// This will result in a sequence of [[Dangle]] from these [[BaseNode]]s.
val nodeDangles = wrapper.nodes.reverse.flatMap(_.instantiate())
// Accumulate all the [[Dangle]]s from this node and any accumulated from its [[wrapper.children]]
val allDangles = nodeDangles ++ childDangles
// Group [[allDangles]] by their [[source]].
val pairing = SortedMap(allDangles.groupBy(_.source).toSeq: _*)
// For each [[source]] set of [[Dangle]]s of size 2, ensure that these
// can be connected as a source-sink pair (have opposite flipped value).
// Make the connection and mark them as [[done]].
val done = Set() ++ pairing.values.filter(_.size == 2).map {
case Seq(a, b) =>
require(a.flipped != b.flipped)
// @todo <> in chisel3 makes directionless connection.
if (a.flipped) {
a.data <> b.data
} else {
b.data <> a.data
}
a.source
case _ => None
}
// Find all [[Dangle]]s which are still not connected. These will end up as [[AutoBundle]] [[IO]] ports on the module.
val forward = allDangles.filter(d => !done(d.source))
// Generate [[AutoBundle]] IO from [[forward]].
val auto = IO(new AutoBundle(forward.map { d => (d.name, d.data, d.flipped) }: _*))
// Pass the [[Dangle]]s which remained and were used to generate the [[AutoBundle]] I/O ports up to the [[parent]] [[LazyModule]]
val dangles = (forward.zip(auto.elements)).map { case (d, (_, io)) =>
if (d.flipped) {
d.data <> io
} else {
io <> d.data
}
d.copy(dataOpt = Some(io), name = wrapper.suggestedName + "_" + d.name)
}
// Push all [[LazyModule.inModuleBody]] to [[chisel3.internal.Builder]].
wrapper.inModuleBody.reverse.foreach {
_()
}
if (wrapper.shouldBeInlined) {
chisel3.experimental.annotate(new ChiselAnnotation {
def toFirrtl = InlineAnnotation(toNamed)
})
}
// Return [[IO]] and [[Dangle]] of this [[LazyModuleImp]].
(auto, dangles)
}
}
/** Actual description of a [[Module]] which can be instantiated by a call to [[LazyModule.module]].
*
* @param wrapper
* the [[LazyModule]] from which the `.module` call is being made.
*/
class LazyModuleImp(val wrapper: LazyModule) extends Module with LazyModuleImpLike {
/** Instantiate hardware of this `Module`. */
val (auto, dangles) = instantiate()
}
/** Actual description of a [[RawModule]] which can be instantiated by a call to [[LazyModule.module]].
*
* @param wrapper
* the [[LazyModule]] from which the `.module` call is being made.
*/
class LazyRawModuleImp(val wrapper: LazyModule) extends RawModule with LazyModuleImpLike {
// These wires are the default clock+reset for all LazyModule children.
// It is recommended to drive these even if you manually drive the [[clock]] and [[reset]] of all of the
// [[LazyRawModuleImp]] children.
// Otherwise, anonymous children ([[Monitor]]s for example) will not have their [[clock]] and/or [[reset]] driven properly.
/** drive clock explicitly. */
val childClock: Clock = Wire(Clock())
/** drive reset explicitly. */
val childReset: Reset = Wire(Reset())
// the default is that these are disabled
childClock := false.B.asClock
childReset := chisel3.DontCare
def provideImplicitClockToLazyChildren: Boolean = false
val (auto, dangles) =
if (provideImplicitClockToLazyChildren) {
withClockAndReset(childClock, childReset) { instantiate() }
} else {
instantiate()
}
}
File Parameters.scala:
/*
* Copyright 2019 SiFive, Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You should have received a copy of LICENSE.Apache2 along with
* this software. If not, you may obtain a copy at
*
* https://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package sifive.blocks.inclusivecache
import chisel3._
import chisel3.util._
import chisel3.experimental.SourceInfo
import org.chipsalliance.cde.config._
import freechips.rocketchip.diplomacy._
import freechips.rocketchip.tilelink._
import freechips.rocketchip.util._
import freechips.rocketchip.util.property.cover
import scala.math.{min,max}
case class CacheParameters(
level: Int,
ways: Int,
sets: Int,
blockBytes: Int,
beatBytes: Int, // inner
hintsSkipProbe: Boolean)
{
require (ways > 0)
require (sets > 0)
require (blockBytes > 0 && isPow2(blockBytes))
require (beatBytes > 0 && isPow2(beatBytes))
require (blockBytes >= beatBytes)
val blocks = ways * sets
val sizeBytes = blocks * blockBytes
val blockBeats = blockBytes/beatBytes
}
case class InclusiveCachePortParameters(
a: BufferParams,
b: BufferParams,
c: BufferParams,
d: BufferParams,
e: BufferParams)
{
def apply()(implicit p: Parameters, valName: ValName) = LazyModule(new TLBuffer(a, b, c, d, e))
}
object InclusiveCachePortParameters
{
val none = InclusiveCachePortParameters(
a = BufferParams.none,
b = BufferParams.none,
c = BufferParams.none,
d = BufferParams.none,
e = BufferParams.none)
val full = InclusiveCachePortParameters(
a = BufferParams.default,
b = BufferParams.default,
c = BufferParams.default,
d = BufferParams.default,
e = BufferParams.default)
// This removes feed-through paths from C=>A and A=>C
val fullC = InclusiveCachePortParameters(
a = BufferParams.none,
b = BufferParams.none,
c = BufferParams.default,
d = BufferParams.none,
e = BufferParams.none)
val flowAD = InclusiveCachePortParameters(
a = BufferParams.flow,
b = BufferParams.none,
c = BufferParams.none,
d = BufferParams.flow,
e = BufferParams.none)
val flowAE = InclusiveCachePortParameters(
a = BufferParams.flow,
b = BufferParams.none,
c = BufferParams.none,
d = BufferParams.none,
e = BufferParams.flow)
// For innerBuf:
// SinkA: no restrictions, flows into scheduler+putbuffer
// SourceB: no restrictions, flows out of scheduler
// sinkC: no restrictions, flows into scheduler+putbuffer & buffered to bankedStore
// SourceD: no restrictions, flows out of bankedStore/regout
// SinkE: no restrictions, flows into scheduler
//
// ... so while none is possible, you probably want at least flowAC to cut ready
// from the scheduler delay and flowD to ease SourceD back-pressure
// For outerBufer:
// SourceA: must not be pipe, flows out of scheduler
// SinkB: no restrictions, flows into scheduler
// SourceC: pipe is useless, flows out of bankedStore/regout, parameter depth ignored
// SinkD: no restrictions, flows into scheduler & bankedStore
// SourceE: must not be pipe, flows out of scheduler
//
// ... AE take the channel ready into the scheduler, so you need at least flowAE
}
case class InclusiveCacheMicroParameters(
writeBytes: Int, // backing store update granularity
memCycles: Int = 40, // # of L2 clock cycles for a memory round-trip (50ns @ 800MHz)
portFactor: Int = 4, // numSubBanks = (widest TL port * portFactor) / writeBytes
dirReg: Boolean = false,
innerBuf: InclusiveCachePortParameters = InclusiveCachePortParameters.fullC, // or none
outerBuf: InclusiveCachePortParameters = InclusiveCachePortParameters.full) // or flowAE
{
require (writeBytes > 0 && isPow2(writeBytes))
require (memCycles > 0)
require (portFactor >= 2) // for inner RMW and concurrent outer Relase + Grant
}
case class InclusiveCacheControlParameters(
address: BigInt,
beatBytes: Int,
bankedControl: Boolean)
case class InclusiveCacheParameters(
cache: CacheParameters,
micro: InclusiveCacheMicroParameters,
control: Boolean,
inner: TLEdgeIn,
outer: TLEdgeOut)(implicit val p: Parameters)
{
require (cache.ways > 1)
require (cache.sets > 1 && isPow2(cache.sets))
require (micro.writeBytes <= inner.manager.beatBytes)
require (micro.writeBytes <= outer.manager.beatBytes)
require (inner.manager.beatBytes <= cache.blockBytes)
require (outer.manager.beatBytes <= cache.blockBytes)
// Require that all cached address ranges have contiguous blocks
outer.manager.managers.flatMap(_.address).foreach { a =>
require (a.alignment >= cache.blockBytes)
}
// If we are the first level cache, we do not need to support inner-BCE
val firstLevel = !inner.client.clients.exists(_.supports.probe)
// If we are the last level cache, we do not need to support outer-B
val lastLevel = !outer.manager.managers.exists(_.regionType > RegionType.UNCACHED)
require (lastLevel)
// Provision enough resources to achieve full throughput with missing single-beat accesses
val mshrs = InclusiveCacheParameters.all_mshrs(cache, micro)
val secondary = max(mshrs, micro.memCycles - mshrs)
val putLists = micro.memCycles // allow every request to be single beat
val putBeats = max(2*cache.blockBeats, micro.memCycles)
val relLists = 2
val relBeats = relLists*cache.blockBeats
val flatAddresses = AddressSet.unify(outer.manager.managers.flatMap(_.address))
val pickMask = AddressDecoder(flatAddresses.map(Seq(_)), flatAddresses.map(_.mask).reduce(_|_))
def bitOffsets(x: BigInt, offset: Int = 0, tail: List[Int] = List.empty[Int]): List[Int] =
if (x == 0) tail.reverse else bitOffsets(x >> 1, offset + 1, if ((x & 1) == 1) offset :: tail else tail)
val addressMapping = bitOffsets(pickMask)
val addressBits = addressMapping.size
// println(s"addresses: ${flatAddresses} => ${pickMask} => ${addressBits}")
val allClients = inner.client.clients.size
val clientBitsRaw = inner.client.clients.filter(_.supports.probe).size
val clientBits = max(1, clientBitsRaw)
val stateBits = 2
val wayBits = log2Ceil(cache.ways)
val setBits = log2Ceil(cache.sets)
val offsetBits = log2Ceil(cache.blockBytes)
val tagBits = addressBits - setBits - offsetBits
val putBits = log2Ceil(max(putLists, relLists))
require (tagBits > 0)
require (offsetBits > 0)
val innerBeatBits = (offsetBits - log2Ceil(inner.manager.beatBytes)) max 1
val outerBeatBits = (offsetBits - log2Ceil(outer.manager.beatBytes)) max 1
val innerMaskBits = inner.manager.beatBytes / micro.writeBytes
val outerMaskBits = outer.manager.beatBytes / micro.writeBytes
def clientBit(source: UInt): UInt = {
if (clientBitsRaw == 0) {
0.U
} else {
Cat(inner.client.clients.filter(_.supports.probe).map(_.sourceId.contains(source)).reverse)
}
}
def clientSource(bit: UInt): UInt = {
if (clientBitsRaw == 0) {
0.U
} else {
Mux1H(bit, inner.client.clients.filter(_.supports.probe).map(c => c.sourceId.start.U))
}
}
def parseAddress(x: UInt): (UInt, UInt, UInt) = {
val offset = Cat(addressMapping.map(o => x(o,o)).reverse)
val set = offset >> offsetBits
val tag = set >> setBits
(tag(tagBits-1, 0), set(setBits-1, 0), offset(offsetBits-1, 0))
}
def widen(x: UInt, width: Int): UInt = {
val y = x | 0.U(width.W)
assert (y >> width === 0.U)
y(width-1, 0)
}
def expandAddress(tag: UInt, set: UInt, offset: UInt): UInt = {
val base = Cat(widen(tag, tagBits), widen(set, setBits), widen(offset, offsetBits))
val bits = Array.fill(outer.bundle.addressBits) { 0.U(1.W) }
addressMapping.zipWithIndex.foreach { case (a, i) => bits(a) = base(i,i) }
Cat(bits.reverse)
}
def restoreAddress(expanded: UInt): UInt = {
val missingBits = flatAddresses
.map { a => (a.widen(pickMask).base, a.widen(~pickMask)) } // key is the bits to restore on match
.groupBy(_._1)
.view
.mapValues(_.map(_._2))
val muxMask = AddressDecoder(missingBits.values.toList)
val mux = missingBits.toList.map { case (bits, addrs) =>
val widen = addrs.map(_.widen(~muxMask))
val matches = AddressSet
.unify(widen.distinct)
.map(_.contains(expanded))
.reduce(_ || _)
(matches, bits.U)
}
expanded | Mux1H(mux)
}
def dirReg[T <: Data](x: T, en: Bool = true.B): T = {
if (micro.dirReg) RegEnable(x, en) else x
}
def ccover(cond: Bool, label: String, desc: String)(implicit sourceInfo: SourceInfo) =
cover(cond, "CCACHE_L" + cache.level + "_" + label, "MemorySystem;;" + desc)
}
object MetaData
{
val stateBits = 2
def INVALID: UInt = 0.U(stateBits.W) // way is empty
def BRANCH: UInt = 1.U(stateBits.W) // outer slave cache is trunk
def TRUNK: UInt = 2.U(stateBits.W) // unique inner master cache is trunk
def TIP: UInt = 3.U(stateBits.W) // we are trunk, inner masters are branch
// Does a request need trunk?
def needT(opcode: UInt, param: UInt): Bool = {
!opcode(2) ||
(opcode === TLMessages.Hint && param === TLHints.PREFETCH_WRITE) ||
((opcode === TLMessages.AcquireBlock || opcode === TLMessages.AcquirePerm) && param =/= TLPermissions.NtoB)
}
// Does a request prove the client need not be probed?
def skipProbeN(opcode: UInt, hintsSkipProbe: Boolean): Bool = {
// Acquire(toB) and Get => is N, so no probe
// Acquire(*toT) => is N or B, but need T, so no probe
// Hint => could be anything, so probe IS needed, if hintsSkipProbe is enabled, skip probe the same client
// Put* => is N or B, so probe IS needed
opcode === TLMessages.AcquireBlock || opcode === TLMessages.AcquirePerm || opcode === TLMessages.Get || (opcode === TLMessages.Hint && hintsSkipProbe.B)
}
def isToN(param: UInt): Bool = {
param === TLPermissions.TtoN || param === TLPermissions.BtoN || param === TLPermissions.NtoN
}
def isToB(param: UInt): Bool = {
param === TLPermissions.TtoB || param === TLPermissions.BtoB
}
}
object InclusiveCacheParameters
{
val lfsrBits = 10
val L2ControlAddress = 0x2010000
val L2ControlSize = 0x1000
def out_mshrs(cache: CacheParameters, micro: InclusiveCacheMicroParameters): Int = {
// We need 2-3 normal MSHRs to cover the Directory latency
// To fully exploit memory bandwidth-delay-product, we need memCyles/blockBeats MSHRs
max(if (micro.dirReg) 3 else 2, (micro.memCycles + cache.blockBeats - 1) / cache.blockBeats)
}
def all_mshrs(cache: CacheParameters, micro: InclusiveCacheMicroParameters): Int =
// We need a dedicated MSHR for B+C each
2 + out_mshrs(cache, micro)
}
class InclusiveCacheBundle(params: InclusiveCacheParameters) extends Bundle
File MixedNode.scala:
package org.chipsalliance.diplomacy.nodes
import chisel3.{Data, DontCare, Wire}
import chisel3.experimental.SourceInfo
import org.chipsalliance.cde.config.{Field, Parameters}
import org.chipsalliance.diplomacy.ValName
import org.chipsalliance.diplomacy.sourceLine
/** One side metadata of a [[Dangle]].
*
* Describes one side of an edge going into or out of a [[BaseNode]].
*
* @param serial
* the global [[BaseNode.serial]] number of the [[BaseNode]] that this [[HalfEdge]] connects to.
* @param index
* the `index` in the [[BaseNode]]'s input or output port list that this [[HalfEdge]] belongs to.
*/
case class HalfEdge(serial: Int, index: Int) extends Ordered[HalfEdge] {
import scala.math.Ordered.orderingToOrdered
def compare(that: HalfEdge): Int = HalfEdge.unapply(this).compare(HalfEdge.unapply(that))
}
/** [[Dangle]] captures the `IO` information of a [[LazyModule]] and which two [[BaseNode]]s the [[Edges]]/[[Bundle]]
* connects.
*
* [[Dangle]]s are generated by [[BaseNode.instantiate]] using [[MixedNode.danglesOut]] and [[MixedNode.danglesIn]] ,
* [[LazyModuleImp.instantiate]] connects those that go to internal or explicit IO connections in a [[LazyModule]].
*
* @param source
* the source [[HalfEdge]] of this [[Dangle]], which captures the source [[BaseNode]] and the port `index` within
* that [[BaseNode]].
* @param sink
* sink [[HalfEdge]] of this [[Dangle]], which captures the sink [[BaseNode]] and the port `index` within that
* [[BaseNode]].
* @param flipped
* flip or not in [[AutoBundle.makeElements]]. If true this corresponds to `danglesOut`, if false it corresponds to
* `danglesIn`.
* @param dataOpt
* actual [[Data]] for the hardware connection. Can be empty if this belongs to a cloned module
*/
case class Dangle(source: HalfEdge, sink: HalfEdge, flipped: Boolean, name: String, dataOpt: Option[Data]) {
def data = dataOpt.get
}
/** [[Edges]] is a collection of parameters describing the functionality and connection for an interface, which is often
* derived from the interconnection protocol and can inform the parameterization of the hardware bundles that actually
* implement the protocol.
*/
case class Edges[EI, EO](in: Seq[EI], out: Seq[EO])
/** A field available in [[Parameters]] used to determine whether [[InwardNodeImp.monitor]] will be called. */
case object MonitorsEnabled extends Field[Boolean](true)
/** When rendering the edge in a graphical format, flip the order in which the edges' source and sink are presented.
*
* For example, when rendering graphML, yEd by default tries to put the source node vertically above the sink node, but
* [[RenderFlipped]] inverts this relationship. When a particular [[LazyModule]] contains both source nodes and sink
* nodes, flipping the rendering of one node's edge will usual produce a more concise visual layout for the
* [[LazyModule]].
*/
case object RenderFlipped extends Field[Boolean](false)
/** The sealed node class in the package, all node are derived from it.
*
* @param inner
* Sink interface implementation.
* @param outer
* Source interface implementation.
* @param valName
* val name of this node.
* @tparam DI
* Downward-flowing parameters received on the inner side of the node. It is usually a brunch of parameters
* describing the protocol parameters from a source. For an [[InwardNode]], it is determined by the connected
* [[OutwardNode]]. Since it can be connected to multiple sources, this parameter is always a Seq of source port
* parameters.
* @tparam UI
* Upward-flowing parameters generated by the inner side of the node. It is usually a brunch of parameters describing
* the protocol parameters of a sink. For an [[InwardNode]], it is determined itself.
* @tparam EI
* Edge Parameters describing a connection on the inner side of the node. It is usually a brunch of transfers
* specified for a sink according to protocol.
* @tparam BI
* Bundle type used when connecting to the inner side of the node. It is a hardware interface of this sink interface.
* It should extends from [[chisel3.Data]], which represents the real hardware.
* @tparam DO
* Downward-flowing parameters generated on the outer side of the node. It is usually a brunch of parameters
* describing the protocol parameters of a source. For an [[OutwardNode]], it is determined itself.
* @tparam UO
* Upward-flowing parameters received by the outer side of the node. It is usually a brunch of parameters describing
* the protocol parameters from a sink. For an [[OutwardNode]], it is determined by the connected [[InwardNode]].
* Since it can be connected to multiple sinks, this parameter is always a Seq of sink port parameters.
* @tparam EO
* Edge Parameters describing a connection on the outer side of the node. It is usually a brunch of transfers
* specified for a source according to protocol.
* @tparam BO
* Bundle type used when connecting to the outer side of the node. It is a hardware interface of this source
* interface. It should extends from [[chisel3.Data]], which represents the real hardware.
*
* @note
* Call Graph of [[MixedNode]]
* - line `β`: source is process by a function and generate pass to others
* - Arrow `β`: target of arrow is generated by source
*
* {{{
* (from the other node)
* ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ[[InwardNode.uiParams]]ββββββββββββββ
* β β
* (binding node when elaboration) [[OutwardNode.uoParams]]ββββββββββββββββββββββββ[[MixedNode.mapParamsU]]ββββββββββββ β
* [[InwardNode.accPI]] β β β
* β β (based on protocol) β
* β β [[MixedNode.inner.edgeI]] β
* β β β β
* β β β β
* (immobilize after elaboration) (inward port from [[OutwardNode]]) β β β
* [[InwardNode.iBindings]]βββ [[MixedNode.iDirectPorts]]βββββββββββββββββββββ[[MixedNode.iPorts]] [[InwardNode.uiParams]] β
* β β β β β β
* β β β [[OutwardNode.doParams]] β β
* β β β (from the other node) β β
* β β β β β β
* β β β β β β
* β β β ββββββββββ¬βββββββββββββββ€ β
* β β β β β β
* β β β β (based on protocol) β
* β β β β [[MixedNode.inner.edgeI]] β
* β β β β β β
* β β (from the other node) β β β
* β ββββ[[OutwardNode.oPortMapping]] [[OutwardNode.oStar]] β [[MixedNode.edgesIn]]ββββ β
* β β β β β β β
* β β β β β [[MixedNode.in]] β
* β β β β β β β
* β (solve star connection) β β β [[MixedNode.bundleIn]]βββ β
* ββββ[[MixedNode.resolveStar]]βββΌββββββββββββββββββββββββββββββ€ ββββββββββββββββββββββββββββββββββββββ β
* β β β [[MixedNode.bundleOut]]ββ β β
* β β β β β β β
* β β β β [[MixedNode.out]] β β
* β β β β β β β
* β ββββββ[[InwardNode.iPortMapping]] [[InwardNode.iStar]] [[MixedNode.edgesOut]]βββ β β
* β β (from the other node) β β β
* β β β β β β
* β β β [[MixedNode.outer.edgeO]] β β
* β β β (based on protocol) β β
* β β β β β β
* β β β ββββββββββββββββββββββββββββββββββββββββββ€ β β
* β β β β β β β
* β β β β β β β
* β β β β β β β
* (immobilize after elaboration)β β β β β β
* [[OutwardNode.oBindings]]ββ [[MixedNode.oDirectPorts]]ββββ[[MixedNode.oPorts]] [[OutwardNode.doParams]] β β
* β (inward port from [[OutwardNode]]) β β β β
* β βββββββββββββββββββββββββββββββββββββββββββ€ β β β
* β β β β β β
* β β β β β β
* [[OutwardNode.accPO]] β β β β β
* (binding node when elaboration) β [[InwardNode.diParams]]ββββββ[[MixedNode.mapParamsD]]βββββββββββββββββββββββββββββ β β
* β β β β
* β ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ β
* ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
* }}}
*/
abstract class MixedNode[DI, UI, EI, BI <: Data, DO, UO, EO, BO <: Data](
val inner: InwardNodeImp[DI, UI, EI, BI],
val outer: OutwardNodeImp[DO, UO, EO, BO]
)(
implicit valName: ValName)
extends BaseNode
with NodeHandle[DI, UI, EI, BI, DO, UO, EO, BO]
with InwardNode[DI, UI, BI]
with OutwardNode[DO, UO, BO] {
// Generate a [[NodeHandle]] with inward and outward node are both this node.
val inward = this
val outward = this
/** Debug info of nodes binding. */
def bindingInfo: String = s"""$iBindingInfo
|$oBindingInfo
|""".stripMargin
/** Debug info of ports connecting. */
def connectedPortsInfo: String = s"""${oPorts.size} outward ports connected: [${oPorts.map(_._2.name).mkString(",")}]
|${iPorts.size} inward ports connected: [${iPorts.map(_._2.name).mkString(",")}]
|""".stripMargin
/** Debug info of parameters propagations. */
def parametersInfo: String = s"""${doParams.size} downstream outward parameters: [${doParams.mkString(",")}]
|${uoParams.size} upstream outward parameters: [${uoParams.mkString(",")}]
|${diParams.size} downstream inward parameters: [${diParams.mkString(",")}]
|${uiParams.size} upstream inward parameters: [${uiParams.mkString(",")}]
|""".stripMargin
/** For a given node, converts [[OutwardNode.accPO]] and [[InwardNode.accPI]] to [[MixedNode.oPortMapping]] and
* [[MixedNode.iPortMapping]].
*
* Given counts of known inward and outward binding and inward and outward star bindings, return the resolved inward
* stars and outward stars.
*
* This method will also validate the arguments and throw a runtime error if the values are unsuitable for this type
* of node.
*
* @param iKnown
* Number of known-size ([[BIND_ONCE]]) input bindings.
* @param oKnown
* Number of known-size ([[BIND_ONCE]]) output bindings.
* @param iStar
* Number of unknown size ([[BIND_STAR]]) input bindings.
* @param oStar
* Number of unknown size ([[BIND_STAR]]) output bindings.
* @return
* A Tuple of the resolved number of input and output connections.
*/
protected[diplomacy] def resolveStar(iKnown: Int, oKnown: Int, iStar: Int, oStar: Int): (Int, Int)
/** Function to generate downward-flowing outward params from the downward-flowing input params and the current output
* ports.
*
* @param n
* The size of the output sequence to generate.
* @param p
* Sequence of downward-flowing input parameters of this node.
* @return
* A `n`-sized sequence of downward-flowing output edge parameters.
*/
protected[diplomacy] def mapParamsD(n: Int, p: Seq[DI]): Seq[DO]
/** Function to generate upward-flowing input parameters from the upward-flowing output parameters [[uiParams]].
*
* @param n
* Size of the output sequence.
* @param p
* Upward-flowing output edge parameters.
* @return
* A n-sized sequence of upward-flowing input edge parameters.
*/
protected[diplomacy] def mapParamsU(n: Int, p: Seq[UO]): Seq[UI]
/** @return
* The sink cardinality of the node, the number of outputs bound with [[BIND_QUERY]] summed with inputs bound with
* [[BIND_STAR]].
*/
protected[diplomacy] lazy val sinkCard: Int = oBindings.count(_._3 == BIND_QUERY) + iBindings.count(_._3 == BIND_STAR)
/** @return
* The source cardinality of this node, the number of inputs bound with [[BIND_QUERY]] summed with the number of
* output bindings bound with [[BIND_STAR]].
*/
protected[diplomacy] lazy val sourceCard: Int =
iBindings.count(_._3 == BIND_QUERY) + oBindings.count(_._3 == BIND_STAR)
/** @return list of nodes involved in flex bindings with this node. */
protected[diplomacy] lazy val flexes: Seq[BaseNode] =
oBindings.filter(_._3 == BIND_FLEX).map(_._2) ++ iBindings.filter(_._3 == BIND_FLEX).map(_._2)
/** Resolves the flex to be either source or sink and returns the offset where the [[BIND_STAR]] operators begin
* greedily taking up the remaining connections.
*
* @return
* A value >= 0 if it is sink cardinality, a negative value for source cardinality. The magnitude of the return
* value is not relevant.
*/
protected[diplomacy] lazy val flexOffset: Int = {
/** Recursively performs a depth-first search of the [[flexes]], [[BaseNode]]s connected to this node with flex
* operators. The algorithm bottoms out when we either get to a node we have already visited or when we get to a
* connection that is not a flex and can set the direction for us. Otherwise, recurse by visiting the `flexes` of
* each node in the current set and decide whether they should be added to the set or not.
*
* @return
* the mapping of [[BaseNode]] indexed by their serial numbers.
*/
def DFS(v: BaseNode, visited: Map[Int, BaseNode]): Map[Int, BaseNode] = {
if (visited.contains(v.serial) || !v.flexibleArityDirection) {
visited
} else {
v.flexes.foldLeft(visited + (v.serial -> v))((sum, n) => DFS(n, sum))
}
}
/** Determine which [[BaseNode]] are involved in resolving the flex connections to/from this node.
*
* @example
* {{{
* a :*=* b :*=* c
* d :*=* b
* e :*=* f
* }}}
*
* `flexSet` for `a`, `b`, `c`, or `d` will be `Set(a, b, c, d)` `flexSet` for `e` or `f` will be `Set(e,f)`
*/
val flexSet = DFS(this, Map()).values
/** The total number of :*= operators where we're on the left. */
val allSink = flexSet.map(_.sinkCard).sum
/** The total number of :=* operators used when we're on the right. */
val allSource = flexSet.map(_.sourceCard).sum
require(
allSink == 0 || allSource == 0,
s"The nodes ${flexSet.map(_.name)} which are inter-connected by :*=* have ${allSink} :*= operators and ${allSource} :=* operators connected to them, making it impossible to determine cardinality inference direction."
)
allSink - allSource
}
/** @return A value >= 0 if it is sink cardinality, a negative value for source cardinality. */
protected[diplomacy] def edgeArityDirection(n: BaseNode): Int = {
if (flexibleArityDirection) flexOffset
else if (n.flexibleArityDirection) n.flexOffset
else 0
}
/** For a node which is connected between two nodes, select the one that will influence the direction of the flex
* resolution.
*/
protected[diplomacy] def edgeAritySelect(n: BaseNode, l: => Int, r: => Int): Int = {
val dir = edgeArityDirection(n)
if (dir < 0) l
else if (dir > 0) r
else 1
}
/** Ensure that the same node is not visited twice in resolving `:*=`, etc operators. */
private var starCycleGuard = false
/** Resolve all the star operators into concrete indicies. As connections are being made, some may be "star"
* connections which need to be resolved. In some way to determine how many actual edges they correspond to. We also
* need to build up the ranges of edges which correspond to each binding operator, so that We can apply the correct
* edge parameters and later build up correct bundle connections.
*
* [[oPortMapping]]: `Seq[(Int, Int)]` where each item is the range of edges corresponding to that oPort (binding
* operator). [[iPortMapping]]: `Seq[(Int, Int)]` where each item is the range of edges corresponding to that iPort
* (binding operator). [[oStar]]: `Int` the value to return for this node `N` for any `N :*= foo` or `N :*=* foo :*=
* bar` [[iStar]]: `Int` the value to return for this node `N` for any `foo :=* N` or `bar :=* foo :*=* N`
*/
protected[diplomacy] lazy val (
oPortMapping: Seq[(Int, Int)],
iPortMapping: Seq[(Int, Int)],
oStar: Int,
iStar: Int
) = {
try {
if (starCycleGuard) throw StarCycleException()
starCycleGuard = true
// For a given node N...
// Number of foo :=* N
// + Number of bar :=* foo :*=* N
val oStars = oBindings.count { case (_, n, b, _, _) =>
b == BIND_STAR || (b == BIND_FLEX && edgeArityDirection(n) < 0)
}
// Number of N :*= foo
// + Number of N :*=* foo :*= bar
val iStars = iBindings.count { case (_, n, b, _, _) =>
b == BIND_STAR || (b == BIND_FLEX && edgeArityDirection(n) > 0)
}
// 1 for foo := N
// + bar.iStar for bar :*= foo :*=* N
// + foo.iStar for foo :*= N
// + 0 for foo :=* N
val oKnown = oBindings.map { case (_, n, b, _, _) =>
b match {
case BIND_ONCE => 1
case BIND_FLEX => edgeAritySelect(n, 0, n.iStar)
case BIND_QUERY => n.iStar
case BIND_STAR => 0
}
}.sum
// 1 for N := foo
// + bar.oStar for N :*=* foo :=* bar
// + foo.oStar for N :=* foo
// + 0 for N :*= foo
val iKnown = iBindings.map { case (_, n, b, _, _) =>
b match {
case BIND_ONCE => 1
case BIND_FLEX => edgeAritySelect(n, n.oStar, 0)
case BIND_QUERY => n.oStar
case BIND_STAR => 0
}
}.sum
// Resolve star depends on the node subclass to implement the algorithm for this.
val (iStar, oStar) = resolveStar(iKnown, oKnown, iStars, oStars)
// Cumulative list of resolved outward binding range starting points
val oSum = oBindings.map { case (_, n, b, _, _) =>
b match {
case BIND_ONCE => 1
case BIND_FLEX => edgeAritySelect(n, oStar, n.iStar)
case BIND_QUERY => n.iStar
case BIND_STAR => oStar
}
}.scanLeft(0)(_ + _)
// Cumulative list of resolved inward binding range starting points
val iSum = iBindings.map { case (_, n, b, _, _) =>
b match {
case BIND_ONCE => 1
case BIND_FLEX => edgeAritySelect(n, n.oStar, iStar)
case BIND_QUERY => n.oStar
case BIND_STAR => iStar
}
}.scanLeft(0)(_ + _)
// Create ranges for each binding based on the running sums and return
// those along with resolved values for the star operations.
(oSum.init.zip(oSum.tail), iSum.init.zip(iSum.tail), oStar, iStar)
} catch {
case c: StarCycleException => throw c.copy(loop = context +: c.loop)
}
}
/** Sequence of inward ports.
*
* This should be called after all star bindings are resolved.
*
* Each element is: `j` Port index of this binding in the Node's [[oPortMapping]] on the other side of the binding.
* `n` Instance of inward node. `p` View of [[Parameters]] where this connection was made. `s` Source info where this
* connection was made in the source code.
*/
protected[diplomacy] lazy val oDirectPorts: Seq[(Int, InwardNode[DO, UO, BO], Parameters, SourceInfo)] =
oBindings.flatMap { case (i, n, _, p, s) =>
// for each binding operator in this node, look at what it connects to
val (start, end) = n.iPortMapping(i)
(start until end).map { j => (j, n, p, s) }
}
/** Sequence of outward ports.
*
* This should be called after all star bindings are resolved.
*
* `j` Port index of this binding in the Node's [[oPortMapping]] on the other side of the binding. `n` Instance of
* outward node. `p` View of [[Parameters]] where this connection was made. `s` [[SourceInfo]] where this connection
* was made in the source code.
*/
protected[diplomacy] lazy val iDirectPorts: Seq[(Int, OutwardNode[DI, UI, BI], Parameters, SourceInfo)] =
iBindings.flatMap { case (i, n, _, p, s) =>
// query this port index range of this node in the other side of node.
val (start, end) = n.oPortMapping(i)
(start until end).map { j => (j, n, p, s) }
}
// Ephemeral nodes ( which have non-None iForward/oForward) have in_degree = out_degree
// Thus, there must exist an Eulerian path and the below algorithms terminate
@scala.annotation.tailrec
private def oTrace(
tuple: (Int, InwardNode[DO, UO, BO], Parameters, SourceInfo)
): (Int, InwardNode[DO, UO, BO], Parameters, SourceInfo) = tuple match {
case (i, n, p, s) => n.iForward(i) match {
case None => (i, n, p, s)
case Some((j, m)) => oTrace((j, m, p, s))
}
}
@scala.annotation.tailrec
private def iTrace(
tuple: (Int, OutwardNode[DI, UI, BI], Parameters, SourceInfo)
): (Int, OutwardNode[DI, UI, BI], Parameters, SourceInfo) = tuple match {
case (i, n, p, s) => n.oForward(i) match {
case None => (i, n, p, s)
case Some((j, m)) => iTrace((j, m, p, s))
}
}
/** Final output ports after all stars and port forwarding (e.g. [[EphemeralNode]]s) have been resolved.
*
* Each Port is a tuple of:
* - Numeric index of this binding in the [[InwardNode]] on the other end.
* - [[InwardNode]] on the other end of this binding.
* - A view of [[Parameters]] where the binding occurred.
* - [[SourceInfo]] for source-level error reporting.
*/
lazy val oPorts: Seq[(Int, InwardNode[DO, UO, BO], Parameters, SourceInfo)] = oDirectPorts.map(oTrace)
/** Final input ports after all stars and port forwarding (e.g. [[EphemeralNode]]s) have been resolved.
*
* Each Port is a tuple of:
* - numeric index of this binding in [[OutwardNode]] on the other end.
* - [[OutwardNode]] on the other end of this binding.
* - a view of [[Parameters]] where the binding occurred.
* - [[SourceInfo]] for source-level error reporting.
*/
lazy val iPorts: Seq[(Int, OutwardNode[DI, UI, BI], Parameters, SourceInfo)] = iDirectPorts.map(iTrace)
private var oParamsCycleGuard = false
protected[diplomacy] lazy val diParams: Seq[DI] = iPorts.map { case (i, n, _, _) => n.doParams(i) }
protected[diplomacy] lazy val doParams: Seq[DO] = {
try {
if (oParamsCycleGuard) throw DownwardCycleException()
oParamsCycleGuard = true
val o = mapParamsD(oPorts.size, diParams)
require(
o.size == oPorts.size,
s"""Diplomacy has detected a problem with your graph:
|At the following node, the number of outward ports should equal the number of produced outward parameters.
|$context
|$connectedPortsInfo
|Downstreamed inward parameters: [${diParams.mkString(",")}]
|Produced outward parameters: [${o.mkString(",")}]
|""".stripMargin
)
o.map(outer.mixO(_, this))
} catch {
case c: DownwardCycleException => throw c.copy(loop = context +: c.loop)
}
}
private var iParamsCycleGuard = false
protected[diplomacy] lazy val uoParams: Seq[UO] = oPorts.map { case (o, n, _, _) => n.uiParams(o) }
protected[diplomacy] lazy val uiParams: Seq[UI] = {
try {
if (iParamsCycleGuard) throw UpwardCycleException()
iParamsCycleGuard = true
val i = mapParamsU(iPorts.size, uoParams)
require(
i.size == iPorts.size,
s"""Diplomacy has detected a problem with your graph:
|At the following node, the number of inward ports should equal the number of produced inward parameters.
|$context
|$connectedPortsInfo
|Upstreamed outward parameters: [${uoParams.mkString(",")}]
|Produced inward parameters: [${i.mkString(",")}]
|""".stripMargin
)
i.map(inner.mixI(_, this))
} catch {
case c: UpwardCycleException => throw c.copy(loop = context +: c.loop)
}
}
/** Outward edge parameters. */
protected[diplomacy] lazy val edgesOut: Seq[EO] =
(oPorts.zip(doParams)).map { case ((i, n, p, s), o) => outer.edgeO(o, n.uiParams(i), p, s) }
/** Inward edge parameters. */
protected[diplomacy] lazy val edgesIn: Seq[EI] =
(iPorts.zip(uiParams)).map { case ((o, n, p, s), i) => inner.edgeI(n.doParams(o), i, p, s) }
/** A tuple of the input edge parameters and output edge parameters for the edges bound to this node.
*
* If you need to access to the edges of a foreign Node, use this method (in/out create bundles).
*/
lazy val edges: Edges[EI, EO] = Edges(edgesIn, edgesOut)
/** Create actual Wires corresponding to the Bundles parameterized by the outward edges of this node. */
protected[diplomacy] lazy val bundleOut: Seq[BO] = edgesOut.map { e =>
val x = Wire(outer.bundleO(e)).suggestName(s"${valName.value}Out")
// TODO: Don't care unconnected forwarded diplomatic signals for compatibility issue,
// In the future, we should add an option to decide whether allowing unconnected in the LazyModule
x := DontCare
x
}
/** Create actual Wires corresponding to the Bundles parameterized by the inward edges of this node. */
protected[diplomacy] lazy val bundleIn: Seq[BI] = edgesIn.map { e =>
val x = Wire(inner.bundleI(e)).suggestName(s"${valName.value}In")
// TODO: Don't care unconnected forwarded diplomatic signals for compatibility issue,
// In the future, we should add an option to decide whether allowing unconnected in the LazyModule
x := DontCare
x
}
private def emptyDanglesOut: Seq[Dangle] = oPorts.zipWithIndex.map { case ((j, n, _, _), i) =>
Dangle(
source = HalfEdge(serial, i),
sink = HalfEdge(n.serial, j),
flipped = false,
name = wirePrefix + "out",
dataOpt = None
)
}
private def emptyDanglesIn: Seq[Dangle] = iPorts.zipWithIndex.map { case ((j, n, _, _), i) =>
Dangle(
source = HalfEdge(n.serial, j),
sink = HalfEdge(serial, i),
flipped = true,
name = wirePrefix + "in",
dataOpt = None
)
}
/** Create the [[Dangle]]s which describe the connections from this node output to other nodes inputs. */
protected[diplomacy] def danglesOut: Seq[Dangle] = emptyDanglesOut.zipWithIndex.map { case (d, i) =>
d.copy(dataOpt = Some(bundleOut(i)))
}
/** Create the [[Dangle]]s which describe the connections from this node input from other nodes outputs. */
protected[diplomacy] def danglesIn: Seq[Dangle] = emptyDanglesIn.zipWithIndex.map { case (d, i) =>
d.copy(dataOpt = Some(bundleIn(i)))
}
private[diplomacy] var instantiated = false
/** Gather Bundle and edge parameters of outward ports.
*
* Accessors to the result of negotiation to be used within [[LazyModuleImp]] Code. Should only be used within
* [[LazyModuleImp]] code or after its instantiation has completed.
*/
def out: Seq[(BO, EO)] = {
require(
instantiated,
s"$name.out should not be called until after instantiation of its parent LazyModule.module has begun"
)
bundleOut.zip(edgesOut)
}
/** Gather Bundle and edge parameters of inward ports.
*
* Accessors to the result of negotiation to be used within [[LazyModuleImp]] Code. Should only be used within
* [[LazyModuleImp]] code or after its instantiation has completed.
*/
def in: Seq[(BI, EI)] = {
require(
instantiated,
s"$name.in should not be called until after instantiation of its parent LazyModule.module has begun"
)
bundleIn.zip(edgesIn)
}
/** Actually instantiate this node during [[LazyModuleImp]] evaluation. Mark that it's safe to use the Bundle wires,
* instantiate monitors on all input ports if appropriate, and return all the dangles of this node.
*/
protected[diplomacy] def instantiate(): Seq[Dangle] = {
instantiated = true
if (!circuitIdentity) {
(iPorts.zip(in)).foreach { case ((_, _, p, _), (b, e)) => if (p(MonitorsEnabled)) inner.monitor(b, e) }
}
danglesOut ++ danglesIn
}
protected[diplomacy] def cloneDangles(): Seq[Dangle] = emptyDanglesOut ++ emptyDanglesIn
/** Connects the outward part of a node with the inward part of this node. */
protected[diplomacy] def bind(
h: OutwardNode[DI, UI, BI],
binding: NodeBinding
)(
implicit p: Parameters,
sourceInfo: SourceInfo
): Unit = {
val x = this // x := y
val y = h
sourceLine(sourceInfo, " at ", "")
val i = x.iPushed
val o = y.oPushed
y.oPush(
i,
x,
binding match {
case BIND_ONCE => BIND_ONCE
case BIND_FLEX => BIND_FLEX
case BIND_STAR => BIND_QUERY
case BIND_QUERY => BIND_STAR
}
)
x.iPush(o, y, binding)
}
/* Metadata for printing the node graph. */
def inputs: Seq[(OutwardNode[DI, UI, BI], RenderedEdge)] = (iPorts.zip(edgesIn)).map { case ((_, n, p, _), e) =>
val re = inner.render(e)
(n, re.copy(flipped = re.flipped != p(RenderFlipped)))
}
/** Metadata for printing the node graph */
def outputs: Seq[(InwardNode[DO, UO, BO], RenderedEdge)] = oPorts.map { case (i, n, _, _) => (n, n.inputs(i)._2) }
}
File InclusiveCache.scala:
/*
* Copyright 2019 SiFive, Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You should have received a copy of LICENSE.Apache2 along with
* this software. If not, you may obtain a copy at
*
* https://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package sifive.blocks.inclusivecache
import chisel3._
import chisel3.util._
import org.chipsalliance.cde.config._
import freechips.rocketchip.diplomacy._
import freechips.rocketchip.subsystem.{SubsystemBankedCoherenceKey}
import freechips.rocketchip.regmapper._
import freechips.rocketchip.tilelink._
class InclusiveCache(
val cache: CacheParameters,
val micro: InclusiveCacheMicroParameters,
control: Option[InclusiveCacheControlParameters] = None
)(implicit p: Parameters)
extends LazyModule
{
val access = TransferSizes(1, cache.blockBytes)
val xfer = TransferSizes(cache.blockBytes, cache.blockBytes)
val atom = TransferSizes(1, cache.beatBytes)
var resourcesOpt: Option[ResourceBindings] = None
val device: SimpleDevice = new SimpleDevice("cache-controller", Seq("sifive,inclusivecache0", "cache")) {
def ofInt(x: Int) = Seq(ResourceInt(BigInt(x)))
override def describe(resources: ResourceBindings): Description = {
resourcesOpt = Some(resources)
val Description(name, mapping) = super.describe(resources)
// Find the outer caches
val outer = node.edges.out
.flatMap(_.manager.managers)
.filter(_.supportsAcquireB)
.flatMap(_.resources.headOption)
.map(_.owner.label)
.distinct
val nextlevel: Option[(String, Seq[ResourceValue])] =
if (outer.isEmpty) {
None
} else {
Some("next-level-cache" -> outer.map(l => ResourceReference(l)).toList)
}
val extra = Map(
"cache-level" -> ofInt(2),
"cache-unified" -> Nil,
"cache-size" -> ofInt(cache.sizeBytes * node.edges.in.size),
"cache-sets" -> ofInt(cache.sets * node.edges.in.size),
"cache-block-size" -> ofInt(cache.blockBytes),
"sifive,mshr-count" -> ofInt(InclusiveCacheParameters.all_mshrs(cache, micro)))
Description(name, mapping ++ extra ++ nextlevel)
}
}
val node: TLAdapterNode = TLAdapterNode(
clientFn = { _ => TLClientPortParameters(Seq(TLClientParameters(
name = s"L${cache.level} InclusiveCache",
sourceId = IdRange(0, InclusiveCacheParameters.out_mshrs(cache, micro)),
supportsProbe = xfer)))
},
managerFn = { m => TLManagerPortParameters(
managers = m.managers.map { m => m.copy(
regionType = if (m.regionType >= RegionType.UNCACHED) RegionType.CACHED else m.regionType,
resources = Resource(device, "caches") +: m.resources,
supportsAcquireB = xfer,
supportsAcquireT = if (m.supportsAcquireT) xfer else TransferSizes.none,
supportsArithmetic = if (m.supportsAcquireT) atom else TransferSizes.none,
supportsLogical = if (m.supportsAcquireT) atom else TransferSizes.none,
supportsGet = access,
supportsPutFull = if (m.supportsAcquireT) access else TransferSizes.none,
supportsPutPartial = if (m.supportsAcquireT) access else TransferSizes.none,
supportsHint = access,
alwaysGrantsT = false,
fifoId = None)
},
beatBytes = cache.beatBytes,
endSinkId = InclusiveCacheParameters.all_mshrs(cache, micro),
minLatency = 2)
})
val ctrls = control.map { c =>
val nCtrls = if (c.bankedControl) p(SubsystemBankedCoherenceKey).nBanks else 1
Seq.tabulate(nCtrls) { i => LazyModule(new InclusiveCacheControl(this,
c.copy(address = c.address + i * InclusiveCacheParameters.L2ControlSize))) }
}.getOrElse(Nil)
lazy val module = new Impl
class Impl extends LazyModuleImp(this) {
// If you have a control port, you must have at least one cache port
require (ctrls.isEmpty || !node.edges.in.isEmpty)
// Extract the client IdRanges; must be the same on all ports!
val clientIds = node.edges.in.headOption.map(_.client.clients.map(_.sourceId).sortBy(_.start))
node.edges.in.foreach { e => require(e.client.clients.map(_.sourceId).sortBy(_.start) == clientIds.get) }
// Use the natural ordering of clients (just like in Directory)
node.edges.in.headOption.foreach { n =>
println(s"L${cache.level} InclusiveCache Client Map:")
n.client.clients.zipWithIndex.foreach { case (c,i) =>
println(s"\t${i} <= ${c.name}")
}
println("")
}
// Create the L2 Banks
val mods = (node.in zip node.out) map { case ((in, edgeIn), (out, edgeOut)) =>
edgeOut.manager.managers.foreach { m =>
require (m.supportsAcquireB.contains(xfer),
s"All managers behind the L2 must support acquireB($xfer) " +
s"but ${m.name} only supports (${m.supportsAcquireB})!")
if (m.supportsAcquireT) require (m.supportsAcquireT.contains(xfer),
s"Any probing managers behind the L2 must support acquireT($xfer) " +
s"but ${m.name} only supports (${m.supportsAcquireT})!")
}
val params = InclusiveCacheParameters(cache, micro, !ctrls.isEmpty, edgeIn, edgeOut)
val scheduler = Module(new InclusiveCacheBankScheduler(params)).suggestName("inclusive_cache_bank_sched")
scheduler.io.in <> in
out <> scheduler.io.out
scheduler.io.ways := DontCare
scheduler.io.divs := DontCare
// Tie down default values in case there is no controller
scheduler.io.req.valid := false.B
scheduler.io.req.bits.address := 0.U
scheduler.io.resp.ready := true.B
// Fix-up the missing addresses. We do this here so that the Scheduler can be
// deduplicated by Firrtl to make hierarchical place-and-route easier.
out.a.bits.address := params.restoreAddress(scheduler.io.out.a.bits.address)
in .b.bits.address := params.restoreAddress(scheduler.io.in .b.bits.address)
out.c.bits.address := params.restoreAddress(scheduler.io.out.c.bits.address)
scheduler
}
ctrls.foreach { ctrl =>
ctrl.module.io.flush_req.ready := false.B
ctrl.module.io.flush_resp := false.B
ctrl.module.io.flush_match := false.B
}
mods.zip(node.edges.in).zipWithIndex.foreach { case ((sched, edgeIn), i) =>
val ctrl = if (ctrls.size > 1) Some(ctrls(i)) else ctrls.headOption
ctrl.foreach { ctrl => {
val contained = edgeIn.manager.managers.flatMap(_.address)
.map(_.contains(ctrl.module.io.flush_req.bits)).reduce(_||_)
when (contained) { ctrl.module.io.flush_match := true.B }
sched.io.req.valid := contained && ctrl.module.io.flush_req.valid
sched.io.req.bits.address := ctrl.module.io.flush_req.bits
when (contained && sched.io.req.ready) { ctrl.module.io.flush_req.ready := true.B }
when (sched.io.resp.valid) { ctrl.module.io.flush_resp := true.B }
sched.io.resp.ready := true.B
}}
}
def json = s"""{"banks":[${mods.map(_.json).mkString(",")}]}"""
}
}
| module InclusiveCache( // @[InclusiveCache.scala:108:9]
input clock, // @[InclusiveCache.scala:108:9]
input reset, // @[InclusiveCache.scala:108:9]
output auto_ctrls_ctrl_in_a_ready, // @[LazyModuleImp.scala:107:25]
input auto_ctrls_ctrl_in_a_valid, // @[LazyModuleImp.scala:107:25]
input [2:0] auto_ctrls_ctrl_in_a_bits_opcode, // @[LazyModuleImp.scala:107:25]
input [2:0] auto_ctrls_ctrl_in_a_bits_param, // @[LazyModuleImp.scala:107:25]
input [1:0] auto_ctrls_ctrl_in_a_bits_size, // @[LazyModuleImp.scala:107:25]
input [10:0] auto_ctrls_ctrl_in_a_bits_source, // @[LazyModuleImp.scala:107:25]
input [25:0] auto_ctrls_ctrl_in_a_bits_address, // @[LazyModuleImp.scala:107:25]
input [7:0] auto_ctrls_ctrl_in_a_bits_mask, // @[LazyModuleImp.scala:107:25]
input [63:0] auto_ctrls_ctrl_in_a_bits_data, // @[LazyModuleImp.scala:107:25]
input auto_ctrls_ctrl_in_a_bits_corrupt, // @[LazyModuleImp.scala:107:25]
input auto_ctrls_ctrl_in_d_ready, // @[LazyModuleImp.scala:107:25]
output auto_ctrls_ctrl_in_d_valid, // @[LazyModuleImp.scala:107:25]
output [2:0] auto_ctrls_ctrl_in_d_bits_opcode, // @[LazyModuleImp.scala:107:25]
output [1:0] auto_ctrls_ctrl_in_d_bits_size, // @[LazyModuleImp.scala:107:25]
output [10:0] auto_ctrls_ctrl_in_d_bits_source, // @[LazyModuleImp.scala:107:25]
output [63:0] auto_ctrls_ctrl_in_d_bits_data, // @[LazyModuleImp.scala:107:25]
output auto_in_7_a_ready, // @[LazyModuleImp.scala:107:25]
input auto_in_7_a_valid, // @[LazyModuleImp.scala:107:25]
input [2:0] auto_in_7_a_bits_opcode, // @[LazyModuleImp.scala:107:25]
input [2:0] auto_in_7_a_bits_param, // @[LazyModuleImp.scala:107:25]
input [2:0] auto_in_7_a_bits_size, // @[LazyModuleImp.scala:107:25]
input [5:0] auto_in_7_a_bits_source, // @[LazyModuleImp.scala:107:25]
input [31:0] auto_in_7_a_bits_address, // @[LazyModuleImp.scala:107:25]
input [15:0] auto_in_7_a_bits_mask, // @[LazyModuleImp.scala:107:25]
input [127:0] auto_in_7_a_bits_data, // @[LazyModuleImp.scala:107:25]
input auto_in_7_a_bits_corrupt, // @[LazyModuleImp.scala:107:25]
input auto_in_7_b_ready, // @[LazyModuleImp.scala:107:25]
output auto_in_7_b_valid, // @[LazyModuleImp.scala:107:25]
output [1:0] auto_in_7_b_bits_param, // @[LazyModuleImp.scala:107:25]
output [31:0] auto_in_7_b_bits_address, // @[LazyModuleImp.scala:107:25]
output auto_in_7_c_ready, // @[LazyModuleImp.scala:107:25]
input auto_in_7_c_valid, // @[LazyModuleImp.scala:107:25]
input [2:0] auto_in_7_c_bits_opcode, // @[LazyModuleImp.scala:107:25]
input [2:0] auto_in_7_c_bits_param, // @[LazyModuleImp.scala:107:25]
input [2:0] auto_in_7_c_bits_size, // @[LazyModuleImp.scala:107:25]
input [5:0] auto_in_7_c_bits_source, // @[LazyModuleImp.scala:107:25]
input [31:0] auto_in_7_c_bits_address, // @[LazyModuleImp.scala:107:25]
input [127:0] auto_in_7_c_bits_data, // @[LazyModuleImp.scala:107:25]
input auto_in_7_c_bits_corrupt, // @[LazyModuleImp.scala:107:25]
input auto_in_7_d_ready, // @[LazyModuleImp.scala:107:25]
output auto_in_7_d_valid, // @[LazyModuleImp.scala:107:25]
output [2:0] auto_in_7_d_bits_opcode, // @[LazyModuleImp.scala:107:25]
output [1:0] auto_in_7_d_bits_param, // @[LazyModuleImp.scala:107:25]
output [2:0] auto_in_7_d_bits_size, // @[LazyModuleImp.scala:107:25]
output [5:0] auto_in_7_d_bits_source, // @[LazyModuleImp.scala:107:25]
output [3:0] auto_in_7_d_bits_sink, // @[LazyModuleImp.scala:107:25]
output auto_in_7_d_bits_denied, // @[LazyModuleImp.scala:107:25]
output [127:0] auto_in_7_d_bits_data, // @[LazyModuleImp.scala:107:25]
output auto_in_7_d_bits_corrupt, // @[LazyModuleImp.scala:107:25]
input auto_in_7_e_valid, // @[LazyModuleImp.scala:107:25]
input [3:0] auto_in_7_e_bits_sink, // @[LazyModuleImp.scala:107:25]
output auto_in_6_a_ready, // @[LazyModuleImp.scala:107:25]
input auto_in_6_a_valid, // @[LazyModuleImp.scala:107:25]
input [2:0] auto_in_6_a_bits_opcode, // @[LazyModuleImp.scala:107:25]
input [2:0] auto_in_6_a_bits_param, // @[LazyModuleImp.scala:107:25]
input [2:0] auto_in_6_a_bits_size, // @[LazyModuleImp.scala:107:25]
input [5:0] auto_in_6_a_bits_source, // @[LazyModuleImp.scala:107:25]
input [31:0] auto_in_6_a_bits_address, // @[LazyModuleImp.scala:107:25]
input [15:0] auto_in_6_a_bits_mask, // @[LazyModuleImp.scala:107:25]
input [127:0] auto_in_6_a_bits_data, // @[LazyModuleImp.scala:107:25]
input auto_in_6_a_bits_corrupt, // @[LazyModuleImp.scala:107:25]
input auto_in_6_b_ready, // @[LazyModuleImp.scala:107:25]
output auto_in_6_b_valid, // @[LazyModuleImp.scala:107:25]
output [1:0] auto_in_6_b_bits_param, // @[LazyModuleImp.scala:107:25]
output [31:0] auto_in_6_b_bits_address, // @[LazyModuleImp.scala:107:25]
output auto_in_6_c_ready, // @[LazyModuleImp.scala:107:25]
input auto_in_6_c_valid, // @[LazyModuleImp.scala:107:25]
input [2:0] auto_in_6_c_bits_opcode, // @[LazyModuleImp.scala:107:25]
input [2:0] auto_in_6_c_bits_param, // @[LazyModuleImp.scala:107:25]
input [2:0] auto_in_6_c_bits_size, // @[LazyModuleImp.scala:107:25]
input [5:0] auto_in_6_c_bits_source, // @[LazyModuleImp.scala:107:25]
input [31:0] auto_in_6_c_bits_address, // @[LazyModuleImp.scala:107:25]
input [127:0] auto_in_6_c_bits_data, // @[LazyModuleImp.scala:107:25]
input auto_in_6_c_bits_corrupt, // @[LazyModuleImp.scala:107:25]
input auto_in_6_d_ready, // @[LazyModuleImp.scala:107:25]
output auto_in_6_d_valid, // @[LazyModuleImp.scala:107:25]
output [2:0] auto_in_6_d_bits_opcode, // @[LazyModuleImp.scala:107:25]
output [1:0] auto_in_6_d_bits_param, // @[LazyModuleImp.scala:107:25]
output [2:0] auto_in_6_d_bits_size, // @[LazyModuleImp.scala:107:25]
output [5:0] auto_in_6_d_bits_source, // @[LazyModuleImp.scala:107:25]
output [3:0] auto_in_6_d_bits_sink, // @[LazyModuleImp.scala:107:25]
output auto_in_6_d_bits_denied, // @[LazyModuleImp.scala:107:25]
output [127:0] auto_in_6_d_bits_data, // @[LazyModuleImp.scala:107:25]
output auto_in_6_d_bits_corrupt, // @[LazyModuleImp.scala:107:25]
input auto_in_6_e_valid, // @[LazyModuleImp.scala:107:25]
input [3:0] auto_in_6_e_bits_sink, // @[LazyModuleImp.scala:107:25]
output auto_in_5_a_ready, // @[LazyModuleImp.scala:107:25]
input auto_in_5_a_valid, // @[LazyModuleImp.scala:107:25]
input [2:0] auto_in_5_a_bits_opcode, // @[LazyModuleImp.scala:107:25]
input [2:0] auto_in_5_a_bits_param, // @[LazyModuleImp.scala:107:25]
input [2:0] auto_in_5_a_bits_size, // @[LazyModuleImp.scala:107:25]
input [5:0] auto_in_5_a_bits_source, // @[LazyModuleImp.scala:107:25]
input [31:0] auto_in_5_a_bits_address, // @[LazyModuleImp.scala:107:25]
input [15:0] auto_in_5_a_bits_mask, // @[LazyModuleImp.scala:107:25]
input [127:0] auto_in_5_a_bits_data, // @[LazyModuleImp.scala:107:25]
input auto_in_5_a_bits_corrupt, // @[LazyModuleImp.scala:107:25]
input auto_in_5_b_ready, // @[LazyModuleImp.scala:107:25]
output auto_in_5_b_valid, // @[LazyModuleImp.scala:107:25]
output [1:0] auto_in_5_b_bits_param, // @[LazyModuleImp.scala:107:25]
output [31:0] auto_in_5_b_bits_address, // @[LazyModuleImp.scala:107:25]
output auto_in_5_c_ready, // @[LazyModuleImp.scala:107:25]
input auto_in_5_c_valid, // @[LazyModuleImp.scala:107:25]
input [2:0] auto_in_5_c_bits_opcode, // @[LazyModuleImp.scala:107:25]
input [2:0] auto_in_5_c_bits_param, // @[LazyModuleImp.scala:107:25]
input [2:0] auto_in_5_c_bits_size, // @[LazyModuleImp.scala:107:25]
input [5:0] auto_in_5_c_bits_source, // @[LazyModuleImp.scala:107:25]
input [31:0] auto_in_5_c_bits_address, // @[LazyModuleImp.scala:107:25]
input [127:0] auto_in_5_c_bits_data, // @[LazyModuleImp.scala:107:25]
input auto_in_5_c_bits_corrupt, // @[LazyModuleImp.scala:107:25]
input auto_in_5_d_ready, // @[LazyModuleImp.scala:107:25]
output auto_in_5_d_valid, // @[LazyModuleImp.scala:107:25]
output [2:0] auto_in_5_d_bits_opcode, // @[LazyModuleImp.scala:107:25]
output [1:0] auto_in_5_d_bits_param, // @[LazyModuleImp.scala:107:25]
output [2:0] auto_in_5_d_bits_size, // @[LazyModuleImp.scala:107:25]
output [5:0] auto_in_5_d_bits_source, // @[LazyModuleImp.scala:107:25]
output [3:0] auto_in_5_d_bits_sink, // @[LazyModuleImp.scala:107:25]
output auto_in_5_d_bits_denied, // @[LazyModuleImp.scala:107:25]
output [127:0] auto_in_5_d_bits_data, // @[LazyModuleImp.scala:107:25]
output auto_in_5_d_bits_corrupt, // @[LazyModuleImp.scala:107:25]
input auto_in_5_e_valid, // @[LazyModuleImp.scala:107:25]
input [3:0] auto_in_5_e_bits_sink, // @[LazyModuleImp.scala:107:25]
output auto_in_4_a_ready, // @[LazyModuleImp.scala:107:25]
input auto_in_4_a_valid, // @[LazyModuleImp.scala:107:25]
input [2:0] auto_in_4_a_bits_opcode, // @[LazyModuleImp.scala:107:25]
input [2:0] auto_in_4_a_bits_param, // @[LazyModuleImp.scala:107:25]
input [2:0] auto_in_4_a_bits_size, // @[LazyModuleImp.scala:107:25]
input [5:0] auto_in_4_a_bits_source, // @[LazyModuleImp.scala:107:25]
input [31:0] auto_in_4_a_bits_address, // @[LazyModuleImp.scala:107:25]
input [15:0] auto_in_4_a_bits_mask, // @[LazyModuleImp.scala:107:25]
input [127:0] auto_in_4_a_bits_data, // @[LazyModuleImp.scala:107:25]
input auto_in_4_a_bits_corrupt, // @[LazyModuleImp.scala:107:25]
input auto_in_4_b_ready, // @[LazyModuleImp.scala:107:25]
output auto_in_4_b_valid, // @[LazyModuleImp.scala:107:25]
output [1:0] auto_in_4_b_bits_param, // @[LazyModuleImp.scala:107:25]
output [31:0] auto_in_4_b_bits_address, // @[LazyModuleImp.scala:107:25]
output auto_in_4_c_ready, // @[LazyModuleImp.scala:107:25]
input auto_in_4_c_valid, // @[LazyModuleImp.scala:107:25]
input [2:0] auto_in_4_c_bits_opcode, // @[LazyModuleImp.scala:107:25]
input [2:0] auto_in_4_c_bits_param, // @[LazyModuleImp.scala:107:25]
input [2:0] auto_in_4_c_bits_size, // @[LazyModuleImp.scala:107:25]
input [5:0] auto_in_4_c_bits_source, // @[LazyModuleImp.scala:107:25]
input [31:0] auto_in_4_c_bits_address, // @[LazyModuleImp.scala:107:25]
input [127:0] auto_in_4_c_bits_data, // @[LazyModuleImp.scala:107:25]
input auto_in_4_c_bits_corrupt, // @[LazyModuleImp.scala:107:25]
input auto_in_4_d_ready, // @[LazyModuleImp.scala:107:25]
output auto_in_4_d_valid, // @[LazyModuleImp.scala:107:25]
output [2:0] auto_in_4_d_bits_opcode, // @[LazyModuleImp.scala:107:25]
output [1:0] auto_in_4_d_bits_param, // @[LazyModuleImp.scala:107:25]
output [2:0] auto_in_4_d_bits_size, // @[LazyModuleImp.scala:107:25]
output [5:0] auto_in_4_d_bits_source, // @[LazyModuleImp.scala:107:25]
output [3:0] auto_in_4_d_bits_sink, // @[LazyModuleImp.scala:107:25]
output auto_in_4_d_bits_denied, // @[LazyModuleImp.scala:107:25]
output [127:0] auto_in_4_d_bits_data, // @[LazyModuleImp.scala:107:25]
output auto_in_4_d_bits_corrupt, // @[LazyModuleImp.scala:107:25]
input auto_in_4_e_valid, // @[LazyModuleImp.scala:107:25]
input [3:0] auto_in_4_e_bits_sink, // @[LazyModuleImp.scala:107:25]
output auto_in_3_a_ready, // @[LazyModuleImp.scala:107:25]
input auto_in_3_a_valid, // @[LazyModuleImp.scala:107:25]
input [2:0] auto_in_3_a_bits_opcode, // @[LazyModuleImp.scala:107:25]
input [2:0] auto_in_3_a_bits_param, // @[LazyModuleImp.scala:107:25]
input [2:0] auto_in_3_a_bits_size, // @[LazyModuleImp.scala:107:25]
input [5:0] auto_in_3_a_bits_source, // @[LazyModuleImp.scala:107:25]
input [31:0] auto_in_3_a_bits_address, // @[LazyModuleImp.scala:107:25]
input [15:0] auto_in_3_a_bits_mask, // @[LazyModuleImp.scala:107:25]
input [127:0] auto_in_3_a_bits_data, // @[LazyModuleImp.scala:107:25]
input auto_in_3_a_bits_corrupt, // @[LazyModuleImp.scala:107:25]
input auto_in_3_b_ready, // @[LazyModuleImp.scala:107:25]
output auto_in_3_b_valid, // @[LazyModuleImp.scala:107:25]
output [1:0] auto_in_3_b_bits_param, // @[LazyModuleImp.scala:107:25]
output [31:0] auto_in_3_b_bits_address, // @[LazyModuleImp.scala:107:25]
output auto_in_3_c_ready, // @[LazyModuleImp.scala:107:25]
input auto_in_3_c_valid, // @[LazyModuleImp.scala:107:25]
input [2:0] auto_in_3_c_bits_opcode, // @[LazyModuleImp.scala:107:25]
input [2:0] auto_in_3_c_bits_param, // @[LazyModuleImp.scala:107:25]
input [2:0] auto_in_3_c_bits_size, // @[LazyModuleImp.scala:107:25]
input [5:0] auto_in_3_c_bits_source, // @[LazyModuleImp.scala:107:25]
input [31:0] auto_in_3_c_bits_address, // @[LazyModuleImp.scala:107:25]
input [127:0] auto_in_3_c_bits_data, // @[LazyModuleImp.scala:107:25]
input auto_in_3_c_bits_corrupt, // @[LazyModuleImp.scala:107:25]
input auto_in_3_d_ready, // @[LazyModuleImp.scala:107:25]
output auto_in_3_d_valid, // @[LazyModuleImp.scala:107:25]
output [2:0] auto_in_3_d_bits_opcode, // @[LazyModuleImp.scala:107:25]
output [1:0] auto_in_3_d_bits_param, // @[LazyModuleImp.scala:107:25]
output [2:0] auto_in_3_d_bits_size, // @[LazyModuleImp.scala:107:25]
output [5:0] auto_in_3_d_bits_source, // @[LazyModuleImp.scala:107:25]
output [3:0] auto_in_3_d_bits_sink, // @[LazyModuleImp.scala:107:25]
output auto_in_3_d_bits_denied, // @[LazyModuleImp.scala:107:25]
output [127:0] auto_in_3_d_bits_data, // @[LazyModuleImp.scala:107:25]
output auto_in_3_d_bits_corrupt, // @[LazyModuleImp.scala:107:25]
input auto_in_3_e_valid, // @[LazyModuleImp.scala:107:25]
input [3:0] auto_in_3_e_bits_sink, // @[LazyModuleImp.scala:107:25]
output auto_in_2_a_ready, // @[LazyModuleImp.scala:107:25]
input auto_in_2_a_valid, // @[LazyModuleImp.scala:107:25]
input [2:0] auto_in_2_a_bits_opcode, // @[LazyModuleImp.scala:107:25]
input [2:0] auto_in_2_a_bits_param, // @[LazyModuleImp.scala:107:25]
input [2:0] auto_in_2_a_bits_size, // @[LazyModuleImp.scala:107:25]
input [5:0] auto_in_2_a_bits_source, // @[LazyModuleImp.scala:107:25]
input [31:0] auto_in_2_a_bits_address, // @[LazyModuleImp.scala:107:25]
input [15:0] auto_in_2_a_bits_mask, // @[LazyModuleImp.scala:107:25]
input [127:0] auto_in_2_a_bits_data, // @[LazyModuleImp.scala:107:25]
input auto_in_2_a_bits_corrupt, // @[LazyModuleImp.scala:107:25]
input auto_in_2_b_ready, // @[LazyModuleImp.scala:107:25]
output auto_in_2_b_valid, // @[LazyModuleImp.scala:107:25]
output [1:0] auto_in_2_b_bits_param, // @[LazyModuleImp.scala:107:25]
output [31:0] auto_in_2_b_bits_address, // @[LazyModuleImp.scala:107:25]
output auto_in_2_c_ready, // @[LazyModuleImp.scala:107:25]
input auto_in_2_c_valid, // @[LazyModuleImp.scala:107:25]
input [2:0] auto_in_2_c_bits_opcode, // @[LazyModuleImp.scala:107:25]
input [2:0] auto_in_2_c_bits_param, // @[LazyModuleImp.scala:107:25]
input [2:0] auto_in_2_c_bits_size, // @[LazyModuleImp.scala:107:25]
input [5:0] auto_in_2_c_bits_source, // @[LazyModuleImp.scala:107:25]
input [31:0] auto_in_2_c_bits_address, // @[LazyModuleImp.scala:107:25]
input [127:0] auto_in_2_c_bits_data, // @[LazyModuleImp.scala:107:25]
input auto_in_2_c_bits_corrupt, // @[LazyModuleImp.scala:107:25]
input auto_in_2_d_ready, // @[LazyModuleImp.scala:107:25]
output auto_in_2_d_valid, // @[LazyModuleImp.scala:107:25]
output [2:0] auto_in_2_d_bits_opcode, // @[LazyModuleImp.scala:107:25]
output [1:0] auto_in_2_d_bits_param, // @[LazyModuleImp.scala:107:25]
output [2:0] auto_in_2_d_bits_size, // @[LazyModuleImp.scala:107:25]
output [5:0] auto_in_2_d_bits_source, // @[LazyModuleImp.scala:107:25]
output [3:0] auto_in_2_d_bits_sink, // @[LazyModuleImp.scala:107:25]
output auto_in_2_d_bits_denied, // @[LazyModuleImp.scala:107:25]
output [127:0] auto_in_2_d_bits_data, // @[LazyModuleImp.scala:107:25]
output auto_in_2_d_bits_corrupt, // @[LazyModuleImp.scala:107:25]
input auto_in_2_e_valid, // @[LazyModuleImp.scala:107:25]
input [3:0] auto_in_2_e_bits_sink, // @[LazyModuleImp.scala:107:25]
output auto_in_1_a_ready, // @[LazyModuleImp.scala:107:25]
input auto_in_1_a_valid, // @[LazyModuleImp.scala:107:25]
input [2:0] auto_in_1_a_bits_opcode, // @[LazyModuleImp.scala:107:25]
input [2:0] auto_in_1_a_bits_param, // @[LazyModuleImp.scala:107:25]
input [2:0] auto_in_1_a_bits_size, // @[LazyModuleImp.scala:107:25]
input [5:0] auto_in_1_a_bits_source, // @[LazyModuleImp.scala:107:25]
input [31:0] auto_in_1_a_bits_address, // @[LazyModuleImp.scala:107:25]
input [15:0] auto_in_1_a_bits_mask, // @[LazyModuleImp.scala:107:25]
input [127:0] auto_in_1_a_bits_data, // @[LazyModuleImp.scala:107:25]
input auto_in_1_a_bits_corrupt, // @[LazyModuleImp.scala:107:25]
input auto_in_1_b_ready, // @[LazyModuleImp.scala:107:25]
output auto_in_1_b_valid, // @[LazyModuleImp.scala:107:25]
output [1:0] auto_in_1_b_bits_param, // @[LazyModuleImp.scala:107:25]
output [31:0] auto_in_1_b_bits_address, // @[LazyModuleImp.scala:107:25]
output auto_in_1_c_ready, // @[LazyModuleImp.scala:107:25]
input auto_in_1_c_valid, // @[LazyModuleImp.scala:107:25]
input [2:0] auto_in_1_c_bits_opcode, // @[LazyModuleImp.scala:107:25]
input [2:0] auto_in_1_c_bits_param, // @[LazyModuleImp.scala:107:25]
input [2:0] auto_in_1_c_bits_size, // @[LazyModuleImp.scala:107:25]
input [5:0] auto_in_1_c_bits_source, // @[LazyModuleImp.scala:107:25]
input [31:0] auto_in_1_c_bits_address, // @[LazyModuleImp.scala:107:25]
input [127:0] auto_in_1_c_bits_data, // @[LazyModuleImp.scala:107:25]
input auto_in_1_c_bits_corrupt, // @[LazyModuleImp.scala:107:25]
input auto_in_1_d_ready, // @[LazyModuleImp.scala:107:25]
output auto_in_1_d_valid, // @[LazyModuleImp.scala:107:25]
output [2:0] auto_in_1_d_bits_opcode, // @[LazyModuleImp.scala:107:25]
output [1:0] auto_in_1_d_bits_param, // @[LazyModuleImp.scala:107:25]
output [2:0] auto_in_1_d_bits_size, // @[LazyModuleImp.scala:107:25]
output [5:0] auto_in_1_d_bits_source, // @[LazyModuleImp.scala:107:25]
output [3:0] auto_in_1_d_bits_sink, // @[LazyModuleImp.scala:107:25]
output auto_in_1_d_bits_denied, // @[LazyModuleImp.scala:107:25]
output [127:0] auto_in_1_d_bits_data, // @[LazyModuleImp.scala:107:25]
output auto_in_1_d_bits_corrupt, // @[LazyModuleImp.scala:107:25]
input auto_in_1_e_valid, // @[LazyModuleImp.scala:107:25]
input [3:0] auto_in_1_e_bits_sink, // @[LazyModuleImp.scala:107:25]
output auto_in_0_a_ready, // @[LazyModuleImp.scala:107:25]
input auto_in_0_a_valid, // @[LazyModuleImp.scala:107:25]
input [2:0] auto_in_0_a_bits_opcode, // @[LazyModuleImp.scala:107:25]
input [2:0] auto_in_0_a_bits_param, // @[LazyModuleImp.scala:107:25]
input [2:0] auto_in_0_a_bits_size, // @[LazyModuleImp.scala:107:25]
input [5:0] auto_in_0_a_bits_source, // @[LazyModuleImp.scala:107:25]
input [31:0] auto_in_0_a_bits_address, // @[LazyModuleImp.scala:107:25]
input [15:0] auto_in_0_a_bits_mask, // @[LazyModuleImp.scala:107:25]
input [127:0] auto_in_0_a_bits_data, // @[LazyModuleImp.scala:107:25]
input auto_in_0_a_bits_corrupt, // @[LazyModuleImp.scala:107:25]
input auto_in_0_b_ready, // @[LazyModuleImp.scala:107:25]
output auto_in_0_b_valid, // @[LazyModuleImp.scala:107:25]
output [1:0] auto_in_0_b_bits_param, // @[LazyModuleImp.scala:107:25]
output [31:0] auto_in_0_b_bits_address, // @[LazyModuleImp.scala:107:25]
output auto_in_0_c_ready, // @[LazyModuleImp.scala:107:25]
input auto_in_0_c_valid, // @[LazyModuleImp.scala:107:25]
input [2:0] auto_in_0_c_bits_opcode, // @[LazyModuleImp.scala:107:25]
input [2:0] auto_in_0_c_bits_param, // @[LazyModuleImp.scala:107:25]
input [2:0] auto_in_0_c_bits_size, // @[LazyModuleImp.scala:107:25]
input [5:0] auto_in_0_c_bits_source, // @[LazyModuleImp.scala:107:25]
input [31:0] auto_in_0_c_bits_address, // @[LazyModuleImp.scala:107:25]
input [127:0] auto_in_0_c_bits_data, // @[LazyModuleImp.scala:107:25]
input auto_in_0_c_bits_corrupt, // @[LazyModuleImp.scala:107:25]
input auto_in_0_d_ready, // @[LazyModuleImp.scala:107:25]
output auto_in_0_d_valid, // @[LazyModuleImp.scala:107:25]
output [2:0] auto_in_0_d_bits_opcode, // @[LazyModuleImp.scala:107:25]
output [1:0] auto_in_0_d_bits_param, // @[LazyModuleImp.scala:107:25]
output [2:0] auto_in_0_d_bits_size, // @[LazyModuleImp.scala:107:25]
output [5:0] auto_in_0_d_bits_source, // @[LazyModuleImp.scala:107:25]
output [3:0] auto_in_0_d_bits_sink, // @[LazyModuleImp.scala:107:25]
output auto_in_0_d_bits_denied, // @[LazyModuleImp.scala:107:25]
output [127:0] auto_in_0_d_bits_data, // @[LazyModuleImp.scala:107:25]
output auto_in_0_d_bits_corrupt, // @[LazyModuleImp.scala:107:25]
input auto_in_0_e_valid, // @[LazyModuleImp.scala:107:25]
input [3:0] auto_in_0_e_bits_sink, // @[LazyModuleImp.scala:107:25]
input auto_out_7_a_ready, // @[LazyModuleImp.scala:107:25]
output auto_out_7_a_valid, // @[LazyModuleImp.scala:107:25]
output [2:0] auto_out_7_a_bits_opcode, // @[LazyModuleImp.scala:107:25]
output [2:0] auto_out_7_a_bits_param, // @[LazyModuleImp.scala:107:25]
output [2:0] auto_out_7_a_bits_size, // @[LazyModuleImp.scala:107:25]
output [3:0] auto_out_7_a_bits_source, // @[LazyModuleImp.scala:107:25]
output [31:0] auto_out_7_a_bits_address, // @[LazyModuleImp.scala:107:25]
output [7:0] auto_out_7_a_bits_mask, // @[LazyModuleImp.scala:107:25]
output [63:0] auto_out_7_a_bits_data, // @[LazyModuleImp.scala:107:25]
output auto_out_7_a_bits_corrupt, // @[LazyModuleImp.scala:107:25]
input auto_out_7_c_ready, // @[LazyModuleImp.scala:107:25]
output auto_out_7_c_valid, // @[LazyModuleImp.scala:107:25]
output [2:0] auto_out_7_c_bits_opcode, // @[LazyModuleImp.scala:107:25]
output [2:0] auto_out_7_c_bits_param, // @[LazyModuleImp.scala:107:25]
output [2:0] auto_out_7_c_bits_size, // @[LazyModuleImp.scala:107:25]
output [3:0] auto_out_7_c_bits_source, // @[LazyModuleImp.scala:107:25]
output [31:0] auto_out_7_c_bits_address, // @[LazyModuleImp.scala:107:25]
output [63:0] auto_out_7_c_bits_data, // @[LazyModuleImp.scala:107:25]
output auto_out_7_c_bits_corrupt, // @[LazyModuleImp.scala:107:25]
output auto_out_7_d_ready, // @[LazyModuleImp.scala:107:25]
input auto_out_7_d_valid, // @[LazyModuleImp.scala:107:25]
input [2:0] auto_out_7_d_bits_opcode, // @[LazyModuleImp.scala:107:25]
input [1:0] auto_out_7_d_bits_param, // @[LazyModuleImp.scala:107:25]
input [2:0] auto_out_7_d_bits_size, // @[LazyModuleImp.scala:107:25]
input [3:0] auto_out_7_d_bits_source, // @[LazyModuleImp.scala:107:25]
input [2:0] auto_out_7_d_bits_sink, // @[LazyModuleImp.scala:107:25]
input auto_out_7_d_bits_denied, // @[LazyModuleImp.scala:107:25]
input [63:0] auto_out_7_d_bits_data, // @[LazyModuleImp.scala:107:25]
input auto_out_7_d_bits_corrupt, // @[LazyModuleImp.scala:107:25]
output auto_out_7_e_valid, // @[LazyModuleImp.scala:107:25]
output [2:0] auto_out_7_e_bits_sink, // @[LazyModuleImp.scala:107:25]
input auto_out_6_a_ready, // @[LazyModuleImp.scala:107:25]
output auto_out_6_a_valid, // @[LazyModuleImp.scala:107:25]
output [2:0] auto_out_6_a_bits_opcode, // @[LazyModuleImp.scala:107:25]
output [2:0] auto_out_6_a_bits_param, // @[LazyModuleImp.scala:107:25]
output [2:0] auto_out_6_a_bits_size, // @[LazyModuleImp.scala:107:25]
output [3:0] auto_out_6_a_bits_source, // @[LazyModuleImp.scala:107:25]
output [31:0] auto_out_6_a_bits_address, // @[LazyModuleImp.scala:107:25]
output [7:0] auto_out_6_a_bits_mask, // @[LazyModuleImp.scala:107:25]
output [63:0] auto_out_6_a_bits_data, // @[LazyModuleImp.scala:107:25]
output auto_out_6_a_bits_corrupt, // @[LazyModuleImp.scala:107:25]
input auto_out_6_c_ready, // @[LazyModuleImp.scala:107:25]
output auto_out_6_c_valid, // @[LazyModuleImp.scala:107:25]
output [2:0] auto_out_6_c_bits_opcode, // @[LazyModuleImp.scala:107:25]
output [2:0] auto_out_6_c_bits_param, // @[LazyModuleImp.scala:107:25]
output [2:0] auto_out_6_c_bits_size, // @[LazyModuleImp.scala:107:25]
output [3:0] auto_out_6_c_bits_source, // @[LazyModuleImp.scala:107:25]
output [31:0] auto_out_6_c_bits_address, // @[LazyModuleImp.scala:107:25]
output [63:0] auto_out_6_c_bits_data, // @[LazyModuleImp.scala:107:25]
output auto_out_6_c_bits_corrupt, // @[LazyModuleImp.scala:107:25]
output auto_out_6_d_ready, // @[LazyModuleImp.scala:107:25]
input auto_out_6_d_valid, // @[LazyModuleImp.scala:107:25]
input [2:0] auto_out_6_d_bits_opcode, // @[LazyModuleImp.scala:107:25]
input [1:0] auto_out_6_d_bits_param, // @[LazyModuleImp.scala:107:25]
input [2:0] auto_out_6_d_bits_size, // @[LazyModuleImp.scala:107:25]
input [3:0] auto_out_6_d_bits_source, // @[LazyModuleImp.scala:107:25]
input [2:0] auto_out_6_d_bits_sink, // @[LazyModuleImp.scala:107:25]
input auto_out_6_d_bits_denied, // @[LazyModuleImp.scala:107:25]
input [63:0] auto_out_6_d_bits_data, // @[LazyModuleImp.scala:107:25]
input auto_out_6_d_bits_corrupt, // @[LazyModuleImp.scala:107:25]
output auto_out_6_e_valid, // @[LazyModuleImp.scala:107:25]
output [2:0] auto_out_6_e_bits_sink, // @[LazyModuleImp.scala:107:25]
input auto_out_5_a_ready, // @[LazyModuleImp.scala:107:25]
output auto_out_5_a_valid, // @[LazyModuleImp.scala:107:25]
output [2:0] auto_out_5_a_bits_opcode, // @[LazyModuleImp.scala:107:25]
output [2:0] auto_out_5_a_bits_param, // @[LazyModuleImp.scala:107:25]
output [2:0] auto_out_5_a_bits_size, // @[LazyModuleImp.scala:107:25]
output [3:0] auto_out_5_a_bits_source, // @[LazyModuleImp.scala:107:25]
output [31:0] auto_out_5_a_bits_address, // @[LazyModuleImp.scala:107:25]
output [7:0] auto_out_5_a_bits_mask, // @[LazyModuleImp.scala:107:25]
output [63:0] auto_out_5_a_bits_data, // @[LazyModuleImp.scala:107:25]
output auto_out_5_a_bits_corrupt, // @[LazyModuleImp.scala:107:25]
input auto_out_5_c_ready, // @[LazyModuleImp.scala:107:25]
output auto_out_5_c_valid, // @[LazyModuleImp.scala:107:25]
output [2:0] auto_out_5_c_bits_opcode, // @[LazyModuleImp.scala:107:25]
output [2:0] auto_out_5_c_bits_param, // @[LazyModuleImp.scala:107:25]
output [2:0] auto_out_5_c_bits_size, // @[LazyModuleImp.scala:107:25]
output [3:0] auto_out_5_c_bits_source, // @[LazyModuleImp.scala:107:25]
output [31:0] auto_out_5_c_bits_address, // @[LazyModuleImp.scala:107:25]
output [63:0] auto_out_5_c_bits_data, // @[LazyModuleImp.scala:107:25]
output auto_out_5_c_bits_corrupt, // @[LazyModuleImp.scala:107:25]
output auto_out_5_d_ready, // @[LazyModuleImp.scala:107:25]
input auto_out_5_d_valid, // @[LazyModuleImp.scala:107:25]
input [2:0] auto_out_5_d_bits_opcode, // @[LazyModuleImp.scala:107:25]
input [1:0] auto_out_5_d_bits_param, // @[LazyModuleImp.scala:107:25]
input [2:0] auto_out_5_d_bits_size, // @[LazyModuleImp.scala:107:25]
input [3:0] auto_out_5_d_bits_source, // @[LazyModuleImp.scala:107:25]
input [2:0] auto_out_5_d_bits_sink, // @[LazyModuleImp.scala:107:25]
input auto_out_5_d_bits_denied, // @[LazyModuleImp.scala:107:25]
input [63:0] auto_out_5_d_bits_data, // @[LazyModuleImp.scala:107:25]
input auto_out_5_d_bits_corrupt, // @[LazyModuleImp.scala:107:25]
output auto_out_5_e_valid, // @[LazyModuleImp.scala:107:25]
output [2:0] auto_out_5_e_bits_sink, // @[LazyModuleImp.scala:107:25]
input auto_out_4_a_ready, // @[LazyModuleImp.scala:107:25]
output auto_out_4_a_valid, // @[LazyModuleImp.scala:107:25]
output [2:0] auto_out_4_a_bits_opcode, // @[LazyModuleImp.scala:107:25]
output [2:0] auto_out_4_a_bits_param, // @[LazyModuleImp.scala:107:25]
output [2:0] auto_out_4_a_bits_size, // @[LazyModuleImp.scala:107:25]
output [3:0] auto_out_4_a_bits_source, // @[LazyModuleImp.scala:107:25]
output [31:0] auto_out_4_a_bits_address, // @[LazyModuleImp.scala:107:25]
output [7:0] auto_out_4_a_bits_mask, // @[LazyModuleImp.scala:107:25]
output [63:0] auto_out_4_a_bits_data, // @[LazyModuleImp.scala:107:25]
output auto_out_4_a_bits_corrupt, // @[LazyModuleImp.scala:107:25]
input auto_out_4_c_ready, // @[LazyModuleImp.scala:107:25]
output auto_out_4_c_valid, // @[LazyModuleImp.scala:107:25]
output [2:0] auto_out_4_c_bits_opcode, // @[LazyModuleImp.scala:107:25]
output [2:0] auto_out_4_c_bits_param, // @[LazyModuleImp.scala:107:25]
output [2:0] auto_out_4_c_bits_size, // @[LazyModuleImp.scala:107:25]
output [3:0] auto_out_4_c_bits_source, // @[LazyModuleImp.scala:107:25]
output [31:0] auto_out_4_c_bits_address, // @[LazyModuleImp.scala:107:25]
output [63:0] auto_out_4_c_bits_data, // @[LazyModuleImp.scala:107:25]
output auto_out_4_c_bits_corrupt, // @[LazyModuleImp.scala:107:25]
output auto_out_4_d_ready, // @[LazyModuleImp.scala:107:25]
input auto_out_4_d_valid, // @[LazyModuleImp.scala:107:25]
input [2:0] auto_out_4_d_bits_opcode, // @[LazyModuleImp.scala:107:25]
input [1:0] auto_out_4_d_bits_param, // @[LazyModuleImp.scala:107:25]
input [2:0] auto_out_4_d_bits_size, // @[LazyModuleImp.scala:107:25]
input [3:0] auto_out_4_d_bits_source, // @[LazyModuleImp.scala:107:25]
input [2:0] auto_out_4_d_bits_sink, // @[LazyModuleImp.scala:107:25]
input auto_out_4_d_bits_denied, // @[LazyModuleImp.scala:107:25]
input [63:0] auto_out_4_d_bits_data, // @[LazyModuleImp.scala:107:25]
input auto_out_4_d_bits_corrupt, // @[LazyModuleImp.scala:107:25]
output auto_out_4_e_valid, // @[LazyModuleImp.scala:107:25]
output [2:0] auto_out_4_e_bits_sink, // @[LazyModuleImp.scala:107:25]
input auto_out_3_a_ready, // @[LazyModuleImp.scala:107:25]
output auto_out_3_a_valid, // @[LazyModuleImp.scala:107:25]
output [2:0] auto_out_3_a_bits_opcode, // @[LazyModuleImp.scala:107:25]
output [2:0] auto_out_3_a_bits_param, // @[LazyModuleImp.scala:107:25]
output [2:0] auto_out_3_a_bits_size, // @[LazyModuleImp.scala:107:25]
output [3:0] auto_out_3_a_bits_source, // @[LazyModuleImp.scala:107:25]
output [31:0] auto_out_3_a_bits_address, // @[LazyModuleImp.scala:107:25]
output [7:0] auto_out_3_a_bits_mask, // @[LazyModuleImp.scala:107:25]
output [63:0] auto_out_3_a_bits_data, // @[LazyModuleImp.scala:107:25]
output auto_out_3_a_bits_corrupt, // @[LazyModuleImp.scala:107:25]
input auto_out_3_c_ready, // @[LazyModuleImp.scala:107:25]
output auto_out_3_c_valid, // @[LazyModuleImp.scala:107:25]
output [2:0] auto_out_3_c_bits_opcode, // @[LazyModuleImp.scala:107:25]
output [2:0] auto_out_3_c_bits_param, // @[LazyModuleImp.scala:107:25]
output [2:0] auto_out_3_c_bits_size, // @[LazyModuleImp.scala:107:25]
output [3:0] auto_out_3_c_bits_source, // @[LazyModuleImp.scala:107:25]
output [31:0] auto_out_3_c_bits_address, // @[LazyModuleImp.scala:107:25]
output [63:0] auto_out_3_c_bits_data, // @[LazyModuleImp.scala:107:25]
output auto_out_3_c_bits_corrupt, // @[LazyModuleImp.scala:107:25]
output auto_out_3_d_ready, // @[LazyModuleImp.scala:107:25]
input auto_out_3_d_valid, // @[LazyModuleImp.scala:107:25]
input [2:0] auto_out_3_d_bits_opcode, // @[LazyModuleImp.scala:107:25]
input [1:0] auto_out_3_d_bits_param, // @[LazyModuleImp.scala:107:25]
input [2:0] auto_out_3_d_bits_size, // @[LazyModuleImp.scala:107:25]
input [3:0] auto_out_3_d_bits_source, // @[LazyModuleImp.scala:107:25]
input [2:0] auto_out_3_d_bits_sink, // @[LazyModuleImp.scala:107:25]
input auto_out_3_d_bits_denied, // @[LazyModuleImp.scala:107:25]
input [63:0] auto_out_3_d_bits_data, // @[LazyModuleImp.scala:107:25]
input auto_out_3_d_bits_corrupt, // @[LazyModuleImp.scala:107:25]
output auto_out_3_e_valid, // @[LazyModuleImp.scala:107:25]
output [2:0] auto_out_3_e_bits_sink, // @[LazyModuleImp.scala:107:25]
input auto_out_2_a_ready, // @[LazyModuleImp.scala:107:25]
output auto_out_2_a_valid, // @[LazyModuleImp.scala:107:25]
output [2:0] auto_out_2_a_bits_opcode, // @[LazyModuleImp.scala:107:25]
output [2:0] auto_out_2_a_bits_param, // @[LazyModuleImp.scala:107:25]
output [2:0] auto_out_2_a_bits_size, // @[LazyModuleImp.scala:107:25]
output [3:0] auto_out_2_a_bits_source, // @[LazyModuleImp.scala:107:25]
output [31:0] auto_out_2_a_bits_address, // @[LazyModuleImp.scala:107:25]
output [7:0] auto_out_2_a_bits_mask, // @[LazyModuleImp.scala:107:25]
output [63:0] auto_out_2_a_bits_data, // @[LazyModuleImp.scala:107:25]
output auto_out_2_a_bits_corrupt, // @[LazyModuleImp.scala:107:25]
input auto_out_2_c_ready, // @[LazyModuleImp.scala:107:25]
output auto_out_2_c_valid, // @[LazyModuleImp.scala:107:25]
output [2:0] auto_out_2_c_bits_opcode, // @[LazyModuleImp.scala:107:25]
output [2:0] auto_out_2_c_bits_param, // @[LazyModuleImp.scala:107:25]
output [2:0] auto_out_2_c_bits_size, // @[LazyModuleImp.scala:107:25]
output [3:0] auto_out_2_c_bits_source, // @[LazyModuleImp.scala:107:25]
output [31:0] auto_out_2_c_bits_address, // @[LazyModuleImp.scala:107:25]
output [63:0] auto_out_2_c_bits_data, // @[LazyModuleImp.scala:107:25]
output auto_out_2_c_bits_corrupt, // @[LazyModuleImp.scala:107:25]
output auto_out_2_d_ready, // @[LazyModuleImp.scala:107:25]
input auto_out_2_d_valid, // @[LazyModuleImp.scala:107:25]
input [2:0] auto_out_2_d_bits_opcode, // @[LazyModuleImp.scala:107:25]
input [1:0] auto_out_2_d_bits_param, // @[LazyModuleImp.scala:107:25]
input [2:0] auto_out_2_d_bits_size, // @[LazyModuleImp.scala:107:25]
input [3:0] auto_out_2_d_bits_source, // @[LazyModuleImp.scala:107:25]
input [2:0] auto_out_2_d_bits_sink, // @[LazyModuleImp.scala:107:25]
input auto_out_2_d_bits_denied, // @[LazyModuleImp.scala:107:25]
input [63:0] auto_out_2_d_bits_data, // @[LazyModuleImp.scala:107:25]
input auto_out_2_d_bits_corrupt, // @[LazyModuleImp.scala:107:25]
output auto_out_2_e_valid, // @[LazyModuleImp.scala:107:25]
output [2:0] auto_out_2_e_bits_sink, // @[LazyModuleImp.scala:107:25]
input auto_out_1_a_ready, // @[LazyModuleImp.scala:107:25]
output auto_out_1_a_valid, // @[LazyModuleImp.scala:107:25]
output [2:0] auto_out_1_a_bits_opcode, // @[LazyModuleImp.scala:107:25]
output [2:0] auto_out_1_a_bits_param, // @[LazyModuleImp.scala:107:25]
output [2:0] auto_out_1_a_bits_size, // @[LazyModuleImp.scala:107:25]
output [3:0] auto_out_1_a_bits_source, // @[LazyModuleImp.scala:107:25]
output [31:0] auto_out_1_a_bits_address, // @[LazyModuleImp.scala:107:25]
output [7:0] auto_out_1_a_bits_mask, // @[LazyModuleImp.scala:107:25]
output [63:0] auto_out_1_a_bits_data, // @[LazyModuleImp.scala:107:25]
output auto_out_1_a_bits_corrupt, // @[LazyModuleImp.scala:107:25]
input auto_out_1_c_ready, // @[LazyModuleImp.scala:107:25]
output auto_out_1_c_valid, // @[LazyModuleImp.scala:107:25]
output [2:0] auto_out_1_c_bits_opcode, // @[LazyModuleImp.scala:107:25]
output [2:0] auto_out_1_c_bits_param, // @[LazyModuleImp.scala:107:25]
output [2:0] auto_out_1_c_bits_size, // @[LazyModuleImp.scala:107:25]
output [3:0] auto_out_1_c_bits_source, // @[LazyModuleImp.scala:107:25]
output [31:0] auto_out_1_c_bits_address, // @[LazyModuleImp.scala:107:25]
output [63:0] auto_out_1_c_bits_data, // @[LazyModuleImp.scala:107:25]
output auto_out_1_c_bits_corrupt, // @[LazyModuleImp.scala:107:25]
output auto_out_1_d_ready, // @[LazyModuleImp.scala:107:25]
input auto_out_1_d_valid, // @[LazyModuleImp.scala:107:25]
input [2:0] auto_out_1_d_bits_opcode, // @[LazyModuleImp.scala:107:25]
input [1:0] auto_out_1_d_bits_param, // @[LazyModuleImp.scala:107:25]
input [2:0] auto_out_1_d_bits_size, // @[LazyModuleImp.scala:107:25]
input [3:0] auto_out_1_d_bits_source, // @[LazyModuleImp.scala:107:25]
input [2:0] auto_out_1_d_bits_sink, // @[LazyModuleImp.scala:107:25]
input auto_out_1_d_bits_denied, // @[LazyModuleImp.scala:107:25]
input [63:0] auto_out_1_d_bits_data, // @[LazyModuleImp.scala:107:25]
input auto_out_1_d_bits_corrupt, // @[LazyModuleImp.scala:107:25]
output auto_out_1_e_valid, // @[LazyModuleImp.scala:107:25]
output [2:0] auto_out_1_e_bits_sink, // @[LazyModuleImp.scala:107:25]
input auto_out_0_a_ready, // @[LazyModuleImp.scala:107:25]
output auto_out_0_a_valid, // @[LazyModuleImp.scala:107:25]
output [2:0] auto_out_0_a_bits_opcode, // @[LazyModuleImp.scala:107:25]
output [2:0] auto_out_0_a_bits_param, // @[LazyModuleImp.scala:107:25]
output [2:0] auto_out_0_a_bits_size, // @[LazyModuleImp.scala:107:25]
output [3:0] auto_out_0_a_bits_source, // @[LazyModuleImp.scala:107:25]
output [31:0] auto_out_0_a_bits_address, // @[LazyModuleImp.scala:107:25]
output [7:0] auto_out_0_a_bits_mask, // @[LazyModuleImp.scala:107:25]
output [63:0] auto_out_0_a_bits_data, // @[LazyModuleImp.scala:107:25]
output auto_out_0_a_bits_corrupt, // @[LazyModuleImp.scala:107:25]
input auto_out_0_c_ready, // @[LazyModuleImp.scala:107:25]
output auto_out_0_c_valid, // @[LazyModuleImp.scala:107:25]
output [2:0] auto_out_0_c_bits_opcode, // @[LazyModuleImp.scala:107:25]
output [2:0] auto_out_0_c_bits_param, // @[LazyModuleImp.scala:107:25]
output [2:0] auto_out_0_c_bits_size, // @[LazyModuleImp.scala:107:25]
output [3:0] auto_out_0_c_bits_source, // @[LazyModuleImp.scala:107:25]
output [31:0] auto_out_0_c_bits_address, // @[LazyModuleImp.scala:107:25]
output [63:0] auto_out_0_c_bits_data, // @[LazyModuleImp.scala:107:25]
output auto_out_0_c_bits_corrupt, // @[LazyModuleImp.scala:107:25]
output auto_out_0_d_ready, // @[LazyModuleImp.scala:107:25]
input auto_out_0_d_valid, // @[LazyModuleImp.scala:107:25]
input [2:0] auto_out_0_d_bits_opcode, // @[LazyModuleImp.scala:107:25]
input [1:0] auto_out_0_d_bits_param, // @[LazyModuleImp.scala:107:25]
input [2:0] auto_out_0_d_bits_size, // @[LazyModuleImp.scala:107:25]
input [3:0] auto_out_0_d_bits_source, // @[LazyModuleImp.scala:107:25]
input [2:0] auto_out_0_d_bits_sink, // @[LazyModuleImp.scala:107:25]
input auto_out_0_d_bits_denied, // @[LazyModuleImp.scala:107:25]
input [63:0] auto_out_0_d_bits_data, // @[LazyModuleImp.scala:107:25]
input auto_out_0_d_bits_corrupt, // @[LazyModuleImp.scala:107:25]
output auto_out_0_e_valid, // @[LazyModuleImp.scala:107:25]
output [2:0] auto_out_0_e_bits_sink // @[LazyModuleImp.scala:107:25]
);
wire [31:0] _inclusive_cache_bank_sched_7_io_in_b_bits_address; // @[InclusiveCache.scala:137:29]
wire [31:0] _inclusive_cache_bank_sched_7_io_out_a_bits_address; // @[InclusiveCache.scala:137:29]
wire [31:0] _inclusive_cache_bank_sched_7_io_out_c_bits_address; // @[InclusiveCache.scala:137:29]
wire _inclusive_cache_bank_sched_7_io_req_ready; // @[InclusiveCache.scala:137:29]
wire _inclusive_cache_bank_sched_7_io_resp_valid; // @[InclusiveCache.scala:137:29]
wire [31:0] _inclusive_cache_bank_sched_6_io_in_b_bits_address; // @[InclusiveCache.scala:137:29]
wire [31:0] _inclusive_cache_bank_sched_6_io_out_a_bits_address; // @[InclusiveCache.scala:137:29]
wire [31:0] _inclusive_cache_bank_sched_6_io_out_c_bits_address; // @[InclusiveCache.scala:137:29]
wire _inclusive_cache_bank_sched_6_io_req_ready; // @[InclusiveCache.scala:137:29]
wire _inclusive_cache_bank_sched_6_io_resp_valid; // @[InclusiveCache.scala:137:29]
wire [31:0] _inclusive_cache_bank_sched_5_io_in_b_bits_address; // @[InclusiveCache.scala:137:29]
wire [31:0] _inclusive_cache_bank_sched_5_io_out_a_bits_address; // @[InclusiveCache.scala:137:29]
wire [31:0] _inclusive_cache_bank_sched_5_io_out_c_bits_address; // @[InclusiveCache.scala:137:29]
wire _inclusive_cache_bank_sched_5_io_req_ready; // @[InclusiveCache.scala:137:29]
wire _inclusive_cache_bank_sched_5_io_resp_valid; // @[InclusiveCache.scala:137:29]
wire [31:0] _inclusive_cache_bank_sched_4_io_in_b_bits_address; // @[InclusiveCache.scala:137:29]
wire [31:0] _inclusive_cache_bank_sched_4_io_out_a_bits_address; // @[InclusiveCache.scala:137:29]
wire [31:0] _inclusive_cache_bank_sched_4_io_out_c_bits_address; // @[InclusiveCache.scala:137:29]
wire _inclusive_cache_bank_sched_4_io_req_ready; // @[InclusiveCache.scala:137:29]
wire _inclusive_cache_bank_sched_4_io_resp_valid; // @[InclusiveCache.scala:137:29]
wire [31:0] _inclusive_cache_bank_sched_3_io_in_b_bits_address; // @[InclusiveCache.scala:137:29]
wire [31:0] _inclusive_cache_bank_sched_3_io_out_a_bits_address; // @[InclusiveCache.scala:137:29]
wire [31:0] _inclusive_cache_bank_sched_3_io_out_c_bits_address; // @[InclusiveCache.scala:137:29]
wire _inclusive_cache_bank_sched_3_io_req_ready; // @[InclusiveCache.scala:137:29]
wire _inclusive_cache_bank_sched_3_io_resp_valid; // @[InclusiveCache.scala:137:29]
wire [31:0] _inclusive_cache_bank_sched_2_io_in_b_bits_address; // @[InclusiveCache.scala:137:29]
wire [31:0] _inclusive_cache_bank_sched_2_io_out_a_bits_address; // @[InclusiveCache.scala:137:29]
wire [31:0] _inclusive_cache_bank_sched_2_io_out_c_bits_address; // @[InclusiveCache.scala:137:29]
wire _inclusive_cache_bank_sched_2_io_req_ready; // @[InclusiveCache.scala:137:29]
wire _inclusive_cache_bank_sched_2_io_resp_valid; // @[InclusiveCache.scala:137:29]
wire [31:0] _inclusive_cache_bank_sched_1_io_in_b_bits_address; // @[InclusiveCache.scala:137:29]
wire [31:0] _inclusive_cache_bank_sched_1_io_out_a_bits_address; // @[InclusiveCache.scala:137:29]
wire [31:0] _inclusive_cache_bank_sched_1_io_out_c_bits_address; // @[InclusiveCache.scala:137:29]
wire _inclusive_cache_bank_sched_1_io_req_ready; // @[InclusiveCache.scala:137:29]
wire _inclusive_cache_bank_sched_1_io_resp_valid; // @[InclusiveCache.scala:137:29]
wire [31:0] _inclusive_cache_bank_sched_io_in_b_bits_address; // @[InclusiveCache.scala:137:29]
wire [31:0] _inclusive_cache_bank_sched_io_out_a_bits_address; // @[InclusiveCache.scala:137:29]
wire [31:0] _inclusive_cache_bank_sched_io_out_c_bits_address; // @[InclusiveCache.scala:137:29]
wire _inclusive_cache_bank_sched_io_req_ready; // @[InclusiveCache.scala:137:29]
wire _inclusive_cache_bank_sched_io_resp_valid; // @[InclusiveCache.scala:137:29]
wire _ctrls_io_flush_req_valid; // @[InclusiveCache.scala:103:43]
wire [63:0] _ctrls_io_flush_req_bits; // @[InclusiveCache.scala:103:43]
wire auto_ctrls_ctrl_in_a_valid_0 = auto_ctrls_ctrl_in_a_valid; // @[InclusiveCache.scala:108:9]
wire [2:0] auto_ctrls_ctrl_in_a_bits_opcode_0 = auto_ctrls_ctrl_in_a_bits_opcode; // @[InclusiveCache.scala:108:9]
wire [2:0] auto_ctrls_ctrl_in_a_bits_param_0 = auto_ctrls_ctrl_in_a_bits_param; // @[InclusiveCache.scala:108:9]
wire [1:0] auto_ctrls_ctrl_in_a_bits_size_0 = auto_ctrls_ctrl_in_a_bits_size; // @[InclusiveCache.scala:108:9]
wire [10:0] auto_ctrls_ctrl_in_a_bits_source_0 = auto_ctrls_ctrl_in_a_bits_source; // @[InclusiveCache.scala:108:9]
wire [25:0] auto_ctrls_ctrl_in_a_bits_address_0 = auto_ctrls_ctrl_in_a_bits_address; // @[InclusiveCache.scala:108:9]
wire [7:0] auto_ctrls_ctrl_in_a_bits_mask_0 = auto_ctrls_ctrl_in_a_bits_mask; // @[InclusiveCache.scala:108:9]
wire [63:0] auto_ctrls_ctrl_in_a_bits_data_0 = auto_ctrls_ctrl_in_a_bits_data; // @[InclusiveCache.scala:108:9]
wire auto_ctrls_ctrl_in_a_bits_corrupt_0 = auto_ctrls_ctrl_in_a_bits_corrupt; // @[InclusiveCache.scala:108:9]
wire auto_ctrls_ctrl_in_d_ready_0 = auto_ctrls_ctrl_in_d_ready; // @[InclusiveCache.scala:108:9]
wire auto_in_7_a_valid_0 = auto_in_7_a_valid; // @[InclusiveCache.scala:108:9]
wire [2:0] auto_in_7_a_bits_opcode_0 = auto_in_7_a_bits_opcode; // @[InclusiveCache.scala:108:9]
wire [2:0] auto_in_7_a_bits_param_0 = auto_in_7_a_bits_param; // @[InclusiveCache.scala:108:9]
wire [2:0] auto_in_7_a_bits_size_0 = auto_in_7_a_bits_size; // @[InclusiveCache.scala:108:9]
wire [5:0] auto_in_7_a_bits_source_0 = auto_in_7_a_bits_source; // @[InclusiveCache.scala:108:9]
wire [31:0] auto_in_7_a_bits_address_0 = auto_in_7_a_bits_address; // @[InclusiveCache.scala:108:9]
wire [15:0] auto_in_7_a_bits_mask_0 = auto_in_7_a_bits_mask; // @[InclusiveCache.scala:108:9]
wire [127:0] auto_in_7_a_bits_data_0 = auto_in_7_a_bits_data; // @[InclusiveCache.scala:108:9]
wire auto_in_7_a_bits_corrupt_0 = auto_in_7_a_bits_corrupt; // @[InclusiveCache.scala:108:9]
wire auto_in_7_b_ready_0 = auto_in_7_b_ready; // @[InclusiveCache.scala:108:9]
wire auto_in_7_c_valid_0 = auto_in_7_c_valid; // @[InclusiveCache.scala:108:9]
wire [2:0] auto_in_7_c_bits_opcode_0 = auto_in_7_c_bits_opcode; // @[InclusiveCache.scala:108:9]
wire [2:0] auto_in_7_c_bits_param_0 = auto_in_7_c_bits_param; // @[InclusiveCache.scala:108:9]
wire [2:0] auto_in_7_c_bits_size_0 = auto_in_7_c_bits_size; // @[InclusiveCache.scala:108:9]
wire [5:0] auto_in_7_c_bits_source_0 = auto_in_7_c_bits_source; // @[InclusiveCache.scala:108:9]
wire [31:0] auto_in_7_c_bits_address_0 = auto_in_7_c_bits_address; // @[InclusiveCache.scala:108:9]
wire [127:0] auto_in_7_c_bits_data_0 = auto_in_7_c_bits_data; // @[InclusiveCache.scala:108:9]
wire auto_in_7_c_bits_corrupt_0 = auto_in_7_c_bits_corrupt; // @[InclusiveCache.scala:108:9]
wire auto_in_7_d_ready_0 = auto_in_7_d_ready; // @[InclusiveCache.scala:108:9]
wire auto_in_7_e_valid_0 = auto_in_7_e_valid; // @[InclusiveCache.scala:108:9]
wire [3:0] auto_in_7_e_bits_sink_0 = auto_in_7_e_bits_sink; // @[InclusiveCache.scala:108:9]
wire auto_in_6_a_valid_0 = auto_in_6_a_valid; // @[InclusiveCache.scala:108:9]
wire [2:0] auto_in_6_a_bits_opcode_0 = auto_in_6_a_bits_opcode; // @[InclusiveCache.scala:108:9]
wire [2:0] auto_in_6_a_bits_param_0 = auto_in_6_a_bits_param; // @[InclusiveCache.scala:108:9]
wire [2:0] auto_in_6_a_bits_size_0 = auto_in_6_a_bits_size; // @[InclusiveCache.scala:108:9]
wire [5:0] auto_in_6_a_bits_source_0 = auto_in_6_a_bits_source; // @[InclusiveCache.scala:108:9]
wire [31:0] auto_in_6_a_bits_address_0 = auto_in_6_a_bits_address; // @[InclusiveCache.scala:108:9]
wire [15:0] auto_in_6_a_bits_mask_0 = auto_in_6_a_bits_mask; // @[InclusiveCache.scala:108:9]
wire [127:0] auto_in_6_a_bits_data_0 = auto_in_6_a_bits_data; // @[InclusiveCache.scala:108:9]
wire auto_in_6_a_bits_corrupt_0 = auto_in_6_a_bits_corrupt; // @[InclusiveCache.scala:108:9]
wire auto_in_6_b_ready_0 = auto_in_6_b_ready; // @[InclusiveCache.scala:108:9]
wire auto_in_6_c_valid_0 = auto_in_6_c_valid; // @[InclusiveCache.scala:108:9]
wire [2:0] auto_in_6_c_bits_opcode_0 = auto_in_6_c_bits_opcode; // @[InclusiveCache.scala:108:9]
wire [2:0] auto_in_6_c_bits_param_0 = auto_in_6_c_bits_param; // @[InclusiveCache.scala:108:9]
wire [2:0] auto_in_6_c_bits_size_0 = auto_in_6_c_bits_size; // @[InclusiveCache.scala:108:9]
wire [5:0] auto_in_6_c_bits_source_0 = auto_in_6_c_bits_source; // @[InclusiveCache.scala:108:9]
wire [31:0] auto_in_6_c_bits_address_0 = auto_in_6_c_bits_address; // @[InclusiveCache.scala:108:9]
wire [127:0] auto_in_6_c_bits_data_0 = auto_in_6_c_bits_data; // @[InclusiveCache.scala:108:9]
wire auto_in_6_c_bits_corrupt_0 = auto_in_6_c_bits_corrupt; // @[InclusiveCache.scala:108:9]
wire auto_in_6_d_ready_0 = auto_in_6_d_ready; // @[InclusiveCache.scala:108:9]
wire auto_in_6_e_valid_0 = auto_in_6_e_valid; // @[InclusiveCache.scala:108:9]
wire [3:0] auto_in_6_e_bits_sink_0 = auto_in_6_e_bits_sink; // @[InclusiveCache.scala:108:9]
wire auto_in_5_a_valid_0 = auto_in_5_a_valid; // @[InclusiveCache.scala:108:9]
wire [2:0] auto_in_5_a_bits_opcode_0 = auto_in_5_a_bits_opcode; // @[InclusiveCache.scala:108:9]
wire [2:0] auto_in_5_a_bits_param_0 = auto_in_5_a_bits_param; // @[InclusiveCache.scala:108:9]
wire [2:0] auto_in_5_a_bits_size_0 = auto_in_5_a_bits_size; // @[InclusiveCache.scala:108:9]
wire [5:0] auto_in_5_a_bits_source_0 = auto_in_5_a_bits_source; // @[InclusiveCache.scala:108:9]
wire [31:0] auto_in_5_a_bits_address_0 = auto_in_5_a_bits_address; // @[InclusiveCache.scala:108:9]
wire [15:0] auto_in_5_a_bits_mask_0 = auto_in_5_a_bits_mask; // @[InclusiveCache.scala:108:9]
wire [127:0] auto_in_5_a_bits_data_0 = auto_in_5_a_bits_data; // @[InclusiveCache.scala:108:9]
wire auto_in_5_a_bits_corrupt_0 = auto_in_5_a_bits_corrupt; // @[InclusiveCache.scala:108:9]
wire auto_in_5_b_ready_0 = auto_in_5_b_ready; // @[InclusiveCache.scala:108:9]
wire auto_in_5_c_valid_0 = auto_in_5_c_valid; // @[InclusiveCache.scala:108:9]
wire [2:0] auto_in_5_c_bits_opcode_0 = auto_in_5_c_bits_opcode; // @[InclusiveCache.scala:108:9]
wire [2:0] auto_in_5_c_bits_param_0 = auto_in_5_c_bits_param; // @[InclusiveCache.scala:108:9]
wire [2:0] auto_in_5_c_bits_size_0 = auto_in_5_c_bits_size; // @[InclusiveCache.scala:108:9]
wire [5:0] auto_in_5_c_bits_source_0 = auto_in_5_c_bits_source; // @[InclusiveCache.scala:108:9]
wire [31:0] auto_in_5_c_bits_address_0 = auto_in_5_c_bits_address; // @[InclusiveCache.scala:108:9]
wire [127:0] auto_in_5_c_bits_data_0 = auto_in_5_c_bits_data; // @[InclusiveCache.scala:108:9]
wire auto_in_5_c_bits_corrupt_0 = auto_in_5_c_bits_corrupt; // @[InclusiveCache.scala:108:9]
wire auto_in_5_d_ready_0 = auto_in_5_d_ready; // @[InclusiveCache.scala:108:9]
wire auto_in_5_e_valid_0 = auto_in_5_e_valid; // @[InclusiveCache.scala:108:9]
wire [3:0] auto_in_5_e_bits_sink_0 = auto_in_5_e_bits_sink; // @[InclusiveCache.scala:108:9]
wire auto_in_4_a_valid_0 = auto_in_4_a_valid; // @[InclusiveCache.scala:108:9]
wire [2:0] auto_in_4_a_bits_opcode_0 = auto_in_4_a_bits_opcode; // @[InclusiveCache.scala:108:9]
wire [2:0] auto_in_4_a_bits_param_0 = auto_in_4_a_bits_param; // @[InclusiveCache.scala:108:9]
wire [2:0] auto_in_4_a_bits_size_0 = auto_in_4_a_bits_size; // @[InclusiveCache.scala:108:9]
wire [5:0] auto_in_4_a_bits_source_0 = auto_in_4_a_bits_source; // @[InclusiveCache.scala:108:9]
wire [31:0] auto_in_4_a_bits_address_0 = auto_in_4_a_bits_address; // @[InclusiveCache.scala:108:9]
wire [15:0] auto_in_4_a_bits_mask_0 = auto_in_4_a_bits_mask; // @[InclusiveCache.scala:108:9]
wire [127:0] auto_in_4_a_bits_data_0 = auto_in_4_a_bits_data; // @[InclusiveCache.scala:108:9]
wire auto_in_4_a_bits_corrupt_0 = auto_in_4_a_bits_corrupt; // @[InclusiveCache.scala:108:9]
wire auto_in_4_b_ready_0 = auto_in_4_b_ready; // @[InclusiveCache.scala:108:9]
wire auto_in_4_c_valid_0 = auto_in_4_c_valid; // @[InclusiveCache.scala:108:9]
wire [2:0] auto_in_4_c_bits_opcode_0 = auto_in_4_c_bits_opcode; // @[InclusiveCache.scala:108:9]
wire [2:0] auto_in_4_c_bits_param_0 = auto_in_4_c_bits_param; // @[InclusiveCache.scala:108:9]
wire [2:0] auto_in_4_c_bits_size_0 = auto_in_4_c_bits_size; // @[InclusiveCache.scala:108:9]
wire [5:0] auto_in_4_c_bits_source_0 = auto_in_4_c_bits_source; // @[InclusiveCache.scala:108:9]
wire [31:0] auto_in_4_c_bits_address_0 = auto_in_4_c_bits_address; // @[InclusiveCache.scala:108:9]
wire [127:0] auto_in_4_c_bits_data_0 = auto_in_4_c_bits_data; // @[InclusiveCache.scala:108:9]
wire auto_in_4_c_bits_corrupt_0 = auto_in_4_c_bits_corrupt; // @[InclusiveCache.scala:108:9]
wire auto_in_4_d_ready_0 = auto_in_4_d_ready; // @[InclusiveCache.scala:108:9]
wire auto_in_4_e_valid_0 = auto_in_4_e_valid; // @[InclusiveCache.scala:108:9]
wire [3:0] auto_in_4_e_bits_sink_0 = auto_in_4_e_bits_sink; // @[InclusiveCache.scala:108:9]
wire auto_in_3_a_valid_0 = auto_in_3_a_valid; // @[InclusiveCache.scala:108:9]
wire [2:0] auto_in_3_a_bits_opcode_0 = auto_in_3_a_bits_opcode; // @[InclusiveCache.scala:108:9]
wire [2:0] auto_in_3_a_bits_param_0 = auto_in_3_a_bits_param; // @[InclusiveCache.scala:108:9]
wire [2:0] auto_in_3_a_bits_size_0 = auto_in_3_a_bits_size; // @[InclusiveCache.scala:108:9]
wire [5:0] auto_in_3_a_bits_source_0 = auto_in_3_a_bits_source; // @[InclusiveCache.scala:108:9]
wire [31:0] auto_in_3_a_bits_address_0 = auto_in_3_a_bits_address; // @[InclusiveCache.scala:108:9]
wire [15:0] auto_in_3_a_bits_mask_0 = auto_in_3_a_bits_mask; // @[InclusiveCache.scala:108:9]
wire [127:0] auto_in_3_a_bits_data_0 = auto_in_3_a_bits_data; // @[InclusiveCache.scala:108:9]
wire auto_in_3_a_bits_corrupt_0 = auto_in_3_a_bits_corrupt; // @[InclusiveCache.scala:108:9]
wire auto_in_3_b_ready_0 = auto_in_3_b_ready; // @[InclusiveCache.scala:108:9]
wire auto_in_3_c_valid_0 = auto_in_3_c_valid; // @[InclusiveCache.scala:108:9]
wire [2:0] auto_in_3_c_bits_opcode_0 = auto_in_3_c_bits_opcode; // @[InclusiveCache.scala:108:9]
wire [2:0] auto_in_3_c_bits_param_0 = auto_in_3_c_bits_param; // @[InclusiveCache.scala:108:9]
wire [2:0] auto_in_3_c_bits_size_0 = auto_in_3_c_bits_size; // @[InclusiveCache.scala:108:9]
wire [5:0] auto_in_3_c_bits_source_0 = auto_in_3_c_bits_source; // @[InclusiveCache.scala:108:9]
wire [31:0] auto_in_3_c_bits_address_0 = auto_in_3_c_bits_address; // @[InclusiveCache.scala:108:9]
wire [127:0] auto_in_3_c_bits_data_0 = auto_in_3_c_bits_data; // @[InclusiveCache.scala:108:9]
wire auto_in_3_c_bits_corrupt_0 = auto_in_3_c_bits_corrupt; // @[InclusiveCache.scala:108:9]
wire auto_in_3_d_ready_0 = auto_in_3_d_ready; // @[InclusiveCache.scala:108:9]
wire auto_in_3_e_valid_0 = auto_in_3_e_valid; // @[InclusiveCache.scala:108:9]
wire [3:0] auto_in_3_e_bits_sink_0 = auto_in_3_e_bits_sink; // @[InclusiveCache.scala:108:9]
wire auto_in_2_a_valid_0 = auto_in_2_a_valid; // @[InclusiveCache.scala:108:9]
wire [2:0] auto_in_2_a_bits_opcode_0 = auto_in_2_a_bits_opcode; // @[InclusiveCache.scala:108:9]
wire [2:0] auto_in_2_a_bits_param_0 = auto_in_2_a_bits_param; // @[InclusiveCache.scala:108:9]
wire [2:0] auto_in_2_a_bits_size_0 = auto_in_2_a_bits_size; // @[InclusiveCache.scala:108:9]
wire [5:0] auto_in_2_a_bits_source_0 = auto_in_2_a_bits_source; // @[InclusiveCache.scala:108:9]
wire [31:0] auto_in_2_a_bits_address_0 = auto_in_2_a_bits_address; // @[InclusiveCache.scala:108:9]
wire [15:0] auto_in_2_a_bits_mask_0 = auto_in_2_a_bits_mask; // @[InclusiveCache.scala:108:9]
wire [127:0] auto_in_2_a_bits_data_0 = auto_in_2_a_bits_data; // @[InclusiveCache.scala:108:9]
wire auto_in_2_a_bits_corrupt_0 = auto_in_2_a_bits_corrupt; // @[InclusiveCache.scala:108:9]
wire auto_in_2_b_ready_0 = auto_in_2_b_ready; // @[InclusiveCache.scala:108:9]
wire auto_in_2_c_valid_0 = auto_in_2_c_valid; // @[InclusiveCache.scala:108:9]
wire [2:0] auto_in_2_c_bits_opcode_0 = auto_in_2_c_bits_opcode; // @[InclusiveCache.scala:108:9]
wire [2:0] auto_in_2_c_bits_param_0 = auto_in_2_c_bits_param; // @[InclusiveCache.scala:108:9]
wire [2:0] auto_in_2_c_bits_size_0 = auto_in_2_c_bits_size; // @[InclusiveCache.scala:108:9]
wire [5:0] auto_in_2_c_bits_source_0 = auto_in_2_c_bits_source; // @[InclusiveCache.scala:108:9]
wire [31:0] auto_in_2_c_bits_address_0 = auto_in_2_c_bits_address; // @[InclusiveCache.scala:108:9]
wire [127:0] auto_in_2_c_bits_data_0 = auto_in_2_c_bits_data; // @[InclusiveCache.scala:108:9]
wire auto_in_2_c_bits_corrupt_0 = auto_in_2_c_bits_corrupt; // @[InclusiveCache.scala:108:9]
wire auto_in_2_d_ready_0 = auto_in_2_d_ready; // @[InclusiveCache.scala:108:9]
wire auto_in_2_e_valid_0 = auto_in_2_e_valid; // @[InclusiveCache.scala:108:9]
wire [3:0] auto_in_2_e_bits_sink_0 = auto_in_2_e_bits_sink; // @[InclusiveCache.scala:108:9]
wire auto_in_1_a_valid_0 = auto_in_1_a_valid; // @[InclusiveCache.scala:108:9]
wire [2:0] auto_in_1_a_bits_opcode_0 = auto_in_1_a_bits_opcode; // @[InclusiveCache.scala:108:9]
wire [2:0] auto_in_1_a_bits_param_0 = auto_in_1_a_bits_param; // @[InclusiveCache.scala:108:9]
wire [2:0] auto_in_1_a_bits_size_0 = auto_in_1_a_bits_size; // @[InclusiveCache.scala:108:9]
wire [5:0] auto_in_1_a_bits_source_0 = auto_in_1_a_bits_source; // @[InclusiveCache.scala:108:9]
wire [31:0] auto_in_1_a_bits_address_0 = auto_in_1_a_bits_address; // @[InclusiveCache.scala:108:9]
wire [15:0] auto_in_1_a_bits_mask_0 = auto_in_1_a_bits_mask; // @[InclusiveCache.scala:108:9]
wire [127:0] auto_in_1_a_bits_data_0 = auto_in_1_a_bits_data; // @[InclusiveCache.scala:108:9]
wire auto_in_1_a_bits_corrupt_0 = auto_in_1_a_bits_corrupt; // @[InclusiveCache.scala:108:9]
wire auto_in_1_b_ready_0 = auto_in_1_b_ready; // @[InclusiveCache.scala:108:9]
wire auto_in_1_c_valid_0 = auto_in_1_c_valid; // @[InclusiveCache.scala:108:9]
wire [2:0] auto_in_1_c_bits_opcode_0 = auto_in_1_c_bits_opcode; // @[InclusiveCache.scala:108:9]
wire [2:0] auto_in_1_c_bits_param_0 = auto_in_1_c_bits_param; // @[InclusiveCache.scala:108:9]
wire [2:0] auto_in_1_c_bits_size_0 = auto_in_1_c_bits_size; // @[InclusiveCache.scala:108:9]
wire [5:0] auto_in_1_c_bits_source_0 = auto_in_1_c_bits_source; // @[InclusiveCache.scala:108:9]
wire [31:0] auto_in_1_c_bits_address_0 = auto_in_1_c_bits_address; // @[InclusiveCache.scala:108:9]
wire [127:0] auto_in_1_c_bits_data_0 = auto_in_1_c_bits_data; // @[InclusiveCache.scala:108:9]
wire auto_in_1_c_bits_corrupt_0 = auto_in_1_c_bits_corrupt; // @[InclusiveCache.scala:108:9]
wire auto_in_1_d_ready_0 = auto_in_1_d_ready; // @[InclusiveCache.scala:108:9]
wire auto_in_1_e_valid_0 = auto_in_1_e_valid; // @[InclusiveCache.scala:108:9]
wire [3:0] auto_in_1_e_bits_sink_0 = auto_in_1_e_bits_sink; // @[InclusiveCache.scala:108:9]
wire auto_in_0_a_valid_0 = auto_in_0_a_valid; // @[InclusiveCache.scala:108:9]
wire [2:0] auto_in_0_a_bits_opcode_0 = auto_in_0_a_bits_opcode; // @[InclusiveCache.scala:108:9]
wire [2:0] auto_in_0_a_bits_param_0 = auto_in_0_a_bits_param; // @[InclusiveCache.scala:108:9]
wire [2:0] auto_in_0_a_bits_size_0 = auto_in_0_a_bits_size; // @[InclusiveCache.scala:108:9]
wire [5:0] auto_in_0_a_bits_source_0 = auto_in_0_a_bits_source; // @[InclusiveCache.scala:108:9]
wire [31:0] auto_in_0_a_bits_address_0 = auto_in_0_a_bits_address; // @[InclusiveCache.scala:108:9]
wire [15:0] auto_in_0_a_bits_mask_0 = auto_in_0_a_bits_mask; // @[InclusiveCache.scala:108:9]
wire [127:0] auto_in_0_a_bits_data_0 = auto_in_0_a_bits_data; // @[InclusiveCache.scala:108:9]
wire auto_in_0_a_bits_corrupt_0 = auto_in_0_a_bits_corrupt; // @[InclusiveCache.scala:108:9]
wire auto_in_0_b_ready_0 = auto_in_0_b_ready; // @[InclusiveCache.scala:108:9]
wire auto_in_0_c_valid_0 = auto_in_0_c_valid; // @[InclusiveCache.scala:108:9]
wire [2:0] auto_in_0_c_bits_opcode_0 = auto_in_0_c_bits_opcode; // @[InclusiveCache.scala:108:9]
wire [2:0] auto_in_0_c_bits_param_0 = auto_in_0_c_bits_param; // @[InclusiveCache.scala:108:9]
wire [2:0] auto_in_0_c_bits_size_0 = auto_in_0_c_bits_size; // @[InclusiveCache.scala:108:9]
wire [5:0] auto_in_0_c_bits_source_0 = auto_in_0_c_bits_source; // @[InclusiveCache.scala:108:9]
wire [31:0] auto_in_0_c_bits_address_0 = auto_in_0_c_bits_address; // @[InclusiveCache.scala:108:9]
wire [127:0] auto_in_0_c_bits_data_0 = auto_in_0_c_bits_data; // @[InclusiveCache.scala:108:9]
wire auto_in_0_c_bits_corrupt_0 = auto_in_0_c_bits_corrupt; // @[InclusiveCache.scala:108:9]
wire auto_in_0_d_ready_0 = auto_in_0_d_ready; // @[InclusiveCache.scala:108:9]
wire auto_in_0_e_valid_0 = auto_in_0_e_valid; // @[InclusiveCache.scala:108:9]
wire [3:0] auto_in_0_e_bits_sink_0 = auto_in_0_e_bits_sink; // @[InclusiveCache.scala:108:9]
wire auto_out_7_a_ready_0 = auto_out_7_a_ready; // @[InclusiveCache.scala:108:9]
wire auto_out_7_c_ready_0 = auto_out_7_c_ready; // @[InclusiveCache.scala:108:9]
wire auto_out_7_d_valid_0 = auto_out_7_d_valid; // @[InclusiveCache.scala:108:9]
wire [2:0] auto_out_7_d_bits_opcode_0 = auto_out_7_d_bits_opcode; // @[InclusiveCache.scala:108:9]
wire [1:0] auto_out_7_d_bits_param_0 = auto_out_7_d_bits_param; // @[InclusiveCache.scala:108:9]
wire [2:0] auto_out_7_d_bits_size_0 = auto_out_7_d_bits_size; // @[InclusiveCache.scala:108:9]
wire [3:0] auto_out_7_d_bits_source_0 = auto_out_7_d_bits_source; // @[InclusiveCache.scala:108:9]
wire [2:0] auto_out_7_d_bits_sink_0 = auto_out_7_d_bits_sink; // @[InclusiveCache.scala:108:9]
wire auto_out_7_d_bits_denied_0 = auto_out_7_d_bits_denied; // @[InclusiveCache.scala:108:9]
wire [63:0] auto_out_7_d_bits_data_0 = auto_out_7_d_bits_data; // @[InclusiveCache.scala:108:9]
wire auto_out_7_d_bits_corrupt_0 = auto_out_7_d_bits_corrupt; // @[InclusiveCache.scala:108:9]
wire auto_out_6_a_ready_0 = auto_out_6_a_ready; // @[InclusiveCache.scala:108:9]
wire auto_out_6_c_ready_0 = auto_out_6_c_ready; // @[InclusiveCache.scala:108:9]
wire auto_out_6_d_valid_0 = auto_out_6_d_valid; // @[InclusiveCache.scala:108:9]
wire [2:0] auto_out_6_d_bits_opcode_0 = auto_out_6_d_bits_opcode; // @[InclusiveCache.scala:108:9]
wire [1:0] auto_out_6_d_bits_param_0 = auto_out_6_d_bits_param; // @[InclusiveCache.scala:108:9]
wire [2:0] auto_out_6_d_bits_size_0 = auto_out_6_d_bits_size; // @[InclusiveCache.scala:108:9]
wire [3:0] auto_out_6_d_bits_source_0 = auto_out_6_d_bits_source; // @[InclusiveCache.scala:108:9]
wire [2:0] auto_out_6_d_bits_sink_0 = auto_out_6_d_bits_sink; // @[InclusiveCache.scala:108:9]
wire auto_out_6_d_bits_denied_0 = auto_out_6_d_bits_denied; // @[InclusiveCache.scala:108:9]
wire [63:0] auto_out_6_d_bits_data_0 = auto_out_6_d_bits_data; // @[InclusiveCache.scala:108:9]
wire auto_out_6_d_bits_corrupt_0 = auto_out_6_d_bits_corrupt; // @[InclusiveCache.scala:108:9]
wire auto_out_5_a_ready_0 = auto_out_5_a_ready; // @[InclusiveCache.scala:108:9]
wire auto_out_5_c_ready_0 = auto_out_5_c_ready; // @[InclusiveCache.scala:108:9]
wire auto_out_5_d_valid_0 = auto_out_5_d_valid; // @[InclusiveCache.scala:108:9]
wire [2:0] auto_out_5_d_bits_opcode_0 = auto_out_5_d_bits_opcode; // @[InclusiveCache.scala:108:9]
wire [1:0] auto_out_5_d_bits_param_0 = auto_out_5_d_bits_param; // @[InclusiveCache.scala:108:9]
wire [2:0] auto_out_5_d_bits_size_0 = auto_out_5_d_bits_size; // @[InclusiveCache.scala:108:9]
wire [3:0] auto_out_5_d_bits_source_0 = auto_out_5_d_bits_source; // @[InclusiveCache.scala:108:9]
wire [2:0] auto_out_5_d_bits_sink_0 = auto_out_5_d_bits_sink; // @[InclusiveCache.scala:108:9]
wire auto_out_5_d_bits_denied_0 = auto_out_5_d_bits_denied; // @[InclusiveCache.scala:108:9]
wire [63:0] auto_out_5_d_bits_data_0 = auto_out_5_d_bits_data; // @[InclusiveCache.scala:108:9]
wire auto_out_5_d_bits_corrupt_0 = auto_out_5_d_bits_corrupt; // @[InclusiveCache.scala:108:9]
wire auto_out_4_a_ready_0 = auto_out_4_a_ready; // @[InclusiveCache.scala:108:9]
wire auto_out_4_c_ready_0 = auto_out_4_c_ready; // @[InclusiveCache.scala:108:9]
wire auto_out_4_d_valid_0 = auto_out_4_d_valid; // @[InclusiveCache.scala:108:9]
wire [2:0] auto_out_4_d_bits_opcode_0 = auto_out_4_d_bits_opcode; // @[InclusiveCache.scala:108:9]
wire [1:0] auto_out_4_d_bits_param_0 = auto_out_4_d_bits_param; // @[InclusiveCache.scala:108:9]
wire [2:0] auto_out_4_d_bits_size_0 = auto_out_4_d_bits_size; // @[InclusiveCache.scala:108:9]
wire [3:0] auto_out_4_d_bits_source_0 = auto_out_4_d_bits_source; // @[InclusiveCache.scala:108:9]
wire [2:0] auto_out_4_d_bits_sink_0 = auto_out_4_d_bits_sink; // @[InclusiveCache.scala:108:9]
wire auto_out_4_d_bits_denied_0 = auto_out_4_d_bits_denied; // @[InclusiveCache.scala:108:9]
wire [63:0] auto_out_4_d_bits_data_0 = auto_out_4_d_bits_data; // @[InclusiveCache.scala:108:9]
wire auto_out_4_d_bits_corrupt_0 = auto_out_4_d_bits_corrupt; // @[InclusiveCache.scala:108:9]
wire auto_out_3_a_ready_0 = auto_out_3_a_ready; // @[InclusiveCache.scala:108:9]
wire auto_out_3_c_ready_0 = auto_out_3_c_ready; // @[InclusiveCache.scala:108:9]
wire auto_out_3_d_valid_0 = auto_out_3_d_valid; // @[InclusiveCache.scala:108:9]
wire [2:0] auto_out_3_d_bits_opcode_0 = auto_out_3_d_bits_opcode; // @[InclusiveCache.scala:108:9]
wire [1:0] auto_out_3_d_bits_param_0 = auto_out_3_d_bits_param; // @[InclusiveCache.scala:108:9]
wire [2:0] auto_out_3_d_bits_size_0 = auto_out_3_d_bits_size; // @[InclusiveCache.scala:108:9]
wire [3:0] auto_out_3_d_bits_source_0 = auto_out_3_d_bits_source; // @[InclusiveCache.scala:108:9]
wire [2:0] auto_out_3_d_bits_sink_0 = auto_out_3_d_bits_sink; // @[InclusiveCache.scala:108:9]
wire auto_out_3_d_bits_denied_0 = auto_out_3_d_bits_denied; // @[InclusiveCache.scala:108:9]
wire [63:0] auto_out_3_d_bits_data_0 = auto_out_3_d_bits_data; // @[InclusiveCache.scala:108:9]
wire auto_out_3_d_bits_corrupt_0 = auto_out_3_d_bits_corrupt; // @[InclusiveCache.scala:108:9]
wire auto_out_2_a_ready_0 = auto_out_2_a_ready; // @[InclusiveCache.scala:108:9]
wire auto_out_2_c_ready_0 = auto_out_2_c_ready; // @[InclusiveCache.scala:108:9]
wire auto_out_2_d_valid_0 = auto_out_2_d_valid; // @[InclusiveCache.scala:108:9]
wire [2:0] auto_out_2_d_bits_opcode_0 = auto_out_2_d_bits_opcode; // @[InclusiveCache.scala:108:9]
wire [1:0] auto_out_2_d_bits_param_0 = auto_out_2_d_bits_param; // @[InclusiveCache.scala:108:9]
wire [2:0] auto_out_2_d_bits_size_0 = auto_out_2_d_bits_size; // @[InclusiveCache.scala:108:9]
wire [3:0] auto_out_2_d_bits_source_0 = auto_out_2_d_bits_source; // @[InclusiveCache.scala:108:9]
wire [2:0] auto_out_2_d_bits_sink_0 = auto_out_2_d_bits_sink; // @[InclusiveCache.scala:108:9]
wire auto_out_2_d_bits_denied_0 = auto_out_2_d_bits_denied; // @[InclusiveCache.scala:108:9]
wire [63:0] auto_out_2_d_bits_data_0 = auto_out_2_d_bits_data; // @[InclusiveCache.scala:108:9]
wire auto_out_2_d_bits_corrupt_0 = auto_out_2_d_bits_corrupt; // @[InclusiveCache.scala:108:9]
wire auto_out_1_a_ready_0 = auto_out_1_a_ready; // @[InclusiveCache.scala:108:9]
wire auto_out_1_c_ready_0 = auto_out_1_c_ready; // @[InclusiveCache.scala:108:9]
wire auto_out_1_d_valid_0 = auto_out_1_d_valid; // @[InclusiveCache.scala:108:9]
wire [2:0] auto_out_1_d_bits_opcode_0 = auto_out_1_d_bits_opcode; // @[InclusiveCache.scala:108:9]
wire [1:0] auto_out_1_d_bits_param_0 = auto_out_1_d_bits_param; // @[InclusiveCache.scala:108:9]
wire [2:0] auto_out_1_d_bits_size_0 = auto_out_1_d_bits_size; // @[InclusiveCache.scala:108:9]
wire [3:0] auto_out_1_d_bits_source_0 = auto_out_1_d_bits_source; // @[InclusiveCache.scala:108:9]
wire [2:0] auto_out_1_d_bits_sink_0 = auto_out_1_d_bits_sink; // @[InclusiveCache.scala:108:9]
wire auto_out_1_d_bits_denied_0 = auto_out_1_d_bits_denied; // @[InclusiveCache.scala:108:9]
wire [63:0] auto_out_1_d_bits_data_0 = auto_out_1_d_bits_data; // @[InclusiveCache.scala:108:9]
wire auto_out_1_d_bits_corrupt_0 = auto_out_1_d_bits_corrupt; // @[InclusiveCache.scala:108:9]
wire auto_out_0_a_ready_0 = auto_out_0_a_ready; // @[InclusiveCache.scala:108:9]
wire auto_out_0_c_ready_0 = auto_out_0_c_ready; // @[InclusiveCache.scala:108:9]
wire auto_out_0_d_valid_0 = auto_out_0_d_valid; // @[InclusiveCache.scala:108:9]
wire [2:0] auto_out_0_d_bits_opcode_0 = auto_out_0_d_bits_opcode; // @[InclusiveCache.scala:108:9]
wire [1:0] auto_out_0_d_bits_param_0 = auto_out_0_d_bits_param; // @[InclusiveCache.scala:108:9]
wire [2:0] auto_out_0_d_bits_size_0 = auto_out_0_d_bits_size; // @[InclusiveCache.scala:108:9]
wire [3:0] auto_out_0_d_bits_source_0 = auto_out_0_d_bits_source; // @[InclusiveCache.scala:108:9]
wire [2:0] auto_out_0_d_bits_sink_0 = auto_out_0_d_bits_sink; // @[InclusiveCache.scala:108:9]
wire auto_out_0_d_bits_denied_0 = auto_out_0_d_bits_denied; // @[InclusiveCache.scala:108:9]
wire [63:0] auto_out_0_d_bits_data_0 = auto_out_0_d_bits_data; // @[InclusiveCache.scala:108:9]
wire auto_out_0_d_bits_corrupt_0 = auto_out_0_d_bits_corrupt; // @[InclusiveCache.scala:108:9]
wire [32:0] _nodeOut_a_bits_address_mux_matches_T_2 = 33'h0; // @[Parameters.scala:137:46]
wire [32:0] _nodeOut_a_bits_address_mux_matches_T_3 = 33'h0; // @[Parameters.scala:137:46]
wire [32:0] _nodeIn_b_bits_address_mux_matches_T_2 = 33'h0; // @[Parameters.scala:137:46]
wire [32:0] _nodeIn_b_bits_address_mux_matches_T_3 = 33'h0; // @[Parameters.scala:137:46]
wire [32:0] _nodeOut_c_bits_address_mux_matches_T_2 = 33'h0; // @[Parameters.scala:137:46]
wire [32:0] _nodeOut_c_bits_address_mux_matches_T_3 = 33'h0; // @[Parameters.scala:137:46]
wire [32:0] _nodeOut_a_bits_address_mux_matches_T_6 = 33'h0; // @[Parameters.scala:137:46]
wire [32:0] _nodeOut_a_bits_address_mux_matches_T_7 = 33'h0; // @[Parameters.scala:137:46]
wire [32:0] _nodeIn_b_bits_address_mux_matches_T_6 = 33'h0; // @[Parameters.scala:137:46]
wire [32:0] _nodeIn_b_bits_address_mux_matches_T_7 = 33'h0; // @[Parameters.scala:137:46]
wire [32:0] _nodeOut_c_bits_address_mux_matches_T_6 = 33'h0; // @[Parameters.scala:137:46]
wire [32:0] _nodeOut_c_bits_address_mux_matches_T_7 = 33'h0; // @[Parameters.scala:137:46]
wire [32:0] _nodeOut_a_bits_address_mux_matches_T_10 = 33'h0; // @[Parameters.scala:137:46]
wire [32:0] _nodeOut_a_bits_address_mux_matches_T_11 = 33'h0; // @[Parameters.scala:137:46]
wire [32:0] _nodeIn_b_bits_address_mux_matches_T_10 = 33'h0; // @[Parameters.scala:137:46]
wire [32:0] _nodeIn_b_bits_address_mux_matches_T_11 = 33'h0; // @[Parameters.scala:137:46]
wire [32:0] _nodeOut_c_bits_address_mux_matches_T_10 = 33'h0; // @[Parameters.scala:137:46]
wire [32:0] _nodeOut_c_bits_address_mux_matches_T_11 = 33'h0; // @[Parameters.scala:137:46]
wire [32:0] _nodeOut_a_bits_address_mux_matches_T_14 = 33'h0; // @[Parameters.scala:137:46]
wire [32:0] _nodeOut_a_bits_address_mux_matches_T_15 = 33'h0; // @[Parameters.scala:137:46]
wire [32:0] _nodeIn_b_bits_address_mux_matches_T_14 = 33'h0; // @[Parameters.scala:137:46]
wire [32:0] _nodeIn_b_bits_address_mux_matches_T_15 = 33'h0; // @[Parameters.scala:137:46]
wire [32:0] _nodeOut_c_bits_address_mux_matches_T_14 = 33'h0; // @[Parameters.scala:137:46]
wire [32:0] _nodeOut_c_bits_address_mux_matches_T_15 = 33'h0; // @[Parameters.scala:137:46]
wire [32:0] _nodeOut_a_bits_address_mux_matches_T_18 = 33'h0; // @[Parameters.scala:137:46]
wire [32:0] _nodeOut_a_bits_address_mux_matches_T_19 = 33'h0; // @[Parameters.scala:137:46]
wire [32:0] _nodeIn_b_bits_address_mux_matches_T_18 = 33'h0; // @[Parameters.scala:137:46]
wire [32:0] _nodeIn_b_bits_address_mux_matches_T_19 = 33'h0; // @[Parameters.scala:137:46]
wire [32:0] _nodeOut_c_bits_address_mux_matches_T_18 = 33'h0; // @[Parameters.scala:137:46]
wire [32:0] _nodeOut_c_bits_address_mux_matches_T_19 = 33'h0; // @[Parameters.scala:137:46]
wire [32:0] _nodeOut_a_bits_address_mux_matches_T_22 = 33'h0; // @[Parameters.scala:137:46]
wire [32:0] _nodeOut_a_bits_address_mux_matches_T_23 = 33'h0; // @[Parameters.scala:137:46]
wire [32:0] _nodeIn_b_bits_address_mux_matches_T_22 = 33'h0; // @[Parameters.scala:137:46]
wire [32:0] _nodeIn_b_bits_address_mux_matches_T_23 = 33'h0; // @[Parameters.scala:137:46]
wire [32:0] _nodeOut_c_bits_address_mux_matches_T_22 = 33'h0; // @[Parameters.scala:137:46]
wire [32:0] _nodeOut_c_bits_address_mux_matches_T_23 = 33'h0; // @[Parameters.scala:137:46]
wire [32:0] _nodeOut_a_bits_address_mux_matches_T_26 = 33'h0; // @[Parameters.scala:137:46]
wire [32:0] _nodeOut_a_bits_address_mux_matches_T_27 = 33'h0; // @[Parameters.scala:137:46]
wire [32:0] _nodeIn_b_bits_address_mux_matches_T_26 = 33'h0; // @[Parameters.scala:137:46]
wire [32:0] _nodeIn_b_bits_address_mux_matches_T_27 = 33'h0; // @[Parameters.scala:137:46]
wire [32:0] _nodeOut_c_bits_address_mux_matches_T_26 = 33'h0; // @[Parameters.scala:137:46]
wire [32:0] _nodeOut_c_bits_address_mux_matches_T_27 = 33'h0; // @[Parameters.scala:137:46]
wire [32:0] _nodeOut_a_bits_address_mux_matches_T_30 = 33'h0; // @[Parameters.scala:137:46]
wire [32:0] _nodeOut_a_bits_address_mux_matches_T_31 = 33'h0; // @[Parameters.scala:137:46]
wire [32:0] _nodeIn_b_bits_address_mux_matches_T_30 = 33'h0; // @[Parameters.scala:137:46]
wire [32:0] _nodeIn_b_bits_address_mux_matches_T_31 = 33'h0; // @[Parameters.scala:137:46]
wire [32:0] _nodeOut_c_bits_address_mux_matches_T_30 = 33'h0; // @[Parameters.scala:137:46]
wire [32:0] _nodeOut_c_bits_address_mux_matches_T_31 = 33'h0; // @[Parameters.scala:137:46]
wire [63:0] auto_out_7_b_bits_data = 64'h0; // @[InclusiveCache.scala:108:9, :137:29]
wire [63:0] auto_out_6_b_bits_data = 64'h0; // @[InclusiveCache.scala:108:9, :137:29]
wire [63:0] auto_out_5_b_bits_data = 64'h0; // @[InclusiveCache.scala:108:9, :137:29]
wire [63:0] auto_out_4_b_bits_data = 64'h0; // @[InclusiveCache.scala:108:9, :137:29]
wire [63:0] auto_out_3_b_bits_data = 64'h0; // @[InclusiveCache.scala:108:9, :137:29]
wire [63:0] auto_out_2_b_bits_data = 64'h0; // @[InclusiveCache.scala:108:9, :137:29]
wire [63:0] auto_out_1_b_bits_data = 64'h0; // @[InclusiveCache.scala:108:9, :137:29]
wire [63:0] auto_out_0_b_bits_data = 64'h0; // @[InclusiveCache.scala:108:9, :137:29]
wire [63:0] nodeOut_b_bits_data = 64'h0; // @[InclusiveCache.scala:108:9, :137:29]
wire [63:0] x1_nodeOut_b_bits_data = 64'h0; // @[InclusiveCache.scala:108:9, :137:29]
wire [63:0] x1_nodeOut_1_b_bits_data = 64'h0; // @[InclusiveCache.scala:108:9, :137:29]
wire [63:0] x1_nodeOut_2_b_bits_data = 64'h0; // @[InclusiveCache.scala:108:9, :137:29]
wire [63:0] x1_nodeOut_3_b_bits_data = 64'h0; // @[InclusiveCache.scala:108:9, :137:29]
wire [63:0] x1_nodeOut_4_b_bits_data = 64'h0; // @[InclusiveCache.scala:108:9, :137:29]
wire [63:0] x1_nodeOut_5_b_bits_data = 64'h0; // @[InclusiveCache.scala:108:9, :137:29]
wire [63:0] x1_nodeOut_6_b_bits_data = 64'h0; // @[InclusiveCache.scala:108:9, :137:29]
wire [7:0] auto_out_7_b_bits_mask = 8'h0; // @[InclusiveCache.scala:108:9, :137:29]
wire [7:0] auto_out_6_b_bits_mask = 8'h0; // @[InclusiveCache.scala:108:9, :137:29]
wire [7:0] auto_out_5_b_bits_mask = 8'h0; // @[InclusiveCache.scala:108:9, :137:29]
wire [7:0] auto_out_4_b_bits_mask = 8'h0; // @[InclusiveCache.scala:108:9, :137:29]
wire [7:0] auto_out_3_b_bits_mask = 8'h0; // @[InclusiveCache.scala:108:9, :137:29]
wire [7:0] auto_out_2_b_bits_mask = 8'h0; // @[InclusiveCache.scala:108:9, :137:29]
wire [7:0] auto_out_1_b_bits_mask = 8'h0; // @[InclusiveCache.scala:108:9, :137:29]
wire [7:0] auto_out_0_b_bits_mask = 8'h0; // @[InclusiveCache.scala:108:9, :137:29]
wire [7:0] nodeOut_b_bits_mask = 8'h0; // @[InclusiveCache.scala:108:9, :137:29]
wire [7:0] x1_nodeOut_b_bits_mask = 8'h0; // @[InclusiveCache.scala:108:9, :137:29]
wire [7:0] x1_nodeOut_1_b_bits_mask = 8'h0; // @[InclusiveCache.scala:108:9, :137:29]
wire [7:0] x1_nodeOut_2_b_bits_mask = 8'h0; // @[InclusiveCache.scala:108:9, :137:29]
wire [7:0] x1_nodeOut_3_b_bits_mask = 8'h0; // @[InclusiveCache.scala:108:9, :137:29]
wire [7:0] x1_nodeOut_4_b_bits_mask = 8'h0; // @[InclusiveCache.scala:108:9, :137:29]
wire [7:0] x1_nodeOut_5_b_bits_mask = 8'h0; // @[InclusiveCache.scala:108:9, :137:29]
wire [7:0] x1_nodeOut_6_b_bits_mask = 8'h0; // @[InclusiveCache.scala:108:9, :137:29]
wire [31:0] auto_out_7_b_bits_address = 32'h0; // @[InclusiveCache.scala:108:9, :137:29]
wire [31:0] auto_out_6_b_bits_address = 32'h0; // @[InclusiveCache.scala:108:9, :137:29]
wire [31:0] auto_out_5_b_bits_address = 32'h0; // @[InclusiveCache.scala:108:9, :137:29]
wire [31:0] auto_out_4_b_bits_address = 32'h0; // @[InclusiveCache.scala:108:9, :137:29]
wire [31:0] auto_out_3_b_bits_address = 32'h0; // @[InclusiveCache.scala:108:9, :137:29]
wire [31:0] auto_out_2_b_bits_address = 32'h0; // @[InclusiveCache.scala:108:9, :137:29]
wire [31:0] auto_out_1_b_bits_address = 32'h0; // @[InclusiveCache.scala:108:9, :137:29]
wire [31:0] auto_out_0_b_bits_address = 32'h0; // @[InclusiveCache.scala:108:9, :137:29]
wire [31:0] nodeOut_b_bits_address = 32'h0; // @[InclusiveCache.scala:108:9, :137:29]
wire [31:0] x1_nodeOut_b_bits_address = 32'h0; // @[InclusiveCache.scala:108:9, :137:29]
wire [31:0] x1_nodeOut_1_b_bits_address = 32'h0; // @[InclusiveCache.scala:108:9, :137:29]
wire [31:0] x1_nodeOut_2_b_bits_address = 32'h0; // @[InclusiveCache.scala:108:9, :137:29]
wire [31:0] x1_nodeOut_3_b_bits_address = 32'h0; // @[InclusiveCache.scala:108:9, :137:29]
wire [31:0] x1_nodeOut_4_b_bits_address = 32'h0; // @[InclusiveCache.scala:108:9, :137:29]
wire [31:0] x1_nodeOut_5_b_bits_address = 32'h0; // @[InclusiveCache.scala:108:9, :137:29]
wire [31:0] x1_nodeOut_6_b_bits_address = 32'h0; // @[InclusiveCache.scala:108:9, :137:29]
wire [3:0] auto_out_7_b_bits_source = 4'h0; // @[InclusiveCache.scala:108:9, :137:29]
wire [3:0] auto_out_6_b_bits_source = 4'h0; // @[InclusiveCache.scala:108:9, :137:29]
wire [3:0] auto_out_5_b_bits_source = 4'h0; // @[InclusiveCache.scala:108:9, :137:29]
wire [3:0] auto_out_4_b_bits_source = 4'h0; // @[InclusiveCache.scala:108:9, :137:29]
wire [3:0] auto_out_3_b_bits_source = 4'h0; // @[InclusiveCache.scala:108:9, :137:29]
wire [3:0] auto_out_2_b_bits_source = 4'h0; // @[InclusiveCache.scala:108:9, :137:29]
wire [3:0] auto_out_1_b_bits_source = 4'h0; // @[InclusiveCache.scala:108:9, :137:29]
wire [3:0] auto_out_0_b_bits_source = 4'h0; // @[InclusiveCache.scala:108:9, :137:29]
wire [3:0] nodeOut_b_bits_source = 4'h0; // @[InclusiveCache.scala:108:9, :137:29]
wire [3:0] x1_nodeOut_b_bits_source = 4'h0; // @[InclusiveCache.scala:108:9, :137:29]
wire [3:0] x1_nodeOut_1_b_bits_source = 4'h0; // @[InclusiveCache.scala:108:9, :137:29]
wire [3:0] x1_nodeOut_2_b_bits_source = 4'h0; // @[InclusiveCache.scala:108:9, :137:29]
wire [3:0] x1_nodeOut_3_b_bits_source = 4'h0; // @[InclusiveCache.scala:108:9, :137:29]
wire [3:0] x1_nodeOut_4_b_bits_source = 4'h0; // @[InclusiveCache.scala:108:9, :137:29]
wire [3:0] x1_nodeOut_5_b_bits_source = 4'h0; // @[InclusiveCache.scala:108:9, :137:29]
wire [3:0] x1_nodeOut_6_b_bits_source = 4'h0; // @[InclusiveCache.scala:108:9, :137:29]
wire [2:0] auto_out_7_b_bits_opcode = 3'h0; // @[InclusiveCache.scala:108:9, :137:29]
wire [2:0] auto_out_7_b_bits_size = 3'h0; // @[InclusiveCache.scala:108:9, :137:29]
wire [2:0] auto_out_6_b_bits_opcode = 3'h0; // @[InclusiveCache.scala:108:9, :137:29]
wire [2:0] auto_out_6_b_bits_size = 3'h0; // @[InclusiveCache.scala:108:9, :137:29]
wire [2:0] auto_out_5_b_bits_opcode = 3'h0; // @[InclusiveCache.scala:108:9, :137:29]
wire [2:0] auto_out_5_b_bits_size = 3'h0; // @[InclusiveCache.scala:108:9, :137:29]
wire [2:0] auto_out_4_b_bits_opcode = 3'h0; // @[InclusiveCache.scala:108:9, :137:29]
wire [2:0] auto_out_4_b_bits_size = 3'h0; // @[InclusiveCache.scala:108:9, :137:29]
wire [2:0] auto_out_3_b_bits_opcode = 3'h0; // @[InclusiveCache.scala:108:9, :137:29]
wire [2:0] auto_out_3_b_bits_size = 3'h0; // @[InclusiveCache.scala:108:9, :137:29]
wire [2:0] auto_out_2_b_bits_opcode = 3'h0; // @[InclusiveCache.scala:108:9, :137:29]
wire [2:0] auto_out_2_b_bits_size = 3'h0; // @[InclusiveCache.scala:108:9, :137:29]
wire [2:0] auto_out_1_b_bits_opcode = 3'h0; // @[InclusiveCache.scala:108:9, :137:29]
wire [2:0] auto_out_1_b_bits_size = 3'h0; // @[InclusiveCache.scala:108:9, :137:29]
wire [2:0] auto_out_0_b_bits_opcode = 3'h0; // @[InclusiveCache.scala:108:9, :137:29]
wire [2:0] auto_out_0_b_bits_size = 3'h0; // @[InclusiveCache.scala:108:9, :137:29]
wire [2:0] nodeOut_b_bits_opcode = 3'h0; // @[InclusiveCache.scala:108:9, :137:29]
wire [2:0] nodeOut_b_bits_size = 3'h0; // @[InclusiveCache.scala:108:9, :137:29]
wire [2:0] x1_nodeOut_b_bits_opcode = 3'h0; // @[InclusiveCache.scala:108:9, :137:29]
wire [2:0] x1_nodeOut_b_bits_size = 3'h0; // @[InclusiveCache.scala:108:9, :137:29]
wire [2:0] x1_nodeOut_1_b_bits_opcode = 3'h0; // @[InclusiveCache.scala:108:9, :137:29]
wire [2:0] x1_nodeOut_1_b_bits_size = 3'h0; // @[InclusiveCache.scala:108:9, :137:29]
wire [2:0] x1_nodeOut_2_b_bits_opcode = 3'h0; // @[InclusiveCache.scala:108:9, :137:29]
wire [2:0] x1_nodeOut_2_b_bits_size = 3'h0; // @[InclusiveCache.scala:108:9, :137:29]
wire [2:0] x1_nodeOut_3_b_bits_opcode = 3'h0; // @[InclusiveCache.scala:108:9, :137:29]
wire [2:0] x1_nodeOut_3_b_bits_size = 3'h0; // @[InclusiveCache.scala:108:9, :137:29]
wire [2:0] x1_nodeOut_4_b_bits_opcode = 3'h0; // @[InclusiveCache.scala:108:9, :137:29]
wire [2:0] x1_nodeOut_4_b_bits_size = 3'h0; // @[InclusiveCache.scala:108:9, :137:29]
wire [2:0] x1_nodeOut_5_b_bits_opcode = 3'h0; // @[InclusiveCache.scala:108:9, :137:29]
wire [2:0] x1_nodeOut_5_b_bits_size = 3'h0; // @[InclusiveCache.scala:108:9, :137:29]
wire [2:0] x1_nodeOut_6_b_bits_opcode = 3'h0; // @[InclusiveCache.scala:108:9, :137:29]
wire [2:0] x1_nodeOut_6_b_bits_size = 3'h0; // @[InclusiveCache.scala:108:9, :137:29]
wire auto_in_7_e_ready = 1'h1; // @[InclusiveCache.scala:108:9]
wire auto_in_6_e_ready = 1'h1; // @[InclusiveCache.scala:108:9]
wire auto_in_5_e_ready = 1'h1; // @[InclusiveCache.scala:108:9]
wire auto_in_4_e_ready = 1'h1; // @[InclusiveCache.scala:108:9]
wire auto_in_3_e_ready = 1'h1; // @[InclusiveCache.scala:108:9]
wire auto_in_2_e_ready = 1'h1; // @[InclusiveCache.scala:108:9]
wire auto_in_1_e_ready = 1'h1; // @[InclusiveCache.scala:108:9]
wire auto_in_0_e_ready = 1'h1; // @[InclusiveCache.scala:108:9]
wire auto_out_7_b_ready = 1'h1; // @[InclusiveCache.scala:108:9]
wire auto_out_7_e_ready = 1'h1; // @[InclusiveCache.scala:108:9]
wire auto_out_6_b_ready = 1'h1; // @[InclusiveCache.scala:108:9]
wire auto_out_6_e_ready = 1'h1; // @[InclusiveCache.scala:108:9]
wire auto_out_5_b_ready = 1'h1; // @[InclusiveCache.scala:108:9]
wire auto_out_5_e_ready = 1'h1; // @[InclusiveCache.scala:108:9]
wire auto_out_4_b_ready = 1'h1; // @[InclusiveCache.scala:108:9]
wire auto_out_4_e_ready = 1'h1; // @[InclusiveCache.scala:108:9]
wire auto_out_3_b_ready = 1'h1; // @[InclusiveCache.scala:108:9]
wire auto_out_3_e_ready = 1'h1; // @[InclusiveCache.scala:108:9]
wire auto_out_2_b_ready = 1'h1; // @[InclusiveCache.scala:108:9]
wire auto_out_2_e_ready = 1'h1; // @[InclusiveCache.scala:108:9]
wire auto_out_1_b_ready = 1'h1; // @[InclusiveCache.scala:108:9]
wire auto_out_1_e_ready = 1'h1; // @[InclusiveCache.scala:108:9]
wire auto_out_0_b_ready = 1'h1; // @[InclusiveCache.scala:108:9]
wire auto_out_0_e_ready = 1'h1; // @[InclusiveCache.scala:108:9]
wire nodeIn_e_ready = 1'h1; // @[MixedNode.scala:551:17]
wire nodeIn_1_e_ready = 1'h1; // @[MixedNode.scala:551:17]
wire nodeIn_2_e_ready = 1'h1; // @[MixedNode.scala:551:17]
wire nodeIn_3_e_ready = 1'h1; // @[MixedNode.scala:551:17]
wire nodeIn_4_e_ready = 1'h1; // @[MixedNode.scala:551:17]
wire nodeIn_5_e_ready = 1'h1; // @[MixedNode.scala:551:17]
wire nodeIn_6_e_ready = 1'h1; // @[MixedNode.scala:551:17]
wire nodeIn_7_e_ready = 1'h1; // @[MixedNode.scala:551:17]
wire nodeOut_b_ready = 1'h1; // @[MixedNode.scala:542:17]
wire nodeOut_e_ready = 1'h1; // @[MixedNode.scala:542:17]
wire x1_nodeOut_b_ready = 1'h1; // @[MixedNode.scala:542:17]
wire x1_nodeOut_e_ready = 1'h1; // @[MixedNode.scala:542:17]
wire x1_nodeOut_1_b_ready = 1'h1; // @[MixedNode.scala:542:17]
wire x1_nodeOut_1_e_ready = 1'h1; // @[MixedNode.scala:542:17]
wire x1_nodeOut_2_b_ready = 1'h1; // @[MixedNode.scala:542:17]
wire x1_nodeOut_2_e_ready = 1'h1; // @[MixedNode.scala:542:17]
wire x1_nodeOut_3_b_ready = 1'h1; // @[MixedNode.scala:542:17]
wire x1_nodeOut_3_e_ready = 1'h1; // @[MixedNode.scala:542:17]
wire x1_nodeOut_4_b_ready = 1'h1; // @[MixedNode.scala:542:17]
wire x1_nodeOut_4_e_ready = 1'h1; // @[MixedNode.scala:542:17]
wire x1_nodeOut_5_b_ready = 1'h1; // @[MixedNode.scala:542:17]
wire x1_nodeOut_5_e_ready = 1'h1; // @[MixedNode.scala:542:17]
wire x1_nodeOut_6_b_ready = 1'h1; // @[MixedNode.scala:542:17]
wire x1_nodeOut_6_e_ready = 1'h1; // @[MixedNode.scala:542:17]
wire nodeOut_a_bits_address_mux_0_1 = 1'h1; // @[Parameters.scala:137:59]
wire nodeIn_b_bits_address_mux_0_1 = 1'h1; // @[Parameters.scala:137:59]
wire nodeOut_c_bits_address_mux_0_1 = 1'h1; // @[Parameters.scala:137:59]
wire nodeOut_a_bits_address_mux_0_1_1 = 1'h1; // @[Parameters.scala:137:59]
wire nodeIn_b_bits_address_mux_0_1_1 = 1'h1; // @[Parameters.scala:137:59]
wire nodeOut_c_bits_address_mux_0_1_1 = 1'h1; // @[Parameters.scala:137:59]
wire nodeOut_a_bits_address_mux_0_1_2 = 1'h1; // @[Parameters.scala:137:59]
wire nodeIn_b_bits_address_mux_0_1_2 = 1'h1; // @[Parameters.scala:137:59]
wire nodeOut_c_bits_address_mux_0_1_2 = 1'h1; // @[Parameters.scala:137:59]
wire nodeOut_a_bits_address_mux_0_1_3 = 1'h1; // @[Parameters.scala:137:59]
wire nodeIn_b_bits_address_mux_0_1_3 = 1'h1; // @[Parameters.scala:137:59]
wire nodeOut_c_bits_address_mux_0_1_3 = 1'h1; // @[Parameters.scala:137:59]
wire nodeOut_a_bits_address_mux_0_1_4 = 1'h1; // @[Parameters.scala:137:59]
wire nodeIn_b_bits_address_mux_0_1_4 = 1'h1; // @[Parameters.scala:137:59]
wire nodeOut_c_bits_address_mux_0_1_4 = 1'h1; // @[Parameters.scala:137:59]
wire nodeOut_a_bits_address_mux_0_1_5 = 1'h1; // @[Parameters.scala:137:59]
wire nodeIn_b_bits_address_mux_0_1_5 = 1'h1; // @[Parameters.scala:137:59]
wire nodeOut_c_bits_address_mux_0_1_5 = 1'h1; // @[Parameters.scala:137:59]
wire nodeOut_a_bits_address_mux_0_1_6 = 1'h1; // @[Parameters.scala:137:59]
wire nodeIn_b_bits_address_mux_0_1_6 = 1'h1; // @[Parameters.scala:137:59]
wire nodeOut_c_bits_address_mux_0_1_6 = 1'h1; // @[Parameters.scala:137:59]
wire nodeOut_a_bits_address_mux_0_1_7 = 1'h1; // @[Parameters.scala:137:59]
wire nodeIn_b_bits_address_mux_0_1_7 = 1'h1; // @[Parameters.scala:137:59]
wire nodeOut_c_bits_address_mux_0_1_7 = 1'h1; // @[Parameters.scala:137:59]
wire [127:0] auto_in_7_b_bits_data = 128'h0; // @[Nodes.scala:27:25]
wire [127:0] auto_in_6_b_bits_data = 128'h0; // @[Nodes.scala:27:25]
wire [127:0] auto_in_5_b_bits_data = 128'h0; // @[Nodes.scala:27:25]
wire [127:0] auto_in_4_b_bits_data = 128'h0; // @[Nodes.scala:27:25]
wire [127:0] auto_in_3_b_bits_data = 128'h0; // @[Nodes.scala:27:25]
wire [127:0] auto_in_2_b_bits_data = 128'h0; // @[Nodes.scala:27:25]
wire [127:0] auto_in_1_b_bits_data = 128'h0; // @[Nodes.scala:27:25]
wire [127:0] auto_in_0_b_bits_data = 128'h0; // @[Nodes.scala:27:25]
wire [127:0] nodeIn_b_bits_data = 128'h0; // @[Nodes.scala:27:25]
wire [127:0] nodeIn_1_b_bits_data = 128'h0; // @[Nodes.scala:27:25]
wire [127:0] nodeIn_2_b_bits_data = 128'h0; // @[Nodes.scala:27:25]
wire [127:0] nodeIn_3_b_bits_data = 128'h0; // @[Nodes.scala:27:25]
wire [127:0] nodeIn_4_b_bits_data = 128'h0; // @[Nodes.scala:27:25]
wire [127:0] nodeIn_5_b_bits_data = 128'h0; // @[Nodes.scala:27:25]
wire [127:0] nodeIn_6_b_bits_data = 128'h0; // @[Nodes.scala:27:25]
wire [127:0] nodeIn_7_b_bits_data = 128'h0; // @[Nodes.scala:27:25]
wire [15:0] auto_in_7_b_bits_mask = 16'hFFFF; // @[Nodes.scala:27:25]
wire [15:0] auto_in_6_b_bits_mask = 16'hFFFF; // @[Nodes.scala:27:25]
wire [15:0] auto_in_5_b_bits_mask = 16'hFFFF; // @[Nodes.scala:27:25]
wire [15:0] auto_in_4_b_bits_mask = 16'hFFFF; // @[Nodes.scala:27:25]
wire [15:0] auto_in_3_b_bits_mask = 16'hFFFF; // @[Nodes.scala:27:25]
wire [15:0] auto_in_2_b_bits_mask = 16'hFFFF; // @[Nodes.scala:27:25]
wire [15:0] auto_in_1_b_bits_mask = 16'hFFFF; // @[Nodes.scala:27:25]
wire [15:0] auto_in_0_b_bits_mask = 16'hFFFF; // @[Nodes.scala:27:25]
wire [15:0] nodeIn_b_bits_mask = 16'hFFFF; // @[Nodes.scala:27:25]
wire [15:0] nodeIn_1_b_bits_mask = 16'hFFFF; // @[Nodes.scala:27:25]
wire [15:0] nodeIn_2_b_bits_mask = 16'hFFFF; // @[Nodes.scala:27:25]
wire [15:0] nodeIn_3_b_bits_mask = 16'hFFFF; // @[Nodes.scala:27:25]
wire [15:0] nodeIn_4_b_bits_mask = 16'hFFFF; // @[Nodes.scala:27:25]
wire [15:0] nodeIn_5_b_bits_mask = 16'hFFFF; // @[Nodes.scala:27:25]
wire [15:0] nodeIn_6_b_bits_mask = 16'hFFFF; // @[Nodes.scala:27:25]
wire [15:0] nodeIn_7_b_bits_mask = 16'hFFFF; // @[Nodes.scala:27:25]
wire [5:0] auto_in_7_b_bits_source = 6'h28; // @[Nodes.scala:27:25]
wire [5:0] auto_in_6_b_bits_source = 6'h28; // @[Nodes.scala:27:25]
wire [5:0] auto_in_5_b_bits_source = 6'h28; // @[Nodes.scala:27:25]
wire [5:0] auto_in_4_b_bits_source = 6'h28; // @[Nodes.scala:27:25]
wire [5:0] auto_in_3_b_bits_source = 6'h28; // @[Nodes.scala:27:25]
wire [5:0] auto_in_2_b_bits_source = 6'h28; // @[Nodes.scala:27:25]
wire [5:0] auto_in_1_b_bits_source = 6'h28; // @[Nodes.scala:27:25]
wire [5:0] auto_in_0_b_bits_source = 6'h28; // @[Nodes.scala:27:25]
wire [5:0] nodeIn_b_bits_source = 6'h28; // @[Nodes.scala:27:25]
wire [5:0] nodeIn_1_b_bits_source = 6'h28; // @[Nodes.scala:27:25]
wire [5:0] nodeIn_2_b_bits_source = 6'h28; // @[Nodes.scala:27:25]
wire [5:0] nodeIn_3_b_bits_source = 6'h28; // @[Nodes.scala:27:25]
wire [5:0] nodeIn_4_b_bits_source = 6'h28; // @[Nodes.scala:27:25]
wire [5:0] nodeIn_5_b_bits_source = 6'h28; // @[Nodes.scala:27:25]
wire [5:0] nodeIn_6_b_bits_source = 6'h28; // @[Nodes.scala:27:25]
wire [5:0] nodeIn_7_b_bits_source = 6'h28; // @[Nodes.scala:27:25]
wire [2:0] auto_in_7_b_bits_opcode = 3'h6; // @[Nodes.scala:27:25]
wire [2:0] auto_in_7_b_bits_size = 3'h6; // @[Nodes.scala:27:25]
wire [2:0] auto_in_6_b_bits_opcode = 3'h6; // @[Nodes.scala:27:25]
wire [2:0] auto_in_6_b_bits_size = 3'h6; // @[Nodes.scala:27:25]
wire [2:0] auto_in_5_b_bits_opcode = 3'h6; // @[Nodes.scala:27:25]
wire [2:0] auto_in_5_b_bits_size = 3'h6; // @[Nodes.scala:27:25]
wire [2:0] auto_in_4_b_bits_opcode = 3'h6; // @[Nodes.scala:27:25]
wire [2:0] auto_in_4_b_bits_size = 3'h6; // @[Nodes.scala:27:25]
wire [2:0] auto_in_3_b_bits_opcode = 3'h6; // @[Nodes.scala:27:25]
wire [2:0] auto_in_3_b_bits_size = 3'h6; // @[Nodes.scala:27:25]
wire [2:0] auto_in_2_b_bits_opcode = 3'h6; // @[Nodes.scala:27:25]
wire [2:0] auto_in_2_b_bits_size = 3'h6; // @[Nodes.scala:27:25]
wire [2:0] auto_in_1_b_bits_opcode = 3'h6; // @[Nodes.scala:27:25]
wire [2:0] auto_in_1_b_bits_size = 3'h6; // @[Nodes.scala:27:25]
wire [2:0] auto_in_0_b_bits_opcode = 3'h6; // @[Nodes.scala:27:25]
wire [2:0] auto_in_0_b_bits_size = 3'h6; // @[Nodes.scala:27:25]
wire [2:0] nodeIn_b_bits_opcode = 3'h6; // @[Nodes.scala:27:25]
wire [2:0] nodeIn_b_bits_size = 3'h6; // @[Nodes.scala:27:25]
wire [2:0] nodeIn_1_b_bits_opcode = 3'h6; // @[Nodes.scala:27:25]
wire [2:0] nodeIn_1_b_bits_size = 3'h6; // @[Nodes.scala:27:25]
wire [2:0] nodeIn_2_b_bits_opcode = 3'h6; // @[Nodes.scala:27:25]
wire [2:0] nodeIn_2_b_bits_size = 3'h6; // @[Nodes.scala:27:25]
wire [2:0] nodeIn_3_b_bits_opcode = 3'h6; // @[Nodes.scala:27:25]
wire [2:0] nodeIn_3_b_bits_size = 3'h6; // @[Nodes.scala:27:25]
wire [2:0] nodeIn_4_b_bits_opcode = 3'h6; // @[Nodes.scala:27:25]
wire [2:0] nodeIn_4_b_bits_size = 3'h6; // @[Nodes.scala:27:25]
wire [2:0] nodeIn_5_b_bits_opcode = 3'h6; // @[Nodes.scala:27:25]
wire [2:0] nodeIn_5_b_bits_size = 3'h6; // @[Nodes.scala:27:25]
wire [2:0] nodeIn_6_b_bits_opcode = 3'h6; // @[Nodes.scala:27:25]
wire [2:0] nodeIn_6_b_bits_size = 3'h6; // @[Nodes.scala:27:25]
wire [2:0] nodeIn_7_b_bits_opcode = 3'h6; // @[Nodes.scala:27:25]
wire [2:0] nodeIn_7_b_bits_size = 3'h6; // @[Nodes.scala:27:25]
wire auto_ctrls_ctrl_in_d_bits_sink = 1'h0; // @[Nodes.scala:27:25]
wire auto_ctrls_ctrl_in_d_bits_denied = 1'h0; // @[Nodes.scala:27:25]
wire auto_ctrls_ctrl_in_d_bits_corrupt = 1'h0; // @[Nodes.scala:27:25]
wire auto_in_7_b_bits_corrupt = 1'h0; // @[Nodes.scala:27:25]
wire auto_in_6_b_bits_corrupt = 1'h0; // @[Nodes.scala:27:25]
wire auto_in_5_b_bits_corrupt = 1'h0; // @[Nodes.scala:27:25]
wire auto_in_4_b_bits_corrupt = 1'h0; // @[Nodes.scala:27:25]
wire auto_in_3_b_bits_corrupt = 1'h0; // @[Nodes.scala:27:25]
wire auto_in_2_b_bits_corrupt = 1'h0; // @[Nodes.scala:27:25]
wire auto_in_1_b_bits_corrupt = 1'h0; // @[Nodes.scala:27:25]
wire auto_in_0_b_bits_corrupt = 1'h0; // @[Nodes.scala:27:25]
wire auto_out_7_b_valid = 1'h0; // @[Nodes.scala:27:25]
wire auto_out_7_b_bits_corrupt = 1'h0; // @[Nodes.scala:27:25]
wire auto_out_6_b_valid = 1'h0; // @[Nodes.scala:27:25]
wire auto_out_6_b_bits_corrupt = 1'h0; // @[Nodes.scala:27:25]
wire auto_out_5_b_valid = 1'h0; // @[Nodes.scala:27:25]
wire auto_out_5_b_bits_corrupt = 1'h0; // @[Nodes.scala:27:25]
wire auto_out_4_b_valid = 1'h0; // @[Nodes.scala:27:25]
wire auto_out_4_b_bits_corrupt = 1'h0; // @[Nodes.scala:27:25]
wire auto_out_3_b_valid = 1'h0; // @[Nodes.scala:27:25]
wire auto_out_3_b_bits_corrupt = 1'h0; // @[Nodes.scala:27:25]
wire auto_out_2_b_valid = 1'h0; // @[Nodes.scala:27:25]
wire auto_out_2_b_bits_corrupt = 1'h0; // @[Nodes.scala:27:25]
wire auto_out_1_b_valid = 1'h0; // @[Nodes.scala:27:25]
wire auto_out_1_b_bits_corrupt = 1'h0; // @[Nodes.scala:27:25]
wire auto_out_0_b_valid = 1'h0; // @[Nodes.scala:27:25]
wire auto_out_0_b_bits_corrupt = 1'h0; // @[Nodes.scala:27:25]
wire nodeIn_b_bits_corrupt = 1'h0; // @[Nodes.scala:27:25]
wire nodeIn_1_b_bits_corrupt = 1'h0; // @[Nodes.scala:27:25]
wire nodeIn_2_b_bits_corrupt = 1'h0; // @[Nodes.scala:27:25]
wire nodeIn_3_b_bits_corrupt = 1'h0; // @[Nodes.scala:27:25]
wire nodeIn_4_b_bits_corrupt = 1'h0; // @[Nodes.scala:27:25]
wire nodeIn_5_b_bits_corrupt = 1'h0; // @[Nodes.scala:27:25]
wire nodeIn_6_b_bits_corrupt = 1'h0; // @[Nodes.scala:27:25]
wire nodeIn_7_b_bits_corrupt = 1'h0; // @[Nodes.scala:27:25]
wire nodeOut_b_valid = 1'h0; // @[Nodes.scala:27:25]
wire nodeOut_b_bits_corrupt = 1'h0; // @[Nodes.scala:27:25]
wire x1_nodeOut_b_valid = 1'h0; // @[Nodes.scala:27:25]
wire x1_nodeOut_b_bits_corrupt = 1'h0; // @[Nodes.scala:27:25]
wire x1_nodeOut_1_b_valid = 1'h0; // @[Nodes.scala:27:25]
wire x1_nodeOut_1_b_bits_corrupt = 1'h0; // @[Nodes.scala:27:25]
wire x1_nodeOut_2_b_valid = 1'h0; // @[Nodes.scala:27:25]
wire x1_nodeOut_2_b_bits_corrupt = 1'h0; // @[Nodes.scala:27:25]
wire x1_nodeOut_3_b_valid = 1'h0; // @[Nodes.scala:27:25]
wire x1_nodeOut_3_b_bits_corrupt = 1'h0; // @[Nodes.scala:27:25]
wire x1_nodeOut_4_b_valid = 1'h0; // @[Nodes.scala:27:25]
wire x1_nodeOut_4_b_bits_corrupt = 1'h0; // @[Nodes.scala:27:25]
wire x1_nodeOut_5_b_valid = 1'h0; // @[Nodes.scala:27:25]
wire x1_nodeOut_5_b_bits_corrupt = 1'h0; // @[Nodes.scala:27:25]
wire x1_nodeOut_6_b_valid = 1'h0; // @[Nodes.scala:27:25]
wire x1_nodeOut_6_b_bits_corrupt = 1'h0; // @[Nodes.scala:27:25]
wire [1:0] auto_ctrls_ctrl_in_d_bits_param = 2'h0; // @[InclusiveCache.scala:103:43, :108:9, :137:29]
wire [1:0] auto_out_7_b_bits_param = 2'h0; // @[InclusiveCache.scala:103:43, :108:9, :137:29]
wire [1:0] auto_out_6_b_bits_param = 2'h0; // @[InclusiveCache.scala:103:43, :108:9, :137:29]
wire [1:0] auto_out_5_b_bits_param = 2'h0; // @[InclusiveCache.scala:103:43, :108:9, :137:29]
wire [1:0] auto_out_4_b_bits_param = 2'h0; // @[InclusiveCache.scala:103:43, :108:9, :137:29]
wire [1:0] auto_out_3_b_bits_param = 2'h0; // @[InclusiveCache.scala:103:43, :108:9, :137:29]
wire [1:0] auto_out_2_b_bits_param = 2'h0; // @[InclusiveCache.scala:103:43, :108:9, :137:29]
wire [1:0] auto_out_1_b_bits_param = 2'h0; // @[InclusiveCache.scala:103:43, :108:9, :137:29]
wire [1:0] auto_out_0_b_bits_param = 2'h0; // @[InclusiveCache.scala:103:43, :108:9, :137:29]
wire [1:0] nodeOut_b_bits_param = 2'h0; // @[InclusiveCache.scala:103:43, :108:9, :137:29]
wire [1:0] x1_nodeOut_b_bits_param = 2'h0; // @[InclusiveCache.scala:103:43, :108:9, :137:29]
wire [1:0] x1_nodeOut_1_b_bits_param = 2'h0; // @[InclusiveCache.scala:103:43, :108:9, :137:29]
wire [1:0] x1_nodeOut_2_b_bits_param = 2'h0; // @[InclusiveCache.scala:103:43, :108:9, :137:29]
wire [1:0] x1_nodeOut_3_b_bits_param = 2'h0; // @[InclusiveCache.scala:103:43, :108:9, :137:29]
wire [1:0] x1_nodeOut_4_b_bits_param = 2'h0; // @[InclusiveCache.scala:103:43, :108:9, :137:29]
wire [1:0] x1_nodeOut_5_b_bits_param = 2'h0; // @[InclusiveCache.scala:103:43, :108:9, :137:29]
wire [1:0] x1_nodeOut_6_b_bits_param = 2'h0; // @[InclusiveCache.scala:103:43, :108:9, :137:29]
wire nodeIn_7_a_ready; // @[MixedNode.scala:551:17]
wire nodeIn_7_a_valid = auto_in_7_a_valid_0; // @[InclusiveCache.scala:108:9]
wire [2:0] nodeIn_7_a_bits_opcode = auto_in_7_a_bits_opcode_0; // @[InclusiveCache.scala:108:9]
wire [2:0] nodeIn_7_a_bits_param = auto_in_7_a_bits_param_0; // @[InclusiveCache.scala:108:9]
wire [2:0] nodeIn_7_a_bits_size = auto_in_7_a_bits_size_0; // @[InclusiveCache.scala:108:9]
wire [5:0] nodeIn_7_a_bits_source = auto_in_7_a_bits_source_0; // @[InclusiveCache.scala:108:9]
wire [31:0] nodeIn_7_a_bits_address = auto_in_7_a_bits_address_0; // @[InclusiveCache.scala:108:9]
wire [15:0] nodeIn_7_a_bits_mask = auto_in_7_a_bits_mask_0; // @[InclusiveCache.scala:108:9]
wire [127:0] nodeIn_7_a_bits_data = auto_in_7_a_bits_data_0; // @[InclusiveCache.scala:108:9]
wire nodeIn_7_a_bits_corrupt = auto_in_7_a_bits_corrupt_0; // @[InclusiveCache.scala:108:9]
wire nodeIn_7_b_ready = auto_in_7_b_ready_0; // @[InclusiveCache.scala:108:9]
wire nodeIn_7_b_valid; // @[MixedNode.scala:551:17]
wire [1:0] nodeIn_7_b_bits_param; // @[MixedNode.scala:551:17]
wire [31:0] nodeIn_7_b_bits_address; // @[MixedNode.scala:551:17]
wire nodeIn_7_c_ready; // @[MixedNode.scala:551:17]
wire nodeIn_7_c_valid = auto_in_7_c_valid_0; // @[InclusiveCache.scala:108:9]
wire [2:0] nodeIn_7_c_bits_opcode = auto_in_7_c_bits_opcode_0; // @[InclusiveCache.scala:108:9]
wire [2:0] nodeIn_7_c_bits_param = auto_in_7_c_bits_param_0; // @[InclusiveCache.scala:108:9]
wire [2:0] nodeIn_7_c_bits_size = auto_in_7_c_bits_size_0; // @[InclusiveCache.scala:108:9]
wire [5:0] nodeIn_7_c_bits_source = auto_in_7_c_bits_source_0; // @[InclusiveCache.scala:108:9]
wire [31:0] nodeIn_7_c_bits_address = auto_in_7_c_bits_address_0; // @[InclusiveCache.scala:108:9]
wire [127:0] nodeIn_7_c_bits_data = auto_in_7_c_bits_data_0; // @[InclusiveCache.scala:108:9]
wire nodeIn_7_c_bits_corrupt = auto_in_7_c_bits_corrupt_0; // @[InclusiveCache.scala:108:9]
wire nodeIn_7_d_ready = auto_in_7_d_ready_0; // @[InclusiveCache.scala:108:9]
wire nodeIn_7_d_valid; // @[MixedNode.scala:551:17]
wire [2:0] nodeIn_7_d_bits_opcode; // @[MixedNode.scala:551:17]
wire [1:0] nodeIn_7_d_bits_param; // @[MixedNode.scala:551:17]
wire [2:0] nodeIn_7_d_bits_size; // @[MixedNode.scala:551:17]
wire [5:0] nodeIn_7_d_bits_source; // @[MixedNode.scala:551:17]
wire [3:0] nodeIn_7_d_bits_sink; // @[MixedNode.scala:551:17]
wire nodeIn_7_d_bits_denied; // @[MixedNode.scala:551:17]
wire [127:0] nodeIn_7_d_bits_data; // @[MixedNode.scala:551:17]
wire nodeIn_7_d_bits_corrupt; // @[MixedNode.scala:551:17]
wire nodeIn_7_e_valid = auto_in_7_e_valid_0; // @[InclusiveCache.scala:108:9]
wire nodeIn_6_a_ready; // @[MixedNode.scala:551:17]
wire [3:0] nodeIn_7_e_bits_sink = auto_in_7_e_bits_sink_0; // @[InclusiveCache.scala:108:9]
wire nodeIn_6_a_valid = auto_in_6_a_valid_0; // @[InclusiveCache.scala:108:9]
wire [2:0] nodeIn_6_a_bits_opcode = auto_in_6_a_bits_opcode_0; // @[InclusiveCache.scala:108:9]
wire [2:0] nodeIn_6_a_bits_param = auto_in_6_a_bits_param_0; // @[InclusiveCache.scala:108:9]
wire [2:0] nodeIn_6_a_bits_size = auto_in_6_a_bits_size_0; // @[InclusiveCache.scala:108:9]
wire [5:0] nodeIn_6_a_bits_source = auto_in_6_a_bits_source_0; // @[InclusiveCache.scala:108:9]
wire [31:0] nodeIn_6_a_bits_address = auto_in_6_a_bits_address_0; // @[InclusiveCache.scala:108:9]
wire [15:0] nodeIn_6_a_bits_mask = auto_in_6_a_bits_mask_0; // @[InclusiveCache.scala:108:9]
wire [127:0] nodeIn_6_a_bits_data = auto_in_6_a_bits_data_0; // @[InclusiveCache.scala:108:9]
wire nodeIn_6_a_bits_corrupt = auto_in_6_a_bits_corrupt_0; // @[InclusiveCache.scala:108:9]
wire nodeIn_6_b_ready = auto_in_6_b_ready_0; // @[InclusiveCache.scala:108:9]
wire nodeIn_6_b_valid; // @[MixedNode.scala:551:17]
wire [1:0] nodeIn_6_b_bits_param; // @[MixedNode.scala:551:17]
wire [31:0] nodeIn_6_b_bits_address; // @[MixedNode.scala:551:17]
wire nodeIn_6_c_ready; // @[MixedNode.scala:551:17]
wire nodeIn_6_c_valid = auto_in_6_c_valid_0; // @[InclusiveCache.scala:108:9]
wire [2:0] nodeIn_6_c_bits_opcode = auto_in_6_c_bits_opcode_0; // @[InclusiveCache.scala:108:9]
wire [2:0] nodeIn_6_c_bits_param = auto_in_6_c_bits_param_0; // @[InclusiveCache.scala:108:9]
wire [2:0] nodeIn_6_c_bits_size = auto_in_6_c_bits_size_0; // @[InclusiveCache.scala:108:9]
wire [5:0] nodeIn_6_c_bits_source = auto_in_6_c_bits_source_0; // @[InclusiveCache.scala:108:9]
wire [31:0] nodeIn_6_c_bits_address = auto_in_6_c_bits_address_0; // @[InclusiveCache.scala:108:9]
wire [127:0] nodeIn_6_c_bits_data = auto_in_6_c_bits_data_0; // @[InclusiveCache.scala:108:9]
wire nodeIn_6_c_bits_corrupt = auto_in_6_c_bits_corrupt_0; // @[InclusiveCache.scala:108:9]
wire nodeIn_6_d_ready = auto_in_6_d_ready_0; // @[InclusiveCache.scala:108:9]
wire nodeIn_6_d_valid; // @[MixedNode.scala:551:17]
wire [2:0] nodeIn_6_d_bits_opcode; // @[MixedNode.scala:551:17]
wire [1:0] nodeIn_6_d_bits_param; // @[MixedNode.scala:551:17]
wire [2:0] nodeIn_6_d_bits_size; // @[MixedNode.scala:551:17]
wire [5:0] nodeIn_6_d_bits_source; // @[MixedNode.scala:551:17]
wire [3:0] nodeIn_6_d_bits_sink; // @[MixedNode.scala:551:17]
wire nodeIn_6_d_bits_denied; // @[MixedNode.scala:551:17]
wire [127:0] nodeIn_6_d_bits_data; // @[MixedNode.scala:551:17]
wire nodeIn_6_d_bits_corrupt; // @[MixedNode.scala:551:17]
wire nodeIn_6_e_valid = auto_in_6_e_valid_0; // @[InclusiveCache.scala:108:9]
wire nodeIn_5_a_ready; // @[MixedNode.scala:551:17]
wire [3:0] nodeIn_6_e_bits_sink = auto_in_6_e_bits_sink_0; // @[InclusiveCache.scala:108:9]
wire nodeIn_5_a_valid = auto_in_5_a_valid_0; // @[InclusiveCache.scala:108:9]
wire [2:0] nodeIn_5_a_bits_opcode = auto_in_5_a_bits_opcode_0; // @[InclusiveCache.scala:108:9]
wire [2:0] nodeIn_5_a_bits_param = auto_in_5_a_bits_param_0; // @[InclusiveCache.scala:108:9]
wire [2:0] nodeIn_5_a_bits_size = auto_in_5_a_bits_size_0; // @[InclusiveCache.scala:108:9]
wire [5:0] nodeIn_5_a_bits_source = auto_in_5_a_bits_source_0; // @[InclusiveCache.scala:108:9]
wire [31:0] nodeIn_5_a_bits_address = auto_in_5_a_bits_address_0; // @[InclusiveCache.scala:108:9]
wire [15:0] nodeIn_5_a_bits_mask = auto_in_5_a_bits_mask_0; // @[InclusiveCache.scala:108:9]
wire [127:0] nodeIn_5_a_bits_data = auto_in_5_a_bits_data_0; // @[InclusiveCache.scala:108:9]
wire nodeIn_5_a_bits_corrupt = auto_in_5_a_bits_corrupt_0; // @[InclusiveCache.scala:108:9]
wire nodeIn_5_b_ready = auto_in_5_b_ready_0; // @[InclusiveCache.scala:108:9]
wire nodeIn_5_b_valid; // @[MixedNode.scala:551:17]
wire [1:0] nodeIn_5_b_bits_param; // @[MixedNode.scala:551:17]
wire [31:0] nodeIn_5_b_bits_address; // @[MixedNode.scala:551:17]
wire nodeIn_5_c_ready; // @[MixedNode.scala:551:17]
wire nodeIn_5_c_valid = auto_in_5_c_valid_0; // @[InclusiveCache.scala:108:9]
wire [2:0] nodeIn_5_c_bits_opcode = auto_in_5_c_bits_opcode_0; // @[InclusiveCache.scala:108:9]
wire [2:0] nodeIn_5_c_bits_param = auto_in_5_c_bits_param_0; // @[InclusiveCache.scala:108:9]
wire [2:0] nodeIn_5_c_bits_size = auto_in_5_c_bits_size_0; // @[InclusiveCache.scala:108:9]
wire [5:0] nodeIn_5_c_bits_source = auto_in_5_c_bits_source_0; // @[InclusiveCache.scala:108:9]
wire [31:0] nodeIn_5_c_bits_address = auto_in_5_c_bits_address_0; // @[InclusiveCache.scala:108:9]
wire [127:0] nodeIn_5_c_bits_data = auto_in_5_c_bits_data_0; // @[InclusiveCache.scala:108:9]
wire nodeIn_5_c_bits_corrupt = auto_in_5_c_bits_corrupt_0; // @[InclusiveCache.scala:108:9]
wire nodeIn_5_d_ready = auto_in_5_d_ready_0; // @[InclusiveCache.scala:108:9]
wire nodeIn_5_d_valid; // @[MixedNode.scala:551:17]
wire [2:0] nodeIn_5_d_bits_opcode; // @[MixedNode.scala:551:17]
wire [1:0] nodeIn_5_d_bits_param; // @[MixedNode.scala:551:17]
wire [2:0] nodeIn_5_d_bits_size; // @[MixedNode.scala:551:17]
wire [5:0] nodeIn_5_d_bits_source; // @[MixedNode.scala:551:17]
wire [3:0] nodeIn_5_d_bits_sink; // @[MixedNode.scala:551:17]
wire nodeIn_5_d_bits_denied; // @[MixedNode.scala:551:17]
wire [127:0] nodeIn_5_d_bits_data; // @[MixedNode.scala:551:17]
wire nodeIn_5_d_bits_corrupt; // @[MixedNode.scala:551:17]
wire nodeIn_5_e_valid = auto_in_5_e_valid_0; // @[InclusiveCache.scala:108:9]
wire nodeIn_4_a_ready; // @[MixedNode.scala:551:17]
wire [3:0] nodeIn_5_e_bits_sink = auto_in_5_e_bits_sink_0; // @[InclusiveCache.scala:108:9]
wire nodeIn_4_a_valid = auto_in_4_a_valid_0; // @[InclusiveCache.scala:108:9]
wire [2:0] nodeIn_4_a_bits_opcode = auto_in_4_a_bits_opcode_0; // @[InclusiveCache.scala:108:9]
wire [2:0] nodeIn_4_a_bits_param = auto_in_4_a_bits_param_0; // @[InclusiveCache.scala:108:9]
wire [2:0] nodeIn_4_a_bits_size = auto_in_4_a_bits_size_0; // @[InclusiveCache.scala:108:9]
wire [5:0] nodeIn_4_a_bits_source = auto_in_4_a_bits_source_0; // @[InclusiveCache.scala:108:9]
wire [31:0] nodeIn_4_a_bits_address = auto_in_4_a_bits_address_0; // @[InclusiveCache.scala:108:9]
wire [15:0] nodeIn_4_a_bits_mask = auto_in_4_a_bits_mask_0; // @[InclusiveCache.scala:108:9]
wire [127:0] nodeIn_4_a_bits_data = auto_in_4_a_bits_data_0; // @[InclusiveCache.scala:108:9]
wire nodeIn_4_a_bits_corrupt = auto_in_4_a_bits_corrupt_0; // @[InclusiveCache.scala:108:9]
wire nodeIn_4_b_ready = auto_in_4_b_ready_0; // @[InclusiveCache.scala:108:9]
wire nodeIn_4_b_valid; // @[MixedNode.scala:551:17]
wire [1:0] nodeIn_4_b_bits_param; // @[MixedNode.scala:551:17]
wire [31:0] nodeIn_4_b_bits_address; // @[MixedNode.scala:551:17]
wire nodeIn_4_c_ready; // @[MixedNode.scala:551:17]
wire nodeIn_4_c_valid = auto_in_4_c_valid_0; // @[InclusiveCache.scala:108:9]
wire [2:0] nodeIn_4_c_bits_opcode = auto_in_4_c_bits_opcode_0; // @[InclusiveCache.scala:108:9]
wire [2:0] nodeIn_4_c_bits_param = auto_in_4_c_bits_param_0; // @[InclusiveCache.scala:108:9]
wire [2:0] nodeIn_4_c_bits_size = auto_in_4_c_bits_size_0; // @[InclusiveCache.scala:108:9]
wire [5:0] nodeIn_4_c_bits_source = auto_in_4_c_bits_source_0; // @[InclusiveCache.scala:108:9]
wire [31:0] nodeIn_4_c_bits_address = auto_in_4_c_bits_address_0; // @[InclusiveCache.scala:108:9]
wire [127:0] nodeIn_4_c_bits_data = auto_in_4_c_bits_data_0; // @[InclusiveCache.scala:108:9]
wire nodeIn_4_c_bits_corrupt = auto_in_4_c_bits_corrupt_0; // @[InclusiveCache.scala:108:9]
wire nodeIn_4_d_ready = auto_in_4_d_ready_0; // @[InclusiveCache.scala:108:9]
wire nodeIn_4_d_valid; // @[MixedNode.scala:551:17]
wire [2:0] nodeIn_4_d_bits_opcode; // @[MixedNode.scala:551:17]
wire [1:0] nodeIn_4_d_bits_param; // @[MixedNode.scala:551:17]
wire [2:0] nodeIn_4_d_bits_size; // @[MixedNode.scala:551:17]
wire [5:0] nodeIn_4_d_bits_source; // @[MixedNode.scala:551:17]
wire [3:0] nodeIn_4_d_bits_sink; // @[MixedNode.scala:551:17]
wire nodeIn_4_d_bits_denied; // @[MixedNode.scala:551:17]
wire [127:0] nodeIn_4_d_bits_data; // @[MixedNode.scala:551:17]
wire nodeIn_4_d_bits_corrupt; // @[MixedNode.scala:551:17]
wire nodeIn_4_e_valid = auto_in_4_e_valid_0; // @[InclusiveCache.scala:108:9]
wire nodeIn_3_a_ready; // @[MixedNode.scala:551:17]
wire [3:0] nodeIn_4_e_bits_sink = auto_in_4_e_bits_sink_0; // @[InclusiveCache.scala:108:9]
wire nodeIn_3_a_valid = auto_in_3_a_valid_0; // @[InclusiveCache.scala:108:9]
wire [2:0] nodeIn_3_a_bits_opcode = auto_in_3_a_bits_opcode_0; // @[InclusiveCache.scala:108:9]
wire [2:0] nodeIn_3_a_bits_param = auto_in_3_a_bits_param_0; // @[InclusiveCache.scala:108:9]
wire [2:0] nodeIn_3_a_bits_size = auto_in_3_a_bits_size_0; // @[InclusiveCache.scala:108:9]
wire [5:0] nodeIn_3_a_bits_source = auto_in_3_a_bits_source_0; // @[InclusiveCache.scala:108:9]
wire [31:0] nodeIn_3_a_bits_address = auto_in_3_a_bits_address_0; // @[InclusiveCache.scala:108:9]
wire [15:0] nodeIn_3_a_bits_mask = auto_in_3_a_bits_mask_0; // @[InclusiveCache.scala:108:9]
wire [127:0] nodeIn_3_a_bits_data = auto_in_3_a_bits_data_0; // @[InclusiveCache.scala:108:9]
wire nodeIn_3_a_bits_corrupt = auto_in_3_a_bits_corrupt_0; // @[InclusiveCache.scala:108:9]
wire nodeIn_3_b_ready = auto_in_3_b_ready_0; // @[InclusiveCache.scala:108:9]
wire nodeIn_3_b_valid; // @[MixedNode.scala:551:17]
wire [1:0] nodeIn_3_b_bits_param; // @[MixedNode.scala:551:17]
wire [31:0] nodeIn_3_b_bits_address; // @[MixedNode.scala:551:17]
wire nodeIn_3_c_ready; // @[MixedNode.scala:551:17]
wire nodeIn_3_c_valid = auto_in_3_c_valid_0; // @[InclusiveCache.scala:108:9]
wire [2:0] nodeIn_3_c_bits_opcode = auto_in_3_c_bits_opcode_0; // @[InclusiveCache.scala:108:9]
wire [2:0] nodeIn_3_c_bits_param = auto_in_3_c_bits_param_0; // @[InclusiveCache.scala:108:9]
wire [2:0] nodeIn_3_c_bits_size = auto_in_3_c_bits_size_0; // @[InclusiveCache.scala:108:9]
wire [5:0] nodeIn_3_c_bits_source = auto_in_3_c_bits_source_0; // @[InclusiveCache.scala:108:9]
wire [31:0] nodeIn_3_c_bits_address = auto_in_3_c_bits_address_0; // @[InclusiveCache.scala:108:9]
wire [127:0] nodeIn_3_c_bits_data = auto_in_3_c_bits_data_0; // @[InclusiveCache.scala:108:9]
wire nodeIn_3_c_bits_corrupt = auto_in_3_c_bits_corrupt_0; // @[InclusiveCache.scala:108:9]
wire nodeIn_3_d_ready = auto_in_3_d_ready_0; // @[InclusiveCache.scala:108:9]
wire nodeIn_3_d_valid; // @[MixedNode.scala:551:17]
wire [2:0] nodeIn_3_d_bits_opcode; // @[MixedNode.scala:551:17]
wire [1:0] nodeIn_3_d_bits_param; // @[MixedNode.scala:551:17]
wire [2:0] nodeIn_3_d_bits_size; // @[MixedNode.scala:551:17]
wire [5:0] nodeIn_3_d_bits_source; // @[MixedNode.scala:551:17]
wire [3:0] nodeIn_3_d_bits_sink; // @[MixedNode.scala:551:17]
wire nodeIn_3_d_bits_denied; // @[MixedNode.scala:551:17]
wire [127:0] nodeIn_3_d_bits_data; // @[MixedNode.scala:551:17]
wire nodeIn_3_d_bits_corrupt; // @[MixedNode.scala:551:17]
wire nodeIn_3_e_valid = auto_in_3_e_valid_0; // @[InclusiveCache.scala:108:9]
wire nodeIn_2_a_ready; // @[MixedNode.scala:551:17]
wire [3:0] nodeIn_3_e_bits_sink = auto_in_3_e_bits_sink_0; // @[InclusiveCache.scala:108:9]
wire nodeIn_2_a_valid = auto_in_2_a_valid_0; // @[InclusiveCache.scala:108:9]
wire [2:0] nodeIn_2_a_bits_opcode = auto_in_2_a_bits_opcode_0; // @[InclusiveCache.scala:108:9]
wire [2:0] nodeIn_2_a_bits_param = auto_in_2_a_bits_param_0; // @[InclusiveCache.scala:108:9]
wire [2:0] nodeIn_2_a_bits_size = auto_in_2_a_bits_size_0; // @[InclusiveCache.scala:108:9]
wire [5:0] nodeIn_2_a_bits_source = auto_in_2_a_bits_source_0; // @[InclusiveCache.scala:108:9]
wire [31:0] nodeIn_2_a_bits_address = auto_in_2_a_bits_address_0; // @[InclusiveCache.scala:108:9]
wire [15:0] nodeIn_2_a_bits_mask = auto_in_2_a_bits_mask_0; // @[InclusiveCache.scala:108:9]
wire [127:0] nodeIn_2_a_bits_data = auto_in_2_a_bits_data_0; // @[InclusiveCache.scala:108:9]
wire nodeIn_2_a_bits_corrupt = auto_in_2_a_bits_corrupt_0; // @[InclusiveCache.scala:108:9]
wire nodeIn_2_b_ready = auto_in_2_b_ready_0; // @[InclusiveCache.scala:108:9]
wire nodeIn_2_b_valid; // @[MixedNode.scala:551:17]
wire [1:0] nodeIn_2_b_bits_param; // @[MixedNode.scala:551:17]
wire [31:0] nodeIn_2_b_bits_address; // @[MixedNode.scala:551:17]
wire nodeIn_2_c_ready; // @[MixedNode.scala:551:17]
wire nodeIn_2_c_valid = auto_in_2_c_valid_0; // @[InclusiveCache.scala:108:9]
wire [2:0] nodeIn_2_c_bits_opcode = auto_in_2_c_bits_opcode_0; // @[InclusiveCache.scala:108:9]
wire [2:0] nodeIn_2_c_bits_param = auto_in_2_c_bits_param_0; // @[InclusiveCache.scala:108:9]
wire [2:0] nodeIn_2_c_bits_size = auto_in_2_c_bits_size_0; // @[InclusiveCache.scala:108:9]
wire [5:0] nodeIn_2_c_bits_source = auto_in_2_c_bits_source_0; // @[InclusiveCache.scala:108:9]
wire [31:0] nodeIn_2_c_bits_address = auto_in_2_c_bits_address_0; // @[InclusiveCache.scala:108:9]
wire [127:0] nodeIn_2_c_bits_data = auto_in_2_c_bits_data_0; // @[InclusiveCache.scala:108:9]
wire nodeIn_2_c_bits_corrupt = auto_in_2_c_bits_corrupt_0; // @[InclusiveCache.scala:108:9]
wire nodeIn_2_d_ready = auto_in_2_d_ready_0; // @[InclusiveCache.scala:108:9]
wire nodeIn_2_d_valid; // @[MixedNode.scala:551:17]
wire [2:0] nodeIn_2_d_bits_opcode; // @[MixedNode.scala:551:17]
wire [1:0] nodeIn_2_d_bits_param; // @[MixedNode.scala:551:17]
wire [2:0] nodeIn_2_d_bits_size; // @[MixedNode.scala:551:17]
wire [5:0] nodeIn_2_d_bits_source; // @[MixedNode.scala:551:17]
wire [3:0] nodeIn_2_d_bits_sink; // @[MixedNode.scala:551:17]
wire nodeIn_2_d_bits_denied; // @[MixedNode.scala:551:17]
wire [127:0] nodeIn_2_d_bits_data; // @[MixedNode.scala:551:17]
wire nodeIn_2_d_bits_corrupt; // @[MixedNode.scala:551:17]
wire nodeIn_2_e_valid = auto_in_2_e_valid_0; // @[InclusiveCache.scala:108:9]
wire nodeIn_1_a_ready; // @[MixedNode.scala:551:17]
wire [3:0] nodeIn_2_e_bits_sink = auto_in_2_e_bits_sink_0; // @[InclusiveCache.scala:108:9]
wire nodeIn_1_a_valid = auto_in_1_a_valid_0; // @[InclusiveCache.scala:108:9]
wire [2:0] nodeIn_1_a_bits_opcode = auto_in_1_a_bits_opcode_0; // @[InclusiveCache.scala:108:9]
wire [2:0] nodeIn_1_a_bits_param = auto_in_1_a_bits_param_0; // @[InclusiveCache.scala:108:9]
wire [2:0] nodeIn_1_a_bits_size = auto_in_1_a_bits_size_0; // @[InclusiveCache.scala:108:9]
wire [5:0] nodeIn_1_a_bits_source = auto_in_1_a_bits_source_0; // @[InclusiveCache.scala:108:9]
wire [31:0] nodeIn_1_a_bits_address = auto_in_1_a_bits_address_0; // @[InclusiveCache.scala:108:9]
wire [15:0] nodeIn_1_a_bits_mask = auto_in_1_a_bits_mask_0; // @[InclusiveCache.scala:108:9]
wire [127:0] nodeIn_1_a_bits_data = auto_in_1_a_bits_data_0; // @[InclusiveCache.scala:108:9]
wire nodeIn_1_a_bits_corrupt = auto_in_1_a_bits_corrupt_0; // @[InclusiveCache.scala:108:9]
wire nodeIn_1_b_ready = auto_in_1_b_ready_0; // @[InclusiveCache.scala:108:9]
wire nodeIn_1_b_valid; // @[MixedNode.scala:551:17]
wire [1:0] nodeIn_1_b_bits_param; // @[MixedNode.scala:551:17]
wire [31:0] nodeIn_1_b_bits_address; // @[MixedNode.scala:551:17]
wire nodeIn_1_c_ready; // @[MixedNode.scala:551:17]
wire nodeIn_1_c_valid = auto_in_1_c_valid_0; // @[InclusiveCache.scala:108:9]
wire [2:0] nodeIn_1_c_bits_opcode = auto_in_1_c_bits_opcode_0; // @[InclusiveCache.scala:108:9]
wire [2:0] nodeIn_1_c_bits_param = auto_in_1_c_bits_param_0; // @[InclusiveCache.scala:108:9]
wire [2:0] nodeIn_1_c_bits_size = auto_in_1_c_bits_size_0; // @[InclusiveCache.scala:108:9]
wire [5:0] nodeIn_1_c_bits_source = auto_in_1_c_bits_source_0; // @[InclusiveCache.scala:108:9]
wire [31:0] nodeIn_1_c_bits_address = auto_in_1_c_bits_address_0; // @[InclusiveCache.scala:108:9]
wire [127:0] nodeIn_1_c_bits_data = auto_in_1_c_bits_data_0; // @[InclusiveCache.scala:108:9]
wire nodeIn_1_c_bits_corrupt = auto_in_1_c_bits_corrupt_0; // @[InclusiveCache.scala:108:9]
wire nodeIn_1_d_ready = auto_in_1_d_ready_0; // @[InclusiveCache.scala:108:9]
wire nodeIn_1_d_valid; // @[MixedNode.scala:551:17]
wire [2:0] nodeIn_1_d_bits_opcode; // @[MixedNode.scala:551:17]
wire [1:0] nodeIn_1_d_bits_param; // @[MixedNode.scala:551:17]
wire [2:0] nodeIn_1_d_bits_size; // @[MixedNode.scala:551:17]
wire [5:0] nodeIn_1_d_bits_source; // @[MixedNode.scala:551:17]
wire [3:0] nodeIn_1_d_bits_sink; // @[MixedNode.scala:551:17]
wire nodeIn_1_d_bits_denied; // @[MixedNode.scala:551:17]
wire [127:0] nodeIn_1_d_bits_data; // @[MixedNode.scala:551:17]
wire nodeIn_1_d_bits_corrupt; // @[MixedNode.scala:551:17]
wire nodeIn_1_e_valid = auto_in_1_e_valid_0; // @[InclusiveCache.scala:108:9]
wire nodeIn_a_ready; // @[MixedNode.scala:551:17]
wire [3:0] nodeIn_1_e_bits_sink = auto_in_1_e_bits_sink_0; // @[InclusiveCache.scala:108:9]
wire nodeIn_a_valid = auto_in_0_a_valid_0; // @[InclusiveCache.scala:108:9]
wire [2:0] nodeIn_a_bits_opcode = auto_in_0_a_bits_opcode_0; // @[InclusiveCache.scala:108:9]
wire [2:0] nodeIn_a_bits_param = auto_in_0_a_bits_param_0; // @[InclusiveCache.scala:108:9]
wire [2:0] nodeIn_a_bits_size = auto_in_0_a_bits_size_0; // @[InclusiveCache.scala:108:9]
wire [5:0] nodeIn_a_bits_source = auto_in_0_a_bits_source_0; // @[InclusiveCache.scala:108:9]
wire [31:0] nodeIn_a_bits_address = auto_in_0_a_bits_address_0; // @[InclusiveCache.scala:108:9]
wire [15:0] nodeIn_a_bits_mask = auto_in_0_a_bits_mask_0; // @[InclusiveCache.scala:108:9]
wire [127:0] nodeIn_a_bits_data = auto_in_0_a_bits_data_0; // @[InclusiveCache.scala:108:9]
wire nodeIn_a_bits_corrupt = auto_in_0_a_bits_corrupt_0; // @[InclusiveCache.scala:108:9]
wire nodeIn_b_ready = auto_in_0_b_ready_0; // @[InclusiveCache.scala:108:9]
wire nodeIn_b_valid; // @[MixedNode.scala:551:17]
wire [1:0] nodeIn_b_bits_param; // @[MixedNode.scala:551:17]
wire [31:0] nodeIn_b_bits_address; // @[MixedNode.scala:551:17]
wire nodeIn_c_ready; // @[MixedNode.scala:551:17]
wire nodeIn_c_valid = auto_in_0_c_valid_0; // @[InclusiveCache.scala:108:9]
wire [2:0] nodeIn_c_bits_opcode = auto_in_0_c_bits_opcode_0; // @[InclusiveCache.scala:108:9]
wire [2:0] nodeIn_c_bits_param = auto_in_0_c_bits_param_0; // @[InclusiveCache.scala:108:9]
wire [2:0] nodeIn_c_bits_size = auto_in_0_c_bits_size_0; // @[InclusiveCache.scala:108:9]
wire [5:0] nodeIn_c_bits_source = auto_in_0_c_bits_source_0; // @[InclusiveCache.scala:108:9]
wire [31:0] nodeIn_c_bits_address = auto_in_0_c_bits_address_0; // @[InclusiveCache.scala:108:9]
wire [127:0] nodeIn_c_bits_data = auto_in_0_c_bits_data_0; // @[InclusiveCache.scala:108:9]
wire nodeIn_c_bits_corrupt = auto_in_0_c_bits_corrupt_0; // @[InclusiveCache.scala:108:9]
wire nodeIn_d_ready = auto_in_0_d_ready_0; // @[InclusiveCache.scala:108:9]
wire nodeIn_d_valid; // @[MixedNode.scala:551:17]
wire [2:0] nodeIn_d_bits_opcode; // @[MixedNode.scala:551:17]
wire [1:0] nodeIn_d_bits_param; // @[MixedNode.scala:551:17]
wire [2:0] nodeIn_d_bits_size; // @[MixedNode.scala:551:17]
wire [5:0] nodeIn_d_bits_source; // @[MixedNode.scala:551:17]
wire [3:0] nodeIn_d_bits_sink; // @[MixedNode.scala:551:17]
wire nodeIn_d_bits_denied; // @[MixedNode.scala:551:17]
wire [127:0] nodeIn_d_bits_data; // @[MixedNode.scala:551:17]
wire nodeIn_d_bits_corrupt; // @[MixedNode.scala:551:17]
wire nodeIn_e_valid = auto_in_0_e_valid_0; // @[InclusiveCache.scala:108:9]
wire [3:0] nodeIn_e_bits_sink = auto_in_0_e_bits_sink_0; // @[InclusiveCache.scala:108:9]
wire x1_nodeOut_6_a_ready = auto_out_7_a_ready_0; // @[InclusiveCache.scala:108:9]
wire x1_nodeOut_6_a_valid; // @[MixedNode.scala:542:17]
wire [2:0] x1_nodeOut_6_a_bits_opcode; // @[MixedNode.scala:542:17]
wire [2:0] x1_nodeOut_6_a_bits_param; // @[MixedNode.scala:542:17]
wire [2:0] x1_nodeOut_6_a_bits_size; // @[MixedNode.scala:542:17]
wire [3:0] x1_nodeOut_6_a_bits_source; // @[MixedNode.scala:542:17]
wire [31:0] x1_nodeOut_6_a_bits_address; // @[MixedNode.scala:542:17]
wire [7:0] x1_nodeOut_6_a_bits_mask; // @[MixedNode.scala:542:17]
wire [63:0] x1_nodeOut_6_a_bits_data; // @[MixedNode.scala:542:17]
wire x1_nodeOut_6_a_bits_corrupt; // @[MixedNode.scala:542:17]
wire x1_nodeOut_6_c_ready = auto_out_7_c_ready_0; // @[InclusiveCache.scala:108:9]
wire x1_nodeOut_6_c_valid; // @[MixedNode.scala:542:17]
wire [2:0] x1_nodeOut_6_c_bits_opcode; // @[MixedNode.scala:542:17]
wire [2:0] x1_nodeOut_6_c_bits_param; // @[MixedNode.scala:542:17]
wire [2:0] x1_nodeOut_6_c_bits_size; // @[MixedNode.scala:542:17]
wire [3:0] x1_nodeOut_6_c_bits_source; // @[MixedNode.scala:542:17]
wire [31:0] x1_nodeOut_6_c_bits_address; // @[MixedNode.scala:542:17]
wire [63:0] x1_nodeOut_6_c_bits_data; // @[MixedNode.scala:542:17]
wire x1_nodeOut_6_c_bits_corrupt; // @[MixedNode.scala:542:17]
wire x1_nodeOut_6_d_ready; // @[MixedNode.scala:542:17]
wire x1_nodeOut_6_d_valid = auto_out_7_d_valid_0; // @[InclusiveCache.scala:108:9]
wire [2:0] x1_nodeOut_6_d_bits_opcode = auto_out_7_d_bits_opcode_0; // @[InclusiveCache.scala:108:9]
wire [1:0] x1_nodeOut_6_d_bits_param = auto_out_7_d_bits_param_0; // @[InclusiveCache.scala:108:9]
wire [2:0] x1_nodeOut_6_d_bits_size = auto_out_7_d_bits_size_0; // @[InclusiveCache.scala:108:9]
wire [3:0] x1_nodeOut_6_d_bits_source = auto_out_7_d_bits_source_0; // @[InclusiveCache.scala:108:9]
wire [2:0] x1_nodeOut_6_d_bits_sink = auto_out_7_d_bits_sink_0; // @[InclusiveCache.scala:108:9]
wire x1_nodeOut_6_d_bits_denied = auto_out_7_d_bits_denied_0; // @[InclusiveCache.scala:108:9]
wire [63:0] x1_nodeOut_6_d_bits_data = auto_out_7_d_bits_data_0; // @[InclusiveCache.scala:108:9]
wire x1_nodeOut_6_d_bits_corrupt = auto_out_7_d_bits_corrupt_0; // @[InclusiveCache.scala:108:9]
wire x1_nodeOut_6_e_valid; // @[MixedNode.scala:542:17]
wire [2:0] x1_nodeOut_6_e_bits_sink; // @[MixedNode.scala:542:17]
wire x1_nodeOut_5_a_ready = auto_out_6_a_ready_0; // @[InclusiveCache.scala:108:9]
wire x1_nodeOut_5_a_valid; // @[MixedNode.scala:542:17]
wire [2:0] x1_nodeOut_5_a_bits_opcode; // @[MixedNode.scala:542:17]
wire [2:0] x1_nodeOut_5_a_bits_param; // @[MixedNode.scala:542:17]
wire [2:0] x1_nodeOut_5_a_bits_size; // @[MixedNode.scala:542:17]
wire [3:0] x1_nodeOut_5_a_bits_source; // @[MixedNode.scala:542:17]
wire [31:0] x1_nodeOut_5_a_bits_address; // @[MixedNode.scala:542:17]
wire [7:0] x1_nodeOut_5_a_bits_mask; // @[MixedNode.scala:542:17]
wire [63:0] x1_nodeOut_5_a_bits_data; // @[MixedNode.scala:542:17]
wire x1_nodeOut_5_a_bits_corrupt; // @[MixedNode.scala:542:17]
wire x1_nodeOut_5_c_ready = auto_out_6_c_ready_0; // @[InclusiveCache.scala:108:9]
wire x1_nodeOut_5_c_valid; // @[MixedNode.scala:542:17]
wire [2:0] x1_nodeOut_5_c_bits_opcode; // @[MixedNode.scala:542:17]
wire [2:0] x1_nodeOut_5_c_bits_param; // @[MixedNode.scala:542:17]
wire [2:0] x1_nodeOut_5_c_bits_size; // @[MixedNode.scala:542:17]
wire [3:0] x1_nodeOut_5_c_bits_source; // @[MixedNode.scala:542:17]
wire [31:0] x1_nodeOut_5_c_bits_address; // @[MixedNode.scala:542:17]
wire [63:0] x1_nodeOut_5_c_bits_data; // @[MixedNode.scala:542:17]
wire x1_nodeOut_5_c_bits_corrupt; // @[MixedNode.scala:542:17]
wire x1_nodeOut_5_d_ready; // @[MixedNode.scala:542:17]
wire x1_nodeOut_5_d_valid = auto_out_6_d_valid_0; // @[InclusiveCache.scala:108:9]
wire [2:0] x1_nodeOut_5_d_bits_opcode = auto_out_6_d_bits_opcode_0; // @[InclusiveCache.scala:108:9]
wire [1:0] x1_nodeOut_5_d_bits_param = auto_out_6_d_bits_param_0; // @[InclusiveCache.scala:108:9]
wire [2:0] x1_nodeOut_5_d_bits_size = auto_out_6_d_bits_size_0; // @[InclusiveCache.scala:108:9]
wire [3:0] x1_nodeOut_5_d_bits_source = auto_out_6_d_bits_source_0; // @[InclusiveCache.scala:108:9]
wire [2:0] x1_nodeOut_5_d_bits_sink = auto_out_6_d_bits_sink_0; // @[InclusiveCache.scala:108:9]
wire x1_nodeOut_5_d_bits_denied = auto_out_6_d_bits_denied_0; // @[InclusiveCache.scala:108:9]
wire [63:0] x1_nodeOut_5_d_bits_data = auto_out_6_d_bits_data_0; // @[InclusiveCache.scala:108:9]
wire x1_nodeOut_5_d_bits_corrupt = auto_out_6_d_bits_corrupt_0; // @[InclusiveCache.scala:108:9]
wire x1_nodeOut_5_e_valid; // @[MixedNode.scala:542:17]
wire [2:0] x1_nodeOut_5_e_bits_sink; // @[MixedNode.scala:542:17]
wire x1_nodeOut_4_a_ready = auto_out_5_a_ready_0; // @[InclusiveCache.scala:108:9]
wire x1_nodeOut_4_a_valid; // @[MixedNode.scala:542:17]
wire [2:0] x1_nodeOut_4_a_bits_opcode; // @[MixedNode.scala:542:17]
wire [2:0] x1_nodeOut_4_a_bits_param; // @[MixedNode.scala:542:17]
wire [2:0] x1_nodeOut_4_a_bits_size; // @[MixedNode.scala:542:17]
wire [3:0] x1_nodeOut_4_a_bits_source; // @[MixedNode.scala:542:17]
wire [31:0] x1_nodeOut_4_a_bits_address; // @[MixedNode.scala:542:17]
wire [7:0] x1_nodeOut_4_a_bits_mask; // @[MixedNode.scala:542:17]
wire [63:0] x1_nodeOut_4_a_bits_data; // @[MixedNode.scala:542:17]
wire x1_nodeOut_4_a_bits_corrupt; // @[MixedNode.scala:542:17]
wire x1_nodeOut_4_c_ready = auto_out_5_c_ready_0; // @[InclusiveCache.scala:108:9]
wire x1_nodeOut_4_c_valid; // @[MixedNode.scala:542:17]
wire [2:0] x1_nodeOut_4_c_bits_opcode; // @[MixedNode.scala:542:17]
wire [2:0] x1_nodeOut_4_c_bits_param; // @[MixedNode.scala:542:17]
wire [2:0] x1_nodeOut_4_c_bits_size; // @[MixedNode.scala:542:17]
wire [3:0] x1_nodeOut_4_c_bits_source; // @[MixedNode.scala:542:17]
wire [31:0] x1_nodeOut_4_c_bits_address; // @[MixedNode.scala:542:17]
wire [63:0] x1_nodeOut_4_c_bits_data; // @[MixedNode.scala:542:17]
wire x1_nodeOut_4_c_bits_corrupt; // @[MixedNode.scala:542:17]
wire x1_nodeOut_4_d_ready; // @[MixedNode.scala:542:17]
wire x1_nodeOut_4_d_valid = auto_out_5_d_valid_0; // @[InclusiveCache.scala:108:9]
wire [2:0] x1_nodeOut_4_d_bits_opcode = auto_out_5_d_bits_opcode_0; // @[InclusiveCache.scala:108:9]
wire [1:0] x1_nodeOut_4_d_bits_param = auto_out_5_d_bits_param_0; // @[InclusiveCache.scala:108:9]
wire [2:0] x1_nodeOut_4_d_bits_size = auto_out_5_d_bits_size_0; // @[InclusiveCache.scala:108:9]
wire [3:0] x1_nodeOut_4_d_bits_source = auto_out_5_d_bits_source_0; // @[InclusiveCache.scala:108:9]
wire [2:0] x1_nodeOut_4_d_bits_sink = auto_out_5_d_bits_sink_0; // @[InclusiveCache.scala:108:9]
wire x1_nodeOut_4_d_bits_denied = auto_out_5_d_bits_denied_0; // @[InclusiveCache.scala:108:9]
wire [63:0] x1_nodeOut_4_d_bits_data = auto_out_5_d_bits_data_0; // @[InclusiveCache.scala:108:9]
wire x1_nodeOut_4_d_bits_corrupt = auto_out_5_d_bits_corrupt_0; // @[InclusiveCache.scala:108:9]
wire x1_nodeOut_4_e_valid; // @[MixedNode.scala:542:17]
wire [2:0] x1_nodeOut_4_e_bits_sink; // @[MixedNode.scala:542:17]
wire x1_nodeOut_3_a_ready = auto_out_4_a_ready_0; // @[InclusiveCache.scala:108:9]
wire x1_nodeOut_3_a_valid; // @[MixedNode.scala:542:17]
wire [2:0] x1_nodeOut_3_a_bits_opcode; // @[MixedNode.scala:542:17]
wire [2:0] x1_nodeOut_3_a_bits_param; // @[MixedNode.scala:542:17]
wire [2:0] x1_nodeOut_3_a_bits_size; // @[MixedNode.scala:542:17]
wire [3:0] x1_nodeOut_3_a_bits_source; // @[MixedNode.scala:542:17]
wire [31:0] x1_nodeOut_3_a_bits_address; // @[MixedNode.scala:542:17]
wire [7:0] x1_nodeOut_3_a_bits_mask; // @[MixedNode.scala:542:17]
wire [63:0] x1_nodeOut_3_a_bits_data; // @[MixedNode.scala:542:17]
wire x1_nodeOut_3_a_bits_corrupt; // @[MixedNode.scala:542:17]
wire x1_nodeOut_3_c_ready = auto_out_4_c_ready_0; // @[InclusiveCache.scala:108:9]
wire x1_nodeOut_3_c_valid; // @[MixedNode.scala:542:17]
wire [2:0] x1_nodeOut_3_c_bits_opcode; // @[MixedNode.scala:542:17]
wire [2:0] x1_nodeOut_3_c_bits_param; // @[MixedNode.scala:542:17]
wire [2:0] x1_nodeOut_3_c_bits_size; // @[MixedNode.scala:542:17]
wire [3:0] x1_nodeOut_3_c_bits_source; // @[MixedNode.scala:542:17]
wire [31:0] x1_nodeOut_3_c_bits_address; // @[MixedNode.scala:542:17]
wire [63:0] x1_nodeOut_3_c_bits_data; // @[MixedNode.scala:542:17]
wire x1_nodeOut_3_c_bits_corrupt; // @[MixedNode.scala:542:17]
wire x1_nodeOut_3_d_ready; // @[MixedNode.scala:542:17]
wire x1_nodeOut_3_d_valid = auto_out_4_d_valid_0; // @[InclusiveCache.scala:108:9]
wire [2:0] x1_nodeOut_3_d_bits_opcode = auto_out_4_d_bits_opcode_0; // @[InclusiveCache.scala:108:9]
wire [1:0] x1_nodeOut_3_d_bits_param = auto_out_4_d_bits_param_0; // @[InclusiveCache.scala:108:9]
wire [2:0] x1_nodeOut_3_d_bits_size = auto_out_4_d_bits_size_0; // @[InclusiveCache.scala:108:9]
wire [3:0] x1_nodeOut_3_d_bits_source = auto_out_4_d_bits_source_0; // @[InclusiveCache.scala:108:9]
wire [2:0] x1_nodeOut_3_d_bits_sink = auto_out_4_d_bits_sink_0; // @[InclusiveCache.scala:108:9]
wire x1_nodeOut_3_d_bits_denied = auto_out_4_d_bits_denied_0; // @[InclusiveCache.scala:108:9]
wire [63:0] x1_nodeOut_3_d_bits_data = auto_out_4_d_bits_data_0; // @[InclusiveCache.scala:108:9]
wire x1_nodeOut_3_d_bits_corrupt = auto_out_4_d_bits_corrupt_0; // @[InclusiveCache.scala:108:9]
wire x1_nodeOut_3_e_valid; // @[MixedNode.scala:542:17]
wire [2:0] x1_nodeOut_3_e_bits_sink; // @[MixedNode.scala:542:17]
wire x1_nodeOut_2_a_ready = auto_out_3_a_ready_0; // @[InclusiveCache.scala:108:9]
wire x1_nodeOut_2_a_valid; // @[MixedNode.scala:542:17]
wire [2:0] x1_nodeOut_2_a_bits_opcode; // @[MixedNode.scala:542:17]
wire [2:0] x1_nodeOut_2_a_bits_param; // @[MixedNode.scala:542:17]
wire [2:0] x1_nodeOut_2_a_bits_size; // @[MixedNode.scala:542:17]
wire [3:0] x1_nodeOut_2_a_bits_source; // @[MixedNode.scala:542:17]
wire [31:0] x1_nodeOut_2_a_bits_address; // @[MixedNode.scala:542:17]
wire [7:0] x1_nodeOut_2_a_bits_mask; // @[MixedNode.scala:542:17]
wire [63:0] x1_nodeOut_2_a_bits_data; // @[MixedNode.scala:542:17]
wire x1_nodeOut_2_a_bits_corrupt; // @[MixedNode.scala:542:17]
wire x1_nodeOut_2_c_ready = auto_out_3_c_ready_0; // @[InclusiveCache.scala:108:9]
wire x1_nodeOut_2_c_valid; // @[MixedNode.scala:542:17]
wire [2:0] x1_nodeOut_2_c_bits_opcode; // @[MixedNode.scala:542:17]
wire [2:0] x1_nodeOut_2_c_bits_param; // @[MixedNode.scala:542:17]
wire [2:0] x1_nodeOut_2_c_bits_size; // @[MixedNode.scala:542:17]
wire [3:0] x1_nodeOut_2_c_bits_source; // @[MixedNode.scala:542:17]
wire [31:0] x1_nodeOut_2_c_bits_address; // @[MixedNode.scala:542:17]
wire [63:0] x1_nodeOut_2_c_bits_data; // @[MixedNode.scala:542:17]
wire x1_nodeOut_2_c_bits_corrupt; // @[MixedNode.scala:542:17]
wire x1_nodeOut_2_d_ready; // @[MixedNode.scala:542:17]
wire x1_nodeOut_2_d_valid = auto_out_3_d_valid_0; // @[InclusiveCache.scala:108:9]
wire [2:0] x1_nodeOut_2_d_bits_opcode = auto_out_3_d_bits_opcode_0; // @[InclusiveCache.scala:108:9]
wire [1:0] x1_nodeOut_2_d_bits_param = auto_out_3_d_bits_param_0; // @[InclusiveCache.scala:108:9]
wire [2:0] x1_nodeOut_2_d_bits_size = auto_out_3_d_bits_size_0; // @[InclusiveCache.scala:108:9]
wire [3:0] x1_nodeOut_2_d_bits_source = auto_out_3_d_bits_source_0; // @[InclusiveCache.scala:108:9]
wire [2:0] x1_nodeOut_2_d_bits_sink = auto_out_3_d_bits_sink_0; // @[InclusiveCache.scala:108:9]
wire x1_nodeOut_2_d_bits_denied = auto_out_3_d_bits_denied_0; // @[InclusiveCache.scala:108:9]
wire [63:0] x1_nodeOut_2_d_bits_data = auto_out_3_d_bits_data_0; // @[InclusiveCache.scala:108:9]
wire x1_nodeOut_2_d_bits_corrupt = auto_out_3_d_bits_corrupt_0; // @[InclusiveCache.scala:108:9]
wire x1_nodeOut_2_e_valid; // @[MixedNode.scala:542:17]
wire [2:0] x1_nodeOut_2_e_bits_sink; // @[MixedNode.scala:542:17]
wire x1_nodeOut_1_a_ready = auto_out_2_a_ready_0; // @[InclusiveCache.scala:108:9]
wire x1_nodeOut_1_a_valid; // @[MixedNode.scala:542:17]
wire [2:0] x1_nodeOut_1_a_bits_opcode; // @[MixedNode.scala:542:17]
wire [2:0] x1_nodeOut_1_a_bits_param; // @[MixedNode.scala:542:17]
wire [2:0] x1_nodeOut_1_a_bits_size; // @[MixedNode.scala:542:17]
wire [3:0] x1_nodeOut_1_a_bits_source; // @[MixedNode.scala:542:17]
wire [31:0] x1_nodeOut_1_a_bits_address; // @[MixedNode.scala:542:17]
wire [7:0] x1_nodeOut_1_a_bits_mask; // @[MixedNode.scala:542:17]
wire [63:0] x1_nodeOut_1_a_bits_data; // @[MixedNode.scala:542:17]
wire x1_nodeOut_1_a_bits_corrupt; // @[MixedNode.scala:542:17]
wire x1_nodeOut_1_c_ready = auto_out_2_c_ready_0; // @[InclusiveCache.scala:108:9]
wire x1_nodeOut_1_c_valid; // @[MixedNode.scala:542:17]
wire [2:0] x1_nodeOut_1_c_bits_opcode; // @[MixedNode.scala:542:17]
wire [2:0] x1_nodeOut_1_c_bits_param; // @[MixedNode.scala:542:17]
wire [2:0] x1_nodeOut_1_c_bits_size; // @[MixedNode.scala:542:17]
wire [3:0] x1_nodeOut_1_c_bits_source; // @[MixedNode.scala:542:17]
wire [31:0] x1_nodeOut_1_c_bits_address; // @[MixedNode.scala:542:17]
wire [63:0] x1_nodeOut_1_c_bits_data; // @[MixedNode.scala:542:17]
wire x1_nodeOut_1_c_bits_corrupt; // @[MixedNode.scala:542:17]
wire x1_nodeOut_1_d_ready; // @[MixedNode.scala:542:17]
wire x1_nodeOut_1_d_valid = auto_out_2_d_valid_0; // @[InclusiveCache.scala:108:9]
wire [2:0] x1_nodeOut_1_d_bits_opcode = auto_out_2_d_bits_opcode_0; // @[InclusiveCache.scala:108:9]
wire [1:0] x1_nodeOut_1_d_bits_param = auto_out_2_d_bits_param_0; // @[InclusiveCache.scala:108:9]
wire [2:0] x1_nodeOut_1_d_bits_size = auto_out_2_d_bits_size_0; // @[InclusiveCache.scala:108:9]
wire [3:0] x1_nodeOut_1_d_bits_source = auto_out_2_d_bits_source_0; // @[InclusiveCache.scala:108:9]
wire [2:0] x1_nodeOut_1_d_bits_sink = auto_out_2_d_bits_sink_0; // @[InclusiveCache.scala:108:9]
wire x1_nodeOut_1_d_bits_denied = auto_out_2_d_bits_denied_0; // @[InclusiveCache.scala:108:9]
wire [63:0] x1_nodeOut_1_d_bits_data = auto_out_2_d_bits_data_0; // @[InclusiveCache.scala:108:9]
wire x1_nodeOut_1_d_bits_corrupt = auto_out_2_d_bits_corrupt_0; // @[InclusiveCache.scala:108:9]
wire x1_nodeOut_1_e_valid; // @[MixedNode.scala:542:17]
wire [2:0] x1_nodeOut_1_e_bits_sink; // @[MixedNode.scala:542:17]
wire x1_nodeOut_a_ready = auto_out_1_a_ready_0; // @[InclusiveCache.scala:108:9]
wire x1_nodeOut_a_valid; // @[MixedNode.scala:542:17]
wire [2:0] x1_nodeOut_a_bits_opcode; // @[MixedNode.scala:542:17]
wire [2:0] x1_nodeOut_a_bits_param; // @[MixedNode.scala:542:17]
wire [2:0] x1_nodeOut_a_bits_size; // @[MixedNode.scala:542:17]
wire [3:0] x1_nodeOut_a_bits_source; // @[MixedNode.scala:542:17]
wire [31:0] x1_nodeOut_a_bits_address; // @[MixedNode.scala:542:17]
wire [7:0] x1_nodeOut_a_bits_mask; // @[MixedNode.scala:542:17]
wire [63:0] x1_nodeOut_a_bits_data; // @[MixedNode.scala:542:17]
wire x1_nodeOut_a_bits_corrupt; // @[MixedNode.scala:542:17]
wire x1_nodeOut_c_ready = auto_out_1_c_ready_0; // @[InclusiveCache.scala:108:9]
wire x1_nodeOut_c_valid; // @[MixedNode.scala:542:17]
wire [2:0] x1_nodeOut_c_bits_opcode; // @[MixedNode.scala:542:17]
wire [2:0] x1_nodeOut_c_bits_param; // @[MixedNode.scala:542:17]
wire [2:0] x1_nodeOut_c_bits_size; // @[MixedNode.scala:542:17]
wire [3:0] x1_nodeOut_c_bits_source; // @[MixedNode.scala:542:17]
wire [31:0] x1_nodeOut_c_bits_address; // @[MixedNode.scala:542:17]
wire [63:0] x1_nodeOut_c_bits_data; // @[MixedNode.scala:542:17]
wire x1_nodeOut_c_bits_corrupt; // @[MixedNode.scala:542:17]
wire x1_nodeOut_d_ready; // @[MixedNode.scala:542:17]
wire x1_nodeOut_d_valid = auto_out_1_d_valid_0; // @[InclusiveCache.scala:108:9]
wire [2:0] x1_nodeOut_d_bits_opcode = auto_out_1_d_bits_opcode_0; // @[InclusiveCache.scala:108:9]
wire [1:0] x1_nodeOut_d_bits_param = auto_out_1_d_bits_param_0; // @[InclusiveCache.scala:108:9]
wire [2:0] x1_nodeOut_d_bits_size = auto_out_1_d_bits_size_0; // @[InclusiveCache.scala:108:9]
wire [3:0] x1_nodeOut_d_bits_source = auto_out_1_d_bits_source_0; // @[InclusiveCache.scala:108:9]
wire [2:0] x1_nodeOut_d_bits_sink = auto_out_1_d_bits_sink_0; // @[InclusiveCache.scala:108:9]
wire x1_nodeOut_d_bits_denied = auto_out_1_d_bits_denied_0; // @[InclusiveCache.scala:108:9]
wire [63:0] x1_nodeOut_d_bits_data = auto_out_1_d_bits_data_0; // @[InclusiveCache.scala:108:9]
wire x1_nodeOut_d_bits_corrupt = auto_out_1_d_bits_corrupt_0; // @[InclusiveCache.scala:108:9]
wire x1_nodeOut_e_valid; // @[MixedNode.scala:542:17]
wire [2:0] x1_nodeOut_e_bits_sink; // @[MixedNode.scala:542:17]
wire nodeOut_a_ready = auto_out_0_a_ready_0; // @[InclusiveCache.scala:108:9]
wire nodeOut_a_valid; // @[MixedNode.scala:542:17]
wire [2:0] nodeOut_a_bits_opcode; // @[MixedNode.scala:542:17]
wire [2:0] nodeOut_a_bits_param; // @[MixedNode.scala:542:17]
wire [2:0] nodeOut_a_bits_size; // @[MixedNode.scala:542:17]
wire [3:0] nodeOut_a_bits_source; // @[MixedNode.scala:542:17]
wire [31:0] nodeOut_a_bits_address; // @[MixedNode.scala:542:17]
wire [7:0] nodeOut_a_bits_mask; // @[MixedNode.scala:542:17]
wire [63:0] nodeOut_a_bits_data; // @[MixedNode.scala:542:17]
wire nodeOut_a_bits_corrupt; // @[MixedNode.scala:542:17]
wire nodeOut_c_ready = auto_out_0_c_ready_0; // @[InclusiveCache.scala:108:9]
wire nodeOut_c_valid; // @[MixedNode.scala:542:17]
wire [2:0] nodeOut_c_bits_opcode; // @[MixedNode.scala:542:17]
wire [2:0] nodeOut_c_bits_param; // @[MixedNode.scala:542:17]
wire [2:0] nodeOut_c_bits_size; // @[MixedNode.scala:542:17]
wire [3:0] nodeOut_c_bits_source; // @[MixedNode.scala:542:17]
wire [31:0] nodeOut_c_bits_address; // @[MixedNode.scala:542:17]
wire [63:0] nodeOut_c_bits_data; // @[MixedNode.scala:542:17]
wire nodeOut_c_bits_corrupt; // @[MixedNode.scala:542:17]
wire nodeOut_d_ready; // @[MixedNode.scala:542:17]
wire nodeOut_d_valid = auto_out_0_d_valid_0; // @[InclusiveCache.scala:108:9]
wire [2:0] nodeOut_d_bits_opcode = auto_out_0_d_bits_opcode_0; // @[InclusiveCache.scala:108:9]
wire [1:0] nodeOut_d_bits_param = auto_out_0_d_bits_param_0; // @[InclusiveCache.scala:108:9]
wire [2:0] nodeOut_d_bits_size = auto_out_0_d_bits_size_0; // @[InclusiveCache.scala:108:9]
wire [3:0] nodeOut_d_bits_source = auto_out_0_d_bits_source_0; // @[InclusiveCache.scala:108:9]
wire [2:0] nodeOut_d_bits_sink = auto_out_0_d_bits_sink_0; // @[InclusiveCache.scala:108:9]
wire nodeOut_d_bits_denied = auto_out_0_d_bits_denied_0; // @[InclusiveCache.scala:108:9]
wire [63:0] nodeOut_d_bits_data = auto_out_0_d_bits_data_0; // @[InclusiveCache.scala:108:9]
wire nodeOut_d_bits_corrupt = auto_out_0_d_bits_corrupt_0; // @[InclusiveCache.scala:108:9]
wire nodeOut_e_valid; // @[MixedNode.scala:542:17]
wire [2:0] nodeOut_e_bits_sink; // @[MixedNode.scala:542:17]
wire auto_ctrls_ctrl_in_a_ready_0; // @[InclusiveCache.scala:108:9]
wire [2:0] auto_ctrls_ctrl_in_d_bits_opcode_0; // @[InclusiveCache.scala:108:9]
wire [1:0] auto_ctrls_ctrl_in_d_bits_size_0; // @[InclusiveCache.scala:108:9]
wire [10:0] auto_ctrls_ctrl_in_d_bits_source_0; // @[InclusiveCache.scala:108:9]
wire [63:0] auto_ctrls_ctrl_in_d_bits_data_0; // @[InclusiveCache.scala:108:9]
wire auto_ctrls_ctrl_in_d_valid_0; // @[InclusiveCache.scala:108:9]
wire auto_in_7_a_ready_0; // @[InclusiveCache.scala:108:9]
wire [1:0] auto_in_7_b_bits_param_0; // @[InclusiveCache.scala:108:9]
wire [31:0] auto_in_7_b_bits_address_0; // @[InclusiveCache.scala:108:9]
wire auto_in_7_b_valid_0; // @[InclusiveCache.scala:108:9]
wire auto_in_7_c_ready_0; // @[InclusiveCache.scala:108:9]
wire [2:0] auto_in_7_d_bits_opcode_0; // @[InclusiveCache.scala:108:9]
wire [1:0] auto_in_7_d_bits_param_0; // @[InclusiveCache.scala:108:9]
wire [2:0] auto_in_7_d_bits_size_0; // @[InclusiveCache.scala:108:9]
wire [5:0] auto_in_7_d_bits_source_0; // @[InclusiveCache.scala:108:9]
wire [3:0] auto_in_7_d_bits_sink_0; // @[InclusiveCache.scala:108:9]
wire auto_in_7_d_bits_denied_0; // @[InclusiveCache.scala:108:9]
wire [127:0] auto_in_7_d_bits_data_0; // @[InclusiveCache.scala:108:9]
wire auto_in_7_d_bits_corrupt_0; // @[InclusiveCache.scala:108:9]
wire auto_in_7_d_valid_0; // @[InclusiveCache.scala:108:9]
wire auto_in_6_a_ready_0; // @[InclusiveCache.scala:108:9]
wire [1:0] auto_in_6_b_bits_param_0; // @[InclusiveCache.scala:108:9]
wire [31:0] auto_in_6_b_bits_address_0; // @[InclusiveCache.scala:108:9]
wire auto_in_6_b_valid_0; // @[InclusiveCache.scala:108:9]
wire auto_in_6_c_ready_0; // @[InclusiveCache.scala:108:9]
wire [2:0] auto_in_6_d_bits_opcode_0; // @[InclusiveCache.scala:108:9]
wire [1:0] auto_in_6_d_bits_param_0; // @[InclusiveCache.scala:108:9]
wire [2:0] auto_in_6_d_bits_size_0; // @[InclusiveCache.scala:108:9]
wire [5:0] auto_in_6_d_bits_source_0; // @[InclusiveCache.scala:108:9]
wire [3:0] auto_in_6_d_bits_sink_0; // @[InclusiveCache.scala:108:9]
wire auto_in_6_d_bits_denied_0; // @[InclusiveCache.scala:108:9]
wire [127:0] auto_in_6_d_bits_data_0; // @[InclusiveCache.scala:108:9]
wire auto_in_6_d_bits_corrupt_0; // @[InclusiveCache.scala:108:9]
wire auto_in_6_d_valid_0; // @[InclusiveCache.scala:108:9]
wire auto_in_5_a_ready_0; // @[InclusiveCache.scala:108:9]
wire [1:0] auto_in_5_b_bits_param_0; // @[InclusiveCache.scala:108:9]
wire [31:0] auto_in_5_b_bits_address_0; // @[InclusiveCache.scala:108:9]
wire auto_in_5_b_valid_0; // @[InclusiveCache.scala:108:9]
wire auto_in_5_c_ready_0; // @[InclusiveCache.scala:108:9]
wire [2:0] auto_in_5_d_bits_opcode_0; // @[InclusiveCache.scala:108:9]
wire [1:0] auto_in_5_d_bits_param_0; // @[InclusiveCache.scala:108:9]
wire [2:0] auto_in_5_d_bits_size_0; // @[InclusiveCache.scala:108:9]
wire [5:0] auto_in_5_d_bits_source_0; // @[InclusiveCache.scala:108:9]
wire [3:0] auto_in_5_d_bits_sink_0; // @[InclusiveCache.scala:108:9]
wire auto_in_5_d_bits_denied_0; // @[InclusiveCache.scala:108:9]
wire [127:0] auto_in_5_d_bits_data_0; // @[InclusiveCache.scala:108:9]
wire auto_in_5_d_bits_corrupt_0; // @[InclusiveCache.scala:108:9]
wire auto_in_5_d_valid_0; // @[InclusiveCache.scala:108:9]
wire auto_in_4_a_ready_0; // @[InclusiveCache.scala:108:9]
wire [1:0] auto_in_4_b_bits_param_0; // @[InclusiveCache.scala:108:9]
wire [31:0] auto_in_4_b_bits_address_0; // @[InclusiveCache.scala:108:9]
wire auto_in_4_b_valid_0; // @[InclusiveCache.scala:108:9]
wire auto_in_4_c_ready_0; // @[InclusiveCache.scala:108:9]
wire [2:0] auto_in_4_d_bits_opcode_0; // @[InclusiveCache.scala:108:9]
wire [1:0] auto_in_4_d_bits_param_0; // @[InclusiveCache.scala:108:9]
wire [2:0] auto_in_4_d_bits_size_0; // @[InclusiveCache.scala:108:9]
wire [5:0] auto_in_4_d_bits_source_0; // @[InclusiveCache.scala:108:9]
wire [3:0] auto_in_4_d_bits_sink_0; // @[InclusiveCache.scala:108:9]
wire auto_in_4_d_bits_denied_0; // @[InclusiveCache.scala:108:9]
wire [127:0] auto_in_4_d_bits_data_0; // @[InclusiveCache.scala:108:9]
wire auto_in_4_d_bits_corrupt_0; // @[InclusiveCache.scala:108:9]
wire auto_in_4_d_valid_0; // @[InclusiveCache.scala:108:9]
wire auto_in_3_a_ready_0; // @[InclusiveCache.scala:108:9]
wire [1:0] auto_in_3_b_bits_param_0; // @[InclusiveCache.scala:108:9]
wire [31:0] auto_in_3_b_bits_address_0; // @[InclusiveCache.scala:108:9]
wire auto_in_3_b_valid_0; // @[InclusiveCache.scala:108:9]
wire auto_in_3_c_ready_0; // @[InclusiveCache.scala:108:9]
wire [2:0] auto_in_3_d_bits_opcode_0; // @[InclusiveCache.scala:108:9]
wire [1:0] auto_in_3_d_bits_param_0; // @[InclusiveCache.scala:108:9]
wire [2:0] auto_in_3_d_bits_size_0; // @[InclusiveCache.scala:108:9]
wire [5:0] auto_in_3_d_bits_source_0; // @[InclusiveCache.scala:108:9]
wire [3:0] auto_in_3_d_bits_sink_0; // @[InclusiveCache.scala:108:9]
wire auto_in_3_d_bits_denied_0; // @[InclusiveCache.scala:108:9]
wire [127:0] auto_in_3_d_bits_data_0; // @[InclusiveCache.scala:108:9]
wire auto_in_3_d_bits_corrupt_0; // @[InclusiveCache.scala:108:9]
wire auto_in_3_d_valid_0; // @[InclusiveCache.scala:108:9]
wire auto_in_2_a_ready_0; // @[InclusiveCache.scala:108:9]
wire [1:0] auto_in_2_b_bits_param_0; // @[InclusiveCache.scala:108:9]
wire [31:0] auto_in_2_b_bits_address_0; // @[InclusiveCache.scala:108:9]
wire auto_in_2_b_valid_0; // @[InclusiveCache.scala:108:9]
wire auto_in_2_c_ready_0; // @[InclusiveCache.scala:108:9]
wire [2:0] auto_in_2_d_bits_opcode_0; // @[InclusiveCache.scala:108:9]
wire [1:0] auto_in_2_d_bits_param_0; // @[InclusiveCache.scala:108:9]
wire [2:0] auto_in_2_d_bits_size_0; // @[InclusiveCache.scala:108:9]
wire [5:0] auto_in_2_d_bits_source_0; // @[InclusiveCache.scala:108:9]
wire [3:0] auto_in_2_d_bits_sink_0; // @[InclusiveCache.scala:108:9]
wire auto_in_2_d_bits_denied_0; // @[InclusiveCache.scala:108:9]
wire [127:0] auto_in_2_d_bits_data_0; // @[InclusiveCache.scala:108:9]
wire auto_in_2_d_bits_corrupt_0; // @[InclusiveCache.scala:108:9]
wire auto_in_2_d_valid_0; // @[InclusiveCache.scala:108:9]
wire auto_in_1_a_ready_0; // @[InclusiveCache.scala:108:9]
wire [1:0] auto_in_1_b_bits_param_0; // @[InclusiveCache.scala:108:9]
wire [31:0] auto_in_1_b_bits_address_0; // @[InclusiveCache.scala:108:9]
wire auto_in_1_b_valid_0; // @[InclusiveCache.scala:108:9]
wire auto_in_1_c_ready_0; // @[InclusiveCache.scala:108:9]
wire [2:0] auto_in_1_d_bits_opcode_0; // @[InclusiveCache.scala:108:9]
wire [1:0] auto_in_1_d_bits_param_0; // @[InclusiveCache.scala:108:9]
wire [2:0] auto_in_1_d_bits_size_0; // @[InclusiveCache.scala:108:9]
wire [5:0] auto_in_1_d_bits_source_0; // @[InclusiveCache.scala:108:9]
wire [3:0] auto_in_1_d_bits_sink_0; // @[InclusiveCache.scala:108:9]
wire auto_in_1_d_bits_denied_0; // @[InclusiveCache.scala:108:9]
wire [127:0] auto_in_1_d_bits_data_0; // @[InclusiveCache.scala:108:9]
wire auto_in_1_d_bits_corrupt_0; // @[InclusiveCache.scala:108:9]
wire auto_in_1_d_valid_0; // @[InclusiveCache.scala:108:9]
wire auto_in_0_a_ready_0; // @[InclusiveCache.scala:108:9]
wire [1:0] auto_in_0_b_bits_param_0; // @[InclusiveCache.scala:108:9]
wire [31:0] auto_in_0_b_bits_address_0; // @[InclusiveCache.scala:108:9]
wire auto_in_0_b_valid_0; // @[InclusiveCache.scala:108:9]
wire auto_in_0_c_ready_0; // @[InclusiveCache.scala:108:9]
wire [2:0] auto_in_0_d_bits_opcode_0; // @[InclusiveCache.scala:108:9]
wire [1:0] auto_in_0_d_bits_param_0; // @[InclusiveCache.scala:108:9]
wire [2:0] auto_in_0_d_bits_size_0; // @[InclusiveCache.scala:108:9]
wire [5:0] auto_in_0_d_bits_source_0; // @[InclusiveCache.scala:108:9]
wire [3:0] auto_in_0_d_bits_sink_0; // @[InclusiveCache.scala:108:9]
wire auto_in_0_d_bits_denied_0; // @[InclusiveCache.scala:108:9]
wire [127:0] auto_in_0_d_bits_data_0; // @[InclusiveCache.scala:108:9]
wire auto_in_0_d_bits_corrupt_0; // @[InclusiveCache.scala:108:9]
wire auto_in_0_d_valid_0; // @[InclusiveCache.scala:108:9]
wire [2:0] auto_out_7_a_bits_opcode_0; // @[InclusiveCache.scala:108:9]
wire [2:0] auto_out_7_a_bits_param_0; // @[InclusiveCache.scala:108:9]
wire [2:0] auto_out_7_a_bits_size_0; // @[InclusiveCache.scala:108:9]
wire [3:0] auto_out_7_a_bits_source_0; // @[InclusiveCache.scala:108:9]
wire [31:0] auto_out_7_a_bits_address_0; // @[InclusiveCache.scala:108:9]
wire [7:0] auto_out_7_a_bits_mask_0; // @[InclusiveCache.scala:108:9]
wire [63:0] auto_out_7_a_bits_data_0; // @[InclusiveCache.scala:108:9]
wire auto_out_7_a_bits_corrupt_0; // @[InclusiveCache.scala:108:9]
wire auto_out_7_a_valid_0; // @[InclusiveCache.scala:108:9]
wire [2:0] auto_out_7_c_bits_opcode_0; // @[InclusiveCache.scala:108:9]
wire [2:0] auto_out_7_c_bits_param_0; // @[InclusiveCache.scala:108:9]
wire [2:0] auto_out_7_c_bits_size_0; // @[InclusiveCache.scala:108:9]
wire [3:0] auto_out_7_c_bits_source_0; // @[InclusiveCache.scala:108:9]
wire [31:0] auto_out_7_c_bits_address_0; // @[InclusiveCache.scala:108:9]
wire [63:0] auto_out_7_c_bits_data_0; // @[InclusiveCache.scala:108:9]
wire auto_out_7_c_bits_corrupt_0; // @[InclusiveCache.scala:108:9]
wire auto_out_7_c_valid_0; // @[InclusiveCache.scala:108:9]
wire auto_out_7_d_ready_0; // @[InclusiveCache.scala:108:9]
wire [2:0] auto_out_7_e_bits_sink_0; // @[InclusiveCache.scala:108:9]
wire auto_out_7_e_valid_0; // @[InclusiveCache.scala:108:9]
wire [2:0] auto_out_6_a_bits_opcode_0; // @[InclusiveCache.scala:108:9]
wire [2:0] auto_out_6_a_bits_param_0; // @[InclusiveCache.scala:108:9]
wire [2:0] auto_out_6_a_bits_size_0; // @[InclusiveCache.scala:108:9]
wire [3:0] auto_out_6_a_bits_source_0; // @[InclusiveCache.scala:108:9]
wire [31:0] auto_out_6_a_bits_address_0; // @[InclusiveCache.scala:108:9]
wire [7:0] auto_out_6_a_bits_mask_0; // @[InclusiveCache.scala:108:9]
wire [63:0] auto_out_6_a_bits_data_0; // @[InclusiveCache.scala:108:9]
wire auto_out_6_a_bits_corrupt_0; // @[InclusiveCache.scala:108:9]
wire auto_out_6_a_valid_0; // @[InclusiveCache.scala:108:9]
wire [2:0] auto_out_6_c_bits_opcode_0; // @[InclusiveCache.scala:108:9]
wire [2:0] auto_out_6_c_bits_param_0; // @[InclusiveCache.scala:108:9]
wire [2:0] auto_out_6_c_bits_size_0; // @[InclusiveCache.scala:108:9]
wire [3:0] auto_out_6_c_bits_source_0; // @[InclusiveCache.scala:108:9]
wire [31:0] auto_out_6_c_bits_address_0; // @[InclusiveCache.scala:108:9]
wire [63:0] auto_out_6_c_bits_data_0; // @[InclusiveCache.scala:108:9]
wire auto_out_6_c_bits_corrupt_0; // @[InclusiveCache.scala:108:9]
wire auto_out_6_c_valid_0; // @[InclusiveCache.scala:108:9]
wire auto_out_6_d_ready_0; // @[InclusiveCache.scala:108:9]
wire [2:0] auto_out_6_e_bits_sink_0; // @[InclusiveCache.scala:108:9]
wire auto_out_6_e_valid_0; // @[InclusiveCache.scala:108:9]
wire [2:0] auto_out_5_a_bits_opcode_0; // @[InclusiveCache.scala:108:9]
wire [2:0] auto_out_5_a_bits_param_0; // @[InclusiveCache.scala:108:9]
wire [2:0] auto_out_5_a_bits_size_0; // @[InclusiveCache.scala:108:9]
wire [3:0] auto_out_5_a_bits_source_0; // @[InclusiveCache.scala:108:9]
wire [31:0] auto_out_5_a_bits_address_0; // @[InclusiveCache.scala:108:9]
wire [7:0] auto_out_5_a_bits_mask_0; // @[InclusiveCache.scala:108:9]
wire [63:0] auto_out_5_a_bits_data_0; // @[InclusiveCache.scala:108:9]
wire auto_out_5_a_bits_corrupt_0; // @[InclusiveCache.scala:108:9]
wire auto_out_5_a_valid_0; // @[InclusiveCache.scala:108:9]
wire [2:0] auto_out_5_c_bits_opcode_0; // @[InclusiveCache.scala:108:9]
wire [2:0] auto_out_5_c_bits_param_0; // @[InclusiveCache.scala:108:9]
wire [2:0] auto_out_5_c_bits_size_0; // @[InclusiveCache.scala:108:9]
wire [3:0] auto_out_5_c_bits_source_0; // @[InclusiveCache.scala:108:9]
wire [31:0] auto_out_5_c_bits_address_0; // @[InclusiveCache.scala:108:9]
wire [63:0] auto_out_5_c_bits_data_0; // @[InclusiveCache.scala:108:9]
wire auto_out_5_c_bits_corrupt_0; // @[InclusiveCache.scala:108:9]
wire auto_out_5_c_valid_0; // @[InclusiveCache.scala:108:9]
wire auto_out_5_d_ready_0; // @[InclusiveCache.scala:108:9]
wire [2:0] auto_out_5_e_bits_sink_0; // @[InclusiveCache.scala:108:9]
wire auto_out_5_e_valid_0; // @[InclusiveCache.scala:108:9]
wire [2:0] auto_out_4_a_bits_opcode_0; // @[InclusiveCache.scala:108:9]
wire [2:0] auto_out_4_a_bits_param_0; // @[InclusiveCache.scala:108:9]
wire [2:0] auto_out_4_a_bits_size_0; // @[InclusiveCache.scala:108:9]
wire [3:0] auto_out_4_a_bits_source_0; // @[InclusiveCache.scala:108:9]
wire [31:0] auto_out_4_a_bits_address_0; // @[InclusiveCache.scala:108:9]
wire [7:0] auto_out_4_a_bits_mask_0; // @[InclusiveCache.scala:108:9]
wire [63:0] auto_out_4_a_bits_data_0; // @[InclusiveCache.scala:108:9]
wire auto_out_4_a_bits_corrupt_0; // @[InclusiveCache.scala:108:9]
wire auto_out_4_a_valid_0; // @[InclusiveCache.scala:108:9]
wire [2:0] auto_out_4_c_bits_opcode_0; // @[InclusiveCache.scala:108:9]
wire [2:0] auto_out_4_c_bits_param_0; // @[InclusiveCache.scala:108:9]
wire [2:0] auto_out_4_c_bits_size_0; // @[InclusiveCache.scala:108:9]
wire [3:0] auto_out_4_c_bits_source_0; // @[InclusiveCache.scala:108:9]
wire [31:0] auto_out_4_c_bits_address_0; // @[InclusiveCache.scala:108:9]
wire [63:0] auto_out_4_c_bits_data_0; // @[InclusiveCache.scala:108:9]
wire auto_out_4_c_bits_corrupt_0; // @[InclusiveCache.scala:108:9]
wire auto_out_4_c_valid_0; // @[InclusiveCache.scala:108:9]
wire auto_out_4_d_ready_0; // @[InclusiveCache.scala:108:9]
wire [2:0] auto_out_4_e_bits_sink_0; // @[InclusiveCache.scala:108:9]
wire auto_out_4_e_valid_0; // @[InclusiveCache.scala:108:9]
wire [2:0] auto_out_3_a_bits_opcode_0; // @[InclusiveCache.scala:108:9]
wire [2:0] auto_out_3_a_bits_param_0; // @[InclusiveCache.scala:108:9]
wire [2:0] auto_out_3_a_bits_size_0; // @[InclusiveCache.scala:108:9]
wire [3:0] auto_out_3_a_bits_source_0; // @[InclusiveCache.scala:108:9]
wire [31:0] auto_out_3_a_bits_address_0; // @[InclusiveCache.scala:108:9]
wire [7:0] auto_out_3_a_bits_mask_0; // @[InclusiveCache.scala:108:9]
wire [63:0] auto_out_3_a_bits_data_0; // @[InclusiveCache.scala:108:9]
wire auto_out_3_a_bits_corrupt_0; // @[InclusiveCache.scala:108:9]
wire auto_out_3_a_valid_0; // @[InclusiveCache.scala:108:9]
wire [2:0] auto_out_3_c_bits_opcode_0; // @[InclusiveCache.scala:108:9]
wire [2:0] auto_out_3_c_bits_param_0; // @[InclusiveCache.scala:108:9]
wire [2:0] auto_out_3_c_bits_size_0; // @[InclusiveCache.scala:108:9]
wire [3:0] auto_out_3_c_bits_source_0; // @[InclusiveCache.scala:108:9]
wire [31:0] auto_out_3_c_bits_address_0; // @[InclusiveCache.scala:108:9]
wire [63:0] auto_out_3_c_bits_data_0; // @[InclusiveCache.scala:108:9]
wire auto_out_3_c_bits_corrupt_0; // @[InclusiveCache.scala:108:9]
wire auto_out_3_c_valid_0; // @[InclusiveCache.scala:108:9]
wire auto_out_3_d_ready_0; // @[InclusiveCache.scala:108:9]
wire [2:0] auto_out_3_e_bits_sink_0; // @[InclusiveCache.scala:108:9]
wire auto_out_3_e_valid_0; // @[InclusiveCache.scala:108:9]
wire [2:0] auto_out_2_a_bits_opcode_0; // @[InclusiveCache.scala:108:9]
wire [2:0] auto_out_2_a_bits_param_0; // @[InclusiveCache.scala:108:9]
wire [2:0] auto_out_2_a_bits_size_0; // @[InclusiveCache.scala:108:9]
wire [3:0] auto_out_2_a_bits_source_0; // @[InclusiveCache.scala:108:9]
wire [31:0] auto_out_2_a_bits_address_0; // @[InclusiveCache.scala:108:9]
wire [7:0] auto_out_2_a_bits_mask_0; // @[InclusiveCache.scala:108:9]
wire [63:0] auto_out_2_a_bits_data_0; // @[InclusiveCache.scala:108:9]
wire auto_out_2_a_bits_corrupt_0; // @[InclusiveCache.scala:108:9]
wire auto_out_2_a_valid_0; // @[InclusiveCache.scala:108:9]
wire [2:0] auto_out_2_c_bits_opcode_0; // @[InclusiveCache.scala:108:9]
wire [2:0] auto_out_2_c_bits_param_0; // @[InclusiveCache.scala:108:9]
wire [2:0] auto_out_2_c_bits_size_0; // @[InclusiveCache.scala:108:9]
wire [3:0] auto_out_2_c_bits_source_0; // @[InclusiveCache.scala:108:9]
wire [31:0] auto_out_2_c_bits_address_0; // @[InclusiveCache.scala:108:9]
wire [63:0] auto_out_2_c_bits_data_0; // @[InclusiveCache.scala:108:9]
wire auto_out_2_c_bits_corrupt_0; // @[InclusiveCache.scala:108:9]
wire auto_out_2_c_valid_0; // @[InclusiveCache.scala:108:9]
wire auto_out_2_d_ready_0; // @[InclusiveCache.scala:108:9]
wire [2:0] auto_out_2_e_bits_sink_0; // @[InclusiveCache.scala:108:9]
wire auto_out_2_e_valid_0; // @[InclusiveCache.scala:108:9]
wire [2:0] auto_out_1_a_bits_opcode_0; // @[InclusiveCache.scala:108:9]
wire [2:0] auto_out_1_a_bits_param_0; // @[InclusiveCache.scala:108:9]
wire [2:0] auto_out_1_a_bits_size_0; // @[InclusiveCache.scala:108:9]
wire [3:0] auto_out_1_a_bits_source_0; // @[InclusiveCache.scala:108:9]
wire [31:0] auto_out_1_a_bits_address_0; // @[InclusiveCache.scala:108:9]
wire [7:0] auto_out_1_a_bits_mask_0; // @[InclusiveCache.scala:108:9]
wire [63:0] auto_out_1_a_bits_data_0; // @[InclusiveCache.scala:108:9]
wire auto_out_1_a_bits_corrupt_0; // @[InclusiveCache.scala:108:9]
wire auto_out_1_a_valid_0; // @[InclusiveCache.scala:108:9]
wire [2:0] auto_out_1_c_bits_opcode_0; // @[InclusiveCache.scala:108:9]
wire [2:0] auto_out_1_c_bits_param_0; // @[InclusiveCache.scala:108:9]
wire [2:0] auto_out_1_c_bits_size_0; // @[InclusiveCache.scala:108:9]
wire [3:0] auto_out_1_c_bits_source_0; // @[InclusiveCache.scala:108:9]
wire [31:0] auto_out_1_c_bits_address_0; // @[InclusiveCache.scala:108:9]
wire [63:0] auto_out_1_c_bits_data_0; // @[InclusiveCache.scala:108:9]
wire auto_out_1_c_bits_corrupt_0; // @[InclusiveCache.scala:108:9]
wire auto_out_1_c_valid_0; // @[InclusiveCache.scala:108:9]
wire auto_out_1_d_ready_0; // @[InclusiveCache.scala:108:9]
wire [2:0] auto_out_1_e_bits_sink_0; // @[InclusiveCache.scala:108:9]
wire auto_out_1_e_valid_0; // @[InclusiveCache.scala:108:9]
wire [2:0] auto_out_0_a_bits_opcode_0; // @[InclusiveCache.scala:108:9]
wire [2:0] auto_out_0_a_bits_param_0; // @[InclusiveCache.scala:108:9]
wire [2:0] auto_out_0_a_bits_size_0; // @[InclusiveCache.scala:108:9]
wire [3:0] auto_out_0_a_bits_source_0; // @[InclusiveCache.scala:108:9]
wire [31:0] auto_out_0_a_bits_address_0; // @[InclusiveCache.scala:108:9]
wire [7:0] auto_out_0_a_bits_mask_0; // @[InclusiveCache.scala:108:9]
wire [63:0] auto_out_0_a_bits_data_0; // @[InclusiveCache.scala:108:9]
wire auto_out_0_a_bits_corrupt_0; // @[InclusiveCache.scala:108:9]
wire auto_out_0_a_valid_0; // @[InclusiveCache.scala:108:9]
wire [2:0] auto_out_0_c_bits_opcode_0; // @[InclusiveCache.scala:108:9]
wire [2:0] auto_out_0_c_bits_param_0; // @[InclusiveCache.scala:108:9]
wire [2:0] auto_out_0_c_bits_size_0; // @[InclusiveCache.scala:108:9]
wire [3:0] auto_out_0_c_bits_source_0; // @[InclusiveCache.scala:108:9]
wire [31:0] auto_out_0_c_bits_address_0; // @[InclusiveCache.scala:108:9]
wire [63:0] auto_out_0_c_bits_data_0; // @[InclusiveCache.scala:108:9]
wire auto_out_0_c_bits_corrupt_0; // @[InclusiveCache.scala:108:9]
wire auto_out_0_c_valid_0; // @[InclusiveCache.scala:108:9]
wire auto_out_0_d_ready_0; // @[InclusiveCache.scala:108:9]
wire [2:0] auto_out_0_e_bits_sink_0; // @[InclusiveCache.scala:108:9]
wire auto_out_0_e_valid_0; // @[InclusiveCache.scala:108:9]
assign auto_in_0_a_ready_0 = nodeIn_a_ready; // @[InclusiveCache.scala:108:9]
assign auto_in_0_b_valid_0 = nodeIn_b_valid; // @[InclusiveCache.scala:108:9]
assign auto_in_0_b_bits_param_0 = nodeIn_b_bits_param; // @[InclusiveCache.scala:108:9]
wire [31:0] _nodeIn_b_bits_address_T; // @[Parameters.scala:248:14]
assign auto_in_0_b_bits_address_0 = nodeIn_b_bits_address; // @[InclusiveCache.scala:108:9]
assign auto_in_0_c_ready_0 = nodeIn_c_ready; // @[InclusiveCache.scala:108:9]
assign auto_in_0_d_valid_0 = nodeIn_d_valid; // @[InclusiveCache.scala:108:9]
assign auto_in_0_d_bits_opcode_0 = nodeIn_d_bits_opcode; // @[InclusiveCache.scala:108:9]
assign auto_in_0_d_bits_param_0 = nodeIn_d_bits_param; // @[InclusiveCache.scala:108:9]
assign auto_in_0_d_bits_size_0 = nodeIn_d_bits_size; // @[InclusiveCache.scala:108:9]
assign auto_in_0_d_bits_source_0 = nodeIn_d_bits_source; // @[InclusiveCache.scala:108:9]
assign auto_in_0_d_bits_sink_0 = nodeIn_d_bits_sink; // @[InclusiveCache.scala:108:9]
assign auto_in_0_d_bits_denied_0 = nodeIn_d_bits_denied; // @[InclusiveCache.scala:108:9]
assign auto_in_0_d_bits_data_0 = nodeIn_d_bits_data; // @[InclusiveCache.scala:108:9]
assign auto_in_0_d_bits_corrupt_0 = nodeIn_d_bits_corrupt; // @[InclusiveCache.scala:108:9]
assign auto_in_1_a_ready_0 = nodeIn_1_a_ready; // @[InclusiveCache.scala:108:9]
assign auto_in_1_b_valid_0 = nodeIn_1_b_valid; // @[InclusiveCache.scala:108:9]
assign auto_in_1_b_bits_param_0 = nodeIn_1_b_bits_param; // @[InclusiveCache.scala:108:9]
wire [31:0] _nodeIn_b_bits_address_T_1; // @[Parameters.scala:248:14]
assign auto_in_1_b_bits_address_0 = nodeIn_1_b_bits_address; // @[InclusiveCache.scala:108:9]
assign auto_in_1_c_ready_0 = nodeIn_1_c_ready; // @[InclusiveCache.scala:108:9]
assign auto_in_1_d_valid_0 = nodeIn_1_d_valid; // @[InclusiveCache.scala:108:9]
assign auto_in_1_d_bits_opcode_0 = nodeIn_1_d_bits_opcode; // @[InclusiveCache.scala:108:9]
assign auto_in_1_d_bits_param_0 = nodeIn_1_d_bits_param; // @[InclusiveCache.scala:108:9]
assign auto_in_1_d_bits_size_0 = nodeIn_1_d_bits_size; // @[InclusiveCache.scala:108:9]
assign auto_in_1_d_bits_source_0 = nodeIn_1_d_bits_source; // @[InclusiveCache.scala:108:9]
assign auto_in_1_d_bits_sink_0 = nodeIn_1_d_bits_sink; // @[InclusiveCache.scala:108:9]
assign auto_in_1_d_bits_denied_0 = nodeIn_1_d_bits_denied; // @[InclusiveCache.scala:108:9]
assign auto_in_1_d_bits_data_0 = nodeIn_1_d_bits_data; // @[InclusiveCache.scala:108:9]
assign auto_in_1_d_bits_corrupt_0 = nodeIn_1_d_bits_corrupt; // @[InclusiveCache.scala:108:9]
assign auto_in_2_a_ready_0 = nodeIn_2_a_ready; // @[InclusiveCache.scala:108:9]
assign auto_in_2_b_valid_0 = nodeIn_2_b_valid; // @[InclusiveCache.scala:108:9]
assign auto_in_2_b_bits_param_0 = nodeIn_2_b_bits_param; // @[InclusiveCache.scala:108:9]
wire [31:0] _nodeIn_b_bits_address_T_2; // @[Parameters.scala:248:14]
assign auto_in_2_b_bits_address_0 = nodeIn_2_b_bits_address; // @[InclusiveCache.scala:108:9]
assign auto_in_2_c_ready_0 = nodeIn_2_c_ready; // @[InclusiveCache.scala:108:9]
assign auto_in_2_d_valid_0 = nodeIn_2_d_valid; // @[InclusiveCache.scala:108:9]
assign auto_in_2_d_bits_opcode_0 = nodeIn_2_d_bits_opcode; // @[InclusiveCache.scala:108:9]
assign auto_in_2_d_bits_param_0 = nodeIn_2_d_bits_param; // @[InclusiveCache.scala:108:9]
assign auto_in_2_d_bits_size_0 = nodeIn_2_d_bits_size; // @[InclusiveCache.scala:108:9]
assign auto_in_2_d_bits_source_0 = nodeIn_2_d_bits_source; // @[InclusiveCache.scala:108:9]
assign auto_in_2_d_bits_sink_0 = nodeIn_2_d_bits_sink; // @[InclusiveCache.scala:108:9]
assign auto_in_2_d_bits_denied_0 = nodeIn_2_d_bits_denied; // @[InclusiveCache.scala:108:9]
assign auto_in_2_d_bits_data_0 = nodeIn_2_d_bits_data; // @[InclusiveCache.scala:108:9]
assign auto_in_2_d_bits_corrupt_0 = nodeIn_2_d_bits_corrupt; // @[InclusiveCache.scala:108:9]
assign auto_in_3_a_ready_0 = nodeIn_3_a_ready; // @[InclusiveCache.scala:108:9]
assign auto_in_3_b_valid_0 = nodeIn_3_b_valid; // @[InclusiveCache.scala:108:9]
assign auto_in_3_b_bits_param_0 = nodeIn_3_b_bits_param; // @[InclusiveCache.scala:108:9]
wire [31:0] _nodeIn_b_bits_address_T_3; // @[Parameters.scala:248:14]
assign auto_in_3_b_bits_address_0 = nodeIn_3_b_bits_address; // @[InclusiveCache.scala:108:9]
assign auto_in_3_c_ready_0 = nodeIn_3_c_ready; // @[InclusiveCache.scala:108:9]
assign auto_in_3_d_valid_0 = nodeIn_3_d_valid; // @[InclusiveCache.scala:108:9]
assign auto_in_3_d_bits_opcode_0 = nodeIn_3_d_bits_opcode; // @[InclusiveCache.scala:108:9]
assign auto_in_3_d_bits_param_0 = nodeIn_3_d_bits_param; // @[InclusiveCache.scala:108:9]
assign auto_in_3_d_bits_size_0 = nodeIn_3_d_bits_size; // @[InclusiveCache.scala:108:9]
assign auto_in_3_d_bits_source_0 = nodeIn_3_d_bits_source; // @[InclusiveCache.scala:108:9]
assign auto_in_3_d_bits_sink_0 = nodeIn_3_d_bits_sink; // @[InclusiveCache.scala:108:9]
assign auto_in_3_d_bits_denied_0 = nodeIn_3_d_bits_denied; // @[InclusiveCache.scala:108:9]
assign auto_in_3_d_bits_data_0 = nodeIn_3_d_bits_data; // @[InclusiveCache.scala:108:9]
assign auto_in_3_d_bits_corrupt_0 = nodeIn_3_d_bits_corrupt; // @[InclusiveCache.scala:108:9]
assign auto_in_4_a_ready_0 = nodeIn_4_a_ready; // @[InclusiveCache.scala:108:9]
assign auto_in_4_b_valid_0 = nodeIn_4_b_valid; // @[InclusiveCache.scala:108:9]
assign auto_in_4_b_bits_param_0 = nodeIn_4_b_bits_param; // @[InclusiveCache.scala:108:9]
wire [31:0] _nodeIn_b_bits_address_T_4; // @[Parameters.scala:248:14]
assign auto_in_4_b_bits_address_0 = nodeIn_4_b_bits_address; // @[InclusiveCache.scala:108:9]
assign auto_in_4_c_ready_0 = nodeIn_4_c_ready; // @[InclusiveCache.scala:108:9]
assign auto_in_4_d_valid_0 = nodeIn_4_d_valid; // @[InclusiveCache.scala:108:9]
assign auto_in_4_d_bits_opcode_0 = nodeIn_4_d_bits_opcode; // @[InclusiveCache.scala:108:9]
assign auto_in_4_d_bits_param_0 = nodeIn_4_d_bits_param; // @[InclusiveCache.scala:108:9]
assign auto_in_4_d_bits_size_0 = nodeIn_4_d_bits_size; // @[InclusiveCache.scala:108:9]
assign auto_in_4_d_bits_source_0 = nodeIn_4_d_bits_source; // @[InclusiveCache.scala:108:9]
assign auto_in_4_d_bits_sink_0 = nodeIn_4_d_bits_sink; // @[InclusiveCache.scala:108:9]
assign auto_in_4_d_bits_denied_0 = nodeIn_4_d_bits_denied; // @[InclusiveCache.scala:108:9]
assign auto_in_4_d_bits_data_0 = nodeIn_4_d_bits_data; // @[InclusiveCache.scala:108:9]
assign auto_in_4_d_bits_corrupt_0 = nodeIn_4_d_bits_corrupt; // @[InclusiveCache.scala:108:9]
assign auto_in_5_a_ready_0 = nodeIn_5_a_ready; // @[InclusiveCache.scala:108:9]
assign auto_in_5_b_valid_0 = nodeIn_5_b_valid; // @[InclusiveCache.scala:108:9]
assign auto_in_5_b_bits_param_0 = nodeIn_5_b_bits_param; // @[InclusiveCache.scala:108:9]
wire [31:0] _nodeIn_b_bits_address_T_5; // @[Parameters.scala:248:14]
assign auto_in_5_b_bits_address_0 = nodeIn_5_b_bits_address; // @[InclusiveCache.scala:108:9]
assign auto_in_5_c_ready_0 = nodeIn_5_c_ready; // @[InclusiveCache.scala:108:9]
assign auto_in_5_d_valid_0 = nodeIn_5_d_valid; // @[InclusiveCache.scala:108:9]
assign auto_in_5_d_bits_opcode_0 = nodeIn_5_d_bits_opcode; // @[InclusiveCache.scala:108:9]
assign auto_in_5_d_bits_param_0 = nodeIn_5_d_bits_param; // @[InclusiveCache.scala:108:9]
assign auto_in_5_d_bits_size_0 = nodeIn_5_d_bits_size; // @[InclusiveCache.scala:108:9]
assign auto_in_5_d_bits_source_0 = nodeIn_5_d_bits_source; // @[InclusiveCache.scala:108:9]
assign auto_in_5_d_bits_sink_0 = nodeIn_5_d_bits_sink; // @[InclusiveCache.scala:108:9]
assign auto_in_5_d_bits_denied_0 = nodeIn_5_d_bits_denied; // @[InclusiveCache.scala:108:9]
assign auto_in_5_d_bits_data_0 = nodeIn_5_d_bits_data; // @[InclusiveCache.scala:108:9]
assign auto_in_5_d_bits_corrupt_0 = nodeIn_5_d_bits_corrupt; // @[InclusiveCache.scala:108:9]
assign auto_in_6_a_ready_0 = nodeIn_6_a_ready; // @[InclusiveCache.scala:108:9]
assign auto_in_6_b_valid_0 = nodeIn_6_b_valid; // @[InclusiveCache.scala:108:9]
assign auto_in_6_b_bits_param_0 = nodeIn_6_b_bits_param; // @[InclusiveCache.scala:108:9]
wire [31:0] _nodeIn_b_bits_address_T_6; // @[Parameters.scala:248:14]
assign auto_in_6_b_bits_address_0 = nodeIn_6_b_bits_address; // @[InclusiveCache.scala:108:9]
assign auto_in_6_c_ready_0 = nodeIn_6_c_ready; // @[InclusiveCache.scala:108:9]
assign auto_in_6_d_valid_0 = nodeIn_6_d_valid; // @[InclusiveCache.scala:108:9]
assign auto_in_6_d_bits_opcode_0 = nodeIn_6_d_bits_opcode; // @[InclusiveCache.scala:108:9]
assign auto_in_6_d_bits_param_0 = nodeIn_6_d_bits_param; // @[InclusiveCache.scala:108:9]
assign auto_in_6_d_bits_size_0 = nodeIn_6_d_bits_size; // @[InclusiveCache.scala:108:9]
assign auto_in_6_d_bits_source_0 = nodeIn_6_d_bits_source; // @[InclusiveCache.scala:108:9]
assign auto_in_6_d_bits_sink_0 = nodeIn_6_d_bits_sink; // @[InclusiveCache.scala:108:9]
assign auto_in_6_d_bits_denied_0 = nodeIn_6_d_bits_denied; // @[InclusiveCache.scala:108:9]
assign auto_in_6_d_bits_data_0 = nodeIn_6_d_bits_data; // @[InclusiveCache.scala:108:9]
assign auto_in_6_d_bits_corrupt_0 = nodeIn_6_d_bits_corrupt; // @[InclusiveCache.scala:108:9]
assign auto_in_7_a_ready_0 = nodeIn_7_a_ready; // @[InclusiveCache.scala:108:9]
assign auto_in_7_b_valid_0 = nodeIn_7_b_valid; // @[InclusiveCache.scala:108:9]
assign auto_in_7_b_bits_param_0 = nodeIn_7_b_bits_param; // @[InclusiveCache.scala:108:9]
wire [31:0] _nodeIn_b_bits_address_T_7; // @[Parameters.scala:248:14]
assign auto_in_7_b_bits_address_0 = nodeIn_7_b_bits_address; // @[InclusiveCache.scala:108:9]
assign auto_in_7_c_ready_0 = nodeIn_7_c_ready; // @[InclusiveCache.scala:108:9]
assign auto_in_7_d_valid_0 = nodeIn_7_d_valid; // @[InclusiveCache.scala:108:9]
assign auto_in_7_d_bits_opcode_0 = nodeIn_7_d_bits_opcode; // @[InclusiveCache.scala:108:9]
assign auto_in_7_d_bits_param_0 = nodeIn_7_d_bits_param; // @[InclusiveCache.scala:108:9]
assign auto_in_7_d_bits_size_0 = nodeIn_7_d_bits_size; // @[InclusiveCache.scala:108:9]
assign auto_in_7_d_bits_source_0 = nodeIn_7_d_bits_source; // @[InclusiveCache.scala:108:9]
assign auto_in_7_d_bits_sink_0 = nodeIn_7_d_bits_sink; // @[InclusiveCache.scala:108:9]
assign auto_in_7_d_bits_denied_0 = nodeIn_7_d_bits_denied; // @[InclusiveCache.scala:108:9]
assign auto_in_7_d_bits_data_0 = nodeIn_7_d_bits_data; // @[InclusiveCache.scala:108:9]
assign auto_in_7_d_bits_corrupt_0 = nodeIn_7_d_bits_corrupt; // @[InclusiveCache.scala:108:9]
assign auto_out_0_a_valid_0 = nodeOut_a_valid; // @[InclusiveCache.scala:108:9]
assign auto_out_0_a_bits_opcode_0 = nodeOut_a_bits_opcode; // @[InclusiveCache.scala:108:9]
assign auto_out_0_a_bits_param_0 = nodeOut_a_bits_param; // @[InclusiveCache.scala:108:9]
assign auto_out_0_a_bits_size_0 = nodeOut_a_bits_size; // @[InclusiveCache.scala:108:9]
assign auto_out_0_a_bits_source_0 = nodeOut_a_bits_source; // @[InclusiveCache.scala:108:9]
wire [31:0] _nodeOut_a_bits_address_T; // @[Parameters.scala:248:14]
assign auto_out_0_a_bits_address_0 = nodeOut_a_bits_address; // @[InclusiveCache.scala:108:9]
assign auto_out_0_a_bits_mask_0 = nodeOut_a_bits_mask; // @[InclusiveCache.scala:108:9]
assign auto_out_0_a_bits_data_0 = nodeOut_a_bits_data; // @[InclusiveCache.scala:108:9]
assign auto_out_0_a_bits_corrupt_0 = nodeOut_a_bits_corrupt; // @[InclusiveCache.scala:108:9]
assign auto_out_0_c_valid_0 = nodeOut_c_valid; // @[InclusiveCache.scala:108:9]
assign auto_out_0_c_bits_opcode_0 = nodeOut_c_bits_opcode; // @[InclusiveCache.scala:108:9]
assign auto_out_0_c_bits_param_0 = nodeOut_c_bits_param; // @[InclusiveCache.scala:108:9]
assign auto_out_0_c_bits_size_0 = nodeOut_c_bits_size; // @[InclusiveCache.scala:108:9]
assign auto_out_0_c_bits_source_0 = nodeOut_c_bits_source; // @[InclusiveCache.scala:108:9]
wire [31:0] _nodeOut_c_bits_address_T; // @[Parameters.scala:248:14]
assign auto_out_0_c_bits_address_0 = nodeOut_c_bits_address; // @[InclusiveCache.scala:108:9]
assign auto_out_0_c_bits_data_0 = nodeOut_c_bits_data; // @[InclusiveCache.scala:108:9]
assign auto_out_0_c_bits_corrupt_0 = nodeOut_c_bits_corrupt; // @[InclusiveCache.scala:108:9]
assign auto_out_0_d_ready_0 = nodeOut_d_ready; // @[InclusiveCache.scala:108:9]
assign auto_out_0_e_valid_0 = nodeOut_e_valid; // @[InclusiveCache.scala:108:9]
assign auto_out_0_e_bits_sink_0 = nodeOut_e_bits_sink; // @[InclusiveCache.scala:108:9]
assign auto_out_1_a_valid_0 = x1_nodeOut_a_valid; // @[InclusiveCache.scala:108:9]
assign auto_out_1_a_bits_opcode_0 = x1_nodeOut_a_bits_opcode; // @[InclusiveCache.scala:108:9]
assign auto_out_1_a_bits_param_0 = x1_nodeOut_a_bits_param; // @[InclusiveCache.scala:108:9]
assign auto_out_1_a_bits_size_0 = x1_nodeOut_a_bits_size; // @[InclusiveCache.scala:108:9]
assign auto_out_1_a_bits_source_0 = x1_nodeOut_a_bits_source; // @[InclusiveCache.scala:108:9]
wire [31:0] _nodeOut_a_bits_address_T_1; // @[Parameters.scala:248:14]
assign auto_out_1_a_bits_address_0 = x1_nodeOut_a_bits_address; // @[InclusiveCache.scala:108:9]
assign auto_out_1_a_bits_mask_0 = x1_nodeOut_a_bits_mask; // @[InclusiveCache.scala:108:9]
assign auto_out_1_a_bits_data_0 = x1_nodeOut_a_bits_data; // @[InclusiveCache.scala:108:9]
assign auto_out_1_a_bits_corrupt_0 = x1_nodeOut_a_bits_corrupt; // @[InclusiveCache.scala:108:9]
assign auto_out_1_c_valid_0 = x1_nodeOut_c_valid; // @[InclusiveCache.scala:108:9]
assign auto_out_1_c_bits_opcode_0 = x1_nodeOut_c_bits_opcode; // @[InclusiveCache.scala:108:9]
assign auto_out_1_c_bits_param_0 = x1_nodeOut_c_bits_param; // @[InclusiveCache.scala:108:9]
assign auto_out_1_c_bits_size_0 = x1_nodeOut_c_bits_size; // @[InclusiveCache.scala:108:9]
assign auto_out_1_c_bits_source_0 = x1_nodeOut_c_bits_source; // @[InclusiveCache.scala:108:9]
wire [31:0] _nodeOut_c_bits_address_T_1; // @[Parameters.scala:248:14]
assign auto_out_1_c_bits_address_0 = x1_nodeOut_c_bits_address; // @[InclusiveCache.scala:108:9]
assign auto_out_1_c_bits_data_0 = x1_nodeOut_c_bits_data; // @[InclusiveCache.scala:108:9]
assign auto_out_1_c_bits_corrupt_0 = x1_nodeOut_c_bits_corrupt; // @[InclusiveCache.scala:108:9]
assign auto_out_1_d_ready_0 = x1_nodeOut_d_ready; // @[InclusiveCache.scala:108:9]
assign auto_out_1_e_valid_0 = x1_nodeOut_e_valid; // @[InclusiveCache.scala:108:9]
assign auto_out_1_e_bits_sink_0 = x1_nodeOut_e_bits_sink; // @[InclusiveCache.scala:108:9]
assign auto_out_2_a_valid_0 = x1_nodeOut_1_a_valid; // @[InclusiveCache.scala:108:9]
assign auto_out_2_a_bits_opcode_0 = x1_nodeOut_1_a_bits_opcode; // @[InclusiveCache.scala:108:9]
assign auto_out_2_a_bits_param_0 = x1_nodeOut_1_a_bits_param; // @[InclusiveCache.scala:108:9]
assign auto_out_2_a_bits_size_0 = x1_nodeOut_1_a_bits_size; // @[InclusiveCache.scala:108:9]
assign auto_out_2_a_bits_source_0 = x1_nodeOut_1_a_bits_source; // @[InclusiveCache.scala:108:9]
wire [31:0] _nodeOut_a_bits_address_T_2; // @[Parameters.scala:248:14]
assign auto_out_2_a_bits_address_0 = x1_nodeOut_1_a_bits_address; // @[InclusiveCache.scala:108:9]
assign auto_out_2_a_bits_mask_0 = x1_nodeOut_1_a_bits_mask; // @[InclusiveCache.scala:108:9]
assign auto_out_2_a_bits_data_0 = x1_nodeOut_1_a_bits_data; // @[InclusiveCache.scala:108:9]
assign auto_out_2_a_bits_corrupt_0 = x1_nodeOut_1_a_bits_corrupt; // @[InclusiveCache.scala:108:9]
assign auto_out_2_c_valid_0 = x1_nodeOut_1_c_valid; // @[InclusiveCache.scala:108:9]
assign auto_out_2_c_bits_opcode_0 = x1_nodeOut_1_c_bits_opcode; // @[InclusiveCache.scala:108:9]
assign auto_out_2_c_bits_param_0 = x1_nodeOut_1_c_bits_param; // @[InclusiveCache.scala:108:9]
assign auto_out_2_c_bits_size_0 = x1_nodeOut_1_c_bits_size; // @[InclusiveCache.scala:108:9]
assign auto_out_2_c_bits_source_0 = x1_nodeOut_1_c_bits_source; // @[InclusiveCache.scala:108:9]
wire [31:0] _nodeOut_c_bits_address_T_2; // @[Parameters.scala:248:14]
assign auto_out_2_c_bits_address_0 = x1_nodeOut_1_c_bits_address; // @[InclusiveCache.scala:108:9]
assign auto_out_2_c_bits_data_0 = x1_nodeOut_1_c_bits_data; // @[InclusiveCache.scala:108:9]
assign auto_out_2_c_bits_corrupt_0 = x1_nodeOut_1_c_bits_corrupt; // @[InclusiveCache.scala:108:9]
assign auto_out_2_d_ready_0 = x1_nodeOut_1_d_ready; // @[InclusiveCache.scala:108:9]
assign auto_out_2_e_valid_0 = x1_nodeOut_1_e_valid; // @[InclusiveCache.scala:108:9]
assign auto_out_2_e_bits_sink_0 = x1_nodeOut_1_e_bits_sink; // @[InclusiveCache.scala:108:9]
assign auto_out_3_a_valid_0 = x1_nodeOut_2_a_valid; // @[InclusiveCache.scala:108:9]
assign auto_out_3_a_bits_opcode_0 = x1_nodeOut_2_a_bits_opcode; // @[InclusiveCache.scala:108:9]
assign auto_out_3_a_bits_param_0 = x1_nodeOut_2_a_bits_param; // @[InclusiveCache.scala:108:9]
assign auto_out_3_a_bits_size_0 = x1_nodeOut_2_a_bits_size; // @[InclusiveCache.scala:108:9]
assign auto_out_3_a_bits_source_0 = x1_nodeOut_2_a_bits_source; // @[InclusiveCache.scala:108:9]
wire [31:0] _nodeOut_a_bits_address_T_3; // @[Parameters.scala:248:14]
assign auto_out_3_a_bits_address_0 = x1_nodeOut_2_a_bits_address; // @[InclusiveCache.scala:108:9]
assign auto_out_3_a_bits_mask_0 = x1_nodeOut_2_a_bits_mask; // @[InclusiveCache.scala:108:9]
assign auto_out_3_a_bits_data_0 = x1_nodeOut_2_a_bits_data; // @[InclusiveCache.scala:108:9]
assign auto_out_3_a_bits_corrupt_0 = x1_nodeOut_2_a_bits_corrupt; // @[InclusiveCache.scala:108:9]
assign auto_out_3_c_valid_0 = x1_nodeOut_2_c_valid; // @[InclusiveCache.scala:108:9]
assign auto_out_3_c_bits_opcode_0 = x1_nodeOut_2_c_bits_opcode; // @[InclusiveCache.scala:108:9]
assign auto_out_3_c_bits_param_0 = x1_nodeOut_2_c_bits_param; // @[InclusiveCache.scala:108:9]
assign auto_out_3_c_bits_size_0 = x1_nodeOut_2_c_bits_size; // @[InclusiveCache.scala:108:9]
assign auto_out_3_c_bits_source_0 = x1_nodeOut_2_c_bits_source; // @[InclusiveCache.scala:108:9]
wire [31:0] _nodeOut_c_bits_address_T_3; // @[Parameters.scala:248:14]
assign auto_out_3_c_bits_address_0 = x1_nodeOut_2_c_bits_address; // @[InclusiveCache.scala:108:9]
assign auto_out_3_c_bits_data_0 = x1_nodeOut_2_c_bits_data; // @[InclusiveCache.scala:108:9]
assign auto_out_3_c_bits_corrupt_0 = x1_nodeOut_2_c_bits_corrupt; // @[InclusiveCache.scala:108:9]
assign auto_out_3_d_ready_0 = x1_nodeOut_2_d_ready; // @[InclusiveCache.scala:108:9]
assign auto_out_3_e_valid_0 = x1_nodeOut_2_e_valid; // @[InclusiveCache.scala:108:9]
assign auto_out_3_e_bits_sink_0 = x1_nodeOut_2_e_bits_sink; // @[InclusiveCache.scala:108:9]
assign auto_out_4_a_valid_0 = x1_nodeOut_3_a_valid; // @[InclusiveCache.scala:108:9]
assign auto_out_4_a_bits_opcode_0 = x1_nodeOut_3_a_bits_opcode; // @[InclusiveCache.scala:108:9]
assign auto_out_4_a_bits_param_0 = x1_nodeOut_3_a_bits_param; // @[InclusiveCache.scala:108:9]
assign auto_out_4_a_bits_size_0 = x1_nodeOut_3_a_bits_size; // @[InclusiveCache.scala:108:9]
assign auto_out_4_a_bits_source_0 = x1_nodeOut_3_a_bits_source; // @[InclusiveCache.scala:108:9]
wire [31:0] _nodeOut_a_bits_address_T_4; // @[Parameters.scala:248:14]
assign auto_out_4_a_bits_address_0 = x1_nodeOut_3_a_bits_address; // @[InclusiveCache.scala:108:9]
assign auto_out_4_a_bits_mask_0 = x1_nodeOut_3_a_bits_mask; // @[InclusiveCache.scala:108:9]
assign auto_out_4_a_bits_data_0 = x1_nodeOut_3_a_bits_data; // @[InclusiveCache.scala:108:9]
assign auto_out_4_a_bits_corrupt_0 = x1_nodeOut_3_a_bits_corrupt; // @[InclusiveCache.scala:108:9]
assign auto_out_4_c_valid_0 = x1_nodeOut_3_c_valid; // @[InclusiveCache.scala:108:9]
assign auto_out_4_c_bits_opcode_0 = x1_nodeOut_3_c_bits_opcode; // @[InclusiveCache.scala:108:9]
assign auto_out_4_c_bits_param_0 = x1_nodeOut_3_c_bits_param; // @[InclusiveCache.scala:108:9]
assign auto_out_4_c_bits_size_0 = x1_nodeOut_3_c_bits_size; // @[InclusiveCache.scala:108:9]
assign auto_out_4_c_bits_source_0 = x1_nodeOut_3_c_bits_source; // @[InclusiveCache.scala:108:9]
wire [31:0] _nodeOut_c_bits_address_T_4; // @[Parameters.scala:248:14]
assign auto_out_4_c_bits_address_0 = x1_nodeOut_3_c_bits_address; // @[InclusiveCache.scala:108:9]
assign auto_out_4_c_bits_data_0 = x1_nodeOut_3_c_bits_data; // @[InclusiveCache.scala:108:9]
assign auto_out_4_c_bits_corrupt_0 = x1_nodeOut_3_c_bits_corrupt; // @[InclusiveCache.scala:108:9]
assign auto_out_4_d_ready_0 = x1_nodeOut_3_d_ready; // @[InclusiveCache.scala:108:9]
assign auto_out_4_e_valid_0 = x1_nodeOut_3_e_valid; // @[InclusiveCache.scala:108:9]
assign auto_out_4_e_bits_sink_0 = x1_nodeOut_3_e_bits_sink; // @[InclusiveCache.scala:108:9]
assign auto_out_5_a_valid_0 = x1_nodeOut_4_a_valid; // @[InclusiveCache.scala:108:9]
assign auto_out_5_a_bits_opcode_0 = x1_nodeOut_4_a_bits_opcode; // @[InclusiveCache.scala:108:9]
assign auto_out_5_a_bits_param_0 = x1_nodeOut_4_a_bits_param; // @[InclusiveCache.scala:108:9]
assign auto_out_5_a_bits_size_0 = x1_nodeOut_4_a_bits_size; // @[InclusiveCache.scala:108:9]
assign auto_out_5_a_bits_source_0 = x1_nodeOut_4_a_bits_source; // @[InclusiveCache.scala:108:9]
wire [31:0] _nodeOut_a_bits_address_T_5; // @[Parameters.scala:248:14]
assign auto_out_5_a_bits_address_0 = x1_nodeOut_4_a_bits_address; // @[InclusiveCache.scala:108:9]
assign auto_out_5_a_bits_mask_0 = x1_nodeOut_4_a_bits_mask; // @[InclusiveCache.scala:108:9]
assign auto_out_5_a_bits_data_0 = x1_nodeOut_4_a_bits_data; // @[InclusiveCache.scala:108:9]
assign auto_out_5_a_bits_corrupt_0 = x1_nodeOut_4_a_bits_corrupt; // @[InclusiveCache.scala:108:9]
assign auto_out_5_c_valid_0 = x1_nodeOut_4_c_valid; // @[InclusiveCache.scala:108:9]
assign auto_out_5_c_bits_opcode_0 = x1_nodeOut_4_c_bits_opcode; // @[InclusiveCache.scala:108:9]
assign auto_out_5_c_bits_param_0 = x1_nodeOut_4_c_bits_param; // @[InclusiveCache.scala:108:9]
assign auto_out_5_c_bits_size_0 = x1_nodeOut_4_c_bits_size; // @[InclusiveCache.scala:108:9]
assign auto_out_5_c_bits_source_0 = x1_nodeOut_4_c_bits_source; // @[InclusiveCache.scala:108:9]
wire [31:0] _nodeOut_c_bits_address_T_5; // @[Parameters.scala:248:14]
assign auto_out_5_c_bits_address_0 = x1_nodeOut_4_c_bits_address; // @[InclusiveCache.scala:108:9]
assign auto_out_5_c_bits_data_0 = x1_nodeOut_4_c_bits_data; // @[InclusiveCache.scala:108:9]
assign auto_out_5_c_bits_corrupt_0 = x1_nodeOut_4_c_bits_corrupt; // @[InclusiveCache.scala:108:9]
assign auto_out_5_d_ready_0 = x1_nodeOut_4_d_ready; // @[InclusiveCache.scala:108:9]
assign auto_out_5_e_valid_0 = x1_nodeOut_4_e_valid; // @[InclusiveCache.scala:108:9]
assign auto_out_5_e_bits_sink_0 = x1_nodeOut_4_e_bits_sink; // @[InclusiveCache.scala:108:9]
assign auto_out_6_a_valid_0 = x1_nodeOut_5_a_valid; // @[InclusiveCache.scala:108:9]
assign auto_out_6_a_bits_opcode_0 = x1_nodeOut_5_a_bits_opcode; // @[InclusiveCache.scala:108:9]
assign auto_out_6_a_bits_param_0 = x1_nodeOut_5_a_bits_param; // @[InclusiveCache.scala:108:9]
assign auto_out_6_a_bits_size_0 = x1_nodeOut_5_a_bits_size; // @[InclusiveCache.scala:108:9]
assign auto_out_6_a_bits_source_0 = x1_nodeOut_5_a_bits_source; // @[InclusiveCache.scala:108:9]
wire [31:0] _nodeOut_a_bits_address_T_6; // @[Parameters.scala:248:14]
assign auto_out_6_a_bits_address_0 = x1_nodeOut_5_a_bits_address; // @[InclusiveCache.scala:108:9]
assign auto_out_6_a_bits_mask_0 = x1_nodeOut_5_a_bits_mask; // @[InclusiveCache.scala:108:9]
assign auto_out_6_a_bits_data_0 = x1_nodeOut_5_a_bits_data; // @[InclusiveCache.scala:108:9]
assign auto_out_6_a_bits_corrupt_0 = x1_nodeOut_5_a_bits_corrupt; // @[InclusiveCache.scala:108:9]
assign auto_out_6_c_valid_0 = x1_nodeOut_5_c_valid; // @[InclusiveCache.scala:108:9]
assign auto_out_6_c_bits_opcode_0 = x1_nodeOut_5_c_bits_opcode; // @[InclusiveCache.scala:108:9]
assign auto_out_6_c_bits_param_0 = x1_nodeOut_5_c_bits_param; // @[InclusiveCache.scala:108:9]
assign auto_out_6_c_bits_size_0 = x1_nodeOut_5_c_bits_size; // @[InclusiveCache.scala:108:9]
assign auto_out_6_c_bits_source_0 = x1_nodeOut_5_c_bits_source; // @[InclusiveCache.scala:108:9]
wire [31:0] _nodeOut_c_bits_address_T_6; // @[Parameters.scala:248:14]
assign auto_out_6_c_bits_address_0 = x1_nodeOut_5_c_bits_address; // @[InclusiveCache.scala:108:9]
assign auto_out_6_c_bits_data_0 = x1_nodeOut_5_c_bits_data; // @[InclusiveCache.scala:108:9]
assign auto_out_6_c_bits_corrupt_0 = x1_nodeOut_5_c_bits_corrupt; // @[InclusiveCache.scala:108:9]
assign auto_out_6_d_ready_0 = x1_nodeOut_5_d_ready; // @[InclusiveCache.scala:108:9]
assign auto_out_6_e_valid_0 = x1_nodeOut_5_e_valid; // @[InclusiveCache.scala:108:9]
assign auto_out_6_e_bits_sink_0 = x1_nodeOut_5_e_bits_sink; // @[InclusiveCache.scala:108:9]
assign auto_out_7_a_valid_0 = x1_nodeOut_6_a_valid; // @[InclusiveCache.scala:108:9]
assign auto_out_7_a_bits_opcode_0 = x1_nodeOut_6_a_bits_opcode; // @[InclusiveCache.scala:108:9]
assign auto_out_7_a_bits_param_0 = x1_nodeOut_6_a_bits_param; // @[InclusiveCache.scala:108:9]
assign auto_out_7_a_bits_size_0 = x1_nodeOut_6_a_bits_size; // @[InclusiveCache.scala:108:9]
assign auto_out_7_a_bits_source_0 = x1_nodeOut_6_a_bits_source; // @[InclusiveCache.scala:108:9]
wire [31:0] _nodeOut_a_bits_address_T_7; // @[Parameters.scala:248:14]
assign auto_out_7_a_bits_address_0 = x1_nodeOut_6_a_bits_address; // @[InclusiveCache.scala:108:9]
assign auto_out_7_a_bits_mask_0 = x1_nodeOut_6_a_bits_mask; // @[InclusiveCache.scala:108:9]
assign auto_out_7_a_bits_data_0 = x1_nodeOut_6_a_bits_data; // @[InclusiveCache.scala:108:9]
assign auto_out_7_a_bits_corrupt_0 = x1_nodeOut_6_a_bits_corrupt; // @[InclusiveCache.scala:108:9]
assign auto_out_7_c_valid_0 = x1_nodeOut_6_c_valid; // @[InclusiveCache.scala:108:9]
assign auto_out_7_c_bits_opcode_0 = x1_nodeOut_6_c_bits_opcode; // @[InclusiveCache.scala:108:9]
assign auto_out_7_c_bits_param_0 = x1_nodeOut_6_c_bits_param; // @[InclusiveCache.scala:108:9]
assign auto_out_7_c_bits_size_0 = x1_nodeOut_6_c_bits_size; // @[InclusiveCache.scala:108:9]
assign auto_out_7_c_bits_source_0 = x1_nodeOut_6_c_bits_source; // @[InclusiveCache.scala:108:9]
wire [31:0] _nodeOut_c_bits_address_T_7; // @[Parameters.scala:248:14]
assign auto_out_7_c_bits_address_0 = x1_nodeOut_6_c_bits_address; // @[InclusiveCache.scala:108:9]
assign auto_out_7_c_bits_data_0 = x1_nodeOut_6_c_bits_data; // @[InclusiveCache.scala:108:9]
assign auto_out_7_c_bits_corrupt_0 = x1_nodeOut_6_c_bits_corrupt; // @[InclusiveCache.scala:108:9]
assign auto_out_7_d_ready_0 = x1_nodeOut_6_d_ready; // @[InclusiveCache.scala:108:9]
assign auto_out_7_e_valid_0 = x1_nodeOut_6_e_valid; // @[InclusiveCache.scala:108:9]
assign auto_out_7_e_bits_sink_0 = x1_nodeOut_6_e_bits_sink; // @[InclusiveCache.scala:108:9]
wire [31:0] _nodeOut_a_bits_address_mux_matches_T; // @[Parameters.scala:137:31]
wire [32:0] _nodeOut_a_bits_address_mux_matches_T_1 = {1'h0, _nodeOut_a_bits_address_mux_matches_T}; // @[Nodes.scala:27:25]
assign nodeOut_a_bits_address = _nodeOut_a_bits_address_T; // @[Parameters.scala:248:14]
wire [31:0] _nodeIn_b_bits_address_mux_matches_T; // @[Parameters.scala:137:31]
wire [32:0] _nodeIn_b_bits_address_mux_matches_T_1 = {1'h0, _nodeIn_b_bits_address_mux_matches_T}; // @[Nodes.scala:27:25]
assign nodeIn_b_bits_address = _nodeIn_b_bits_address_T; // @[Parameters.scala:248:14]
wire [31:0] _nodeOut_c_bits_address_mux_matches_T; // @[Parameters.scala:137:31]
wire [32:0] _nodeOut_c_bits_address_mux_matches_T_1 = {1'h0, _nodeOut_c_bits_address_mux_matches_T}; // @[Nodes.scala:27:25]
assign nodeOut_c_bits_address = _nodeOut_c_bits_address_T; // @[Parameters.scala:248:14]
wire [31:0] _nodeOut_a_bits_address_mux_matches_T_4; // @[Parameters.scala:137:31]
wire [32:0] _nodeOut_a_bits_address_mux_matches_T_5 = {1'h0, _nodeOut_a_bits_address_mux_matches_T_4}; // @[Nodes.scala:27:25]
assign _nodeOut_a_bits_address_T_1 = {_inclusive_cache_bank_sched_1_io_out_a_bits_address[31:7], _inclusive_cache_bank_sched_1_io_out_a_bits_address[6:0] | 7'h40}; // @[Parameters.scala:248:14]
assign x1_nodeOut_a_bits_address = _nodeOut_a_bits_address_T_1; // @[Parameters.scala:248:14]
wire [31:0] _nodeIn_b_bits_address_mux_matches_T_4; // @[Parameters.scala:137:31]
wire [32:0] _nodeIn_b_bits_address_mux_matches_T_5 = {1'h0, _nodeIn_b_bits_address_mux_matches_T_4}; // @[Nodes.scala:27:25]
assign _nodeIn_b_bits_address_T_1 = {_inclusive_cache_bank_sched_1_io_in_b_bits_address[31:7], _inclusive_cache_bank_sched_1_io_in_b_bits_address[6:0] | 7'h40}; // @[Parameters.scala:248:14]
assign nodeIn_1_b_bits_address = _nodeIn_b_bits_address_T_1; // @[Parameters.scala:248:14]
wire [31:0] _nodeOut_c_bits_address_mux_matches_T_4; // @[Parameters.scala:137:31]
wire [32:0] _nodeOut_c_bits_address_mux_matches_T_5 = {1'h0, _nodeOut_c_bits_address_mux_matches_T_4}; // @[Nodes.scala:27:25]
assign _nodeOut_c_bits_address_T_1 = {_inclusive_cache_bank_sched_1_io_out_c_bits_address[31:7], _inclusive_cache_bank_sched_1_io_out_c_bits_address[6:0] | 7'h40}; // @[Parameters.scala:248:14]
assign x1_nodeOut_c_bits_address = _nodeOut_c_bits_address_T_1; // @[Parameters.scala:248:14]
wire [31:0] _nodeOut_a_bits_address_mux_matches_T_8; // @[Parameters.scala:137:31]
wire [32:0] _nodeOut_a_bits_address_mux_matches_T_9 = {1'h0, _nodeOut_a_bits_address_mux_matches_T_8}; // @[Nodes.scala:27:25]
assign _nodeOut_a_bits_address_T_2 = {_inclusive_cache_bank_sched_2_io_out_a_bits_address[31:8], _inclusive_cache_bank_sched_2_io_out_a_bits_address[7:0] | 8'h80}; // @[Parameters.scala:248:14]
assign x1_nodeOut_1_a_bits_address = _nodeOut_a_bits_address_T_2; // @[Parameters.scala:248:14]
wire [31:0] _nodeIn_b_bits_address_mux_matches_T_8; // @[Parameters.scala:137:31]
wire [32:0] _nodeIn_b_bits_address_mux_matches_T_9 = {1'h0, _nodeIn_b_bits_address_mux_matches_T_8}; // @[Nodes.scala:27:25]
assign _nodeIn_b_bits_address_T_2 = {_inclusive_cache_bank_sched_2_io_in_b_bits_address[31:8], _inclusive_cache_bank_sched_2_io_in_b_bits_address[7:0] | 8'h80}; // @[Parameters.scala:248:14]
assign nodeIn_2_b_bits_address = _nodeIn_b_bits_address_T_2; // @[Parameters.scala:248:14]
wire [31:0] _nodeOut_c_bits_address_mux_matches_T_8; // @[Parameters.scala:137:31]
wire [32:0] _nodeOut_c_bits_address_mux_matches_T_9 = {1'h0, _nodeOut_c_bits_address_mux_matches_T_8}; // @[Nodes.scala:27:25]
assign _nodeOut_c_bits_address_T_2 = {_inclusive_cache_bank_sched_2_io_out_c_bits_address[31:8], _inclusive_cache_bank_sched_2_io_out_c_bits_address[7:0] | 8'h80}; // @[Parameters.scala:248:14]
assign x1_nodeOut_1_c_bits_address = _nodeOut_c_bits_address_T_2; // @[Parameters.scala:248:14]
wire [31:0] _nodeOut_a_bits_address_mux_matches_T_12; // @[Parameters.scala:137:31]
wire [32:0] _nodeOut_a_bits_address_mux_matches_T_13 = {1'h0, _nodeOut_a_bits_address_mux_matches_T_12}; // @[Nodes.scala:27:25]
assign _nodeOut_a_bits_address_T_3 = {_inclusive_cache_bank_sched_3_io_out_a_bits_address[31:8], _inclusive_cache_bank_sched_3_io_out_a_bits_address[7:0] | 8'hC0}; // @[Parameters.scala:248:14]
assign x1_nodeOut_2_a_bits_address = _nodeOut_a_bits_address_T_3; // @[Parameters.scala:248:14]
wire [31:0] _nodeIn_b_bits_address_mux_matches_T_12; // @[Parameters.scala:137:31]
wire [32:0] _nodeIn_b_bits_address_mux_matches_T_13 = {1'h0, _nodeIn_b_bits_address_mux_matches_T_12}; // @[Nodes.scala:27:25]
assign _nodeIn_b_bits_address_T_3 = {_inclusive_cache_bank_sched_3_io_in_b_bits_address[31:8], _inclusive_cache_bank_sched_3_io_in_b_bits_address[7:0] | 8'hC0}; // @[Parameters.scala:248:14]
assign nodeIn_3_b_bits_address = _nodeIn_b_bits_address_T_3; // @[Parameters.scala:248:14]
wire [31:0] _nodeOut_c_bits_address_mux_matches_T_12; // @[Parameters.scala:137:31]
wire [32:0] _nodeOut_c_bits_address_mux_matches_T_13 = {1'h0, _nodeOut_c_bits_address_mux_matches_T_12}; // @[Nodes.scala:27:25]
assign _nodeOut_c_bits_address_T_3 = {_inclusive_cache_bank_sched_3_io_out_c_bits_address[31:8], _inclusive_cache_bank_sched_3_io_out_c_bits_address[7:0] | 8'hC0}; // @[Parameters.scala:248:14]
assign x1_nodeOut_2_c_bits_address = _nodeOut_c_bits_address_T_3; // @[Parameters.scala:248:14]
wire [31:0] _nodeOut_a_bits_address_mux_matches_T_16; // @[Parameters.scala:137:31]
wire [32:0] _nodeOut_a_bits_address_mux_matches_T_17 = {1'h0, _nodeOut_a_bits_address_mux_matches_T_16}; // @[Nodes.scala:27:25]
assign _nodeOut_a_bits_address_T_4 = {_inclusive_cache_bank_sched_4_io_out_a_bits_address[31:9], _inclusive_cache_bank_sched_4_io_out_a_bits_address[8:0] | 9'h100}; // @[Parameters.scala:248:14]
assign x1_nodeOut_3_a_bits_address = _nodeOut_a_bits_address_T_4; // @[Parameters.scala:248:14]
wire [31:0] _nodeIn_b_bits_address_mux_matches_T_16; // @[Parameters.scala:137:31]
wire [32:0] _nodeIn_b_bits_address_mux_matches_T_17 = {1'h0, _nodeIn_b_bits_address_mux_matches_T_16}; // @[Nodes.scala:27:25]
assign _nodeIn_b_bits_address_T_4 = {_inclusive_cache_bank_sched_4_io_in_b_bits_address[31:9], _inclusive_cache_bank_sched_4_io_in_b_bits_address[8:0] | 9'h100}; // @[Parameters.scala:248:14]
assign nodeIn_4_b_bits_address = _nodeIn_b_bits_address_T_4; // @[Parameters.scala:248:14]
wire [31:0] _nodeOut_c_bits_address_mux_matches_T_16; // @[Parameters.scala:137:31]
wire [32:0] _nodeOut_c_bits_address_mux_matches_T_17 = {1'h0, _nodeOut_c_bits_address_mux_matches_T_16}; // @[Nodes.scala:27:25]
assign _nodeOut_c_bits_address_T_4 = {_inclusive_cache_bank_sched_4_io_out_c_bits_address[31:9], _inclusive_cache_bank_sched_4_io_out_c_bits_address[8:0] | 9'h100}; // @[Parameters.scala:248:14]
assign x1_nodeOut_3_c_bits_address = _nodeOut_c_bits_address_T_4; // @[Parameters.scala:248:14]
wire [31:0] _nodeOut_a_bits_address_mux_matches_T_20; // @[Parameters.scala:137:31]
wire [32:0] _nodeOut_a_bits_address_mux_matches_T_21 = {1'h0, _nodeOut_a_bits_address_mux_matches_T_20}; // @[Nodes.scala:27:25]
assign _nodeOut_a_bits_address_T_5 = {_inclusive_cache_bank_sched_5_io_out_a_bits_address[31:9], _inclusive_cache_bank_sched_5_io_out_a_bits_address[8:0] | 9'h140}; // @[Parameters.scala:248:14]
assign x1_nodeOut_4_a_bits_address = _nodeOut_a_bits_address_T_5; // @[Parameters.scala:248:14]
wire [31:0] _nodeIn_b_bits_address_mux_matches_T_20; // @[Parameters.scala:137:31]
wire [32:0] _nodeIn_b_bits_address_mux_matches_T_21 = {1'h0, _nodeIn_b_bits_address_mux_matches_T_20}; // @[Nodes.scala:27:25]
assign _nodeIn_b_bits_address_T_5 = {_inclusive_cache_bank_sched_5_io_in_b_bits_address[31:9], _inclusive_cache_bank_sched_5_io_in_b_bits_address[8:0] | 9'h140}; // @[Parameters.scala:248:14]
assign nodeIn_5_b_bits_address = _nodeIn_b_bits_address_T_5; // @[Parameters.scala:248:14]
wire [31:0] _nodeOut_c_bits_address_mux_matches_T_20; // @[Parameters.scala:137:31]
wire [32:0] _nodeOut_c_bits_address_mux_matches_T_21 = {1'h0, _nodeOut_c_bits_address_mux_matches_T_20}; // @[Nodes.scala:27:25]
assign _nodeOut_c_bits_address_T_5 = {_inclusive_cache_bank_sched_5_io_out_c_bits_address[31:9], _inclusive_cache_bank_sched_5_io_out_c_bits_address[8:0] | 9'h140}; // @[Parameters.scala:248:14]
assign x1_nodeOut_4_c_bits_address = _nodeOut_c_bits_address_T_5; // @[Parameters.scala:248:14]
wire [31:0] _nodeOut_a_bits_address_mux_matches_T_24; // @[Parameters.scala:137:31]
wire [32:0] _nodeOut_a_bits_address_mux_matches_T_25 = {1'h0, _nodeOut_a_bits_address_mux_matches_T_24}; // @[Nodes.scala:27:25]
assign _nodeOut_a_bits_address_T_6 = {_inclusive_cache_bank_sched_6_io_out_a_bits_address[31:9], _inclusive_cache_bank_sched_6_io_out_a_bits_address[8:0] | 9'h180}; // @[Parameters.scala:248:14]
assign x1_nodeOut_5_a_bits_address = _nodeOut_a_bits_address_T_6; // @[Parameters.scala:248:14]
wire [31:0] _nodeIn_b_bits_address_mux_matches_T_24; // @[Parameters.scala:137:31]
wire [32:0] _nodeIn_b_bits_address_mux_matches_T_25 = {1'h0, _nodeIn_b_bits_address_mux_matches_T_24}; // @[Nodes.scala:27:25]
assign _nodeIn_b_bits_address_T_6 = {_inclusive_cache_bank_sched_6_io_in_b_bits_address[31:9], _inclusive_cache_bank_sched_6_io_in_b_bits_address[8:0] | 9'h180}; // @[Parameters.scala:248:14]
assign nodeIn_6_b_bits_address = _nodeIn_b_bits_address_T_6; // @[Parameters.scala:248:14]
wire [31:0] _nodeOut_c_bits_address_mux_matches_T_24; // @[Parameters.scala:137:31]
wire [32:0] _nodeOut_c_bits_address_mux_matches_T_25 = {1'h0, _nodeOut_c_bits_address_mux_matches_T_24}; // @[Nodes.scala:27:25]
assign _nodeOut_c_bits_address_T_6 = {_inclusive_cache_bank_sched_6_io_out_c_bits_address[31:9], _inclusive_cache_bank_sched_6_io_out_c_bits_address[8:0] | 9'h180}; // @[Parameters.scala:248:14]
assign x1_nodeOut_5_c_bits_address = _nodeOut_c_bits_address_T_6; // @[Parameters.scala:248:14]
wire [31:0] _nodeOut_a_bits_address_mux_matches_T_28; // @[Parameters.scala:137:31]
wire [32:0] _nodeOut_a_bits_address_mux_matches_T_29 = {1'h0, _nodeOut_a_bits_address_mux_matches_T_28}; // @[Nodes.scala:27:25]
assign _nodeOut_a_bits_address_T_7 = {_inclusive_cache_bank_sched_7_io_out_a_bits_address[31:9], _inclusive_cache_bank_sched_7_io_out_a_bits_address[8:0] | 9'h1C0}; // @[Parameters.scala:248:14]
assign x1_nodeOut_6_a_bits_address = _nodeOut_a_bits_address_T_7; // @[Parameters.scala:248:14]
wire [31:0] _nodeIn_b_bits_address_mux_matches_T_28; // @[Parameters.scala:137:31]
wire [32:0] _nodeIn_b_bits_address_mux_matches_T_29 = {1'h0, _nodeIn_b_bits_address_mux_matches_T_28}; // @[Nodes.scala:27:25]
assign _nodeIn_b_bits_address_T_7 = {_inclusive_cache_bank_sched_7_io_in_b_bits_address[31:9], _inclusive_cache_bank_sched_7_io_in_b_bits_address[8:0] | 9'h1C0}; // @[Parameters.scala:248:14]
assign nodeIn_7_b_bits_address = _nodeIn_b_bits_address_T_7; // @[Parameters.scala:248:14]
wire [31:0] _nodeOut_c_bits_address_mux_matches_T_28; // @[Parameters.scala:137:31]
wire [32:0] _nodeOut_c_bits_address_mux_matches_T_29 = {1'h0, _nodeOut_c_bits_address_mux_matches_T_28}; // @[Nodes.scala:27:25]
assign _nodeOut_c_bits_address_T_7 = {_inclusive_cache_bank_sched_7_io_out_c_bits_address[31:9], _inclusive_cache_bank_sched_7_io_out_c_bits_address[8:0] | 9'h1C0}; // @[Parameters.scala:248:14]
assign x1_nodeOut_6_c_bits_address = _nodeOut_c_bits_address_T_7; // @[Parameters.scala:248:14]
wire [63:0] _contained_T = {_ctrls_io_flush_req_bits[63:32], _ctrls_io_flush_req_bits[31:0] ^ 32'h80000000}; // @[Parameters.scala:137:31]
wire [64:0] _contained_T_1 = {1'h0, _contained_T}; // @[Nodes.scala:27:25]
wire [64:0] _contained_T_2 = _contained_T_1 & 65'h1FFFFFFFFF00001C0; // @[Parameters.scala:137:{41,46}]
wire [64:0] _contained_T_3 = _contained_T_2; // @[Parameters.scala:137:46]
wire _contained_T_4 = _contained_T_3 == 65'h0; // @[Parameters.scala:137:{46,59}]
wire [63:0] _contained_T_5 = {_ctrls_io_flush_req_bits[63:28], _ctrls_io_flush_req_bits[27:0] ^ 28'h8000000}; // @[Parameters.scala:137:31]
wire [64:0] _contained_T_6 = {1'h0, _contained_T_5}; // @[Nodes.scala:27:25]
wire [64:0] _contained_T_7 = _contained_T_6 & 65'h1FFFFFFFFFFFF01C0; // @[Parameters.scala:137:{41,46}]
wire [64:0] _contained_T_8 = _contained_T_7; // @[Parameters.scala:137:46]
wire _contained_T_9 = _contained_T_8 == 65'h0; // @[Parameters.scala:137:{46,59}]
wire contained = _contained_T_4 | _contained_T_9; // @[Parameters.scala:137:59]
wire _inclusive_cache_bank_sched_io_req_valid_T = contained & _ctrls_io_flush_req_valid; // @[InclusiveCache.scala:103:43, :169:67, :172:41]
wire [63:0] _contained_T_10 = {_ctrls_io_flush_req_bits[63:32], _ctrls_io_flush_req_bits[31:0] ^ 32'h80000040}; // @[Parameters.scala:137:31]
wire [64:0] _contained_T_11 = {1'h0, _contained_T_10}; // @[Nodes.scala:27:25]
wire [64:0] _contained_T_12 = _contained_T_11 & 65'h1FFFFFFFFF00001C0; // @[Parameters.scala:137:{41,46}]
wire [64:0] _contained_T_13 = _contained_T_12; // @[Parameters.scala:137:46]
wire _contained_T_14 = _contained_T_13 == 65'h0; // @[Parameters.scala:137:{46,59}]
wire [63:0] _contained_T_15 = {_ctrls_io_flush_req_bits[63:28], _ctrls_io_flush_req_bits[27:0] ^ 28'h8000040}; // @[Parameters.scala:137:31]
wire [64:0] _contained_T_16 = {1'h0, _contained_T_15}; // @[Nodes.scala:27:25]
wire [64:0] _contained_T_17 = _contained_T_16 & 65'h1FFFFFFFFFFFF01C0; // @[Parameters.scala:137:{41,46}]
wire [64:0] _contained_T_18 = _contained_T_17; // @[Parameters.scala:137:46]
wire _contained_T_19 = _contained_T_18 == 65'h0; // @[Parameters.scala:137:{46,59}]
wire contained_1 = _contained_T_14 | _contained_T_19; // @[Parameters.scala:137:59]
wire _inclusive_cache_bank_sched_io_req_valid_T_1 = contained_1 & _ctrls_io_flush_req_valid; // @[InclusiveCache.scala:103:43, :169:67, :172:41]
wire [63:0] _contained_T_20 = {_ctrls_io_flush_req_bits[63:32], _ctrls_io_flush_req_bits[31:0] ^ 32'h80000080}; // @[Parameters.scala:137:31]
wire [64:0] _contained_T_21 = {1'h0, _contained_T_20}; // @[Nodes.scala:27:25]
wire [64:0] _contained_T_22 = _contained_T_21 & 65'h1FFFFFFFFF00001C0; // @[Parameters.scala:137:{41,46}]
wire [64:0] _contained_T_23 = _contained_T_22; // @[Parameters.scala:137:46]
wire _contained_T_24 = _contained_T_23 == 65'h0; // @[Parameters.scala:137:{46,59}]
wire [63:0] _contained_T_25 = {_ctrls_io_flush_req_bits[63:28], _ctrls_io_flush_req_bits[27:0] ^ 28'h8000080}; // @[Parameters.scala:137:31]
wire [64:0] _contained_T_26 = {1'h0, _contained_T_25}; // @[Nodes.scala:27:25]
wire [64:0] _contained_T_27 = _contained_T_26 & 65'h1FFFFFFFFFFFF01C0; // @[Parameters.scala:137:{41,46}]
wire [64:0] _contained_T_28 = _contained_T_27; // @[Parameters.scala:137:46]
wire _contained_T_29 = _contained_T_28 == 65'h0; // @[Parameters.scala:137:{46,59}]
wire contained_2 = _contained_T_24 | _contained_T_29; // @[Parameters.scala:137:59]
wire _inclusive_cache_bank_sched_io_req_valid_T_2 = contained_2 & _ctrls_io_flush_req_valid; // @[InclusiveCache.scala:103:43, :169:67, :172:41]
wire [63:0] _contained_T_30 = {_ctrls_io_flush_req_bits[63:32], _ctrls_io_flush_req_bits[31:0] ^ 32'h800000C0}; // @[Parameters.scala:137:31]
wire [64:0] _contained_T_31 = {1'h0, _contained_T_30}; // @[Nodes.scala:27:25]
wire [64:0] _contained_T_32 = _contained_T_31 & 65'h1FFFFFFFFF00001C0; // @[Parameters.scala:137:{41,46}]
wire [64:0] _contained_T_33 = _contained_T_32; // @[Parameters.scala:137:46]
wire _contained_T_34 = _contained_T_33 == 65'h0; // @[Parameters.scala:137:{46,59}]
wire [63:0] _contained_T_35 = {_ctrls_io_flush_req_bits[63:28], _ctrls_io_flush_req_bits[27:0] ^ 28'h80000C0}; // @[Parameters.scala:137:31]
wire [64:0] _contained_T_36 = {1'h0, _contained_T_35}; // @[Nodes.scala:27:25]
wire [64:0] _contained_T_37 = _contained_T_36 & 65'h1FFFFFFFFFFFF01C0; // @[Parameters.scala:137:{41,46}]
wire [64:0] _contained_T_38 = _contained_T_37; // @[Parameters.scala:137:46]
wire _contained_T_39 = _contained_T_38 == 65'h0; // @[Parameters.scala:137:{46,59}]
wire contained_3 = _contained_T_34 | _contained_T_39; // @[Parameters.scala:137:59]
wire _inclusive_cache_bank_sched_io_req_valid_T_3 = contained_3 & _ctrls_io_flush_req_valid; // @[InclusiveCache.scala:103:43, :169:67, :172:41]
wire [63:0] _contained_T_40 = {_ctrls_io_flush_req_bits[63:32], _ctrls_io_flush_req_bits[31:0] ^ 32'h80000100}; // @[Parameters.scala:137:31]
wire [64:0] _contained_T_41 = {1'h0, _contained_T_40}; // @[Nodes.scala:27:25]
wire [64:0] _contained_T_42 = _contained_T_41 & 65'h1FFFFFFFFF00001C0; // @[Parameters.scala:137:{41,46}]
wire [64:0] _contained_T_43 = _contained_T_42; // @[Parameters.scala:137:46]
wire _contained_T_44 = _contained_T_43 == 65'h0; // @[Parameters.scala:137:{46,59}]
wire [63:0] _contained_T_45 = {_ctrls_io_flush_req_bits[63:28], _ctrls_io_flush_req_bits[27:0] ^ 28'h8000100}; // @[Parameters.scala:137:31]
wire [64:0] _contained_T_46 = {1'h0, _contained_T_45}; // @[Nodes.scala:27:25]
wire [64:0] _contained_T_47 = _contained_T_46 & 65'h1FFFFFFFFFFFF01C0; // @[Parameters.scala:137:{41,46}]
wire [64:0] _contained_T_48 = _contained_T_47; // @[Parameters.scala:137:46]
wire _contained_T_49 = _contained_T_48 == 65'h0; // @[Parameters.scala:137:{46,59}]
wire contained_4 = _contained_T_44 | _contained_T_49; // @[Parameters.scala:137:59]
wire _inclusive_cache_bank_sched_io_req_valid_T_4 = contained_4 & _ctrls_io_flush_req_valid; // @[InclusiveCache.scala:103:43, :169:67, :172:41]
wire [63:0] _contained_T_50 = {_ctrls_io_flush_req_bits[63:32], _ctrls_io_flush_req_bits[31:0] ^ 32'h80000140}; // @[Parameters.scala:137:31]
wire [64:0] _contained_T_51 = {1'h0, _contained_T_50}; // @[Nodes.scala:27:25]
wire [64:0] _contained_T_52 = _contained_T_51 & 65'h1FFFFFFFFF00001C0; // @[Parameters.scala:137:{41,46}]
wire [64:0] _contained_T_53 = _contained_T_52; // @[Parameters.scala:137:46]
wire _contained_T_54 = _contained_T_53 == 65'h0; // @[Parameters.scala:137:{46,59}]
wire [63:0] _contained_T_55 = {_ctrls_io_flush_req_bits[63:28], _ctrls_io_flush_req_bits[27:0] ^ 28'h8000140}; // @[Parameters.scala:137:31]
wire [64:0] _contained_T_56 = {1'h0, _contained_T_55}; // @[Nodes.scala:27:25]
wire [64:0] _contained_T_57 = _contained_T_56 & 65'h1FFFFFFFFFFFF01C0; // @[Parameters.scala:137:{41,46}]
wire [64:0] _contained_T_58 = _contained_T_57; // @[Parameters.scala:137:46]
wire _contained_T_59 = _contained_T_58 == 65'h0; // @[Parameters.scala:137:{46,59}]
wire contained_5 = _contained_T_54 | _contained_T_59; // @[Parameters.scala:137:59]
wire _inclusive_cache_bank_sched_io_req_valid_T_5 = contained_5 & _ctrls_io_flush_req_valid; // @[InclusiveCache.scala:103:43, :169:67, :172:41]
wire [63:0] _contained_T_60 = {_ctrls_io_flush_req_bits[63:32], _ctrls_io_flush_req_bits[31:0] ^ 32'h80000180}; // @[Parameters.scala:137:31]
wire [64:0] _contained_T_61 = {1'h0, _contained_T_60}; // @[Nodes.scala:27:25]
wire [64:0] _contained_T_62 = _contained_T_61 & 65'h1FFFFFFFFF00001C0; // @[Parameters.scala:137:{41,46}]
wire [64:0] _contained_T_63 = _contained_T_62; // @[Parameters.scala:137:46]
wire _contained_T_64 = _contained_T_63 == 65'h0; // @[Parameters.scala:137:{46,59}]
wire [63:0] _contained_T_65 = {_ctrls_io_flush_req_bits[63:28], _ctrls_io_flush_req_bits[27:0] ^ 28'h8000180}; // @[Parameters.scala:137:31]
wire [64:0] _contained_T_66 = {1'h0, _contained_T_65}; // @[Nodes.scala:27:25]
wire [64:0] _contained_T_67 = _contained_T_66 & 65'h1FFFFFFFFFFFF01C0; // @[Parameters.scala:137:{41,46}]
wire [64:0] _contained_T_68 = _contained_T_67; // @[Parameters.scala:137:46]
wire _contained_T_69 = _contained_T_68 == 65'h0; // @[Parameters.scala:137:{46,59}]
wire contained_6 = _contained_T_64 | _contained_T_69; // @[Parameters.scala:137:59]
wire _inclusive_cache_bank_sched_io_req_valid_T_6 = contained_6 & _ctrls_io_flush_req_valid; // @[InclusiveCache.scala:103:43, :169:67, :172:41]
wire [63:0] _contained_T_70 = {_ctrls_io_flush_req_bits[63:32], _ctrls_io_flush_req_bits[31:0] ^ 32'h800001C0}; // @[Parameters.scala:137:31]
wire [64:0] _contained_T_71 = {1'h0, _contained_T_70}; // @[Nodes.scala:27:25]
wire [64:0] _contained_T_72 = _contained_T_71 & 65'h1FFFFFFFFF00001C0; // @[Parameters.scala:137:{41,46}]
wire [64:0] _contained_T_73 = _contained_T_72; // @[Parameters.scala:137:46]
wire _contained_T_74 = _contained_T_73 == 65'h0; // @[Parameters.scala:137:{46,59}]
wire [63:0] _contained_T_75 = {_ctrls_io_flush_req_bits[63:28], _ctrls_io_flush_req_bits[27:0] ^ 28'h80001C0}; // @[Parameters.scala:137:31]
wire [64:0] _contained_T_76 = {1'h0, _contained_T_75}; // @[Nodes.scala:27:25]
wire [64:0] _contained_T_77 = _contained_T_76 & 65'h1FFFFFFFFFFFF01C0; // @[Parameters.scala:137:{41,46}]
wire [64:0] _contained_T_78 = _contained_T_77; // @[Parameters.scala:137:46]
wire _contained_T_79 = _contained_T_78 == 65'h0; // @[Parameters.scala:137:{46,59}]
wire contained_7 = _contained_T_74 | _contained_T_79; // @[Parameters.scala:137:59]
wire _inclusive_cache_bank_sched_io_req_valid_T_7 = contained_7 & _ctrls_io_flush_req_valid; // @[InclusiveCache.scala:103:43, :169:67, :172:41]
InclusiveCacheControl ctrls ( // @[InclusiveCache.scala:103:43]
.clock (clock),
.reset (reset),
.auto_ctrl_in_a_ready (auto_ctrls_ctrl_in_a_ready_0),
.auto_ctrl_in_a_valid (auto_ctrls_ctrl_in_a_valid_0), // @[InclusiveCache.scala:108:9]
.auto_ctrl_in_a_bits_opcode (auto_ctrls_ctrl_in_a_bits_opcode_0), // @[InclusiveCache.scala:108:9]
.auto_ctrl_in_a_bits_param (auto_ctrls_ctrl_in_a_bits_param_0), // @[InclusiveCache.scala:108:9]
.auto_ctrl_in_a_bits_size (auto_ctrls_ctrl_in_a_bits_size_0), // @[InclusiveCache.scala:108:9]
.auto_ctrl_in_a_bits_source (auto_ctrls_ctrl_in_a_bits_source_0), // @[InclusiveCache.scala:108:9]
.auto_ctrl_in_a_bits_address (auto_ctrls_ctrl_in_a_bits_address_0), // @[InclusiveCache.scala:108:9]
.auto_ctrl_in_a_bits_mask (auto_ctrls_ctrl_in_a_bits_mask_0), // @[InclusiveCache.scala:108:9]
.auto_ctrl_in_a_bits_data (auto_ctrls_ctrl_in_a_bits_data_0), // @[InclusiveCache.scala:108:9]
.auto_ctrl_in_a_bits_corrupt (auto_ctrls_ctrl_in_a_bits_corrupt_0), // @[InclusiveCache.scala:108:9]
.auto_ctrl_in_d_ready (auto_ctrls_ctrl_in_d_ready_0), // @[InclusiveCache.scala:108:9]
.auto_ctrl_in_d_valid (auto_ctrls_ctrl_in_d_valid_0),
.auto_ctrl_in_d_bits_opcode (auto_ctrls_ctrl_in_d_bits_opcode_0),
.auto_ctrl_in_d_bits_size (auto_ctrls_ctrl_in_d_bits_size_0),
.auto_ctrl_in_d_bits_source (auto_ctrls_ctrl_in_d_bits_source_0),
.auto_ctrl_in_d_bits_data (auto_ctrls_ctrl_in_d_bits_data_0),
.io_flush_match (contained_7 | contained_6 | contained_5 | contained_4 | contained_3 | contained_2 | contained_1 | contained), // @[InclusiveCache.scala:169:67, :170:{26,55}]
.io_flush_req_ready (contained_7 & _inclusive_cache_bank_sched_7_io_req_ready | contained_6 & _inclusive_cache_bank_sched_6_io_req_ready | contained_5 & _inclusive_cache_bank_sched_5_io_req_ready | contained_4 & _inclusive_cache_bank_sched_4_io_req_ready | contained_3 & _inclusive_cache_bank_sched_3_io_req_ready | contained_2 & _inclusive_cache_bank_sched_2_io_req_ready | contained_1 & _inclusive_cache_bank_sched_1_io_req_ready | contained & _inclusive_cache_bank_sched_io_req_ready), // @[InclusiveCache.scala:137:29, :169:67, :174:{25,48,81}]
.io_flush_req_valid (_ctrls_io_flush_req_valid),
.io_flush_req_bits (_ctrls_io_flush_req_bits),
.io_flush_resp (_inclusive_cache_bank_sched_7_io_resp_valid | _inclusive_cache_bank_sched_6_io_resp_valid | _inclusive_cache_bank_sched_5_io_resp_valid | _inclusive_cache_bank_sched_4_io_resp_valid | _inclusive_cache_bank_sched_3_io_resp_valid | _inclusive_cache_bank_sched_2_io_resp_valid | _inclusive_cache_bank_sched_1_io_resp_valid | _inclusive_cache_bank_sched_io_resp_valid) // @[InclusiveCache.scala:137:29, :176:{36,64}]
); // @[InclusiveCache.scala:103:43]
TLMonitor_50 monitor ( // @[Nodes.scala:27:25]
.clock (clock),
.reset (reset),
.io_in_a_ready (nodeIn_a_ready), // @[MixedNode.scala:551:17]
.io_in_a_valid (nodeIn_a_valid), // @[MixedNode.scala:551:17]
.io_in_a_bits_opcode (nodeIn_a_bits_opcode), // @[MixedNode.scala:551:17]
.io_in_a_bits_param (nodeIn_a_bits_param), // @[MixedNode.scala:551:17]
.io_in_a_bits_size (nodeIn_a_bits_size), // @[MixedNode.scala:551:17]
.io_in_a_bits_source (nodeIn_a_bits_source), // @[MixedNode.scala:551:17]
.io_in_a_bits_address (nodeIn_a_bits_address), // @[MixedNode.scala:551:17]
.io_in_a_bits_mask (nodeIn_a_bits_mask), // @[MixedNode.scala:551:17]
.io_in_a_bits_data (nodeIn_a_bits_data), // @[MixedNode.scala:551:17]
.io_in_a_bits_corrupt (nodeIn_a_bits_corrupt), // @[MixedNode.scala:551:17]
.io_in_b_ready (nodeIn_b_ready), // @[MixedNode.scala:551:17]
.io_in_b_valid (nodeIn_b_valid), // @[MixedNode.scala:551:17]
.io_in_b_bits_param (nodeIn_b_bits_param), // @[MixedNode.scala:551:17]
.io_in_b_bits_address (nodeIn_b_bits_address), // @[MixedNode.scala:551:17]
.io_in_c_ready (nodeIn_c_ready), // @[MixedNode.scala:551:17]
.io_in_c_valid (nodeIn_c_valid), // @[MixedNode.scala:551:17]
.io_in_c_bits_opcode (nodeIn_c_bits_opcode), // @[MixedNode.scala:551:17]
.io_in_c_bits_param (nodeIn_c_bits_param), // @[MixedNode.scala:551:17]
.io_in_c_bits_size (nodeIn_c_bits_size), // @[MixedNode.scala:551:17]
.io_in_c_bits_source (nodeIn_c_bits_source), // @[MixedNode.scala:551:17]
.io_in_c_bits_address (nodeIn_c_bits_address), // @[MixedNode.scala:551:17]
.io_in_c_bits_data (nodeIn_c_bits_data), // @[MixedNode.scala:551:17]
.io_in_c_bits_corrupt (nodeIn_c_bits_corrupt), // @[MixedNode.scala:551:17]
.io_in_d_ready (nodeIn_d_ready), // @[MixedNode.scala:551:17]
.io_in_d_valid (nodeIn_d_valid), // @[MixedNode.scala:551:17]
.io_in_d_bits_opcode (nodeIn_d_bits_opcode), // @[MixedNode.scala:551:17]
.io_in_d_bits_param (nodeIn_d_bits_param), // @[MixedNode.scala:551:17]
.io_in_d_bits_size (nodeIn_d_bits_size), // @[MixedNode.scala:551:17]
.io_in_d_bits_source (nodeIn_d_bits_source), // @[MixedNode.scala:551:17]
.io_in_d_bits_sink (nodeIn_d_bits_sink), // @[MixedNode.scala:551:17]
.io_in_d_bits_denied (nodeIn_d_bits_denied), // @[MixedNode.scala:551:17]
.io_in_d_bits_data (nodeIn_d_bits_data), // @[MixedNode.scala:551:17]
.io_in_d_bits_corrupt (nodeIn_d_bits_corrupt), // @[MixedNode.scala:551:17]
.io_in_e_valid (nodeIn_e_valid), // @[MixedNode.scala:551:17]
.io_in_e_bits_sink (nodeIn_e_bits_sink) // @[MixedNode.scala:551:17]
); // @[Nodes.scala:27:25]
TLMonitor_51 monitor_1 ( // @[Nodes.scala:27:25]
.clock (clock),
.reset (reset),
.io_in_a_ready (nodeIn_1_a_ready), // @[MixedNode.scala:551:17]
.io_in_a_valid (nodeIn_1_a_valid), // @[MixedNode.scala:551:17]
.io_in_a_bits_opcode (nodeIn_1_a_bits_opcode), // @[MixedNode.scala:551:17]
.io_in_a_bits_param (nodeIn_1_a_bits_param), // @[MixedNode.scala:551:17]
.io_in_a_bits_size (nodeIn_1_a_bits_size), // @[MixedNode.scala:551:17]
.io_in_a_bits_source (nodeIn_1_a_bits_source), // @[MixedNode.scala:551:17]
.io_in_a_bits_address (nodeIn_1_a_bits_address), // @[MixedNode.scala:551:17]
.io_in_a_bits_mask (nodeIn_1_a_bits_mask), // @[MixedNode.scala:551:17]
.io_in_a_bits_data (nodeIn_1_a_bits_data), // @[MixedNode.scala:551:17]
.io_in_a_bits_corrupt (nodeIn_1_a_bits_corrupt), // @[MixedNode.scala:551:17]
.io_in_b_ready (nodeIn_1_b_ready), // @[MixedNode.scala:551:17]
.io_in_b_valid (nodeIn_1_b_valid), // @[MixedNode.scala:551:17]
.io_in_b_bits_param (nodeIn_1_b_bits_param), // @[MixedNode.scala:551:17]
.io_in_b_bits_address (nodeIn_1_b_bits_address), // @[MixedNode.scala:551:17]
.io_in_c_ready (nodeIn_1_c_ready), // @[MixedNode.scala:551:17]
.io_in_c_valid (nodeIn_1_c_valid), // @[MixedNode.scala:551:17]
.io_in_c_bits_opcode (nodeIn_1_c_bits_opcode), // @[MixedNode.scala:551:17]
.io_in_c_bits_param (nodeIn_1_c_bits_param), // @[MixedNode.scala:551:17]
.io_in_c_bits_size (nodeIn_1_c_bits_size), // @[MixedNode.scala:551:17]
.io_in_c_bits_source (nodeIn_1_c_bits_source), // @[MixedNode.scala:551:17]
.io_in_c_bits_address (nodeIn_1_c_bits_address), // @[MixedNode.scala:551:17]
.io_in_c_bits_data (nodeIn_1_c_bits_data), // @[MixedNode.scala:551:17]
.io_in_c_bits_corrupt (nodeIn_1_c_bits_corrupt), // @[MixedNode.scala:551:17]
.io_in_d_ready (nodeIn_1_d_ready), // @[MixedNode.scala:551:17]
.io_in_d_valid (nodeIn_1_d_valid), // @[MixedNode.scala:551:17]
.io_in_d_bits_opcode (nodeIn_1_d_bits_opcode), // @[MixedNode.scala:551:17]
.io_in_d_bits_param (nodeIn_1_d_bits_param), // @[MixedNode.scala:551:17]
.io_in_d_bits_size (nodeIn_1_d_bits_size), // @[MixedNode.scala:551:17]
.io_in_d_bits_source (nodeIn_1_d_bits_source), // @[MixedNode.scala:551:17]
.io_in_d_bits_sink (nodeIn_1_d_bits_sink), // @[MixedNode.scala:551:17]
.io_in_d_bits_denied (nodeIn_1_d_bits_denied), // @[MixedNode.scala:551:17]
.io_in_d_bits_data (nodeIn_1_d_bits_data), // @[MixedNode.scala:551:17]
.io_in_d_bits_corrupt (nodeIn_1_d_bits_corrupt), // @[MixedNode.scala:551:17]
.io_in_e_valid (nodeIn_1_e_valid), // @[MixedNode.scala:551:17]
.io_in_e_bits_sink (nodeIn_1_e_bits_sink) // @[MixedNode.scala:551:17]
); // @[Nodes.scala:27:25]
TLMonitor_52 monitor_2 ( // @[Nodes.scala:27:25]
.clock (clock),
.reset (reset),
.io_in_a_ready (nodeIn_2_a_ready), // @[MixedNode.scala:551:17]
.io_in_a_valid (nodeIn_2_a_valid), // @[MixedNode.scala:551:17]
.io_in_a_bits_opcode (nodeIn_2_a_bits_opcode), // @[MixedNode.scala:551:17]
.io_in_a_bits_param (nodeIn_2_a_bits_param), // @[MixedNode.scala:551:17]
.io_in_a_bits_size (nodeIn_2_a_bits_size), // @[MixedNode.scala:551:17]
.io_in_a_bits_source (nodeIn_2_a_bits_source), // @[MixedNode.scala:551:17]
.io_in_a_bits_address (nodeIn_2_a_bits_address), // @[MixedNode.scala:551:17]
.io_in_a_bits_mask (nodeIn_2_a_bits_mask), // @[MixedNode.scala:551:17]
.io_in_a_bits_data (nodeIn_2_a_bits_data), // @[MixedNode.scala:551:17]
.io_in_a_bits_corrupt (nodeIn_2_a_bits_corrupt), // @[MixedNode.scala:551:17]
.io_in_b_ready (nodeIn_2_b_ready), // @[MixedNode.scala:551:17]
.io_in_b_valid (nodeIn_2_b_valid), // @[MixedNode.scala:551:17]
.io_in_b_bits_param (nodeIn_2_b_bits_param), // @[MixedNode.scala:551:17]
.io_in_b_bits_address (nodeIn_2_b_bits_address), // @[MixedNode.scala:551:17]
.io_in_c_ready (nodeIn_2_c_ready), // @[MixedNode.scala:551:17]
.io_in_c_valid (nodeIn_2_c_valid), // @[MixedNode.scala:551:17]
.io_in_c_bits_opcode (nodeIn_2_c_bits_opcode), // @[MixedNode.scala:551:17]
.io_in_c_bits_param (nodeIn_2_c_bits_param), // @[MixedNode.scala:551:17]
.io_in_c_bits_size (nodeIn_2_c_bits_size), // @[MixedNode.scala:551:17]
.io_in_c_bits_source (nodeIn_2_c_bits_source), // @[MixedNode.scala:551:17]
.io_in_c_bits_address (nodeIn_2_c_bits_address), // @[MixedNode.scala:551:17]
.io_in_c_bits_data (nodeIn_2_c_bits_data), // @[MixedNode.scala:551:17]
.io_in_c_bits_corrupt (nodeIn_2_c_bits_corrupt), // @[MixedNode.scala:551:17]
.io_in_d_ready (nodeIn_2_d_ready), // @[MixedNode.scala:551:17]
.io_in_d_valid (nodeIn_2_d_valid), // @[MixedNode.scala:551:17]
.io_in_d_bits_opcode (nodeIn_2_d_bits_opcode), // @[MixedNode.scala:551:17]
.io_in_d_bits_param (nodeIn_2_d_bits_param), // @[MixedNode.scala:551:17]
.io_in_d_bits_size (nodeIn_2_d_bits_size), // @[MixedNode.scala:551:17]
.io_in_d_bits_source (nodeIn_2_d_bits_source), // @[MixedNode.scala:551:17]
.io_in_d_bits_sink (nodeIn_2_d_bits_sink), // @[MixedNode.scala:551:17]
.io_in_d_bits_denied (nodeIn_2_d_bits_denied), // @[MixedNode.scala:551:17]
.io_in_d_bits_data (nodeIn_2_d_bits_data), // @[MixedNode.scala:551:17]
.io_in_d_bits_corrupt (nodeIn_2_d_bits_corrupt), // @[MixedNode.scala:551:17]
.io_in_e_valid (nodeIn_2_e_valid), // @[MixedNode.scala:551:17]
.io_in_e_bits_sink (nodeIn_2_e_bits_sink) // @[MixedNode.scala:551:17]
); // @[Nodes.scala:27:25]
TLMonitor_53 monitor_3 ( // @[Nodes.scala:27:25]
.clock (clock),
.reset (reset),
.io_in_a_ready (nodeIn_3_a_ready), // @[MixedNode.scala:551:17]
.io_in_a_valid (nodeIn_3_a_valid), // @[MixedNode.scala:551:17]
.io_in_a_bits_opcode (nodeIn_3_a_bits_opcode), // @[MixedNode.scala:551:17]
.io_in_a_bits_param (nodeIn_3_a_bits_param), // @[MixedNode.scala:551:17]
.io_in_a_bits_size (nodeIn_3_a_bits_size), // @[MixedNode.scala:551:17]
.io_in_a_bits_source (nodeIn_3_a_bits_source), // @[MixedNode.scala:551:17]
.io_in_a_bits_address (nodeIn_3_a_bits_address), // @[MixedNode.scala:551:17]
.io_in_a_bits_mask (nodeIn_3_a_bits_mask), // @[MixedNode.scala:551:17]
.io_in_a_bits_data (nodeIn_3_a_bits_data), // @[MixedNode.scala:551:17]
.io_in_a_bits_corrupt (nodeIn_3_a_bits_corrupt), // @[MixedNode.scala:551:17]
.io_in_b_ready (nodeIn_3_b_ready), // @[MixedNode.scala:551:17]
.io_in_b_valid (nodeIn_3_b_valid), // @[MixedNode.scala:551:17]
.io_in_b_bits_param (nodeIn_3_b_bits_param), // @[MixedNode.scala:551:17]
.io_in_b_bits_address (nodeIn_3_b_bits_address), // @[MixedNode.scala:551:17]
.io_in_c_ready (nodeIn_3_c_ready), // @[MixedNode.scala:551:17]
.io_in_c_valid (nodeIn_3_c_valid), // @[MixedNode.scala:551:17]
.io_in_c_bits_opcode (nodeIn_3_c_bits_opcode), // @[MixedNode.scala:551:17]
.io_in_c_bits_param (nodeIn_3_c_bits_param), // @[MixedNode.scala:551:17]
.io_in_c_bits_size (nodeIn_3_c_bits_size), // @[MixedNode.scala:551:17]
.io_in_c_bits_source (nodeIn_3_c_bits_source), // @[MixedNode.scala:551:17]
.io_in_c_bits_address (nodeIn_3_c_bits_address), // @[MixedNode.scala:551:17]
.io_in_c_bits_data (nodeIn_3_c_bits_data), // @[MixedNode.scala:551:17]
.io_in_c_bits_corrupt (nodeIn_3_c_bits_corrupt), // @[MixedNode.scala:551:17]
.io_in_d_ready (nodeIn_3_d_ready), // @[MixedNode.scala:551:17]
.io_in_d_valid (nodeIn_3_d_valid), // @[MixedNode.scala:551:17]
.io_in_d_bits_opcode (nodeIn_3_d_bits_opcode), // @[MixedNode.scala:551:17]
.io_in_d_bits_param (nodeIn_3_d_bits_param), // @[MixedNode.scala:551:17]
.io_in_d_bits_size (nodeIn_3_d_bits_size), // @[MixedNode.scala:551:17]
.io_in_d_bits_source (nodeIn_3_d_bits_source), // @[MixedNode.scala:551:17]
.io_in_d_bits_sink (nodeIn_3_d_bits_sink), // @[MixedNode.scala:551:17]
.io_in_d_bits_denied (nodeIn_3_d_bits_denied), // @[MixedNode.scala:551:17]
.io_in_d_bits_data (nodeIn_3_d_bits_data), // @[MixedNode.scala:551:17]
.io_in_d_bits_corrupt (nodeIn_3_d_bits_corrupt), // @[MixedNode.scala:551:17]
.io_in_e_valid (nodeIn_3_e_valid), // @[MixedNode.scala:551:17]
.io_in_e_bits_sink (nodeIn_3_e_bits_sink) // @[MixedNode.scala:551:17]
); // @[Nodes.scala:27:25]
TLMonitor_54 monitor_4 ( // @[Nodes.scala:27:25]
.clock (clock),
.reset (reset),
.io_in_a_ready (nodeIn_4_a_ready), // @[MixedNode.scala:551:17]
.io_in_a_valid (nodeIn_4_a_valid), // @[MixedNode.scala:551:17]
.io_in_a_bits_opcode (nodeIn_4_a_bits_opcode), // @[MixedNode.scala:551:17]
.io_in_a_bits_param (nodeIn_4_a_bits_param), // @[MixedNode.scala:551:17]
.io_in_a_bits_size (nodeIn_4_a_bits_size), // @[MixedNode.scala:551:17]
.io_in_a_bits_source (nodeIn_4_a_bits_source), // @[MixedNode.scala:551:17]
.io_in_a_bits_address (nodeIn_4_a_bits_address), // @[MixedNode.scala:551:17]
.io_in_a_bits_mask (nodeIn_4_a_bits_mask), // @[MixedNode.scala:551:17]
.io_in_a_bits_data (nodeIn_4_a_bits_data), // @[MixedNode.scala:551:17]
.io_in_a_bits_corrupt (nodeIn_4_a_bits_corrupt), // @[MixedNode.scala:551:17]
.io_in_b_ready (nodeIn_4_b_ready), // @[MixedNode.scala:551:17]
.io_in_b_valid (nodeIn_4_b_valid), // @[MixedNode.scala:551:17]
.io_in_b_bits_param (nodeIn_4_b_bits_param), // @[MixedNode.scala:551:17]
.io_in_b_bits_address (nodeIn_4_b_bits_address), // @[MixedNode.scala:551:17]
.io_in_c_ready (nodeIn_4_c_ready), // @[MixedNode.scala:551:17]
.io_in_c_valid (nodeIn_4_c_valid), // @[MixedNode.scala:551:17]
.io_in_c_bits_opcode (nodeIn_4_c_bits_opcode), // @[MixedNode.scala:551:17]
.io_in_c_bits_param (nodeIn_4_c_bits_param), // @[MixedNode.scala:551:17]
.io_in_c_bits_size (nodeIn_4_c_bits_size), // @[MixedNode.scala:551:17]
.io_in_c_bits_source (nodeIn_4_c_bits_source), // @[MixedNode.scala:551:17]
.io_in_c_bits_address (nodeIn_4_c_bits_address), // @[MixedNode.scala:551:17]
.io_in_c_bits_data (nodeIn_4_c_bits_data), // @[MixedNode.scala:551:17]
.io_in_c_bits_corrupt (nodeIn_4_c_bits_corrupt), // @[MixedNode.scala:551:17]
.io_in_d_ready (nodeIn_4_d_ready), // @[MixedNode.scala:551:17]
.io_in_d_valid (nodeIn_4_d_valid), // @[MixedNode.scala:551:17]
.io_in_d_bits_opcode (nodeIn_4_d_bits_opcode), // @[MixedNode.scala:551:17]
.io_in_d_bits_param (nodeIn_4_d_bits_param), // @[MixedNode.scala:551:17]
.io_in_d_bits_size (nodeIn_4_d_bits_size), // @[MixedNode.scala:551:17]
.io_in_d_bits_source (nodeIn_4_d_bits_source), // @[MixedNode.scala:551:17]
.io_in_d_bits_sink (nodeIn_4_d_bits_sink), // @[MixedNode.scala:551:17]
.io_in_d_bits_denied (nodeIn_4_d_bits_denied), // @[MixedNode.scala:551:17]
.io_in_d_bits_data (nodeIn_4_d_bits_data), // @[MixedNode.scala:551:17]
.io_in_d_bits_corrupt (nodeIn_4_d_bits_corrupt), // @[MixedNode.scala:551:17]
.io_in_e_valid (nodeIn_4_e_valid), // @[MixedNode.scala:551:17]
.io_in_e_bits_sink (nodeIn_4_e_bits_sink) // @[MixedNode.scala:551:17]
); // @[Nodes.scala:27:25]
TLMonitor_55 monitor_5 ( // @[Nodes.scala:27:25]
.clock (clock),
.reset (reset),
.io_in_a_ready (nodeIn_5_a_ready), // @[MixedNode.scala:551:17]
.io_in_a_valid (nodeIn_5_a_valid), // @[MixedNode.scala:551:17]
.io_in_a_bits_opcode (nodeIn_5_a_bits_opcode), // @[MixedNode.scala:551:17]
.io_in_a_bits_param (nodeIn_5_a_bits_param), // @[MixedNode.scala:551:17]
.io_in_a_bits_size (nodeIn_5_a_bits_size), // @[MixedNode.scala:551:17]
.io_in_a_bits_source (nodeIn_5_a_bits_source), // @[MixedNode.scala:551:17]
.io_in_a_bits_address (nodeIn_5_a_bits_address), // @[MixedNode.scala:551:17]
.io_in_a_bits_mask (nodeIn_5_a_bits_mask), // @[MixedNode.scala:551:17]
.io_in_a_bits_data (nodeIn_5_a_bits_data), // @[MixedNode.scala:551:17]
.io_in_a_bits_corrupt (nodeIn_5_a_bits_corrupt), // @[MixedNode.scala:551:17]
.io_in_b_ready (nodeIn_5_b_ready), // @[MixedNode.scala:551:17]
.io_in_b_valid (nodeIn_5_b_valid), // @[MixedNode.scala:551:17]
.io_in_b_bits_param (nodeIn_5_b_bits_param), // @[MixedNode.scala:551:17]
.io_in_b_bits_address (nodeIn_5_b_bits_address), // @[MixedNode.scala:551:17]
.io_in_c_ready (nodeIn_5_c_ready), // @[MixedNode.scala:551:17]
.io_in_c_valid (nodeIn_5_c_valid), // @[MixedNode.scala:551:17]
.io_in_c_bits_opcode (nodeIn_5_c_bits_opcode), // @[MixedNode.scala:551:17]
.io_in_c_bits_param (nodeIn_5_c_bits_param), // @[MixedNode.scala:551:17]
.io_in_c_bits_size (nodeIn_5_c_bits_size), // @[MixedNode.scala:551:17]
.io_in_c_bits_source (nodeIn_5_c_bits_source), // @[MixedNode.scala:551:17]
.io_in_c_bits_address (nodeIn_5_c_bits_address), // @[MixedNode.scala:551:17]
.io_in_c_bits_data (nodeIn_5_c_bits_data), // @[MixedNode.scala:551:17]
.io_in_c_bits_corrupt (nodeIn_5_c_bits_corrupt), // @[MixedNode.scala:551:17]
.io_in_d_ready (nodeIn_5_d_ready), // @[MixedNode.scala:551:17]
.io_in_d_valid (nodeIn_5_d_valid), // @[MixedNode.scala:551:17]
.io_in_d_bits_opcode (nodeIn_5_d_bits_opcode), // @[MixedNode.scala:551:17]
.io_in_d_bits_param (nodeIn_5_d_bits_param), // @[MixedNode.scala:551:17]
.io_in_d_bits_size (nodeIn_5_d_bits_size), // @[MixedNode.scala:551:17]
.io_in_d_bits_source (nodeIn_5_d_bits_source), // @[MixedNode.scala:551:17]
.io_in_d_bits_sink (nodeIn_5_d_bits_sink), // @[MixedNode.scala:551:17]
.io_in_d_bits_denied (nodeIn_5_d_bits_denied), // @[MixedNode.scala:551:17]
.io_in_d_bits_data (nodeIn_5_d_bits_data), // @[MixedNode.scala:551:17]
.io_in_d_bits_corrupt (nodeIn_5_d_bits_corrupt), // @[MixedNode.scala:551:17]
.io_in_e_valid (nodeIn_5_e_valid), // @[MixedNode.scala:551:17]
.io_in_e_bits_sink (nodeIn_5_e_bits_sink) // @[MixedNode.scala:551:17]
); // @[Nodes.scala:27:25]
TLMonitor_56 monitor_6 ( // @[Nodes.scala:27:25]
.clock (clock),
.reset (reset),
.io_in_a_ready (nodeIn_6_a_ready), // @[MixedNode.scala:551:17]
.io_in_a_valid (nodeIn_6_a_valid), // @[MixedNode.scala:551:17]
.io_in_a_bits_opcode (nodeIn_6_a_bits_opcode), // @[MixedNode.scala:551:17]
.io_in_a_bits_param (nodeIn_6_a_bits_param), // @[MixedNode.scala:551:17]
.io_in_a_bits_size (nodeIn_6_a_bits_size), // @[MixedNode.scala:551:17]
.io_in_a_bits_source (nodeIn_6_a_bits_source), // @[MixedNode.scala:551:17]
.io_in_a_bits_address (nodeIn_6_a_bits_address), // @[MixedNode.scala:551:17]
.io_in_a_bits_mask (nodeIn_6_a_bits_mask), // @[MixedNode.scala:551:17]
.io_in_a_bits_data (nodeIn_6_a_bits_data), // @[MixedNode.scala:551:17]
.io_in_a_bits_corrupt (nodeIn_6_a_bits_corrupt), // @[MixedNode.scala:551:17]
.io_in_b_ready (nodeIn_6_b_ready), // @[MixedNode.scala:551:17]
.io_in_b_valid (nodeIn_6_b_valid), // @[MixedNode.scala:551:17]
.io_in_b_bits_param (nodeIn_6_b_bits_param), // @[MixedNode.scala:551:17]
.io_in_b_bits_address (nodeIn_6_b_bits_address), // @[MixedNode.scala:551:17]
.io_in_c_ready (nodeIn_6_c_ready), // @[MixedNode.scala:551:17]
.io_in_c_valid (nodeIn_6_c_valid), // @[MixedNode.scala:551:17]
.io_in_c_bits_opcode (nodeIn_6_c_bits_opcode), // @[MixedNode.scala:551:17]
.io_in_c_bits_param (nodeIn_6_c_bits_param), // @[MixedNode.scala:551:17]
.io_in_c_bits_size (nodeIn_6_c_bits_size), // @[MixedNode.scala:551:17]
.io_in_c_bits_source (nodeIn_6_c_bits_source), // @[MixedNode.scala:551:17]
.io_in_c_bits_address (nodeIn_6_c_bits_address), // @[MixedNode.scala:551:17]
.io_in_c_bits_data (nodeIn_6_c_bits_data), // @[MixedNode.scala:551:17]
.io_in_c_bits_corrupt (nodeIn_6_c_bits_corrupt), // @[MixedNode.scala:551:17]
.io_in_d_ready (nodeIn_6_d_ready), // @[MixedNode.scala:551:17]
.io_in_d_valid (nodeIn_6_d_valid), // @[MixedNode.scala:551:17]
.io_in_d_bits_opcode (nodeIn_6_d_bits_opcode), // @[MixedNode.scala:551:17]
.io_in_d_bits_param (nodeIn_6_d_bits_param), // @[MixedNode.scala:551:17]
.io_in_d_bits_size (nodeIn_6_d_bits_size), // @[MixedNode.scala:551:17]
.io_in_d_bits_source (nodeIn_6_d_bits_source), // @[MixedNode.scala:551:17]
.io_in_d_bits_sink (nodeIn_6_d_bits_sink), // @[MixedNode.scala:551:17]
.io_in_d_bits_denied (nodeIn_6_d_bits_denied), // @[MixedNode.scala:551:17]
.io_in_d_bits_data (nodeIn_6_d_bits_data), // @[MixedNode.scala:551:17]
.io_in_d_bits_corrupt (nodeIn_6_d_bits_corrupt), // @[MixedNode.scala:551:17]
.io_in_e_valid (nodeIn_6_e_valid), // @[MixedNode.scala:551:17]
.io_in_e_bits_sink (nodeIn_6_e_bits_sink) // @[MixedNode.scala:551:17]
); // @[Nodes.scala:27:25]
TLMonitor_57 monitor_7 ( // @[Nodes.scala:27:25]
.clock (clock),
.reset (reset),
.io_in_a_ready (nodeIn_7_a_ready), // @[MixedNode.scala:551:17]
.io_in_a_valid (nodeIn_7_a_valid), // @[MixedNode.scala:551:17]
.io_in_a_bits_opcode (nodeIn_7_a_bits_opcode), // @[MixedNode.scala:551:17]
.io_in_a_bits_param (nodeIn_7_a_bits_param), // @[MixedNode.scala:551:17]
.io_in_a_bits_size (nodeIn_7_a_bits_size), // @[MixedNode.scala:551:17]
.io_in_a_bits_source (nodeIn_7_a_bits_source), // @[MixedNode.scala:551:17]
.io_in_a_bits_address (nodeIn_7_a_bits_address), // @[MixedNode.scala:551:17]
.io_in_a_bits_mask (nodeIn_7_a_bits_mask), // @[MixedNode.scala:551:17]
.io_in_a_bits_data (nodeIn_7_a_bits_data), // @[MixedNode.scala:551:17]
.io_in_a_bits_corrupt (nodeIn_7_a_bits_corrupt), // @[MixedNode.scala:551:17]
.io_in_b_ready (nodeIn_7_b_ready), // @[MixedNode.scala:551:17]
.io_in_b_valid (nodeIn_7_b_valid), // @[MixedNode.scala:551:17]
.io_in_b_bits_param (nodeIn_7_b_bits_param), // @[MixedNode.scala:551:17]
.io_in_b_bits_address (nodeIn_7_b_bits_address), // @[MixedNode.scala:551:17]
.io_in_c_ready (nodeIn_7_c_ready), // @[MixedNode.scala:551:17]
.io_in_c_valid (nodeIn_7_c_valid), // @[MixedNode.scala:551:17]
.io_in_c_bits_opcode (nodeIn_7_c_bits_opcode), // @[MixedNode.scala:551:17]
.io_in_c_bits_param (nodeIn_7_c_bits_param), // @[MixedNode.scala:551:17]
.io_in_c_bits_size (nodeIn_7_c_bits_size), // @[MixedNode.scala:551:17]
.io_in_c_bits_source (nodeIn_7_c_bits_source), // @[MixedNode.scala:551:17]
.io_in_c_bits_address (nodeIn_7_c_bits_address), // @[MixedNode.scala:551:17]
.io_in_c_bits_data (nodeIn_7_c_bits_data), // @[MixedNode.scala:551:17]
.io_in_c_bits_corrupt (nodeIn_7_c_bits_corrupt), // @[MixedNode.scala:551:17]
.io_in_d_ready (nodeIn_7_d_ready), // @[MixedNode.scala:551:17]
.io_in_d_valid (nodeIn_7_d_valid), // @[MixedNode.scala:551:17]
.io_in_d_bits_opcode (nodeIn_7_d_bits_opcode), // @[MixedNode.scala:551:17]
.io_in_d_bits_param (nodeIn_7_d_bits_param), // @[MixedNode.scala:551:17]
.io_in_d_bits_size (nodeIn_7_d_bits_size), // @[MixedNode.scala:551:17]
.io_in_d_bits_source (nodeIn_7_d_bits_source), // @[MixedNode.scala:551:17]
.io_in_d_bits_sink (nodeIn_7_d_bits_sink), // @[MixedNode.scala:551:17]
.io_in_d_bits_denied (nodeIn_7_d_bits_denied), // @[MixedNode.scala:551:17]
.io_in_d_bits_data (nodeIn_7_d_bits_data), // @[MixedNode.scala:551:17]
.io_in_d_bits_corrupt (nodeIn_7_d_bits_corrupt), // @[MixedNode.scala:551:17]
.io_in_e_valid (nodeIn_7_e_valid), // @[MixedNode.scala:551:17]
.io_in_e_bits_sink (nodeIn_7_e_bits_sink) // @[MixedNode.scala:551:17]
); // @[Nodes.scala:27:25]
InclusiveCacheBankScheduler inclusive_cache_bank_sched ( // @[InclusiveCache.scala:137:29]
.clock (clock),
.reset (reset),
.io_in_a_ready (nodeIn_a_ready),
.io_in_a_valid (nodeIn_a_valid), // @[MixedNode.scala:551:17]
.io_in_a_bits_opcode (nodeIn_a_bits_opcode), // @[MixedNode.scala:551:17]
.io_in_a_bits_param (nodeIn_a_bits_param), // @[MixedNode.scala:551:17]
.io_in_a_bits_size (nodeIn_a_bits_size), // @[MixedNode.scala:551:17]
.io_in_a_bits_source (nodeIn_a_bits_source), // @[MixedNode.scala:551:17]
.io_in_a_bits_address (nodeIn_a_bits_address), // @[MixedNode.scala:551:17]
.io_in_a_bits_mask (nodeIn_a_bits_mask), // @[MixedNode.scala:551:17]
.io_in_a_bits_data (nodeIn_a_bits_data), // @[MixedNode.scala:551:17]
.io_in_a_bits_corrupt (nodeIn_a_bits_corrupt), // @[MixedNode.scala:551:17]
.io_in_b_ready (nodeIn_b_ready), // @[MixedNode.scala:551:17]
.io_in_b_valid (nodeIn_b_valid),
.io_in_b_bits_param (nodeIn_b_bits_param),
.io_in_b_bits_address (_inclusive_cache_bank_sched_io_in_b_bits_address),
.io_in_c_ready (nodeIn_c_ready),
.io_in_c_valid (nodeIn_c_valid), // @[MixedNode.scala:551:17]
.io_in_c_bits_opcode (nodeIn_c_bits_opcode), // @[MixedNode.scala:551:17]
.io_in_c_bits_param (nodeIn_c_bits_param), // @[MixedNode.scala:551:17]
.io_in_c_bits_size (nodeIn_c_bits_size), // @[MixedNode.scala:551:17]
.io_in_c_bits_source (nodeIn_c_bits_source), // @[MixedNode.scala:551:17]
.io_in_c_bits_address (nodeIn_c_bits_address), // @[MixedNode.scala:551:17]
.io_in_c_bits_data (nodeIn_c_bits_data), // @[MixedNode.scala:551:17]
.io_in_c_bits_corrupt (nodeIn_c_bits_corrupt), // @[MixedNode.scala:551:17]
.io_in_d_ready (nodeIn_d_ready), // @[MixedNode.scala:551:17]
.io_in_d_valid (nodeIn_d_valid),
.io_in_d_bits_opcode (nodeIn_d_bits_opcode),
.io_in_d_bits_param (nodeIn_d_bits_param),
.io_in_d_bits_size (nodeIn_d_bits_size),
.io_in_d_bits_source (nodeIn_d_bits_source),
.io_in_d_bits_sink (nodeIn_d_bits_sink),
.io_in_d_bits_denied (nodeIn_d_bits_denied),
.io_in_d_bits_data (nodeIn_d_bits_data),
.io_in_d_bits_corrupt (nodeIn_d_bits_corrupt),
.io_in_e_valid (nodeIn_e_valid), // @[MixedNode.scala:551:17]
.io_in_e_bits_sink (nodeIn_e_bits_sink), // @[MixedNode.scala:551:17]
.io_out_a_ready (nodeOut_a_ready), // @[MixedNode.scala:542:17]
.io_out_a_valid (nodeOut_a_valid),
.io_out_a_bits_opcode (nodeOut_a_bits_opcode),
.io_out_a_bits_param (nodeOut_a_bits_param),
.io_out_a_bits_size (nodeOut_a_bits_size),
.io_out_a_bits_source (nodeOut_a_bits_source),
.io_out_a_bits_address (_inclusive_cache_bank_sched_io_out_a_bits_address),
.io_out_a_bits_mask (nodeOut_a_bits_mask),
.io_out_a_bits_data (nodeOut_a_bits_data),
.io_out_a_bits_corrupt (nodeOut_a_bits_corrupt),
.io_out_c_ready (nodeOut_c_ready), // @[MixedNode.scala:542:17]
.io_out_c_valid (nodeOut_c_valid),
.io_out_c_bits_opcode (nodeOut_c_bits_opcode),
.io_out_c_bits_param (nodeOut_c_bits_param),
.io_out_c_bits_size (nodeOut_c_bits_size),
.io_out_c_bits_source (nodeOut_c_bits_source),
.io_out_c_bits_address (_inclusive_cache_bank_sched_io_out_c_bits_address),
.io_out_c_bits_data (nodeOut_c_bits_data),
.io_out_c_bits_corrupt (nodeOut_c_bits_corrupt),
.io_out_d_ready (nodeOut_d_ready),
.io_out_d_valid (nodeOut_d_valid), // @[MixedNode.scala:542:17]
.io_out_d_bits_opcode (nodeOut_d_bits_opcode), // @[MixedNode.scala:542:17]
.io_out_d_bits_param (nodeOut_d_bits_param), // @[MixedNode.scala:542:17]
.io_out_d_bits_size (nodeOut_d_bits_size), // @[MixedNode.scala:542:17]
.io_out_d_bits_source (nodeOut_d_bits_source), // @[MixedNode.scala:542:17]
.io_out_d_bits_sink (nodeOut_d_bits_sink), // @[MixedNode.scala:542:17]
.io_out_d_bits_denied (nodeOut_d_bits_denied), // @[MixedNode.scala:542:17]
.io_out_d_bits_data (nodeOut_d_bits_data), // @[MixedNode.scala:542:17]
.io_out_d_bits_corrupt (nodeOut_d_bits_corrupt), // @[MixedNode.scala:542:17]
.io_out_e_valid (nodeOut_e_valid),
.io_out_e_bits_sink (nodeOut_e_bits_sink),
.io_req_ready (_inclusive_cache_bank_sched_io_req_ready),
.io_req_valid (_inclusive_cache_bank_sched_io_req_valid_T), // @[InclusiveCache.scala:172:41]
.io_req_bits_address (_ctrls_io_flush_req_bits[31:0]), // @[Parameters.scala:137:31]
.io_resp_valid (_inclusive_cache_bank_sched_io_resp_valid)
); // @[InclusiveCache.scala:137:29]
assign _nodeOut_a_bits_address_mux_matches_T = _inclusive_cache_bank_sched_io_out_a_bits_address; // @[Parameters.scala:137:31]
assign _nodeOut_a_bits_address_T = _inclusive_cache_bank_sched_io_out_a_bits_address; // @[Parameters.scala:248:14]
assign _nodeIn_b_bits_address_mux_matches_T = _inclusive_cache_bank_sched_io_in_b_bits_address; // @[Parameters.scala:137:31]
assign _nodeIn_b_bits_address_T = _inclusive_cache_bank_sched_io_in_b_bits_address; // @[Parameters.scala:248:14]
assign _nodeOut_c_bits_address_mux_matches_T = _inclusive_cache_bank_sched_io_out_c_bits_address; // @[Parameters.scala:137:31]
assign _nodeOut_c_bits_address_T = _inclusive_cache_bank_sched_io_out_c_bits_address; // @[Parameters.scala:248:14]
InclusiveCacheBankScheduler_1 inclusive_cache_bank_sched_1 ( // @[InclusiveCache.scala:137:29]
.clock (clock),
.reset (reset),
.io_in_a_ready (nodeIn_1_a_ready),
.io_in_a_valid (nodeIn_1_a_valid), // @[MixedNode.scala:551:17]
.io_in_a_bits_opcode (nodeIn_1_a_bits_opcode), // @[MixedNode.scala:551:17]
.io_in_a_bits_param (nodeIn_1_a_bits_param), // @[MixedNode.scala:551:17]
.io_in_a_bits_size (nodeIn_1_a_bits_size), // @[MixedNode.scala:551:17]
.io_in_a_bits_source (nodeIn_1_a_bits_source), // @[MixedNode.scala:551:17]
.io_in_a_bits_address (nodeIn_1_a_bits_address), // @[MixedNode.scala:551:17]
.io_in_a_bits_mask (nodeIn_1_a_bits_mask), // @[MixedNode.scala:551:17]
.io_in_a_bits_data (nodeIn_1_a_bits_data), // @[MixedNode.scala:551:17]
.io_in_a_bits_corrupt (nodeIn_1_a_bits_corrupt), // @[MixedNode.scala:551:17]
.io_in_b_ready (nodeIn_1_b_ready), // @[MixedNode.scala:551:17]
.io_in_b_valid (nodeIn_1_b_valid),
.io_in_b_bits_param (nodeIn_1_b_bits_param),
.io_in_b_bits_address (_inclusive_cache_bank_sched_1_io_in_b_bits_address),
.io_in_c_ready (nodeIn_1_c_ready),
.io_in_c_valid (nodeIn_1_c_valid), // @[MixedNode.scala:551:17]
.io_in_c_bits_opcode (nodeIn_1_c_bits_opcode), // @[MixedNode.scala:551:17]
.io_in_c_bits_param (nodeIn_1_c_bits_param), // @[MixedNode.scala:551:17]
.io_in_c_bits_size (nodeIn_1_c_bits_size), // @[MixedNode.scala:551:17]
.io_in_c_bits_source (nodeIn_1_c_bits_source), // @[MixedNode.scala:551:17]
.io_in_c_bits_address (nodeIn_1_c_bits_address), // @[MixedNode.scala:551:17]
.io_in_c_bits_data (nodeIn_1_c_bits_data), // @[MixedNode.scala:551:17]
.io_in_c_bits_corrupt (nodeIn_1_c_bits_corrupt), // @[MixedNode.scala:551:17]
.io_in_d_ready (nodeIn_1_d_ready), // @[MixedNode.scala:551:17]
.io_in_d_valid (nodeIn_1_d_valid),
.io_in_d_bits_opcode (nodeIn_1_d_bits_opcode),
.io_in_d_bits_param (nodeIn_1_d_bits_param),
.io_in_d_bits_size (nodeIn_1_d_bits_size),
.io_in_d_bits_source (nodeIn_1_d_bits_source),
.io_in_d_bits_sink (nodeIn_1_d_bits_sink),
.io_in_d_bits_denied (nodeIn_1_d_bits_denied),
.io_in_d_bits_data (nodeIn_1_d_bits_data),
.io_in_d_bits_corrupt (nodeIn_1_d_bits_corrupt),
.io_in_e_valid (nodeIn_1_e_valid), // @[MixedNode.scala:551:17]
.io_in_e_bits_sink (nodeIn_1_e_bits_sink), // @[MixedNode.scala:551:17]
.io_out_a_ready (x1_nodeOut_a_ready), // @[MixedNode.scala:542:17]
.io_out_a_valid (x1_nodeOut_a_valid),
.io_out_a_bits_opcode (x1_nodeOut_a_bits_opcode),
.io_out_a_bits_param (x1_nodeOut_a_bits_param),
.io_out_a_bits_size (x1_nodeOut_a_bits_size),
.io_out_a_bits_source (x1_nodeOut_a_bits_source),
.io_out_a_bits_address (_inclusive_cache_bank_sched_1_io_out_a_bits_address),
.io_out_a_bits_mask (x1_nodeOut_a_bits_mask),
.io_out_a_bits_data (x1_nodeOut_a_bits_data),
.io_out_a_bits_corrupt (x1_nodeOut_a_bits_corrupt),
.io_out_c_ready (x1_nodeOut_c_ready), // @[MixedNode.scala:542:17]
.io_out_c_valid (x1_nodeOut_c_valid),
.io_out_c_bits_opcode (x1_nodeOut_c_bits_opcode),
.io_out_c_bits_param (x1_nodeOut_c_bits_param),
.io_out_c_bits_size (x1_nodeOut_c_bits_size),
.io_out_c_bits_source (x1_nodeOut_c_bits_source),
.io_out_c_bits_address (_inclusive_cache_bank_sched_1_io_out_c_bits_address),
.io_out_c_bits_data (x1_nodeOut_c_bits_data),
.io_out_c_bits_corrupt (x1_nodeOut_c_bits_corrupt),
.io_out_d_ready (x1_nodeOut_d_ready),
.io_out_d_valid (x1_nodeOut_d_valid), // @[MixedNode.scala:542:17]
.io_out_d_bits_opcode (x1_nodeOut_d_bits_opcode), // @[MixedNode.scala:542:17]
.io_out_d_bits_param (x1_nodeOut_d_bits_param), // @[MixedNode.scala:542:17]
.io_out_d_bits_size (x1_nodeOut_d_bits_size), // @[MixedNode.scala:542:17]
.io_out_d_bits_source (x1_nodeOut_d_bits_source), // @[MixedNode.scala:542:17]
.io_out_d_bits_sink (x1_nodeOut_d_bits_sink), // @[MixedNode.scala:542:17]
.io_out_d_bits_denied (x1_nodeOut_d_bits_denied), // @[MixedNode.scala:542:17]
.io_out_d_bits_data (x1_nodeOut_d_bits_data), // @[MixedNode.scala:542:17]
.io_out_d_bits_corrupt (x1_nodeOut_d_bits_corrupt), // @[MixedNode.scala:542:17]
.io_out_e_valid (x1_nodeOut_e_valid),
.io_out_e_bits_sink (x1_nodeOut_e_bits_sink),
.io_req_ready (_inclusive_cache_bank_sched_1_io_req_ready),
.io_req_valid (_inclusive_cache_bank_sched_io_req_valid_T_1), // @[InclusiveCache.scala:172:41]
.io_req_bits_address (_ctrls_io_flush_req_bits[31:0]), // @[Parameters.scala:137:31]
.io_resp_valid (_inclusive_cache_bank_sched_1_io_resp_valid)
); // @[InclusiveCache.scala:137:29]
assign _nodeOut_a_bits_address_mux_matches_T_4 = _inclusive_cache_bank_sched_1_io_out_a_bits_address; // @[Parameters.scala:137:31]
assign _nodeIn_b_bits_address_mux_matches_T_4 = _inclusive_cache_bank_sched_1_io_in_b_bits_address; // @[Parameters.scala:137:31]
assign _nodeOut_c_bits_address_mux_matches_T_4 = _inclusive_cache_bank_sched_1_io_out_c_bits_address; // @[Parameters.scala:137:31]
InclusiveCacheBankScheduler_2 inclusive_cache_bank_sched_2 ( // @[InclusiveCache.scala:137:29]
.clock (clock),
.reset (reset),
.io_in_a_ready (nodeIn_2_a_ready),
.io_in_a_valid (nodeIn_2_a_valid), // @[MixedNode.scala:551:17]
.io_in_a_bits_opcode (nodeIn_2_a_bits_opcode), // @[MixedNode.scala:551:17]
.io_in_a_bits_param (nodeIn_2_a_bits_param), // @[MixedNode.scala:551:17]
.io_in_a_bits_size (nodeIn_2_a_bits_size), // @[MixedNode.scala:551:17]
.io_in_a_bits_source (nodeIn_2_a_bits_source), // @[MixedNode.scala:551:17]
.io_in_a_bits_address (nodeIn_2_a_bits_address), // @[MixedNode.scala:551:17]
.io_in_a_bits_mask (nodeIn_2_a_bits_mask), // @[MixedNode.scala:551:17]
.io_in_a_bits_data (nodeIn_2_a_bits_data), // @[MixedNode.scala:551:17]
.io_in_a_bits_corrupt (nodeIn_2_a_bits_corrupt), // @[MixedNode.scala:551:17]
.io_in_b_ready (nodeIn_2_b_ready), // @[MixedNode.scala:551:17]
.io_in_b_valid (nodeIn_2_b_valid),
.io_in_b_bits_param (nodeIn_2_b_bits_param),
.io_in_b_bits_address (_inclusive_cache_bank_sched_2_io_in_b_bits_address),
.io_in_c_ready (nodeIn_2_c_ready),
.io_in_c_valid (nodeIn_2_c_valid), // @[MixedNode.scala:551:17]
.io_in_c_bits_opcode (nodeIn_2_c_bits_opcode), // @[MixedNode.scala:551:17]
.io_in_c_bits_param (nodeIn_2_c_bits_param), // @[MixedNode.scala:551:17]
.io_in_c_bits_size (nodeIn_2_c_bits_size), // @[MixedNode.scala:551:17]
.io_in_c_bits_source (nodeIn_2_c_bits_source), // @[MixedNode.scala:551:17]
.io_in_c_bits_address (nodeIn_2_c_bits_address), // @[MixedNode.scala:551:17]
.io_in_c_bits_data (nodeIn_2_c_bits_data), // @[MixedNode.scala:551:17]
.io_in_c_bits_corrupt (nodeIn_2_c_bits_corrupt), // @[MixedNode.scala:551:17]
.io_in_d_ready (nodeIn_2_d_ready), // @[MixedNode.scala:551:17]
.io_in_d_valid (nodeIn_2_d_valid),
.io_in_d_bits_opcode (nodeIn_2_d_bits_opcode),
.io_in_d_bits_param (nodeIn_2_d_bits_param),
.io_in_d_bits_size (nodeIn_2_d_bits_size),
.io_in_d_bits_source (nodeIn_2_d_bits_source),
.io_in_d_bits_sink (nodeIn_2_d_bits_sink),
.io_in_d_bits_denied (nodeIn_2_d_bits_denied),
.io_in_d_bits_data (nodeIn_2_d_bits_data),
.io_in_d_bits_corrupt (nodeIn_2_d_bits_corrupt),
.io_in_e_valid (nodeIn_2_e_valid), // @[MixedNode.scala:551:17]
.io_in_e_bits_sink (nodeIn_2_e_bits_sink), // @[MixedNode.scala:551:17]
.io_out_a_ready (x1_nodeOut_1_a_ready), // @[MixedNode.scala:542:17]
.io_out_a_valid (x1_nodeOut_1_a_valid),
.io_out_a_bits_opcode (x1_nodeOut_1_a_bits_opcode),
.io_out_a_bits_param (x1_nodeOut_1_a_bits_param),
.io_out_a_bits_size (x1_nodeOut_1_a_bits_size),
.io_out_a_bits_source (x1_nodeOut_1_a_bits_source),
.io_out_a_bits_address (_inclusive_cache_bank_sched_2_io_out_a_bits_address),
.io_out_a_bits_mask (x1_nodeOut_1_a_bits_mask),
.io_out_a_bits_data (x1_nodeOut_1_a_bits_data),
.io_out_a_bits_corrupt (x1_nodeOut_1_a_bits_corrupt),
.io_out_c_ready (x1_nodeOut_1_c_ready), // @[MixedNode.scala:542:17]
.io_out_c_valid (x1_nodeOut_1_c_valid),
.io_out_c_bits_opcode (x1_nodeOut_1_c_bits_opcode),
.io_out_c_bits_param (x1_nodeOut_1_c_bits_param),
.io_out_c_bits_size (x1_nodeOut_1_c_bits_size),
.io_out_c_bits_source (x1_nodeOut_1_c_bits_source),
.io_out_c_bits_address (_inclusive_cache_bank_sched_2_io_out_c_bits_address),
.io_out_c_bits_data (x1_nodeOut_1_c_bits_data),
.io_out_c_bits_corrupt (x1_nodeOut_1_c_bits_corrupt),
.io_out_d_ready (x1_nodeOut_1_d_ready),
.io_out_d_valid (x1_nodeOut_1_d_valid), // @[MixedNode.scala:542:17]
.io_out_d_bits_opcode (x1_nodeOut_1_d_bits_opcode), // @[MixedNode.scala:542:17]
.io_out_d_bits_param (x1_nodeOut_1_d_bits_param), // @[MixedNode.scala:542:17]
.io_out_d_bits_size (x1_nodeOut_1_d_bits_size), // @[MixedNode.scala:542:17]
.io_out_d_bits_source (x1_nodeOut_1_d_bits_source), // @[MixedNode.scala:542:17]
.io_out_d_bits_sink (x1_nodeOut_1_d_bits_sink), // @[MixedNode.scala:542:17]
.io_out_d_bits_denied (x1_nodeOut_1_d_bits_denied), // @[MixedNode.scala:542:17]
.io_out_d_bits_data (x1_nodeOut_1_d_bits_data), // @[MixedNode.scala:542:17]
.io_out_d_bits_corrupt (x1_nodeOut_1_d_bits_corrupt), // @[MixedNode.scala:542:17]
.io_out_e_valid (x1_nodeOut_1_e_valid),
.io_out_e_bits_sink (x1_nodeOut_1_e_bits_sink),
.io_req_ready (_inclusive_cache_bank_sched_2_io_req_ready),
.io_req_valid (_inclusive_cache_bank_sched_io_req_valid_T_2), // @[InclusiveCache.scala:172:41]
.io_req_bits_address (_ctrls_io_flush_req_bits[31:0]), // @[Parameters.scala:137:31]
.io_resp_valid (_inclusive_cache_bank_sched_2_io_resp_valid)
); // @[InclusiveCache.scala:137:29]
assign _nodeOut_a_bits_address_mux_matches_T_8 = _inclusive_cache_bank_sched_2_io_out_a_bits_address; // @[Parameters.scala:137:31]
assign _nodeIn_b_bits_address_mux_matches_T_8 = _inclusive_cache_bank_sched_2_io_in_b_bits_address; // @[Parameters.scala:137:31]
assign _nodeOut_c_bits_address_mux_matches_T_8 = _inclusive_cache_bank_sched_2_io_out_c_bits_address; // @[Parameters.scala:137:31]
InclusiveCacheBankScheduler_3 inclusive_cache_bank_sched_3 ( // @[InclusiveCache.scala:137:29]
.clock (clock),
.reset (reset),
.io_in_a_ready (nodeIn_3_a_ready),
.io_in_a_valid (nodeIn_3_a_valid), // @[MixedNode.scala:551:17]
.io_in_a_bits_opcode (nodeIn_3_a_bits_opcode), // @[MixedNode.scala:551:17]
.io_in_a_bits_param (nodeIn_3_a_bits_param), // @[MixedNode.scala:551:17]
.io_in_a_bits_size (nodeIn_3_a_bits_size), // @[MixedNode.scala:551:17]
.io_in_a_bits_source (nodeIn_3_a_bits_source), // @[MixedNode.scala:551:17]
.io_in_a_bits_address (nodeIn_3_a_bits_address), // @[MixedNode.scala:551:17]
.io_in_a_bits_mask (nodeIn_3_a_bits_mask), // @[MixedNode.scala:551:17]
.io_in_a_bits_data (nodeIn_3_a_bits_data), // @[MixedNode.scala:551:17]
.io_in_a_bits_corrupt (nodeIn_3_a_bits_corrupt), // @[MixedNode.scala:551:17]
.io_in_b_ready (nodeIn_3_b_ready), // @[MixedNode.scala:551:17]
.io_in_b_valid (nodeIn_3_b_valid),
.io_in_b_bits_param (nodeIn_3_b_bits_param),
.io_in_b_bits_address (_inclusive_cache_bank_sched_3_io_in_b_bits_address),
.io_in_c_ready (nodeIn_3_c_ready),
.io_in_c_valid (nodeIn_3_c_valid), // @[MixedNode.scala:551:17]
.io_in_c_bits_opcode (nodeIn_3_c_bits_opcode), // @[MixedNode.scala:551:17]
.io_in_c_bits_param (nodeIn_3_c_bits_param), // @[MixedNode.scala:551:17]
.io_in_c_bits_size (nodeIn_3_c_bits_size), // @[MixedNode.scala:551:17]
.io_in_c_bits_source (nodeIn_3_c_bits_source), // @[MixedNode.scala:551:17]
.io_in_c_bits_address (nodeIn_3_c_bits_address), // @[MixedNode.scala:551:17]
.io_in_c_bits_data (nodeIn_3_c_bits_data), // @[MixedNode.scala:551:17]
.io_in_c_bits_corrupt (nodeIn_3_c_bits_corrupt), // @[MixedNode.scala:551:17]
.io_in_d_ready (nodeIn_3_d_ready), // @[MixedNode.scala:551:17]
.io_in_d_valid (nodeIn_3_d_valid),
.io_in_d_bits_opcode (nodeIn_3_d_bits_opcode),
.io_in_d_bits_param (nodeIn_3_d_bits_param),
.io_in_d_bits_size (nodeIn_3_d_bits_size),
.io_in_d_bits_source (nodeIn_3_d_bits_source),
.io_in_d_bits_sink (nodeIn_3_d_bits_sink),
.io_in_d_bits_denied (nodeIn_3_d_bits_denied),
.io_in_d_bits_data (nodeIn_3_d_bits_data),
.io_in_d_bits_corrupt (nodeIn_3_d_bits_corrupt),
.io_in_e_valid (nodeIn_3_e_valid), // @[MixedNode.scala:551:17]
.io_in_e_bits_sink (nodeIn_3_e_bits_sink), // @[MixedNode.scala:551:17]
.io_out_a_ready (x1_nodeOut_2_a_ready), // @[MixedNode.scala:542:17]
.io_out_a_valid (x1_nodeOut_2_a_valid),
.io_out_a_bits_opcode (x1_nodeOut_2_a_bits_opcode),
.io_out_a_bits_param (x1_nodeOut_2_a_bits_param),
.io_out_a_bits_size (x1_nodeOut_2_a_bits_size),
.io_out_a_bits_source (x1_nodeOut_2_a_bits_source),
.io_out_a_bits_address (_inclusive_cache_bank_sched_3_io_out_a_bits_address),
.io_out_a_bits_mask (x1_nodeOut_2_a_bits_mask),
.io_out_a_bits_data (x1_nodeOut_2_a_bits_data),
.io_out_a_bits_corrupt (x1_nodeOut_2_a_bits_corrupt),
.io_out_c_ready (x1_nodeOut_2_c_ready), // @[MixedNode.scala:542:17]
.io_out_c_valid (x1_nodeOut_2_c_valid),
.io_out_c_bits_opcode (x1_nodeOut_2_c_bits_opcode),
.io_out_c_bits_param (x1_nodeOut_2_c_bits_param),
.io_out_c_bits_size (x1_nodeOut_2_c_bits_size),
.io_out_c_bits_source (x1_nodeOut_2_c_bits_source),
.io_out_c_bits_address (_inclusive_cache_bank_sched_3_io_out_c_bits_address),
.io_out_c_bits_data (x1_nodeOut_2_c_bits_data),
.io_out_c_bits_corrupt (x1_nodeOut_2_c_bits_corrupt),
.io_out_d_ready (x1_nodeOut_2_d_ready),
.io_out_d_valid (x1_nodeOut_2_d_valid), // @[MixedNode.scala:542:17]
.io_out_d_bits_opcode (x1_nodeOut_2_d_bits_opcode), // @[MixedNode.scala:542:17]
.io_out_d_bits_param (x1_nodeOut_2_d_bits_param), // @[MixedNode.scala:542:17]
.io_out_d_bits_size (x1_nodeOut_2_d_bits_size), // @[MixedNode.scala:542:17]
.io_out_d_bits_source (x1_nodeOut_2_d_bits_source), // @[MixedNode.scala:542:17]
.io_out_d_bits_sink (x1_nodeOut_2_d_bits_sink), // @[MixedNode.scala:542:17]
.io_out_d_bits_denied (x1_nodeOut_2_d_bits_denied), // @[MixedNode.scala:542:17]
.io_out_d_bits_data (x1_nodeOut_2_d_bits_data), // @[MixedNode.scala:542:17]
.io_out_d_bits_corrupt (x1_nodeOut_2_d_bits_corrupt), // @[MixedNode.scala:542:17]
.io_out_e_valid (x1_nodeOut_2_e_valid),
.io_out_e_bits_sink (x1_nodeOut_2_e_bits_sink),
.io_req_ready (_inclusive_cache_bank_sched_3_io_req_ready),
.io_req_valid (_inclusive_cache_bank_sched_io_req_valid_T_3), // @[InclusiveCache.scala:172:41]
.io_req_bits_address (_ctrls_io_flush_req_bits[31:0]), // @[Parameters.scala:137:31]
.io_resp_valid (_inclusive_cache_bank_sched_3_io_resp_valid)
); // @[InclusiveCache.scala:137:29]
assign _nodeOut_a_bits_address_mux_matches_T_12 = _inclusive_cache_bank_sched_3_io_out_a_bits_address; // @[Parameters.scala:137:31]
assign _nodeIn_b_bits_address_mux_matches_T_12 = _inclusive_cache_bank_sched_3_io_in_b_bits_address; // @[Parameters.scala:137:31]
assign _nodeOut_c_bits_address_mux_matches_T_12 = _inclusive_cache_bank_sched_3_io_out_c_bits_address; // @[Parameters.scala:137:31]
InclusiveCacheBankScheduler_4 inclusive_cache_bank_sched_4 ( // @[InclusiveCache.scala:137:29]
.clock (clock),
.reset (reset),
.io_in_a_ready (nodeIn_4_a_ready),
.io_in_a_valid (nodeIn_4_a_valid), // @[MixedNode.scala:551:17]
.io_in_a_bits_opcode (nodeIn_4_a_bits_opcode), // @[MixedNode.scala:551:17]
.io_in_a_bits_param (nodeIn_4_a_bits_param), // @[MixedNode.scala:551:17]
.io_in_a_bits_size (nodeIn_4_a_bits_size), // @[MixedNode.scala:551:17]
.io_in_a_bits_source (nodeIn_4_a_bits_source), // @[MixedNode.scala:551:17]
.io_in_a_bits_address (nodeIn_4_a_bits_address), // @[MixedNode.scala:551:17]
.io_in_a_bits_mask (nodeIn_4_a_bits_mask), // @[MixedNode.scala:551:17]
.io_in_a_bits_data (nodeIn_4_a_bits_data), // @[MixedNode.scala:551:17]
.io_in_a_bits_corrupt (nodeIn_4_a_bits_corrupt), // @[MixedNode.scala:551:17]
.io_in_b_ready (nodeIn_4_b_ready), // @[MixedNode.scala:551:17]
.io_in_b_valid (nodeIn_4_b_valid),
.io_in_b_bits_param (nodeIn_4_b_bits_param),
.io_in_b_bits_address (_inclusive_cache_bank_sched_4_io_in_b_bits_address),
.io_in_c_ready (nodeIn_4_c_ready),
.io_in_c_valid (nodeIn_4_c_valid), // @[MixedNode.scala:551:17]
.io_in_c_bits_opcode (nodeIn_4_c_bits_opcode), // @[MixedNode.scala:551:17]
.io_in_c_bits_param (nodeIn_4_c_bits_param), // @[MixedNode.scala:551:17]
.io_in_c_bits_size (nodeIn_4_c_bits_size), // @[MixedNode.scala:551:17]
.io_in_c_bits_source (nodeIn_4_c_bits_source), // @[MixedNode.scala:551:17]
.io_in_c_bits_address (nodeIn_4_c_bits_address), // @[MixedNode.scala:551:17]
.io_in_c_bits_data (nodeIn_4_c_bits_data), // @[MixedNode.scala:551:17]
.io_in_c_bits_corrupt (nodeIn_4_c_bits_corrupt), // @[MixedNode.scala:551:17]
.io_in_d_ready (nodeIn_4_d_ready), // @[MixedNode.scala:551:17]
.io_in_d_valid (nodeIn_4_d_valid),
.io_in_d_bits_opcode (nodeIn_4_d_bits_opcode),
.io_in_d_bits_param (nodeIn_4_d_bits_param),
.io_in_d_bits_size (nodeIn_4_d_bits_size),
.io_in_d_bits_source (nodeIn_4_d_bits_source),
.io_in_d_bits_sink (nodeIn_4_d_bits_sink),
.io_in_d_bits_denied (nodeIn_4_d_bits_denied),
.io_in_d_bits_data (nodeIn_4_d_bits_data),
.io_in_d_bits_corrupt (nodeIn_4_d_bits_corrupt),
.io_in_e_valid (nodeIn_4_e_valid), // @[MixedNode.scala:551:17]
.io_in_e_bits_sink (nodeIn_4_e_bits_sink), // @[MixedNode.scala:551:17]
.io_out_a_ready (x1_nodeOut_3_a_ready), // @[MixedNode.scala:542:17]
.io_out_a_valid (x1_nodeOut_3_a_valid),
.io_out_a_bits_opcode (x1_nodeOut_3_a_bits_opcode),
.io_out_a_bits_param (x1_nodeOut_3_a_bits_param),
.io_out_a_bits_size (x1_nodeOut_3_a_bits_size),
.io_out_a_bits_source (x1_nodeOut_3_a_bits_source),
.io_out_a_bits_address (_inclusive_cache_bank_sched_4_io_out_a_bits_address),
.io_out_a_bits_mask (x1_nodeOut_3_a_bits_mask),
.io_out_a_bits_data (x1_nodeOut_3_a_bits_data),
.io_out_a_bits_corrupt (x1_nodeOut_3_a_bits_corrupt),
.io_out_c_ready (x1_nodeOut_3_c_ready), // @[MixedNode.scala:542:17]
.io_out_c_valid (x1_nodeOut_3_c_valid),
.io_out_c_bits_opcode (x1_nodeOut_3_c_bits_opcode),
.io_out_c_bits_param (x1_nodeOut_3_c_bits_param),
.io_out_c_bits_size (x1_nodeOut_3_c_bits_size),
.io_out_c_bits_source (x1_nodeOut_3_c_bits_source),
.io_out_c_bits_address (_inclusive_cache_bank_sched_4_io_out_c_bits_address),
.io_out_c_bits_data (x1_nodeOut_3_c_bits_data),
.io_out_c_bits_corrupt (x1_nodeOut_3_c_bits_corrupt),
.io_out_d_ready (x1_nodeOut_3_d_ready),
.io_out_d_valid (x1_nodeOut_3_d_valid), // @[MixedNode.scala:542:17]
.io_out_d_bits_opcode (x1_nodeOut_3_d_bits_opcode), // @[MixedNode.scala:542:17]
.io_out_d_bits_param (x1_nodeOut_3_d_bits_param), // @[MixedNode.scala:542:17]
.io_out_d_bits_size (x1_nodeOut_3_d_bits_size), // @[MixedNode.scala:542:17]
.io_out_d_bits_source (x1_nodeOut_3_d_bits_source), // @[MixedNode.scala:542:17]
.io_out_d_bits_sink (x1_nodeOut_3_d_bits_sink), // @[MixedNode.scala:542:17]
.io_out_d_bits_denied (x1_nodeOut_3_d_bits_denied), // @[MixedNode.scala:542:17]
.io_out_d_bits_data (x1_nodeOut_3_d_bits_data), // @[MixedNode.scala:542:17]
.io_out_d_bits_corrupt (x1_nodeOut_3_d_bits_corrupt), // @[MixedNode.scala:542:17]
.io_out_e_valid (x1_nodeOut_3_e_valid),
.io_out_e_bits_sink (x1_nodeOut_3_e_bits_sink),
.io_req_ready (_inclusive_cache_bank_sched_4_io_req_ready),
.io_req_valid (_inclusive_cache_bank_sched_io_req_valid_T_4), // @[InclusiveCache.scala:172:41]
.io_req_bits_address (_ctrls_io_flush_req_bits[31:0]), // @[Parameters.scala:137:31]
.io_resp_valid (_inclusive_cache_bank_sched_4_io_resp_valid)
); // @[InclusiveCache.scala:137:29]
assign _nodeOut_a_bits_address_mux_matches_T_16 = _inclusive_cache_bank_sched_4_io_out_a_bits_address; // @[Parameters.scala:137:31]
assign _nodeIn_b_bits_address_mux_matches_T_16 = _inclusive_cache_bank_sched_4_io_in_b_bits_address; // @[Parameters.scala:137:31]
assign _nodeOut_c_bits_address_mux_matches_T_16 = _inclusive_cache_bank_sched_4_io_out_c_bits_address; // @[Parameters.scala:137:31]
InclusiveCacheBankScheduler_5 inclusive_cache_bank_sched_5 ( // @[InclusiveCache.scala:137:29]
.clock (clock),
.reset (reset),
.io_in_a_ready (nodeIn_5_a_ready),
.io_in_a_valid (nodeIn_5_a_valid), // @[MixedNode.scala:551:17]
.io_in_a_bits_opcode (nodeIn_5_a_bits_opcode), // @[MixedNode.scala:551:17]
.io_in_a_bits_param (nodeIn_5_a_bits_param), // @[MixedNode.scala:551:17]
.io_in_a_bits_size (nodeIn_5_a_bits_size), // @[MixedNode.scala:551:17]
.io_in_a_bits_source (nodeIn_5_a_bits_source), // @[MixedNode.scala:551:17]
.io_in_a_bits_address (nodeIn_5_a_bits_address), // @[MixedNode.scala:551:17]
.io_in_a_bits_mask (nodeIn_5_a_bits_mask), // @[MixedNode.scala:551:17]
.io_in_a_bits_data (nodeIn_5_a_bits_data), // @[MixedNode.scala:551:17]
.io_in_a_bits_corrupt (nodeIn_5_a_bits_corrupt), // @[MixedNode.scala:551:17]
.io_in_b_ready (nodeIn_5_b_ready), // @[MixedNode.scala:551:17]
.io_in_b_valid (nodeIn_5_b_valid),
.io_in_b_bits_param (nodeIn_5_b_bits_param),
.io_in_b_bits_address (_inclusive_cache_bank_sched_5_io_in_b_bits_address),
.io_in_c_ready (nodeIn_5_c_ready),
.io_in_c_valid (nodeIn_5_c_valid), // @[MixedNode.scala:551:17]
.io_in_c_bits_opcode (nodeIn_5_c_bits_opcode), // @[MixedNode.scala:551:17]
.io_in_c_bits_param (nodeIn_5_c_bits_param), // @[MixedNode.scala:551:17]
.io_in_c_bits_size (nodeIn_5_c_bits_size), // @[MixedNode.scala:551:17]
.io_in_c_bits_source (nodeIn_5_c_bits_source), // @[MixedNode.scala:551:17]
.io_in_c_bits_address (nodeIn_5_c_bits_address), // @[MixedNode.scala:551:17]
.io_in_c_bits_data (nodeIn_5_c_bits_data), // @[MixedNode.scala:551:17]
.io_in_c_bits_corrupt (nodeIn_5_c_bits_corrupt), // @[MixedNode.scala:551:17]
.io_in_d_ready (nodeIn_5_d_ready), // @[MixedNode.scala:551:17]
.io_in_d_valid (nodeIn_5_d_valid),
.io_in_d_bits_opcode (nodeIn_5_d_bits_opcode),
.io_in_d_bits_param (nodeIn_5_d_bits_param),
.io_in_d_bits_size (nodeIn_5_d_bits_size),
.io_in_d_bits_source (nodeIn_5_d_bits_source),
.io_in_d_bits_sink (nodeIn_5_d_bits_sink),
.io_in_d_bits_denied (nodeIn_5_d_bits_denied),
.io_in_d_bits_data (nodeIn_5_d_bits_data),
.io_in_d_bits_corrupt (nodeIn_5_d_bits_corrupt),
.io_in_e_valid (nodeIn_5_e_valid), // @[MixedNode.scala:551:17]
.io_in_e_bits_sink (nodeIn_5_e_bits_sink), // @[MixedNode.scala:551:17]
.io_out_a_ready (x1_nodeOut_4_a_ready), // @[MixedNode.scala:542:17]
.io_out_a_valid (x1_nodeOut_4_a_valid),
.io_out_a_bits_opcode (x1_nodeOut_4_a_bits_opcode),
.io_out_a_bits_param (x1_nodeOut_4_a_bits_param),
.io_out_a_bits_size (x1_nodeOut_4_a_bits_size),
.io_out_a_bits_source (x1_nodeOut_4_a_bits_source),
.io_out_a_bits_address (_inclusive_cache_bank_sched_5_io_out_a_bits_address),
.io_out_a_bits_mask (x1_nodeOut_4_a_bits_mask),
.io_out_a_bits_data (x1_nodeOut_4_a_bits_data),
.io_out_a_bits_corrupt (x1_nodeOut_4_a_bits_corrupt),
.io_out_c_ready (x1_nodeOut_4_c_ready), // @[MixedNode.scala:542:17]
.io_out_c_valid (x1_nodeOut_4_c_valid),
.io_out_c_bits_opcode (x1_nodeOut_4_c_bits_opcode),
.io_out_c_bits_param (x1_nodeOut_4_c_bits_param),
.io_out_c_bits_size (x1_nodeOut_4_c_bits_size),
.io_out_c_bits_source (x1_nodeOut_4_c_bits_source),
.io_out_c_bits_address (_inclusive_cache_bank_sched_5_io_out_c_bits_address),
.io_out_c_bits_data (x1_nodeOut_4_c_bits_data),
.io_out_c_bits_corrupt (x1_nodeOut_4_c_bits_corrupt),
.io_out_d_ready (x1_nodeOut_4_d_ready),
.io_out_d_valid (x1_nodeOut_4_d_valid), // @[MixedNode.scala:542:17]
.io_out_d_bits_opcode (x1_nodeOut_4_d_bits_opcode), // @[MixedNode.scala:542:17]
.io_out_d_bits_param (x1_nodeOut_4_d_bits_param), // @[MixedNode.scala:542:17]
.io_out_d_bits_size (x1_nodeOut_4_d_bits_size), // @[MixedNode.scala:542:17]
.io_out_d_bits_source (x1_nodeOut_4_d_bits_source), // @[MixedNode.scala:542:17]
.io_out_d_bits_sink (x1_nodeOut_4_d_bits_sink), // @[MixedNode.scala:542:17]
.io_out_d_bits_denied (x1_nodeOut_4_d_bits_denied), // @[MixedNode.scala:542:17]
.io_out_d_bits_data (x1_nodeOut_4_d_bits_data), // @[MixedNode.scala:542:17]
.io_out_d_bits_corrupt (x1_nodeOut_4_d_bits_corrupt), // @[MixedNode.scala:542:17]
.io_out_e_valid (x1_nodeOut_4_e_valid),
.io_out_e_bits_sink (x1_nodeOut_4_e_bits_sink),
.io_req_ready (_inclusive_cache_bank_sched_5_io_req_ready),
.io_req_valid (_inclusive_cache_bank_sched_io_req_valid_T_5), // @[InclusiveCache.scala:172:41]
.io_req_bits_address (_ctrls_io_flush_req_bits[31:0]), // @[Parameters.scala:137:31]
.io_resp_valid (_inclusive_cache_bank_sched_5_io_resp_valid)
); // @[InclusiveCache.scala:137:29]
assign _nodeOut_a_bits_address_mux_matches_T_20 = _inclusive_cache_bank_sched_5_io_out_a_bits_address; // @[Parameters.scala:137:31]
assign _nodeIn_b_bits_address_mux_matches_T_20 = _inclusive_cache_bank_sched_5_io_in_b_bits_address; // @[Parameters.scala:137:31]
assign _nodeOut_c_bits_address_mux_matches_T_20 = _inclusive_cache_bank_sched_5_io_out_c_bits_address; // @[Parameters.scala:137:31]
InclusiveCacheBankScheduler_6 inclusive_cache_bank_sched_6 ( // @[InclusiveCache.scala:137:29]
.clock (clock),
.reset (reset),
.io_in_a_ready (nodeIn_6_a_ready),
.io_in_a_valid (nodeIn_6_a_valid), // @[MixedNode.scala:551:17]
.io_in_a_bits_opcode (nodeIn_6_a_bits_opcode), // @[MixedNode.scala:551:17]
.io_in_a_bits_param (nodeIn_6_a_bits_param), // @[MixedNode.scala:551:17]
.io_in_a_bits_size (nodeIn_6_a_bits_size), // @[MixedNode.scala:551:17]
.io_in_a_bits_source (nodeIn_6_a_bits_source), // @[MixedNode.scala:551:17]
.io_in_a_bits_address (nodeIn_6_a_bits_address), // @[MixedNode.scala:551:17]
.io_in_a_bits_mask (nodeIn_6_a_bits_mask), // @[MixedNode.scala:551:17]
.io_in_a_bits_data (nodeIn_6_a_bits_data), // @[MixedNode.scala:551:17]
.io_in_a_bits_corrupt (nodeIn_6_a_bits_corrupt), // @[MixedNode.scala:551:17]
.io_in_b_ready (nodeIn_6_b_ready), // @[MixedNode.scala:551:17]
.io_in_b_valid (nodeIn_6_b_valid),
.io_in_b_bits_param (nodeIn_6_b_bits_param),
.io_in_b_bits_address (_inclusive_cache_bank_sched_6_io_in_b_bits_address),
.io_in_c_ready (nodeIn_6_c_ready),
.io_in_c_valid (nodeIn_6_c_valid), // @[MixedNode.scala:551:17]
.io_in_c_bits_opcode (nodeIn_6_c_bits_opcode), // @[MixedNode.scala:551:17]
.io_in_c_bits_param (nodeIn_6_c_bits_param), // @[MixedNode.scala:551:17]
.io_in_c_bits_size (nodeIn_6_c_bits_size), // @[MixedNode.scala:551:17]
.io_in_c_bits_source (nodeIn_6_c_bits_source), // @[MixedNode.scala:551:17]
.io_in_c_bits_address (nodeIn_6_c_bits_address), // @[MixedNode.scala:551:17]
.io_in_c_bits_data (nodeIn_6_c_bits_data), // @[MixedNode.scala:551:17]
.io_in_c_bits_corrupt (nodeIn_6_c_bits_corrupt), // @[MixedNode.scala:551:17]
.io_in_d_ready (nodeIn_6_d_ready), // @[MixedNode.scala:551:17]
.io_in_d_valid (nodeIn_6_d_valid),
.io_in_d_bits_opcode (nodeIn_6_d_bits_opcode),
.io_in_d_bits_param (nodeIn_6_d_bits_param),
.io_in_d_bits_size (nodeIn_6_d_bits_size),
.io_in_d_bits_source (nodeIn_6_d_bits_source),
.io_in_d_bits_sink (nodeIn_6_d_bits_sink),
.io_in_d_bits_denied (nodeIn_6_d_bits_denied),
.io_in_d_bits_data (nodeIn_6_d_bits_data),
.io_in_d_bits_corrupt (nodeIn_6_d_bits_corrupt),
.io_in_e_valid (nodeIn_6_e_valid), // @[MixedNode.scala:551:17]
.io_in_e_bits_sink (nodeIn_6_e_bits_sink), // @[MixedNode.scala:551:17]
.io_out_a_ready (x1_nodeOut_5_a_ready), // @[MixedNode.scala:542:17]
.io_out_a_valid (x1_nodeOut_5_a_valid),
.io_out_a_bits_opcode (x1_nodeOut_5_a_bits_opcode),
.io_out_a_bits_param (x1_nodeOut_5_a_bits_param),
.io_out_a_bits_size (x1_nodeOut_5_a_bits_size),
.io_out_a_bits_source (x1_nodeOut_5_a_bits_source),
.io_out_a_bits_address (_inclusive_cache_bank_sched_6_io_out_a_bits_address),
.io_out_a_bits_mask (x1_nodeOut_5_a_bits_mask),
.io_out_a_bits_data (x1_nodeOut_5_a_bits_data),
.io_out_a_bits_corrupt (x1_nodeOut_5_a_bits_corrupt),
.io_out_c_ready (x1_nodeOut_5_c_ready), // @[MixedNode.scala:542:17]
.io_out_c_valid (x1_nodeOut_5_c_valid),
.io_out_c_bits_opcode (x1_nodeOut_5_c_bits_opcode),
.io_out_c_bits_param (x1_nodeOut_5_c_bits_param),
.io_out_c_bits_size (x1_nodeOut_5_c_bits_size),
.io_out_c_bits_source (x1_nodeOut_5_c_bits_source),
.io_out_c_bits_address (_inclusive_cache_bank_sched_6_io_out_c_bits_address),
.io_out_c_bits_data (x1_nodeOut_5_c_bits_data),
.io_out_c_bits_corrupt (x1_nodeOut_5_c_bits_corrupt),
.io_out_d_ready (x1_nodeOut_5_d_ready),
.io_out_d_valid (x1_nodeOut_5_d_valid), // @[MixedNode.scala:542:17]
.io_out_d_bits_opcode (x1_nodeOut_5_d_bits_opcode), // @[MixedNode.scala:542:17]
.io_out_d_bits_param (x1_nodeOut_5_d_bits_param), // @[MixedNode.scala:542:17]
.io_out_d_bits_size (x1_nodeOut_5_d_bits_size), // @[MixedNode.scala:542:17]
.io_out_d_bits_source (x1_nodeOut_5_d_bits_source), // @[MixedNode.scala:542:17]
.io_out_d_bits_sink (x1_nodeOut_5_d_bits_sink), // @[MixedNode.scala:542:17]
.io_out_d_bits_denied (x1_nodeOut_5_d_bits_denied), // @[MixedNode.scala:542:17]
.io_out_d_bits_data (x1_nodeOut_5_d_bits_data), // @[MixedNode.scala:542:17]
.io_out_d_bits_corrupt (x1_nodeOut_5_d_bits_corrupt), // @[MixedNode.scala:542:17]
.io_out_e_valid (x1_nodeOut_5_e_valid),
.io_out_e_bits_sink (x1_nodeOut_5_e_bits_sink),
.io_req_ready (_inclusive_cache_bank_sched_6_io_req_ready),
.io_req_valid (_inclusive_cache_bank_sched_io_req_valid_T_6), // @[InclusiveCache.scala:172:41]
.io_req_bits_address (_ctrls_io_flush_req_bits[31:0]), // @[Parameters.scala:137:31]
.io_resp_valid (_inclusive_cache_bank_sched_6_io_resp_valid)
); // @[InclusiveCache.scala:137:29]
assign _nodeOut_a_bits_address_mux_matches_T_24 = _inclusive_cache_bank_sched_6_io_out_a_bits_address; // @[Parameters.scala:137:31]
assign _nodeIn_b_bits_address_mux_matches_T_24 = _inclusive_cache_bank_sched_6_io_in_b_bits_address; // @[Parameters.scala:137:31]
assign _nodeOut_c_bits_address_mux_matches_T_24 = _inclusive_cache_bank_sched_6_io_out_c_bits_address; // @[Parameters.scala:137:31]
InclusiveCacheBankScheduler_7 inclusive_cache_bank_sched_7 ( // @[InclusiveCache.scala:137:29]
.clock (clock),
.reset (reset),
.io_in_a_ready (nodeIn_7_a_ready),
.io_in_a_valid (nodeIn_7_a_valid), // @[MixedNode.scala:551:17]
.io_in_a_bits_opcode (nodeIn_7_a_bits_opcode), // @[MixedNode.scala:551:17]
.io_in_a_bits_param (nodeIn_7_a_bits_param), // @[MixedNode.scala:551:17]
.io_in_a_bits_size (nodeIn_7_a_bits_size), // @[MixedNode.scala:551:17]
.io_in_a_bits_source (nodeIn_7_a_bits_source), // @[MixedNode.scala:551:17]
.io_in_a_bits_address (nodeIn_7_a_bits_address), // @[MixedNode.scala:551:17]
.io_in_a_bits_mask (nodeIn_7_a_bits_mask), // @[MixedNode.scala:551:17]
.io_in_a_bits_data (nodeIn_7_a_bits_data), // @[MixedNode.scala:551:17]
.io_in_a_bits_corrupt (nodeIn_7_a_bits_corrupt), // @[MixedNode.scala:551:17]
.io_in_b_ready (nodeIn_7_b_ready), // @[MixedNode.scala:551:17]
.io_in_b_valid (nodeIn_7_b_valid),
.io_in_b_bits_param (nodeIn_7_b_bits_param),
.io_in_b_bits_address (_inclusive_cache_bank_sched_7_io_in_b_bits_address),
.io_in_c_ready (nodeIn_7_c_ready),
.io_in_c_valid (nodeIn_7_c_valid), // @[MixedNode.scala:551:17]
.io_in_c_bits_opcode (nodeIn_7_c_bits_opcode), // @[MixedNode.scala:551:17]
.io_in_c_bits_param (nodeIn_7_c_bits_param), // @[MixedNode.scala:551:17]
.io_in_c_bits_size (nodeIn_7_c_bits_size), // @[MixedNode.scala:551:17]
.io_in_c_bits_source (nodeIn_7_c_bits_source), // @[MixedNode.scala:551:17]
.io_in_c_bits_address (nodeIn_7_c_bits_address), // @[MixedNode.scala:551:17]
.io_in_c_bits_data (nodeIn_7_c_bits_data), // @[MixedNode.scala:551:17]
.io_in_c_bits_corrupt (nodeIn_7_c_bits_corrupt), // @[MixedNode.scala:551:17]
.io_in_d_ready (nodeIn_7_d_ready), // @[MixedNode.scala:551:17]
.io_in_d_valid (nodeIn_7_d_valid),
.io_in_d_bits_opcode (nodeIn_7_d_bits_opcode),
.io_in_d_bits_param (nodeIn_7_d_bits_param),
.io_in_d_bits_size (nodeIn_7_d_bits_size),
.io_in_d_bits_source (nodeIn_7_d_bits_source),
.io_in_d_bits_sink (nodeIn_7_d_bits_sink),
.io_in_d_bits_denied (nodeIn_7_d_bits_denied),
.io_in_d_bits_data (nodeIn_7_d_bits_data),
.io_in_d_bits_corrupt (nodeIn_7_d_bits_corrupt),
.io_in_e_valid (nodeIn_7_e_valid), // @[MixedNode.scala:551:17]
.io_in_e_bits_sink (nodeIn_7_e_bits_sink), // @[MixedNode.scala:551:17]
.io_out_a_ready (x1_nodeOut_6_a_ready), // @[MixedNode.scala:542:17]
.io_out_a_valid (x1_nodeOut_6_a_valid),
.io_out_a_bits_opcode (x1_nodeOut_6_a_bits_opcode),
.io_out_a_bits_param (x1_nodeOut_6_a_bits_param),
.io_out_a_bits_size (x1_nodeOut_6_a_bits_size),
.io_out_a_bits_source (x1_nodeOut_6_a_bits_source),
.io_out_a_bits_address (_inclusive_cache_bank_sched_7_io_out_a_bits_address),
.io_out_a_bits_mask (x1_nodeOut_6_a_bits_mask),
.io_out_a_bits_data (x1_nodeOut_6_a_bits_data),
.io_out_a_bits_corrupt (x1_nodeOut_6_a_bits_corrupt),
.io_out_c_ready (x1_nodeOut_6_c_ready), // @[MixedNode.scala:542:17]
.io_out_c_valid (x1_nodeOut_6_c_valid),
.io_out_c_bits_opcode (x1_nodeOut_6_c_bits_opcode),
.io_out_c_bits_param (x1_nodeOut_6_c_bits_param),
.io_out_c_bits_size (x1_nodeOut_6_c_bits_size),
.io_out_c_bits_source (x1_nodeOut_6_c_bits_source),
.io_out_c_bits_address (_inclusive_cache_bank_sched_7_io_out_c_bits_address),
.io_out_c_bits_data (x1_nodeOut_6_c_bits_data),
.io_out_c_bits_corrupt (x1_nodeOut_6_c_bits_corrupt),
.io_out_d_ready (x1_nodeOut_6_d_ready),
.io_out_d_valid (x1_nodeOut_6_d_valid), // @[MixedNode.scala:542:17]
.io_out_d_bits_opcode (x1_nodeOut_6_d_bits_opcode), // @[MixedNode.scala:542:17]
.io_out_d_bits_param (x1_nodeOut_6_d_bits_param), // @[MixedNode.scala:542:17]
.io_out_d_bits_size (x1_nodeOut_6_d_bits_size), // @[MixedNode.scala:542:17]
.io_out_d_bits_source (x1_nodeOut_6_d_bits_source), // @[MixedNode.scala:542:17]
.io_out_d_bits_sink (x1_nodeOut_6_d_bits_sink), // @[MixedNode.scala:542:17]
.io_out_d_bits_denied (x1_nodeOut_6_d_bits_denied), // @[MixedNode.scala:542:17]
.io_out_d_bits_data (x1_nodeOut_6_d_bits_data), // @[MixedNode.scala:542:17]
.io_out_d_bits_corrupt (x1_nodeOut_6_d_bits_corrupt), // @[MixedNode.scala:542:17]
.io_out_e_valid (x1_nodeOut_6_e_valid),
.io_out_e_bits_sink (x1_nodeOut_6_e_bits_sink),
.io_req_ready (_inclusive_cache_bank_sched_7_io_req_ready),
.io_req_valid (_inclusive_cache_bank_sched_io_req_valid_T_7), // @[InclusiveCache.scala:172:41]
.io_req_bits_address (_ctrls_io_flush_req_bits[31:0]), // @[Parameters.scala:137:31]
.io_resp_valid (_inclusive_cache_bank_sched_7_io_resp_valid)
); // @[InclusiveCache.scala:137:29]
assign _nodeOut_a_bits_address_mux_matches_T_28 = _inclusive_cache_bank_sched_7_io_out_a_bits_address; // @[Parameters.scala:137:31]
assign _nodeIn_b_bits_address_mux_matches_T_28 = _inclusive_cache_bank_sched_7_io_in_b_bits_address; // @[Parameters.scala:137:31]
assign _nodeOut_c_bits_address_mux_matches_T_28 = _inclusive_cache_bank_sched_7_io_out_c_bits_address; // @[Parameters.scala:137:31]
assign auto_ctrls_ctrl_in_a_ready = auto_ctrls_ctrl_in_a_ready_0; // @[InclusiveCache.scala:108:9]
assign auto_ctrls_ctrl_in_d_valid = auto_ctrls_ctrl_in_d_valid_0; // @[InclusiveCache.scala:108:9]
assign auto_ctrls_ctrl_in_d_bits_opcode = auto_ctrls_ctrl_in_d_bits_opcode_0; // @[InclusiveCache.scala:108:9]
assign auto_ctrls_ctrl_in_d_bits_size = auto_ctrls_ctrl_in_d_bits_size_0; // @[InclusiveCache.scala:108:9]
assign auto_ctrls_ctrl_in_d_bits_source = auto_ctrls_ctrl_in_d_bits_source_0; // @[InclusiveCache.scala:108:9]
assign auto_ctrls_ctrl_in_d_bits_data = auto_ctrls_ctrl_in_d_bits_data_0; // @[InclusiveCache.scala:108:9]
assign auto_in_7_a_ready = auto_in_7_a_ready_0; // @[InclusiveCache.scala:108:9]
assign auto_in_7_b_valid = auto_in_7_b_valid_0; // @[InclusiveCache.scala:108:9]
assign auto_in_7_b_bits_param = auto_in_7_b_bits_param_0; // @[InclusiveCache.scala:108:9]
assign auto_in_7_b_bits_address = auto_in_7_b_bits_address_0; // @[InclusiveCache.scala:108:9]
assign auto_in_7_c_ready = auto_in_7_c_ready_0; // @[InclusiveCache.scala:108:9]
assign auto_in_7_d_valid = auto_in_7_d_valid_0; // @[InclusiveCache.scala:108:9]
assign auto_in_7_d_bits_opcode = auto_in_7_d_bits_opcode_0; // @[InclusiveCache.scala:108:9]
assign auto_in_7_d_bits_param = auto_in_7_d_bits_param_0; // @[InclusiveCache.scala:108:9]
assign auto_in_7_d_bits_size = auto_in_7_d_bits_size_0; // @[InclusiveCache.scala:108:9]
assign auto_in_7_d_bits_source = auto_in_7_d_bits_source_0; // @[InclusiveCache.scala:108:9]
assign auto_in_7_d_bits_sink = auto_in_7_d_bits_sink_0; // @[InclusiveCache.scala:108:9]
assign auto_in_7_d_bits_denied = auto_in_7_d_bits_denied_0; // @[InclusiveCache.scala:108:9]
assign auto_in_7_d_bits_data = auto_in_7_d_bits_data_0; // @[InclusiveCache.scala:108:9]
assign auto_in_7_d_bits_corrupt = auto_in_7_d_bits_corrupt_0; // @[InclusiveCache.scala:108:9]
assign auto_in_6_a_ready = auto_in_6_a_ready_0; // @[InclusiveCache.scala:108:9]
assign auto_in_6_b_valid = auto_in_6_b_valid_0; // @[InclusiveCache.scala:108:9]
assign auto_in_6_b_bits_param = auto_in_6_b_bits_param_0; // @[InclusiveCache.scala:108:9]
assign auto_in_6_b_bits_address = auto_in_6_b_bits_address_0; // @[InclusiveCache.scala:108:9]
assign auto_in_6_c_ready = auto_in_6_c_ready_0; // @[InclusiveCache.scala:108:9]
assign auto_in_6_d_valid = auto_in_6_d_valid_0; // @[InclusiveCache.scala:108:9]
assign auto_in_6_d_bits_opcode = auto_in_6_d_bits_opcode_0; // @[InclusiveCache.scala:108:9]
assign auto_in_6_d_bits_param = auto_in_6_d_bits_param_0; // @[InclusiveCache.scala:108:9]
assign auto_in_6_d_bits_size = auto_in_6_d_bits_size_0; // @[InclusiveCache.scala:108:9]
assign auto_in_6_d_bits_source = auto_in_6_d_bits_source_0; // @[InclusiveCache.scala:108:9]
assign auto_in_6_d_bits_sink = auto_in_6_d_bits_sink_0; // @[InclusiveCache.scala:108:9]
assign auto_in_6_d_bits_denied = auto_in_6_d_bits_denied_0; // @[InclusiveCache.scala:108:9]
assign auto_in_6_d_bits_data = auto_in_6_d_bits_data_0; // @[InclusiveCache.scala:108:9]
assign auto_in_6_d_bits_corrupt = auto_in_6_d_bits_corrupt_0; // @[InclusiveCache.scala:108:9]
assign auto_in_5_a_ready = auto_in_5_a_ready_0; // @[InclusiveCache.scala:108:9]
assign auto_in_5_b_valid = auto_in_5_b_valid_0; // @[InclusiveCache.scala:108:9]
assign auto_in_5_b_bits_param = auto_in_5_b_bits_param_0; // @[InclusiveCache.scala:108:9]
assign auto_in_5_b_bits_address = auto_in_5_b_bits_address_0; // @[InclusiveCache.scala:108:9]
assign auto_in_5_c_ready = auto_in_5_c_ready_0; // @[InclusiveCache.scala:108:9]
assign auto_in_5_d_valid = auto_in_5_d_valid_0; // @[InclusiveCache.scala:108:9]
assign auto_in_5_d_bits_opcode = auto_in_5_d_bits_opcode_0; // @[InclusiveCache.scala:108:9]
assign auto_in_5_d_bits_param = auto_in_5_d_bits_param_0; // @[InclusiveCache.scala:108:9]
assign auto_in_5_d_bits_size = auto_in_5_d_bits_size_0; // @[InclusiveCache.scala:108:9]
assign auto_in_5_d_bits_source = auto_in_5_d_bits_source_0; // @[InclusiveCache.scala:108:9]
assign auto_in_5_d_bits_sink = auto_in_5_d_bits_sink_0; // @[InclusiveCache.scala:108:9]
assign auto_in_5_d_bits_denied = auto_in_5_d_bits_denied_0; // @[InclusiveCache.scala:108:9]
assign auto_in_5_d_bits_data = auto_in_5_d_bits_data_0; // @[InclusiveCache.scala:108:9]
assign auto_in_5_d_bits_corrupt = auto_in_5_d_bits_corrupt_0; // @[InclusiveCache.scala:108:9]
assign auto_in_4_a_ready = auto_in_4_a_ready_0; // @[InclusiveCache.scala:108:9]
assign auto_in_4_b_valid = auto_in_4_b_valid_0; // @[InclusiveCache.scala:108:9]
assign auto_in_4_b_bits_param = auto_in_4_b_bits_param_0; // @[InclusiveCache.scala:108:9]
assign auto_in_4_b_bits_address = auto_in_4_b_bits_address_0; // @[InclusiveCache.scala:108:9]
assign auto_in_4_c_ready = auto_in_4_c_ready_0; // @[InclusiveCache.scala:108:9]
assign auto_in_4_d_valid = auto_in_4_d_valid_0; // @[InclusiveCache.scala:108:9]
assign auto_in_4_d_bits_opcode = auto_in_4_d_bits_opcode_0; // @[InclusiveCache.scala:108:9]
assign auto_in_4_d_bits_param = auto_in_4_d_bits_param_0; // @[InclusiveCache.scala:108:9]
assign auto_in_4_d_bits_size = auto_in_4_d_bits_size_0; // @[InclusiveCache.scala:108:9]
assign auto_in_4_d_bits_source = auto_in_4_d_bits_source_0; // @[InclusiveCache.scala:108:9]
assign auto_in_4_d_bits_sink = auto_in_4_d_bits_sink_0; // @[InclusiveCache.scala:108:9]
assign auto_in_4_d_bits_denied = auto_in_4_d_bits_denied_0; // @[InclusiveCache.scala:108:9]
assign auto_in_4_d_bits_data = auto_in_4_d_bits_data_0; // @[InclusiveCache.scala:108:9]
assign auto_in_4_d_bits_corrupt = auto_in_4_d_bits_corrupt_0; // @[InclusiveCache.scala:108:9]
assign auto_in_3_a_ready = auto_in_3_a_ready_0; // @[InclusiveCache.scala:108:9]
assign auto_in_3_b_valid = auto_in_3_b_valid_0; // @[InclusiveCache.scala:108:9]
assign auto_in_3_b_bits_param = auto_in_3_b_bits_param_0; // @[InclusiveCache.scala:108:9]
assign auto_in_3_b_bits_address = auto_in_3_b_bits_address_0; // @[InclusiveCache.scala:108:9]
assign auto_in_3_c_ready = auto_in_3_c_ready_0; // @[InclusiveCache.scala:108:9]
assign auto_in_3_d_valid = auto_in_3_d_valid_0; // @[InclusiveCache.scala:108:9]
assign auto_in_3_d_bits_opcode = auto_in_3_d_bits_opcode_0; // @[InclusiveCache.scala:108:9]
assign auto_in_3_d_bits_param = auto_in_3_d_bits_param_0; // @[InclusiveCache.scala:108:9]
assign auto_in_3_d_bits_size = auto_in_3_d_bits_size_0; // @[InclusiveCache.scala:108:9]
assign auto_in_3_d_bits_source = auto_in_3_d_bits_source_0; // @[InclusiveCache.scala:108:9]
assign auto_in_3_d_bits_sink = auto_in_3_d_bits_sink_0; // @[InclusiveCache.scala:108:9]
assign auto_in_3_d_bits_denied = auto_in_3_d_bits_denied_0; // @[InclusiveCache.scala:108:9]
assign auto_in_3_d_bits_data = auto_in_3_d_bits_data_0; // @[InclusiveCache.scala:108:9]
assign auto_in_3_d_bits_corrupt = auto_in_3_d_bits_corrupt_0; // @[InclusiveCache.scala:108:9]
assign auto_in_2_a_ready = auto_in_2_a_ready_0; // @[InclusiveCache.scala:108:9]
assign auto_in_2_b_valid = auto_in_2_b_valid_0; // @[InclusiveCache.scala:108:9]
assign auto_in_2_b_bits_param = auto_in_2_b_bits_param_0; // @[InclusiveCache.scala:108:9]
assign auto_in_2_b_bits_address = auto_in_2_b_bits_address_0; // @[InclusiveCache.scala:108:9]
assign auto_in_2_c_ready = auto_in_2_c_ready_0; // @[InclusiveCache.scala:108:9]
assign auto_in_2_d_valid = auto_in_2_d_valid_0; // @[InclusiveCache.scala:108:9]
assign auto_in_2_d_bits_opcode = auto_in_2_d_bits_opcode_0; // @[InclusiveCache.scala:108:9]
assign auto_in_2_d_bits_param = auto_in_2_d_bits_param_0; // @[InclusiveCache.scala:108:9]
assign auto_in_2_d_bits_size = auto_in_2_d_bits_size_0; // @[InclusiveCache.scala:108:9]
assign auto_in_2_d_bits_source = auto_in_2_d_bits_source_0; // @[InclusiveCache.scala:108:9]
assign auto_in_2_d_bits_sink = auto_in_2_d_bits_sink_0; // @[InclusiveCache.scala:108:9]
assign auto_in_2_d_bits_denied = auto_in_2_d_bits_denied_0; // @[InclusiveCache.scala:108:9]
assign auto_in_2_d_bits_data = auto_in_2_d_bits_data_0; // @[InclusiveCache.scala:108:9]
assign auto_in_2_d_bits_corrupt = auto_in_2_d_bits_corrupt_0; // @[InclusiveCache.scala:108:9]
assign auto_in_1_a_ready = auto_in_1_a_ready_0; // @[InclusiveCache.scala:108:9]
assign auto_in_1_b_valid = auto_in_1_b_valid_0; // @[InclusiveCache.scala:108:9]
assign auto_in_1_b_bits_param = auto_in_1_b_bits_param_0; // @[InclusiveCache.scala:108:9]
assign auto_in_1_b_bits_address = auto_in_1_b_bits_address_0; // @[InclusiveCache.scala:108:9]
assign auto_in_1_c_ready = auto_in_1_c_ready_0; // @[InclusiveCache.scala:108:9]
assign auto_in_1_d_valid = auto_in_1_d_valid_0; // @[InclusiveCache.scala:108:9]
assign auto_in_1_d_bits_opcode = auto_in_1_d_bits_opcode_0; // @[InclusiveCache.scala:108:9]
assign auto_in_1_d_bits_param = auto_in_1_d_bits_param_0; // @[InclusiveCache.scala:108:9]
assign auto_in_1_d_bits_size = auto_in_1_d_bits_size_0; // @[InclusiveCache.scala:108:9]
assign auto_in_1_d_bits_source = auto_in_1_d_bits_source_0; // @[InclusiveCache.scala:108:9]
assign auto_in_1_d_bits_sink = auto_in_1_d_bits_sink_0; // @[InclusiveCache.scala:108:9]
assign auto_in_1_d_bits_denied = auto_in_1_d_bits_denied_0; // @[InclusiveCache.scala:108:9]
assign auto_in_1_d_bits_data = auto_in_1_d_bits_data_0; // @[InclusiveCache.scala:108:9]
assign auto_in_1_d_bits_corrupt = auto_in_1_d_bits_corrupt_0; // @[InclusiveCache.scala:108:9]
assign auto_in_0_a_ready = auto_in_0_a_ready_0; // @[InclusiveCache.scala:108:9]
assign auto_in_0_b_valid = auto_in_0_b_valid_0; // @[InclusiveCache.scala:108:9]
assign auto_in_0_b_bits_param = auto_in_0_b_bits_param_0; // @[InclusiveCache.scala:108:9]
assign auto_in_0_b_bits_address = auto_in_0_b_bits_address_0; // @[InclusiveCache.scala:108:9]
assign auto_in_0_c_ready = auto_in_0_c_ready_0; // @[InclusiveCache.scala:108:9]
assign auto_in_0_d_valid = auto_in_0_d_valid_0; // @[InclusiveCache.scala:108:9]
assign auto_in_0_d_bits_opcode = auto_in_0_d_bits_opcode_0; // @[InclusiveCache.scala:108:9]
assign auto_in_0_d_bits_param = auto_in_0_d_bits_param_0; // @[InclusiveCache.scala:108:9]
assign auto_in_0_d_bits_size = auto_in_0_d_bits_size_0; // @[InclusiveCache.scala:108:9]
assign auto_in_0_d_bits_source = auto_in_0_d_bits_source_0; // @[InclusiveCache.scala:108:9]
assign auto_in_0_d_bits_sink = auto_in_0_d_bits_sink_0; // @[InclusiveCache.scala:108:9]
assign auto_in_0_d_bits_denied = auto_in_0_d_bits_denied_0; // @[InclusiveCache.scala:108:9]
assign auto_in_0_d_bits_data = auto_in_0_d_bits_data_0; // @[InclusiveCache.scala:108:9]
assign auto_in_0_d_bits_corrupt = auto_in_0_d_bits_corrupt_0; // @[InclusiveCache.scala:108:9]
assign auto_out_7_a_valid = auto_out_7_a_valid_0; // @[InclusiveCache.scala:108:9]
assign auto_out_7_a_bits_opcode = auto_out_7_a_bits_opcode_0; // @[InclusiveCache.scala:108:9]
assign auto_out_7_a_bits_param = auto_out_7_a_bits_param_0; // @[InclusiveCache.scala:108:9]
assign auto_out_7_a_bits_size = auto_out_7_a_bits_size_0; // @[InclusiveCache.scala:108:9]
assign auto_out_7_a_bits_source = auto_out_7_a_bits_source_0; // @[InclusiveCache.scala:108:9]
assign auto_out_7_a_bits_address = auto_out_7_a_bits_address_0; // @[InclusiveCache.scala:108:9]
assign auto_out_7_a_bits_mask = auto_out_7_a_bits_mask_0; // @[InclusiveCache.scala:108:9]
assign auto_out_7_a_bits_data = auto_out_7_a_bits_data_0; // @[InclusiveCache.scala:108:9]
assign auto_out_7_a_bits_corrupt = auto_out_7_a_bits_corrupt_0; // @[InclusiveCache.scala:108:9]
assign auto_out_7_c_valid = auto_out_7_c_valid_0; // @[InclusiveCache.scala:108:9]
assign auto_out_7_c_bits_opcode = auto_out_7_c_bits_opcode_0; // @[InclusiveCache.scala:108:9]
assign auto_out_7_c_bits_param = auto_out_7_c_bits_param_0; // @[InclusiveCache.scala:108:9]
assign auto_out_7_c_bits_size = auto_out_7_c_bits_size_0; // @[InclusiveCache.scala:108:9]
assign auto_out_7_c_bits_source = auto_out_7_c_bits_source_0; // @[InclusiveCache.scala:108:9]
assign auto_out_7_c_bits_address = auto_out_7_c_bits_address_0; // @[InclusiveCache.scala:108:9]
assign auto_out_7_c_bits_data = auto_out_7_c_bits_data_0; // @[InclusiveCache.scala:108:9]
assign auto_out_7_c_bits_corrupt = auto_out_7_c_bits_corrupt_0; // @[InclusiveCache.scala:108:9]
assign auto_out_7_d_ready = auto_out_7_d_ready_0; // @[InclusiveCache.scala:108:9]
assign auto_out_7_e_valid = auto_out_7_e_valid_0; // @[InclusiveCache.scala:108:9]
assign auto_out_7_e_bits_sink = auto_out_7_e_bits_sink_0; // @[InclusiveCache.scala:108:9]
assign auto_out_6_a_valid = auto_out_6_a_valid_0; // @[InclusiveCache.scala:108:9]
assign auto_out_6_a_bits_opcode = auto_out_6_a_bits_opcode_0; // @[InclusiveCache.scala:108:9]
assign auto_out_6_a_bits_param = auto_out_6_a_bits_param_0; // @[InclusiveCache.scala:108:9]
assign auto_out_6_a_bits_size = auto_out_6_a_bits_size_0; // @[InclusiveCache.scala:108:9]
assign auto_out_6_a_bits_source = auto_out_6_a_bits_source_0; // @[InclusiveCache.scala:108:9]
assign auto_out_6_a_bits_address = auto_out_6_a_bits_address_0; // @[InclusiveCache.scala:108:9]
assign auto_out_6_a_bits_mask = auto_out_6_a_bits_mask_0; // @[InclusiveCache.scala:108:9]
assign auto_out_6_a_bits_data = auto_out_6_a_bits_data_0; // @[InclusiveCache.scala:108:9]
assign auto_out_6_a_bits_corrupt = auto_out_6_a_bits_corrupt_0; // @[InclusiveCache.scala:108:9]
assign auto_out_6_c_valid = auto_out_6_c_valid_0; // @[InclusiveCache.scala:108:9]
assign auto_out_6_c_bits_opcode = auto_out_6_c_bits_opcode_0; // @[InclusiveCache.scala:108:9]
assign auto_out_6_c_bits_param = auto_out_6_c_bits_param_0; // @[InclusiveCache.scala:108:9]
assign auto_out_6_c_bits_size = auto_out_6_c_bits_size_0; // @[InclusiveCache.scala:108:9]
assign auto_out_6_c_bits_source = auto_out_6_c_bits_source_0; // @[InclusiveCache.scala:108:9]
assign auto_out_6_c_bits_address = auto_out_6_c_bits_address_0; // @[InclusiveCache.scala:108:9]
assign auto_out_6_c_bits_data = auto_out_6_c_bits_data_0; // @[InclusiveCache.scala:108:9]
assign auto_out_6_c_bits_corrupt = auto_out_6_c_bits_corrupt_0; // @[InclusiveCache.scala:108:9]
assign auto_out_6_d_ready = auto_out_6_d_ready_0; // @[InclusiveCache.scala:108:9]
assign auto_out_6_e_valid = auto_out_6_e_valid_0; // @[InclusiveCache.scala:108:9]
assign auto_out_6_e_bits_sink = auto_out_6_e_bits_sink_0; // @[InclusiveCache.scala:108:9]
assign auto_out_5_a_valid = auto_out_5_a_valid_0; // @[InclusiveCache.scala:108:9]
assign auto_out_5_a_bits_opcode = auto_out_5_a_bits_opcode_0; // @[InclusiveCache.scala:108:9]
assign auto_out_5_a_bits_param = auto_out_5_a_bits_param_0; // @[InclusiveCache.scala:108:9]
assign auto_out_5_a_bits_size = auto_out_5_a_bits_size_0; // @[InclusiveCache.scala:108:9]
assign auto_out_5_a_bits_source = auto_out_5_a_bits_source_0; // @[InclusiveCache.scala:108:9]
assign auto_out_5_a_bits_address = auto_out_5_a_bits_address_0; // @[InclusiveCache.scala:108:9]
assign auto_out_5_a_bits_mask = auto_out_5_a_bits_mask_0; // @[InclusiveCache.scala:108:9]
assign auto_out_5_a_bits_data = auto_out_5_a_bits_data_0; // @[InclusiveCache.scala:108:9]
assign auto_out_5_a_bits_corrupt = auto_out_5_a_bits_corrupt_0; // @[InclusiveCache.scala:108:9]
assign auto_out_5_c_valid = auto_out_5_c_valid_0; // @[InclusiveCache.scala:108:9]
assign auto_out_5_c_bits_opcode = auto_out_5_c_bits_opcode_0; // @[InclusiveCache.scala:108:9]
assign auto_out_5_c_bits_param = auto_out_5_c_bits_param_0; // @[InclusiveCache.scala:108:9]
assign auto_out_5_c_bits_size = auto_out_5_c_bits_size_0; // @[InclusiveCache.scala:108:9]
assign auto_out_5_c_bits_source = auto_out_5_c_bits_source_0; // @[InclusiveCache.scala:108:9]
assign auto_out_5_c_bits_address = auto_out_5_c_bits_address_0; // @[InclusiveCache.scala:108:9]
assign auto_out_5_c_bits_data = auto_out_5_c_bits_data_0; // @[InclusiveCache.scala:108:9]
assign auto_out_5_c_bits_corrupt = auto_out_5_c_bits_corrupt_0; // @[InclusiveCache.scala:108:9]
assign auto_out_5_d_ready = auto_out_5_d_ready_0; // @[InclusiveCache.scala:108:9]
assign auto_out_5_e_valid = auto_out_5_e_valid_0; // @[InclusiveCache.scala:108:9]
assign auto_out_5_e_bits_sink = auto_out_5_e_bits_sink_0; // @[InclusiveCache.scala:108:9]
assign auto_out_4_a_valid = auto_out_4_a_valid_0; // @[InclusiveCache.scala:108:9]
assign auto_out_4_a_bits_opcode = auto_out_4_a_bits_opcode_0; // @[InclusiveCache.scala:108:9]
assign auto_out_4_a_bits_param = auto_out_4_a_bits_param_0; // @[InclusiveCache.scala:108:9]
assign auto_out_4_a_bits_size = auto_out_4_a_bits_size_0; // @[InclusiveCache.scala:108:9]
assign auto_out_4_a_bits_source = auto_out_4_a_bits_source_0; // @[InclusiveCache.scala:108:9]
assign auto_out_4_a_bits_address = auto_out_4_a_bits_address_0; // @[InclusiveCache.scala:108:9]
assign auto_out_4_a_bits_mask = auto_out_4_a_bits_mask_0; // @[InclusiveCache.scala:108:9]
assign auto_out_4_a_bits_data = auto_out_4_a_bits_data_0; // @[InclusiveCache.scala:108:9]
assign auto_out_4_a_bits_corrupt = auto_out_4_a_bits_corrupt_0; // @[InclusiveCache.scala:108:9]
assign auto_out_4_c_valid = auto_out_4_c_valid_0; // @[InclusiveCache.scala:108:9]
assign auto_out_4_c_bits_opcode = auto_out_4_c_bits_opcode_0; // @[InclusiveCache.scala:108:9]
assign auto_out_4_c_bits_param = auto_out_4_c_bits_param_0; // @[InclusiveCache.scala:108:9]
assign auto_out_4_c_bits_size = auto_out_4_c_bits_size_0; // @[InclusiveCache.scala:108:9]
assign auto_out_4_c_bits_source = auto_out_4_c_bits_source_0; // @[InclusiveCache.scala:108:9]
assign auto_out_4_c_bits_address = auto_out_4_c_bits_address_0; // @[InclusiveCache.scala:108:9]
assign auto_out_4_c_bits_data = auto_out_4_c_bits_data_0; // @[InclusiveCache.scala:108:9]
assign auto_out_4_c_bits_corrupt = auto_out_4_c_bits_corrupt_0; // @[InclusiveCache.scala:108:9]
assign auto_out_4_d_ready = auto_out_4_d_ready_0; // @[InclusiveCache.scala:108:9]
assign auto_out_4_e_valid = auto_out_4_e_valid_0; // @[InclusiveCache.scala:108:9]
assign auto_out_4_e_bits_sink = auto_out_4_e_bits_sink_0; // @[InclusiveCache.scala:108:9]
assign auto_out_3_a_valid = auto_out_3_a_valid_0; // @[InclusiveCache.scala:108:9]
assign auto_out_3_a_bits_opcode = auto_out_3_a_bits_opcode_0; // @[InclusiveCache.scala:108:9]
assign auto_out_3_a_bits_param = auto_out_3_a_bits_param_0; // @[InclusiveCache.scala:108:9]
assign auto_out_3_a_bits_size = auto_out_3_a_bits_size_0; // @[InclusiveCache.scala:108:9]
assign auto_out_3_a_bits_source = auto_out_3_a_bits_source_0; // @[InclusiveCache.scala:108:9]
assign auto_out_3_a_bits_address = auto_out_3_a_bits_address_0; // @[InclusiveCache.scala:108:9]
assign auto_out_3_a_bits_mask = auto_out_3_a_bits_mask_0; // @[InclusiveCache.scala:108:9]
assign auto_out_3_a_bits_data = auto_out_3_a_bits_data_0; // @[InclusiveCache.scala:108:9]
assign auto_out_3_a_bits_corrupt = auto_out_3_a_bits_corrupt_0; // @[InclusiveCache.scala:108:9]
assign auto_out_3_c_valid = auto_out_3_c_valid_0; // @[InclusiveCache.scala:108:9]
assign auto_out_3_c_bits_opcode = auto_out_3_c_bits_opcode_0; // @[InclusiveCache.scala:108:9]
assign auto_out_3_c_bits_param = auto_out_3_c_bits_param_0; // @[InclusiveCache.scala:108:9]
assign auto_out_3_c_bits_size = auto_out_3_c_bits_size_0; // @[InclusiveCache.scala:108:9]
assign auto_out_3_c_bits_source = auto_out_3_c_bits_source_0; // @[InclusiveCache.scala:108:9]
assign auto_out_3_c_bits_address = auto_out_3_c_bits_address_0; // @[InclusiveCache.scala:108:9]
assign auto_out_3_c_bits_data = auto_out_3_c_bits_data_0; // @[InclusiveCache.scala:108:9]
assign auto_out_3_c_bits_corrupt = auto_out_3_c_bits_corrupt_0; // @[InclusiveCache.scala:108:9]
assign auto_out_3_d_ready = auto_out_3_d_ready_0; // @[InclusiveCache.scala:108:9]
assign auto_out_3_e_valid = auto_out_3_e_valid_0; // @[InclusiveCache.scala:108:9]
assign auto_out_3_e_bits_sink = auto_out_3_e_bits_sink_0; // @[InclusiveCache.scala:108:9]
assign auto_out_2_a_valid = auto_out_2_a_valid_0; // @[InclusiveCache.scala:108:9]
assign auto_out_2_a_bits_opcode = auto_out_2_a_bits_opcode_0; // @[InclusiveCache.scala:108:9]
assign auto_out_2_a_bits_param = auto_out_2_a_bits_param_0; // @[InclusiveCache.scala:108:9]
assign auto_out_2_a_bits_size = auto_out_2_a_bits_size_0; // @[InclusiveCache.scala:108:9]
assign auto_out_2_a_bits_source = auto_out_2_a_bits_source_0; // @[InclusiveCache.scala:108:9]
assign auto_out_2_a_bits_address = auto_out_2_a_bits_address_0; // @[InclusiveCache.scala:108:9]
assign auto_out_2_a_bits_mask = auto_out_2_a_bits_mask_0; // @[InclusiveCache.scala:108:9]
assign auto_out_2_a_bits_data = auto_out_2_a_bits_data_0; // @[InclusiveCache.scala:108:9]
assign auto_out_2_a_bits_corrupt = auto_out_2_a_bits_corrupt_0; // @[InclusiveCache.scala:108:9]
assign auto_out_2_c_valid = auto_out_2_c_valid_0; // @[InclusiveCache.scala:108:9]
assign auto_out_2_c_bits_opcode = auto_out_2_c_bits_opcode_0; // @[InclusiveCache.scala:108:9]
assign auto_out_2_c_bits_param = auto_out_2_c_bits_param_0; // @[InclusiveCache.scala:108:9]
assign auto_out_2_c_bits_size = auto_out_2_c_bits_size_0; // @[InclusiveCache.scala:108:9]
assign auto_out_2_c_bits_source = auto_out_2_c_bits_source_0; // @[InclusiveCache.scala:108:9]
assign auto_out_2_c_bits_address = auto_out_2_c_bits_address_0; // @[InclusiveCache.scala:108:9]
assign auto_out_2_c_bits_data = auto_out_2_c_bits_data_0; // @[InclusiveCache.scala:108:9]
assign auto_out_2_c_bits_corrupt = auto_out_2_c_bits_corrupt_0; // @[InclusiveCache.scala:108:9]
assign auto_out_2_d_ready = auto_out_2_d_ready_0; // @[InclusiveCache.scala:108:9]
assign auto_out_2_e_valid = auto_out_2_e_valid_0; // @[InclusiveCache.scala:108:9]
assign auto_out_2_e_bits_sink = auto_out_2_e_bits_sink_0; // @[InclusiveCache.scala:108:9]
assign auto_out_1_a_valid = auto_out_1_a_valid_0; // @[InclusiveCache.scala:108:9]
assign auto_out_1_a_bits_opcode = auto_out_1_a_bits_opcode_0; // @[InclusiveCache.scala:108:9]
assign auto_out_1_a_bits_param = auto_out_1_a_bits_param_0; // @[InclusiveCache.scala:108:9]
assign auto_out_1_a_bits_size = auto_out_1_a_bits_size_0; // @[InclusiveCache.scala:108:9]
assign auto_out_1_a_bits_source = auto_out_1_a_bits_source_0; // @[InclusiveCache.scala:108:9]
assign auto_out_1_a_bits_address = auto_out_1_a_bits_address_0; // @[InclusiveCache.scala:108:9]
assign auto_out_1_a_bits_mask = auto_out_1_a_bits_mask_0; // @[InclusiveCache.scala:108:9]
assign auto_out_1_a_bits_data = auto_out_1_a_bits_data_0; // @[InclusiveCache.scala:108:9]
assign auto_out_1_a_bits_corrupt = auto_out_1_a_bits_corrupt_0; // @[InclusiveCache.scala:108:9]
assign auto_out_1_c_valid = auto_out_1_c_valid_0; // @[InclusiveCache.scala:108:9]
assign auto_out_1_c_bits_opcode = auto_out_1_c_bits_opcode_0; // @[InclusiveCache.scala:108:9]
assign auto_out_1_c_bits_param = auto_out_1_c_bits_param_0; // @[InclusiveCache.scala:108:9]
assign auto_out_1_c_bits_size = auto_out_1_c_bits_size_0; // @[InclusiveCache.scala:108:9]
assign auto_out_1_c_bits_source = auto_out_1_c_bits_source_0; // @[InclusiveCache.scala:108:9]
assign auto_out_1_c_bits_address = auto_out_1_c_bits_address_0; // @[InclusiveCache.scala:108:9]
assign auto_out_1_c_bits_data = auto_out_1_c_bits_data_0; // @[InclusiveCache.scala:108:9]
assign auto_out_1_c_bits_corrupt = auto_out_1_c_bits_corrupt_0; // @[InclusiveCache.scala:108:9]
assign auto_out_1_d_ready = auto_out_1_d_ready_0; // @[InclusiveCache.scala:108:9]
assign auto_out_1_e_valid = auto_out_1_e_valid_0; // @[InclusiveCache.scala:108:9]
assign auto_out_1_e_bits_sink = auto_out_1_e_bits_sink_0; // @[InclusiveCache.scala:108:9]
assign auto_out_0_a_valid = auto_out_0_a_valid_0; // @[InclusiveCache.scala:108:9]
assign auto_out_0_a_bits_opcode = auto_out_0_a_bits_opcode_0; // @[InclusiveCache.scala:108:9]
assign auto_out_0_a_bits_param = auto_out_0_a_bits_param_0; // @[InclusiveCache.scala:108:9]
assign auto_out_0_a_bits_size = auto_out_0_a_bits_size_0; // @[InclusiveCache.scala:108:9]
assign auto_out_0_a_bits_source = auto_out_0_a_bits_source_0; // @[InclusiveCache.scala:108:9]
assign auto_out_0_a_bits_address = auto_out_0_a_bits_address_0; // @[InclusiveCache.scala:108:9]
assign auto_out_0_a_bits_mask = auto_out_0_a_bits_mask_0; // @[InclusiveCache.scala:108:9]
assign auto_out_0_a_bits_data = auto_out_0_a_bits_data_0; // @[InclusiveCache.scala:108:9]
assign auto_out_0_a_bits_corrupt = auto_out_0_a_bits_corrupt_0; // @[InclusiveCache.scala:108:9]
assign auto_out_0_c_valid = auto_out_0_c_valid_0; // @[InclusiveCache.scala:108:9]
assign auto_out_0_c_bits_opcode = auto_out_0_c_bits_opcode_0; // @[InclusiveCache.scala:108:9]
assign auto_out_0_c_bits_param = auto_out_0_c_bits_param_0; // @[InclusiveCache.scala:108:9]
assign auto_out_0_c_bits_size = auto_out_0_c_bits_size_0; // @[InclusiveCache.scala:108:9]
assign auto_out_0_c_bits_source = auto_out_0_c_bits_source_0; // @[InclusiveCache.scala:108:9]
assign auto_out_0_c_bits_address = auto_out_0_c_bits_address_0; // @[InclusiveCache.scala:108:9]
assign auto_out_0_c_bits_data = auto_out_0_c_bits_data_0; // @[InclusiveCache.scala:108:9]
assign auto_out_0_c_bits_corrupt = auto_out_0_c_bits_corrupt_0; // @[InclusiveCache.scala:108:9]
assign auto_out_0_d_ready = auto_out_0_d_ready_0; // @[InclusiveCache.scala:108:9]
assign auto_out_0_e_valid = auto_out_0_e_valid_0; // @[InclusiveCache.scala:108:9]
assign auto_out_0_e_bits_sink = auto_out_0_e_bits_sink_0; // @[InclusiveCache.scala:108:9]
endmodule |
Generate the Verilog code corresponding to the following Chisel files.
File ShiftReg.scala:
// See LICENSE.SiFive for license details.
package freechips.rocketchip.util
import chisel3._
// Similar to the Chisel ShiftRegister but allows the user to suggest a
// name to the registers that get instantiated, and
// to provide a reset value.
object ShiftRegInit {
def apply[T <: Data](in: T, n: Int, init: T, name: Option[String] = None): T =
(0 until n).foldRight(in) {
case (i, next) => {
val r = RegNext(next, init)
name.foreach { na => r.suggestName(s"${na}_${i}") }
r
}
}
}
/** These wrap behavioral
* shift registers into specific modules to allow for
* backend flows to replace or constrain
* them properly when used for CDC synchronization,
* rather than buffering.
*
* The different types vary in their reset behavior:
* AsyncResetShiftReg -- Asynchronously reset register array
* A W(width) x D(depth) sized array is constructed from D instantiations of a
* W-wide register vector. Functionally identical to AsyncResetSyncrhonizerShiftReg,
* but only used for timing applications
*/
abstract class AbstractPipelineReg(w: Int = 1) extends Module {
val io = IO(new Bundle {
val d = Input(UInt(w.W))
val q = Output(UInt(w.W))
}
)
}
object AbstractPipelineReg {
def apply [T <: Data](gen: => AbstractPipelineReg, in: T, name: Option[String] = None): T = {
val chain = Module(gen)
name.foreach{ chain.suggestName(_) }
chain.io.d := in.asUInt
chain.io.q.asTypeOf(in)
}
}
class AsyncResetShiftReg(w: Int = 1, depth: Int = 1, init: Int = 0, name: String = "pipe") extends AbstractPipelineReg(w) {
require(depth > 0, "Depth must be greater than 0.")
override def desiredName = s"AsyncResetShiftReg_w${w}_d${depth}_i${init}"
val chain = List.tabulate(depth) { i =>
Module (new AsyncResetRegVec(w, init)).suggestName(s"${name}_${i}")
}
chain.last.io.d := io.d
chain.last.io.en := true.B
(chain.init zip chain.tail).foreach { case (sink, source) =>
sink.io.d := source.io.q
sink.io.en := true.B
}
io.q := chain.head.io.q
}
object AsyncResetShiftReg {
def apply [T <: Data](in: T, depth: Int, init: Int = 0, name: Option[String] = None): T =
AbstractPipelineReg(new AsyncResetShiftReg(in.getWidth, depth, init), in, name)
def apply [T <: Data](in: T, depth: Int, name: Option[String]): T =
apply(in, depth, 0, name)
def apply [T <: Data](in: T, depth: Int, init: T, name: Option[String]): T =
apply(in, depth, init.litValue.toInt, name)
def apply [T <: Data](in: T, depth: Int, init: T): T =
apply (in, depth, init.litValue.toInt, None)
}
File Nodes.scala:
// See LICENSE.SiFive for license details.
package freechips.rocketchip.tilelink
import chisel3._
import chisel3.experimental.SourceInfo
import org.chipsalliance.cde.config._
import org.chipsalliance.diplomacy._
import org.chipsalliance.diplomacy.nodes._
import freechips.rocketchip.util.{AsyncQueueParams,RationalDirection}
case object TLMonitorBuilder extends Field[TLMonitorArgs => TLMonitorBase](args => new TLMonitor(args))
object TLImp extends NodeImp[TLMasterPortParameters, TLSlavePortParameters, TLEdgeOut, TLEdgeIn, TLBundle]
{
def edgeO(pd: TLMasterPortParameters, pu: TLSlavePortParameters, p: Parameters, sourceInfo: SourceInfo) = new TLEdgeOut(pd, pu, p, sourceInfo)
def edgeI(pd: TLMasterPortParameters, pu: TLSlavePortParameters, p: Parameters, sourceInfo: SourceInfo) = new TLEdgeIn (pd, pu, p, sourceInfo)
def bundleO(eo: TLEdgeOut) = TLBundle(eo.bundle)
def bundleI(ei: TLEdgeIn) = TLBundle(ei.bundle)
def render(ei: TLEdgeIn) = RenderedEdge(colour = "#000000" /* black */, label = (ei.manager.beatBytes * 8).toString)
override def monitor(bundle: TLBundle, edge: TLEdgeIn): Unit = {
val monitor = Module(edge.params(TLMonitorBuilder)(TLMonitorArgs(edge)))
monitor.io.in := bundle
}
override def mixO(pd: TLMasterPortParameters, node: OutwardNode[TLMasterPortParameters, TLSlavePortParameters, TLBundle]): TLMasterPortParameters =
pd.v1copy(clients = pd.clients.map { c => c.v1copy (nodePath = node +: c.nodePath) })
override def mixI(pu: TLSlavePortParameters, node: InwardNode[TLMasterPortParameters, TLSlavePortParameters, TLBundle]): TLSlavePortParameters =
pu.v1copy(managers = pu.managers.map { m => m.v1copy (nodePath = node +: m.nodePath) })
}
trait TLFormatNode extends FormatNode[TLEdgeIn, TLEdgeOut]
case class TLClientNode(portParams: Seq[TLMasterPortParameters])(implicit valName: ValName) extends SourceNode(TLImp)(portParams) with TLFormatNode
case class TLManagerNode(portParams: Seq[TLSlavePortParameters])(implicit valName: ValName) extends SinkNode(TLImp)(portParams) with TLFormatNode
case class TLAdapterNode(
clientFn: TLMasterPortParameters => TLMasterPortParameters = { s => s },
managerFn: TLSlavePortParameters => TLSlavePortParameters = { s => s })(
implicit valName: ValName)
extends AdapterNode(TLImp)(clientFn, managerFn) with TLFormatNode
case class TLJunctionNode(
clientFn: Seq[TLMasterPortParameters] => Seq[TLMasterPortParameters],
managerFn: Seq[TLSlavePortParameters] => Seq[TLSlavePortParameters])(
implicit valName: ValName)
extends JunctionNode(TLImp)(clientFn, managerFn) with TLFormatNode
case class TLIdentityNode()(implicit valName: ValName) extends IdentityNode(TLImp)() with TLFormatNode
object TLNameNode {
def apply(name: ValName) = TLIdentityNode()(name)
def apply(name: Option[String]): TLIdentityNode = apply(ValName(name.getOrElse("with_no_name")))
def apply(name: String): TLIdentityNode = apply(Some(name))
}
case class TLEphemeralNode()(implicit valName: ValName) extends EphemeralNode(TLImp)()
object TLTempNode {
def apply(): TLEphemeralNode = TLEphemeralNode()(ValName("temp"))
}
case class TLNexusNode(
clientFn: Seq[TLMasterPortParameters] => TLMasterPortParameters,
managerFn: Seq[TLSlavePortParameters] => TLSlavePortParameters)(
implicit valName: ValName)
extends NexusNode(TLImp)(clientFn, managerFn) with TLFormatNode
abstract class TLCustomNode(implicit valName: ValName)
extends CustomNode(TLImp) with TLFormatNode
// Asynchronous crossings
trait TLAsyncFormatNode extends FormatNode[TLAsyncEdgeParameters, TLAsyncEdgeParameters]
object TLAsyncImp extends SimpleNodeImp[TLAsyncClientPortParameters, TLAsyncManagerPortParameters, TLAsyncEdgeParameters, TLAsyncBundle]
{
def edge(pd: TLAsyncClientPortParameters, pu: TLAsyncManagerPortParameters, p: Parameters, sourceInfo: SourceInfo) = TLAsyncEdgeParameters(pd, pu, p, sourceInfo)
def bundle(e: TLAsyncEdgeParameters) = new TLAsyncBundle(e.bundle)
def render(e: TLAsyncEdgeParameters) = RenderedEdge(colour = "#ff0000" /* red */, label = e.manager.async.depth.toString)
override def mixO(pd: TLAsyncClientPortParameters, node: OutwardNode[TLAsyncClientPortParameters, TLAsyncManagerPortParameters, TLAsyncBundle]): TLAsyncClientPortParameters =
pd.copy(base = pd.base.v1copy(clients = pd.base.clients.map { c => c.v1copy (nodePath = node +: c.nodePath) }))
override def mixI(pu: TLAsyncManagerPortParameters, node: InwardNode[TLAsyncClientPortParameters, TLAsyncManagerPortParameters, TLAsyncBundle]): TLAsyncManagerPortParameters =
pu.copy(base = pu.base.v1copy(managers = pu.base.managers.map { m => m.v1copy (nodePath = node +: m.nodePath) }))
}
case class TLAsyncAdapterNode(
clientFn: TLAsyncClientPortParameters => TLAsyncClientPortParameters = { s => s },
managerFn: TLAsyncManagerPortParameters => TLAsyncManagerPortParameters = { s => s })(
implicit valName: ValName)
extends AdapterNode(TLAsyncImp)(clientFn, managerFn) with TLAsyncFormatNode
case class TLAsyncIdentityNode()(implicit valName: ValName) extends IdentityNode(TLAsyncImp)() with TLAsyncFormatNode
object TLAsyncNameNode {
def apply(name: ValName) = TLAsyncIdentityNode()(name)
def apply(name: Option[String]): TLAsyncIdentityNode = apply(ValName(name.getOrElse("with_no_name")))
def apply(name: String): TLAsyncIdentityNode = apply(Some(name))
}
case class TLAsyncSourceNode(sync: Option[Int])(implicit valName: ValName)
extends MixedAdapterNode(TLImp, TLAsyncImp)(
dFn = { p => TLAsyncClientPortParameters(p) },
uFn = { p => p.base.v1copy(minLatency = p.base.minLatency + sync.getOrElse(p.async.sync)) }) with FormatNode[TLEdgeIn, TLAsyncEdgeParameters] // discard cycles in other clock domain
case class TLAsyncSinkNode(async: AsyncQueueParams)(implicit valName: ValName)
extends MixedAdapterNode(TLAsyncImp, TLImp)(
dFn = { p => p.base.v1copy(minLatency = p.base.minLatency + async.sync) },
uFn = { p => TLAsyncManagerPortParameters(async, p) }) with FormatNode[TLAsyncEdgeParameters, TLEdgeOut]
// Rationally related crossings
trait TLRationalFormatNode extends FormatNode[TLRationalEdgeParameters, TLRationalEdgeParameters]
object TLRationalImp extends SimpleNodeImp[TLRationalClientPortParameters, TLRationalManagerPortParameters, TLRationalEdgeParameters, TLRationalBundle]
{
def edge(pd: TLRationalClientPortParameters, pu: TLRationalManagerPortParameters, p: Parameters, sourceInfo: SourceInfo) = TLRationalEdgeParameters(pd, pu, p, sourceInfo)
def bundle(e: TLRationalEdgeParameters) = new TLRationalBundle(e.bundle)
def render(e: TLRationalEdgeParameters) = RenderedEdge(colour = "#00ff00" /* green */)
override def mixO(pd: TLRationalClientPortParameters, node: OutwardNode[TLRationalClientPortParameters, TLRationalManagerPortParameters, TLRationalBundle]): TLRationalClientPortParameters =
pd.copy(base = pd.base.v1copy(clients = pd.base.clients.map { c => c.v1copy (nodePath = node +: c.nodePath) }))
override def mixI(pu: TLRationalManagerPortParameters, node: InwardNode[TLRationalClientPortParameters, TLRationalManagerPortParameters, TLRationalBundle]): TLRationalManagerPortParameters =
pu.copy(base = pu.base.v1copy(managers = pu.base.managers.map { m => m.v1copy (nodePath = node +: m.nodePath) }))
}
case class TLRationalAdapterNode(
clientFn: TLRationalClientPortParameters => TLRationalClientPortParameters = { s => s },
managerFn: TLRationalManagerPortParameters => TLRationalManagerPortParameters = { s => s })(
implicit valName: ValName)
extends AdapterNode(TLRationalImp)(clientFn, managerFn) with TLRationalFormatNode
case class TLRationalIdentityNode()(implicit valName: ValName) extends IdentityNode(TLRationalImp)() with TLRationalFormatNode
object TLRationalNameNode {
def apply(name: ValName) = TLRationalIdentityNode()(name)
def apply(name: Option[String]): TLRationalIdentityNode = apply(ValName(name.getOrElse("with_no_name")))
def apply(name: String): TLRationalIdentityNode = apply(Some(name))
}
case class TLRationalSourceNode()(implicit valName: ValName)
extends MixedAdapterNode(TLImp, TLRationalImp)(
dFn = { p => TLRationalClientPortParameters(p) },
uFn = { p => p.base.v1copy(minLatency = 1) }) with FormatNode[TLEdgeIn, TLRationalEdgeParameters] // discard cycles from other clock domain
case class TLRationalSinkNode(direction: RationalDirection)(implicit valName: ValName)
extends MixedAdapterNode(TLRationalImp, TLImp)(
dFn = { p => p.base.v1copy(minLatency = 1) },
uFn = { p => TLRationalManagerPortParameters(direction, p) }) with FormatNode[TLRationalEdgeParameters, TLEdgeOut]
// Credited version of TileLink channels
trait TLCreditedFormatNode extends FormatNode[TLCreditedEdgeParameters, TLCreditedEdgeParameters]
object TLCreditedImp extends SimpleNodeImp[TLCreditedClientPortParameters, TLCreditedManagerPortParameters, TLCreditedEdgeParameters, TLCreditedBundle]
{
def edge(pd: TLCreditedClientPortParameters, pu: TLCreditedManagerPortParameters, p: Parameters, sourceInfo: SourceInfo) = TLCreditedEdgeParameters(pd, pu, p, sourceInfo)
def bundle(e: TLCreditedEdgeParameters) = new TLCreditedBundle(e.bundle)
def render(e: TLCreditedEdgeParameters) = RenderedEdge(colour = "#ffff00" /* yellow */, e.delay.toString)
override def mixO(pd: TLCreditedClientPortParameters, node: OutwardNode[TLCreditedClientPortParameters, TLCreditedManagerPortParameters, TLCreditedBundle]): TLCreditedClientPortParameters =
pd.copy(base = pd.base.v1copy(clients = pd.base.clients.map { c => c.v1copy (nodePath = node +: c.nodePath) }))
override def mixI(pu: TLCreditedManagerPortParameters, node: InwardNode[TLCreditedClientPortParameters, TLCreditedManagerPortParameters, TLCreditedBundle]): TLCreditedManagerPortParameters =
pu.copy(base = pu.base.v1copy(managers = pu.base.managers.map { m => m.v1copy (nodePath = node +: m.nodePath) }))
}
case class TLCreditedAdapterNode(
clientFn: TLCreditedClientPortParameters => TLCreditedClientPortParameters = { s => s },
managerFn: TLCreditedManagerPortParameters => TLCreditedManagerPortParameters = { s => s })(
implicit valName: ValName)
extends AdapterNode(TLCreditedImp)(clientFn, managerFn) with TLCreditedFormatNode
case class TLCreditedIdentityNode()(implicit valName: ValName) extends IdentityNode(TLCreditedImp)() with TLCreditedFormatNode
object TLCreditedNameNode {
def apply(name: ValName) = TLCreditedIdentityNode()(name)
def apply(name: Option[String]): TLCreditedIdentityNode = apply(ValName(name.getOrElse("with_no_name")))
def apply(name: String): TLCreditedIdentityNode = apply(Some(name))
}
case class TLCreditedSourceNode(delay: TLCreditedDelay)(implicit valName: ValName)
extends MixedAdapterNode(TLImp, TLCreditedImp)(
dFn = { p => TLCreditedClientPortParameters(delay, p) },
uFn = { p => p.base.v1copy(minLatency = 1) }) with FormatNode[TLEdgeIn, TLCreditedEdgeParameters] // discard cycles from other clock domain
case class TLCreditedSinkNode(delay: TLCreditedDelay)(implicit valName: ValName)
extends MixedAdapterNode(TLCreditedImp, TLImp)(
dFn = { p => p.base.v1copy(minLatency = 1) },
uFn = { p => TLCreditedManagerPortParameters(delay, p) }) with FormatNode[TLCreditedEdgeParameters, TLEdgeOut]
File RegisterRouter.scala:
// See LICENSE.SiFive for license details.
package freechips.rocketchip.tilelink
import chisel3._
import chisel3.util._
import org.chipsalliance.cde.config._
import org.chipsalliance.diplomacy._
import org.chipsalliance.diplomacy.nodes._
import freechips.rocketchip.diplomacy.{AddressSet, TransferSizes}
import freechips.rocketchip.resources.{Device, Resource, ResourceBindings}
import freechips.rocketchip.prci.{NoCrossing}
import freechips.rocketchip.regmapper.{RegField, RegMapper, RegMapperParams, RegMapperInput, RegisterRouter}
import freechips.rocketchip.util.{BundleField, ControlKey, ElaborationArtefacts, GenRegDescsAnno}
import scala.math.min
class TLRegisterRouterExtraBundle(val sourceBits: Int, val sizeBits: Int) extends Bundle {
val source = UInt((sourceBits max 1).W)
val size = UInt((sizeBits max 1).W)
}
case object TLRegisterRouterExtra extends ControlKey[TLRegisterRouterExtraBundle]("tlrr_extra")
case class TLRegisterRouterExtraField(sourceBits: Int, sizeBits: Int) extends BundleField[TLRegisterRouterExtraBundle](TLRegisterRouterExtra, Output(new TLRegisterRouterExtraBundle(sourceBits, sizeBits)), x => {
x.size := 0.U
x.source := 0.U
})
/** TLRegisterNode is a specialized TL SinkNode that encapsulates MMIO registers.
* It provides functionality for describing and outputting metdata about the registers in several formats.
* It also provides a concrete implementation of a regmap function that will be used
* to wire a map of internal registers associated with this node to the node's interconnect port.
*/
case class TLRegisterNode(
address: Seq[AddressSet],
device: Device,
deviceKey: String = "reg/control",
concurrency: Int = 0,
beatBytes: Int = 4,
undefZero: Boolean = true,
executable: Boolean = false)(
implicit valName: ValName)
extends SinkNode(TLImp)(Seq(TLSlavePortParameters.v1(
Seq(TLSlaveParameters.v1(
address = address,
resources = Seq(Resource(device, deviceKey)),
executable = executable,
supportsGet = TransferSizes(1, beatBytes),
supportsPutPartial = TransferSizes(1, beatBytes),
supportsPutFull = TransferSizes(1, beatBytes),
fifoId = Some(0))), // requests are handled in order
beatBytes = beatBytes,
minLatency = min(concurrency, 1)))) with TLFormatNode // the Queue adds at most one cycle
{
val size = 1 << log2Ceil(1 + address.map(_.max).max - address.map(_.base).min)
require (size >= beatBytes)
address.foreach { case a =>
require (a.widen(size-1).base == address.head.widen(size-1).base,
s"TLRegisterNode addresses (${address}) must be aligned to its size ${size}")
}
// Calling this method causes the matching TL2 bundle to be
// configured to route all requests to the listed RegFields.
def regmap(mapping: RegField.Map*) = {
val (bundleIn, edge) = this.in(0)
val a = bundleIn.a
val d = bundleIn.d
val fields = TLRegisterRouterExtraField(edge.bundle.sourceBits, edge.bundle.sizeBits) +: a.bits.params.echoFields
val params = RegMapperParams(log2Up(size/beatBytes), beatBytes, fields)
val in = Wire(Decoupled(new RegMapperInput(params)))
in.bits.read := a.bits.opcode === TLMessages.Get
in.bits.index := edge.addr_hi(a.bits)
in.bits.data := a.bits.data
in.bits.mask := a.bits.mask
Connectable.waiveUnmatched(in.bits.extra, a.bits.echo) match {
case (lhs, rhs) => lhs :<= rhs
}
val a_extra = in.bits.extra(TLRegisterRouterExtra)
a_extra.source := a.bits.source
a_extra.size := a.bits.size
// Invoke the register map builder
val out = RegMapper(beatBytes, concurrency, undefZero, in, mapping:_*)
// No flow control needed
in.valid := a.valid
a.ready := in.ready
d.valid := out.valid
out.ready := d.ready
// We must restore the size to enable width adapters to work
val d_extra = out.bits.extra(TLRegisterRouterExtra)
d.bits := edge.AccessAck(toSource = d_extra.source, lgSize = d_extra.size)
// avoid a Mux on the data bus by manually overriding two fields
d.bits.data := out.bits.data
Connectable.waiveUnmatched(d.bits.echo, out.bits.extra) match {
case (lhs, rhs) => lhs :<= rhs
}
d.bits.opcode := Mux(out.bits.read, TLMessages.AccessAckData, TLMessages.AccessAck)
// Tie off unused channels
bundleIn.b.valid := false.B
bundleIn.c.ready := true.B
bundleIn.e.ready := true.B
genRegDescsJson(mapping:_*)
}
def genRegDescsJson(mapping: RegField.Map*): Unit = {
// Dump out the register map for documentation purposes.
val base = address.head.base
val baseHex = s"0x${base.toInt.toHexString}"
val name = s"${device.describe(ResourceBindings()).name}.At${baseHex}"
val json = GenRegDescsAnno.serialize(base, name, mapping:_*)
var suffix = 0
while( ElaborationArtefacts.contains(s"${baseHex}.${suffix}.regmap.json")) {
suffix = suffix + 1
}
ElaborationArtefacts.add(s"${baseHex}.${suffix}.regmap.json", json)
val module = Module.currentModule.get.asInstanceOf[RawModule]
GenRegDescsAnno.anno(
module,
base,
mapping:_*)
}
}
/** Mix HasTLControlRegMap into any subclass of RegisterRouter to gain helper functions for attaching a device control register map to TileLink.
* - The intended use case is that controlNode will diplomatically publish a SW-visible device's memory-mapped control registers.
* - Use the clock crossing helper controlXing to externally connect controlNode to a TileLink interconnect.
* - Use the mapping helper function regmap to internally fill out the space of device control registers.
*/
trait HasTLControlRegMap { this: RegisterRouter =>
protected val controlNode = TLRegisterNode(
address = address,
device = device,
deviceKey = "reg/control",
concurrency = concurrency,
beatBytes = beatBytes,
undefZero = undefZero,
executable = executable)
// Externally, this helper should be used to connect the register control port to a bus
val controlXing: TLInwardClockCrossingHelper = this.crossIn(controlNode)
// Backwards-compatibility default node accessor with no clock crossing
lazy val node: TLInwardNode = controlXing(NoCrossing)
// Internally, this function should be used to populate the control port with registers
protected def regmap(mapping: RegField.Map*): Unit = { controlNode.regmap(mapping:_*) }
}
File LazyModuleImp.scala:
package org.chipsalliance.diplomacy.lazymodule
import chisel3.{withClockAndReset, Module, RawModule, Reset, _}
import chisel3.experimental.{ChiselAnnotation, CloneModuleAsRecord, SourceInfo}
import firrtl.passes.InlineAnnotation
import org.chipsalliance.cde.config.Parameters
import org.chipsalliance.diplomacy.nodes.Dangle
import scala.collection.immutable.SortedMap
/** Trait describing the actual [[Module]] implementation wrapped by a [[LazyModule]].
*
* This is the actual Chisel module that is lazily-evaluated in the second phase of Diplomacy.
*/
sealed trait LazyModuleImpLike extends RawModule {
/** [[LazyModule]] that contains this instance. */
val wrapper: LazyModule
/** IOs that will be automatically "punched" for this instance. */
val auto: AutoBundle
/** The metadata that describes the [[HalfEdge]]s which generated [[auto]]. */
protected[diplomacy] val dangles: Seq[Dangle]
// [[wrapper.module]] had better not be accessed while LazyModules are still being built!
require(
LazyModule.scope.isEmpty,
s"${wrapper.name}.module was constructed before LazyModule() was run on ${LazyModule.scope.get.name}"
)
/** Set module name. Defaults to the containing LazyModule's desiredName. */
override def desiredName: String = wrapper.desiredName
suggestName(wrapper.suggestedName)
/** [[Parameters]] for chisel [[Module]]s. */
implicit val p: Parameters = wrapper.p
/** instantiate this [[LazyModule]], return [[AutoBundle]] and a unconnected [[Dangle]]s from this module and
* submodules.
*/
protected[diplomacy] def instantiate(): (AutoBundle, List[Dangle]) = {
// 1. It will recursively append [[wrapper.children]] into [[chisel3.internal.Builder]],
// 2. return [[Dangle]]s from each module.
val childDangles = wrapper.children.reverse.flatMap { c =>
implicit val sourceInfo: SourceInfo = c.info
c.cloneProto.map { cp =>
// If the child is a clone, then recursively set cloneProto of its children as well
def assignCloneProtos(bases: Seq[LazyModule], clones: Seq[LazyModule]): Unit = {
require(bases.size == clones.size)
(bases.zip(clones)).map { case (l, r) =>
require(l.getClass == r.getClass, s"Cloned children class mismatch ${l.name} != ${r.name}")
l.cloneProto = Some(r)
assignCloneProtos(l.children, r.children)
}
}
assignCloneProtos(c.children, cp.children)
// Clone the child module as a record, and get its [[AutoBundle]]
val clone = CloneModuleAsRecord(cp.module).suggestName(c.suggestedName)
val clonedAuto = clone("auto").asInstanceOf[AutoBundle]
// Get the empty [[Dangle]]'s of the cloned child
val rawDangles = c.cloneDangles()
require(rawDangles.size == clonedAuto.elements.size)
// Assign the [[AutoBundle]] fields of the cloned record to the empty [[Dangle]]'s
val dangles = (rawDangles.zip(clonedAuto.elements)).map { case (d, (_, io)) => d.copy(dataOpt = Some(io)) }
dangles
}.getOrElse {
// For non-clones, instantiate the child module
val mod = try {
Module(c.module)
} catch {
case e: ChiselException => {
println(s"Chisel exception caught when instantiating ${c.name} within ${this.name} at ${c.line}")
throw e
}
}
mod.dangles
}
}
// Ask each node in this [[LazyModule]] to call [[BaseNode.instantiate]].
// This will result in a sequence of [[Dangle]] from these [[BaseNode]]s.
val nodeDangles = wrapper.nodes.reverse.flatMap(_.instantiate())
// Accumulate all the [[Dangle]]s from this node and any accumulated from its [[wrapper.children]]
val allDangles = nodeDangles ++ childDangles
// Group [[allDangles]] by their [[source]].
val pairing = SortedMap(allDangles.groupBy(_.source).toSeq: _*)
// For each [[source]] set of [[Dangle]]s of size 2, ensure that these
// can be connected as a source-sink pair (have opposite flipped value).
// Make the connection and mark them as [[done]].
val done = Set() ++ pairing.values.filter(_.size == 2).map {
case Seq(a, b) =>
require(a.flipped != b.flipped)
// @todo <> in chisel3 makes directionless connection.
if (a.flipped) {
a.data <> b.data
} else {
b.data <> a.data
}
a.source
case _ => None
}
// Find all [[Dangle]]s which are still not connected. These will end up as [[AutoBundle]] [[IO]] ports on the module.
val forward = allDangles.filter(d => !done(d.source))
// Generate [[AutoBundle]] IO from [[forward]].
val auto = IO(new AutoBundle(forward.map { d => (d.name, d.data, d.flipped) }: _*))
// Pass the [[Dangle]]s which remained and were used to generate the [[AutoBundle]] I/O ports up to the [[parent]] [[LazyModule]]
val dangles = (forward.zip(auto.elements)).map { case (d, (_, io)) =>
if (d.flipped) {
d.data <> io
} else {
io <> d.data
}
d.copy(dataOpt = Some(io), name = wrapper.suggestedName + "_" + d.name)
}
// Push all [[LazyModule.inModuleBody]] to [[chisel3.internal.Builder]].
wrapper.inModuleBody.reverse.foreach {
_()
}
if (wrapper.shouldBeInlined) {
chisel3.experimental.annotate(new ChiselAnnotation {
def toFirrtl = InlineAnnotation(toNamed)
})
}
// Return [[IO]] and [[Dangle]] of this [[LazyModuleImp]].
(auto, dangles)
}
}
/** Actual description of a [[Module]] which can be instantiated by a call to [[LazyModule.module]].
*
* @param wrapper
* the [[LazyModule]] from which the `.module` call is being made.
*/
class LazyModuleImp(val wrapper: LazyModule) extends Module with LazyModuleImpLike {
/** Instantiate hardware of this `Module`. */
val (auto, dangles) = instantiate()
}
/** Actual description of a [[RawModule]] which can be instantiated by a call to [[LazyModule.module]].
*
* @param wrapper
* the [[LazyModule]] from which the `.module` call is being made.
*/
class LazyRawModuleImp(val wrapper: LazyModule) extends RawModule with LazyModuleImpLike {
// These wires are the default clock+reset for all LazyModule children.
// It is recommended to drive these even if you manually drive the [[clock]] and [[reset]] of all of the
// [[LazyRawModuleImp]] children.
// Otherwise, anonymous children ([[Monitor]]s for example) will not have their [[clock]] and/or [[reset]] driven properly.
/** drive clock explicitly. */
val childClock: Clock = Wire(Clock())
/** drive reset explicitly. */
val childReset: Reset = Wire(Reset())
// the default is that these are disabled
childClock := false.B.asClock
childReset := chisel3.DontCare
def provideImplicitClockToLazyChildren: Boolean = false
val (auto, dangles) =
if (provideImplicitClockToLazyChildren) {
withClockAndReset(childClock, childReset) { instantiate() }
} else {
instantiate()
}
}
File Debug.scala:
// See LICENSE.SiFive for license details.
package freechips.rocketchip.devices.debug
import chisel3._
import chisel3.util._
import org.chipsalliance.cde.config._
import org.chipsalliance.diplomacy.lazymodule._
import freechips.rocketchip.amba.apb.{APBFanout, APBToTL}
import freechips.rocketchip.devices.debug.systembusaccess.{SBToTL, SystemBusAccessModule}
import freechips.rocketchip.devices.tilelink.{DevNullParams, TLBusBypass, TLError}
import freechips.rocketchip.diplomacy.{AddressSet, BufferParams}
import freechips.rocketchip.resources.{Description, Device, Resource, ResourceBindings, ResourceString, SimpleDevice}
import freechips.rocketchip.interrupts.{IntNexusNode, IntSinkParameters, IntSinkPortParameters, IntSourceParameters, IntSourcePortParameters, IntSyncCrossingSource, IntSyncIdentityNode}
import freechips.rocketchip.regmapper.{RegField, RegFieldAccessType, RegFieldDesc, RegFieldGroup, RegFieldWrType, RegReadFn, RegWriteFn}
import freechips.rocketchip.rocket.{CSRs, Instructions}
import freechips.rocketchip.tile.MaxHartIdBits
import freechips.rocketchip.tilelink.{TLAsyncCrossingSink, TLAsyncCrossingSource, TLBuffer, TLRegisterNode, TLXbar}
import freechips.rocketchip.util.{Annotated, AsyncBundle, AsyncQueueParams, AsyncResetSynchronizerShiftReg, FromAsyncBundle, ParameterizedBundle, ResetSynchronizerShiftReg, ToAsyncBundle}
import freechips.rocketchip.util.SeqBoolBitwiseOps
import freechips.rocketchip.util.SeqToAugmentedSeq
import freechips.rocketchip.util.BooleanToAugmentedBoolean
object DsbBusConsts {
def sbAddrWidth = 12
def sbIdWidth = 10
}
object DsbRegAddrs{
// These are used by the ROM.
def HALTED = 0x100
def GOING = 0x104
def RESUMING = 0x108
def EXCEPTION = 0x10C
def WHERETO = 0x300
// This needs to be aligned for up to lq/sq
// This shows up in HartInfo, and needs to be aligned
// to enable up to LQ/SQ instructions.
def DATA = 0x380
// We want DATA to immediately follow PROGBUF so that we can
// use them interchangeably. Leave another slot if there is an
// implicit ebreak.
def PROGBUF(cfg:DebugModuleParams) = {
val tmp = DATA - (cfg.nProgramBufferWords * 4)
if (cfg.hasImplicitEbreak) (tmp - 4) else tmp
}
// This is unused if hasImpEbreak is false, and just points to the end of the PROGBUF.
def IMPEBREAK(cfg: DebugModuleParams) = { DATA - 4 }
// We want abstract to be immediately before PROGBUF
// because we auto-generate 2 (or 5) instructions.
def ABSTRACT(cfg:DebugModuleParams) = PROGBUF(cfg) - (cfg.nAbstractInstructions * 4)
def FLAGS = 0x400
def ROMBASE = 0x800
}
/** Enumerations used both in the hardware
* and in the configuration specification.
*/
object DebugModuleAccessType extends scala.Enumeration {
type DebugModuleAccessType = Value
val Access8Bit, Access16Bit, Access32Bit, Access64Bit, Access128Bit = Value
}
object DebugAbstractCommandError extends scala.Enumeration {
type DebugAbstractCommandError = Value
val Success, ErrBusy, ErrNotSupported, ErrException, ErrHaltResume = Value
}
object DebugAbstractCommandType extends scala.Enumeration {
type DebugAbstractCommandType = Value
val AccessRegister, QuickAccess = Value
}
/** Parameters exposed to the top-level design, set based on
* external requirements, etc.
*
* This object checks that the parameters conform to the
* full specification. The implementation which receives this
* object can perform more checks on what that implementation
* actually supports.
* @param nComponents Number of components to support debugging.
* @param baseAddress Base offest for debugEntry and debugException
* @param nDMIAddrSize Size of the Debug Bus Address
* @param nAbstractDataWords Number of 32-bit words for Abstract Commands
* @param nProgamBufferWords Number of 32-bit words for Program Buffer
* @param hasBusMaster Whether or not a bus master should be included
* @param clockGate Whether or not to use dmactive as the clockgate for debug module
* @param maxSupportedSBAccess Maximum transaction size supported by System Bus Access logic.
* @param supportQuickAccess Whether or not to support the quick access command.
* @param supportHartArray Whether or not to implement the hart array register (if >1 hart).
* @param nHaltGroups Number of halt groups
* @param nExtTriggers Number of external triggers
* @param hasHartResets Feature to reset all the currently selected harts
* @param hasImplicitEbreak There is an additional RO program buffer word containing an ebreak
* @param crossingHasSafeReset Include "safe" logic in Async Crossings so that only one side needs to be reset.
*/
case class DebugModuleParams (
baseAddress : BigInt = BigInt(0),
nDMIAddrSize : Int = 7,
nProgramBufferWords: Int = 16,
nAbstractDataWords : Int = 4,
nScratch : Int = 1,
hasBusMaster : Boolean = false,
clockGate : Boolean = true,
maxSupportedSBAccess : Int = 32,
supportQuickAccess : Boolean = false,
supportHartArray : Boolean = true,
nHaltGroups : Int = 1,
nExtTriggers : Int = 0,
hasHartResets : Boolean = false,
hasImplicitEbreak : Boolean = false,
hasAuthentication : Boolean = false,
crossingHasSafeReset : Boolean = true
) {
require ((nDMIAddrSize >= 7) && (nDMIAddrSize <= 32), s"Legal DMIAddrSize is 7-32, not ${nDMIAddrSize}")
require ((nAbstractDataWords > 0) && (nAbstractDataWords <= 16), s"Legal nAbstractDataWords is 0-16, not ${nAbstractDataWords}")
require ((nProgramBufferWords >= 0) && (nProgramBufferWords <= 16), s"Legal nProgramBufferWords is 0-16, not ${nProgramBufferWords}")
require (nHaltGroups < 32, s"Legal nHaltGroups is 0-31, not ${nHaltGroups}")
require (nExtTriggers <= 16, s"Legal nExtTriggers is 0-16, not ${nExtTriggers}")
if (supportQuickAccess) {
// TODO: Check that quick access requirements are met.
}
def address = AddressSet(baseAddress, 0xFFF)
/** the base address of DM */
def atzero = (baseAddress == 0)
/** The number of generated instructions
*
* When the base address is not zero, we need more instruction also,
* more dscratch registers) to load/store memory mapped data register
* because they may no longer be directly addressible with x0 + 12-bit imm
*/
def nAbstractInstructions = if (atzero) 2 else 5
def debugEntry: BigInt = baseAddress + 0x800
def debugException: BigInt = baseAddress + 0x808
def nDscratch: Int = if (atzero) 1 else 2
}
object DefaultDebugModuleParams {
def apply(xlen:Int /*TODO , val configStringAddr: Int*/): DebugModuleParams = {
new DebugModuleParams().copy(
nAbstractDataWords = (if (xlen == 32) 1 else if (xlen == 64) 2 else 4),
maxSupportedSBAccess = xlen
)
}
}
case object DebugModuleKey extends Field[Option[DebugModuleParams]](Some(DebugModuleParams()))
/** Functional parameters exposed to the design configuration.
*
* hartIdToHartSel: For systems where hart ids are not 1:1 with hartsel, provide the mapping.
* hartSelToHartId: Provide inverse mapping of the above
*/
case class DebugModuleHartSelFuncs (
hartIdToHartSel : (UInt) => UInt = (x:UInt) => x,
hartSelToHartId : (UInt) => UInt = (x:UInt) => x
)
case object DebugModuleHartSelKey extends Field(DebugModuleHartSelFuncs())
class DebugExtTriggerOut (val nExtTriggers: Int) extends Bundle {
val req = Output(UInt(nExtTriggers.W))
val ack = Input(UInt(nExtTriggers.W))
}
class DebugExtTriggerIn (val nExtTriggers: Int) extends Bundle {
val req = Input(UInt(nExtTriggers.W))
val ack = Output(UInt(nExtTriggers.W))
}
class DebugExtTriggerIO () (implicit val p: Parameters) extends ParameterizedBundle()(p) {
val out = new DebugExtTriggerOut(p(DebugModuleKey).get.nExtTriggers)
val in = new DebugExtTriggerIn (p(DebugModuleKey).get.nExtTriggers)
}
class DebugAuthenticationIO () (implicit val p: Parameters) extends ParameterizedBundle()(p) {
val dmactive = Output(Bool())
val dmAuthWrite = Output(Bool())
val dmAuthRead = Output(Bool())
val dmAuthWdata = Output(UInt(32.W))
val dmAuthBusy = Input(Bool())
val dmAuthRdata = Input(UInt(32.W))
val dmAuthenticated = Input(Bool())
}
// *****************************************
// Module Interfaces
//
// *****************************************
/** Control signals for Inner, generated in Outer
* {{{
* run control: resumreq, ackhavereset, halt-on-reset mask
* hart select: hasel, hartsel and the hart array mask
* }}}
*/
class DebugInternalBundle (val nComponents: Int)(implicit val p: Parameters) extends ParameterizedBundle()(p) {
/** resume request */
val resumereq = Bool()
/** hart select */
val hartsel = UInt(10.W)
/** reset acknowledge */
val ackhavereset = Bool()
/** hart array enable */
val hasel = Bool()
/** hart array mask */
val hamask = Vec(nComponents, Bool())
/** halt-on-reset mask */
val hrmask = Vec(nComponents, Bool())
}
/** structure for top-level Debug Module signals which aren't the bus interfaces. */
class DebugCtrlBundle (nComponents: Int)(implicit val p: Parameters) extends ParameterizedBundle()(p) {
/** debug availability status for all harts */
val debugUnavail = Input(Vec(nComponents, Bool()))
/** reset signal
*
* for every part of the hardware platform,
* including every hart, except for the DM and any
* logic required to access the DM
*/
val ndreset = Output(Bool())
/** reset signal for the DM itself */
val dmactive = Output(Bool())
/** dmactive acknowlege */
val dmactiveAck = Input(Bool())
}
// *****************************************
// Debug Module
//
// *****************************************
/** Parameterized version of the Debug Module defined in the
* RISC-V Debug Specification
*
* DebugModule is a slave to two asynchronous masters:
* The Debug Bus (DMI) -- This is driven by an external debugger
*
* The System Bus -- This services requests from the cores. Generally
* this interface should only be active at the request
* of the debugger, but the Debug Module may also
* provide the default MTVEC since it is mapped
* to address 0x0.
*
* DebugModule is responsible for control registers and RAM, and
* Debug ROM. It runs partially off of the dmiClk (e.g. TCK) and
* the TL clock. Therefore, it is divided into "Outer" portion (running
* off dmiClock and dmiReset) and "Inner" (running off tl_clock and tl_reset).
* This allows DMCONTROL.haltreq, hartsel, hasel, hawindowsel, hawindow, dmactive,
* and ndreset to be modified even while the Core is in reset or not being clocked.
* Not all reads from the Debugger to the Debug Module will actually complete
* in these scenarios either, they will just block until tl_clock and tl_reset
* allow them to complete. This is not strictly necessary for
* proper debugger functionality.
*/
// Local reg mapper function : Notify when written, but give the value as well.
object WNotifyWire {
def apply(n: Int, value: UInt, set: Bool, name: String, desc: String) : RegField = {
RegField(n, 0.U, RegWriteFn((valid, data) => {
set := valid
value := data
true.B
}), Some(RegFieldDesc(name = name, desc = desc,
access = RegFieldAccessType.W)))
}
}
// Local reg mapper function : Notify when accessed either as read or write.
object RWNotify {
def apply (n: Int, rVal: UInt, wVal: UInt, rNotify: Bool, wNotify: Bool, desc: Option[RegFieldDesc] = None): RegField = {
RegField(n,
RegReadFn ((ready) => {rNotify := ready ; (true.B, rVal)}),
RegWriteFn((valid, data) => {
wNotify := valid
when (valid) {wVal := data}
true.B
}
), desc)
}
}
// Local reg mapper function : Notify with value when written, take read input as presented.
// This allows checking or correcting the write value before storing it in the register field.
object WNotifyVal {
def apply(n: Int, rVal: UInt, wVal: UInt, wNotify: Bool, desc: RegFieldDesc): RegField = {
RegField(n, rVal, RegWriteFn((valid, data) => {
wNotify := valid
wVal := data
true.B
}
), desc)
}
}
class TLDebugModuleOuter(device: Device)(implicit p: Parameters) extends LazyModule {
// For Shorter Register Names
import DMI_RegAddrs._
val cfg = p(DebugModuleKey).get
val intnode = IntNexusNode(
sourceFn = { _ => IntSourcePortParameters(Seq(IntSourceParameters(1, Seq(Resource(device, "int"))))) },
sinkFn = { _ => IntSinkPortParameters(Seq(IntSinkParameters())) },
outputRequiresInput = false)
val dmiNode = TLRegisterNode (
address = AddressSet.misaligned(DMI_DMCONTROL << 2, 4) ++
AddressSet.misaligned(DMI_HARTINFO << 2, 4) ++
AddressSet.misaligned(DMI_HAWINDOWSEL << 2, 4) ++
AddressSet.misaligned(DMI_HAWINDOW << 2, 4),
device = device,
beatBytes = 4,
executable = false
)
lazy val module = new Impl
class Impl extends LazyModuleImp(this) {
require (intnode.edges.in.size == 0, "Debug Module does not accept interrupts")
val nComponents = intnode.out.size
def getNComponents = () => nComponents
val supportHartArray = cfg.supportHartArray && (nComponents > 1) // no hart array if only one hart
val io = IO(new Bundle {
/** structure for top-level Debug Module signals which aren't the bus interfaces. */
val ctrl = (new DebugCtrlBundle(nComponents))
/** control signals for Inner, generated in Outer */
val innerCtrl = new DecoupledIO(new DebugInternalBundle(nComponents))
/** debug interruption from Inner to Outer
*
* contains 2 type of debug interruption causes:
* - halt group
* - halt-on-reset
*/
val hgDebugInt = Input(Vec(nComponents, Bool()))
/** hart reset request to core */
val hartResetReq = cfg.hasHartResets.option(Output(Vec(nComponents, Bool())))
/** authentication support */
val dmAuthenticated = cfg.hasAuthentication.option(Input(Bool()))
})
val omRegMap = withReset(reset.asAsyncReset) {
// FIXME: Instead of casting reset to ensure it is Async, assert/require reset.Type == AsyncReset (when this feature is available)
val dmAuthenticated = io.dmAuthenticated.map( dma =>
ResetSynchronizerShiftReg(in=dma, sync=3, name=Some("dmAuthenticated_sync"))).getOrElse(true.B)
//----DMCONTROL (The whole point of 'Outer' is to maintain this register on dmiClock (e.g. TCK) domain, so that it
// can be written even if 'Inner' is not being clocked or is in reset. This allows halting
// harts while the rest of the system is in reset. It doesn't really allow any other
// register accesses, which will keep returning 'busy' to the debugger interface.
val DMCONTROLReset = WireInit(0.U.asTypeOf(new DMCONTROLFields()))
val DMCONTROLNxt = WireInit(0.U.asTypeOf(new DMCONTROLFields()))
val DMCONTROLReg = RegNext(next=DMCONTROLNxt, init=0.U.asTypeOf(DMCONTROLNxt)).suggestName("DMCONTROLReg")
val hartsel_mask = if (nComponents > 1) ((1 << p(MaxHartIdBits)) - 1).U else 0.U
val DMCONTROLWrData = WireInit(0.U.asTypeOf(new DMCONTROLFields()))
val dmactiveWrEn = WireInit(false.B)
val ndmresetWrEn = WireInit(false.B)
val clrresethaltreqWrEn = WireInit(false.B)
val setresethaltreqWrEn = WireInit(false.B)
val hartselloWrEn = WireInit(false.B)
val haselWrEn = WireInit(false.B)
val ackhaveresetWrEn = WireInit(false.B)
val hartresetWrEn = WireInit(false.B)
val resumereqWrEn = WireInit(false.B)
val haltreqWrEn = WireInit(false.B)
val dmactive = DMCONTROLReg.dmactive
DMCONTROLNxt := DMCONTROLReg
when (~dmactive) {
DMCONTROLNxt := DMCONTROLReset
} .otherwise {
when (dmAuthenticated && ndmresetWrEn) { DMCONTROLNxt.ndmreset := DMCONTROLWrData.ndmreset }
when (dmAuthenticated && hartselloWrEn) { DMCONTROLNxt.hartsello := DMCONTROLWrData.hartsello & hartsel_mask}
when (dmAuthenticated && haselWrEn) { DMCONTROLNxt.hasel := DMCONTROLWrData.hasel }
when (dmAuthenticated && hartresetWrEn) { DMCONTROLNxt.hartreset := DMCONTROLWrData.hartreset }
when (dmAuthenticated && haltreqWrEn) { DMCONTROLNxt.haltreq := DMCONTROLWrData.haltreq }
}
// Put this last to override its own effects.
when (dmactiveWrEn) {
DMCONTROLNxt.dmactive := DMCONTROLWrData.dmactive
}
//----HARTINFO
// DATA registers are mapped to memory. The dataaddr field of HARTINFO has only
// 12 bits and assumes the DM base is 0. If not at 0, then HARTINFO reads as 0
// (implying nonexistence according to the Debug Spec).
val HARTINFORdData = WireInit(0.U.asTypeOf(new HARTINFOFields()))
if (cfg.atzero) when (dmAuthenticated) {
HARTINFORdData.dataaccess := true.B
HARTINFORdData.datasize := cfg.nAbstractDataWords.U
HARTINFORdData.dataaddr := DsbRegAddrs.DATA.U
HARTINFORdData.nscratch := cfg.nScratch.U
}
//--------------------------------------------------------------
// Hart array mask and window
// hamask is hart array mask(1 bit per component), which doesn't include the hart selected by dmcontrol.hartsello
// HAWINDOWSEL selects a 32-bit slice of HAMASK to be visible for read/write in HAWINDOW
//--------------------------------------------------------------
val hamask = WireInit(VecInit(Seq.fill(nComponents) {false.B} ))
def haWindowSize = 32
// The following need to be declared even if supportHartArray is false due to reference
// at compile time by dmiNode.regmap
val HAWINDOWSELWrData = WireInit(0.U.asTypeOf(new HAWINDOWSELFields()))
val HAWINDOWSELWrEn = WireInit(false.B)
val HAWINDOWRdData = WireInit(0.U.asTypeOf(new HAWINDOWFields()))
val HAWINDOWWrData = WireInit(0.U.asTypeOf(new HAWINDOWFields()))
val HAWINDOWWrEn = WireInit(false.B)
/** whether the hart is selected */
def hartSelected(hart: Int): Bool = {
((io.innerCtrl.bits.hartsel === hart.U) ||
(if (supportHartArray) io.innerCtrl.bits.hasel && io.innerCtrl.bits.hamask(hart) else false.B))
}
val HAWINDOWSELNxt = WireInit(0.U.asTypeOf(new HAWINDOWSELFields()))
val HAWINDOWSELReg = RegNext(next=HAWINDOWSELNxt, init=0.U.asTypeOf(HAWINDOWSELNxt))
if (supportHartArray) {
val HAWINDOWSELReset = WireInit(0.U.asTypeOf(new HAWINDOWSELFields()))
HAWINDOWSELNxt := HAWINDOWSELReg
when (~dmactive || ~dmAuthenticated) {
HAWINDOWSELNxt := HAWINDOWSELReset
} .otherwise {
when (HAWINDOWSELWrEn) {
// Unneeded upper bits of HAWINDOWSEL are tied to 0. Entire register is 0 if all harts fit in one window
if (nComponents > haWindowSize) {
HAWINDOWSELNxt.hawindowsel := HAWINDOWSELWrData.hawindowsel & ((1 << (log2Up(nComponents) - 5)) - 1).U
} else {
HAWINDOWSELNxt.hawindowsel := 0.U
}
}
}
val numHAMASKSlices = ((nComponents - 1)/haWindowSize)+1
HAWINDOWRdData.maskdata := 0.U // default, overridden below
// for each slice,use a hamaskReg to store the selection info
for (ii <- 0 until numHAMASKSlices) {
val sliceMask = if (nComponents > ((ii*haWindowSize) + haWindowSize-1)) (BigInt(1) << haWindowSize) - 1 // All harts in this slice exist
else (BigInt(1)<<(nComponents - (ii*haWindowSize))) - 1 // Partial last slice
val HAMASKRst = WireInit(0.U.asTypeOf(new HAWINDOWFields()))
val HAMASKNxt = WireInit(0.U.asTypeOf(new HAWINDOWFields()))
val HAMASKReg = RegNext(next=HAMASKNxt, init=0.U.asTypeOf(HAMASKNxt))
when (ii.U === HAWINDOWSELReg.hawindowsel) {
HAWINDOWRdData.maskdata := HAMASKReg.asUInt & sliceMask.U
}
HAMASKNxt.maskdata := HAMASKReg.asUInt
when (~dmactive || ~dmAuthenticated) {
HAMASKNxt := HAMASKRst
}.otherwise {
when (HAWINDOWWrEn && (ii.U === HAWINDOWSELReg.hawindowsel)) {
HAMASKNxt.maskdata := HAWINDOWWrData.maskdata
}
}
// drive each slice of hamask with stored HAMASKReg or with new value being written
for (jj <- 0 until haWindowSize) {
if (((ii*haWindowSize) + jj) < nComponents) {
val tempWrData = HAWINDOWWrData.maskdata.asBools
val tempMaskReg = HAMASKReg.asUInt.asBools
when (HAWINDOWWrEn && (ii.U === HAWINDOWSELReg.hawindowsel)) {
hamask(ii*haWindowSize + jj) := tempWrData(jj)
}.otherwise {
hamask(ii*haWindowSize + jj) := tempMaskReg(jj)
}
}
}
}
}
//--------------------------------------------------------------
// Halt-on-reset
// hrmaskReg is current set of harts that should halt-on-reset
// Reset state (dmactive=0) is all zeroes
// Bits are set by writing 1 to DMCONTROL.setresethaltreq
// Bits are cleared by writing 1 to DMCONTROL.clrresethaltreq
// Spec says if both are 1, then clrresethaltreq is executed
// hrmask is the halt-on-reset mask which will be sent to inner
//--------------------------------------------------------------
val hrmask = Wire(Vec(nComponents, Bool()))
val hrmaskNxt = Wire(Vec(nComponents, Bool()))
val hrmaskReg = RegNext(next=hrmaskNxt, init=0.U.asTypeOf(hrmaskNxt)).suggestName("hrmaskReg")
hrmaskNxt := hrmaskReg
for (component <- 0 until nComponents) {
when (~dmactive || ~dmAuthenticated) {
hrmaskNxt(component) := false.B
}.elsewhen (clrresethaltreqWrEn && DMCONTROLWrData.clrresethaltreq && hartSelected(component)) {
hrmaskNxt(component) := false.B
}.elsewhen (setresethaltreqWrEn && DMCONTROLWrData.setresethaltreq && hartSelected(component)) {
hrmaskNxt(component) := true.B
}
}
hrmask := hrmaskNxt
val dmControlRegFields = RegFieldGroup("dmcontrol", Some("debug module control register"), Seq(
WNotifyVal(1, DMCONTROLReg.dmactive & io.ctrl.dmactiveAck, DMCONTROLWrData.dmactive, dmactiveWrEn,
RegFieldDesc("dmactive", "debug module active", reset=Some(0))),
WNotifyVal(1, DMCONTROLReg.ndmreset, DMCONTROLWrData.ndmreset, ndmresetWrEn,
RegFieldDesc("ndmreset", "debug module reset output", reset=Some(0))),
WNotifyVal(1, 0.U, DMCONTROLWrData.clrresethaltreq, clrresethaltreqWrEn,
RegFieldDesc("clrresethaltreq", "clear reset halt request", reset=Some(0), access=RegFieldAccessType.W)),
WNotifyVal(1, 0.U, DMCONTROLWrData.setresethaltreq, setresethaltreqWrEn,
RegFieldDesc("setresethaltreq", "set reset halt request", reset=Some(0), access=RegFieldAccessType.W)),
RegField(12),
if (nComponents > 1) WNotifyVal(p(MaxHartIdBits),
DMCONTROLReg.hartsello, DMCONTROLWrData.hartsello, hartselloWrEn,
RegFieldDesc("hartsello", "hart select low", reset=Some(0)))
else RegField(1),
if (nComponents > 1) RegField(10-p(MaxHartIdBits))
else RegField(9),
if (supportHartArray)
WNotifyVal(1, DMCONTROLReg.hasel, DMCONTROLWrData.hasel, haselWrEn,
RegFieldDesc("hasel", "hart array select", reset=Some(0)))
else RegField(1),
RegField(1),
WNotifyVal(1, 0.U, DMCONTROLWrData.ackhavereset, ackhaveresetWrEn,
RegFieldDesc("ackhavereset", "acknowledge reset", reset=Some(0), access=RegFieldAccessType.W)),
if (cfg.hasHartResets)
WNotifyVal(1, DMCONTROLReg.hartreset, DMCONTROLWrData.hartreset, hartresetWrEn,
RegFieldDesc("hartreset", "hart reset request", reset=Some(0)))
else RegField(1),
WNotifyVal(1, 0.U, DMCONTROLWrData.resumereq, resumereqWrEn,
RegFieldDesc("resumereq", "resume request", reset=Some(0), access=RegFieldAccessType.W)),
WNotifyVal(1, DMCONTROLReg.haltreq, DMCONTROLWrData.haltreq, haltreqWrEn, // Spec says W, but maintaining previous behavior
RegFieldDesc("haltreq", "halt request", reset=Some(0)))
))
val hartinfoRegFields = RegFieldGroup("dmi_hartinfo", Some("hart information"), Seq(
RegField.r(12, HARTINFORdData.dataaddr, RegFieldDesc("dataaddr", "data address", reset=Some(if (cfg.atzero) DsbRegAddrs.DATA else 0))),
RegField.r(4, HARTINFORdData.datasize, RegFieldDesc("datasize", "number of DATA registers", reset=Some(if (cfg.atzero) cfg.nAbstractDataWords else 0))),
RegField.r(1, HARTINFORdData.dataaccess, RegFieldDesc("dataaccess", "data access type", reset=Some(if (cfg.atzero) 1 else 0))),
RegField(3),
RegField.r(4, HARTINFORdData.nscratch, RegFieldDesc("nscratch", "number of scratch registers", reset=Some(if (cfg.atzero) cfg.nScratch else 0)))
))
//--------------------------------------------------------------
// DMI register decoder for Outer
//--------------------------------------------------------------
// regmap addresses are byte offsets from lowest address
def DMI_DMCONTROL_OFFSET = 0
def DMI_HARTINFO_OFFSET = ((DMI_HARTINFO - DMI_DMCONTROL) << 2)
def DMI_HAWINDOWSEL_OFFSET = ((DMI_HAWINDOWSEL - DMI_DMCONTROL) << 2)
def DMI_HAWINDOW_OFFSET = ((DMI_HAWINDOW - DMI_DMCONTROL) << 2)
val omRegMap = dmiNode.regmap(
DMI_DMCONTROL_OFFSET -> dmControlRegFields,
DMI_HARTINFO_OFFSET -> hartinfoRegFields,
DMI_HAWINDOWSEL_OFFSET -> (if (supportHartArray && (nComponents > 32)) Seq(
WNotifyVal(log2Up(nComponents)-5, HAWINDOWSELReg.hawindowsel, HAWINDOWSELWrData.hawindowsel, HAWINDOWSELWrEn,
RegFieldDesc("hawindowsel", "hart array window select", reset=Some(0)))) else Nil),
DMI_HAWINDOW_OFFSET -> (if (supportHartArray) Seq(
WNotifyVal(if (nComponents > 31) 32 else nComponents, HAWINDOWRdData.maskdata, HAWINDOWWrData.maskdata, HAWINDOWWrEn,
RegFieldDesc("hawindow", "hart array window", reset=Some(0), volatile=(nComponents > 32)))) else Nil)
)
//--------------------------------------------------------------
// Interrupt Registers
//--------------------------------------------------------------
val debugIntNxt = WireInit(VecInit(Seq.fill(nComponents) {false.B} ))
val debugIntRegs = RegNext(next=debugIntNxt, init=0.U.asTypeOf(debugIntNxt)).suggestName("debugIntRegs")
debugIntNxt := debugIntRegs
val (intnode_out, _) = intnode.out.unzip
for (component <- 0 until nComponents) {
intnode_out(component)(0) := debugIntRegs(component) | io.hgDebugInt(component)
}
// sends debug interruption to Core when dmcs.haltreq is set,
for (component <- 0 until nComponents) {
when (~dmactive || ~dmAuthenticated) {
debugIntNxt(component) := false.B
}. otherwise {
when (haltreqWrEn && ((DMCONTROLWrData.hartsello === component.U)
|| (if (supportHartArray) DMCONTROLWrData.hasel && hamask(component) else false.B))) {
debugIntNxt(component) := DMCONTROLWrData.haltreq
}
}
}
// Halt request registers are set & cleared by writes to DMCONTROL.haltreq
// resumereq also causes the core to execute a 'dret',
// so resumereq is passed through to Inner.
// hartsel/hasel/hamask must also be used by the DebugModule state machine,
// so it is passed to Inner.
// These registers ensure that requests to dmInner are not lost if inner clock isn't running or requests occur too close together.
// If the innerCtrl async queue is not ready, the notification will be posted and held until ready is received.
// Additional notifications that occur while one is already waiting update the pending data so that the last value written is sent.
// Volatile events resumereq and ackhavereset are registered when they occur and remain pending until ready is received.
val innerCtrlValid = Wire(Bool())
val innerCtrlValidReg = RegInit(false.B).suggestName("innerCtrlValidReg")
val innerCtrlResumeReqReg = RegInit(false.B).suggestName("innerCtrlResumeReqReg")
val innerCtrlAckHaveResetReg = RegInit(false.B).suggestName("innerCtrlAckHaveResetReg")
innerCtrlValid := hartselloWrEn | resumereqWrEn | ackhaveresetWrEn | setresethaltreqWrEn | clrresethaltreqWrEn | haselWrEn |
(HAWINDOWWrEn & supportHartArray.B)
innerCtrlValidReg := io.innerCtrl.valid & ~io.innerCtrl.ready // Hold innerctrl request until the async queue accepts it
innerCtrlResumeReqReg := io.innerCtrl.bits.resumereq & ~io.innerCtrl.ready // Hold resumereq until accepted
innerCtrlAckHaveResetReg := io.innerCtrl.bits.ackhavereset & ~io.innerCtrl.ready // Hold ackhavereset until accepted
io.innerCtrl.valid := innerCtrlValid | innerCtrlValidReg
io.innerCtrl.bits.hartsel := Mux(hartselloWrEn, DMCONTROLWrData.hartsello, DMCONTROLReg.hartsello)
io.innerCtrl.bits.resumereq := (resumereqWrEn & DMCONTROLWrData.resumereq) | innerCtrlResumeReqReg
io.innerCtrl.bits.ackhavereset := (ackhaveresetWrEn & DMCONTROLWrData.ackhavereset) | innerCtrlAckHaveResetReg
io.innerCtrl.bits.hrmask := hrmask
if (supportHartArray) {
io.innerCtrl.bits.hasel := Mux(haselWrEn, DMCONTROLWrData.hasel, DMCONTROLReg.hasel)
io.innerCtrl.bits.hamask := hamask
} else {
io.innerCtrl.bits.hasel := DontCare
io.innerCtrl.bits.hamask := DontCare
}
io.ctrl.ndreset := DMCONTROLReg.ndmreset
io.ctrl.dmactive := DMCONTROLReg.dmactive
// hart reset mechanism implementation
if (cfg.hasHartResets) {
val hartResetNxt = Wire(Vec(nComponents, Bool()))
val hartResetReg = RegNext(next=hartResetNxt, init=0.U.asTypeOf(hartResetNxt))
for (component <- 0 until nComponents) {
hartResetNxt(component) := DMCONTROLReg.hartreset & hartSelected(component)
io.hartResetReq.get(component) := hartResetReg(component)
}
}
omRegMap // FIXME: Remove this when withReset is removed
}}
}
// wrap a Outer with a DMIToTL, derived by dmi clock & reset
class TLDebugModuleOuterAsync(device: Device)(implicit p: Parameters) extends LazyModule {
val cfg = p(DebugModuleKey).get
val dmiXbar = LazyModule (new TLXbar(nameSuffix = Some("dmixbar")))
val dmi2tlOpt = (!p(ExportDebug).apb).option({
val dmi2tl = LazyModule(new DMIToTL())
dmiXbar.node := dmi2tl.node
dmi2tl
})
val apbNodeOpt = p(ExportDebug).apb.option({
val apb2tl = LazyModule(new APBToTL())
val apb2tlBuffer = LazyModule(new TLBuffer(BufferParams.pipe))
val dmTopAddr = (1 << cfg.nDMIAddrSize) << 2
val tlErrorParams = DevNullParams(AddressSet.misaligned(dmTopAddr, APBDebugConsts.apbDebugRegBase-dmTopAddr), maxAtomic=0, maxTransfer=4)
val tlError = LazyModule(new TLError(tlErrorParams, buffer=false))
val apbXbar = LazyModule(new APBFanout())
val apbRegs = LazyModule(new APBDebugRegisters())
apbRegs.node := apbXbar.node
apb2tl.node := apbXbar.node
apb2tlBuffer.node := apb2tl.node
dmiXbar.node := apb2tlBuffer.node
tlError.node := dmiXbar.node
apbXbar.node
})
val dmOuter = LazyModule( new TLDebugModuleOuter(device))
val intnode = IntSyncIdentityNode()
intnode :*= IntSyncCrossingSource(alreadyRegistered = true) :*= dmOuter.intnode
val dmiBypass = LazyModule(new TLBusBypass(beatBytes=4, bufferError=false, maxAtomic=0, maxTransfer=4))
val dmiInnerNode = TLAsyncCrossingSource() := dmiBypass.node := dmiXbar.node
dmOuter.dmiNode := dmiXbar.node
lazy val module = new Impl
class Impl extends LazyRawModuleImp(this) {
val nComponents = dmOuter.intnode.edges.out.size
val io = IO(new Bundle {
val dmi_clock = Input(Clock())
val dmi_reset = Input(Reset())
/** Debug Module Interface bewteen DM and DTM
*
* The DTM provides access to one or more Debug Modules (DMs) using DMI
*/
val dmi = (!p(ExportDebug).apb).option(Flipped(new DMIIO()(p)))
// Optional APB Interface is fully diplomatic so is not listed here.
val ctrl = new DebugCtrlBundle(nComponents)
/** conrol signals for Inner, generated in Outer */
val innerCtrl = new AsyncBundle(new DebugInternalBundle(nComponents), AsyncQueueParams.singleton(safe=cfg.crossingHasSafeReset))
/** debug interruption generated in Inner */
val hgDebugInt = Input(Vec(nComponents, Bool()))
/** hart reset request to core */
val hartResetReq = p(DebugModuleKey).get.hasHartResets.option(Output(Vec(nComponents, Bool())))
/** Authentication signal from core */
val dmAuthenticated = p(DebugModuleKey).get.hasAuthentication.option(Input(Bool()))
})
val rf_reset = IO(Input(Reset())) // RF transform
childClock := io.dmi_clock
childReset := io.dmi_reset
override def provideImplicitClockToLazyChildren = true
withClockAndReset(childClock, childReset) {
dmi2tlOpt.foreach { _.module.io.dmi <> io.dmi.get }
val dmactiveAck = AsyncResetSynchronizerShiftReg(in=io.ctrl.dmactiveAck, sync=3, name=Some("dmactiveAckSync"))
dmiBypass.module.io.bypass := ~io.ctrl.dmactive | ~dmactiveAck
io.ctrl <> dmOuter.module.io.ctrl
dmOuter.module.io.ctrl.dmactiveAck := dmactiveAck // send synced version down to dmOuter
io.innerCtrl <> ToAsyncBundle(dmOuter.module.io.innerCtrl, AsyncQueueParams.singleton(safe=cfg.crossingHasSafeReset))
dmOuter.module.io.hgDebugInt := io.hgDebugInt
io.hartResetReq.foreach { x => dmOuter.module.io.hartResetReq.foreach {y => x := y}}
io.dmAuthenticated.foreach { x => dmOuter.module.io.dmAuthenticated.foreach { y => y := x}}
}
}
}
class TLDebugModuleInner(device: Device, getNComponents: () => Int, beatBytes: Int)(implicit p: Parameters) extends LazyModule
{
// For Shorter Register Names
import DMI_RegAddrs._
val cfg = p(DebugModuleKey).get
def getCfg = () => cfg
val dmTopAddr = (1 << cfg.nDMIAddrSize) << 2
/** dmiNode address set */
val dmiNode = TLRegisterNode(
// Address is range 0 to 0x1FF except DMCONTROL, HARTINFO, HAWINDOWSEL, HAWINDOW which are handled by Outer
address = AddressSet.misaligned(0, DMI_DMCONTROL << 2) ++
AddressSet.misaligned((DMI_DMCONTROL + 1) << 2, ((DMI_HARTINFO << 2) - ((DMI_DMCONTROL + 1) << 2))) ++
AddressSet.misaligned((DMI_HARTINFO + 1) << 2, ((DMI_HAWINDOWSEL << 2) - ((DMI_HARTINFO + 1) << 2))) ++
AddressSet.misaligned((DMI_HAWINDOW + 1) << 2, (dmTopAddr - ((DMI_HAWINDOW + 1) << 2))),
device = device,
beatBytes = 4,
executable = false
)
val tlNode = TLRegisterNode(
address=Seq(cfg.address),
device=device,
beatBytes=beatBytes,
executable=true
)
val sb2tlOpt = cfg.hasBusMaster.option(LazyModule(new SBToTL()))
// If we want to support custom registers read through Abstract Commands,
// provide a place to bring them into the debug module. What this connects
// to is up to the implementation.
val customNode = new DebugCustomSink()
lazy val module = new Impl
class Impl extends LazyModuleImp(this){
val nComponents = getNComponents()
Annotated.params(this, cfg)
val supportHartArray = cfg.supportHartArray & (nComponents > 1)
val nExtTriggers = cfg.nExtTriggers
val nHaltGroups = if ((nComponents > 1) | (nExtTriggers > 0)) cfg.nHaltGroups
else 0 // no halt groups possible if single hart with no external triggers
val hartSelFuncs = if (getNComponents() > 1) p(DebugModuleHartSelKey) else DebugModuleHartSelFuncs(
hartIdToHartSel = (x) => 0.U,
hartSelToHartId = (x) => x
)
val io = IO(new Bundle {
/** dm reset signal passed in from Outer */
val dmactive = Input(Bool())
/** conrol signals for Inner
*
* it's generated by Outer and comes in
*/
val innerCtrl = Flipped(new DecoupledIO(new DebugInternalBundle(nComponents)))
/** debug unavail signal passed in from Outer*/
val debugUnavail = Input(Vec(nComponents, Bool()))
/** debug interruption from Inner to Outer
*
* contain 2 type of debug interruption causes:
* - halt group
* - halt-on-reset
*/
val hgDebugInt = Output(Vec(nComponents, Bool()))
/** interface for trigger */
val extTrigger = (nExtTriggers > 0).option(new DebugExtTriggerIO())
/** vector to indicate which hart is in reset
*
* dm receives it from core and sends it to Inner
*/
val hartIsInReset = Input(Vec(nComponents, Bool()))
val tl_clock = Input(Clock())
val tl_reset = Input(Reset())
/** Debug Authentication signals from core */
val auth = cfg.hasAuthentication.option(new DebugAuthenticationIO())
})
sb2tlOpt.map { sb =>
sb.module.clock := io.tl_clock
sb.module.reset := io.tl_reset
sb.module.rf_reset := io.tl_reset
}
//--------------------------------------------------------------
// Import constants for shorter variable names
//--------------------------------------------------------------
import DMI_RegAddrs._
import DsbRegAddrs._
import DsbBusConsts._
//--------------------------------------------------------------
// Sanity Check Configuration For this implementation.
//--------------------------------------------------------------
require (cfg.supportQuickAccess == false, "No Quick Access support yet")
require ((nHaltGroups > 0) || (nExtTriggers == 0), "External triggers require at least 1 halt group")
//--------------------------------------------------------------
// Register & Wire Declarations (which need to be pre-declared)
//--------------------------------------------------------------
// run control regs: tracking all the harts
// implements: see implementation-specific bits part
/** all harts halted status */
val haltedBitRegs = Reg(UInt(nComponents.W))
/** all harts resume request status */
val resumeReqRegs = Reg(UInt(nComponents.W))
/** all harts have reset status */
val haveResetBitRegs = Reg(UInt(nComponents.W))
// default is 1,after resume, resumeAcks get 0
/** all harts resume ack status */
val resumeAcks = Wire(UInt(nComponents.W))
// --- regmapper outputs
// hart state Id and En
// in Hart Bus Access ROM
val hartHaltedWrEn = Wire(Bool())
val hartHaltedId = Wire(UInt(sbIdWidth.W))
val hartGoingWrEn = Wire(Bool())
val hartGoingId = Wire(UInt(sbIdWidth.W))
val hartResumingWrEn = Wire(Bool())
val hartResumingId = Wire(UInt(sbIdWidth.W))
val hartExceptionWrEn = Wire(Bool())
val hartExceptionId = Wire(UInt(sbIdWidth.W))
// progbuf and abstract data: byte-addressable control logic
// AccessLegal is set only when state = waiting
// RdEn and WrEnMaybe : contrl signal drived by DMI bus
val dmiProgramBufferRdEn = WireInit(VecInit(Seq.fill(cfg.nProgramBufferWords * 4) {false.B} ))
val dmiProgramBufferAccessLegal = WireInit(false.B)
val dmiProgramBufferWrEnMaybe = WireInit(VecInit(Seq.fill(cfg.nProgramBufferWords * 4) {false.B} ))
val dmiAbstractDataRdEn = WireInit(VecInit(Seq.fill(cfg.nAbstractDataWords * 4) {false.B} ))
val dmiAbstractDataAccessLegal = WireInit(false.B)
val dmiAbstractDataWrEnMaybe = WireInit(VecInit(Seq.fill(cfg.nAbstractDataWords * 4) {false.B} ))
//--------------------------------------------------------------
// Registers coming from 'CONTROL' in Outer
//--------------------------------------------------------------
val dmAuthenticated = io.auth.map(a => a.dmAuthenticated).getOrElse(true.B)
val selectedHartReg = Reg(UInt(p(MaxHartIdBits).W))
// hamaskFull is a vector of all selected harts including hartsel, whether or not supportHartArray is true
val hamaskFull = WireInit(VecInit(Seq.fill(nComponents) {false.B} ))
if (nComponents > 1) {
when (~io.dmactive) {
selectedHartReg := 0.U
}.elsewhen (io.innerCtrl.fire){
selectedHartReg := io.innerCtrl.bits.hartsel
}
}
if (supportHartArray) {
val hamaskZero = WireInit(VecInit(Seq.fill(nComponents) {false.B} ))
val hamaskReg = Reg(Vec(nComponents, Bool()))
when (~io.dmactive || ~dmAuthenticated) {
hamaskReg := hamaskZero
}.elsewhen (io.innerCtrl.fire){
hamaskReg := Mux(io.innerCtrl.bits.hasel, io.innerCtrl.bits.hamask, hamaskZero)
}
hamaskFull := hamaskReg
}
// Outer.hamask doesn't consider the hart selected by dmcontrol.hartsello,
// so append it here
when (selectedHartReg < nComponents.U) {
hamaskFull(if (nComponents == 1) 0.U(0.W) else selectedHartReg) := true.B
}
io.innerCtrl.ready := true.B
// Construct a Vec from io.innerCtrl fields indicating whether each hart is being selected in this write
// A hart may be selected by hartsel field or by hart array
val hamaskWrSel = WireInit(VecInit(Seq.fill(nComponents) {false.B} ))
for (component <- 0 until nComponents ) {
hamaskWrSel(component) := ((io.innerCtrl.bits.hartsel === component.U) ||
(if (supportHartArray) io.innerCtrl.bits.hasel && io.innerCtrl.bits.hamask(component) else false.B))
}
//-------------------------------------
// Halt-on-reset logic
// hrmask is set in dmOuter and passed in
// Debug interrupt is generated when a reset occurs whose corresponding hrmask bit is set
// Debug interrupt is maintained until the hart enters halted state
//-------------------------------------
val hrReset = WireInit(VecInit(Seq.fill(nComponents) { false.B } ))
val hrDebugInt = Wire(Vec(nComponents, Bool()))
val hrmaskReg = RegInit(hrReset)
val hartIsInResetSync = Wire(Vec(nComponents, Bool()))
for (component <- 0 until nComponents) {
hartIsInResetSync(component) := AsyncResetSynchronizerShiftReg(io.hartIsInReset(component), 3, Some(s"debug_hartReset_$component"))
}
when (~io.dmactive || ~dmAuthenticated) {
hrmaskReg := hrReset
}.elsewhen (io.innerCtrl.fire){
hrmaskReg := io.innerCtrl.bits.hrmask
}
withReset(reset.asAsyncReset) { // ensure interrupt requests are negated at first clock edge
val hrDebugIntReg = RegInit(VecInit(Seq.fill(nComponents) { false.B } ))
when (~io.dmactive || ~dmAuthenticated) {
hrDebugIntReg := hrReset
}.otherwise {
hrDebugIntReg := hrmaskReg &
(hartIsInResetSync | // set debugInt during reset
(hrDebugIntReg & ~(haltedBitRegs.asBools))) // maintain until core halts
}
hrDebugInt := hrDebugIntReg
}
//--------------------------------------------------------------
// DMI Registers
//--------------------------------------------------------------
//----DMSTATUS
val DMSTATUSRdData = WireInit(0.U.asTypeOf(new DMSTATUSFields()))
DMSTATUSRdData.authenticated := dmAuthenticated
DMSTATUSRdData.version := 2.U // Version 0.13
io.auth.map(a => DMSTATUSRdData.authbusy := a.dmAuthBusy)
val resumereq = io.innerCtrl.fire && io.innerCtrl.bits.resumereq
when (dmAuthenticated) {
DMSTATUSRdData.hasresethaltreq := true.B
DMSTATUSRdData.anynonexistent := (selectedHartReg >= nComponents.U) // only hartsel can be nonexistent
// all harts nonexistent if hartsel is out of range and there are no harts selected in the hart array
DMSTATUSRdData.allnonexistent := (selectedHartReg >= nComponents.U) & (~hamaskFull.reduce(_ | _))
when (~DMSTATUSRdData.allnonexistent) { // if no existent harts selected, all other status is false
DMSTATUSRdData.anyunavail := (io.debugUnavail & hamaskFull).reduce(_ | _)
DMSTATUSRdData.anyhalted := ((~io.debugUnavail & (haltedBitRegs.asBools)) & hamaskFull).reduce(_ | _)
DMSTATUSRdData.anyrunning := ((~io.debugUnavail & ~(haltedBitRegs.asBools)) & hamaskFull).reduce(_ | _)
DMSTATUSRdData.anyhavereset := (haveResetBitRegs.asBools & hamaskFull).reduce(_ | _)
DMSTATUSRdData.anyresumeack := (resumeAcks.asBools & hamaskFull).reduce(_ | _)
when (~DMSTATUSRdData.anynonexistent) { // if one hart is nonexistent, no 'all' status is set
DMSTATUSRdData.allunavail := (io.debugUnavail | ~hamaskFull).reduce(_ & _)
DMSTATUSRdData.allhalted := ((~io.debugUnavail & (haltedBitRegs.asBools)) | ~hamaskFull).reduce(_ & _)
DMSTATUSRdData.allrunning := ((~io.debugUnavail & ~(haltedBitRegs.asBools)) | ~hamaskFull).reduce(_ & _)
DMSTATUSRdData.allhavereset := (haveResetBitRegs.asBools | ~hamaskFull).reduce(_ & _)
DMSTATUSRdData.allresumeack := (resumeAcks.asBools | ~hamaskFull).reduce(_ & _)
}
}
//TODO
DMSTATUSRdData.confstrptrvalid := false.B
DMSTATUSRdData.impebreak := (cfg.hasImplicitEbreak).B
}
when(~io.dmactive || ~dmAuthenticated) {
haveResetBitRegs := 0.U
}.otherwise {
when (io.innerCtrl.fire && io.innerCtrl.bits.ackhavereset) {
haveResetBitRegs := (haveResetBitRegs & (~(hamaskWrSel.asUInt))) | hartIsInResetSync.asUInt
}.otherwise {
haveResetBitRegs := haveResetBitRegs | hartIsInResetSync.asUInt
}
}
//----DMCS2 (Halt Groups)
val DMCS2RdData = WireInit(0.U.asTypeOf(new DMCS2Fields()))
val DMCS2WrData = WireInit(0.U.asTypeOf(new DMCS2Fields()))
val hgselectWrEn = WireInit(false.B)
val hgwriteWrEn = WireInit(false.B)
val haltgroupWrEn = WireInit(false.B)
val exttriggerWrEn = WireInit(false.B)
val hgDebugInt = WireInit(VecInit(Seq.fill(nComponents) {false.B} ))
if (nHaltGroups > 0) withReset (reset.asAsyncReset) { // async reset ensures triggers don't falsely fire during startup
val hgBits = log2Up(nHaltGroups)
// hgParticipate: Each entry indicates which hg that entity belongs to (1 to nHartGroups). 0 means no hg assigned.
val hgParticipateHart = RegInit(VecInit(Seq.fill(nComponents)(0.U(hgBits.W))))
val hgParticipateTrig = if (nExtTriggers > 0) RegInit(VecInit(Seq.fill(nExtTriggers)(0.U(hgBits.W)))) else Nil
// assign group index to current seledcted harts
for (component <- 0 until nComponents) {
when (~io.dmactive || ~dmAuthenticated) {
hgParticipateHart(component) := 0.U
}.otherwise {
when (haltgroupWrEn & DMCS2WrData.hgwrite & ~DMCS2WrData.hgselect &
hamaskFull(component) & (DMCS2WrData.haltgroup <= nHaltGroups.U)) {
hgParticipateHart(component) := DMCS2WrData.haltgroup
}
}
}
DMCS2RdData.haltgroup := hgParticipateHart(if (nComponents == 1) 0.U(0.W) else selectedHartReg)
if (nExtTriggers > 0) {
val hgSelect = Reg(Bool())
when (~io.dmactive || ~dmAuthenticated) {
hgSelect := false.B
}.otherwise {
when (hgselectWrEn) {
hgSelect := DMCS2WrData.hgselect
}
}
// assign group index to trigger
for (trigger <- 0 until nExtTriggers) {
when (~io.dmactive || ~dmAuthenticated) {
hgParticipateTrig(trigger) := 0.U
}.otherwise {
when (haltgroupWrEn & DMCS2WrData.hgwrite & DMCS2WrData.hgselect &
(DMCS2WrData.exttrigger === trigger.U) & (DMCS2WrData.haltgroup <= nHaltGroups.U)) {
hgParticipateTrig(trigger) := DMCS2WrData.haltgroup
}
}
}
DMCS2RdData.hgselect := hgSelect
when (hgSelect) {
DMCS2RdData.haltgroup := hgParticipateTrig(0)
}
// If there is only 1 ext trigger, then the exttrigger field is fixed at 0
// Otherwise, instantiate a register with only the number of bits required
if (nExtTriggers > 1) {
val trigBits = log2Up(nExtTriggers-1)
val hgExtTrigger = Reg(UInt(trigBits.W))
when (~io.dmactive || ~dmAuthenticated) {
hgExtTrigger := 0.U
}.otherwise {
when (exttriggerWrEn & (DMCS2WrData.exttrigger < nExtTriggers.U)) {
hgExtTrigger := DMCS2WrData.exttrigger
}
}
DMCS2RdData.exttrigger := hgExtTrigger
when (hgSelect) {
DMCS2RdData.haltgroup := hgParticipateTrig(hgExtTrigger)
}
}
}
// Halt group state machine
// IDLE: Go to FIRED when any hart in this hg writes to HALTED while its HaltedBitRegs=0
// or when any trigin assigned to this hg occurs
// FIRED: Back to IDLE when all harts in this hg have set their haltedBitRegs
// and all trig out in this hg have been acknowledged
val hgFired = RegInit (VecInit(Seq.fill(nHaltGroups+1) {false.B} ))
val hgHartFiring = WireInit(VecInit(Seq.fill(nHaltGroups+1) {false.B} )) // which hg's are firing due to hart halting
val hgTrigFiring = WireInit(VecInit(Seq.fill(nHaltGroups+1) {false.B} )) // which hg's are firing due to trig in
val hgHartsAllHalted = WireInit(VecInit(Seq.fill(nHaltGroups+1) {false.B} )) // in which hg's have all harts halted
val hgTrigsAllAcked = WireInit(VecInit(Seq.fill(nHaltGroups+1) { true.B} )) // in which hg's have all trigouts been acked
io.extTrigger.foreach {extTrigger =>
val extTriggerInReq = Wire(Vec(nExtTriggers, Bool()))
val extTriggerOutAck = Wire(Vec(nExtTriggers, Bool()))
extTriggerInReq := extTrigger.in.req.asBools
extTriggerOutAck := extTrigger.out.ack.asBools
val trigInReq = ResetSynchronizerShiftReg(in=extTriggerInReq, sync=3, name=Some("dm_extTriggerInReqSync"))
val trigOutAck = ResetSynchronizerShiftReg(in=extTriggerOutAck, sync=3, name=Some("dm_extTriggerOutAckSync"))
for (hg <- 1 to nHaltGroups) {
hgTrigFiring(hg) := (trigInReq & ~RegNext(trigInReq) & hgParticipateTrig.map(_ === hg.U)).reduce(_ | _)
hgTrigsAllAcked(hg) := (trigOutAck | hgParticipateTrig.map(_ =/= hg.U)).reduce(_ & _)
}
extTrigger.in.ack := trigInReq.asUInt
}
for (hg <- 1 to nHaltGroups) {
hgHartFiring(hg) := hartHaltedWrEn & ~haltedBitRegs(hartHaltedId) & (hgParticipateHart(hartSelFuncs.hartIdToHartSel(hartHaltedId)) === hg.U)
hgHartsAllHalted(hg) := (haltedBitRegs.asBools | hgParticipateHart.map(_ =/= hg.U)).reduce(_ & _)
when (~io.dmactive || ~dmAuthenticated) {
hgFired(hg) := false.B
}.elsewhen (~hgFired(hg) & (hgHartFiring(hg) | hgTrigFiring(hg))) {
hgFired(hg) := true.B
}.elsewhen ( hgFired(hg) & hgHartsAllHalted(hg) & hgTrigsAllAcked(hg)) {
hgFired(hg) := false.B
}
}
// For each hg that has fired, assert debug interrupt to each hart in that hg
for (component <- 0 until nComponents) {
hgDebugInt(component) := hgFired(hgParticipateHart(component))
}
// For each hg that has fired, assert trigger out for all external triggers in that hg
io.extTrigger.foreach {extTrigger =>
val extTriggerOutReq = RegInit(VecInit(Seq.fill(cfg.nExtTriggers) {false.B} ))
for (trig <- 0 until nExtTriggers) {
extTriggerOutReq(trig) := hgFired(hgParticipateTrig(trig))
}
extTrigger.out.req := extTriggerOutReq.asUInt
}
}
io.hgDebugInt := hgDebugInt | hrDebugInt
//----HALTSUM*
val numHaltedStatus = ((nComponents - 1) / 32) + 1
val haltedStatus = Wire(Vec(numHaltedStatus, Bits(32.W)))
for (ii <- 0 until numHaltedStatus) {
when (dmAuthenticated) {
haltedStatus(ii) := haltedBitRegs >> (ii*32)
}.otherwise {
haltedStatus(ii) := 0.U
}
}
val haltedSummary = Cat(haltedStatus.map(_.orR).reverse)
val HALTSUM1RdData = haltedSummary.asTypeOf(new HALTSUM1Fields())
val selectedHaltedStatus = Mux((selectedHartReg >> 5) > numHaltedStatus.U, 0.U, haltedStatus(selectedHartReg >> 5))
val HALTSUM0RdData = selectedHaltedStatus.asTypeOf(new HALTSUM0Fields())
// Since we only support 1024 harts, we don't implement HALTSUM2 or HALTSUM3
//----ABSTRACTCS
val ABSTRACTCSReset = WireInit(0.U.asTypeOf(new ABSTRACTCSFields()))
ABSTRACTCSReset.datacount := cfg.nAbstractDataWords.U
ABSTRACTCSReset.progbufsize := cfg.nProgramBufferWords.U
val ABSTRACTCSReg = Reg(new ABSTRACTCSFields())
val ABSTRACTCSWrData = WireInit(0.U.asTypeOf(new ABSTRACTCSFields()))
val ABSTRACTCSRdData = WireInit(ABSTRACTCSReg)
val ABSTRACTCSRdEn = WireInit(false.B)
val ABSTRACTCSWrEnMaybe = WireInit(false.B)
val ABSTRACTCSWrEnLegal = WireInit(false.B)
val ABSTRACTCSWrEn = ABSTRACTCSWrEnMaybe && ABSTRACTCSWrEnLegal
// multiple error types
// find implement in the state machine part
val errorBusy = WireInit(false.B)
val errorException = WireInit(false.B)
val errorUnsupported = WireInit(false.B)
val errorHaltResume = WireInit(false.B)
when (~io.dmactive || ~dmAuthenticated) {
ABSTRACTCSReg := ABSTRACTCSReset
}.otherwise {
when (errorBusy){
ABSTRACTCSReg.cmderr := DebugAbstractCommandError.ErrBusy.id.U
}.elsewhen (errorException) {
ABSTRACTCSReg.cmderr := DebugAbstractCommandError.ErrException.id.U
}.elsewhen (errorUnsupported) {
ABSTRACTCSReg.cmderr := DebugAbstractCommandError.ErrNotSupported.id.U
}.elsewhen (errorHaltResume) {
ABSTRACTCSReg.cmderr := DebugAbstractCommandError.ErrHaltResume.id.U
}.otherwise {
//W1C
when (ABSTRACTCSWrEn){
ABSTRACTCSReg.cmderr := ABSTRACTCSReg.cmderr & ~(ABSTRACTCSWrData.cmderr);
}
}
}
// For busy, see below state machine.
val abstractCommandBusy = WireInit(true.B)
ABSTRACTCSRdData.busy := abstractCommandBusy
when (~dmAuthenticated) { // read value must be 0 when not authenticated
ABSTRACTCSRdData.datacount := 0.U
ABSTRACTCSRdData.progbufsize := 0.U
}
//---- ABSTRACTAUTO
// It is a mask indicating whether datai/probufi have the autoexcution permisson
// this part aims to produce 3 wires : autoexecData,autoexecProg,autoexec
// first two specify which reg supports autoexec
// autoexec is a control signal, meaning there is at least one enabled autoexec reg
// when autoexec is set, generate instructions using COMMAND register
val ABSTRACTAUTOReset = WireInit(0.U.asTypeOf(new ABSTRACTAUTOFields()))
val ABSTRACTAUTOReg = Reg(new ABSTRACTAUTOFields())
val ABSTRACTAUTOWrData = WireInit(0.U.asTypeOf(new ABSTRACTAUTOFields()))
val ABSTRACTAUTORdData = WireInit(ABSTRACTAUTOReg)
val ABSTRACTAUTORdEn = WireInit(false.B)
val autoexecdataWrEnMaybe = WireInit(false.B)
val autoexecprogbufWrEnMaybe = WireInit(false.B)
val ABSTRACTAUTOWrEnLegal = WireInit(false.B)
when (~io.dmactive || ~dmAuthenticated) {
ABSTRACTAUTOReg := ABSTRACTAUTOReset
}.otherwise {
when (autoexecprogbufWrEnMaybe && ABSTRACTAUTOWrEnLegal) {
ABSTRACTAUTOReg.autoexecprogbuf := ABSTRACTAUTOWrData.autoexecprogbuf & ( (1 << cfg.nProgramBufferWords) - 1).U
}
when (autoexecdataWrEnMaybe && ABSTRACTAUTOWrEnLegal) {
ABSTRACTAUTOReg.autoexecdata := ABSTRACTAUTOWrData.autoexecdata & ( (1 << cfg.nAbstractDataWords) - 1).U
}
}
// Abstract Data access vector(byte-addressable)
val dmiAbstractDataAccessVec = WireInit(VecInit(Seq.fill(cfg.nAbstractDataWords * 4) {false.B} ))
dmiAbstractDataAccessVec := (dmiAbstractDataWrEnMaybe zip dmiAbstractDataRdEn).map{ case (r,w) => r | w}
// Program Buffer access vector(byte-addressable)
val dmiProgramBufferAccessVec = WireInit(VecInit(Seq.fill(cfg.nProgramBufferWords * 4) {false.B} ))
dmiProgramBufferAccessVec := (dmiProgramBufferWrEnMaybe zip dmiProgramBufferRdEn).map{ case (r,w) => r | w}
// at least one word access
val dmiAbstractDataAccess = dmiAbstractDataAccessVec.reduce(_ || _ )
val dmiProgramBufferAccess = dmiProgramBufferAccessVec.reduce(_ || _)
// This will take the shorter of the lists, which is what we want.
val autoexecData = WireInit(VecInit(Seq.fill(cfg.nAbstractDataWords) {false.B} ))
val autoexecProg = WireInit(VecInit(Seq.fill(cfg.nProgramBufferWords) {false.B} ))
(autoexecData zip ABSTRACTAUTOReg.autoexecdata.asBools).zipWithIndex.foreach {case (t, i) => t._1 := dmiAbstractDataAccessVec(i * 4) && t._2 }
(autoexecProg zip ABSTRACTAUTOReg.autoexecprogbuf.asBools).zipWithIndex.foreach {case (t, i) => t._1 := dmiProgramBufferAccessVec(i * 4) && t._2}
val autoexec = autoexecData.reduce(_ || _) || autoexecProg.reduce(_ || _)
//---- COMMAND
val COMMANDReset = WireInit(0.U.asTypeOf(new COMMANDFields()))
val COMMANDReg = Reg(new COMMANDFields())
val COMMANDWrDataVal = WireInit(0.U(32.W))
val COMMANDWrData = WireInit(COMMANDWrDataVal.asTypeOf(new COMMANDFields()))
val COMMANDWrEnMaybe = WireInit(false.B)
val COMMANDWrEnLegal = WireInit(false.B)
val COMMANDRdEn = WireInit(false.B)
val COMMANDWrEn = COMMANDWrEnMaybe && COMMANDWrEnLegal
val COMMANDRdData = COMMANDReg
when (~io.dmactive || ~dmAuthenticated) {
COMMANDReg := COMMANDReset
}.otherwise {
when (COMMANDWrEn) {
COMMANDReg := COMMANDWrData
}
}
// --- Abstract Data
// These are byte addressible, s.t. the Processor can use
// byte-addressible instructions to store to them.
val abstractDataMem = Reg(Vec(cfg.nAbstractDataWords*4, UInt(8.W)))
val abstractDataNxt = WireInit(abstractDataMem)
// --- Program Buffer
// byte-addressible mem
val programBufferMem = Reg(Vec(cfg.nProgramBufferWords*4, UInt(8.W)))
val programBufferNxt = WireInit(programBufferMem)
//--------------------------------------------------------------
// These bits are implementation-specific bits set
// by harts executing code.
//--------------------------------------------------------------
// Run control logic
when (~io.dmactive || ~dmAuthenticated) {
haltedBitRegs := 0.U
resumeReqRegs := 0.U
}.otherwise {
//remove those harts in reset
resumeReqRegs := resumeReqRegs & ~(hartIsInResetSync.asUInt)
val hartHaltedIdIndex = UIntToOH(hartSelFuncs.hartIdToHartSel(hartHaltedId))
val hartResumingIdIndex = UIntToOH(hartSelFuncs.hartIdToHartSel(hartResumingId))
val hartselIndex = UIntToOH(io.innerCtrl.bits.hartsel)
when (hartHaltedWrEn) {
// add those harts halting and remove those in reset
haltedBitRegs := (haltedBitRegs | hartHaltedIdIndex) & ~(hartIsInResetSync.asUInt)
}.elsewhen (hartResumingWrEn) {
// remove those harts in reset and those in resume
haltedBitRegs := (haltedBitRegs & ~(hartResumingIdIndex)) & ~(hartIsInResetSync.asUInt)
}.otherwise {
// remove those harts in reset
haltedBitRegs := haltedBitRegs & ~(hartIsInResetSync.asUInt)
}
when (hartResumingWrEn) {
// remove those harts in resume and those in reset
resumeReqRegs := (resumeReqRegs & ~(hartResumingIdIndex)) & ~(hartIsInResetSync.asUInt)
}
when (resumereq) {
// set all sleceted harts to resumeReq, remove those in reset
resumeReqRegs := (resumeReqRegs | hamaskWrSel.asUInt) & ~(hartIsInResetSync.asUInt)
}
}
when (resumereq) {
// next cycle resumeAcls will be the negation of next cycle resumeReqRegs
resumeAcks := (~resumeReqRegs & ~(hamaskWrSel.asUInt))
}.otherwise {
resumeAcks := ~resumeReqRegs
}
//---- AUTHDATA
val authRdEnMaybe = WireInit(false.B)
val authWrEnMaybe = WireInit(false.B)
io.auth.map { a =>
a.dmactive := io.dmactive
a.dmAuthRead := authRdEnMaybe & ~a.dmAuthBusy
a.dmAuthWrite := authWrEnMaybe & ~a.dmAuthBusy
}
val dmstatusRegFields = RegFieldGroup("dmi_dmstatus", Some("debug module status register"), Seq(
RegField.r(4, DMSTATUSRdData.version, RegFieldDesc("version", "version", reset=Some(2))),
RegField.r(1, DMSTATUSRdData.confstrptrvalid, RegFieldDesc("confstrptrvalid", "confstrptrvalid", reset=Some(0))),
RegField.r(1, DMSTATUSRdData.hasresethaltreq, RegFieldDesc("hasresethaltreq", "hasresethaltreq", reset=Some(1))),
RegField.r(1, DMSTATUSRdData.authbusy, RegFieldDesc("authbusy", "authbusy", reset=Some(0))),
RegField.r(1, DMSTATUSRdData.authenticated, RegFieldDesc("authenticated", "authenticated", reset=Some(1))),
RegField.r(1, DMSTATUSRdData.anyhalted, RegFieldDesc("anyhalted", "anyhalted", reset=Some(0))),
RegField.r(1, DMSTATUSRdData.allhalted, RegFieldDesc("allhalted", "allhalted", reset=Some(0))),
RegField.r(1, DMSTATUSRdData.anyrunning, RegFieldDesc("anyrunning", "anyrunning", reset=Some(1))),
RegField.r(1, DMSTATUSRdData.allrunning, RegFieldDesc("allrunning", "allrunning", reset=Some(1))),
RegField.r(1, DMSTATUSRdData.anyunavail, RegFieldDesc("anyunavail", "anyunavail", reset=Some(0))),
RegField.r(1, DMSTATUSRdData.allunavail, RegFieldDesc("allunavail", "allunavail", reset=Some(0))),
RegField.r(1, DMSTATUSRdData.anynonexistent, RegFieldDesc("anynonexistent", "anynonexistent", reset=Some(0))),
RegField.r(1, DMSTATUSRdData.allnonexistent, RegFieldDesc("allnonexistent", "allnonexistent", reset=Some(0))),
RegField.r(1, DMSTATUSRdData.anyresumeack, RegFieldDesc("anyresumeack", "anyresumeack", reset=Some(1))),
RegField.r(1, DMSTATUSRdData.allresumeack, RegFieldDesc("allresumeack", "allresumeack", reset=Some(1))),
RegField.r(1, DMSTATUSRdData.anyhavereset, RegFieldDesc("anyhavereset", "anyhavereset", reset=Some(0))),
RegField.r(1, DMSTATUSRdData.allhavereset, RegFieldDesc("allhavereset", "allhavereset", reset=Some(0))),
RegField(2),
RegField.r(1, DMSTATUSRdData.impebreak, RegFieldDesc("impebreak", "impebreak", reset=Some(if (cfg.hasImplicitEbreak) 1 else 0)))
))
val dmcs2RegFields = RegFieldGroup("dmi_dmcs2", Some("debug module control/status register 2"), Seq(
WNotifyVal(1, DMCS2RdData.hgselect, DMCS2WrData.hgselect, hgselectWrEn,
RegFieldDesc("hgselect", "select halt groups or external triggers", reset=Some(0), volatile=true)),
WNotifyVal(1, 0.U, DMCS2WrData.hgwrite, hgwriteWrEn,
RegFieldDesc("hgwrite", "write 1 to change halt groups", reset=None, access=RegFieldAccessType.W)),
WNotifyVal(5, DMCS2RdData.haltgroup, DMCS2WrData.haltgroup, haltgroupWrEn,
RegFieldDesc("haltgroup", "halt group", reset=Some(0), volatile=true)),
if (nExtTriggers > 1)
WNotifyVal(4, DMCS2RdData.exttrigger, DMCS2WrData.exttrigger, exttriggerWrEn,
RegFieldDesc("exttrigger", "external trigger select", reset=Some(0), volatile=true))
else RegField(4)
))
val abstractcsRegFields = RegFieldGroup("dmi_abstractcs", Some("abstract command control/status"), Seq(
RegField.r(4, ABSTRACTCSRdData.datacount, RegFieldDesc("datacount", "number of DATA registers", reset=Some(cfg.nAbstractDataWords))),
RegField(4),
WNotifyVal(3, ABSTRACTCSRdData.cmderr, ABSTRACTCSWrData.cmderr, ABSTRACTCSWrEnMaybe,
RegFieldDesc("cmderr", "command error", reset=Some(0), wrType=Some(RegFieldWrType.ONE_TO_CLEAR))),
RegField(1),
RegField.r(1, ABSTRACTCSRdData.busy, RegFieldDesc("busy", "busy", reset=Some(0))),
RegField(11),
RegField.r(5, ABSTRACTCSRdData.progbufsize, RegFieldDesc("progbufsize", "number of PROGBUF registers", reset=Some(cfg.nProgramBufferWords)))
))
val (sbcsFields, sbAddrFields, sbDataFields):
(Seq[RegField], Seq[Seq[RegField]], Seq[Seq[RegField]]) = sb2tlOpt.map{ sb2tl =>
SystemBusAccessModule(sb2tl, io.dmactive, dmAuthenticated)(p)
}.getOrElse((Seq.empty[RegField], Seq.fill[Seq[RegField]](4)(Seq.empty[RegField]), Seq.fill[Seq[RegField]](4)(Seq.empty[RegField])))
//--------------------------------------------------------------
// Program Buffer Access (DMI ... System Bus can override)
//--------------------------------------------------------------
val omRegMap = dmiNode.regmap(
(DMI_DMSTATUS << 2) -> dmstatusRegFields,
//TODO (DMI_CFGSTRADDR0 << 2) -> cfgStrAddrFields,
(DMI_DMCS2 << 2) -> (if (nHaltGroups > 0) dmcs2RegFields else Nil),
(DMI_HALTSUM0 << 2) -> RegFieldGroup("dmi_haltsum0", Some("Halt Summary 0"),
Seq(RegField.r(32, HALTSUM0RdData.asUInt, RegFieldDesc("dmi_haltsum0", "halt summary 0")))),
(DMI_HALTSUM1 << 2) -> RegFieldGroup("dmi_haltsum1", Some("Halt Summary 1"),
Seq(RegField.r(32, HALTSUM1RdData.asUInt, RegFieldDesc("dmi_haltsum1", "halt summary 1")))),
(DMI_ABSTRACTCS << 2) -> abstractcsRegFields,
(DMI_ABSTRACTAUTO<< 2) -> RegFieldGroup("dmi_abstractauto", Some("abstract command autoexec"), Seq(
WNotifyVal(cfg.nAbstractDataWords, ABSTRACTAUTORdData.autoexecdata, ABSTRACTAUTOWrData.autoexecdata, autoexecdataWrEnMaybe,
RegFieldDesc("autoexecdata", "abstract command data autoexec", reset=Some(0))),
RegField(16-cfg.nAbstractDataWords),
WNotifyVal(cfg.nProgramBufferWords, ABSTRACTAUTORdData.autoexecprogbuf, ABSTRACTAUTOWrData.autoexecprogbuf, autoexecprogbufWrEnMaybe,
RegFieldDesc("autoexecprogbuf", "abstract command progbuf autoexec", reset=Some(0))))),
(DMI_COMMAND << 2) -> RegFieldGroup("dmi_command", Some("Abstract Command Register"),
Seq(RWNotify(32, COMMANDRdData.asUInt, COMMANDWrDataVal, COMMANDRdEn, COMMANDWrEnMaybe,
Some(RegFieldDesc("dmi_command", "abstract command register", reset=Some(0), volatile=true))))),
(DMI_DATA0 << 2) -> RegFieldGroup("dmi_data", Some("abstract command data registers"), abstractDataMem.zipWithIndex.map{case (x, i) =>
RWNotify(8, Mux(dmAuthenticated, x, 0.U), abstractDataNxt(i),
dmiAbstractDataRdEn(i),
dmiAbstractDataWrEnMaybe(i),
Some(RegFieldDesc(s"dmi_data_$i", s"abstract command data register $i", reset = Some(0), volatile=true)))}, false),
(DMI_PROGBUF0 << 2) -> RegFieldGroup("dmi_progbuf", Some("abstract command progbuf registers"), programBufferMem.zipWithIndex.map{case (x, i) =>
RWNotify(8, Mux(dmAuthenticated, x, 0.U), programBufferNxt(i),
dmiProgramBufferRdEn(i),
dmiProgramBufferWrEnMaybe(i),
Some(RegFieldDesc(s"dmi_progbuf_$i", s"abstract command progbuf register $i", reset = Some(0))))}, false),
(DMI_AUTHDATA << 2) -> (if (cfg.hasAuthentication) RegFieldGroup("dmi_authdata", Some("authentication data exchange register"),
Seq(RWNotify(32, io.auth.get.dmAuthRdata, io.auth.get.dmAuthWdata, authRdEnMaybe, authWrEnMaybe,
Some(RegFieldDesc("authdata", "authentication data exchange", volatile=true))))) else Nil),
(DMI_SBCS << 2) -> sbcsFields,
(DMI_SBDATA0 << 2) -> sbDataFields(0),
(DMI_SBDATA1 << 2) -> sbDataFields(1),
(DMI_SBDATA2 << 2) -> sbDataFields(2),
(DMI_SBDATA3 << 2) -> sbDataFields(3),
(DMI_SBADDRESS0 << 2) -> sbAddrFields(0),
(DMI_SBADDRESS1 << 2) -> sbAddrFields(1),
(DMI_SBADDRESS2 << 2) -> sbAddrFields(2),
(DMI_SBADDRESS3 << 2) -> sbAddrFields(3)
)
// Abstract data mem is written by both the tile link interface and DMI...
abstractDataMem.zipWithIndex.foreach { case (x, i) =>
when (dmAuthenticated && dmiAbstractDataWrEnMaybe(i) && dmiAbstractDataAccessLegal) {
x := abstractDataNxt(i)
}
}
// ... and also by custom register read (if implemented)
val (customs, customParams) = customNode.in.unzip
val needCustom = (customs.size > 0) && (customParams.head.addrs.size > 0)
def getNeedCustom = () => needCustom
if (needCustom) {
val (custom, customP) = customNode.in.head
require(customP.width % 8 == 0, s"Debug Custom width must be divisible by 8, not ${customP.width}")
val custom_data = custom.data.asBools
val custom_bytes = Seq.tabulate(customP.width/8){i => custom_data.slice(i*8, (i+1)*8).asUInt}
when (custom.ready && custom.valid) {
(abstractDataMem zip custom_bytes).zipWithIndex.foreach {case ((a, b), i) =>
a := b
}
}
}
programBufferMem.zipWithIndex.foreach { case (x, i) =>
when (dmAuthenticated && dmiProgramBufferWrEnMaybe(i) && dmiProgramBufferAccessLegal) {
x := programBufferNxt(i)
}
}
//--------------------------------------------------------------
// "Variable" ROM Generation
//--------------------------------------------------------------
val goReg = Reg(Bool())
val goAbstract = WireInit(false.B)
val goCustom = WireInit(false.B)
val jalAbstract = WireInit(Instructions.JAL.value.U.asTypeOf(new GeneratedUJ()))
jalAbstract.setImm(ABSTRACT(cfg) - WHERETO)
when (~io.dmactive){
goReg := false.B
}.otherwise {
when (goAbstract) {
goReg := true.B
}.elsewhen (hartGoingWrEn){
assert(hartGoingId === 0.U, "Unexpected 'GOING' hart.")//Chisel3 #540 %x, expected %x", hartGoingId, 0.U)
goReg := false.B
}
}
class flagBundle extends Bundle {
val reserved = UInt(6.W)
val resume = Bool()
val go = Bool()
}
val flags = WireInit(VecInit(Seq.fill(1 << selectedHartReg.getWidth) {0.U.asTypeOf(new flagBundle())} ))
assert ((hartSelFuncs.hartSelToHartId(selectedHartReg) < flags.size.U),
s"HartSel to HartId Mapping is illegal for this Debug Implementation, because HartID must be < ${flags.size} for it to work.")
flags(hartSelFuncs.hartSelToHartId(selectedHartReg)).go := goReg
for (component <- 0 until nComponents) {
val componentSel = WireInit(component.U)
flags(hartSelFuncs.hartSelToHartId(componentSel)).resume := resumeReqRegs(component)
}
//----------------------------
// Abstract Command Decoding & Generation
//----------------------------
val accessRegisterCommandWr = WireInit(COMMANDWrData.asUInt.asTypeOf(new ACCESS_REGISTERFields()))
/** real COMMAND*/
val accessRegisterCommandReg = WireInit(COMMANDReg.asUInt.asTypeOf(new ACCESS_REGISTERFields()))
// TODO: Quick Access
class GeneratedI extends Bundle {
val imm = UInt(12.W)
val rs1 = UInt(5.W)
val funct3 = UInt(3.W)
val rd = UInt(5.W)
val opcode = UInt(7.W)
}
class GeneratedS extends Bundle {
val immhi = UInt(7.W)
val rs2 = UInt(5.W)
val rs1 = UInt(5.W)
val funct3 = UInt(3.W)
val immlo = UInt(5.W)
val opcode = UInt(7.W)
}
class GeneratedCSR extends Bundle {
val imm = UInt(12.W)
val rs1 = UInt(5.W)
val funct3 = UInt(3.W)
val rd = UInt(5.W)
val opcode = UInt(7.W)
}
class GeneratedUJ extends Bundle {
val imm3 = UInt(1.W)
val imm0 = UInt(10.W)
val imm1 = UInt(1.W)
val imm2 = UInt(8.W)
val rd = UInt(5.W)
val opcode = UInt(7.W)
def setImm(imm: Int) : Unit = {
// TODO: Check bounds of imm.
require(imm % 2 == 0, "Immediate must be even for UJ encoding.")
val immWire = WireInit(imm.S(21.W))
val immBits = WireInit(VecInit(immWire.asBools))
imm0 := immBits.slice(1, 1 + 10).asUInt
imm1 := immBits.slice(11, 11 + 11).asUInt
imm2 := immBits.slice(12, 12 + 8).asUInt
imm3 := immBits.slice(20, 20 + 1).asUInt
}
}
require((cfg.atzero && cfg.nAbstractInstructions == 2) || (!cfg.atzero && cfg.nAbstractInstructions == 5),
"Mismatch between DebugModuleParams atzero and nAbstractInstructions")
val abstractGeneratedMem = Reg(Vec(cfg.nAbstractInstructions, (UInt(32.W))))
def abstractGeneratedI(cfg: DebugModuleParams): UInt = {
val inst = Wire(new GeneratedI())
val offset = if (cfg.atzero) DATA else (DATA-0x800) & 0xFFF
val base = if (cfg.atzero) 0.U else Mux(accessRegisterCommandReg.regno(0), 8.U, 9.U)
inst.opcode := (Instructions.LW.value.U.asTypeOf(new GeneratedI())).opcode
inst.rd := (accessRegisterCommandReg.regno & 0x1F.U)
inst.funct3 := accessRegisterCommandReg.size
inst.rs1 := base
inst.imm := offset.U
inst.asUInt
}
def abstractGeneratedS(cfg: DebugModuleParams): UInt = {
val inst = Wire(new GeneratedS())
val offset = if (cfg.atzero) DATA else (DATA-0x800) & 0xFFF
val base = if (cfg.atzero) 0.U else Mux(accessRegisterCommandReg.regno(0), 8.U, 9.U)
inst.opcode := (Instructions.SW.value.U.asTypeOf(new GeneratedS())).opcode
inst.immlo := (offset & 0x1F).U
inst.funct3 := accessRegisterCommandReg.size
inst.rs1 := base
inst.rs2 := (accessRegisterCommandReg.regno & 0x1F.U)
inst.immhi := (offset >> 5).U
inst.asUInt
}
def abstractGeneratedCSR: UInt = {
val inst = Wire(new GeneratedCSR())
val base = Mux(accessRegisterCommandReg.regno(0), 8.U, 9.U) // use s0 as base for odd regs, s1 as base for even regs
inst := (Instructions.CSRRW.value.U.asTypeOf(new GeneratedCSR()))
inst.imm := CSRs.dscratch1.U
inst.rs1 := base
inst.rd := base
inst.asUInt
}
val nop = Wire(new GeneratedI())
nop := Instructions.ADDI.value.U.asTypeOf(new GeneratedI())
nop.rd := 0.U
nop.rs1 := 0.U
nop.imm := 0.U
val isa = Wire(new GeneratedI())
isa := Instructions.ADDIW.value.U.asTypeOf(new GeneratedI())
isa.rd := 0.U
isa.rs1 := 0.U
isa.imm := 0.U
when (goAbstract) {
if (cfg.nAbstractInstructions == 2) {
// ABSTRACT(0): Transfer: LW or SW, else NOP
// ABSTRACT(1): Postexec: NOP else EBREAK
abstractGeneratedMem(0) := Mux(accessRegisterCommandReg.transfer,
Mux(accessRegisterCommandReg.write, abstractGeneratedI(cfg), abstractGeneratedS(cfg)),
nop.asUInt
)
abstractGeneratedMem(1) := Mux(accessRegisterCommandReg.postexec,
nop.asUInt,
Instructions.EBREAK.value.U)
} else {
// Entry: All regs in GPRs, dscratch1=offset 0x800 in DM
// ABSTRACT(0): CheckISA: ADDW or NOP (exception here if size=3 and not RV64)
// ABSTRACT(1): CSRRW s1,dscratch1,s1 or CSRRW s0,dscratch1,s0
// ABSTRACT(2): Transfer: LW, SW, LD, SD else NOP
// ABSTRACT(3): CSRRW s1,dscratch1,s1 or CSRRW s0,dscratch1,s0
// ABSTRACT(4): Postexec: NOP else EBREAK
abstractGeneratedMem(0) := Mux(accessRegisterCommandReg.transfer && accessRegisterCommandReg.size =/= 2.U, isa.asUInt, nop.asUInt)
abstractGeneratedMem(1) := abstractGeneratedCSR
abstractGeneratedMem(2) := Mux(accessRegisterCommandReg.transfer,
Mux(accessRegisterCommandReg.write, abstractGeneratedI(cfg), abstractGeneratedS(cfg)),
nop.asUInt
)
abstractGeneratedMem(3) := abstractGeneratedCSR
abstractGeneratedMem(4) := Mux(accessRegisterCommandReg.postexec,
nop.asUInt,
Instructions.EBREAK.value.U)
}
}
//--------------------------------------------------------------
// Drive Custom Access
//--------------------------------------------------------------
if (needCustom) {
val (custom, customP) = customNode.in.head
custom.addr := accessRegisterCommandReg.regno
custom.valid := goCustom
}
//--------------------------------------------------------------
// Hart Bus Access
//--------------------------------------------------------------
tlNode.regmap(
// This memory is writable.
HALTED -> Seq(WNotifyWire(sbIdWidth, hartHaltedId, hartHaltedWrEn,
"debug_hart_halted", "Debug ROM Causes hart to write its hartID here when it is in Debug Mode.")),
GOING -> Seq(WNotifyWire(sbIdWidth, hartGoingId, hartGoingWrEn,
"debug_hart_going", "Debug ROM causes hart to write 0 here when it begins executing Debug Mode instructions.")),
RESUMING -> Seq(WNotifyWire(sbIdWidth, hartResumingId, hartResumingWrEn,
"debug_hart_resuming", "Debug ROM causes hart to write its hartID here when it leaves Debug Mode.")),
EXCEPTION -> Seq(WNotifyWire(sbIdWidth, hartExceptionId, hartExceptionWrEn,
"debug_hart_exception", "Debug ROM causes hart to write 0 here if it gets an exception in Debug Mode.")),
DATA -> RegFieldGroup("debug_data", Some("Data used to communicate with Debug Module"),
abstractDataMem.zipWithIndex.map {case (x, i) => RegField(8, x, RegFieldDesc(s"debug_data_$i", ""))}),
PROGBUF(cfg)-> RegFieldGroup("debug_progbuf", Some("Program buffer used to communicate with Debug Module"),
programBufferMem.zipWithIndex.map {case (x, i) => RegField(8, x, RegFieldDesc(s"debug_progbuf_$i", ""))}),
// These sections are read-only.
IMPEBREAK(cfg)-> {if (cfg.hasImplicitEbreak) Seq(RegField.r(32, Instructions.EBREAK.value.U,
RegFieldDesc("debug_impebreak", "Debug Implicit EBREAK", reset=Some(Instructions.EBREAK.value)))) else Nil},
WHERETO -> Seq(RegField.r(32, jalAbstract.asUInt, RegFieldDesc("debug_whereto", "Instruction filled in by Debug Module to control hart in Debug Mode", volatile = true))),
ABSTRACT(cfg) -> RegFieldGroup("debug_abstract", Some("Instructions generated by Debug Module"),
abstractGeneratedMem.zipWithIndex.map{ case (x,i) => RegField.r(32, x, RegFieldDesc(s"debug_abstract_$i", "", volatile=true))}),
FLAGS -> RegFieldGroup("debug_flags", Some("Memory region used to control hart going/resuming in Debug Mode"),
if (nComponents == 1) {
Seq.tabulate(1024) { i => RegField.r(8, flags(0).asUInt, RegFieldDesc(s"debug_flags_$i", "", volatile=true)) }
} else {
flags.zipWithIndex.map{case(x, i) => RegField.r(8, x.asUInt, RegFieldDesc(s"debug_flags_$i", "", volatile=true))}
}),
ROMBASE -> RegFieldGroup("debug_rom", Some("Debug ROM"),
(if (cfg.atzero) DebugRomContents() else DebugRomNonzeroContents()).zipWithIndex.map{case (x, i) =>
RegField.r(8, (x & 0xFF).U(8.W), RegFieldDesc(s"debug_rom_$i", "", reset=Some(x)))})
)
// Override System Bus accesses with dmactive reset.
when (~io.dmactive){
abstractDataMem.foreach {x => x := 0.U}
programBufferMem.foreach {x => x := 0.U}
}
//--------------------------------------------------------------
// Abstract Command State Machine
//--------------------------------------------------------------
object CtrlState extends scala.Enumeration {
type CtrlState = Value
val Waiting, CheckGenerate, Exec, Custom = Value
def apply( t : Value) : UInt = {
t.id.U(log2Up(values.size).W)
}
}
import CtrlState._
// This is not an initialization!
val ctrlStateReg = Reg(chiselTypeOf(CtrlState(Waiting)))
val hartHalted = haltedBitRegs(if (nComponents == 1) 0.U(0.W) else selectedHartReg)
val ctrlStateNxt = WireInit(ctrlStateReg)
//------------------------
// DMI Register Control and Status
abstractCommandBusy := (ctrlStateReg =/= CtrlState(Waiting))
ABSTRACTCSWrEnLegal := (ctrlStateReg === CtrlState(Waiting))
COMMANDWrEnLegal := (ctrlStateReg === CtrlState(Waiting))
ABSTRACTAUTOWrEnLegal := (ctrlStateReg === CtrlState(Waiting))
dmiAbstractDataAccessLegal := (ctrlStateReg === CtrlState(Waiting))
dmiProgramBufferAccessLegal := (ctrlStateReg === CtrlState(Waiting))
errorBusy := (ABSTRACTCSWrEnMaybe && ~ABSTRACTCSWrEnLegal) ||
(autoexecdataWrEnMaybe && ~ABSTRACTAUTOWrEnLegal) ||
(autoexecprogbufWrEnMaybe && ~ABSTRACTAUTOWrEnLegal) ||
(COMMANDWrEnMaybe && ~COMMANDWrEnLegal) ||
(dmiAbstractDataAccess && ~dmiAbstractDataAccessLegal) ||
(dmiProgramBufferAccess && ~dmiProgramBufferAccessLegal)
// TODO: Maybe Quick Access
val commandWrIsAccessRegister = (COMMANDWrData.cmdtype === DebugAbstractCommandType.AccessRegister.id.U)
val commandRegIsAccessRegister = (COMMANDReg.cmdtype === DebugAbstractCommandType.AccessRegister.id.U)
val commandWrIsUnsupported = COMMANDWrEn && !commandWrIsAccessRegister
val commandRegIsUnsupported = WireInit(true.B)
val commandRegBadHaltResume = WireInit(false.B)
// We only support abstract commands for GPRs and any custom registers, if specified.
val accessRegIsLegalSize = (accessRegisterCommandReg.size === 2.U) || (accessRegisterCommandReg.size === 3.U)
val accessRegIsGPR = (accessRegisterCommandReg.regno >= 0x1000.U && accessRegisterCommandReg.regno <= 0x101F.U) && accessRegIsLegalSize
val accessRegIsCustom = if (needCustom) {
val (custom, customP) = customNode.in.head
customP.addrs.foldLeft(false.B){
(result, current) => result || (current.U === accessRegisterCommandReg.regno)}
} else false.B
when (commandRegIsAccessRegister) {
when (accessRegIsCustom && accessRegisterCommandReg.transfer && accessRegisterCommandReg.write === false.B) {
commandRegIsUnsupported := false.B
}.elsewhen (!accessRegisterCommandReg.transfer || accessRegIsGPR) {
commandRegIsUnsupported := false.B
commandRegBadHaltResume := ~hartHalted
}
}
val wrAccessRegisterCommand = COMMANDWrEn && commandWrIsAccessRegister && (ABSTRACTCSReg.cmderr === 0.U)
val regAccessRegisterCommand = autoexec && commandRegIsAccessRegister && (ABSTRACTCSReg.cmderr === 0.U)
//------------------------
// Variable ROM STATE MACHINE
// -----------------------
when (ctrlStateReg === CtrlState(Waiting)){
when (wrAccessRegisterCommand || regAccessRegisterCommand) {
ctrlStateNxt := CtrlState(CheckGenerate)
}.elsewhen (commandWrIsUnsupported) { // These checks are really on the command type.
errorUnsupported := true.B
}.elsewhen (autoexec && commandRegIsUnsupported) {
errorUnsupported := true.B
}
}.elsewhen (ctrlStateReg === CtrlState(CheckGenerate)){
// We use this state to ensure that the COMMAND has been
// registered by the time that we need to use it, to avoid
// generating it directly from the COMMANDWrData.
// This 'commandRegIsUnsupported' is really just checking the
// AccessRegisterCommand parameters (regno)
when (commandRegIsUnsupported) {
errorUnsupported := true.B
ctrlStateNxt := CtrlState(Waiting)
}.elsewhen (commandRegBadHaltResume){
errorHaltResume := true.B
ctrlStateNxt := CtrlState(Waiting)
}.otherwise {
when(accessRegIsCustom) {
ctrlStateNxt := CtrlState(Custom)
}.otherwise {
ctrlStateNxt := CtrlState(Exec)
goAbstract := true.B
}
}
}.elsewhen (ctrlStateReg === CtrlState(Exec)) {
// We can't just look at 'hartHalted' here, because
// hartHaltedWrEn is overloaded to mean 'got an ebreak'
// which may have happened when we were already halted.
when(goReg === false.B && hartHaltedWrEn && (hartSelFuncs.hartIdToHartSel(hartHaltedId) === selectedHartReg)){
ctrlStateNxt := CtrlState(Waiting)
}
when(hartExceptionWrEn) {
assert(hartExceptionId === 0.U, "Unexpected 'EXCEPTION' hart")//Chisel3 #540, %x, expected %x", hartExceptionId, 0.U)
ctrlStateNxt := CtrlState(Waiting)
errorException := true.B
}
}.elsewhen (ctrlStateReg === CtrlState(Custom)) {
assert(needCustom.B, "Should not be in custom state unless we need it.")
goCustom := true.B
val (custom, customP) = customNode.in.head
when (custom.ready && custom.valid) {
ctrlStateNxt := CtrlState(Waiting)
}
}
when (~io.dmactive || ~dmAuthenticated) {
ctrlStateReg := CtrlState(Waiting)
}.otherwise {
ctrlStateReg := ctrlStateNxt
}
assert ((!io.dmactive || !hartExceptionWrEn || ctrlStateReg === CtrlState(Exec)),
"Unexpected EXCEPTION write: should only get it in Debug Module EXEC state")
}
}
// Wrapper around TL Debug Module Inner and an Async DMI Sink interface.
// Handles the synchronization of dmactive, which is used as a synchronous reset
// inside the Inner block.
// Also is the Sink side of hartsel & resumereq fields of DMCONTROL.
class TLDebugModuleInnerAsync(device: Device, getNComponents: () => Int, beatBytes: Int)(implicit p: Parameters) extends LazyModule{
val cfg = p(DebugModuleKey).get
val dmInner = LazyModule(new TLDebugModuleInner(device, getNComponents, beatBytes))
val dmiXing = LazyModule(new TLAsyncCrossingSink(AsyncQueueParams.singleton(safe=cfg.crossingHasSafeReset)))
val dmiNode = dmiXing.node
val tlNode = dmInner.tlNode
dmInner.dmiNode := dmiXing.node
// Require that there are no registers in TL interface, so that spurious
// processor accesses to the DM don't need to enable the clock. We don't
// require this property of the SBA, because the debugger is responsible for
// raising dmactive (hence enabling the clock) during these transactions.
require(dmInner.tlNode.concurrency == 0)
lazy val module = new Impl
class Impl extends LazyRawModuleImp(this) {
// Clock/reset domains:
// debug_clock / debug_reset = Debug inner domain
// tl_clock / tl_reset = tilelink domain (External: clock / reset)
//
val io = IO(new Bundle {
val debug_clock = Input(Clock())
val debug_reset = Input(Reset())
val tl_clock = Input(Clock())
val tl_reset = Input(Reset())
// These are all asynchronous and come from Outer
/** reset signal for DM */
val dmactive = Input(Bool())
/** conrol signals for Inner
*
* generated in Outer
*/
val innerCtrl = Flipped(new AsyncBundle(new DebugInternalBundle(getNComponents()), AsyncQueueParams.singleton(safe=cfg.crossingHasSafeReset)))
// This comes from tlClk domain.
/** debug available status */
val debugUnavail = Input(Vec(getNComponents(), Bool()))
/** debug interruption*/
val hgDebugInt = Output(Vec(getNComponents(), Bool()))
val extTrigger = (p(DebugModuleKey).get.nExtTriggers > 0).option(new DebugExtTriggerIO())
/** vector to indicate which hart is in reset
*
* dm receives it from core and sends it to Inner
*/
val hartIsInReset = Input(Vec(getNComponents(), Bool()))
/** Debug Authentication signals from core */
val auth = p(DebugModuleKey).get.hasAuthentication.option(new DebugAuthenticationIO())
})
val rf_reset = IO(Input(Reset())) // RF transform
childClock := io.debug_clock
childReset := io.debug_reset
override def provideImplicitClockToLazyChildren = true
val dmactive_synced = withClockAndReset(childClock, childReset) {
val dmactive_synced = AsyncResetSynchronizerShiftReg(in=io.dmactive, sync=3, name=Some("dmactiveSync"))
dmInner.module.clock := io.debug_clock
dmInner.module.reset := io.debug_reset
dmInner.module.io.tl_clock := io.tl_clock
dmInner.module.io.tl_reset := io.tl_reset
dmInner.module.io.dmactive := dmactive_synced
dmInner.module.io.innerCtrl <> FromAsyncBundle(io.innerCtrl)
dmInner.module.io.debugUnavail := io.debugUnavail
io.hgDebugInt := dmInner.module.io.hgDebugInt
io.extTrigger.foreach { x => dmInner.module.io.extTrigger.foreach {y => x <> y}}
dmInner.module.io.hartIsInReset := io.hartIsInReset
io.auth.foreach { x => dmInner.module.io.auth.foreach {y => x <> y}}
dmactive_synced
}
}
}
/** Create a version of the TLDebugModule which includes a synchronization interface
* internally for the DMI. This is no longer optional outside of this module
* because the Clock must run when tl_clock isn't running or tl_reset is asserted.
*/
class TLDebugModule(beatBytes: Int)(implicit p: Parameters) extends LazyModule {
val device = new SimpleDevice("debug-controller", Seq("sifive,debug-013","riscv,debug-013")){
override val alwaysExtended = true
override def describe(resources: ResourceBindings): Description = {
val Description(name, mapping) = super.describe(resources)
val attach = Map(
"debug-attach" -> (
(if (p(ExportDebug).apb) Seq(ResourceString("apb")) else Seq()) ++
(if (p(ExportDebug).jtag) Seq(ResourceString("jtag")) else Seq()) ++
(if (p(ExportDebug).cjtag) Seq(ResourceString("cjtag")) else Seq()) ++
(if (p(ExportDebug).dmi) Seq(ResourceString("dmi")) else Seq())))
Description(name, mapping ++ attach)
}
}
val dmOuter : TLDebugModuleOuterAsync = LazyModule(new TLDebugModuleOuterAsync(device)(p))
val dmInner : TLDebugModuleInnerAsync = LazyModule(new TLDebugModuleInnerAsync(device, () => {dmOuter.dmOuter.intnode.edges.out.size}, beatBytes)(p))
val node = dmInner.tlNode
val intnode = dmOuter.intnode
val apbNodeOpt = dmOuter.apbNodeOpt
dmInner.dmiNode := dmOuter.dmiInnerNode
lazy val module = new Impl
class Impl extends LazyRawModuleImp(this) {
val nComponents = dmOuter.dmOuter.intnode.edges.out.size
// Clock/reset domains:
// tl_clock / tl_reset = tilelink domain
// debug_clock / debug_reset = Inner debug (synchronous to tl_clock)
// apb_clock / apb_reset = Outer debug with APB
// dmiClock / dmiReset = Outer debug without APB
//
val io = IO(new Bundle {
val debug_clock = Input(Clock())
val debug_reset = Input(Reset())
val tl_clock = Input(Clock())
val tl_reset = Input(Reset())
/** Debug control signals generated in Outer */
val ctrl = new DebugCtrlBundle(nComponents)
/** Debug Module Interface bewteen DM and DTM
*
* The DTM provides access to one or more Debug Modules (DMs) using DMI
*/
val dmi = (!p(ExportDebug).apb).option(Flipped(new ClockedDMIIO()))
val apb_clock = p(ExportDebug).apb.option(Input(Clock()))
val apb_reset = p(ExportDebug).apb.option(Input(Reset()))
val extTrigger = (p(DebugModuleKey).get.nExtTriggers > 0).option(new DebugExtTriggerIO())
/** vector to indicate which hart is in reset
*
* dm receives it from core and sends it to Inner
*/
val hartIsInReset = Input(Vec(nComponents, Bool()))
/** hart reset request generated by hartreset-logic in Outer */
val hartResetReq = p(DebugModuleKey).get.hasHartResets.option(Output(Vec(nComponents, Bool())))
/** Debug Authentication signals from core */
val auth = p(DebugModuleKey).get.hasAuthentication.option(new DebugAuthenticationIO())
})
childClock := io.tl_clock
childReset := io.tl_reset
override def provideImplicitClockToLazyChildren = true
dmOuter.module.io.dmi.foreach { dmOuterDMI =>
dmOuterDMI <> io.dmi.get.dmi
dmOuter.module.io.dmi_reset := io.dmi.get.dmiReset
dmOuter.module.io.dmi_clock := io.dmi.get.dmiClock
dmOuter.module.rf_reset := io.dmi.get.dmiReset
}
(io.apb_clock zip io.apb_reset) foreach { case (c, r) =>
dmOuter.module.io.dmi_reset := r
dmOuter.module.io.dmi_clock := c
dmOuter.module.rf_reset := r
}
dmInner.module.rf_reset := io.debug_reset
dmInner.module.io.debug_clock := io.debug_clock
dmInner.module.io.debug_reset := io.debug_reset
dmInner.module.io.tl_clock := io.tl_clock
dmInner.module.io.tl_reset := io.tl_reset
dmInner.module.io.innerCtrl <> dmOuter.module.io.innerCtrl
dmInner.module.io.dmactive := dmOuter.module.io.ctrl.dmactive
dmInner.module.io.debugUnavail := io.ctrl.debugUnavail
dmOuter.module.io.hgDebugInt := dmInner.module.io.hgDebugInt
io.ctrl <> dmOuter.module.io.ctrl
io.extTrigger.foreach { x => dmInner.module.io.extTrigger.foreach {y => x <> y}}
dmInner.module.io.hartIsInReset := io.hartIsInReset
io.hartResetReq.foreach { x => dmOuter.module.io.hartResetReq.foreach {y => x := y}}
io.auth.foreach { x => dmOuter.module.io.dmAuthenticated.get := x.dmAuthenticated }
io.auth.foreach { x => dmInner.module.io.auth.foreach {y => x <> y}}
}
}
File SBA.scala:
// See LICENSE.SiFive for license details.
package freechips.rocketchip.devices.debug.systembusaccess
import chisel3._
import chisel3.util._
import org.chipsalliance.cde.config._
import org.chipsalliance.diplomacy.lazymodule._
import freechips.rocketchip.amba.{AMBAProt, AMBAProtField}
import freechips.rocketchip.devices.debug.{DebugModuleKey, RWNotify, SBCSFields, WNotifyVal}
import freechips.rocketchip.diplomacy.TransferSizes
import freechips.rocketchip.regmapper.{RegField, RegFieldDesc, RegFieldGroup, RegFieldWrType}
import freechips.rocketchip.tilelink.{TLClientNode, TLMasterParameters, TLMasterPortParameters}
import freechips.rocketchip.util.property
object SystemBusAccessState extends scala.Enumeration {
type SystemBusAccessState = Value
val Idle, SBReadRequest, SBWriteRequest, SBReadResponse, SBWriteResponse = Value
}
object SBErrorCode extends scala.Enumeration {
type SBErrorCode = Value
val NoError = Value(0)
val Timeout = Value(1)
val BadAddr = Value(2)
val AlgnError = Value(3)
val BadAccess = Value(4)
val OtherError = Value(7)
}
object SystemBusAccessModule
{
def apply(sb2tl: SBToTL, dmactive: Bool, dmAuthenticated: Bool)(implicit p: Parameters):
(Seq[RegField], Seq[Seq[RegField]], Seq[Seq[RegField]]) =
{
import SBErrorCode._
val cfg = p(DebugModuleKey).get
val anyAddressWrEn = WireInit(false.B).suggestName("anyAddressWrEn")
val anyDataRdEn = WireInit(false.B).suggestName("anyDataRdEn")
val anyDataWrEn = WireInit(false.B).suggestName("anyDataWrEn")
// --- SBCS Status Register ---
val SBCSFieldsReg = Reg(new SBCSFields()).suggestName("SBCSFieldsReg")
val SBCSFieldsRegReset = WireInit(0.U.asTypeOf(new SBCSFields()))
SBCSFieldsRegReset.sbversion := 1.U(1.W) // This code implements a version of the spec after January 1, 2018
SBCSFieldsRegReset.sbbusy := (sb2tl.module.io.sbStateOut =/= SystemBusAccessState.Idle.id.U)
SBCSFieldsRegReset.sbaccess := 2.U
SBCSFieldsRegReset.sbasize := sb2tl.module.edge.bundle.addressBits.U
SBCSFieldsRegReset.sbaccess128 := (cfg.maxSupportedSBAccess == 128).B
SBCSFieldsRegReset.sbaccess64 := (cfg.maxSupportedSBAccess >= 64).B
SBCSFieldsRegReset.sbaccess32 := (cfg.maxSupportedSBAccess >= 32).B
SBCSFieldsRegReset.sbaccess16 := (cfg.maxSupportedSBAccess >= 16).B
SBCSFieldsRegReset.sbaccess8 := (cfg.maxSupportedSBAccess >= 8).B
val SBCSRdData = WireInit(0.U.asTypeOf(new SBCSFields())).suggestName("SBCSRdData")
val SBCSWrDataVal = WireInit(0.U(32.W))
val SBCSWrData = WireInit(SBCSWrDataVal.asTypeOf(new SBCSFields()))
val sberrorWrEn = WireInit(false.B)
val sbreadondataWrEn = WireInit(false.B)
val sbautoincrementWrEn= WireInit(false.B)
val sbaccessWrEn = WireInit(false.B)
val sbreadonaddrWrEn = WireInit(false.B)
val sbbusyerrorWrEn = WireInit(false.B)
val sbcsfields = RegFieldGroup("sbcs", Some("system bus access control and status"), Seq(
RegField.r(1, SBCSRdData.sbaccess8, RegFieldDesc("sbaccess8", "8-bit accesses supported", reset=Some(if (cfg.maxSupportedSBAccess >= 8) 1 else 0))),
RegField.r(1, SBCSRdData.sbaccess16, RegFieldDesc("sbaccess16", "16-bit accesses supported", reset=Some(if (cfg.maxSupportedSBAccess >= 16) 1 else 0))),
RegField.r(1, SBCSRdData.sbaccess32, RegFieldDesc("sbaccess32", "32-bit accesses supported", reset=Some(if (cfg.maxSupportedSBAccess >= 32) 1 else 0))),
RegField.r(1, SBCSRdData.sbaccess64, RegFieldDesc("sbaccess64", "64-bit accesses supported", reset=Some(if (cfg.maxSupportedSBAccess >= 64) 1 else 0))),
RegField.r(1, SBCSRdData.sbaccess128, RegFieldDesc("sbaccess128", "128-bit accesses supported", reset=Some(if (cfg.maxSupportedSBAccess == 128) 1 else 0))),
RegField.r(7, SBCSRdData.sbasize, RegFieldDesc("sbasize", "bits in address", reset=Some(sb2tl.module.edge.bundle.addressBits))),
WNotifyVal(3, SBCSRdData.sberror, SBCSWrData.sberror, sberrorWrEn,
RegFieldDesc("sberror", "system bus error", reset=Some(0), wrType=Some(RegFieldWrType.ONE_TO_CLEAR))),
WNotifyVal(1, SBCSRdData.sbreadondata, SBCSWrData.sbreadondata, sbreadondataWrEn,
RegFieldDesc("sbreadondata", "system bus read on data", reset=Some(0))),
WNotifyVal(1, SBCSRdData.sbautoincrement, SBCSWrData.sbautoincrement, sbautoincrementWrEn,
RegFieldDesc("sbautoincrement", "system bus auto-increment address", reset=Some(0))),
WNotifyVal(3, SBCSRdData.sbaccess, SBCSWrData.sbaccess, sbaccessWrEn,
RegFieldDesc("sbaccess", "system bus access size", reset=Some(2))),
WNotifyVal(1, SBCSRdData.sbreadonaddr, SBCSWrData.sbreadonaddr, sbreadonaddrWrEn,
RegFieldDesc("sbreadonaddr", "system bus read on data", reset=Some(0))),
RegField.r(1, SBCSRdData.sbbusy, RegFieldDesc("sbbusy", "system bus access is busy", reset=Some(0))),
WNotifyVal(1, SBCSRdData.sbbusyerror, SBCSWrData.sbbusyerror, sbbusyerrorWrEn,
RegFieldDesc("sbbusyerror", "system bus busy error", reset=Some(0), wrType=Some(RegFieldWrType.ONE_TO_CLEAR))),
RegField(6),
RegField.r(3, SBCSRdData.sbversion, RegFieldDesc("sbversion", "system bus access version", reset=Some(1))),
))
// --- System Bus Address Registers ---
// ADDR0 Register is required
// Instantiate ADDR1-3 registers as needed depending on system bus address width
val hasSBAddr1 = (sb2tl.module.edge.bundle.addressBits >= 33)
val hasSBAddr2 = (sb2tl.module.edge.bundle.addressBits >= 65)
val hasSBAddr3 = (sb2tl.module.edge.bundle.addressBits >= 97)
val hasAddr = Seq(true, hasSBAddr1, hasSBAddr2, hasSBAddr3)
val SBADDRESSFieldsReg = Reg(Vec(4, UInt(32.W)))
SBADDRESSFieldsReg.zipWithIndex.foreach { case(a,i) => a.suggestName("SBADDRESS"+i+"FieldsReg")}
val SBADDRESSWrData = WireInit(VecInit(Seq.fill(4) {0.U(32.W)} ))
val SBADDRESSRdEn = WireInit(VecInit(Seq.fill(4) {false.B} ))
val SBADDRESSWrEn = WireInit(VecInit(Seq.fill(4) {false.B} ))
val autoIncrementedAddr = WireInit(0.U(128.W))
autoIncrementedAddr := Cat(SBADDRESSFieldsReg.reverse) + (1.U << SBCSFieldsReg.sbaccess)
autoIncrementedAddr.suggestName("autoIncrementedAddr")
val sbaddrfields: Seq[Seq[RegField]] = SBADDRESSFieldsReg.zipWithIndex.map { case(a,i) =>
if(hasAddr(i)) {
when (~dmactive || ~dmAuthenticated) {
a := 0.U(32.W)
}.otherwise {
a := Mux(SBADDRESSWrEn(i) && !SBCSRdData.sberror && !SBCSFieldsReg.sbbusy && !SBCSFieldsReg.sbbusyerror, SBADDRESSWrData(i),
Mux((sb2tl.module.io.rdDone || sb2tl.module.io.wrDone) && SBCSFieldsReg.sbautoincrement, autoIncrementedAddr(32*i+31,32*i), a))
}
RegFieldGroup("dmi_sbaddr"+i, Some("SBA Address Register"), Seq(RWNotify(32, a, SBADDRESSWrData(i), SBADDRESSRdEn(i), SBADDRESSWrEn(i),
Some(RegFieldDesc("dmi_sbaddr"+i, "SBA address register", reset=Some(0), volatile=true)))))
} else {
a := DontCare
Seq.empty[RegField]
}
}
sb2tl.module.io.addrIn := Mux(SBADDRESSWrEn(0),
Cat(Cat(SBADDRESSFieldsReg.drop(1).reverse), SBADDRESSWrData(0)),
Cat(SBADDRESSFieldsReg.reverse))
anyAddressWrEn := SBADDRESSWrEn.reduce(_ || _)
// --- System Bus Data Registers ---
// DATA0 Register is required
// DATA1-3 Registers may not be needed depending on implementation
val hasSBData1 = (cfg.maxSupportedSBAccess > 32)
val hasSBData2And3 = (cfg.maxSupportedSBAccess == 128)
val hasData = Seq(true, hasSBData1, hasSBData2And3, hasSBData2And3)
val SBDATAFieldsReg = Reg(Vec(4, Vec(4, UInt(8.W))))
SBDATAFieldsReg.zipWithIndex.foreach { case(d,i) => d.zipWithIndex.foreach { case(d,j) => d.suggestName("SBDATA"+i+"BYTE"+j) }}
val SBDATARdData = WireInit(VecInit(Seq.fill(4) {0.U(32.W)} ))
SBDATARdData.zipWithIndex.foreach { case(d,i) => d.suggestName("SBDATARdData"+i) }
val SBDATAWrData = WireInit(VecInit(Seq.fill(4) {0.U(32.W)} ))
SBDATAWrData.zipWithIndex.foreach { case(d,i) => d.suggestName("SBDATAWrData"+i) }
val SBDATARdEn = WireInit(VecInit(Seq.fill(4) {false.B} ))
val SBDATAWrEn = WireInit(VecInit(Seq.fill(4) {false.B} ))
SBDATAWrEn.zipWithIndex.foreach { case(d,i) => d.suggestName("SBDATAWrEn"+i) }
val sbdatafields: Seq[Seq[RegField]] = SBDATAFieldsReg.zipWithIndex.map { case(d,i) =>
if(hasData(i)) {
// For data registers, load enable per-byte
for (j <- 0 to 3) {
when (~dmactive || ~dmAuthenticated) {
d(j) := 0.U(8.W)
}.otherwise {
d(j) := Mux(SBDATAWrEn(i) && !SBCSFieldsReg.sbbusy && !SBCSFieldsReg.sbbusyerror && !SBCSRdData.sberror, SBDATAWrData(i)(8*j+7,8*j),
Mux(sb2tl.module.io.rdLoad(4*i+j), sb2tl.module.io.dataOut, d(j)))
}
}
SBDATARdData(i) := Cat(d.reverse)
RegFieldGroup("dmi_sbdata"+i, Some("SBA Data Register"), Seq(RWNotify(32, SBDATARdData(i), SBDATAWrData(i), SBDATARdEn(i), SBDATAWrEn(i),
Some(RegFieldDesc("dmi_sbdata"+i, "SBA data register", reset=Some(0), volatile=true)))))
} else {
for (j <- 0 to 3) { d(j) := DontCare }
Seq.empty[RegField]
}
}
sb2tl.module.io.dataIn := Mux(sb2tl.module.io.wrEn,Cat(SBDATAWrData.reverse),Cat(SBDATAFieldsReg.flatten.reverse))
anyDataRdEn := SBDATARdEn.reduce(_ || _)
anyDataWrEn := SBDATAWrEn.reduce(_ || _)
val tryWrEn = SBDATAWrEn(0)
val tryRdEn = (SBADDRESSWrEn(0) && SBCSFieldsReg.sbreadonaddr) || (SBDATARdEn(0) && SBCSFieldsReg.sbreadondata)
val sbAccessError = (SBCSFieldsReg.sbaccess === 0.U) && (SBCSFieldsReg.sbaccess8 =/= 1.U) ||
(SBCSFieldsReg.sbaccess === 1.U) && (SBCSFieldsReg.sbaccess16 =/= 1.U) ||
(SBCSFieldsReg.sbaccess === 2.U) && (SBCSFieldsReg.sbaccess32 =/= 1.U) ||
(SBCSFieldsReg.sbaccess === 3.U) && (SBCSFieldsReg.sbaccess64 =/= 1.U) ||
(SBCSFieldsReg.sbaccess === 4.U) && (SBCSFieldsReg.sbaccess128 =/= 1.U) || (SBCSFieldsReg.sbaccess > 4.U)
val compareAddr = Wire(UInt(32.W)) // Need use written or latched address to detect error case depending on how transaction is initiated
compareAddr := Mux(SBADDRESSWrEn(0),SBADDRESSWrData(0),SBADDRESSFieldsReg(0))
val sbAlignmentError = (SBCSFieldsReg.sbaccess === 1.U) && (compareAddr(0) =/= 0.U) ||
(SBCSFieldsReg.sbaccess === 2.U) && (compareAddr(1,0) =/= 0.U) ||
(SBCSFieldsReg.sbaccess === 3.U) && (compareAddr(2,0) =/= 0.U) ||
(SBCSFieldsReg.sbaccess === 4.U) && (compareAddr(3,0) =/= 0.U)
sbAccessError.suggestName("sbAccessError")
sbAlignmentError.suggestName("sbAlignmentError")
sb2tl.module.io.wrEn := dmAuthenticated && tryWrEn && !SBCSFieldsReg.sbbusy && !SBCSFieldsReg.sbbusyerror && !SBCSRdData.sberror && !sbAccessError && !sbAlignmentError
sb2tl.module.io.rdEn := dmAuthenticated && tryRdEn && !SBCSFieldsReg.sbbusy && !SBCSFieldsReg.sbbusyerror && !SBCSRdData.sberror && !sbAccessError && !sbAlignmentError
sb2tl.module.io.sizeIn := SBCSFieldsReg.sbaccess
val sbBusy = (sb2tl.module.io.sbStateOut =/= SystemBusAccessState.Idle.id.U)
when (~dmactive || ~dmAuthenticated) {
SBCSFieldsReg := SBCSFieldsRegReset
}.otherwise {
SBCSFieldsReg.sbbusyerror := Mux(sbbusyerrorWrEn && SBCSWrData.sbbusyerror, false.B, // W1C
Mux(anyAddressWrEn && sbBusy, true.B, // Set if a write to SBADDRESS occurs while busy
Mux((anyDataRdEn || anyDataWrEn) && sbBusy, true.B, SBCSFieldsReg.sbbusyerror))) // Set if any access to SBDATA occurs while busy
SBCSFieldsReg.sbreadonaddr := Mux(sbreadonaddrWrEn, SBCSWrData.sbreadonaddr , SBCSFieldsReg.sbreadonaddr)
SBCSFieldsReg.sbautoincrement := Mux(sbautoincrementWrEn, SBCSWrData.sbautoincrement, SBCSFieldsReg.sbautoincrement)
SBCSFieldsReg.sbreadondata := Mux(sbreadondataWrEn, SBCSWrData.sbreadondata , SBCSFieldsReg.sbreadondata)
SBCSFieldsReg.sbaccess := Mux(sbaccessWrEn, SBCSWrData.sbaccess, SBCSFieldsReg.sbaccess)
SBCSFieldsReg.sbversion := 1.U(1.W) // This code implements a version of the spec after January 1, 2018
}
// sbErrorReg has a per-bit load enable since each bit can be individually cleared by writing a 1 to it
val sbErrorReg = Reg(Vec(4, UInt(1.W)))
when(~dmactive || ~dmAuthenticated) {
for (i <- 0 until 3)
sbErrorReg(i) := 0.U
}.otherwise {
for (i <- 0 until 3)
sbErrorReg(i) := Mux(sberrorWrEn && SBCSWrData.sberror(i) === 1.U, NoError.id.U.extract(i), // W1C
Mux((sb2tl.module.io.wrEn && !sb2tl.module.io.wrLegal) || (sb2tl.module.io.rdEn && !sb2tl.module.io.rdLegal), BadAddr.id.U.extract(i), // Bad address accessed
Mux((tryWrEn || tryRdEn) && sbAlignmentError, AlgnError.id.U.extract(i), // Address alignment error
Mux((tryWrEn || tryRdEn) && sbAccessError, BadAccess.id.U.extract(i), // Access size error
Mux((sb2tl.module.io.rdDone || sb2tl.module.io.wrDone) && sb2tl.module.io.respError, OtherError.id.U.extract(i), sbErrorReg(i)))))) // Response error from TL
}
SBCSRdData := SBCSFieldsReg
SBCSRdData.sbasize := sb2tl.module.edge.bundle.addressBits.U
SBCSRdData.sbaccess128 := (cfg.maxSupportedSBAccess == 128).B
SBCSRdData.sbaccess64 := (cfg.maxSupportedSBAccess >= 64).B
SBCSRdData.sbaccess32 := (cfg.maxSupportedSBAccess >= 32).B
SBCSRdData.sbaccess16 := (cfg.maxSupportedSBAccess >= 16).B
SBCSRdData.sbaccess8 := (cfg.maxSupportedSBAccess >= 8).B
SBCSRdData.sbbusy := sbBusy
SBCSRdData.sberror := sbErrorReg.asUInt
when (~dmAuthenticated) { // Read value must be 0 if not authenticated
SBCSRdData := 0.U.asTypeOf(new SBCSFields())
}
property.cover(SBCSFieldsReg.sbbusyerror, "SBCS Cover", "sberror set")
property.cover(SBCSFieldsReg.sbbusy === 3.U, "SBCS Cover", "sbbusyerror alignment error")
property.cover((sb2tl.module.io.wrEn || sb2tl.module.io.rdEn) && SBCSFieldsReg.sbaccess === 0.U && !sbAccessError && !sbAlignmentError, "SBCS Cover", "8-bit access")
property.cover((sb2tl.module.io.wrEn || sb2tl.module.io.rdEn) && SBCSFieldsReg.sbaccess === 1.U && !sbAccessError && !sbAlignmentError, "SBCS Cover", "16-bit access")
property.cover((sb2tl.module.io.wrEn || sb2tl.module.io.rdEn) && SBCSFieldsReg.sbaccess === 2.U && !sbAccessError && !sbAlignmentError, "SBCS Cover", "32-bit access")
property.cover((sb2tl.module.io.wrEn || sb2tl.module.io.rdEn) && SBCSFieldsReg.sbaccess === 3.U && !sbAccessError && !sbAlignmentError, "SBCS Cover", "64-bit access")
property.cover((sb2tl.module.io.wrEn || sb2tl.module.io.rdEn) && SBCSFieldsReg.sbaccess === 4.U && !sbAccessError && !sbAlignmentError, "SBCS Cover", "128-bit access")
property.cover(SBCSFieldsReg.sbautoincrement && SBCSFieldsReg.sbbusy, "SBCS Cover", "Access with autoincrement set")
property.cover(!SBCSFieldsReg.sbautoincrement && SBCSFieldsReg.sbbusy, "SBCS Cover", "Access without autoincrement set")
property.cover((sb2tl.module.io.wrEn || sb2tl.module.io.rdEn) && SBCSFieldsReg.sbaccess > 4.U, "SBCS Cover", "Invalid sbaccess value")
(sbcsfields, sbaddrfields, sbdatafields)
}
}
class SBToTL(implicit p: Parameters) extends LazyModule {
val cfg = p(DebugModuleKey).get
val node = TLClientNode(Seq(TLMasterPortParameters.v1(
clients = Seq(TLMasterParameters.v1("debug")),
requestFields = Seq(AMBAProtField()))))
lazy val module = new Impl
class Impl extends LazyModuleImp(this) {
val io = IO(new Bundle {
val rdEn = Input(Bool())
val wrEn = Input(Bool())
val addrIn = Input(UInt(128.W)) // TODO: Parameterize these widths
val dataIn = Input(UInt(128.W))
val sizeIn = Input(UInt(3.W))
val rdLegal = Output(Bool())
val wrLegal = Output(Bool())
val rdDone = Output(Bool())
val wrDone = Output(Bool())
val respError = Output(Bool())
val dataOut = Output(UInt(8.W))
val rdLoad = Output(Vec(cfg.maxSupportedSBAccess/8, Bool()))
val sbStateOut = Output(UInt(log2Ceil(SystemBusAccessState.maxId).W))
})
val rf_reset = IO(Input(Reset()))
import SystemBusAccessState._
val (tl, edge) = node.out(0)
val sbState = RegInit(0.U)
// --- Drive payloads on bus to TileLink ---
val d = Queue(tl.d, 2) // Add a small buffer since response could arrive on same cycle as request
d.ready := (sbState === SBReadResponse.id.U) || (sbState === SBWriteResponse.id.U)
val muxedData = WireInit(0.U(8.W))
val requestValid = tl.a.valid
val requestReady = tl.a.ready
val responseValid = d.valid
val responseReady = d.ready
val counter = RegInit(0.U((log2Ceil(cfg.maxSupportedSBAccess/8)+1).W))
val vecData = Wire(Vec(cfg.maxSupportedSBAccess/8, UInt(8.W)))
vecData.zipWithIndex.map { case (vd, i) => vd := io.dataIn(8*i+7,8*i) }
muxedData := vecData(counter(log2Ceil(vecData.size)-1,0))
// Need an additional check to determine if address is safe for Get/Put
val rdLegal_addr = edge.manager.supportsGetSafe(io.addrIn, io.sizeIn, Some(TransferSizes(1,cfg.maxSupportedSBAccess/8)))
val wrLegal_addr = edge.manager.supportsPutFullSafe(io.addrIn, io.sizeIn, Some(TransferSizes(1,cfg.maxSupportedSBAccess/8)))
val (_, gbits) = edge.Get(0.U, io.addrIn, io.sizeIn)
val (_, pfbits) = edge.Put(0.U, io.addrIn, io.sizeIn, muxedData)
io.rdLegal := rdLegal_addr
io.wrLegal := wrLegal_addr
io.sbStateOut := sbState
when(sbState === SBReadRequest.id.U) { tl.a.bits := gbits }
.otherwise { tl.a.bits := pfbits }
tl.a.bits.user.lift(AMBAProt).foreach { x =>
x.bufferable := false.B
x.modifiable := false.B
x.readalloc := false.B
x.writealloc := false.B
x.privileged := true.B
x.secure := true.B
x.fetch := false.B
}
val respError = d.bits.denied || d.bits.corrupt
io.respError := respError
val wrTxValid = sbState === SBWriteRequest.id.U && requestValid && requestReady
val rdTxValid = sbState === SBReadResponse.id.U && responseValid && responseReady
val txLast = counter === ((1.U << io.sizeIn) - 1.U)
counter := Mux((wrTxValid || rdTxValid) && txLast, 0.U,
Mux((wrTxValid || rdTxValid) , counter+1.U, counter))
for (i <- 0 until (cfg.maxSupportedSBAccess/8)) {
io.rdLoad(i) := rdTxValid && (counter === i.U)
}
// --- State Machine to interface with TileLink ---
when (sbState === Idle.id.U){
sbState := Mux(io.rdEn && io.rdLegal, SBReadRequest.id.U,
Mux(io.wrEn && io.wrLegal, SBWriteRequest.id.U, sbState))
}.elsewhen (sbState === SBReadRequest.id.U){
sbState := Mux(requestValid && requestReady, SBReadResponse.id.U, sbState)
}.elsewhen (sbState === SBWriteRequest.id.U){
sbState := Mux(wrTxValid && txLast, SBWriteResponse.id.U, sbState)
}.elsewhen (sbState === SBReadResponse.id.U){
sbState := Mux(rdTxValid && txLast, Idle.id.U, sbState)
}.elsewhen (sbState === SBWriteResponse.id.U){
sbState := Mux(responseValid && responseReady, Idle.id.U, sbState)
}
io.rdDone := rdTxValid && txLast
io.wrDone := (sbState === SBWriteResponse.id.U) && responseValid && responseReady
io.dataOut := d.bits.data
tl.a.valid := (sbState === SBReadRequest.id.U) || (sbState === SBWriteRequest.id.U)
// Tie off unused channels
tl.b.ready := false.B
tl.c.valid := false.B
tl.e.valid := false.B
assert (sbState === Idle.id.U ||
sbState === SBReadRequest.id.U ||
sbState === SBWriteRequest.id.U ||
sbState === SBReadResponse.id.U ||
sbState === SBWriteResponse.id.U, "SBA state machine in undefined state")
property.cover (sbState === Idle.id.U, "SBA State Cover", "SBA Access Idle")
property.cover (sbState === SBReadRequest.id.U, "SBA State Cover", "SBA Access Read Req")
property.cover (sbState === SBWriteRequest.id.U, "SBA State Cover", "SBA Access Write Req")
property.cover (sbState === SBReadResponse.id.U, "SBA State Cover", "SBA Access Read Resp")
property.cover (sbState === SBWriteResponse.id.U, "SBA State Cover", "SBA Access Write Resp")
property.cover (io.rdEn && !io.rdLegal, "SB Legality Cover", "SBA Rd Address Illegal")
property.cover (io.wrEn && !io.wrLegal, "SB Legality Cover", "SBA Wr Address Illegal")
}
}
| module TLDebugModuleInner( // @[Debug.scala:790:9]
input clock, // @[Debug.scala:790:9]
input reset, // @[Debug.scala:790:9]
input auto_sb2tlOpt_out_a_ready, // @[LazyModuleImp.scala:107:25]
output auto_sb2tlOpt_out_a_valid, // @[LazyModuleImp.scala:107:25]
output [2:0] auto_sb2tlOpt_out_a_bits_opcode, // @[LazyModuleImp.scala:107:25]
output [3:0] auto_sb2tlOpt_out_a_bits_size, // @[LazyModuleImp.scala:107:25]
output [31:0] auto_sb2tlOpt_out_a_bits_address, // @[LazyModuleImp.scala:107:25]
output [7:0] auto_sb2tlOpt_out_a_bits_data, // @[LazyModuleImp.scala:107:25]
output auto_sb2tlOpt_out_d_ready, // @[LazyModuleImp.scala:107:25]
input auto_sb2tlOpt_out_d_valid, // @[LazyModuleImp.scala:107:25]
input [2:0] auto_sb2tlOpt_out_d_bits_opcode, // @[LazyModuleImp.scala:107:25]
input [1:0] auto_sb2tlOpt_out_d_bits_param, // @[LazyModuleImp.scala:107:25]
input [3:0] auto_sb2tlOpt_out_d_bits_size, // @[LazyModuleImp.scala:107:25]
input [2:0] auto_sb2tlOpt_out_d_bits_sink, // @[LazyModuleImp.scala:107:25]
input auto_sb2tlOpt_out_d_bits_denied, // @[LazyModuleImp.scala:107:25]
input [7:0] auto_sb2tlOpt_out_d_bits_data, // @[LazyModuleImp.scala:107:25]
input auto_sb2tlOpt_out_d_bits_corrupt, // @[LazyModuleImp.scala:107:25]
output auto_tl_in_a_ready, // @[LazyModuleImp.scala:107:25]
input auto_tl_in_a_valid, // @[LazyModuleImp.scala:107:25]
input [2:0] auto_tl_in_a_bits_opcode, // @[LazyModuleImp.scala:107:25]
input [2:0] auto_tl_in_a_bits_param, // @[LazyModuleImp.scala:107:25]
input [1:0] auto_tl_in_a_bits_size, // @[LazyModuleImp.scala:107:25]
input [11:0] auto_tl_in_a_bits_source, // @[LazyModuleImp.scala:107:25]
input [11:0] auto_tl_in_a_bits_address, // @[LazyModuleImp.scala:107:25]
input [7:0] auto_tl_in_a_bits_mask, // @[LazyModuleImp.scala:107:25]
input [63:0] auto_tl_in_a_bits_data, // @[LazyModuleImp.scala:107:25]
input auto_tl_in_a_bits_corrupt, // @[LazyModuleImp.scala:107:25]
input auto_tl_in_d_ready, // @[LazyModuleImp.scala:107:25]
output auto_tl_in_d_valid, // @[LazyModuleImp.scala:107:25]
output [2:0] auto_tl_in_d_bits_opcode, // @[LazyModuleImp.scala:107:25]
output [1:0] auto_tl_in_d_bits_size, // @[LazyModuleImp.scala:107:25]
output [11:0] auto_tl_in_d_bits_source, // @[LazyModuleImp.scala:107:25]
output [63:0] auto_tl_in_d_bits_data, // @[LazyModuleImp.scala:107:25]
output auto_dmi_in_a_ready, // @[LazyModuleImp.scala:107:25]
input auto_dmi_in_a_valid, // @[LazyModuleImp.scala:107:25]
input [2:0] auto_dmi_in_a_bits_opcode, // @[LazyModuleImp.scala:107:25]
input [2:0] auto_dmi_in_a_bits_param, // @[LazyModuleImp.scala:107:25]
input [1:0] auto_dmi_in_a_bits_size, // @[LazyModuleImp.scala:107:25]
input auto_dmi_in_a_bits_source, // @[LazyModuleImp.scala:107:25]
input [8:0] auto_dmi_in_a_bits_address, // @[LazyModuleImp.scala:107:25]
input [3:0] auto_dmi_in_a_bits_mask, // @[LazyModuleImp.scala:107:25]
input [31:0] auto_dmi_in_a_bits_data, // @[LazyModuleImp.scala:107:25]
input auto_dmi_in_a_bits_corrupt, // @[LazyModuleImp.scala:107:25]
input auto_dmi_in_d_ready, // @[LazyModuleImp.scala:107:25]
output auto_dmi_in_d_valid, // @[LazyModuleImp.scala:107:25]
output [2:0] auto_dmi_in_d_bits_opcode, // @[LazyModuleImp.scala:107:25]
output [1:0] auto_dmi_in_d_bits_size, // @[LazyModuleImp.scala:107:25]
output auto_dmi_in_d_bits_source, // @[LazyModuleImp.scala:107:25]
output [31:0] auto_dmi_in_d_bits_data, // @[LazyModuleImp.scala:107:25]
input io_dmactive, // @[Debug.scala:803:16]
input io_innerCtrl_valid, // @[Debug.scala:803:16]
input io_innerCtrl_bits_resumereq, // @[Debug.scala:803:16]
input [9:0] io_innerCtrl_bits_hartsel, // @[Debug.scala:803:16]
input io_innerCtrl_bits_ackhavereset, // @[Debug.scala:803:16]
input io_innerCtrl_bits_hrmask_0, // @[Debug.scala:803:16]
output io_hgDebugInt_0, // @[Debug.scala:803:16]
input io_hartIsInReset_0, // @[Debug.scala:803:16]
input io_tl_clock, // @[Debug.scala:803:16]
input io_tl_reset // @[Debug.scala:803:16]
);
wire abstractCommandBusy; // @[Debug.scala:1740:42]
reg [1:0] ctrlStateReg; // @[Debug.scala:1732:27]
wire out_woready_1_353; // @[RegisterRouter.scala:87:24]
wire out_woready_1_536; // @[RegisterRouter.scala:87:24]
wire out_woready_45; // @[RegisterRouter.scala:87:24]
wire out_woready_28; // @[RegisterRouter.scala:87:24]
wire out_woready_62; // @[RegisterRouter.scala:87:24]
wire out_woready_80; // @[RegisterRouter.scala:87:24]
wire out_woready_119; // @[RegisterRouter.scala:87:24]
wire out_woready_135; // @[RegisterRouter.scala:87:24]
wire out_woready_51; // @[RegisterRouter.scala:87:24]
wire out_woready_9; // @[RegisterRouter.scala:87:24]
wire out_woready_139; // @[RegisterRouter.scala:87:24]
wire out_woready_127; // @[RegisterRouter.scala:87:24]
wire out_woready_72; // @[RegisterRouter.scala:87:24]
wire out_woready_58; // @[RegisterRouter.scala:87:24]
wire out_woready_144; // @[RegisterRouter.scala:87:24]
wire out_woready_16; // @[RegisterRouter.scala:87:24]
wire out_woready_108; // @[RegisterRouter.scala:87:24]
wire out_woready_76; // @[RegisterRouter.scala:87:24]
wire out_woready_104; // @[RegisterRouter.scala:87:24]
wire out_woready_54; // @[RegisterRouter.scala:87:24]
wire out_woready_131; // @[RegisterRouter.scala:87:24]
wire out_woready_32; // @[RegisterRouter.scala:87:24]
wire out_woready_8; // @[RegisterRouter.scala:87:24]
wire out_woready_20; // @[RegisterRouter.scala:87:24]
wire out_woready_123; // @[RegisterRouter.scala:87:24]
wire out_woready_67; // @[RegisterRouter.scala:87:24]
wire out_woready_3; // @[RegisterRouter.scala:87:24]
wire out_woready_24; // @[RegisterRouter.scala:87:24]
wire _out_wofireMux_T_2; // @[RegisterRouter.scala:87:24]
wire out_roready_28; // @[RegisterRouter.scala:87:24]
wire out_roready_62; // @[RegisterRouter.scala:87:24]
wire out_roready_80; // @[RegisterRouter.scala:87:24]
wire out_roready_119; // @[RegisterRouter.scala:87:24]
wire out_roready_135; // @[RegisterRouter.scala:87:24]
wire out_roready_51; // @[RegisterRouter.scala:87:24]
wire out_roready_9; // @[RegisterRouter.scala:87:24]
wire out_roready_139; // @[RegisterRouter.scala:87:24]
wire out_roready_127; // @[RegisterRouter.scala:87:24]
wire out_roready_72; // @[RegisterRouter.scala:87:24]
wire out_roready_58; // @[RegisterRouter.scala:87:24]
wire out_roready_144; // @[RegisterRouter.scala:87:24]
wire out_roready_16; // @[RegisterRouter.scala:87:24]
wire out_roready_108; // @[RegisterRouter.scala:87:24]
wire out_roready_76; // @[RegisterRouter.scala:87:24]
wire out_roready_104; // @[RegisterRouter.scala:87:24]
wire out_roready_131; // @[RegisterRouter.scala:87:24]
wire out_roready_32; // @[RegisterRouter.scala:87:24]
wire out_roready_8; // @[RegisterRouter.scala:87:24]
wire out_roready_20; // @[RegisterRouter.scala:87:24]
wire out_roready_123; // @[RegisterRouter.scala:87:24]
wire out_roready_67; // @[RegisterRouter.scala:87:24]
wire out_roready_3; // @[RegisterRouter.scala:87:24]
wire out_roready_24; // @[RegisterRouter.scala:87:24]
wire _out_rofireMux_T_1; // @[RegisterRouter.scala:87:24]
wire out_backSel_61; // @[RegisterRouter.scala:87:24]
wire out_backSel_60; // @[RegisterRouter.scala:87:24]
wire out_backSel_57; // @[RegisterRouter.scala:87:24]
wire out_backSel_23; // @[RegisterRouter.scala:87:24]
wire out_backSel_22; // @[RegisterRouter.scala:87:24]
wire dmiProgramBufferWrEnMaybe_19; // @[RegisterRouter.scala:87:24]
wire dmiProgramBufferRdEn_19; // @[RegisterRouter.scala:87:24]
wire dmiProgramBufferWrEnMaybe_18; // @[RegisterRouter.scala:87:24]
wire dmiProgramBufferRdEn_18; // @[RegisterRouter.scala:87:24]
wire dmiProgramBufferWrEnMaybe_17; // @[RegisterRouter.scala:87:24]
wire dmiProgramBufferRdEn_17; // @[RegisterRouter.scala:87:24]
wire dmiProgramBufferWrEnMaybe_16; // @[RegisterRouter.scala:87:24]
wire dmiProgramBufferRdEn_16; // @[RegisterRouter.scala:87:24]
wire [31:0] COMMANDWrDataVal; // @[Debug.scala:297:{24,30}, :1279:39]
wire COMMANDWrEnMaybe; // @[RegisterRouter.scala:87:24]
wire dmiProgramBufferWrEnMaybe_35; // @[RegisterRouter.scala:87:24]
wire dmiProgramBufferRdEn_35; // @[RegisterRouter.scala:87:24]
wire dmiProgramBufferWrEnMaybe_34; // @[RegisterRouter.scala:87:24]
wire dmiProgramBufferRdEn_34; // @[RegisterRouter.scala:87:24]
wire dmiProgramBufferWrEnMaybe_33; // @[RegisterRouter.scala:87:24]
wire dmiProgramBufferRdEn_33; // @[RegisterRouter.scala:87:24]
wire dmiProgramBufferWrEnMaybe_32; // @[RegisterRouter.scala:87:24]
wire dmiProgramBufferRdEn_32; // @[RegisterRouter.scala:87:24]
wire dmiProgramBufferWrEnMaybe_47; // @[RegisterRouter.scala:87:24]
wire dmiProgramBufferRdEn_47; // @[RegisterRouter.scala:87:24]
wire dmiProgramBufferWrEnMaybe_46; // @[RegisterRouter.scala:87:24]
wire dmiProgramBufferRdEn_46; // @[RegisterRouter.scala:87:24]
wire dmiProgramBufferWrEnMaybe_45; // @[RegisterRouter.scala:87:24]
wire dmiProgramBufferRdEn_45; // @[RegisterRouter.scala:87:24]
wire dmiProgramBufferWrEnMaybe_44; // @[RegisterRouter.scala:87:24]
wire dmiProgramBufferRdEn_44; // @[RegisterRouter.scala:87:24]
wire dmiAbstractDataWrEnMaybe_31; // @[RegisterRouter.scala:87:24]
wire dmiAbstractDataRdEn_31; // @[RegisterRouter.scala:87:24]
wire dmiAbstractDataWrEnMaybe_30; // @[RegisterRouter.scala:87:24]
wire dmiAbstractDataRdEn_30; // @[RegisterRouter.scala:87:24]
wire dmiAbstractDataWrEnMaybe_29; // @[RegisterRouter.scala:87:24]
wire dmiAbstractDataRdEn_29; // @[RegisterRouter.scala:87:24]
wire dmiAbstractDataWrEnMaybe_28; // @[RegisterRouter.scala:87:24]
wire dmiAbstractDataRdEn_28; // @[RegisterRouter.scala:87:24]
wire dmiProgramBufferWrEnMaybe_31; // @[RegisterRouter.scala:87:24]
wire dmiProgramBufferRdEn_31; // @[RegisterRouter.scala:87:24]
wire dmiProgramBufferWrEnMaybe_30; // @[RegisterRouter.scala:87:24]
wire dmiProgramBufferRdEn_30; // @[RegisterRouter.scala:87:24]
wire dmiProgramBufferWrEnMaybe_29; // @[RegisterRouter.scala:87:24]
wire dmiProgramBufferRdEn_29; // @[RegisterRouter.scala:87:24]
wire dmiProgramBufferWrEnMaybe_28; // @[RegisterRouter.scala:87:24]
wire dmiProgramBufferRdEn_28; // @[RegisterRouter.scala:87:24]
wire dmiAbstractDataWrEnMaybe_15; // @[RegisterRouter.scala:87:24]
wire dmiAbstractDataRdEn_15; // @[RegisterRouter.scala:87:24]
wire dmiAbstractDataWrEnMaybe_14; // @[RegisterRouter.scala:87:24]
wire dmiAbstractDataRdEn_14; // @[RegisterRouter.scala:87:24]
wire dmiAbstractDataWrEnMaybe_13; // @[RegisterRouter.scala:87:24]
wire dmiAbstractDataRdEn_13; // @[RegisterRouter.scala:87:24]
wire dmiAbstractDataWrEnMaybe_12; // @[RegisterRouter.scala:87:24]
wire dmiAbstractDataRdEn_12; // @[RegisterRouter.scala:87:24]
wire dmiProgramBufferWrEnMaybe_51; // @[RegisterRouter.scala:87:24]
wire dmiProgramBufferRdEn_51; // @[RegisterRouter.scala:87:24]
wire dmiProgramBufferWrEnMaybe_50; // @[RegisterRouter.scala:87:24]
wire dmiProgramBufferRdEn_50; // @[RegisterRouter.scala:87:24]
wire dmiProgramBufferWrEnMaybe_49; // @[RegisterRouter.scala:87:24]
wire dmiProgramBufferRdEn_49; // @[RegisterRouter.scala:87:24]
wire dmiProgramBufferWrEnMaybe_48; // @[RegisterRouter.scala:87:24]
wire dmiProgramBufferRdEn_48; // @[RegisterRouter.scala:87:24]
wire dmiProgramBufferWrEnMaybe_11; // @[RegisterRouter.scala:87:24]
wire dmiProgramBufferRdEn_11; // @[RegisterRouter.scala:87:24]
wire dmiProgramBufferWrEnMaybe_10; // @[RegisterRouter.scala:87:24]
wire dmiProgramBufferRdEn_10; // @[RegisterRouter.scala:87:24]
wire dmiProgramBufferWrEnMaybe_9; // @[RegisterRouter.scala:87:24]
wire dmiProgramBufferRdEn_9; // @[RegisterRouter.scala:87:24]
wire dmiProgramBufferWrEnMaybe_8; // @[RegisterRouter.scala:87:24]
wire dmiProgramBufferRdEn_8; // @[RegisterRouter.scala:87:24]
wire dmiProgramBufferWrEnMaybe_3; // @[RegisterRouter.scala:87:24]
wire dmiProgramBufferRdEn_3; // @[RegisterRouter.scala:87:24]
wire dmiProgramBufferWrEnMaybe_2; // @[RegisterRouter.scala:87:24]
wire dmiProgramBufferRdEn_2; // @[RegisterRouter.scala:87:24]
wire dmiProgramBufferWrEnMaybe_1; // @[RegisterRouter.scala:87:24]
wire dmiProgramBufferRdEn_1; // @[RegisterRouter.scala:87:24]
wire dmiProgramBufferWrEnMaybe_0; // @[RegisterRouter.scala:87:24]
wire dmiProgramBufferRdEn_0; // @[RegisterRouter.scala:87:24]
wire dmiProgramBufferWrEnMaybe_55; // @[RegisterRouter.scala:87:24]
wire dmiProgramBufferRdEn_55; // @[RegisterRouter.scala:87:24]
wire dmiProgramBufferWrEnMaybe_54; // @[RegisterRouter.scala:87:24]
wire dmiProgramBufferRdEn_54; // @[RegisterRouter.scala:87:24]
wire dmiProgramBufferWrEnMaybe_53; // @[RegisterRouter.scala:87:24]
wire dmiProgramBufferRdEn_53; // @[RegisterRouter.scala:87:24]
wire dmiProgramBufferWrEnMaybe_52; // @[RegisterRouter.scala:87:24]
wire dmiProgramBufferRdEn_52; // @[RegisterRouter.scala:87:24]
wire dmiProgramBufferWrEnMaybe_7; // @[RegisterRouter.scala:87:24]
wire dmiProgramBufferRdEn_7; // @[RegisterRouter.scala:87:24]
wire dmiProgramBufferWrEnMaybe_6; // @[RegisterRouter.scala:87:24]
wire dmiProgramBufferRdEn_6; // @[RegisterRouter.scala:87:24]
wire dmiProgramBufferWrEnMaybe_5; // @[RegisterRouter.scala:87:24]
wire dmiProgramBufferRdEn_5; // @[RegisterRouter.scala:87:24]
wire dmiProgramBufferWrEnMaybe_4; // @[RegisterRouter.scala:87:24]
wire dmiProgramBufferRdEn_4; // @[RegisterRouter.scala:87:24]
wire dmiProgramBufferWrEnMaybe_27; // @[RegisterRouter.scala:87:24]
wire dmiProgramBufferRdEn_27; // @[RegisterRouter.scala:87:24]
wire dmiProgramBufferWrEnMaybe_26; // @[RegisterRouter.scala:87:24]
wire dmiProgramBufferRdEn_26; // @[RegisterRouter.scala:87:24]
wire dmiProgramBufferWrEnMaybe_25; // @[RegisterRouter.scala:87:24]
wire dmiProgramBufferRdEn_25; // @[RegisterRouter.scala:87:24]
wire dmiProgramBufferWrEnMaybe_24; // @[RegisterRouter.scala:87:24]
wire dmiProgramBufferRdEn_24; // @[RegisterRouter.scala:87:24]
wire [31:0] SBDATAWrData_0; // @[SBA.scala:147:35]
wire SBDATAWrEn_0; // @[RegisterRouter.scala:87:24]
wire SBDATARdEn_0; // @[RegisterRouter.scala:87:24]
wire dmiAbstractDataWrEnMaybe_11; // @[RegisterRouter.scala:87:24]
wire dmiAbstractDataRdEn_11; // @[RegisterRouter.scala:87:24]
wire dmiAbstractDataWrEnMaybe_10; // @[RegisterRouter.scala:87:24]
wire dmiAbstractDataRdEn_10; // @[RegisterRouter.scala:87:24]
wire dmiAbstractDataWrEnMaybe_9; // @[RegisterRouter.scala:87:24]
wire dmiAbstractDataRdEn_9; // @[RegisterRouter.scala:87:24]
wire dmiAbstractDataWrEnMaybe_8; // @[RegisterRouter.scala:87:24]
wire dmiAbstractDataRdEn_8; // @[RegisterRouter.scala:87:24]
wire SBADDRESSWrEn_0; // @[RegisterRouter.scala:87:24]
wire dmiProgramBufferWrEnMaybe_59; // @[RegisterRouter.scala:87:24]
wire dmiProgramBufferRdEn_59; // @[RegisterRouter.scala:87:24]
wire dmiProgramBufferWrEnMaybe_58; // @[RegisterRouter.scala:87:24]
wire dmiProgramBufferRdEn_58; // @[RegisterRouter.scala:87:24]
wire dmiProgramBufferWrEnMaybe_57; // @[RegisterRouter.scala:87:24]
wire dmiProgramBufferRdEn_57; // @[RegisterRouter.scala:87:24]
wire dmiProgramBufferWrEnMaybe_56; // @[RegisterRouter.scala:87:24]
wire dmiProgramBufferRdEn_56; // @[RegisterRouter.scala:87:24]
wire dmiProgramBufferWrEnMaybe_23; // @[RegisterRouter.scala:87:24]
wire dmiProgramBufferRdEn_23; // @[RegisterRouter.scala:87:24]
wire dmiProgramBufferWrEnMaybe_22; // @[RegisterRouter.scala:87:24]
wire dmiProgramBufferRdEn_22; // @[RegisterRouter.scala:87:24]
wire dmiProgramBufferWrEnMaybe_21; // @[RegisterRouter.scala:87:24]
wire dmiProgramBufferRdEn_21; // @[RegisterRouter.scala:87:24]
wire dmiProgramBufferWrEnMaybe_20; // @[RegisterRouter.scala:87:24]
wire dmiProgramBufferRdEn_20; // @[RegisterRouter.scala:87:24]
wire dmiProgramBufferWrEnMaybe_43; // @[RegisterRouter.scala:87:24]
wire dmiProgramBufferRdEn_43; // @[RegisterRouter.scala:87:24]
wire dmiProgramBufferWrEnMaybe_42; // @[RegisterRouter.scala:87:24]
wire dmiProgramBufferRdEn_42; // @[RegisterRouter.scala:87:24]
wire dmiProgramBufferWrEnMaybe_41; // @[RegisterRouter.scala:87:24]
wire dmiProgramBufferRdEn_41; // @[RegisterRouter.scala:87:24]
wire dmiProgramBufferWrEnMaybe_40; // @[RegisterRouter.scala:87:24]
wire dmiProgramBufferRdEn_40; // @[RegisterRouter.scala:87:24]
wire dmiAbstractDataWrEnMaybe_27; // @[RegisterRouter.scala:87:24]
wire dmiAbstractDataRdEn_27; // @[RegisterRouter.scala:87:24]
wire dmiAbstractDataWrEnMaybe_26; // @[RegisterRouter.scala:87:24]
wire dmiAbstractDataRdEn_26; // @[RegisterRouter.scala:87:24]
wire dmiAbstractDataWrEnMaybe_25; // @[RegisterRouter.scala:87:24]
wire dmiAbstractDataRdEn_25; // @[RegisterRouter.scala:87:24]
wire dmiAbstractDataWrEnMaybe_24; // @[RegisterRouter.scala:87:24]
wire dmiAbstractDataRdEn_24; // @[RegisterRouter.scala:87:24]
wire dmiProgramBufferWrEnMaybe_63; // @[RegisterRouter.scala:87:24]
wire dmiProgramBufferRdEn_63; // @[RegisterRouter.scala:87:24]
wire dmiProgramBufferWrEnMaybe_62; // @[RegisterRouter.scala:87:24]
wire dmiProgramBufferRdEn_62; // @[RegisterRouter.scala:87:24]
wire dmiProgramBufferWrEnMaybe_61; // @[RegisterRouter.scala:87:24]
wire dmiProgramBufferRdEn_61; // @[RegisterRouter.scala:87:24]
wire dmiProgramBufferWrEnMaybe_60; // @[RegisterRouter.scala:87:24]
wire dmiProgramBufferRdEn_60; // @[RegisterRouter.scala:87:24]
wire dmiAbstractDataWrEnMaybe_3; // @[RegisterRouter.scala:87:24]
wire dmiAbstractDataRdEn_3; // @[RegisterRouter.scala:87:24]
wire dmiAbstractDataWrEnMaybe_2; // @[RegisterRouter.scala:87:24]
wire dmiAbstractDataRdEn_2; // @[RegisterRouter.scala:87:24]
wire dmiAbstractDataWrEnMaybe_1; // @[RegisterRouter.scala:87:24]
wire dmiAbstractDataRdEn_1; // @[RegisterRouter.scala:87:24]
wire dmiAbstractDataWrEnMaybe_0; // @[RegisterRouter.scala:87:24]
wire dmiAbstractDataRdEn_0; // @[RegisterRouter.scala:87:24]
wire dmiAbstractDataWrEnMaybe_19; // @[RegisterRouter.scala:87:24]
wire dmiAbstractDataRdEn_19; // @[RegisterRouter.scala:87:24]
wire dmiAbstractDataWrEnMaybe_18; // @[RegisterRouter.scala:87:24]
wire dmiAbstractDataRdEn_18; // @[RegisterRouter.scala:87:24]
wire dmiAbstractDataWrEnMaybe_17; // @[RegisterRouter.scala:87:24]
wire dmiAbstractDataRdEn_17; // @[RegisterRouter.scala:87:24]
wire dmiAbstractDataWrEnMaybe_16; // @[RegisterRouter.scala:87:24]
wire dmiAbstractDataRdEn_16; // @[RegisterRouter.scala:87:24]
wire dmiProgramBufferWrEnMaybe_15; // @[RegisterRouter.scala:87:24]
wire dmiProgramBufferRdEn_15; // @[RegisterRouter.scala:87:24]
wire dmiProgramBufferWrEnMaybe_14; // @[RegisterRouter.scala:87:24]
wire dmiProgramBufferRdEn_14; // @[RegisterRouter.scala:87:24]
wire dmiProgramBufferWrEnMaybe_13; // @[RegisterRouter.scala:87:24]
wire dmiProgramBufferRdEn_13; // @[RegisterRouter.scala:87:24]
wire dmiProgramBufferWrEnMaybe_12; // @[RegisterRouter.scala:87:24]
wire dmiProgramBufferRdEn_12; // @[RegisterRouter.scala:87:24]
wire dmiProgramBufferWrEnMaybe_39; // @[RegisterRouter.scala:87:24]
wire dmiProgramBufferRdEn_39; // @[RegisterRouter.scala:87:24]
wire dmiProgramBufferWrEnMaybe_38; // @[RegisterRouter.scala:87:24]
wire dmiProgramBufferRdEn_38; // @[RegisterRouter.scala:87:24]
wire dmiProgramBufferWrEnMaybe_37; // @[RegisterRouter.scala:87:24]
wire dmiProgramBufferRdEn_37; // @[RegisterRouter.scala:87:24]
wire dmiProgramBufferWrEnMaybe_36; // @[RegisterRouter.scala:87:24]
wire dmiProgramBufferRdEn_36; // @[RegisterRouter.scala:87:24]
wire dmiAbstractDataWrEnMaybe_23; // @[RegisterRouter.scala:87:24]
wire dmiAbstractDataRdEn_23; // @[RegisterRouter.scala:87:24]
wire dmiAbstractDataWrEnMaybe_22; // @[RegisterRouter.scala:87:24]
wire dmiAbstractDataRdEn_22; // @[RegisterRouter.scala:87:24]
wire dmiAbstractDataWrEnMaybe_21; // @[RegisterRouter.scala:87:24]
wire dmiAbstractDataRdEn_21; // @[RegisterRouter.scala:87:24]
wire dmiAbstractDataWrEnMaybe_20; // @[RegisterRouter.scala:87:24]
wire dmiAbstractDataRdEn_20; // @[RegisterRouter.scala:87:24]
wire [31:0] SBDATAWrData_1; // @[SBA.scala:147:35]
wire dmiAbstractDataWrEnMaybe_7; // @[RegisterRouter.scala:87:24]
wire dmiAbstractDataRdEn_7; // @[RegisterRouter.scala:87:24]
wire dmiAbstractDataWrEnMaybe_6; // @[RegisterRouter.scala:87:24]
wire dmiAbstractDataRdEn_6; // @[RegisterRouter.scala:87:24]
wire dmiAbstractDataWrEnMaybe_5; // @[RegisterRouter.scala:87:24]
wire dmiAbstractDataRdEn_5; // @[RegisterRouter.scala:87:24]
wire dmiAbstractDataWrEnMaybe_4; // @[RegisterRouter.scala:87:24]
wire dmiAbstractDataRdEn_4; // @[RegisterRouter.scala:87:24]
wire [2:0] SBCSRdData_sberror; // @[SBA.scala:240:28]
wire sb2tlOpt_io_wrEn; // @[SBA.scala:199:{60,85,115,138,156}]
wire _hartIsInResetSync_0_debug_hartReset_0_io_q; // @[ShiftReg.scala:45:23]
wire _sb2tlOpt_io_rdLegal; // @[Debug.scala:782:52]
wire _sb2tlOpt_io_wrLegal; // @[Debug.scala:782:52]
wire _sb2tlOpt_io_rdDone; // @[Debug.scala:782:52]
wire _sb2tlOpt_io_wrDone; // @[Debug.scala:782:52]
wire _sb2tlOpt_io_respError; // @[Debug.scala:782:52]
wire [7:0] _sb2tlOpt_io_dataOut; // @[Debug.scala:782:52]
wire _sb2tlOpt_io_rdLoad_0; // @[Debug.scala:782:52]
wire _sb2tlOpt_io_rdLoad_1; // @[Debug.scala:782:52]
wire _sb2tlOpt_io_rdLoad_2; // @[Debug.scala:782:52]
wire _sb2tlOpt_io_rdLoad_3; // @[Debug.scala:782:52]
wire _sb2tlOpt_io_rdLoad_4; // @[Debug.scala:782:52]
wire _sb2tlOpt_io_rdLoad_5; // @[Debug.scala:782:52]
wire _sb2tlOpt_io_rdLoad_6; // @[Debug.scala:782:52]
wire _sb2tlOpt_io_rdLoad_7; // @[Debug.scala:782:52]
wire [2:0] _sb2tlOpt_io_sbStateOut; // @[Debug.scala:782:52]
reg hartHalted; // @[Debug.scala:861:31]
reg resumeReqRegs; // @[Debug.scala:863:31]
reg haveResetBitRegs; // @[Debug.scala:865:31]
wire hamaskWrSel_0 = io_innerCtrl_bits_hartsel == 10'h0; // @[Debug.scala:935:61]
reg hrmaskReg_0; // @[Debug.scala:947:29]
reg hrDebugIntReg_0; // @[Debug.scala:961:34]
wire resumereq = io_innerCtrl_valid & io_innerCtrl_bits_resumereq; // @[Debug.scala:983:39]
reg [2:0] ABSTRACTCSReg_cmderr; // @[Debug.scala:1183:34]
reg [15:0] ABSTRACTAUTOReg_autoexecprogbuf; // @[Debug.scala:1235:36]
reg [11:0] ABSTRACTAUTOReg_autoexecdata; // @[Debug.scala:1235:36]
wire dmiAbstractDataAccessVec_0 = dmiAbstractDataWrEnMaybe_0 | dmiAbstractDataRdEn_0; // @[RegisterRouter.scala:87:24]
wire dmiAbstractDataAccessVec_4 = dmiAbstractDataWrEnMaybe_4 | dmiAbstractDataRdEn_4; // @[RegisterRouter.scala:87:24]
wire dmiAbstractDataAccessVec_8 = dmiAbstractDataWrEnMaybe_8 | dmiAbstractDataRdEn_8; // @[RegisterRouter.scala:87:24]
wire dmiAbstractDataAccessVec_12 = dmiAbstractDataWrEnMaybe_12 | dmiAbstractDataRdEn_12; // @[RegisterRouter.scala:87:24]
wire dmiAbstractDataAccessVec_16 = dmiAbstractDataWrEnMaybe_16 | dmiAbstractDataRdEn_16; // @[RegisterRouter.scala:87:24]
wire dmiAbstractDataAccessVec_20 = dmiAbstractDataWrEnMaybe_20 | dmiAbstractDataRdEn_20; // @[RegisterRouter.scala:87:24]
wire dmiAbstractDataAccessVec_24 = dmiAbstractDataWrEnMaybe_24 | dmiAbstractDataRdEn_24; // @[RegisterRouter.scala:87:24]
wire dmiAbstractDataAccessVec_28 = dmiAbstractDataWrEnMaybe_28 | dmiAbstractDataRdEn_28; // @[RegisterRouter.scala:87:24]
wire dmiProgramBufferAccessVec_0 = dmiProgramBufferWrEnMaybe_0 | dmiProgramBufferRdEn_0; // @[RegisterRouter.scala:87:24]
wire dmiProgramBufferAccessVec_4 = dmiProgramBufferWrEnMaybe_4 | dmiProgramBufferRdEn_4; // @[RegisterRouter.scala:87:24]
wire dmiProgramBufferAccessVec_8 = dmiProgramBufferWrEnMaybe_8 | dmiProgramBufferRdEn_8; // @[RegisterRouter.scala:87:24]
wire dmiProgramBufferAccessVec_12 = dmiProgramBufferWrEnMaybe_12 | dmiProgramBufferRdEn_12; // @[RegisterRouter.scala:87:24]
wire dmiProgramBufferAccessVec_16 = dmiProgramBufferWrEnMaybe_16 | dmiProgramBufferRdEn_16; // @[RegisterRouter.scala:87:24]
wire dmiProgramBufferAccessVec_20 = dmiProgramBufferWrEnMaybe_20 | dmiProgramBufferRdEn_20; // @[RegisterRouter.scala:87:24]
wire dmiProgramBufferAccessVec_24 = dmiProgramBufferWrEnMaybe_24 | dmiProgramBufferRdEn_24; // @[RegisterRouter.scala:87:24]
wire dmiProgramBufferAccessVec_28 = dmiProgramBufferWrEnMaybe_28 | dmiProgramBufferRdEn_28; // @[RegisterRouter.scala:87:24]
wire dmiProgramBufferAccessVec_32 = dmiProgramBufferWrEnMaybe_32 | dmiProgramBufferRdEn_32; // @[RegisterRouter.scala:87:24]
wire dmiProgramBufferAccessVec_36 = dmiProgramBufferWrEnMaybe_36 | dmiProgramBufferRdEn_36; // @[RegisterRouter.scala:87:24]
wire dmiProgramBufferAccessVec_40 = dmiProgramBufferWrEnMaybe_40 | dmiProgramBufferRdEn_40; // @[RegisterRouter.scala:87:24]
wire dmiProgramBufferAccessVec_44 = dmiProgramBufferWrEnMaybe_44 | dmiProgramBufferRdEn_44; // @[RegisterRouter.scala:87:24]
wire dmiProgramBufferAccessVec_48 = dmiProgramBufferWrEnMaybe_48 | dmiProgramBufferRdEn_48; // @[RegisterRouter.scala:87:24]
wire dmiProgramBufferAccessVec_52 = dmiProgramBufferWrEnMaybe_52 | dmiProgramBufferRdEn_52; // @[RegisterRouter.scala:87:24]
wire dmiProgramBufferAccessVec_56 = dmiProgramBufferWrEnMaybe_56 | dmiProgramBufferRdEn_56; // @[RegisterRouter.scala:87:24]
wire dmiProgramBufferAccessVec_60 = dmiProgramBufferWrEnMaybe_60 | dmiProgramBufferRdEn_60; // @[RegisterRouter.scala:87:24]
wire autoexec = dmiAbstractDataAccessVec_0 & ABSTRACTAUTOReg_autoexecdata[0] | dmiAbstractDataAccessVec_4 & ABSTRACTAUTOReg_autoexecdata[1] | dmiAbstractDataAccessVec_8 & ABSTRACTAUTOReg_autoexecdata[2] | dmiAbstractDataAccessVec_12 & ABSTRACTAUTOReg_autoexecdata[3] | dmiAbstractDataAccessVec_16 & ABSTRACTAUTOReg_autoexecdata[4] | dmiAbstractDataAccessVec_20 & ABSTRACTAUTOReg_autoexecdata[5] | dmiAbstractDataAccessVec_24 & ABSTRACTAUTOReg_autoexecdata[6] | dmiAbstractDataAccessVec_28 & ABSTRACTAUTOReg_autoexecdata[7] | dmiProgramBufferAccessVec_0 & ABSTRACTAUTOReg_autoexecprogbuf[0] | dmiProgramBufferAccessVec_4 & ABSTRACTAUTOReg_autoexecprogbuf[1] | dmiProgramBufferAccessVec_8 & ABSTRACTAUTOReg_autoexecprogbuf[2] | dmiProgramBufferAccessVec_12 & ABSTRACTAUTOReg_autoexecprogbuf[3] | dmiProgramBufferAccessVec_16 & ABSTRACTAUTOReg_autoexecprogbuf[4] | dmiProgramBufferAccessVec_20 & ABSTRACTAUTOReg_autoexecprogbuf[5] | dmiProgramBufferAccessVec_24 & ABSTRACTAUTOReg_autoexecprogbuf[6] | dmiProgramBufferAccessVec_28 & ABSTRACTAUTOReg_autoexecprogbuf[7] | dmiProgramBufferAccessVec_32 & ABSTRACTAUTOReg_autoexecprogbuf[8] | dmiProgramBufferAccessVec_36 & ABSTRACTAUTOReg_autoexecprogbuf[9] | dmiProgramBufferAccessVec_40 & ABSTRACTAUTOReg_autoexecprogbuf[10] | dmiProgramBufferAccessVec_44 & ABSTRACTAUTOReg_autoexecprogbuf[11] | dmiProgramBufferAccessVec_48 & ABSTRACTAUTOReg_autoexecprogbuf[12] | dmiProgramBufferAccessVec_52 & ABSTRACTAUTOReg_autoexecprogbuf[13] | dmiProgramBufferAccessVec_56 & ABSTRACTAUTOReg_autoexecprogbuf[14] | dmiProgramBufferAccessVec_60 & ABSTRACTAUTOReg_autoexecprogbuf[15]; // @[Debug.scala:1235:36, :1258:105, :1261:108, :1269:{54,140}, :1270:{57,144}, :1272:{42,48,73}]
reg [7:0] COMMANDReg_cmdtype; // @[Debug.scala:1277:25]
reg [23:0] COMMANDReg_control; // @[Debug.scala:1277:25]
wire COMMANDWrEn = COMMANDWrEnMaybe & ~(|ctrlStateReg); // @[RegisterRouter.scala:87:24]
reg [7:0] abstractDataMem_0; // @[Debug.scala:1300:36]
reg [7:0] abstractDataMem_1; // @[Debug.scala:1300:36]
reg [7:0] abstractDataMem_2; // @[Debug.scala:1300:36]
reg [7:0] abstractDataMem_3; // @[Debug.scala:1300:36]
reg [7:0] abstractDataMem_4; // @[Debug.scala:1300:36]
reg [7:0] abstractDataMem_5; // @[Debug.scala:1300:36]
reg [7:0] abstractDataMem_6; // @[Debug.scala:1300:36]
reg [7:0] abstractDataMem_7; // @[Debug.scala:1300:36]
reg [7:0] abstractDataMem_8; // @[Debug.scala:1300:36]
reg [7:0] abstractDataMem_9; // @[Debug.scala:1300:36]
reg [7:0] abstractDataMem_10; // @[Debug.scala:1300:36]
reg [7:0] abstractDataMem_11; // @[Debug.scala:1300:36]
reg [7:0] abstractDataMem_12; // @[Debug.scala:1300:36]
reg [7:0] abstractDataMem_13; // @[Debug.scala:1300:36]
reg [7:0] abstractDataMem_14; // @[Debug.scala:1300:36]
reg [7:0] abstractDataMem_15; // @[Debug.scala:1300:36]
reg [7:0] abstractDataMem_16; // @[Debug.scala:1300:36]
reg [7:0] abstractDataMem_17; // @[Debug.scala:1300:36]
reg [7:0] abstractDataMem_18; // @[Debug.scala:1300:36]
reg [7:0] abstractDataMem_19; // @[Debug.scala:1300:36]
reg [7:0] abstractDataMem_20; // @[Debug.scala:1300:36]
reg [7:0] abstractDataMem_21; // @[Debug.scala:1300:36]
reg [7:0] abstractDataMem_22; // @[Debug.scala:1300:36]
reg [7:0] abstractDataMem_23; // @[Debug.scala:1300:36]
reg [7:0] abstractDataMem_24; // @[Debug.scala:1300:36]
reg [7:0] abstractDataMem_25; // @[Debug.scala:1300:36]
reg [7:0] abstractDataMem_26; // @[Debug.scala:1300:36]
reg [7:0] abstractDataMem_27; // @[Debug.scala:1300:36]
reg [7:0] abstractDataMem_28; // @[Debug.scala:1300:36]
reg [7:0] abstractDataMem_29; // @[Debug.scala:1300:36]
reg [7:0] abstractDataMem_30; // @[Debug.scala:1300:36]
reg [7:0] abstractDataMem_31; // @[Debug.scala:1300:36]
reg [7:0] programBufferMem_0; // @[Debug.scala:1306:34]
reg [7:0] programBufferMem_1; // @[Debug.scala:1306:34]
reg [7:0] programBufferMem_2; // @[Debug.scala:1306:34]
reg [7:0] programBufferMem_3; // @[Debug.scala:1306:34]
reg [7:0] programBufferMem_4; // @[Debug.scala:1306:34]
reg [7:0] programBufferMem_5; // @[Debug.scala:1306:34]
reg [7:0] programBufferMem_6; // @[Debug.scala:1306:34]
reg [7:0] programBufferMem_7; // @[Debug.scala:1306:34]
reg [7:0] programBufferMem_8; // @[Debug.scala:1306:34]
reg [7:0] programBufferMem_9; // @[Debug.scala:1306:34]
reg [7:0] programBufferMem_10; // @[Debug.scala:1306:34]
reg [7:0] programBufferMem_11; // @[Debug.scala:1306:34]
reg [7:0] programBufferMem_12; // @[Debug.scala:1306:34]
reg [7:0] programBufferMem_13; // @[Debug.scala:1306:34]
reg [7:0] programBufferMem_14; // @[Debug.scala:1306:34]
reg [7:0] programBufferMem_15; // @[Debug.scala:1306:34]
reg [7:0] programBufferMem_16; // @[Debug.scala:1306:34]
reg [7:0] programBufferMem_17; // @[Debug.scala:1306:34]
reg [7:0] programBufferMem_18; // @[Debug.scala:1306:34]
reg [7:0] programBufferMem_19; // @[Debug.scala:1306:34]
reg [7:0] programBufferMem_20; // @[Debug.scala:1306:34]
reg [7:0] programBufferMem_21; // @[Debug.scala:1306:34]
reg [7:0] programBufferMem_22; // @[Debug.scala:1306:34]
reg [7:0] programBufferMem_23; // @[Debug.scala:1306:34]
reg [7:0] programBufferMem_24; // @[Debug.scala:1306:34]
reg [7:0] programBufferMem_25; // @[Debug.scala:1306:34]
reg [7:0] programBufferMem_26; // @[Debug.scala:1306:34]
reg [7:0] programBufferMem_27; // @[Debug.scala:1306:34]
reg [7:0] programBufferMem_28; // @[Debug.scala:1306:34]
reg [7:0] programBufferMem_29; // @[Debug.scala:1306:34]
reg [7:0] programBufferMem_30; // @[Debug.scala:1306:34]
reg [7:0] programBufferMem_31; // @[Debug.scala:1306:34]
reg [7:0] programBufferMem_32; // @[Debug.scala:1306:34]
reg [7:0] programBufferMem_33; // @[Debug.scala:1306:34]
reg [7:0] programBufferMem_34; // @[Debug.scala:1306:34]
reg [7:0] programBufferMem_35; // @[Debug.scala:1306:34]
reg [7:0] programBufferMem_36; // @[Debug.scala:1306:34]
reg [7:0] programBufferMem_37; // @[Debug.scala:1306:34]
reg [7:0] programBufferMem_38; // @[Debug.scala:1306:34]
reg [7:0] programBufferMem_39; // @[Debug.scala:1306:34]
reg [7:0] programBufferMem_40; // @[Debug.scala:1306:34]
reg [7:0] programBufferMem_41; // @[Debug.scala:1306:34]
reg [7:0] programBufferMem_42; // @[Debug.scala:1306:34]
reg [7:0] programBufferMem_43; // @[Debug.scala:1306:34]
reg [7:0] programBufferMem_44; // @[Debug.scala:1306:34]
reg [7:0] programBufferMem_45; // @[Debug.scala:1306:34]
reg [7:0] programBufferMem_46; // @[Debug.scala:1306:34]
reg [7:0] programBufferMem_47; // @[Debug.scala:1306:34]
reg [7:0] programBufferMem_48; // @[Debug.scala:1306:34]
reg [7:0] programBufferMem_49; // @[Debug.scala:1306:34]
reg [7:0] programBufferMem_50; // @[Debug.scala:1306:34]
reg [7:0] programBufferMem_51; // @[Debug.scala:1306:34]
reg [7:0] programBufferMem_52; // @[Debug.scala:1306:34]
reg [7:0] programBufferMem_53; // @[Debug.scala:1306:34]
reg [7:0] programBufferMem_54; // @[Debug.scala:1306:34]
reg [7:0] programBufferMem_55; // @[Debug.scala:1306:34]
reg [7:0] programBufferMem_56; // @[Debug.scala:1306:34]
reg [7:0] programBufferMem_57; // @[Debug.scala:1306:34]
reg [7:0] programBufferMem_58; // @[Debug.scala:1306:34]
reg [7:0] programBufferMem_59; // @[Debug.scala:1306:34]
reg [7:0] programBufferMem_60; // @[Debug.scala:1306:34]
reg [7:0] programBufferMem_61; // @[Debug.scala:1306:34]
reg [7:0] programBufferMem_62; // @[Debug.scala:1306:34]
reg [7:0] programBufferMem_63; // @[Debug.scala:1306:34]
reg SBCSFieldsReg_sbbusyerror; // @[SBA.scala:47:28]
reg SBCSFieldsReg_sbbusy; // @[SBA.scala:47:28]
reg SBCSFieldsReg_sbreadonaddr; // @[SBA.scala:47:28]
reg [2:0] SBCSFieldsReg_sbaccess; // @[SBA.scala:47:28]
reg SBCSFieldsReg_sbautoincrement; // @[SBA.scala:47:28]
reg SBCSFieldsReg_sbreadondata; // @[SBA.scala:47:28]
reg [31:0] SBADDRESSFieldsReg_0; // @[SBA.scala:104:33]
reg [7:0] SBDATAFieldsReg_0_0; // @[SBA.scala:143:30]
reg [7:0] SBDATAFieldsReg_0_1; // @[SBA.scala:143:30]
reg [7:0] SBDATAFieldsReg_0_2; // @[SBA.scala:143:30]
reg [7:0] SBDATAFieldsReg_0_3; // @[SBA.scala:143:30]
reg [7:0] SBDATAFieldsReg_1_0; // @[SBA.scala:143:30]
reg [7:0] SBDATAFieldsReg_1_1; // @[SBA.scala:143:30]
reg [7:0] SBDATAFieldsReg_1_2; // @[SBA.scala:143:30]
reg [7:0] SBDATAFieldsReg_1_3; // @[SBA.scala:143:30]
wire tryRdEn = SBADDRESSWrEn_0 & SBCSFieldsReg_sbreadonaddr | SBDATARdEn_0 & SBCSFieldsReg_sbreadondata; // @[RegisterRouter.scala:87:24]
wire _sbAlignmentError_T_14 = SBCSFieldsReg_sbaccess == 3'h4; // @[SBA.scala:47:28, :186:49]
wire sbAccessError = _sbAlignmentError_T_14 | SBCSFieldsReg_sbaccess > 3'h4; // @[SBA.scala:47:28, :186:{49,97,124}]
wire [3:0] compareAddr = SBADDRESSWrEn_0 ? auto_dmi_in_a_bits_data[3:0] : SBADDRESSFieldsReg_0[3:0]; // @[RegisterRouter.scala:87:24]
wire sbAlignmentError = SBCSFieldsReg_sbaccess == 3'h1 & compareAddr[0] | SBCSFieldsReg_sbaccess == 3'h2 & (|(compareAddr[1:0])) | SBCSFieldsReg_sbaccess == 3'h3 & (|(compareAddr[2:0])) | _sbAlignmentError_T_14 & (|compareAddr); // @[SBA.scala:47:28, :183:49, :184:49, :185:49, :186:49, :189:23, :191:{61,76,91}, :192:{61,76,82,91}, :193:{61,76,82,91}, :194:{61,82}]
assign sb2tlOpt_io_wrEn = SBDATAWrEn_0 & ~SBCSFieldsReg_sbbusy & ~SBCSFieldsReg_sbbusyerror & ~(|SBCSRdData_sberror) & ~sbAccessError & ~sbAlignmentError; // @[RegisterRouter.scala:87:24]
wire sb2tlOpt_io_rdEn = tryRdEn & ~SBCSFieldsReg_sbbusy & ~SBCSFieldsReg_sbbusyerror & ~(|SBCSRdData_sberror) & ~sbAccessError & ~sbAlignmentError; // @[SBA.scala:47:28, :119:40, :180:68, :186:97, :191:91, :192:91, :193:91, :199:{63,88,118,141,159}, :200:{60,85,115,138,156}, :240:28]
reg sbErrorReg_0; // @[SBA.scala:219:25]
reg sbErrorReg_1; // @[SBA.scala:219:25]
reg sbErrorReg_2; // @[SBA.scala:219:25]
assign SBCSRdData_sberror = {sbErrorReg_2, sbErrorReg_1, sbErrorReg_0}; // @[SBA.scala:219:25, :240:28]
wire in_bits_read = auto_dmi_in_a_bits_opcode == 3'h4; // @[RegisterRouter.scala:74:36]
wire [7:0] _out_backMask_T_6 = {8{auto_dmi_in_a_bits_mask[2]}}; // @[RegisterRouter.scala:87:24]
wire [7:0] _out_backMask_T_7 = {8{auto_dmi_in_a_bits_mask[3]}}; // @[RegisterRouter.scala:87:24]
wire [31:0] out_backMask = {_out_backMask_T_7, _out_backMask_T_6, {8{auto_dmi_in_a_bits_mask[1]}}, {8{auto_dmi_in_a_bits_mask[0]}}}; // @[RegisterRouter.scala:87:24]
assign dmiAbstractDataRdEn_4 = out_roready_3 & auto_dmi_in_a_bits_mask[0]; // @[RegisterRouter.scala:87:24]
assign dmiAbstractDataWrEnMaybe_4 = out_woready_3 & auto_dmi_in_a_bits_mask[0]; // @[RegisterRouter.scala:87:24]
assign dmiAbstractDataRdEn_5 = out_roready_3 & auto_dmi_in_a_bits_mask[1]; // @[RegisterRouter.scala:87:24]
assign dmiAbstractDataWrEnMaybe_5 = out_woready_3 & auto_dmi_in_a_bits_mask[1]; // @[RegisterRouter.scala:87:24]
assign dmiAbstractDataRdEn_6 = out_roready_3 & auto_dmi_in_a_bits_mask[2]; // @[RegisterRouter.scala:87:24]
assign dmiAbstractDataWrEnMaybe_6 = out_woready_3 & auto_dmi_in_a_bits_mask[2]; // @[RegisterRouter.scala:87:24]
assign dmiAbstractDataRdEn_7 = out_roready_3 & auto_dmi_in_a_bits_mask[3]; // @[RegisterRouter.scala:87:24]
assign dmiAbstractDataWrEnMaybe_7 = out_woready_3 & auto_dmi_in_a_bits_mask[3]; // @[RegisterRouter.scala:87:24]
wire SBDATAWrEn_1 = _out_wofireMux_T_2 & out_backSel_61 & ~(auto_dmi_in_a_bits_address[8]) & (&out_backMask); // @[RegisterRouter.scala:87:24]
assign SBDATAWrData_1 = SBDATAWrEn_1 ? auto_dmi_in_a_bits_data : 32'h0; // @[RegisterRouter.scala:87:24]
assign dmiAbstractDataRdEn_20 = out_roready_8 & auto_dmi_in_a_bits_mask[0]; // @[RegisterRouter.scala:87:24]
assign dmiAbstractDataWrEnMaybe_20 = out_woready_8 & auto_dmi_in_a_bits_mask[0]; // @[RegisterRouter.scala:87:24]
assign dmiAbstractDataRdEn_21 = out_roready_8 & auto_dmi_in_a_bits_mask[1]; // @[RegisterRouter.scala:87:24]
assign dmiAbstractDataWrEnMaybe_21 = out_woready_8 & auto_dmi_in_a_bits_mask[1]; // @[RegisterRouter.scala:87:24]
assign dmiAbstractDataRdEn_22 = out_roready_8 & auto_dmi_in_a_bits_mask[2]; // @[RegisterRouter.scala:87:24]
assign dmiAbstractDataWrEnMaybe_22 = out_woready_8 & auto_dmi_in_a_bits_mask[2]; // @[RegisterRouter.scala:87:24]
assign dmiAbstractDataRdEn_23 = out_roready_8 & auto_dmi_in_a_bits_mask[3]; // @[RegisterRouter.scala:87:24]
assign dmiAbstractDataWrEnMaybe_23 = out_woready_8 & auto_dmi_in_a_bits_mask[3]; // @[RegisterRouter.scala:87:24]
assign dmiProgramBufferRdEn_36 = out_roready_9 & auto_dmi_in_a_bits_mask[0]; // @[RegisterRouter.scala:87:24]
assign dmiProgramBufferWrEnMaybe_36 = out_woready_9 & auto_dmi_in_a_bits_mask[0]; // @[RegisterRouter.scala:87:24]
assign dmiProgramBufferRdEn_37 = out_roready_9 & auto_dmi_in_a_bits_mask[1]; // @[RegisterRouter.scala:87:24]
assign dmiProgramBufferWrEnMaybe_37 = out_woready_9 & auto_dmi_in_a_bits_mask[1]; // @[RegisterRouter.scala:87:24]
assign dmiProgramBufferRdEn_38 = out_roready_9 & auto_dmi_in_a_bits_mask[2]; // @[RegisterRouter.scala:87:24]
assign dmiProgramBufferWrEnMaybe_38 = out_woready_9 & auto_dmi_in_a_bits_mask[2]; // @[RegisterRouter.scala:87:24]
assign dmiProgramBufferRdEn_39 = out_roready_9 & auto_dmi_in_a_bits_mask[3]; // @[RegisterRouter.scala:87:24]
assign dmiProgramBufferWrEnMaybe_39 = out_woready_9 & auto_dmi_in_a_bits_mask[3]; // @[RegisterRouter.scala:87:24]
assign dmiProgramBufferRdEn_12 = out_roready_16 & auto_dmi_in_a_bits_mask[0]; // @[RegisterRouter.scala:87:24]
assign dmiProgramBufferWrEnMaybe_12 = out_woready_16 & auto_dmi_in_a_bits_mask[0]; // @[RegisterRouter.scala:87:24]
assign dmiProgramBufferRdEn_13 = out_roready_16 & auto_dmi_in_a_bits_mask[1]; // @[RegisterRouter.scala:87:24]
assign dmiProgramBufferWrEnMaybe_13 = out_woready_16 & auto_dmi_in_a_bits_mask[1]; // @[RegisterRouter.scala:87:24]
assign dmiProgramBufferRdEn_14 = out_roready_16 & auto_dmi_in_a_bits_mask[2]; // @[RegisterRouter.scala:87:24]
assign dmiProgramBufferWrEnMaybe_14 = out_woready_16 & auto_dmi_in_a_bits_mask[2]; // @[RegisterRouter.scala:87:24]
assign dmiProgramBufferRdEn_15 = out_roready_16 & auto_dmi_in_a_bits_mask[3]; // @[RegisterRouter.scala:87:24]
assign dmiProgramBufferWrEnMaybe_15 = out_woready_16 & auto_dmi_in_a_bits_mask[3]; // @[RegisterRouter.scala:87:24]
assign dmiAbstractDataRdEn_16 = out_roready_20 & auto_dmi_in_a_bits_mask[0]; // @[RegisterRouter.scala:87:24]
assign dmiAbstractDataWrEnMaybe_16 = out_woready_20 & auto_dmi_in_a_bits_mask[0]; // @[RegisterRouter.scala:87:24]
assign dmiAbstractDataRdEn_17 = out_roready_20 & auto_dmi_in_a_bits_mask[1]; // @[RegisterRouter.scala:87:24]
assign dmiAbstractDataWrEnMaybe_17 = out_woready_20 & auto_dmi_in_a_bits_mask[1]; // @[RegisterRouter.scala:87:24]
assign dmiAbstractDataRdEn_18 = out_roready_20 & auto_dmi_in_a_bits_mask[2]; // @[RegisterRouter.scala:87:24]
assign dmiAbstractDataWrEnMaybe_18 = out_woready_20 & auto_dmi_in_a_bits_mask[2]; // @[RegisterRouter.scala:87:24]
assign dmiAbstractDataRdEn_19 = out_roready_20 & auto_dmi_in_a_bits_mask[3]; // @[RegisterRouter.scala:87:24]
assign dmiAbstractDataWrEnMaybe_19 = out_woready_20 & auto_dmi_in_a_bits_mask[3]; // @[RegisterRouter.scala:87:24]
assign dmiAbstractDataRdEn_0 = out_roready_24 & auto_dmi_in_a_bits_mask[0]; // @[RegisterRouter.scala:87:24]
assign dmiAbstractDataWrEnMaybe_0 = out_woready_24 & auto_dmi_in_a_bits_mask[0]; // @[RegisterRouter.scala:87:24]
assign dmiAbstractDataRdEn_1 = out_roready_24 & auto_dmi_in_a_bits_mask[1]; // @[RegisterRouter.scala:87:24]
assign dmiAbstractDataWrEnMaybe_1 = out_woready_24 & auto_dmi_in_a_bits_mask[1]; // @[RegisterRouter.scala:87:24]
assign dmiAbstractDataRdEn_2 = out_roready_24 & auto_dmi_in_a_bits_mask[2]; // @[RegisterRouter.scala:87:24]
assign dmiAbstractDataWrEnMaybe_2 = out_woready_24 & auto_dmi_in_a_bits_mask[2]; // @[RegisterRouter.scala:87:24]
assign dmiAbstractDataRdEn_3 = out_roready_24 & auto_dmi_in_a_bits_mask[3]; // @[RegisterRouter.scala:87:24]
assign dmiAbstractDataWrEnMaybe_3 = out_woready_24 & auto_dmi_in_a_bits_mask[3]; // @[RegisterRouter.scala:87:24]
assign dmiProgramBufferRdEn_60 = out_roready_28 & auto_dmi_in_a_bits_mask[0]; // @[RegisterRouter.scala:87:24]
assign dmiProgramBufferWrEnMaybe_60 = out_woready_28 & auto_dmi_in_a_bits_mask[0]; // @[RegisterRouter.scala:87:24]
assign dmiProgramBufferRdEn_61 = out_roready_28 & auto_dmi_in_a_bits_mask[1]; // @[RegisterRouter.scala:87:24]
assign dmiProgramBufferWrEnMaybe_61 = out_woready_28 & auto_dmi_in_a_bits_mask[1]; // @[RegisterRouter.scala:87:24]
assign dmiProgramBufferRdEn_62 = out_roready_28 & auto_dmi_in_a_bits_mask[2]; // @[RegisterRouter.scala:87:24]
assign dmiProgramBufferWrEnMaybe_62 = out_woready_28 & auto_dmi_in_a_bits_mask[2]; // @[RegisterRouter.scala:87:24]
assign dmiProgramBufferRdEn_63 = out_roready_28 & auto_dmi_in_a_bits_mask[3]; // @[RegisterRouter.scala:87:24]
assign dmiProgramBufferWrEnMaybe_63 = out_woready_28 & auto_dmi_in_a_bits_mask[3]; // @[RegisterRouter.scala:87:24]
assign dmiAbstractDataRdEn_24 = out_roready_32 & auto_dmi_in_a_bits_mask[0]; // @[RegisterRouter.scala:87:24]
assign dmiAbstractDataWrEnMaybe_24 = out_woready_32 & auto_dmi_in_a_bits_mask[0]; // @[RegisterRouter.scala:87:24]
assign dmiAbstractDataRdEn_25 = out_roready_32 & auto_dmi_in_a_bits_mask[1]; // @[RegisterRouter.scala:87:24]
assign dmiAbstractDataWrEnMaybe_25 = out_woready_32 & auto_dmi_in_a_bits_mask[1]; // @[RegisterRouter.scala:87:24]
assign dmiAbstractDataRdEn_26 = out_roready_32 & auto_dmi_in_a_bits_mask[2]; // @[RegisterRouter.scala:87:24]
assign dmiAbstractDataWrEnMaybe_26 = out_woready_32 & auto_dmi_in_a_bits_mask[2]; // @[RegisterRouter.scala:87:24]
assign dmiAbstractDataRdEn_27 = out_roready_32 & auto_dmi_in_a_bits_mask[3]; // @[RegisterRouter.scala:87:24]
assign dmiAbstractDataWrEnMaybe_27 = out_woready_32 & auto_dmi_in_a_bits_mask[3]; // @[RegisterRouter.scala:87:24]
wire sberrorWrEn = out_woready_45 & auto_dmi_in_a_bits_mask[1]; // @[RegisterRouter.scala:87:24]
assign dmiProgramBufferRdEn_40 = out_roready_51 & auto_dmi_in_a_bits_mask[0]; // @[RegisterRouter.scala:87:24]
assign dmiProgramBufferWrEnMaybe_40 = out_woready_51 & auto_dmi_in_a_bits_mask[0]; // @[RegisterRouter.scala:87:24]
assign dmiProgramBufferRdEn_41 = out_roready_51 & auto_dmi_in_a_bits_mask[1]; // @[RegisterRouter.scala:87:24]
assign dmiProgramBufferWrEnMaybe_41 = out_woready_51 & auto_dmi_in_a_bits_mask[1]; // @[RegisterRouter.scala:87:24]
assign dmiProgramBufferRdEn_42 = out_roready_51 & auto_dmi_in_a_bits_mask[2]; // @[RegisterRouter.scala:87:24]
assign dmiProgramBufferWrEnMaybe_42 = out_woready_51 & auto_dmi_in_a_bits_mask[2]; // @[RegisterRouter.scala:87:24]
assign dmiProgramBufferRdEn_43 = out_roready_51 & auto_dmi_in_a_bits_mask[3]; // @[RegisterRouter.scala:87:24]
assign dmiProgramBufferWrEnMaybe_43 = out_woready_51 & auto_dmi_in_a_bits_mask[3]; // @[RegisterRouter.scala:87:24]
wire autoexecdataWrEnMaybe = out_woready_54 & auto_dmi_in_a_bits_mask[0]; // @[RegisterRouter.scala:87:24]
wire autoexecprogbufWrEnMaybe = out_woready_54 & (&{_out_backMask_T_7, _out_backMask_T_6}); // @[RegisterRouter.scala:87:24]
assign dmiProgramBufferRdEn_20 = out_roready_58 & auto_dmi_in_a_bits_mask[0]; // @[RegisterRouter.scala:87:24]
assign dmiProgramBufferWrEnMaybe_20 = out_woready_58 & auto_dmi_in_a_bits_mask[0]; // @[RegisterRouter.scala:87:24]
assign dmiProgramBufferRdEn_21 = out_roready_58 & auto_dmi_in_a_bits_mask[1]; // @[RegisterRouter.scala:87:24]
assign dmiProgramBufferWrEnMaybe_21 = out_woready_58 & auto_dmi_in_a_bits_mask[1]; // @[RegisterRouter.scala:87:24]
assign dmiProgramBufferRdEn_22 = out_roready_58 & auto_dmi_in_a_bits_mask[2]; // @[RegisterRouter.scala:87:24]
assign dmiProgramBufferWrEnMaybe_22 = out_woready_58 & auto_dmi_in_a_bits_mask[2]; // @[RegisterRouter.scala:87:24]
assign dmiProgramBufferRdEn_23 = out_roready_58 & auto_dmi_in_a_bits_mask[3]; // @[RegisterRouter.scala:87:24]
assign dmiProgramBufferWrEnMaybe_23 = out_woready_58 & auto_dmi_in_a_bits_mask[3]; // @[RegisterRouter.scala:87:24]
assign dmiProgramBufferRdEn_56 = out_roready_62 & auto_dmi_in_a_bits_mask[0]; // @[RegisterRouter.scala:87:24]
assign dmiProgramBufferWrEnMaybe_56 = out_woready_62 & auto_dmi_in_a_bits_mask[0]; // @[RegisterRouter.scala:87:24]
assign dmiProgramBufferRdEn_57 = out_roready_62 & auto_dmi_in_a_bits_mask[1]; // @[RegisterRouter.scala:87:24]
assign dmiProgramBufferWrEnMaybe_57 = out_woready_62 & auto_dmi_in_a_bits_mask[1]; // @[RegisterRouter.scala:87:24]
assign dmiProgramBufferRdEn_58 = out_roready_62 & auto_dmi_in_a_bits_mask[2]; // @[RegisterRouter.scala:87:24]
assign dmiProgramBufferWrEnMaybe_58 = out_woready_62 & auto_dmi_in_a_bits_mask[2]; // @[RegisterRouter.scala:87:24]
assign dmiProgramBufferRdEn_59 = out_roready_62 & auto_dmi_in_a_bits_mask[3]; // @[RegisterRouter.scala:87:24]
assign dmiProgramBufferWrEnMaybe_59 = out_woready_62 & auto_dmi_in_a_bits_mask[3]; // @[RegisterRouter.scala:87:24]
assign SBADDRESSWrEn_0 = _out_wofireMux_T_2 & out_backSel_57 & ~(auto_dmi_in_a_bits_address[8]) & (&out_backMask); // @[RegisterRouter.scala:87:24]
assign dmiAbstractDataRdEn_8 = out_roready_67 & auto_dmi_in_a_bits_mask[0]; // @[RegisterRouter.scala:87:24]
assign dmiAbstractDataWrEnMaybe_8 = out_woready_67 & auto_dmi_in_a_bits_mask[0]; // @[RegisterRouter.scala:87:24]
assign dmiAbstractDataRdEn_9 = out_roready_67 & auto_dmi_in_a_bits_mask[1]; // @[RegisterRouter.scala:87:24]
assign dmiAbstractDataWrEnMaybe_9 = out_woready_67 & auto_dmi_in_a_bits_mask[1]; // @[RegisterRouter.scala:87:24]
assign dmiAbstractDataRdEn_10 = out_roready_67 & auto_dmi_in_a_bits_mask[2]; // @[RegisterRouter.scala:87:24]
assign dmiAbstractDataWrEnMaybe_10 = out_woready_67 & auto_dmi_in_a_bits_mask[2]; // @[RegisterRouter.scala:87:24]
assign dmiAbstractDataRdEn_11 = out_roready_67 & auto_dmi_in_a_bits_mask[3]; // @[RegisterRouter.scala:87:24]
assign dmiAbstractDataWrEnMaybe_11 = out_woready_67 & auto_dmi_in_a_bits_mask[3]; // @[RegisterRouter.scala:87:24]
assign SBDATARdEn_0 = _out_rofireMux_T_1 & out_backSel_60 & ~(auto_dmi_in_a_bits_address[8]) & (|out_backMask); // @[RegisterRouter.scala:87:24]
assign SBDATAWrEn_0 = _out_wofireMux_T_2 & out_backSel_60 & ~(auto_dmi_in_a_bits_address[8]) & (&out_backMask); // @[RegisterRouter.scala:87:24]
assign SBDATAWrData_0 = SBDATAWrEn_0 ? auto_dmi_in_a_bits_data : 32'h0; // @[RegisterRouter.scala:87:24]
assign dmiProgramBufferRdEn_24 = out_roready_72 & auto_dmi_in_a_bits_mask[0]; // @[RegisterRouter.scala:87:24]
assign dmiProgramBufferWrEnMaybe_24 = out_woready_72 & auto_dmi_in_a_bits_mask[0]; // @[RegisterRouter.scala:87:24]
assign dmiProgramBufferRdEn_25 = out_roready_72 & auto_dmi_in_a_bits_mask[1]; // @[RegisterRouter.scala:87:24]
assign dmiProgramBufferWrEnMaybe_25 = out_woready_72 & auto_dmi_in_a_bits_mask[1]; // @[RegisterRouter.scala:87:24]
assign dmiProgramBufferRdEn_26 = out_roready_72 & auto_dmi_in_a_bits_mask[2]; // @[RegisterRouter.scala:87:24]
assign dmiProgramBufferWrEnMaybe_26 = out_woready_72 & auto_dmi_in_a_bits_mask[2]; // @[RegisterRouter.scala:87:24]
assign dmiProgramBufferRdEn_27 = out_roready_72 & auto_dmi_in_a_bits_mask[3]; // @[RegisterRouter.scala:87:24]
assign dmiProgramBufferWrEnMaybe_27 = out_woready_72 & auto_dmi_in_a_bits_mask[3]; // @[RegisterRouter.scala:87:24]
assign dmiProgramBufferRdEn_4 = out_roready_76 & auto_dmi_in_a_bits_mask[0]; // @[RegisterRouter.scala:87:24]
assign dmiProgramBufferWrEnMaybe_4 = out_woready_76 & auto_dmi_in_a_bits_mask[0]; // @[RegisterRouter.scala:87:24]
assign dmiProgramBufferRdEn_5 = out_roready_76 & auto_dmi_in_a_bits_mask[1]; // @[RegisterRouter.scala:87:24]
assign dmiProgramBufferWrEnMaybe_5 = out_woready_76 & auto_dmi_in_a_bits_mask[1]; // @[RegisterRouter.scala:87:24]
assign dmiProgramBufferRdEn_6 = out_roready_76 & auto_dmi_in_a_bits_mask[2]; // @[RegisterRouter.scala:87:24]
assign dmiProgramBufferWrEnMaybe_6 = out_woready_76 & auto_dmi_in_a_bits_mask[2]; // @[RegisterRouter.scala:87:24]
assign dmiProgramBufferRdEn_7 = out_roready_76 & auto_dmi_in_a_bits_mask[3]; // @[RegisterRouter.scala:87:24]
assign dmiProgramBufferWrEnMaybe_7 = out_woready_76 & auto_dmi_in_a_bits_mask[3]; // @[RegisterRouter.scala:87:24]
assign dmiProgramBufferRdEn_52 = out_roready_80 & auto_dmi_in_a_bits_mask[0]; // @[RegisterRouter.scala:87:24]
assign dmiProgramBufferWrEnMaybe_52 = out_woready_80 & auto_dmi_in_a_bits_mask[0]; // @[RegisterRouter.scala:87:24]
assign dmiProgramBufferRdEn_53 = out_roready_80 & auto_dmi_in_a_bits_mask[1]; // @[RegisterRouter.scala:87:24]
assign dmiProgramBufferWrEnMaybe_53 = out_woready_80 & auto_dmi_in_a_bits_mask[1]; // @[RegisterRouter.scala:87:24]
assign dmiProgramBufferRdEn_54 = out_roready_80 & auto_dmi_in_a_bits_mask[2]; // @[RegisterRouter.scala:87:24]
assign dmiProgramBufferWrEnMaybe_54 = out_woready_80 & auto_dmi_in_a_bits_mask[2]; // @[RegisterRouter.scala:87:24]
assign dmiProgramBufferRdEn_55 = out_roready_80 & auto_dmi_in_a_bits_mask[3]; // @[RegisterRouter.scala:87:24]
assign dmiProgramBufferWrEnMaybe_55 = out_woready_80 & auto_dmi_in_a_bits_mask[3]; // @[RegisterRouter.scala:87:24]
assign dmiProgramBufferRdEn_0 = out_roready_104 & auto_dmi_in_a_bits_mask[0]; // @[RegisterRouter.scala:87:24]
assign dmiProgramBufferWrEnMaybe_0 = out_woready_104 & auto_dmi_in_a_bits_mask[0]; // @[RegisterRouter.scala:87:24]
assign dmiProgramBufferRdEn_1 = out_roready_104 & auto_dmi_in_a_bits_mask[1]; // @[RegisterRouter.scala:87:24]
assign dmiProgramBufferWrEnMaybe_1 = out_woready_104 & auto_dmi_in_a_bits_mask[1]; // @[RegisterRouter.scala:87:24]
assign dmiProgramBufferRdEn_2 = out_roready_104 & auto_dmi_in_a_bits_mask[2]; // @[RegisterRouter.scala:87:24]
assign dmiProgramBufferWrEnMaybe_2 = out_woready_104 & auto_dmi_in_a_bits_mask[2]; // @[RegisterRouter.scala:87:24]
assign dmiProgramBufferRdEn_3 = out_roready_104 & auto_dmi_in_a_bits_mask[3]; // @[RegisterRouter.scala:87:24]
assign dmiProgramBufferWrEnMaybe_3 = out_woready_104 & auto_dmi_in_a_bits_mask[3]; // @[RegisterRouter.scala:87:24]
assign dmiProgramBufferRdEn_8 = out_roready_108 & auto_dmi_in_a_bits_mask[0]; // @[RegisterRouter.scala:87:24]
assign dmiProgramBufferWrEnMaybe_8 = out_woready_108 & auto_dmi_in_a_bits_mask[0]; // @[RegisterRouter.scala:87:24]
assign dmiProgramBufferRdEn_9 = out_roready_108 & auto_dmi_in_a_bits_mask[1]; // @[RegisterRouter.scala:87:24]
assign dmiProgramBufferWrEnMaybe_9 = out_woready_108 & auto_dmi_in_a_bits_mask[1]; // @[RegisterRouter.scala:87:24]
assign dmiProgramBufferRdEn_10 = out_roready_108 & auto_dmi_in_a_bits_mask[2]; // @[RegisterRouter.scala:87:24]
assign dmiProgramBufferWrEnMaybe_10 = out_woready_108 & auto_dmi_in_a_bits_mask[2]; // @[RegisterRouter.scala:87:24]
assign dmiProgramBufferRdEn_11 = out_roready_108 & auto_dmi_in_a_bits_mask[3]; // @[RegisterRouter.scala:87:24]
assign dmiProgramBufferWrEnMaybe_11 = out_woready_108 & auto_dmi_in_a_bits_mask[3]; // @[RegisterRouter.scala:87:24]
wire ABSTRACTCSWrEnMaybe = _out_wofireMux_T_2 & out_backSel_22 & ~(auto_dmi_in_a_bits_address[8]) & auto_dmi_in_a_bits_mask[1]; // @[RegisterRouter.scala:87:24]
assign dmiProgramBufferRdEn_48 = out_roready_119 & auto_dmi_in_a_bits_mask[0]; // @[RegisterRouter.scala:87:24]
assign dmiProgramBufferWrEnMaybe_48 = out_woready_119 & auto_dmi_in_a_bits_mask[0]; // @[RegisterRouter.scala:87:24]
assign dmiProgramBufferRdEn_49 = out_roready_119 & auto_dmi_in_a_bits_mask[1]; // @[RegisterRouter.scala:87:24]
assign dmiProgramBufferWrEnMaybe_49 = out_woready_119 & auto_dmi_in_a_bits_mask[1]; // @[RegisterRouter.scala:87:24]
assign dmiProgramBufferRdEn_50 = out_roready_119 & auto_dmi_in_a_bits_mask[2]; // @[RegisterRouter.scala:87:24]
assign dmiProgramBufferWrEnMaybe_50 = out_woready_119 & auto_dmi_in_a_bits_mask[2]; // @[RegisterRouter.scala:87:24]
assign dmiProgramBufferRdEn_51 = out_roready_119 & auto_dmi_in_a_bits_mask[3]; // @[RegisterRouter.scala:87:24]
assign dmiProgramBufferWrEnMaybe_51 = out_woready_119 & auto_dmi_in_a_bits_mask[3]; // @[RegisterRouter.scala:87:24]
assign dmiAbstractDataRdEn_12 = out_roready_123 & auto_dmi_in_a_bits_mask[0]; // @[RegisterRouter.scala:87:24]
assign dmiAbstractDataWrEnMaybe_12 = out_woready_123 & auto_dmi_in_a_bits_mask[0]; // @[RegisterRouter.scala:87:24]
assign dmiAbstractDataRdEn_13 = out_roready_123 & auto_dmi_in_a_bits_mask[1]; // @[RegisterRouter.scala:87:24]
assign dmiAbstractDataWrEnMaybe_13 = out_woready_123 & auto_dmi_in_a_bits_mask[1]; // @[RegisterRouter.scala:87:24]
assign dmiAbstractDataRdEn_14 = out_roready_123 & auto_dmi_in_a_bits_mask[2]; // @[RegisterRouter.scala:87:24]
assign dmiAbstractDataWrEnMaybe_14 = out_woready_123 & auto_dmi_in_a_bits_mask[2]; // @[RegisterRouter.scala:87:24]
assign dmiAbstractDataRdEn_15 = out_roready_123 & auto_dmi_in_a_bits_mask[3]; // @[RegisterRouter.scala:87:24]
assign dmiAbstractDataWrEnMaybe_15 = out_woready_123 & auto_dmi_in_a_bits_mask[3]; // @[RegisterRouter.scala:87:24]
assign dmiProgramBufferRdEn_28 = out_roready_127 & auto_dmi_in_a_bits_mask[0]; // @[RegisterRouter.scala:87:24]
assign dmiProgramBufferWrEnMaybe_28 = out_woready_127 & auto_dmi_in_a_bits_mask[0]; // @[RegisterRouter.scala:87:24]
assign dmiProgramBufferRdEn_29 = out_roready_127 & auto_dmi_in_a_bits_mask[1]; // @[RegisterRouter.scala:87:24]
assign dmiProgramBufferWrEnMaybe_29 = out_woready_127 & auto_dmi_in_a_bits_mask[1]; // @[RegisterRouter.scala:87:24]
assign dmiProgramBufferRdEn_30 = out_roready_127 & auto_dmi_in_a_bits_mask[2]; // @[RegisterRouter.scala:87:24]
assign dmiProgramBufferWrEnMaybe_30 = out_woready_127 & auto_dmi_in_a_bits_mask[2]; // @[RegisterRouter.scala:87:24]
assign dmiProgramBufferRdEn_31 = out_roready_127 & auto_dmi_in_a_bits_mask[3]; // @[RegisterRouter.scala:87:24]
assign dmiProgramBufferWrEnMaybe_31 = out_woready_127 & auto_dmi_in_a_bits_mask[3]; // @[RegisterRouter.scala:87:24]
assign dmiAbstractDataRdEn_28 = out_roready_131 & auto_dmi_in_a_bits_mask[0]; // @[RegisterRouter.scala:87:24]
assign dmiAbstractDataWrEnMaybe_28 = out_woready_131 & auto_dmi_in_a_bits_mask[0]; // @[RegisterRouter.scala:87:24]
assign dmiAbstractDataRdEn_29 = out_roready_131 & auto_dmi_in_a_bits_mask[1]; // @[RegisterRouter.scala:87:24]
assign dmiAbstractDataWrEnMaybe_29 = out_woready_131 & auto_dmi_in_a_bits_mask[1]; // @[RegisterRouter.scala:87:24]
assign dmiAbstractDataRdEn_30 = out_roready_131 & auto_dmi_in_a_bits_mask[2]; // @[RegisterRouter.scala:87:24]
assign dmiAbstractDataWrEnMaybe_30 = out_woready_131 & auto_dmi_in_a_bits_mask[2]; // @[RegisterRouter.scala:87:24]
assign dmiAbstractDataRdEn_31 = out_roready_131 & auto_dmi_in_a_bits_mask[3]; // @[RegisterRouter.scala:87:24]
assign dmiAbstractDataWrEnMaybe_31 = out_woready_131 & auto_dmi_in_a_bits_mask[3]; // @[RegisterRouter.scala:87:24]
assign dmiProgramBufferRdEn_44 = out_roready_135 & auto_dmi_in_a_bits_mask[0]; // @[RegisterRouter.scala:87:24]
assign dmiProgramBufferWrEnMaybe_44 = out_woready_135 & auto_dmi_in_a_bits_mask[0]; // @[RegisterRouter.scala:87:24]
assign dmiProgramBufferRdEn_45 = out_roready_135 & auto_dmi_in_a_bits_mask[1]; // @[RegisterRouter.scala:87:24]
assign dmiProgramBufferWrEnMaybe_45 = out_woready_135 & auto_dmi_in_a_bits_mask[1]; // @[RegisterRouter.scala:87:24]
assign dmiProgramBufferRdEn_46 = out_roready_135 & auto_dmi_in_a_bits_mask[2]; // @[RegisterRouter.scala:87:24]
assign dmiProgramBufferWrEnMaybe_46 = out_woready_135 & auto_dmi_in_a_bits_mask[2]; // @[RegisterRouter.scala:87:24]
assign dmiProgramBufferRdEn_47 = out_roready_135 & auto_dmi_in_a_bits_mask[3]; // @[RegisterRouter.scala:87:24]
assign dmiProgramBufferWrEnMaybe_47 = out_woready_135 & auto_dmi_in_a_bits_mask[3]; // @[RegisterRouter.scala:87:24]
assign dmiProgramBufferRdEn_32 = out_roready_139 & auto_dmi_in_a_bits_mask[0]; // @[RegisterRouter.scala:87:24]
assign dmiProgramBufferWrEnMaybe_32 = out_woready_139 & auto_dmi_in_a_bits_mask[0]; // @[RegisterRouter.scala:87:24]
assign dmiProgramBufferRdEn_33 = out_roready_139 & auto_dmi_in_a_bits_mask[1]; // @[RegisterRouter.scala:87:24]
assign dmiProgramBufferWrEnMaybe_33 = out_woready_139 & auto_dmi_in_a_bits_mask[1]; // @[RegisterRouter.scala:87:24]
assign dmiProgramBufferRdEn_34 = out_roready_139 & auto_dmi_in_a_bits_mask[2]; // @[RegisterRouter.scala:87:24]
assign dmiProgramBufferWrEnMaybe_34 = out_woready_139 & auto_dmi_in_a_bits_mask[2]; // @[RegisterRouter.scala:87:24]
assign dmiProgramBufferRdEn_35 = out_roready_139 & auto_dmi_in_a_bits_mask[3]; // @[RegisterRouter.scala:87:24]
assign dmiProgramBufferWrEnMaybe_35 = out_woready_139 & auto_dmi_in_a_bits_mask[3]; // @[RegisterRouter.scala:87:24]
assign COMMANDWrEnMaybe = _out_wofireMux_T_2 & out_backSel_23 & ~(auto_dmi_in_a_bits_address[8]) & (&out_backMask); // @[RegisterRouter.scala:87:24]
assign COMMANDWrDataVal = COMMANDWrEnMaybe ? auto_dmi_in_a_bits_data : 32'h0; // @[RegisterRouter.scala:87:24]
assign dmiProgramBufferRdEn_16 = out_roready_144 & auto_dmi_in_a_bits_mask[0]; // @[RegisterRouter.scala:87:24]
assign dmiProgramBufferWrEnMaybe_16 = out_woready_144 & auto_dmi_in_a_bits_mask[0]; // @[RegisterRouter.scala:87:24]
assign dmiProgramBufferRdEn_17 = out_roready_144 & auto_dmi_in_a_bits_mask[1]; // @[RegisterRouter.scala:87:24]
assign dmiProgramBufferWrEnMaybe_17 = out_woready_144 & auto_dmi_in_a_bits_mask[1]; // @[RegisterRouter.scala:87:24]
assign dmiProgramBufferRdEn_18 = out_roready_144 & auto_dmi_in_a_bits_mask[2]; // @[RegisterRouter.scala:87:24]
assign dmiProgramBufferWrEnMaybe_18 = out_woready_144 & auto_dmi_in_a_bits_mask[2]; // @[RegisterRouter.scala:87:24]
assign dmiProgramBufferRdEn_19 = out_roready_144 & auto_dmi_in_a_bits_mask[3]; // @[RegisterRouter.scala:87:24]
assign dmiProgramBufferWrEnMaybe_19 = out_woready_144 & auto_dmi_in_a_bits_mask[3]; // @[RegisterRouter.scala:87:24]
wire out_backSel_4 = auto_dmi_in_a_bits_address[7:2] == 6'h4; // @[RegisterRouter.scala:87:24]
wire out_backSel_5 = auto_dmi_in_a_bits_address[7:2] == 6'h5; // @[RegisterRouter.scala:87:24]
wire out_backSel_6 = auto_dmi_in_a_bits_address[7:2] == 6'h6; // @[RegisterRouter.scala:87:24]
wire out_backSel_7 = auto_dmi_in_a_bits_address[7:2] == 6'h7; // @[RegisterRouter.scala:87:24]
wire out_backSel_8 = auto_dmi_in_a_bits_address[7:2] == 6'h8; // @[RegisterRouter.scala:87:24]
wire out_backSel_9 = auto_dmi_in_a_bits_address[7:2] == 6'h9; // @[RegisterRouter.scala:87:24]
wire out_backSel_10 = auto_dmi_in_a_bits_address[7:2] == 6'hA; // @[RegisterRouter.scala:87:24]
wire out_backSel_11 = auto_dmi_in_a_bits_address[7:2] == 6'hB; // @[RegisterRouter.scala:87:24]
assign out_backSel_22 = auto_dmi_in_a_bits_address[7:2] == 6'h16; // @[RegisterRouter.scala:87:24]
assign out_backSel_23 = auto_dmi_in_a_bits_address[7:2] == 6'h17; // @[RegisterRouter.scala:87:24]
wire out_backSel_32 = auto_dmi_in_a_bits_address[7:2] == 6'h20; // @[RegisterRouter.scala:87:24]
wire out_backSel_33 = auto_dmi_in_a_bits_address[7:2] == 6'h21; // @[RegisterRouter.scala:87:24]
wire out_backSel_34 = auto_dmi_in_a_bits_address[7:2] == 6'h22; // @[RegisterRouter.scala:87:24]
wire out_backSel_35 = auto_dmi_in_a_bits_address[7:2] == 6'h23; // @[RegisterRouter.scala:87:24]
wire out_backSel_36 = auto_dmi_in_a_bits_address[7:2] == 6'h24; // @[RegisterRouter.scala:87:24]
wire out_backSel_37 = auto_dmi_in_a_bits_address[7:2] == 6'h25; // @[RegisterRouter.scala:87:24]
wire out_backSel_38 = auto_dmi_in_a_bits_address[7:2] == 6'h26; // @[RegisterRouter.scala:87:24]
wire out_backSel_39 = auto_dmi_in_a_bits_address[7:2] == 6'h27; // @[RegisterRouter.scala:87:24]
wire out_backSel_40 = auto_dmi_in_a_bits_address[7:2] == 6'h28; // @[RegisterRouter.scala:87:24]
wire out_backSel_41 = auto_dmi_in_a_bits_address[7:2] == 6'h29; // @[RegisterRouter.scala:87:24]
wire out_backSel_42 = auto_dmi_in_a_bits_address[7:2] == 6'h2A; // @[RegisterRouter.scala:87:24]
wire out_backSel_43 = auto_dmi_in_a_bits_address[7:2] == 6'h2B; // @[RegisterRouter.scala:87:24]
wire out_backSel_44 = auto_dmi_in_a_bits_address[7:2] == 6'h2C; // @[RegisterRouter.scala:87:24]
wire out_backSel_45 = auto_dmi_in_a_bits_address[7:2] == 6'h2D; // @[RegisterRouter.scala:87:24]
wire out_backSel_46 = auto_dmi_in_a_bits_address[7:2] == 6'h2E; // @[RegisterRouter.scala:87:24]
wire out_backSel_47 = auto_dmi_in_a_bits_address[7:2] == 6'h2F; // @[RegisterRouter.scala:87:24]
assign out_backSel_57 = auto_dmi_in_a_bits_address[7:2] == 6'h39; // @[RegisterRouter.scala:87:24]
assign out_backSel_60 = auto_dmi_in_a_bits_address[7:2] == 6'h3C; // @[RegisterRouter.scala:87:24]
assign out_backSel_61 = auto_dmi_in_a_bits_address[7:2] == 6'h3D; // @[RegisterRouter.scala:87:24]
wire _out_wofireMux_T = auto_dmi_in_a_valid & auto_dmi_in_d_ready; // @[RegisterRouter.scala:87:24]
assign _out_rofireMux_T_1 = _out_wofireMux_T & in_bits_read; // @[RegisterRouter.scala:74:36, :87:24]
assign out_roready_24 = _out_rofireMux_T_1 & out_backSel_4 & ~(auto_dmi_in_a_bits_address[8]); // @[RegisterRouter.scala:87:24]
assign out_roready_3 = _out_rofireMux_T_1 & out_backSel_5 & ~(auto_dmi_in_a_bits_address[8]); // @[RegisterRouter.scala:87:24]
assign out_roready_67 = _out_rofireMux_T_1 & out_backSel_6 & ~(auto_dmi_in_a_bits_address[8]); // @[RegisterRouter.scala:87:24]
assign out_roready_123 = _out_rofireMux_T_1 & out_backSel_7 & ~(auto_dmi_in_a_bits_address[8]); // @[RegisterRouter.scala:87:24]
assign out_roready_20 = _out_rofireMux_T_1 & out_backSel_8 & ~(auto_dmi_in_a_bits_address[8]); // @[RegisterRouter.scala:87:24]
assign out_roready_8 = _out_rofireMux_T_1 & out_backSel_9 & ~(auto_dmi_in_a_bits_address[8]); // @[RegisterRouter.scala:87:24]
assign out_roready_32 = _out_rofireMux_T_1 & out_backSel_10 & ~(auto_dmi_in_a_bits_address[8]); // @[RegisterRouter.scala:87:24]
assign out_roready_131 = _out_rofireMux_T_1 & out_backSel_11 & ~(auto_dmi_in_a_bits_address[8]); // @[RegisterRouter.scala:87:24]
assign out_roready_104 = _out_rofireMux_T_1 & out_backSel_32 & ~(auto_dmi_in_a_bits_address[8]); // @[RegisterRouter.scala:87:24]
assign out_roready_76 = _out_rofireMux_T_1 & out_backSel_33 & ~(auto_dmi_in_a_bits_address[8]); // @[RegisterRouter.scala:87:24]
assign out_roready_108 = _out_rofireMux_T_1 & out_backSel_34 & ~(auto_dmi_in_a_bits_address[8]); // @[RegisterRouter.scala:87:24]
assign out_roready_16 = _out_rofireMux_T_1 & out_backSel_35 & ~(auto_dmi_in_a_bits_address[8]); // @[RegisterRouter.scala:87:24]
assign out_roready_144 = _out_rofireMux_T_1 & out_backSel_36 & ~(auto_dmi_in_a_bits_address[8]); // @[RegisterRouter.scala:87:24]
assign out_roready_58 = _out_rofireMux_T_1 & out_backSel_37 & ~(auto_dmi_in_a_bits_address[8]); // @[RegisterRouter.scala:87:24]
assign out_roready_72 = _out_rofireMux_T_1 & out_backSel_38 & ~(auto_dmi_in_a_bits_address[8]); // @[RegisterRouter.scala:87:24]
assign out_roready_127 = _out_rofireMux_T_1 & out_backSel_39 & ~(auto_dmi_in_a_bits_address[8]); // @[RegisterRouter.scala:87:24]
assign out_roready_139 = _out_rofireMux_T_1 & out_backSel_40 & ~(auto_dmi_in_a_bits_address[8]); // @[RegisterRouter.scala:87:24]
assign out_roready_9 = _out_rofireMux_T_1 & out_backSel_41 & ~(auto_dmi_in_a_bits_address[8]); // @[RegisterRouter.scala:87:24]
assign out_roready_51 = _out_rofireMux_T_1 & out_backSel_42 & ~(auto_dmi_in_a_bits_address[8]); // @[RegisterRouter.scala:87:24]
assign out_roready_135 = _out_rofireMux_T_1 & out_backSel_43 & ~(auto_dmi_in_a_bits_address[8]); // @[RegisterRouter.scala:87:24]
assign out_roready_119 = _out_rofireMux_T_1 & out_backSel_44 & ~(auto_dmi_in_a_bits_address[8]); // @[RegisterRouter.scala:87:24]
assign out_roready_80 = _out_rofireMux_T_1 & out_backSel_45 & ~(auto_dmi_in_a_bits_address[8]); // @[RegisterRouter.scala:87:24]
assign out_roready_62 = _out_rofireMux_T_1 & out_backSel_46 & ~(auto_dmi_in_a_bits_address[8]); // @[RegisterRouter.scala:87:24]
assign out_roready_28 = _out_rofireMux_T_1 & out_backSel_47 & ~(auto_dmi_in_a_bits_address[8]); // @[RegisterRouter.scala:87:24]
assign _out_wofireMux_T_2 = _out_wofireMux_T & ~in_bits_read; // @[RegisterRouter.scala:74:36, :87:24]
assign out_woready_24 = _out_wofireMux_T_2 & out_backSel_4 & ~(auto_dmi_in_a_bits_address[8]); // @[RegisterRouter.scala:87:24]
assign out_woready_3 = _out_wofireMux_T_2 & out_backSel_5 & ~(auto_dmi_in_a_bits_address[8]); // @[RegisterRouter.scala:87:24]
assign out_woready_67 = _out_wofireMux_T_2 & out_backSel_6 & ~(auto_dmi_in_a_bits_address[8]); // @[RegisterRouter.scala:87:24]
assign out_woready_123 = _out_wofireMux_T_2 & out_backSel_7 & ~(auto_dmi_in_a_bits_address[8]); // @[RegisterRouter.scala:87:24]
assign out_woready_20 = _out_wofireMux_T_2 & out_backSel_8 & ~(auto_dmi_in_a_bits_address[8]); // @[RegisterRouter.scala:87:24]
assign out_woready_8 = _out_wofireMux_T_2 & out_backSel_9 & ~(auto_dmi_in_a_bits_address[8]); // @[RegisterRouter.scala:87:24]
assign out_woready_32 = _out_wofireMux_T_2 & out_backSel_10 & ~(auto_dmi_in_a_bits_address[8]); // @[RegisterRouter.scala:87:24]
assign out_woready_131 = _out_wofireMux_T_2 & out_backSel_11 & ~(auto_dmi_in_a_bits_address[8]); // @[RegisterRouter.scala:87:24]
assign out_woready_54 = _out_wofireMux_T_2 & auto_dmi_in_a_bits_address[7:2] == 6'h18 & ~(auto_dmi_in_a_bits_address[8]); // @[RegisterRouter.scala:87:24]
assign out_woready_104 = _out_wofireMux_T_2 & out_backSel_32 & ~(auto_dmi_in_a_bits_address[8]); // @[RegisterRouter.scala:87:24]
assign out_woready_76 = _out_wofireMux_T_2 & out_backSel_33 & ~(auto_dmi_in_a_bits_address[8]); // @[RegisterRouter.scala:87:24]
assign out_woready_108 = _out_wofireMux_T_2 & out_backSel_34 & ~(auto_dmi_in_a_bits_address[8]); // @[RegisterRouter.scala:87:24]
assign out_woready_16 = _out_wofireMux_T_2 & out_backSel_35 & ~(auto_dmi_in_a_bits_address[8]); // @[RegisterRouter.scala:87:24]
assign out_woready_144 = _out_wofireMux_T_2 & out_backSel_36 & ~(auto_dmi_in_a_bits_address[8]); // @[RegisterRouter.scala:87:24]
assign out_woready_58 = _out_wofireMux_T_2 & out_backSel_37 & ~(auto_dmi_in_a_bits_address[8]); // @[RegisterRouter.scala:87:24]
assign out_woready_72 = _out_wofireMux_T_2 & out_backSel_38 & ~(auto_dmi_in_a_bits_address[8]); // @[RegisterRouter.scala:87:24]
assign out_woready_127 = _out_wofireMux_T_2 & out_backSel_39 & ~(auto_dmi_in_a_bits_address[8]); // @[RegisterRouter.scala:87:24]
assign out_woready_139 = _out_wofireMux_T_2 & out_backSel_40 & ~(auto_dmi_in_a_bits_address[8]); // @[RegisterRouter.scala:87:24]
assign out_woready_9 = _out_wofireMux_T_2 & out_backSel_41 & ~(auto_dmi_in_a_bits_address[8]); // @[RegisterRouter.scala:87:24]
assign out_woready_51 = _out_wofireMux_T_2 & out_backSel_42 & ~(auto_dmi_in_a_bits_address[8]); // @[RegisterRouter.scala:87:24]
assign out_woready_135 = _out_wofireMux_T_2 & out_backSel_43 & ~(auto_dmi_in_a_bits_address[8]); // @[RegisterRouter.scala:87:24]
assign out_woready_119 = _out_wofireMux_T_2 & out_backSel_44 & ~(auto_dmi_in_a_bits_address[8]); // @[RegisterRouter.scala:87:24]
assign out_woready_80 = _out_wofireMux_T_2 & out_backSel_45 & ~(auto_dmi_in_a_bits_address[8]); // @[RegisterRouter.scala:87:24]
assign out_woready_62 = _out_wofireMux_T_2 & out_backSel_46 & ~(auto_dmi_in_a_bits_address[8]); // @[RegisterRouter.scala:87:24]
assign out_woready_28 = _out_wofireMux_T_2 & out_backSel_47 & ~(auto_dmi_in_a_bits_address[8]); // @[RegisterRouter.scala:87:24]
assign out_woready_45 = _out_wofireMux_T_2 & auto_dmi_in_a_bits_address[7:2] == 6'h38 & ~(auto_dmi_in_a_bits_address[8]); // @[RegisterRouter.scala:87:24]
wire [63:0] _GEN = {{1'h1}, {1'h1}, {~(auto_dmi_in_a_bits_address[8])}, {~(auto_dmi_in_a_bits_address[8])}, {1'h1}, {1'h1}, {~(auto_dmi_in_a_bits_address[8])}, {~(auto_dmi_in_a_bits_address[8])}, {1'h1}, {1'h1}, {1'h1}, {1'h1}, {1'h1}, {1'h1}, {1'h1}, {1'h1}, {~(auto_dmi_in_a_bits_address[8])}, {~(auto_dmi_in_a_bits_address[8])}, {~(auto_dmi_in_a_bits_address[8])}, {~(auto_dmi_in_a_bits_address[8])}, {~(auto_dmi_in_a_bits_address[8])}, {~(auto_dmi_in_a_bits_address[8])}, {~(auto_dmi_in_a_bits_address[8])}, {~(auto_dmi_in_a_bits_address[8])}, {~(auto_dmi_in_a_bits_address[8])}, {~(auto_dmi_in_a_bits_address[8])}, {~(auto_dmi_in_a_bits_address[8])}, {~(auto_dmi_in_a_bits_address[8])}, {~(auto_dmi_in_a_bits_address[8])}, {~(auto_dmi_in_a_bits_address[8])}, {~(auto_dmi_in_a_bits_address[8])}, {~(auto_dmi_in_a_bits_address[8])}, {1'h1}, {1'h1}, {1'h1}, {1'h1}, {1'h1}, {1'h1}, {1'h1}, {~(auto_dmi_in_a_bits_address[8])}, {~(auto_dmi_in_a_bits_address[8])}, {~(auto_dmi_in_a_bits_address[8])}, {1'h1}, {1'h1}, {~(auto_dmi_in_a_bits_address[8])}, {1'h1}, {~(auto_dmi_in_a_bits_address[8])}, {1'h1}, {1'h1}, {1'h1}, {1'h1}, {1'h1}, {~(auto_dmi_in_a_bits_address[8])}, {~(auto_dmi_in_a_bits_address[8])}, {~(auto_dmi_in_a_bits_address[8])}, {~(auto_dmi_in_a_bits_address[8])}, {~(auto_dmi_in_a_bits_address[8])}, {~(auto_dmi_in_a_bits_address[8])}, {~(auto_dmi_in_a_bits_address[8])}, {~(auto_dmi_in_a_bits_address[8])}, {1'h1}, {1'h1}, {1'h1}, {auto_dmi_in_a_bits_address[8]}}; // @[MuxLiteral.scala:49:10]
wire [63:0][31:0] _GEN_0 =
{{32'h0},
{32'h0},
{{SBDATAFieldsReg_1_3, SBDATAFieldsReg_1_2, SBDATAFieldsReg_1_1, SBDATAFieldsReg_1_0}},
{{SBDATAFieldsReg_0_3, SBDATAFieldsReg_0_2, SBDATAFieldsReg_0_1, SBDATAFieldsReg_0_0}},
{32'h0},
{32'h0},
{SBADDRESSFieldsReg_0},
{{9'h40, SBCSFieldsReg_sbbusyerror, |_sb2tlOpt_io_sbStateOut, SBCSFieldsReg_sbreadonaddr, SBCSFieldsReg_sbaccess, SBCSFieldsReg_sbautoincrement, SBCSFieldsReg_sbreadondata, sbErrorReg_2, sbErrorReg_1, sbErrorReg_0, 12'h40F}},
{32'h0},
{32'h0},
{32'h0},
{32'h0},
{32'h0},
{32'h0},
{32'h0},
{32'h0},
{{programBufferMem_63, programBufferMem_62, programBufferMem_61, programBufferMem_60}},
{{programBufferMem_59, programBufferMem_58, programBufferMem_57, programBufferMem_56}},
{{programBufferMem_55, programBufferMem_54, programBufferMem_53, programBufferMem_52}},
{{programBufferMem_51, programBufferMem_50, programBufferMem_49, programBufferMem_48}},
{{programBufferMem_47, programBufferMem_46, programBufferMem_45, programBufferMem_44}},
{{programBufferMem_43, programBufferMem_42, programBufferMem_41, programBufferMem_40}},
{{programBufferMem_39, programBufferMem_38, programBufferMem_37, programBufferMem_36}},
{{programBufferMem_35, programBufferMem_34, programBufferMem_33, programBufferMem_32}},
{{programBufferMem_31, programBufferMem_30, programBufferMem_29, programBufferMem_28}},
{{programBufferMem_27, programBufferMem_26, programBufferMem_25, programBufferMem_24}},
{{programBufferMem_23, programBufferMem_22, programBufferMem_21, programBufferMem_20}},
{{programBufferMem_19, programBufferMem_18, programBufferMem_17, programBufferMem_16}},
{{programBufferMem_15, programBufferMem_14, programBufferMem_13, programBufferMem_12}},
{{programBufferMem_11, programBufferMem_10, programBufferMem_9, programBufferMem_8}},
{{programBufferMem_7, programBufferMem_6, programBufferMem_5, programBufferMem_4}},
{{programBufferMem_3, programBufferMem_2, programBufferMem_1, programBufferMem_0}},
{32'h0},
{32'h0},
{32'h0},
{32'h0},
{32'h0},
{32'h0},
{32'h0},
{{ABSTRACTAUTOReg_autoexecprogbuf, 8'h0, ABSTRACTAUTOReg_autoexecdata[7:0]}},
{{COMMANDReg_cmdtype, COMMANDReg_control}},
{{19'h8000, abstractCommandBusy, 1'h0, ABSTRACTCSReg_cmderr, 8'h8}},
{32'h0},
{32'h0},
{{31'h0, hartHalted}},
{32'h0},
{{12'h0, {2{haveResetBitRegs}}, {2{resumereq ? ~resumeReqRegs & ~hamaskWrSel_0 : ~resumeReqRegs}}, 4'h0, ~hartHalted, ~hartHalted, {2{hartHalted}}, 8'hA2}},
{32'h0},
{32'h0},
{32'h0},
{32'h0},
{32'h0},
{{abstractDataMem_31, abstractDataMem_30, abstractDataMem_29, abstractDataMem_28}},
{{abstractDataMem_27, abstractDataMem_26, abstractDataMem_25, abstractDataMem_24}},
{{abstractDataMem_23, abstractDataMem_22, abstractDataMem_21, abstractDataMem_20}},
{{abstractDataMem_19, abstractDataMem_18, abstractDataMem_17, abstractDataMem_16}},
{{abstractDataMem_15, abstractDataMem_14, abstractDataMem_13, abstractDataMem_12}},
{{abstractDataMem_11, abstractDataMem_10, abstractDataMem_9, abstractDataMem_8}},
{{abstractDataMem_7, abstractDataMem_6, abstractDataMem_5, abstractDataMem_4}},
{{abstractDataMem_3, abstractDataMem_2, abstractDataMem_1, abstractDataMem_0}},
{32'h0},
{32'h0},
{32'h0},
{{31'h0, hartHalted}}}; // @[package.scala:79:37]
wire [2:0] dmiNodeIn_d_bits_opcode = {2'h0, in_bits_read}; // @[RegisterRouter.scala:74:36, :105:19]
reg goReg; // @[Debug.scala:1494:27]
reg [31:0] abstractGeneratedMem_0; // @[Debug.scala:1586:35]
reg [31:0] abstractGeneratedMem_1; // @[Debug.scala:1586:35]
wire in_1_bits_read = auto_tl_in_a_bits_opcode == 3'h4; // @[RegisterRouter.scala:74:36]
wire [9:0] _out_womask_T_681 = {{2{auto_tl_in_a_bits_mask[1]}}, {8{auto_tl_in_a_bits_mask[0]}}}; // @[RegisterRouter.scala:87:24]
wire hartResumingWrEn = out_woready_1_353 & (&_out_womask_T_681); // @[RegisterRouter.scala:87:24]
wire [9:0] _out_womask_T_682 = {{2{auto_tl_in_a_bits_mask[5]}}, {8{auto_tl_in_a_bits_mask[4]}}}; // @[RegisterRouter.scala:87:24]
wire hartExceptionWrEn = out_woready_1_353 & (&_out_womask_T_682); // @[RegisterRouter.scala:87:24]
wire hartHaltedWrEn = out_woready_1_536 & (&_out_womask_T_681); // @[RegisterRouter.scala:87:24]
wire hartGoingWrEn = out_woready_1_536 & (&_out_womask_T_682); // @[RegisterRouter.scala:87:24]
wire _out_wofireMux_T_262 = auto_tl_in_a_valid & auto_tl_in_d_ready & ~in_1_bits_read; // @[RegisterRouter.scala:74:36, :87:24]
assign out_woready_1_536 = _out_wofireMux_T_262 & auto_tl_in_a_bits_address[10:3] == 8'h20 & ~(auto_tl_in_a_bits_address[11]); // @[RegisterRouter.scala:87:24]
assign out_woready_1_353 = _out_wofireMux_T_262 & auto_tl_in_a_bits_address[10:3] == 8'h21 & ~(auto_tl_in_a_bits_address[11]); // @[RegisterRouter.scala:87:24]
wire out_woready_1_938 = _out_wofireMux_T_262 & auto_tl_in_a_bits_address[10:3] == 8'h68 & ~(auto_tl_in_a_bits_address[11]); // @[RegisterRouter.scala:87:24]
wire out_woready_1_518 = _out_wofireMux_T_262 & auto_tl_in_a_bits_address[10:3] == 8'h69 & ~(auto_tl_in_a_bits_address[11]); // @[RegisterRouter.scala:87:24]
wire out_woready_1_199 = _out_wofireMux_T_262 & auto_tl_in_a_bits_address[10:3] == 8'h6A & ~(auto_tl_in_a_bits_address[11]); // @[RegisterRouter.scala:87:24]
wire out_woready_1_1098 = _out_wofireMux_T_262 & auto_tl_in_a_bits_address[10:3] == 8'h6B & ~(auto_tl_in_a_bits_address[11]); // @[RegisterRouter.scala:87:24]
wire out_woready_1_738 = _out_wofireMux_T_262 & auto_tl_in_a_bits_address[10:3] == 8'h6C & ~(auto_tl_in_a_bits_address[11]); // @[RegisterRouter.scala:87:24]
wire out_woready_1_450 = _out_wofireMux_T_262 & auto_tl_in_a_bits_address[10:3] == 8'h6D & ~(auto_tl_in_a_bits_address[11]); // @[RegisterRouter.scala:87:24]
wire out_woready_1_119 = _out_wofireMux_T_262 & auto_tl_in_a_bits_address[10:3] == 8'h6E & ~(auto_tl_in_a_bits_address[11]); // @[RegisterRouter.scala:87:24]
wire out_woready_1_1170 = _out_wofireMux_T_262 & auto_tl_in_a_bits_address[10:3] == 8'h6F & ~(auto_tl_in_a_bits_address[11]); // @[RegisterRouter.scala:87:24]
wire out_woready_1_834 = _out_wofireMux_T_262 & auto_tl_in_a_bits_address[10:3] == 8'h70 & ~(auto_tl_in_a_bits_address[11]); // @[RegisterRouter.scala:87:24]
wire out_woready_1_664 = _out_wofireMux_T_262 & auto_tl_in_a_bits_address[10:3] == 8'h71 & ~(auto_tl_in_a_bits_address[11]); // @[RegisterRouter.scala:87:24]
wire out_woready_1_986 = _out_wofireMux_T_262 & auto_tl_in_a_bits_address[10:3] == 8'h72 & ~(auto_tl_in_a_bits_address[11]); // @[RegisterRouter.scala:87:24]
wire out_woready_1_39 = _out_wofireMux_T_262 & auto_tl_in_a_bits_address[10:3] == 8'h73 & ~(auto_tl_in_a_bits_address[11]); // @[RegisterRouter.scala:87:24]
wire [255:0] _GEN_1 =
{{~(auto_tl_in_a_bits_address[11])},
{~(auto_tl_in_a_bits_address[11])},
{~(auto_tl_in_a_bits_address[11])},
{~(auto_tl_in_a_bits_address[11])},
{~(auto_tl_in_a_bits_address[11])},
{~(auto_tl_in_a_bits_address[11])},
{~(auto_tl_in_a_bits_address[11])},
{~(auto_tl_in_a_bits_address[11])},
{~(auto_tl_in_a_bits_address[11])},
{~(auto_tl_in_a_bits_address[11])},
{~(auto_tl_in_a_bits_address[11])},
{~(auto_tl_in_a_bits_address[11])},
{~(auto_tl_in_a_bits_address[11])},
{~(auto_tl_in_a_bits_address[11])},
{~(auto_tl_in_a_bits_address[11])},
{~(auto_tl_in_a_bits_address[11])},
{~(auto_tl_in_a_bits_address[11])},
{~(auto_tl_in_a_bits_address[11])},
{~(auto_tl_in_a_bits_address[11])},
{~(auto_tl_in_a_bits_address[11])},
{~(auto_tl_in_a_bits_address[11])},
{~(auto_tl_in_a_bits_address[11])},
{~(auto_tl_in_a_bits_address[11])},
{~(auto_tl_in_a_bits_address[11])},
{~(auto_tl_in_a_bits_address[11])},
{~(auto_tl_in_a_bits_address[11])},
{~(auto_tl_in_a_bits_address[11])},
{~(auto_tl_in_a_bits_address[11])},
{~(auto_tl_in_a_bits_address[11])},
{~(auto_tl_in_a_bits_address[11])},
{~(auto_tl_in_a_bits_address[11])},
{~(auto_tl_in_a_bits_address[11])},
{~(auto_tl_in_a_bits_address[11])},
{~(auto_tl_in_a_bits_address[11])},
{~(auto_tl_in_a_bits_address[11])},
{~(auto_tl_in_a_bits_address[11])},
{~(auto_tl_in_a_bits_address[11])},
{~(auto_tl_in_a_bits_address[11])},
{~(auto_tl_in_a_bits_address[11])},
{~(auto_tl_in_a_bits_address[11])},
{~(auto_tl_in_a_bits_address[11])},
{~(auto_tl_in_a_bits_address[11])},
{~(auto_tl_in_a_bits_address[11])},
{~(auto_tl_in_a_bits_address[11])},
{~(auto_tl_in_a_bits_address[11])},
{~(auto_tl_in_a_bits_address[11])},
{~(auto_tl_in_a_bits_address[11])},
{~(auto_tl_in_a_bits_address[11])},
{~(auto_tl_in_a_bits_address[11])},
{~(auto_tl_in_a_bits_address[11])},
{~(auto_tl_in_a_bits_address[11])},
{~(auto_tl_in_a_bits_address[11])},
{~(auto_tl_in_a_bits_address[11])},
{~(auto_tl_in_a_bits_address[11])},
{~(auto_tl_in_a_bits_address[11])},
{~(auto_tl_in_a_bits_address[11])},
{~(auto_tl_in_a_bits_address[11])},
{~(auto_tl_in_a_bits_address[11])},
{~(auto_tl_in_a_bits_address[11])},
{~(auto_tl_in_a_bits_address[11])},
{~(auto_tl_in_a_bits_address[11])},
{~(auto_tl_in_a_bits_address[11])},
{~(auto_tl_in_a_bits_address[11])},
{~(auto_tl_in_a_bits_address[11])},
{~(auto_tl_in_a_bits_address[11])},
{~(auto_tl_in_a_bits_address[11])},
{~(auto_tl_in_a_bits_address[11])},
{~(auto_tl_in_a_bits_address[11])},
{~(auto_tl_in_a_bits_address[11])},
{~(auto_tl_in_a_bits_address[11])},
{~(auto_tl_in_a_bits_address[11])},
{~(auto_tl_in_a_bits_address[11])},
{~(auto_tl_in_a_bits_address[11])},
{~(auto_tl_in_a_bits_address[11])},
{~(auto_tl_in_a_bits_address[11])},
{~(auto_tl_in_a_bits_address[11])},
{~(auto_tl_in_a_bits_address[11])},
{~(auto_tl_in_a_bits_address[11])},
{~(auto_tl_in_a_bits_address[11])},
{~(auto_tl_in_a_bits_address[11])},
{~(auto_tl_in_a_bits_address[11])},
{~(auto_tl_in_a_bits_address[11])},
{~(auto_tl_in_a_bits_address[11])},
{~(auto_tl_in_a_bits_address[11])},
{~(auto_tl_in_a_bits_address[11])},
{~(auto_tl_in_a_bits_address[11])},
{~(auto_tl_in_a_bits_address[11])},
{~(auto_tl_in_a_bits_address[11])},
{~(auto_tl_in_a_bits_address[11])},
{~(auto_tl_in_a_bits_address[11])},
{~(auto_tl_in_a_bits_address[11])},
{~(auto_tl_in_a_bits_address[11])},
{~(auto_tl_in_a_bits_address[11])},
{~(auto_tl_in_a_bits_address[11])},
{~(auto_tl_in_a_bits_address[11])},
{~(auto_tl_in_a_bits_address[11])},
{~(auto_tl_in_a_bits_address[11])},
{~(auto_tl_in_a_bits_address[11])},
{~(auto_tl_in_a_bits_address[11])},
{~(auto_tl_in_a_bits_address[11])},
{~(auto_tl_in_a_bits_address[11])},
{~(auto_tl_in_a_bits_address[11])},
{~(auto_tl_in_a_bits_address[11])},
{~(auto_tl_in_a_bits_address[11])},
{~(auto_tl_in_a_bits_address[11])},
{~(auto_tl_in_a_bits_address[11])},
{~(auto_tl_in_a_bits_address[11])},
{~(auto_tl_in_a_bits_address[11])},
{~(auto_tl_in_a_bits_address[11])},
{~(auto_tl_in_a_bits_address[11])},
{~(auto_tl_in_a_bits_address[11])},
{~(auto_tl_in_a_bits_address[11])},
{~(auto_tl_in_a_bits_address[11])},
{~(auto_tl_in_a_bits_address[11])},
{~(auto_tl_in_a_bits_address[11])},
{~(auto_tl_in_a_bits_address[11])},
{~(auto_tl_in_a_bits_address[11])},
{~(auto_tl_in_a_bits_address[11])},
{~(auto_tl_in_a_bits_address[11])},
{~(auto_tl_in_a_bits_address[11])},
{~(auto_tl_in_a_bits_address[11])},
{~(auto_tl_in_a_bits_address[11])},
{~(auto_tl_in_a_bits_address[11])},
{~(auto_tl_in_a_bits_address[11])},
{~(auto_tl_in_a_bits_address[11])},
{~(auto_tl_in_a_bits_address[11])},
{~(auto_tl_in_a_bits_address[11])},
{~(auto_tl_in_a_bits_address[11])},
{1'h1},
{1'h1},
{1'h1},
{1'h1},
{1'h1},
{1'h1},
{1'h1},
{1'h1},
{1'h1},
{1'h1},
{1'h1},
{1'h1},
{~(auto_tl_in_a_bits_address[11])},
{~(auto_tl_in_a_bits_address[11])},
{~(auto_tl_in_a_bits_address[11])},
{~(auto_tl_in_a_bits_address[11])},
{~(auto_tl_in_a_bits_address[11])},
{~(auto_tl_in_a_bits_address[11])},
{~(auto_tl_in_a_bits_address[11])},
{~(auto_tl_in_a_bits_address[11])},
{~(auto_tl_in_a_bits_address[11])},
{~(auto_tl_in_a_bits_address[11])},
{~(auto_tl_in_a_bits_address[11])},
{~(auto_tl_in_a_bits_address[11])},
{~(auto_tl_in_a_bits_address[11])},
{1'h1},
{1'h1},
{1'h1},
{1'h1},
{1'h1},
{1'h1},
{~(auto_tl_in_a_bits_address[11])},
{1'h1},
{1'h1},
{1'h1},
{1'h1},
{1'h1},
{1'h1},
{1'h1},
{1'h1},
{1'h1},
{1'h1},
{1'h1},
{1'h1},
{1'h1},
{1'h1},
{1'h1},
{1'h1},
{1'h1},
{1'h1},
{1'h1},
{1'h1},
{1'h1},
{1'h1},
{1'h1},
{1'h1},
{1'h1},
{1'h1},
{1'h1},
{1'h1},
{1'h1},
{1'h1},
{1'h1},
{1'h1},
{1'h1},
{1'h1},
{1'h1},
{1'h1},
{1'h1},
{1'h1},
{1'h1},
{1'h1},
{1'h1},
{1'h1},
{1'h1},
{1'h1},
{1'h1},
{1'h1},
{1'h1},
{1'h1},
{1'h1},
{1'h1},
{1'h1},
{1'h1},
{1'h1},
{1'h1},
{1'h1},
{1'h1},
{1'h1},
{1'h1},
{1'h1},
{1'h1},
{1'h1},
{1'h1},
{~(auto_tl_in_a_bits_address[11])},
{~(auto_tl_in_a_bits_address[11])},
{1'h1},
{1'h1},
{1'h1},
{1'h1},
{1'h1},
{1'h1},
{1'h1},
{1'h1},
{1'h1},
{1'h1},
{1'h1},
{1'h1},
{1'h1},
{1'h1},
{1'h1},
{1'h1},
{1'h1},
{1'h1},
{1'h1},
{1'h1},
{1'h1},
{auto_tl_in_a_bits_address[11]},
{auto_tl_in_a_bits_address[11]},
{auto_tl_in_a_bits_address[11]},
{auto_tl_in_a_bits_address[11]},
{auto_tl_in_a_bits_address[11]},
{auto_tl_in_a_bits_address[11]},
{auto_tl_in_a_bits_address[11]},
{auto_tl_in_a_bits_address[11]},
{auto_tl_in_a_bits_address[11]},
{auto_tl_in_a_bits_address[11]},
{auto_tl_in_a_bits_address[11]}}; // @[MuxLiteral.scala:49:10]
wire [255:0][63:0] _GEN_2 =
{{{6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg}},
{{6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg}},
{{6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg}},
{{6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg}},
{{6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg}},
{{6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg}},
{{6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg}},
{{6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg}},
{{6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg}},
{{6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg}},
{{6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg}},
{{6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg}},
{{6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg}},
{{6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg}},
{{6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg}},
{{6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg}},
{{6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg}},
{{6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg}},
{{6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg}},
{{6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg}},
{{6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg}},
{{6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg}},
{{6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg}},
{{6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg}},
{{6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg}},
{{6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg}},
{{6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg}},
{{6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg}},
{{6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg}},
{{6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg}},
{{6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg}},
{{6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg}},
{{6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg}},
{{6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg}},
{{6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg}},
{{6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg}},
{{6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg}},
{{6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg}},
{{6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg}},
{{6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg}},
{{6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg}},
{{6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg}},
{{6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg}},
{{6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg}},
{{6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg}},
{{6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg}},
{{6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg}},
{{6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg}},
{{6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg}},
{{6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg}},
{{6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg}},
{{6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg}},
{{6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg}},
{{6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg}},
{{6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg}},
{{6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg}},
{{6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg}},
{{6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg}},
{{6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg}},
{{6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg}},
{{6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg}},
{{6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg}},
{{6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg}},
{{6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg}},
{{6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg}},
{{6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg}},
{{6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg}},
{{6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg}},
{{6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg}},
{{6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg}},
{{6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg}},
{{6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg}},
{{6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg}},
{{6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg}},
{{6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg}},
{{6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg}},
{{6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg}},
{{6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg}},
{{6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg}},
{{6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg}},
{{6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg}},
{{6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg}},
{{6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg}},
{{6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg}},
{{6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg}},
{{6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg}},
{{6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg}},
{{6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg}},
{{6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg}},
{{6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg}},
{{6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg}},
{{6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg}},
{{6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg}},
{{6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg}},
{{6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg}},
{{6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg}},
{{6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg}},
{{6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg}},
{{6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg}},
{{6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg}},
{{6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg}},
{{6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg}},
{{6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg}},
{{6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg}},
{{6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg}},
{{6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg}},
{{6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg}},
{{6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg}},
{{6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg}},
{{6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg}},
{{6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg}},
{{6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg}},
{{6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg}},
{{6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg}},
{{6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg}},
{{6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg}},
{{6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg}},
{{6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg}},
{{6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg}},
{{6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg}},
{{6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg}},
{{6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg}},
{{6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg}},
{{6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg}},
{{6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg}},
{{6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg}},
{{6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg}},
{{6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg, 6'h0, resumeReqRegs, goReg}},
{64'h0},
{64'h0},
{64'h0},
{64'h0},
{64'h0},
{64'h0},
{64'h0},
{64'h0},
{64'h0},
{64'h0},
{64'h0},
{64'h0},
{{abstractDataMem_31, abstractDataMem_30, abstractDataMem_29, abstractDataMem_28, abstractDataMem_27, abstractDataMem_26, abstractDataMem_25, abstractDataMem_24}},
{{abstractDataMem_23, abstractDataMem_22, abstractDataMem_21, abstractDataMem_20, abstractDataMem_19, abstractDataMem_18, abstractDataMem_17, abstractDataMem_16}},
{{abstractDataMem_15, abstractDataMem_14, abstractDataMem_13, abstractDataMem_12, abstractDataMem_11, abstractDataMem_10, abstractDataMem_9, abstractDataMem_8}},
{{abstractDataMem_7, abstractDataMem_6, abstractDataMem_5, abstractDataMem_4, abstractDataMem_3, abstractDataMem_2, abstractDataMem_1, abstractDataMem_0}},
{{programBufferMem_63, programBufferMem_62, programBufferMem_61, programBufferMem_60, programBufferMem_59, programBufferMem_58, programBufferMem_57, programBufferMem_56}},
{{programBufferMem_55, programBufferMem_54, programBufferMem_53, programBufferMem_52, programBufferMem_51, programBufferMem_50, programBufferMem_49, programBufferMem_48}},
{{programBufferMem_47, programBufferMem_46, programBufferMem_45, programBufferMem_44, programBufferMem_43, programBufferMem_42, programBufferMem_41, programBufferMem_40}},
{{programBufferMem_39, programBufferMem_38, programBufferMem_37, programBufferMem_36, programBufferMem_35, programBufferMem_34, programBufferMem_33, programBufferMem_32}},
{{programBufferMem_31, programBufferMem_30, programBufferMem_29, programBufferMem_28, programBufferMem_27, programBufferMem_26, programBufferMem_25, programBufferMem_24}},
{{programBufferMem_23, programBufferMem_22, programBufferMem_21, programBufferMem_20, programBufferMem_19, programBufferMem_18, programBufferMem_17, programBufferMem_16}},
{{programBufferMem_15, programBufferMem_14, programBufferMem_13, programBufferMem_12, programBufferMem_11, programBufferMem_10, programBufferMem_9, programBufferMem_8}},
{{programBufferMem_7, programBufferMem_6, programBufferMem_5, programBufferMem_4, programBufferMem_3, programBufferMem_2, programBufferMem_1, programBufferMem_0}},
{{abstractGeneratedMem_1, abstractGeneratedMem_0}},
{64'h0},
{64'h0},
{64'h0},
{64'h0},
{64'h0},
{64'h0},
{64'h380006F},
{64'h0},
{64'h0},
{64'h0},
{64'h0},
{64'h0},
{64'h0},
{64'h0},
{64'h0},
{64'h0},
{64'h0},
{64'h0},
{64'h0},
{64'h0},
{64'h0},
{64'h0},
{64'h0},
{64'h0},
{64'h0},
{64'h0},
{64'h0},
{64'h0},
{64'h0},
{64'h0},
{64'h0},
{64'h0},
{64'h0},
{64'h0},
{64'h0},
{64'h0},
{64'h0},
{64'h0},
{64'h0},
{64'h0},
{64'h0},
{64'h0},
{64'h0},
{64'h0},
{64'h0},
{64'h0},
{64'h0},
{64'h0},
{64'h0},
{64'h0},
{64'h0},
{64'h0},
{64'h0},
{64'h0},
{64'h0},
{64'h0},
{64'h0},
{64'h0},
{64'h0},
{64'h0},
{64'h0},
{64'h0},
{64'h0},
{64'h0},
{64'h0},
{64'h0},
{64'h0},
{64'h0},
{64'h0},
{64'h0},
{64'h0},
{64'h0},
{64'h0},
{64'h0},
{64'h0},
{64'h0},
{64'h0},
{64'h0},
{64'h0},
{64'h0},
{64'h0},
{64'h0},
{64'h0},
{64'h0},
{64'h0},
{64'h0},
{64'h0},
{64'h0},
{64'h0},
{64'h0},
{64'h0},
{64'h0},
{64'h100073},
{64'h100026237B200073},
{64'h7B20247310802423},
{64'hF140247330000067},
{64'h100022237B202473},
{64'h4086300147413},
{64'hFE0408E300347413},
{64'h4004440310802023},
{64'hF14024737B241073},
{64'hFF0000F0440006F},
{64'h380006F00C0006F}}; // @[MuxLiteral.scala:49:10]
wire [2:0] tlNodeIn_d_bits_opcode = {2'h0, in_1_bits_read}; // @[RegisterRouter.scala:74:36, :105:19]
assign abstractCommandBusy = |ctrlStateReg; // @[Debug.scala:1732:27, :1740:42]
wire commandRegIsAccessRegister = COMMANDReg_cmdtype == 8'h0; // @[Debug.scala:1277:25, :1757:58]
wire _GEN_3 = ~(COMMANDReg_control[17]) | (|(COMMANDReg_control[15:12])) & COMMANDReg_control[15:0] < 16'h1020 & (COMMANDReg_control[22:20] == 3'h2 | COMMANDReg_control[22:20] == 3'h3); // @[Debug.scala:1277:25, :1533:71, :1765:{63,72,106}, :1766:{58,70,104,117}, :1776:{19,54}]
wire commandRegIsUnsupported = ~commandRegIsAccessRegister | ~_GEN_3; // @[Debug.scala:1757:58, :1761:43, :1773:39, :1774:115, :1775:33, :1776:{54,73}, :1777:33]
wire commandRegBadHaltResume = commandRegIsAccessRegister & _GEN_3 & ~hartHalted; // @[Debug.scala:861:31, :1757:58, :1762:43, :1773:39, :1774:115, :1776:{54,73}, :1778:{33,36}]
wire _regAccessRegisterCommand_T_1 = ABSTRACTCSReg_cmderr == 3'h0; // @[Debug.scala:1183:34, :1782:103]
wire _GEN_4 = COMMANDWrEn & ~(|(COMMANDWrDataVal[31:24])) & _regAccessRegisterCommand_T_1 | autoexec & commandRegIsAccessRegister & _regAccessRegisterCommand_T_1; // @[Debug.scala:297:{24,30}, :1272:{42,48,73}, :1279:39, :1280:65, :1285:40, :1756:60, :1757:58, :1782:{48,78,103}, :1783:{48,78}, :1790:37]
wire _GEN_5 = ctrlStateReg == 2'h1; // @[Debug.scala:1732:27, :1797:30]
wire _GEN_6 = commandRegIsUnsupported | commandRegBadHaltResume; // @[Debug.scala:1761:43, :1762:43, :1773:39, :1774:115, :1776:73, :1778:33, :1804:38, :1806:22, :1807:43, :1809:22, :1811:33]
wire goAbstract = (|ctrlStateReg) & _GEN_5 & ~_GEN_6; // @[Debug.scala:1495:32, :1732:27, :1742:44, :1789:47, :1797:{30,59}, :1804:38, :1806:22, :1807:43, :1809:22, :1811:33]
wire _GEN_7 = ctrlStateReg == 2'h2; // @[Debug.scala:1732:27, :1818:30] |
Generate the Verilog code corresponding to the following Chisel files.
File Buffer.scala:
// See LICENSE.SiFive for license details.
package freechips.rocketchip.tilelink
import chisel3._
import org.chipsalliance.cde.config._
import org.chipsalliance.diplomacy._
import org.chipsalliance.diplomacy.lazymodule._
import freechips.rocketchip.diplomacy.BufferParams
class TLBufferNode (
a: BufferParams,
b: BufferParams,
c: BufferParams,
d: BufferParams,
e: BufferParams)(implicit valName: ValName) extends TLAdapterNode(
clientFn = { p => p.v1copy(minLatency = p.minLatency + b.latency + c.latency) },
managerFn = { p => p.v1copy(minLatency = p.minLatency + a.latency + d.latency) }
) {
override lazy val nodedebugstring = s"a:${a.toString}, b:${b.toString}, c:${c.toString}, d:${d.toString}, e:${e.toString}"
override def circuitIdentity = List(a,b,c,d,e).forall(_ == BufferParams.none)
}
class TLBuffer(
a: BufferParams,
b: BufferParams,
c: BufferParams,
d: BufferParams,
e: BufferParams)(implicit p: Parameters) extends LazyModule
{
def this(ace: BufferParams, bd: BufferParams)(implicit p: Parameters) = this(ace, bd, ace, bd, ace)
def this(abcde: BufferParams)(implicit p: Parameters) = this(abcde, abcde)
def this()(implicit p: Parameters) = this(BufferParams.default)
val node = new TLBufferNode(a, b, c, d, e)
lazy val module = new Impl
class Impl extends LazyModuleImp(this) {
def headBundle = node.out.head._2.bundle
override def desiredName = (Seq("TLBuffer") ++ node.out.headOption.map(_._2.bundle.shortName)).mkString("_")
(node.in zip node.out) foreach { case ((in, edgeIn), (out, edgeOut)) =>
out.a <> a(in .a)
in .d <> d(out.d)
if (edgeOut.manager.anySupportAcquireB && edgeOut.client.anySupportProbe) {
in .b <> b(out.b)
out.c <> c(in .c)
out.e <> e(in .e)
} else {
in.b.valid := false.B
in.c.ready := true.B
in.e.ready := true.B
out.b.ready := true.B
out.c.valid := false.B
out.e.valid := false.B
}
}
}
}
object TLBuffer
{
def apply() (implicit p: Parameters): TLNode = apply(BufferParams.default)
def apply(abcde: BufferParams) (implicit p: Parameters): TLNode = apply(abcde, abcde)
def apply(ace: BufferParams, bd: BufferParams)(implicit p: Parameters): TLNode = apply(ace, bd, ace, bd, ace)
def apply(
a: BufferParams,
b: BufferParams,
c: BufferParams,
d: BufferParams,
e: BufferParams)(implicit p: Parameters): TLNode =
{
val buffer = LazyModule(new TLBuffer(a, b, c, d, e))
buffer.node
}
def chain(depth: Int, name: Option[String] = None)(implicit p: Parameters): Seq[TLNode] = {
val buffers = Seq.fill(depth) { LazyModule(new TLBuffer()) }
name.foreach { n => buffers.zipWithIndex.foreach { case (b, i) => b.suggestName(s"${n}_${i}") } }
buffers.map(_.node)
}
def chainNode(depth: Int, name: Option[String] = None)(implicit p: Parameters): TLNode = {
chain(depth, name)
.reduceLeftOption(_ :*=* _)
.getOrElse(TLNameNode("no_buffer"))
}
}
File Nodes.scala:
// See LICENSE.SiFive for license details.
package freechips.rocketchip.tilelink
import chisel3._
import chisel3.experimental.SourceInfo
import org.chipsalliance.cde.config._
import org.chipsalliance.diplomacy._
import org.chipsalliance.diplomacy.nodes._
import freechips.rocketchip.util.{AsyncQueueParams,RationalDirection}
case object TLMonitorBuilder extends Field[TLMonitorArgs => TLMonitorBase](args => new TLMonitor(args))
object TLImp extends NodeImp[TLMasterPortParameters, TLSlavePortParameters, TLEdgeOut, TLEdgeIn, TLBundle]
{
def edgeO(pd: TLMasterPortParameters, pu: TLSlavePortParameters, p: Parameters, sourceInfo: SourceInfo) = new TLEdgeOut(pd, pu, p, sourceInfo)
def edgeI(pd: TLMasterPortParameters, pu: TLSlavePortParameters, p: Parameters, sourceInfo: SourceInfo) = new TLEdgeIn (pd, pu, p, sourceInfo)
def bundleO(eo: TLEdgeOut) = TLBundle(eo.bundle)
def bundleI(ei: TLEdgeIn) = TLBundle(ei.bundle)
def render(ei: TLEdgeIn) = RenderedEdge(colour = "#000000" /* black */, label = (ei.manager.beatBytes * 8).toString)
override def monitor(bundle: TLBundle, edge: TLEdgeIn): Unit = {
val monitor = Module(edge.params(TLMonitorBuilder)(TLMonitorArgs(edge)))
monitor.io.in := bundle
}
override def mixO(pd: TLMasterPortParameters, node: OutwardNode[TLMasterPortParameters, TLSlavePortParameters, TLBundle]): TLMasterPortParameters =
pd.v1copy(clients = pd.clients.map { c => c.v1copy (nodePath = node +: c.nodePath) })
override def mixI(pu: TLSlavePortParameters, node: InwardNode[TLMasterPortParameters, TLSlavePortParameters, TLBundle]): TLSlavePortParameters =
pu.v1copy(managers = pu.managers.map { m => m.v1copy (nodePath = node +: m.nodePath) })
}
trait TLFormatNode extends FormatNode[TLEdgeIn, TLEdgeOut]
case class TLClientNode(portParams: Seq[TLMasterPortParameters])(implicit valName: ValName) extends SourceNode(TLImp)(portParams) with TLFormatNode
case class TLManagerNode(portParams: Seq[TLSlavePortParameters])(implicit valName: ValName) extends SinkNode(TLImp)(portParams) with TLFormatNode
case class TLAdapterNode(
clientFn: TLMasterPortParameters => TLMasterPortParameters = { s => s },
managerFn: TLSlavePortParameters => TLSlavePortParameters = { s => s })(
implicit valName: ValName)
extends AdapterNode(TLImp)(clientFn, managerFn) with TLFormatNode
case class TLJunctionNode(
clientFn: Seq[TLMasterPortParameters] => Seq[TLMasterPortParameters],
managerFn: Seq[TLSlavePortParameters] => Seq[TLSlavePortParameters])(
implicit valName: ValName)
extends JunctionNode(TLImp)(clientFn, managerFn) with TLFormatNode
case class TLIdentityNode()(implicit valName: ValName) extends IdentityNode(TLImp)() with TLFormatNode
object TLNameNode {
def apply(name: ValName) = TLIdentityNode()(name)
def apply(name: Option[String]): TLIdentityNode = apply(ValName(name.getOrElse("with_no_name")))
def apply(name: String): TLIdentityNode = apply(Some(name))
}
case class TLEphemeralNode()(implicit valName: ValName) extends EphemeralNode(TLImp)()
object TLTempNode {
def apply(): TLEphemeralNode = TLEphemeralNode()(ValName("temp"))
}
case class TLNexusNode(
clientFn: Seq[TLMasterPortParameters] => TLMasterPortParameters,
managerFn: Seq[TLSlavePortParameters] => TLSlavePortParameters)(
implicit valName: ValName)
extends NexusNode(TLImp)(clientFn, managerFn) with TLFormatNode
abstract class TLCustomNode(implicit valName: ValName)
extends CustomNode(TLImp) with TLFormatNode
// Asynchronous crossings
trait TLAsyncFormatNode extends FormatNode[TLAsyncEdgeParameters, TLAsyncEdgeParameters]
object TLAsyncImp extends SimpleNodeImp[TLAsyncClientPortParameters, TLAsyncManagerPortParameters, TLAsyncEdgeParameters, TLAsyncBundle]
{
def edge(pd: TLAsyncClientPortParameters, pu: TLAsyncManagerPortParameters, p: Parameters, sourceInfo: SourceInfo) = TLAsyncEdgeParameters(pd, pu, p, sourceInfo)
def bundle(e: TLAsyncEdgeParameters) = new TLAsyncBundle(e.bundle)
def render(e: TLAsyncEdgeParameters) = RenderedEdge(colour = "#ff0000" /* red */, label = e.manager.async.depth.toString)
override def mixO(pd: TLAsyncClientPortParameters, node: OutwardNode[TLAsyncClientPortParameters, TLAsyncManagerPortParameters, TLAsyncBundle]): TLAsyncClientPortParameters =
pd.copy(base = pd.base.v1copy(clients = pd.base.clients.map { c => c.v1copy (nodePath = node +: c.nodePath) }))
override def mixI(pu: TLAsyncManagerPortParameters, node: InwardNode[TLAsyncClientPortParameters, TLAsyncManagerPortParameters, TLAsyncBundle]): TLAsyncManagerPortParameters =
pu.copy(base = pu.base.v1copy(managers = pu.base.managers.map { m => m.v1copy (nodePath = node +: m.nodePath) }))
}
case class TLAsyncAdapterNode(
clientFn: TLAsyncClientPortParameters => TLAsyncClientPortParameters = { s => s },
managerFn: TLAsyncManagerPortParameters => TLAsyncManagerPortParameters = { s => s })(
implicit valName: ValName)
extends AdapterNode(TLAsyncImp)(clientFn, managerFn) with TLAsyncFormatNode
case class TLAsyncIdentityNode()(implicit valName: ValName) extends IdentityNode(TLAsyncImp)() with TLAsyncFormatNode
object TLAsyncNameNode {
def apply(name: ValName) = TLAsyncIdentityNode()(name)
def apply(name: Option[String]): TLAsyncIdentityNode = apply(ValName(name.getOrElse("with_no_name")))
def apply(name: String): TLAsyncIdentityNode = apply(Some(name))
}
case class TLAsyncSourceNode(sync: Option[Int])(implicit valName: ValName)
extends MixedAdapterNode(TLImp, TLAsyncImp)(
dFn = { p => TLAsyncClientPortParameters(p) },
uFn = { p => p.base.v1copy(minLatency = p.base.minLatency + sync.getOrElse(p.async.sync)) }) with FormatNode[TLEdgeIn, TLAsyncEdgeParameters] // discard cycles in other clock domain
case class TLAsyncSinkNode(async: AsyncQueueParams)(implicit valName: ValName)
extends MixedAdapterNode(TLAsyncImp, TLImp)(
dFn = { p => p.base.v1copy(minLatency = p.base.minLatency + async.sync) },
uFn = { p => TLAsyncManagerPortParameters(async, p) }) with FormatNode[TLAsyncEdgeParameters, TLEdgeOut]
// Rationally related crossings
trait TLRationalFormatNode extends FormatNode[TLRationalEdgeParameters, TLRationalEdgeParameters]
object TLRationalImp extends SimpleNodeImp[TLRationalClientPortParameters, TLRationalManagerPortParameters, TLRationalEdgeParameters, TLRationalBundle]
{
def edge(pd: TLRationalClientPortParameters, pu: TLRationalManagerPortParameters, p: Parameters, sourceInfo: SourceInfo) = TLRationalEdgeParameters(pd, pu, p, sourceInfo)
def bundle(e: TLRationalEdgeParameters) = new TLRationalBundle(e.bundle)
def render(e: TLRationalEdgeParameters) = RenderedEdge(colour = "#00ff00" /* green */)
override def mixO(pd: TLRationalClientPortParameters, node: OutwardNode[TLRationalClientPortParameters, TLRationalManagerPortParameters, TLRationalBundle]): TLRationalClientPortParameters =
pd.copy(base = pd.base.v1copy(clients = pd.base.clients.map { c => c.v1copy (nodePath = node +: c.nodePath) }))
override def mixI(pu: TLRationalManagerPortParameters, node: InwardNode[TLRationalClientPortParameters, TLRationalManagerPortParameters, TLRationalBundle]): TLRationalManagerPortParameters =
pu.copy(base = pu.base.v1copy(managers = pu.base.managers.map { m => m.v1copy (nodePath = node +: m.nodePath) }))
}
case class TLRationalAdapterNode(
clientFn: TLRationalClientPortParameters => TLRationalClientPortParameters = { s => s },
managerFn: TLRationalManagerPortParameters => TLRationalManagerPortParameters = { s => s })(
implicit valName: ValName)
extends AdapterNode(TLRationalImp)(clientFn, managerFn) with TLRationalFormatNode
case class TLRationalIdentityNode()(implicit valName: ValName) extends IdentityNode(TLRationalImp)() with TLRationalFormatNode
object TLRationalNameNode {
def apply(name: ValName) = TLRationalIdentityNode()(name)
def apply(name: Option[String]): TLRationalIdentityNode = apply(ValName(name.getOrElse("with_no_name")))
def apply(name: String): TLRationalIdentityNode = apply(Some(name))
}
case class TLRationalSourceNode()(implicit valName: ValName)
extends MixedAdapterNode(TLImp, TLRationalImp)(
dFn = { p => TLRationalClientPortParameters(p) },
uFn = { p => p.base.v1copy(minLatency = 1) }) with FormatNode[TLEdgeIn, TLRationalEdgeParameters] // discard cycles from other clock domain
case class TLRationalSinkNode(direction: RationalDirection)(implicit valName: ValName)
extends MixedAdapterNode(TLRationalImp, TLImp)(
dFn = { p => p.base.v1copy(minLatency = 1) },
uFn = { p => TLRationalManagerPortParameters(direction, p) }) with FormatNode[TLRationalEdgeParameters, TLEdgeOut]
// Credited version of TileLink channels
trait TLCreditedFormatNode extends FormatNode[TLCreditedEdgeParameters, TLCreditedEdgeParameters]
object TLCreditedImp extends SimpleNodeImp[TLCreditedClientPortParameters, TLCreditedManagerPortParameters, TLCreditedEdgeParameters, TLCreditedBundle]
{
def edge(pd: TLCreditedClientPortParameters, pu: TLCreditedManagerPortParameters, p: Parameters, sourceInfo: SourceInfo) = TLCreditedEdgeParameters(pd, pu, p, sourceInfo)
def bundle(e: TLCreditedEdgeParameters) = new TLCreditedBundle(e.bundle)
def render(e: TLCreditedEdgeParameters) = RenderedEdge(colour = "#ffff00" /* yellow */, e.delay.toString)
override def mixO(pd: TLCreditedClientPortParameters, node: OutwardNode[TLCreditedClientPortParameters, TLCreditedManagerPortParameters, TLCreditedBundle]): TLCreditedClientPortParameters =
pd.copy(base = pd.base.v1copy(clients = pd.base.clients.map { c => c.v1copy (nodePath = node +: c.nodePath) }))
override def mixI(pu: TLCreditedManagerPortParameters, node: InwardNode[TLCreditedClientPortParameters, TLCreditedManagerPortParameters, TLCreditedBundle]): TLCreditedManagerPortParameters =
pu.copy(base = pu.base.v1copy(managers = pu.base.managers.map { m => m.v1copy (nodePath = node +: m.nodePath) }))
}
case class TLCreditedAdapterNode(
clientFn: TLCreditedClientPortParameters => TLCreditedClientPortParameters = { s => s },
managerFn: TLCreditedManagerPortParameters => TLCreditedManagerPortParameters = { s => s })(
implicit valName: ValName)
extends AdapterNode(TLCreditedImp)(clientFn, managerFn) with TLCreditedFormatNode
case class TLCreditedIdentityNode()(implicit valName: ValName) extends IdentityNode(TLCreditedImp)() with TLCreditedFormatNode
object TLCreditedNameNode {
def apply(name: ValName) = TLCreditedIdentityNode()(name)
def apply(name: Option[String]): TLCreditedIdentityNode = apply(ValName(name.getOrElse("with_no_name")))
def apply(name: String): TLCreditedIdentityNode = apply(Some(name))
}
case class TLCreditedSourceNode(delay: TLCreditedDelay)(implicit valName: ValName)
extends MixedAdapterNode(TLImp, TLCreditedImp)(
dFn = { p => TLCreditedClientPortParameters(delay, p) },
uFn = { p => p.base.v1copy(minLatency = 1) }) with FormatNode[TLEdgeIn, TLCreditedEdgeParameters] // discard cycles from other clock domain
case class TLCreditedSinkNode(delay: TLCreditedDelay)(implicit valName: ValName)
extends MixedAdapterNode(TLCreditedImp, TLImp)(
dFn = { p => p.base.v1copy(minLatency = 1) },
uFn = { p => TLCreditedManagerPortParameters(delay, p) }) with FormatNode[TLCreditedEdgeParameters, TLEdgeOut]
File LazyModuleImp.scala:
package org.chipsalliance.diplomacy.lazymodule
import chisel3.{withClockAndReset, Module, RawModule, Reset, _}
import chisel3.experimental.{ChiselAnnotation, CloneModuleAsRecord, SourceInfo}
import firrtl.passes.InlineAnnotation
import org.chipsalliance.cde.config.Parameters
import org.chipsalliance.diplomacy.nodes.Dangle
import scala.collection.immutable.SortedMap
/** Trait describing the actual [[Module]] implementation wrapped by a [[LazyModule]].
*
* This is the actual Chisel module that is lazily-evaluated in the second phase of Diplomacy.
*/
sealed trait LazyModuleImpLike extends RawModule {
/** [[LazyModule]] that contains this instance. */
val wrapper: LazyModule
/** IOs that will be automatically "punched" for this instance. */
val auto: AutoBundle
/** The metadata that describes the [[HalfEdge]]s which generated [[auto]]. */
protected[diplomacy] val dangles: Seq[Dangle]
// [[wrapper.module]] had better not be accessed while LazyModules are still being built!
require(
LazyModule.scope.isEmpty,
s"${wrapper.name}.module was constructed before LazyModule() was run on ${LazyModule.scope.get.name}"
)
/** Set module name. Defaults to the containing LazyModule's desiredName. */
override def desiredName: String = wrapper.desiredName
suggestName(wrapper.suggestedName)
/** [[Parameters]] for chisel [[Module]]s. */
implicit val p: Parameters = wrapper.p
/** instantiate this [[LazyModule]], return [[AutoBundle]] and a unconnected [[Dangle]]s from this module and
* submodules.
*/
protected[diplomacy] def instantiate(): (AutoBundle, List[Dangle]) = {
// 1. It will recursively append [[wrapper.children]] into [[chisel3.internal.Builder]],
// 2. return [[Dangle]]s from each module.
val childDangles = wrapper.children.reverse.flatMap { c =>
implicit val sourceInfo: SourceInfo = c.info
c.cloneProto.map { cp =>
// If the child is a clone, then recursively set cloneProto of its children as well
def assignCloneProtos(bases: Seq[LazyModule], clones: Seq[LazyModule]): Unit = {
require(bases.size == clones.size)
(bases.zip(clones)).map { case (l, r) =>
require(l.getClass == r.getClass, s"Cloned children class mismatch ${l.name} != ${r.name}")
l.cloneProto = Some(r)
assignCloneProtos(l.children, r.children)
}
}
assignCloneProtos(c.children, cp.children)
// Clone the child module as a record, and get its [[AutoBundle]]
val clone = CloneModuleAsRecord(cp.module).suggestName(c.suggestedName)
val clonedAuto = clone("auto").asInstanceOf[AutoBundle]
// Get the empty [[Dangle]]'s of the cloned child
val rawDangles = c.cloneDangles()
require(rawDangles.size == clonedAuto.elements.size)
// Assign the [[AutoBundle]] fields of the cloned record to the empty [[Dangle]]'s
val dangles = (rawDangles.zip(clonedAuto.elements)).map { case (d, (_, io)) => d.copy(dataOpt = Some(io)) }
dangles
}.getOrElse {
// For non-clones, instantiate the child module
val mod = try {
Module(c.module)
} catch {
case e: ChiselException => {
println(s"Chisel exception caught when instantiating ${c.name} within ${this.name} at ${c.line}")
throw e
}
}
mod.dangles
}
}
// Ask each node in this [[LazyModule]] to call [[BaseNode.instantiate]].
// This will result in a sequence of [[Dangle]] from these [[BaseNode]]s.
val nodeDangles = wrapper.nodes.reverse.flatMap(_.instantiate())
// Accumulate all the [[Dangle]]s from this node and any accumulated from its [[wrapper.children]]
val allDangles = nodeDangles ++ childDangles
// Group [[allDangles]] by their [[source]].
val pairing = SortedMap(allDangles.groupBy(_.source).toSeq: _*)
// For each [[source]] set of [[Dangle]]s of size 2, ensure that these
// can be connected as a source-sink pair (have opposite flipped value).
// Make the connection and mark them as [[done]].
val done = Set() ++ pairing.values.filter(_.size == 2).map {
case Seq(a, b) =>
require(a.flipped != b.flipped)
// @todo <> in chisel3 makes directionless connection.
if (a.flipped) {
a.data <> b.data
} else {
b.data <> a.data
}
a.source
case _ => None
}
// Find all [[Dangle]]s which are still not connected. These will end up as [[AutoBundle]] [[IO]] ports on the module.
val forward = allDangles.filter(d => !done(d.source))
// Generate [[AutoBundle]] IO from [[forward]].
val auto = IO(new AutoBundle(forward.map { d => (d.name, d.data, d.flipped) }: _*))
// Pass the [[Dangle]]s which remained and were used to generate the [[AutoBundle]] I/O ports up to the [[parent]] [[LazyModule]]
val dangles = (forward.zip(auto.elements)).map { case (d, (_, io)) =>
if (d.flipped) {
d.data <> io
} else {
io <> d.data
}
d.copy(dataOpt = Some(io), name = wrapper.suggestedName + "_" + d.name)
}
// Push all [[LazyModule.inModuleBody]] to [[chisel3.internal.Builder]].
wrapper.inModuleBody.reverse.foreach {
_()
}
if (wrapper.shouldBeInlined) {
chisel3.experimental.annotate(new ChiselAnnotation {
def toFirrtl = InlineAnnotation(toNamed)
})
}
// Return [[IO]] and [[Dangle]] of this [[LazyModuleImp]].
(auto, dangles)
}
}
/** Actual description of a [[Module]] which can be instantiated by a call to [[LazyModule.module]].
*
* @param wrapper
* the [[LazyModule]] from which the `.module` call is being made.
*/
class LazyModuleImp(val wrapper: LazyModule) extends Module with LazyModuleImpLike {
/** Instantiate hardware of this `Module`. */
val (auto, dangles) = instantiate()
}
/** Actual description of a [[RawModule]] which can be instantiated by a call to [[LazyModule.module]].
*
* @param wrapper
* the [[LazyModule]] from which the `.module` call is being made.
*/
class LazyRawModuleImp(val wrapper: LazyModule) extends RawModule with LazyModuleImpLike {
// These wires are the default clock+reset for all LazyModule children.
// It is recommended to drive these even if you manually drive the [[clock]] and [[reset]] of all of the
// [[LazyRawModuleImp]] children.
// Otherwise, anonymous children ([[Monitor]]s for example) will not have their [[clock]] and/or [[reset]] driven properly.
/** drive clock explicitly. */
val childClock: Clock = Wire(Clock())
/** drive reset explicitly. */
val childReset: Reset = Wire(Reset())
// the default is that these are disabled
childClock := false.B.asClock
childReset := chisel3.DontCare
def provideImplicitClockToLazyChildren: Boolean = false
val (auto, dangles) =
if (provideImplicitClockToLazyChildren) {
withClockAndReset(childClock, childReset) { instantiate() }
} else {
instantiate()
}
}
File MixedNode.scala:
package org.chipsalliance.diplomacy.nodes
import chisel3.{Data, DontCare, Wire}
import chisel3.experimental.SourceInfo
import org.chipsalliance.cde.config.{Field, Parameters}
import org.chipsalliance.diplomacy.ValName
import org.chipsalliance.diplomacy.sourceLine
/** One side metadata of a [[Dangle]].
*
* Describes one side of an edge going into or out of a [[BaseNode]].
*
* @param serial
* the global [[BaseNode.serial]] number of the [[BaseNode]] that this [[HalfEdge]] connects to.
* @param index
* the `index` in the [[BaseNode]]'s input or output port list that this [[HalfEdge]] belongs to.
*/
case class HalfEdge(serial: Int, index: Int) extends Ordered[HalfEdge] {
import scala.math.Ordered.orderingToOrdered
def compare(that: HalfEdge): Int = HalfEdge.unapply(this).compare(HalfEdge.unapply(that))
}
/** [[Dangle]] captures the `IO` information of a [[LazyModule]] and which two [[BaseNode]]s the [[Edges]]/[[Bundle]]
* connects.
*
* [[Dangle]]s are generated by [[BaseNode.instantiate]] using [[MixedNode.danglesOut]] and [[MixedNode.danglesIn]] ,
* [[LazyModuleImp.instantiate]] connects those that go to internal or explicit IO connections in a [[LazyModule]].
*
* @param source
* the source [[HalfEdge]] of this [[Dangle]], which captures the source [[BaseNode]] and the port `index` within
* that [[BaseNode]].
* @param sink
* sink [[HalfEdge]] of this [[Dangle]], which captures the sink [[BaseNode]] and the port `index` within that
* [[BaseNode]].
* @param flipped
* flip or not in [[AutoBundle.makeElements]]. If true this corresponds to `danglesOut`, if false it corresponds to
* `danglesIn`.
* @param dataOpt
* actual [[Data]] for the hardware connection. Can be empty if this belongs to a cloned module
*/
case class Dangle(source: HalfEdge, sink: HalfEdge, flipped: Boolean, name: String, dataOpt: Option[Data]) {
def data = dataOpt.get
}
/** [[Edges]] is a collection of parameters describing the functionality and connection for an interface, which is often
* derived from the interconnection protocol and can inform the parameterization of the hardware bundles that actually
* implement the protocol.
*/
case class Edges[EI, EO](in: Seq[EI], out: Seq[EO])
/** A field available in [[Parameters]] used to determine whether [[InwardNodeImp.monitor]] will be called. */
case object MonitorsEnabled extends Field[Boolean](true)
/** When rendering the edge in a graphical format, flip the order in which the edges' source and sink are presented.
*
* For example, when rendering graphML, yEd by default tries to put the source node vertically above the sink node, but
* [[RenderFlipped]] inverts this relationship. When a particular [[LazyModule]] contains both source nodes and sink
* nodes, flipping the rendering of one node's edge will usual produce a more concise visual layout for the
* [[LazyModule]].
*/
case object RenderFlipped extends Field[Boolean](false)
/** The sealed node class in the package, all node are derived from it.
*
* @param inner
* Sink interface implementation.
* @param outer
* Source interface implementation.
* @param valName
* val name of this node.
* @tparam DI
* Downward-flowing parameters received on the inner side of the node. It is usually a brunch of parameters
* describing the protocol parameters from a source. For an [[InwardNode]], it is determined by the connected
* [[OutwardNode]]. Since it can be connected to multiple sources, this parameter is always a Seq of source port
* parameters.
* @tparam UI
* Upward-flowing parameters generated by the inner side of the node. It is usually a brunch of parameters describing
* the protocol parameters of a sink. For an [[InwardNode]], it is determined itself.
* @tparam EI
* Edge Parameters describing a connection on the inner side of the node. It is usually a brunch of transfers
* specified for a sink according to protocol.
* @tparam BI
* Bundle type used when connecting to the inner side of the node. It is a hardware interface of this sink interface.
* It should extends from [[chisel3.Data]], which represents the real hardware.
* @tparam DO
* Downward-flowing parameters generated on the outer side of the node. It is usually a brunch of parameters
* describing the protocol parameters of a source. For an [[OutwardNode]], it is determined itself.
* @tparam UO
* Upward-flowing parameters received by the outer side of the node. It is usually a brunch of parameters describing
* the protocol parameters from a sink. For an [[OutwardNode]], it is determined by the connected [[InwardNode]].
* Since it can be connected to multiple sinks, this parameter is always a Seq of sink port parameters.
* @tparam EO
* Edge Parameters describing a connection on the outer side of the node. It is usually a brunch of transfers
* specified for a source according to protocol.
* @tparam BO
* Bundle type used when connecting to the outer side of the node. It is a hardware interface of this source
* interface. It should extends from [[chisel3.Data]], which represents the real hardware.
*
* @note
* Call Graph of [[MixedNode]]
* - line `β`: source is process by a function and generate pass to others
* - Arrow `β`: target of arrow is generated by source
*
* {{{
* (from the other node)
* ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ[[InwardNode.uiParams]]ββββββββββββββ
* β β
* (binding node when elaboration) [[OutwardNode.uoParams]]ββββββββββββββββββββββββ[[MixedNode.mapParamsU]]ββββββββββββ β
* [[InwardNode.accPI]] β β β
* β β (based on protocol) β
* β β [[MixedNode.inner.edgeI]] β
* β β β β
* β β β β
* (immobilize after elaboration) (inward port from [[OutwardNode]]) β β β
* [[InwardNode.iBindings]]βββ [[MixedNode.iDirectPorts]]βββββββββββββββββββββ[[MixedNode.iPorts]] [[InwardNode.uiParams]] β
* β β β β β β
* β β β [[OutwardNode.doParams]] β β
* β β β (from the other node) β β
* β β β β β β
* β β β β β β
* β β β ββββββββββ¬βββββββββββββββ€ β
* β β β β β β
* β β β β (based on protocol) β
* β β β β [[MixedNode.inner.edgeI]] β
* β β β β β β
* β β (from the other node) β β β
* β ββββ[[OutwardNode.oPortMapping]] [[OutwardNode.oStar]] β [[MixedNode.edgesIn]]ββββ β
* β β β β β β β
* β β β β β [[MixedNode.in]] β
* β β β β β β β
* β (solve star connection) β β β [[MixedNode.bundleIn]]βββ β
* ββββ[[MixedNode.resolveStar]]βββΌββββββββββββββββββββββββββββββ€ ββββββββββββββββββββββββββββββββββββββ β
* β β β [[MixedNode.bundleOut]]ββ β β
* β β β β β β β
* β β β β [[MixedNode.out]] β β
* β β β β β β β
* β ββββββ[[InwardNode.iPortMapping]] [[InwardNode.iStar]] [[MixedNode.edgesOut]]βββ β β
* β β (from the other node) β β β
* β β β β β β
* β β β [[MixedNode.outer.edgeO]] β β
* β β β (based on protocol) β β
* β β β β β β
* β β β ββββββββββββββββββββββββββββββββββββββββββ€ β β
* β β β β β β β
* β β β β β β β
* β β β β β β β
* (immobilize after elaboration)β β β β β β
* [[OutwardNode.oBindings]]ββ [[MixedNode.oDirectPorts]]ββββ[[MixedNode.oPorts]] [[OutwardNode.doParams]] β β
* β (inward port from [[OutwardNode]]) β β β β
* β βββββββββββββββββββββββββββββββββββββββββββ€ β β β
* β β β β β β
* β β β β β β
* [[OutwardNode.accPO]] β β β β β
* (binding node when elaboration) β [[InwardNode.diParams]]ββββββ[[MixedNode.mapParamsD]]βββββββββββββββββββββββββββββ β β
* β β β β
* β ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ β
* ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
* }}}
*/
abstract class MixedNode[DI, UI, EI, BI <: Data, DO, UO, EO, BO <: Data](
val inner: InwardNodeImp[DI, UI, EI, BI],
val outer: OutwardNodeImp[DO, UO, EO, BO]
)(
implicit valName: ValName)
extends BaseNode
with NodeHandle[DI, UI, EI, BI, DO, UO, EO, BO]
with InwardNode[DI, UI, BI]
with OutwardNode[DO, UO, BO] {
// Generate a [[NodeHandle]] with inward and outward node are both this node.
val inward = this
val outward = this
/** Debug info of nodes binding. */
def bindingInfo: String = s"""$iBindingInfo
|$oBindingInfo
|""".stripMargin
/** Debug info of ports connecting. */
def connectedPortsInfo: String = s"""${oPorts.size} outward ports connected: [${oPorts.map(_._2.name).mkString(",")}]
|${iPorts.size} inward ports connected: [${iPorts.map(_._2.name).mkString(",")}]
|""".stripMargin
/** Debug info of parameters propagations. */
def parametersInfo: String = s"""${doParams.size} downstream outward parameters: [${doParams.mkString(",")}]
|${uoParams.size} upstream outward parameters: [${uoParams.mkString(",")}]
|${diParams.size} downstream inward parameters: [${diParams.mkString(",")}]
|${uiParams.size} upstream inward parameters: [${uiParams.mkString(",")}]
|""".stripMargin
/** For a given node, converts [[OutwardNode.accPO]] and [[InwardNode.accPI]] to [[MixedNode.oPortMapping]] and
* [[MixedNode.iPortMapping]].
*
* Given counts of known inward and outward binding and inward and outward star bindings, return the resolved inward
* stars and outward stars.
*
* This method will also validate the arguments and throw a runtime error if the values are unsuitable for this type
* of node.
*
* @param iKnown
* Number of known-size ([[BIND_ONCE]]) input bindings.
* @param oKnown
* Number of known-size ([[BIND_ONCE]]) output bindings.
* @param iStar
* Number of unknown size ([[BIND_STAR]]) input bindings.
* @param oStar
* Number of unknown size ([[BIND_STAR]]) output bindings.
* @return
* A Tuple of the resolved number of input and output connections.
*/
protected[diplomacy] def resolveStar(iKnown: Int, oKnown: Int, iStar: Int, oStar: Int): (Int, Int)
/** Function to generate downward-flowing outward params from the downward-flowing input params and the current output
* ports.
*
* @param n
* The size of the output sequence to generate.
* @param p
* Sequence of downward-flowing input parameters of this node.
* @return
* A `n`-sized sequence of downward-flowing output edge parameters.
*/
protected[diplomacy] def mapParamsD(n: Int, p: Seq[DI]): Seq[DO]
/** Function to generate upward-flowing input parameters from the upward-flowing output parameters [[uiParams]].
*
* @param n
* Size of the output sequence.
* @param p
* Upward-flowing output edge parameters.
* @return
* A n-sized sequence of upward-flowing input edge parameters.
*/
protected[diplomacy] def mapParamsU(n: Int, p: Seq[UO]): Seq[UI]
/** @return
* The sink cardinality of the node, the number of outputs bound with [[BIND_QUERY]] summed with inputs bound with
* [[BIND_STAR]].
*/
protected[diplomacy] lazy val sinkCard: Int = oBindings.count(_._3 == BIND_QUERY) + iBindings.count(_._3 == BIND_STAR)
/** @return
* The source cardinality of this node, the number of inputs bound with [[BIND_QUERY]] summed with the number of
* output bindings bound with [[BIND_STAR]].
*/
protected[diplomacy] lazy val sourceCard: Int =
iBindings.count(_._3 == BIND_QUERY) + oBindings.count(_._3 == BIND_STAR)
/** @return list of nodes involved in flex bindings with this node. */
protected[diplomacy] lazy val flexes: Seq[BaseNode] =
oBindings.filter(_._3 == BIND_FLEX).map(_._2) ++ iBindings.filter(_._3 == BIND_FLEX).map(_._2)
/** Resolves the flex to be either source or sink and returns the offset where the [[BIND_STAR]] operators begin
* greedily taking up the remaining connections.
*
* @return
* A value >= 0 if it is sink cardinality, a negative value for source cardinality. The magnitude of the return
* value is not relevant.
*/
protected[diplomacy] lazy val flexOffset: Int = {
/** Recursively performs a depth-first search of the [[flexes]], [[BaseNode]]s connected to this node with flex
* operators. The algorithm bottoms out when we either get to a node we have already visited or when we get to a
* connection that is not a flex and can set the direction for us. Otherwise, recurse by visiting the `flexes` of
* each node in the current set and decide whether they should be added to the set or not.
*
* @return
* the mapping of [[BaseNode]] indexed by their serial numbers.
*/
def DFS(v: BaseNode, visited: Map[Int, BaseNode]): Map[Int, BaseNode] = {
if (visited.contains(v.serial) || !v.flexibleArityDirection) {
visited
} else {
v.flexes.foldLeft(visited + (v.serial -> v))((sum, n) => DFS(n, sum))
}
}
/** Determine which [[BaseNode]] are involved in resolving the flex connections to/from this node.
*
* @example
* {{{
* a :*=* b :*=* c
* d :*=* b
* e :*=* f
* }}}
*
* `flexSet` for `a`, `b`, `c`, or `d` will be `Set(a, b, c, d)` `flexSet` for `e` or `f` will be `Set(e,f)`
*/
val flexSet = DFS(this, Map()).values
/** The total number of :*= operators where we're on the left. */
val allSink = flexSet.map(_.sinkCard).sum
/** The total number of :=* operators used when we're on the right. */
val allSource = flexSet.map(_.sourceCard).sum
require(
allSink == 0 || allSource == 0,
s"The nodes ${flexSet.map(_.name)} which are inter-connected by :*=* have ${allSink} :*= operators and ${allSource} :=* operators connected to them, making it impossible to determine cardinality inference direction."
)
allSink - allSource
}
/** @return A value >= 0 if it is sink cardinality, a negative value for source cardinality. */
protected[diplomacy] def edgeArityDirection(n: BaseNode): Int = {
if (flexibleArityDirection) flexOffset
else if (n.flexibleArityDirection) n.flexOffset
else 0
}
/** For a node which is connected between two nodes, select the one that will influence the direction of the flex
* resolution.
*/
protected[diplomacy] def edgeAritySelect(n: BaseNode, l: => Int, r: => Int): Int = {
val dir = edgeArityDirection(n)
if (dir < 0) l
else if (dir > 0) r
else 1
}
/** Ensure that the same node is not visited twice in resolving `:*=`, etc operators. */
private var starCycleGuard = false
/** Resolve all the star operators into concrete indicies. As connections are being made, some may be "star"
* connections which need to be resolved. In some way to determine how many actual edges they correspond to. We also
* need to build up the ranges of edges which correspond to each binding operator, so that We can apply the correct
* edge parameters and later build up correct bundle connections.
*
* [[oPortMapping]]: `Seq[(Int, Int)]` where each item is the range of edges corresponding to that oPort (binding
* operator). [[iPortMapping]]: `Seq[(Int, Int)]` where each item is the range of edges corresponding to that iPort
* (binding operator). [[oStar]]: `Int` the value to return for this node `N` for any `N :*= foo` or `N :*=* foo :*=
* bar` [[iStar]]: `Int` the value to return for this node `N` for any `foo :=* N` or `bar :=* foo :*=* N`
*/
protected[diplomacy] lazy val (
oPortMapping: Seq[(Int, Int)],
iPortMapping: Seq[(Int, Int)],
oStar: Int,
iStar: Int
) = {
try {
if (starCycleGuard) throw StarCycleException()
starCycleGuard = true
// For a given node N...
// Number of foo :=* N
// + Number of bar :=* foo :*=* N
val oStars = oBindings.count { case (_, n, b, _, _) =>
b == BIND_STAR || (b == BIND_FLEX && edgeArityDirection(n) < 0)
}
// Number of N :*= foo
// + Number of N :*=* foo :*= bar
val iStars = iBindings.count { case (_, n, b, _, _) =>
b == BIND_STAR || (b == BIND_FLEX && edgeArityDirection(n) > 0)
}
// 1 for foo := N
// + bar.iStar for bar :*= foo :*=* N
// + foo.iStar for foo :*= N
// + 0 for foo :=* N
val oKnown = oBindings.map { case (_, n, b, _, _) =>
b match {
case BIND_ONCE => 1
case BIND_FLEX => edgeAritySelect(n, 0, n.iStar)
case BIND_QUERY => n.iStar
case BIND_STAR => 0
}
}.sum
// 1 for N := foo
// + bar.oStar for N :*=* foo :=* bar
// + foo.oStar for N :=* foo
// + 0 for N :*= foo
val iKnown = iBindings.map { case (_, n, b, _, _) =>
b match {
case BIND_ONCE => 1
case BIND_FLEX => edgeAritySelect(n, n.oStar, 0)
case BIND_QUERY => n.oStar
case BIND_STAR => 0
}
}.sum
// Resolve star depends on the node subclass to implement the algorithm for this.
val (iStar, oStar) = resolveStar(iKnown, oKnown, iStars, oStars)
// Cumulative list of resolved outward binding range starting points
val oSum = oBindings.map { case (_, n, b, _, _) =>
b match {
case BIND_ONCE => 1
case BIND_FLEX => edgeAritySelect(n, oStar, n.iStar)
case BIND_QUERY => n.iStar
case BIND_STAR => oStar
}
}.scanLeft(0)(_ + _)
// Cumulative list of resolved inward binding range starting points
val iSum = iBindings.map { case (_, n, b, _, _) =>
b match {
case BIND_ONCE => 1
case BIND_FLEX => edgeAritySelect(n, n.oStar, iStar)
case BIND_QUERY => n.oStar
case BIND_STAR => iStar
}
}.scanLeft(0)(_ + _)
// Create ranges for each binding based on the running sums and return
// those along with resolved values for the star operations.
(oSum.init.zip(oSum.tail), iSum.init.zip(iSum.tail), oStar, iStar)
} catch {
case c: StarCycleException => throw c.copy(loop = context +: c.loop)
}
}
/** Sequence of inward ports.
*
* This should be called after all star bindings are resolved.
*
* Each element is: `j` Port index of this binding in the Node's [[oPortMapping]] on the other side of the binding.
* `n` Instance of inward node. `p` View of [[Parameters]] where this connection was made. `s` Source info where this
* connection was made in the source code.
*/
protected[diplomacy] lazy val oDirectPorts: Seq[(Int, InwardNode[DO, UO, BO], Parameters, SourceInfo)] =
oBindings.flatMap { case (i, n, _, p, s) =>
// for each binding operator in this node, look at what it connects to
val (start, end) = n.iPortMapping(i)
(start until end).map { j => (j, n, p, s) }
}
/** Sequence of outward ports.
*
* This should be called after all star bindings are resolved.
*
* `j` Port index of this binding in the Node's [[oPortMapping]] on the other side of the binding. `n` Instance of
* outward node. `p` View of [[Parameters]] where this connection was made. `s` [[SourceInfo]] where this connection
* was made in the source code.
*/
protected[diplomacy] lazy val iDirectPorts: Seq[(Int, OutwardNode[DI, UI, BI], Parameters, SourceInfo)] =
iBindings.flatMap { case (i, n, _, p, s) =>
// query this port index range of this node in the other side of node.
val (start, end) = n.oPortMapping(i)
(start until end).map { j => (j, n, p, s) }
}
// Ephemeral nodes ( which have non-None iForward/oForward) have in_degree = out_degree
// Thus, there must exist an Eulerian path and the below algorithms terminate
@scala.annotation.tailrec
private def oTrace(
tuple: (Int, InwardNode[DO, UO, BO], Parameters, SourceInfo)
): (Int, InwardNode[DO, UO, BO], Parameters, SourceInfo) = tuple match {
case (i, n, p, s) => n.iForward(i) match {
case None => (i, n, p, s)
case Some((j, m)) => oTrace((j, m, p, s))
}
}
@scala.annotation.tailrec
private def iTrace(
tuple: (Int, OutwardNode[DI, UI, BI], Parameters, SourceInfo)
): (Int, OutwardNode[DI, UI, BI], Parameters, SourceInfo) = tuple match {
case (i, n, p, s) => n.oForward(i) match {
case None => (i, n, p, s)
case Some((j, m)) => iTrace((j, m, p, s))
}
}
/** Final output ports after all stars and port forwarding (e.g. [[EphemeralNode]]s) have been resolved.
*
* Each Port is a tuple of:
* - Numeric index of this binding in the [[InwardNode]] on the other end.
* - [[InwardNode]] on the other end of this binding.
* - A view of [[Parameters]] where the binding occurred.
* - [[SourceInfo]] for source-level error reporting.
*/
lazy val oPorts: Seq[(Int, InwardNode[DO, UO, BO], Parameters, SourceInfo)] = oDirectPorts.map(oTrace)
/** Final input ports after all stars and port forwarding (e.g. [[EphemeralNode]]s) have been resolved.
*
* Each Port is a tuple of:
* - numeric index of this binding in [[OutwardNode]] on the other end.
* - [[OutwardNode]] on the other end of this binding.
* - a view of [[Parameters]] where the binding occurred.
* - [[SourceInfo]] for source-level error reporting.
*/
lazy val iPorts: Seq[(Int, OutwardNode[DI, UI, BI], Parameters, SourceInfo)] = iDirectPorts.map(iTrace)
private var oParamsCycleGuard = false
protected[diplomacy] lazy val diParams: Seq[DI] = iPorts.map { case (i, n, _, _) => n.doParams(i) }
protected[diplomacy] lazy val doParams: Seq[DO] = {
try {
if (oParamsCycleGuard) throw DownwardCycleException()
oParamsCycleGuard = true
val o = mapParamsD(oPorts.size, diParams)
require(
o.size == oPorts.size,
s"""Diplomacy has detected a problem with your graph:
|At the following node, the number of outward ports should equal the number of produced outward parameters.
|$context
|$connectedPortsInfo
|Downstreamed inward parameters: [${diParams.mkString(",")}]
|Produced outward parameters: [${o.mkString(",")}]
|""".stripMargin
)
o.map(outer.mixO(_, this))
} catch {
case c: DownwardCycleException => throw c.copy(loop = context +: c.loop)
}
}
private var iParamsCycleGuard = false
protected[diplomacy] lazy val uoParams: Seq[UO] = oPorts.map { case (o, n, _, _) => n.uiParams(o) }
protected[diplomacy] lazy val uiParams: Seq[UI] = {
try {
if (iParamsCycleGuard) throw UpwardCycleException()
iParamsCycleGuard = true
val i = mapParamsU(iPorts.size, uoParams)
require(
i.size == iPorts.size,
s"""Diplomacy has detected a problem with your graph:
|At the following node, the number of inward ports should equal the number of produced inward parameters.
|$context
|$connectedPortsInfo
|Upstreamed outward parameters: [${uoParams.mkString(",")}]
|Produced inward parameters: [${i.mkString(",")}]
|""".stripMargin
)
i.map(inner.mixI(_, this))
} catch {
case c: UpwardCycleException => throw c.copy(loop = context +: c.loop)
}
}
/** Outward edge parameters. */
protected[diplomacy] lazy val edgesOut: Seq[EO] =
(oPorts.zip(doParams)).map { case ((i, n, p, s), o) => outer.edgeO(o, n.uiParams(i), p, s) }
/** Inward edge parameters. */
protected[diplomacy] lazy val edgesIn: Seq[EI] =
(iPorts.zip(uiParams)).map { case ((o, n, p, s), i) => inner.edgeI(n.doParams(o), i, p, s) }
/** A tuple of the input edge parameters and output edge parameters for the edges bound to this node.
*
* If you need to access to the edges of a foreign Node, use this method (in/out create bundles).
*/
lazy val edges: Edges[EI, EO] = Edges(edgesIn, edgesOut)
/** Create actual Wires corresponding to the Bundles parameterized by the outward edges of this node. */
protected[diplomacy] lazy val bundleOut: Seq[BO] = edgesOut.map { e =>
val x = Wire(outer.bundleO(e)).suggestName(s"${valName.value}Out")
// TODO: Don't care unconnected forwarded diplomatic signals for compatibility issue,
// In the future, we should add an option to decide whether allowing unconnected in the LazyModule
x := DontCare
x
}
/** Create actual Wires corresponding to the Bundles parameterized by the inward edges of this node. */
protected[diplomacy] lazy val bundleIn: Seq[BI] = edgesIn.map { e =>
val x = Wire(inner.bundleI(e)).suggestName(s"${valName.value}In")
// TODO: Don't care unconnected forwarded diplomatic signals for compatibility issue,
// In the future, we should add an option to decide whether allowing unconnected in the LazyModule
x := DontCare
x
}
private def emptyDanglesOut: Seq[Dangle] = oPorts.zipWithIndex.map { case ((j, n, _, _), i) =>
Dangle(
source = HalfEdge(serial, i),
sink = HalfEdge(n.serial, j),
flipped = false,
name = wirePrefix + "out",
dataOpt = None
)
}
private def emptyDanglesIn: Seq[Dangle] = iPorts.zipWithIndex.map { case ((j, n, _, _), i) =>
Dangle(
source = HalfEdge(n.serial, j),
sink = HalfEdge(serial, i),
flipped = true,
name = wirePrefix + "in",
dataOpt = None
)
}
/** Create the [[Dangle]]s which describe the connections from this node output to other nodes inputs. */
protected[diplomacy] def danglesOut: Seq[Dangle] = emptyDanglesOut.zipWithIndex.map { case (d, i) =>
d.copy(dataOpt = Some(bundleOut(i)))
}
/** Create the [[Dangle]]s which describe the connections from this node input from other nodes outputs. */
protected[diplomacy] def danglesIn: Seq[Dangle] = emptyDanglesIn.zipWithIndex.map { case (d, i) =>
d.copy(dataOpt = Some(bundleIn(i)))
}
private[diplomacy] var instantiated = false
/** Gather Bundle and edge parameters of outward ports.
*
* Accessors to the result of negotiation to be used within [[LazyModuleImp]] Code. Should only be used within
* [[LazyModuleImp]] code or after its instantiation has completed.
*/
def out: Seq[(BO, EO)] = {
require(
instantiated,
s"$name.out should not be called until after instantiation of its parent LazyModule.module has begun"
)
bundleOut.zip(edgesOut)
}
/** Gather Bundle and edge parameters of inward ports.
*
* Accessors to the result of negotiation to be used within [[LazyModuleImp]] Code. Should only be used within
* [[LazyModuleImp]] code or after its instantiation has completed.
*/
def in: Seq[(BI, EI)] = {
require(
instantiated,
s"$name.in should not be called until after instantiation of its parent LazyModule.module has begun"
)
bundleIn.zip(edgesIn)
}
/** Actually instantiate this node during [[LazyModuleImp]] evaluation. Mark that it's safe to use the Bundle wires,
* instantiate monitors on all input ports if appropriate, and return all the dangles of this node.
*/
protected[diplomacy] def instantiate(): Seq[Dangle] = {
instantiated = true
if (!circuitIdentity) {
(iPorts.zip(in)).foreach { case ((_, _, p, _), (b, e)) => if (p(MonitorsEnabled)) inner.monitor(b, e) }
}
danglesOut ++ danglesIn
}
protected[diplomacy] def cloneDangles(): Seq[Dangle] = emptyDanglesOut ++ emptyDanglesIn
/** Connects the outward part of a node with the inward part of this node. */
protected[diplomacy] def bind(
h: OutwardNode[DI, UI, BI],
binding: NodeBinding
)(
implicit p: Parameters,
sourceInfo: SourceInfo
): Unit = {
val x = this // x := y
val y = h
sourceLine(sourceInfo, " at ", "")
val i = x.iPushed
val o = y.oPushed
y.oPush(
i,
x,
binding match {
case BIND_ONCE => BIND_ONCE
case BIND_FLEX => BIND_FLEX
case BIND_STAR => BIND_QUERY
case BIND_QUERY => BIND_STAR
}
)
x.iPush(o, y, binding)
}
/* Metadata for printing the node graph. */
def inputs: Seq[(OutwardNode[DI, UI, BI], RenderedEdge)] = (iPorts.zip(edgesIn)).map { case ((_, n, p, _), e) =>
val re = inner.render(e)
(n, re.copy(flipped = re.flipped != p(RenderFlipped)))
}
/** Metadata for printing the node graph */
def outputs: Seq[(InwardNode[DO, UO, BO], RenderedEdge)] = oPorts.map { case (i, n, _, _) => (n, n.inputs(i)._2) }
}
| module TLBuffer_a29d64s7k1z3u( // @[Buffer.scala:40:9]
input clock, // @[Buffer.scala:40:9]
input reset, // @[Buffer.scala:40:9]
output auto_in_a_ready, // @[LazyModuleImp.scala:107:25]
input auto_in_a_valid, // @[LazyModuleImp.scala:107:25]
input [2:0] auto_in_a_bits_opcode, // @[LazyModuleImp.scala:107:25]
input [2:0] auto_in_a_bits_param, // @[LazyModuleImp.scala:107:25]
input [2:0] auto_in_a_bits_size, // @[LazyModuleImp.scala:107:25]
input [6:0] auto_in_a_bits_source, // @[LazyModuleImp.scala:107:25]
input [28:0] auto_in_a_bits_address, // @[LazyModuleImp.scala:107:25]
input [7:0] auto_in_a_bits_mask, // @[LazyModuleImp.scala:107:25]
input [63:0] auto_in_a_bits_data, // @[LazyModuleImp.scala:107:25]
input auto_in_a_bits_corrupt, // @[LazyModuleImp.scala:107:25]
input auto_in_d_ready, // @[LazyModuleImp.scala:107:25]
output auto_in_d_valid, // @[LazyModuleImp.scala:107:25]
output [2:0] auto_in_d_bits_opcode, // @[LazyModuleImp.scala:107:25]
output [1:0] auto_in_d_bits_param, // @[LazyModuleImp.scala:107:25]
output [2:0] auto_in_d_bits_size, // @[LazyModuleImp.scala:107:25]
output [6:0] auto_in_d_bits_source, // @[LazyModuleImp.scala:107:25]
output auto_in_d_bits_sink, // @[LazyModuleImp.scala:107:25]
output auto_in_d_bits_denied, // @[LazyModuleImp.scala:107:25]
output [63:0] auto_in_d_bits_data, // @[LazyModuleImp.scala:107:25]
output auto_in_d_bits_corrupt, // @[LazyModuleImp.scala:107:25]
input auto_out_a_ready, // @[LazyModuleImp.scala:107:25]
output auto_out_a_valid, // @[LazyModuleImp.scala:107:25]
output [2:0] auto_out_a_bits_opcode, // @[LazyModuleImp.scala:107:25]
output [2:0] auto_out_a_bits_param, // @[LazyModuleImp.scala:107:25]
output [2:0] auto_out_a_bits_size, // @[LazyModuleImp.scala:107:25]
output [6:0] auto_out_a_bits_source, // @[LazyModuleImp.scala:107:25]
output [28:0] auto_out_a_bits_address, // @[LazyModuleImp.scala:107:25]
output [7:0] auto_out_a_bits_mask, // @[LazyModuleImp.scala:107:25]
output [63:0] auto_out_a_bits_data, // @[LazyModuleImp.scala:107:25]
output auto_out_a_bits_corrupt, // @[LazyModuleImp.scala:107:25]
output auto_out_d_ready, // @[LazyModuleImp.scala:107:25]
input auto_out_d_valid, // @[LazyModuleImp.scala:107:25]
input [2:0] auto_out_d_bits_opcode, // @[LazyModuleImp.scala:107:25]
input [2:0] auto_out_d_bits_size, // @[LazyModuleImp.scala:107:25]
input [6:0] auto_out_d_bits_source, // @[LazyModuleImp.scala:107:25]
input [63:0] auto_out_d_bits_data // @[LazyModuleImp.scala:107:25]
);
wire auto_in_a_valid_0 = auto_in_a_valid; // @[Buffer.scala:40:9]
wire [2:0] auto_in_a_bits_opcode_0 = auto_in_a_bits_opcode; // @[Buffer.scala:40:9]
wire [2:0] auto_in_a_bits_param_0 = auto_in_a_bits_param; // @[Buffer.scala:40:9]
wire [2:0] auto_in_a_bits_size_0 = auto_in_a_bits_size; // @[Buffer.scala:40:9]
wire [6:0] auto_in_a_bits_source_0 = auto_in_a_bits_source; // @[Buffer.scala:40:9]
wire [28:0] auto_in_a_bits_address_0 = auto_in_a_bits_address; // @[Buffer.scala:40:9]
wire [7:0] auto_in_a_bits_mask_0 = auto_in_a_bits_mask; // @[Buffer.scala:40:9]
wire [63:0] auto_in_a_bits_data_0 = auto_in_a_bits_data; // @[Buffer.scala:40:9]
wire auto_in_a_bits_corrupt_0 = auto_in_a_bits_corrupt; // @[Buffer.scala:40:9]
wire auto_in_d_ready_0 = auto_in_d_ready; // @[Buffer.scala:40:9]
wire auto_out_a_ready_0 = auto_out_a_ready; // @[Buffer.scala:40:9]
wire auto_out_d_valid_0 = auto_out_d_valid; // @[Buffer.scala:40:9]
wire [2:0] auto_out_d_bits_opcode_0 = auto_out_d_bits_opcode; // @[Buffer.scala:40:9]
wire [2:0] auto_out_d_bits_size_0 = auto_out_d_bits_size; // @[Buffer.scala:40:9]
wire [6:0] auto_out_d_bits_source_0 = auto_out_d_bits_source; // @[Buffer.scala:40:9]
wire [63:0] auto_out_d_bits_data_0 = auto_out_d_bits_data; // @[Buffer.scala:40:9]
wire auto_out_d_bits_sink = 1'h0; // @[Decoupled.scala:362:21]
wire auto_out_d_bits_denied = 1'h0; // @[Decoupled.scala:362:21]
wire auto_out_d_bits_corrupt = 1'h0; // @[Decoupled.scala:362:21]
wire nodeOut_d_bits_sink = 1'h0; // @[Decoupled.scala:362:21]
wire nodeOut_d_bits_denied = 1'h0; // @[Decoupled.scala:362:21]
wire nodeOut_d_bits_corrupt = 1'h0; // @[Decoupled.scala:362:21]
wire [1:0] auto_out_d_bits_param = 2'h0; // @[Decoupled.scala:362:21]
wire nodeIn_a_ready; // @[MixedNode.scala:551:17]
wire [1:0] nodeOut_d_bits_param = 2'h0; // @[Decoupled.scala:362:21]
wire nodeIn_a_valid = auto_in_a_valid_0; // @[Buffer.scala:40:9]
wire [2:0] nodeIn_a_bits_opcode = auto_in_a_bits_opcode_0; // @[Buffer.scala:40:9]
wire [2:0] nodeIn_a_bits_param = auto_in_a_bits_param_0; // @[Buffer.scala:40:9]
wire [2:0] nodeIn_a_bits_size = auto_in_a_bits_size_0; // @[Buffer.scala:40:9]
wire [6:0] nodeIn_a_bits_source = auto_in_a_bits_source_0; // @[Buffer.scala:40:9]
wire [28:0] nodeIn_a_bits_address = auto_in_a_bits_address_0; // @[Buffer.scala:40:9]
wire [7:0] nodeIn_a_bits_mask = auto_in_a_bits_mask_0; // @[Buffer.scala:40:9]
wire [63:0] nodeIn_a_bits_data = auto_in_a_bits_data_0; // @[Buffer.scala:40:9]
wire nodeIn_a_bits_corrupt = auto_in_a_bits_corrupt_0; // @[Buffer.scala:40:9]
wire nodeIn_d_ready = auto_in_d_ready_0; // @[Buffer.scala:40:9]
wire nodeIn_d_valid; // @[MixedNode.scala:551:17]
wire [2:0] nodeIn_d_bits_opcode; // @[MixedNode.scala:551:17]
wire [1:0] nodeIn_d_bits_param; // @[MixedNode.scala:551:17]
wire [2:0] nodeIn_d_bits_size; // @[MixedNode.scala:551:17]
wire [6:0] nodeIn_d_bits_source; // @[MixedNode.scala:551:17]
wire nodeIn_d_bits_sink; // @[MixedNode.scala:551:17]
wire nodeIn_d_bits_denied; // @[MixedNode.scala:551:17]
wire [63:0] nodeIn_d_bits_data; // @[MixedNode.scala:551:17]
wire nodeIn_d_bits_corrupt; // @[MixedNode.scala:551:17]
wire nodeOut_a_ready = auto_out_a_ready_0; // @[Buffer.scala:40:9]
wire nodeOut_a_valid; // @[MixedNode.scala:542:17]
wire [2:0] nodeOut_a_bits_opcode; // @[MixedNode.scala:542:17]
wire [2:0] nodeOut_a_bits_param; // @[MixedNode.scala:542:17]
wire [2:0] nodeOut_a_bits_size; // @[MixedNode.scala:542:17]
wire [6:0] nodeOut_a_bits_source; // @[MixedNode.scala:542:17]
wire [28:0] nodeOut_a_bits_address; // @[MixedNode.scala:542:17]
wire [7:0] nodeOut_a_bits_mask; // @[MixedNode.scala:542:17]
wire [63:0] nodeOut_a_bits_data; // @[MixedNode.scala:542:17]
wire nodeOut_a_bits_corrupt; // @[MixedNode.scala:542:17]
wire nodeOut_d_ready; // @[MixedNode.scala:542:17]
wire nodeOut_d_valid = auto_out_d_valid_0; // @[Buffer.scala:40:9]
wire [2:0] nodeOut_d_bits_opcode = auto_out_d_bits_opcode_0; // @[Buffer.scala:40:9]
wire [2:0] nodeOut_d_bits_size = auto_out_d_bits_size_0; // @[Buffer.scala:40:9]
wire [6:0] nodeOut_d_bits_source = auto_out_d_bits_source_0; // @[Buffer.scala:40:9]
wire [63:0] nodeOut_d_bits_data = auto_out_d_bits_data_0; // @[Buffer.scala:40:9]
wire auto_in_a_ready_0; // @[Buffer.scala:40:9]
wire [2:0] auto_in_d_bits_opcode_0; // @[Buffer.scala:40:9]
wire [1:0] auto_in_d_bits_param_0; // @[Buffer.scala:40:9]
wire [2:0] auto_in_d_bits_size_0; // @[Buffer.scala:40:9]
wire [6:0] auto_in_d_bits_source_0; // @[Buffer.scala:40:9]
wire auto_in_d_bits_sink_0; // @[Buffer.scala:40:9]
wire auto_in_d_bits_denied_0; // @[Buffer.scala:40:9]
wire [63:0] auto_in_d_bits_data_0; // @[Buffer.scala:40:9]
wire auto_in_d_bits_corrupt_0; // @[Buffer.scala:40:9]
wire auto_in_d_valid_0; // @[Buffer.scala:40:9]
wire [2:0] auto_out_a_bits_opcode_0; // @[Buffer.scala:40:9]
wire [2:0] auto_out_a_bits_param_0; // @[Buffer.scala:40:9]
wire [2:0] auto_out_a_bits_size_0; // @[Buffer.scala:40:9]
wire [6:0] auto_out_a_bits_source_0; // @[Buffer.scala:40:9]
wire [28:0] auto_out_a_bits_address_0; // @[Buffer.scala:40:9]
wire [7:0] auto_out_a_bits_mask_0; // @[Buffer.scala:40:9]
wire [63:0] auto_out_a_bits_data_0; // @[Buffer.scala:40:9]
wire auto_out_a_bits_corrupt_0; // @[Buffer.scala:40:9]
wire auto_out_a_valid_0; // @[Buffer.scala:40:9]
wire auto_out_d_ready_0; // @[Buffer.scala:40:9]
assign auto_in_a_ready_0 = nodeIn_a_ready; // @[Buffer.scala:40:9]
assign auto_in_d_valid_0 = nodeIn_d_valid; // @[Buffer.scala:40:9]
assign auto_in_d_bits_opcode_0 = nodeIn_d_bits_opcode; // @[Buffer.scala:40:9]
assign auto_in_d_bits_param_0 = nodeIn_d_bits_param; // @[Buffer.scala:40:9]
assign auto_in_d_bits_size_0 = nodeIn_d_bits_size; // @[Buffer.scala:40:9]
assign auto_in_d_bits_source_0 = nodeIn_d_bits_source; // @[Buffer.scala:40:9]
assign auto_in_d_bits_sink_0 = nodeIn_d_bits_sink; // @[Buffer.scala:40:9]
assign auto_in_d_bits_denied_0 = nodeIn_d_bits_denied; // @[Buffer.scala:40:9]
assign auto_in_d_bits_data_0 = nodeIn_d_bits_data; // @[Buffer.scala:40:9]
assign auto_in_d_bits_corrupt_0 = nodeIn_d_bits_corrupt; // @[Buffer.scala:40:9]
assign auto_out_a_valid_0 = nodeOut_a_valid; // @[Buffer.scala:40:9]
assign auto_out_a_bits_opcode_0 = nodeOut_a_bits_opcode; // @[Buffer.scala:40:9]
assign auto_out_a_bits_param_0 = nodeOut_a_bits_param; // @[Buffer.scala:40:9]
assign auto_out_a_bits_size_0 = nodeOut_a_bits_size; // @[Buffer.scala:40:9]
assign auto_out_a_bits_source_0 = nodeOut_a_bits_source; // @[Buffer.scala:40:9]
assign auto_out_a_bits_address_0 = nodeOut_a_bits_address; // @[Buffer.scala:40:9]
assign auto_out_a_bits_mask_0 = nodeOut_a_bits_mask; // @[Buffer.scala:40:9]
assign auto_out_a_bits_data_0 = nodeOut_a_bits_data; // @[Buffer.scala:40:9]
assign auto_out_a_bits_corrupt_0 = nodeOut_a_bits_corrupt; // @[Buffer.scala:40:9]
assign auto_out_d_ready_0 = nodeOut_d_ready; // @[Buffer.scala:40:9]
TLMonitor_3 monitor ( // @[Nodes.scala:27:25]
.clock (clock),
.reset (reset),
.io_in_a_ready (nodeIn_a_ready), // @[MixedNode.scala:551:17]
.io_in_a_valid (nodeIn_a_valid), // @[MixedNode.scala:551:17]
.io_in_a_bits_opcode (nodeIn_a_bits_opcode), // @[MixedNode.scala:551:17]
.io_in_a_bits_param (nodeIn_a_bits_param), // @[MixedNode.scala:551:17]
.io_in_a_bits_size (nodeIn_a_bits_size), // @[MixedNode.scala:551:17]
.io_in_a_bits_source (nodeIn_a_bits_source), // @[MixedNode.scala:551:17]
.io_in_a_bits_address (nodeIn_a_bits_address), // @[MixedNode.scala:551:17]
.io_in_a_bits_mask (nodeIn_a_bits_mask), // @[MixedNode.scala:551:17]
.io_in_a_bits_data (nodeIn_a_bits_data), // @[MixedNode.scala:551:17]
.io_in_a_bits_corrupt (nodeIn_a_bits_corrupt), // @[MixedNode.scala:551:17]
.io_in_d_ready (nodeIn_d_ready), // @[MixedNode.scala:551:17]
.io_in_d_valid (nodeIn_d_valid), // @[MixedNode.scala:551:17]
.io_in_d_bits_opcode (nodeIn_d_bits_opcode), // @[MixedNode.scala:551:17]
.io_in_d_bits_param (nodeIn_d_bits_param), // @[MixedNode.scala:551:17]
.io_in_d_bits_size (nodeIn_d_bits_size), // @[MixedNode.scala:551:17]
.io_in_d_bits_source (nodeIn_d_bits_source), // @[MixedNode.scala:551:17]
.io_in_d_bits_sink (nodeIn_d_bits_sink), // @[MixedNode.scala:551:17]
.io_in_d_bits_denied (nodeIn_d_bits_denied), // @[MixedNode.scala:551:17]
.io_in_d_bits_data (nodeIn_d_bits_data), // @[MixedNode.scala:551:17]
.io_in_d_bits_corrupt (nodeIn_d_bits_corrupt) // @[MixedNode.scala:551:17]
); // @[Nodes.scala:27:25]
Queue2_TLBundleA_a29d64s7k1z3u nodeOut_a_q ( // @[Decoupled.scala:362:21]
.clock (clock),
.reset (reset),
.io_enq_ready (nodeIn_a_ready),
.io_enq_valid (nodeIn_a_valid), // @[MixedNode.scala:551:17]
.io_enq_bits_opcode (nodeIn_a_bits_opcode), // @[MixedNode.scala:551:17]
.io_enq_bits_param (nodeIn_a_bits_param), // @[MixedNode.scala:551:17]
.io_enq_bits_size (nodeIn_a_bits_size), // @[MixedNode.scala:551:17]
.io_enq_bits_source (nodeIn_a_bits_source), // @[MixedNode.scala:551:17]
.io_enq_bits_address (nodeIn_a_bits_address), // @[MixedNode.scala:551:17]
.io_enq_bits_mask (nodeIn_a_bits_mask), // @[MixedNode.scala:551:17]
.io_enq_bits_data (nodeIn_a_bits_data), // @[MixedNode.scala:551:17]
.io_enq_bits_corrupt (nodeIn_a_bits_corrupt), // @[MixedNode.scala:551:17]
.io_deq_ready (nodeOut_a_ready), // @[MixedNode.scala:542:17]
.io_deq_valid (nodeOut_a_valid),
.io_deq_bits_opcode (nodeOut_a_bits_opcode),
.io_deq_bits_param (nodeOut_a_bits_param),
.io_deq_bits_size (nodeOut_a_bits_size),
.io_deq_bits_source (nodeOut_a_bits_source),
.io_deq_bits_address (nodeOut_a_bits_address),
.io_deq_bits_mask (nodeOut_a_bits_mask),
.io_deq_bits_data (nodeOut_a_bits_data),
.io_deq_bits_corrupt (nodeOut_a_bits_corrupt)
); // @[Decoupled.scala:362:21]
Queue2_TLBundleD_a29d64s7k1z3u nodeIn_d_q ( // @[Decoupled.scala:362:21]
.clock (clock),
.reset (reset),
.io_enq_ready (nodeOut_d_ready),
.io_enq_valid (nodeOut_d_valid), // @[MixedNode.scala:542:17]
.io_enq_bits_opcode (nodeOut_d_bits_opcode), // @[MixedNode.scala:542:17]
.io_enq_bits_size (nodeOut_d_bits_size), // @[MixedNode.scala:542:17]
.io_enq_bits_source (nodeOut_d_bits_source), // @[MixedNode.scala:542:17]
.io_enq_bits_data (nodeOut_d_bits_data), // @[MixedNode.scala:542:17]
.io_deq_ready (nodeIn_d_ready), // @[MixedNode.scala:551:17]
.io_deq_valid (nodeIn_d_valid),
.io_deq_bits_opcode (nodeIn_d_bits_opcode),
.io_deq_bits_param (nodeIn_d_bits_param),
.io_deq_bits_size (nodeIn_d_bits_size),
.io_deq_bits_source (nodeIn_d_bits_source),
.io_deq_bits_sink (nodeIn_d_bits_sink),
.io_deq_bits_denied (nodeIn_d_bits_denied),
.io_deq_bits_data (nodeIn_d_bits_data),
.io_deq_bits_corrupt (nodeIn_d_bits_corrupt)
); // @[Decoupled.scala:362:21]
assign auto_in_a_ready = auto_in_a_ready_0; // @[Buffer.scala:40:9]
assign auto_in_d_valid = auto_in_d_valid_0; // @[Buffer.scala:40:9]
assign auto_in_d_bits_opcode = auto_in_d_bits_opcode_0; // @[Buffer.scala:40:9]
assign auto_in_d_bits_param = auto_in_d_bits_param_0; // @[Buffer.scala:40:9]
assign auto_in_d_bits_size = auto_in_d_bits_size_0; // @[Buffer.scala:40:9]
assign auto_in_d_bits_source = auto_in_d_bits_source_0; // @[Buffer.scala:40:9]
assign auto_in_d_bits_sink = auto_in_d_bits_sink_0; // @[Buffer.scala:40:9]
assign auto_in_d_bits_denied = auto_in_d_bits_denied_0; // @[Buffer.scala:40:9]
assign auto_in_d_bits_data = auto_in_d_bits_data_0; // @[Buffer.scala:40:9]
assign auto_in_d_bits_corrupt = auto_in_d_bits_corrupt_0; // @[Buffer.scala:40:9]
assign auto_out_a_valid = auto_out_a_valid_0; // @[Buffer.scala:40:9]
assign auto_out_a_bits_opcode = auto_out_a_bits_opcode_0; // @[Buffer.scala:40:9]
assign auto_out_a_bits_param = auto_out_a_bits_param_0; // @[Buffer.scala:40:9]
assign auto_out_a_bits_size = auto_out_a_bits_size_0; // @[Buffer.scala:40:9]
assign auto_out_a_bits_source = auto_out_a_bits_source_0; // @[Buffer.scala:40:9]
assign auto_out_a_bits_address = auto_out_a_bits_address_0; // @[Buffer.scala:40:9]
assign auto_out_a_bits_mask = auto_out_a_bits_mask_0; // @[Buffer.scala:40:9]
assign auto_out_a_bits_data = auto_out_a_bits_data_0; // @[Buffer.scala:40:9]
assign auto_out_a_bits_corrupt = auto_out_a_bits_corrupt_0; // @[Buffer.scala:40:9]
assign auto_out_d_ready = auto_out_d_ready_0; // @[Buffer.scala:40:9]
endmodule |
Generate the Verilog code corresponding to the following Chisel files.
File UnsafeAXI4ToTL.scala:
package ara
import chisel3._
import chisel3.util._
import freechips.rocketchip.amba._
import freechips.rocketchip.amba.axi4._
import org.chipsalliance.cde.config.Parameters
import freechips.rocketchip.diplomacy._
import freechips.rocketchip.tilelink._
import freechips.rocketchip.util._
class ReorderData(val dataWidth: Int, val respWidth: Int, val userFields: Seq[BundleFieldBase]) extends Bundle {
val data = UInt(dataWidth.W)
val resp = UInt(respWidth.W)
val last = Bool()
val user = BundleMap(userFields)
}
/** Parameters for [[BaseReservableListBuffer]] and all child classes.
*
* @param numEntries Total number of elements that can be stored in the 'data' RAM
* @param numLists Maximum number of linked lists
* @param numBeats Maximum number of beats per entry
*/
case class ReservableListBufferParameters(numEntries: Int, numLists: Int, numBeats: Int) {
// Avoid zero-width wires when we call 'log2Ceil'
val entryBits = if (numEntries == 1) 1 else log2Ceil(numEntries)
val listBits = if (numLists == 1) 1 else log2Ceil(numLists)
val beatBits = if (numBeats == 1) 1 else log2Ceil(numBeats)
}
case class UnsafeAXI4ToTLNode(numTlTxns: Int, wcorrupt: Boolean)(implicit valName: ValName)
extends MixedAdapterNode(AXI4Imp, TLImp)(
dFn = { case mp =>
TLMasterPortParameters.v2(
masters = mp.masters.zipWithIndex.map { case (m, i) =>
// Support 'numTlTxns' read requests and 'numTlTxns' write requests at once.
val numSourceIds = numTlTxns * 2
TLMasterParameters.v2(
name = m.name,
sourceId = IdRange(i * numSourceIds, (i + 1) * numSourceIds),
nodePath = m.nodePath
)
},
echoFields = mp.echoFields,
requestFields = AMBAProtField() +: mp.requestFields,
responseKeys = mp.responseKeys
)
},
uFn = { mp =>
AXI4SlavePortParameters(
slaves = mp.managers.map { m =>
val maxXfer = TransferSizes(1, mp.beatBytes * (1 << AXI4Parameters.lenBits))
AXI4SlaveParameters(
address = m.address,
resources = m.resources,
regionType = m.regionType,
executable = m.executable,
nodePath = m.nodePath,
supportsWrite = m.supportsPutPartial.intersect(maxXfer),
supportsRead = m.supportsGet.intersect(maxXfer),
interleavedId = Some(0) // TL2 never interleaves D beats
)
},
beatBytes = mp.beatBytes,
minLatency = mp.minLatency,
responseFields = mp.responseFields,
requestKeys = (if (wcorrupt) Seq(AMBACorrupt) else Seq()) ++ mp.requestKeys.filter(_ != AMBAProt)
)
}
)
class UnsafeAXI4ToTL(numTlTxns: Int, wcorrupt: Boolean)(implicit p: Parameters) extends LazyModule {
require(numTlTxns >= 1)
require(isPow2(numTlTxns), s"Number of TileLink transactions ($numTlTxns) must be a power of 2")
val node = UnsafeAXI4ToTLNode(numTlTxns, wcorrupt)
lazy val module = new LazyModuleImp(this) {
(node.in zip node.out) foreach { case ((in, edgeIn), (out, edgeOut)) =>
edgeIn.master.masters.foreach { m =>
require(m.aligned, "AXI4ToTL requires aligned requests")
}
val numIds = edgeIn.master.endId
val beatBytes = edgeOut.slave.beatBytes
val maxTransfer = edgeOut.slave.maxTransfer
val maxBeats = maxTransfer / beatBytes
// Look for an Error device to redirect bad requests
val errorDevs = edgeOut.slave.managers.filter(_.nodePath.last.lazyModule.className == "TLError")
require(!errorDevs.isEmpty, "There is no TLError reachable from AXI4ToTL. One must be instantiated.")
val errorDev = errorDevs.maxBy(_.maxTransfer)
val errorDevAddr = errorDev.address.head.base
require(
errorDev.supportsPutPartial.contains(maxTransfer),
s"Error device supports ${errorDev.supportsPutPartial} PutPartial but must support $maxTransfer"
)
require(
errorDev.supportsGet.contains(maxTransfer),
s"Error device supports ${errorDev.supportsGet} Get but must support $maxTransfer"
)
// All of the read-response reordering logic.
val listBufData = new ReorderData(beatBytes * 8, edgeIn.bundle.respBits, out.d.bits.user.fields)
val listBufParams = ReservableListBufferParameters(numTlTxns, numIds, maxBeats)
val listBuffer = if (numTlTxns > 1) {
Module(new ReservableListBuffer(listBufData, listBufParams))
} else {
Module(new PassthroughListBuffer(listBufData, listBufParams))
}
// To differentiate between read and write transaction IDs, we will set the MSB of the TileLink 'source' field to
// 0 for read requests and 1 for write requests.
val isReadSourceBit = 0.U(1.W)
val isWriteSourceBit = 1.U(1.W)
/* Read request logic */
val rOut = Wire(Decoupled(new TLBundleA(edgeOut.bundle)))
val rBytes1 = in.ar.bits.bytes1()
val rSize = OH1ToUInt(rBytes1)
val rOk = edgeOut.slave.supportsGetSafe(in.ar.bits.addr, rSize)
val rId = if (numTlTxns > 1) {
Cat(isReadSourceBit, listBuffer.ioReservedIndex)
} else {
isReadSourceBit
}
val rAddr = Mux(rOk, in.ar.bits.addr, errorDevAddr.U | in.ar.bits.addr(log2Ceil(beatBytes) - 1, 0))
// Indicates if there are still valid TileLink source IDs left to use.
val canIssueR = listBuffer.ioReserve.ready
listBuffer.ioReserve.bits := in.ar.bits.id
listBuffer.ioReserve.valid := in.ar.valid && rOut.ready
in.ar.ready := rOut.ready && canIssueR
rOut.valid := in.ar.valid && canIssueR
rOut.bits :<= edgeOut.Get(rId, rAddr, rSize)._2
rOut.bits.user :<= in.ar.bits.user
rOut.bits.user.lift(AMBAProt).foreach { rProt =>
rProt.privileged := in.ar.bits.prot(0)
rProt.secure := !in.ar.bits.prot(1)
rProt.fetch := in.ar.bits.prot(2)
rProt.bufferable := in.ar.bits.cache(0)
rProt.modifiable := in.ar.bits.cache(1)
rProt.readalloc := in.ar.bits.cache(2)
rProt.writealloc := in.ar.bits.cache(3)
}
/* Write request logic */
// Strip off the MSB, which identifies the transaction as read vs write.
val strippedResponseSourceId = if (numTlTxns > 1) {
out.d.bits.source((out.d.bits.source).getWidth - 2, 0)
} else {
// When there's only 1 TileLink transaction allowed for read/write, then this field is always 0.
0.U(1.W)
}
// Track when a write request burst is in progress.
val writeBurstBusy = RegInit(false.B)
when(in.w.fire) {
writeBurstBusy := !in.w.bits.last
}
val usedWriteIds = RegInit(0.U(numTlTxns.W))
val canIssueW = !usedWriteIds.andR
val usedWriteIdsSet = WireDefault(0.U(numTlTxns.W))
val usedWriteIdsClr = WireDefault(0.U(numTlTxns.W))
usedWriteIds := (usedWriteIds & ~usedWriteIdsClr) | usedWriteIdsSet
// Since write responses can show up in the middle of a write burst, we need to ensure the write burst ID doesn't
// change mid-burst.
val freeWriteIdOHRaw = Wire(UInt(numTlTxns.W))
val freeWriteIdOH = freeWriteIdOHRaw holdUnless !writeBurstBusy
val freeWriteIdIndex = OHToUInt(freeWriteIdOH)
freeWriteIdOHRaw := ~(leftOR(~usedWriteIds) << 1) & ~usedWriteIds
val wOut = Wire(Decoupled(new TLBundleA(edgeOut.bundle)))
val wBytes1 = in.aw.bits.bytes1()
val wSize = OH1ToUInt(wBytes1)
val wOk = edgeOut.slave.supportsPutPartialSafe(in.aw.bits.addr, wSize)
val wId = if (numTlTxns > 1) {
Cat(isWriteSourceBit, freeWriteIdIndex)
} else {
isWriteSourceBit
}
val wAddr = Mux(wOk, in.aw.bits.addr, errorDevAddr.U | in.aw.bits.addr(log2Ceil(beatBytes) - 1, 0))
// Here, we're taking advantage of the Irrevocable behavior of AXI4 (once 'valid' is asserted it must remain
// asserted until the handshake occurs). We will only accept W-channel beats when we have a valid AW beat, but
// the AW-channel beat won't fire until the final W-channel beat fires. So, we have stable address/size/strb
// bits during a W-channel burst.
in.aw.ready := wOut.ready && in.w.valid && in.w.bits.last && canIssueW
in.w.ready := wOut.ready && in.aw.valid && canIssueW
wOut.valid := in.aw.valid && in.w.valid && canIssueW
wOut.bits :<= edgeOut.Put(wId, wAddr, wSize, in.w.bits.data, in.w.bits.strb)._2
in.w.bits.user.lift(AMBACorrupt).foreach { wOut.bits.corrupt := _ }
wOut.bits.user :<= in.aw.bits.user
wOut.bits.user.lift(AMBAProt).foreach { wProt =>
wProt.privileged := in.aw.bits.prot(0)
wProt.secure := !in.aw.bits.prot(1)
wProt.fetch := in.aw.bits.prot(2)
wProt.bufferable := in.aw.bits.cache(0)
wProt.modifiable := in.aw.bits.cache(1)
wProt.readalloc := in.aw.bits.cache(2)
wProt.writealloc := in.aw.bits.cache(3)
}
// Merge the AXI4 read/write requests into the TL-A channel.
TLArbiter(TLArbiter.roundRobin)(out.a, (0.U, rOut), (in.aw.bits.len, wOut))
/* Read/write response logic */
val okB = Wire(Irrevocable(new AXI4BundleB(edgeIn.bundle)))
val okR = Wire(Irrevocable(new AXI4BundleR(edgeIn.bundle)))
val dResp = Mux(out.d.bits.denied || out.d.bits.corrupt, AXI4Parameters.RESP_SLVERR, AXI4Parameters.RESP_OKAY)
val dHasData = edgeOut.hasData(out.d.bits)
val (_dFirst, dLast, _dDone, dCount) = edgeOut.count(out.d)
val dNumBeats1 = edgeOut.numBeats1(out.d.bits)
// Handle cases where writeack arrives before write is done
val writeEarlyAck = (UIntToOH(strippedResponseSourceId) & usedWriteIds) === 0.U
out.d.ready := Mux(dHasData, listBuffer.ioResponse.ready, okB.ready && !writeEarlyAck)
listBuffer.ioDataOut.ready := okR.ready
okR.valid := listBuffer.ioDataOut.valid
okB.valid := out.d.valid && !dHasData && !writeEarlyAck
listBuffer.ioResponse.valid := out.d.valid && dHasData
listBuffer.ioResponse.bits.index := strippedResponseSourceId
listBuffer.ioResponse.bits.data.data := out.d.bits.data
listBuffer.ioResponse.bits.data.resp := dResp
listBuffer.ioResponse.bits.data.last := dLast
listBuffer.ioResponse.bits.data.user :<= out.d.bits.user
listBuffer.ioResponse.bits.count := dCount
listBuffer.ioResponse.bits.numBeats1 := dNumBeats1
okR.bits.id := listBuffer.ioDataOut.bits.listIndex
okR.bits.data := listBuffer.ioDataOut.bits.payload.data
okR.bits.resp := listBuffer.ioDataOut.bits.payload.resp
okR.bits.last := listBuffer.ioDataOut.bits.payload.last
okR.bits.user :<= listBuffer.ioDataOut.bits.payload.user
// Upon the final beat in a write request, record a mapping from TileLink source ID to AXI write ID. Upon a write
// response, mark the write transaction as complete.
val writeIdMap = Mem(numTlTxns, UInt(log2Ceil(numIds).W))
val writeResponseId = writeIdMap.read(strippedResponseSourceId)
when(wOut.fire) {
writeIdMap.write(freeWriteIdIndex, in.aw.bits.id)
}
when(edgeOut.done(wOut)) {
usedWriteIdsSet := freeWriteIdOH
}
when(okB.fire) {
usedWriteIdsClr := UIntToOH(strippedResponseSourceId, numTlTxns)
}
okB.bits.id := writeResponseId
okB.bits.resp := dResp
okB.bits.user :<= out.d.bits.user
// AXI4 needs irrevocable behaviour
in.r <> Queue.irrevocable(okR, 1, flow = true)
in.b <> Queue.irrevocable(okB, 1, flow = true)
// Unused channels
out.b.ready := true.B
out.c.valid := false.B
out.e.valid := false.B
/* Alignment constraints. The AXI4Fragmenter should guarantee all of these constraints. */
def checkRequest[T <: AXI4BundleA](a: IrrevocableIO[T], reqType: String): Unit = {
val lReqType = reqType.toLowerCase
when(a.valid) {
assert(a.bits.len < maxBeats.U, s"$reqType burst length (%d) must be less than $maxBeats", a.bits.len + 1.U)
// Narrow transfers and FIXED bursts must be single-beat bursts.
when(a.bits.len =/= 0.U) {
assert(
a.bits.size === log2Ceil(beatBytes).U,
s"Narrow $lReqType transfers (%d < $beatBytes bytes) can't be multi-beat bursts (%d beats)",
1.U << a.bits.size,
a.bits.len + 1.U
)
assert(
a.bits.burst =/= AXI4Parameters.BURST_FIXED,
s"Fixed $lReqType bursts can't be multi-beat bursts (%d beats)",
a.bits.len + 1.U
)
}
// Furthermore, the transfer size (a.bits.bytes1() + 1.U) must be naturally-aligned to the address (in
// particular, during both WRAP and INCR bursts), but this constraint is already checked by TileLink
// Monitors. Note that this alignment requirement means that WRAP bursts are identical to INCR bursts.
}
}
checkRequest(in.ar, "Read")
checkRequest(in.aw, "Write")
}
}
}
object UnsafeAXI4ToTL {
def apply(numTlTxns: Int = 1, wcorrupt: Boolean = true)(implicit p: Parameters) = {
val axi42tl = LazyModule(new UnsafeAXI4ToTL(numTlTxns, wcorrupt))
axi42tl.node
}
}
/* ReservableListBuffer logic, and associated classes. */
class ResponsePayload[T <: Data](val data: T, val params: ReservableListBufferParameters) extends Bundle {
val index = UInt(params.entryBits.W)
val count = UInt(params.beatBits.W)
val numBeats1 = UInt(params.beatBits.W)
}
class DataOutPayload[T <: Data](val payload: T, val params: ReservableListBufferParameters) extends Bundle {
val listIndex = UInt(params.listBits.W)
}
/** Abstract base class to unify [[ReservableListBuffer]] and [[PassthroughListBuffer]]. */
abstract class BaseReservableListBuffer[T <: Data](gen: T, params: ReservableListBufferParameters)
extends Module {
require(params.numEntries > 0)
require(params.numLists > 0)
val ioReserve = IO(Flipped(Decoupled(UInt(params.listBits.W))))
val ioReservedIndex = IO(Output(UInt(params.entryBits.W)))
val ioResponse = IO(Flipped(Decoupled(new ResponsePayload(gen, params))))
val ioDataOut = IO(Decoupled(new DataOutPayload(gen, params)))
}
/** A modified version of 'ListBuffer' from 'sifive/block-inclusivecache-sifive'. This module forces users to reserve
* linked list entries (through the 'ioReserve' port) before writing data into those linked lists (through the
* 'ioResponse' port). Each response is tagged to indicate which linked list it is written into. The responses for a
* given linked list can come back out-of-order, but they will be read out through the 'ioDataOut' port in-order.
*
* ==Constructor==
* @param gen Chisel type of linked list data element
* @param params Other parameters
*
* ==Module IO==
* @param ioReserve Index of list to reserve a new element in
* @param ioReservedIndex Index of the entry that was reserved in the linked list, valid when 'ioReserve.fire'
* @param ioResponse Payload containing response data and linked-list-entry index
* @param ioDataOut Payload containing data read from response linked list and linked list index
*/
class ReservableListBuffer[T <: Data](gen: T, params: ReservableListBufferParameters)
extends BaseReservableListBuffer(gen, params) {
val valid = RegInit(0.U(params.numLists.W))
val head = Mem(params.numLists, UInt(params.entryBits.W))
val tail = Mem(params.numLists, UInt(params.entryBits.W))
val used = RegInit(0.U(params.numEntries.W))
val next = Mem(params.numEntries, UInt(params.entryBits.W))
val map = Mem(params.numEntries, UInt(params.listBits.W))
val dataMems = Seq.fill(params.numBeats) { SyncReadMem(params.numEntries, gen) }
val dataIsPresent = RegInit(0.U(params.numEntries.W))
val beats = Mem(params.numEntries, UInt(params.beatBits.W))
// The 'data' SRAM should be single-ported (read-or-write), since dual-ported SRAMs are significantly slower.
val dataMemReadEnable = WireDefault(false.B)
val dataMemWriteEnable = WireDefault(false.B)
assert(!(dataMemReadEnable && dataMemWriteEnable))
// 'freeOH' has a single bit set, which is the least-significant bit that is cleared in 'used'. So, it's the
// lowest-index entry in the 'data' RAM which is free.
val freeOH = Wire(UInt(params.numEntries.W))
val freeIndex = OHToUInt(freeOH)
freeOH := ~(leftOR(~used) << 1) & ~used
ioReservedIndex := freeIndex
val validSet = WireDefault(0.U(params.numLists.W))
val validClr = WireDefault(0.U(params.numLists.W))
val usedSet = WireDefault(0.U(params.numEntries.W))
val usedClr = WireDefault(0.U(params.numEntries.W))
val dataIsPresentSet = WireDefault(0.U(params.numEntries.W))
val dataIsPresentClr = WireDefault(0.U(params.numEntries.W))
valid := (valid & ~validClr) | validSet
used := (used & ~usedClr) | usedSet
dataIsPresent := (dataIsPresent & ~dataIsPresentClr) | dataIsPresentSet
/* Reservation logic signals */
val reserveTail = Wire(UInt(params.entryBits.W))
val reserveIsValid = Wire(Bool())
/* Response logic signals */
val responseIndex = Wire(UInt(params.entryBits.W))
val responseListIndex = Wire(UInt(params.listBits.W))
val responseHead = Wire(UInt(params.entryBits.W))
val responseTail = Wire(UInt(params.entryBits.W))
val nextResponseHead = Wire(UInt(params.entryBits.W))
val nextDataIsPresent = Wire(Bool())
val isResponseInOrder = Wire(Bool())
val isEndOfList = Wire(Bool())
val isLastBeat = Wire(Bool())
val isLastResponseBeat = Wire(Bool())
val isLastUnwindBeat = Wire(Bool())
/* Reservation logic */
reserveTail := tail.read(ioReserve.bits)
reserveIsValid := valid(ioReserve.bits)
ioReserve.ready := !used.andR
// When we want to append-to and destroy the same linked list on the same cycle, we need to take special care that we
// actually start a new list, rather than appending to a list that's about to disappear.
val reserveResponseSameList = ioReserve.bits === responseListIndex
val appendToAndDestroyList =
ioReserve.fire && ioDataOut.fire && reserveResponseSameList && isEndOfList && isLastBeat
when(ioReserve.fire) {
validSet := UIntToOH(ioReserve.bits, params.numLists)
usedSet := freeOH
when(reserveIsValid && !appendToAndDestroyList) {
next.write(reserveTail, freeIndex)
}.otherwise {
head.write(ioReserve.bits, freeIndex)
}
tail.write(ioReserve.bits, freeIndex)
map.write(freeIndex, ioReserve.bits)
}
/* Response logic */
// The majority of the response logic (reading from and writing to the various RAMs) is common between the
// response-from-IO case (ioResponse.fire) and the response-from-unwind case (unwindDataIsValid).
// The read from the 'next' RAM should be performed at the address given by 'responseHead'. However, we only use the
// 'nextResponseHead' signal when 'isResponseInOrder' is asserted (both in the response-from-IO and
// response-from-unwind cases), which implies that 'responseHead' equals 'responseIndex'. 'responseHead' comes after
// two back-to-back RAM reads, so indexing into the 'next' RAM with 'responseIndex' is much quicker.
responseHead := head.read(responseListIndex)
responseTail := tail.read(responseListIndex)
nextResponseHead := next.read(responseIndex)
nextDataIsPresent := dataIsPresent(nextResponseHead)
// Note that when 'isEndOfList' is asserted, 'nextResponseHead' (and therefore 'nextDataIsPresent') is invalid, since
// there isn't a next element in the linked list.
isResponseInOrder := responseHead === responseIndex
isEndOfList := responseHead === responseTail
isLastResponseBeat := ioResponse.bits.count === ioResponse.bits.numBeats1
// When a response's last beat is sent to the output channel, mark it as completed. This can happen in two
// situations:
// 1. We receive an in-order response, which travels straight from 'ioResponse' to 'ioDataOut'. The 'data' SRAM
// reservation was never needed.
// 2. An entry is read out of the 'data' SRAM (within the unwind FSM).
when(ioDataOut.fire && isLastBeat) {
// Mark the reservation as no-longer-used.
usedClr := UIntToOH(responseIndex, params.numEntries)
// If the response is in-order, then we're popping an element from this linked list.
when(isEndOfList) {
// Once we pop the last element from a linked list, mark it as no-longer-present.
validClr := UIntToOH(responseListIndex, params.numLists)
}.otherwise {
// Move the linked list's head pointer to the new head pointer.
head.write(responseListIndex, nextResponseHead)
}
}
// If we get an out-of-order response, then stash it in the 'data' SRAM for later unwinding.
when(ioResponse.fire && !isResponseInOrder) {
dataMemWriteEnable := true.B
when(isLastResponseBeat) {
dataIsPresentSet := UIntToOH(ioResponse.bits.index, params.numEntries)
beats.write(ioResponse.bits.index, ioResponse.bits.numBeats1)
}
}
// Use the 'ioResponse.bits.count' index (AKA the beat number) to select which 'data' SRAM to write to.
val responseCountOH = UIntToOH(ioResponse.bits.count, params.numBeats)
(responseCountOH.asBools zip dataMems) foreach { case (select, seqMem) =>
when(select && dataMemWriteEnable) {
seqMem.write(ioResponse.bits.index, ioResponse.bits.data)
}
}
/* Response unwind logic */
// Unwind FSM state definitions
val sIdle :: sUnwinding :: Nil = Enum(2)
val unwindState = RegInit(sIdle)
val busyUnwinding = unwindState === sUnwinding
val startUnwind = Wire(Bool())
val stopUnwind = Wire(Bool())
when(startUnwind) {
unwindState := sUnwinding
}.elsewhen(stopUnwind) {
unwindState := sIdle
}
assert(!(startUnwind && stopUnwind))
// Start the unwind FSM when there is an old out-of-order response stored in the 'data' SRAM that is now about to
// become the next in-order response. As noted previously, when 'isEndOfList' is asserted, 'nextDataIsPresent' is
// invalid.
//
// Note that since an in-order response from 'ioResponse' to 'ioDataOut' starts the unwind FSM, we don't have to
// worry about overwriting the 'data' SRAM's output when we start the unwind FSM.
startUnwind := ioResponse.fire && isResponseInOrder && isLastResponseBeat && !isEndOfList && nextDataIsPresent
// Stop the unwind FSM when the output channel consumes the final beat of an element from the unwind FSM, and one of
// two things happens:
// 1. We're still waiting for the next in-order response for this list (!nextDataIsPresent)
// 2. There are no more outstanding responses in this list (isEndOfList)
//
// Including 'busyUnwinding' ensures this is a single-cycle pulse, and it never fires while in-order transactions are
// passing from 'ioResponse' to 'ioDataOut'.
stopUnwind := busyUnwinding && ioDataOut.fire && isLastUnwindBeat && (!nextDataIsPresent || isEndOfList)
val isUnwindBurstOver = Wire(Bool())
val startNewBurst = startUnwind || (isUnwindBurstOver && dataMemReadEnable)
// Track the number of beats left to unwind for each list entry. At the start of a new burst, we flop the number of
// beats in this burst (minus 1) into 'unwindBeats1', and we reset the 'beatCounter' counter. With each beat, we
// increment 'beatCounter' until it reaches 'unwindBeats1'.
val unwindBeats1 = Reg(UInt(params.beatBits.W))
val nextBeatCounter = Wire(UInt(params.beatBits.W))
val beatCounter = RegNext(nextBeatCounter)
isUnwindBurstOver := beatCounter === unwindBeats1
when(startNewBurst) {
unwindBeats1 := beats.read(nextResponseHead)
nextBeatCounter := 0.U
}.elsewhen(dataMemReadEnable) {
nextBeatCounter := beatCounter + 1.U
}.otherwise {
nextBeatCounter := beatCounter
}
// When unwinding, feed the next linked-list head pointer (read out of the 'next' RAM) back so we can unwind the next
// entry in this linked list. Only update the pointer when we're actually moving to the next 'data' SRAM entry (which
// happens at the start of reading a new stored burst).
val unwindResponseIndex = RegEnable(nextResponseHead, startNewBurst)
responseIndex := Mux(busyUnwinding, unwindResponseIndex, ioResponse.bits.index)
// Hold 'nextResponseHead' static while we're in the middle of unwinding a multi-beat burst entry. We don't want the
// SRAM read address to shift while reading beats from a burst. Note that this is identical to 'nextResponseHead
// holdUnless startNewBurst', but 'unwindResponseIndex' already implements the 'RegEnable' signal in 'holdUnless'.
val unwindReadAddress = Mux(startNewBurst, nextResponseHead, unwindResponseIndex)
// The 'data' SRAM's output is valid if we read from the SRAM on the previous cycle. The SRAM's output stays valid
// until it is consumed by the output channel (and if we don't read from the SRAM again on that same cycle).
val unwindDataIsValid = RegInit(false.B)
when(dataMemReadEnable) {
unwindDataIsValid := true.B
}.elsewhen(ioDataOut.fire) {
unwindDataIsValid := false.B
}
isLastUnwindBeat := isUnwindBurstOver && unwindDataIsValid
// Indicates if this is the last beat for both 'ioResponse'-to-'ioDataOut' and unwind-to-'ioDataOut' beats.
isLastBeat := Mux(busyUnwinding, isLastUnwindBeat, isLastResponseBeat)
// Select which SRAM to read from based on the beat counter.
val dataOutputVec = Wire(Vec(params.numBeats, gen))
val nextBeatCounterOH = UIntToOH(nextBeatCounter, params.numBeats)
(nextBeatCounterOH.asBools zip dataMems).zipWithIndex foreach { case ((select, seqMem), i) =>
dataOutputVec(i) := seqMem.read(unwindReadAddress, select && dataMemReadEnable)
}
// Select the current 'data' SRAM output beat, and save the output in a register in case we're being back-pressured
// by 'ioDataOut'. This implements the functionality of 'readAndHold', but only on the single SRAM we're reading
// from.
val dataOutput = dataOutputVec(beatCounter) holdUnless RegNext(dataMemReadEnable)
// Mark 'data' burst entries as no-longer-present as they get read out of the SRAM.
when(dataMemReadEnable) {
dataIsPresentClr := UIntToOH(unwindReadAddress, params.numEntries)
}
// As noted above, when starting the unwind FSM, we know the 'data' SRAM's output isn't valid, so it's safe to issue
// a read command. Otherwise, only issue an SRAM read when the next 'unwindState' is 'sUnwinding', and if we know
// we're not going to overwrite the SRAM's current output (the SRAM output is already valid, and it's not going to be
// consumed by the output channel).
val dontReadFromDataMem = unwindDataIsValid && !ioDataOut.ready
dataMemReadEnable := startUnwind || (busyUnwinding && !stopUnwind && !dontReadFromDataMem)
// While unwinding, prevent new reservations from overwriting the current 'map' entry that we're using. We need
// 'responseListIndex' to be coherent for the entire unwind process.
val rawResponseListIndex = map.read(responseIndex)
val unwindResponseListIndex = RegEnable(rawResponseListIndex, startNewBurst)
responseListIndex := Mux(busyUnwinding, unwindResponseListIndex, rawResponseListIndex)
// Accept responses either when they can be passed through to the output channel, or if they're out-of-order and are
// just going to be stashed in the 'data' SRAM. Never accept a response payload when we're busy unwinding, since that
// could result in reading from and writing to the 'data' SRAM in the same cycle, and we want that SRAM to be
// single-ported.
ioResponse.ready := (ioDataOut.ready || !isResponseInOrder) && !busyUnwinding
// Either pass an in-order response to the output channel, or data read from the unwind FSM.
ioDataOut.valid := Mux(busyUnwinding, unwindDataIsValid, ioResponse.valid && isResponseInOrder)
ioDataOut.bits.listIndex := responseListIndex
ioDataOut.bits.payload := Mux(busyUnwinding, dataOutput, ioResponse.bits.data)
// It's an error to get a response that isn't associated with a valid linked list.
when(ioResponse.fire || unwindDataIsValid) {
assert(
valid(responseListIndex),
"No linked list exists at index %d, mapped from %d",
responseListIndex,
responseIndex
)
}
when(busyUnwinding && dataMemReadEnable) {
assert(isResponseInOrder, "Unwind FSM must read entries from SRAM in order")
}
}
/** Specialized version of [[ReservableListBuffer]] for the case of numEntries == 1.
*
* Much of the complex logic in [[ReservableListBuffer]] can disappear in this case. For instance, we don't have to
* reorder any responses, or store any linked lists.
*/
class PassthroughListBuffer[T <: Data](gen: T, params: ReservableListBufferParameters)
extends BaseReservableListBuffer(gen, params) {
require(params.numEntries == 1, s"PassthroughListBuffer is only valid when 'numEntries' (${params.numEntries}) is 1")
val used = RegInit(0.U(params.numEntries.W))
val map = Mem(params.numEntries, UInt(params.listBits.W))
val usedSet = WireDefault(0.U(params.numEntries.W))
val usedClr = WireDefault(0.U(params.numEntries.W))
used := (used & ~usedClr) | usedSet
ioReserve.ready := used === 0.U
// Store which list index was reserved, we need to return this value when we get a response.
when(ioReserve.fire) {
usedSet := 1.U
map.write(0.U, ioReserve.bits)
}
// There's only one valid linked list entry, which is at index 0.
ioReservedIndex := 0.U
val isLastResponseBeat = ioResponse.bits.count === ioResponse.bits.numBeats1
// Mark the linked list as empty when we get the last beat in a response.
// Note that 'ioResponse.fire === ioDataOut.fire'.
when(ioResponse.fire && isLastResponseBeat) {
usedClr := 1.U
}
// Always pass the response data straight through, since we never need to reorder the response data.
ioDataOut.bits.listIndex := map.read(0.U)
ioDataOut.bits.payload := ioResponse.bits.data
ioDataOut.valid := ioResponse.valid
ioResponse.ready := ioDataOut.ready
}
| module dataMems_467( // @[UnsafeAXI4ToTL.scala:365:62]
input [4:0] R0_addr,
input R0_en,
input R0_clk,
output [66:0] R0_data,
input [4:0] W0_addr,
input W0_en,
input W0_clk,
input [66:0] W0_data
);
dataMems_0_ext dataMems_0_ext ( // @[UnsafeAXI4ToTL.scala:365:62]
.R0_addr (R0_addr),
.R0_en (R0_en),
.R0_clk (R0_clk),
.R0_data (R0_data),
.W0_addr (W0_addr),
.W0_en (W0_en),
.W0_clk (W0_clk),
.W0_data (W0_data)
); // @[UnsafeAXI4ToTL.scala:365:62]
endmodule |
Generate the Verilog code corresponding to the following Chisel files.
File Monitor.scala:
// See LICENSE.SiFive for license details.
package freechips.rocketchip.tilelink
import chisel3._
import chisel3.util._
import chisel3.experimental.SourceLine
import org.chipsalliance.cde.config._
import org.chipsalliance.diplomacy._
import freechips.rocketchip.diplomacy.EnableMonitors
import freechips.rocketchip.formal.{MonitorDirection, IfThen, Property, PropertyClass, TestplanTestType, TLMonitorStrictMode}
import freechips.rocketchip.util.PlusArg
case class TLMonitorArgs(edge: TLEdge)
abstract class TLMonitorBase(args: TLMonitorArgs) extends Module
{
val io = IO(new Bundle {
val in = Input(new TLBundle(args.edge.bundle))
})
def legalize(bundle: TLBundle, edge: TLEdge, reset: Reset): Unit
legalize(io.in, args.edge, reset)
}
object TLMonitor {
def apply(enable: Boolean, node: TLNode)(implicit p: Parameters): TLNode = {
if (enable) {
EnableMonitors { implicit p => node := TLEphemeralNode()(ValName("monitor")) }
} else { node }
}
}
class TLMonitor(args: TLMonitorArgs, monitorDir: MonitorDirection = MonitorDirection.Monitor) extends TLMonitorBase(args)
{
require (args.edge.params(TLMonitorStrictMode) || (! args.edge.params(TestplanTestType).formal))
val cover_prop_class = PropertyClass.Default
//Like assert but can flip to being an assumption for formal verification
def monAssert(cond: Bool, message: String): Unit =
if (monitorDir == MonitorDirection.Monitor) {
assert(cond, message)
} else {
Property(monitorDir, cond, message, PropertyClass.Default)
}
def assume(cond: Bool, message: String): Unit =
if (monitorDir == MonitorDirection.Monitor) {
assert(cond, message)
} else {
Property(monitorDir.flip, cond, message, PropertyClass.Default)
}
def extra = {
args.edge.sourceInfo match {
case SourceLine(filename, line, col) => s" (connected at $filename:$line:$col)"
case _ => ""
}
}
def visible(address: UInt, source: UInt, edge: TLEdge) =
edge.client.clients.map { c =>
!c.sourceId.contains(source) ||
c.visibility.map(_.contains(address)).reduce(_ || _)
}.reduce(_ && _)
def legalizeFormatA(bundle: TLBundleA, edge: TLEdge): Unit = {
//switch this flag to turn on diplomacy in error messages
def diplomacyInfo = if (true) "" else "\nThe diplomacy information for the edge is as follows:\n" + edge.formatEdge + "\n"
monAssert (TLMessages.isA(bundle.opcode), "'A' channel has invalid opcode" + extra)
// Reuse these subexpressions to save some firrtl lines
val source_ok = edge.client.contains(bundle.source)
val is_aligned = edge.isAligned(bundle.address, bundle.size)
val mask = edge.full_mask(bundle)
monAssert (visible(edge.address(bundle), bundle.source, edge), "'A' channel carries an address illegal for the specified bank visibility")
//The monitor doesnβt check for acquire T vs acquire B, it assumes that acquire B implies acquire T and only checks for acquire B
//TODO: check for acquireT?
when (bundle.opcode === TLMessages.AcquireBlock) {
monAssert (edge.master.emitsAcquireB(bundle.source, bundle.size) && edge.slave.supportsAcquireBSafe(edge.address(bundle), bundle.size), "'A' channel carries AcquireBlock type which is unexpected using diplomatic parameters" + diplomacyInfo + extra)
monAssert (edge.master.supportsProbe(edge.source(bundle), bundle.size) && edge.slave.emitsProbeSafe(edge.address(bundle), bundle.size), "'A' channel carries AcquireBlock from a client which does not support Probe" + diplomacyInfo + extra)
monAssert (source_ok, "'A' channel AcquireBlock carries invalid source ID" + diplomacyInfo + extra)
monAssert (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'A' channel AcquireBlock smaller than a beat" + extra)
monAssert (is_aligned, "'A' channel AcquireBlock address not aligned to size" + extra)
monAssert (TLPermissions.isGrow(bundle.param), "'A' channel AcquireBlock carries invalid grow param" + extra)
monAssert (~bundle.mask === 0.U, "'A' channel AcquireBlock contains invalid mask" + extra)
monAssert (!bundle.corrupt, "'A' channel AcquireBlock is corrupt" + extra)
}
when (bundle.opcode === TLMessages.AcquirePerm) {
monAssert (edge.master.emitsAcquireB(bundle.source, bundle.size) && edge.slave.supportsAcquireBSafe(edge.address(bundle), bundle.size), "'A' channel carries AcquirePerm type which is unexpected using diplomatic parameters" + diplomacyInfo + extra)
monAssert (edge.master.supportsProbe(edge.source(bundle), bundle.size) && edge.slave.emitsProbeSafe(edge.address(bundle), bundle.size), "'A' channel carries AcquirePerm from a client which does not support Probe" + diplomacyInfo + extra)
monAssert (source_ok, "'A' channel AcquirePerm carries invalid source ID" + diplomacyInfo + extra)
monAssert (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'A' channel AcquirePerm smaller than a beat" + extra)
monAssert (is_aligned, "'A' channel AcquirePerm address not aligned to size" + extra)
monAssert (TLPermissions.isGrow(bundle.param), "'A' channel AcquirePerm carries invalid grow param" + extra)
monAssert (bundle.param =/= TLPermissions.NtoB, "'A' channel AcquirePerm requests NtoB" + extra)
monAssert (~bundle.mask === 0.U, "'A' channel AcquirePerm contains invalid mask" + extra)
monAssert (!bundle.corrupt, "'A' channel AcquirePerm is corrupt" + extra)
}
when (bundle.opcode === TLMessages.Get) {
monAssert (edge.master.emitsGet(bundle.source, bundle.size), "'A' channel carries Get type which master claims it can't emit" + diplomacyInfo + extra)
monAssert (edge.slave.supportsGetSafe(edge.address(bundle), bundle.size, None), "'A' channel carries Get type which slave claims it can't support" + diplomacyInfo + extra)
monAssert (source_ok, "'A' channel Get carries invalid source ID" + diplomacyInfo + extra)
monAssert (is_aligned, "'A' channel Get address not aligned to size" + extra)
monAssert (bundle.param === 0.U, "'A' channel Get carries invalid param" + extra)
monAssert (bundle.mask === mask, "'A' channel Get contains invalid mask" + extra)
monAssert (!bundle.corrupt, "'A' channel Get is corrupt" + extra)
}
when (bundle.opcode === TLMessages.PutFullData) {
monAssert (edge.master.emitsPutFull(bundle.source, bundle.size) && edge.slave.supportsPutFullSafe(edge.address(bundle), bundle.size), "'A' channel carries PutFull type which is unexpected using diplomatic parameters" + diplomacyInfo + extra)
monAssert (source_ok, "'A' channel PutFull carries invalid source ID" + diplomacyInfo + extra)
monAssert (is_aligned, "'A' channel PutFull address not aligned to size" + extra)
monAssert (bundle.param === 0.U, "'A' channel PutFull carries invalid param" + extra)
monAssert (bundle.mask === mask, "'A' channel PutFull contains invalid mask" + extra)
}
when (bundle.opcode === TLMessages.PutPartialData) {
monAssert (edge.master.emitsPutPartial(bundle.source, bundle.size) && edge.slave.supportsPutPartialSafe(edge.address(bundle), bundle.size), "'A' channel carries PutPartial type which is unexpected using diplomatic parameters" + extra)
monAssert (source_ok, "'A' channel PutPartial carries invalid source ID" + diplomacyInfo + extra)
monAssert (is_aligned, "'A' channel PutPartial address not aligned to size" + extra)
monAssert (bundle.param === 0.U, "'A' channel PutPartial carries invalid param" + extra)
monAssert ((bundle.mask & ~mask) === 0.U, "'A' channel PutPartial contains invalid mask" + extra)
}
when (bundle.opcode === TLMessages.ArithmeticData) {
monAssert (edge.master.emitsArithmetic(bundle.source, bundle.size) && edge.slave.supportsArithmeticSafe(edge.address(bundle), bundle.size), "'A' channel carries Arithmetic type which is unexpected using diplomatic parameters" + extra)
monAssert (source_ok, "'A' channel Arithmetic carries invalid source ID" + diplomacyInfo + extra)
monAssert (is_aligned, "'A' channel Arithmetic address not aligned to size" + extra)
monAssert (TLAtomics.isArithmetic(bundle.param), "'A' channel Arithmetic carries invalid opcode param" + extra)
monAssert (bundle.mask === mask, "'A' channel Arithmetic contains invalid mask" + extra)
}
when (bundle.opcode === TLMessages.LogicalData) {
monAssert (edge.master.emitsLogical(bundle.source, bundle.size) && edge.slave.supportsLogicalSafe(edge.address(bundle), bundle.size), "'A' channel carries Logical type which is unexpected using diplomatic parameters" + extra)
monAssert (source_ok, "'A' channel Logical carries invalid source ID" + diplomacyInfo + extra)
monAssert (is_aligned, "'A' channel Logical address not aligned to size" + extra)
monAssert (TLAtomics.isLogical(bundle.param), "'A' channel Logical carries invalid opcode param" + extra)
monAssert (bundle.mask === mask, "'A' channel Logical contains invalid mask" + extra)
}
when (bundle.opcode === TLMessages.Hint) {
monAssert (edge.master.emitsHint(bundle.source, bundle.size) && edge.slave.supportsHintSafe(edge.address(bundle), bundle.size), "'A' channel carries Hint type which is unexpected using diplomatic parameters" + extra)
monAssert (source_ok, "'A' channel Hint carries invalid source ID" + diplomacyInfo + extra)
monAssert (is_aligned, "'A' channel Hint address not aligned to size" + extra)
monAssert (TLHints.isHints(bundle.param), "'A' channel Hint carries invalid opcode param" + extra)
monAssert (bundle.mask === mask, "'A' channel Hint contains invalid mask" + extra)
monAssert (!bundle.corrupt, "'A' channel Hint is corrupt" + extra)
}
}
def legalizeFormatB(bundle: TLBundleB, edge: TLEdge): Unit = {
monAssert (TLMessages.isB(bundle.opcode), "'B' channel has invalid opcode" + extra)
monAssert (visible(edge.address(bundle), bundle.source, edge), "'B' channel carries an address illegal for the specified bank visibility")
// Reuse these subexpressions to save some firrtl lines
val address_ok = edge.manager.containsSafe(edge.address(bundle))
val is_aligned = edge.isAligned(bundle.address, bundle.size)
val mask = edge.full_mask(bundle)
val legal_source = Mux1H(edge.client.find(bundle.source), edge.client.clients.map(c => c.sourceId.start.U)) === bundle.source
when (bundle.opcode === TLMessages.Probe) {
assume (edge.master.supportsProbe(edge.source(bundle), bundle.size) && edge.slave.emitsProbeSafe(edge.address(bundle), bundle.size), "'B' channel carries Probe type which is unexpected using diplomatic parameters" + extra)
assume (address_ok, "'B' channel Probe carries unmanaged address" + extra)
assume (legal_source, "'B' channel Probe carries source that is not first source" + extra)
assume (is_aligned, "'B' channel Probe address not aligned to size" + extra)
assume (TLPermissions.isCap(bundle.param), "'B' channel Probe carries invalid cap param" + extra)
assume (bundle.mask === mask, "'B' channel Probe contains invalid mask" + extra)
assume (!bundle.corrupt, "'B' channel Probe is corrupt" + extra)
}
when (bundle.opcode === TLMessages.Get) {
monAssert (edge.master.supportsGet(edge.source(bundle), bundle.size) && edge.slave.emitsGetSafe(edge.address(bundle), bundle.size), "'B' channel carries Get type which is unexpected using diplomatic parameters" + extra)
monAssert (address_ok, "'B' channel Get carries unmanaged address" + extra)
monAssert (legal_source, "'B' channel Get carries source that is not first source" + extra)
monAssert (is_aligned, "'B' channel Get address not aligned to size" + extra)
monAssert (bundle.param === 0.U, "'B' channel Get carries invalid param" + extra)
monAssert (bundle.mask === mask, "'B' channel Get contains invalid mask" + extra)
monAssert (!bundle.corrupt, "'B' channel Get is corrupt" + extra)
}
when (bundle.opcode === TLMessages.PutFullData) {
monAssert (edge.master.supportsPutFull(edge.source(bundle), bundle.size) && edge.slave.emitsPutFullSafe(edge.address(bundle), bundle.size), "'B' channel carries PutFull type which is unexpected using diplomatic parameters" + extra)
monAssert (address_ok, "'B' channel PutFull carries unmanaged address" + extra)
monAssert (legal_source, "'B' channel PutFull carries source that is not first source" + extra)
monAssert (is_aligned, "'B' channel PutFull address not aligned to size" + extra)
monAssert (bundle.param === 0.U, "'B' channel PutFull carries invalid param" + extra)
monAssert (bundle.mask === mask, "'B' channel PutFull contains invalid mask" + extra)
}
when (bundle.opcode === TLMessages.PutPartialData) {
monAssert (edge.master.supportsPutPartial(edge.source(bundle), bundle.size) && edge.slave.emitsPutPartialSafe(edge.address(bundle), bundle.size), "'B' channel carries PutPartial type which is unexpected using diplomatic parameters" + extra)
monAssert (address_ok, "'B' channel PutPartial carries unmanaged address" + extra)
monAssert (legal_source, "'B' channel PutPartial carries source that is not first source" + extra)
monAssert (is_aligned, "'B' channel PutPartial address not aligned to size" + extra)
monAssert (bundle.param === 0.U, "'B' channel PutPartial carries invalid param" + extra)
monAssert ((bundle.mask & ~mask) === 0.U, "'B' channel PutPartial contains invalid mask" + extra)
}
when (bundle.opcode === TLMessages.ArithmeticData) {
monAssert (edge.master.supportsArithmetic(edge.source(bundle), bundle.size) && edge.slave.emitsArithmeticSafe(edge.address(bundle), bundle.size), "'B' channel carries Arithmetic type unsupported by master" + extra)
monAssert (address_ok, "'B' channel Arithmetic carries unmanaged address" + extra)
monAssert (legal_source, "'B' channel Arithmetic carries source that is not first source" + extra)
monAssert (is_aligned, "'B' channel Arithmetic address not aligned to size" + extra)
monAssert (TLAtomics.isArithmetic(bundle.param), "'B' channel Arithmetic carries invalid opcode param" + extra)
monAssert (bundle.mask === mask, "'B' channel Arithmetic contains invalid mask" + extra)
}
when (bundle.opcode === TLMessages.LogicalData) {
monAssert (edge.master.supportsLogical(edge.source(bundle), bundle.size) && edge.slave.emitsLogicalSafe(edge.address(bundle), bundle.size), "'B' channel carries Logical type unsupported by client" + extra)
monAssert (address_ok, "'B' channel Logical carries unmanaged address" + extra)
monAssert (legal_source, "'B' channel Logical carries source that is not first source" + extra)
monAssert (is_aligned, "'B' channel Logical address not aligned to size" + extra)
monAssert (TLAtomics.isLogical(bundle.param), "'B' channel Logical carries invalid opcode param" + extra)
monAssert (bundle.mask === mask, "'B' channel Logical contains invalid mask" + extra)
}
when (bundle.opcode === TLMessages.Hint) {
monAssert (edge.master.supportsHint(edge.source(bundle), bundle.size) && edge.slave.emitsHintSafe(edge.address(bundle), bundle.size), "'B' channel carries Hint type unsupported by client" + extra)
monAssert (address_ok, "'B' channel Hint carries unmanaged address" + extra)
monAssert (legal_source, "'B' channel Hint carries source that is not first source" + extra)
monAssert (is_aligned, "'B' channel Hint address not aligned to size" + extra)
monAssert (bundle.mask === mask, "'B' channel Hint contains invalid mask" + extra)
monAssert (!bundle.corrupt, "'B' channel Hint is corrupt" + extra)
}
}
def legalizeFormatC(bundle: TLBundleC, edge: TLEdge): Unit = {
monAssert (TLMessages.isC(bundle.opcode), "'C' channel has invalid opcode" + extra)
val source_ok = edge.client.contains(bundle.source)
val is_aligned = edge.isAligned(bundle.address, bundle.size)
val address_ok = edge.manager.containsSafe(edge.address(bundle))
monAssert (visible(edge.address(bundle), bundle.source, edge), "'C' channel carries an address illegal for the specified bank visibility")
when (bundle.opcode === TLMessages.ProbeAck) {
monAssert (address_ok, "'C' channel ProbeAck carries unmanaged address" + extra)
monAssert (source_ok, "'C' channel ProbeAck carries invalid source ID" + extra)
monAssert (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'C' channel ProbeAck smaller than a beat" + extra)
monAssert (is_aligned, "'C' channel ProbeAck address not aligned to size" + extra)
monAssert (TLPermissions.isReport(bundle.param), "'C' channel ProbeAck carries invalid report param" + extra)
monAssert (!bundle.corrupt, "'C' channel ProbeAck is corrupt" + extra)
}
when (bundle.opcode === TLMessages.ProbeAckData) {
monAssert (address_ok, "'C' channel ProbeAckData carries unmanaged address" + extra)
monAssert (source_ok, "'C' channel ProbeAckData carries invalid source ID" + extra)
monAssert (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'C' channel ProbeAckData smaller than a beat" + extra)
monAssert (is_aligned, "'C' channel ProbeAckData address not aligned to size" + extra)
monAssert (TLPermissions.isReport(bundle.param), "'C' channel ProbeAckData carries invalid report param" + extra)
}
when (bundle.opcode === TLMessages.Release) {
monAssert (edge.master.emitsAcquireB(edge.source(bundle), bundle.size) && edge.slave.supportsAcquireBSafe(edge.address(bundle), bundle.size), "'C' channel carries Release type unsupported by manager" + extra)
monAssert (edge.master.supportsProbe(edge.source(bundle), bundle.size) && edge.slave.emitsProbeSafe(edge.address(bundle), bundle.size), "'C' channel carries Release from a client which does not support Probe" + extra)
monAssert (source_ok, "'C' channel Release carries invalid source ID" + extra)
monAssert (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'C' channel Release smaller than a beat" + extra)
monAssert (is_aligned, "'C' channel Release address not aligned to size" + extra)
monAssert (TLPermissions.isReport(bundle.param), "'C' channel Release carries invalid report param" + extra)
monAssert (!bundle.corrupt, "'C' channel Release is corrupt" + extra)
}
when (bundle.opcode === TLMessages.ReleaseData) {
monAssert (edge.master.emitsAcquireB(edge.source(bundle), bundle.size) && edge.slave.supportsAcquireBSafe(edge.address(bundle), bundle.size), "'C' channel carries ReleaseData type unsupported by manager" + extra)
monAssert (edge.master.supportsProbe(edge.source(bundle), bundle.size) && edge.slave.emitsProbeSafe(edge.address(bundle), bundle.size), "'C' channel carries Release from a client which does not support Probe" + extra)
monAssert (source_ok, "'C' channel ReleaseData carries invalid source ID" + extra)
monAssert (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'C' channel ReleaseData smaller than a beat" + extra)
monAssert (is_aligned, "'C' channel ReleaseData address not aligned to size" + extra)
monAssert (TLPermissions.isReport(bundle.param), "'C' channel ReleaseData carries invalid report param" + extra)
}
when (bundle.opcode === TLMessages.AccessAck) {
monAssert (address_ok, "'C' channel AccessAck carries unmanaged address" + extra)
monAssert (source_ok, "'C' channel AccessAck carries invalid source ID" + extra)
monAssert (is_aligned, "'C' channel AccessAck address not aligned to size" + extra)
monAssert (bundle.param === 0.U, "'C' channel AccessAck carries invalid param" + extra)
monAssert (!bundle.corrupt, "'C' channel AccessAck is corrupt" + extra)
}
when (bundle.opcode === TLMessages.AccessAckData) {
monAssert (address_ok, "'C' channel AccessAckData carries unmanaged address" + extra)
monAssert (source_ok, "'C' channel AccessAckData carries invalid source ID" + extra)
monAssert (is_aligned, "'C' channel AccessAckData address not aligned to size" + extra)
monAssert (bundle.param === 0.U, "'C' channel AccessAckData carries invalid param" + extra)
}
when (bundle.opcode === TLMessages.HintAck) {
monAssert (address_ok, "'C' channel HintAck carries unmanaged address" + extra)
monAssert (source_ok, "'C' channel HintAck carries invalid source ID" + extra)
monAssert (is_aligned, "'C' channel HintAck address not aligned to size" + extra)
monAssert (bundle.param === 0.U, "'C' channel HintAck carries invalid param" + extra)
monAssert (!bundle.corrupt, "'C' channel HintAck is corrupt" + extra)
}
}
def legalizeFormatD(bundle: TLBundleD, edge: TLEdge): Unit = {
assume (TLMessages.isD(bundle.opcode), "'D' channel has invalid opcode" + extra)
val source_ok = edge.client.contains(bundle.source)
val sink_ok = bundle.sink < edge.manager.endSinkId.U
val deny_put_ok = edge.manager.mayDenyPut.B
val deny_get_ok = edge.manager.mayDenyGet.B
when (bundle.opcode === TLMessages.ReleaseAck) {
assume (source_ok, "'D' channel ReleaseAck carries invalid source ID" + extra)
assume (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'D' channel ReleaseAck smaller than a beat" + extra)
assume (bundle.param === 0.U, "'D' channel ReleaseeAck carries invalid param" + extra)
assume (!bundle.corrupt, "'D' channel ReleaseAck is corrupt" + extra)
assume (!bundle.denied, "'D' channel ReleaseAck is denied" + extra)
}
when (bundle.opcode === TLMessages.Grant) {
assume (source_ok, "'D' channel Grant carries invalid source ID" + extra)
assume (sink_ok, "'D' channel Grant carries invalid sink ID" + extra)
assume (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'D' channel Grant smaller than a beat" + extra)
assume (TLPermissions.isCap(bundle.param), "'D' channel Grant carries invalid cap param" + extra)
assume (bundle.param =/= TLPermissions.toN, "'D' channel Grant carries toN param" + extra)
assume (!bundle.corrupt, "'D' channel Grant is corrupt" + extra)
assume (deny_put_ok || !bundle.denied, "'D' channel Grant is denied" + extra)
}
when (bundle.opcode === TLMessages.GrantData) {
assume (source_ok, "'D' channel GrantData carries invalid source ID" + extra)
assume (sink_ok, "'D' channel GrantData carries invalid sink ID" + extra)
assume (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'D' channel GrantData smaller than a beat" + extra)
assume (TLPermissions.isCap(bundle.param), "'D' channel GrantData carries invalid cap param" + extra)
assume (bundle.param =/= TLPermissions.toN, "'D' channel GrantData carries toN param" + extra)
assume (!bundle.denied || bundle.corrupt, "'D' channel GrantData is denied but not corrupt" + extra)
assume (deny_get_ok || !bundle.denied, "'D' channel GrantData is denied" + extra)
}
when (bundle.opcode === TLMessages.AccessAck) {
assume (source_ok, "'D' channel AccessAck carries invalid source ID" + extra)
// size is ignored
assume (bundle.param === 0.U, "'D' channel AccessAck carries invalid param" + extra)
assume (!bundle.corrupt, "'D' channel AccessAck is corrupt" + extra)
assume (deny_put_ok || !bundle.denied, "'D' channel AccessAck is denied" + extra)
}
when (bundle.opcode === TLMessages.AccessAckData) {
assume (source_ok, "'D' channel AccessAckData carries invalid source ID" + extra)
// size is ignored
assume (bundle.param === 0.U, "'D' channel AccessAckData carries invalid param" + extra)
assume (!bundle.denied || bundle.corrupt, "'D' channel AccessAckData is denied but not corrupt" + extra)
assume (deny_get_ok || !bundle.denied, "'D' channel AccessAckData is denied" + extra)
}
when (bundle.opcode === TLMessages.HintAck) {
assume (source_ok, "'D' channel HintAck carries invalid source ID" + extra)
// size is ignored
assume (bundle.param === 0.U, "'D' channel HintAck carries invalid param" + extra)
assume (!bundle.corrupt, "'D' channel HintAck is corrupt" + extra)
assume (deny_put_ok || !bundle.denied, "'D' channel HintAck is denied" + extra)
}
}
def legalizeFormatE(bundle: TLBundleE, edge: TLEdge): Unit = {
val sink_ok = bundle.sink < edge.manager.endSinkId.U
monAssert (sink_ok, "'E' channels carries invalid sink ID" + extra)
}
def legalizeFormat(bundle: TLBundle, edge: TLEdge) = {
when (bundle.a.valid) { legalizeFormatA(bundle.a.bits, edge) }
when (bundle.d.valid) { legalizeFormatD(bundle.d.bits, edge) }
if (edge.client.anySupportProbe && edge.manager.anySupportAcquireB) {
when (bundle.b.valid) { legalizeFormatB(bundle.b.bits, edge) }
when (bundle.c.valid) { legalizeFormatC(bundle.c.bits, edge) }
when (bundle.e.valid) { legalizeFormatE(bundle.e.bits, edge) }
} else {
monAssert (!bundle.b.valid, "'B' channel valid and not TL-C" + extra)
monAssert (!bundle.c.valid, "'C' channel valid and not TL-C" + extra)
monAssert (!bundle.e.valid, "'E' channel valid and not TL-C" + extra)
}
}
def legalizeMultibeatA(a: DecoupledIO[TLBundleA], edge: TLEdge): Unit = {
val a_first = edge.first(a.bits, a.fire)
val opcode = Reg(UInt())
val param = Reg(UInt())
val size = Reg(UInt())
val source = Reg(UInt())
val address = Reg(UInt())
when (a.valid && !a_first) {
monAssert (a.bits.opcode === opcode, "'A' channel opcode changed within multibeat operation" + extra)
monAssert (a.bits.param === param, "'A' channel param changed within multibeat operation" + extra)
monAssert (a.bits.size === size, "'A' channel size changed within multibeat operation" + extra)
monAssert (a.bits.source === source, "'A' channel source changed within multibeat operation" + extra)
monAssert (a.bits.address=== address,"'A' channel address changed with multibeat operation" + extra)
}
when (a.fire && a_first) {
opcode := a.bits.opcode
param := a.bits.param
size := a.bits.size
source := a.bits.source
address := a.bits.address
}
}
def legalizeMultibeatB(b: DecoupledIO[TLBundleB], edge: TLEdge): Unit = {
val b_first = edge.first(b.bits, b.fire)
val opcode = Reg(UInt())
val param = Reg(UInt())
val size = Reg(UInt())
val source = Reg(UInt())
val address = Reg(UInt())
when (b.valid && !b_first) {
monAssert (b.bits.opcode === opcode, "'B' channel opcode changed within multibeat operation" + extra)
monAssert (b.bits.param === param, "'B' channel param changed within multibeat operation" + extra)
monAssert (b.bits.size === size, "'B' channel size changed within multibeat operation" + extra)
monAssert (b.bits.source === source, "'B' channel source changed within multibeat operation" + extra)
monAssert (b.bits.address=== address,"'B' channel addresss changed with multibeat operation" + extra)
}
when (b.fire && b_first) {
opcode := b.bits.opcode
param := b.bits.param
size := b.bits.size
source := b.bits.source
address := b.bits.address
}
}
def legalizeADSourceFormal(bundle: TLBundle, edge: TLEdge): Unit = {
// Symbolic variable
val sym_source = Wire(UInt(edge.client.endSourceId.W))
// TODO: Connect sym_source to a fixed value for simulation and to a
// free wire in formal
sym_source := 0.U
// Type casting Int to UInt
val maxSourceId = Wire(UInt(edge.client.endSourceId.W))
maxSourceId := edge.client.endSourceId.U
// Delayed verison of sym_source
val sym_source_d = Reg(UInt(edge.client.endSourceId.W))
sym_source_d := sym_source
// These will be constraints for FV setup
Property(
MonitorDirection.Monitor,
(sym_source === sym_source_d),
"sym_source should remain stable",
PropertyClass.Default)
Property(
MonitorDirection.Monitor,
(sym_source <= maxSourceId),
"sym_source should take legal value",
PropertyClass.Default)
val my_resp_pend = RegInit(false.B)
val my_opcode = Reg(UInt())
val my_size = Reg(UInt())
val a_first = bundle.a.valid && edge.first(bundle.a.bits, bundle.a.fire)
val d_first = bundle.d.valid && edge.first(bundle.d.bits, bundle.d.fire)
val my_a_first_beat = a_first && (bundle.a.bits.source === sym_source)
val my_d_first_beat = d_first && (bundle.d.bits.source === sym_source)
val my_clr_resp_pend = (bundle.d.fire && my_d_first_beat)
val my_set_resp_pend = (bundle.a.fire && my_a_first_beat && !my_clr_resp_pend)
when (my_set_resp_pend) {
my_resp_pend := true.B
} .elsewhen (my_clr_resp_pend) {
my_resp_pend := false.B
}
when (my_a_first_beat) {
my_opcode := bundle.a.bits.opcode
my_size := bundle.a.bits.size
}
val my_resp_size = Mux(my_a_first_beat, bundle.a.bits.size, my_size)
val my_resp_opcode = Mux(my_a_first_beat, bundle.a.bits.opcode, my_opcode)
val my_resp_opcode_legal = Wire(Bool())
when ((my_resp_opcode === TLMessages.Get) || (my_resp_opcode === TLMessages.ArithmeticData) ||
(my_resp_opcode === TLMessages.LogicalData)) {
my_resp_opcode_legal := (bundle.d.bits.opcode === TLMessages.AccessAckData)
} .elsewhen ((my_resp_opcode === TLMessages.PutFullData) || (my_resp_opcode === TLMessages.PutPartialData)) {
my_resp_opcode_legal := (bundle.d.bits.opcode === TLMessages.AccessAck)
} .otherwise {
my_resp_opcode_legal := (bundle.d.bits.opcode === TLMessages.HintAck)
}
monAssert (IfThen(my_resp_pend, !my_a_first_beat),
"Request message should not be sent with a source ID, for which a response message" +
"is already pending (not received until current cycle) for a prior request message" +
"with the same source ID" + extra)
assume (IfThen(my_clr_resp_pend, (my_set_resp_pend || my_resp_pend)),
"Response message should be accepted with a source ID only if a request message with the" +
"same source ID has been accepted or is being accepted in the current cycle" + extra)
assume (IfThen(my_d_first_beat, (my_a_first_beat || my_resp_pend)),
"Response message should be sent with a source ID only if a request message with the" +
"same source ID has been accepted or is being sent in the current cycle" + extra)
assume (IfThen(my_d_first_beat, (bundle.d.bits.size === my_resp_size)),
"If d_valid is 1, then d_size should be same as a_size of the corresponding request" +
"message" + extra)
assume (IfThen(my_d_first_beat, my_resp_opcode_legal),
"If d_valid is 1, then d_opcode should correspond with a_opcode of the corresponding" +
"request message" + extra)
}
def legalizeMultibeatC(c: DecoupledIO[TLBundleC], edge: TLEdge): Unit = {
val c_first = edge.first(c.bits, c.fire)
val opcode = Reg(UInt())
val param = Reg(UInt())
val size = Reg(UInt())
val source = Reg(UInt())
val address = Reg(UInt())
when (c.valid && !c_first) {
monAssert (c.bits.opcode === opcode, "'C' channel opcode changed within multibeat operation" + extra)
monAssert (c.bits.param === param, "'C' channel param changed within multibeat operation" + extra)
monAssert (c.bits.size === size, "'C' channel size changed within multibeat operation" + extra)
monAssert (c.bits.source === source, "'C' channel source changed within multibeat operation" + extra)
monAssert (c.bits.address=== address,"'C' channel address changed with multibeat operation" + extra)
}
when (c.fire && c_first) {
opcode := c.bits.opcode
param := c.bits.param
size := c.bits.size
source := c.bits.source
address := c.bits.address
}
}
def legalizeMultibeatD(d: DecoupledIO[TLBundleD], edge: TLEdge): Unit = {
val d_first = edge.first(d.bits, d.fire)
val opcode = Reg(UInt())
val param = Reg(UInt())
val size = Reg(UInt())
val source = Reg(UInt())
val sink = Reg(UInt())
val denied = Reg(Bool())
when (d.valid && !d_first) {
assume (d.bits.opcode === opcode, "'D' channel opcode changed within multibeat operation" + extra)
assume (d.bits.param === param, "'D' channel param changed within multibeat operation" + extra)
assume (d.bits.size === size, "'D' channel size changed within multibeat operation" + extra)
assume (d.bits.source === source, "'D' channel source changed within multibeat operation" + extra)
assume (d.bits.sink === sink, "'D' channel sink changed with multibeat operation" + extra)
assume (d.bits.denied === denied, "'D' channel denied changed with multibeat operation" + extra)
}
when (d.fire && d_first) {
opcode := d.bits.opcode
param := d.bits.param
size := d.bits.size
source := d.bits.source
sink := d.bits.sink
denied := d.bits.denied
}
}
def legalizeMultibeat(bundle: TLBundle, edge: TLEdge): Unit = {
legalizeMultibeatA(bundle.a, edge)
legalizeMultibeatD(bundle.d, edge)
if (edge.client.anySupportProbe && edge.manager.anySupportAcquireB) {
legalizeMultibeatB(bundle.b, edge)
legalizeMultibeatC(bundle.c, edge)
}
}
//This is left in for almond which doesn't adhere to the tilelink protocol
@deprecated("Use legalizeADSource instead if possible","")
def legalizeADSourceOld(bundle: TLBundle, edge: TLEdge): Unit = {
val inflight = RegInit(0.U(edge.client.endSourceId.W))
val a_first = edge.first(bundle.a.bits, bundle.a.fire)
val d_first = edge.first(bundle.d.bits, bundle.d.fire)
val a_set = WireInit(0.U(edge.client.endSourceId.W))
when (bundle.a.fire && a_first && edge.isRequest(bundle.a.bits)) {
a_set := UIntToOH(bundle.a.bits.source)
assert(!inflight(bundle.a.bits.source), "'A' channel re-used a source ID" + extra)
}
val d_clr = WireInit(0.U(edge.client.endSourceId.W))
val d_release_ack = bundle.d.bits.opcode === TLMessages.ReleaseAck
when (bundle.d.fire && d_first && edge.isResponse(bundle.d.bits) && !d_release_ack) {
d_clr := UIntToOH(bundle.d.bits.source)
assume((a_set | inflight)(bundle.d.bits.source), "'D' channel acknowledged for nothing inflight" + extra)
}
if (edge.manager.minLatency > 0) {
assume(a_set =/= d_clr || !a_set.orR, s"'A' and 'D' concurrent, despite minlatency > 0" + extra)
}
inflight := (inflight | a_set) & ~d_clr
val watchdog = RegInit(0.U(32.W))
val limit = PlusArg("tilelink_timeout",
docstring="Kill emulation after INT waiting TileLink cycles. Off if 0.")
assert (!inflight.orR || limit === 0.U || watchdog < limit, "TileLink timeout expired" + extra)
watchdog := watchdog + 1.U
when (bundle.a.fire || bundle.d.fire) { watchdog := 0.U }
}
def legalizeADSource(bundle: TLBundle, edge: TLEdge): Unit = {
val a_size_bus_size = edge.bundle.sizeBits + 1 //add one so that 0 is not mapped to anything (size 0 -> size 1 in map, size 0 in map means unset)
val a_opcode_bus_size = 3 + 1 //opcode size is 3, but add so that 0 is not mapped to anything
val log_a_opcode_bus_size = log2Ceil(a_opcode_bus_size)
val log_a_size_bus_size = log2Ceil(a_size_bus_size)
def size_to_numfullbits(x: UInt): UInt = (1.U << x) - 1.U //convert a number to that many full bits
val inflight = RegInit(0.U((2 max edge.client.endSourceId).W)) // size up to avoid width error
inflight.suggestName("inflight")
val inflight_opcodes = RegInit(0.U((edge.client.endSourceId << log_a_opcode_bus_size).W))
inflight_opcodes.suggestName("inflight_opcodes")
val inflight_sizes = RegInit(0.U((edge.client.endSourceId << log_a_size_bus_size).W))
inflight_sizes.suggestName("inflight_sizes")
val a_first = edge.first(bundle.a.bits, bundle.a.fire)
a_first.suggestName("a_first")
val d_first = edge.first(bundle.d.bits, bundle.d.fire)
d_first.suggestName("d_first")
val a_set = WireInit(0.U(edge.client.endSourceId.W))
val a_set_wo_ready = WireInit(0.U(edge.client.endSourceId.W))
a_set.suggestName("a_set")
a_set_wo_ready.suggestName("a_set_wo_ready")
val a_opcodes_set = WireInit(0.U((edge.client.endSourceId << log_a_opcode_bus_size).W))
a_opcodes_set.suggestName("a_opcodes_set")
val a_sizes_set = WireInit(0.U((edge.client.endSourceId << log_a_size_bus_size).W))
a_sizes_set.suggestName("a_sizes_set")
val a_opcode_lookup = WireInit(0.U((a_opcode_bus_size - 1).W))
a_opcode_lookup.suggestName("a_opcode_lookup")
a_opcode_lookup := ((inflight_opcodes) >> (bundle.d.bits.source << log_a_opcode_bus_size.U) & size_to_numfullbits(1.U << log_a_opcode_bus_size.U)) >> 1.U
val a_size_lookup = WireInit(0.U((1 << log_a_size_bus_size).W))
a_size_lookup.suggestName("a_size_lookup")
a_size_lookup := ((inflight_sizes) >> (bundle.d.bits.source << log_a_size_bus_size.U) & size_to_numfullbits(1.U << log_a_size_bus_size.U)) >> 1.U
val responseMap = VecInit(Seq(TLMessages.AccessAck, TLMessages.AccessAck, TLMessages.AccessAckData, TLMessages.AccessAckData, TLMessages.AccessAckData, TLMessages.HintAck, TLMessages.Grant, TLMessages.Grant))
val responseMapSecondOption = VecInit(Seq(TLMessages.AccessAck, TLMessages.AccessAck, TLMessages.AccessAckData, TLMessages.AccessAckData, TLMessages.AccessAckData, TLMessages.HintAck, TLMessages.GrantData, TLMessages.Grant))
val a_opcodes_set_interm = WireInit(0.U(a_opcode_bus_size.W))
a_opcodes_set_interm.suggestName("a_opcodes_set_interm")
val a_sizes_set_interm = WireInit(0.U(a_size_bus_size.W))
a_sizes_set_interm.suggestName("a_sizes_set_interm")
when (bundle.a.valid && a_first && edge.isRequest(bundle.a.bits)) {
a_set_wo_ready := UIntToOH(bundle.a.bits.source)
}
when (bundle.a.fire && a_first && edge.isRequest(bundle.a.bits)) {
a_set := UIntToOH(bundle.a.bits.source)
a_opcodes_set_interm := (bundle.a.bits.opcode << 1.U) | 1.U
a_sizes_set_interm := (bundle.a.bits.size << 1.U) | 1.U
a_opcodes_set := (a_opcodes_set_interm) << (bundle.a.bits.source << log_a_opcode_bus_size.U)
a_sizes_set := (a_sizes_set_interm) << (bundle.a.bits.source << log_a_size_bus_size.U)
monAssert(!inflight(bundle.a.bits.source), "'A' channel re-used a source ID" + extra)
}
val d_clr = WireInit(0.U(edge.client.endSourceId.W))
val d_clr_wo_ready = WireInit(0.U(edge.client.endSourceId.W))
d_clr.suggestName("d_clr")
d_clr_wo_ready.suggestName("d_clr_wo_ready")
val d_opcodes_clr = WireInit(0.U((edge.client.endSourceId << log_a_opcode_bus_size).W))
d_opcodes_clr.suggestName("d_opcodes_clr")
val d_sizes_clr = WireInit(0.U((edge.client.endSourceId << log_a_size_bus_size).W))
d_sizes_clr.suggestName("d_sizes_clr")
val d_release_ack = bundle.d.bits.opcode === TLMessages.ReleaseAck
when (bundle.d.valid && d_first && edge.isResponse(bundle.d.bits) && !d_release_ack) {
d_clr_wo_ready := UIntToOH(bundle.d.bits.source)
}
when (bundle.d.fire && d_first && edge.isResponse(bundle.d.bits) && !d_release_ack) {
d_clr := UIntToOH(bundle.d.bits.source)
d_opcodes_clr := size_to_numfullbits(1.U << log_a_opcode_bus_size.U) << (bundle.d.bits.source << log_a_opcode_bus_size.U)
d_sizes_clr := size_to_numfullbits(1.U << log_a_size_bus_size.U) << (bundle.d.bits.source << log_a_size_bus_size.U)
}
when (bundle.d.valid && d_first && edge.isResponse(bundle.d.bits) && !d_release_ack) {
val same_cycle_resp = bundle.a.valid && a_first && edge.isRequest(bundle.a.bits) && (bundle.a.bits.source === bundle.d.bits.source)
assume(((inflight)(bundle.d.bits.source)) || same_cycle_resp, "'D' channel acknowledged for nothing inflight" + extra)
when (same_cycle_resp) {
assume((bundle.d.bits.opcode === responseMap(bundle.a.bits.opcode)) ||
(bundle.d.bits.opcode === responseMapSecondOption(bundle.a.bits.opcode)), "'D' channel contains improper opcode response" + extra)
assume((bundle.a.bits.size === bundle.d.bits.size), "'D' channel contains improper response size" + extra)
} .otherwise {
assume((bundle.d.bits.opcode === responseMap(a_opcode_lookup)) ||
(bundle.d.bits.opcode === responseMapSecondOption(a_opcode_lookup)), "'D' channel contains improper opcode response" + extra)
assume((bundle.d.bits.size === a_size_lookup), "'D' channel contains improper response size" + extra)
}
}
when(bundle.d.valid && d_first && a_first && bundle.a.valid && (bundle.a.bits.source === bundle.d.bits.source) && !d_release_ack) {
assume((!bundle.d.ready) || bundle.a.ready, "ready check")
}
if (edge.manager.minLatency > 0) {
assume(a_set_wo_ready =/= d_clr_wo_ready || !a_set_wo_ready.orR, s"'A' and 'D' concurrent, despite minlatency > 0" + extra)
}
inflight := (inflight | a_set) & ~d_clr
inflight_opcodes := (inflight_opcodes | a_opcodes_set) & ~d_opcodes_clr
inflight_sizes := (inflight_sizes | a_sizes_set) & ~d_sizes_clr
val watchdog = RegInit(0.U(32.W))
val limit = PlusArg("tilelink_timeout",
docstring="Kill emulation after INT waiting TileLink cycles. Off if 0.")
monAssert (!inflight.orR || limit === 0.U || watchdog < limit, "TileLink timeout expired" + extra)
watchdog := watchdog + 1.U
when (bundle.a.fire || bundle.d.fire) { watchdog := 0.U }
}
def legalizeCDSource(bundle: TLBundle, edge: TLEdge): Unit = {
val c_size_bus_size = edge.bundle.sizeBits + 1 //add one so that 0 is not mapped to anything (size 0 -> size 1 in map, size 0 in map means unset)
val c_opcode_bus_size = 3 + 1 //opcode size is 3, but add so that 0 is not mapped to anything
val log_c_opcode_bus_size = log2Ceil(c_opcode_bus_size)
val log_c_size_bus_size = log2Ceil(c_size_bus_size)
def size_to_numfullbits(x: UInt): UInt = (1.U << x) - 1.U //convert a number to that many full bits
val inflight = RegInit(0.U((2 max edge.client.endSourceId).W))
val inflight_opcodes = RegInit(0.U((edge.client.endSourceId << log_c_opcode_bus_size).W))
val inflight_sizes = RegInit(0.U((edge.client.endSourceId << log_c_size_bus_size).W))
inflight.suggestName("inflight")
inflight_opcodes.suggestName("inflight_opcodes")
inflight_sizes.suggestName("inflight_sizes")
val c_first = edge.first(bundle.c.bits, bundle.c.fire)
val d_first = edge.first(bundle.d.bits, bundle.d.fire)
c_first.suggestName("c_first")
d_first.suggestName("d_first")
val c_set = WireInit(0.U(edge.client.endSourceId.W))
val c_set_wo_ready = WireInit(0.U(edge.client.endSourceId.W))
val c_opcodes_set = WireInit(0.U((edge.client.endSourceId << log_c_opcode_bus_size).W))
val c_sizes_set = WireInit(0.U((edge.client.endSourceId << log_c_size_bus_size).W))
c_set.suggestName("c_set")
c_set_wo_ready.suggestName("c_set_wo_ready")
c_opcodes_set.suggestName("c_opcodes_set")
c_sizes_set.suggestName("c_sizes_set")
val c_opcode_lookup = WireInit(0.U((1 << log_c_opcode_bus_size).W))
val c_size_lookup = WireInit(0.U((1 << log_c_size_bus_size).W))
c_opcode_lookup := ((inflight_opcodes) >> (bundle.d.bits.source << log_c_opcode_bus_size.U) & size_to_numfullbits(1.U << log_c_opcode_bus_size.U)) >> 1.U
c_size_lookup := ((inflight_sizes) >> (bundle.d.bits.source << log_c_size_bus_size.U) & size_to_numfullbits(1.U << log_c_size_bus_size.U)) >> 1.U
c_opcode_lookup.suggestName("c_opcode_lookup")
c_size_lookup.suggestName("c_size_lookup")
val c_opcodes_set_interm = WireInit(0.U(c_opcode_bus_size.W))
val c_sizes_set_interm = WireInit(0.U(c_size_bus_size.W))
c_opcodes_set_interm.suggestName("c_opcodes_set_interm")
c_sizes_set_interm.suggestName("c_sizes_set_interm")
when (bundle.c.valid && c_first && edge.isRequest(bundle.c.bits)) {
c_set_wo_ready := UIntToOH(bundle.c.bits.source)
}
when (bundle.c.fire && c_first && edge.isRequest(bundle.c.bits)) {
c_set := UIntToOH(bundle.c.bits.source)
c_opcodes_set_interm := (bundle.c.bits.opcode << 1.U) | 1.U
c_sizes_set_interm := (bundle.c.bits.size << 1.U) | 1.U
c_opcodes_set := (c_opcodes_set_interm) << (bundle.c.bits.source << log_c_opcode_bus_size.U)
c_sizes_set := (c_sizes_set_interm) << (bundle.c.bits.source << log_c_size_bus_size.U)
monAssert(!inflight(bundle.c.bits.source), "'C' channel re-used a source ID" + extra)
}
val c_probe_ack = bundle.c.bits.opcode === TLMessages.ProbeAck || bundle.c.bits.opcode === TLMessages.ProbeAckData
val d_clr = WireInit(0.U(edge.client.endSourceId.W))
val d_clr_wo_ready = WireInit(0.U(edge.client.endSourceId.W))
val d_opcodes_clr = WireInit(0.U((edge.client.endSourceId << log_c_opcode_bus_size).W))
val d_sizes_clr = WireInit(0.U((edge.client.endSourceId << log_c_size_bus_size).W))
d_clr.suggestName("d_clr")
d_clr_wo_ready.suggestName("d_clr_wo_ready")
d_opcodes_clr.suggestName("d_opcodes_clr")
d_sizes_clr.suggestName("d_sizes_clr")
val d_release_ack = bundle.d.bits.opcode === TLMessages.ReleaseAck
when (bundle.d.valid && d_first && edge.isResponse(bundle.d.bits) && d_release_ack) {
d_clr_wo_ready := UIntToOH(bundle.d.bits.source)
}
when (bundle.d.fire && d_first && edge.isResponse(bundle.d.bits) && d_release_ack) {
d_clr := UIntToOH(bundle.d.bits.source)
d_opcodes_clr := size_to_numfullbits(1.U << log_c_opcode_bus_size.U) << (bundle.d.bits.source << log_c_opcode_bus_size.U)
d_sizes_clr := size_to_numfullbits(1.U << log_c_size_bus_size.U) << (bundle.d.bits.source << log_c_size_bus_size.U)
}
when (bundle.d.valid && d_first && edge.isResponse(bundle.d.bits) && d_release_ack) {
val same_cycle_resp = bundle.c.valid && c_first && edge.isRequest(bundle.c.bits) && (bundle.c.bits.source === bundle.d.bits.source)
assume(((inflight)(bundle.d.bits.source)) || same_cycle_resp, "'D' channel acknowledged for nothing inflight" + extra)
when (same_cycle_resp) {
assume((bundle.d.bits.size === bundle.c.bits.size), "'D' channel contains improper response size" + extra)
} .otherwise {
assume((bundle.d.bits.size === c_size_lookup), "'D' channel contains improper response size" + extra)
}
}
when(bundle.d.valid && d_first && c_first && bundle.c.valid && (bundle.c.bits.source === bundle.d.bits.source) && d_release_ack && !c_probe_ack) {
assume((!bundle.d.ready) || bundle.c.ready, "ready check")
}
if (edge.manager.minLatency > 0) {
when (c_set_wo_ready.orR) {
assume(c_set_wo_ready =/= d_clr_wo_ready, s"'C' and 'D' concurrent, despite minlatency > 0" + extra)
}
}
inflight := (inflight | c_set) & ~d_clr
inflight_opcodes := (inflight_opcodes | c_opcodes_set) & ~d_opcodes_clr
inflight_sizes := (inflight_sizes | c_sizes_set) & ~d_sizes_clr
val watchdog = RegInit(0.U(32.W))
val limit = PlusArg("tilelink_timeout",
docstring="Kill emulation after INT waiting TileLink cycles. Off if 0.")
monAssert (!inflight.orR || limit === 0.U || watchdog < limit, "TileLink timeout expired" + extra)
watchdog := watchdog + 1.U
when (bundle.c.fire || bundle.d.fire) { watchdog := 0.U }
}
def legalizeDESink(bundle: TLBundle, edge: TLEdge): Unit = {
val inflight = RegInit(0.U(edge.manager.endSinkId.W))
val d_first = edge.first(bundle.d.bits, bundle.d.fire)
val e_first = true.B
val d_set = WireInit(0.U(edge.manager.endSinkId.W))
when (bundle.d.fire && d_first && edge.isRequest(bundle.d.bits)) {
d_set := UIntToOH(bundle.d.bits.sink)
assume(!inflight(bundle.d.bits.sink), "'D' channel re-used a sink ID" + extra)
}
val e_clr = WireInit(0.U(edge.manager.endSinkId.W))
when (bundle.e.fire && e_first && edge.isResponse(bundle.e.bits)) {
e_clr := UIntToOH(bundle.e.bits.sink)
monAssert((d_set | inflight)(bundle.e.bits.sink), "'E' channel acknowledged for nothing inflight" + extra)
}
// edge.client.minLatency applies to BC, not DE
inflight := (inflight | d_set) & ~e_clr
}
def legalizeUnique(bundle: TLBundle, edge: TLEdge): Unit = {
val sourceBits = log2Ceil(edge.client.endSourceId)
val tooBig = 14 // >16kB worth of flight information gets to be too much
if (sourceBits > tooBig) {
println(s"WARNING: TLMonitor instantiated on a bus with source bits (${sourceBits}) > ${tooBig}; A=>D transaction flight will not be checked")
} else {
if (args.edge.params(TestplanTestType).simulation) {
if (args.edge.params(TLMonitorStrictMode)) {
legalizeADSource(bundle, edge)
legalizeCDSource(bundle, edge)
} else {
legalizeADSourceOld(bundle, edge)
}
}
if (args.edge.params(TestplanTestType).formal) {
legalizeADSourceFormal(bundle, edge)
}
}
if (edge.client.anySupportProbe && edge.manager.anySupportAcquireB) {
// legalizeBCSourceAddress(bundle, edge) // too much state needed to synthesize...
val sinkBits = log2Ceil(edge.manager.endSinkId)
if (sinkBits > tooBig) {
println(s"WARNING: TLMonitor instantiated on a bus with sink bits (${sinkBits}) > ${tooBig}; D=>E transaction flight will not be checked")
} else {
legalizeDESink(bundle, edge)
}
}
}
def legalize(bundle: TLBundle, edge: TLEdge, reset: Reset): Unit = {
legalizeFormat (bundle, edge)
legalizeMultibeat (bundle, edge)
legalizeUnique (bundle, edge)
}
}
File Misc.scala:
// See LICENSE.Berkeley for license details.
// See LICENSE.SiFive for license details.
package freechips.rocketchip.util
import chisel3._
import chisel3.util._
import chisel3.util.random.LFSR
import org.chipsalliance.cde.config.Parameters
import scala.math._
class ParameterizedBundle(implicit p: Parameters) extends Bundle
trait Clocked extends Bundle {
val clock = Clock()
val reset = Bool()
}
object DecoupledHelper {
def apply(rvs: Bool*) = new DecoupledHelper(rvs)
}
class DecoupledHelper(val rvs: Seq[Bool]) {
def fire(exclude: Bool, includes: Bool*) = {
require(rvs.contains(exclude), "Excluded Bool not present in DecoupledHelper! Note that DecoupledHelper uses referential equality for exclusion! If you don't want to exclude anything, use fire()!")
(rvs.filter(_ ne exclude) ++ includes).reduce(_ && _)
}
def fire() = {
rvs.reduce(_ && _)
}
}
object MuxT {
def apply[T <: Data, U <: Data](cond: Bool, con: (T, U), alt: (T, U)): (T, U) =
(Mux(cond, con._1, alt._1), Mux(cond, con._2, alt._2))
def apply[T <: Data, U <: Data, W <: Data](cond: Bool, con: (T, U, W), alt: (T, U, W)): (T, U, W) =
(Mux(cond, con._1, alt._1), Mux(cond, con._2, alt._2), Mux(cond, con._3, alt._3))
def apply[T <: Data, U <: Data, W <: Data, X <: Data](cond: Bool, con: (T, U, W, X), alt: (T, U, W, X)): (T, U, W, X) =
(Mux(cond, con._1, alt._1), Mux(cond, con._2, alt._2), Mux(cond, con._3, alt._3), Mux(cond, con._4, alt._4))
}
/** Creates a cascade of n MuxTs to search for a key value. */
object MuxTLookup {
def apply[S <: UInt, T <: Data, U <: Data](key: S, default: (T, U), mapping: Seq[(S, (T, U))]): (T, U) = {
var res = default
for ((k, v) <- mapping.reverse)
res = MuxT(k === key, v, res)
res
}
def apply[S <: UInt, T <: Data, U <: Data, W <: Data](key: S, default: (T, U, W), mapping: Seq[(S, (T, U, W))]): (T, U, W) = {
var res = default
for ((k, v) <- mapping.reverse)
res = MuxT(k === key, v, res)
res
}
}
object ValidMux {
def apply[T <: Data](v1: ValidIO[T], v2: ValidIO[T]*): ValidIO[T] = {
apply(v1 +: v2.toSeq)
}
def apply[T <: Data](valids: Seq[ValidIO[T]]): ValidIO[T] = {
val out = Wire(Valid(valids.head.bits.cloneType))
out.valid := valids.map(_.valid).reduce(_ || _)
out.bits := MuxCase(valids.head.bits,
valids.map(v => (v.valid -> v.bits)))
out
}
}
object Str
{
def apply(s: String): UInt = {
var i = BigInt(0)
require(s.forall(validChar _))
for (c <- s)
i = (i << 8) | c
i.U((s.length*8).W)
}
def apply(x: Char): UInt = {
require(validChar(x))
x.U(8.W)
}
def apply(x: UInt): UInt = apply(x, 10)
def apply(x: UInt, radix: Int): UInt = {
val rad = radix.U
val w = x.getWidth
require(w > 0)
var q = x
var s = digit(q % rad)
for (i <- 1 until ceil(log(2)/log(radix)*w).toInt) {
q = q / rad
s = Cat(Mux((radix == 10).B && q === 0.U, Str(' '), digit(q % rad)), s)
}
s
}
def apply(x: SInt): UInt = apply(x, 10)
def apply(x: SInt, radix: Int): UInt = {
val neg = x < 0.S
val abs = x.abs.asUInt
if (radix != 10) {
Cat(Mux(neg, Str('-'), Str(' ')), Str(abs, radix))
} else {
val rad = radix.U
val w = abs.getWidth
require(w > 0)
var q = abs
var s = digit(q % rad)
var needSign = neg
for (i <- 1 until ceil(log(2)/log(radix)*w).toInt) {
q = q / rad
val placeSpace = q === 0.U
val space = Mux(needSign, Str('-'), Str(' '))
needSign = needSign && !placeSpace
s = Cat(Mux(placeSpace, space, digit(q % rad)), s)
}
Cat(Mux(needSign, Str('-'), Str(' ')), s)
}
}
private def digit(d: UInt): UInt = Mux(d < 10.U, Str('0')+d, Str(('a'-10).toChar)+d)(7,0)
private def validChar(x: Char) = x == (x & 0xFF)
}
object Split
{
def apply(x: UInt, n0: Int) = {
val w = x.getWidth
(x.extract(w-1,n0), x.extract(n0-1,0))
}
def apply(x: UInt, n1: Int, n0: Int) = {
val w = x.getWidth
(x.extract(w-1,n1), x.extract(n1-1,n0), x.extract(n0-1,0))
}
def apply(x: UInt, n2: Int, n1: Int, n0: Int) = {
val w = x.getWidth
(x.extract(w-1,n2), x.extract(n2-1,n1), x.extract(n1-1,n0), x.extract(n0-1,0))
}
}
object Random
{
def apply(mod: Int, random: UInt): UInt = {
if (isPow2(mod)) random.extract(log2Ceil(mod)-1,0)
else PriorityEncoder(partition(apply(1 << log2Up(mod*8), random), mod))
}
def apply(mod: Int): UInt = apply(mod, randomizer)
def oneHot(mod: Int, random: UInt): UInt = {
if (isPow2(mod)) UIntToOH(random(log2Up(mod)-1,0))
else PriorityEncoderOH(partition(apply(1 << log2Up(mod*8), random), mod)).asUInt
}
def oneHot(mod: Int): UInt = oneHot(mod, randomizer)
private def randomizer = LFSR(16)
private def partition(value: UInt, slices: Int) =
Seq.tabulate(slices)(i => value < (((i + 1) << value.getWidth) / slices).U)
}
object Majority {
def apply(in: Set[Bool]): Bool = {
val n = (in.size >> 1) + 1
val clauses = in.subsets(n).map(_.reduce(_ && _))
clauses.reduce(_ || _)
}
def apply(in: Seq[Bool]): Bool = apply(in.toSet)
def apply(in: UInt): Bool = apply(in.asBools.toSet)
}
object PopCountAtLeast {
private def two(x: UInt): (Bool, Bool) = x.getWidth match {
case 1 => (x.asBool, false.B)
case n =>
val half = x.getWidth / 2
val (leftOne, leftTwo) = two(x(half - 1, 0))
val (rightOne, rightTwo) = two(x(x.getWidth - 1, half))
(leftOne || rightOne, leftTwo || rightTwo || (leftOne && rightOne))
}
def apply(x: UInt, n: Int): Bool = n match {
case 0 => true.B
case 1 => x.orR
case 2 => two(x)._2
case 3 => PopCount(x) >= n.U
}
}
// This gets used everywhere, so make the smallest circuit possible ...
// Given an address and size, create a mask of beatBytes size
// eg: (0x3, 0, 4) => 0001, (0x3, 1, 4) => 0011, (0x3, 2, 4) => 1111
// groupBy applies an interleaved OR reduction; groupBy=2 take 0010 => 01
object MaskGen {
def apply(addr_lo: UInt, lgSize: UInt, beatBytes: Int, groupBy: Int = 1): UInt = {
require (groupBy >= 1 && beatBytes >= groupBy)
require (isPow2(beatBytes) && isPow2(groupBy))
val lgBytes = log2Ceil(beatBytes)
val sizeOH = UIntToOH(lgSize | 0.U(log2Up(beatBytes).W), log2Up(beatBytes)) | (groupBy*2 - 1).U
def helper(i: Int): Seq[(Bool, Bool)] = {
if (i == 0) {
Seq((lgSize >= lgBytes.asUInt, true.B))
} else {
val sub = helper(i-1)
val size = sizeOH(lgBytes - i)
val bit = addr_lo(lgBytes - i)
val nbit = !bit
Seq.tabulate (1 << i) { j =>
val (sub_acc, sub_eq) = sub(j/2)
val eq = sub_eq && (if (j % 2 == 1) bit else nbit)
val acc = sub_acc || (size && eq)
(acc, eq)
}
}
}
if (groupBy == beatBytes) 1.U else
Cat(helper(lgBytes-log2Ceil(groupBy)).map(_._1).reverse)
}
}
File PlusArg.scala:
// See LICENSE.SiFive for license details.
package freechips.rocketchip.util
import chisel3._
import chisel3.experimental._
import chisel3.util.HasBlackBoxResource
@deprecated("This will be removed in Rocket Chip 2020.08", "Rocket Chip 2020.05")
case class PlusArgInfo(default: BigInt, docstring: String)
/** Case class for PlusArg information
*
* @tparam A scala type of the PlusArg value
* @param default optional default value
* @param docstring text to include in the help
* @param doctype description of the Verilog type of the PlusArg value (e.g. STRING, INT)
*/
private case class PlusArgContainer[A](default: Option[A], docstring: String, doctype: String)
/** Typeclass for converting a type to a doctype string
* @tparam A some type
*/
trait Doctypeable[A] {
/** Return the doctype string for some option */
def toDoctype(a: Option[A]): String
}
/** Object containing implementations of the Doctypeable typeclass */
object Doctypes {
/** Converts an Int => "INT" */
implicit val intToDoctype = new Doctypeable[Int] { def toDoctype(a: Option[Int]) = "INT" }
/** Converts a BigInt => "INT" */
implicit val bigIntToDoctype = new Doctypeable[BigInt] { def toDoctype(a: Option[BigInt]) = "INT" }
/** Converts a String => "STRING" */
implicit val stringToDoctype = new Doctypeable[String] { def toDoctype(a: Option[String]) = "STRING" }
}
class plusarg_reader(val format: String, val default: BigInt, val docstring: String, val width: Int) extends BlackBox(Map(
"FORMAT" -> StringParam(format),
"DEFAULT" -> IntParam(default),
"WIDTH" -> IntParam(width)
)) with HasBlackBoxResource {
val io = IO(new Bundle {
val out = Output(UInt(width.W))
})
addResource("/vsrc/plusarg_reader.v")
}
/* This wrapper class has no outputs, making it clear it is a simulation-only construct */
class PlusArgTimeout(val format: String, val default: BigInt, val docstring: String, val width: Int) extends Module {
val io = IO(new Bundle {
val count = Input(UInt(width.W))
})
val max = Module(new plusarg_reader(format, default, docstring, width)).io.out
when (max > 0.U) {
assert (io.count < max, s"Timeout exceeded: $docstring")
}
}
import Doctypes._
object PlusArg
{
/** PlusArg("foo") will return 42.U if the simulation is run with +foo=42
* Do not use this as an initial register value. The value is set in an
* initial block and thus accessing it from another initial is racey.
* Add a docstring to document the arg, which can be dumped in an elaboration
* pass.
*/
def apply(name: String, default: BigInt = 0, docstring: String = "", width: Int = 32): UInt = {
PlusArgArtefacts.append(name, Some(default), docstring)
Module(new plusarg_reader(name + "=%d", default, docstring, width)).io.out
}
/** PlusArg.timeout(name, default, docstring)(count) will use chisel.assert
* to kill the simulation when count exceeds the specified integer argument.
* Default 0 will never assert.
*/
def timeout(name: String, default: BigInt = 0, docstring: String = "", width: Int = 32)(count: UInt): Unit = {
PlusArgArtefacts.append(name, Some(default), docstring)
Module(new PlusArgTimeout(name + "=%d", default, docstring, width)).io.count := count
}
}
object PlusArgArtefacts {
private var artefacts: Map[String, PlusArgContainer[_]] = Map.empty
/* Add a new PlusArg */
@deprecated(
"Use `Some(BigInt)` to specify a `default` value. This will be removed in Rocket Chip 2020.08",
"Rocket Chip 2020.05"
)
def append(name: String, default: BigInt, docstring: String): Unit = append(name, Some(default), docstring)
/** Add a new PlusArg
*
* @tparam A scala type of the PlusArg value
* @param name name for the PlusArg
* @param default optional default value
* @param docstring text to include in the help
*/
def append[A : Doctypeable](name: String, default: Option[A], docstring: String): Unit =
artefacts = artefacts ++
Map(name -> PlusArgContainer(default, docstring, implicitly[Doctypeable[A]].toDoctype(default)))
/* From plus args, generate help text */
private def serializeHelp_cHeader(tab: String = ""): String = artefacts
.map{ case(arg, info) =>
s"""|$tab+$arg=${info.doctype}\\n\\
|$tab${" "*20}${info.docstring}\\n\\
|""".stripMargin ++ info.default.map{ case default =>
s"$tab${" "*22}(default=${default})\\n\\\n"}.getOrElse("")
}.toSeq.mkString("\\n\\\n") ++ "\""
/* From plus args, generate a char array of their names */
private def serializeArray_cHeader(tab: String = ""): String = {
val prettyTab = tab + " " * 44 // Length of 'static const ...'
s"${tab}static const char * verilog_plusargs [] = {\\\n" ++
artefacts
.map{ case(arg, _) => s"""$prettyTab"$arg",\\\n""" }
.mkString("")++
s"${prettyTab}0};"
}
/* Generate C code to be included in emulator.cc that helps with
* argument parsing based on available Verilog PlusArgs */
def serialize_cHeader(): String =
s"""|#define PLUSARG_USAGE_OPTIONS \"EMULATOR VERILOG PLUSARGS\\n\\
|${serializeHelp_cHeader(" "*7)}
|${serializeArray_cHeader()}
|""".stripMargin
}
File package.scala:
// See LICENSE.SiFive for license details.
package freechips.rocketchip
import chisel3._
import chisel3.util._
import scala.math.min
import scala.collection.{immutable, mutable}
package object util {
implicit class UnzippableOption[S, T](val x: Option[(S, T)]) {
def unzip = (x.map(_._1), x.map(_._2))
}
implicit class UIntIsOneOf(private val x: UInt) extends AnyVal {
def isOneOf(s: Seq[UInt]): Bool = s.map(x === _).orR
def isOneOf(u1: UInt, u2: UInt*): Bool = isOneOf(u1 +: u2.toSeq)
}
implicit class VecToAugmentedVec[T <: Data](private val x: Vec[T]) extends AnyVal {
/** Like Vec.apply(idx), but tolerates indices of mismatched width */
def extract(idx: UInt): T = x((idx | 0.U(log2Ceil(x.size).W)).extract(log2Ceil(x.size) - 1, 0))
}
implicit class SeqToAugmentedSeq[T <: Data](private val x: Seq[T]) extends AnyVal {
def apply(idx: UInt): T = {
if (x.size <= 1) {
x.head
} else if (!isPow2(x.size)) {
// For non-power-of-2 seqs, reflect elements to simplify decoder
(x ++ x.takeRight(x.size & -x.size)).toSeq(idx)
} else {
// Ignore MSBs of idx
val truncIdx =
if (idx.isWidthKnown && idx.getWidth <= log2Ceil(x.size)) idx
else (idx | 0.U(log2Ceil(x.size).W))(log2Ceil(x.size)-1, 0)
x.zipWithIndex.tail.foldLeft(x.head) { case (prev, (cur, i)) => Mux(truncIdx === i.U, cur, prev) }
}
}
def extract(idx: UInt): T = VecInit(x).extract(idx)
def asUInt: UInt = Cat(x.map(_.asUInt).reverse)
def rotate(n: Int): Seq[T] = x.drop(n) ++ x.take(n)
def rotate(n: UInt): Seq[T] = {
if (x.size <= 1) {
x
} else {
require(isPow2(x.size))
val amt = n.padTo(log2Ceil(x.size))
(0 until log2Ceil(x.size)).foldLeft(x)((r, i) => (r.rotate(1 << i) zip r).map { case (s, a) => Mux(amt(i), s, a) })
}
}
def rotateRight(n: Int): Seq[T] = x.takeRight(n) ++ x.dropRight(n)
def rotateRight(n: UInt): Seq[T] = {
if (x.size <= 1) {
x
} else {
require(isPow2(x.size))
val amt = n.padTo(log2Ceil(x.size))
(0 until log2Ceil(x.size)).foldLeft(x)((r, i) => (r.rotateRight(1 << i) zip r).map { case (s, a) => Mux(amt(i), s, a) })
}
}
}
// allow bitwise ops on Seq[Bool] just like UInt
implicit class SeqBoolBitwiseOps(private val x: Seq[Bool]) extends AnyVal {
def & (y: Seq[Bool]): Seq[Bool] = (x zip y).map { case (a, b) => a && b }
def | (y: Seq[Bool]): Seq[Bool] = padZip(x, y).map { case (a, b) => a || b }
def ^ (y: Seq[Bool]): Seq[Bool] = padZip(x, y).map { case (a, b) => a ^ b }
def << (n: Int): Seq[Bool] = Seq.fill(n)(false.B) ++ x
def >> (n: Int): Seq[Bool] = x drop n
def unary_~ : Seq[Bool] = x.map(!_)
def andR: Bool = if (x.isEmpty) true.B else x.reduce(_&&_)
def orR: Bool = if (x.isEmpty) false.B else x.reduce(_||_)
def xorR: Bool = if (x.isEmpty) false.B else x.reduce(_^_)
private def padZip(y: Seq[Bool], z: Seq[Bool]): Seq[(Bool, Bool)] = y.padTo(z.size, false.B) zip z.padTo(y.size, false.B)
}
implicit class DataToAugmentedData[T <: Data](private val x: T) extends AnyVal {
def holdUnless(enable: Bool): T = Mux(enable, x, RegEnable(x, enable))
def getElements: Seq[Element] = x match {
case e: Element => Seq(e)
case a: Aggregate => a.getElements.flatMap(_.getElements)
}
}
/** Any Data subtype that has a Bool member named valid. */
type DataCanBeValid = Data { val valid: Bool }
implicit class SeqMemToAugmentedSeqMem[T <: Data](private val x: SyncReadMem[T]) extends AnyVal {
def readAndHold(addr: UInt, enable: Bool): T = x.read(addr, enable) holdUnless RegNext(enable)
}
implicit class StringToAugmentedString(private val x: String) extends AnyVal {
/** converts from camel case to to underscores, also removing all spaces */
def underscore: String = x.tail.foldLeft(x.headOption.map(_.toLower + "") getOrElse "") {
case (acc, c) if c.isUpper => acc + "_" + c.toLower
case (acc, c) if c == ' ' => acc
case (acc, c) => acc + c
}
/** converts spaces or underscores to hyphens, also lowering case */
def kebab: String = x.toLowerCase map {
case ' ' => '-'
case '_' => '-'
case c => c
}
def named(name: Option[String]): String = {
x + name.map("_named_" + _ ).getOrElse("_with_no_name")
}
def named(name: String): String = named(Some(name))
}
implicit def uintToBitPat(x: UInt): BitPat = BitPat(x)
implicit def wcToUInt(c: WideCounter): UInt = c.value
implicit class UIntToAugmentedUInt(private val x: UInt) extends AnyVal {
def sextTo(n: Int): UInt = {
require(x.getWidth <= n)
if (x.getWidth == n) x
else Cat(Fill(n - x.getWidth, x(x.getWidth-1)), x)
}
def padTo(n: Int): UInt = {
require(x.getWidth <= n)
if (x.getWidth == n) x
else Cat(0.U((n - x.getWidth).W), x)
}
// shifts left by n if n >= 0, or right by -n if n < 0
def << (n: SInt): UInt = {
val w = n.getWidth - 1
require(w <= 30)
val shifted = x << n(w-1, 0)
Mux(n(w), shifted >> (1 << w), shifted)
}
// shifts right by n if n >= 0, or left by -n if n < 0
def >> (n: SInt): UInt = {
val w = n.getWidth - 1
require(w <= 30)
val shifted = x << (1 << w) >> n(w-1, 0)
Mux(n(w), shifted, shifted >> (1 << w))
}
// Like UInt.apply(hi, lo), but returns 0.U for zero-width extracts
def extract(hi: Int, lo: Int): UInt = {
require(hi >= lo-1)
if (hi == lo-1) 0.U
else x(hi, lo)
}
// Like Some(UInt.apply(hi, lo)), but returns None for zero-width extracts
def extractOption(hi: Int, lo: Int): Option[UInt] = {
require(hi >= lo-1)
if (hi == lo-1) None
else Some(x(hi, lo))
}
// like x & ~y, but first truncate or zero-extend y to x's width
def andNot(y: UInt): UInt = x & ~(y | (x & 0.U))
def rotateRight(n: Int): UInt = if (n == 0) x else Cat(x(n-1, 0), x >> n)
def rotateRight(n: UInt): UInt = {
if (x.getWidth <= 1) {
x
} else {
val amt = n.padTo(log2Ceil(x.getWidth))
(0 until log2Ceil(x.getWidth)).foldLeft(x)((r, i) => Mux(amt(i), r.rotateRight(1 << i), r))
}
}
def rotateLeft(n: Int): UInt = if (n == 0) x else Cat(x(x.getWidth-1-n,0), x(x.getWidth-1,x.getWidth-n))
def rotateLeft(n: UInt): UInt = {
if (x.getWidth <= 1) {
x
} else {
val amt = n.padTo(log2Ceil(x.getWidth))
(0 until log2Ceil(x.getWidth)).foldLeft(x)((r, i) => Mux(amt(i), r.rotateLeft(1 << i), r))
}
}
// compute (this + y) % n, given (this < n) and (y < n)
def addWrap(y: UInt, n: Int): UInt = {
val z = x +& y
if (isPow2(n)) z(n.log2-1, 0) else Mux(z >= n.U, z - n.U, z)(log2Ceil(n)-1, 0)
}
// compute (this - y) % n, given (this < n) and (y < n)
def subWrap(y: UInt, n: Int): UInt = {
val z = x -& y
if (isPow2(n)) z(n.log2-1, 0) else Mux(z(z.getWidth-1), z + n.U, z)(log2Ceil(n)-1, 0)
}
def grouped(width: Int): Seq[UInt] =
(0 until x.getWidth by width).map(base => x(base + width - 1, base))
def inRange(base: UInt, bounds: UInt) = x >= base && x < bounds
def ## (y: Option[UInt]): UInt = y.map(x ## _).getOrElse(x)
// Like >=, but prevents x-prop for ('x >= 0)
def >== (y: UInt): Bool = x >= y || y === 0.U
}
implicit class OptionUIntToAugmentedOptionUInt(private val x: Option[UInt]) extends AnyVal {
def ## (y: UInt): UInt = x.map(_ ## y).getOrElse(y)
def ## (y: Option[UInt]): Option[UInt] = x.map(_ ## y)
}
implicit class BooleanToAugmentedBoolean(private val x: Boolean) extends AnyVal {
def toInt: Int = if (x) 1 else 0
// this one's snagged from scalaz
def option[T](z: => T): Option[T] = if (x) Some(z) else None
}
implicit class IntToAugmentedInt(private val x: Int) extends AnyVal {
// exact log2
def log2: Int = {
require(isPow2(x))
log2Ceil(x)
}
}
def OH1ToOH(x: UInt): UInt = (x << 1 | 1.U) & ~Cat(0.U(1.W), x)
def OH1ToUInt(x: UInt): UInt = OHToUInt(OH1ToOH(x))
def UIntToOH1(x: UInt, width: Int): UInt = ~((-1).S(width.W).asUInt << x)(width-1, 0)
def UIntToOH1(x: UInt): UInt = UIntToOH1(x, (1 << x.getWidth) - 1)
def trailingZeros(x: Int): Option[Int] = if (x > 0) Some(log2Ceil(x & -x)) else None
// Fill 1s from low bits to high bits
def leftOR(x: UInt): UInt = leftOR(x, x.getWidth, x.getWidth)
def leftOR(x: UInt, width: Integer, cap: Integer = 999999): UInt = {
val stop = min(width, cap)
def helper(s: Int, x: UInt): UInt =
if (s >= stop) x else helper(s+s, x | (x << s)(width-1,0))
helper(1, x)(width-1, 0)
}
// Fill 1s form high bits to low bits
def rightOR(x: UInt): UInt = rightOR(x, x.getWidth, x.getWidth)
def rightOR(x: UInt, width: Integer, cap: Integer = 999999): UInt = {
val stop = min(width, cap)
def helper(s: Int, x: UInt): UInt =
if (s >= stop) x else helper(s+s, x | (x >> s))
helper(1, x)(width-1, 0)
}
def OptimizationBarrier[T <: Data](in: T): T = {
val barrier = Module(new Module {
val io = IO(new Bundle {
val x = Input(chiselTypeOf(in))
val y = Output(chiselTypeOf(in))
})
io.y := io.x
override def desiredName = s"OptimizationBarrier_${in.typeName}"
})
barrier.io.x := in
barrier.io.y
}
/** Similar to Seq.groupBy except this returns a Seq instead of a Map
* Useful for deterministic code generation
*/
def groupByIntoSeq[A, K](xs: Seq[A])(f: A => K): immutable.Seq[(K, immutable.Seq[A])] = {
val map = mutable.LinkedHashMap.empty[K, mutable.ListBuffer[A]]
for (x <- xs) {
val key = f(x)
val l = map.getOrElseUpdate(key, mutable.ListBuffer.empty[A])
l += x
}
map.view.map({ case (k, vs) => k -> vs.toList }).toList
}
def heterogeneousOrGlobalSetting[T](in: Seq[T], n: Int): Seq[T] = in.size match {
case 1 => List.fill(n)(in.head)
case x if x == n => in
case _ => throw new Exception(s"must provide exactly 1 or $n of some field, but got:\n$in")
}
// HeterogeneousBag moved to standalond diplomacy
@deprecated("HeterogeneousBag has been absorbed into standalone diplomacy library", "rocketchip 2.0.0")
def HeterogeneousBag[T <: Data](elts: Seq[T]) = _root_.org.chipsalliance.diplomacy.nodes.HeterogeneousBag[T](elts)
@deprecated("HeterogeneousBag has been absorbed into standalone diplomacy library", "rocketchip 2.0.0")
val HeterogeneousBag = _root_.org.chipsalliance.diplomacy.nodes.HeterogeneousBag
}
File Parameters.scala:
// See LICENSE.SiFive for license details.
package freechips.rocketchip.diplomacy
import chisel3._
import chisel3.util.{DecoupledIO, Queue, ReadyValidIO, isPow2, log2Ceil, log2Floor}
import freechips.rocketchip.util.ShiftQueue
/** Options for describing the attributes of memory regions */
object RegionType {
// Define the 'more relaxed than' ordering
val cases = Seq(CACHED, TRACKED, UNCACHED, IDEMPOTENT, VOLATILE, PUT_EFFECTS, GET_EFFECTS)
sealed trait T extends Ordered[T] {
def compare(that: T): Int = cases.indexOf(that) compare cases.indexOf(this)
}
case object CACHED extends T // an intermediate agent may have cached a copy of the region for you
case object TRACKED extends T // the region may have been cached by another master, but coherence is being provided
case object UNCACHED extends T // the region has not been cached yet, but should be cached when possible
case object IDEMPOTENT extends T // gets return most recently put content, but content should not be cached
case object VOLATILE extends T // content may change without a put, but puts and gets have no side effects
case object PUT_EFFECTS extends T // puts produce side effects and so must not be combined/delayed
case object GET_EFFECTS extends T // gets produce side effects and so must not be issued speculatively
}
// A non-empty half-open range; [start, end)
case class IdRange(start: Int, end: Int) extends Ordered[IdRange]
{
require (start >= 0, s"Ids cannot be negative, but got: $start.")
require (start <= end, "Id ranges cannot be negative.")
def compare(x: IdRange) = {
val primary = (this.start - x.start).signum
val secondary = (x.end - this.end).signum
if (primary != 0) primary else secondary
}
def overlaps(x: IdRange) = start < x.end && x.start < end
def contains(x: IdRange) = start <= x.start && x.end <= end
def contains(x: Int) = start <= x && x < end
def contains(x: UInt) =
if (size == 0) {
false.B
} else if (size == 1) { // simple comparison
x === start.U
} else {
// find index of largest different bit
val largestDeltaBit = log2Floor(start ^ (end-1))
val smallestCommonBit = largestDeltaBit + 1 // may not exist in x
val uncommonMask = (1 << smallestCommonBit) - 1
val uncommonBits = (x | 0.U(smallestCommonBit.W))(largestDeltaBit, 0)
// the prefix must match exactly (note: may shift ALL bits away)
(x >> smallestCommonBit) === (start >> smallestCommonBit).U &&
// firrtl constant prop range analysis can eliminate these two:
(start & uncommonMask).U <= uncommonBits &&
uncommonBits <= ((end-1) & uncommonMask).U
}
def shift(x: Int) = IdRange(start+x, end+x)
def size = end - start
def isEmpty = end == start
def range = start until end
}
object IdRange
{
def overlaps(s: Seq[IdRange]) = if (s.isEmpty) None else {
val ranges = s.sorted
(ranges.tail zip ranges.init) find { case (a, b) => a overlaps b }
}
}
// An potentially empty inclusive range of 2-powers [min, max] (in bytes)
case class TransferSizes(min: Int, max: Int)
{
def this(x: Int) = this(x, x)
require (min <= max, s"Min transfer $min > max transfer $max")
require (min >= 0 && max >= 0, s"TransferSizes must be positive, got: ($min, $max)")
require (max == 0 || isPow2(max), s"TransferSizes must be a power of 2, got: $max")
require (min == 0 || isPow2(min), s"TransferSizes must be a power of 2, got: $min")
require (max == 0 || min != 0, s"TransferSize 0 is forbidden unless (0,0), got: ($min, $max)")
def none = min == 0
def contains(x: Int) = isPow2(x) && min <= x && x <= max
def containsLg(x: Int) = contains(1 << x)
def containsLg(x: UInt) =
if (none) false.B
else if (min == max) { log2Ceil(min).U === x }
else { log2Ceil(min).U <= x && x <= log2Ceil(max).U }
def contains(x: TransferSizes) = x.none || (min <= x.min && x.max <= max)
def intersect(x: TransferSizes) =
if (x.max < min || max < x.min) TransferSizes.none
else TransferSizes(scala.math.max(min, x.min), scala.math.min(max, x.max))
// Not a union, because the result may contain sizes contained by neither term
// NOT TO BE CONFUSED WITH COVERPOINTS
def mincover(x: TransferSizes) = {
if (none) {
x
} else if (x.none) {
this
} else {
TransferSizes(scala.math.min(min, x.min), scala.math.max(max, x.max))
}
}
override def toString() = "TransferSizes[%d, %d]".format(min, max)
}
object TransferSizes {
def apply(x: Int) = new TransferSizes(x)
val none = new TransferSizes(0)
def mincover(seq: Seq[TransferSizes]) = seq.foldLeft(none)(_ mincover _)
def intersect(seq: Seq[TransferSizes]) = seq.reduce(_ intersect _)
implicit def asBool(x: TransferSizes) = !x.none
}
// AddressSets specify the address space managed by the manager
// Base is the base address, and mask are the bits consumed by the manager
// e.g: base=0x200, mask=0xff describes a device managing 0x200-0x2ff
// e.g: base=0x1000, mask=0xf0f decribes a device managing 0x1000-0x100f, 0x1100-0x110f, ...
case class AddressSet(base: BigInt, mask: BigInt) extends Ordered[AddressSet]
{
// Forbid misaligned base address (and empty sets)
require ((base & mask) == 0, s"Mis-aligned AddressSets are forbidden, got: ${this.toString}")
require (base >= 0, s"AddressSet negative base is ambiguous: $base") // TL2 address widths are not fixed => negative is ambiguous
// We do allow negative mask (=> ignore all high bits)
def contains(x: BigInt) = ((x ^ base) & ~mask) == 0
def contains(x: UInt) = ((x ^ base.U).zext & (~mask).S) === 0.S
// turn x into an address contained in this set
def legalize(x: UInt): UInt = base.U | (mask.U & x)
// overlap iff bitwise: both care (~mask0 & ~mask1) => both equal (base0=base1)
def overlaps(x: AddressSet) = (~(mask | x.mask) & (base ^ x.base)) == 0
// contains iff bitwise: x.mask => mask && contains(x.base)
def contains(x: AddressSet) = ((x.mask | (base ^ x.base)) & ~mask) == 0
// The number of bytes to which the manager must be aligned
def alignment = ((mask + 1) & ~mask)
// Is this a contiguous memory range
def contiguous = alignment == mask+1
def finite = mask >= 0
def max = { require (finite, "Max cannot be calculated on infinite mask"); base | mask }
// Widen the match function to ignore all bits in imask
def widen(imask: BigInt) = AddressSet(base & ~imask, mask | imask)
// Return an AddressSet that only contains the addresses both sets contain
def intersect(x: AddressSet): Option[AddressSet] = {
if (!overlaps(x)) {
None
} else {
val r_mask = mask & x.mask
val r_base = base | x.base
Some(AddressSet(r_base, r_mask))
}
}
def subtract(x: AddressSet): Seq[AddressSet] = {
intersect(x) match {
case None => Seq(this)
case Some(remove) => AddressSet.enumerateBits(mask & ~remove.mask).map { bit =>
val nmask = (mask & (bit-1)) | remove.mask
val nbase = (remove.base ^ bit) & ~nmask
AddressSet(nbase, nmask)
}
}
}
// AddressSets have one natural Ordering (the containment order, if contiguous)
def compare(x: AddressSet) = {
val primary = (this.base - x.base).signum // smallest address first
val secondary = (x.mask - this.mask).signum // largest mask first
if (primary != 0) primary else secondary
}
// We always want to see things in hex
override def toString() = {
if (mask >= 0) {
"AddressSet(0x%x, 0x%x)".format(base, mask)
} else {
"AddressSet(0x%x, ~0x%x)".format(base, ~mask)
}
}
def toRanges = {
require (finite, "Ranges cannot be calculated on infinite mask")
val size = alignment
val fragments = mask & ~(size-1)
val bits = bitIndexes(fragments)
(BigInt(0) until (BigInt(1) << bits.size)).map { i =>
val off = bitIndexes(i).foldLeft(base) { case (a, b) => a.setBit(bits(b)) }
AddressRange(off, size)
}
}
}
object AddressSet
{
val everything = AddressSet(0, -1)
def misaligned(base: BigInt, size: BigInt, tail: Seq[AddressSet] = Seq()): Seq[AddressSet] = {
if (size == 0) tail.reverse else {
val maxBaseAlignment = base & (-base) // 0 for infinite (LSB)
val maxSizeAlignment = BigInt(1) << log2Floor(size) // MSB of size
val step =
if (maxBaseAlignment == 0 || maxBaseAlignment > maxSizeAlignment)
maxSizeAlignment else maxBaseAlignment
misaligned(base+step, size-step, AddressSet(base, step-1) +: tail)
}
}
def unify(seq: Seq[AddressSet], bit: BigInt): Seq[AddressSet] = {
// Pair terms up by ignoring 'bit'
seq.distinct.groupBy(x => x.copy(base = x.base & ~bit)).map { case (key, seq) =>
if (seq.size == 1) {
seq.head // singleton -> unaffected
} else {
key.copy(mask = key.mask | bit) // pair - widen mask by bit
}
}.toList
}
def unify(seq: Seq[AddressSet]): Seq[AddressSet] = {
val bits = seq.map(_.base).foldLeft(BigInt(0))(_ | _)
AddressSet.enumerateBits(bits).foldLeft(seq) { case (acc, bit) => unify(acc, bit) }.sorted
}
def enumerateMask(mask: BigInt): Seq[BigInt] = {
def helper(id: BigInt, tail: Seq[BigInt]): Seq[BigInt] =
if (id == mask) (id +: tail).reverse else helper(((~mask | id) + 1) & mask, id +: tail)
helper(0, Nil)
}
def enumerateBits(mask: BigInt): Seq[BigInt] = {
def helper(x: BigInt): Seq[BigInt] = {
if (x == 0) {
Nil
} else {
val bit = x & (-x)
bit +: helper(x & ~bit)
}
}
helper(mask)
}
}
case class BufferParams(depth: Int, flow: Boolean, pipe: Boolean)
{
require (depth >= 0, "Buffer depth must be >= 0")
def isDefined = depth > 0
def latency = if (isDefined && !flow) 1 else 0
def apply[T <: Data](x: DecoupledIO[T]) =
if (isDefined) Queue(x, depth, flow=flow, pipe=pipe)
else x
def irrevocable[T <: Data](x: ReadyValidIO[T]) =
if (isDefined) Queue.irrevocable(x, depth, flow=flow, pipe=pipe)
else x
def sq[T <: Data](x: DecoupledIO[T]) =
if (!isDefined) x else {
val sq = Module(new ShiftQueue(x.bits, depth, flow=flow, pipe=pipe))
sq.io.enq <> x
sq.io.deq
}
override def toString() = "BufferParams:%d%s%s".format(depth, if (flow) "F" else "", if (pipe) "P" else "")
}
object BufferParams
{
implicit def apply(depth: Int): BufferParams = BufferParams(depth, false, false)
val default = BufferParams(2)
val none = BufferParams(0)
val flow = BufferParams(1, true, false)
val pipe = BufferParams(1, false, true)
}
case class TriStateValue(value: Boolean, set: Boolean)
{
def update(orig: Boolean) = if (set) value else orig
}
object TriStateValue
{
implicit def apply(value: Boolean): TriStateValue = TriStateValue(value, true)
def unset = TriStateValue(false, false)
}
trait DirectedBuffers[T] {
def copyIn(x: BufferParams): T
def copyOut(x: BufferParams): T
def copyInOut(x: BufferParams): T
}
trait IdMapEntry {
def name: String
def from: IdRange
def to: IdRange
def isCache: Boolean
def requestFifo: Boolean
def maxTransactionsInFlight: Option[Int]
def pretty(fmt: String) =
if (from ne to) { // if the subclass uses the same reference for both from and to, assume its format string has an arity of 5
fmt.format(to.start, to.end, from.start, from.end, s""""$name"""", if (isCache) " [CACHE]" else "", if (requestFifo) " [FIFO]" else "")
} else {
fmt.format(from.start, from.end, s""""$name"""", if (isCache) " [CACHE]" else "", if (requestFifo) " [FIFO]" else "")
}
}
abstract class IdMap[T <: IdMapEntry] {
protected val fmt: String
val mapping: Seq[T]
def pretty: String = mapping.map(_.pretty(fmt)).mkString(",\n")
}
File Edges.scala:
// See LICENSE.SiFive for license details.
package freechips.rocketchip.tilelink
import chisel3._
import chisel3.util._
import chisel3.experimental.SourceInfo
import org.chipsalliance.cde.config.Parameters
import freechips.rocketchip.util._
class TLEdge(
client: TLClientPortParameters,
manager: TLManagerPortParameters,
params: Parameters,
sourceInfo: SourceInfo)
extends TLEdgeParameters(client, manager, params, sourceInfo)
{
def isAligned(address: UInt, lgSize: UInt): Bool = {
if (maxLgSize == 0) true.B else {
val mask = UIntToOH1(lgSize, maxLgSize)
(address & mask) === 0.U
}
}
def mask(address: UInt, lgSize: UInt): UInt =
MaskGen(address, lgSize, manager.beatBytes)
def staticHasData(bundle: TLChannel): Option[Boolean] = {
bundle match {
case _:TLBundleA => {
// Do there exist A messages with Data?
val aDataYes = manager.anySupportArithmetic || manager.anySupportLogical || manager.anySupportPutFull || manager.anySupportPutPartial
// Do there exist A messages without Data?
val aDataNo = manager.anySupportAcquireB || manager.anySupportGet || manager.anySupportHint
// Statically optimize the case where hasData is a constant
if (!aDataYes) Some(false) else if (!aDataNo) Some(true) else None
}
case _:TLBundleB => {
// Do there exist B messages with Data?
val bDataYes = client.anySupportArithmetic || client.anySupportLogical || client.anySupportPutFull || client.anySupportPutPartial
// Do there exist B messages without Data?
val bDataNo = client.anySupportProbe || client.anySupportGet || client.anySupportHint
// Statically optimize the case where hasData is a constant
if (!bDataYes) Some(false) else if (!bDataNo) Some(true) else None
}
case _:TLBundleC => {
// Do there eixst C messages with Data?
val cDataYes = client.anySupportGet || client.anySupportArithmetic || client.anySupportLogical || client.anySupportProbe
// Do there exist C messages without Data?
val cDataNo = client.anySupportPutFull || client.anySupportPutPartial || client.anySupportHint || client.anySupportProbe
if (!cDataYes) Some(false) else if (!cDataNo) Some(true) else None
}
case _:TLBundleD => {
// Do there eixst D messages with Data?
val dDataYes = manager.anySupportGet || manager.anySupportArithmetic || manager.anySupportLogical || manager.anySupportAcquireB
// Do there exist D messages without Data?
val dDataNo = manager.anySupportPutFull || manager.anySupportPutPartial || manager.anySupportHint || manager.anySupportAcquireT
if (!dDataYes) Some(false) else if (!dDataNo) Some(true) else None
}
case _:TLBundleE => Some(false)
}
}
def isRequest(x: TLChannel): Bool = {
x match {
case a: TLBundleA => true.B
case b: TLBundleB => true.B
case c: TLBundleC => c.opcode(2) && c.opcode(1)
// opcode === TLMessages.Release ||
// opcode === TLMessages.ReleaseData
case d: TLBundleD => d.opcode(2) && !d.opcode(1)
// opcode === TLMessages.Grant ||
// opcode === TLMessages.GrantData
case e: TLBundleE => false.B
}
}
def isResponse(x: TLChannel): Bool = {
x match {
case a: TLBundleA => false.B
case b: TLBundleB => false.B
case c: TLBundleC => !c.opcode(2) || !c.opcode(1)
// opcode =/= TLMessages.Release &&
// opcode =/= TLMessages.ReleaseData
case d: TLBundleD => true.B // Grant isResponse + isRequest
case e: TLBundleE => true.B
}
}
def hasData(x: TLChannel): Bool = {
val opdata = x match {
case a: TLBundleA => !a.opcode(2)
// opcode === TLMessages.PutFullData ||
// opcode === TLMessages.PutPartialData ||
// opcode === TLMessages.ArithmeticData ||
// opcode === TLMessages.LogicalData
case b: TLBundleB => !b.opcode(2)
// opcode === TLMessages.PutFullData ||
// opcode === TLMessages.PutPartialData ||
// opcode === TLMessages.ArithmeticData ||
// opcode === TLMessages.LogicalData
case c: TLBundleC => c.opcode(0)
// opcode === TLMessages.AccessAckData ||
// opcode === TLMessages.ProbeAckData ||
// opcode === TLMessages.ReleaseData
case d: TLBundleD => d.opcode(0)
// opcode === TLMessages.AccessAckData ||
// opcode === TLMessages.GrantData
case e: TLBundleE => false.B
}
staticHasData(x).map(_.B).getOrElse(opdata)
}
def opcode(x: TLDataChannel): UInt = {
x match {
case a: TLBundleA => a.opcode
case b: TLBundleB => b.opcode
case c: TLBundleC => c.opcode
case d: TLBundleD => d.opcode
}
}
def param(x: TLDataChannel): UInt = {
x match {
case a: TLBundleA => a.param
case b: TLBundleB => b.param
case c: TLBundleC => c.param
case d: TLBundleD => d.param
}
}
def size(x: TLDataChannel): UInt = {
x match {
case a: TLBundleA => a.size
case b: TLBundleB => b.size
case c: TLBundleC => c.size
case d: TLBundleD => d.size
}
}
def data(x: TLDataChannel): UInt = {
x match {
case a: TLBundleA => a.data
case b: TLBundleB => b.data
case c: TLBundleC => c.data
case d: TLBundleD => d.data
}
}
def corrupt(x: TLDataChannel): Bool = {
x match {
case a: TLBundleA => a.corrupt
case b: TLBundleB => b.corrupt
case c: TLBundleC => c.corrupt
case d: TLBundleD => d.corrupt
}
}
def mask(x: TLAddrChannel): UInt = {
x match {
case a: TLBundleA => a.mask
case b: TLBundleB => b.mask
case c: TLBundleC => mask(c.address, c.size)
}
}
def full_mask(x: TLAddrChannel): UInt = {
x match {
case a: TLBundleA => mask(a.address, a.size)
case b: TLBundleB => mask(b.address, b.size)
case c: TLBundleC => mask(c.address, c.size)
}
}
def address(x: TLAddrChannel): UInt = {
x match {
case a: TLBundleA => a.address
case b: TLBundleB => b.address
case c: TLBundleC => c.address
}
}
def source(x: TLDataChannel): UInt = {
x match {
case a: TLBundleA => a.source
case b: TLBundleB => b.source
case c: TLBundleC => c.source
case d: TLBundleD => d.source
}
}
def addr_hi(x: UInt): UInt = x >> log2Ceil(manager.beatBytes)
def addr_lo(x: UInt): UInt =
if (manager.beatBytes == 1) 0.U else x(log2Ceil(manager.beatBytes)-1, 0)
def addr_hi(x: TLAddrChannel): UInt = addr_hi(address(x))
def addr_lo(x: TLAddrChannel): UInt = addr_lo(address(x))
def numBeats(x: TLChannel): UInt = {
x match {
case _: TLBundleE => 1.U
case bundle: TLDataChannel => {
val hasData = this.hasData(bundle)
val size = this.size(bundle)
val cutoff = log2Ceil(manager.beatBytes)
val small = if (manager.maxTransfer <= manager.beatBytes) true.B else size <= (cutoff).U
val decode = UIntToOH(size, maxLgSize+1) >> cutoff
Mux(hasData, decode | small.asUInt, 1.U)
}
}
}
def numBeats1(x: TLChannel): UInt = {
x match {
case _: TLBundleE => 0.U
case bundle: TLDataChannel => {
if (maxLgSize == 0) {
0.U
} else {
val decode = UIntToOH1(size(bundle), maxLgSize) >> log2Ceil(manager.beatBytes)
Mux(hasData(bundle), decode, 0.U)
}
}
}
}
def firstlastHelper(bits: TLChannel, fire: Bool): (Bool, Bool, Bool, UInt) = {
val beats1 = numBeats1(bits)
val counter = RegInit(0.U(log2Up(maxTransfer / manager.beatBytes).W))
val counter1 = counter - 1.U
val first = counter === 0.U
val last = counter === 1.U || beats1 === 0.U
val done = last && fire
val count = (beats1 & ~counter1)
when (fire) {
counter := Mux(first, beats1, counter1)
}
(first, last, done, count)
}
def first(bits: TLChannel, fire: Bool): Bool = firstlastHelper(bits, fire)._1
def first(x: DecoupledIO[TLChannel]): Bool = first(x.bits, x.fire)
def first(x: ValidIO[TLChannel]): Bool = first(x.bits, x.valid)
def last(bits: TLChannel, fire: Bool): Bool = firstlastHelper(bits, fire)._2
def last(x: DecoupledIO[TLChannel]): Bool = last(x.bits, x.fire)
def last(x: ValidIO[TLChannel]): Bool = last(x.bits, x.valid)
def done(bits: TLChannel, fire: Bool): Bool = firstlastHelper(bits, fire)._3
def done(x: DecoupledIO[TLChannel]): Bool = done(x.bits, x.fire)
def done(x: ValidIO[TLChannel]): Bool = done(x.bits, x.valid)
def firstlast(bits: TLChannel, fire: Bool): (Bool, Bool, Bool) = {
val r = firstlastHelper(bits, fire)
(r._1, r._2, r._3)
}
def firstlast(x: DecoupledIO[TLChannel]): (Bool, Bool, Bool) = firstlast(x.bits, x.fire)
def firstlast(x: ValidIO[TLChannel]): (Bool, Bool, Bool) = firstlast(x.bits, x.valid)
def count(bits: TLChannel, fire: Bool): (Bool, Bool, Bool, UInt) = {
val r = firstlastHelper(bits, fire)
(r._1, r._2, r._3, r._4)
}
def count(x: DecoupledIO[TLChannel]): (Bool, Bool, Bool, UInt) = count(x.bits, x.fire)
def count(x: ValidIO[TLChannel]): (Bool, Bool, Bool, UInt) = count(x.bits, x.valid)
def addr_inc(bits: TLChannel, fire: Bool): (Bool, Bool, Bool, UInt) = {
val r = firstlastHelper(bits, fire)
(r._1, r._2, r._3, r._4 << log2Ceil(manager.beatBytes))
}
def addr_inc(x: DecoupledIO[TLChannel]): (Bool, Bool, Bool, UInt) = addr_inc(x.bits, x.fire)
def addr_inc(x: ValidIO[TLChannel]): (Bool, Bool, Bool, UInt) = addr_inc(x.bits, x.valid)
// Does the request need T permissions to be executed?
def needT(a: TLBundleA): Bool = {
val acq_needT = MuxLookup(a.param, WireDefault(Bool(), DontCare))(Array(
TLPermissions.NtoB -> false.B,
TLPermissions.NtoT -> true.B,
TLPermissions.BtoT -> true.B))
MuxLookup(a.opcode, WireDefault(Bool(), DontCare))(Array(
TLMessages.PutFullData -> true.B,
TLMessages.PutPartialData -> true.B,
TLMessages.ArithmeticData -> true.B,
TLMessages.LogicalData -> true.B,
TLMessages.Get -> false.B,
TLMessages.Hint -> MuxLookup(a.param, WireDefault(Bool(), DontCare))(Array(
TLHints.PREFETCH_READ -> false.B,
TLHints.PREFETCH_WRITE -> true.B)),
TLMessages.AcquireBlock -> acq_needT,
TLMessages.AcquirePerm -> acq_needT))
}
// This is a very expensive circuit; use only if you really mean it!
def inFlight(x: TLBundle): (UInt, UInt) = {
val flight = RegInit(0.U(log2Ceil(3*client.endSourceId+1).W))
val bce = manager.anySupportAcquireB && client.anySupportProbe
val (a_first, a_last, _) = firstlast(x.a)
val (b_first, b_last, _) = firstlast(x.b)
val (c_first, c_last, _) = firstlast(x.c)
val (d_first, d_last, _) = firstlast(x.d)
val (e_first, e_last, _) = firstlast(x.e)
val (a_request, a_response) = (isRequest(x.a.bits), isResponse(x.a.bits))
val (b_request, b_response) = (isRequest(x.b.bits), isResponse(x.b.bits))
val (c_request, c_response) = (isRequest(x.c.bits), isResponse(x.c.bits))
val (d_request, d_response) = (isRequest(x.d.bits), isResponse(x.d.bits))
val (e_request, e_response) = (isRequest(x.e.bits), isResponse(x.e.bits))
val a_inc = x.a.fire && a_first && a_request
val b_inc = x.b.fire && b_first && b_request
val c_inc = x.c.fire && c_first && c_request
val d_inc = x.d.fire && d_first && d_request
val e_inc = x.e.fire && e_first && e_request
val inc = Cat(Seq(a_inc, d_inc) ++ (if (bce) Seq(b_inc, c_inc, e_inc) else Nil))
val a_dec = x.a.fire && a_last && a_response
val b_dec = x.b.fire && b_last && b_response
val c_dec = x.c.fire && c_last && c_response
val d_dec = x.d.fire && d_last && d_response
val e_dec = x.e.fire && e_last && e_response
val dec = Cat(Seq(a_dec, d_dec) ++ (if (bce) Seq(b_dec, c_dec, e_dec) else Nil))
val next_flight = flight + PopCount(inc) - PopCount(dec)
flight := next_flight
(flight, next_flight)
}
def prettySourceMapping(context: String): String = {
s"TL-Source mapping for $context:\n${(new TLSourceIdMap(client)).pretty}\n"
}
}
class TLEdgeOut(
client: TLClientPortParameters,
manager: TLManagerPortParameters,
params: Parameters,
sourceInfo: SourceInfo)
extends TLEdge(client, manager, params, sourceInfo)
{
// Transfers
def AcquireBlock(fromSource: UInt, toAddress: UInt, lgSize: UInt, growPermissions: UInt) = {
require (manager.anySupportAcquireB, s"TileLink: No managers visible from this edge support Acquires, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsAcquireBFast(toAddress, lgSize)
val a = Wire(new TLBundleA(bundle))
a.opcode := TLMessages.AcquireBlock
a.param := growPermissions
a.size := lgSize
a.source := fromSource
a.address := toAddress
a.user := DontCare
a.echo := DontCare
a.mask := mask(toAddress, lgSize)
a.data := DontCare
a.corrupt := false.B
(legal, a)
}
def AcquirePerm(fromSource: UInt, toAddress: UInt, lgSize: UInt, growPermissions: UInt) = {
require (manager.anySupportAcquireB, s"TileLink: No managers visible from this edge support Acquires, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsAcquireBFast(toAddress, lgSize)
val a = Wire(new TLBundleA(bundle))
a.opcode := TLMessages.AcquirePerm
a.param := growPermissions
a.size := lgSize
a.source := fromSource
a.address := toAddress
a.user := DontCare
a.echo := DontCare
a.mask := mask(toAddress, lgSize)
a.data := DontCare
a.corrupt := false.B
(legal, a)
}
def Release(fromSource: UInt, toAddress: UInt, lgSize: UInt, shrinkPermissions: UInt): (Bool, TLBundleC) = {
require (manager.anySupportAcquireB, s"TileLink: No managers visible from this edge support Acquires, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsAcquireBFast(toAddress, lgSize)
val c = Wire(new TLBundleC(bundle))
c.opcode := TLMessages.Release
c.param := shrinkPermissions
c.size := lgSize
c.source := fromSource
c.address := toAddress
c.user := DontCare
c.echo := DontCare
c.data := DontCare
c.corrupt := false.B
(legal, c)
}
def Release(fromSource: UInt, toAddress: UInt, lgSize: UInt, shrinkPermissions: UInt, data: UInt, corrupt: Bool): (Bool, TLBundleC) = {
require (manager.anySupportAcquireB, s"TileLink: No managers visible from this edge support Acquires, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsAcquireBFast(toAddress, lgSize)
val c = Wire(new TLBundleC(bundle))
c.opcode := TLMessages.ReleaseData
c.param := shrinkPermissions
c.size := lgSize
c.source := fromSource
c.address := toAddress
c.user := DontCare
c.echo := DontCare
c.data := data
c.corrupt := corrupt
(legal, c)
}
def Release(fromSource: UInt, toAddress: UInt, lgSize: UInt, shrinkPermissions: UInt, data: UInt): (Bool, TLBundleC) =
Release(fromSource, toAddress, lgSize, shrinkPermissions, data, false.B)
def ProbeAck(b: TLBundleB, reportPermissions: UInt): TLBundleC =
ProbeAck(b.source, b.address, b.size, reportPermissions)
def ProbeAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, reportPermissions: UInt): TLBundleC = {
val c = Wire(new TLBundleC(bundle))
c.opcode := TLMessages.ProbeAck
c.param := reportPermissions
c.size := lgSize
c.source := fromSource
c.address := toAddress
c.user := DontCare
c.echo := DontCare
c.data := DontCare
c.corrupt := false.B
c
}
def ProbeAck(b: TLBundleB, reportPermissions: UInt, data: UInt): TLBundleC =
ProbeAck(b.source, b.address, b.size, reportPermissions, data)
def ProbeAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, reportPermissions: UInt, data: UInt, corrupt: Bool): TLBundleC = {
val c = Wire(new TLBundleC(bundle))
c.opcode := TLMessages.ProbeAckData
c.param := reportPermissions
c.size := lgSize
c.source := fromSource
c.address := toAddress
c.user := DontCare
c.echo := DontCare
c.data := data
c.corrupt := corrupt
c
}
def ProbeAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, reportPermissions: UInt, data: UInt): TLBundleC =
ProbeAck(fromSource, toAddress, lgSize, reportPermissions, data, false.B)
def GrantAck(d: TLBundleD): TLBundleE = GrantAck(d.sink)
def GrantAck(toSink: UInt): TLBundleE = {
val e = Wire(new TLBundleE(bundle))
e.sink := toSink
e
}
// Accesses
def Get(fromSource: UInt, toAddress: UInt, lgSize: UInt) = {
require (manager.anySupportGet, s"TileLink: No managers visible from this edge support Gets, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsGetFast(toAddress, lgSize)
val a = Wire(new TLBundleA(bundle))
a.opcode := TLMessages.Get
a.param := 0.U
a.size := lgSize
a.source := fromSource
a.address := toAddress
a.user := DontCare
a.echo := DontCare
a.mask := mask(toAddress, lgSize)
a.data := DontCare
a.corrupt := false.B
(legal, a)
}
def Put(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt): (Bool, TLBundleA) =
Put(fromSource, toAddress, lgSize, data, false.B)
def Put(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, corrupt: Bool): (Bool, TLBundleA) = {
require (manager.anySupportPutFull, s"TileLink: No managers visible from this edge support Puts, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsPutFullFast(toAddress, lgSize)
val a = Wire(new TLBundleA(bundle))
a.opcode := TLMessages.PutFullData
a.param := 0.U
a.size := lgSize
a.source := fromSource
a.address := toAddress
a.user := DontCare
a.echo := DontCare
a.mask := mask(toAddress, lgSize)
a.data := data
a.corrupt := corrupt
(legal, a)
}
def Put(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, mask: UInt): (Bool, TLBundleA) =
Put(fromSource, toAddress, lgSize, data, mask, false.B)
def Put(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, mask: UInt, corrupt: Bool): (Bool, TLBundleA) = {
require (manager.anySupportPutPartial, s"TileLink: No managers visible from this edge support masked Puts, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsPutPartialFast(toAddress, lgSize)
val a = Wire(new TLBundleA(bundle))
a.opcode := TLMessages.PutPartialData
a.param := 0.U
a.size := lgSize
a.source := fromSource
a.address := toAddress
a.user := DontCare
a.echo := DontCare
a.mask := mask
a.data := data
a.corrupt := corrupt
(legal, a)
}
def Arithmetic(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, atomic: UInt, corrupt: Bool = false.B): (Bool, TLBundleA) = {
require (manager.anySupportArithmetic, s"TileLink: No managers visible from this edge support arithmetic AMOs, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsArithmeticFast(toAddress, lgSize)
val a = Wire(new TLBundleA(bundle))
a.opcode := TLMessages.ArithmeticData
a.param := atomic
a.size := lgSize
a.source := fromSource
a.address := toAddress
a.user := DontCare
a.echo := DontCare
a.mask := mask(toAddress, lgSize)
a.data := data
a.corrupt := corrupt
(legal, a)
}
def Logical(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, atomic: UInt, corrupt: Bool = false.B) = {
require (manager.anySupportLogical, s"TileLink: No managers visible from this edge support logical AMOs, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsLogicalFast(toAddress, lgSize)
val a = Wire(new TLBundleA(bundle))
a.opcode := TLMessages.LogicalData
a.param := atomic
a.size := lgSize
a.source := fromSource
a.address := toAddress
a.user := DontCare
a.echo := DontCare
a.mask := mask(toAddress, lgSize)
a.data := data
a.corrupt := corrupt
(legal, a)
}
def Hint(fromSource: UInt, toAddress: UInt, lgSize: UInt, param: UInt) = {
require (manager.anySupportHint, s"TileLink: No managers visible from this edge support Hints, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsHintFast(toAddress, lgSize)
val a = Wire(new TLBundleA(bundle))
a.opcode := TLMessages.Hint
a.param := param
a.size := lgSize
a.source := fromSource
a.address := toAddress
a.user := DontCare
a.echo := DontCare
a.mask := mask(toAddress, lgSize)
a.data := DontCare
a.corrupt := false.B
(legal, a)
}
def AccessAck(b: TLBundleB): TLBundleC = AccessAck(b.source, address(b), b.size)
def AccessAck(fromSource: UInt, toAddress: UInt, lgSize: UInt) = {
val c = Wire(new TLBundleC(bundle))
c.opcode := TLMessages.AccessAck
c.param := 0.U
c.size := lgSize
c.source := fromSource
c.address := toAddress
c.user := DontCare
c.echo := DontCare
c.data := DontCare
c.corrupt := false.B
c
}
def AccessAck(b: TLBundleB, data: UInt): TLBundleC = AccessAck(b.source, address(b), b.size, data)
def AccessAck(b: TLBundleB, data: UInt, corrupt: Bool): TLBundleC = AccessAck(b.source, address(b), b.size, data, corrupt)
def AccessAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt): TLBundleC = AccessAck(fromSource, toAddress, lgSize, data, false.B)
def AccessAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, corrupt: Bool) = {
val c = Wire(new TLBundleC(bundle))
c.opcode := TLMessages.AccessAckData
c.param := 0.U
c.size := lgSize
c.source := fromSource
c.address := toAddress
c.user := DontCare
c.echo := DontCare
c.data := data
c.corrupt := corrupt
c
}
def HintAck(b: TLBundleB): TLBundleC = HintAck(b.source, address(b), b.size)
def HintAck(fromSource: UInt, toAddress: UInt, lgSize: UInt) = {
val c = Wire(new TLBundleC(bundle))
c.opcode := TLMessages.HintAck
c.param := 0.U
c.size := lgSize
c.source := fromSource
c.address := toAddress
c.user := DontCare
c.echo := DontCare
c.data := DontCare
c.corrupt := false.B
c
}
}
class TLEdgeIn(
client: TLClientPortParameters,
manager: TLManagerPortParameters,
params: Parameters,
sourceInfo: SourceInfo)
extends TLEdge(client, manager, params, sourceInfo)
{
private def myTranspose[T](x: Seq[Seq[T]]): Seq[Seq[T]] = {
val todo = x.filter(!_.isEmpty)
val heads = todo.map(_.head)
val tails = todo.map(_.tail)
if (todo.isEmpty) Nil else { heads +: myTranspose(tails) }
}
// Transfers
def Probe(fromAddress: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt) = {
require (client.anySupportProbe, s"TileLink: No clients visible from this edge support probes, but one of these managers tried to issue one: ${manager.managers}")
val legal = client.supportsProbe(toSource, lgSize)
val b = Wire(new TLBundleB(bundle))
b.opcode := TLMessages.Probe
b.param := capPermissions
b.size := lgSize
b.source := toSource
b.address := fromAddress
b.mask := mask(fromAddress, lgSize)
b.data := DontCare
b.corrupt := false.B
(legal, b)
}
def Grant(fromSink: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt): TLBundleD = Grant(fromSink, toSource, lgSize, capPermissions, false.B)
def Grant(fromSink: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt, denied: Bool) = {
val d = Wire(new TLBundleD(bundle))
d.opcode := TLMessages.Grant
d.param := capPermissions
d.size := lgSize
d.source := toSource
d.sink := fromSink
d.denied := denied
d.user := DontCare
d.echo := DontCare
d.data := DontCare
d.corrupt := false.B
d
}
def Grant(fromSink: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt, data: UInt): TLBundleD = Grant(fromSink, toSource, lgSize, capPermissions, data, false.B, false.B)
def Grant(fromSink: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt, data: UInt, denied: Bool, corrupt: Bool) = {
val d = Wire(new TLBundleD(bundle))
d.opcode := TLMessages.GrantData
d.param := capPermissions
d.size := lgSize
d.source := toSource
d.sink := fromSink
d.denied := denied
d.user := DontCare
d.echo := DontCare
d.data := data
d.corrupt := corrupt
d
}
def ReleaseAck(c: TLBundleC): TLBundleD = ReleaseAck(c.source, c.size, false.B)
def ReleaseAck(toSource: UInt, lgSize: UInt, denied: Bool): TLBundleD = {
val d = Wire(new TLBundleD(bundle))
d.opcode := TLMessages.ReleaseAck
d.param := 0.U
d.size := lgSize
d.source := toSource
d.sink := 0.U
d.denied := denied
d.user := DontCare
d.echo := DontCare
d.data := DontCare
d.corrupt := false.B
d
}
// Accesses
def Get(fromAddress: UInt, toSource: UInt, lgSize: UInt) = {
require (client.anySupportGet, s"TileLink: No clients visible from this edge support Gets, but one of these managers would try to issue one: ${manager.managers}")
val legal = client.supportsGet(toSource, lgSize)
val b = Wire(new TLBundleB(bundle))
b.opcode := TLMessages.Get
b.param := 0.U
b.size := lgSize
b.source := toSource
b.address := fromAddress
b.mask := mask(fromAddress, lgSize)
b.data := DontCare
b.corrupt := false.B
(legal, b)
}
def Put(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt): (Bool, TLBundleB) =
Put(fromAddress, toSource, lgSize, data, false.B)
def Put(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, corrupt: Bool): (Bool, TLBundleB) = {
require (client.anySupportPutFull, s"TileLink: No clients visible from this edge support Puts, but one of these managers would try to issue one: ${manager.managers}")
val legal = client.supportsPutFull(toSource, lgSize)
val b = Wire(new TLBundleB(bundle))
b.opcode := TLMessages.PutFullData
b.param := 0.U
b.size := lgSize
b.source := toSource
b.address := fromAddress
b.mask := mask(fromAddress, lgSize)
b.data := data
b.corrupt := corrupt
(legal, b)
}
def Put(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, mask: UInt): (Bool, TLBundleB) =
Put(fromAddress, toSource, lgSize, data, mask, false.B)
def Put(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, mask: UInt, corrupt: Bool): (Bool, TLBundleB) = {
require (client.anySupportPutPartial, s"TileLink: No clients visible from this edge support masked Puts, but one of these managers would try to request one: ${manager.managers}")
val legal = client.supportsPutPartial(toSource, lgSize)
val b = Wire(new TLBundleB(bundle))
b.opcode := TLMessages.PutPartialData
b.param := 0.U
b.size := lgSize
b.source := toSource
b.address := fromAddress
b.mask := mask
b.data := data
b.corrupt := corrupt
(legal, b)
}
def Arithmetic(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, atomic: UInt, corrupt: Bool = false.B) = {
require (client.anySupportArithmetic, s"TileLink: No clients visible from this edge support arithmetic AMOs, but one of these managers would try to request one: ${manager.managers}")
val legal = client.supportsArithmetic(toSource, lgSize)
val b = Wire(new TLBundleB(bundle))
b.opcode := TLMessages.ArithmeticData
b.param := atomic
b.size := lgSize
b.source := toSource
b.address := fromAddress
b.mask := mask(fromAddress, lgSize)
b.data := data
b.corrupt := corrupt
(legal, b)
}
def Logical(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, atomic: UInt, corrupt: Bool = false.B) = {
require (client.anySupportLogical, s"TileLink: No clients visible from this edge support logical AMOs, but one of these managers would try to request one: ${manager.managers}")
val legal = client.supportsLogical(toSource, lgSize)
val b = Wire(new TLBundleB(bundle))
b.opcode := TLMessages.LogicalData
b.param := atomic
b.size := lgSize
b.source := toSource
b.address := fromAddress
b.mask := mask(fromAddress, lgSize)
b.data := data
b.corrupt := corrupt
(legal, b)
}
def Hint(fromAddress: UInt, toSource: UInt, lgSize: UInt, param: UInt) = {
require (client.anySupportHint, s"TileLink: No clients visible from this edge support Hints, but one of these managers would try to request one: ${manager.managers}")
val legal = client.supportsHint(toSource, lgSize)
val b = Wire(new TLBundleB(bundle))
b.opcode := TLMessages.Hint
b.param := param
b.size := lgSize
b.source := toSource
b.address := fromAddress
b.mask := mask(fromAddress, lgSize)
b.data := DontCare
b.corrupt := false.B
(legal, b)
}
def AccessAck(a: TLBundleA): TLBundleD = AccessAck(a.source, a.size)
def AccessAck(a: TLBundleA, denied: Bool): TLBundleD = AccessAck(a.source, a.size, denied)
def AccessAck(toSource: UInt, lgSize: UInt): TLBundleD = AccessAck(toSource, lgSize, false.B)
def AccessAck(toSource: UInt, lgSize: UInt, denied: Bool) = {
val d = Wire(new TLBundleD(bundle))
d.opcode := TLMessages.AccessAck
d.param := 0.U
d.size := lgSize
d.source := toSource
d.sink := 0.U
d.denied := denied
d.user := DontCare
d.echo := DontCare
d.data := DontCare
d.corrupt := false.B
d
}
def AccessAck(a: TLBundleA, data: UInt): TLBundleD = AccessAck(a.source, a.size, data)
def AccessAck(a: TLBundleA, data: UInt, denied: Bool, corrupt: Bool): TLBundleD = AccessAck(a.source, a.size, data, denied, corrupt)
def AccessAck(toSource: UInt, lgSize: UInt, data: UInt): TLBundleD = AccessAck(toSource, lgSize, data, false.B, false.B)
def AccessAck(toSource: UInt, lgSize: UInt, data: UInt, denied: Bool, corrupt: Bool) = {
val d = Wire(new TLBundleD(bundle))
d.opcode := TLMessages.AccessAckData
d.param := 0.U
d.size := lgSize
d.source := toSource
d.sink := 0.U
d.denied := denied
d.user := DontCare
d.echo := DontCare
d.data := data
d.corrupt := corrupt
d
}
def HintAck(a: TLBundleA): TLBundleD = HintAck(a, false.B)
def HintAck(a: TLBundleA, denied: Bool): TLBundleD = HintAck(a.source, a.size, denied)
def HintAck(toSource: UInt, lgSize: UInt): TLBundleD = HintAck(toSource, lgSize, false.B)
def HintAck(toSource: UInt, lgSize: UInt, denied: Bool) = {
val d = Wire(new TLBundleD(bundle))
d.opcode := TLMessages.HintAck
d.param := 0.U
d.size := lgSize
d.source := toSource
d.sink := 0.U
d.denied := denied
d.user := DontCare
d.echo := DontCare
d.data := DontCare
d.corrupt := false.B
d
}
}
| module TLMonitor_67( // @[Monitor.scala:36:7]
input clock, // @[Monitor.scala:36:7]
input reset, // @[Monitor.scala:36:7]
input io_in_a_ready, // @[Monitor.scala:20:14]
input io_in_a_valid, // @[Monitor.scala:20:14]
input [2:0] io_in_a_bits_opcode, // @[Monitor.scala:20:14]
input [2:0] io_in_a_bits_param, // @[Monitor.scala:20:14]
input [1:0] io_in_a_bits_size, // @[Monitor.scala:20:14]
input [10:0] io_in_a_bits_source, // @[Monitor.scala:20:14]
input [20:0] io_in_a_bits_address, // @[Monitor.scala:20:14]
input [7:0] io_in_a_bits_mask, // @[Monitor.scala:20:14]
input io_in_a_bits_corrupt, // @[Monitor.scala:20:14]
input io_in_d_ready, // @[Monitor.scala:20:14]
input io_in_d_valid, // @[Monitor.scala:20:14]
input [2:0] io_in_d_bits_opcode, // @[Monitor.scala:20:14]
input [1:0] io_in_d_bits_size, // @[Monitor.scala:20:14]
input [10:0] io_in_d_bits_source // @[Monitor.scala:20:14]
);
wire [31:0] _plusarg_reader_1_out; // @[PlusArg.scala:80:11]
wire [31:0] _plusarg_reader_out; // @[PlusArg.scala:80:11]
wire a_first_done = io_in_a_ready & io_in_a_valid; // @[Decoupled.scala:51:35]
reg a_first_counter; // @[Edges.scala:229:27]
reg [2:0] opcode; // @[Monitor.scala:387:22]
reg [2:0] param; // @[Monitor.scala:388:22]
reg [1:0] size; // @[Monitor.scala:389:22]
reg [10:0] source; // @[Monitor.scala:390:22]
reg [20:0] address; // @[Monitor.scala:391:22]
reg d_first_counter; // @[Edges.scala:229:27]
reg [2:0] opcode_1; // @[Monitor.scala:538:22]
reg [1:0] size_1; // @[Monitor.scala:540:22]
reg [10:0] source_1; // @[Monitor.scala:541:22]
reg [1039:0] inflight; // @[Monitor.scala:614:27]
reg [4159:0] inflight_opcodes; // @[Monitor.scala:616:35]
reg [4159:0] inflight_sizes; // @[Monitor.scala:618:33]
reg a_first_counter_1; // @[Edges.scala:229:27]
reg d_first_counter_1; // @[Edges.scala:229:27]
wire _GEN = a_first_done & ~a_first_counter_1; // @[Decoupled.scala:51:35]
wire d_release_ack = io_in_d_bits_opcode == 3'h6; // @[Monitor.scala:673:46]
wire _GEN_0 = io_in_d_bits_opcode != 3'h6; // @[Monitor.scala:673:46, :674:74]
reg [31:0] watchdog; // @[Monitor.scala:709:27]
reg [1039:0] inflight_1; // @[Monitor.scala:726:35]
reg [4159:0] inflight_sizes_1; // @[Monitor.scala:728:35]
reg d_first_counter_2; // @[Edges.scala:229:27]
reg [31:0] watchdog_1; // @[Monitor.scala:818:27] |
Generate the Verilog code corresponding to the following Chisel files.
File Monitor.scala:
// See LICENSE.SiFive for license details.
package freechips.rocketchip.tilelink
import chisel3._
import chisel3.util._
import chisel3.experimental.SourceLine
import org.chipsalliance.cde.config._
import org.chipsalliance.diplomacy._
import freechips.rocketchip.diplomacy.EnableMonitors
import freechips.rocketchip.formal.{MonitorDirection, IfThen, Property, PropertyClass, TestplanTestType, TLMonitorStrictMode}
import freechips.rocketchip.util.PlusArg
case class TLMonitorArgs(edge: TLEdge)
abstract class TLMonitorBase(args: TLMonitorArgs) extends Module
{
val io = IO(new Bundle {
val in = Input(new TLBundle(args.edge.bundle))
})
def legalize(bundle: TLBundle, edge: TLEdge, reset: Reset): Unit
legalize(io.in, args.edge, reset)
}
object TLMonitor {
def apply(enable: Boolean, node: TLNode)(implicit p: Parameters): TLNode = {
if (enable) {
EnableMonitors { implicit p => node := TLEphemeralNode()(ValName("monitor")) }
} else { node }
}
}
class TLMonitor(args: TLMonitorArgs, monitorDir: MonitorDirection = MonitorDirection.Monitor) extends TLMonitorBase(args)
{
require (args.edge.params(TLMonitorStrictMode) || (! args.edge.params(TestplanTestType).formal))
val cover_prop_class = PropertyClass.Default
//Like assert but can flip to being an assumption for formal verification
def monAssert(cond: Bool, message: String): Unit =
if (monitorDir == MonitorDirection.Monitor) {
assert(cond, message)
} else {
Property(monitorDir, cond, message, PropertyClass.Default)
}
def assume(cond: Bool, message: String): Unit =
if (monitorDir == MonitorDirection.Monitor) {
assert(cond, message)
} else {
Property(monitorDir.flip, cond, message, PropertyClass.Default)
}
def extra = {
args.edge.sourceInfo match {
case SourceLine(filename, line, col) => s" (connected at $filename:$line:$col)"
case _ => ""
}
}
def visible(address: UInt, source: UInt, edge: TLEdge) =
edge.client.clients.map { c =>
!c.sourceId.contains(source) ||
c.visibility.map(_.contains(address)).reduce(_ || _)
}.reduce(_ && _)
def legalizeFormatA(bundle: TLBundleA, edge: TLEdge): Unit = {
//switch this flag to turn on diplomacy in error messages
def diplomacyInfo = if (true) "" else "\nThe diplomacy information for the edge is as follows:\n" + edge.formatEdge + "\n"
monAssert (TLMessages.isA(bundle.opcode), "'A' channel has invalid opcode" + extra)
// Reuse these subexpressions to save some firrtl lines
val source_ok = edge.client.contains(bundle.source)
val is_aligned = edge.isAligned(bundle.address, bundle.size)
val mask = edge.full_mask(bundle)
monAssert (visible(edge.address(bundle), bundle.source, edge), "'A' channel carries an address illegal for the specified bank visibility")
//The monitor doesnβt check for acquire T vs acquire B, it assumes that acquire B implies acquire T and only checks for acquire B
//TODO: check for acquireT?
when (bundle.opcode === TLMessages.AcquireBlock) {
monAssert (edge.master.emitsAcquireB(bundle.source, bundle.size) && edge.slave.supportsAcquireBSafe(edge.address(bundle), bundle.size), "'A' channel carries AcquireBlock type which is unexpected using diplomatic parameters" + diplomacyInfo + extra)
monAssert (edge.master.supportsProbe(edge.source(bundle), bundle.size) && edge.slave.emitsProbeSafe(edge.address(bundle), bundle.size), "'A' channel carries AcquireBlock from a client which does not support Probe" + diplomacyInfo + extra)
monAssert (source_ok, "'A' channel AcquireBlock carries invalid source ID" + diplomacyInfo + extra)
monAssert (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'A' channel AcquireBlock smaller than a beat" + extra)
monAssert (is_aligned, "'A' channel AcquireBlock address not aligned to size" + extra)
monAssert (TLPermissions.isGrow(bundle.param), "'A' channel AcquireBlock carries invalid grow param" + extra)
monAssert (~bundle.mask === 0.U, "'A' channel AcquireBlock contains invalid mask" + extra)
monAssert (!bundle.corrupt, "'A' channel AcquireBlock is corrupt" + extra)
}
when (bundle.opcode === TLMessages.AcquirePerm) {
monAssert (edge.master.emitsAcquireB(bundle.source, bundle.size) && edge.slave.supportsAcquireBSafe(edge.address(bundle), bundle.size), "'A' channel carries AcquirePerm type which is unexpected using diplomatic parameters" + diplomacyInfo + extra)
monAssert (edge.master.supportsProbe(edge.source(bundle), bundle.size) && edge.slave.emitsProbeSafe(edge.address(bundle), bundle.size), "'A' channel carries AcquirePerm from a client which does not support Probe" + diplomacyInfo + extra)
monAssert (source_ok, "'A' channel AcquirePerm carries invalid source ID" + diplomacyInfo + extra)
monAssert (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'A' channel AcquirePerm smaller than a beat" + extra)
monAssert (is_aligned, "'A' channel AcquirePerm address not aligned to size" + extra)
monAssert (TLPermissions.isGrow(bundle.param), "'A' channel AcquirePerm carries invalid grow param" + extra)
monAssert (bundle.param =/= TLPermissions.NtoB, "'A' channel AcquirePerm requests NtoB" + extra)
monAssert (~bundle.mask === 0.U, "'A' channel AcquirePerm contains invalid mask" + extra)
monAssert (!bundle.corrupt, "'A' channel AcquirePerm is corrupt" + extra)
}
when (bundle.opcode === TLMessages.Get) {
monAssert (edge.master.emitsGet(bundle.source, bundle.size), "'A' channel carries Get type which master claims it can't emit" + diplomacyInfo + extra)
monAssert (edge.slave.supportsGetSafe(edge.address(bundle), bundle.size, None), "'A' channel carries Get type which slave claims it can't support" + diplomacyInfo + extra)
monAssert (source_ok, "'A' channel Get carries invalid source ID" + diplomacyInfo + extra)
monAssert (is_aligned, "'A' channel Get address not aligned to size" + extra)
monAssert (bundle.param === 0.U, "'A' channel Get carries invalid param" + extra)
monAssert (bundle.mask === mask, "'A' channel Get contains invalid mask" + extra)
monAssert (!bundle.corrupt, "'A' channel Get is corrupt" + extra)
}
when (bundle.opcode === TLMessages.PutFullData) {
monAssert (edge.master.emitsPutFull(bundle.source, bundle.size) && edge.slave.supportsPutFullSafe(edge.address(bundle), bundle.size), "'A' channel carries PutFull type which is unexpected using diplomatic parameters" + diplomacyInfo + extra)
monAssert (source_ok, "'A' channel PutFull carries invalid source ID" + diplomacyInfo + extra)
monAssert (is_aligned, "'A' channel PutFull address not aligned to size" + extra)
monAssert (bundle.param === 0.U, "'A' channel PutFull carries invalid param" + extra)
monAssert (bundle.mask === mask, "'A' channel PutFull contains invalid mask" + extra)
}
when (bundle.opcode === TLMessages.PutPartialData) {
monAssert (edge.master.emitsPutPartial(bundle.source, bundle.size) && edge.slave.supportsPutPartialSafe(edge.address(bundle), bundle.size), "'A' channel carries PutPartial type which is unexpected using diplomatic parameters" + extra)
monAssert (source_ok, "'A' channel PutPartial carries invalid source ID" + diplomacyInfo + extra)
monAssert (is_aligned, "'A' channel PutPartial address not aligned to size" + extra)
monAssert (bundle.param === 0.U, "'A' channel PutPartial carries invalid param" + extra)
monAssert ((bundle.mask & ~mask) === 0.U, "'A' channel PutPartial contains invalid mask" + extra)
}
when (bundle.opcode === TLMessages.ArithmeticData) {
monAssert (edge.master.emitsArithmetic(bundle.source, bundle.size) && edge.slave.supportsArithmeticSafe(edge.address(bundle), bundle.size), "'A' channel carries Arithmetic type which is unexpected using diplomatic parameters" + extra)
monAssert (source_ok, "'A' channel Arithmetic carries invalid source ID" + diplomacyInfo + extra)
monAssert (is_aligned, "'A' channel Arithmetic address not aligned to size" + extra)
monAssert (TLAtomics.isArithmetic(bundle.param), "'A' channel Arithmetic carries invalid opcode param" + extra)
monAssert (bundle.mask === mask, "'A' channel Arithmetic contains invalid mask" + extra)
}
when (bundle.opcode === TLMessages.LogicalData) {
monAssert (edge.master.emitsLogical(bundle.source, bundle.size) && edge.slave.supportsLogicalSafe(edge.address(bundle), bundle.size), "'A' channel carries Logical type which is unexpected using diplomatic parameters" + extra)
monAssert (source_ok, "'A' channel Logical carries invalid source ID" + diplomacyInfo + extra)
monAssert (is_aligned, "'A' channel Logical address not aligned to size" + extra)
monAssert (TLAtomics.isLogical(bundle.param), "'A' channel Logical carries invalid opcode param" + extra)
monAssert (bundle.mask === mask, "'A' channel Logical contains invalid mask" + extra)
}
when (bundle.opcode === TLMessages.Hint) {
monAssert (edge.master.emitsHint(bundle.source, bundle.size) && edge.slave.supportsHintSafe(edge.address(bundle), bundle.size), "'A' channel carries Hint type which is unexpected using diplomatic parameters" + extra)
monAssert (source_ok, "'A' channel Hint carries invalid source ID" + diplomacyInfo + extra)
monAssert (is_aligned, "'A' channel Hint address not aligned to size" + extra)
monAssert (TLHints.isHints(bundle.param), "'A' channel Hint carries invalid opcode param" + extra)
monAssert (bundle.mask === mask, "'A' channel Hint contains invalid mask" + extra)
monAssert (!bundle.corrupt, "'A' channel Hint is corrupt" + extra)
}
}
def legalizeFormatB(bundle: TLBundleB, edge: TLEdge): Unit = {
monAssert (TLMessages.isB(bundle.opcode), "'B' channel has invalid opcode" + extra)
monAssert (visible(edge.address(bundle), bundle.source, edge), "'B' channel carries an address illegal for the specified bank visibility")
// Reuse these subexpressions to save some firrtl lines
val address_ok = edge.manager.containsSafe(edge.address(bundle))
val is_aligned = edge.isAligned(bundle.address, bundle.size)
val mask = edge.full_mask(bundle)
val legal_source = Mux1H(edge.client.find(bundle.source), edge.client.clients.map(c => c.sourceId.start.U)) === bundle.source
when (bundle.opcode === TLMessages.Probe) {
assume (edge.master.supportsProbe(edge.source(bundle), bundle.size) && edge.slave.emitsProbeSafe(edge.address(bundle), bundle.size), "'B' channel carries Probe type which is unexpected using diplomatic parameters" + extra)
assume (address_ok, "'B' channel Probe carries unmanaged address" + extra)
assume (legal_source, "'B' channel Probe carries source that is not first source" + extra)
assume (is_aligned, "'B' channel Probe address not aligned to size" + extra)
assume (TLPermissions.isCap(bundle.param), "'B' channel Probe carries invalid cap param" + extra)
assume (bundle.mask === mask, "'B' channel Probe contains invalid mask" + extra)
assume (!bundle.corrupt, "'B' channel Probe is corrupt" + extra)
}
when (bundle.opcode === TLMessages.Get) {
monAssert (edge.master.supportsGet(edge.source(bundle), bundle.size) && edge.slave.emitsGetSafe(edge.address(bundle), bundle.size), "'B' channel carries Get type which is unexpected using diplomatic parameters" + extra)
monAssert (address_ok, "'B' channel Get carries unmanaged address" + extra)
monAssert (legal_source, "'B' channel Get carries source that is not first source" + extra)
monAssert (is_aligned, "'B' channel Get address not aligned to size" + extra)
monAssert (bundle.param === 0.U, "'B' channel Get carries invalid param" + extra)
monAssert (bundle.mask === mask, "'B' channel Get contains invalid mask" + extra)
monAssert (!bundle.corrupt, "'B' channel Get is corrupt" + extra)
}
when (bundle.opcode === TLMessages.PutFullData) {
monAssert (edge.master.supportsPutFull(edge.source(bundle), bundle.size) && edge.slave.emitsPutFullSafe(edge.address(bundle), bundle.size), "'B' channel carries PutFull type which is unexpected using diplomatic parameters" + extra)
monAssert (address_ok, "'B' channel PutFull carries unmanaged address" + extra)
monAssert (legal_source, "'B' channel PutFull carries source that is not first source" + extra)
monAssert (is_aligned, "'B' channel PutFull address not aligned to size" + extra)
monAssert (bundle.param === 0.U, "'B' channel PutFull carries invalid param" + extra)
monAssert (bundle.mask === mask, "'B' channel PutFull contains invalid mask" + extra)
}
when (bundle.opcode === TLMessages.PutPartialData) {
monAssert (edge.master.supportsPutPartial(edge.source(bundle), bundle.size) && edge.slave.emitsPutPartialSafe(edge.address(bundle), bundle.size), "'B' channel carries PutPartial type which is unexpected using diplomatic parameters" + extra)
monAssert (address_ok, "'B' channel PutPartial carries unmanaged address" + extra)
monAssert (legal_source, "'B' channel PutPartial carries source that is not first source" + extra)
monAssert (is_aligned, "'B' channel PutPartial address not aligned to size" + extra)
monAssert (bundle.param === 0.U, "'B' channel PutPartial carries invalid param" + extra)
monAssert ((bundle.mask & ~mask) === 0.U, "'B' channel PutPartial contains invalid mask" + extra)
}
when (bundle.opcode === TLMessages.ArithmeticData) {
monAssert (edge.master.supportsArithmetic(edge.source(bundle), bundle.size) && edge.slave.emitsArithmeticSafe(edge.address(bundle), bundle.size), "'B' channel carries Arithmetic type unsupported by master" + extra)
monAssert (address_ok, "'B' channel Arithmetic carries unmanaged address" + extra)
monAssert (legal_source, "'B' channel Arithmetic carries source that is not first source" + extra)
monAssert (is_aligned, "'B' channel Arithmetic address not aligned to size" + extra)
monAssert (TLAtomics.isArithmetic(bundle.param), "'B' channel Arithmetic carries invalid opcode param" + extra)
monAssert (bundle.mask === mask, "'B' channel Arithmetic contains invalid mask" + extra)
}
when (bundle.opcode === TLMessages.LogicalData) {
monAssert (edge.master.supportsLogical(edge.source(bundle), bundle.size) && edge.slave.emitsLogicalSafe(edge.address(bundle), bundle.size), "'B' channel carries Logical type unsupported by client" + extra)
monAssert (address_ok, "'B' channel Logical carries unmanaged address" + extra)
monAssert (legal_source, "'B' channel Logical carries source that is not first source" + extra)
monAssert (is_aligned, "'B' channel Logical address not aligned to size" + extra)
monAssert (TLAtomics.isLogical(bundle.param), "'B' channel Logical carries invalid opcode param" + extra)
monAssert (bundle.mask === mask, "'B' channel Logical contains invalid mask" + extra)
}
when (bundle.opcode === TLMessages.Hint) {
monAssert (edge.master.supportsHint(edge.source(bundle), bundle.size) && edge.slave.emitsHintSafe(edge.address(bundle), bundle.size), "'B' channel carries Hint type unsupported by client" + extra)
monAssert (address_ok, "'B' channel Hint carries unmanaged address" + extra)
monAssert (legal_source, "'B' channel Hint carries source that is not first source" + extra)
monAssert (is_aligned, "'B' channel Hint address not aligned to size" + extra)
monAssert (bundle.mask === mask, "'B' channel Hint contains invalid mask" + extra)
monAssert (!bundle.corrupt, "'B' channel Hint is corrupt" + extra)
}
}
def legalizeFormatC(bundle: TLBundleC, edge: TLEdge): Unit = {
monAssert (TLMessages.isC(bundle.opcode), "'C' channel has invalid opcode" + extra)
val source_ok = edge.client.contains(bundle.source)
val is_aligned = edge.isAligned(bundle.address, bundle.size)
val address_ok = edge.manager.containsSafe(edge.address(bundle))
monAssert (visible(edge.address(bundle), bundle.source, edge), "'C' channel carries an address illegal for the specified bank visibility")
when (bundle.opcode === TLMessages.ProbeAck) {
monAssert (address_ok, "'C' channel ProbeAck carries unmanaged address" + extra)
monAssert (source_ok, "'C' channel ProbeAck carries invalid source ID" + extra)
monAssert (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'C' channel ProbeAck smaller than a beat" + extra)
monAssert (is_aligned, "'C' channel ProbeAck address not aligned to size" + extra)
monAssert (TLPermissions.isReport(bundle.param), "'C' channel ProbeAck carries invalid report param" + extra)
monAssert (!bundle.corrupt, "'C' channel ProbeAck is corrupt" + extra)
}
when (bundle.opcode === TLMessages.ProbeAckData) {
monAssert (address_ok, "'C' channel ProbeAckData carries unmanaged address" + extra)
monAssert (source_ok, "'C' channel ProbeAckData carries invalid source ID" + extra)
monAssert (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'C' channel ProbeAckData smaller than a beat" + extra)
monAssert (is_aligned, "'C' channel ProbeAckData address not aligned to size" + extra)
monAssert (TLPermissions.isReport(bundle.param), "'C' channel ProbeAckData carries invalid report param" + extra)
}
when (bundle.opcode === TLMessages.Release) {
monAssert (edge.master.emitsAcquireB(edge.source(bundle), bundle.size) && edge.slave.supportsAcquireBSafe(edge.address(bundle), bundle.size), "'C' channel carries Release type unsupported by manager" + extra)
monAssert (edge.master.supportsProbe(edge.source(bundle), bundle.size) && edge.slave.emitsProbeSafe(edge.address(bundle), bundle.size), "'C' channel carries Release from a client which does not support Probe" + extra)
monAssert (source_ok, "'C' channel Release carries invalid source ID" + extra)
monAssert (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'C' channel Release smaller than a beat" + extra)
monAssert (is_aligned, "'C' channel Release address not aligned to size" + extra)
monAssert (TLPermissions.isReport(bundle.param), "'C' channel Release carries invalid report param" + extra)
monAssert (!bundle.corrupt, "'C' channel Release is corrupt" + extra)
}
when (bundle.opcode === TLMessages.ReleaseData) {
monAssert (edge.master.emitsAcquireB(edge.source(bundle), bundle.size) && edge.slave.supportsAcquireBSafe(edge.address(bundle), bundle.size), "'C' channel carries ReleaseData type unsupported by manager" + extra)
monAssert (edge.master.supportsProbe(edge.source(bundle), bundle.size) && edge.slave.emitsProbeSafe(edge.address(bundle), bundle.size), "'C' channel carries Release from a client which does not support Probe" + extra)
monAssert (source_ok, "'C' channel ReleaseData carries invalid source ID" + extra)
monAssert (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'C' channel ReleaseData smaller than a beat" + extra)
monAssert (is_aligned, "'C' channel ReleaseData address not aligned to size" + extra)
monAssert (TLPermissions.isReport(bundle.param), "'C' channel ReleaseData carries invalid report param" + extra)
}
when (bundle.opcode === TLMessages.AccessAck) {
monAssert (address_ok, "'C' channel AccessAck carries unmanaged address" + extra)
monAssert (source_ok, "'C' channel AccessAck carries invalid source ID" + extra)
monAssert (is_aligned, "'C' channel AccessAck address not aligned to size" + extra)
monAssert (bundle.param === 0.U, "'C' channel AccessAck carries invalid param" + extra)
monAssert (!bundle.corrupt, "'C' channel AccessAck is corrupt" + extra)
}
when (bundle.opcode === TLMessages.AccessAckData) {
monAssert (address_ok, "'C' channel AccessAckData carries unmanaged address" + extra)
monAssert (source_ok, "'C' channel AccessAckData carries invalid source ID" + extra)
monAssert (is_aligned, "'C' channel AccessAckData address not aligned to size" + extra)
monAssert (bundle.param === 0.U, "'C' channel AccessAckData carries invalid param" + extra)
}
when (bundle.opcode === TLMessages.HintAck) {
monAssert (address_ok, "'C' channel HintAck carries unmanaged address" + extra)
monAssert (source_ok, "'C' channel HintAck carries invalid source ID" + extra)
monAssert (is_aligned, "'C' channel HintAck address not aligned to size" + extra)
monAssert (bundle.param === 0.U, "'C' channel HintAck carries invalid param" + extra)
monAssert (!bundle.corrupt, "'C' channel HintAck is corrupt" + extra)
}
}
def legalizeFormatD(bundle: TLBundleD, edge: TLEdge): Unit = {
assume (TLMessages.isD(bundle.opcode), "'D' channel has invalid opcode" + extra)
val source_ok = edge.client.contains(bundle.source)
val sink_ok = bundle.sink < edge.manager.endSinkId.U
val deny_put_ok = edge.manager.mayDenyPut.B
val deny_get_ok = edge.manager.mayDenyGet.B
when (bundle.opcode === TLMessages.ReleaseAck) {
assume (source_ok, "'D' channel ReleaseAck carries invalid source ID" + extra)
assume (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'D' channel ReleaseAck smaller than a beat" + extra)
assume (bundle.param === 0.U, "'D' channel ReleaseeAck carries invalid param" + extra)
assume (!bundle.corrupt, "'D' channel ReleaseAck is corrupt" + extra)
assume (!bundle.denied, "'D' channel ReleaseAck is denied" + extra)
}
when (bundle.opcode === TLMessages.Grant) {
assume (source_ok, "'D' channel Grant carries invalid source ID" + extra)
assume (sink_ok, "'D' channel Grant carries invalid sink ID" + extra)
assume (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'D' channel Grant smaller than a beat" + extra)
assume (TLPermissions.isCap(bundle.param), "'D' channel Grant carries invalid cap param" + extra)
assume (bundle.param =/= TLPermissions.toN, "'D' channel Grant carries toN param" + extra)
assume (!bundle.corrupt, "'D' channel Grant is corrupt" + extra)
assume (deny_put_ok || !bundle.denied, "'D' channel Grant is denied" + extra)
}
when (bundle.opcode === TLMessages.GrantData) {
assume (source_ok, "'D' channel GrantData carries invalid source ID" + extra)
assume (sink_ok, "'D' channel GrantData carries invalid sink ID" + extra)
assume (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'D' channel GrantData smaller than a beat" + extra)
assume (TLPermissions.isCap(bundle.param), "'D' channel GrantData carries invalid cap param" + extra)
assume (bundle.param =/= TLPermissions.toN, "'D' channel GrantData carries toN param" + extra)
assume (!bundle.denied || bundle.corrupt, "'D' channel GrantData is denied but not corrupt" + extra)
assume (deny_get_ok || !bundle.denied, "'D' channel GrantData is denied" + extra)
}
when (bundle.opcode === TLMessages.AccessAck) {
assume (source_ok, "'D' channel AccessAck carries invalid source ID" + extra)
// size is ignored
assume (bundle.param === 0.U, "'D' channel AccessAck carries invalid param" + extra)
assume (!bundle.corrupt, "'D' channel AccessAck is corrupt" + extra)
assume (deny_put_ok || !bundle.denied, "'D' channel AccessAck is denied" + extra)
}
when (bundle.opcode === TLMessages.AccessAckData) {
assume (source_ok, "'D' channel AccessAckData carries invalid source ID" + extra)
// size is ignored
assume (bundle.param === 0.U, "'D' channel AccessAckData carries invalid param" + extra)
assume (!bundle.denied || bundle.corrupt, "'D' channel AccessAckData is denied but not corrupt" + extra)
assume (deny_get_ok || !bundle.denied, "'D' channel AccessAckData is denied" + extra)
}
when (bundle.opcode === TLMessages.HintAck) {
assume (source_ok, "'D' channel HintAck carries invalid source ID" + extra)
// size is ignored
assume (bundle.param === 0.U, "'D' channel HintAck carries invalid param" + extra)
assume (!bundle.corrupt, "'D' channel HintAck is corrupt" + extra)
assume (deny_put_ok || !bundle.denied, "'D' channel HintAck is denied" + extra)
}
}
def legalizeFormatE(bundle: TLBundleE, edge: TLEdge): Unit = {
val sink_ok = bundle.sink < edge.manager.endSinkId.U
monAssert (sink_ok, "'E' channels carries invalid sink ID" + extra)
}
def legalizeFormat(bundle: TLBundle, edge: TLEdge) = {
when (bundle.a.valid) { legalizeFormatA(bundle.a.bits, edge) }
when (bundle.d.valid) { legalizeFormatD(bundle.d.bits, edge) }
if (edge.client.anySupportProbe && edge.manager.anySupportAcquireB) {
when (bundle.b.valid) { legalizeFormatB(bundle.b.bits, edge) }
when (bundle.c.valid) { legalizeFormatC(bundle.c.bits, edge) }
when (bundle.e.valid) { legalizeFormatE(bundle.e.bits, edge) }
} else {
monAssert (!bundle.b.valid, "'B' channel valid and not TL-C" + extra)
monAssert (!bundle.c.valid, "'C' channel valid and not TL-C" + extra)
monAssert (!bundle.e.valid, "'E' channel valid and not TL-C" + extra)
}
}
def legalizeMultibeatA(a: DecoupledIO[TLBundleA], edge: TLEdge): Unit = {
val a_first = edge.first(a.bits, a.fire)
val opcode = Reg(UInt())
val param = Reg(UInt())
val size = Reg(UInt())
val source = Reg(UInt())
val address = Reg(UInt())
when (a.valid && !a_first) {
monAssert (a.bits.opcode === opcode, "'A' channel opcode changed within multibeat operation" + extra)
monAssert (a.bits.param === param, "'A' channel param changed within multibeat operation" + extra)
monAssert (a.bits.size === size, "'A' channel size changed within multibeat operation" + extra)
monAssert (a.bits.source === source, "'A' channel source changed within multibeat operation" + extra)
monAssert (a.bits.address=== address,"'A' channel address changed with multibeat operation" + extra)
}
when (a.fire && a_first) {
opcode := a.bits.opcode
param := a.bits.param
size := a.bits.size
source := a.bits.source
address := a.bits.address
}
}
def legalizeMultibeatB(b: DecoupledIO[TLBundleB], edge: TLEdge): Unit = {
val b_first = edge.first(b.bits, b.fire)
val opcode = Reg(UInt())
val param = Reg(UInt())
val size = Reg(UInt())
val source = Reg(UInt())
val address = Reg(UInt())
when (b.valid && !b_first) {
monAssert (b.bits.opcode === opcode, "'B' channel opcode changed within multibeat operation" + extra)
monAssert (b.bits.param === param, "'B' channel param changed within multibeat operation" + extra)
monAssert (b.bits.size === size, "'B' channel size changed within multibeat operation" + extra)
monAssert (b.bits.source === source, "'B' channel source changed within multibeat operation" + extra)
monAssert (b.bits.address=== address,"'B' channel addresss changed with multibeat operation" + extra)
}
when (b.fire && b_first) {
opcode := b.bits.opcode
param := b.bits.param
size := b.bits.size
source := b.bits.source
address := b.bits.address
}
}
def legalizeADSourceFormal(bundle: TLBundle, edge: TLEdge): Unit = {
// Symbolic variable
val sym_source = Wire(UInt(edge.client.endSourceId.W))
// TODO: Connect sym_source to a fixed value for simulation and to a
// free wire in formal
sym_source := 0.U
// Type casting Int to UInt
val maxSourceId = Wire(UInt(edge.client.endSourceId.W))
maxSourceId := edge.client.endSourceId.U
// Delayed verison of sym_source
val sym_source_d = Reg(UInt(edge.client.endSourceId.W))
sym_source_d := sym_source
// These will be constraints for FV setup
Property(
MonitorDirection.Monitor,
(sym_source === sym_source_d),
"sym_source should remain stable",
PropertyClass.Default)
Property(
MonitorDirection.Monitor,
(sym_source <= maxSourceId),
"sym_source should take legal value",
PropertyClass.Default)
val my_resp_pend = RegInit(false.B)
val my_opcode = Reg(UInt())
val my_size = Reg(UInt())
val a_first = bundle.a.valid && edge.first(bundle.a.bits, bundle.a.fire)
val d_first = bundle.d.valid && edge.first(bundle.d.bits, bundle.d.fire)
val my_a_first_beat = a_first && (bundle.a.bits.source === sym_source)
val my_d_first_beat = d_first && (bundle.d.bits.source === sym_source)
val my_clr_resp_pend = (bundle.d.fire && my_d_first_beat)
val my_set_resp_pend = (bundle.a.fire && my_a_first_beat && !my_clr_resp_pend)
when (my_set_resp_pend) {
my_resp_pend := true.B
} .elsewhen (my_clr_resp_pend) {
my_resp_pend := false.B
}
when (my_a_first_beat) {
my_opcode := bundle.a.bits.opcode
my_size := bundle.a.bits.size
}
val my_resp_size = Mux(my_a_first_beat, bundle.a.bits.size, my_size)
val my_resp_opcode = Mux(my_a_first_beat, bundle.a.bits.opcode, my_opcode)
val my_resp_opcode_legal = Wire(Bool())
when ((my_resp_opcode === TLMessages.Get) || (my_resp_opcode === TLMessages.ArithmeticData) ||
(my_resp_opcode === TLMessages.LogicalData)) {
my_resp_opcode_legal := (bundle.d.bits.opcode === TLMessages.AccessAckData)
} .elsewhen ((my_resp_opcode === TLMessages.PutFullData) || (my_resp_opcode === TLMessages.PutPartialData)) {
my_resp_opcode_legal := (bundle.d.bits.opcode === TLMessages.AccessAck)
} .otherwise {
my_resp_opcode_legal := (bundle.d.bits.opcode === TLMessages.HintAck)
}
monAssert (IfThen(my_resp_pend, !my_a_first_beat),
"Request message should not be sent with a source ID, for which a response message" +
"is already pending (not received until current cycle) for a prior request message" +
"with the same source ID" + extra)
assume (IfThen(my_clr_resp_pend, (my_set_resp_pend || my_resp_pend)),
"Response message should be accepted with a source ID only if a request message with the" +
"same source ID has been accepted or is being accepted in the current cycle" + extra)
assume (IfThen(my_d_first_beat, (my_a_first_beat || my_resp_pend)),
"Response message should be sent with a source ID only if a request message with the" +
"same source ID has been accepted or is being sent in the current cycle" + extra)
assume (IfThen(my_d_first_beat, (bundle.d.bits.size === my_resp_size)),
"If d_valid is 1, then d_size should be same as a_size of the corresponding request" +
"message" + extra)
assume (IfThen(my_d_first_beat, my_resp_opcode_legal),
"If d_valid is 1, then d_opcode should correspond with a_opcode of the corresponding" +
"request message" + extra)
}
def legalizeMultibeatC(c: DecoupledIO[TLBundleC], edge: TLEdge): Unit = {
val c_first = edge.first(c.bits, c.fire)
val opcode = Reg(UInt())
val param = Reg(UInt())
val size = Reg(UInt())
val source = Reg(UInt())
val address = Reg(UInt())
when (c.valid && !c_first) {
monAssert (c.bits.opcode === opcode, "'C' channel opcode changed within multibeat operation" + extra)
monAssert (c.bits.param === param, "'C' channel param changed within multibeat operation" + extra)
monAssert (c.bits.size === size, "'C' channel size changed within multibeat operation" + extra)
monAssert (c.bits.source === source, "'C' channel source changed within multibeat operation" + extra)
monAssert (c.bits.address=== address,"'C' channel address changed with multibeat operation" + extra)
}
when (c.fire && c_first) {
opcode := c.bits.opcode
param := c.bits.param
size := c.bits.size
source := c.bits.source
address := c.bits.address
}
}
def legalizeMultibeatD(d: DecoupledIO[TLBundleD], edge: TLEdge): Unit = {
val d_first = edge.first(d.bits, d.fire)
val opcode = Reg(UInt())
val param = Reg(UInt())
val size = Reg(UInt())
val source = Reg(UInt())
val sink = Reg(UInt())
val denied = Reg(Bool())
when (d.valid && !d_first) {
assume (d.bits.opcode === opcode, "'D' channel opcode changed within multibeat operation" + extra)
assume (d.bits.param === param, "'D' channel param changed within multibeat operation" + extra)
assume (d.bits.size === size, "'D' channel size changed within multibeat operation" + extra)
assume (d.bits.source === source, "'D' channel source changed within multibeat operation" + extra)
assume (d.bits.sink === sink, "'D' channel sink changed with multibeat operation" + extra)
assume (d.bits.denied === denied, "'D' channel denied changed with multibeat operation" + extra)
}
when (d.fire && d_first) {
opcode := d.bits.opcode
param := d.bits.param
size := d.bits.size
source := d.bits.source
sink := d.bits.sink
denied := d.bits.denied
}
}
def legalizeMultibeat(bundle: TLBundle, edge: TLEdge): Unit = {
legalizeMultibeatA(bundle.a, edge)
legalizeMultibeatD(bundle.d, edge)
if (edge.client.anySupportProbe && edge.manager.anySupportAcquireB) {
legalizeMultibeatB(bundle.b, edge)
legalizeMultibeatC(bundle.c, edge)
}
}
//This is left in for almond which doesn't adhere to the tilelink protocol
@deprecated("Use legalizeADSource instead if possible","")
def legalizeADSourceOld(bundle: TLBundle, edge: TLEdge): Unit = {
val inflight = RegInit(0.U(edge.client.endSourceId.W))
val a_first = edge.first(bundle.a.bits, bundle.a.fire)
val d_first = edge.first(bundle.d.bits, bundle.d.fire)
val a_set = WireInit(0.U(edge.client.endSourceId.W))
when (bundle.a.fire && a_first && edge.isRequest(bundle.a.bits)) {
a_set := UIntToOH(bundle.a.bits.source)
assert(!inflight(bundle.a.bits.source), "'A' channel re-used a source ID" + extra)
}
val d_clr = WireInit(0.U(edge.client.endSourceId.W))
val d_release_ack = bundle.d.bits.opcode === TLMessages.ReleaseAck
when (bundle.d.fire && d_first && edge.isResponse(bundle.d.bits) && !d_release_ack) {
d_clr := UIntToOH(bundle.d.bits.source)
assume((a_set | inflight)(bundle.d.bits.source), "'D' channel acknowledged for nothing inflight" + extra)
}
if (edge.manager.minLatency > 0) {
assume(a_set =/= d_clr || !a_set.orR, s"'A' and 'D' concurrent, despite minlatency > 0" + extra)
}
inflight := (inflight | a_set) & ~d_clr
val watchdog = RegInit(0.U(32.W))
val limit = PlusArg("tilelink_timeout",
docstring="Kill emulation after INT waiting TileLink cycles. Off if 0.")
assert (!inflight.orR || limit === 0.U || watchdog < limit, "TileLink timeout expired" + extra)
watchdog := watchdog + 1.U
when (bundle.a.fire || bundle.d.fire) { watchdog := 0.U }
}
def legalizeADSource(bundle: TLBundle, edge: TLEdge): Unit = {
val a_size_bus_size = edge.bundle.sizeBits + 1 //add one so that 0 is not mapped to anything (size 0 -> size 1 in map, size 0 in map means unset)
val a_opcode_bus_size = 3 + 1 //opcode size is 3, but add so that 0 is not mapped to anything
val log_a_opcode_bus_size = log2Ceil(a_opcode_bus_size)
val log_a_size_bus_size = log2Ceil(a_size_bus_size)
def size_to_numfullbits(x: UInt): UInt = (1.U << x) - 1.U //convert a number to that many full bits
val inflight = RegInit(0.U((2 max edge.client.endSourceId).W)) // size up to avoid width error
inflight.suggestName("inflight")
val inflight_opcodes = RegInit(0.U((edge.client.endSourceId << log_a_opcode_bus_size).W))
inflight_opcodes.suggestName("inflight_opcodes")
val inflight_sizes = RegInit(0.U((edge.client.endSourceId << log_a_size_bus_size).W))
inflight_sizes.suggestName("inflight_sizes")
val a_first = edge.first(bundle.a.bits, bundle.a.fire)
a_first.suggestName("a_first")
val d_first = edge.first(bundle.d.bits, bundle.d.fire)
d_first.suggestName("d_first")
val a_set = WireInit(0.U(edge.client.endSourceId.W))
val a_set_wo_ready = WireInit(0.U(edge.client.endSourceId.W))
a_set.suggestName("a_set")
a_set_wo_ready.suggestName("a_set_wo_ready")
val a_opcodes_set = WireInit(0.U((edge.client.endSourceId << log_a_opcode_bus_size).W))
a_opcodes_set.suggestName("a_opcodes_set")
val a_sizes_set = WireInit(0.U((edge.client.endSourceId << log_a_size_bus_size).W))
a_sizes_set.suggestName("a_sizes_set")
val a_opcode_lookup = WireInit(0.U((a_opcode_bus_size - 1).W))
a_opcode_lookup.suggestName("a_opcode_lookup")
a_opcode_lookup := ((inflight_opcodes) >> (bundle.d.bits.source << log_a_opcode_bus_size.U) & size_to_numfullbits(1.U << log_a_opcode_bus_size.U)) >> 1.U
val a_size_lookup = WireInit(0.U((1 << log_a_size_bus_size).W))
a_size_lookup.suggestName("a_size_lookup")
a_size_lookup := ((inflight_sizes) >> (bundle.d.bits.source << log_a_size_bus_size.U) & size_to_numfullbits(1.U << log_a_size_bus_size.U)) >> 1.U
val responseMap = VecInit(Seq(TLMessages.AccessAck, TLMessages.AccessAck, TLMessages.AccessAckData, TLMessages.AccessAckData, TLMessages.AccessAckData, TLMessages.HintAck, TLMessages.Grant, TLMessages.Grant))
val responseMapSecondOption = VecInit(Seq(TLMessages.AccessAck, TLMessages.AccessAck, TLMessages.AccessAckData, TLMessages.AccessAckData, TLMessages.AccessAckData, TLMessages.HintAck, TLMessages.GrantData, TLMessages.Grant))
val a_opcodes_set_interm = WireInit(0.U(a_opcode_bus_size.W))
a_opcodes_set_interm.suggestName("a_opcodes_set_interm")
val a_sizes_set_interm = WireInit(0.U(a_size_bus_size.W))
a_sizes_set_interm.suggestName("a_sizes_set_interm")
when (bundle.a.valid && a_first && edge.isRequest(bundle.a.bits)) {
a_set_wo_ready := UIntToOH(bundle.a.bits.source)
}
when (bundle.a.fire && a_first && edge.isRequest(bundle.a.bits)) {
a_set := UIntToOH(bundle.a.bits.source)
a_opcodes_set_interm := (bundle.a.bits.opcode << 1.U) | 1.U
a_sizes_set_interm := (bundle.a.bits.size << 1.U) | 1.U
a_opcodes_set := (a_opcodes_set_interm) << (bundle.a.bits.source << log_a_opcode_bus_size.U)
a_sizes_set := (a_sizes_set_interm) << (bundle.a.bits.source << log_a_size_bus_size.U)
monAssert(!inflight(bundle.a.bits.source), "'A' channel re-used a source ID" + extra)
}
val d_clr = WireInit(0.U(edge.client.endSourceId.W))
val d_clr_wo_ready = WireInit(0.U(edge.client.endSourceId.W))
d_clr.suggestName("d_clr")
d_clr_wo_ready.suggestName("d_clr_wo_ready")
val d_opcodes_clr = WireInit(0.U((edge.client.endSourceId << log_a_opcode_bus_size).W))
d_opcodes_clr.suggestName("d_opcodes_clr")
val d_sizes_clr = WireInit(0.U((edge.client.endSourceId << log_a_size_bus_size).W))
d_sizes_clr.suggestName("d_sizes_clr")
val d_release_ack = bundle.d.bits.opcode === TLMessages.ReleaseAck
when (bundle.d.valid && d_first && edge.isResponse(bundle.d.bits) && !d_release_ack) {
d_clr_wo_ready := UIntToOH(bundle.d.bits.source)
}
when (bundle.d.fire && d_first && edge.isResponse(bundle.d.bits) && !d_release_ack) {
d_clr := UIntToOH(bundle.d.bits.source)
d_opcodes_clr := size_to_numfullbits(1.U << log_a_opcode_bus_size.U) << (bundle.d.bits.source << log_a_opcode_bus_size.U)
d_sizes_clr := size_to_numfullbits(1.U << log_a_size_bus_size.U) << (bundle.d.bits.source << log_a_size_bus_size.U)
}
when (bundle.d.valid && d_first && edge.isResponse(bundle.d.bits) && !d_release_ack) {
val same_cycle_resp = bundle.a.valid && a_first && edge.isRequest(bundle.a.bits) && (bundle.a.bits.source === bundle.d.bits.source)
assume(((inflight)(bundle.d.bits.source)) || same_cycle_resp, "'D' channel acknowledged for nothing inflight" + extra)
when (same_cycle_resp) {
assume((bundle.d.bits.opcode === responseMap(bundle.a.bits.opcode)) ||
(bundle.d.bits.opcode === responseMapSecondOption(bundle.a.bits.opcode)), "'D' channel contains improper opcode response" + extra)
assume((bundle.a.bits.size === bundle.d.bits.size), "'D' channel contains improper response size" + extra)
} .otherwise {
assume((bundle.d.bits.opcode === responseMap(a_opcode_lookup)) ||
(bundle.d.bits.opcode === responseMapSecondOption(a_opcode_lookup)), "'D' channel contains improper opcode response" + extra)
assume((bundle.d.bits.size === a_size_lookup), "'D' channel contains improper response size" + extra)
}
}
when(bundle.d.valid && d_first && a_first && bundle.a.valid && (bundle.a.bits.source === bundle.d.bits.source) && !d_release_ack) {
assume((!bundle.d.ready) || bundle.a.ready, "ready check")
}
if (edge.manager.minLatency > 0) {
assume(a_set_wo_ready =/= d_clr_wo_ready || !a_set_wo_ready.orR, s"'A' and 'D' concurrent, despite minlatency > 0" + extra)
}
inflight := (inflight | a_set) & ~d_clr
inflight_opcodes := (inflight_opcodes | a_opcodes_set) & ~d_opcodes_clr
inflight_sizes := (inflight_sizes | a_sizes_set) & ~d_sizes_clr
val watchdog = RegInit(0.U(32.W))
val limit = PlusArg("tilelink_timeout",
docstring="Kill emulation after INT waiting TileLink cycles. Off if 0.")
monAssert (!inflight.orR || limit === 0.U || watchdog < limit, "TileLink timeout expired" + extra)
watchdog := watchdog + 1.U
when (bundle.a.fire || bundle.d.fire) { watchdog := 0.U }
}
def legalizeCDSource(bundle: TLBundle, edge: TLEdge): Unit = {
val c_size_bus_size = edge.bundle.sizeBits + 1 //add one so that 0 is not mapped to anything (size 0 -> size 1 in map, size 0 in map means unset)
val c_opcode_bus_size = 3 + 1 //opcode size is 3, but add so that 0 is not mapped to anything
val log_c_opcode_bus_size = log2Ceil(c_opcode_bus_size)
val log_c_size_bus_size = log2Ceil(c_size_bus_size)
def size_to_numfullbits(x: UInt): UInt = (1.U << x) - 1.U //convert a number to that many full bits
val inflight = RegInit(0.U((2 max edge.client.endSourceId).W))
val inflight_opcodes = RegInit(0.U((edge.client.endSourceId << log_c_opcode_bus_size).W))
val inflight_sizes = RegInit(0.U((edge.client.endSourceId << log_c_size_bus_size).W))
inflight.suggestName("inflight")
inflight_opcodes.suggestName("inflight_opcodes")
inflight_sizes.suggestName("inflight_sizes")
val c_first = edge.first(bundle.c.bits, bundle.c.fire)
val d_first = edge.first(bundle.d.bits, bundle.d.fire)
c_first.suggestName("c_first")
d_first.suggestName("d_first")
val c_set = WireInit(0.U(edge.client.endSourceId.W))
val c_set_wo_ready = WireInit(0.U(edge.client.endSourceId.W))
val c_opcodes_set = WireInit(0.U((edge.client.endSourceId << log_c_opcode_bus_size).W))
val c_sizes_set = WireInit(0.U((edge.client.endSourceId << log_c_size_bus_size).W))
c_set.suggestName("c_set")
c_set_wo_ready.suggestName("c_set_wo_ready")
c_opcodes_set.suggestName("c_opcodes_set")
c_sizes_set.suggestName("c_sizes_set")
val c_opcode_lookup = WireInit(0.U((1 << log_c_opcode_bus_size).W))
val c_size_lookup = WireInit(0.U((1 << log_c_size_bus_size).W))
c_opcode_lookup := ((inflight_opcodes) >> (bundle.d.bits.source << log_c_opcode_bus_size.U) & size_to_numfullbits(1.U << log_c_opcode_bus_size.U)) >> 1.U
c_size_lookup := ((inflight_sizes) >> (bundle.d.bits.source << log_c_size_bus_size.U) & size_to_numfullbits(1.U << log_c_size_bus_size.U)) >> 1.U
c_opcode_lookup.suggestName("c_opcode_lookup")
c_size_lookup.suggestName("c_size_lookup")
val c_opcodes_set_interm = WireInit(0.U(c_opcode_bus_size.W))
val c_sizes_set_interm = WireInit(0.U(c_size_bus_size.W))
c_opcodes_set_interm.suggestName("c_opcodes_set_interm")
c_sizes_set_interm.suggestName("c_sizes_set_interm")
when (bundle.c.valid && c_first && edge.isRequest(bundle.c.bits)) {
c_set_wo_ready := UIntToOH(bundle.c.bits.source)
}
when (bundle.c.fire && c_first && edge.isRequest(bundle.c.bits)) {
c_set := UIntToOH(bundle.c.bits.source)
c_opcodes_set_interm := (bundle.c.bits.opcode << 1.U) | 1.U
c_sizes_set_interm := (bundle.c.bits.size << 1.U) | 1.U
c_opcodes_set := (c_opcodes_set_interm) << (bundle.c.bits.source << log_c_opcode_bus_size.U)
c_sizes_set := (c_sizes_set_interm) << (bundle.c.bits.source << log_c_size_bus_size.U)
monAssert(!inflight(bundle.c.bits.source), "'C' channel re-used a source ID" + extra)
}
val c_probe_ack = bundle.c.bits.opcode === TLMessages.ProbeAck || bundle.c.bits.opcode === TLMessages.ProbeAckData
val d_clr = WireInit(0.U(edge.client.endSourceId.W))
val d_clr_wo_ready = WireInit(0.U(edge.client.endSourceId.W))
val d_opcodes_clr = WireInit(0.U((edge.client.endSourceId << log_c_opcode_bus_size).W))
val d_sizes_clr = WireInit(0.U((edge.client.endSourceId << log_c_size_bus_size).W))
d_clr.suggestName("d_clr")
d_clr_wo_ready.suggestName("d_clr_wo_ready")
d_opcodes_clr.suggestName("d_opcodes_clr")
d_sizes_clr.suggestName("d_sizes_clr")
val d_release_ack = bundle.d.bits.opcode === TLMessages.ReleaseAck
when (bundle.d.valid && d_first && edge.isResponse(bundle.d.bits) && d_release_ack) {
d_clr_wo_ready := UIntToOH(bundle.d.bits.source)
}
when (bundle.d.fire && d_first && edge.isResponse(bundle.d.bits) && d_release_ack) {
d_clr := UIntToOH(bundle.d.bits.source)
d_opcodes_clr := size_to_numfullbits(1.U << log_c_opcode_bus_size.U) << (bundle.d.bits.source << log_c_opcode_bus_size.U)
d_sizes_clr := size_to_numfullbits(1.U << log_c_size_bus_size.U) << (bundle.d.bits.source << log_c_size_bus_size.U)
}
when (bundle.d.valid && d_first && edge.isResponse(bundle.d.bits) && d_release_ack) {
val same_cycle_resp = bundle.c.valid && c_first && edge.isRequest(bundle.c.bits) && (bundle.c.bits.source === bundle.d.bits.source)
assume(((inflight)(bundle.d.bits.source)) || same_cycle_resp, "'D' channel acknowledged for nothing inflight" + extra)
when (same_cycle_resp) {
assume((bundle.d.bits.size === bundle.c.bits.size), "'D' channel contains improper response size" + extra)
} .otherwise {
assume((bundle.d.bits.size === c_size_lookup), "'D' channel contains improper response size" + extra)
}
}
when(bundle.d.valid && d_first && c_first && bundle.c.valid && (bundle.c.bits.source === bundle.d.bits.source) && d_release_ack && !c_probe_ack) {
assume((!bundle.d.ready) || bundle.c.ready, "ready check")
}
if (edge.manager.minLatency > 0) {
when (c_set_wo_ready.orR) {
assume(c_set_wo_ready =/= d_clr_wo_ready, s"'C' and 'D' concurrent, despite minlatency > 0" + extra)
}
}
inflight := (inflight | c_set) & ~d_clr
inflight_opcodes := (inflight_opcodes | c_opcodes_set) & ~d_opcodes_clr
inflight_sizes := (inflight_sizes | c_sizes_set) & ~d_sizes_clr
val watchdog = RegInit(0.U(32.W))
val limit = PlusArg("tilelink_timeout",
docstring="Kill emulation after INT waiting TileLink cycles. Off if 0.")
monAssert (!inflight.orR || limit === 0.U || watchdog < limit, "TileLink timeout expired" + extra)
watchdog := watchdog + 1.U
when (bundle.c.fire || bundle.d.fire) { watchdog := 0.U }
}
def legalizeDESink(bundle: TLBundle, edge: TLEdge): Unit = {
val inflight = RegInit(0.U(edge.manager.endSinkId.W))
val d_first = edge.first(bundle.d.bits, bundle.d.fire)
val e_first = true.B
val d_set = WireInit(0.U(edge.manager.endSinkId.W))
when (bundle.d.fire && d_first && edge.isRequest(bundle.d.bits)) {
d_set := UIntToOH(bundle.d.bits.sink)
assume(!inflight(bundle.d.bits.sink), "'D' channel re-used a sink ID" + extra)
}
val e_clr = WireInit(0.U(edge.manager.endSinkId.W))
when (bundle.e.fire && e_first && edge.isResponse(bundle.e.bits)) {
e_clr := UIntToOH(bundle.e.bits.sink)
monAssert((d_set | inflight)(bundle.e.bits.sink), "'E' channel acknowledged for nothing inflight" + extra)
}
// edge.client.minLatency applies to BC, not DE
inflight := (inflight | d_set) & ~e_clr
}
def legalizeUnique(bundle: TLBundle, edge: TLEdge): Unit = {
val sourceBits = log2Ceil(edge.client.endSourceId)
val tooBig = 14 // >16kB worth of flight information gets to be too much
if (sourceBits > tooBig) {
println(s"WARNING: TLMonitor instantiated on a bus with source bits (${sourceBits}) > ${tooBig}; A=>D transaction flight will not be checked")
} else {
if (args.edge.params(TestplanTestType).simulation) {
if (args.edge.params(TLMonitorStrictMode)) {
legalizeADSource(bundle, edge)
legalizeCDSource(bundle, edge)
} else {
legalizeADSourceOld(bundle, edge)
}
}
if (args.edge.params(TestplanTestType).formal) {
legalizeADSourceFormal(bundle, edge)
}
}
if (edge.client.anySupportProbe && edge.manager.anySupportAcquireB) {
// legalizeBCSourceAddress(bundle, edge) // too much state needed to synthesize...
val sinkBits = log2Ceil(edge.manager.endSinkId)
if (sinkBits > tooBig) {
println(s"WARNING: TLMonitor instantiated on a bus with sink bits (${sinkBits}) > ${tooBig}; D=>E transaction flight will not be checked")
} else {
legalizeDESink(bundle, edge)
}
}
}
def legalize(bundle: TLBundle, edge: TLEdge, reset: Reset): Unit = {
legalizeFormat (bundle, edge)
legalizeMultibeat (bundle, edge)
legalizeUnique (bundle, edge)
}
}
File Misc.scala:
// See LICENSE.Berkeley for license details.
// See LICENSE.SiFive for license details.
package freechips.rocketchip.util
import chisel3._
import chisel3.util._
import chisel3.util.random.LFSR
import org.chipsalliance.cde.config.Parameters
import scala.math._
class ParameterizedBundle(implicit p: Parameters) extends Bundle
trait Clocked extends Bundle {
val clock = Clock()
val reset = Bool()
}
object DecoupledHelper {
def apply(rvs: Bool*) = new DecoupledHelper(rvs)
}
class DecoupledHelper(val rvs: Seq[Bool]) {
def fire(exclude: Bool, includes: Bool*) = {
require(rvs.contains(exclude), "Excluded Bool not present in DecoupledHelper! Note that DecoupledHelper uses referential equality for exclusion! If you don't want to exclude anything, use fire()!")
(rvs.filter(_ ne exclude) ++ includes).reduce(_ && _)
}
def fire() = {
rvs.reduce(_ && _)
}
}
object MuxT {
def apply[T <: Data, U <: Data](cond: Bool, con: (T, U), alt: (T, U)): (T, U) =
(Mux(cond, con._1, alt._1), Mux(cond, con._2, alt._2))
def apply[T <: Data, U <: Data, W <: Data](cond: Bool, con: (T, U, W), alt: (T, U, W)): (T, U, W) =
(Mux(cond, con._1, alt._1), Mux(cond, con._2, alt._2), Mux(cond, con._3, alt._3))
def apply[T <: Data, U <: Data, W <: Data, X <: Data](cond: Bool, con: (T, U, W, X), alt: (T, U, W, X)): (T, U, W, X) =
(Mux(cond, con._1, alt._1), Mux(cond, con._2, alt._2), Mux(cond, con._3, alt._3), Mux(cond, con._4, alt._4))
}
/** Creates a cascade of n MuxTs to search for a key value. */
object MuxTLookup {
def apply[S <: UInt, T <: Data, U <: Data](key: S, default: (T, U), mapping: Seq[(S, (T, U))]): (T, U) = {
var res = default
for ((k, v) <- mapping.reverse)
res = MuxT(k === key, v, res)
res
}
def apply[S <: UInt, T <: Data, U <: Data, W <: Data](key: S, default: (T, U, W), mapping: Seq[(S, (T, U, W))]): (T, U, W) = {
var res = default
for ((k, v) <- mapping.reverse)
res = MuxT(k === key, v, res)
res
}
}
object ValidMux {
def apply[T <: Data](v1: ValidIO[T], v2: ValidIO[T]*): ValidIO[T] = {
apply(v1 +: v2.toSeq)
}
def apply[T <: Data](valids: Seq[ValidIO[T]]): ValidIO[T] = {
val out = Wire(Valid(valids.head.bits.cloneType))
out.valid := valids.map(_.valid).reduce(_ || _)
out.bits := MuxCase(valids.head.bits,
valids.map(v => (v.valid -> v.bits)))
out
}
}
object Str
{
def apply(s: String): UInt = {
var i = BigInt(0)
require(s.forall(validChar _))
for (c <- s)
i = (i << 8) | c
i.U((s.length*8).W)
}
def apply(x: Char): UInt = {
require(validChar(x))
x.U(8.W)
}
def apply(x: UInt): UInt = apply(x, 10)
def apply(x: UInt, radix: Int): UInt = {
val rad = radix.U
val w = x.getWidth
require(w > 0)
var q = x
var s = digit(q % rad)
for (i <- 1 until ceil(log(2)/log(radix)*w).toInt) {
q = q / rad
s = Cat(Mux((radix == 10).B && q === 0.U, Str(' '), digit(q % rad)), s)
}
s
}
def apply(x: SInt): UInt = apply(x, 10)
def apply(x: SInt, radix: Int): UInt = {
val neg = x < 0.S
val abs = x.abs.asUInt
if (radix != 10) {
Cat(Mux(neg, Str('-'), Str(' ')), Str(abs, radix))
} else {
val rad = radix.U
val w = abs.getWidth
require(w > 0)
var q = abs
var s = digit(q % rad)
var needSign = neg
for (i <- 1 until ceil(log(2)/log(radix)*w).toInt) {
q = q / rad
val placeSpace = q === 0.U
val space = Mux(needSign, Str('-'), Str(' '))
needSign = needSign && !placeSpace
s = Cat(Mux(placeSpace, space, digit(q % rad)), s)
}
Cat(Mux(needSign, Str('-'), Str(' ')), s)
}
}
private def digit(d: UInt): UInt = Mux(d < 10.U, Str('0')+d, Str(('a'-10).toChar)+d)(7,0)
private def validChar(x: Char) = x == (x & 0xFF)
}
object Split
{
def apply(x: UInt, n0: Int) = {
val w = x.getWidth
(x.extract(w-1,n0), x.extract(n0-1,0))
}
def apply(x: UInt, n1: Int, n0: Int) = {
val w = x.getWidth
(x.extract(w-1,n1), x.extract(n1-1,n0), x.extract(n0-1,0))
}
def apply(x: UInt, n2: Int, n1: Int, n0: Int) = {
val w = x.getWidth
(x.extract(w-1,n2), x.extract(n2-1,n1), x.extract(n1-1,n0), x.extract(n0-1,0))
}
}
object Random
{
def apply(mod: Int, random: UInt): UInt = {
if (isPow2(mod)) random.extract(log2Ceil(mod)-1,0)
else PriorityEncoder(partition(apply(1 << log2Up(mod*8), random), mod))
}
def apply(mod: Int): UInt = apply(mod, randomizer)
def oneHot(mod: Int, random: UInt): UInt = {
if (isPow2(mod)) UIntToOH(random(log2Up(mod)-1,0))
else PriorityEncoderOH(partition(apply(1 << log2Up(mod*8), random), mod)).asUInt
}
def oneHot(mod: Int): UInt = oneHot(mod, randomizer)
private def randomizer = LFSR(16)
private def partition(value: UInt, slices: Int) =
Seq.tabulate(slices)(i => value < (((i + 1) << value.getWidth) / slices).U)
}
object Majority {
def apply(in: Set[Bool]): Bool = {
val n = (in.size >> 1) + 1
val clauses = in.subsets(n).map(_.reduce(_ && _))
clauses.reduce(_ || _)
}
def apply(in: Seq[Bool]): Bool = apply(in.toSet)
def apply(in: UInt): Bool = apply(in.asBools.toSet)
}
object PopCountAtLeast {
private def two(x: UInt): (Bool, Bool) = x.getWidth match {
case 1 => (x.asBool, false.B)
case n =>
val half = x.getWidth / 2
val (leftOne, leftTwo) = two(x(half - 1, 0))
val (rightOne, rightTwo) = two(x(x.getWidth - 1, half))
(leftOne || rightOne, leftTwo || rightTwo || (leftOne && rightOne))
}
def apply(x: UInt, n: Int): Bool = n match {
case 0 => true.B
case 1 => x.orR
case 2 => two(x)._2
case 3 => PopCount(x) >= n.U
}
}
// This gets used everywhere, so make the smallest circuit possible ...
// Given an address and size, create a mask of beatBytes size
// eg: (0x3, 0, 4) => 0001, (0x3, 1, 4) => 0011, (0x3, 2, 4) => 1111
// groupBy applies an interleaved OR reduction; groupBy=2 take 0010 => 01
object MaskGen {
def apply(addr_lo: UInt, lgSize: UInt, beatBytes: Int, groupBy: Int = 1): UInt = {
require (groupBy >= 1 && beatBytes >= groupBy)
require (isPow2(beatBytes) && isPow2(groupBy))
val lgBytes = log2Ceil(beatBytes)
val sizeOH = UIntToOH(lgSize | 0.U(log2Up(beatBytes).W), log2Up(beatBytes)) | (groupBy*2 - 1).U
def helper(i: Int): Seq[(Bool, Bool)] = {
if (i == 0) {
Seq((lgSize >= lgBytes.asUInt, true.B))
} else {
val sub = helper(i-1)
val size = sizeOH(lgBytes - i)
val bit = addr_lo(lgBytes - i)
val nbit = !bit
Seq.tabulate (1 << i) { j =>
val (sub_acc, sub_eq) = sub(j/2)
val eq = sub_eq && (if (j % 2 == 1) bit else nbit)
val acc = sub_acc || (size && eq)
(acc, eq)
}
}
}
if (groupBy == beatBytes) 1.U else
Cat(helper(lgBytes-log2Ceil(groupBy)).map(_._1).reverse)
}
}
File PlusArg.scala:
// See LICENSE.SiFive for license details.
package freechips.rocketchip.util
import chisel3._
import chisel3.experimental._
import chisel3.util.HasBlackBoxResource
@deprecated("This will be removed in Rocket Chip 2020.08", "Rocket Chip 2020.05")
case class PlusArgInfo(default: BigInt, docstring: String)
/** Case class for PlusArg information
*
* @tparam A scala type of the PlusArg value
* @param default optional default value
* @param docstring text to include in the help
* @param doctype description of the Verilog type of the PlusArg value (e.g. STRING, INT)
*/
private case class PlusArgContainer[A](default: Option[A], docstring: String, doctype: String)
/** Typeclass for converting a type to a doctype string
* @tparam A some type
*/
trait Doctypeable[A] {
/** Return the doctype string for some option */
def toDoctype(a: Option[A]): String
}
/** Object containing implementations of the Doctypeable typeclass */
object Doctypes {
/** Converts an Int => "INT" */
implicit val intToDoctype = new Doctypeable[Int] { def toDoctype(a: Option[Int]) = "INT" }
/** Converts a BigInt => "INT" */
implicit val bigIntToDoctype = new Doctypeable[BigInt] { def toDoctype(a: Option[BigInt]) = "INT" }
/** Converts a String => "STRING" */
implicit val stringToDoctype = new Doctypeable[String] { def toDoctype(a: Option[String]) = "STRING" }
}
class plusarg_reader(val format: String, val default: BigInt, val docstring: String, val width: Int) extends BlackBox(Map(
"FORMAT" -> StringParam(format),
"DEFAULT" -> IntParam(default),
"WIDTH" -> IntParam(width)
)) with HasBlackBoxResource {
val io = IO(new Bundle {
val out = Output(UInt(width.W))
})
addResource("/vsrc/plusarg_reader.v")
}
/* This wrapper class has no outputs, making it clear it is a simulation-only construct */
class PlusArgTimeout(val format: String, val default: BigInt, val docstring: String, val width: Int) extends Module {
val io = IO(new Bundle {
val count = Input(UInt(width.W))
})
val max = Module(new plusarg_reader(format, default, docstring, width)).io.out
when (max > 0.U) {
assert (io.count < max, s"Timeout exceeded: $docstring")
}
}
import Doctypes._
object PlusArg
{
/** PlusArg("foo") will return 42.U if the simulation is run with +foo=42
* Do not use this as an initial register value. The value is set in an
* initial block and thus accessing it from another initial is racey.
* Add a docstring to document the arg, which can be dumped in an elaboration
* pass.
*/
def apply(name: String, default: BigInt = 0, docstring: String = "", width: Int = 32): UInt = {
PlusArgArtefacts.append(name, Some(default), docstring)
Module(new plusarg_reader(name + "=%d", default, docstring, width)).io.out
}
/** PlusArg.timeout(name, default, docstring)(count) will use chisel.assert
* to kill the simulation when count exceeds the specified integer argument.
* Default 0 will never assert.
*/
def timeout(name: String, default: BigInt = 0, docstring: String = "", width: Int = 32)(count: UInt): Unit = {
PlusArgArtefacts.append(name, Some(default), docstring)
Module(new PlusArgTimeout(name + "=%d", default, docstring, width)).io.count := count
}
}
object PlusArgArtefacts {
private var artefacts: Map[String, PlusArgContainer[_]] = Map.empty
/* Add a new PlusArg */
@deprecated(
"Use `Some(BigInt)` to specify a `default` value. This will be removed in Rocket Chip 2020.08",
"Rocket Chip 2020.05"
)
def append(name: String, default: BigInt, docstring: String): Unit = append(name, Some(default), docstring)
/** Add a new PlusArg
*
* @tparam A scala type of the PlusArg value
* @param name name for the PlusArg
* @param default optional default value
* @param docstring text to include in the help
*/
def append[A : Doctypeable](name: String, default: Option[A], docstring: String): Unit =
artefacts = artefacts ++
Map(name -> PlusArgContainer(default, docstring, implicitly[Doctypeable[A]].toDoctype(default)))
/* From plus args, generate help text */
private def serializeHelp_cHeader(tab: String = ""): String = artefacts
.map{ case(arg, info) =>
s"""|$tab+$arg=${info.doctype}\\n\\
|$tab${" "*20}${info.docstring}\\n\\
|""".stripMargin ++ info.default.map{ case default =>
s"$tab${" "*22}(default=${default})\\n\\\n"}.getOrElse("")
}.toSeq.mkString("\\n\\\n") ++ "\""
/* From plus args, generate a char array of their names */
private def serializeArray_cHeader(tab: String = ""): String = {
val prettyTab = tab + " " * 44 // Length of 'static const ...'
s"${tab}static const char * verilog_plusargs [] = {\\\n" ++
artefacts
.map{ case(arg, _) => s"""$prettyTab"$arg",\\\n""" }
.mkString("")++
s"${prettyTab}0};"
}
/* Generate C code to be included in emulator.cc that helps with
* argument parsing based on available Verilog PlusArgs */
def serialize_cHeader(): String =
s"""|#define PLUSARG_USAGE_OPTIONS \"EMULATOR VERILOG PLUSARGS\\n\\
|${serializeHelp_cHeader(" "*7)}
|${serializeArray_cHeader()}
|""".stripMargin
}
File package.scala:
// See LICENSE.SiFive for license details.
package freechips.rocketchip
import chisel3._
import chisel3.util._
import scala.math.min
import scala.collection.{immutable, mutable}
package object util {
implicit class UnzippableOption[S, T](val x: Option[(S, T)]) {
def unzip = (x.map(_._1), x.map(_._2))
}
implicit class UIntIsOneOf(private val x: UInt) extends AnyVal {
def isOneOf(s: Seq[UInt]): Bool = s.map(x === _).orR
def isOneOf(u1: UInt, u2: UInt*): Bool = isOneOf(u1 +: u2.toSeq)
}
implicit class VecToAugmentedVec[T <: Data](private val x: Vec[T]) extends AnyVal {
/** Like Vec.apply(idx), but tolerates indices of mismatched width */
def extract(idx: UInt): T = x((idx | 0.U(log2Ceil(x.size).W)).extract(log2Ceil(x.size) - 1, 0))
}
implicit class SeqToAugmentedSeq[T <: Data](private val x: Seq[T]) extends AnyVal {
def apply(idx: UInt): T = {
if (x.size <= 1) {
x.head
} else if (!isPow2(x.size)) {
// For non-power-of-2 seqs, reflect elements to simplify decoder
(x ++ x.takeRight(x.size & -x.size)).toSeq(idx)
} else {
// Ignore MSBs of idx
val truncIdx =
if (idx.isWidthKnown && idx.getWidth <= log2Ceil(x.size)) idx
else (idx | 0.U(log2Ceil(x.size).W))(log2Ceil(x.size)-1, 0)
x.zipWithIndex.tail.foldLeft(x.head) { case (prev, (cur, i)) => Mux(truncIdx === i.U, cur, prev) }
}
}
def extract(idx: UInt): T = VecInit(x).extract(idx)
def asUInt: UInt = Cat(x.map(_.asUInt).reverse)
def rotate(n: Int): Seq[T] = x.drop(n) ++ x.take(n)
def rotate(n: UInt): Seq[T] = {
if (x.size <= 1) {
x
} else {
require(isPow2(x.size))
val amt = n.padTo(log2Ceil(x.size))
(0 until log2Ceil(x.size)).foldLeft(x)((r, i) => (r.rotate(1 << i) zip r).map { case (s, a) => Mux(amt(i), s, a) })
}
}
def rotateRight(n: Int): Seq[T] = x.takeRight(n) ++ x.dropRight(n)
def rotateRight(n: UInt): Seq[T] = {
if (x.size <= 1) {
x
} else {
require(isPow2(x.size))
val amt = n.padTo(log2Ceil(x.size))
(0 until log2Ceil(x.size)).foldLeft(x)((r, i) => (r.rotateRight(1 << i) zip r).map { case (s, a) => Mux(amt(i), s, a) })
}
}
}
// allow bitwise ops on Seq[Bool] just like UInt
implicit class SeqBoolBitwiseOps(private val x: Seq[Bool]) extends AnyVal {
def & (y: Seq[Bool]): Seq[Bool] = (x zip y).map { case (a, b) => a && b }
def | (y: Seq[Bool]): Seq[Bool] = padZip(x, y).map { case (a, b) => a || b }
def ^ (y: Seq[Bool]): Seq[Bool] = padZip(x, y).map { case (a, b) => a ^ b }
def << (n: Int): Seq[Bool] = Seq.fill(n)(false.B) ++ x
def >> (n: Int): Seq[Bool] = x drop n
def unary_~ : Seq[Bool] = x.map(!_)
def andR: Bool = if (x.isEmpty) true.B else x.reduce(_&&_)
def orR: Bool = if (x.isEmpty) false.B else x.reduce(_||_)
def xorR: Bool = if (x.isEmpty) false.B else x.reduce(_^_)
private def padZip(y: Seq[Bool], z: Seq[Bool]): Seq[(Bool, Bool)] = y.padTo(z.size, false.B) zip z.padTo(y.size, false.B)
}
implicit class DataToAugmentedData[T <: Data](private val x: T) extends AnyVal {
def holdUnless(enable: Bool): T = Mux(enable, x, RegEnable(x, enable))
def getElements: Seq[Element] = x match {
case e: Element => Seq(e)
case a: Aggregate => a.getElements.flatMap(_.getElements)
}
}
/** Any Data subtype that has a Bool member named valid. */
type DataCanBeValid = Data { val valid: Bool }
implicit class SeqMemToAugmentedSeqMem[T <: Data](private val x: SyncReadMem[T]) extends AnyVal {
def readAndHold(addr: UInt, enable: Bool): T = x.read(addr, enable) holdUnless RegNext(enable)
}
implicit class StringToAugmentedString(private val x: String) extends AnyVal {
/** converts from camel case to to underscores, also removing all spaces */
def underscore: String = x.tail.foldLeft(x.headOption.map(_.toLower + "") getOrElse "") {
case (acc, c) if c.isUpper => acc + "_" + c.toLower
case (acc, c) if c == ' ' => acc
case (acc, c) => acc + c
}
/** converts spaces or underscores to hyphens, also lowering case */
def kebab: String = x.toLowerCase map {
case ' ' => '-'
case '_' => '-'
case c => c
}
def named(name: Option[String]): String = {
x + name.map("_named_" + _ ).getOrElse("_with_no_name")
}
def named(name: String): String = named(Some(name))
}
implicit def uintToBitPat(x: UInt): BitPat = BitPat(x)
implicit def wcToUInt(c: WideCounter): UInt = c.value
implicit class UIntToAugmentedUInt(private val x: UInt) extends AnyVal {
def sextTo(n: Int): UInt = {
require(x.getWidth <= n)
if (x.getWidth == n) x
else Cat(Fill(n - x.getWidth, x(x.getWidth-1)), x)
}
def padTo(n: Int): UInt = {
require(x.getWidth <= n)
if (x.getWidth == n) x
else Cat(0.U((n - x.getWidth).W), x)
}
// shifts left by n if n >= 0, or right by -n if n < 0
def << (n: SInt): UInt = {
val w = n.getWidth - 1
require(w <= 30)
val shifted = x << n(w-1, 0)
Mux(n(w), shifted >> (1 << w), shifted)
}
// shifts right by n if n >= 0, or left by -n if n < 0
def >> (n: SInt): UInt = {
val w = n.getWidth - 1
require(w <= 30)
val shifted = x << (1 << w) >> n(w-1, 0)
Mux(n(w), shifted, shifted >> (1 << w))
}
// Like UInt.apply(hi, lo), but returns 0.U for zero-width extracts
def extract(hi: Int, lo: Int): UInt = {
require(hi >= lo-1)
if (hi == lo-1) 0.U
else x(hi, lo)
}
// Like Some(UInt.apply(hi, lo)), but returns None for zero-width extracts
def extractOption(hi: Int, lo: Int): Option[UInt] = {
require(hi >= lo-1)
if (hi == lo-1) None
else Some(x(hi, lo))
}
// like x & ~y, but first truncate or zero-extend y to x's width
def andNot(y: UInt): UInt = x & ~(y | (x & 0.U))
def rotateRight(n: Int): UInt = if (n == 0) x else Cat(x(n-1, 0), x >> n)
def rotateRight(n: UInt): UInt = {
if (x.getWidth <= 1) {
x
} else {
val amt = n.padTo(log2Ceil(x.getWidth))
(0 until log2Ceil(x.getWidth)).foldLeft(x)((r, i) => Mux(amt(i), r.rotateRight(1 << i), r))
}
}
def rotateLeft(n: Int): UInt = if (n == 0) x else Cat(x(x.getWidth-1-n,0), x(x.getWidth-1,x.getWidth-n))
def rotateLeft(n: UInt): UInt = {
if (x.getWidth <= 1) {
x
} else {
val amt = n.padTo(log2Ceil(x.getWidth))
(0 until log2Ceil(x.getWidth)).foldLeft(x)((r, i) => Mux(amt(i), r.rotateLeft(1 << i), r))
}
}
// compute (this + y) % n, given (this < n) and (y < n)
def addWrap(y: UInt, n: Int): UInt = {
val z = x +& y
if (isPow2(n)) z(n.log2-1, 0) else Mux(z >= n.U, z - n.U, z)(log2Ceil(n)-1, 0)
}
// compute (this - y) % n, given (this < n) and (y < n)
def subWrap(y: UInt, n: Int): UInt = {
val z = x -& y
if (isPow2(n)) z(n.log2-1, 0) else Mux(z(z.getWidth-1), z + n.U, z)(log2Ceil(n)-1, 0)
}
def grouped(width: Int): Seq[UInt] =
(0 until x.getWidth by width).map(base => x(base + width - 1, base))
def inRange(base: UInt, bounds: UInt) = x >= base && x < bounds
def ## (y: Option[UInt]): UInt = y.map(x ## _).getOrElse(x)
// Like >=, but prevents x-prop for ('x >= 0)
def >== (y: UInt): Bool = x >= y || y === 0.U
}
implicit class OptionUIntToAugmentedOptionUInt(private val x: Option[UInt]) extends AnyVal {
def ## (y: UInt): UInt = x.map(_ ## y).getOrElse(y)
def ## (y: Option[UInt]): Option[UInt] = x.map(_ ## y)
}
implicit class BooleanToAugmentedBoolean(private val x: Boolean) extends AnyVal {
def toInt: Int = if (x) 1 else 0
// this one's snagged from scalaz
def option[T](z: => T): Option[T] = if (x) Some(z) else None
}
implicit class IntToAugmentedInt(private val x: Int) extends AnyVal {
// exact log2
def log2: Int = {
require(isPow2(x))
log2Ceil(x)
}
}
def OH1ToOH(x: UInt): UInt = (x << 1 | 1.U) & ~Cat(0.U(1.W), x)
def OH1ToUInt(x: UInt): UInt = OHToUInt(OH1ToOH(x))
def UIntToOH1(x: UInt, width: Int): UInt = ~((-1).S(width.W).asUInt << x)(width-1, 0)
def UIntToOH1(x: UInt): UInt = UIntToOH1(x, (1 << x.getWidth) - 1)
def trailingZeros(x: Int): Option[Int] = if (x > 0) Some(log2Ceil(x & -x)) else None
// Fill 1s from low bits to high bits
def leftOR(x: UInt): UInt = leftOR(x, x.getWidth, x.getWidth)
def leftOR(x: UInt, width: Integer, cap: Integer = 999999): UInt = {
val stop = min(width, cap)
def helper(s: Int, x: UInt): UInt =
if (s >= stop) x else helper(s+s, x | (x << s)(width-1,0))
helper(1, x)(width-1, 0)
}
// Fill 1s form high bits to low bits
def rightOR(x: UInt): UInt = rightOR(x, x.getWidth, x.getWidth)
def rightOR(x: UInt, width: Integer, cap: Integer = 999999): UInt = {
val stop = min(width, cap)
def helper(s: Int, x: UInt): UInt =
if (s >= stop) x else helper(s+s, x | (x >> s))
helper(1, x)(width-1, 0)
}
def OptimizationBarrier[T <: Data](in: T): T = {
val barrier = Module(new Module {
val io = IO(new Bundle {
val x = Input(chiselTypeOf(in))
val y = Output(chiselTypeOf(in))
})
io.y := io.x
override def desiredName = s"OptimizationBarrier_${in.typeName}"
})
barrier.io.x := in
barrier.io.y
}
/** Similar to Seq.groupBy except this returns a Seq instead of a Map
* Useful for deterministic code generation
*/
def groupByIntoSeq[A, K](xs: Seq[A])(f: A => K): immutable.Seq[(K, immutable.Seq[A])] = {
val map = mutable.LinkedHashMap.empty[K, mutable.ListBuffer[A]]
for (x <- xs) {
val key = f(x)
val l = map.getOrElseUpdate(key, mutable.ListBuffer.empty[A])
l += x
}
map.view.map({ case (k, vs) => k -> vs.toList }).toList
}
def heterogeneousOrGlobalSetting[T](in: Seq[T], n: Int): Seq[T] = in.size match {
case 1 => List.fill(n)(in.head)
case x if x == n => in
case _ => throw new Exception(s"must provide exactly 1 or $n of some field, but got:\n$in")
}
// HeterogeneousBag moved to standalond diplomacy
@deprecated("HeterogeneousBag has been absorbed into standalone diplomacy library", "rocketchip 2.0.0")
def HeterogeneousBag[T <: Data](elts: Seq[T]) = _root_.org.chipsalliance.diplomacy.nodes.HeterogeneousBag[T](elts)
@deprecated("HeterogeneousBag has been absorbed into standalone diplomacy library", "rocketchip 2.0.0")
val HeterogeneousBag = _root_.org.chipsalliance.diplomacy.nodes.HeterogeneousBag
}
File Bundles.scala:
// See LICENSE.SiFive for license details.
package freechips.rocketchip.tilelink
import chisel3._
import freechips.rocketchip.util._
import scala.collection.immutable.ListMap
import chisel3.util.Decoupled
import chisel3.util.DecoupledIO
import chisel3.reflect.DataMirror
abstract class TLBundleBase(val params: TLBundleParameters) extends Bundle
// common combos in lazy policy:
// Put + Acquire
// Release + AccessAck
object TLMessages
{
// A B C D E
def PutFullData = 0.U // . . => AccessAck
def PutPartialData = 1.U // . . => AccessAck
def ArithmeticData = 2.U // . . => AccessAckData
def LogicalData = 3.U // . . => AccessAckData
def Get = 4.U // . . => AccessAckData
def Hint = 5.U // . . => HintAck
def AcquireBlock = 6.U // . => Grant[Data]
def AcquirePerm = 7.U // . => Grant[Data]
def Probe = 6.U // . => ProbeAck[Data]
def AccessAck = 0.U // . .
def AccessAckData = 1.U // . .
def HintAck = 2.U // . .
def ProbeAck = 4.U // .
def ProbeAckData = 5.U // .
def Release = 6.U // . => ReleaseAck
def ReleaseData = 7.U // . => ReleaseAck
def Grant = 4.U // . => GrantAck
def GrantData = 5.U // . => GrantAck
def ReleaseAck = 6.U // .
def GrantAck = 0.U // .
def isA(x: UInt) = x <= AcquirePerm
def isB(x: UInt) = x <= Probe
def isC(x: UInt) = x <= ReleaseData
def isD(x: UInt) = x <= ReleaseAck
def adResponse = VecInit(AccessAck, AccessAck, AccessAckData, AccessAckData, AccessAckData, HintAck, Grant, Grant)
def bcResponse = VecInit(AccessAck, AccessAck, AccessAckData, AccessAckData, AccessAckData, HintAck, ProbeAck, ProbeAck)
def a = Seq( ("PutFullData",TLPermissions.PermMsgReserved),
("PutPartialData",TLPermissions.PermMsgReserved),
("ArithmeticData",TLAtomics.ArithMsg),
("LogicalData",TLAtomics.LogicMsg),
("Get",TLPermissions.PermMsgReserved),
("Hint",TLHints.HintsMsg),
("AcquireBlock",TLPermissions.PermMsgGrow),
("AcquirePerm",TLPermissions.PermMsgGrow))
def b = Seq( ("PutFullData",TLPermissions.PermMsgReserved),
("PutPartialData",TLPermissions.PermMsgReserved),
("ArithmeticData",TLAtomics.ArithMsg),
("LogicalData",TLAtomics.LogicMsg),
("Get",TLPermissions.PermMsgReserved),
("Hint",TLHints.HintsMsg),
("Probe",TLPermissions.PermMsgCap))
def c = Seq( ("AccessAck",TLPermissions.PermMsgReserved),
("AccessAckData",TLPermissions.PermMsgReserved),
("HintAck",TLPermissions.PermMsgReserved),
("Invalid Opcode",TLPermissions.PermMsgReserved),
("ProbeAck",TLPermissions.PermMsgReport),
("ProbeAckData",TLPermissions.PermMsgReport),
("Release",TLPermissions.PermMsgReport),
("ReleaseData",TLPermissions.PermMsgReport))
def d = Seq( ("AccessAck",TLPermissions.PermMsgReserved),
("AccessAckData",TLPermissions.PermMsgReserved),
("HintAck",TLPermissions.PermMsgReserved),
("Invalid Opcode",TLPermissions.PermMsgReserved),
("Grant",TLPermissions.PermMsgCap),
("GrantData",TLPermissions.PermMsgCap),
("ReleaseAck",TLPermissions.PermMsgReserved))
}
/**
* The three primary TileLink permissions are:
* (T)runk: the agent is (or is on inwards path to) the global point of serialization.
* (B)ranch: the agent is on an outwards path to
* (N)one:
* These permissions are permuted by transfer operations in various ways.
* Operations can cap permissions, request for them to be grown or shrunk,
* or for a report on their current status.
*/
object TLPermissions
{
val aWidth = 2
val bdWidth = 2
val cWidth = 3
// Cap types (Grant = new permissions, Probe = permisions <= target)
def toT = 0.U(bdWidth.W)
def toB = 1.U(bdWidth.W)
def toN = 2.U(bdWidth.W)
def isCap(x: UInt) = x <= toN
// Grow types (Acquire = permissions >= target)
def NtoB = 0.U(aWidth.W)
def NtoT = 1.U(aWidth.W)
def BtoT = 2.U(aWidth.W)
def isGrow(x: UInt) = x <= BtoT
// Shrink types (ProbeAck, Release)
def TtoB = 0.U(cWidth.W)
def TtoN = 1.U(cWidth.W)
def BtoN = 2.U(cWidth.W)
def isShrink(x: UInt) = x <= BtoN
// Report types (ProbeAck, Release)
def TtoT = 3.U(cWidth.W)
def BtoB = 4.U(cWidth.W)
def NtoN = 5.U(cWidth.W)
def isReport(x: UInt) = x <= NtoN
def PermMsgGrow:Seq[String] = Seq("Grow NtoB", "Grow NtoT", "Grow BtoT")
def PermMsgCap:Seq[String] = Seq("Cap toT", "Cap toB", "Cap toN")
def PermMsgReport:Seq[String] = Seq("Shrink TtoB", "Shrink TtoN", "Shrink BtoN", "Report TotT", "Report BtoB", "Report NtoN")
def PermMsgReserved:Seq[String] = Seq("Reserved")
}
object TLAtomics
{
val width = 3
// Arithmetic types
def MIN = 0.U(width.W)
def MAX = 1.U(width.W)
def MINU = 2.U(width.W)
def MAXU = 3.U(width.W)
def ADD = 4.U(width.W)
def isArithmetic(x: UInt) = x <= ADD
// Logical types
def XOR = 0.U(width.W)
def OR = 1.U(width.W)
def AND = 2.U(width.W)
def SWAP = 3.U(width.W)
def isLogical(x: UInt) = x <= SWAP
def ArithMsg:Seq[String] = Seq("MIN", "MAX", "MINU", "MAXU", "ADD")
def LogicMsg:Seq[String] = Seq("XOR", "OR", "AND", "SWAP")
}
object TLHints
{
val width = 1
def PREFETCH_READ = 0.U(width.W)
def PREFETCH_WRITE = 1.U(width.W)
def isHints(x: UInt) = x <= PREFETCH_WRITE
def HintsMsg:Seq[String] = Seq("PrefetchRead", "PrefetchWrite")
}
sealed trait TLChannel extends TLBundleBase {
val channelName: String
}
sealed trait TLDataChannel extends TLChannel
sealed trait TLAddrChannel extends TLDataChannel
final class TLBundleA(params: TLBundleParameters)
extends TLBundleBase(params) with TLAddrChannel
{
override def typeName = s"TLBundleA_${params.shortName}"
val channelName = "'A' channel"
// fixed fields during multibeat:
val opcode = UInt(3.W)
val param = UInt(List(TLAtomics.width, TLPermissions.aWidth, TLHints.width).max.W) // amo_opcode || grow perms || hint
val size = UInt(params.sizeBits.W)
val source = UInt(params.sourceBits.W) // from
val address = UInt(params.addressBits.W) // to
val user = BundleMap(params.requestFields)
val echo = BundleMap(params.echoFields)
// variable fields during multibeat:
val mask = UInt((params.dataBits/8).W)
val data = UInt(params.dataBits.W)
val corrupt = Bool() // only applies to *Data messages
}
final class TLBundleB(params: TLBundleParameters)
extends TLBundleBase(params) with TLAddrChannel
{
override def typeName = s"TLBundleB_${params.shortName}"
val channelName = "'B' channel"
// fixed fields during multibeat:
val opcode = UInt(3.W)
val param = UInt(TLPermissions.bdWidth.W) // cap perms
val size = UInt(params.sizeBits.W)
val source = UInt(params.sourceBits.W) // to
val address = UInt(params.addressBits.W) // from
// variable fields during multibeat:
val mask = UInt((params.dataBits/8).W)
val data = UInt(params.dataBits.W)
val corrupt = Bool() // only applies to *Data messages
}
final class TLBundleC(params: TLBundleParameters)
extends TLBundleBase(params) with TLAddrChannel
{
override def typeName = s"TLBundleC_${params.shortName}"
val channelName = "'C' channel"
// fixed fields during multibeat:
val opcode = UInt(3.W)
val param = UInt(TLPermissions.cWidth.W) // shrink or report perms
val size = UInt(params.sizeBits.W)
val source = UInt(params.sourceBits.W) // from
val address = UInt(params.addressBits.W) // to
val user = BundleMap(params.requestFields)
val echo = BundleMap(params.echoFields)
// variable fields during multibeat:
val data = UInt(params.dataBits.W)
val corrupt = Bool() // only applies to *Data messages
}
final class TLBundleD(params: TLBundleParameters)
extends TLBundleBase(params) with TLDataChannel
{
override def typeName = s"TLBundleD_${params.shortName}"
val channelName = "'D' channel"
// fixed fields during multibeat:
val opcode = UInt(3.W)
val param = UInt(TLPermissions.bdWidth.W) // cap perms
val size = UInt(params.sizeBits.W)
val source = UInt(params.sourceBits.W) // to
val sink = UInt(params.sinkBits.W) // from
val denied = Bool() // implies corrupt iff *Data
val user = BundleMap(params.responseFields)
val echo = BundleMap(params.echoFields)
// variable fields during multibeat:
val data = UInt(params.dataBits.W)
val corrupt = Bool() // only applies to *Data messages
}
final class TLBundleE(params: TLBundleParameters)
extends TLBundleBase(params) with TLChannel
{
override def typeName = s"TLBundleE_${params.shortName}"
val channelName = "'E' channel"
val sink = UInt(params.sinkBits.W) // to
}
class TLBundle(val params: TLBundleParameters) extends Record
{
// Emulate a Bundle with elements abcde or ad depending on params.hasBCE
private val optA = Some (Decoupled(new TLBundleA(params)))
private val optB = params.hasBCE.option(Flipped(Decoupled(new TLBundleB(params))))
private val optC = params.hasBCE.option(Decoupled(new TLBundleC(params)))
private val optD = Some (Flipped(Decoupled(new TLBundleD(params))))
private val optE = params.hasBCE.option(Decoupled(new TLBundleE(params)))
def a: DecoupledIO[TLBundleA] = optA.getOrElse(WireDefault(0.U.asTypeOf(Decoupled(new TLBundleA(params)))))
def b: DecoupledIO[TLBundleB] = optB.getOrElse(WireDefault(0.U.asTypeOf(Decoupled(new TLBundleB(params)))))
def c: DecoupledIO[TLBundleC] = optC.getOrElse(WireDefault(0.U.asTypeOf(Decoupled(new TLBundleC(params)))))
def d: DecoupledIO[TLBundleD] = optD.getOrElse(WireDefault(0.U.asTypeOf(Decoupled(new TLBundleD(params)))))
def e: DecoupledIO[TLBundleE] = optE.getOrElse(WireDefault(0.U.asTypeOf(Decoupled(new TLBundleE(params)))))
val elements =
if (params.hasBCE) ListMap("e" -> e, "d" -> d, "c" -> c, "b" -> b, "a" -> a)
else ListMap("d" -> d, "a" -> a)
def tieoff(): Unit = {
DataMirror.specifiedDirectionOf(a.ready) match {
case SpecifiedDirection.Input =>
a.ready := false.B
c.ready := false.B
e.ready := false.B
b.valid := false.B
d.valid := false.B
case SpecifiedDirection.Output =>
a.valid := false.B
c.valid := false.B
e.valid := false.B
b.ready := false.B
d.ready := false.B
case _ =>
}
}
}
object TLBundle
{
def apply(params: TLBundleParameters) = new TLBundle(params)
}
class TLAsyncBundleBase(val params: TLAsyncBundleParameters) extends Bundle
class TLAsyncBundle(params: TLAsyncBundleParameters) extends TLAsyncBundleBase(params)
{
val a = new AsyncBundle(new TLBundleA(params.base), params.async)
val b = Flipped(new AsyncBundle(new TLBundleB(params.base), params.async))
val c = new AsyncBundle(new TLBundleC(params.base), params.async)
val d = Flipped(new AsyncBundle(new TLBundleD(params.base), params.async))
val e = new AsyncBundle(new TLBundleE(params.base), params.async)
}
class TLRationalBundle(params: TLBundleParameters) extends TLBundleBase(params)
{
val a = RationalIO(new TLBundleA(params))
val b = Flipped(RationalIO(new TLBundleB(params)))
val c = RationalIO(new TLBundleC(params))
val d = Flipped(RationalIO(new TLBundleD(params)))
val e = RationalIO(new TLBundleE(params))
}
class TLCreditedBundle(params: TLBundleParameters) extends TLBundleBase(params)
{
val a = CreditedIO(new TLBundleA(params))
val b = Flipped(CreditedIO(new TLBundleB(params)))
val c = CreditedIO(new TLBundleC(params))
val d = Flipped(CreditedIO(new TLBundleD(params)))
val e = CreditedIO(new TLBundleE(params))
}
File Parameters.scala:
// See LICENSE.SiFive for license details.
package freechips.rocketchip.diplomacy
import chisel3._
import chisel3.util.{DecoupledIO, Queue, ReadyValidIO, isPow2, log2Ceil, log2Floor}
import freechips.rocketchip.util.ShiftQueue
/** Options for describing the attributes of memory regions */
object RegionType {
// Define the 'more relaxed than' ordering
val cases = Seq(CACHED, TRACKED, UNCACHED, IDEMPOTENT, VOLATILE, PUT_EFFECTS, GET_EFFECTS)
sealed trait T extends Ordered[T] {
def compare(that: T): Int = cases.indexOf(that) compare cases.indexOf(this)
}
case object CACHED extends T // an intermediate agent may have cached a copy of the region for you
case object TRACKED extends T // the region may have been cached by another master, but coherence is being provided
case object UNCACHED extends T // the region has not been cached yet, but should be cached when possible
case object IDEMPOTENT extends T // gets return most recently put content, but content should not be cached
case object VOLATILE extends T // content may change without a put, but puts and gets have no side effects
case object PUT_EFFECTS extends T // puts produce side effects and so must not be combined/delayed
case object GET_EFFECTS extends T // gets produce side effects and so must not be issued speculatively
}
// A non-empty half-open range; [start, end)
case class IdRange(start: Int, end: Int) extends Ordered[IdRange]
{
require (start >= 0, s"Ids cannot be negative, but got: $start.")
require (start <= end, "Id ranges cannot be negative.")
def compare(x: IdRange) = {
val primary = (this.start - x.start).signum
val secondary = (x.end - this.end).signum
if (primary != 0) primary else secondary
}
def overlaps(x: IdRange) = start < x.end && x.start < end
def contains(x: IdRange) = start <= x.start && x.end <= end
def contains(x: Int) = start <= x && x < end
def contains(x: UInt) =
if (size == 0) {
false.B
} else if (size == 1) { // simple comparison
x === start.U
} else {
// find index of largest different bit
val largestDeltaBit = log2Floor(start ^ (end-1))
val smallestCommonBit = largestDeltaBit + 1 // may not exist in x
val uncommonMask = (1 << smallestCommonBit) - 1
val uncommonBits = (x | 0.U(smallestCommonBit.W))(largestDeltaBit, 0)
// the prefix must match exactly (note: may shift ALL bits away)
(x >> smallestCommonBit) === (start >> smallestCommonBit).U &&
// firrtl constant prop range analysis can eliminate these two:
(start & uncommonMask).U <= uncommonBits &&
uncommonBits <= ((end-1) & uncommonMask).U
}
def shift(x: Int) = IdRange(start+x, end+x)
def size = end - start
def isEmpty = end == start
def range = start until end
}
object IdRange
{
def overlaps(s: Seq[IdRange]) = if (s.isEmpty) None else {
val ranges = s.sorted
(ranges.tail zip ranges.init) find { case (a, b) => a overlaps b }
}
}
// An potentially empty inclusive range of 2-powers [min, max] (in bytes)
case class TransferSizes(min: Int, max: Int)
{
def this(x: Int) = this(x, x)
require (min <= max, s"Min transfer $min > max transfer $max")
require (min >= 0 && max >= 0, s"TransferSizes must be positive, got: ($min, $max)")
require (max == 0 || isPow2(max), s"TransferSizes must be a power of 2, got: $max")
require (min == 0 || isPow2(min), s"TransferSizes must be a power of 2, got: $min")
require (max == 0 || min != 0, s"TransferSize 0 is forbidden unless (0,0), got: ($min, $max)")
def none = min == 0
def contains(x: Int) = isPow2(x) && min <= x && x <= max
def containsLg(x: Int) = contains(1 << x)
def containsLg(x: UInt) =
if (none) false.B
else if (min == max) { log2Ceil(min).U === x }
else { log2Ceil(min).U <= x && x <= log2Ceil(max).U }
def contains(x: TransferSizes) = x.none || (min <= x.min && x.max <= max)
def intersect(x: TransferSizes) =
if (x.max < min || max < x.min) TransferSizes.none
else TransferSizes(scala.math.max(min, x.min), scala.math.min(max, x.max))
// Not a union, because the result may contain sizes contained by neither term
// NOT TO BE CONFUSED WITH COVERPOINTS
def mincover(x: TransferSizes) = {
if (none) {
x
} else if (x.none) {
this
} else {
TransferSizes(scala.math.min(min, x.min), scala.math.max(max, x.max))
}
}
override def toString() = "TransferSizes[%d, %d]".format(min, max)
}
object TransferSizes {
def apply(x: Int) = new TransferSizes(x)
val none = new TransferSizes(0)
def mincover(seq: Seq[TransferSizes]) = seq.foldLeft(none)(_ mincover _)
def intersect(seq: Seq[TransferSizes]) = seq.reduce(_ intersect _)
implicit def asBool(x: TransferSizes) = !x.none
}
// AddressSets specify the address space managed by the manager
// Base is the base address, and mask are the bits consumed by the manager
// e.g: base=0x200, mask=0xff describes a device managing 0x200-0x2ff
// e.g: base=0x1000, mask=0xf0f decribes a device managing 0x1000-0x100f, 0x1100-0x110f, ...
case class AddressSet(base: BigInt, mask: BigInt) extends Ordered[AddressSet]
{
// Forbid misaligned base address (and empty sets)
require ((base & mask) == 0, s"Mis-aligned AddressSets are forbidden, got: ${this.toString}")
require (base >= 0, s"AddressSet negative base is ambiguous: $base") // TL2 address widths are not fixed => negative is ambiguous
// We do allow negative mask (=> ignore all high bits)
def contains(x: BigInt) = ((x ^ base) & ~mask) == 0
def contains(x: UInt) = ((x ^ base.U).zext & (~mask).S) === 0.S
// turn x into an address contained in this set
def legalize(x: UInt): UInt = base.U | (mask.U & x)
// overlap iff bitwise: both care (~mask0 & ~mask1) => both equal (base0=base1)
def overlaps(x: AddressSet) = (~(mask | x.mask) & (base ^ x.base)) == 0
// contains iff bitwise: x.mask => mask && contains(x.base)
def contains(x: AddressSet) = ((x.mask | (base ^ x.base)) & ~mask) == 0
// The number of bytes to which the manager must be aligned
def alignment = ((mask + 1) & ~mask)
// Is this a contiguous memory range
def contiguous = alignment == mask+1
def finite = mask >= 0
def max = { require (finite, "Max cannot be calculated on infinite mask"); base | mask }
// Widen the match function to ignore all bits in imask
def widen(imask: BigInt) = AddressSet(base & ~imask, mask | imask)
// Return an AddressSet that only contains the addresses both sets contain
def intersect(x: AddressSet): Option[AddressSet] = {
if (!overlaps(x)) {
None
} else {
val r_mask = mask & x.mask
val r_base = base | x.base
Some(AddressSet(r_base, r_mask))
}
}
def subtract(x: AddressSet): Seq[AddressSet] = {
intersect(x) match {
case None => Seq(this)
case Some(remove) => AddressSet.enumerateBits(mask & ~remove.mask).map { bit =>
val nmask = (mask & (bit-1)) | remove.mask
val nbase = (remove.base ^ bit) & ~nmask
AddressSet(nbase, nmask)
}
}
}
// AddressSets have one natural Ordering (the containment order, if contiguous)
def compare(x: AddressSet) = {
val primary = (this.base - x.base).signum // smallest address first
val secondary = (x.mask - this.mask).signum // largest mask first
if (primary != 0) primary else secondary
}
// We always want to see things in hex
override def toString() = {
if (mask >= 0) {
"AddressSet(0x%x, 0x%x)".format(base, mask)
} else {
"AddressSet(0x%x, ~0x%x)".format(base, ~mask)
}
}
def toRanges = {
require (finite, "Ranges cannot be calculated on infinite mask")
val size = alignment
val fragments = mask & ~(size-1)
val bits = bitIndexes(fragments)
(BigInt(0) until (BigInt(1) << bits.size)).map { i =>
val off = bitIndexes(i).foldLeft(base) { case (a, b) => a.setBit(bits(b)) }
AddressRange(off, size)
}
}
}
object AddressSet
{
val everything = AddressSet(0, -1)
def misaligned(base: BigInt, size: BigInt, tail: Seq[AddressSet] = Seq()): Seq[AddressSet] = {
if (size == 0) tail.reverse else {
val maxBaseAlignment = base & (-base) // 0 for infinite (LSB)
val maxSizeAlignment = BigInt(1) << log2Floor(size) // MSB of size
val step =
if (maxBaseAlignment == 0 || maxBaseAlignment > maxSizeAlignment)
maxSizeAlignment else maxBaseAlignment
misaligned(base+step, size-step, AddressSet(base, step-1) +: tail)
}
}
def unify(seq: Seq[AddressSet], bit: BigInt): Seq[AddressSet] = {
// Pair terms up by ignoring 'bit'
seq.distinct.groupBy(x => x.copy(base = x.base & ~bit)).map { case (key, seq) =>
if (seq.size == 1) {
seq.head // singleton -> unaffected
} else {
key.copy(mask = key.mask | bit) // pair - widen mask by bit
}
}.toList
}
def unify(seq: Seq[AddressSet]): Seq[AddressSet] = {
val bits = seq.map(_.base).foldLeft(BigInt(0))(_ | _)
AddressSet.enumerateBits(bits).foldLeft(seq) { case (acc, bit) => unify(acc, bit) }.sorted
}
def enumerateMask(mask: BigInt): Seq[BigInt] = {
def helper(id: BigInt, tail: Seq[BigInt]): Seq[BigInt] =
if (id == mask) (id +: tail).reverse else helper(((~mask | id) + 1) & mask, id +: tail)
helper(0, Nil)
}
def enumerateBits(mask: BigInt): Seq[BigInt] = {
def helper(x: BigInt): Seq[BigInt] = {
if (x == 0) {
Nil
} else {
val bit = x & (-x)
bit +: helper(x & ~bit)
}
}
helper(mask)
}
}
case class BufferParams(depth: Int, flow: Boolean, pipe: Boolean)
{
require (depth >= 0, "Buffer depth must be >= 0")
def isDefined = depth > 0
def latency = if (isDefined && !flow) 1 else 0
def apply[T <: Data](x: DecoupledIO[T]) =
if (isDefined) Queue(x, depth, flow=flow, pipe=pipe)
else x
def irrevocable[T <: Data](x: ReadyValidIO[T]) =
if (isDefined) Queue.irrevocable(x, depth, flow=flow, pipe=pipe)
else x
def sq[T <: Data](x: DecoupledIO[T]) =
if (!isDefined) x else {
val sq = Module(new ShiftQueue(x.bits, depth, flow=flow, pipe=pipe))
sq.io.enq <> x
sq.io.deq
}
override def toString() = "BufferParams:%d%s%s".format(depth, if (flow) "F" else "", if (pipe) "P" else "")
}
object BufferParams
{
implicit def apply(depth: Int): BufferParams = BufferParams(depth, false, false)
val default = BufferParams(2)
val none = BufferParams(0)
val flow = BufferParams(1, true, false)
val pipe = BufferParams(1, false, true)
}
case class TriStateValue(value: Boolean, set: Boolean)
{
def update(orig: Boolean) = if (set) value else orig
}
object TriStateValue
{
implicit def apply(value: Boolean): TriStateValue = TriStateValue(value, true)
def unset = TriStateValue(false, false)
}
trait DirectedBuffers[T] {
def copyIn(x: BufferParams): T
def copyOut(x: BufferParams): T
def copyInOut(x: BufferParams): T
}
trait IdMapEntry {
def name: String
def from: IdRange
def to: IdRange
def isCache: Boolean
def requestFifo: Boolean
def maxTransactionsInFlight: Option[Int]
def pretty(fmt: String) =
if (from ne to) { // if the subclass uses the same reference for both from and to, assume its format string has an arity of 5
fmt.format(to.start, to.end, from.start, from.end, s""""$name"""", if (isCache) " [CACHE]" else "", if (requestFifo) " [FIFO]" else "")
} else {
fmt.format(from.start, from.end, s""""$name"""", if (isCache) " [CACHE]" else "", if (requestFifo) " [FIFO]" else "")
}
}
abstract class IdMap[T <: IdMapEntry] {
protected val fmt: String
val mapping: Seq[T]
def pretty: String = mapping.map(_.pretty(fmt)).mkString(",\n")
}
File Edges.scala:
// See LICENSE.SiFive for license details.
package freechips.rocketchip.tilelink
import chisel3._
import chisel3.util._
import chisel3.experimental.SourceInfo
import org.chipsalliance.cde.config.Parameters
import freechips.rocketchip.util._
class TLEdge(
client: TLClientPortParameters,
manager: TLManagerPortParameters,
params: Parameters,
sourceInfo: SourceInfo)
extends TLEdgeParameters(client, manager, params, sourceInfo)
{
def isAligned(address: UInt, lgSize: UInt): Bool = {
if (maxLgSize == 0) true.B else {
val mask = UIntToOH1(lgSize, maxLgSize)
(address & mask) === 0.U
}
}
def mask(address: UInt, lgSize: UInt): UInt =
MaskGen(address, lgSize, manager.beatBytes)
def staticHasData(bundle: TLChannel): Option[Boolean] = {
bundle match {
case _:TLBundleA => {
// Do there exist A messages with Data?
val aDataYes = manager.anySupportArithmetic || manager.anySupportLogical || manager.anySupportPutFull || manager.anySupportPutPartial
// Do there exist A messages without Data?
val aDataNo = manager.anySupportAcquireB || manager.anySupportGet || manager.anySupportHint
// Statically optimize the case where hasData is a constant
if (!aDataYes) Some(false) else if (!aDataNo) Some(true) else None
}
case _:TLBundleB => {
// Do there exist B messages with Data?
val bDataYes = client.anySupportArithmetic || client.anySupportLogical || client.anySupportPutFull || client.anySupportPutPartial
// Do there exist B messages without Data?
val bDataNo = client.anySupportProbe || client.anySupportGet || client.anySupportHint
// Statically optimize the case where hasData is a constant
if (!bDataYes) Some(false) else if (!bDataNo) Some(true) else None
}
case _:TLBundleC => {
// Do there eixst C messages with Data?
val cDataYes = client.anySupportGet || client.anySupportArithmetic || client.anySupportLogical || client.anySupportProbe
// Do there exist C messages without Data?
val cDataNo = client.anySupportPutFull || client.anySupportPutPartial || client.anySupportHint || client.anySupportProbe
if (!cDataYes) Some(false) else if (!cDataNo) Some(true) else None
}
case _:TLBundleD => {
// Do there eixst D messages with Data?
val dDataYes = manager.anySupportGet || manager.anySupportArithmetic || manager.anySupportLogical || manager.anySupportAcquireB
// Do there exist D messages without Data?
val dDataNo = manager.anySupportPutFull || manager.anySupportPutPartial || manager.anySupportHint || manager.anySupportAcquireT
if (!dDataYes) Some(false) else if (!dDataNo) Some(true) else None
}
case _:TLBundleE => Some(false)
}
}
def isRequest(x: TLChannel): Bool = {
x match {
case a: TLBundleA => true.B
case b: TLBundleB => true.B
case c: TLBundleC => c.opcode(2) && c.opcode(1)
// opcode === TLMessages.Release ||
// opcode === TLMessages.ReleaseData
case d: TLBundleD => d.opcode(2) && !d.opcode(1)
// opcode === TLMessages.Grant ||
// opcode === TLMessages.GrantData
case e: TLBundleE => false.B
}
}
def isResponse(x: TLChannel): Bool = {
x match {
case a: TLBundleA => false.B
case b: TLBundleB => false.B
case c: TLBundleC => !c.opcode(2) || !c.opcode(1)
// opcode =/= TLMessages.Release &&
// opcode =/= TLMessages.ReleaseData
case d: TLBundleD => true.B // Grant isResponse + isRequest
case e: TLBundleE => true.B
}
}
def hasData(x: TLChannel): Bool = {
val opdata = x match {
case a: TLBundleA => !a.opcode(2)
// opcode === TLMessages.PutFullData ||
// opcode === TLMessages.PutPartialData ||
// opcode === TLMessages.ArithmeticData ||
// opcode === TLMessages.LogicalData
case b: TLBundleB => !b.opcode(2)
// opcode === TLMessages.PutFullData ||
// opcode === TLMessages.PutPartialData ||
// opcode === TLMessages.ArithmeticData ||
// opcode === TLMessages.LogicalData
case c: TLBundleC => c.opcode(0)
// opcode === TLMessages.AccessAckData ||
// opcode === TLMessages.ProbeAckData ||
// opcode === TLMessages.ReleaseData
case d: TLBundleD => d.opcode(0)
// opcode === TLMessages.AccessAckData ||
// opcode === TLMessages.GrantData
case e: TLBundleE => false.B
}
staticHasData(x).map(_.B).getOrElse(opdata)
}
def opcode(x: TLDataChannel): UInt = {
x match {
case a: TLBundleA => a.opcode
case b: TLBundleB => b.opcode
case c: TLBundleC => c.opcode
case d: TLBundleD => d.opcode
}
}
def param(x: TLDataChannel): UInt = {
x match {
case a: TLBundleA => a.param
case b: TLBundleB => b.param
case c: TLBundleC => c.param
case d: TLBundleD => d.param
}
}
def size(x: TLDataChannel): UInt = {
x match {
case a: TLBundleA => a.size
case b: TLBundleB => b.size
case c: TLBundleC => c.size
case d: TLBundleD => d.size
}
}
def data(x: TLDataChannel): UInt = {
x match {
case a: TLBundleA => a.data
case b: TLBundleB => b.data
case c: TLBundleC => c.data
case d: TLBundleD => d.data
}
}
def corrupt(x: TLDataChannel): Bool = {
x match {
case a: TLBundleA => a.corrupt
case b: TLBundleB => b.corrupt
case c: TLBundleC => c.corrupt
case d: TLBundleD => d.corrupt
}
}
def mask(x: TLAddrChannel): UInt = {
x match {
case a: TLBundleA => a.mask
case b: TLBundleB => b.mask
case c: TLBundleC => mask(c.address, c.size)
}
}
def full_mask(x: TLAddrChannel): UInt = {
x match {
case a: TLBundleA => mask(a.address, a.size)
case b: TLBundleB => mask(b.address, b.size)
case c: TLBundleC => mask(c.address, c.size)
}
}
def address(x: TLAddrChannel): UInt = {
x match {
case a: TLBundleA => a.address
case b: TLBundleB => b.address
case c: TLBundleC => c.address
}
}
def source(x: TLDataChannel): UInt = {
x match {
case a: TLBundleA => a.source
case b: TLBundleB => b.source
case c: TLBundleC => c.source
case d: TLBundleD => d.source
}
}
def addr_hi(x: UInt): UInt = x >> log2Ceil(manager.beatBytes)
def addr_lo(x: UInt): UInt =
if (manager.beatBytes == 1) 0.U else x(log2Ceil(manager.beatBytes)-1, 0)
def addr_hi(x: TLAddrChannel): UInt = addr_hi(address(x))
def addr_lo(x: TLAddrChannel): UInt = addr_lo(address(x))
def numBeats(x: TLChannel): UInt = {
x match {
case _: TLBundleE => 1.U
case bundle: TLDataChannel => {
val hasData = this.hasData(bundle)
val size = this.size(bundle)
val cutoff = log2Ceil(manager.beatBytes)
val small = if (manager.maxTransfer <= manager.beatBytes) true.B else size <= (cutoff).U
val decode = UIntToOH(size, maxLgSize+1) >> cutoff
Mux(hasData, decode | small.asUInt, 1.U)
}
}
}
def numBeats1(x: TLChannel): UInt = {
x match {
case _: TLBundleE => 0.U
case bundle: TLDataChannel => {
if (maxLgSize == 0) {
0.U
} else {
val decode = UIntToOH1(size(bundle), maxLgSize) >> log2Ceil(manager.beatBytes)
Mux(hasData(bundle), decode, 0.U)
}
}
}
}
def firstlastHelper(bits: TLChannel, fire: Bool): (Bool, Bool, Bool, UInt) = {
val beats1 = numBeats1(bits)
val counter = RegInit(0.U(log2Up(maxTransfer / manager.beatBytes).W))
val counter1 = counter - 1.U
val first = counter === 0.U
val last = counter === 1.U || beats1 === 0.U
val done = last && fire
val count = (beats1 & ~counter1)
when (fire) {
counter := Mux(first, beats1, counter1)
}
(first, last, done, count)
}
def first(bits: TLChannel, fire: Bool): Bool = firstlastHelper(bits, fire)._1
def first(x: DecoupledIO[TLChannel]): Bool = first(x.bits, x.fire)
def first(x: ValidIO[TLChannel]): Bool = first(x.bits, x.valid)
def last(bits: TLChannel, fire: Bool): Bool = firstlastHelper(bits, fire)._2
def last(x: DecoupledIO[TLChannel]): Bool = last(x.bits, x.fire)
def last(x: ValidIO[TLChannel]): Bool = last(x.bits, x.valid)
def done(bits: TLChannel, fire: Bool): Bool = firstlastHelper(bits, fire)._3
def done(x: DecoupledIO[TLChannel]): Bool = done(x.bits, x.fire)
def done(x: ValidIO[TLChannel]): Bool = done(x.bits, x.valid)
def firstlast(bits: TLChannel, fire: Bool): (Bool, Bool, Bool) = {
val r = firstlastHelper(bits, fire)
(r._1, r._2, r._3)
}
def firstlast(x: DecoupledIO[TLChannel]): (Bool, Bool, Bool) = firstlast(x.bits, x.fire)
def firstlast(x: ValidIO[TLChannel]): (Bool, Bool, Bool) = firstlast(x.bits, x.valid)
def count(bits: TLChannel, fire: Bool): (Bool, Bool, Bool, UInt) = {
val r = firstlastHelper(bits, fire)
(r._1, r._2, r._3, r._4)
}
def count(x: DecoupledIO[TLChannel]): (Bool, Bool, Bool, UInt) = count(x.bits, x.fire)
def count(x: ValidIO[TLChannel]): (Bool, Bool, Bool, UInt) = count(x.bits, x.valid)
def addr_inc(bits: TLChannel, fire: Bool): (Bool, Bool, Bool, UInt) = {
val r = firstlastHelper(bits, fire)
(r._1, r._2, r._3, r._4 << log2Ceil(manager.beatBytes))
}
def addr_inc(x: DecoupledIO[TLChannel]): (Bool, Bool, Bool, UInt) = addr_inc(x.bits, x.fire)
def addr_inc(x: ValidIO[TLChannel]): (Bool, Bool, Bool, UInt) = addr_inc(x.bits, x.valid)
// Does the request need T permissions to be executed?
def needT(a: TLBundleA): Bool = {
val acq_needT = MuxLookup(a.param, WireDefault(Bool(), DontCare))(Array(
TLPermissions.NtoB -> false.B,
TLPermissions.NtoT -> true.B,
TLPermissions.BtoT -> true.B))
MuxLookup(a.opcode, WireDefault(Bool(), DontCare))(Array(
TLMessages.PutFullData -> true.B,
TLMessages.PutPartialData -> true.B,
TLMessages.ArithmeticData -> true.B,
TLMessages.LogicalData -> true.B,
TLMessages.Get -> false.B,
TLMessages.Hint -> MuxLookup(a.param, WireDefault(Bool(), DontCare))(Array(
TLHints.PREFETCH_READ -> false.B,
TLHints.PREFETCH_WRITE -> true.B)),
TLMessages.AcquireBlock -> acq_needT,
TLMessages.AcquirePerm -> acq_needT))
}
// This is a very expensive circuit; use only if you really mean it!
def inFlight(x: TLBundle): (UInt, UInt) = {
val flight = RegInit(0.U(log2Ceil(3*client.endSourceId+1).W))
val bce = manager.anySupportAcquireB && client.anySupportProbe
val (a_first, a_last, _) = firstlast(x.a)
val (b_first, b_last, _) = firstlast(x.b)
val (c_first, c_last, _) = firstlast(x.c)
val (d_first, d_last, _) = firstlast(x.d)
val (e_first, e_last, _) = firstlast(x.e)
val (a_request, a_response) = (isRequest(x.a.bits), isResponse(x.a.bits))
val (b_request, b_response) = (isRequest(x.b.bits), isResponse(x.b.bits))
val (c_request, c_response) = (isRequest(x.c.bits), isResponse(x.c.bits))
val (d_request, d_response) = (isRequest(x.d.bits), isResponse(x.d.bits))
val (e_request, e_response) = (isRequest(x.e.bits), isResponse(x.e.bits))
val a_inc = x.a.fire && a_first && a_request
val b_inc = x.b.fire && b_first && b_request
val c_inc = x.c.fire && c_first && c_request
val d_inc = x.d.fire && d_first && d_request
val e_inc = x.e.fire && e_first && e_request
val inc = Cat(Seq(a_inc, d_inc) ++ (if (bce) Seq(b_inc, c_inc, e_inc) else Nil))
val a_dec = x.a.fire && a_last && a_response
val b_dec = x.b.fire && b_last && b_response
val c_dec = x.c.fire && c_last && c_response
val d_dec = x.d.fire && d_last && d_response
val e_dec = x.e.fire && e_last && e_response
val dec = Cat(Seq(a_dec, d_dec) ++ (if (bce) Seq(b_dec, c_dec, e_dec) else Nil))
val next_flight = flight + PopCount(inc) - PopCount(dec)
flight := next_flight
(flight, next_flight)
}
def prettySourceMapping(context: String): String = {
s"TL-Source mapping for $context:\n${(new TLSourceIdMap(client)).pretty}\n"
}
}
class TLEdgeOut(
client: TLClientPortParameters,
manager: TLManagerPortParameters,
params: Parameters,
sourceInfo: SourceInfo)
extends TLEdge(client, manager, params, sourceInfo)
{
// Transfers
def AcquireBlock(fromSource: UInt, toAddress: UInt, lgSize: UInt, growPermissions: UInt) = {
require (manager.anySupportAcquireB, s"TileLink: No managers visible from this edge support Acquires, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsAcquireBFast(toAddress, lgSize)
val a = Wire(new TLBundleA(bundle))
a.opcode := TLMessages.AcquireBlock
a.param := growPermissions
a.size := lgSize
a.source := fromSource
a.address := toAddress
a.user := DontCare
a.echo := DontCare
a.mask := mask(toAddress, lgSize)
a.data := DontCare
a.corrupt := false.B
(legal, a)
}
def AcquirePerm(fromSource: UInt, toAddress: UInt, lgSize: UInt, growPermissions: UInt) = {
require (manager.anySupportAcquireB, s"TileLink: No managers visible from this edge support Acquires, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsAcquireBFast(toAddress, lgSize)
val a = Wire(new TLBundleA(bundle))
a.opcode := TLMessages.AcquirePerm
a.param := growPermissions
a.size := lgSize
a.source := fromSource
a.address := toAddress
a.user := DontCare
a.echo := DontCare
a.mask := mask(toAddress, lgSize)
a.data := DontCare
a.corrupt := false.B
(legal, a)
}
def Release(fromSource: UInt, toAddress: UInt, lgSize: UInt, shrinkPermissions: UInt): (Bool, TLBundleC) = {
require (manager.anySupportAcquireB, s"TileLink: No managers visible from this edge support Acquires, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsAcquireBFast(toAddress, lgSize)
val c = Wire(new TLBundleC(bundle))
c.opcode := TLMessages.Release
c.param := shrinkPermissions
c.size := lgSize
c.source := fromSource
c.address := toAddress
c.user := DontCare
c.echo := DontCare
c.data := DontCare
c.corrupt := false.B
(legal, c)
}
def Release(fromSource: UInt, toAddress: UInt, lgSize: UInt, shrinkPermissions: UInt, data: UInt, corrupt: Bool): (Bool, TLBundleC) = {
require (manager.anySupportAcquireB, s"TileLink: No managers visible from this edge support Acquires, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsAcquireBFast(toAddress, lgSize)
val c = Wire(new TLBundleC(bundle))
c.opcode := TLMessages.ReleaseData
c.param := shrinkPermissions
c.size := lgSize
c.source := fromSource
c.address := toAddress
c.user := DontCare
c.echo := DontCare
c.data := data
c.corrupt := corrupt
(legal, c)
}
def Release(fromSource: UInt, toAddress: UInt, lgSize: UInt, shrinkPermissions: UInt, data: UInt): (Bool, TLBundleC) =
Release(fromSource, toAddress, lgSize, shrinkPermissions, data, false.B)
def ProbeAck(b: TLBundleB, reportPermissions: UInt): TLBundleC =
ProbeAck(b.source, b.address, b.size, reportPermissions)
def ProbeAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, reportPermissions: UInt): TLBundleC = {
val c = Wire(new TLBundleC(bundle))
c.opcode := TLMessages.ProbeAck
c.param := reportPermissions
c.size := lgSize
c.source := fromSource
c.address := toAddress
c.user := DontCare
c.echo := DontCare
c.data := DontCare
c.corrupt := false.B
c
}
def ProbeAck(b: TLBundleB, reportPermissions: UInt, data: UInt): TLBundleC =
ProbeAck(b.source, b.address, b.size, reportPermissions, data)
def ProbeAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, reportPermissions: UInt, data: UInt, corrupt: Bool): TLBundleC = {
val c = Wire(new TLBundleC(bundle))
c.opcode := TLMessages.ProbeAckData
c.param := reportPermissions
c.size := lgSize
c.source := fromSource
c.address := toAddress
c.user := DontCare
c.echo := DontCare
c.data := data
c.corrupt := corrupt
c
}
def ProbeAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, reportPermissions: UInt, data: UInt): TLBundleC =
ProbeAck(fromSource, toAddress, lgSize, reportPermissions, data, false.B)
def GrantAck(d: TLBundleD): TLBundleE = GrantAck(d.sink)
def GrantAck(toSink: UInt): TLBundleE = {
val e = Wire(new TLBundleE(bundle))
e.sink := toSink
e
}
// Accesses
def Get(fromSource: UInt, toAddress: UInt, lgSize: UInt) = {
require (manager.anySupportGet, s"TileLink: No managers visible from this edge support Gets, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsGetFast(toAddress, lgSize)
val a = Wire(new TLBundleA(bundle))
a.opcode := TLMessages.Get
a.param := 0.U
a.size := lgSize
a.source := fromSource
a.address := toAddress
a.user := DontCare
a.echo := DontCare
a.mask := mask(toAddress, lgSize)
a.data := DontCare
a.corrupt := false.B
(legal, a)
}
def Put(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt): (Bool, TLBundleA) =
Put(fromSource, toAddress, lgSize, data, false.B)
def Put(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, corrupt: Bool): (Bool, TLBundleA) = {
require (manager.anySupportPutFull, s"TileLink: No managers visible from this edge support Puts, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsPutFullFast(toAddress, lgSize)
val a = Wire(new TLBundleA(bundle))
a.opcode := TLMessages.PutFullData
a.param := 0.U
a.size := lgSize
a.source := fromSource
a.address := toAddress
a.user := DontCare
a.echo := DontCare
a.mask := mask(toAddress, lgSize)
a.data := data
a.corrupt := corrupt
(legal, a)
}
def Put(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, mask: UInt): (Bool, TLBundleA) =
Put(fromSource, toAddress, lgSize, data, mask, false.B)
def Put(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, mask: UInt, corrupt: Bool): (Bool, TLBundleA) = {
require (manager.anySupportPutPartial, s"TileLink: No managers visible from this edge support masked Puts, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsPutPartialFast(toAddress, lgSize)
val a = Wire(new TLBundleA(bundle))
a.opcode := TLMessages.PutPartialData
a.param := 0.U
a.size := lgSize
a.source := fromSource
a.address := toAddress
a.user := DontCare
a.echo := DontCare
a.mask := mask
a.data := data
a.corrupt := corrupt
(legal, a)
}
def Arithmetic(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, atomic: UInt, corrupt: Bool = false.B): (Bool, TLBundleA) = {
require (manager.anySupportArithmetic, s"TileLink: No managers visible from this edge support arithmetic AMOs, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsArithmeticFast(toAddress, lgSize)
val a = Wire(new TLBundleA(bundle))
a.opcode := TLMessages.ArithmeticData
a.param := atomic
a.size := lgSize
a.source := fromSource
a.address := toAddress
a.user := DontCare
a.echo := DontCare
a.mask := mask(toAddress, lgSize)
a.data := data
a.corrupt := corrupt
(legal, a)
}
def Logical(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, atomic: UInt, corrupt: Bool = false.B) = {
require (manager.anySupportLogical, s"TileLink: No managers visible from this edge support logical AMOs, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsLogicalFast(toAddress, lgSize)
val a = Wire(new TLBundleA(bundle))
a.opcode := TLMessages.LogicalData
a.param := atomic
a.size := lgSize
a.source := fromSource
a.address := toAddress
a.user := DontCare
a.echo := DontCare
a.mask := mask(toAddress, lgSize)
a.data := data
a.corrupt := corrupt
(legal, a)
}
def Hint(fromSource: UInt, toAddress: UInt, lgSize: UInt, param: UInt) = {
require (manager.anySupportHint, s"TileLink: No managers visible from this edge support Hints, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsHintFast(toAddress, lgSize)
val a = Wire(new TLBundleA(bundle))
a.opcode := TLMessages.Hint
a.param := param
a.size := lgSize
a.source := fromSource
a.address := toAddress
a.user := DontCare
a.echo := DontCare
a.mask := mask(toAddress, lgSize)
a.data := DontCare
a.corrupt := false.B
(legal, a)
}
def AccessAck(b: TLBundleB): TLBundleC = AccessAck(b.source, address(b), b.size)
def AccessAck(fromSource: UInt, toAddress: UInt, lgSize: UInt) = {
val c = Wire(new TLBundleC(bundle))
c.opcode := TLMessages.AccessAck
c.param := 0.U
c.size := lgSize
c.source := fromSource
c.address := toAddress
c.user := DontCare
c.echo := DontCare
c.data := DontCare
c.corrupt := false.B
c
}
def AccessAck(b: TLBundleB, data: UInt): TLBundleC = AccessAck(b.source, address(b), b.size, data)
def AccessAck(b: TLBundleB, data: UInt, corrupt: Bool): TLBundleC = AccessAck(b.source, address(b), b.size, data, corrupt)
def AccessAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt): TLBundleC = AccessAck(fromSource, toAddress, lgSize, data, false.B)
def AccessAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, corrupt: Bool) = {
val c = Wire(new TLBundleC(bundle))
c.opcode := TLMessages.AccessAckData
c.param := 0.U
c.size := lgSize
c.source := fromSource
c.address := toAddress
c.user := DontCare
c.echo := DontCare
c.data := data
c.corrupt := corrupt
c
}
def HintAck(b: TLBundleB): TLBundleC = HintAck(b.source, address(b), b.size)
def HintAck(fromSource: UInt, toAddress: UInt, lgSize: UInt) = {
val c = Wire(new TLBundleC(bundle))
c.opcode := TLMessages.HintAck
c.param := 0.U
c.size := lgSize
c.source := fromSource
c.address := toAddress
c.user := DontCare
c.echo := DontCare
c.data := DontCare
c.corrupt := false.B
c
}
}
class TLEdgeIn(
client: TLClientPortParameters,
manager: TLManagerPortParameters,
params: Parameters,
sourceInfo: SourceInfo)
extends TLEdge(client, manager, params, sourceInfo)
{
private def myTranspose[T](x: Seq[Seq[T]]): Seq[Seq[T]] = {
val todo = x.filter(!_.isEmpty)
val heads = todo.map(_.head)
val tails = todo.map(_.tail)
if (todo.isEmpty) Nil else { heads +: myTranspose(tails) }
}
// Transfers
def Probe(fromAddress: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt) = {
require (client.anySupportProbe, s"TileLink: No clients visible from this edge support probes, but one of these managers tried to issue one: ${manager.managers}")
val legal = client.supportsProbe(toSource, lgSize)
val b = Wire(new TLBundleB(bundle))
b.opcode := TLMessages.Probe
b.param := capPermissions
b.size := lgSize
b.source := toSource
b.address := fromAddress
b.mask := mask(fromAddress, lgSize)
b.data := DontCare
b.corrupt := false.B
(legal, b)
}
def Grant(fromSink: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt): TLBundleD = Grant(fromSink, toSource, lgSize, capPermissions, false.B)
def Grant(fromSink: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt, denied: Bool) = {
val d = Wire(new TLBundleD(bundle))
d.opcode := TLMessages.Grant
d.param := capPermissions
d.size := lgSize
d.source := toSource
d.sink := fromSink
d.denied := denied
d.user := DontCare
d.echo := DontCare
d.data := DontCare
d.corrupt := false.B
d
}
def Grant(fromSink: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt, data: UInt): TLBundleD = Grant(fromSink, toSource, lgSize, capPermissions, data, false.B, false.B)
def Grant(fromSink: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt, data: UInt, denied: Bool, corrupt: Bool) = {
val d = Wire(new TLBundleD(bundle))
d.opcode := TLMessages.GrantData
d.param := capPermissions
d.size := lgSize
d.source := toSource
d.sink := fromSink
d.denied := denied
d.user := DontCare
d.echo := DontCare
d.data := data
d.corrupt := corrupt
d
}
def ReleaseAck(c: TLBundleC): TLBundleD = ReleaseAck(c.source, c.size, false.B)
def ReleaseAck(toSource: UInt, lgSize: UInt, denied: Bool): TLBundleD = {
val d = Wire(new TLBundleD(bundle))
d.opcode := TLMessages.ReleaseAck
d.param := 0.U
d.size := lgSize
d.source := toSource
d.sink := 0.U
d.denied := denied
d.user := DontCare
d.echo := DontCare
d.data := DontCare
d.corrupt := false.B
d
}
// Accesses
def Get(fromAddress: UInt, toSource: UInt, lgSize: UInt) = {
require (client.anySupportGet, s"TileLink: No clients visible from this edge support Gets, but one of these managers would try to issue one: ${manager.managers}")
val legal = client.supportsGet(toSource, lgSize)
val b = Wire(new TLBundleB(bundle))
b.opcode := TLMessages.Get
b.param := 0.U
b.size := lgSize
b.source := toSource
b.address := fromAddress
b.mask := mask(fromAddress, lgSize)
b.data := DontCare
b.corrupt := false.B
(legal, b)
}
def Put(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt): (Bool, TLBundleB) =
Put(fromAddress, toSource, lgSize, data, false.B)
def Put(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, corrupt: Bool): (Bool, TLBundleB) = {
require (client.anySupportPutFull, s"TileLink: No clients visible from this edge support Puts, but one of these managers would try to issue one: ${manager.managers}")
val legal = client.supportsPutFull(toSource, lgSize)
val b = Wire(new TLBundleB(bundle))
b.opcode := TLMessages.PutFullData
b.param := 0.U
b.size := lgSize
b.source := toSource
b.address := fromAddress
b.mask := mask(fromAddress, lgSize)
b.data := data
b.corrupt := corrupt
(legal, b)
}
def Put(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, mask: UInt): (Bool, TLBundleB) =
Put(fromAddress, toSource, lgSize, data, mask, false.B)
def Put(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, mask: UInt, corrupt: Bool): (Bool, TLBundleB) = {
require (client.anySupportPutPartial, s"TileLink: No clients visible from this edge support masked Puts, but one of these managers would try to request one: ${manager.managers}")
val legal = client.supportsPutPartial(toSource, lgSize)
val b = Wire(new TLBundleB(bundle))
b.opcode := TLMessages.PutPartialData
b.param := 0.U
b.size := lgSize
b.source := toSource
b.address := fromAddress
b.mask := mask
b.data := data
b.corrupt := corrupt
(legal, b)
}
def Arithmetic(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, atomic: UInt, corrupt: Bool = false.B) = {
require (client.anySupportArithmetic, s"TileLink: No clients visible from this edge support arithmetic AMOs, but one of these managers would try to request one: ${manager.managers}")
val legal = client.supportsArithmetic(toSource, lgSize)
val b = Wire(new TLBundleB(bundle))
b.opcode := TLMessages.ArithmeticData
b.param := atomic
b.size := lgSize
b.source := toSource
b.address := fromAddress
b.mask := mask(fromAddress, lgSize)
b.data := data
b.corrupt := corrupt
(legal, b)
}
def Logical(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, atomic: UInt, corrupt: Bool = false.B) = {
require (client.anySupportLogical, s"TileLink: No clients visible from this edge support logical AMOs, but one of these managers would try to request one: ${manager.managers}")
val legal = client.supportsLogical(toSource, lgSize)
val b = Wire(new TLBundleB(bundle))
b.opcode := TLMessages.LogicalData
b.param := atomic
b.size := lgSize
b.source := toSource
b.address := fromAddress
b.mask := mask(fromAddress, lgSize)
b.data := data
b.corrupt := corrupt
(legal, b)
}
def Hint(fromAddress: UInt, toSource: UInt, lgSize: UInt, param: UInt) = {
require (client.anySupportHint, s"TileLink: No clients visible from this edge support Hints, but one of these managers would try to request one: ${manager.managers}")
val legal = client.supportsHint(toSource, lgSize)
val b = Wire(new TLBundleB(bundle))
b.opcode := TLMessages.Hint
b.param := param
b.size := lgSize
b.source := toSource
b.address := fromAddress
b.mask := mask(fromAddress, lgSize)
b.data := DontCare
b.corrupt := false.B
(legal, b)
}
def AccessAck(a: TLBundleA): TLBundleD = AccessAck(a.source, a.size)
def AccessAck(a: TLBundleA, denied: Bool): TLBundleD = AccessAck(a.source, a.size, denied)
def AccessAck(toSource: UInt, lgSize: UInt): TLBundleD = AccessAck(toSource, lgSize, false.B)
def AccessAck(toSource: UInt, lgSize: UInt, denied: Bool) = {
val d = Wire(new TLBundleD(bundle))
d.opcode := TLMessages.AccessAck
d.param := 0.U
d.size := lgSize
d.source := toSource
d.sink := 0.U
d.denied := denied
d.user := DontCare
d.echo := DontCare
d.data := DontCare
d.corrupt := false.B
d
}
def AccessAck(a: TLBundleA, data: UInt): TLBundleD = AccessAck(a.source, a.size, data)
def AccessAck(a: TLBundleA, data: UInt, denied: Bool, corrupt: Bool): TLBundleD = AccessAck(a.source, a.size, data, denied, corrupt)
def AccessAck(toSource: UInt, lgSize: UInt, data: UInt): TLBundleD = AccessAck(toSource, lgSize, data, false.B, false.B)
def AccessAck(toSource: UInt, lgSize: UInt, data: UInt, denied: Bool, corrupt: Bool) = {
val d = Wire(new TLBundleD(bundle))
d.opcode := TLMessages.AccessAckData
d.param := 0.U
d.size := lgSize
d.source := toSource
d.sink := 0.U
d.denied := denied
d.user := DontCare
d.echo := DontCare
d.data := data
d.corrupt := corrupt
d
}
def HintAck(a: TLBundleA): TLBundleD = HintAck(a, false.B)
def HintAck(a: TLBundleA, denied: Bool): TLBundleD = HintAck(a.source, a.size, denied)
def HintAck(toSource: UInt, lgSize: UInt): TLBundleD = HintAck(toSource, lgSize, false.B)
def HintAck(toSource: UInt, lgSize: UInt, denied: Bool) = {
val d = Wire(new TLBundleD(bundle))
d.opcode := TLMessages.HintAck
d.param := 0.U
d.size := lgSize
d.source := toSource
d.sink := 0.U
d.denied := denied
d.user := DontCare
d.echo := DontCare
d.data := DontCare
d.corrupt := false.B
d
}
}
| module TLMonitor_4( // @[Monitor.scala:36:7]
input clock, // @[Monitor.scala:36:7]
input reset, // @[Monitor.scala:36:7]
input io_in_a_ready, // @[Monitor.scala:20:14]
input io_in_a_valid, // @[Monitor.scala:20:14]
input [2:0] io_in_a_bits_opcode, // @[Monitor.scala:20:14]
input [2:0] io_in_a_bits_param, // @[Monitor.scala:20:14]
input [2:0] io_in_a_bits_size, // @[Monitor.scala:20:14]
input [7:0] io_in_a_bits_source, // @[Monitor.scala:20:14]
input [28:0] io_in_a_bits_address, // @[Monitor.scala:20:14]
input [7:0] io_in_a_bits_mask, // @[Monitor.scala:20:14]
input [63:0] io_in_a_bits_data, // @[Monitor.scala:20:14]
input io_in_a_bits_corrupt, // @[Monitor.scala:20:14]
input io_in_d_ready, // @[Monitor.scala:20:14]
input io_in_d_valid, // @[Monitor.scala:20:14]
input [2:0] io_in_d_bits_opcode, // @[Monitor.scala:20:14]
input [2:0] io_in_d_bits_size, // @[Monitor.scala:20:14]
input [7:0] io_in_d_bits_source, // @[Monitor.scala:20:14]
input [63:0] io_in_d_bits_data // @[Monitor.scala:20:14]
);
wire [31:0] _plusarg_reader_1_out; // @[PlusArg.scala:80:11]
wire [31:0] _plusarg_reader_out; // @[PlusArg.scala:80:11]
wire io_in_a_ready_0 = io_in_a_ready; // @[Monitor.scala:36:7]
wire io_in_a_valid_0 = io_in_a_valid; // @[Monitor.scala:36:7]
wire [2:0] io_in_a_bits_opcode_0 = io_in_a_bits_opcode; // @[Monitor.scala:36:7]
wire [2:0] io_in_a_bits_param_0 = io_in_a_bits_param; // @[Monitor.scala:36:7]
wire [2:0] io_in_a_bits_size_0 = io_in_a_bits_size; // @[Monitor.scala:36:7]
wire [7:0] io_in_a_bits_source_0 = io_in_a_bits_source; // @[Monitor.scala:36:7]
wire [28:0] io_in_a_bits_address_0 = io_in_a_bits_address; // @[Monitor.scala:36:7]
wire [7:0] io_in_a_bits_mask_0 = io_in_a_bits_mask; // @[Monitor.scala:36:7]
wire [63:0] io_in_a_bits_data_0 = io_in_a_bits_data; // @[Monitor.scala:36:7]
wire io_in_a_bits_corrupt_0 = io_in_a_bits_corrupt; // @[Monitor.scala:36:7]
wire io_in_d_ready_0 = io_in_d_ready; // @[Monitor.scala:36:7]
wire io_in_d_valid_0 = io_in_d_valid; // @[Monitor.scala:36:7]
wire [2:0] io_in_d_bits_opcode_0 = io_in_d_bits_opcode; // @[Monitor.scala:36:7]
wire [2:0] io_in_d_bits_size_0 = io_in_d_bits_size; // @[Monitor.scala:36:7]
wire [7:0] io_in_d_bits_source_0 = io_in_d_bits_source; // @[Monitor.scala:36:7]
wire [63:0] io_in_d_bits_data_0 = io_in_d_bits_data; // @[Monitor.scala:36:7]
wire io_in_d_bits_sink = 1'h0; // @[Monitor.scala:36:7]
wire io_in_d_bits_denied = 1'h0; // @[Monitor.scala:36:7]
wire io_in_d_bits_corrupt = 1'h0; // @[Monitor.scala:36:7]
wire sink_ok = 1'h0; // @[Monitor.scala:309:31]
wire _c_first_WIRE_ready = 1'h0; // @[Bundles.scala:265:74]
wire _c_first_WIRE_valid = 1'h0; // @[Bundles.scala:265:74]
wire _c_first_WIRE_bits_corrupt = 1'h0; // @[Bundles.scala:265:74]
wire _c_first_WIRE_1_ready = 1'h0; // @[Bundles.scala:265:61]
wire _c_first_WIRE_1_valid = 1'h0; // @[Bundles.scala:265:61]
wire _c_first_WIRE_1_bits_corrupt = 1'h0; // @[Bundles.scala:265:61]
wire _c_first_WIRE_2_ready = 1'h0; // @[Bundles.scala:265:74]
wire _c_first_WIRE_2_valid = 1'h0; // @[Bundles.scala:265:74]
wire _c_first_WIRE_2_bits_corrupt = 1'h0; // @[Bundles.scala:265:74]
wire _c_first_WIRE_3_ready = 1'h0; // @[Bundles.scala:265:61]
wire _c_first_WIRE_3_valid = 1'h0; // @[Bundles.scala:265:61]
wire _c_first_WIRE_3_bits_corrupt = 1'h0; // @[Bundles.scala:265:61]
wire _c_first_T = 1'h0; // @[Decoupled.scala:51:35]
wire c_first_beats1_opdata = 1'h0; // @[Edges.scala:102:36]
wire _c_first_last_T = 1'h0; // @[Edges.scala:232:25]
wire c_first_done = 1'h0; // @[Edges.scala:233:22]
wire _c_set_wo_ready_WIRE_ready = 1'h0; // @[Bundles.scala:265:74]
wire _c_set_wo_ready_WIRE_valid = 1'h0; // @[Bundles.scala:265:74]
wire _c_set_wo_ready_WIRE_bits_corrupt = 1'h0; // @[Bundles.scala:265:74]
wire _c_set_wo_ready_WIRE_1_ready = 1'h0; // @[Bundles.scala:265:61]
wire _c_set_wo_ready_WIRE_1_valid = 1'h0; // @[Bundles.scala:265:61]
wire _c_set_wo_ready_WIRE_1_bits_corrupt = 1'h0; // @[Bundles.scala:265:61]
wire _c_set_WIRE_ready = 1'h0; // @[Bundles.scala:265:74]
wire _c_set_WIRE_valid = 1'h0; // @[Bundles.scala:265:74]
wire _c_set_WIRE_bits_corrupt = 1'h0; // @[Bundles.scala:265:74]
wire _c_set_WIRE_1_ready = 1'h0; // @[Bundles.scala:265:61]
wire _c_set_WIRE_1_valid = 1'h0; // @[Bundles.scala:265:61]
wire _c_set_WIRE_1_bits_corrupt = 1'h0; // @[Bundles.scala:265:61]
wire _c_opcodes_set_interm_WIRE_ready = 1'h0; // @[Bundles.scala:265:74]
wire _c_opcodes_set_interm_WIRE_valid = 1'h0; // @[Bundles.scala:265:74]
wire _c_opcodes_set_interm_WIRE_bits_corrupt = 1'h0; // @[Bundles.scala:265:74]
wire _c_opcodes_set_interm_WIRE_1_ready = 1'h0; // @[Bundles.scala:265:61]
wire _c_opcodes_set_interm_WIRE_1_valid = 1'h0; // @[Bundles.scala:265:61]
wire _c_opcodes_set_interm_WIRE_1_bits_corrupt = 1'h0; // @[Bundles.scala:265:61]
wire _c_sizes_set_interm_WIRE_ready = 1'h0; // @[Bundles.scala:265:74]
wire _c_sizes_set_interm_WIRE_valid = 1'h0; // @[Bundles.scala:265:74]
wire _c_sizes_set_interm_WIRE_bits_corrupt = 1'h0; // @[Bundles.scala:265:74]
wire _c_sizes_set_interm_WIRE_1_ready = 1'h0; // @[Bundles.scala:265:61]
wire _c_sizes_set_interm_WIRE_1_valid = 1'h0; // @[Bundles.scala:265:61]
wire _c_sizes_set_interm_WIRE_1_bits_corrupt = 1'h0; // @[Bundles.scala:265:61]
wire _c_opcodes_set_WIRE_ready = 1'h0; // @[Bundles.scala:265:74]
wire _c_opcodes_set_WIRE_valid = 1'h0; // @[Bundles.scala:265:74]
wire _c_opcodes_set_WIRE_bits_corrupt = 1'h0; // @[Bundles.scala:265:74]
wire _c_opcodes_set_WIRE_1_ready = 1'h0; // @[Bundles.scala:265:61]
wire _c_opcodes_set_WIRE_1_valid = 1'h0; // @[Bundles.scala:265:61]
wire _c_opcodes_set_WIRE_1_bits_corrupt = 1'h0; // @[Bundles.scala:265:61]
wire _c_sizes_set_WIRE_ready = 1'h0; // @[Bundles.scala:265:74]
wire _c_sizes_set_WIRE_valid = 1'h0; // @[Bundles.scala:265:74]
wire _c_sizes_set_WIRE_bits_corrupt = 1'h0; // @[Bundles.scala:265:74]
wire _c_sizes_set_WIRE_1_ready = 1'h0; // @[Bundles.scala:265:61]
wire _c_sizes_set_WIRE_1_valid = 1'h0; // @[Bundles.scala:265:61]
wire _c_sizes_set_WIRE_1_bits_corrupt = 1'h0; // @[Bundles.scala:265:61]
wire _c_probe_ack_WIRE_ready = 1'h0; // @[Bundles.scala:265:74]
wire _c_probe_ack_WIRE_valid = 1'h0; // @[Bundles.scala:265:74]
wire _c_probe_ack_WIRE_bits_corrupt = 1'h0; // @[Bundles.scala:265:74]
wire _c_probe_ack_WIRE_1_ready = 1'h0; // @[Bundles.scala:265:61]
wire _c_probe_ack_WIRE_1_valid = 1'h0; // @[Bundles.scala:265:61]
wire _c_probe_ack_WIRE_1_bits_corrupt = 1'h0; // @[Bundles.scala:265:61]
wire _c_probe_ack_T = 1'h0; // @[Monitor.scala:772:47]
wire _c_probe_ack_WIRE_2_ready = 1'h0; // @[Bundles.scala:265:74]
wire _c_probe_ack_WIRE_2_valid = 1'h0; // @[Bundles.scala:265:74]
wire _c_probe_ack_WIRE_2_bits_corrupt = 1'h0; // @[Bundles.scala:265:74]
wire _c_probe_ack_WIRE_3_ready = 1'h0; // @[Bundles.scala:265:61]
wire _c_probe_ack_WIRE_3_valid = 1'h0; // @[Bundles.scala:265:61]
wire _c_probe_ack_WIRE_3_bits_corrupt = 1'h0; // @[Bundles.scala:265:61]
wire _c_probe_ack_T_1 = 1'h0; // @[Monitor.scala:772:95]
wire c_probe_ack = 1'h0; // @[Monitor.scala:772:71]
wire _same_cycle_resp_WIRE_ready = 1'h0; // @[Bundles.scala:265:74]
wire _same_cycle_resp_WIRE_valid = 1'h0; // @[Bundles.scala:265:74]
wire _same_cycle_resp_WIRE_bits_corrupt = 1'h0; // @[Bundles.scala:265:74]
wire _same_cycle_resp_WIRE_1_ready = 1'h0; // @[Bundles.scala:265:61]
wire _same_cycle_resp_WIRE_1_valid = 1'h0; // @[Bundles.scala:265:61]
wire _same_cycle_resp_WIRE_1_bits_corrupt = 1'h0; // @[Bundles.scala:265:61]
wire _same_cycle_resp_T_3 = 1'h0; // @[Monitor.scala:795:44]
wire _same_cycle_resp_WIRE_2_ready = 1'h0; // @[Bundles.scala:265:74]
wire _same_cycle_resp_WIRE_2_valid = 1'h0; // @[Bundles.scala:265:74]
wire _same_cycle_resp_WIRE_2_bits_corrupt = 1'h0; // @[Bundles.scala:265:74]
wire _same_cycle_resp_WIRE_3_ready = 1'h0; // @[Bundles.scala:265:61]
wire _same_cycle_resp_WIRE_3_valid = 1'h0; // @[Bundles.scala:265:61]
wire _same_cycle_resp_WIRE_3_bits_corrupt = 1'h0; // @[Bundles.scala:265:61]
wire _same_cycle_resp_T_4 = 1'h0; // @[Edges.scala:68:36]
wire _same_cycle_resp_T_5 = 1'h0; // @[Edges.scala:68:51]
wire _same_cycle_resp_T_6 = 1'h0; // @[Edges.scala:68:40]
wire _same_cycle_resp_T_7 = 1'h0; // @[Monitor.scala:795:55]
wire _same_cycle_resp_WIRE_4_ready = 1'h0; // @[Bundles.scala:265:74]
wire _same_cycle_resp_WIRE_4_valid = 1'h0; // @[Bundles.scala:265:74]
wire _same_cycle_resp_WIRE_4_bits_corrupt = 1'h0; // @[Bundles.scala:265:74]
wire _same_cycle_resp_WIRE_5_ready = 1'h0; // @[Bundles.scala:265:61]
wire _same_cycle_resp_WIRE_5_valid = 1'h0; // @[Bundles.scala:265:61]
wire _same_cycle_resp_WIRE_5_bits_corrupt = 1'h0; // @[Bundles.scala:265:61]
wire same_cycle_resp_1 = 1'h0; // @[Monitor.scala:795:88]
wire [2:0] responseMap_0 = 3'h0; // @[Monitor.scala:643:42]
wire [2:0] responseMap_1 = 3'h0; // @[Monitor.scala:643:42]
wire [2:0] responseMapSecondOption_0 = 3'h0; // @[Monitor.scala:644:42]
wire [2:0] responseMapSecondOption_1 = 3'h0; // @[Monitor.scala:644:42]
wire [2:0] _c_first_WIRE_bits_opcode = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_first_WIRE_bits_param = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_first_WIRE_bits_size = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_first_WIRE_1_bits_opcode = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _c_first_WIRE_1_bits_param = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _c_first_WIRE_1_bits_size = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _c_first_WIRE_2_bits_opcode = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_first_WIRE_2_bits_param = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_first_WIRE_2_bits_size = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_first_WIRE_3_bits_opcode = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _c_first_WIRE_3_bits_param = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _c_first_WIRE_3_bits_size = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] c_first_beats1_decode = 3'h0; // @[Edges.scala:220:59]
wire [2:0] c_first_beats1 = 3'h0; // @[Edges.scala:221:14]
wire [2:0] _c_first_count_T = 3'h0; // @[Edges.scala:234:27]
wire [2:0] c_first_count = 3'h0; // @[Edges.scala:234:25]
wire [2:0] _c_first_counter_T = 3'h0; // @[Edges.scala:236:21]
wire [2:0] _c_set_wo_ready_WIRE_bits_opcode = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_set_wo_ready_WIRE_bits_param = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_set_wo_ready_WIRE_bits_size = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_set_wo_ready_WIRE_1_bits_opcode = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _c_set_wo_ready_WIRE_1_bits_param = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _c_set_wo_ready_WIRE_1_bits_size = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _c_set_WIRE_bits_opcode = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_set_WIRE_bits_param = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_set_WIRE_bits_size = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_set_WIRE_1_bits_opcode = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _c_set_WIRE_1_bits_param = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _c_set_WIRE_1_bits_size = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _c_opcodes_set_interm_WIRE_bits_opcode = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_opcodes_set_interm_WIRE_bits_param = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_opcodes_set_interm_WIRE_bits_size = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_opcodes_set_interm_WIRE_1_bits_opcode = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _c_opcodes_set_interm_WIRE_1_bits_param = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _c_opcodes_set_interm_WIRE_1_bits_size = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _c_sizes_set_interm_WIRE_bits_opcode = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_sizes_set_interm_WIRE_bits_param = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_sizes_set_interm_WIRE_bits_size = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_sizes_set_interm_WIRE_1_bits_opcode = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _c_sizes_set_interm_WIRE_1_bits_param = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _c_sizes_set_interm_WIRE_1_bits_size = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _c_opcodes_set_WIRE_bits_opcode = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_opcodes_set_WIRE_bits_param = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_opcodes_set_WIRE_bits_size = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_opcodes_set_WIRE_1_bits_opcode = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _c_opcodes_set_WIRE_1_bits_param = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _c_opcodes_set_WIRE_1_bits_size = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _c_sizes_set_WIRE_bits_opcode = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_sizes_set_WIRE_bits_param = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_sizes_set_WIRE_bits_size = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_sizes_set_WIRE_1_bits_opcode = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _c_sizes_set_WIRE_1_bits_param = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _c_sizes_set_WIRE_1_bits_size = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _c_probe_ack_WIRE_bits_opcode = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_probe_ack_WIRE_bits_param = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_probe_ack_WIRE_bits_size = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_probe_ack_WIRE_1_bits_opcode = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _c_probe_ack_WIRE_1_bits_param = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _c_probe_ack_WIRE_1_bits_size = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _c_probe_ack_WIRE_2_bits_opcode = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_probe_ack_WIRE_2_bits_param = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_probe_ack_WIRE_2_bits_size = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_probe_ack_WIRE_3_bits_opcode = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _c_probe_ack_WIRE_3_bits_param = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _c_probe_ack_WIRE_3_bits_size = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _same_cycle_resp_WIRE_bits_opcode = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _same_cycle_resp_WIRE_bits_param = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _same_cycle_resp_WIRE_bits_size = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _same_cycle_resp_WIRE_1_bits_opcode = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _same_cycle_resp_WIRE_1_bits_param = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _same_cycle_resp_WIRE_1_bits_size = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _same_cycle_resp_WIRE_2_bits_opcode = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _same_cycle_resp_WIRE_2_bits_param = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _same_cycle_resp_WIRE_2_bits_size = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _same_cycle_resp_WIRE_3_bits_opcode = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _same_cycle_resp_WIRE_3_bits_param = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _same_cycle_resp_WIRE_3_bits_size = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _same_cycle_resp_WIRE_4_bits_opcode = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _same_cycle_resp_WIRE_4_bits_param = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _same_cycle_resp_WIRE_4_bits_size = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _same_cycle_resp_WIRE_5_bits_opcode = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _same_cycle_resp_WIRE_5_bits_param = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _same_cycle_resp_WIRE_5_bits_size = 3'h0; // @[Bundles.scala:265:61]
wire _source_ok_T_3 = 1'h1; // @[Parameters.scala:56:32]
wire _source_ok_T_5 = 1'h1; // @[Parameters.scala:57:20]
wire _source_ok_T_9 = 1'h1; // @[Parameters.scala:56:32]
wire _source_ok_T_11 = 1'h1; // @[Parameters.scala:57:20]
wire _source_ok_T_15 = 1'h1; // @[Parameters.scala:56:32]
wire _source_ok_T_17 = 1'h1; // @[Parameters.scala:57:20]
wire _source_ok_T_21 = 1'h1; // @[Parameters.scala:56:32]
wire _source_ok_T_23 = 1'h1; // @[Parameters.scala:57:20]
wire _source_ok_T_27 = 1'h1; // @[Parameters.scala:56:32]
wire _source_ok_T_29 = 1'h1; // @[Parameters.scala:57:20]
wire _source_ok_T_33 = 1'h1; // @[Parameters.scala:56:32]
wire _source_ok_T_35 = 1'h1; // @[Parameters.scala:57:20]
wire _source_ok_T_39 = 1'h1; // @[Parameters.scala:56:32]
wire _source_ok_T_58 = 1'h1; // @[Parameters.scala:56:32]
wire _source_ok_T_60 = 1'h1; // @[Parameters.scala:57:20]
wire _source_ok_T_64 = 1'h1; // @[Parameters.scala:56:32]
wire _source_ok_T_66 = 1'h1; // @[Parameters.scala:57:20]
wire _source_ok_T_70 = 1'h1; // @[Parameters.scala:56:32]
wire _source_ok_T_72 = 1'h1; // @[Parameters.scala:57:20]
wire _source_ok_T_76 = 1'h1; // @[Parameters.scala:56:32]
wire _source_ok_T_78 = 1'h1; // @[Parameters.scala:57:20]
wire _source_ok_T_82 = 1'h1; // @[Parameters.scala:56:32]
wire _source_ok_T_84 = 1'h1; // @[Parameters.scala:57:20]
wire _source_ok_T_88 = 1'h1; // @[Parameters.scala:56:32]
wire _source_ok_T_90 = 1'h1; // @[Parameters.scala:57:20]
wire _source_ok_T_94 = 1'h1; // @[Parameters.scala:56:32]
wire c_first = 1'h1; // @[Edges.scala:231:25]
wire _c_first_last_T_1 = 1'h1; // @[Edges.scala:232:43]
wire c_first_last = 1'h1; // @[Edges.scala:232:33]
wire [2:0] c_first_counter1 = 3'h7; // @[Edges.scala:230:28]
wire [3:0] _c_first_counter1_T = 4'hF; // @[Edges.scala:230:28]
wire [1:0] io_in_d_bits_param = 2'h0; // @[Monitor.scala:36:7]
wire [63:0] _c_first_WIRE_bits_data = 64'h0; // @[Bundles.scala:265:74]
wire [63:0] _c_first_WIRE_1_bits_data = 64'h0; // @[Bundles.scala:265:61]
wire [63:0] _c_first_WIRE_2_bits_data = 64'h0; // @[Bundles.scala:265:74]
wire [63:0] _c_first_WIRE_3_bits_data = 64'h0; // @[Bundles.scala:265:61]
wire [63:0] _c_set_wo_ready_WIRE_bits_data = 64'h0; // @[Bundles.scala:265:74]
wire [63:0] _c_set_wo_ready_WIRE_1_bits_data = 64'h0; // @[Bundles.scala:265:61]
wire [63:0] _c_set_WIRE_bits_data = 64'h0; // @[Bundles.scala:265:74]
wire [63:0] _c_set_WIRE_1_bits_data = 64'h0; // @[Bundles.scala:265:61]
wire [63:0] _c_opcodes_set_interm_WIRE_bits_data = 64'h0; // @[Bundles.scala:265:74]
wire [63:0] _c_opcodes_set_interm_WIRE_1_bits_data = 64'h0; // @[Bundles.scala:265:61]
wire [63:0] _c_sizes_set_interm_WIRE_bits_data = 64'h0; // @[Bundles.scala:265:74]
wire [63:0] _c_sizes_set_interm_WIRE_1_bits_data = 64'h0; // @[Bundles.scala:265:61]
wire [63:0] _c_opcodes_set_WIRE_bits_data = 64'h0; // @[Bundles.scala:265:74]
wire [63:0] _c_opcodes_set_WIRE_1_bits_data = 64'h0; // @[Bundles.scala:265:61]
wire [63:0] _c_sizes_set_WIRE_bits_data = 64'h0; // @[Bundles.scala:265:74]
wire [63:0] _c_sizes_set_WIRE_1_bits_data = 64'h0; // @[Bundles.scala:265:61]
wire [63:0] _c_probe_ack_WIRE_bits_data = 64'h0; // @[Bundles.scala:265:74]
wire [63:0] _c_probe_ack_WIRE_1_bits_data = 64'h0; // @[Bundles.scala:265:61]
wire [63:0] _c_probe_ack_WIRE_2_bits_data = 64'h0; // @[Bundles.scala:265:74]
wire [63:0] _c_probe_ack_WIRE_3_bits_data = 64'h0; // @[Bundles.scala:265:61]
wire [63:0] _same_cycle_resp_WIRE_bits_data = 64'h0; // @[Bundles.scala:265:74]
wire [63:0] _same_cycle_resp_WIRE_1_bits_data = 64'h0; // @[Bundles.scala:265:61]
wire [63:0] _same_cycle_resp_WIRE_2_bits_data = 64'h0; // @[Bundles.scala:265:74]
wire [63:0] _same_cycle_resp_WIRE_3_bits_data = 64'h0; // @[Bundles.scala:265:61]
wire [63:0] _same_cycle_resp_WIRE_4_bits_data = 64'h0; // @[Bundles.scala:265:74]
wire [63:0] _same_cycle_resp_WIRE_5_bits_data = 64'h0; // @[Bundles.scala:265:61]
wire [28:0] _c_first_WIRE_bits_address = 29'h0; // @[Bundles.scala:265:74]
wire [28:0] _c_first_WIRE_1_bits_address = 29'h0; // @[Bundles.scala:265:61]
wire [28:0] _c_first_WIRE_2_bits_address = 29'h0; // @[Bundles.scala:265:74]
wire [28:0] _c_first_WIRE_3_bits_address = 29'h0; // @[Bundles.scala:265:61]
wire [28:0] _c_set_wo_ready_WIRE_bits_address = 29'h0; // @[Bundles.scala:265:74]
wire [28:0] _c_set_wo_ready_WIRE_1_bits_address = 29'h0; // @[Bundles.scala:265:61]
wire [28:0] _c_set_WIRE_bits_address = 29'h0; // @[Bundles.scala:265:74]
wire [28:0] _c_set_WIRE_1_bits_address = 29'h0; // @[Bundles.scala:265:61]
wire [28:0] _c_opcodes_set_interm_WIRE_bits_address = 29'h0; // @[Bundles.scala:265:74]
wire [28:0] _c_opcodes_set_interm_WIRE_1_bits_address = 29'h0; // @[Bundles.scala:265:61]
wire [28:0] _c_sizes_set_interm_WIRE_bits_address = 29'h0; // @[Bundles.scala:265:74]
wire [28:0] _c_sizes_set_interm_WIRE_1_bits_address = 29'h0; // @[Bundles.scala:265:61]
wire [28:0] _c_opcodes_set_WIRE_bits_address = 29'h0; // @[Bundles.scala:265:74]
wire [28:0] _c_opcodes_set_WIRE_1_bits_address = 29'h0; // @[Bundles.scala:265:61]
wire [28:0] _c_sizes_set_WIRE_bits_address = 29'h0; // @[Bundles.scala:265:74]
wire [28:0] _c_sizes_set_WIRE_1_bits_address = 29'h0; // @[Bundles.scala:265:61]
wire [28:0] _c_probe_ack_WIRE_bits_address = 29'h0; // @[Bundles.scala:265:74]
wire [28:0] _c_probe_ack_WIRE_1_bits_address = 29'h0; // @[Bundles.scala:265:61]
wire [28:0] _c_probe_ack_WIRE_2_bits_address = 29'h0; // @[Bundles.scala:265:74]
wire [28:0] _c_probe_ack_WIRE_3_bits_address = 29'h0; // @[Bundles.scala:265:61]
wire [28:0] _same_cycle_resp_WIRE_bits_address = 29'h0; // @[Bundles.scala:265:74]
wire [28:0] _same_cycle_resp_WIRE_1_bits_address = 29'h0; // @[Bundles.scala:265:61]
wire [28:0] _same_cycle_resp_WIRE_2_bits_address = 29'h0; // @[Bundles.scala:265:74]
wire [28:0] _same_cycle_resp_WIRE_3_bits_address = 29'h0; // @[Bundles.scala:265:61]
wire [28:0] _same_cycle_resp_WIRE_4_bits_address = 29'h0; // @[Bundles.scala:265:74]
wire [28:0] _same_cycle_resp_WIRE_5_bits_address = 29'h0; // @[Bundles.scala:265:61]
wire [7:0] _c_first_WIRE_bits_source = 8'h0; // @[Bundles.scala:265:74]
wire [7:0] _c_first_WIRE_1_bits_source = 8'h0; // @[Bundles.scala:265:61]
wire [7:0] _c_first_WIRE_2_bits_source = 8'h0; // @[Bundles.scala:265:74]
wire [7:0] _c_first_WIRE_3_bits_source = 8'h0; // @[Bundles.scala:265:61]
wire [7:0] _c_set_wo_ready_WIRE_bits_source = 8'h0; // @[Bundles.scala:265:74]
wire [7:0] _c_set_wo_ready_WIRE_1_bits_source = 8'h0; // @[Bundles.scala:265:61]
wire [7:0] _c_set_WIRE_bits_source = 8'h0; // @[Bundles.scala:265:74]
wire [7:0] _c_set_WIRE_1_bits_source = 8'h0; // @[Bundles.scala:265:61]
wire [7:0] _c_opcodes_set_interm_WIRE_bits_source = 8'h0; // @[Bundles.scala:265:74]
wire [7:0] _c_opcodes_set_interm_WIRE_1_bits_source = 8'h0; // @[Bundles.scala:265:61]
wire [7:0] _c_sizes_set_interm_WIRE_bits_source = 8'h0; // @[Bundles.scala:265:74]
wire [7:0] _c_sizes_set_interm_WIRE_1_bits_source = 8'h0; // @[Bundles.scala:265:61]
wire [7:0] _c_opcodes_set_WIRE_bits_source = 8'h0; // @[Bundles.scala:265:74]
wire [7:0] _c_opcodes_set_WIRE_1_bits_source = 8'h0; // @[Bundles.scala:265:61]
wire [7:0] _c_sizes_set_WIRE_bits_source = 8'h0; // @[Bundles.scala:265:74]
wire [7:0] _c_sizes_set_WIRE_1_bits_source = 8'h0; // @[Bundles.scala:265:61]
wire [7:0] _c_probe_ack_WIRE_bits_source = 8'h0; // @[Bundles.scala:265:74]
wire [7:0] _c_probe_ack_WIRE_1_bits_source = 8'h0; // @[Bundles.scala:265:61]
wire [7:0] _c_probe_ack_WIRE_2_bits_source = 8'h0; // @[Bundles.scala:265:74]
wire [7:0] _c_probe_ack_WIRE_3_bits_source = 8'h0; // @[Bundles.scala:265:61]
wire [7:0] _same_cycle_resp_WIRE_bits_source = 8'h0; // @[Bundles.scala:265:74]
wire [7:0] _same_cycle_resp_WIRE_1_bits_source = 8'h0; // @[Bundles.scala:265:61]
wire [7:0] _same_cycle_resp_WIRE_2_bits_source = 8'h0; // @[Bundles.scala:265:74]
wire [7:0] _same_cycle_resp_WIRE_3_bits_source = 8'h0; // @[Bundles.scala:265:61]
wire [7:0] _same_cycle_resp_WIRE_4_bits_source = 8'h0; // @[Bundles.scala:265:74]
wire [7:0] _same_cycle_resp_WIRE_5_bits_source = 8'h0; // @[Bundles.scala:265:61]
wire [15:0] _a_opcode_lookup_T_5 = 16'hF; // @[Monitor.scala:612:57]
wire [15:0] _a_size_lookup_T_5 = 16'hF; // @[Monitor.scala:612:57]
wire [15:0] _d_opcodes_clr_T_3 = 16'hF; // @[Monitor.scala:612:57]
wire [15:0] _d_sizes_clr_T_3 = 16'hF; // @[Monitor.scala:612:57]
wire [15:0] _c_opcode_lookup_T_5 = 16'hF; // @[Monitor.scala:724:57]
wire [15:0] _c_size_lookup_T_5 = 16'hF; // @[Monitor.scala:724:57]
wire [15:0] _d_opcodes_clr_T_9 = 16'hF; // @[Monitor.scala:724:57]
wire [15:0] _d_sizes_clr_T_9 = 16'hF; // @[Monitor.scala:724:57]
wire [16:0] _a_opcode_lookup_T_4 = 17'hF; // @[Monitor.scala:612:57]
wire [16:0] _a_size_lookup_T_4 = 17'hF; // @[Monitor.scala:612:57]
wire [16:0] _d_opcodes_clr_T_2 = 17'hF; // @[Monitor.scala:612:57]
wire [16:0] _d_sizes_clr_T_2 = 17'hF; // @[Monitor.scala:612:57]
wire [16:0] _c_opcode_lookup_T_4 = 17'hF; // @[Monitor.scala:724:57]
wire [16:0] _c_size_lookup_T_4 = 17'hF; // @[Monitor.scala:724:57]
wire [16:0] _d_opcodes_clr_T_8 = 17'hF; // @[Monitor.scala:724:57]
wire [16:0] _d_sizes_clr_T_8 = 17'hF; // @[Monitor.scala:724:57]
wire [15:0] _a_opcode_lookup_T_3 = 16'h10; // @[Monitor.scala:612:51]
wire [15:0] _a_size_lookup_T_3 = 16'h10; // @[Monitor.scala:612:51]
wire [15:0] _d_opcodes_clr_T_1 = 16'h10; // @[Monitor.scala:612:51]
wire [15:0] _d_sizes_clr_T_1 = 16'h10; // @[Monitor.scala:612:51]
wire [15:0] _c_opcode_lookup_T_3 = 16'h10; // @[Monitor.scala:724:51]
wire [15:0] _c_size_lookup_T_3 = 16'h10; // @[Monitor.scala:724:51]
wire [15:0] _d_opcodes_clr_T_7 = 16'h10; // @[Monitor.scala:724:51]
wire [15:0] _d_sizes_clr_T_7 = 16'h10; // @[Monitor.scala:724:51]
wire [2050:0] _c_opcodes_set_T_1 = 2051'h0; // @[Monitor.scala:767:54]
wire [2050:0] _c_sizes_set_T_1 = 2051'h0; // @[Monitor.scala:768:52]
wire [10:0] _c_opcodes_set_T = 11'h0; // @[Monitor.scala:767:79]
wire [10:0] _c_sizes_set_T = 11'h0; // @[Monitor.scala:768:77]
wire [3:0] _c_opcodes_set_interm_T_1 = 4'h1; // @[Monitor.scala:765:61]
wire [3:0] _c_sizes_set_interm_T_1 = 4'h1; // @[Monitor.scala:766:59]
wire [3:0] c_opcodes_set_interm = 4'h0; // @[Monitor.scala:754:40]
wire [3:0] c_sizes_set_interm = 4'h0; // @[Monitor.scala:755:40]
wire [3:0] _c_opcodes_set_interm_T = 4'h0; // @[Monitor.scala:765:53]
wire [3:0] _c_sizes_set_interm_T = 4'h0; // @[Monitor.scala:766:51]
wire [255:0] _c_set_wo_ready_T = 256'h1; // @[OneHot.scala:58:35]
wire [255:0] _c_set_T = 256'h1; // @[OneHot.scala:58:35]
wire [515:0] c_opcodes_set = 516'h0; // @[Monitor.scala:740:34]
wire [515:0] c_sizes_set = 516'h0; // @[Monitor.scala:741:34]
wire [128:0] c_set = 129'h0; // @[Monitor.scala:738:34]
wire [128:0] c_set_wo_ready = 129'h0; // @[Monitor.scala:739:34]
wire [5:0] _c_first_beats1_decode_T_2 = 6'h0; // @[package.scala:243:46]
wire [5:0] _c_first_beats1_decode_T_1 = 6'h3F; // @[package.scala:243:76]
wire [12:0] _c_first_beats1_decode_T = 13'h3F; // @[package.scala:243:71]
wire [2:0] responseMap_6 = 3'h4; // @[Monitor.scala:643:42]
wire [2:0] responseMap_7 = 3'h4; // @[Monitor.scala:643:42]
wire [2:0] responseMapSecondOption_7 = 3'h4; // @[Monitor.scala:644:42]
wire [2:0] responseMapSecondOption_6 = 3'h5; // @[Monitor.scala:644:42]
wire [2:0] responseMap_5 = 3'h2; // @[Monitor.scala:643:42]
wire [2:0] responseMapSecondOption_5 = 3'h2; // @[Monitor.scala:644:42]
wire [2:0] responseMap_2 = 3'h1; // @[Monitor.scala:643:42]
wire [2:0] responseMap_3 = 3'h1; // @[Monitor.scala:643:42]
wire [2:0] responseMap_4 = 3'h1; // @[Monitor.scala:643:42]
wire [2:0] responseMapSecondOption_2 = 3'h1; // @[Monitor.scala:644:42]
wire [2:0] responseMapSecondOption_3 = 3'h1; // @[Monitor.scala:644:42]
wire [2:0] responseMapSecondOption_4 = 3'h1; // @[Monitor.scala:644:42]
wire [3:0] _a_opcode_lookup_T_2 = 4'h4; // @[Monitor.scala:637:123]
wire [3:0] _a_size_lookup_T_2 = 4'h4; // @[Monitor.scala:641:117]
wire [3:0] _d_opcodes_clr_T = 4'h4; // @[Monitor.scala:680:48]
wire [3:0] _d_sizes_clr_T = 4'h4; // @[Monitor.scala:681:48]
wire [3:0] _c_opcode_lookup_T_2 = 4'h4; // @[Monitor.scala:749:123]
wire [3:0] _c_size_lookup_T_2 = 4'h4; // @[Monitor.scala:750:119]
wire [3:0] _d_opcodes_clr_T_6 = 4'h4; // @[Monitor.scala:790:48]
wire [3:0] _d_sizes_clr_T_6 = 4'h4; // @[Monitor.scala:791:48]
wire [2:0] _mask_sizeOH_T = io_in_a_bits_size_0; // @[Misc.scala:202:34]
wire [7:0] _source_ok_uncommonBits_T = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [7:0] _source_ok_uncommonBits_T_1 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [7:0] _source_ok_uncommonBits_T_2 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [7:0] _source_ok_uncommonBits_T_3 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [7:0] _source_ok_uncommonBits_T_4 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [7:0] _source_ok_uncommonBits_T_5 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [7:0] _source_ok_uncommonBits_T_6 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [7:0] _uncommonBits_T = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [7:0] _uncommonBits_T_1 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [7:0] _uncommonBits_T_2 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [7:0] _uncommonBits_T_3 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [7:0] _uncommonBits_T_4 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [7:0] _uncommonBits_T_5 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [7:0] _uncommonBits_T_6 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [7:0] _uncommonBits_T_7 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [7:0] _uncommonBits_T_8 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [7:0] _uncommonBits_T_9 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [7:0] _uncommonBits_T_10 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [7:0] _uncommonBits_T_11 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [7:0] _uncommonBits_T_12 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [7:0] _uncommonBits_T_13 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [7:0] _uncommonBits_T_14 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [7:0] _uncommonBits_T_15 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [7:0] _uncommonBits_T_16 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [7:0] _uncommonBits_T_17 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [7:0] _uncommonBits_T_18 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [7:0] _uncommonBits_T_19 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [7:0] _uncommonBits_T_20 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [7:0] _uncommonBits_T_21 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [7:0] _uncommonBits_T_22 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [7:0] _uncommonBits_T_23 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [7:0] _uncommonBits_T_24 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [7:0] _uncommonBits_T_25 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [7:0] _uncommonBits_T_26 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [7:0] _uncommonBits_T_27 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [7:0] _uncommonBits_T_28 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [7:0] _uncommonBits_T_29 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [7:0] _uncommonBits_T_30 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [7:0] _uncommonBits_T_31 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [7:0] _uncommonBits_T_32 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [7:0] _uncommonBits_T_33 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [7:0] _uncommonBits_T_34 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [7:0] _uncommonBits_T_35 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [7:0] _uncommonBits_T_36 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [7:0] _uncommonBits_T_37 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [7:0] _uncommonBits_T_38 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [7:0] _uncommonBits_T_39 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [7:0] _uncommonBits_T_40 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [7:0] _uncommonBits_T_41 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [7:0] _uncommonBits_T_42 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [7:0] _uncommonBits_T_43 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [7:0] _uncommonBits_T_44 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [7:0] _uncommonBits_T_45 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [7:0] _uncommonBits_T_46 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [7:0] _uncommonBits_T_47 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [7:0] _uncommonBits_T_48 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [7:0] _uncommonBits_T_49 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [7:0] _uncommonBits_T_50 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [7:0] _uncommonBits_T_51 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [7:0] _uncommonBits_T_52 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [7:0] _uncommonBits_T_53 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [7:0] _uncommonBits_T_54 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [7:0] _uncommonBits_T_55 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [7:0] _uncommonBits_T_56 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [7:0] _uncommonBits_T_57 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [7:0] _uncommonBits_T_58 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [7:0] _uncommonBits_T_59 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [7:0] _uncommonBits_T_60 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [7:0] _uncommonBits_T_61 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [7:0] _uncommonBits_T_62 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [7:0] _uncommonBits_T_63 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [7:0] _uncommonBits_T_64 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [7:0] _uncommonBits_T_65 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [7:0] _uncommonBits_T_66 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [7:0] _uncommonBits_T_67 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [7:0] _uncommonBits_T_68 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [7:0] _uncommonBits_T_69 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [7:0] _uncommonBits_T_70 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [7:0] _uncommonBits_T_71 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [7:0] _uncommonBits_T_72 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [7:0] _uncommonBits_T_73 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [7:0] _uncommonBits_T_74 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [7:0] _uncommonBits_T_75 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [7:0] _uncommonBits_T_76 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [7:0] _source_ok_uncommonBits_T_7 = io_in_d_bits_source_0; // @[Monitor.scala:36:7]
wire [7:0] _source_ok_uncommonBits_T_8 = io_in_d_bits_source_0; // @[Monitor.scala:36:7]
wire [7:0] _source_ok_uncommonBits_T_9 = io_in_d_bits_source_0; // @[Monitor.scala:36:7]
wire [7:0] _source_ok_uncommonBits_T_10 = io_in_d_bits_source_0; // @[Monitor.scala:36:7]
wire [7:0] _source_ok_uncommonBits_T_11 = io_in_d_bits_source_0; // @[Monitor.scala:36:7]
wire [7:0] _source_ok_uncommonBits_T_12 = io_in_d_bits_source_0; // @[Monitor.scala:36:7]
wire [7:0] _source_ok_uncommonBits_T_13 = io_in_d_bits_source_0; // @[Monitor.scala:36:7]
wire _source_ok_T = io_in_a_bits_source_0 == 8'h20; // @[Monitor.scala:36:7]
wire _source_ok_WIRE_0 = _source_ok_T; // @[Parameters.scala:1138:31]
wire [1:0] source_ok_uncommonBits = _source_ok_uncommonBits_T[1:0]; // @[Parameters.scala:52:{29,56}]
wire [5:0] _source_ok_T_1 = io_in_a_bits_source_0[7:2]; // @[Monitor.scala:36:7]
wire [5:0] _source_ok_T_7 = io_in_a_bits_source_0[7:2]; // @[Monitor.scala:36:7]
wire [5:0] _source_ok_T_13 = io_in_a_bits_source_0[7:2]; // @[Monitor.scala:36:7]
wire [5:0] _source_ok_T_19 = io_in_a_bits_source_0[7:2]; // @[Monitor.scala:36:7]
wire _source_ok_T_2 = _source_ok_T_1 == 6'h0; // @[Parameters.scala:54:{10,32}]
wire _source_ok_T_4 = _source_ok_T_2; // @[Parameters.scala:54:{32,67}]
wire _source_ok_T_6 = _source_ok_T_4; // @[Parameters.scala:54:67, :56:48]
wire _source_ok_WIRE_1 = _source_ok_T_6; // @[Parameters.scala:1138:31]
wire [1:0] source_ok_uncommonBits_1 = _source_ok_uncommonBits_T_1[1:0]; // @[Parameters.scala:52:{29,56}]
wire _source_ok_T_8 = _source_ok_T_7 == 6'h1; // @[Parameters.scala:54:{10,32}]
wire _source_ok_T_10 = _source_ok_T_8; // @[Parameters.scala:54:{32,67}]
wire _source_ok_T_12 = _source_ok_T_10; // @[Parameters.scala:54:67, :56:48]
wire _source_ok_WIRE_2 = _source_ok_T_12; // @[Parameters.scala:1138:31]
wire [1:0] source_ok_uncommonBits_2 = _source_ok_uncommonBits_T_2[1:0]; // @[Parameters.scala:52:{29,56}]
wire _source_ok_T_14 = _source_ok_T_13 == 6'h2; // @[Parameters.scala:54:{10,32}]
wire _source_ok_T_16 = _source_ok_T_14; // @[Parameters.scala:54:{32,67}]
wire _source_ok_T_18 = _source_ok_T_16; // @[Parameters.scala:54:67, :56:48]
wire _source_ok_WIRE_3 = _source_ok_T_18; // @[Parameters.scala:1138:31]
wire [1:0] source_ok_uncommonBits_3 = _source_ok_uncommonBits_T_3[1:0]; // @[Parameters.scala:52:{29,56}]
wire _source_ok_T_20 = _source_ok_T_19 == 6'h3; // @[Parameters.scala:54:{10,32}]
wire _source_ok_T_22 = _source_ok_T_20; // @[Parameters.scala:54:{32,67}]
wire _source_ok_T_24 = _source_ok_T_22; // @[Parameters.scala:54:67, :56:48]
wire _source_ok_WIRE_4 = _source_ok_T_24; // @[Parameters.scala:1138:31]
wire [2:0] source_ok_uncommonBits_4 = _source_ok_uncommonBits_T_4[2:0]; // @[Parameters.scala:52:{29,56}]
wire [4:0] _source_ok_T_25 = io_in_a_bits_source_0[7:3]; // @[Monitor.scala:36:7]
wire [4:0] _source_ok_T_31 = io_in_a_bits_source_0[7:3]; // @[Monitor.scala:36:7]
wire [4:0] _source_ok_T_37 = io_in_a_bits_source_0[7:3]; // @[Monitor.scala:36:7]
wire _source_ok_T_26 = _source_ok_T_25 == 5'h3; // @[Parameters.scala:54:{10,32}]
wire _source_ok_T_28 = _source_ok_T_26; // @[Parameters.scala:54:{32,67}]
wire _source_ok_T_30 = _source_ok_T_28; // @[Parameters.scala:54:67, :56:48]
wire _source_ok_WIRE_5 = _source_ok_T_30; // @[Parameters.scala:1138:31]
wire [2:0] source_ok_uncommonBits_5 = _source_ok_uncommonBits_T_5[2:0]; // @[Parameters.scala:52:{29,56}]
wire _source_ok_T_32 = _source_ok_T_31 == 5'h2; // @[Parameters.scala:54:{10,32}]
wire _source_ok_T_34 = _source_ok_T_32; // @[Parameters.scala:54:{32,67}]
wire _source_ok_T_36 = _source_ok_T_34; // @[Parameters.scala:54:67, :56:48]
wire _source_ok_WIRE_6 = _source_ok_T_36; // @[Parameters.scala:1138:31]
wire [2:0] source_ok_uncommonBits_6 = _source_ok_uncommonBits_T_6[2:0]; // @[Parameters.scala:52:{29,56}]
wire _source_ok_T_38 = _source_ok_T_37 == 5'h8; // @[Parameters.scala:54:{10,32}]
wire _source_ok_T_40 = _source_ok_T_38; // @[Parameters.scala:54:{32,67}]
wire _source_ok_T_41 = source_ok_uncommonBits_6 < 3'h5; // @[Parameters.scala:52:56, :57:20]
wire _source_ok_T_42 = _source_ok_T_40 & _source_ok_T_41; // @[Parameters.scala:54:67, :56:48, :57:20]
wire _source_ok_WIRE_7 = _source_ok_T_42; // @[Parameters.scala:1138:31]
wire _source_ok_T_43 = io_in_a_bits_source_0 == 8'h45; // @[Monitor.scala:36:7]
wire _source_ok_WIRE_8 = _source_ok_T_43; // @[Parameters.scala:1138:31]
wire _source_ok_T_44 = io_in_a_bits_source_0 == 8'h48; // @[Monitor.scala:36:7]
wire _source_ok_WIRE_9 = _source_ok_T_44; // @[Parameters.scala:1138:31]
wire _source_ok_T_45 = io_in_a_bits_source_0 == 8'h80; // @[Monitor.scala:36:7]
wire _source_ok_WIRE_10 = _source_ok_T_45; // @[Parameters.scala:1138:31]
wire _source_ok_T_46 = _source_ok_WIRE_0 | _source_ok_WIRE_1; // @[Parameters.scala:1138:31, :1139:46]
wire _source_ok_T_47 = _source_ok_T_46 | _source_ok_WIRE_2; // @[Parameters.scala:1138:31, :1139:46]
wire _source_ok_T_48 = _source_ok_T_47 | _source_ok_WIRE_3; // @[Parameters.scala:1138:31, :1139:46]
wire _source_ok_T_49 = _source_ok_T_48 | _source_ok_WIRE_4; // @[Parameters.scala:1138:31, :1139:46]
wire _source_ok_T_50 = _source_ok_T_49 | _source_ok_WIRE_5; // @[Parameters.scala:1138:31, :1139:46]
wire _source_ok_T_51 = _source_ok_T_50 | _source_ok_WIRE_6; // @[Parameters.scala:1138:31, :1139:46]
wire _source_ok_T_52 = _source_ok_T_51 | _source_ok_WIRE_7; // @[Parameters.scala:1138:31, :1139:46]
wire _source_ok_T_53 = _source_ok_T_52 | _source_ok_WIRE_8; // @[Parameters.scala:1138:31, :1139:46]
wire _source_ok_T_54 = _source_ok_T_53 | _source_ok_WIRE_9; // @[Parameters.scala:1138:31, :1139:46]
wire source_ok = _source_ok_T_54 | _source_ok_WIRE_10; // @[Parameters.scala:1138:31, :1139:46]
wire [12:0] _GEN = 13'h3F << io_in_a_bits_size_0; // @[package.scala:243:71]
wire [12:0] _is_aligned_mask_T; // @[package.scala:243:71]
assign _is_aligned_mask_T = _GEN; // @[package.scala:243:71]
wire [12:0] _a_first_beats1_decode_T; // @[package.scala:243:71]
assign _a_first_beats1_decode_T = _GEN; // @[package.scala:243:71]
wire [12:0] _a_first_beats1_decode_T_3; // @[package.scala:243:71]
assign _a_first_beats1_decode_T_3 = _GEN; // @[package.scala:243:71]
wire [5:0] _is_aligned_mask_T_1 = _is_aligned_mask_T[5:0]; // @[package.scala:243:{71,76}]
wire [5:0] is_aligned_mask = ~_is_aligned_mask_T_1; // @[package.scala:243:{46,76}]
wire [28:0] _is_aligned_T = {23'h0, io_in_a_bits_address_0[5:0] & is_aligned_mask}; // @[package.scala:243:46]
wire is_aligned = _is_aligned_T == 29'h0; // @[Edges.scala:21:{16,24}]
wire [1:0] mask_sizeOH_shiftAmount = _mask_sizeOH_T[1:0]; // @[OneHot.scala:64:49]
wire [3:0] _mask_sizeOH_T_1 = 4'h1 << mask_sizeOH_shiftAmount; // @[OneHot.scala:64:49, :65:12]
wire [2:0] _mask_sizeOH_T_2 = _mask_sizeOH_T_1[2:0]; // @[OneHot.scala:65:{12,27}]
wire [2:0] mask_sizeOH = {_mask_sizeOH_T_2[2:1], 1'h1}; // @[OneHot.scala:65:27]
wire mask_sub_sub_sub_0_1 = io_in_a_bits_size_0 > 3'h2; // @[Misc.scala:206:21]
wire mask_sub_sub_size = mask_sizeOH[2]; // @[Misc.scala:202:81, :209:26]
wire mask_sub_sub_bit = io_in_a_bits_address_0[2]; // @[Misc.scala:210:26]
wire mask_sub_sub_1_2 = mask_sub_sub_bit; // @[Misc.scala:210:26, :214:27]
wire mask_sub_sub_nbit = ~mask_sub_sub_bit; // @[Misc.scala:210:26, :211:20]
wire mask_sub_sub_0_2 = mask_sub_sub_nbit; // @[Misc.scala:211:20, :214:27]
wire _mask_sub_sub_acc_T = mask_sub_sub_size & mask_sub_sub_0_2; // @[Misc.scala:209:26, :214:27, :215:38]
wire mask_sub_sub_0_1 = mask_sub_sub_sub_0_1 | _mask_sub_sub_acc_T; // @[Misc.scala:206:21, :215:{29,38}]
wire _mask_sub_sub_acc_T_1 = mask_sub_sub_size & mask_sub_sub_1_2; // @[Misc.scala:209:26, :214:27, :215:38]
wire mask_sub_sub_1_1 = mask_sub_sub_sub_0_1 | _mask_sub_sub_acc_T_1; // @[Misc.scala:206:21, :215:{29,38}]
wire mask_sub_size = mask_sizeOH[1]; // @[Misc.scala:202:81, :209:26]
wire mask_sub_bit = io_in_a_bits_address_0[1]; // @[Misc.scala:210:26]
wire mask_sub_nbit = ~mask_sub_bit; // @[Misc.scala:210:26, :211:20]
wire mask_sub_0_2 = mask_sub_sub_0_2 & mask_sub_nbit; // @[Misc.scala:211:20, :214:27]
wire _mask_sub_acc_T = mask_sub_size & mask_sub_0_2; // @[Misc.scala:209:26, :214:27, :215:38]
wire mask_sub_0_1 = mask_sub_sub_0_1 | _mask_sub_acc_T; // @[Misc.scala:215:{29,38}]
wire mask_sub_1_2 = mask_sub_sub_0_2 & mask_sub_bit; // @[Misc.scala:210:26, :214:27]
wire _mask_sub_acc_T_1 = mask_sub_size & mask_sub_1_2; // @[Misc.scala:209:26, :214:27, :215:38]
wire mask_sub_1_1 = mask_sub_sub_0_1 | _mask_sub_acc_T_1; // @[Misc.scala:215:{29,38}]
wire mask_sub_2_2 = mask_sub_sub_1_2 & mask_sub_nbit; // @[Misc.scala:211:20, :214:27]
wire _mask_sub_acc_T_2 = mask_sub_size & mask_sub_2_2; // @[Misc.scala:209:26, :214:27, :215:38]
wire mask_sub_2_1 = mask_sub_sub_1_1 | _mask_sub_acc_T_2; // @[Misc.scala:215:{29,38}]
wire mask_sub_3_2 = mask_sub_sub_1_2 & mask_sub_bit; // @[Misc.scala:210:26, :214:27]
wire _mask_sub_acc_T_3 = mask_sub_size & mask_sub_3_2; // @[Misc.scala:209:26, :214:27, :215:38]
wire mask_sub_3_1 = mask_sub_sub_1_1 | _mask_sub_acc_T_3; // @[Misc.scala:215:{29,38}]
wire mask_size = mask_sizeOH[0]; // @[Misc.scala:202:81, :209:26]
wire mask_bit = io_in_a_bits_address_0[0]; // @[Misc.scala:210:26]
wire mask_nbit = ~mask_bit; // @[Misc.scala:210:26, :211:20]
wire mask_eq = mask_sub_0_2 & mask_nbit; // @[Misc.scala:211:20, :214:27]
wire _mask_acc_T = mask_size & mask_eq; // @[Misc.scala:209:26, :214:27, :215:38]
wire mask_acc = mask_sub_0_1 | _mask_acc_T; // @[Misc.scala:215:{29,38}]
wire mask_eq_1 = mask_sub_0_2 & mask_bit; // @[Misc.scala:210:26, :214:27]
wire _mask_acc_T_1 = mask_size & mask_eq_1; // @[Misc.scala:209:26, :214:27, :215:38]
wire mask_acc_1 = mask_sub_0_1 | _mask_acc_T_1; // @[Misc.scala:215:{29,38}]
wire mask_eq_2 = mask_sub_1_2 & mask_nbit; // @[Misc.scala:211:20, :214:27]
wire _mask_acc_T_2 = mask_size & mask_eq_2; // @[Misc.scala:209:26, :214:27, :215:38]
wire mask_acc_2 = mask_sub_1_1 | _mask_acc_T_2; // @[Misc.scala:215:{29,38}]
wire mask_eq_3 = mask_sub_1_2 & mask_bit; // @[Misc.scala:210:26, :214:27]
wire _mask_acc_T_3 = mask_size & mask_eq_3; // @[Misc.scala:209:26, :214:27, :215:38]
wire mask_acc_3 = mask_sub_1_1 | _mask_acc_T_3; // @[Misc.scala:215:{29,38}]
wire mask_eq_4 = mask_sub_2_2 & mask_nbit; // @[Misc.scala:211:20, :214:27]
wire _mask_acc_T_4 = mask_size & mask_eq_4; // @[Misc.scala:209:26, :214:27, :215:38]
wire mask_acc_4 = mask_sub_2_1 | _mask_acc_T_4; // @[Misc.scala:215:{29,38}]
wire mask_eq_5 = mask_sub_2_2 & mask_bit; // @[Misc.scala:210:26, :214:27]
wire _mask_acc_T_5 = mask_size & mask_eq_5; // @[Misc.scala:209:26, :214:27, :215:38]
wire mask_acc_5 = mask_sub_2_1 | _mask_acc_T_5; // @[Misc.scala:215:{29,38}]
wire mask_eq_6 = mask_sub_3_2 & mask_nbit; // @[Misc.scala:211:20, :214:27]
wire _mask_acc_T_6 = mask_size & mask_eq_6; // @[Misc.scala:209:26, :214:27, :215:38]
wire mask_acc_6 = mask_sub_3_1 | _mask_acc_T_6; // @[Misc.scala:215:{29,38}]
wire mask_eq_7 = mask_sub_3_2 & mask_bit; // @[Misc.scala:210:26, :214:27]
wire _mask_acc_T_7 = mask_size & mask_eq_7; // @[Misc.scala:209:26, :214:27, :215:38]
wire mask_acc_7 = mask_sub_3_1 | _mask_acc_T_7; // @[Misc.scala:215:{29,38}]
wire [1:0] mask_lo_lo = {mask_acc_1, mask_acc}; // @[Misc.scala:215:29, :222:10]
wire [1:0] mask_lo_hi = {mask_acc_3, mask_acc_2}; // @[Misc.scala:215:29, :222:10]
wire [3:0] mask_lo = {mask_lo_hi, mask_lo_lo}; // @[Misc.scala:222:10]
wire [1:0] mask_hi_lo = {mask_acc_5, mask_acc_4}; // @[Misc.scala:215:29, :222:10]
wire [1:0] mask_hi_hi = {mask_acc_7, mask_acc_6}; // @[Misc.scala:215:29, :222:10]
wire [3:0] mask_hi = {mask_hi_hi, mask_hi_lo}; // @[Misc.scala:222:10]
wire [7:0] mask = {mask_hi, mask_lo}; // @[Misc.scala:222:10]
wire [1:0] uncommonBits = _uncommonBits_T[1:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_1 = _uncommonBits_T_1[1:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_2 = _uncommonBits_T_2[1:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_3 = _uncommonBits_T_3[1:0]; // @[Parameters.scala:52:{29,56}]
wire [2:0] uncommonBits_4 = _uncommonBits_T_4[2:0]; // @[Parameters.scala:52:{29,56}]
wire [2:0] uncommonBits_5 = _uncommonBits_T_5[2:0]; // @[Parameters.scala:52:{29,56}]
wire [2:0] uncommonBits_6 = _uncommonBits_T_6[2:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_7 = _uncommonBits_T_7[1:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_8 = _uncommonBits_T_8[1:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_9 = _uncommonBits_T_9[1:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_10 = _uncommonBits_T_10[1:0]; // @[Parameters.scala:52:{29,56}]
wire [2:0] uncommonBits_11 = _uncommonBits_T_11[2:0]; // @[Parameters.scala:52:{29,56}]
wire [2:0] uncommonBits_12 = _uncommonBits_T_12[2:0]; // @[Parameters.scala:52:{29,56}]
wire [2:0] uncommonBits_13 = _uncommonBits_T_13[2:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_14 = _uncommonBits_T_14[1:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_15 = _uncommonBits_T_15[1:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_16 = _uncommonBits_T_16[1:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_17 = _uncommonBits_T_17[1:0]; // @[Parameters.scala:52:{29,56}]
wire [2:0] uncommonBits_18 = _uncommonBits_T_18[2:0]; // @[Parameters.scala:52:{29,56}]
wire [2:0] uncommonBits_19 = _uncommonBits_T_19[2:0]; // @[Parameters.scala:52:{29,56}]
wire [2:0] uncommonBits_20 = _uncommonBits_T_20[2:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_21 = _uncommonBits_T_21[1:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_22 = _uncommonBits_T_22[1:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_23 = _uncommonBits_T_23[1:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_24 = _uncommonBits_T_24[1:0]; // @[Parameters.scala:52:{29,56}]
wire [2:0] uncommonBits_25 = _uncommonBits_T_25[2:0]; // @[Parameters.scala:52:{29,56}]
wire [2:0] uncommonBits_26 = _uncommonBits_T_26[2:0]; // @[Parameters.scala:52:{29,56}]
wire [2:0] uncommonBits_27 = _uncommonBits_T_27[2:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_28 = _uncommonBits_T_28[1:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_29 = _uncommonBits_T_29[1:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_30 = _uncommonBits_T_30[1:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_31 = _uncommonBits_T_31[1:0]; // @[Parameters.scala:52:{29,56}]
wire [2:0] uncommonBits_32 = _uncommonBits_T_32[2:0]; // @[Parameters.scala:52:{29,56}]
wire [2:0] uncommonBits_33 = _uncommonBits_T_33[2:0]; // @[Parameters.scala:52:{29,56}]
wire [2:0] uncommonBits_34 = _uncommonBits_T_34[2:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_35 = _uncommonBits_T_35[1:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_36 = _uncommonBits_T_36[1:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_37 = _uncommonBits_T_37[1:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_38 = _uncommonBits_T_38[1:0]; // @[Parameters.scala:52:{29,56}]
wire [2:0] uncommonBits_39 = _uncommonBits_T_39[2:0]; // @[Parameters.scala:52:{29,56}]
wire [2:0] uncommonBits_40 = _uncommonBits_T_40[2:0]; // @[Parameters.scala:52:{29,56}]
wire [2:0] uncommonBits_41 = _uncommonBits_T_41[2:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_42 = _uncommonBits_T_42[1:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_43 = _uncommonBits_T_43[1:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_44 = _uncommonBits_T_44[1:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_45 = _uncommonBits_T_45[1:0]; // @[Parameters.scala:52:{29,56}]
wire [2:0] uncommonBits_46 = _uncommonBits_T_46[2:0]; // @[Parameters.scala:52:{29,56}]
wire [2:0] uncommonBits_47 = _uncommonBits_T_47[2:0]; // @[Parameters.scala:52:{29,56}]
wire [2:0] uncommonBits_48 = _uncommonBits_T_48[2:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_49 = _uncommonBits_T_49[1:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_50 = _uncommonBits_T_50[1:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_51 = _uncommonBits_T_51[1:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_52 = _uncommonBits_T_52[1:0]; // @[Parameters.scala:52:{29,56}]
wire [2:0] uncommonBits_53 = _uncommonBits_T_53[2:0]; // @[Parameters.scala:52:{29,56}]
wire [2:0] uncommonBits_54 = _uncommonBits_T_54[2:0]; // @[Parameters.scala:52:{29,56}]
wire [2:0] uncommonBits_55 = _uncommonBits_T_55[2:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_56 = _uncommonBits_T_56[1:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_57 = _uncommonBits_T_57[1:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_58 = _uncommonBits_T_58[1:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_59 = _uncommonBits_T_59[1:0]; // @[Parameters.scala:52:{29,56}]
wire [2:0] uncommonBits_60 = _uncommonBits_T_60[2:0]; // @[Parameters.scala:52:{29,56}]
wire [2:0] uncommonBits_61 = _uncommonBits_T_61[2:0]; // @[Parameters.scala:52:{29,56}]
wire [2:0] uncommonBits_62 = _uncommonBits_T_62[2:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_63 = _uncommonBits_T_63[1:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_64 = _uncommonBits_T_64[1:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_65 = _uncommonBits_T_65[1:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_66 = _uncommonBits_T_66[1:0]; // @[Parameters.scala:52:{29,56}]
wire [2:0] uncommonBits_67 = _uncommonBits_T_67[2:0]; // @[Parameters.scala:52:{29,56}]
wire [2:0] uncommonBits_68 = _uncommonBits_T_68[2:0]; // @[Parameters.scala:52:{29,56}]
wire [2:0] uncommonBits_69 = _uncommonBits_T_69[2:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_70 = _uncommonBits_T_70[1:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_71 = _uncommonBits_T_71[1:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_72 = _uncommonBits_T_72[1:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_73 = _uncommonBits_T_73[1:0]; // @[Parameters.scala:52:{29,56}]
wire [2:0] uncommonBits_74 = _uncommonBits_T_74[2:0]; // @[Parameters.scala:52:{29,56}]
wire [2:0] uncommonBits_75 = _uncommonBits_T_75[2:0]; // @[Parameters.scala:52:{29,56}]
wire [2:0] uncommonBits_76 = _uncommonBits_T_76[2:0]; // @[Parameters.scala:52:{29,56}]
wire _source_ok_T_55 = io_in_d_bits_source_0 == 8'h20; // @[Monitor.scala:36:7]
wire _source_ok_WIRE_1_0 = _source_ok_T_55; // @[Parameters.scala:1138:31]
wire [1:0] source_ok_uncommonBits_7 = _source_ok_uncommonBits_T_7[1:0]; // @[Parameters.scala:52:{29,56}]
wire [5:0] _source_ok_T_56 = io_in_d_bits_source_0[7:2]; // @[Monitor.scala:36:7]
wire [5:0] _source_ok_T_62 = io_in_d_bits_source_0[7:2]; // @[Monitor.scala:36:7]
wire [5:0] _source_ok_T_68 = io_in_d_bits_source_0[7:2]; // @[Monitor.scala:36:7]
wire [5:0] _source_ok_T_74 = io_in_d_bits_source_0[7:2]; // @[Monitor.scala:36:7]
wire _source_ok_T_57 = _source_ok_T_56 == 6'h0; // @[Parameters.scala:54:{10,32}]
wire _source_ok_T_59 = _source_ok_T_57; // @[Parameters.scala:54:{32,67}]
wire _source_ok_T_61 = _source_ok_T_59; // @[Parameters.scala:54:67, :56:48]
wire _source_ok_WIRE_1_1 = _source_ok_T_61; // @[Parameters.scala:1138:31]
wire [1:0] source_ok_uncommonBits_8 = _source_ok_uncommonBits_T_8[1:0]; // @[Parameters.scala:52:{29,56}]
wire _source_ok_T_63 = _source_ok_T_62 == 6'h1; // @[Parameters.scala:54:{10,32}]
wire _source_ok_T_65 = _source_ok_T_63; // @[Parameters.scala:54:{32,67}]
wire _source_ok_T_67 = _source_ok_T_65; // @[Parameters.scala:54:67, :56:48]
wire _source_ok_WIRE_1_2 = _source_ok_T_67; // @[Parameters.scala:1138:31]
wire [1:0] source_ok_uncommonBits_9 = _source_ok_uncommonBits_T_9[1:0]; // @[Parameters.scala:52:{29,56}]
wire _source_ok_T_69 = _source_ok_T_68 == 6'h2; // @[Parameters.scala:54:{10,32}]
wire _source_ok_T_71 = _source_ok_T_69; // @[Parameters.scala:54:{32,67}]
wire _source_ok_T_73 = _source_ok_T_71; // @[Parameters.scala:54:67, :56:48]
wire _source_ok_WIRE_1_3 = _source_ok_T_73; // @[Parameters.scala:1138:31]
wire [1:0] source_ok_uncommonBits_10 = _source_ok_uncommonBits_T_10[1:0]; // @[Parameters.scala:52:{29,56}]
wire _source_ok_T_75 = _source_ok_T_74 == 6'h3; // @[Parameters.scala:54:{10,32}]
wire _source_ok_T_77 = _source_ok_T_75; // @[Parameters.scala:54:{32,67}]
wire _source_ok_T_79 = _source_ok_T_77; // @[Parameters.scala:54:67, :56:48]
wire _source_ok_WIRE_1_4 = _source_ok_T_79; // @[Parameters.scala:1138:31]
wire [2:0] source_ok_uncommonBits_11 = _source_ok_uncommonBits_T_11[2:0]; // @[Parameters.scala:52:{29,56}]
wire [4:0] _source_ok_T_80 = io_in_d_bits_source_0[7:3]; // @[Monitor.scala:36:7]
wire [4:0] _source_ok_T_86 = io_in_d_bits_source_0[7:3]; // @[Monitor.scala:36:7]
wire [4:0] _source_ok_T_92 = io_in_d_bits_source_0[7:3]; // @[Monitor.scala:36:7]
wire _source_ok_T_81 = _source_ok_T_80 == 5'h3; // @[Parameters.scala:54:{10,32}]
wire _source_ok_T_83 = _source_ok_T_81; // @[Parameters.scala:54:{32,67}]
wire _source_ok_T_85 = _source_ok_T_83; // @[Parameters.scala:54:67, :56:48]
wire _source_ok_WIRE_1_5 = _source_ok_T_85; // @[Parameters.scala:1138:31]
wire [2:0] source_ok_uncommonBits_12 = _source_ok_uncommonBits_T_12[2:0]; // @[Parameters.scala:52:{29,56}]
wire _source_ok_T_87 = _source_ok_T_86 == 5'h2; // @[Parameters.scala:54:{10,32}]
wire _source_ok_T_89 = _source_ok_T_87; // @[Parameters.scala:54:{32,67}]
wire _source_ok_T_91 = _source_ok_T_89; // @[Parameters.scala:54:67, :56:48]
wire _source_ok_WIRE_1_6 = _source_ok_T_91; // @[Parameters.scala:1138:31]
wire [2:0] source_ok_uncommonBits_13 = _source_ok_uncommonBits_T_13[2:0]; // @[Parameters.scala:52:{29,56}]
wire _source_ok_T_93 = _source_ok_T_92 == 5'h8; // @[Parameters.scala:54:{10,32}]
wire _source_ok_T_95 = _source_ok_T_93; // @[Parameters.scala:54:{32,67}]
wire _source_ok_T_96 = source_ok_uncommonBits_13 < 3'h5; // @[Parameters.scala:52:56, :57:20]
wire _source_ok_T_97 = _source_ok_T_95 & _source_ok_T_96; // @[Parameters.scala:54:67, :56:48, :57:20]
wire _source_ok_WIRE_1_7 = _source_ok_T_97; // @[Parameters.scala:1138:31]
wire _source_ok_T_98 = io_in_d_bits_source_0 == 8'h45; // @[Monitor.scala:36:7]
wire _source_ok_WIRE_1_8 = _source_ok_T_98; // @[Parameters.scala:1138:31]
wire _source_ok_T_99 = io_in_d_bits_source_0 == 8'h48; // @[Monitor.scala:36:7]
wire _source_ok_WIRE_1_9 = _source_ok_T_99; // @[Parameters.scala:1138:31]
wire _source_ok_T_100 = io_in_d_bits_source_0 == 8'h80; // @[Monitor.scala:36:7]
wire _source_ok_WIRE_1_10 = _source_ok_T_100; // @[Parameters.scala:1138:31]
wire _source_ok_T_101 = _source_ok_WIRE_1_0 | _source_ok_WIRE_1_1; // @[Parameters.scala:1138:31, :1139:46]
wire _source_ok_T_102 = _source_ok_T_101 | _source_ok_WIRE_1_2; // @[Parameters.scala:1138:31, :1139:46]
wire _source_ok_T_103 = _source_ok_T_102 | _source_ok_WIRE_1_3; // @[Parameters.scala:1138:31, :1139:46]
wire _source_ok_T_104 = _source_ok_T_103 | _source_ok_WIRE_1_4; // @[Parameters.scala:1138:31, :1139:46]
wire _source_ok_T_105 = _source_ok_T_104 | _source_ok_WIRE_1_5; // @[Parameters.scala:1138:31, :1139:46]
wire _source_ok_T_106 = _source_ok_T_105 | _source_ok_WIRE_1_6; // @[Parameters.scala:1138:31, :1139:46]
wire _source_ok_T_107 = _source_ok_T_106 | _source_ok_WIRE_1_7; // @[Parameters.scala:1138:31, :1139:46]
wire _source_ok_T_108 = _source_ok_T_107 | _source_ok_WIRE_1_8; // @[Parameters.scala:1138:31, :1139:46]
wire _source_ok_T_109 = _source_ok_T_108 | _source_ok_WIRE_1_9; // @[Parameters.scala:1138:31, :1139:46]
wire source_ok_1 = _source_ok_T_109 | _source_ok_WIRE_1_10; // @[Parameters.scala:1138:31, :1139:46]
wire _T_1451 = io_in_a_ready_0 & io_in_a_valid_0; // @[Decoupled.scala:51:35]
wire _a_first_T; // @[Decoupled.scala:51:35]
assign _a_first_T = _T_1451; // @[Decoupled.scala:51:35]
wire _a_first_T_1; // @[Decoupled.scala:51:35]
assign _a_first_T_1 = _T_1451; // @[Decoupled.scala:51:35]
wire [5:0] _a_first_beats1_decode_T_1 = _a_first_beats1_decode_T[5:0]; // @[package.scala:243:{71,76}]
wire [5:0] _a_first_beats1_decode_T_2 = ~_a_first_beats1_decode_T_1; // @[package.scala:243:{46,76}]
wire [2:0] a_first_beats1_decode = _a_first_beats1_decode_T_2[5:3]; // @[package.scala:243:46]
wire _a_first_beats1_opdata_T = io_in_a_bits_opcode_0[2]; // @[Monitor.scala:36:7]
wire _a_first_beats1_opdata_T_1 = io_in_a_bits_opcode_0[2]; // @[Monitor.scala:36:7]
wire a_first_beats1_opdata = ~_a_first_beats1_opdata_T; // @[Edges.scala:92:{28,37}]
wire [2:0] a_first_beats1 = a_first_beats1_opdata ? a_first_beats1_decode : 3'h0; // @[Edges.scala:92:28, :220:59, :221:14]
reg [2:0] a_first_counter; // @[Edges.scala:229:27]
wire [3:0] _a_first_counter1_T = {1'h0, a_first_counter} - 4'h1; // @[Edges.scala:229:27, :230:28]
wire [2:0] a_first_counter1 = _a_first_counter1_T[2:0]; // @[Edges.scala:230:28]
wire a_first = a_first_counter == 3'h0; // @[Edges.scala:229:27, :231:25]
wire _a_first_last_T = a_first_counter == 3'h1; // @[Edges.scala:229:27, :232:25]
wire _a_first_last_T_1 = a_first_beats1 == 3'h0; // @[Edges.scala:221:14, :232:43]
wire a_first_last = _a_first_last_T | _a_first_last_T_1; // @[Edges.scala:232:{25,33,43}]
wire a_first_done = a_first_last & _a_first_T; // @[Decoupled.scala:51:35]
wire [2:0] _a_first_count_T = ~a_first_counter1; // @[Edges.scala:230:28, :234:27]
wire [2:0] a_first_count = a_first_beats1 & _a_first_count_T; // @[Edges.scala:221:14, :234:{25,27}]
wire [2:0] _a_first_counter_T = a_first ? a_first_beats1 : a_first_counter1; // @[Edges.scala:221:14, :230:28, :231:25, :236:21]
reg [2:0] opcode; // @[Monitor.scala:387:22]
reg [2:0] param; // @[Monitor.scala:388:22]
reg [2:0] size; // @[Monitor.scala:389:22]
reg [7:0] source; // @[Monitor.scala:390:22]
reg [28:0] address; // @[Monitor.scala:391:22]
wire _T_1519 = io_in_d_ready_0 & io_in_d_valid_0; // @[Decoupled.scala:51:35]
wire _d_first_T; // @[Decoupled.scala:51:35]
assign _d_first_T = _T_1519; // @[Decoupled.scala:51:35]
wire _d_first_T_1; // @[Decoupled.scala:51:35]
assign _d_first_T_1 = _T_1519; // @[Decoupled.scala:51:35]
wire _d_first_T_2; // @[Decoupled.scala:51:35]
assign _d_first_T_2 = _T_1519; // @[Decoupled.scala:51:35]
wire [12:0] _GEN_0 = 13'h3F << io_in_d_bits_size_0; // @[package.scala:243:71]
wire [12:0] _d_first_beats1_decode_T; // @[package.scala:243:71]
assign _d_first_beats1_decode_T = _GEN_0; // @[package.scala:243:71]
wire [12:0] _d_first_beats1_decode_T_3; // @[package.scala:243:71]
assign _d_first_beats1_decode_T_3 = _GEN_0; // @[package.scala:243:71]
wire [12:0] _d_first_beats1_decode_T_6; // @[package.scala:243:71]
assign _d_first_beats1_decode_T_6 = _GEN_0; // @[package.scala:243:71]
wire [5:0] _d_first_beats1_decode_T_1 = _d_first_beats1_decode_T[5:0]; // @[package.scala:243:{71,76}]
wire [5:0] _d_first_beats1_decode_T_2 = ~_d_first_beats1_decode_T_1; // @[package.scala:243:{46,76}]
wire [2:0] d_first_beats1_decode = _d_first_beats1_decode_T_2[5:3]; // @[package.scala:243:46]
wire d_first_beats1_opdata = io_in_d_bits_opcode_0[0]; // @[Monitor.scala:36:7]
wire d_first_beats1_opdata_1 = io_in_d_bits_opcode_0[0]; // @[Monitor.scala:36:7]
wire d_first_beats1_opdata_2 = io_in_d_bits_opcode_0[0]; // @[Monitor.scala:36:7]
wire [2:0] d_first_beats1 = d_first_beats1_opdata ? d_first_beats1_decode : 3'h0; // @[Edges.scala:106:36, :220:59, :221:14]
reg [2:0] d_first_counter; // @[Edges.scala:229:27]
wire [3:0] _d_first_counter1_T = {1'h0, d_first_counter} - 4'h1; // @[Edges.scala:229:27, :230:28]
wire [2:0] d_first_counter1 = _d_first_counter1_T[2:0]; // @[Edges.scala:230:28]
wire d_first = d_first_counter == 3'h0; // @[Edges.scala:229:27, :231:25]
wire _d_first_last_T = d_first_counter == 3'h1; // @[Edges.scala:229:27, :232:25]
wire _d_first_last_T_1 = d_first_beats1 == 3'h0; // @[Edges.scala:221:14, :232:43]
wire d_first_last = _d_first_last_T | _d_first_last_T_1; // @[Edges.scala:232:{25,33,43}]
wire d_first_done = d_first_last & _d_first_T; // @[Decoupled.scala:51:35]
wire [2:0] _d_first_count_T = ~d_first_counter1; // @[Edges.scala:230:28, :234:27]
wire [2:0] d_first_count = d_first_beats1 & _d_first_count_T; // @[Edges.scala:221:14, :234:{25,27}]
wire [2:0] _d_first_counter_T = d_first ? d_first_beats1 : d_first_counter1; // @[Edges.scala:221:14, :230:28, :231:25, :236:21]
reg [2:0] opcode_1; // @[Monitor.scala:538:22]
reg [2:0] size_1; // @[Monitor.scala:540:22]
reg [7:0] source_1; // @[Monitor.scala:541:22]
reg denied; // @[Monitor.scala:543:22]
reg [128:0] inflight; // @[Monitor.scala:614:27]
reg [515:0] inflight_opcodes; // @[Monitor.scala:616:35]
reg [515:0] inflight_sizes; // @[Monitor.scala:618:33]
wire [5:0] _a_first_beats1_decode_T_4 = _a_first_beats1_decode_T_3[5:0]; // @[package.scala:243:{71,76}]
wire [5:0] _a_first_beats1_decode_T_5 = ~_a_first_beats1_decode_T_4; // @[package.scala:243:{46,76}]
wire [2:0] a_first_beats1_decode_1 = _a_first_beats1_decode_T_5[5:3]; // @[package.scala:243:46]
wire a_first_beats1_opdata_1 = ~_a_first_beats1_opdata_T_1; // @[Edges.scala:92:{28,37}]
wire [2:0] a_first_beats1_1 = a_first_beats1_opdata_1 ? a_first_beats1_decode_1 : 3'h0; // @[Edges.scala:92:28, :220:59, :221:14]
reg [2:0] a_first_counter_1; // @[Edges.scala:229:27]
wire [3:0] _a_first_counter1_T_1 = {1'h0, a_first_counter_1} - 4'h1; // @[Edges.scala:229:27, :230:28]
wire [2:0] a_first_counter1_1 = _a_first_counter1_T_1[2:0]; // @[Edges.scala:230:28]
wire a_first_1 = a_first_counter_1 == 3'h0; // @[Edges.scala:229:27, :231:25]
wire _a_first_last_T_2 = a_first_counter_1 == 3'h1; // @[Edges.scala:229:27, :232:25]
wire _a_first_last_T_3 = a_first_beats1_1 == 3'h0; // @[Edges.scala:221:14, :232:43]
wire a_first_last_1 = _a_first_last_T_2 | _a_first_last_T_3; // @[Edges.scala:232:{25,33,43}]
wire a_first_done_1 = a_first_last_1 & _a_first_T_1; // @[Decoupled.scala:51:35]
wire [2:0] _a_first_count_T_1 = ~a_first_counter1_1; // @[Edges.scala:230:28, :234:27]
wire [2:0] a_first_count_1 = a_first_beats1_1 & _a_first_count_T_1; // @[Edges.scala:221:14, :234:{25,27}]
wire [2:0] _a_first_counter_T_1 = a_first_1 ? a_first_beats1_1 : a_first_counter1_1; // @[Edges.scala:221:14, :230:28, :231:25, :236:21]
wire [5:0] _d_first_beats1_decode_T_4 = _d_first_beats1_decode_T_3[5:0]; // @[package.scala:243:{71,76}]
wire [5:0] _d_first_beats1_decode_T_5 = ~_d_first_beats1_decode_T_4; // @[package.scala:243:{46,76}]
wire [2:0] d_first_beats1_decode_1 = _d_first_beats1_decode_T_5[5:3]; // @[package.scala:243:46]
wire [2:0] d_first_beats1_1 = d_first_beats1_opdata_1 ? d_first_beats1_decode_1 : 3'h0; // @[Edges.scala:106:36, :220:59, :221:14]
reg [2:0] d_first_counter_1; // @[Edges.scala:229:27]
wire [3:0] _d_first_counter1_T_1 = {1'h0, d_first_counter_1} - 4'h1; // @[Edges.scala:229:27, :230:28]
wire [2:0] d_first_counter1_1 = _d_first_counter1_T_1[2:0]; // @[Edges.scala:230:28]
wire d_first_1 = d_first_counter_1 == 3'h0; // @[Edges.scala:229:27, :231:25]
wire _d_first_last_T_2 = d_first_counter_1 == 3'h1; // @[Edges.scala:229:27, :232:25]
wire _d_first_last_T_3 = d_first_beats1_1 == 3'h0; // @[Edges.scala:221:14, :232:43]
wire d_first_last_1 = _d_first_last_T_2 | _d_first_last_T_3; // @[Edges.scala:232:{25,33,43}]
wire d_first_done_1 = d_first_last_1 & _d_first_T_1; // @[Decoupled.scala:51:35]
wire [2:0] _d_first_count_T_1 = ~d_first_counter1_1; // @[Edges.scala:230:28, :234:27]
wire [2:0] d_first_count_1 = d_first_beats1_1 & _d_first_count_T_1; // @[Edges.scala:221:14, :234:{25,27}]
wire [2:0] _d_first_counter_T_1 = d_first_1 ? d_first_beats1_1 : d_first_counter1_1; // @[Edges.scala:221:14, :230:28, :231:25, :236:21]
wire [128:0] a_set; // @[Monitor.scala:626:34]
wire [128:0] a_set_wo_ready; // @[Monitor.scala:627:34]
wire [515:0] a_opcodes_set; // @[Monitor.scala:630:33]
wire [515:0] a_sizes_set; // @[Monitor.scala:632:31]
wire [2:0] a_opcode_lookup; // @[Monitor.scala:635:35]
wire [10:0] _GEN_1 = {1'h0, io_in_d_bits_source_0, 2'h0}; // @[Monitor.scala:36:7, :637:69]
wire [10:0] _a_opcode_lookup_T; // @[Monitor.scala:637:69]
assign _a_opcode_lookup_T = _GEN_1; // @[Monitor.scala:637:69]
wire [10:0] _a_size_lookup_T; // @[Monitor.scala:641:65]
assign _a_size_lookup_T = _GEN_1; // @[Monitor.scala:637:69, :641:65]
wire [10:0] _d_opcodes_clr_T_4; // @[Monitor.scala:680:101]
assign _d_opcodes_clr_T_4 = _GEN_1; // @[Monitor.scala:637:69, :680:101]
wire [10:0] _d_sizes_clr_T_4; // @[Monitor.scala:681:99]
assign _d_sizes_clr_T_4 = _GEN_1; // @[Monitor.scala:637:69, :681:99]
wire [10:0] _c_opcode_lookup_T; // @[Monitor.scala:749:69]
assign _c_opcode_lookup_T = _GEN_1; // @[Monitor.scala:637:69, :749:69]
wire [10:0] _c_size_lookup_T; // @[Monitor.scala:750:67]
assign _c_size_lookup_T = _GEN_1; // @[Monitor.scala:637:69, :750:67]
wire [10:0] _d_opcodes_clr_T_10; // @[Monitor.scala:790:101]
assign _d_opcodes_clr_T_10 = _GEN_1; // @[Monitor.scala:637:69, :790:101]
wire [10:0] _d_sizes_clr_T_10; // @[Monitor.scala:791:99]
assign _d_sizes_clr_T_10 = _GEN_1; // @[Monitor.scala:637:69, :791:99]
wire [515:0] _a_opcode_lookup_T_1 = inflight_opcodes >> _a_opcode_lookup_T; // @[Monitor.scala:616:35, :637:{44,69}]
wire [515:0] _a_opcode_lookup_T_6 = {512'h0, _a_opcode_lookup_T_1[3:0]}; // @[Monitor.scala:637:{44,97}]
wire [515:0] _a_opcode_lookup_T_7 = {1'h0, _a_opcode_lookup_T_6[515:1]}; // @[Monitor.scala:637:{97,152}]
assign a_opcode_lookup = _a_opcode_lookup_T_7[2:0]; // @[Monitor.scala:635:35, :637:{21,152}]
wire [3:0] a_size_lookup; // @[Monitor.scala:639:33]
wire [515:0] _a_size_lookup_T_1 = inflight_sizes >> _a_size_lookup_T; // @[Monitor.scala:618:33, :641:{40,65}]
wire [515:0] _a_size_lookup_T_6 = {512'h0, _a_size_lookup_T_1[3:0]}; // @[Monitor.scala:641:{40,91}]
wire [515:0] _a_size_lookup_T_7 = {1'h0, _a_size_lookup_T_6[515:1]}; // @[Monitor.scala:641:{91,144}]
assign a_size_lookup = _a_size_lookup_T_7[3:0]; // @[Monitor.scala:639:33, :641:{19,144}]
wire [3:0] a_opcodes_set_interm; // @[Monitor.scala:646:40]
wire [3:0] a_sizes_set_interm; // @[Monitor.scala:648:38]
wire _same_cycle_resp_T = io_in_a_valid_0 & a_first_1; // @[Monitor.scala:36:7, :651:26, :684:44]
wire [255:0] _GEN_2 = 256'h1 << io_in_a_bits_source_0; // @[OneHot.scala:58:35]
wire [255:0] _a_set_wo_ready_T; // @[OneHot.scala:58:35]
assign _a_set_wo_ready_T = _GEN_2; // @[OneHot.scala:58:35]
wire [255:0] _a_set_T; // @[OneHot.scala:58:35]
assign _a_set_T = _GEN_2; // @[OneHot.scala:58:35]
assign a_set_wo_ready = _same_cycle_resp_T ? _a_set_wo_ready_T[128:0] : 129'h0; // @[OneHot.scala:58:35]
wire _T_1384 = _T_1451 & a_first_1; // @[Decoupled.scala:51:35]
assign a_set = _T_1384 ? _a_set_T[128:0] : 129'h0; // @[OneHot.scala:58:35]
wire [3:0] _a_opcodes_set_interm_T = {io_in_a_bits_opcode_0, 1'h0}; // @[Monitor.scala:36:7, :657:53]
wire [3:0] _a_opcodes_set_interm_T_1 = {_a_opcodes_set_interm_T[3:1], 1'h1}; // @[Monitor.scala:657:{53,61}]
assign a_opcodes_set_interm = _T_1384 ? _a_opcodes_set_interm_T_1 : 4'h0; // @[Monitor.scala:646:40, :655:{25,70}, :657:{28,61}]
wire [3:0] _a_sizes_set_interm_T = {io_in_a_bits_size_0, 1'h0}; // @[Monitor.scala:36:7, :658:51]
wire [3:0] _a_sizes_set_interm_T_1 = {_a_sizes_set_interm_T[3:1], 1'h1}; // @[Monitor.scala:658:{51,59}]
assign a_sizes_set_interm = _T_1384 ? _a_sizes_set_interm_T_1 : 4'h0; // @[Monitor.scala:648:38, :655:{25,70}, :658:{28,59}]
wire [10:0] _GEN_3 = {1'h0, io_in_a_bits_source_0, 2'h0}; // @[Monitor.scala:36:7, :659:79]
wire [10:0] _a_opcodes_set_T; // @[Monitor.scala:659:79]
assign _a_opcodes_set_T = _GEN_3; // @[Monitor.scala:659:79]
wire [10:0] _a_sizes_set_T; // @[Monitor.scala:660:77]
assign _a_sizes_set_T = _GEN_3; // @[Monitor.scala:659:79, :660:77]
wire [2050:0] _a_opcodes_set_T_1 = {2047'h0, a_opcodes_set_interm} << _a_opcodes_set_T; // @[Monitor.scala:646:40, :659:{54,79}]
assign a_opcodes_set = _T_1384 ? _a_opcodes_set_T_1[515:0] : 516'h0; // @[Monitor.scala:630:33, :655:{25,70}, :659:{28,54}]
wire [2050:0] _a_sizes_set_T_1 = {2047'h0, a_sizes_set_interm} << _a_sizes_set_T; // @[Monitor.scala:648:38, :659:54, :660:{52,77}]
assign a_sizes_set = _T_1384 ? _a_sizes_set_T_1[515:0] : 516'h0; // @[Monitor.scala:632:31, :655:{25,70}, :660:{28,52}]
wire [128:0] d_clr; // @[Monitor.scala:664:34]
wire [128:0] d_clr_wo_ready; // @[Monitor.scala:665:34]
wire [515:0] d_opcodes_clr; // @[Monitor.scala:668:33]
wire [515:0] d_sizes_clr; // @[Monitor.scala:670:31]
wire _GEN_4 = io_in_d_bits_opcode_0 == 3'h6; // @[Monitor.scala:36:7, :673:46]
wire d_release_ack; // @[Monitor.scala:673:46]
assign d_release_ack = _GEN_4; // @[Monitor.scala:673:46]
wire d_release_ack_1; // @[Monitor.scala:783:46]
assign d_release_ack_1 = _GEN_4; // @[Monitor.scala:673:46, :783:46]
wire _T_1430 = io_in_d_valid_0 & d_first_1; // @[Monitor.scala:36:7, :674:26]
wire [255:0] _GEN_5 = 256'h1 << io_in_d_bits_source_0; // @[OneHot.scala:58:35]
wire [255:0] _d_clr_wo_ready_T; // @[OneHot.scala:58:35]
assign _d_clr_wo_ready_T = _GEN_5; // @[OneHot.scala:58:35]
wire [255:0] _d_clr_T; // @[OneHot.scala:58:35]
assign _d_clr_T = _GEN_5; // @[OneHot.scala:58:35]
wire [255:0] _d_clr_wo_ready_T_1; // @[OneHot.scala:58:35]
assign _d_clr_wo_ready_T_1 = _GEN_5; // @[OneHot.scala:58:35]
wire [255:0] _d_clr_T_1; // @[OneHot.scala:58:35]
assign _d_clr_T_1 = _GEN_5; // @[OneHot.scala:58:35]
assign d_clr_wo_ready = _T_1430 & ~d_release_ack ? _d_clr_wo_ready_T[128:0] : 129'h0; // @[OneHot.scala:58:35]
wire _T_1399 = _T_1519 & d_first_1 & ~d_release_ack; // @[Decoupled.scala:51:35]
assign d_clr = _T_1399 ? _d_clr_T[128:0] : 129'h0; // @[OneHot.scala:58:35]
wire [2062:0] _d_opcodes_clr_T_5 = 2063'hF << _d_opcodes_clr_T_4; // @[Monitor.scala:680:{76,101}]
assign d_opcodes_clr = _T_1399 ? _d_opcodes_clr_T_5[515:0] : 516'h0; // @[Monitor.scala:668:33, :678:{25,70,89}, :680:{21,76}]
wire [2062:0] _d_sizes_clr_T_5 = 2063'hF << _d_sizes_clr_T_4; // @[Monitor.scala:681:{74,99}]
assign d_sizes_clr = _T_1399 ? _d_sizes_clr_T_5[515:0] : 516'h0; // @[Monitor.scala:670:31, :678:{25,70,89}, :681:{21,74}]
wire _same_cycle_resp_T_1 = _same_cycle_resp_T; // @[Monitor.scala:684:{44,55}]
wire _same_cycle_resp_T_2 = io_in_a_bits_source_0 == io_in_d_bits_source_0; // @[Monitor.scala:36:7, :684:113]
wire same_cycle_resp = _same_cycle_resp_T_1 & _same_cycle_resp_T_2; // @[Monitor.scala:684:{55,88,113}]
wire [128:0] _inflight_T = inflight | a_set; // @[Monitor.scala:614:27, :626:34, :705:27]
wire [128:0] _inflight_T_1 = ~d_clr; // @[Monitor.scala:664:34, :705:38]
wire [128:0] _inflight_T_2 = _inflight_T & _inflight_T_1; // @[Monitor.scala:705:{27,36,38}]
wire [515:0] _inflight_opcodes_T = inflight_opcodes | a_opcodes_set; // @[Monitor.scala:616:35, :630:33, :706:43]
wire [515:0] _inflight_opcodes_T_1 = ~d_opcodes_clr; // @[Monitor.scala:668:33, :706:62]
wire [515:0] _inflight_opcodes_T_2 = _inflight_opcodes_T & _inflight_opcodes_T_1; // @[Monitor.scala:706:{43,60,62}]
wire [515:0] _inflight_sizes_T = inflight_sizes | a_sizes_set; // @[Monitor.scala:618:33, :632:31, :707:39]
wire [515:0] _inflight_sizes_T_1 = ~d_sizes_clr; // @[Monitor.scala:670:31, :707:56]
wire [515:0] _inflight_sizes_T_2 = _inflight_sizes_T & _inflight_sizes_T_1; // @[Monitor.scala:707:{39,54,56}]
reg [31:0] watchdog; // @[Monitor.scala:709:27]
wire [32:0] _watchdog_T = {1'h0, watchdog} + 33'h1; // @[Monitor.scala:709:27, :714:26]
wire [31:0] _watchdog_T_1 = _watchdog_T[31:0]; // @[Monitor.scala:714:26]
reg [128:0] inflight_1; // @[Monitor.scala:726:35]
wire [128:0] _inflight_T_3 = inflight_1; // @[Monitor.scala:726:35, :814:35]
reg [515:0] inflight_opcodes_1; // @[Monitor.scala:727:35]
wire [515:0] _inflight_opcodes_T_3 = inflight_opcodes_1; // @[Monitor.scala:727:35, :815:43]
reg [515:0] inflight_sizes_1; // @[Monitor.scala:728:35]
wire [515:0] _inflight_sizes_T_3 = inflight_sizes_1; // @[Monitor.scala:728:35, :816:41]
wire [5:0] _d_first_beats1_decode_T_7 = _d_first_beats1_decode_T_6[5:0]; // @[package.scala:243:{71,76}]
wire [5:0] _d_first_beats1_decode_T_8 = ~_d_first_beats1_decode_T_7; // @[package.scala:243:{46,76}]
wire [2:0] d_first_beats1_decode_2 = _d_first_beats1_decode_T_8[5:3]; // @[package.scala:243:46]
wire [2:0] d_first_beats1_2 = d_first_beats1_opdata_2 ? d_first_beats1_decode_2 : 3'h0; // @[Edges.scala:106:36, :220:59, :221:14]
reg [2:0] d_first_counter_2; // @[Edges.scala:229:27]
wire [3:0] _d_first_counter1_T_2 = {1'h0, d_first_counter_2} - 4'h1; // @[Edges.scala:229:27, :230:28]
wire [2:0] d_first_counter1_2 = _d_first_counter1_T_2[2:0]; // @[Edges.scala:230:28]
wire d_first_2 = d_first_counter_2 == 3'h0; // @[Edges.scala:229:27, :231:25]
wire _d_first_last_T_4 = d_first_counter_2 == 3'h1; // @[Edges.scala:229:27, :232:25]
wire _d_first_last_T_5 = d_first_beats1_2 == 3'h0; // @[Edges.scala:221:14, :232:43]
wire d_first_last_2 = _d_first_last_T_4 | _d_first_last_T_5; // @[Edges.scala:232:{25,33,43}]
wire d_first_done_2 = d_first_last_2 & _d_first_T_2; // @[Decoupled.scala:51:35]
wire [2:0] _d_first_count_T_2 = ~d_first_counter1_2; // @[Edges.scala:230:28, :234:27]
wire [2:0] d_first_count_2 = d_first_beats1_2 & _d_first_count_T_2; // @[Edges.scala:221:14, :234:{25,27}]
wire [2:0] _d_first_counter_T_2 = d_first_2 ? d_first_beats1_2 : d_first_counter1_2; // @[Edges.scala:221:14, :230:28, :231:25, :236:21]
wire [3:0] c_opcode_lookup; // @[Monitor.scala:747:35]
wire [3:0] c_size_lookup; // @[Monitor.scala:748:35]
wire [515:0] _c_opcode_lookup_T_1 = inflight_opcodes_1 >> _c_opcode_lookup_T; // @[Monitor.scala:727:35, :749:{44,69}]
wire [515:0] _c_opcode_lookup_T_6 = {512'h0, _c_opcode_lookup_T_1[3:0]}; // @[Monitor.scala:749:{44,97}]
wire [515:0] _c_opcode_lookup_T_7 = {1'h0, _c_opcode_lookup_T_6[515:1]}; // @[Monitor.scala:749:{97,152}]
assign c_opcode_lookup = _c_opcode_lookup_T_7[3:0]; // @[Monitor.scala:747:35, :749:{21,152}]
wire [515:0] _c_size_lookup_T_1 = inflight_sizes_1 >> _c_size_lookup_T; // @[Monitor.scala:728:35, :750:{42,67}]
wire [515:0] _c_size_lookup_T_6 = {512'h0, _c_size_lookup_T_1[3:0]}; // @[Monitor.scala:750:{42,93}]
wire [515:0] _c_size_lookup_T_7 = {1'h0, _c_size_lookup_T_6[515:1]}; // @[Monitor.scala:750:{93,146}]
assign c_size_lookup = _c_size_lookup_T_7[3:0]; // @[Monitor.scala:748:35, :750:{21,146}]
wire [128:0] d_clr_1; // @[Monitor.scala:774:34]
wire [128:0] d_clr_wo_ready_1; // @[Monitor.scala:775:34]
wire [515:0] d_opcodes_clr_1; // @[Monitor.scala:776:34]
wire [515:0] d_sizes_clr_1; // @[Monitor.scala:777:34]
wire _T_1495 = io_in_d_valid_0 & d_first_2; // @[Monitor.scala:36:7, :784:26]
assign d_clr_wo_ready_1 = _T_1495 & d_release_ack_1 ? _d_clr_wo_ready_T_1[128:0] : 129'h0; // @[OneHot.scala:58:35]
wire _T_1477 = _T_1519 & d_first_2 & d_release_ack_1; // @[Decoupled.scala:51:35]
assign d_clr_1 = _T_1477 ? _d_clr_T_1[128:0] : 129'h0; // @[OneHot.scala:58:35]
wire [2062:0] _d_opcodes_clr_T_11 = 2063'hF << _d_opcodes_clr_T_10; // @[Monitor.scala:790:{76,101}]
assign d_opcodes_clr_1 = _T_1477 ? _d_opcodes_clr_T_11[515:0] : 516'h0; // @[Monitor.scala:776:34, :788:{25,70,88}, :790:{21,76}]
wire [2062:0] _d_sizes_clr_T_11 = 2063'hF << _d_sizes_clr_T_10; // @[Monitor.scala:791:{74,99}]
assign d_sizes_clr_1 = _T_1477 ? _d_sizes_clr_T_11[515:0] : 516'h0; // @[Monitor.scala:777:34, :788:{25,70,88}, :791:{21,74}]
wire _same_cycle_resp_T_8 = io_in_d_bits_source_0 == 8'h0; // @[Monitor.scala:36:7, :795:113]
wire [128:0] _inflight_T_4 = ~d_clr_1; // @[Monitor.scala:774:34, :814:46]
wire [128:0] _inflight_T_5 = _inflight_T_3 & _inflight_T_4; // @[Monitor.scala:814:{35,44,46}]
wire [515:0] _inflight_opcodes_T_4 = ~d_opcodes_clr_1; // @[Monitor.scala:776:34, :815:62]
wire [515:0] _inflight_opcodes_T_5 = _inflight_opcodes_T_3 & _inflight_opcodes_T_4; // @[Monitor.scala:815:{43,60,62}]
wire [515:0] _inflight_sizes_T_4 = ~d_sizes_clr_1; // @[Monitor.scala:777:34, :816:58]
wire [515:0] _inflight_sizes_T_5 = _inflight_sizes_T_3 & _inflight_sizes_T_4; // @[Monitor.scala:816:{41,56,58}]
reg [31:0] watchdog_1; // @[Monitor.scala:818:27] |
Generate the Verilog code corresponding to the following Chisel files.
File PE.scala:
// See README.md for license details.
package gemmini
import chisel3._
import chisel3.util._
class PEControl[T <: Data : Arithmetic](accType: T) extends Bundle {
val dataflow = UInt(1.W) // TODO make this an Enum
val propagate = UInt(1.W) // Which register should be propagated (and which should be accumulated)?
val shift = UInt(log2Up(accType.getWidth).W) // TODO this isn't correct for Floats
}
class MacUnit[T <: Data](inputType: T, cType: T, dType: T) (implicit ev: Arithmetic[T]) extends Module {
import ev._
val io = IO(new Bundle {
val in_a = Input(inputType)
val in_b = Input(inputType)
val in_c = Input(cType)
val out_d = Output(dType)
})
io.out_d := io.in_c.mac(io.in_a, io.in_b)
}
// TODO update documentation
/**
* A PE implementing a MAC operation. Configured as fully combinational when integrated into a Mesh.
* @param width Data width of operands
*/
class PE[T <: Data](inputType: T, outputType: T, accType: T, df: Dataflow.Value, max_simultaneous_matmuls: Int)
(implicit ev: Arithmetic[T]) extends Module { // Debugging variables
import ev._
val io = IO(new Bundle {
val in_a = Input(inputType)
val in_b = Input(outputType)
val in_d = Input(outputType)
val out_a = Output(inputType)
val out_b = Output(outputType)
val out_c = Output(outputType)
val in_control = Input(new PEControl(accType))
val out_control = Output(new PEControl(accType))
val in_id = Input(UInt(log2Up(max_simultaneous_matmuls).W))
val out_id = Output(UInt(log2Up(max_simultaneous_matmuls).W))
val in_last = Input(Bool())
val out_last = Output(Bool())
val in_valid = Input(Bool())
val out_valid = Output(Bool())
val bad_dataflow = Output(Bool())
})
val cType = if (df == Dataflow.WS) inputType else accType
// When creating PEs that support multiple dataflows, the
// elaboration/synthesis tools often fail to consolidate and de-duplicate
// MAC units. To force mac circuitry to be re-used, we create a "mac_unit"
// module here which just performs a single MAC operation
val mac_unit = Module(new MacUnit(inputType,
if (df == Dataflow.WS) outputType else accType, outputType))
val a = io.in_a
val b = io.in_b
val d = io.in_d
val c1 = Reg(cType)
val c2 = Reg(cType)
val dataflow = io.in_control.dataflow
val prop = io.in_control.propagate
val shift = io.in_control.shift
val id = io.in_id
val last = io.in_last
val valid = io.in_valid
io.out_a := a
io.out_control.dataflow := dataflow
io.out_control.propagate := prop
io.out_control.shift := shift
io.out_id := id
io.out_last := last
io.out_valid := valid
mac_unit.io.in_a := a
val last_s = RegEnable(prop, valid)
val flip = last_s =/= prop
val shift_offset = Mux(flip, shift, 0.U)
// Which dataflow are we using?
val OUTPUT_STATIONARY = Dataflow.OS.id.U(1.W)
val WEIGHT_STATIONARY = Dataflow.WS.id.U(1.W)
// Is c1 being computed on, or propagated forward (in the output-stationary dataflow)?
val COMPUTE = 0.U(1.W)
val PROPAGATE = 1.U(1.W)
io.bad_dataflow := false.B
when ((df == Dataflow.OS).B || ((df == Dataflow.BOTH).B && dataflow === OUTPUT_STATIONARY)) {
when(prop === PROPAGATE) {
io.out_c := (c1 >> shift_offset).clippedToWidthOf(outputType)
io.out_b := b
mac_unit.io.in_b := b.asTypeOf(inputType)
mac_unit.io.in_c := c2
c2 := mac_unit.io.out_d
c1 := d.withWidthOf(cType)
}.otherwise {
io.out_c := (c2 >> shift_offset).clippedToWidthOf(outputType)
io.out_b := b
mac_unit.io.in_b := b.asTypeOf(inputType)
mac_unit.io.in_c := c1
c1 := mac_unit.io.out_d
c2 := d.withWidthOf(cType)
}
}.elsewhen ((df == Dataflow.WS).B || ((df == Dataflow.BOTH).B && dataflow === WEIGHT_STATIONARY)) {
when(prop === PROPAGATE) {
io.out_c := c1
mac_unit.io.in_b := c2.asTypeOf(inputType)
mac_unit.io.in_c := b
io.out_b := mac_unit.io.out_d
c1 := d
}.otherwise {
io.out_c := c2
mac_unit.io.in_b := c1.asTypeOf(inputType)
mac_unit.io.in_c := b
io.out_b := mac_unit.io.out_d
c2 := d
}
}.otherwise {
io.bad_dataflow := true.B
//assert(false.B, "unknown dataflow")
io.out_c := DontCare
io.out_b := DontCare
mac_unit.io.in_b := b.asTypeOf(inputType)
mac_unit.io.in_c := c2
}
when (!valid) {
c1 := c1
c2 := c2
mac_unit.io.in_b := DontCare
mac_unit.io.in_c := DontCare
}
}
File Arithmetic.scala:
// A simple type class for Chisel datatypes that can add and multiply. To add your own type, simply create your own:
// implicit MyTypeArithmetic extends Arithmetic[MyType] { ... }
package gemmini
import chisel3._
import chisel3.util._
import hardfloat._
// Bundles that represent the raw bits of custom datatypes
case class Float(expWidth: Int, sigWidth: Int) extends Bundle {
val bits = UInt((expWidth + sigWidth).W)
val bias: Int = (1 << (expWidth-1)) - 1
}
case class DummySInt(w: Int) extends Bundle {
val bits = UInt(w.W)
def dontCare: DummySInt = {
val o = Wire(new DummySInt(w))
o.bits := 0.U
o
}
}
// The Arithmetic typeclass which implements various arithmetic operations on custom datatypes
abstract class Arithmetic[T <: Data] {
implicit def cast(t: T): ArithmeticOps[T]
}
abstract class ArithmeticOps[T <: Data](self: T) {
def *(t: T): T
def mac(m1: T, m2: T): T // Returns (m1 * m2 + self)
def +(t: T): T
def -(t: T): T
def >>(u: UInt): T // This is a rounding shift! Rounds away from 0
def >(t: T): Bool
def identity: T
def withWidthOf(t: T): T
def clippedToWidthOf(t: T): T // Like "withWidthOf", except that it saturates
def relu: T
def zero: T
def minimum: T
// Optional parameters, which only need to be defined if you want to enable various optimizations for transformers
def divider(denom_t: UInt, options: Int = 0): Option[(DecoupledIO[UInt], DecoupledIO[T])] = None
def sqrt: Option[(DecoupledIO[UInt], DecoupledIO[T])] = None
def reciprocal[U <: Data](u: U, options: Int = 0): Option[(DecoupledIO[UInt], DecoupledIO[U])] = None
def mult_with_reciprocal[U <: Data](reciprocal: U) = self
}
object Arithmetic {
implicit object UIntArithmetic extends Arithmetic[UInt] {
override implicit def cast(self: UInt) = new ArithmeticOps(self) {
override def *(t: UInt) = self * t
override def mac(m1: UInt, m2: UInt) = m1 * m2 + self
override def +(t: UInt) = self + t
override def -(t: UInt) = self - t
override def >>(u: UInt) = {
// The equation we use can be found here: https://riscv.github.io/documents/riscv-v-spec/#_vector_fixed_point_rounding_mode_register_vxrm
// TODO Do we need to explicitly handle the cases where "u" is a small number (like 0)? What is the default behavior here?
val point_five = Mux(u === 0.U, 0.U, self(u - 1.U))
val zeros = Mux(u <= 1.U, 0.U, self.asUInt & ((1.U << (u - 1.U)).asUInt - 1.U)) =/= 0.U
val ones_digit = self(u)
val r = point_five & (zeros | ones_digit)
(self >> u).asUInt + r
}
override def >(t: UInt): Bool = self > t
override def withWidthOf(t: UInt) = self.asTypeOf(t)
override def clippedToWidthOf(t: UInt) = {
val sat = ((1 << (t.getWidth-1))-1).U
Mux(self > sat, sat, self)(t.getWidth-1, 0)
}
override def relu: UInt = self
override def zero: UInt = 0.U
override def identity: UInt = 1.U
override def minimum: UInt = 0.U
}
}
implicit object SIntArithmetic extends Arithmetic[SInt] {
override implicit def cast(self: SInt) = new ArithmeticOps(self) {
override def *(t: SInt) = self * t
override def mac(m1: SInt, m2: SInt) = m1 * m2 + self
override def +(t: SInt) = self + t
override def -(t: SInt) = self - t
override def >>(u: UInt) = {
// The equation we use can be found here: https://riscv.github.io/documents/riscv-v-spec/#_vector_fixed_point_rounding_mode_register_vxrm
// TODO Do we need to explicitly handle the cases where "u" is a small number (like 0)? What is the default behavior here?
val point_five = Mux(u === 0.U, 0.U, self(u - 1.U))
val zeros = Mux(u <= 1.U, 0.U, self.asUInt & ((1.U << (u - 1.U)).asUInt - 1.U)) =/= 0.U
val ones_digit = self(u)
val r = (point_five & (zeros | ones_digit)).asBool
(self >> u).asSInt + Mux(r, 1.S, 0.S)
}
override def >(t: SInt): Bool = self > t
override def withWidthOf(t: SInt) = {
if (self.getWidth >= t.getWidth)
self(t.getWidth-1, 0).asSInt
else {
val sign_bits = t.getWidth - self.getWidth
val sign = self(self.getWidth-1)
Cat(Cat(Seq.fill(sign_bits)(sign)), self).asTypeOf(t)
}
}
override def clippedToWidthOf(t: SInt): SInt = {
val maxsat = ((1 << (t.getWidth-1))-1).S
val minsat = (-(1 << (t.getWidth-1))).S
MuxCase(self, Seq((self > maxsat) -> maxsat, (self < minsat) -> minsat))(t.getWidth-1, 0).asSInt
}
override def relu: SInt = Mux(self >= 0.S, self, 0.S)
override def zero: SInt = 0.S
override def identity: SInt = 1.S
override def minimum: SInt = (-(1 << (self.getWidth-1))).S
override def divider(denom_t: UInt, options: Int = 0): Option[(DecoupledIO[UInt], DecoupledIO[SInt])] = {
// TODO this uses a floating point divider, but we should use an integer divider instead
val input = Wire(Decoupled(denom_t.cloneType))
val output = Wire(Decoupled(self.cloneType))
// We translate our integer to floating-point form so that we can use the hardfloat divider
val expWidth = log2Up(self.getWidth) + 1
val sigWidth = self.getWidth
def sin_to_float(x: SInt) = {
val in_to_rec_fn = Module(new INToRecFN(intWidth = self.getWidth, expWidth, sigWidth))
in_to_rec_fn.io.signedIn := true.B
in_to_rec_fn.io.in := x.asUInt
in_to_rec_fn.io.roundingMode := consts.round_minMag // consts.round_near_maxMag
in_to_rec_fn.io.detectTininess := consts.tininess_afterRounding
in_to_rec_fn.io.out
}
def uin_to_float(x: UInt) = {
val in_to_rec_fn = Module(new INToRecFN(intWidth = self.getWidth, expWidth, sigWidth))
in_to_rec_fn.io.signedIn := false.B
in_to_rec_fn.io.in := x
in_to_rec_fn.io.roundingMode := consts.round_minMag // consts.round_near_maxMag
in_to_rec_fn.io.detectTininess := consts.tininess_afterRounding
in_to_rec_fn.io.out
}
def float_to_in(x: UInt) = {
val rec_fn_to_in = Module(new RecFNToIN(expWidth = expWidth, sigWidth, self.getWidth))
rec_fn_to_in.io.signedOut := true.B
rec_fn_to_in.io.in := x
rec_fn_to_in.io.roundingMode := consts.round_minMag // consts.round_near_maxMag
rec_fn_to_in.io.out.asSInt
}
val self_rec = sin_to_float(self)
val denom_rec = uin_to_float(input.bits)
// Instantiate the hardloat divider
val divider = Module(new DivSqrtRecFN_small(expWidth, sigWidth, options))
input.ready := divider.io.inReady
divider.io.inValid := input.valid
divider.io.sqrtOp := false.B
divider.io.a := self_rec
divider.io.b := denom_rec
divider.io.roundingMode := consts.round_minMag
divider.io.detectTininess := consts.tininess_afterRounding
output.valid := divider.io.outValid_div
output.bits := float_to_in(divider.io.out)
assert(!output.valid || output.ready)
Some((input, output))
}
override def sqrt: Option[(DecoupledIO[UInt], DecoupledIO[SInt])] = {
// TODO this uses a floating point divider, but we should use an integer divider instead
val input = Wire(Decoupled(UInt(0.W)))
val output = Wire(Decoupled(self.cloneType))
input.bits := DontCare
// We translate our integer to floating-point form so that we can use the hardfloat divider
val expWidth = log2Up(self.getWidth) + 1
val sigWidth = self.getWidth
def in_to_float(x: SInt) = {
val in_to_rec_fn = Module(new INToRecFN(intWidth = self.getWidth, expWidth, sigWidth))
in_to_rec_fn.io.signedIn := true.B
in_to_rec_fn.io.in := x.asUInt
in_to_rec_fn.io.roundingMode := consts.round_minMag // consts.round_near_maxMag
in_to_rec_fn.io.detectTininess := consts.tininess_afterRounding
in_to_rec_fn.io.out
}
def float_to_in(x: UInt) = {
val rec_fn_to_in = Module(new RecFNToIN(expWidth = expWidth, sigWidth, self.getWidth))
rec_fn_to_in.io.signedOut := true.B
rec_fn_to_in.io.in := x
rec_fn_to_in.io.roundingMode := consts.round_minMag // consts.round_near_maxMag
rec_fn_to_in.io.out.asSInt
}
val self_rec = in_to_float(self)
// Instantiate the hardloat sqrt
val sqrter = Module(new DivSqrtRecFN_small(expWidth, sigWidth, 0))
input.ready := sqrter.io.inReady
sqrter.io.inValid := input.valid
sqrter.io.sqrtOp := true.B
sqrter.io.a := self_rec
sqrter.io.b := DontCare
sqrter.io.roundingMode := consts.round_minMag
sqrter.io.detectTininess := consts.tininess_afterRounding
output.valid := sqrter.io.outValid_sqrt
output.bits := float_to_in(sqrter.io.out)
assert(!output.valid || output.ready)
Some((input, output))
}
override def reciprocal[U <: Data](u: U, options: Int = 0): Option[(DecoupledIO[UInt], DecoupledIO[U])] = u match {
case Float(expWidth, sigWidth) =>
val input = Wire(Decoupled(UInt(0.W)))
val output = Wire(Decoupled(u.cloneType))
input.bits := DontCare
// We translate our integer to floating-point form so that we can use the hardfloat divider
def in_to_float(x: SInt) = {
val in_to_rec_fn = Module(new INToRecFN(intWidth = self.getWidth, expWidth, sigWidth))
in_to_rec_fn.io.signedIn := true.B
in_to_rec_fn.io.in := x.asUInt
in_to_rec_fn.io.roundingMode := consts.round_near_even // consts.round_near_maxMag
in_to_rec_fn.io.detectTininess := consts.tininess_afterRounding
in_to_rec_fn.io.out
}
val self_rec = in_to_float(self)
val one_rec = in_to_float(1.S)
// Instantiate the hardloat divider
val divider = Module(new DivSqrtRecFN_small(expWidth, sigWidth, options))
input.ready := divider.io.inReady
divider.io.inValid := input.valid
divider.io.sqrtOp := false.B
divider.io.a := one_rec
divider.io.b := self_rec
divider.io.roundingMode := consts.round_near_even
divider.io.detectTininess := consts.tininess_afterRounding
output.valid := divider.io.outValid_div
output.bits := fNFromRecFN(expWidth, sigWidth, divider.io.out).asTypeOf(u)
assert(!output.valid || output.ready)
Some((input, output))
case _ => None
}
override def mult_with_reciprocal[U <: Data](reciprocal: U): SInt = reciprocal match {
case recip @ Float(expWidth, sigWidth) =>
def in_to_float(x: SInt) = {
val in_to_rec_fn = Module(new INToRecFN(intWidth = self.getWidth, expWidth, sigWidth))
in_to_rec_fn.io.signedIn := true.B
in_to_rec_fn.io.in := x.asUInt
in_to_rec_fn.io.roundingMode := consts.round_near_even // consts.round_near_maxMag
in_to_rec_fn.io.detectTininess := consts.tininess_afterRounding
in_to_rec_fn.io.out
}
def float_to_in(x: UInt) = {
val rec_fn_to_in = Module(new RecFNToIN(expWidth = expWidth, sigWidth, self.getWidth))
rec_fn_to_in.io.signedOut := true.B
rec_fn_to_in.io.in := x
rec_fn_to_in.io.roundingMode := consts.round_minMag
rec_fn_to_in.io.out.asSInt
}
val self_rec = in_to_float(self)
val reciprocal_rec = recFNFromFN(expWidth, sigWidth, recip.bits)
// Instantiate the hardloat divider
val muladder = Module(new MulRecFN(expWidth, sigWidth))
muladder.io.roundingMode := consts.round_near_even
muladder.io.detectTininess := consts.tininess_afterRounding
muladder.io.a := self_rec
muladder.io.b := reciprocal_rec
float_to_in(muladder.io.out)
case _ => self
}
}
}
implicit object FloatArithmetic extends Arithmetic[Float] {
// TODO Floating point arithmetic currently switches between recoded and standard formats for every operation. However, it should stay in the recoded format as it travels through the systolic array
override implicit def cast(self: Float): ArithmeticOps[Float] = new ArithmeticOps(self) {
override def *(t: Float): Float = {
val t_rec = recFNFromFN(t.expWidth, t.sigWidth, t.bits)
val self_rec = recFNFromFN(self.expWidth, self.sigWidth, self.bits)
val t_resizer = Module(new RecFNToRecFN(t.expWidth, t.sigWidth, self.expWidth, self.sigWidth))
t_resizer.io.in := t_rec
t_resizer.io.roundingMode := consts.round_near_even // consts.round_near_maxMag
t_resizer.io.detectTininess := consts.tininess_afterRounding
val t_rec_resized = t_resizer.io.out
val muladder = Module(new MulRecFN(self.expWidth, self.sigWidth))
muladder.io.roundingMode := consts.round_near_even // consts.round_near_maxMag
muladder.io.detectTininess := consts.tininess_afterRounding
muladder.io.a := self_rec
muladder.io.b := t_rec_resized
val out = Wire(Float(self.expWidth, self.sigWidth))
out.bits := fNFromRecFN(self.expWidth, self.sigWidth, muladder.io.out)
out
}
override def mac(m1: Float, m2: Float): Float = {
// Recode all operands
val m1_rec = recFNFromFN(m1.expWidth, m1.sigWidth, m1.bits)
val m2_rec = recFNFromFN(m2.expWidth, m2.sigWidth, m2.bits)
val self_rec = recFNFromFN(self.expWidth, self.sigWidth, self.bits)
// Resize m1 to self's width
val m1_resizer = Module(new RecFNToRecFN(m1.expWidth, m1.sigWidth, self.expWidth, self.sigWidth))
m1_resizer.io.in := m1_rec
m1_resizer.io.roundingMode := consts.round_near_even // consts.round_near_maxMag
m1_resizer.io.detectTininess := consts.tininess_afterRounding
val m1_rec_resized = m1_resizer.io.out
// Resize m2 to self's width
val m2_resizer = Module(new RecFNToRecFN(m2.expWidth, m2.sigWidth, self.expWidth, self.sigWidth))
m2_resizer.io.in := m2_rec
m2_resizer.io.roundingMode := consts.round_near_even // consts.round_near_maxMag
m2_resizer.io.detectTininess := consts.tininess_afterRounding
val m2_rec_resized = m2_resizer.io.out
// Perform multiply-add
val muladder = Module(new MulAddRecFN(self.expWidth, self.sigWidth))
muladder.io.op := 0.U
muladder.io.roundingMode := consts.round_near_even // consts.round_near_maxMag
muladder.io.detectTininess := consts.tininess_afterRounding
muladder.io.a := m1_rec_resized
muladder.io.b := m2_rec_resized
muladder.io.c := self_rec
// Convert result to standard format // TODO remove these intermediate recodings
val out = Wire(Float(self.expWidth, self.sigWidth))
out.bits := fNFromRecFN(self.expWidth, self.sigWidth, muladder.io.out)
out
}
override def +(t: Float): Float = {
require(self.getWidth >= t.getWidth) // This just makes it easier to write the resizing code
// Recode all operands
val t_rec = recFNFromFN(t.expWidth, t.sigWidth, t.bits)
val self_rec = recFNFromFN(self.expWidth, self.sigWidth, self.bits)
// Generate 1 as a float
val in_to_rec_fn = Module(new INToRecFN(1, self.expWidth, self.sigWidth))
in_to_rec_fn.io.signedIn := false.B
in_to_rec_fn.io.in := 1.U
in_to_rec_fn.io.roundingMode := consts.round_near_even // consts.round_near_maxMag
in_to_rec_fn.io.detectTininess := consts.tininess_afterRounding
val one_rec = in_to_rec_fn.io.out
// Resize t
val t_resizer = Module(new RecFNToRecFN(t.expWidth, t.sigWidth, self.expWidth, self.sigWidth))
t_resizer.io.in := t_rec
t_resizer.io.roundingMode := consts.round_near_even // consts.round_near_maxMag
t_resizer.io.detectTininess := consts.tininess_afterRounding
val t_rec_resized = t_resizer.io.out
// Perform addition
val muladder = Module(new MulAddRecFN(self.expWidth, self.sigWidth))
muladder.io.op := 0.U
muladder.io.roundingMode := consts.round_near_even // consts.round_near_maxMag
muladder.io.detectTininess := consts.tininess_afterRounding
muladder.io.a := t_rec_resized
muladder.io.b := one_rec
muladder.io.c := self_rec
val result = Wire(Float(self.expWidth, self.sigWidth))
result.bits := fNFromRecFN(self.expWidth, self.sigWidth, muladder.io.out)
result
}
override def -(t: Float): Float = {
val t_sgn = t.bits(t.getWidth-1)
val neg_t = Cat(~t_sgn, t.bits(t.getWidth-2,0)).asTypeOf(t)
self + neg_t
}
override def >>(u: UInt): Float = {
// Recode self
val self_rec = recFNFromFN(self.expWidth, self.sigWidth, self.bits)
// Get 2^(-u) as a recoded float
val shift_exp = Wire(UInt(self.expWidth.W))
shift_exp := self.bias.U - u
val shift_fn = Cat(0.U(1.W), shift_exp, 0.U((self.sigWidth-1).W))
val shift_rec = recFNFromFN(self.expWidth, self.sigWidth, shift_fn)
assert(shift_exp =/= 0.U, "scaling by denormalized numbers is not currently supported")
// Multiply self and 2^(-u)
val muladder = Module(new MulRecFN(self.expWidth, self.sigWidth))
muladder.io.roundingMode := consts.round_near_even // consts.round_near_maxMag
muladder.io.detectTininess := consts.tininess_afterRounding
muladder.io.a := self_rec
muladder.io.b := shift_rec
val result = Wire(Float(self.expWidth, self.sigWidth))
result.bits := fNFromRecFN(self.expWidth, self.sigWidth, muladder.io.out)
result
}
override def >(t: Float): Bool = {
// Recode all operands
val t_rec = recFNFromFN(t.expWidth, t.sigWidth, t.bits)
val self_rec = recFNFromFN(self.expWidth, self.sigWidth, self.bits)
// Resize t to self's width
val t_resizer = Module(new RecFNToRecFN(t.expWidth, t.sigWidth, self.expWidth, self.sigWidth))
t_resizer.io.in := t_rec
t_resizer.io.roundingMode := consts.round_near_even
t_resizer.io.detectTininess := consts.tininess_afterRounding
val t_rec_resized = t_resizer.io.out
val comparator = Module(new CompareRecFN(self.expWidth, self.sigWidth))
comparator.io.a := self_rec
comparator.io.b := t_rec_resized
comparator.io.signaling := false.B
comparator.io.gt
}
override def withWidthOf(t: Float): Float = {
val self_rec = recFNFromFN(self.expWidth, self.sigWidth, self.bits)
val resizer = Module(new RecFNToRecFN(self.expWidth, self.sigWidth, t.expWidth, t.sigWidth))
resizer.io.in := self_rec
resizer.io.roundingMode := consts.round_near_even // consts.round_near_maxMag
resizer.io.detectTininess := consts.tininess_afterRounding
val result = Wire(Float(t.expWidth, t.sigWidth))
result.bits := fNFromRecFN(t.expWidth, t.sigWidth, resizer.io.out)
result
}
override def clippedToWidthOf(t: Float): Float = {
// TODO check for overflow. Right now, we just assume that overflow doesn't happen
val self_rec = recFNFromFN(self.expWidth, self.sigWidth, self.bits)
val resizer = Module(new RecFNToRecFN(self.expWidth, self.sigWidth, t.expWidth, t.sigWidth))
resizer.io.in := self_rec
resizer.io.roundingMode := consts.round_near_even // consts.round_near_maxMag
resizer.io.detectTininess := consts.tininess_afterRounding
val result = Wire(Float(t.expWidth, t.sigWidth))
result.bits := fNFromRecFN(t.expWidth, t.sigWidth, resizer.io.out)
result
}
override def relu: Float = {
val raw = rawFloatFromFN(self.expWidth, self.sigWidth, self.bits)
val result = Wire(Float(self.expWidth, self.sigWidth))
result.bits := Mux(!raw.isZero && raw.sign, 0.U, self.bits)
result
}
override def zero: Float = 0.U.asTypeOf(self)
override def identity: Float = Cat(0.U(2.W), ~(0.U((self.expWidth-1).W)), 0.U((self.sigWidth-1).W)).asTypeOf(self)
override def minimum: Float = Cat(1.U, ~(0.U(self.expWidth.W)), 0.U((self.sigWidth-1).W)).asTypeOf(self)
}
}
implicit object DummySIntArithmetic extends Arithmetic[DummySInt] {
override implicit def cast(self: DummySInt) = new ArithmeticOps(self) {
override def *(t: DummySInt) = self.dontCare
override def mac(m1: DummySInt, m2: DummySInt) = self.dontCare
override def +(t: DummySInt) = self.dontCare
override def -(t: DummySInt) = self.dontCare
override def >>(t: UInt) = self.dontCare
override def >(t: DummySInt): Bool = false.B
override def identity = self.dontCare
override def withWidthOf(t: DummySInt) = self.dontCare
override def clippedToWidthOf(t: DummySInt) = self.dontCare
override def relu = self.dontCare
override def zero = self.dontCare
override def minimum: DummySInt = self.dontCare
}
}
}
| module PE_340( // @[PE.scala:31:7]
input clock, // @[PE.scala:31:7]
input reset, // @[PE.scala:31:7]
input [7:0] io_in_a, // @[PE.scala:35:14]
input [19:0] io_in_b, // @[PE.scala:35:14]
input [19:0] io_in_d, // @[PE.scala:35:14]
output [7:0] io_out_a, // @[PE.scala:35:14]
output [19:0] io_out_b, // @[PE.scala:35:14]
output [19:0] io_out_c, // @[PE.scala:35:14]
input io_in_control_dataflow, // @[PE.scala:35:14]
input io_in_control_propagate, // @[PE.scala:35:14]
input [4:0] io_in_control_shift, // @[PE.scala:35:14]
output io_out_control_dataflow, // @[PE.scala:35:14]
output io_out_control_propagate, // @[PE.scala:35:14]
output [4:0] io_out_control_shift, // @[PE.scala:35:14]
input [2:0] io_in_id, // @[PE.scala:35:14]
output [2:0] io_out_id, // @[PE.scala:35:14]
input io_in_last, // @[PE.scala:35:14]
output io_out_last, // @[PE.scala:35:14]
input io_in_valid, // @[PE.scala:35:14]
output io_out_valid // @[PE.scala:35:14]
);
wire [7:0] io_in_a_0 = io_in_a; // @[PE.scala:31:7]
wire [19:0] io_in_b_0 = io_in_b; // @[PE.scala:31:7]
wire [19:0] io_in_d_0 = io_in_d; // @[PE.scala:31:7]
wire io_in_control_dataflow_0 = io_in_control_dataflow; // @[PE.scala:31:7]
wire io_in_control_propagate_0 = io_in_control_propagate; // @[PE.scala:31:7]
wire [4:0] io_in_control_shift_0 = io_in_control_shift; // @[PE.scala:31:7]
wire [2:0] io_in_id_0 = io_in_id; // @[PE.scala:31:7]
wire io_in_last_0 = io_in_last; // @[PE.scala:31:7]
wire io_in_valid_0 = io_in_valid; // @[PE.scala:31:7]
wire io_bad_dataflow = 1'h0; // @[PE.scala:31:7]
wire _io_out_c_T_5 = 1'h0; // @[Arithmetic.scala:125:33]
wire _io_out_c_T_6 = 1'h0; // @[Arithmetic.scala:125:60]
wire _io_out_c_T_16 = 1'h0; // @[Arithmetic.scala:125:33]
wire _io_out_c_T_17 = 1'h0; // @[Arithmetic.scala:125:60]
wire [7:0] io_out_a_0 = io_in_a_0; // @[PE.scala:31:7]
wire [19:0] _mac_unit_io_in_b_T = io_in_b_0; // @[PE.scala:31:7, :106:37]
wire [19:0] _mac_unit_io_in_b_T_2 = io_in_b_0; // @[PE.scala:31:7, :113:37]
wire [19:0] _mac_unit_io_in_b_T_8 = io_in_b_0; // @[PE.scala:31:7, :137:35]
wire io_out_control_dataflow_0 = io_in_control_dataflow_0; // @[PE.scala:31:7]
wire io_out_control_propagate_0 = io_in_control_propagate_0; // @[PE.scala:31:7]
wire [4:0] io_out_control_shift_0 = io_in_control_shift_0; // @[PE.scala:31:7]
wire [2:0] io_out_id_0 = io_in_id_0; // @[PE.scala:31:7]
wire io_out_last_0 = io_in_last_0; // @[PE.scala:31:7]
wire io_out_valid_0 = io_in_valid_0; // @[PE.scala:31:7]
wire [19:0] io_out_b_0; // @[PE.scala:31:7]
wire [19:0] io_out_c_0; // @[PE.scala:31:7]
reg [7:0] c1; // @[PE.scala:70:15]
wire [7:0] _io_out_c_zeros_T_1 = c1; // @[PE.scala:70:15]
wire [7:0] _mac_unit_io_in_b_T_6 = c1; // @[PE.scala:70:15, :127:38]
reg [7:0] c2; // @[PE.scala:71:15]
wire [7:0] _io_out_c_zeros_T_10 = c2; // @[PE.scala:71:15]
wire [7:0] _mac_unit_io_in_b_T_4 = c2; // @[PE.scala:71:15, :121:38]
reg last_s; // @[PE.scala:89:25]
wire flip = last_s != io_in_control_propagate_0; // @[PE.scala:31:7, :89:25, :90:21]
wire [4:0] shift_offset = flip ? io_in_control_shift_0 : 5'h0; // @[PE.scala:31:7, :90:21, :91:25]
wire _GEN = shift_offset == 5'h0; // @[PE.scala:91:25]
wire _io_out_c_point_five_T; // @[Arithmetic.scala:101:32]
assign _io_out_c_point_five_T = _GEN; // @[Arithmetic.scala:101:32]
wire _io_out_c_point_five_T_5; // @[Arithmetic.scala:101:32]
assign _io_out_c_point_five_T_5 = _GEN; // @[Arithmetic.scala:101:32]
wire [5:0] _GEN_0 = {1'h0, shift_offset} - 6'h1; // @[PE.scala:91:25]
wire [5:0] _io_out_c_point_five_T_1; // @[Arithmetic.scala:101:53]
assign _io_out_c_point_five_T_1 = _GEN_0; // @[Arithmetic.scala:101:53]
wire [5:0] _io_out_c_zeros_T_2; // @[Arithmetic.scala:102:66]
assign _io_out_c_zeros_T_2 = _GEN_0; // @[Arithmetic.scala:101:53, :102:66]
wire [5:0] _io_out_c_point_five_T_6; // @[Arithmetic.scala:101:53]
assign _io_out_c_point_five_T_6 = _GEN_0; // @[Arithmetic.scala:101:53]
wire [5:0] _io_out_c_zeros_T_11; // @[Arithmetic.scala:102:66]
assign _io_out_c_zeros_T_11 = _GEN_0; // @[Arithmetic.scala:101:53, :102:66]
wire [4:0] _io_out_c_point_five_T_2 = _io_out_c_point_five_T_1[4:0]; // @[Arithmetic.scala:101:53]
wire [7:0] _io_out_c_point_five_T_3 = $signed($signed(c1) >>> _io_out_c_point_five_T_2); // @[PE.scala:70:15]
wire _io_out_c_point_five_T_4 = _io_out_c_point_five_T_3[0]; // @[Arithmetic.scala:101:50]
wire io_out_c_point_five = ~_io_out_c_point_five_T & _io_out_c_point_five_T_4; // @[Arithmetic.scala:101:{29,32,50}]
wire _GEN_1 = shift_offset < 5'h2; // @[PE.scala:91:25]
wire _io_out_c_zeros_T; // @[Arithmetic.scala:102:27]
assign _io_out_c_zeros_T = _GEN_1; // @[Arithmetic.scala:102:27]
wire _io_out_c_zeros_T_9; // @[Arithmetic.scala:102:27]
assign _io_out_c_zeros_T_9 = _GEN_1; // @[Arithmetic.scala:102:27]
wire [4:0] _io_out_c_zeros_T_3 = _io_out_c_zeros_T_2[4:0]; // @[Arithmetic.scala:102:66]
wire [31:0] _io_out_c_zeros_T_4 = 32'h1 << _io_out_c_zeros_T_3; // @[Arithmetic.scala:102:{60,66}]
wire [32:0] _io_out_c_zeros_T_5 = {1'h0, _io_out_c_zeros_T_4} - 33'h1; // @[Arithmetic.scala:102:{60,81}]
wire [31:0] _io_out_c_zeros_T_6 = _io_out_c_zeros_T_5[31:0]; // @[Arithmetic.scala:102:81]
wire [31:0] _io_out_c_zeros_T_7 = {24'h0, _io_out_c_zeros_T_6[7:0] & _io_out_c_zeros_T_1}; // @[Arithmetic.scala:102:{45,52,81}]
wire [31:0] _io_out_c_zeros_T_8 = _io_out_c_zeros_T ? 32'h0 : _io_out_c_zeros_T_7; // @[Arithmetic.scala:102:{24,27,52}]
wire io_out_c_zeros = |_io_out_c_zeros_T_8; // @[Arithmetic.scala:102:{24,89}]
wire [7:0] _GEN_2 = {3'h0, shift_offset}; // @[PE.scala:91:25]
wire [7:0] _GEN_3 = $signed($signed(c1) >>> _GEN_2); // @[PE.scala:70:15]
wire [7:0] _io_out_c_ones_digit_T; // @[Arithmetic.scala:103:30]
assign _io_out_c_ones_digit_T = _GEN_3; // @[Arithmetic.scala:103:30]
wire [7:0] _io_out_c_T; // @[Arithmetic.scala:107:15]
assign _io_out_c_T = _GEN_3; // @[Arithmetic.scala:103:30, :107:15]
wire io_out_c_ones_digit = _io_out_c_ones_digit_T[0]; // @[Arithmetic.scala:103:30]
wire _io_out_c_r_T = io_out_c_zeros | io_out_c_ones_digit; // @[Arithmetic.scala:102:89, :103:30, :105:38]
wire _io_out_c_r_T_1 = io_out_c_point_five & _io_out_c_r_T; // @[Arithmetic.scala:101:29, :105:{29,38}]
wire io_out_c_r = _io_out_c_r_T_1; // @[Arithmetic.scala:105:{29,53}]
wire [1:0] _io_out_c_T_1 = {1'h0, io_out_c_r}; // @[Arithmetic.scala:105:53, :107:33]
wire [8:0] _io_out_c_T_2 = {_io_out_c_T[7], _io_out_c_T} + {{7{_io_out_c_T_1[1]}}, _io_out_c_T_1}; // @[Arithmetic.scala:107:{15,28,33}]
wire [7:0] _io_out_c_T_3 = _io_out_c_T_2[7:0]; // @[Arithmetic.scala:107:28]
wire [7:0] _io_out_c_T_4 = _io_out_c_T_3; // @[Arithmetic.scala:107:28]
wire [19:0] _io_out_c_T_7 = {{12{_io_out_c_T_4[7]}}, _io_out_c_T_4}; // @[Mux.scala:126:16]
wire [19:0] _io_out_c_T_8 = _io_out_c_T_7; // @[Mux.scala:126:16]
wire [19:0] _io_out_c_T_9 = _io_out_c_T_8; // @[Mux.scala:126:16]
wire [19:0] _io_out_c_T_10 = _io_out_c_T_9; // @[Arithmetic.scala:125:{81,99}]
wire [19:0] _mac_unit_io_in_b_T_1 = _mac_unit_io_in_b_T; // @[PE.scala:106:37]
wire [7:0] _mac_unit_io_in_b_WIRE = _mac_unit_io_in_b_T_1[7:0]; // @[PE.scala:106:37]
wire [7:0] _c1_T = io_in_d_0[7:0]; // @[PE.scala:31:7]
wire [7:0] _c2_T = io_in_d_0[7:0]; // @[PE.scala:31:7]
wire [7:0] _c1_T_1 = _c1_T; // @[Arithmetic.scala:114:{15,33}]
wire [4:0] _io_out_c_point_five_T_7 = _io_out_c_point_five_T_6[4:0]; // @[Arithmetic.scala:101:53]
wire [7:0] _io_out_c_point_five_T_8 = $signed($signed(c2) >>> _io_out_c_point_five_T_7); // @[PE.scala:71:15]
wire _io_out_c_point_five_T_9 = _io_out_c_point_five_T_8[0]; // @[Arithmetic.scala:101:50]
wire io_out_c_point_five_1 = ~_io_out_c_point_five_T_5 & _io_out_c_point_five_T_9; // @[Arithmetic.scala:101:{29,32,50}]
wire [4:0] _io_out_c_zeros_T_12 = _io_out_c_zeros_T_11[4:0]; // @[Arithmetic.scala:102:66]
wire [31:0] _io_out_c_zeros_T_13 = 32'h1 << _io_out_c_zeros_T_12; // @[Arithmetic.scala:102:{60,66}]
wire [32:0] _io_out_c_zeros_T_14 = {1'h0, _io_out_c_zeros_T_13} - 33'h1; // @[Arithmetic.scala:102:{60,81}]
wire [31:0] _io_out_c_zeros_T_15 = _io_out_c_zeros_T_14[31:0]; // @[Arithmetic.scala:102:81]
wire [31:0] _io_out_c_zeros_T_16 = {24'h0, _io_out_c_zeros_T_15[7:0] & _io_out_c_zeros_T_10}; // @[Arithmetic.scala:102:{45,52,81}]
wire [31:0] _io_out_c_zeros_T_17 = _io_out_c_zeros_T_9 ? 32'h0 : _io_out_c_zeros_T_16; // @[Arithmetic.scala:102:{24,27,52}]
wire io_out_c_zeros_1 = |_io_out_c_zeros_T_17; // @[Arithmetic.scala:102:{24,89}]
wire [7:0] _GEN_4 = $signed($signed(c2) >>> _GEN_2); // @[PE.scala:71:15]
wire [7:0] _io_out_c_ones_digit_T_1; // @[Arithmetic.scala:103:30]
assign _io_out_c_ones_digit_T_1 = _GEN_4; // @[Arithmetic.scala:103:30]
wire [7:0] _io_out_c_T_11; // @[Arithmetic.scala:107:15]
assign _io_out_c_T_11 = _GEN_4; // @[Arithmetic.scala:103:30, :107:15]
wire io_out_c_ones_digit_1 = _io_out_c_ones_digit_T_1[0]; // @[Arithmetic.scala:103:30]
wire _io_out_c_r_T_2 = io_out_c_zeros_1 | io_out_c_ones_digit_1; // @[Arithmetic.scala:102:89, :103:30, :105:38]
wire _io_out_c_r_T_3 = io_out_c_point_five_1 & _io_out_c_r_T_2; // @[Arithmetic.scala:101:29, :105:{29,38}]
wire io_out_c_r_1 = _io_out_c_r_T_3; // @[Arithmetic.scala:105:{29,53}]
wire [1:0] _io_out_c_T_12 = {1'h0, io_out_c_r_1}; // @[Arithmetic.scala:105:53, :107:33]
wire [8:0] _io_out_c_T_13 = {_io_out_c_T_11[7], _io_out_c_T_11} + {{7{_io_out_c_T_12[1]}}, _io_out_c_T_12}; // @[Arithmetic.scala:107:{15,28,33}]
wire [7:0] _io_out_c_T_14 = _io_out_c_T_13[7:0]; // @[Arithmetic.scala:107:28]
wire [7:0] _io_out_c_T_15 = _io_out_c_T_14; // @[Arithmetic.scala:107:28]
wire [19:0] _io_out_c_T_18 = {{12{_io_out_c_T_15[7]}}, _io_out_c_T_15}; // @[Mux.scala:126:16]
wire [19:0] _io_out_c_T_19 = _io_out_c_T_18; // @[Mux.scala:126:16]
wire [19:0] _io_out_c_T_20 = _io_out_c_T_19; // @[Mux.scala:126:16]
wire [19:0] _io_out_c_T_21 = _io_out_c_T_20; // @[Arithmetic.scala:125:{81,99}]
wire [19:0] _mac_unit_io_in_b_T_3 = _mac_unit_io_in_b_T_2; // @[PE.scala:113:37]
wire [7:0] _mac_unit_io_in_b_WIRE_1 = _mac_unit_io_in_b_T_3[7:0]; // @[PE.scala:113:37]
wire [7:0] _c2_T_1 = _c2_T; // @[Arithmetic.scala:114:{15,33}]
wire [7:0] _mac_unit_io_in_b_T_5; // @[PE.scala:121:38]
assign _mac_unit_io_in_b_T_5 = _mac_unit_io_in_b_T_4; // @[PE.scala:121:38]
wire [7:0] _mac_unit_io_in_b_WIRE_2 = _mac_unit_io_in_b_T_5; // @[PE.scala:121:38]
assign io_out_c_0 = io_in_control_propagate_0 ? {{12{c1[7]}}, c1} : {{12{c2[7]}}, c2}; // @[PE.scala:31:7, :70:15, :71:15, :119:30, :120:16, :126:16]
wire [7:0] _mac_unit_io_in_b_T_7; // @[PE.scala:127:38]
assign _mac_unit_io_in_b_T_7 = _mac_unit_io_in_b_T_6; // @[PE.scala:127:38]
wire [7:0] _mac_unit_io_in_b_WIRE_3 = _mac_unit_io_in_b_T_7; // @[PE.scala:127:38]
wire [19:0] _mac_unit_io_in_b_T_9 = _mac_unit_io_in_b_T_8; // @[PE.scala:137:35]
wire [7:0] _mac_unit_io_in_b_WIRE_4 = _mac_unit_io_in_b_T_9[7:0]; // @[PE.scala:137:35]
always @(posedge clock) begin // @[PE.scala:31:7]
if (io_in_valid_0 & io_in_control_propagate_0) // @[PE.scala:31:7, :102:95, :141:17, :142:8]
c1 <= io_in_d_0[7:0]; // @[PE.scala:31:7, :70:15]
if (~(~io_in_valid_0 | io_in_control_propagate_0)) // @[PE.scala:31:7, :71:15, :102:95, :119:30, :130:10, :141:{9,17}, :143:8]
c2 <= io_in_d_0[7:0]; // @[PE.scala:31:7, :71:15]
if (io_in_valid_0) // @[PE.scala:31:7]
last_s <= io_in_control_propagate_0; // @[PE.scala:31:7, :89:25]
always @(posedge)
MacUnit_84 mac_unit ( // @[PE.scala:64:24]
.clock (clock),
.reset (reset),
.io_in_a (io_in_a_0), // @[PE.scala:31:7]
.io_in_b (io_in_control_propagate_0 ? _mac_unit_io_in_b_WIRE_2 : _mac_unit_io_in_b_WIRE_3), // @[PE.scala:31:7, :119:30, :121:{24,38}, :127:{24,38}]
.io_in_c (io_in_b_0), // @[PE.scala:31:7]
.io_out_d (io_out_b_0)
); // @[PE.scala:64:24]
assign io_out_a = io_out_a_0; // @[PE.scala:31:7]
assign io_out_b = io_out_b_0; // @[PE.scala:31:7]
assign io_out_c = io_out_c_0; // @[PE.scala:31:7]
assign io_out_control_dataflow = io_out_control_dataflow_0; // @[PE.scala:31:7]
assign io_out_control_propagate = io_out_control_propagate_0; // @[PE.scala:31:7]
assign io_out_control_shift = io_out_control_shift_0; // @[PE.scala:31:7]
assign io_out_id = io_out_id_0; // @[PE.scala:31:7]
assign io_out_last = io_out_last_0; // @[PE.scala:31:7]
assign io_out_valid = io_out_valid_0; // @[PE.scala:31:7]
endmodule |
Generate the Verilog code corresponding to the following Chisel files.
File INToRecFN.scala:
/*============================================================================
This Chisel source file is part of a pre-release version of the HardFloat IEEE
Floating-Point Arithmetic Package, by John R. Hauser (with some contributions
from Yunsup Lee and Andrew Waterman, mainly concerning testing).
Copyright 2010, 2011, 2012, 2013, 2014, 2015, 2016 The Regents of the
University of California. All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
1. Redistributions of source code must retain the above copyright notice,
this list of conditions, and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice,
this list of conditions, and the following disclaimer in the documentation
and/or other materials provided with the distribution.
3. Neither the name of the University nor the names of its contributors may
be used to endorse or promote products derived from this software without
specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS "AS IS", AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ARE
DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
=============================================================================*/
package hardfloat
import chisel3._
import consts._
class INToRecFN(intWidth: Int, expWidth: Int, sigWidth: Int) extends RawModule
{
override def desiredName = s"INToRecFN_i${intWidth}_e${expWidth}_s${sigWidth}"
val io = IO(new Bundle {
val signedIn = Input(Bool())
val in = Input(Bits(intWidth.W))
val roundingMode = Input(UInt(3.W))
val detectTininess = Input(UInt(1.W))
val out = Output(Bits((expWidth + sigWidth + 1).W))
val exceptionFlags = Output(Bits(5.W))
})
//------------------------------------------------------------------------
//------------------------------------------------------------------------
val intAsRawFloat = rawFloatFromIN(io.signedIn, io.in);
val roundAnyRawFNToRecFN =
Module(
new RoundAnyRawFNToRecFN(
intAsRawFloat.expWidth,
intWidth,
expWidth,
sigWidth,
flRoundOpt_sigMSBitAlwaysZero | flRoundOpt_neverUnderflows
))
roundAnyRawFNToRecFN.io.invalidExc := false.B
roundAnyRawFNToRecFN.io.infiniteExc := false.B
roundAnyRawFNToRecFN.io.in := intAsRawFloat
roundAnyRawFNToRecFN.io.roundingMode := io.roundingMode
roundAnyRawFNToRecFN.io.detectTininess := io.detectTininess
io.out := roundAnyRawFNToRecFN.io.out
io.exceptionFlags := roundAnyRawFNToRecFN.io.exceptionFlags
}
File primitives.scala:
/*============================================================================
This Chisel source file is part of a pre-release version of the HardFloat IEEE
Floating-Point Arithmetic Package, by John R. Hauser (with some contributions
from Yunsup Lee and Andrew Waterman, mainly concerning testing).
Copyright 2010, 2011, 2012, 2013, 2014, 2015, 2016, 2017 The Regents of the
University of California. All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
1. Redistributions of source code must retain the above copyright notice,
this list of conditions, and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice,
this list of conditions, and the following disclaimer in the documentation
and/or other materials provided with the distribution.
3. Neither the name of the University nor the names of its contributors may
be used to endorse or promote products derived from this software without
specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS "AS IS", AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ARE
DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
=============================================================================*/
package hardfloat
import chisel3._
import chisel3.util._
//----------------------------------------------------------------------------
//----------------------------------------------------------------------------
object lowMask
{
def apply(in: UInt, topBound: BigInt, bottomBound: BigInt): UInt =
{
require(topBound != bottomBound)
val numInVals = BigInt(1)<<in.getWidth
if (topBound < bottomBound) {
lowMask(~in, numInVals - 1 - topBound, numInVals - 1 - bottomBound)
} else if (numInVals > 64 /* Empirical */) {
// For simulation performance, we should avoid generating
// exteremely wide shifters, so we divide and conquer.
// Empirically, this does not impact synthesis QoR.
val mid = numInVals / 2
val msb = in(in.getWidth - 1)
val lsbs = in(in.getWidth - 2, 0)
if (mid < topBound) {
if (mid <= bottomBound) {
Mux(msb,
lowMask(lsbs, topBound - mid, bottomBound - mid),
0.U
)
} else {
Mux(msb,
lowMask(lsbs, topBound - mid, 0) ## ((BigInt(1)<<(mid - bottomBound).toInt) - 1).U,
lowMask(lsbs, mid, bottomBound)
)
}
} else {
~Mux(msb, 0.U, ~lowMask(lsbs, topBound, bottomBound))
}
} else {
val shift = (BigInt(-1)<<numInVals.toInt).S>>in
Reverse(
shift(
(numInVals - 1 - bottomBound).toInt,
(numInVals - topBound).toInt
)
)
}
}
}
//----------------------------------------------------------------------------
//----------------------------------------------------------------------------
object countLeadingZeros
{
def apply(in: UInt): UInt = PriorityEncoder(in.asBools.reverse)
}
//----------------------------------------------------------------------------
//----------------------------------------------------------------------------
object orReduceBy2
{
def apply(in: UInt): UInt =
{
val reducedWidth = (in.getWidth + 1)>>1
val reducedVec = Wire(Vec(reducedWidth, Bool()))
for (ix <- 0 until reducedWidth - 1) {
reducedVec(ix) := in(ix * 2 + 1, ix * 2).orR
}
reducedVec(reducedWidth - 1) :=
in(in.getWidth - 1, (reducedWidth - 1) * 2).orR
reducedVec.asUInt
}
}
//----------------------------------------------------------------------------
//----------------------------------------------------------------------------
object orReduceBy4
{
def apply(in: UInt): UInt =
{
val reducedWidth = (in.getWidth + 3)>>2
val reducedVec = Wire(Vec(reducedWidth, Bool()))
for (ix <- 0 until reducedWidth - 1) {
reducedVec(ix) := in(ix * 4 + 3, ix * 4).orR
}
reducedVec(reducedWidth - 1) :=
in(in.getWidth - 1, (reducedWidth - 1) * 4).orR
reducedVec.asUInt
}
}
File rawFloatFromIN.scala:
/*============================================================================
This Chisel source file is part of a pre-release version of the HardFloat IEEE
Floating-Point Arithmetic Package, by John R. Hauser (with some contributions
from Yunsup Lee and Andrew Waterman, mainly concerning testing).
Copyright 2010, 2011, 2012, 2013, 2014, 2015, 2016, 2017 The Regents of the
University of California. All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
1. Redistributions of source code must retain the above copyright notice,
this list of conditions, and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice,
this list of conditions, and the following disclaimer in the documentation
and/or other materials provided with the distribution.
3. Neither the name of the University nor the names of its contributors may
be used to endorse or promote products derived from this software without
specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS "AS IS", AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ARE
DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
=============================================================================*/
package hardfloat
import chisel3._
import chisel3.util._
object rawFloatFromIN
{
def apply(signedIn: Bool, in: Bits): RawFloat =
{
val expWidth = log2Up(in.getWidth) + 1
//*** CHANGE THIS; CAN BE VERY LARGE:
val extIntWidth = 1<<(expWidth - 1)
val sign = signedIn && in(in.getWidth - 1)
val absIn = Mux(sign, -in.asUInt, in.asUInt)
val extAbsIn = (0.U(extIntWidth.W) ## absIn)(extIntWidth - 1, 0)
val adjustedNormDist = countLeadingZeros(extAbsIn)
val sig =
(extAbsIn<<adjustedNormDist)(
extIntWidth - 1, extIntWidth - in.getWidth)
val out = Wire(new RawFloat(expWidth, in.getWidth))
out.isNaN := false.B
out.isInf := false.B
out.isZero := ! sig(in.getWidth - 1)
out.sign := sign
out.sExp := (2.U(2.W) ## ~adjustedNormDist(expWidth - 2, 0)).zext
out.sig := sig
out
}
}
| module INToRecFN_i1_e8_s24_37(); // @[INToRecFN.scala:43:7]
wire [1:0] _intAsRawFloat_absIn_T = 2'h3; // @[rawFloatFromIN.scala:52:31]
wire [2:0] _intAsRawFloat_extAbsIn_T = 3'h1; // @[rawFloatFromIN.scala:53:44]
wire [2:0] _intAsRawFloat_sig_T = 3'h2; // @[rawFloatFromIN.scala:56:22]
wire [2:0] _intAsRawFloat_out_sExp_T_2 = 3'h4; // @[rawFloatFromIN.scala:64:33]
wire [3:0] intAsRawFloat_sExp = 4'h4; // @[rawFloatFromIN.scala:59:23, :64:72]
wire [3:0] _intAsRawFloat_out_sExp_T_3 = 4'h4; // @[rawFloatFromIN.scala:59:23, :64:72]
wire [1:0] intAsRawFloat_extAbsIn = 2'h1; // @[rawFloatFromIN.scala:53:53, :59:23, :65:20]
wire [1:0] intAsRawFloat_sig = 2'h1; // @[rawFloatFromIN.scala:53:53, :59:23, :65:20]
wire [4:0] io_exceptionFlags = 5'h0; // @[INToRecFN.scala:43:7, :46:16, :60:15]
wire [32:0] io_out = 33'h80000000; // @[INToRecFN.scala:43:7, :46:16, :60:15]
wire [2:0] io_roundingMode = 3'h0; // @[INToRecFN.scala:43:7, :46:16, :60:15]
wire io_in = 1'h1; // @[Mux.scala:50:70]
wire io_detectTininess = 1'h1; // @[Mux.scala:50:70]
wire _intAsRawFloat_sign_T = 1'h1; // @[Mux.scala:50:70]
wire _intAsRawFloat_absIn_T_1 = 1'h1; // @[Mux.scala:50:70]
wire intAsRawFloat_absIn = 1'h1; // @[Mux.scala:50:70]
wire _intAsRawFloat_adjustedNormDist_T = 1'h1; // @[Mux.scala:50:70]
wire intAsRawFloat_adjustedNormDist = 1'h1; // @[Mux.scala:50:70]
wire intAsRawFloat_sig_0 = 1'h1; // @[Mux.scala:50:70]
wire _intAsRawFloat_out_isZero_T = 1'h1; // @[Mux.scala:50:70]
wire _intAsRawFloat_out_sExp_T = 1'h1; // @[Mux.scala:50:70]
wire io_signedIn = 1'h0; // @[INToRecFN.scala:43:7]
wire intAsRawFloat_sign = 1'h0; // @[rawFloatFromIN.scala:51:29]
wire _intAsRawFloat_adjustedNormDist_T_1 = 1'h0; // @[primitives.scala:91:52]
wire intAsRawFloat_isNaN = 1'h0; // @[rawFloatFromIN.scala:59:23]
wire intAsRawFloat_isInf = 1'h0; // @[rawFloatFromIN.scala:59:23]
wire intAsRawFloat_isZero = 1'h0; // @[rawFloatFromIN.scala:59:23]
wire intAsRawFloat_sign_0 = 1'h0; // @[rawFloatFromIN.scala:59:23]
wire _intAsRawFloat_out_isZero_T_1 = 1'h0; // @[rawFloatFromIN.scala:62:23]
wire _intAsRawFloat_out_sExp_T_1 = 1'h0; // @[rawFloatFromIN.scala:64:36]
RoundAnyRawFNToRecFN_ie2_is1_oe8_os24_37 roundAnyRawFNToRecFN (); // @[INToRecFN.scala:60:15]
endmodule |
Generate the Verilog code corresponding to the following Chisel files.
File ShiftReg.scala:
// See LICENSE.SiFive for license details.
package freechips.rocketchip.util
import chisel3._
// Similar to the Chisel ShiftRegister but allows the user to suggest a
// name to the registers that get instantiated, and
// to provide a reset value.
object ShiftRegInit {
def apply[T <: Data](in: T, n: Int, init: T, name: Option[String] = None): T =
(0 until n).foldRight(in) {
case (i, next) => {
val r = RegNext(next, init)
name.foreach { na => r.suggestName(s"${na}_${i}") }
r
}
}
}
/** These wrap behavioral
* shift registers into specific modules to allow for
* backend flows to replace or constrain
* them properly when used for CDC synchronization,
* rather than buffering.
*
* The different types vary in their reset behavior:
* AsyncResetShiftReg -- Asynchronously reset register array
* A W(width) x D(depth) sized array is constructed from D instantiations of a
* W-wide register vector. Functionally identical to AsyncResetSyncrhonizerShiftReg,
* but only used for timing applications
*/
abstract class AbstractPipelineReg(w: Int = 1) extends Module {
val io = IO(new Bundle {
val d = Input(UInt(w.W))
val q = Output(UInt(w.W))
}
)
}
object AbstractPipelineReg {
def apply [T <: Data](gen: => AbstractPipelineReg, in: T, name: Option[String] = None): T = {
val chain = Module(gen)
name.foreach{ chain.suggestName(_) }
chain.io.d := in.asUInt
chain.io.q.asTypeOf(in)
}
}
class AsyncResetShiftReg(w: Int = 1, depth: Int = 1, init: Int = 0, name: String = "pipe") extends AbstractPipelineReg(w) {
require(depth > 0, "Depth must be greater than 0.")
override def desiredName = s"AsyncResetShiftReg_w${w}_d${depth}_i${init}"
val chain = List.tabulate(depth) { i =>
Module (new AsyncResetRegVec(w, init)).suggestName(s"${name}_${i}")
}
chain.last.io.d := io.d
chain.last.io.en := true.B
(chain.init zip chain.tail).foreach { case (sink, source) =>
sink.io.d := source.io.q
sink.io.en := true.B
}
io.q := chain.head.io.q
}
object AsyncResetShiftReg {
def apply [T <: Data](in: T, depth: Int, init: Int = 0, name: Option[String] = None): T =
AbstractPipelineReg(new AsyncResetShiftReg(in.getWidth, depth, init), in, name)
def apply [T <: Data](in: T, depth: Int, name: Option[String]): T =
apply(in, depth, 0, name)
def apply [T <: Data](in: T, depth: Int, init: T, name: Option[String]): T =
apply(in, depth, init.litValue.toInt, name)
def apply [T <: Data](in: T, depth: Int, init: T): T =
apply (in, depth, init.litValue.toInt, None)
}
File SynchronizerReg.scala:
// See LICENSE.SiFive for license details.
package freechips.rocketchip.util
import chisel3._
import chisel3.util.{RegEnable, Cat}
/** These wrap behavioral
* shift and next registers into specific modules to allow for
* backend flows to replace or constrain
* them properly when used for CDC synchronization,
* rather than buffering.
*
*
* These are built up of *ResetSynchronizerPrimitiveShiftReg,
* intended to be replaced by the integrator's metastable flops chains or replaced
* at this level if they have a multi-bit wide synchronizer primitive.
* The different types vary in their reset behavior:
* NonSyncResetSynchronizerShiftReg -- Register array which does not have a reset pin
* AsyncResetSynchronizerShiftReg -- Asynchronously reset register array, constructed from W instantiations of D deep
* 1-bit-wide shift registers.
* SyncResetSynchronizerShiftReg -- Synchronously reset register array, constructed similarly to AsyncResetSynchronizerShiftReg
*
* [Inferred]ResetSynchronizerShiftReg -- TBD reset type by chisel3 reset inference.
*
* ClockCrossingReg -- Not made up of SynchronizerPrimitiveShiftReg. This is for single-deep flops which cross
* Clock Domains.
*/
object SynchronizerResetType extends Enumeration {
val NonSync, Inferred, Sync, Async = Value
}
// Note: this should not be used directly.
// Use the companion object to generate this with the correct reset type mixin.
private class SynchronizerPrimitiveShiftReg(
sync: Int,
init: Boolean,
resetType: SynchronizerResetType.Value)
extends AbstractPipelineReg(1) {
val initInt = if (init) 1 else 0
val initPostfix = resetType match {
case SynchronizerResetType.NonSync => ""
case _ => s"_i${initInt}"
}
override def desiredName = s"${resetType.toString}ResetSynchronizerPrimitiveShiftReg_d${sync}${initPostfix}"
val chain = List.tabulate(sync) { i =>
val reg = if (resetType == SynchronizerResetType.NonSync) Reg(Bool()) else RegInit(init.B)
reg.suggestName(s"sync_$i")
}
chain.last := io.d.asBool
(chain.init zip chain.tail).foreach { case (sink, source) =>
sink := source
}
io.q := chain.head.asUInt
}
private object SynchronizerPrimitiveShiftReg {
def apply (in: Bool, sync: Int, init: Boolean, resetType: SynchronizerResetType.Value): Bool = {
val gen: () => SynchronizerPrimitiveShiftReg = resetType match {
case SynchronizerResetType.NonSync =>
() => new SynchronizerPrimitiveShiftReg(sync, init, resetType)
case SynchronizerResetType.Async =>
() => new SynchronizerPrimitiveShiftReg(sync, init, resetType) with RequireAsyncReset
case SynchronizerResetType.Sync =>
() => new SynchronizerPrimitiveShiftReg(sync, init, resetType) with RequireSyncReset
case SynchronizerResetType.Inferred =>
() => new SynchronizerPrimitiveShiftReg(sync, init, resetType)
}
AbstractPipelineReg(gen(), in)
}
}
// Note: This module may end up with a non-AsyncReset type reset.
// But the Primitives within will always have AsyncReset type.
class AsyncResetSynchronizerShiftReg(w: Int = 1, sync: Int, init: Int)
extends AbstractPipelineReg(w) {
require(sync > 1, s"Sync must be greater than 1, not ${sync}.")
override def desiredName = s"AsyncResetSynchronizerShiftReg_w${w}_d${sync}_i${init}"
val output = Seq.tabulate(w) { i =>
val initBit = ((init >> i) & 1) > 0
withReset(reset.asAsyncReset){
SynchronizerPrimitiveShiftReg(io.d(i), sync, initBit, SynchronizerResetType.Async)
}
}
io.q := Cat(output.reverse)
}
object AsyncResetSynchronizerShiftReg {
def apply [T <: Data](in: T, sync: Int, init: Int, name: Option[String] = None): T =
AbstractPipelineReg(new AsyncResetSynchronizerShiftReg(in.getWidth, sync, init), in, name)
def apply [T <: Data](in: T, sync: Int, name: Option[String]): T =
apply (in, sync, 0, name)
def apply [T <: Data](in: T, sync: Int): T =
apply (in, sync, 0, None)
def apply [T <: Data](in: T, sync: Int, init: T, name: Option[String]): T =
apply(in, sync, init.litValue.toInt, name)
def apply [T <: Data](in: T, sync: Int, init: T): T =
apply (in, sync, init.litValue.toInt, None)
}
// Note: This module may end up with a non-Bool type reset.
// But the Primitives within will always have Bool reset type.
@deprecated("SyncResetSynchronizerShiftReg is unecessary with Chisel3 inferred resets. Use ResetSynchronizerShiftReg which will use the inferred reset type.", "rocket-chip 1.2")
class SyncResetSynchronizerShiftReg(w: Int = 1, sync: Int, init: Int) extends AbstractPipelineReg(w) {
require(sync > 1, s"Sync must be greater than 1, not ${sync}.")
override def desiredName = s"SyncResetSynchronizerShiftReg_w${w}_d${sync}_i${init}"
val output = Seq.tabulate(w) { i =>
val initBit = ((init >> i) & 1) > 0
withReset(reset.asBool){
SynchronizerPrimitiveShiftReg(io.d(i), sync, initBit, SynchronizerResetType.Sync)
}
}
io.q := Cat(output.reverse)
}
object SyncResetSynchronizerShiftReg {
def apply [T <: Data](in: T, sync: Int, init: Int, name: Option[String] = None): T =
if (sync == 0) in else AbstractPipelineReg(new SyncResetSynchronizerShiftReg(in.getWidth, sync, init), in, name)
def apply [T <: Data](in: T, sync: Int, name: Option[String]): T =
apply (in, sync, 0, name)
def apply [T <: Data](in: T, sync: Int): T =
apply (in, sync, 0, None)
def apply [T <: Data](in: T, sync: Int, init: T, name: Option[String]): T =
apply(in, sync, init.litValue.toInt, name)
def apply [T <: Data](in: T, sync: Int, init: T): T =
apply (in, sync, init.litValue.toInt, None)
}
class ResetSynchronizerShiftReg(w: Int = 1, sync: Int, init: Int) extends AbstractPipelineReg(w) {
require(sync > 1, s"Sync must be greater than 1, not ${sync}.")
override def desiredName = s"ResetSynchronizerShiftReg_w${w}_d${sync}_i${init}"
val output = Seq.tabulate(w) { i =>
val initBit = ((init >> i) & 1) > 0
SynchronizerPrimitiveShiftReg(io.d(i), sync, initBit, SynchronizerResetType.Inferred)
}
io.q := Cat(output.reverse)
}
object ResetSynchronizerShiftReg {
def apply [T <: Data](in: T, sync: Int, init: Int, name: Option[String] = None): T =
AbstractPipelineReg(new ResetSynchronizerShiftReg(in.getWidth, sync, init), in, name)
def apply [T <: Data](in: T, sync: Int, name: Option[String]): T =
apply (in, sync, 0, name)
def apply [T <: Data](in: T, sync: Int): T =
apply (in, sync, 0, None)
def apply [T <: Data](in: T, sync: Int, init: T, name: Option[String]): T =
apply(in, sync, init.litValue.toInt, name)
def apply [T <: Data](in: T, sync: Int, init: T): T =
apply (in, sync, init.litValue.toInt, None)
}
class SynchronizerShiftReg(w: Int = 1, sync: Int = 3) extends AbstractPipelineReg(w) {
require(sync > 1, s"Sync must be greater than 1, not ${sync}.")
override def desiredName = s"SynchronizerShiftReg_w${w}_d${sync}"
val output = Seq.tabulate(w) { i =>
SynchronizerPrimitiveShiftReg(io.d(i), sync, false, SynchronizerResetType.NonSync)
}
io.q := Cat(output.reverse)
}
object SynchronizerShiftReg {
def apply [T <: Data](in: T, sync: Int, name: Option[String] = None): T =
if (sync == 0) in else AbstractPipelineReg(new SynchronizerShiftReg(in.getWidth, sync), in, name)
def apply [T <: Data](in: T, sync: Int): T =
apply (in, sync, None)
def apply [T <: Data](in: T): T =
apply (in, 3, None)
}
class ClockCrossingReg(w: Int = 1, doInit: Boolean) extends Module {
override def desiredName = s"ClockCrossingReg_w${w}"
val io = IO(new Bundle{
val d = Input(UInt(w.W))
val q = Output(UInt(w.W))
val en = Input(Bool())
})
val cdc_reg = if (doInit) RegEnable(io.d, 0.U(w.W), io.en) else RegEnable(io.d, io.en)
io.q := cdc_reg
}
object ClockCrossingReg {
def apply [T <: Data](in: T, en: Bool, doInit: Boolean, name: Option[String] = None): T = {
val cdc_reg = Module(new ClockCrossingReg(in.getWidth, doInit))
name.foreach{ cdc_reg.suggestName(_) }
cdc_reg.io.d := in.asUInt
cdc_reg.io.en := en
cdc_reg.io.q.asTypeOf(in)
}
}
| module AsyncResetSynchronizerPrimitiveShiftReg_d3_i0_17( // @[SynchronizerReg.scala:68:19]
input clock, // @[SynchronizerReg.scala:68:19]
input reset, // @[SynchronizerReg.scala:68:19]
input io_d, // @[ShiftReg.scala:36:14]
output io_q // @[ShiftReg.scala:36:14]
);
wire io_d_0 = io_d; // @[SynchronizerReg.scala:68:19]
wire _sync_2_T = io_d_0; // @[SynchronizerReg.scala:54:22, :68:19]
wire io_q_0; // @[SynchronizerReg.scala:68:19]
reg sync_0; // @[SynchronizerReg.scala:51:87]
assign io_q_0 = sync_0; // @[SynchronizerReg.scala:51:87, :68:19]
reg sync_1; // @[SynchronizerReg.scala:51:87]
reg sync_2; // @[SynchronizerReg.scala:51:87]
always @(posedge clock or posedge reset) begin // @[SynchronizerReg.scala:68:19]
if (reset) begin // @[SynchronizerReg.scala:68:19]
sync_0 <= 1'h0; // @[SynchronizerReg.scala:51:87]
sync_1 <= 1'h0; // @[SynchronizerReg.scala:51:87]
sync_2 <= 1'h0; // @[SynchronizerReg.scala:51:87]
end
else begin // @[SynchronizerReg.scala:68:19]
sync_0 <= sync_1; // @[SynchronizerReg.scala:51:87]
sync_1 <= sync_2; // @[SynchronizerReg.scala:51:87]
sync_2 <= _sync_2_T; // @[SynchronizerReg.scala:51:87, :54:22]
end
always @(posedge, posedge) |
Generate the Verilog code corresponding to the following Chisel files.
File Fragmenter.scala:
// See LICENSE.SiFive for license details.
package freechips.rocketchip.tilelink
import chisel3._
import chisel3.util._
import org.chipsalliance.cde.config._
import org.chipsalliance.diplomacy._
import org.chipsalliance.diplomacy.lazymodule._
import freechips.rocketchip.diplomacy.{AddressSet, BufferParams, IdRange, TransferSizes}
import freechips.rocketchip.util.{Repeater, OH1ToUInt, UIntToOH1}
import scala.math.min
import freechips.rocketchip.util.DataToAugmentedData
object EarlyAck {
sealed trait T
case object AllPuts extends T
case object PutFulls extends T
case object None extends T
}
// minSize: minimum size of transfers supported by all outward managers
// maxSize: maximum size of transfers supported after the Fragmenter is applied
// alwaysMin: fragment all requests down to minSize (else fragment to maximum supported by manager)
// earlyAck: should a multibeat Put should be acknowledged on the first beat or last beat
// holdFirstDeny: allow the Fragmenter to unsafely combine multibeat Gets by taking the first denied for the whole burst
// nameSuffix: appends a suffix to the module name
// Fragmenter modifies: PutFull, PutPartial, LogicalData, Get, Hint
// Fragmenter passes: ArithmeticData (truncated to minSize if alwaysMin)
// Fragmenter cannot modify acquire (could livelock); thus it is unsafe to put caches on both sides
class TLFragmenter(val minSize: Int, val maxSize: Int, val alwaysMin: Boolean = false, val earlyAck: EarlyAck.T = EarlyAck.None, val holdFirstDeny: Boolean = false, val nameSuffix: Option[String] = None)(implicit p: Parameters) extends LazyModule
{
require(isPow2 (maxSize), s"TLFragmenter expects pow2(maxSize), but got $maxSize")
require(isPow2 (minSize), s"TLFragmenter expects pow2(minSize), but got $minSize")
require(minSize <= maxSize, s"TLFragmenter expects min <= max, but got $minSize > $maxSize")
val fragmentBits = log2Ceil(maxSize / minSize)
val fullBits = if (earlyAck == EarlyAck.PutFulls) 1 else 0
val toggleBits = 1
val addedBits = fragmentBits + toggleBits + fullBits
def expandTransfer(x: TransferSizes, op: String) = if (!x) x else {
// validate that we can apply the fragmenter correctly
require (x.max >= minSize, s"TLFragmenter (with parent $parent) max transfer size $op(${x.max}) must be >= min transfer size (${minSize})")
TransferSizes(x.min, maxSize)
}
private def noChangeRequired = minSize == maxSize
private def shrinkTransfer(x: TransferSizes) =
if (!alwaysMin) x
else if (x.min <= minSize) TransferSizes(x.min, min(minSize, x.max))
else TransferSizes.none
private def mapManager(m: TLSlaveParameters) = m.v1copy(
supportsArithmetic = shrinkTransfer(m.supportsArithmetic),
supportsLogical = shrinkTransfer(m.supportsLogical),
supportsGet = expandTransfer(m.supportsGet, "Get"),
supportsPutFull = expandTransfer(m.supportsPutFull, "PutFull"),
supportsPutPartial = expandTransfer(m.supportsPutPartial, "PutParital"),
supportsHint = expandTransfer(m.supportsHint, "Hint"))
val node = new TLAdapterNode(
// We require that all the responses are mutually FIFO
// Thus we need to compact all of the masters into one big master
clientFn = { c => (if (noChangeRequired) c else c.v2copy(
masters = Seq(TLMasterParameters.v2(
name = "TLFragmenter",
sourceId = IdRange(0, if (minSize == maxSize) c.endSourceId else (c.endSourceId << addedBits)),
requestFifo = true,
emits = TLMasterToSlaveTransferSizes(
acquireT = shrinkTransfer(c.masters.map(_.emits.acquireT) .reduce(_ mincover _)),
acquireB = shrinkTransfer(c.masters.map(_.emits.acquireB) .reduce(_ mincover _)),
arithmetic = shrinkTransfer(c.masters.map(_.emits.arithmetic).reduce(_ mincover _)),
logical = shrinkTransfer(c.masters.map(_.emits.logical) .reduce(_ mincover _)),
get = shrinkTransfer(c.masters.map(_.emits.get) .reduce(_ mincover _)),
putFull = shrinkTransfer(c.masters.map(_.emits.putFull) .reduce(_ mincover _)),
putPartial = shrinkTransfer(c.masters.map(_.emits.putPartial).reduce(_ mincover _)),
hint = shrinkTransfer(c.masters.map(_.emits.hint) .reduce(_ mincover _))
)
))
))},
managerFn = { m => if (noChangeRequired) m else m.v2copy(slaves = m.slaves.map(mapManager)) }
) {
override def circuitIdentity = noChangeRequired
}
lazy val module = new Impl
class Impl extends LazyModuleImp(this) {
override def desiredName = (Seq("TLFragmenter") ++ nameSuffix).mkString("_")
(node.in zip node.out) foreach { case ((in, edgeIn), (out, edgeOut)) =>
if (noChangeRequired) {
out <> in
} else {
// All managers must share a common FIFO domain (responses might end up interleaved)
val manager = edgeOut.manager
val managers = manager.managers
val beatBytes = manager.beatBytes
val fifoId = managers(0).fifoId
require (fifoId.isDefined && managers.map(_.fifoId == fifoId).reduce(_ && _))
require (!manager.anySupportAcquireB || !edgeOut.client.anySupportProbe,
s"TLFragmenter (with parent $parent) can't fragment a caching client's requests into a cacheable region")
require (minSize >= beatBytes, s"TLFragmenter (with parent $parent) can't support fragmenting ($minSize) to sub-beat ($beatBytes) accesses")
// We can't support devices which are cached on both sides of us
require (!edgeOut.manager.anySupportAcquireB || !edgeIn.client.anySupportProbe)
// We can't support denied because we reassemble fragments
require (!edgeOut.manager.mayDenyGet || holdFirstDeny, s"TLFragmenter (with parent $parent) can't support denials without holdFirstDeny=true")
require (!edgeOut.manager.mayDenyPut || earlyAck == EarlyAck.None)
/* The Fragmenter is a bit tricky, because there are 5 sizes in play:
* max size -- the maximum transfer size possible
* orig size -- the original pre-fragmenter size
* frag size -- the modified post-fragmenter size
* min size -- the threshold below which frag=orig
* beat size -- the amount transfered on any given beat
*
* The relationships are as follows:
* max >= orig >= frag
* max > min >= beat
* It IS possible that orig <= min (then frag=orig; ie: no fragmentation)
*
* The fragment# (sent via TL.source) is measured in multiples of min size.
* Meanwhile, to track the progress, counters measure in multiples of beat size.
*
* Here is an example of a bus with max=256, min=8, beat=4 and a device supporting 16.
*
* in.A out.A (frag#) out.D (frag#) in.D gen# ack#
* get64 get16 6 ackD16 6 ackD64 12 15
* ackD16 6 ackD64 14
* ackD16 6 ackD64 13
* ackD16 6 ackD64 12
* get16 4 ackD16 4 ackD64 8 11
* ackD16 4 ackD64 10
* ackD16 4 ackD64 9
* ackD16 4 ackD64 8
* get16 2 ackD16 2 ackD64 4 7
* ackD16 2 ackD64 6
* ackD16 2 ackD64 5
* ackD16 2 ackD64 4
* get16 0 ackD16 0 ackD64 0 3
* ackD16 0 ackD64 2
* ackD16 0 ackD64 1
* ackD16 0 ackD64 0
*
* get8 get8 0 ackD8 0 ackD8 0 1
* ackD8 0 ackD8 0
*
* get4 get4 0 ackD4 0 ackD4 0 0
* get1 get1 0 ackD1 0 ackD1 0 0
*
* put64 put16 6 15
* put64 put16 6 14
* put64 put16 6 13
* put64 put16 6 ack16 6 12 12
* put64 put16 4 11
* put64 put16 4 10
* put64 put16 4 9
* put64 put16 4 ack16 4 8 8
* put64 put16 2 7
* put64 put16 2 6
* put64 put16 2 5
* put64 put16 2 ack16 2 4 4
* put64 put16 0 3
* put64 put16 0 2
* put64 put16 0 1
* put64 put16 0 ack16 0 ack64 0 0
*
* put8 put8 0 1
* put8 put8 0 ack8 0 ack8 0 0
*
* put4 put4 0 ack4 0 ack4 0 0
* put1 put1 0 ack1 0 ack1 0 0
*/
val counterBits = log2Up(maxSize/beatBytes)
val maxDownSize = if (alwaysMin) minSize else min(manager.maxTransfer, maxSize)
// Consider the following waveform for two 4-beat bursts:
// ---A----A------------
// -------D-----DDD-DDDD
// Under TL rules, the second A can use the same source as the first A,
// because the source is released for reuse on the first response beat.
//
// However, if we fragment the requests, it looks like this:
// ---3210-3210---------
// -------3-----210-3210
// ... now we've broken the rules because 210 are twice inflight.
//
// This phenomenon means we can have essentially 2*maxSize/minSize-1
// fragmented transactions in flight per original transaction source.
//
// To keep the source unique, we encode the beat counter in the low
// bits of the source. To solve the overlap, we use a toggle bit.
// Whatever toggle bit the D is reassembling, A will use the opposite.
// First, handle the return path
val acknum = RegInit(0.U(counterBits.W))
val dOrig = Reg(UInt())
val dToggle = RegInit(false.B)
val dFragnum = out.d.bits.source(fragmentBits-1, 0)
val dFirst = acknum === 0.U
val dLast = dFragnum === 0.U // only for AccessAck (!Data)
val dsizeOH = UIntToOH (out.d.bits.size, log2Ceil(maxDownSize)+1)
val dsizeOH1 = UIntToOH1(out.d.bits.size, log2Up(maxDownSize))
val dHasData = edgeOut.hasData(out.d.bits)
// calculate new acknum
val acknum_fragment = dFragnum << log2Ceil(minSize/beatBytes)
val acknum_size = dsizeOH1 >> log2Ceil(beatBytes)
assert (!out.d.valid || (acknum_fragment & acknum_size) === 0.U)
val dFirst_acknum = acknum_fragment | Mux(dHasData, acknum_size, 0.U)
val ack_decrement = Mux(dHasData, 1.U, dsizeOH >> log2Ceil(beatBytes))
// calculate the original size
val dFirst_size = OH1ToUInt((dFragnum << log2Ceil(minSize)) | dsizeOH1)
when (out.d.fire) {
acknum := Mux(dFirst, dFirst_acknum, acknum - ack_decrement)
when (dFirst) {
dOrig := dFirst_size
dToggle := out.d.bits.source(fragmentBits)
}
}
// Swallow up non-data ack fragments
val doEarlyAck = earlyAck match {
case EarlyAck.AllPuts => true.B
case EarlyAck.PutFulls => out.d.bits.source(fragmentBits+1)
case EarlyAck.None => false.B
}
val drop = !dHasData && !Mux(doEarlyAck, dFirst, dLast)
out.d.ready := in.d.ready || drop
in.d.valid := out.d.valid && !drop
in.d.bits := out.d.bits // pass most stuff unchanged
in.d.bits.source := out.d.bits.source >> addedBits
in.d.bits.size := Mux(dFirst, dFirst_size, dOrig)
if (edgeOut.manager.mayDenyPut) {
val r_denied = Reg(Bool())
val d_denied = (!dFirst && r_denied) || out.d.bits.denied
when (out.d.fire) { r_denied := d_denied }
in.d.bits.denied := d_denied
}
if (edgeOut.manager.mayDenyGet) {
// Take denied only from the first beat and hold that value
val d_denied = out.d.bits.denied holdUnless dFirst
when (dHasData) {
in.d.bits.denied := d_denied
in.d.bits.corrupt := d_denied || out.d.bits.corrupt
}
}
// What maximum transfer sizes do downstream devices support?
val maxArithmetics = managers.map(_.supportsArithmetic.max)
val maxLogicals = managers.map(_.supportsLogical.max)
val maxGets = managers.map(_.supportsGet.max)
val maxPutFulls = managers.map(_.supportsPutFull.max)
val maxPutPartials = managers.map(_.supportsPutPartial.max)
val maxHints = managers.map(m => if (m.supportsHint) maxDownSize else 0)
// We assume that the request is valid => size 0 is impossible
val lgMinSize = log2Ceil(minSize).U
val maxLgArithmetics = maxArithmetics.map(m => if (m == 0) lgMinSize else log2Ceil(m).U)
val maxLgLogicals = maxLogicals .map(m => if (m == 0) lgMinSize else log2Ceil(m).U)
val maxLgGets = maxGets .map(m => if (m == 0) lgMinSize else log2Ceil(m).U)
val maxLgPutFulls = maxPutFulls .map(m => if (m == 0) lgMinSize else log2Ceil(m).U)
val maxLgPutPartials = maxPutPartials.map(m => if (m == 0) lgMinSize else log2Ceil(m).U)
val maxLgHints = maxHints .map(m => if (m == 0) lgMinSize else log2Ceil(m).U)
// Make the request repeatable
val repeater = Module(new Repeater(in.a.bits))
repeater.io.enq <> in.a
val in_a = repeater.io.deq
// If this is infront of a single manager, these become constants
val find = manager.findFast(edgeIn.address(in_a.bits))
val maxLgArithmetic = Mux1H(find, maxLgArithmetics)
val maxLgLogical = Mux1H(find, maxLgLogicals)
val maxLgGet = Mux1H(find, maxLgGets)
val maxLgPutFull = Mux1H(find, maxLgPutFulls)
val maxLgPutPartial = Mux1H(find, maxLgPutPartials)
val maxLgHint = Mux1H(find, maxLgHints)
val limit = if (alwaysMin) lgMinSize else
MuxLookup(in_a.bits.opcode, lgMinSize)(Array(
TLMessages.PutFullData -> maxLgPutFull,
TLMessages.PutPartialData -> maxLgPutPartial,
TLMessages.ArithmeticData -> maxLgArithmetic,
TLMessages.LogicalData -> maxLgLogical,
TLMessages.Get -> maxLgGet,
TLMessages.Hint -> maxLgHint))
val aOrig = in_a.bits.size
val aFrag = Mux(aOrig > limit, limit, aOrig)
val aOrigOH1 = UIntToOH1(aOrig, log2Ceil(maxSize))
val aFragOH1 = UIntToOH1(aFrag, log2Up(maxDownSize))
val aHasData = edgeIn.hasData(in_a.bits)
val aMask = Mux(aHasData, 0.U, aFragOH1)
val gennum = RegInit(0.U(counterBits.W))
val aFirst = gennum === 0.U
val old_gennum1 = Mux(aFirst, aOrigOH1 >> log2Ceil(beatBytes), gennum - 1.U)
val new_gennum = ~(~old_gennum1 | (aMask >> log2Ceil(beatBytes))) // ~(~x|y) is width safe
val aFragnum = ~(~(old_gennum1 >> log2Ceil(minSize/beatBytes)) | (aFragOH1 >> log2Ceil(minSize)))
val aLast = aFragnum === 0.U
val aToggle = !Mux(aFirst, dToggle, RegEnable(dToggle, aFirst))
val aFull = if (earlyAck == EarlyAck.PutFulls) Some(in_a.bits.opcode === TLMessages.PutFullData) else None
when (out.a.fire) { gennum := new_gennum }
repeater.io.repeat := !aHasData && aFragnum =/= 0.U
out.a <> in_a
out.a.bits.address := in_a.bits.address | ~(old_gennum1 << log2Ceil(beatBytes) | ~aOrigOH1 | aFragOH1 | (minSize-1).U)
out.a.bits.source := Cat(Seq(in_a.bits.source) ++ aFull ++ Seq(aToggle.asUInt, aFragnum))
out.a.bits.size := aFrag
// Optimize away some of the Repeater's registers
assert (!repeater.io.full || !aHasData)
out.a.bits.data := in.a.bits.data
val fullMask = ((BigInt(1) << beatBytes) - 1).U
assert (!repeater.io.full || in_a.bits.mask === fullMask)
out.a.bits.mask := Mux(repeater.io.full, fullMask, in.a.bits.mask)
out.a.bits.user.waiveAll :<= in.a.bits.user.subset(_.isData)
// Tie off unused channels
in.b.valid := false.B
in.c.ready := true.B
in.e.ready := true.B
out.b.ready := true.B
out.c.valid := false.B
out.e.valid := false.B
}
}
}
}
object TLFragmenter
{
def apply(minSize: Int, maxSize: Int, alwaysMin: Boolean = false, earlyAck: EarlyAck.T = EarlyAck.None, holdFirstDeny: Boolean = false, nameSuffix: Option[String] = None)(implicit p: Parameters): TLNode =
{
if (minSize <= maxSize) {
val fragmenter = LazyModule(new TLFragmenter(minSize, maxSize, alwaysMin, earlyAck, holdFirstDeny, nameSuffix))
fragmenter.node
} else { TLEphemeralNode()(ValName("no_fragmenter")) }
}
def apply(wrapper: TLBusWrapper, nameSuffix: Option[String])(implicit p: Parameters): TLNode = apply(wrapper.beatBytes, wrapper.blockBytes, nameSuffix = nameSuffix)
def apply(wrapper: TLBusWrapper)(implicit p: Parameters): TLNode = apply(wrapper, None)
}
// Synthesizable unit tests
import freechips.rocketchip.unittest._
class TLRAMFragmenter(ramBeatBytes: Int, maxSize: Int, txns: Int)(implicit p: Parameters) extends LazyModule {
val fuzz = LazyModule(new TLFuzzer(txns))
val model = LazyModule(new TLRAMModel("Fragmenter"))
val ram = LazyModule(new TLRAM(AddressSet(0x0, 0x3ff), beatBytes = ramBeatBytes))
(ram.node
:= TLDelayer(0.1)
:= TLBuffer(BufferParams.flow)
:= TLDelayer(0.1)
:= TLFragmenter(ramBeatBytes, maxSize, earlyAck = EarlyAck.AllPuts)
:= TLDelayer(0.1)
:= TLBuffer(BufferParams.flow)
:= TLFragmenter(ramBeatBytes, maxSize/2)
:= TLDelayer(0.1)
:= TLBuffer(BufferParams.flow)
:= model.node
:= fuzz.node)
lazy val module = new Impl
class Impl extends LazyModuleImp(this) with UnitTestModule {
io.finished := fuzz.module.io.finished
}
}
class TLRAMFragmenterTest(ramBeatBytes: Int, maxSize: Int, txns: Int = 5000, timeout: Int = 500000)(implicit p: Parameters) extends UnitTest(timeout) {
val dut = Module(LazyModule(new TLRAMFragmenter(ramBeatBytes,maxSize,txns)).module)
io.finished := dut.io.finished
dut.io.start := io.start
}
File package.scala:
// See LICENSE.SiFive for license details.
package freechips.rocketchip
import chisel3._
import chisel3.util._
import scala.math.min
import scala.collection.{immutable, mutable}
package object util {
implicit class UnzippableOption[S, T](val x: Option[(S, T)]) {
def unzip = (x.map(_._1), x.map(_._2))
}
implicit class UIntIsOneOf(private val x: UInt) extends AnyVal {
def isOneOf(s: Seq[UInt]): Bool = s.map(x === _).orR
def isOneOf(u1: UInt, u2: UInt*): Bool = isOneOf(u1 +: u2.toSeq)
}
implicit class VecToAugmentedVec[T <: Data](private val x: Vec[T]) extends AnyVal {
/** Like Vec.apply(idx), but tolerates indices of mismatched width */
def extract(idx: UInt): T = x((idx | 0.U(log2Ceil(x.size).W)).extract(log2Ceil(x.size) - 1, 0))
}
implicit class SeqToAugmentedSeq[T <: Data](private val x: Seq[T]) extends AnyVal {
def apply(idx: UInt): T = {
if (x.size <= 1) {
x.head
} else if (!isPow2(x.size)) {
// For non-power-of-2 seqs, reflect elements to simplify decoder
(x ++ x.takeRight(x.size & -x.size)).toSeq(idx)
} else {
// Ignore MSBs of idx
val truncIdx =
if (idx.isWidthKnown && idx.getWidth <= log2Ceil(x.size)) idx
else (idx | 0.U(log2Ceil(x.size).W))(log2Ceil(x.size)-1, 0)
x.zipWithIndex.tail.foldLeft(x.head) { case (prev, (cur, i)) => Mux(truncIdx === i.U, cur, prev) }
}
}
def extract(idx: UInt): T = VecInit(x).extract(idx)
def asUInt: UInt = Cat(x.map(_.asUInt).reverse)
def rotate(n: Int): Seq[T] = x.drop(n) ++ x.take(n)
def rotate(n: UInt): Seq[T] = {
if (x.size <= 1) {
x
} else {
require(isPow2(x.size))
val amt = n.padTo(log2Ceil(x.size))
(0 until log2Ceil(x.size)).foldLeft(x)((r, i) => (r.rotate(1 << i) zip r).map { case (s, a) => Mux(amt(i), s, a) })
}
}
def rotateRight(n: Int): Seq[T] = x.takeRight(n) ++ x.dropRight(n)
def rotateRight(n: UInt): Seq[T] = {
if (x.size <= 1) {
x
} else {
require(isPow2(x.size))
val amt = n.padTo(log2Ceil(x.size))
(0 until log2Ceil(x.size)).foldLeft(x)((r, i) => (r.rotateRight(1 << i) zip r).map { case (s, a) => Mux(amt(i), s, a) })
}
}
}
// allow bitwise ops on Seq[Bool] just like UInt
implicit class SeqBoolBitwiseOps(private val x: Seq[Bool]) extends AnyVal {
def & (y: Seq[Bool]): Seq[Bool] = (x zip y).map { case (a, b) => a && b }
def | (y: Seq[Bool]): Seq[Bool] = padZip(x, y).map { case (a, b) => a || b }
def ^ (y: Seq[Bool]): Seq[Bool] = padZip(x, y).map { case (a, b) => a ^ b }
def << (n: Int): Seq[Bool] = Seq.fill(n)(false.B) ++ x
def >> (n: Int): Seq[Bool] = x drop n
def unary_~ : Seq[Bool] = x.map(!_)
def andR: Bool = if (x.isEmpty) true.B else x.reduce(_&&_)
def orR: Bool = if (x.isEmpty) false.B else x.reduce(_||_)
def xorR: Bool = if (x.isEmpty) false.B else x.reduce(_^_)
private def padZip(y: Seq[Bool], z: Seq[Bool]): Seq[(Bool, Bool)] = y.padTo(z.size, false.B) zip z.padTo(y.size, false.B)
}
implicit class DataToAugmentedData[T <: Data](private val x: T) extends AnyVal {
def holdUnless(enable: Bool): T = Mux(enable, x, RegEnable(x, enable))
def getElements: Seq[Element] = x match {
case e: Element => Seq(e)
case a: Aggregate => a.getElements.flatMap(_.getElements)
}
}
/** Any Data subtype that has a Bool member named valid. */
type DataCanBeValid = Data { val valid: Bool }
implicit class SeqMemToAugmentedSeqMem[T <: Data](private val x: SyncReadMem[T]) extends AnyVal {
def readAndHold(addr: UInt, enable: Bool): T = x.read(addr, enable) holdUnless RegNext(enable)
}
implicit class StringToAugmentedString(private val x: String) extends AnyVal {
/** converts from camel case to to underscores, also removing all spaces */
def underscore: String = x.tail.foldLeft(x.headOption.map(_.toLower + "") getOrElse "") {
case (acc, c) if c.isUpper => acc + "_" + c.toLower
case (acc, c) if c == ' ' => acc
case (acc, c) => acc + c
}
/** converts spaces or underscores to hyphens, also lowering case */
def kebab: String = x.toLowerCase map {
case ' ' => '-'
case '_' => '-'
case c => c
}
def named(name: Option[String]): String = {
x + name.map("_named_" + _ ).getOrElse("_with_no_name")
}
def named(name: String): String = named(Some(name))
}
implicit def uintToBitPat(x: UInt): BitPat = BitPat(x)
implicit def wcToUInt(c: WideCounter): UInt = c.value
implicit class UIntToAugmentedUInt(private val x: UInt) extends AnyVal {
def sextTo(n: Int): UInt = {
require(x.getWidth <= n)
if (x.getWidth == n) x
else Cat(Fill(n - x.getWidth, x(x.getWidth-1)), x)
}
def padTo(n: Int): UInt = {
require(x.getWidth <= n)
if (x.getWidth == n) x
else Cat(0.U((n - x.getWidth).W), x)
}
// shifts left by n if n >= 0, or right by -n if n < 0
def << (n: SInt): UInt = {
val w = n.getWidth - 1
require(w <= 30)
val shifted = x << n(w-1, 0)
Mux(n(w), shifted >> (1 << w), shifted)
}
// shifts right by n if n >= 0, or left by -n if n < 0
def >> (n: SInt): UInt = {
val w = n.getWidth - 1
require(w <= 30)
val shifted = x << (1 << w) >> n(w-1, 0)
Mux(n(w), shifted, shifted >> (1 << w))
}
// Like UInt.apply(hi, lo), but returns 0.U for zero-width extracts
def extract(hi: Int, lo: Int): UInt = {
require(hi >= lo-1)
if (hi == lo-1) 0.U
else x(hi, lo)
}
// Like Some(UInt.apply(hi, lo)), but returns None for zero-width extracts
def extractOption(hi: Int, lo: Int): Option[UInt] = {
require(hi >= lo-1)
if (hi == lo-1) None
else Some(x(hi, lo))
}
// like x & ~y, but first truncate or zero-extend y to x's width
def andNot(y: UInt): UInt = x & ~(y | (x & 0.U))
def rotateRight(n: Int): UInt = if (n == 0) x else Cat(x(n-1, 0), x >> n)
def rotateRight(n: UInt): UInt = {
if (x.getWidth <= 1) {
x
} else {
val amt = n.padTo(log2Ceil(x.getWidth))
(0 until log2Ceil(x.getWidth)).foldLeft(x)((r, i) => Mux(amt(i), r.rotateRight(1 << i), r))
}
}
def rotateLeft(n: Int): UInt = if (n == 0) x else Cat(x(x.getWidth-1-n,0), x(x.getWidth-1,x.getWidth-n))
def rotateLeft(n: UInt): UInt = {
if (x.getWidth <= 1) {
x
} else {
val amt = n.padTo(log2Ceil(x.getWidth))
(0 until log2Ceil(x.getWidth)).foldLeft(x)((r, i) => Mux(amt(i), r.rotateLeft(1 << i), r))
}
}
// compute (this + y) % n, given (this < n) and (y < n)
def addWrap(y: UInt, n: Int): UInt = {
val z = x +& y
if (isPow2(n)) z(n.log2-1, 0) else Mux(z >= n.U, z - n.U, z)(log2Ceil(n)-1, 0)
}
// compute (this - y) % n, given (this < n) and (y < n)
def subWrap(y: UInt, n: Int): UInt = {
val z = x -& y
if (isPow2(n)) z(n.log2-1, 0) else Mux(z(z.getWidth-1), z + n.U, z)(log2Ceil(n)-1, 0)
}
def grouped(width: Int): Seq[UInt] =
(0 until x.getWidth by width).map(base => x(base + width - 1, base))
def inRange(base: UInt, bounds: UInt) = x >= base && x < bounds
def ## (y: Option[UInt]): UInt = y.map(x ## _).getOrElse(x)
// Like >=, but prevents x-prop for ('x >= 0)
def >== (y: UInt): Bool = x >= y || y === 0.U
}
implicit class OptionUIntToAugmentedOptionUInt(private val x: Option[UInt]) extends AnyVal {
def ## (y: UInt): UInt = x.map(_ ## y).getOrElse(y)
def ## (y: Option[UInt]): Option[UInt] = x.map(_ ## y)
}
implicit class BooleanToAugmentedBoolean(private val x: Boolean) extends AnyVal {
def toInt: Int = if (x) 1 else 0
// this one's snagged from scalaz
def option[T](z: => T): Option[T] = if (x) Some(z) else None
}
implicit class IntToAugmentedInt(private val x: Int) extends AnyVal {
// exact log2
def log2: Int = {
require(isPow2(x))
log2Ceil(x)
}
}
def OH1ToOH(x: UInt): UInt = (x << 1 | 1.U) & ~Cat(0.U(1.W), x)
def OH1ToUInt(x: UInt): UInt = OHToUInt(OH1ToOH(x))
def UIntToOH1(x: UInt, width: Int): UInt = ~((-1).S(width.W).asUInt << x)(width-1, 0)
def UIntToOH1(x: UInt): UInt = UIntToOH1(x, (1 << x.getWidth) - 1)
def trailingZeros(x: Int): Option[Int] = if (x > 0) Some(log2Ceil(x & -x)) else None
// Fill 1s from low bits to high bits
def leftOR(x: UInt): UInt = leftOR(x, x.getWidth, x.getWidth)
def leftOR(x: UInt, width: Integer, cap: Integer = 999999): UInt = {
val stop = min(width, cap)
def helper(s: Int, x: UInt): UInt =
if (s >= stop) x else helper(s+s, x | (x << s)(width-1,0))
helper(1, x)(width-1, 0)
}
// Fill 1s form high bits to low bits
def rightOR(x: UInt): UInt = rightOR(x, x.getWidth, x.getWidth)
def rightOR(x: UInt, width: Integer, cap: Integer = 999999): UInt = {
val stop = min(width, cap)
def helper(s: Int, x: UInt): UInt =
if (s >= stop) x else helper(s+s, x | (x >> s))
helper(1, x)(width-1, 0)
}
def OptimizationBarrier[T <: Data](in: T): T = {
val barrier = Module(new Module {
val io = IO(new Bundle {
val x = Input(chiselTypeOf(in))
val y = Output(chiselTypeOf(in))
})
io.y := io.x
override def desiredName = s"OptimizationBarrier_${in.typeName}"
})
barrier.io.x := in
barrier.io.y
}
/** Similar to Seq.groupBy except this returns a Seq instead of a Map
* Useful for deterministic code generation
*/
def groupByIntoSeq[A, K](xs: Seq[A])(f: A => K): immutable.Seq[(K, immutable.Seq[A])] = {
val map = mutable.LinkedHashMap.empty[K, mutable.ListBuffer[A]]
for (x <- xs) {
val key = f(x)
val l = map.getOrElseUpdate(key, mutable.ListBuffer.empty[A])
l += x
}
map.view.map({ case (k, vs) => k -> vs.toList }).toList
}
def heterogeneousOrGlobalSetting[T](in: Seq[T], n: Int): Seq[T] = in.size match {
case 1 => List.fill(n)(in.head)
case x if x == n => in
case _ => throw new Exception(s"must provide exactly 1 or $n of some field, but got:\n$in")
}
// HeterogeneousBag moved to standalond diplomacy
@deprecated("HeterogeneousBag has been absorbed into standalone diplomacy library", "rocketchip 2.0.0")
def HeterogeneousBag[T <: Data](elts: Seq[T]) = _root_.org.chipsalliance.diplomacy.nodes.HeterogeneousBag[T](elts)
@deprecated("HeterogeneousBag has been absorbed into standalone diplomacy library", "rocketchip 2.0.0")
val HeterogeneousBag = _root_.org.chipsalliance.diplomacy.nodes.HeterogeneousBag
}
File Nodes.scala:
// See LICENSE.SiFive for license details.
package freechips.rocketchip.tilelink
import chisel3._
import chisel3.experimental.SourceInfo
import org.chipsalliance.cde.config._
import org.chipsalliance.diplomacy._
import org.chipsalliance.diplomacy.nodes._
import freechips.rocketchip.util.{AsyncQueueParams,RationalDirection}
case object TLMonitorBuilder extends Field[TLMonitorArgs => TLMonitorBase](args => new TLMonitor(args))
object TLImp extends NodeImp[TLMasterPortParameters, TLSlavePortParameters, TLEdgeOut, TLEdgeIn, TLBundle]
{
def edgeO(pd: TLMasterPortParameters, pu: TLSlavePortParameters, p: Parameters, sourceInfo: SourceInfo) = new TLEdgeOut(pd, pu, p, sourceInfo)
def edgeI(pd: TLMasterPortParameters, pu: TLSlavePortParameters, p: Parameters, sourceInfo: SourceInfo) = new TLEdgeIn (pd, pu, p, sourceInfo)
def bundleO(eo: TLEdgeOut) = TLBundle(eo.bundle)
def bundleI(ei: TLEdgeIn) = TLBundle(ei.bundle)
def render(ei: TLEdgeIn) = RenderedEdge(colour = "#000000" /* black */, label = (ei.manager.beatBytes * 8).toString)
override def monitor(bundle: TLBundle, edge: TLEdgeIn): Unit = {
val monitor = Module(edge.params(TLMonitorBuilder)(TLMonitorArgs(edge)))
monitor.io.in := bundle
}
override def mixO(pd: TLMasterPortParameters, node: OutwardNode[TLMasterPortParameters, TLSlavePortParameters, TLBundle]): TLMasterPortParameters =
pd.v1copy(clients = pd.clients.map { c => c.v1copy (nodePath = node +: c.nodePath) })
override def mixI(pu: TLSlavePortParameters, node: InwardNode[TLMasterPortParameters, TLSlavePortParameters, TLBundle]): TLSlavePortParameters =
pu.v1copy(managers = pu.managers.map { m => m.v1copy (nodePath = node +: m.nodePath) })
}
trait TLFormatNode extends FormatNode[TLEdgeIn, TLEdgeOut]
case class TLClientNode(portParams: Seq[TLMasterPortParameters])(implicit valName: ValName) extends SourceNode(TLImp)(portParams) with TLFormatNode
case class TLManagerNode(portParams: Seq[TLSlavePortParameters])(implicit valName: ValName) extends SinkNode(TLImp)(portParams) with TLFormatNode
case class TLAdapterNode(
clientFn: TLMasterPortParameters => TLMasterPortParameters = { s => s },
managerFn: TLSlavePortParameters => TLSlavePortParameters = { s => s })(
implicit valName: ValName)
extends AdapterNode(TLImp)(clientFn, managerFn) with TLFormatNode
case class TLJunctionNode(
clientFn: Seq[TLMasterPortParameters] => Seq[TLMasterPortParameters],
managerFn: Seq[TLSlavePortParameters] => Seq[TLSlavePortParameters])(
implicit valName: ValName)
extends JunctionNode(TLImp)(clientFn, managerFn) with TLFormatNode
case class TLIdentityNode()(implicit valName: ValName) extends IdentityNode(TLImp)() with TLFormatNode
object TLNameNode {
def apply(name: ValName) = TLIdentityNode()(name)
def apply(name: Option[String]): TLIdentityNode = apply(ValName(name.getOrElse("with_no_name")))
def apply(name: String): TLIdentityNode = apply(Some(name))
}
case class TLEphemeralNode()(implicit valName: ValName) extends EphemeralNode(TLImp)()
object TLTempNode {
def apply(): TLEphemeralNode = TLEphemeralNode()(ValName("temp"))
}
case class TLNexusNode(
clientFn: Seq[TLMasterPortParameters] => TLMasterPortParameters,
managerFn: Seq[TLSlavePortParameters] => TLSlavePortParameters)(
implicit valName: ValName)
extends NexusNode(TLImp)(clientFn, managerFn) with TLFormatNode
abstract class TLCustomNode(implicit valName: ValName)
extends CustomNode(TLImp) with TLFormatNode
// Asynchronous crossings
trait TLAsyncFormatNode extends FormatNode[TLAsyncEdgeParameters, TLAsyncEdgeParameters]
object TLAsyncImp extends SimpleNodeImp[TLAsyncClientPortParameters, TLAsyncManagerPortParameters, TLAsyncEdgeParameters, TLAsyncBundle]
{
def edge(pd: TLAsyncClientPortParameters, pu: TLAsyncManagerPortParameters, p: Parameters, sourceInfo: SourceInfo) = TLAsyncEdgeParameters(pd, pu, p, sourceInfo)
def bundle(e: TLAsyncEdgeParameters) = new TLAsyncBundle(e.bundle)
def render(e: TLAsyncEdgeParameters) = RenderedEdge(colour = "#ff0000" /* red */, label = e.manager.async.depth.toString)
override def mixO(pd: TLAsyncClientPortParameters, node: OutwardNode[TLAsyncClientPortParameters, TLAsyncManagerPortParameters, TLAsyncBundle]): TLAsyncClientPortParameters =
pd.copy(base = pd.base.v1copy(clients = pd.base.clients.map { c => c.v1copy (nodePath = node +: c.nodePath) }))
override def mixI(pu: TLAsyncManagerPortParameters, node: InwardNode[TLAsyncClientPortParameters, TLAsyncManagerPortParameters, TLAsyncBundle]): TLAsyncManagerPortParameters =
pu.copy(base = pu.base.v1copy(managers = pu.base.managers.map { m => m.v1copy (nodePath = node +: m.nodePath) }))
}
case class TLAsyncAdapterNode(
clientFn: TLAsyncClientPortParameters => TLAsyncClientPortParameters = { s => s },
managerFn: TLAsyncManagerPortParameters => TLAsyncManagerPortParameters = { s => s })(
implicit valName: ValName)
extends AdapterNode(TLAsyncImp)(clientFn, managerFn) with TLAsyncFormatNode
case class TLAsyncIdentityNode()(implicit valName: ValName) extends IdentityNode(TLAsyncImp)() with TLAsyncFormatNode
object TLAsyncNameNode {
def apply(name: ValName) = TLAsyncIdentityNode()(name)
def apply(name: Option[String]): TLAsyncIdentityNode = apply(ValName(name.getOrElse("with_no_name")))
def apply(name: String): TLAsyncIdentityNode = apply(Some(name))
}
case class TLAsyncSourceNode(sync: Option[Int])(implicit valName: ValName)
extends MixedAdapterNode(TLImp, TLAsyncImp)(
dFn = { p => TLAsyncClientPortParameters(p) },
uFn = { p => p.base.v1copy(minLatency = p.base.minLatency + sync.getOrElse(p.async.sync)) }) with FormatNode[TLEdgeIn, TLAsyncEdgeParameters] // discard cycles in other clock domain
case class TLAsyncSinkNode(async: AsyncQueueParams)(implicit valName: ValName)
extends MixedAdapterNode(TLAsyncImp, TLImp)(
dFn = { p => p.base.v1copy(minLatency = p.base.minLatency + async.sync) },
uFn = { p => TLAsyncManagerPortParameters(async, p) }) with FormatNode[TLAsyncEdgeParameters, TLEdgeOut]
// Rationally related crossings
trait TLRationalFormatNode extends FormatNode[TLRationalEdgeParameters, TLRationalEdgeParameters]
object TLRationalImp extends SimpleNodeImp[TLRationalClientPortParameters, TLRationalManagerPortParameters, TLRationalEdgeParameters, TLRationalBundle]
{
def edge(pd: TLRationalClientPortParameters, pu: TLRationalManagerPortParameters, p: Parameters, sourceInfo: SourceInfo) = TLRationalEdgeParameters(pd, pu, p, sourceInfo)
def bundle(e: TLRationalEdgeParameters) = new TLRationalBundle(e.bundle)
def render(e: TLRationalEdgeParameters) = RenderedEdge(colour = "#00ff00" /* green */)
override def mixO(pd: TLRationalClientPortParameters, node: OutwardNode[TLRationalClientPortParameters, TLRationalManagerPortParameters, TLRationalBundle]): TLRationalClientPortParameters =
pd.copy(base = pd.base.v1copy(clients = pd.base.clients.map { c => c.v1copy (nodePath = node +: c.nodePath) }))
override def mixI(pu: TLRationalManagerPortParameters, node: InwardNode[TLRationalClientPortParameters, TLRationalManagerPortParameters, TLRationalBundle]): TLRationalManagerPortParameters =
pu.copy(base = pu.base.v1copy(managers = pu.base.managers.map { m => m.v1copy (nodePath = node +: m.nodePath) }))
}
case class TLRationalAdapterNode(
clientFn: TLRationalClientPortParameters => TLRationalClientPortParameters = { s => s },
managerFn: TLRationalManagerPortParameters => TLRationalManagerPortParameters = { s => s })(
implicit valName: ValName)
extends AdapterNode(TLRationalImp)(clientFn, managerFn) with TLRationalFormatNode
case class TLRationalIdentityNode()(implicit valName: ValName) extends IdentityNode(TLRationalImp)() with TLRationalFormatNode
object TLRationalNameNode {
def apply(name: ValName) = TLRationalIdentityNode()(name)
def apply(name: Option[String]): TLRationalIdentityNode = apply(ValName(name.getOrElse("with_no_name")))
def apply(name: String): TLRationalIdentityNode = apply(Some(name))
}
case class TLRationalSourceNode()(implicit valName: ValName)
extends MixedAdapterNode(TLImp, TLRationalImp)(
dFn = { p => TLRationalClientPortParameters(p) },
uFn = { p => p.base.v1copy(minLatency = 1) }) with FormatNode[TLEdgeIn, TLRationalEdgeParameters] // discard cycles from other clock domain
case class TLRationalSinkNode(direction: RationalDirection)(implicit valName: ValName)
extends MixedAdapterNode(TLRationalImp, TLImp)(
dFn = { p => p.base.v1copy(minLatency = 1) },
uFn = { p => TLRationalManagerPortParameters(direction, p) }) with FormatNode[TLRationalEdgeParameters, TLEdgeOut]
// Credited version of TileLink channels
trait TLCreditedFormatNode extends FormatNode[TLCreditedEdgeParameters, TLCreditedEdgeParameters]
object TLCreditedImp extends SimpleNodeImp[TLCreditedClientPortParameters, TLCreditedManagerPortParameters, TLCreditedEdgeParameters, TLCreditedBundle]
{
def edge(pd: TLCreditedClientPortParameters, pu: TLCreditedManagerPortParameters, p: Parameters, sourceInfo: SourceInfo) = TLCreditedEdgeParameters(pd, pu, p, sourceInfo)
def bundle(e: TLCreditedEdgeParameters) = new TLCreditedBundle(e.bundle)
def render(e: TLCreditedEdgeParameters) = RenderedEdge(colour = "#ffff00" /* yellow */, e.delay.toString)
override def mixO(pd: TLCreditedClientPortParameters, node: OutwardNode[TLCreditedClientPortParameters, TLCreditedManagerPortParameters, TLCreditedBundle]): TLCreditedClientPortParameters =
pd.copy(base = pd.base.v1copy(clients = pd.base.clients.map { c => c.v1copy (nodePath = node +: c.nodePath) }))
override def mixI(pu: TLCreditedManagerPortParameters, node: InwardNode[TLCreditedClientPortParameters, TLCreditedManagerPortParameters, TLCreditedBundle]): TLCreditedManagerPortParameters =
pu.copy(base = pu.base.v1copy(managers = pu.base.managers.map { m => m.v1copy (nodePath = node +: m.nodePath) }))
}
case class TLCreditedAdapterNode(
clientFn: TLCreditedClientPortParameters => TLCreditedClientPortParameters = { s => s },
managerFn: TLCreditedManagerPortParameters => TLCreditedManagerPortParameters = { s => s })(
implicit valName: ValName)
extends AdapterNode(TLCreditedImp)(clientFn, managerFn) with TLCreditedFormatNode
case class TLCreditedIdentityNode()(implicit valName: ValName) extends IdentityNode(TLCreditedImp)() with TLCreditedFormatNode
object TLCreditedNameNode {
def apply(name: ValName) = TLCreditedIdentityNode()(name)
def apply(name: Option[String]): TLCreditedIdentityNode = apply(ValName(name.getOrElse("with_no_name")))
def apply(name: String): TLCreditedIdentityNode = apply(Some(name))
}
case class TLCreditedSourceNode(delay: TLCreditedDelay)(implicit valName: ValName)
extends MixedAdapterNode(TLImp, TLCreditedImp)(
dFn = { p => TLCreditedClientPortParameters(delay, p) },
uFn = { p => p.base.v1copy(minLatency = 1) }) with FormatNode[TLEdgeIn, TLCreditedEdgeParameters] // discard cycles from other clock domain
case class TLCreditedSinkNode(delay: TLCreditedDelay)(implicit valName: ValName)
extends MixedAdapterNode(TLCreditedImp, TLImp)(
dFn = { p => p.base.v1copy(minLatency = 1) },
uFn = { p => TLCreditedManagerPortParameters(delay, p) }) with FormatNode[TLCreditedEdgeParameters, TLEdgeOut]
File LazyModuleImp.scala:
package org.chipsalliance.diplomacy.lazymodule
import chisel3.{withClockAndReset, Module, RawModule, Reset, _}
import chisel3.experimental.{ChiselAnnotation, CloneModuleAsRecord, SourceInfo}
import firrtl.passes.InlineAnnotation
import org.chipsalliance.cde.config.Parameters
import org.chipsalliance.diplomacy.nodes.Dangle
import scala.collection.immutable.SortedMap
/** Trait describing the actual [[Module]] implementation wrapped by a [[LazyModule]].
*
* This is the actual Chisel module that is lazily-evaluated in the second phase of Diplomacy.
*/
sealed trait LazyModuleImpLike extends RawModule {
/** [[LazyModule]] that contains this instance. */
val wrapper: LazyModule
/** IOs that will be automatically "punched" for this instance. */
val auto: AutoBundle
/** The metadata that describes the [[HalfEdge]]s which generated [[auto]]. */
protected[diplomacy] val dangles: Seq[Dangle]
// [[wrapper.module]] had better not be accessed while LazyModules are still being built!
require(
LazyModule.scope.isEmpty,
s"${wrapper.name}.module was constructed before LazyModule() was run on ${LazyModule.scope.get.name}"
)
/** Set module name. Defaults to the containing LazyModule's desiredName. */
override def desiredName: String = wrapper.desiredName
suggestName(wrapper.suggestedName)
/** [[Parameters]] for chisel [[Module]]s. */
implicit val p: Parameters = wrapper.p
/** instantiate this [[LazyModule]], return [[AutoBundle]] and a unconnected [[Dangle]]s from this module and
* submodules.
*/
protected[diplomacy] def instantiate(): (AutoBundle, List[Dangle]) = {
// 1. It will recursively append [[wrapper.children]] into [[chisel3.internal.Builder]],
// 2. return [[Dangle]]s from each module.
val childDangles = wrapper.children.reverse.flatMap { c =>
implicit val sourceInfo: SourceInfo = c.info
c.cloneProto.map { cp =>
// If the child is a clone, then recursively set cloneProto of its children as well
def assignCloneProtos(bases: Seq[LazyModule], clones: Seq[LazyModule]): Unit = {
require(bases.size == clones.size)
(bases.zip(clones)).map { case (l, r) =>
require(l.getClass == r.getClass, s"Cloned children class mismatch ${l.name} != ${r.name}")
l.cloneProto = Some(r)
assignCloneProtos(l.children, r.children)
}
}
assignCloneProtos(c.children, cp.children)
// Clone the child module as a record, and get its [[AutoBundle]]
val clone = CloneModuleAsRecord(cp.module).suggestName(c.suggestedName)
val clonedAuto = clone("auto").asInstanceOf[AutoBundle]
// Get the empty [[Dangle]]'s of the cloned child
val rawDangles = c.cloneDangles()
require(rawDangles.size == clonedAuto.elements.size)
// Assign the [[AutoBundle]] fields of the cloned record to the empty [[Dangle]]'s
val dangles = (rawDangles.zip(clonedAuto.elements)).map { case (d, (_, io)) => d.copy(dataOpt = Some(io)) }
dangles
}.getOrElse {
// For non-clones, instantiate the child module
val mod = try {
Module(c.module)
} catch {
case e: ChiselException => {
println(s"Chisel exception caught when instantiating ${c.name} within ${this.name} at ${c.line}")
throw e
}
}
mod.dangles
}
}
// Ask each node in this [[LazyModule]] to call [[BaseNode.instantiate]].
// This will result in a sequence of [[Dangle]] from these [[BaseNode]]s.
val nodeDangles = wrapper.nodes.reverse.flatMap(_.instantiate())
// Accumulate all the [[Dangle]]s from this node and any accumulated from its [[wrapper.children]]
val allDangles = nodeDangles ++ childDangles
// Group [[allDangles]] by their [[source]].
val pairing = SortedMap(allDangles.groupBy(_.source).toSeq: _*)
// For each [[source]] set of [[Dangle]]s of size 2, ensure that these
// can be connected as a source-sink pair (have opposite flipped value).
// Make the connection and mark them as [[done]].
val done = Set() ++ pairing.values.filter(_.size == 2).map {
case Seq(a, b) =>
require(a.flipped != b.flipped)
// @todo <> in chisel3 makes directionless connection.
if (a.flipped) {
a.data <> b.data
} else {
b.data <> a.data
}
a.source
case _ => None
}
// Find all [[Dangle]]s which are still not connected. These will end up as [[AutoBundle]] [[IO]] ports on the module.
val forward = allDangles.filter(d => !done(d.source))
// Generate [[AutoBundle]] IO from [[forward]].
val auto = IO(new AutoBundle(forward.map { d => (d.name, d.data, d.flipped) }: _*))
// Pass the [[Dangle]]s which remained and were used to generate the [[AutoBundle]] I/O ports up to the [[parent]] [[LazyModule]]
val dangles = (forward.zip(auto.elements)).map { case (d, (_, io)) =>
if (d.flipped) {
d.data <> io
} else {
io <> d.data
}
d.copy(dataOpt = Some(io), name = wrapper.suggestedName + "_" + d.name)
}
// Push all [[LazyModule.inModuleBody]] to [[chisel3.internal.Builder]].
wrapper.inModuleBody.reverse.foreach {
_()
}
if (wrapper.shouldBeInlined) {
chisel3.experimental.annotate(new ChiselAnnotation {
def toFirrtl = InlineAnnotation(toNamed)
})
}
// Return [[IO]] and [[Dangle]] of this [[LazyModuleImp]].
(auto, dangles)
}
}
/** Actual description of a [[Module]] which can be instantiated by a call to [[LazyModule.module]].
*
* @param wrapper
* the [[LazyModule]] from which the `.module` call is being made.
*/
class LazyModuleImp(val wrapper: LazyModule) extends Module with LazyModuleImpLike {
/** Instantiate hardware of this `Module`. */
val (auto, dangles) = instantiate()
}
/** Actual description of a [[RawModule]] which can be instantiated by a call to [[LazyModule.module]].
*
* @param wrapper
* the [[LazyModule]] from which the `.module` call is being made.
*/
class LazyRawModuleImp(val wrapper: LazyModule) extends RawModule with LazyModuleImpLike {
// These wires are the default clock+reset for all LazyModule children.
// It is recommended to drive these even if you manually drive the [[clock]] and [[reset]] of all of the
// [[LazyRawModuleImp]] children.
// Otherwise, anonymous children ([[Monitor]]s for example) will not have their [[clock]] and/or [[reset]] driven properly.
/** drive clock explicitly. */
val childClock: Clock = Wire(Clock())
/** drive reset explicitly. */
val childReset: Reset = Wire(Reset())
// the default is that these are disabled
childClock := false.B.asClock
childReset := chisel3.DontCare
def provideImplicitClockToLazyChildren: Boolean = false
val (auto, dangles) =
if (provideImplicitClockToLazyChildren) {
withClockAndReset(childClock, childReset) { instantiate() }
} else {
instantiate()
}
}
| module TLFragmenter_PLIC( // @[Fragmenter.scala:92:9]
input clock, // @[Fragmenter.scala:92:9]
input reset, // @[Fragmenter.scala:92:9]
output auto_anon_in_a_ready, // @[LazyModuleImp.scala:107:25]
input auto_anon_in_a_valid, // @[LazyModuleImp.scala:107:25]
input [2:0] auto_anon_in_a_bits_opcode, // @[LazyModuleImp.scala:107:25]
input [2:0] auto_anon_in_a_bits_param, // @[LazyModuleImp.scala:107:25]
input [2:0] auto_anon_in_a_bits_size, // @[LazyModuleImp.scala:107:25]
input [9:0] auto_anon_in_a_bits_source, // @[LazyModuleImp.scala:107:25]
input [27:0] auto_anon_in_a_bits_address, // @[LazyModuleImp.scala:107:25]
input [7:0] auto_anon_in_a_bits_mask, // @[LazyModuleImp.scala:107:25]
input [63:0] auto_anon_in_a_bits_data, // @[LazyModuleImp.scala:107:25]
input auto_anon_in_a_bits_corrupt, // @[LazyModuleImp.scala:107:25]
input auto_anon_in_d_ready, // @[LazyModuleImp.scala:107:25]
output auto_anon_in_d_valid, // @[LazyModuleImp.scala:107:25]
output [2:0] auto_anon_in_d_bits_opcode, // @[LazyModuleImp.scala:107:25]
output [2:0] auto_anon_in_d_bits_size, // @[LazyModuleImp.scala:107:25]
output [9:0] auto_anon_in_d_bits_source, // @[LazyModuleImp.scala:107:25]
output [63:0] auto_anon_in_d_bits_data, // @[LazyModuleImp.scala:107:25]
input auto_anon_out_a_ready, // @[LazyModuleImp.scala:107:25]
output auto_anon_out_a_valid, // @[LazyModuleImp.scala:107:25]
output [2:0] auto_anon_out_a_bits_opcode, // @[LazyModuleImp.scala:107:25]
output [2:0] auto_anon_out_a_bits_param, // @[LazyModuleImp.scala:107:25]
output [1:0] auto_anon_out_a_bits_size, // @[LazyModuleImp.scala:107:25]
output [13:0] auto_anon_out_a_bits_source, // @[LazyModuleImp.scala:107:25]
output [27:0] auto_anon_out_a_bits_address, // @[LazyModuleImp.scala:107:25]
output [7:0] auto_anon_out_a_bits_mask, // @[LazyModuleImp.scala:107:25]
output [63:0] auto_anon_out_a_bits_data, // @[LazyModuleImp.scala:107:25]
output auto_anon_out_a_bits_corrupt, // @[LazyModuleImp.scala:107:25]
output auto_anon_out_d_ready, // @[LazyModuleImp.scala:107:25]
input auto_anon_out_d_valid, // @[LazyModuleImp.scala:107:25]
input [2:0] auto_anon_out_d_bits_opcode, // @[LazyModuleImp.scala:107:25]
input [1:0] auto_anon_out_d_bits_size, // @[LazyModuleImp.scala:107:25]
input [13:0] auto_anon_out_d_bits_source, // @[LazyModuleImp.scala:107:25]
input [63:0] auto_anon_out_d_bits_data // @[LazyModuleImp.scala:107:25]
);
wire _repeater_io_full; // @[Fragmenter.scala:274:30]
wire _repeater_io_enq_ready; // @[Fragmenter.scala:274:30]
wire _repeater_io_deq_valid; // @[Fragmenter.scala:274:30]
wire [2:0] _repeater_io_deq_bits_opcode; // @[Fragmenter.scala:274:30]
wire [2:0] _repeater_io_deq_bits_size; // @[Fragmenter.scala:274:30]
wire [9:0] _repeater_io_deq_bits_source; // @[Fragmenter.scala:274:30]
wire [27:0] _repeater_io_deq_bits_address; // @[Fragmenter.scala:274:30]
wire [7:0] _repeater_io_deq_bits_mask; // @[Fragmenter.scala:274:30]
reg [2:0] acknum; // @[Fragmenter.scala:201:29]
reg [2:0] dOrig; // @[Fragmenter.scala:202:24]
reg dToggle; // @[Fragmenter.scala:203:30]
wire dFirst = acknum == 3'h0; // @[Fragmenter.scala:201:29, :205:29]
wire [5:0] _dsizeOH1_T = 6'h7 << auto_anon_out_d_bits_size; // @[package.scala:243:71]
wire [2:0] _GEN = ~(auto_anon_out_d_bits_source[2:0]); // @[package.scala:241:49]
wire [2:0] dFirst_size_hi = auto_anon_out_d_bits_source[2:0] & {1'h1, _GEN[2:1]}; // @[OneHot.scala:30:18]
wire [2:0] _dFirst_size_T_8 = {1'h0, dFirst_size_hi[2:1]} | ~(_dsizeOH1_T[2:0]) & {_GEN[0], _dsizeOH1_T[2:1]}; // @[OneHot.scala:30:18, :31:18, :32:28]
wire [2:0] dFirst_size = {|dFirst_size_hi, |(_dFirst_size_T_8[2:1]), _dFirst_size_T_8[2] | _dFirst_size_T_8[0]}; // @[OneHot.scala:30:18, :31:18, :32:{10,14,28}]
wire drop = ~(auto_anon_out_d_bits_opcode[0]) & (|(auto_anon_out_d_bits_source[2:0])); // @[Fragmenter.scala:204:41, :206:30, :234:{20,30}]
wire anonOut_d_ready = auto_anon_in_d_ready | drop; // @[Fragmenter.scala:234:30, :235:35]
wire anonIn_d_valid = auto_anon_out_d_valid & ~drop; // @[Fragmenter.scala:234:30, :236:{36,39}]
wire [2:0] anonIn_d_bits_size = dFirst ? dFirst_size : dOrig; // @[OneHot.scala:32:10]
wire [12:0] _aOrigOH1_T = 13'h3F << _repeater_io_deq_bits_size; // @[package.scala:243:71]
reg [2:0] gennum; // @[Fragmenter.scala:303:29]
wire aFirst = gennum == 3'h0; // @[Fragmenter.scala:303:29, :304:29]
wire [2:0] aFragnum = aFirst ? ~(_aOrigOH1_T[5:3]) : gennum - 3'h1; // @[package.scala:243:{46,71,76}]
reg aToggle_r; // @[Fragmenter.scala:309:54] |
Generate the Verilog code corresponding to the following Chisel files.
File RoundAnyRawFNToRecFN.scala:
/*============================================================================
This Chisel source file is part of a pre-release version of the HardFloat IEEE
Floating-Point Arithmetic Package, by John R. Hauser (with some contributions
from Yunsup Lee and Andrew Waterman, mainly concerning testing).
Copyright 2010, 2011, 2012, 2013, 2014, 2015, 2016, 2017 The Regents of the
University of California. All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
1. Redistributions of source code must retain the above copyright notice,
this list of conditions, and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice,
this list of conditions, and the following disclaimer in the documentation
and/or other materials provided with the distribution.
3. Neither the name of the University nor the names of its contributors may
be used to endorse or promote products derived from this software without
specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS "AS IS", AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ARE
DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
=============================================================================*/
package hardfloat
import chisel3._
import chisel3.util.Fill
import consts._
//----------------------------------------------------------------------------
//----------------------------------------------------------------------------
class
RoundAnyRawFNToRecFN(
inExpWidth: Int,
inSigWidth: Int,
outExpWidth: Int,
outSigWidth: Int,
options: Int
)
extends RawModule
{
override def desiredName = s"RoundAnyRawFNToRecFN_ie${inExpWidth}_is${inSigWidth}_oe${outExpWidth}_os${outSigWidth}"
val io = IO(new Bundle {
val invalidExc = Input(Bool()) // overrides 'infiniteExc' and 'in'
val infiniteExc = Input(Bool()) // overrides 'in' except for 'in.sign'
val in = Input(new RawFloat(inExpWidth, inSigWidth))
// (allowed exponent range has limits)
val roundingMode = Input(UInt(3.W))
val detectTininess = Input(UInt(1.W))
val out = Output(Bits((outExpWidth + outSigWidth + 1).W))
val exceptionFlags = Output(Bits(5.W))
})
//------------------------------------------------------------------------
//------------------------------------------------------------------------
val sigMSBitAlwaysZero = ((options & flRoundOpt_sigMSBitAlwaysZero) != 0)
val effectiveInSigWidth =
if (sigMSBitAlwaysZero) inSigWidth else inSigWidth + 1
val neverUnderflows =
((options &
(flRoundOpt_neverUnderflows | flRoundOpt_subnormsAlwaysExact)
) != 0) ||
(inExpWidth < outExpWidth)
val neverOverflows =
((options & flRoundOpt_neverOverflows) != 0) ||
(inExpWidth < outExpWidth)
val outNaNExp = BigInt(7)<<(outExpWidth - 2)
val outInfExp = BigInt(6)<<(outExpWidth - 2)
val outMaxFiniteExp = outInfExp - 1
val outMinNormExp = (BigInt(1)<<(outExpWidth - 1)) + 2
val outMinNonzeroExp = outMinNormExp - outSigWidth + 1
//------------------------------------------------------------------------
//------------------------------------------------------------------------
val roundingMode_near_even = (io.roundingMode === round_near_even)
val roundingMode_minMag = (io.roundingMode === round_minMag)
val roundingMode_min = (io.roundingMode === round_min)
val roundingMode_max = (io.roundingMode === round_max)
val roundingMode_near_maxMag = (io.roundingMode === round_near_maxMag)
val roundingMode_odd = (io.roundingMode === round_odd)
val roundMagUp =
(roundingMode_min && io.in.sign) || (roundingMode_max && ! io.in.sign)
//------------------------------------------------------------------------
//------------------------------------------------------------------------
val sAdjustedExp =
if (inExpWidth < outExpWidth)
(io.in.sExp +&
((BigInt(1)<<outExpWidth) - (BigInt(1)<<inExpWidth)).S
)(outExpWidth, 0).zext
else if (inExpWidth == outExpWidth)
io.in.sExp
else
io.in.sExp +&
((BigInt(1)<<outExpWidth) - (BigInt(1)<<inExpWidth)).S
val adjustedSig =
if (inSigWidth <= outSigWidth + 2)
io.in.sig<<(outSigWidth - inSigWidth + 2)
else
(io.in.sig(inSigWidth, inSigWidth - outSigWidth - 1) ##
io.in.sig(inSigWidth - outSigWidth - 2, 0).orR
)
val doShiftSigDown1 =
if (sigMSBitAlwaysZero) false.B else adjustedSig(outSigWidth + 2)
val common_expOut = Wire(UInt((outExpWidth + 1).W))
val common_fractOut = Wire(UInt((outSigWidth - 1).W))
val common_overflow = Wire(Bool())
val common_totalUnderflow = Wire(Bool())
val common_underflow = Wire(Bool())
val common_inexact = Wire(Bool())
if (
neverOverflows && neverUnderflows
&& (effectiveInSigWidth <= outSigWidth)
) {
//--------------------------------------------------------------------
//--------------------------------------------------------------------
common_expOut := sAdjustedExp(outExpWidth, 0) + doShiftSigDown1
common_fractOut :=
Mux(doShiftSigDown1,
adjustedSig(outSigWidth + 1, 3),
adjustedSig(outSigWidth, 2)
)
common_overflow := false.B
common_totalUnderflow := false.B
common_underflow := false.B
common_inexact := false.B
} else {
//--------------------------------------------------------------------
//--------------------------------------------------------------------
val roundMask =
if (neverUnderflows)
0.U(outSigWidth.W) ## doShiftSigDown1 ## 3.U(2.W)
else
(lowMask(
sAdjustedExp(outExpWidth, 0),
outMinNormExp - outSigWidth - 1,
outMinNormExp
) | doShiftSigDown1) ##
3.U(2.W)
val shiftedRoundMask = 0.U(1.W) ## roundMask>>1
val roundPosMask = ~shiftedRoundMask & roundMask
val roundPosBit = (adjustedSig & roundPosMask).orR
val anyRoundExtra = (adjustedSig & shiftedRoundMask).orR
val anyRound = roundPosBit || anyRoundExtra
val roundIncr =
((roundingMode_near_even || roundingMode_near_maxMag) &&
roundPosBit) ||
(roundMagUp && anyRound)
val roundedSig: Bits =
Mux(roundIncr,
(((adjustedSig | roundMask)>>2) +& 1.U) &
~Mux(roundingMode_near_even && roundPosBit &&
! anyRoundExtra,
roundMask>>1,
0.U((outSigWidth + 2).W)
),
(adjustedSig & ~roundMask)>>2 |
Mux(roundingMode_odd && anyRound, roundPosMask>>1, 0.U)
)
//*** IF SIG WIDTH IS VERY NARROW, NEED TO ACCOUNT FOR ROUND-EVEN ZEROING
//*** M.S. BIT OF SUBNORMAL SIG?
val sRoundedExp = sAdjustedExp +& (roundedSig>>outSigWidth).asUInt.zext
common_expOut := sRoundedExp(outExpWidth, 0)
common_fractOut :=
Mux(doShiftSigDown1,
roundedSig(outSigWidth - 1, 1),
roundedSig(outSigWidth - 2, 0)
)
common_overflow :=
(if (neverOverflows) false.B else
//*** REWRITE BASED ON BEFORE-ROUNDING EXPONENT?:
(sRoundedExp>>(outExpWidth - 1) >= 3.S))
common_totalUnderflow :=
(if (neverUnderflows) false.B else
//*** WOULD BE GOOD ENOUGH TO USE EXPONENT BEFORE ROUNDING?:
(sRoundedExp < outMinNonzeroExp.S))
val unboundedRange_roundPosBit =
Mux(doShiftSigDown1, adjustedSig(2), adjustedSig(1))
val unboundedRange_anyRound =
(doShiftSigDown1 && adjustedSig(2)) || adjustedSig(1, 0).orR
val unboundedRange_roundIncr =
((roundingMode_near_even || roundingMode_near_maxMag) &&
unboundedRange_roundPosBit) ||
(roundMagUp && unboundedRange_anyRound)
val roundCarry =
Mux(doShiftSigDown1,
roundedSig(outSigWidth + 1),
roundedSig(outSigWidth)
)
common_underflow :=
(if (neverUnderflows) false.B else
common_totalUnderflow ||
//*** IF SIG WIDTH IS VERY NARROW, NEED TO ACCOUNT FOR ROUND-EVEN ZEROING
//*** M.S. BIT OF SUBNORMAL SIG?
(anyRound && ((sAdjustedExp>>outExpWidth) <= 0.S) &&
Mux(doShiftSigDown1, roundMask(3), roundMask(2)) &&
! ((io.detectTininess === tininess_afterRounding) &&
! Mux(doShiftSigDown1,
roundMask(4),
roundMask(3)
) &&
roundCarry && roundPosBit &&
unboundedRange_roundIncr)))
common_inexact := common_totalUnderflow || anyRound
}
//------------------------------------------------------------------------
//------------------------------------------------------------------------
val isNaNOut = io.invalidExc || io.in.isNaN
val notNaN_isSpecialInfOut = io.infiniteExc || io.in.isInf
val commonCase = ! isNaNOut && ! notNaN_isSpecialInfOut && ! io.in.isZero
val overflow = commonCase && common_overflow
val underflow = commonCase && common_underflow
val inexact = overflow || (commonCase && common_inexact)
val overflow_roundMagUp =
roundingMode_near_even || roundingMode_near_maxMag || roundMagUp
val pegMinNonzeroMagOut =
commonCase && common_totalUnderflow && (roundMagUp || roundingMode_odd)
val pegMaxFiniteMagOut = overflow && ! overflow_roundMagUp
val notNaN_isInfOut =
notNaN_isSpecialInfOut || (overflow && overflow_roundMagUp)
val signOut = Mux(isNaNOut, false.B, io.in.sign)
val expOut =
(common_expOut &
~Mux(io.in.isZero || common_totalUnderflow,
(BigInt(7)<<(outExpWidth - 2)).U((outExpWidth + 1).W),
0.U
) &
~Mux(pegMinNonzeroMagOut,
~outMinNonzeroExp.U((outExpWidth + 1).W),
0.U
) &
~Mux(pegMaxFiniteMagOut,
(BigInt(1)<<(outExpWidth - 1)).U((outExpWidth + 1).W),
0.U
) &
~Mux(notNaN_isInfOut,
(BigInt(1)<<(outExpWidth - 2)).U((outExpWidth + 1).W),
0.U
)) |
Mux(pegMinNonzeroMagOut,
outMinNonzeroExp.U((outExpWidth + 1).W),
0.U
) |
Mux(pegMaxFiniteMagOut,
outMaxFiniteExp.U((outExpWidth + 1).W),
0.U
) |
Mux(notNaN_isInfOut, outInfExp.U((outExpWidth + 1).W), 0.U) |
Mux(isNaNOut, outNaNExp.U((outExpWidth + 1).W), 0.U)
val fractOut =
Mux(isNaNOut || io.in.isZero || common_totalUnderflow,
Mux(isNaNOut, (BigInt(1)<<(outSigWidth - 2)).U, 0.U),
common_fractOut
) |
Fill(outSigWidth - 1, pegMaxFiniteMagOut)
io.out := signOut ## expOut ## fractOut
io.exceptionFlags :=
io.invalidExc ## io.infiniteExc ## overflow ## underflow ## inexact
}
//----------------------------------------------------------------------------
//----------------------------------------------------------------------------
class
RoundRawFNToRecFN(expWidth: Int, sigWidth: Int, options: Int)
extends RawModule
{
override def desiredName = s"RoundRawFNToRecFN_e${expWidth}_s${sigWidth}"
val io = IO(new Bundle {
val invalidExc = Input(Bool()) // overrides 'infiniteExc' and 'in'
val infiniteExc = Input(Bool()) // overrides 'in' except for 'in.sign'
val in = Input(new RawFloat(expWidth, sigWidth + 2))
val roundingMode = Input(UInt(3.W))
val detectTininess = Input(UInt(1.W))
val out = Output(Bits((expWidth + sigWidth + 1).W))
val exceptionFlags = Output(Bits(5.W))
})
val roundAnyRawFNToRecFN =
Module(
new RoundAnyRawFNToRecFN(
expWidth, sigWidth + 2, expWidth, sigWidth, options))
roundAnyRawFNToRecFN.io.invalidExc := io.invalidExc
roundAnyRawFNToRecFN.io.infiniteExc := io.infiniteExc
roundAnyRawFNToRecFN.io.in := io.in
roundAnyRawFNToRecFN.io.roundingMode := io.roundingMode
roundAnyRawFNToRecFN.io.detectTininess := io.detectTininess
io.out := roundAnyRawFNToRecFN.io.out
io.exceptionFlags := roundAnyRawFNToRecFN.io.exceptionFlags
}
| module RoundRawFNToRecFN_e8_s24_59( // @[RoundAnyRawFNToRecFN.scala:295:5]
input io_invalidExc, // @[RoundAnyRawFNToRecFN.scala:299:16]
input io_in_isNaN, // @[RoundAnyRawFNToRecFN.scala:299:16]
input io_in_isInf, // @[RoundAnyRawFNToRecFN.scala:299:16]
input io_in_isZero, // @[RoundAnyRawFNToRecFN.scala:299:16]
input io_in_sign, // @[RoundAnyRawFNToRecFN.scala:299:16]
input [9:0] io_in_sExp, // @[RoundAnyRawFNToRecFN.scala:299:16]
input [26:0] io_in_sig, // @[RoundAnyRawFNToRecFN.scala:299:16]
output [32:0] io_out, // @[RoundAnyRawFNToRecFN.scala:299:16]
output [4:0] io_exceptionFlags // @[RoundAnyRawFNToRecFN.scala:299:16]
);
wire io_invalidExc_0 = io_invalidExc; // @[RoundAnyRawFNToRecFN.scala:295:5]
wire io_in_isNaN_0 = io_in_isNaN; // @[RoundAnyRawFNToRecFN.scala:295:5]
wire io_in_isInf_0 = io_in_isInf; // @[RoundAnyRawFNToRecFN.scala:295:5]
wire io_in_isZero_0 = io_in_isZero; // @[RoundAnyRawFNToRecFN.scala:295:5]
wire io_in_sign_0 = io_in_sign; // @[RoundAnyRawFNToRecFN.scala:295:5]
wire [9:0] io_in_sExp_0 = io_in_sExp; // @[RoundAnyRawFNToRecFN.scala:295:5]
wire [26:0] io_in_sig_0 = io_in_sig; // @[RoundAnyRawFNToRecFN.scala:295:5]
wire io_detectTininess = 1'h1; // @[RoundAnyRawFNToRecFN.scala:295:5, :299:16, :310:15]
wire [2:0] io_roundingMode = 3'h0; // @[RoundAnyRawFNToRecFN.scala:295:5, :299:16, :310:15]
wire io_infiniteExc = 1'h0; // @[RoundAnyRawFNToRecFN.scala:295:5, :299:16, :310:15]
wire [32:0] io_out_0; // @[RoundAnyRawFNToRecFN.scala:295:5]
wire [4:0] io_exceptionFlags_0; // @[RoundAnyRawFNToRecFN.scala:295:5]
RoundAnyRawFNToRecFN_ie8_is26_oe8_os24_59 roundAnyRawFNToRecFN ( // @[RoundAnyRawFNToRecFN.scala:310:15]
.io_invalidExc (io_invalidExc_0), // @[RoundAnyRawFNToRecFN.scala:295:5]
.io_in_isNaN (io_in_isNaN_0), // @[RoundAnyRawFNToRecFN.scala:295:5]
.io_in_isInf (io_in_isInf_0), // @[RoundAnyRawFNToRecFN.scala:295:5]
.io_in_isZero (io_in_isZero_0), // @[RoundAnyRawFNToRecFN.scala:295:5]
.io_in_sign (io_in_sign_0), // @[RoundAnyRawFNToRecFN.scala:295:5]
.io_in_sExp (io_in_sExp_0), // @[RoundAnyRawFNToRecFN.scala:295:5]
.io_in_sig (io_in_sig_0), // @[RoundAnyRawFNToRecFN.scala:295:5]
.io_out (io_out_0),
.io_exceptionFlags (io_exceptionFlags_0)
); // @[RoundAnyRawFNToRecFN.scala:310:15]
assign io_out = io_out_0; // @[RoundAnyRawFNToRecFN.scala:295:5]
assign io_exceptionFlags = io_exceptionFlags_0; // @[RoundAnyRawFNToRecFN.scala:295:5]
endmodule |
Generate the Verilog code corresponding to the following Chisel files.
File Tile.scala:
// See README.md for license details.
package gemmini
import chisel3._
import chisel3.util._
import Util._
/**
* A Tile is a purely combinational 2D array of passThrough PEs.
* a, b, s, and in_propag are broadcast across the entire array and are passed through to the Tile's outputs
* @param width The data width of each PE in bits
* @param rows Number of PEs on each row
* @param columns Number of PEs on each column
*/
class Tile[T <: Data](inputType: T, outputType: T, accType: T, df: Dataflow.Value, tree_reduction: Boolean, max_simultaneous_matmuls: Int, val rows: Int, val columns: Int)(implicit ev: Arithmetic[T]) extends Module {
val io = IO(new Bundle {
val in_a = Input(Vec(rows, inputType))
val in_b = Input(Vec(columns, outputType)) // This is the output of the tile next to it
val in_d = Input(Vec(columns, outputType))
val in_control = Input(Vec(columns, new PEControl(accType)))
val in_id = Input(Vec(columns, UInt(log2Up(max_simultaneous_matmuls).W)))
val in_last = Input(Vec(columns, Bool()))
val out_a = Output(Vec(rows, inputType))
val out_c = Output(Vec(columns, outputType))
val out_b = Output(Vec(columns, outputType))
val out_control = Output(Vec(columns, new PEControl(accType)))
val out_id = Output(Vec(columns, UInt(log2Up(max_simultaneous_matmuls).W)))
val out_last = Output(Vec(columns, Bool()))
val in_valid = Input(Vec(columns, Bool()))
val out_valid = Output(Vec(columns, Bool()))
val bad_dataflow = Output(Bool())
})
import ev._
val tile = Seq.fill(rows, columns)(Module(new PE(inputType, outputType, accType, df, max_simultaneous_matmuls)))
val tileT = tile.transpose
// TODO: abstract hori/vert broadcast, all these connections look the same
// Broadcast 'a' horizontally across the Tile
for (r <- 0 until rows) {
tile(r).foldLeft(io.in_a(r)) {
case (in_a, pe) =>
pe.io.in_a := in_a
pe.io.out_a
}
}
// Broadcast 'b' vertically across the Tile
for (c <- 0 until columns) {
tileT(c).foldLeft(io.in_b(c)) {
case (in_b, pe) =>
pe.io.in_b := (if (tree_reduction) in_b.zero else in_b)
pe.io.out_b
}
}
// Broadcast 'd' vertically across the Tile
for (c <- 0 until columns) {
tileT(c).foldLeft(io.in_d(c)) {
case (in_d, pe) =>
pe.io.in_d := in_d
pe.io.out_c
}
}
// Broadcast 'control' vertically across the Tile
for (c <- 0 until columns) {
tileT(c).foldLeft(io.in_control(c)) {
case (in_ctrl, pe) =>
pe.io.in_control := in_ctrl
pe.io.out_control
}
}
// Broadcast 'garbage' vertically across the Tile
for (c <- 0 until columns) {
tileT(c).foldLeft(io.in_valid(c)) {
case (v, pe) =>
pe.io.in_valid := v
pe.io.out_valid
}
}
// Broadcast 'id' vertically across the Tile
for (c <- 0 until columns) {
tileT(c).foldLeft(io.in_id(c)) {
case (id, pe) =>
pe.io.in_id := id
pe.io.out_id
}
}
// Broadcast 'last' vertically across the Tile
for (c <- 0 until columns) {
tileT(c).foldLeft(io.in_last(c)) {
case (last, pe) =>
pe.io.in_last := last
pe.io.out_last
}
}
// Drive the Tile's bottom IO
for (c <- 0 until columns) {
io.out_c(c) := tile(rows-1)(c).io.out_c
io.out_control(c) := tile(rows-1)(c).io.out_control
io.out_id(c) := tile(rows-1)(c).io.out_id
io.out_last(c) := tile(rows-1)(c).io.out_last
io.out_valid(c) := tile(rows-1)(c).io.out_valid
io.out_b(c) := {
if (tree_reduction) {
val prods = tileT(c).map(_.io.out_b)
accumulateTree(prods :+ io.in_b(c))
} else {
tile(rows - 1)(c).io.out_b
}
}
}
io.bad_dataflow := tile.map(_.map(_.io.bad_dataflow).reduce(_||_)).reduce(_||_)
// Drive the Tile's right IO
for (r <- 0 until rows) {
io.out_a(r) := tile(r)(columns-1).io.out_a
}
}
| module Tile_90( // @[Tile.scala:16:7]
input clock, // @[Tile.scala:16:7]
input reset, // @[Tile.scala:16:7]
input [7:0] io_in_a_0, // @[Tile.scala:17:14]
input [19:0] io_in_b_0, // @[Tile.scala:17:14]
input [19:0] io_in_d_0, // @[Tile.scala:17:14]
input io_in_control_0_dataflow, // @[Tile.scala:17:14]
input io_in_control_0_propagate, // @[Tile.scala:17:14]
input [4:0] io_in_control_0_shift, // @[Tile.scala:17:14]
input [2:0] io_in_id_0, // @[Tile.scala:17:14]
input io_in_last_0, // @[Tile.scala:17:14]
output [7:0] io_out_a_0, // @[Tile.scala:17:14]
output [19:0] io_out_c_0, // @[Tile.scala:17:14]
output [19:0] io_out_b_0, // @[Tile.scala:17:14]
output io_out_control_0_dataflow, // @[Tile.scala:17:14]
output io_out_control_0_propagate, // @[Tile.scala:17:14]
output [4:0] io_out_control_0_shift, // @[Tile.scala:17:14]
output [2:0] io_out_id_0, // @[Tile.scala:17:14]
output io_out_last_0, // @[Tile.scala:17:14]
input io_in_valid_0, // @[Tile.scala:17:14]
output io_out_valid_0 // @[Tile.scala:17:14]
);
wire [7:0] io_in_a_0_0 = io_in_a_0; // @[Tile.scala:16:7]
wire [19:0] io_in_b_0_0 = io_in_b_0; // @[Tile.scala:16:7]
wire [19:0] io_in_d_0_0 = io_in_d_0; // @[Tile.scala:16:7]
wire io_in_control_0_dataflow_0 = io_in_control_0_dataflow; // @[Tile.scala:16:7]
wire io_in_control_0_propagate_0 = io_in_control_0_propagate; // @[Tile.scala:16:7]
wire [4:0] io_in_control_0_shift_0 = io_in_control_0_shift; // @[Tile.scala:16:7]
wire [2:0] io_in_id_0_0 = io_in_id_0; // @[Tile.scala:16:7]
wire io_in_last_0_0 = io_in_last_0; // @[Tile.scala:16:7]
wire io_in_valid_0_0 = io_in_valid_0; // @[Tile.scala:16:7]
wire io_bad_dataflow = 1'h0; // @[Tile.scala:16:7, :17:14, :42:44]
wire [7:0] io_out_a_0_0; // @[Tile.scala:16:7]
wire [19:0] io_out_c_0_0; // @[Tile.scala:16:7]
wire [19:0] io_out_b_0_0; // @[Tile.scala:16:7]
wire io_out_control_0_dataflow_0; // @[Tile.scala:16:7]
wire io_out_control_0_propagate_0; // @[Tile.scala:16:7]
wire [4:0] io_out_control_0_shift_0; // @[Tile.scala:16:7]
wire [2:0] io_out_id_0_0; // @[Tile.scala:16:7]
wire io_out_last_0_0; // @[Tile.scala:16:7]
wire io_out_valid_0_0; // @[Tile.scala:16:7]
PE_346 tile_0_0 ( // @[Tile.scala:42:44]
.clock (clock),
.reset (reset),
.io_in_a (io_in_a_0_0), // @[Tile.scala:16:7]
.io_in_b (io_in_b_0_0), // @[Tile.scala:16:7]
.io_in_d (io_in_d_0_0), // @[Tile.scala:16:7]
.io_out_a (io_out_a_0_0),
.io_out_b (io_out_b_0_0),
.io_out_c (io_out_c_0_0),
.io_in_control_dataflow (io_in_control_0_dataflow_0), // @[Tile.scala:16:7]
.io_in_control_propagate (io_in_control_0_propagate_0), // @[Tile.scala:16:7]
.io_in_control_shift (io_in_control_0_shift_0), // @[Tile.scala:16:7]
.io_out_control_dataflow (io_out_control_0_dataflow_0),
.io_out_control_propagate (io_out_control_0_propagate_0),
.io_out_control_shift (io_out_control_0_shift_0),
.io_in_id (io_in_id_0_0), // @[Tile.scala:16:7]
.io_out_id (io_out_id_0_0),
.io_in_last (io_in_last_0_0), // @[Tile.scala:16:7]
.io_out_last (io_out_last_0_0),
.io_in_valid (io_in_valid_0_0), // @[Tile.scala:16:7]
.io_out_valid (io_out_valid_0_0)
); // @[Tile.scala:42:44]
assign io_out_a_0 = io_out_a_0_0; // @[Tile.scala:16:7]
assign io_out_c_0 = io_out_c_0_0; // @[Tile.scala:16:7]
assign io_out_b_0 = io_out_b_0_0; // @[Tile.scala:16:7]
assign io_out_control_0_dataflow = io_out_control_0_dataflow_0; // @[Tile.scala:16:7]
assign io_out_control_0_propagate = io_out_control_0_propagate_0; // @[Tile.scala:16:7]
assign io_out_control_0_shift = io_out_control_0_shift_0; // @[Tile.scala:16:7]
assign io_out_id_0 = io_out_id_0_0; // @[Tile.scala:16:7]
assign io_out_last_0 = io_out_last_0_0; // @[Tile.scala:16:7]
assign io_out_valid_0 = io_out_valid_0_0; // @[Tile.scala:16:7]
endmodule |
Generate the Verilog code corresponding to the following Chisel files.
File InputUnit.scala:
package constellation.router
import chisel3._
import chisel3.util._
import org.chipsalliance.cde.config.{Field, Parameters}
import freechips.rocketchip.util._
import constellation.channel._
import constellation.routing.{FlowRoutingBundle}
import constellation.noc.{HasNoCParams}
class AbstractInputUnitIO(
val cParam: BaseChannelParams,
val outParams: Seq[ChannelParams],
val egressParams: Seq[EgressChannelParams],
)(implicit val p: Parameters) extends Bundle with HasRouterOutputParams {
val nodeId = cParam.destId
val router_req = Decoupled(new RouteComputerReq)
val router_resp = Input(new RouteComputerResp(outParams, egressParams))
val vcalloc_req = Decoupled(new VCAllocReq(cParam, outParams, egressParams))
val vcalloc_resp = Input(new VCAllocResp(outParams, egressParams))
val out_credit_available = Input(MixedVec(allOutParams.map { u => Vec(u.nVirtualChannels, Bool()) }))
val salloc_req = Vec(cParam.destSpeedup, Decoupled(new SwitchAllocReq(outParams, egressParams)))
val out = Vec(cParam.destSpeedup, Valid(new SwitchBundle(outParams, egressParams)))
val debug = Output(new Bundle {
val va_stall = UInt(log2Ceil(cParam.nVirtualChannels).W)
val sa_stall = UInt(log2Ceil(cParam.nVirtualChannels).W)
})
val block = Input(Bool())
}
abstract class AbstractInputUnit(
val cParam: BaseChannelParams,
val outParams: Seq[ChannelParams],
val egressParams: Seq[EgressChannelParams]
)(implicit val p: Parameters) extends Module with HasRouterOutputParams with HasNoCParams {
val nodeId = cParam.destId
def io: AbstractInputUnitIO
}
class InputBuffer(cParam: ChannelParams)(implicit p: Parameters) extends Module {
val nVirtualChannels = cParam.nVirtualChannels
val io = IO(new Bundle {
val enq = Flipped(Vec(cParam.srcSpeedup, Valid(new Flit(cParam.payloadBits))))
val deq = Vec(cParam.nVirtualChannels, Decoupled(new BaseFlit(cParam.payloadBits)))
})
val useOutputQueues = cParam.useOutputQueues
val delims = if (useOutputQueues) {
cParam.virtualChannelParams.map(u => if (u.traversable) u.bufferSize else 0).scanLeft(0)(_+_)
} else {
// If no queuing, have to add an additional slot since head == tail implies empty
// TODO this should be fixed, should use all slots available
cParam.virtualChannelParams.map(u => if (u.traversable) u.bufferSize + 1 else 0).scanLeft(0)(_+_)
}
val starts = delims.dropRight(1).zipWithIndex.map { case (s,i) =>
if (cParam.virtualChannelParams(i).traversable) s else 0
}
val ends = delims.tail.zipWithIndex.map { case (s,i) =>
if (cParam.virtualChannelParams(i).traversable) s else 0
}
val fullSize = delims.last
// Ugly case. Use multiple queues
if ((cParam.srcSpeedup > 1 || cParam.destSpeedup > 1 || fullSize <= 1) || !cParam.unifiedBuffer) {
require(useOutputQueues)
val qs = cParam.virtualChannelParams.map(v => Module(new Queue(new BaseFlit(cParam.payloadBits), v.bufferSize)))
qs.zipWithIndex.foreach { case (q,i) =>
val sel = io.enq.map(f => f.valid && f.bits.virt_channel_id === i.U)
q.io.enq.valid := sel.orR
q.io.enq.bits.head := Mux1H(sel, io.enq.map(_.bits.head))
q.io.enq.bits.tail := Mux1H(sel, io.enq.map(_.bits.tail))
q.io.enq.bits.payload := Mux1H(sel, io.enq.map(_.bits.payload))
io.deq(i) <> q.io.deq
}
} else {
val mem = Mem(fullSize, new BaseFlit(cParam.payloadBits))
val heads = RegInit(VecInit(starts.map(_.U(log2Ceil(fullSize).W))))
val tails = RegInit(VecInit(starts.map(_.U(log2Ceil(fullSize).W))))
val empty = (heads zip tails).map(t => t._1 === t._2)
val qs = Seq.fill(nVirtualChannels) { Module(new Queue(new BaseFlit(cParam.payloadBits), 1, pipe=true)) }
qs.foreach(_.io.enq.valid := false.B)
qs.foreach(_.io.enq.bits := DontCare)
val vc_sel = UIntToOH(io.enq(0).bits.virt_channel_id)
val flit = Wire(new BaseFlit(cParam.payloadBits))
val direct_to_q = (Mux1H(vc_sel, qs.map(_.io.enq.ready)) && Mux1H(vc_sel, empty)) && useOutputQueues.B
flit.head := io.enq(0).bits.head
flit.tail := io.enq(0).bits.tail
flit.payload := io.enq(0).bits.payload
when (io.enq(0).valid && !direct_to_q) {
val tail = tails(io.enq(0).bits.virt_channel_id)
mem.write(tail, flit)
tails(io.enq(0).bits.virt_channel_id) := Mux(
tail === Mux1H(vc_sel, ends.map(_ - 1).map(_ max 0).map(_.U)),
Mux1H(vc_sel, starts.map(_.U)),
tail + 1.U)
} .elsewhen (io.enq(0).valid && direct_to_q) {
for (i <- 0 until nVirtualChannels) {
when (io.enq(0).bits.virt_channel_id === i.U) {
qs(i).io.enq.valid := true.B
qs(i).io.enq.bits := flit
}
}
}
if (useOutputQueues) {
val can_to_q = (0 until nVirtualChannels).map { i => !empty(i) && qs(i).io.enq.ready }
val to_q_oh = PriorityEncoderOH(can_to_q)
val to_q = OHToUInt(to_q_oh)
when (can_to_q.orR) {
val head = Mux1H(to_q_oh, heads)
heads(to_q) := Mux(
head === Mux1H(to_q_oh, ends.map(_ - 1).map(_ max 0).map(_.U)),
Mux1H(to_q_oh, starts.map(_.U)),
head + 1.U)
for (i <- 0 until nVirtualChannels) {
when (to_q_oh(i)) {
qs(i).io.enq.valid := true.B
qs(i).io.enq.bits := mem.read(head)
}
}
}
for (i <- 0 until nVirtualChannels) {
io.deq(i) <> qs(i).io.deq
}
} else {
qs.map(_.io.deq.ready := false.B)
val ready_sel = io.deq.map(_.ready)
val fire = io.deq.map(_.fire)
assert(PopCount(fire) <= 1.U)
val head = Mux1H(fire, heads)
when (fire.orR) {
val fire_idx = OHToUInt(fire)
heads(fire_idx) := Mux(
head === Mux1H(fire, ends.map(_ - 1).map(_ max 0).map(_.U)),
Mux1H(fire, starts.map(_.U)),
head + 1.U)
}
val read_flit = mem.read(head)
for (i <- 0 until nVirtualChannels) {
io.deq(i).valid := !empty(i)
io.deq(i).bits := read_flit
}
}
}
}
class InputUnit(cParam: ChannelParams, outParams: Seq[ChannelParams],
egressParams: Seq[EgressChannelParams],
combineRCVA: Boolean, combineSAST: Boolean
)
(implicit p: Parameters) extends AbstractInputUnit(cParam, outParams, egressParams)(p) {
val nVirtualChannels = cParam.nVirtualChannels
val virtualChannelParams = cParam.virtualChannelParams
class InputUnitIO extends AbstractInputUnitIO(cParam, outParams, egressParams) {
val in = Flipped(new Channel(cParam.asInstanceOf[ChannelParams]))
}
val io = IO(new InputUnitIO)
val g_i :: g_r :: g_v :: g_a :: g_c :: Nil = Enum(5)
class InputState extends Bundle {
val g = UInt(3.W)
val vc_sel = MixedVec(allOutParams.map { u => Vec(u.nVirtualChannels, Bool()) })
val flow = new FlowRoutingBundle
val fifo_deps = UInt(nVirtualChannels.W)
}
val input_buffer = Module(new InputBuffer(cParam))
for (i <- 0 until cParam.srcSpeedup) {
input_buffer.io.enq(i) := io.in.flit(i)
}
input_buffer.io.deq.foreach(_.ready := false.B)
val route_arbiter = Module(new Arbiter(
new RouteComputerReq, nVirtualChannels
))
io.router_req <> route_arbiter.io.out
val states = Reg(Vec(nVirtualChannels, new InputState))
val anyFifo = cParam.possibleFlows.map(_.fifo).reduce(_||_)
val allFifo = cParam.possibleFlows.map(_.fifo).reduce(_&&_)
if (anyFifo) {
val idle_mask = VecInit(states.map(_.g === g_i)).asUInt
for (s <- states)
for (i <- 0 until nVirtualChannels)
s.fifo_deps := s.fifo_deps & ~idle_mask
}
for (i <- 0 until cParam.srcSpeedup) {
when (io.in.flit(i).fire && io.in.flit(i).bits.head) {
val id = io.in.flit(i).bits.virt_channel_id
assert(id < nVirtualChannels.U)
assert(states(id).g === g_i)
val at_dest = io.in.flit(i).bits.flow.egress_node === nodeId.U
states(id).g := Mux(at_dest, g_v, g_r)
states(id).vc_sel.foreach(_.foreach(_ := false.B))
for (o <- 0 until nEgress) {
when (o.U === io.in.flit(i).bits.flow.egress_node_id) {
states(id).vc_sel(o+nOutputs)(0) := true.B
}
}
states(id).flow := io.in.flit(i).bits.flow
if (anyFifo) {
val fifo = cParam.possibleFlows.filter(_.fifo).map(_.isFlow(io.in.flit(i).bits.flow)).toSeq.orR
states(id).fifo_deps := VecInit(states.zipWithIndex.map { case (s, j) =>
s.g =/= g_i && s.flow.asUInt === io.in.flit(i).bits.flow.asUInt && j.U =/= id
}).asUInt
}
}
}
(route_arbiter.io.in zip states).zipWithIndex.map { case ((i,s),idx) =>
if (virtualChannelParams(idx).traversable) {
i.valid := s.g === g_r
i.bits.flow := s.flow
i.bits.src_virt_id := idx.U
when (i.fire) { s.g := g_v }
} else {
i.valid := false.B
i.bits := DontCare
}
}
when (io.router_req.fire) {
val id = io.router_req.bits.src_virt_id
assert(states(id).g === g_r)
states(id).g := g_v
for (i <- 0 until nVirtualChannels) {
when (i.U === id) {
states(i).vc_sel := io.router_resp.vc_sel
}
}
}
val mask = RegInit(0.U(nVirtualChannels.W))
val vcalloc_reqs = Wire(Vec(nVirtualChannels, new VCAllocReq(cParam, outParams, egressParams)))
val vcalloc_vals = Wire(Vec(nVirtualChannels, Bool()))
val vcalloc_filter = PriorityEncoderOH(Cat(vcalloc_vals.asUInt, vcalloc_vals.asUInt & ~mask))
val vcalloc_sel = vcalloc_filter(nVirtualChannels-1,0) | (vcalloc_filter >> nVirtualChannels)
// Prioritize incoming packetes
when (io.router_req.fire) {
mask := (1.U << io.router_req.bits.src_virt_id) - 1.U
} .elsewhen (vcalloc_vals.orR) {
mask := Mux1H(vcalloc_sel, (0 until nVirtualChannels).map { w => ~(0.U((w+1).W)) })
}
io.vcalloc_req.valid := vcalloc_vals.orR
io.vcalloc_req.bits := Mux1H(vcalloc_sel, vcalloc_reqs)
states.zipWithIndex.map { case (s,idx) =>
if (virtualChannelParams(idx).traversable) {
vcalloc_vals(idx) := s.g === g_v && s.fifo_deps === 0.U
vcalloc_reqs(idx).in_vc := idx.U
vcalloc_reqs(idx).vc_sel := s.vc_sel
vcalloc_reqs(idx).flow := s.flow
when (vcalloc_vals(idx) && vcalloc_sel(idx) && io.vcalloc_req.ready) { s.g := g_a }
if (combineRCVA) {
when (route_arbiter.io.in(idx).fire) {
vcalloc_vals(idx) := true.B
vcalloc_reqs(idx).vc_sel := io.router_resp.vc_sel
}
}
} else {
vcalloc_vals(idx) := false.B
vcalloc_reqs(idx) := DontCare
}
}
io.debug.va_stall := PopCount(vcalloc_vals) - io.vcalloc_req.ready
when (io.vcalloc_req.fire) {
for (i <- 0 until nVirtualChannels) {
when (vcalloc_sel(i)) {
states(i).vc_sel := io.vcalloc_resp.vc_sel
states(i).g := g_a
if (!combineRCVA) {
assert(states(i).g === g_v)
}
}
}
}
val salloc_arb = Module(new SwitchArbiter(
nVirtualChannels,
cParam.destSpeedup,
outParams, egressParams
))
(states zip salloc_arb.io.in).zipWithIndex.map { case ((s,r),i) =>
if (virtualChannelParams(i).traversable) {
val credit_available = (s.vc_sel.asUInt & io.out_credit_available.asUInt) =/= 0.U
r.valid := s.g === g_a && credit_available && input_buffer.io.deq(i).valid
r.bits.vc_sel := s.vc_sel
val deq_tail = input_buffer.io.deq(i).bits.tail
r.bits.tail := deq_tail
when (r.fire && deq_tail) {
s.g := g_i
}
input_buffer.io.deq(i).ready := r.ready
} else {
r.valid := false.B
r.bits := DontCare
}
}
io.debug.sa_stall := PopCount(salloc_arb.io.in.map(r => r.valid && !r.ready))
io.salloc_req <> salloc_arb.io.out
when (io.block) {
salloc_arb.io.out.foreach(_.ready := false.B)
io.salloc_req.foreach(_.valid := false.B)
}
class OutBundle extends Bundle {
val valid = Bool()
val vid = UInt(virtualChannelBits.W)
val out_vid = UInt(log2Up(allOutParams.map(_.nVirtualChannels).max).W)
val flit = new Flit(cParam.payloadBits)
}
val salloc_outs = if (combineSAST) {
Wire(Vec(cParam.destSpeedup, new OutBundle))
} else {
Reg(Vec(cParam.destSpeedup, new OutBundle))
}
io.in.credit_return := salloc_arb.io.out.zipWithIndex.map { case (o, i) =>
Mux(o.fire, salloc_arb.io.chosen_oh(i), 0.U)
}.reduce(_|_)
io.in.vc_free := salloc_arb.io.out.zipWithIndex.map { case (o, i) =>
Mux(o.fire && Mux1H(salloc_arb.io.chosen_oh(i), input_buffer.io.deq.map(_.bits.tail)),
salloc_arb.io.chosen_oh(i), 0.U)
}.reduce(_|_)
for (i <- 0 until cParam.destSpeedup) {
val salloc_out = salloc_outs(i)
salloc_out.valid := salloc_arb.io.out(i).fire
salloc_out.vid := OHToUInt(salloc_arb.io.chosen_oh(i))
val vc_sel = Mux1H(salloc_arb.io.chosen_oh(i), states.map(_.vc_sel))
val channel_oh = vc_sel.map(_.reduce(_||_)).toSeq
val virt_channel = Mux1H(channel_oh, vc_sel.map(v => OHToUInt(v)).toSeq)
when (salloc_arb.io.out(i).fire) {
salloc_out.out_vid := virt_channel
salloc_out.flit.payload := Mux1H(salloc_arb.io.chosen_oh(i), input_buffer.io.deq.map(_.bits.payload))
salloc_out.flit.head := Mux1H(salloc_arb.io.chosen_oh(i), input_buffer.io.deq.map(_.bits.head))
salloc_out.flit.tail := Mux1H(salloc_arb.io.chosen_oh(i), input_buffer.io.deq.map(_.bits.tail))
salloc_out.flit.flow := Mux1H(salloc_arb.io.chosen_oh(i), states.map(_.flow))
} .otherwise {
salloc_out.out_vid := DontCare
salloc_out.flit := DontCare
}
salloc_out.flit.virt_channel_id := DontCare // this gets set in the switch
io.out(i).valid := salloc_out.valid
io.out(i).bits.flit := salloc_out.flit
io.out(i).bits.out_virt_channel := salloc_out.out_vid
}
def filterVCSel(sel: MixedVec[Vec[Bool]], srcV: Int) = {
if (virtualChannelParams(srcV).traversable) {
outParams.zipWithIndex.map { case (oP, oI) =>
(0 until oP.nVirtualChannels).map { oV =>
var allow = false
virtualChannelParams(srcV).possibleFlows.foreach { pI =>
allow = allow || routingRelation(
cParam.channelRoutingInfos(srcV),
oP.channelRoutingInfos(oV),
pI
)
}
if (!allow)
sel(oI)(oV) := false.B
}
}
}
}
(0 until nVirtualChannels).map { i =>
if (!virtualChannelParams(i).traversable) states(i) := DontCare
filterVCSel(states(i).vc_sel, i)
}
when (reset.asBool) {
states.foreach(_.g := g_i)
}
}
| module InputBuffer_2( // @[InputUnit.scala:49:7]
input clock, // @[InputUnit.scala:49:7]
input reset, // @[InputUnit.scala:49:7]
input io_enq_0_valid, // @[InputUnit.scala:51:14]
input io_enq_0_bits_head, // @[InputUnit.scala:51:14]
input io_enq_0_bits_tail, // @[InputUnit.scala:51:14]
input [72:0] io_enq_0_bits_payload, // @[InputUnit.scala:51:14]
input [3:0] io_enq_0_bits_virt_channel_id, // @[InputUnit.scala:51:14]
input io_deq_0_ready, // @[InputUnit.scala:51:14]
output io_deq_0_valid, // @[InputUnit.scala:51:14]
output io_deq_0_bits_head, // @[InputUnit.scala:51:14]
output io_deq_0_bits_tail, // @[InputUnit.scala:51:14]
output [72:0] io_deq_0_bits_payload, // @[InputUnit.scala:51:14]
input io_deq_1_ready, // @[InputUnit.scala:51:14]
output io_deq_1_valid, // @[InputUnit.scala:51:14]
output io_deq_1_bits_head, // @[InputUnit.scala:51:14]
output io_deq_1_bits_tail, // @[InputUnit.scala:51:14]
output [72:0] io_deq_1_bits_payload, // @[InputUnit.scala:51:14]
input io_deq_2_ready, // @[InputUnit.scala:51:14]
output io_deq_2_valid, // @[InputUnit.scala:51:14]
output io_deq_2_bits_head, // @[InputUnit.scala:51:14]
output io_deq_2_bits_tail, // @[InputUnit.scala:51:14]
output [72:0] io_deq_2_bits_payload, // @[InputUnit.scala:51:14]
input io_deq_3_ready, // @[InputUnit.scala:51:14]
output io_deq_3_valid, // @[InputUnit.scala:51:14]
output io_deq_3_bits_head, // @[InputUnit.scala:51:14]
output io_deq_3_bits_tail, // @[InputUnit.scala:51:14]
output [72:0] io_deq_3_bits_payload, // @[InputUnit.scala:51:14]
input io_deq_4_ready, // @[InputUnit.scala:51:14]
output io_deq_4_valid, // @[InputUnit.scala:51:14]
output io_deq_4_bits_head, // @[InputUnit.scala:51:14]
output io_deq_4_bits_tail, // @[InputUnit.scala:51:14]
output [72:0] io_deq_4_bits_payload, // @[InputUnit.scala:51:14]
input io_deq_5_ready, // @[InputUnit.scala:51:14]
output io_deq_5_valid, // @[InputUnit.scala:51:14]
output io_deq_5_bits_head, // @[InputUnit.scala:51:14]
output io_deq_5_bits_tail, // @[InputUnit.scala:51:14]
output [72:0] io_deq_5_bits_payload, // @[InputUnit.scala:51:14]
input io_deq_6_ready, // @[InputUnit.scala:51:14]
output io_deq_6_valid, // @[InputUnit.scala:51:14]
output io_deq_6_bits_head, // @[InputUnit.scala:51:14]
output io_deq_6_bits_tail, // @[InputUnit.scala:51:14]
output [72:0] io_deq_6_bits_payload, // @[InputUnit.scala:51:14]
input io_deq_7_ready, // @[InputUnit.scala:51:14]
output io_deq_7_valid, // @[InputUnit.scala:51:14]
output io_deq_7_bits_head, // @[InputUnit.scala:51:14]
output io_deq_7_bits_tail, // @[InputUnit.scala:51:14]
output [72:0] io_deq_7_bits_payload, // @[InputUnit.scala:51:14]
input io_deq_8_ready, // @[InputUnit.scala:51:14]
output io_deq_8_valid, // @[InputUnit.scala:51:14]
output io_deq_8_bits_head, // @[InputUnit.scala:51:14]
output io_deq_8_bits_tail, // @[InputUnit.scala:51:14]
output [72:0] io_deq_8_bits_payload, // @[InputUnit.scala:51:14]
input io_deq_9_ready, // @[InputUnit.scala:51:14]
output io_deq_9_valid, // @[InputUnit.scala:51:14]
output io_deq_9_bits_head, // @[InputUnit.scala:51:14]
output io_deq_9_bits_tail, // @[InputUnit.scala:51:14]
output [72:0] io_deq_9_bits_payload // @[InputUnit.scala:51:14]
);
wire _qs_9_io_enq_ready; // @[InputUnit.scala:90:49]
wire _qs_8_io_enq_ready; // @[InputUnit.scala:90:49]
wire _qs_7_io_enq_ready; // @[InputUnit.scala:90:49]
wire _qs_6_io_enq_ready; // @[InputUnit.scala:90:49]
wire _qs_5_io_enq_ready; // @[InputUnit.scala:90:49]
wire _qs_4_io_enq_ready; // @[InputUnit.scala:90:49]
wire _qs_3_io_enq_ready; // @[InputUnit.scala:90:49]
wire _qs_2_io_enq_ready; // @[InputUnit.scala:90:49]
wire _qs_1_io_enq_ready; // @[InputUnit.scala:90:49]
wire _qs_0_io_enq_ready; // @[InputUnit.scala:90:49]
wire [74:0] _mem_ext_R0_data; // @[InputUnit.scala:85:18]
wire [74:0] _mem_ext_R1_data; // @[InputUnit.scala:85:18]
wire [74:0] _mem_ext_R2_data; // @[InputUnit.scala:85:18]
wire [74:0] _mem_ext_R3_data; // @[InputUnit.scala:85:18]
wire [74:0] _mem_ext_R4_data; // @[InputUnit.scala:85:18]
wire [74:0] _mem_ext_R5_data; // @[InputUnit.scala:85:18]
wire [74:0] _mem_ext_R6_data; // @[InputUnit.scala:85:18]
wire [74:0] _mem_ext_R7_data; // @[InputUnit.scala:85:18]
wire [74:0] _mem_ext_R8_data; // @[InputUnit.scala:85:18]
wire [74:0] _mem_ext_R9_data; // @[InputUnit.scala:85:18]
reg [5:0] heads_0; // @[InputUnit.scala:86:24]
reg [5:0] heads_1; // @[InputUnit.scala:86:24]
reg [5:0] heads_2; // @[InputUnit.scala:86:24]
reg [5:0] heads_3; // @[InputUnit.scala:86:24]
reg [5:0] heads_4; // @[InputUnit.scala:86:24]
reg [5:0] heads_5; // @[InputUnit.scala:86:24]
reg [5:0] heads_6; // @[InputUnit.scala:86:24]
reg [5:0] heads_7; // @[InputUnit.scala:86:24]
reg [5:0] heads_8; // @[InputUnit.scala:86:24]
reg [5:0] heads_9; // @[InputUnit.scala:86:24]
reg [5:0] tails_0; // @[InputUnit.scala:87:24]
reg [5:0] tails_1; // @[InputUnit.scala:87:24]
reg [5:0] tails_2; // @[InputUnit.scala:87:24]
reg [5:0] tails_3; // @[InputUnit.scala:87:24]
reg [5:0] tails_4; // @[InputUnit.scala:87:24]
reg [5:0] tails_5; // @[InputUnit.scala:87:24]
reg [5:0] tails_6; // @[InputUnit.scala:87:24]
reg [5:0] tails_7; // @[InputUnit.scala:87:24]
reg [5:0] tails_8; // @[InputUnit.scala:87:24]
reg [5:0] tails_9; // @[InputUnit.scala:87:24]
wire _tails_T_30 = io_enq_0_bits_virt_channel_id == 4'h0; // @[Mux.scala:32:36]
wire _tails_T_31 = io_enq_0_bits_virt_channel_id == 4'h1; // @[Mux.scala:32:36]
wire _tails_T_32 = io_enq_0_bits_virt_channel_id == 4'h2; // @[Mux.scala:32:36]
wire _tails_T_33 = io_enq_0_bits_virt_channel_id == 4'h3; // @[Mux.scala:32:36]
wire _tails_T_34 = io_enq_0_bits_virt_channel_id == 4'h4; // @[Mux.scala:32:36]
wire _tails_T_35 = io_enq_0_bits_virt_channel_id == 4'h5; // @[Mux.scala:32:36]
wire _tails_T_36 = io_enq_0_bits_virt_channel_id == 4'h6; // @[Mux.scala:32:36]
wire _tails_T_37 = io_enq_0_bits_virt_channel_id == 4'h7; // @[Mux.scala:32:36]
wire _tails_T_38 = io_enq_0_bits_virt_channel_id == 4'h8; // @[Mux.scala:32:36]
wire _tails_T_39 = io_enq_0_bits_virt_channel_id == 4'h9; // @[Mux.scala:32:36]
wire direct_to_q = (_tails_T_30 & _qs_0_io_enq_ready | _tails_T_31 & _qs_1_io_enq_ready | _tails_T_32 & _qs_2_io_enq_ready | _tails_T_33 & _qs_3_io_enq_ready | _tails_T_34 & _qs_4_io_enq_ready | _tails_T_35 & _qs_5_io_enq_ready | _tails_T_36 & _qs_6_io_enq_ready | _tails_T_37 & _qs_7_io_enq_ready | _tails_T_38 & _qs_8_io_enq_ready | _tails_T_39 & _qs_9_io_enq_ready) & (_tails_T_30 & heads_0 == tails_0 | _tails_T_31 & heads_1 == tails_1 | _tails_T_32 & heads_2 == tails_2 | _tails_T_33 & heads_3 == tails_3 | _tails_T_34 & heads_4 == tails_4 | _tails_T_35 & heads_5 == tails_5 | _tails_T_36 & heads_6 == tails_6 | _tails_T_37 & heads_7 == tails_7 | _tails_T_38 & heads_8 == tails_8 | _tails_T_39 & heads_9 == tails_9); // @[Mux.scala:30:73, :32:36]
wire mem_MPORT_en = io_enq_0_valid & ~direct_to_q; // @[InputUnit.scala:96:62, :100:{27,30}]
wire [15:0][5:0] _GEN = {{tails_0}, {tails_0}, {tails_0}, {tails_0}, {tails_0}, {tails_0}, {tails_9}, {tails_8}, {tails_7}, {tails_6}, {tails_5}, {tails_4}, {tails_3}, {tails_2}, {tails_1}, {tails_0}}; // @[InputUnit.scala:87:24, :102:16]
wire _GEN_0 = io_enq_0_bits_virt_channel_id == 4'h0; // @[InputUnit.scala:103:45]
wire _GEN_1 = io_enq_0_bits_virt_channel_id == 4'h1; // @[InputUnit.scala:103:45]
wire _GEN_2 = io_enq_0_bits_virt_channel_id == 4'h2; // @[InputUnit.scala:103:45]
wire _GEN_3 = io_enq_0_bits_virt_channel_id == 4'h3; // @[InputUnit.scala:103:45]
wire _GEN_4 = io_enq_0_bits_virt_channel_id == 4'h4; // @[InputUnit.scala:103:45]
wire _GEN_5 = io_enq_0_bits_virt_channel_id == 4'h5; // @[InputUnit.scala:103:45]
wire _GEN_6 = io_enq_0_bits_virt_channel_id == 4'h6; // @[InputUnit.scala:103:45]
wire _GEN_7 = io_enq_0_bits_virt_channel_id == 4'h7; // @[InputUnit.scala:103:45]
wire _GEN_8 = io_enq_0_bits_virt_channel_id == 4'h8; // @[InputUnit.scala:103:45]
wire _GEN_9 = io_enq_0_bits_virt_channel_id == 4'h9; // @[InputUnit.scala:103:45]
wire _GEN_10 = io_enq_0_valid & direct_to_q; // @[InputUnit.scala:96:62, :107:34]
wire can_to_q_0 = heads_0 != tails_0 & _qs_0_io_enq_ready; // @[InputUnit.scala:86:24, :87:24, :88:49, :90:49, :117:{60,70}]
wire can_to_q_1 = heads_1 != tails_1 & _qs_1_io_enq_ready; // @[InputUnit.scala:86:24, :87:24, :88:49, :90:49, :117:{60,70}]
wire can_to_q_2 = heads_2 != tails_2 & _qs_2_io_enq_ready; // @[InputUnit.scala:86:24, :87:24, :88:49, :90:49, :117:{60,70}]
wire can_to_q_3 = heads_3 != tails_3 & _qs_3_io_enq_ready; // @[InputUnit.scala:86:24, :87:24, :88:49, :90:49, :117:{60,70}]
wire can_to_q_4 = heads_4 != tails_4 & _qs_4_io_enq_ready; // @[InputUnit.scala:86:24, :87:24, :88:49, :90:49, :117:{60,70}]
wire can_to_q_5 = heads_5 != tails_5 & _qs_5_io_enq_ready; // @[InputUnit.scala:86:24, :87:24, :88:49, :90:49, :117:{60,70}]
wire can_to_q_6 = heads_6 != tails_6 & _qs_6_io_enq_ready; // @[InputUnit.scala:86:24, :87:24, :88:49, :90:49, :117:{60,70}]
wire can_to_q_7 = heads_7 != tails_7 & _qs_7_io_enq_ready; // @[InputUnit.scala:86:24, :87:24, :88:49, :90:49, :117:{60,70}]
wire can_to_q_8 = heads_8 != tails_8 & _qs_8_io_enq_ready; // @[InputUnit.scala:86:24, :87:24, :88:49, :90:49, :117:{60,70}]
wire can_to_q_9 = heads_9 != tails_9 & _qs_9_io_enq_ready; // @[InputUnit.scala:86:24, :87:24, :88:49, :90:49, :117:{60,70}]
wire [9:0] to_q_oh_enc = can_to_q_0 ? 10'h1 : can_to_q_1 ? 10'h2 : can_to_q_2 ? 10'h4 : can_to_q_3 ? 10'h8 : can_to_q_4 ? 10'h10 : can_to_q_5 ? 10'h20 : can_to_q_6 ? 10'h40 : can_to_q_7 ? 10'h80 : can_to_q_8 ? 10'h100 : {can_to_q_9, 9'h0}; // @[Mux.scala:50:70]
wire _GEN_11 = can_to_q_0 | can_to_q_1 | can_to_q_2 | can_to_q_3 | can_to_q_4 | can_to_q_5 | can_to_q_6 | can_to_q_7 | can_to_q_8 | can_to_q_9; // @[package.scala:81:59]
wire [5:0] head = (to_q_oh_enc[0] ? heads_0 : 6'h0) | (to_q_oh_enc[1] ? heads_1 : 6'h0) | (to_q_oh_enc[2] ? heads_2 : 6'h0) | (to_q_oh_enc[3] ? heads_3 : 6'h0) | (to_q_oh_enc[4] ? heads_4 : 6'h0) | (to_q_oh_enc[5] ? heads_5 : 6'h0) | (to_q_oh_enc[6] ? heads_6 : 6'h0) | (to_q_oh_enc[7] ? heads_7 : 6'h0) | (to_q_oh_enc[8] ? heads_8 : 6'h0) | (to_q_oh_enc[9] ? heads_9 : 6'h0); // @[OneHot.scala:83:30]
wire _GEN_12 = _GEN_11 & to_q_oh_enc[0]; // @[OneHot.scala:83:30]
wire _GEN_13 = _GEN_11 & to_q_oh_enc[1]; // @[OneHot.scala:83:30]
wire _GEN_14 = _GEN_11 & to_q_oh_enc[2]; // @[OneHot.scala:83:30]
wire _GEN_15 = _GEN_11 & to_q_oh_enc[3]; // @[OneHot.scala:83:30]
wire _GEN_16 = _GEN_11 & to_q_oh_enc[4]; // @[OneHot.scala:83:30]
wire _GEN_17 = _GEN_11 & to_q_oh_enc[5]; // @[OneHot.scala:83:30]
wire _GEN_18 = _GEN_11 & to_q_oh_enc[6]; // @[OneHot.scala:83:30]
wire _GEN_19 = _GEN_11 & to_q_oh_enc[7]; // @[OneHot.scala:83:30]
wire _GEN_20 = _GEN_11 & to_q_oh_enc[8]; // @[OneHot.scala:83:30]
wire _GEN_21 = _GEN_11 & to_q_oh_enc[9]; // @[OneHot.scala:83:30]
wire [5:0] _tails_T_61 = _GEN[io_enq_0_bits_virt_channel_id] == ({1'h0, {1'h0, {1'h0, {1'h0, {2{_tails_T_30}}} | {3{_tails_T_31}}} | (_tails_T_32 ? 4'hB : 4'h0) | {4{_tails_T_33}}} | (_tails_T_34 ? 5'h13 : 5'h0) | (_tails_T_35 ? 5'h17 : 5'h0) | (_tails_T_36 ? 5'h1B : 5'h0) | {5{_tails_T_37}}} | (_tails_T_38 ? 6'h23 : 6'h0) | (_tails_T_39 ? 6'h27 : 6'h0)) ? {_tails_T_38, {_tails_T_34, {_tails_T_32, _tails_T_31, 2'h0} | (_tails_T_33 ? 4'hC : 4'h0)} | (_tails_T_35 ? 5'h14 : 5'h0) | (_tails_T_36 ? 5'h18 : 5'h0) | (_tails_T_37 ? 5'h1C : 5'h0)} | (_tails_T_39 ? 6'h24 : 6'h0) : _GEN[io_enq_0_bits_virt_channel_id] + 6'h1; // @[Mux.scala:30:73, :32:36]
wire [6:0] _to_q_T_2 = {6'h0, to_q_oh_enc[9]} | to_q_oh_enc[7:1]; // @[OneHot.scala:31:18, :32:28]
wire [2:0] _to_q_T_4 = _to_q_T_2[6:4] | _to_q_T_2[2:0]; // @[OneHot.scala:30:18, :31:18, :32:28]
wire _to_q_T_6 = _to_q_T_4[2] | _to_q_T_4[0]; // @[OneHot.scala:30:18, :31:18, :32:28]
wire [3:0] to_q = {|(to_q_oh_enc[9:8]), |(_to_q_T_2[6:3]), |(_to_q_T_4[2:1]), _to_q_T_6}; // @[OneHot.scala:30:18, :32:{10,14,28}]
wire [5:0] _heads_T_41 = head == ({1'h0, {1'h0, {1'h0, {1'h0, {2{to_q_oh_enc[0]}}} | {3{to_q_oh_enc[1]}}} | (to_q_oh_enc[2] ? 4'hB : 4'h0) | {4{to_q_oh_enc[3]}}} | (to_q_oh_enc[4] ? 5'h13 : 5'h0) | (to_q_oh_enc[5] ? 5'h17 : 5'h0) | (to_q_oh_enc[6] ? 5'h1B : 5'h0) | {5{to_q_oh_enc[7]}}} | (to_q_oh_enc[8] ? 6'h23 : 6'h0) | (to_q_oh_enc[9] ? 6'h27 : 6'h0)) ? {to_q_oh_enc[8], {to_q_oh_enc[4], {to_q_oh_enc[2:1], 2'h0} | (to_q_oh_enc[3] ? 4'hC : 4'h0)} | (to_q_oh_enc[5] ? 5'h14 : 5'h0) | (to_q_oh_enc[6] ? 5'h18 : 5'h0) | (to_q_oh_enc[7] ? 5'h1C : 5'h0)} | (to_q_oh_enc[9] ? 6'h24 : 6'h0) : head + 6'h1; // @[OneHot.scala:83:30]
always @(posedge clock) begin // @[InputUnit.scala:49:7]
if (reset) begin // @[InputUnit.scala:49:7]
heads_0 <= 6'h0; // @[InputUnit.scala:86:24]
heads_1 <= 6'h4; // @[InputUnit.scala:86:24]
heads_2 <= 6'h8; // @[InputUnit.scala:86:24]
heads_3 <= 6'hC; // @[InputUnit.scala:86:24]
heads_4 <= 6'h10; // @[InputUnit.scala:86:24]
heads_5 <= 6'h14; // @[InputUnit.scala:86:24]
heads_6 <= 6'h18; // @[InputUnit.scala:86:24]
heads_7 <= 6'h1C; // @[InputUnit.scala:86:24]
heads_8 <= 6'h20; // @[InputUnit.scala:86:24]
heads_9 <= 6'h24; // @[InputUnit.scala:86:24]
tails_0 <= 6'h0; // @[InputUnit.scala:87:24]
tails_1 <= 6'h4; // @[InputUnit.scala:87:24]
tails_2 <= 6'h8; // @[InputUnit.scala:87:24]
tails_3 <= 6'hC; // @[InputUnit.scala:87:24]
tails_4 <= 6'h10; // @[InputUnit.scala:87:24]
tails_5 <= 6'h14; // @[InputUnit.scala:87:24]
tails_6 <= 6'h18; // @[InputUnit.scala:87:24]
tails_7 <= 6'h1C; // @[InputUnit.scala:87:24]
tails_8 <= 6'h20; // @[InputUnit.scala:87:24]
tails_9 <= 6'h24; // @[InputUnit.scala:87:24]
end
else begin // @[InputUnit.scala:49:7]
if (_GEN_11 & {to_q_oh_enc[9:8], |(_to_q_T_2[6:3]), |(_to_q_T_4[2:1]), _to_q_T_6} == 5'h0) // @[OneHot.scala:30:18, :32:{10,14,28}]
heads_0 <= _heads_T_41; // @[InputUnit.scala:86:24, :122:27]
if (_GEN_11 & to_q == 4'h1) // @[OneHot.scala:32:10]
heads_1 <= _heads_T_41; // @[InputUnit.scala:86:24, :122:27]
if (_GEN_11 & to_q == 4'h2) // @[OneHot.scala:32:10]
heads_2 <= _heads_T_41; // @[InputUnit.scala:86:24, :122:27]
if (_GEN_11 & to_q == 4'h3) // @[OneHot.scala:32:10]
heads_3 <= _heads_T_41; // @[InputUnit.scala:86:24, :122:27]
if (_GEN_11 & to_q == 4'h4) // @[OneHot.scala:32:10]
heads_4 <= _heads_T_41; // @[InputUnit.scala:86:24, :122:27]
if (_GEN_11 & to_q == 4'h5) // @[OneHot.scala:32:10]
heads_5 <= _heads_T_41; // @[InputUnit.scala:86:24, :122:27]
if (_GEN_11 & to_q == 4'h6) // @[OneHot.scala:32:10]
heads_6 <= _heads_T_41; // @[InputUnit.scala:86:24, :122:27]
if (_GEN_11 & to_q == 4'h7) // @[OneHot.scala:32:10]
heads_7 <= _heads_T_41; // @[InputUnit.scala:86:24, :122:27]
if (_GEN_11 & to_q == 4'h8) // @[OneHot.scala:32:10]
heads_8 <= _heads_T_41; // @[InputUnit.scala:86:24, :122:27]
if (_GEN_11 & to_q == 4'h9) // @[OneHot.scala:32:10]
heads_9 <= _heads_T_41; // @[InputUnit.scala:86:24, :122:27]
if (mem_MPORT_en & _GEN_0) // @[InputUnit.scala:87:24, :100:{27,44}, :103:45]
tails_0 <= _tails_T_61; // @[InputUnit.scala:87:24, :103:51]
if (mem_MPORT_en & _GEN_1) // @[InputUnit.scala:87:24, :100:{27,44}, :103:45]
tails_1 <= _tails_T_61; // @[InputUnit.scala:87:24, :103:51]
if (mem_MPORT_en & _GEN_2) // @[InputUnit.scala:87:24, :100:{27,44}, :103:45]
tails_2 <= _tails_T_61; // @[InputUnit.scala:87:24, :103:51]
if (mem_MPORT_en & _GEN_3) // @[InputUnit.scala:87:24, :100:{27,44}, :103:45]
tails_3 <= _tails_T_61; // @[InputUnit.scala:87:24, :103:51]
if (mem_MPORT_en & _GEN_4) // @[InputUnit.scala:87:24, :100:{27,44}, :103:45]
tails_4 <= _tails_T_61; // @[InputUnit.scala:87:24, :103:51]
if (mem_MPORT_en & _GEN_5) // @[InputUnit.scala:87:24, :100:{27,44}, :103:45]
tails_5 <= _tails_T_61; // @[InputUnit.scala:87:24, :103:51]
if (mem_MPORT_en & _GEN_6) // @[InputUnit.scala:87:24, :100:{27,44}, :103:45]
tails_6 <= _tails_T_61; // @[InputUnit.scala:87:24, :103:51]
if (mem_MPORT_en & _GEN_7) // @[InputUnit.scala:87:24, :100:{27,44}, :103:45]
tails_7 <= _tails_T_61; // @[InputUnit.scala:87:24, :103:51]
if (mem_MPORT_en & _GEN_8) // @[InputUnit.scala:87:24, :100:{27,44}, :103:45]
tails_8 <= _tails_T_61; // @[InputUnit.scala:87:24, :103:51]
if (mem_MPORT_en & _GEN_9) // @[InputUnit.scala:87:24, :100:{27,44}, :103:45]
tails_9 <= _tails_T_61; // @[InputUnit.scala:87:24, :103:51]
end
always @(posedge) |
Generate the Verilog code corresponding to the following Chisel files.
File Buffer.scala:
// See LICENSE.SiFive for license details.
package freechips.rocketchip.tilelink
import chisel3._
import org.chipsalliance.cde.config._
import org.chipsalliance.diplomacy._
import org.chipsalliance.diplomacy.lazymodule._
import freechips.rocketchip.diplomacy.BufferParams
class TLBufferNode (
a: BufferParams,
b: BufferParams,
c: BufferParams,
d: BufferParams,
e: BufferParams)(implicit valName: ValName) extends TLAdapterNode(
clientFn = { p => p.v1copy(minLatency = p.minLatency + b.latency + c.latency) },
managerFn = { p => p.v1copy(minLatency = p.minLatency + a.latency + d.latency) }
) {
override lazy val nodedebugstring = s"a:${a.toString}, b:${b.toString}, c:${c.toString}, d:${d.toString}, e:${e.toString}"
override def circuitIdentity = List(a,b,c,d,e).forall(_ == BufferParams.none)
}
class TLBuffer(
a: BufferParams,
b: BufferParams,
c: BufferParams,
d: BufferParams,
e: BufferParams)(implicit p: Parameters) extends LazyModule
{
def this(ace: BufferParams, bd: BufferParams)(implicit p: Parameters) = this(ace, bd, ace, bd, ace)
def this(abcde: BufferParams)(implicit p: Parameters) = this(abcde, abcde)
def this()(implicit p: Parameters) = this(BufferParams.default)
val node = new TLBufferNode(a, b, c, d, e)
lazy val module = new Impl
class Impl extends LazyModuleImp(this) {
def headBundle = node.out.head._2.bundle
override def desiredName = (Seq("TLBuffer") ++ node.out.headOption.map(_._2.bundle.shortName)).mkString("_")
(node.in zip node.out) foreach { case ((in, edgeIn), (out, edgeOut)) =>
out.a <> a(in .a)
in .d <> d(out.d)
if (edgeOut.manager.anySupportAcquireB && edgeOut.client.anySupportProbe) {
in .b <> b(out.b)
out.c <> c(in .c)
out.e <> e(in .e)
} else {
in.b.valid := false.B
in.c.ready := true.B
in.e.ready := true.B
out.b.ready := true.B
out.c.valid := false.B
out.e.valid := false.B
}
}
}
}
object TLBuffer
{
def apply() (implicit p: Parameters): TLNode = apply(BufferParams.default)
def apply(abcde: BufferParams) (implicit p: Parameters): TLNode = apply(abcde, abcde)
def apply(ace: BufferParams, bd: BufferParams)(implicit p: Parameters): TLNode = apply(ace, bd, ace, bd, ace)
def apply(
a: BufferParams,
b: BufferParams,
c: BufferParams,
d: BufferParams,
e: BufferParams)(implicit p: Parameters): TLNode =
{
val buffer = LazyModule(new TLBuffer(a, b, c, d, e))
buffer.node
}
def chain(depth: Int, name: Option[String] = None)(implicit p: Parameters): Seq[TLNode] = {
val buffers = Seq.fill(depth) { LazyModule(new TLBuffer()) }
name.foreach { n => buffers.zipWithIndex.foreach { case (b, i) => b.suggestName(s"${n}_${i}") } }
buffers.map(_.node)
}
def chainNode(depth: Int, name: Option[String] = None)(implicit p: Parameters): TLNode = {
chain(depth, name)
.reduceLeftOption(_ :*=* _)
.getOrElse(TLNameNode("no_buffer"))
}
}
File Nodes.scala:
// See LICENSE.SiFive for license details.
package freechips.rocketchip.tilelink
import chisel3._
import chisel3.experimental.SourceInfo
import org.chipsalliance.cde.config._
import org.chipsalliance.diplomacy._
import org.chipsalliance.diplomacy.nodes._
import freechips.rocketchip.util.{AsyncQueueParams,RationalDirection}
case object TLMonitorBuilder extends Field[TLMonitorArgs => TLMonitorBase](args => new TLMonitor(args))
object TLImp extends NodeImp[TLMasterPortParameters, TLSlavePortParameters, TLEdgeOut, TLEdgeIn, TLBundle]
{
def edgeO(pd: TLMasterPortParameters, pu: TLSlavePortParameters, p: Parameters, sourceInfo: SourceInfo) = new TLEdgeOut(pd, pu, p, sourceInfo)
def edgeI(pd: TLMasterPortParameters, pu: TLSlavePortParameters, p: Parameters, sourceInfo: SourceInfo) = new TLEdgeIn (pd, pu, p, sourceInfo)
def bundleO(eo: TLEdgeOut) = TLBundle(eo.bundle)
def bundleI(ei: TLEdgeIn) = TLBundle(ei.bundle)
def render(ei: TLEdgeIn) = RenderedEdge(colour = "#000000" /* black */, label = (ei.manager.beatBytes * 8).toString)
override def monitor(bundle: TLBundle, edge: TLEdgeIn): Unit = {
val monitor = Module(edge.params(TLMonitorBuilder)(TLMonitorArgs(edge)))
monitor.io.in := bundle
}
override def mixO(pd: TLMasterPortParameters, node: OutwardNode[TLMasterPortParameters, TLSlavePortParameters, TLBundle]): TLMasterPortParameters =
pd.v1copy(clients = pd.clients.map { c => c.v1copy (nodePath = node +: c.nodePath) })
override def mixI(pu: TLSlavePortParameters, node: InwardNode[TLMasterPortParameters, TLSlavePortParameters, TLBundle]): TLSlavePortParameters =
pu.v1copy(managers = pu.managers.map { m => m.v1copy (nodePath = node +: m.nodePath) })
}
trait TLFormatNode extends FormatNode[TLEdgeIn, TLEdgeOut]
case class TLClientNode(portParams: Seq[TLMasterPortParameters])(implicit valName: ValName) extends SourceNode(TLImp)(portParams) with TLFormatNode
case class TLManagerNode(portParams: Seq[TLSlavePortParameters])(implicit valName: ValName) extends SinkNode(TLImp)(portParams) with TLFormatNode
case class TLAdapterNode(
clientFn: TLMasterPortParameters => TLMasterPortParameters = { s => s },
managerFn: TLSlavePortParameters => TLSlavePortParameters = { s => s })(
implicit valName: ValName)
extends AdapterNode(TLImp)(clientFn, managerFn) with TLFormatNode
case class TLJunctionNode(
clientFn: Seq[TLMasterPortParameters] => Seq[TLMasterPortParameters],
managerFn: Seq[TLSlavePortParameters] => Seq[TLSlavePortParameters])(
implicit valName: ValName)
extends JunctionNode(TLImp)(clientFn, managerFn) with TLFormatNode
case class TLIdentityNode()(implicit valName: ValName) extends IdentityNode(TLImp)() with TLFormatNode
object TLNameNode {
def apply(name: ValName) = TLIdentityNode()(name)
def apply(name: Option[String]): TLIdentityNode = apply(ValName(name.getOrElse("with_no_name")))
def apply(name: String): TLIdentityNode = apply(Some(name))
}
case class TLEphemeralNode()(implicit valName: ValName) extends EphemeralNode(TLImp)()
object TLTempNode {
def apply(): TLEphemeralNode = TLEphemeralNode()(ValName("temp"))
}
case class TLNexusNode(
clientFn: Seq[TLMasterPortParameters] => TLMasterPortParameters,
managerFn: Seq[TLSlavePortParameters] => TLSlavePortParameters)(
implicit valName: ValName)
extends NexusNode(TLImp)(clientFn, managerFn) with TLFormatNode
abstract class TLCustomNode(implicit valName: ValName)
extends CustomNode(TLImp) with TLFormatNode
// Asynchronous crossings
trait TLAsyncFormatNode extends FormatNode[TLAsyncEdgeParameters, TLAsyncEdgeParameters]
object TLAsyncImp extends SimpleNodeImp[TLAsyncClientPortParameters, TLAsyncManagerPortParameters, TLAsyncEdgeParameters, TLAsyncBundle]
{
def edge(pd: TLAsyncClientPortParameters, pu: TLAsyncManagerPortParameters, p: Parameters, sourceInfo: SourceInfo) = TLAsyncEdgeParameters(pd, pu, p, sourceInfo)
def bundle(e: TLAsyncEdgeParameters) = new TLAsyncBundle(e.bundle)
def render(e: TLAsyncEdgeParameters) = RenderedEdge(colour = "#ff0000" /* red */, label = e.manager.async.depth.toString)
override def mixO(pd: TLAsyncClientPortParameters, node: OutwardNode[TLAsyncClientPortParameters, TLAsyncManagerPortParameters, TLAsyncBundle]): TLAsyncClientPortParameters =
pd.copy(base = pd.base.v1copy(clients = pd.base.clients.map { c => c.v1copy (nodePath = node +: c.nodePath) }))
override def mixI(pu: TLAsyncManagerPortParameters, node: InwardNode[TLAsyncClientPortParameters, TLAsyncManagerPortParameters, TLAsyncBundle]): TLAsyncManagerPortParameters =
pu.copy(base = pu.base.v1copy(managers = pu.base.managers.map { m => m.v1copy (nodePath = node +: m.nodePath) }))
}
case class TLAsyncAdapterNode(
clientFn: TLAsyncClientPortParameters => TLAsyncClientPortParameters = { s => s },
managerFn: TLAsyncManagerPortParameters => TLAsyncManagerPortParameters = { s => s })(
implicit valName: ValName)
extends AdapterNode(TLAsyncImp)(clientFn, managerFn) with TLAsyncFormatNode
case class TLAsyncIdentityNode()(implicit valName: ValName) extends IdentityNode(TLAsyncImp)() with TLAsyncFormatNode
object TLAsyncNameNode {
def apply(name: ValName) = TLAsyncIdentityNode()(name)
def apply(name: Option[String]): TLAsyncIdentityNode = apply(ValName(name.getOrElse("with_no_name")))
def apply(name: String): TLAsyncIdentityNode = apply(Some(name))
}
case class TLAsyncSourceNode(sync: Option[Int])(implicit valName: ValName)
extends MixedAdapterNode(TLImp, TLAsyncImp)(
dFn = { p => TLAsyncClientPortParameters(p) },
uFn = { p => p.base.v1copy(minLatency = p.base.minLatency + sync.getOrElse(p.async.sync)) }) with FormatNode[TLEdgeIn, TLAsyncEdgeParameters] // discard cycles in other clock domain
case class TLAsyncSinkNode(async: AsyncQueueParams)(implicit valName: ValName)
extends MixedAdapterNode(TLAsyncImp, TLImp)(
dFn = { p => p.base.v1copy(minLatency = p.base.minLatency + async.sync) },
uFn = { p => TLAsyncManagerPortParameters(async, p) }) with FormatNode[TLAsyncEdgeParameters, TLEdgeOut]
// Rationally related crossings
trait TLRationalFormatNode extends FormatNode[TLRationalEdgeParameters, TLRationalEdgeParameters]
object TLRationalImp extends SimpleNodeImp[TLRationalClientPortParameters, TLRationalManagerPortParameters, TLRationalEdgeParameters, TLRationalBundle]
{
def edge(pd: TLRationalClientPortParameters, pu: TLRationalManagerPortParameters, p: Parameters, sourceInfo: SourceInfo) = TLRationalEdgeParameters(pd, pu, p, sourceInfo)
def bundle(e: TLRationalEdgeParameters) = new TLRationalBundle(e.bundle)
def render(e: TLRationalEdgeParameters) = RenderedEdge(colour = "#00ff00" /* green */)
override def mixO(pd: TLRationalClientPortParameters, node: OutwardNode[TLRationalClientPortParameters, TLRationalManagerPortParameters, TLRationalBundle]): TLRationalClientPortParameters =
pd.copy(base = pd.base.v1copy(clients = pd.base.clients.map { c => c.v1copy (nodePath = node +: c.nodePath) }))
override def mixI(pu: TLRationalManagerPortParameters, node: InwardNode[TLRationalClientPortParameters, TLRationalManagerPortParameters, TLRationalBundle]): TLRationalManagerPortParameters =
pu.copy(base = pu.base.v1copy(managers = pu.base.managers.map { m => m.v1copy (nodePath = node +: m.nodePath) }))
}
case class TLRationalAdapterNode(
clientFn: TLRationalClientPortParameters => TLRationalClientPortParameters = { s => s },
managerFn: TLRationalManagerPortParameters => TLRationalManagerPortParameters = { s => s })(
implicit valName: ValName)
extends AdapterNode(TLRationalImp)(clientFn, managerFn) with TLRationalFormatNode
case class TLRationalIdentityNode()(implicit valName: ValName) extends IdentityNode(TLRationalImp)() with TLRationalFormatNode
object TLRationalNameNode {
def apply(name: ValName) = TLRationalIdentityNode()(name)
def apply(name: Option[String]): TLRationalIdentityNode = apply(ValName(name.getOrElse("with_no_name")))
def apply(name: String): TLRationalIdentityNode = apply(Some(name))
}
case class TLRationalSourceNode()(implicit valName: ValName)
extends MixedAdapterNode(TLImp, TLRationalImp)(
dFn = { p => TLRationalClientPortParameters(p) },
uFn = { p => p.base.v1copy(minLatency = 1) }) with FormatNode[TLEdgeIn, TLRationalEdgeParameters] // discard cycles from other clock domain
case class TLRationalSinkNode(direction: RationalDirection)(implicit valName: ValName)
extends MixedAdapterNode(TLRationalImp, TLImp)(
dFn = { p => p.base.v1copy(minLatency = 1) },
uFn = { p => TLRationalManagerPortParameters(direction, p) }) with FormatNode[TLRationalEdgeParameters, TLEdgeOut]
// Credited version of TileLink channels
trait TLCreditedFormatNode extends FormatNode[TLCreditedEdgeParameters, TLCreditedEdgeParameters]
object TLCreditedImp extends SimpleNodeImp[TLCreditedClientPortParameters, TLCreditedManagerPortParameters, TLCreditedEdgeParameters, TLCreditedBundle]
{
def edge(pd: TLCreditedClientPortParameters, pu: TLCreditedManagerPortParameters, p: Parameters, sourceInfo: SourceInfo) = TLCreditedEdgeParameters(pd, pu, p, sourceInfo)
def bundle(e: TLCreditedEdgeParameters) = new TLCreditedBundle(e.bundle)
def render(e: TLCreditedEdgeParameters) = RenderedEdge(colour = "#ffff00" /* yellow */, e.delay.toString)
override def mixO(pd: TLCreditedClientPortParameters, node: OutwardNode[TLCreditedClientPortParameters, TLCreditedManagerPortParameters, TLCreditedBundle]): TLCreditedClientPortParameters =
pd.copy(base = pd.base.v1copy(clients = pd.base.clients.map { c => c.v1copy (nodePath = node +: c.nodePath) }))
override def mixI(pu: TLCreditedManagerPortParameters, node: InwardNode[TLCreditedClientPortParameters, TLCreditedManagerPortParameters, TLCreditedBundle]): TLCreditedManagerPortParameters =
pu.copy(base = pu.base.v1copy(managers = pu.base.managers.map { m => m.v1copy (nodePath = node +: m.nodePath) }))
}
case class TLCreditedAdapterNode(
clientFn: TLCreditedClientPortParameters => TLCreditedClientPortParameters = { s => s },
managerFn: TLCreditedManagerPortParameters => TLCreditedManagerPortParameters = { s => s })(
implicit valName: ValName)
extends AdapterNode(TLCreditedImp)(clientFn, managerFn) with TLCreditedFormatNode
case class TLCreditedIdentityNode()(implicit valName: ValName) extends IdentityNode(TLCreditedImp)() with TLCreditedFormatNode
object TLCreditedNameNode {
def apply(name: ValName) = TLCreditedIdentityNode()(name)
def apply(name: Option[String]): TLCreditedIdentityNode = apply(ValName(name.getOrElse("with_no_name")))
def apply(name: String): TLCreditedIdentityNode = apply(Some(name))
}
case class TLCreditedSourceNode(delay: TLCreditedDelay)(implicit valName: ValName)
extends MixedAdapterNode(TLImp, TLCreditedImp)(
dFn = { p => TLCreditedClientPortParameters(delay, p) },
uFn = { p => p.base.v1copy(minLatency = 1) }) with FormatNode[TLEdgeIn, TLCreditedEdgeParameters] // discard cycles from other clock domain
case class TLCreditedSinkNode(delay: TLCreditedDelay)(implicit valName: ValName)
extends MixedAdapterNode(TLCreditedImp, TLImp)(
dFn = { p => p.base.v1copy(minLatency = 1) },
uFn = { p => TLCreditedManagerPortParameters(delay, p) }) with FormatNode[TLCreditedEdgeParameters, TLEdgeOut]
File LazyModuleImp.scala:
package org.chipsalliance.diplomacy.lazymodule
import chisel3.{withClockAndReset, Module, RawModule, Reset, _}
import chisel3.experimental.{ChiselAnnotation, CloneModuleAsRecord, SourceInfo}
import firrtl.passes.InlineAnnotation
import org.chipsalliance.cde.config.Parameters
import org.chipsalliance.diplomacy.nodes.Dangle
import scala.collection.immutable.SortedMap
/** Trait describing the actual [[Module]] implementation wrapped by a [[LazyModule]].
*
* This is the actual Chisel module that is lazily-evaluated in the second phase of Diplomacy.
*/
sealed trait LazyModuleImpLike extends RawModule {
/** [[LazyModule]] that contains this instance. */
val wrapper: LazyModule
/** IOs that will be automatically "punched" for this instance. */
val auto: AutoBundle
/** The metadata that describes the [[HalfEdge]]s which generated [[auto]]. */
protected[diplomacy] val dangles: Seq[Dangle]
// [[wrapper.module]] had better not be accessed while LazyModules are still being built!
require(
LazyModule.scope.isEmpty,
s"${wrapper.name}.module was constructed before LazyModule() was run on ${LazyModule.scope.get.name}"
)
/** Set module name. Defaults to the containing LazyModule's desiredName. */
override def desiredName: String = wrapper.desiredName
suggestName(wrapper.suggestedName)
/** [[Parameters]] for chisel [[Module]]s. */
implicit val p: Parameters = wrapper.p
/** instantiate this [[LazyModule]], return [[AutoBundle]] and a unconnected [[Dangle]]s from this module and
* submodules.
*/
protected[diplomacy] def instantiate(): (AutoBundle, List[Dangle]) = {
// 1. It will recursively append [[wrapper.children]] into [[chisel3.internal.Builder]],
// 2. return [[Dangle]]s from each module.
val childDangles = wrapper.children.reverse.flatMap { c =>
implicit val sourceInfo: SourceInfo = c.info
c.cloneProto.map { cp =>
// If the child is a clone, then recursively set cloneProto of its children as well
def assignCloneProtos(bases: Seq[LazyModule], clones: Seq[LazyModule]): Unit = {
require(bases.size == clones.size)
(bases.zip(clones)).map { case (l, r) =>
require(l.getClass == r.getClass, s"Cloned children class mismatch ${l.name} != ${r.name}")
l.cloneProto = Some(r)
assignCloneProtos(l.children, r.children)
}
}
assignCloneProtos(c.children, cp.children)
// Clone the child module as a record, and get its [[AutoBundle]]
val clone = CloneModuleAsRecord(cp.module).suggestName(c.suggestedName)
val clonedAuto = clone("auto").asInstanceOf[AutoBundle]
// Get the empty [[Dangle]]'s of the cloned child
val rawDangles = c.cloneDangles()
require(rawDangles.size == clonedAuto.elements.size)
// Assign the [[AutoBundle]] fields of the cloned record to the empty [[Dangle]]'s
val dangles = (rawDangles.zip(clonedAuto.elements)).map { case (d, (_, io)) => d.copy(dataOpt = Some(io)) }
dangles
}.getOrElse {
// For non-clones, instantiate the child module
val mod = try {
Module(c.module)
} catch {
case e: ChiselException => {
println(s"Chisel exception caught when instantiating ${c.name} within ${this.name} at ${c.line}")
throw e
}
}
mod.dangles
}
}
// Ask each node in this [[LazyModule]] to call [[BaseNode.instantiate]].
// This will result in a sequence of [[Dangle]] from these [[BaseNode]]s.
val nodeDangles = wrapper.nodes.reverse.flatMap(_.instantiate())
// Accumulate all the [[Dangle]]s from this node and any accumulated from its [[wrapper.children]]
val allDangles = nodeDangles ++ childDangles
// Group [[allDangles]] by their [[source]].
val pairing = SortedMap(allDangles.groupBy(_.source).toSeq: _*)
// For each [[source]] set of [[Dangle]]s of size 2, ensure that these
// can be connected as a source-sink pair (have opposite flipped value).
// Make the connection and mark them as [[done]].
val done = Set() ++ pairing.values.filter(_.size == 2).map {
case Seq(a, b) =>
require(a.flipped != b.flipped)
// @todo <> in chisel3 makes directionless connection.
if (a.flipped) {
a.data <> b.data
} else {
b.data <> a.data
}
a.source
case _ => None
}
// Find all [[Dangle]]s which are still not connected. These will end up as [[AutoBundle]] [[IO]] ports on the module.
val forward = allDangles.filter(d => !done(d.source))
// Generate [[AutoBundle]] IO from [[forward]].
val auto = IO(new AutoBundle(forward.map { d => (d.name, d.data, d.flipped) }: _*))
// Pass the [[Dangle]]s which remained and were used to generate the [[AutoBundle]] I/O ports up to the [[parent]] [[LazyModule]]
val dangles = (forward.zip(auto.elements)).map { case (d, (_, io)) =>
if (d.flipped) {
d.data <> io
} else {
io <> d.data
}
d.copy(dataOpt = Some(io), name = wrapper.suggestedName + "_" + d.name)
}
// Push all [[LazyModule.inModuleBody]] to [[chisel3.internal.Builder]].
wrapper.inModuleBody.reverse.foreach {
_()
}
if (wrapper.shouldBeInlined) {
chisel3.experimental.annotate(new ChiselAnnotation {
def toFirrtl = InlineAnnotation(toNamed)
})
}
// Return [[IO]] and [[Dangle]] of this [[LazyModuleImp]].
(auto, dangles)
}
}
/** Actual description of a [[Module]] which can be instantiated by a call to [[LazyModule.module]].
*
* @param wrapper
* the [[LazyModule]] from which the `.module` call is being made.
*/
class LazyModuleImp(val wrapper: LazyModule) extends Module with LazyModuleImpLike {
/** Instantiate hardware of this `Module`. */
val (auto, dangles) = instantiate()
}
/** Actual description of a [[RawModule]] which can be instantiated by a call to [[LazyModule.module]].
*
* @param wrapper
* the [[LazyModule]] from which the `.module` call is being made.
*/
class LazyRawModuleImp(val wrapper: LazyModule) extends RawModule with LazyModuleImpLike {
// These wires are the default clock+reset for all LazyModule children.
// It is recommended to drive these even if you manually drive the [[clock]] and [[reset]] of all of the
// [[LazyRawModuleImp]] children.
// Otherwise, anonymous children ([[Monitor]]s for example) will not have their [[clock]] and/or [[reset]] driven properly.
/** drive clock explicitly. */
val childClock: Clock = Wire(Clock())
/** drive reset explicitly. */
val childReset: Reset = Wire(Reset())
// the default is that these are disabled
childClock := false.B.asClock
childReset := chisel3.DontCare
def provideImplicitClockToLazyChildren: Boolean = false
val (auto, dangles) =
if (provideImplicitClockToLazyChildren) {
withClockAndReset(childClock, childReset) { instantiate() }
} else {
instantiate()
}
}
| module TLBuffer_a32d64s2k5z4c_1( // @[Buffer.scala:40:9]
input clock, // @[Buffer.scala:40:9]
input reset, // @[Buffer.scala:40:9]
output auto_in_a_ready, // @[LazyModuleImp.scala:107:25]
input auto_in_a_valid, // @[LazyModuleImp.scala:107:25]
input [2:0] auto_in_a_bits_opcode, // @[LazyModuleImp.scala:107:25]
input [2:0] auto_in_a_bits_param, // @[LazyModuleImp.scala:107:25]
input [3:0] auto_in_a_bits_size, // @[LazyModuleImp.scala:107:25]
input [1:0] auto_in_a_bits_source, // @[LazyModuleImp.scala:107:25]
input [31:0] auto_in_a_bits_address, // @[LazyModuleImp.scala:107:25]
input [7:0] auto_in_a_bits_mask, // @[LazyModuleImp.scala:107:25]
input [63:0] auto_in_a_bits_data, // @[LazyModuleImp.scala:107:25]
input auto_in_b_ready, // @[LazyModuleImp.scala:107:25]
output auto_in_b_valid, // @[LazyModuleImp.scala:107:25]
output [2:0] auto_in_b_bits_opcode, // @[LazyModuleImp.scala:107:25]
output [1:0] auto_in_b_bits_param, // @[LazyModuleImp.scala:107:25]
output [3:0] auto_in_b_bits_size, // @[LazyModuleImp.scala:107:25]
output [1:0] auto_in_b_bits_source, // @[LazyModuleImp.scala:107:25]
output [31:0] auto_in_b_bits_address, // @[LazyModuleImp.scala:107:25]
output [7:0] auto_in_b_bits_mask, // @[LazyModuleImp.scala:107:25]
output auto_in_b_bits_corrupt, // @[LazyModuleImp.scala:107:25]
output auto_in_c_ready, // @[LazyModuleImp.scala:107:25]
input auto_in_c_valid, // @[LazyModuleImp.scala:107:25]
input [2:0] auto_in_c_bits_opcode, // @[LazyModuleImp.scala:107:25]
input [2:0] auto_in_c_bits_param, // @[LazyModuleImp.scala:107:25]
input [3:0] auto_in_c_bits_size, // @[LazyModuleImp.scala:107:25]
input [1:0] auto_in_c_bits_source, // @[LazyModuleImp.scala:107:25]
input [31:0] auto_in_c_bits_address, // @[LazyModuleImp.scala:107:25]
input [63:0] auto_in_c_bits_data, // @[LazyModuleImp.scala:107:25]
input auto_in_d_ready, // @[LazyModuleImp.scala:107:25]
output auto_in_d_valid, // @[LazyModuleImp.scala:107:25]
output [2:0] auto_in_d_bits_opcode, // @[LazyModuleImp.scala:107:25]
output [1:0] auto_in_d_bits_param, // @[LazyModuleImp.scala:107:25]
output [3:0] auto_in_d_bits_size, // @[LazyModuleImp.scala:107:25]
output [1:0] auto_in_d_bits_source, // @[LazyModuleImp.scala:107:25]
output [4:0] auto_in_d_bits_sink, // @[LazyModuleImp.scala:107:25]
output auto_in_d_bits_denied, // @[LazyModuleImp.scala:107:25]
output [63:0] auto_in_d_bits_data, // @[LazyModuleImp.scala:107:25]
output auto_in_d_bits_corrupt, // @[LazyModuleImp.scala:107:25]
output auto_in_e_ready, // @[LazyModuleImp.scala:107:25]
input auto_in_e_valid, // @[LazyModuleImp.scala:107:25]
input [4:0] auto_in_e_bits_sink, // @[LazyModuleImp.scala:107:25]
input auto_out_a_ready, // @[LazyModuleImp.scala:107:25]
output auto_out_a_valid, // @[LazyModuleImp.scala:107:25]
output [2:0] auto_out_a_bits_opcode, // @[LazyModuleImp.scala:107:25]
output [2:0] auto_out_a_bits_param, // @[LazyModuleImp.scala:107:25]
output [3:0] auto_out_a_bits_size, // @[LazyModuleImp.scala:107:25]
output [1:0] auto_out_a_bits_source, // @[LazyModuleImp.scala:107:25]
output [31:0] auto_out_a_bits_address, // @[LazyModuleImp.scala:107:25]
output [7:0] auto_out_a_bits_mask, // @[LazyModuleImp.scala:107:25]
output [63:0] auto_out_a_bits_data, // @[LazyModuleImp.scala:107:25]
output auto_out_a_bits_corrupt, // @[LazyModuleImp.scala:107:25]
output auto_out_b_ready, // @[LazyModuleImp.scala:107:25]
input auto_out_b_valid, // @[LazyModuleImp.scala:107:25]
input [2:0] auto_out_b_bits_opcode, // @[LazyModuleImp.scala:107:25]
input [1:0] auto_out_b_bits_param, // @[LazyModuleImp.scala:107:25]
input [3:0] auto_out_b_bits_size, // @[LazyModuleImp.scala:107:25]
input [1:0] auto_out_b_bits_source, // @[LazyModuleImp.scala:107:25]
input [31:0] auto_out_b_bits_address, // @[LazyModuleImp.scala:107:25]
input [7:0] auto_out_b_bits_mask, // @[LazyModuleImp.scala:107:25]
input [63:0] auto_out_b_bits_data, // @[LazyModuleImp.scala:107:25]
input auto_out_b_bits_corrupt, // @[LazyModuleImp.scala:107:25]
input auto_out_c_ready, // @[LazyModuleImp.scala:107:25]
output auto_out_c_valid, // @[LazyModuleImp.scala:107:25]
output [2:0] auto_out_c_bits_opcode, // @[LazyModuleImp.scala:107:25]
output [2:0] auto_out_c_bits_param, // @[LazyModuleImp.scala:107:25]
output [3:0] auto_out_c_bits_size, // @[LazyModuleImp.scala:107:25]
output [1:0] auto_out_c_bits_source, // @[LazyModuleImp.scala:107:25]
output [31:0] auto_out_c_bits_address, // @[LazyModuleImp.scala:107:25]
output [63:0] auto_out_c_bits_data, // @[LazyModuleImp.scala:107:25]
output auto_out_c_bits_corrupt, // @[LazyModuleImp.scala:107:25]
output auto_out_d_ready, // @[LazyModuleImp.scala:107:25]
input auto_out_d_valid, // @[LazyModuleImp.scala:107:25]
input [2:0] auto_out_d_bits_opcode, // @[LazyModuleImp.scala:107:25]
input [1:0] auto_out_d_bits_param, // @[LazyModuleImp.scala:107:25]
input [3:0] auto_out_d_bits_size, // @[LazyModuleImp.scala:107:25]
input [1:0] auto_out_d_bits_source, // @[LazyModuleImp.scala:107:25]
input [4:0] auto_out_d_bits_sink, // @[LazyModuleImp.scala:107:25]
input auto_out_d_bits_denied, // @[LazyModuleImp.scala:107:25]
input [63:0] auto_out_d_bits_data, // @[LazyModuleImp.scala:107:25]
input auto_out_d_bits_corrupt, // @[LazyModuleImp.scala:107:25]
input auto_out_e_ready, // @[LazyModuleImp.scala:107:25]
output auto_out_e_valid, // @[LazyModuleImp.scala:107:25]
output [4:0] auto_out_e_bits_sink // @[LazyModuleImp.scala:107:25]
);
wire _nodeOut_e_q_io_enq_ready; // @[Decoupled.scala:362:21]
wire _nodeOut_c_q_io_enq_ready; // @[Decoupled.scala:362:21]
wire _nodeIn_b_q_io_deq_valid; // @[Decoupled.scala:362:21]
wire [2:0] _nodeIn_b_q_io_deq_bits_opcode; // @[Decoupled.scala:362:21]
wire [1:0] _nodeIn_b_q_io_deq_bits_param; // @[Decoupled.scala:362:21]
wire [3:0] _nodeIn_b_q_io_deq_bits_size; // @[Decoupled.scala:362:21]
wire [1:0] _nodeIn_b_q_io_deq_bits_source; // @[Decoupled.scala:362:21]
wire [31:0] _nodeIn_b_q_io_deq_bits_address; // @[Decoupled.scala:362:21]
wire [7:0] _nodeIn_b_q_io_deq_bits_mask; // @[Decoupled.scala:362:21]
wire _nodeIn_b_q_io_deq_bits_corrupt; // @[Decoupled.scala:362:21]
wire _nodeIn_d_q_io_deq_valid; // @[Decoupled.scala:362:21]
wire [2:0] _nodeIn_d_q_io_deq_bits_opcode; // @[Decoupled.scala:362:21]
wire [1:0] _nodeIn_d_q_io_deq_bits_param; // @[Decoupled.scala:362:21]
wire [3:0] _nodeIn_d_q_io_deq_bits_size; // @[Decoupled.scala:362:21]
wire [1:0] _nodeIn_d_q_io_deq_bits_source; // @[Decoupled.scala:362:21]
wire [4:0] _nodeIn_d_q_io_deq_bits_sink; // @[Decoupled.scala:362:21]
wire _nodeIn_d_q_io_deq_bits_denied; // @[Decoupled.scala:362:21]
wire _nodeIn_d_q_io_deq_bits_corrupt; // @[Decoupled.scala:362:21]
wire _nodeOut_a_q_io_enq_ready; // @[Decoupled.scala:362:21]
TLMonitor_68 monitor ( // @[Nodes.scala:27:25]
.clock (clock),
.reset (reset),
.io_in_a_ready (_nodeOut_a_q_io_enq_ready), // @[Decoupled.scala:362:21]
.io_in_a_valid (auto_in_a_valid),
.io_in_a_bits_opcode (auto_in_a_bits_opcode),
.io_in_a_bits_param (auto_in_a_bits_param),
.io_in_a_bits_size (auto_in_a_bits_size),
.io_in_a_bits_source (auto_in_a_bits_source),
.io_in_a_bits_address (auto_in_a_bits_address),
.io_in_a_bits_mask (auto_in_a_bits_mask),
.io_in_b_ready (auto_in_b_ready),
.io_in_b_valid (_nodeIn_b_q_io_deq_valid), // @[Decoupled.scala:362:21]
.io_in_b_bits_opcode (_nodeIn_b_q_io_deq_bits_opcode), // @[Decoupled.scala:362:21]
.io_in_b_bits_param (_nodeIn_b_q_io_deq_bits_param), // @[Decoupled.scala:362:21]
.io_in_b_bits_size (_nodeIn_b_q_io_deq_bits_size), // @[Decoupled.scala:362:21]
.io_in_b_bits_source (_nodeIn_b_q_io_deq_bits_source), // @[Decoupled.scala:362:21]
.io_in_b_bits_address (_nodeIn_b_q_io_deq_bits_address), // @[Decoupled.scala:362:21]
.io_in_b_bits_mask (_nodeIn_b_q_io_deq_bits_mask), // @[Decoupled.scala:362:21]
.io_in_b_bits_corrupt (_nodeIn_b_q_io_deq_bits_corrupt), // @[Decoupled.scala:362:21]
.io_in_c_ready (_nodeOut_c_q_io_enq_ready), // @[Decoupled.scala:362:21]
.io_in_c_valid (auto_in_c_valid),
.io_in_c_bits_opcode (auto_in_c_bits_opcode),
.io_in_c_bits_param (auto_in_c_bits_param),
.io_in_c_bits_size (auto_in_c_bits_size),
.io_in_c_bits_source (auto_in_c_bits_source),
.io_in_c_bits_address (auto_in_c_bits_address),
.io_in_d_ready (auto_in_d_ready),
.io_in_d_valid (_nodeIn_d_q_io_deq_valid), // @[Decoupled.scala:362:21]
.io_in_d_bits_opcode (_nodeIn_d_q_io_deq_bits_opcode), // @[Decoupled.scala:362:21]
.io_in_d_bits_param (_nodeIn_d_q_io_deq_bits_param), // @[Decoupled.scala:362:21]
.io_in_d_bits_size (_nodeIn_d_q_io_deq_bits_size), // @[Decoupled.scala:362:21]
.io_in_d_bits_source (_nodeIn_d_q_io_deq_bits_source), // @[Decoupled.scala:362:21]
.io_in_d_bits_sink (_nodeIn_d_q_io_deq_bits_sink), // @[Decoupled.scala:362:21]
.io_in_d_bits_denied (_nodeIn_d_q_io_deq_bits_denied), // @[Decoupled.scala:362:21]
.io_in_d_bits_corrupt (_nodeIn_d_q_io_deq_bits_corrupt), // @[Decoupled.scala:362:21]
.io_in_e_ready (_nodeOut_e_q_io_enq_ready), // @[Decoupled.scala:362:21]
.io_in_e_valid (auto_in_e_valid),
.io_in_e_bits_sink (auto_in_e_bits_sink)
); // @[Nodes.scala:27:25]
Queue2_TLBundleA_a32d64s2k5z4c nodeOut_a_q ( // @[Decoupled.scala:362:21]
.clock (clock),
.reset (reset),
.io_enq_ready (_nodeOut_a_q_io_enq_ready),
.io_enq_valid (auto_in_a_valid),
.io_enq_bits_opcode (auto_in_a_bits_opcode),
.io_enq_bits_param (auto_in_a_bits_param),
.io_enq_bits_size (auto_in_a_bits_size),
.io_enq_bits_source (auto_in_a_bits_source),
.io_enq_bits_address (auto_in_a_bits_address),
.io_enq_bits_mask (auto_in_a_bits_mask),
.io_enq_bits_data (auto_in_a_bits_data),
.io_deq_ready (auto_out_a_ready),
.io_deq_valid (auto_out_a_valid),
.io_deq_bits_opcode (auto_out_a_bits_opcode),
.io_deq_bits_param (auto_out_a_bits_param),
.io_deq_bits_size (auto_out_a_bits_size),
.io_deq_bits_source (auto_out_a_bits_source),
.io_deq_bits_address (auto_out_a_bits_address),
.io_deq_bits_mask (auto_out_a_bits_mask),
.io_deq_bits_data (auto_out_a_bits_data),
.io_deq_bits_corrupt (auto_out_a_bits_corrupt)
); // @[Decoupled.scala:362:21]
Queue2_TLBundleD_a32d64s2k5z4c nodeIn_d_q ( // @[Decoupled.scala:362:21]
.clock (clock),
.reset (reset),
.io_enq_ready (auto_out_d_ready),
.io_enq_valid (auto_out_d_valid),
.io_enq_bits_opcode (auto_out_d_bits_opcode),
.io_enq_bits_param (auto_out_d_bits_param),
.io_enq_bits_size (auto_out_d_bits_size),
.io_enq_bits_source (auto_out_d_bits_source),
.io_enq_bits_sink (auto_out_d_bits_sink),
.io_enq_bits_denied (auto_out_d_bits_denied),
.io_enq_bits_data (auto_out_d_bits_data),
.io_enq_bits_corrupt (auto_out_d_bits_corrupt),
.io_deq_ready (auto_in_d_ready),
.io_deq_valid (_nodeIn_d_q_io_deq_valid),
.io_deq_bits_opcode (_nodeIn_d_q_io_deq_bits_opcode),
.io_deq_bits_param (_nodeIn_d_q_io_deq_bits_param),
.io_deq_bits_size (_nodeIn_d_q_io_deq_bits_size),
.io_deq_bits_source (_nodeIn_d_q_io_deq_bits_source),
.io_deq_bits_sink (_nodeIn_d_q_io_deq_bits_sink),
.io_deq_bits_denied (_nodeIn_d_q_io_deq_bits_denied),
.io_deq_bits_data (auto_in_d_bits_data),
.io_deq_bits_corrupt (_nodeIn_d_q_io_deq_bits_corrupt)
); // @[Decoupled.scala:362:21]
Queue2_TLBundleB_a32d64s2k5z4c nodeIn_b_q ( // @[Decoupled.scala:362:21]
.clock (clock),
.reset (reset),
.io_enq_ready (auto_out_b_ready),
.io_enq_valid (auto_out_b_valid),
.io_enq_bits_opcode (auto_out_b_bits_opcode),
.io_enq_bits_param (auto_out_b_bits_param),
.io_enq_bits_size (auto_out_b_bits_size),
.io_enq_bits_source (auto_out_b_bits_source),
.io_enq_bits_address (auto_out_b_bits_address),
.io_enq_bits_mask (auto_out_b_bits_mask),
.io_enq_bits_data (auto_out_b_bits_data),
.io_enq_bits_corrupt (auto_out_b_bits_corrupt),
.io_deq_ready (auto_in_b_ready),
.io_deq_valid (_nodeIn_b_q_io_deq_valid),
.io_deq_bits_opcode (_nodeIn_b_q_io_deq_bits_opcode),
.io_deq_bits_param (_nodeIn_b_q_io_deq_bits_param),
.io_deq_bits_size (_nodeIn_b_q_io_deq_bits_size),
.io_deq_bits_source (_nodeIn_b_q_io_deq_bits_source),
.io_deq_bits_address (_nodeIn_b_q_io_deq_bits_address),
.io_deq_bits_mask (_nodeIn_b_q_io_deq_bits_mask),
.io_deq_bits_corrupt (_nodeIn_b_q_io_deq_bits_corrupt)
); // @[Decoupled.scala:362:21]
Queue2_TLBundleC_a32d64s2k5z4c nodeOut_c_q ( // @[Decoupled.scala:362:21]
.clock (clock),
.reset (reset),
.io_enq_ready (_nodeOut_c_q_io_enq_ready),
.io_enq_valid (auto_in_c_valid),
.io_enq_bits_opcode (auto_in_c_bits_opcode),
.io_enq_bits_param (auto_in_c_bits_param),
.io_enq_bits_size (auto_in_c_bits_size),
.io_enq_bits_source (auto_in_c_bits_source),
.io_enq_bits_address (auto_in_c_bits_address),
.io_enq_bits_data (auto_in_c_bits_data),
.io_deq_ready (auto_out_c_ready),
.io_deq_valid (auto_out_c_valid),
.io_deq_bits_opcode (auto_out_c_bits_opcode),
.io_deq_bits_param (auto_out_c_bits_param),
.io_deq_bits_size (auto_out_c_bits_size),
.io_deq_bits_source (auto_out_c_bits_source),
.io_deq_bits_address (auto_out_c_bits_address),
.io_deq_bits_data (auto_out_c_bits_data),
.io_deq_bits_corrupt (auto_out_c_bits_corrupt)
); // @[Decoupled.scala:362:21]
Queue2_TLBundleE_a32d64s2k5z4c nodeOut_e_q ( // @[Decoupled.scala:362:21]
.clock (clock),
.reset (reset),
.io_enq_ready (_nodeOut_e_q_io_enq_ready),
.io_enq_valid (auto_in_e_valid),
.io_enq_bits_sink (auto_in_e_bits_sink),
.io_deq_ready (auto_out_e_ready),
.io_deq_valid (auto_out_e_valid),
.io_deq_bits_sink (auto_out_e_bits_sink)
); // @[Decoupled.scala:362:21]
assign auto_in_a_ready = _nodeOut_a_q_io_enq_ready; // @[Decoupled.scala:362:21]
assign auto_in_b_valid = _nodeIn_b_q_io_deq_valid; // @[Decoupled.scala:362:21]
assign auto_in_b_bits_opcode = _nodeIn_b_q_io_deq_bits_opcode; // @[Decoupled.scala:362:21]
assign auto_in_b_bits_param = _nodeIn_b_q_io_deq_bits_param; // @[Decoupled.scala:362:21]
assign auto_in_b_bits_size = _nodeIn_b_q_io_deq_bits_size; // @[Decoupled.scala:362:21]
assign auto_in_b_bits_source = _nodeIn_b_q_io_deq_bits_source; // @[Decoupled.scala:362:21]
assign auto_in_b_bits_address = _nodeIn_b_q_io_deq_bits_address; // @[Decoupled.scala:362:21]
assign auto_in_b_bits_mask = _nodeIn_b_q_io_deq_bits_mask; // @[Decoupled.scala:362:21]
assign auto_in_b_bits_corrupt = _nodeIn_b_q_io_deq_bits_corrupt; // @[Decoupled.scala:362:21]
assign auto_in_c_ready = _nodeOut_c_q_io_enq_ready; // @[Decoupled.scala:362:21]
assign auto_in_d_valid = _nodeIn_d_q_io_deq_valid; // @[Decoupled.scala:362:21]
assign auto_in_d_bits_opcode = _nodeIn_d_q_io_deq_bits_opcode; // @[Decoupled.scala:362:21]
assign auto_in_d_bits_param = _nodeIn_d_q_io_deq_bits_param; // @[Decoupled.scala:362:21]
assign auto_in_d_bits_size = _nodeIn_d_q_io_deq_bits_size; // @[Decoupled.scala:362:21]
assign auto_in_d_bits_source = _nodeIn_d_q_io_deq_bits_source; // @[Decoupled.scala:362:21]
assign auto_in_d_bits_sink = _nodeIn_d_q_io_deq_bits_sink; // @[Decoupled.scala:362:21]
assign auto_in_d_bits_denied = _nodeIn_d_q_io_deq_bits_denied; // @[Decoupled.scala:362:21]
assign auto_in_d_bits_corrupt = _nodeIn_d_q_io_deq_bits_corrupt; // @[Decoupled.scala:362:21]
assign auto_in_e_ready = _nodeOut_e_q_io_enq_ready; // @[Decoupled.scala:362:21]
endmodule |
Generate the Verilog code corresponding to the following Chisel files.
File InputUnit.scala:
package constellation.router
import chisel3._
import chisel3.util._
import org.chipsalliance.cde.config.{Field, Parameters}
import freechips.rocketchip.util._
import constellation.channel._
import constellation.routing.{FlowRoutingBundle}
import constellation.noc.{HasNoCParams}
class AbstractInputUnitIO(
val cParam: BaseChannelParams,
val outParams: Seq[ChannelParams],
val egressParams: Seq[EgressChannelParams],
)(implicit val p: Parameters) extends Bundle with HasRouterOutputParams {
val nodeId = cParam.destId
val router_req = Decoupled(new RouteComputerReq)
val router_resp = Input(new RouteComputerResp(outParams, egressParams))
val vcalloc_req = Decoupled(new VCAllocReq(cParam, outParams, egressParams))
val vcalloc_resp = Input(new VCAllocResp(outParams, egressParams))
val out_credit_available = Input(MixedVec(allOutParams.map { u => Vec(u.nVirtualChannels, Bool()) }))
val salloc_req = Vec(cParam.destSpeedup, Decoupled(new SwitchAllocReq(outParams, egressParams)))
val out = Vec(cParam.destSpeedup, Valid(new SwitchBundle(outParams, egressParams)))
val debug = Output(new Bundle {
val va_stall = UInt(log2Ceil(cParam.nVirtualChannels).W)
val sa_stall = UInt(log2Ceil(cParam.nVirtualChannels).W)
})
val block = Input(Bool())
}
abstract class AbstractInputUnit(
val cParam: BaseChannelParams,
val outParams: Seq[ChannelParams],
val egressParams: Seq[EgressChannelParams]
)(implicit val p: Parameters) extends Module with HasRouterOutputParams with HasNoCParams {
val nodeId = cParam.destId
def io: AbstractInputUnitIO
}
class InputBuffer(cParam: ChannelParams)(implicit p: Parameters) extends Module {
val nVirtualChannels = cParam.nVirtualChannels
val io = IO(new Bundle {
val enq = Flipped(Vec(cParam.srcSpeedup, Valid(new Flit(cParam.payloadBits))))
val deq = Vec(cParam.nVirtualChannels, Decoupled(new BaseFlit(cParam.payloadBits)))
})
val useOutputQueues = cParam.useOutputQueues
val delims = if (useOutputQueues) {
cParam.virtualChannelParams.map(u => if (u.traversable) u.bufferSize else 0).scanLeft(0)(_+_)
} else {
// If no queuing, have to add an additional slot since head == tail implies empty
// TODO this should be fixed, should use all slots available
cParam.virtualChannelParams.map(u => if (u.traversable) u.bufferSize + 1 else 0).scanLeft(0)(_+_)
}
val starts = delims.dropRight(1).zipWithIndex.map { case (s,i) =>
if (cParam.virtualChannelParams(i).traversable) s else 0
}
val ends = delims.tail.zipWithIndex.map { case (s,i) =>
if (cParam.virtualChannelParams(i).traversable) s else 0
}
val fullSize = delims.last
// Ugly case. Use multiple queues
if ((cParam.srcSpeedup > 1 || cParam.destSpeedup > 1 || fullSize <= 1) || !cParam.unifiedBuffer) {
require(useOutputQueues)
val qs = cParam.virtualChannelParams.map(v => Module(new Queue(new BaseFlit(cParam.payloadBits), v.bufferSize)))
qs.zipWithIndex.foreach { case (q,i) =>
val sel = io.enq.map(f => f.valid && f.bits.virt_channel_id === i.U)
q.io.enq.valid := sel.orR
q.io.enq.bits.head := Mux1H(sel, io.enq.map(_.bits.head))
q.io.enq.bits.tail := Mux1H(sel, io.enq.map(_.bits.tail))
q.io.enq.bits.payload := Mux1H(sel, io.enq.map(_.bits.payload))
io.deq(i) <> q.io.deq
}
} else {
val mem = Mem(fullSize, new BaseFlit(cParam.payloadBits))
val heads = RegInit(VecInit(starts.map(_.U(log2Ceil(fullSize).W))))
val tails = RegInit(VecInit(starts.map(_.U(log2Ceil(fullSize).W))))
val empty = (heads zip tails).map(t => t._1 === t._2)
val qs = Seq.fill(nVirtualChannels) { Module(new Queue(new BaseFlit(cParam.payloadBits), 1, pipe=true)) }
qs.foreach(_.io.enq.valid := false.B)
qs.foreach(_.io.enq.bits := DontCare)
val vc_sel = UIntToOH(io.enq(0).bits.virt_channel_id)
val flit = Wire(new BaseFlit(cParam.payloadBits))
val direct_to_q = (Mux1H(vc_sel, qs.map(_.io.enq.ready)) && Mux1H(vc_sel, empty)) && useOutputQueues.B
flit.head := io.enq(0).bits.head
flit.tail := io.enq(0).bits.tail
flit.payload := io.enq(0).bits.payload
when (io.enq(0).valid && !direct_to_q) {
val tail = tails(io.enq(0).bits.virt_channel_id)
mem.write(tail, flit)
tails(io.enq(0).bits.virt_channel_id) := Mux(
tail === Mux1H(vc_sel, ends.map(_ - 1).map(_ max 0).map(_.U)),
Mux1H(vc_sel, starts.map(_.U)),
tail + 1.U)
} .elsewhen (io.enq(0).valid && direct_to_q) {
for (i <- 0 until nVirtualChannels) {
when (io.enq(0).bits.virt_channel_id === i.U) {
qs(i).io.enq.valid := true.B
qs(i).io.enq.bits := flit
}
}
}
if (useOutputQueues) {
val can_to_q = (0 until nVirtualChannels).map { i => !empty(i) && qs(i).io.enq.ready }
val to_q_oh = PriorityEncoderOH(can_to_q)
val to_q = OHToUInt(to_q_oh)
when (can_to_q.orR) {
val head = Mux1H(to_q_oh, heads)
heads(to_q) := Mux(
head === Mux1H(to_q_oh, ends.map(_ - 1).map(_ max 0).map(_.U)),
Mux1H(to_q_oh, starts.map(_.U)),
head + 1.U)
for (i <- 0 until nVirtualChannels) {
when (to_q_oh(i)) {
qs(i).io.enq.valid := true.B
qs(i).io.enq.bits := mem.read(head)
}
}
}
for (i <- 0 until nVirtualChannels) {
io.deq(i) <> qs(i).io.deq
}
} else {
qs.map(_.io.deq.ready := false.B)
val ready_sel = io.deq.map(_.ready)
val fire = io.deq.map(_.fire)
assert(PopCount(fire) <= 1.U)
val head = Mux1H(fire, heads)
when (fire.orR) {
val fire_idx = OHToUInt(fire)
heads(fire_idx) := Mux(
head === Mux1H(fire, ends.map(_ - 1).map(_ max 0).map(_.U)),
Mux1H(fire, starts.map(_.U)),
head + 1.U)
}
val read_flit = mem.read(head)
for (i <- 0 until nVirtualChannels) {
io.deq(i).valid := !empty(i)
io.deq(i).bits := read_flit
}
}
}
}
class InputUnit(cParam: ChannelParams, outParams: Seq[ChannelParams],
egressParams: Seq[EgressChannelParams],
combineRCVA: Boolean, combineSAST: Boolean
)
(implicit p: Parameters) extends AbstractInputUnit(cParam, outParams, egressParams)(p) {
val nVirtualChannels = cParam.nVirtualChannels
val virtualChannelParams = cParam.virtualChannelParams
class InputUnitIO extends AbstractInputUnitIO(cParam, outParams, egressParams) {
val in = Flipped(new Channel(cParam.asInstanceOf[ChannelParams]))
}
val io = IO(new InputUnitIO)
val g_i :: g_r :: g_v :: g_a :: g_c :: Nil = Enum(5)
class InputState extends Bundle {
val g = UInt(3.W)
val vc_sel = MixedVec(allOutParams.map { u => Vec(u.nVirtualChannels, Bool()) })
val flow = new FlowRoutingBundle
val fifo_deps = UInt(nVirtualChannels.W)
}
val input_buffer = Module(new InputBuffer(cParam))
for (i <- 0 until cParam.srcSpeedup) {
input_buffer.io.enq(i) := io.in.flit(i)
}
input_buffer.io.deq.foreach(_.ready := false.B)
val route_arbiter = Module(new Arbiter(
new RouteComputerReq, nVirtualChannels
))
io.router_req <> route_arbiter.io.out
val states = Reg(Vec(nVirtualChannels, new InputState))
val anyFifo = cParam.possibleFlows.map(_.fifo).reduce(_||_)
val allFifo = cParam.possibleFlows.map(_.fifo).reduce(_&&_)
if (anyFifo) {
val idle_mask = VecInit(states.map(_.g === g_i)).asUInt
for (s <- states)
for (i <- 0 until nVirtualChannels)
s.fifo_deps := s.fifo_deps & ~idle_mask
}
for (i <- 0 until cParam.srcSpeedup) {
when (io.in.flit(i).fire && io.in.flit(i).bits.head) {
val id = io.in.flit(i).bits.virt_channel_id
assert(id < nVirtualChannels.U)
assert(states(id).g === g_i)
val at_dest = io.in.flit(i).bits.flow.egress_node === nodeId.U
states(id).g := Mux(at_dest, g_v, g_r)
states(id).vc_sel.foreach(_.foreach(_ := false.B))
for (o <- 0 until nEgress) {
when (o.U === io.in.flit(i).bits.flow.egress_node_id) {
states(id).vc_sel(o+nOutputs)(0) := true.B
}
}
states(id).flow := io.in.flit(i).bits.flow
if (anyFifo) {
val fifo = cParam.possibleFlows.filter(_.fifo).map(_.isFlow(io.in.flit(i).bits.flow)).toSeq.orR
states(id).fifo_deps := VecInit(states.zipWithIndex.map { case (s, j) =>
s.g =/= g_i && s.flow.asUInt === io.in.flit(i).bits.flow.asUInt && j.U =/= id
}).asUInt
}
}
}
(route_arbiter.io.in zip states).zipWithIndex.map { case ((i,s),idx) =>
if (virtualChannelParams(idx).traversable) {
i.valid := s.g === g_r
i.bits.flow := s.flow
i.bits.src_virt_id := idx.U
when (i.fire) { s.g := g_v }
} else {
i.valid := false.B
i.bits := DontCare
}
}
when (io.router_req.fire) {
val id = io.router_req.bits.src_virt_id
assert(states(id).g === g_r)
states(id).g := g_v
for (i <- 0 until nVirtualChannels) {
when (i.U === id) {
states(i).vc_sel := io.router_resp.vc_sel
}
}
}
val mask = RegInit(0.U(nVirtualChannels.W))
val vcalloc_reqs = Wire(Vec(nVirtualChannels, new VCAllocReq(cParam, outParams, egressParams)))
val vcalloc_vals = Wire(Vec(nVirtualChannels, Bool()))
val vcalloc_filter = PriorityEncoderOH(Cat(vcalloc_vals.asUInt, vcalloc_vals.asUInt & ~mask))
val vcalloc_sel = vcalloc_filter(nVirtualChannels-1,0) | (vcalloc_filter >> nVirtualChannels)
// Prioritize incoming packetes
when (io.router_req.fire) {
mask := (1.U << io.router_req.bits.src_virt_id) - 1.U
} .elsewhen (vcalloc_vals.orR) {
mask := Mux1H(vcalloc_sel, (0 until nVirtualChannels).map { w => ~(0.U((w+1).W)) })
}
io.vcalloc_req.valid := vcalloc_vals.orR
io.vcalloc_req.bits := Mux1H(vcalloc_sel, vcalloc_reqs)
states.zipWithIndex.map { case (s,idx) =>
if (virtualChannelParams(idx).traversable) {
vcalloc_vals(idx) := s.g === g_v && s.fifo_deps === 0.U
vcalloc_reqs(idx).in_vc := idx.U
vcalloc_reqs(idx).vc_sel := s.vc_sel
vcalloc_reqs(idx).flow := s.flow
when (vcalloc_vals(idx) && vcalloc_sel(idx) && io.vcalloc_req.ready) { s.g := g_a }
if (combineRCVA) {
when (route_arbiter.io.in(idx).fire) {
vcalloc_vals(idx) := true.B
vcalloc_reqs(idx).vc_sel := io.router_resp.vc_sel
}
}
} else {
vcalloc_vals(idx) := false.B
vcalloc_reqs(idx) := DontCare
}
}
io.debug.va_stall := PopCount(vcalloc_vals) - io.vcalloc_req.ready
when (io.vcalloc_req.fire) {
for (i <- 0 until nVirtualChannels) {
when (vcalloc_sel(i)) {
states(i).vc_sel := io.vcalloc_resp.vc_sel
states(i).g := g_a
if (!combineRCVA) {
assert(states(i).g === g_v)
}
}
}
}
val salloc_arb = Module(new SwitchArbiter(
nVirtualChannels,
cParam.destSpeedup,
outParams, egressParams
))
(states zip salloc_arb.io.in).zipWithIndex.map { case ((s,r),i) =>
if (virtualChannelParams(i).traversable) {
val credit_available = (s.vc_sel.asUInt & io.out_credit_available.asUInt) =/= 0.U
r.valid := s.g === g_a && credit_available && input_buffer.io.deq(i).valid
r.bits.vc_sel := s.vc_sel
val deq_tail = input_buffer.io.deq(i).bits.tail
r.bits.tail := deq_tail
when (r.fire && deq_tail) {
s.g := g_i
}
input_buffer.io.deq(i).ready := r.ready
} else {
r.valid := false.B
r.bits := DontCare
}
}
io.debug.sa_stall := PopCount(salloc_arb.io.in.map(r => r.valid && !r.ready))
io.salloc_req <> salloc_arb.io.out
when (io.block) {
salloc_arb.io.out.foreach(_.ready := false.B)
io.salloc_req.foreach(_.valid := false.B)
}
class OutBundle extends Bundle {
val valid = Bool()
val vid = UInt(virtualChannelBits.W)
val out_vid = UInt(log2Up(allOutParams.map(_.nVirtualChannels).max).W)
val flit = new Flit(cParam.payloadBits)
}
val salloc_outs = if (combineSAST) {
Wire(Vec(cParam.destSpeedup, new OutBundle))
} else {
Reg(Vec(cParam.destSpeedup, new OutBundle))
}
io.in.credit_return := salloc_arb.io.out.zipWithIndex.map { case (o, i) =>
Mux(o.fire, salloc_arb.io.chosen_oh(i), 0.U)
}.reduce(_|_)
io.in.vc_free := salloc_arb.io.out.zipWithIndex.map { case (o, i) =>
Mux(o.fire && Mux1H(salloc_arb.io.chosen_oh(i), input_buffer.io.deq.map(_.bits.tail)),
salloc_arb.io.chosen_oh(i), 0.U)
}.reduce(_|_)
for (i <- 0 until cParam.destSpeedup) {
val salloc_out = salloc_outs(i)
salloc_out.valid := salloc_arb.io.out(i).fire
salloc_out.vid := OHToUInt(salloc_arb.io.chosen_oh(i))
val vc_sel = Mux1H(salloc_arb.io.chosen_oh(i), states.map(_.vc_sel))
val channel_oh = vc_sel.map(_.reduce(_||_)).toSeq
val virt_channel = Mux1H(channel_oh, vc_sel.map(v => OHToUInt(v)).toSeq)
when (salloc_arb.io.out(i).fire) {
salloc_out.out_vid := virt_channel
salloc_out.flit.payload := Mux1H(salloc_arb.io.chosen_oh(i), input_buffer.io.deq.map(_.bits.payload))
salloc_out.flit.head := Mux1H(salloc_arb.io.chosen_oh(i), input_buffer.io.deq.map(_.bits.head))
salloc_out.flit.tail := Mux1H(salloc_arb.io.chosen_oh(i), input_buffer.io.deq.map(_.bits.tail))
salloc_out.flit.flow := Mux1H(salloc_arb.io.chosen_oh(i), states.map(_.flow))
} .otherwise {
salloc_out.out_vid := DontCare
salloc_out.flit := DontCare
}
salloc_out.flit.virt_channel_id := DontCare // this gets set in the switch
io.out(i).valid := salloc_out.valid
io.out(i).bits.flit := salloc_out.flit
io.out(i).bits.out_virt_channel := salloc_out.out_vid
}
def filterVCSel(sel: MixedVec[Vec[Bool]], srcV: Int) = {
if (virtualChannelParams(srcV).traversable) {
outParams.zipWithIndex.map { case (oP, oI) =>
(0 until oP.nVirtualChannels).map { oV =>
var allow = false
virtualChannelParams(srcV).possibleFlows.foreach { pI =>
allow = allow || routingRelation(
cParam.channelRoutingInfos(srcV),
oP.channelRoutingInfos(oV),
pI
)
}
if (!allow)
sel(oI)(oV) := false.B
}
}
}
}
(0 until nVirtualChannels).map { i =>
if (!virtualChannelParams(i).traversable) states(i) := DontCare
filterVCSel(states(i).vc_sel, i)
}
when (reset.asBool) {
states.foreach(_.g := g_i)
}
}
| module InputUnit_21( // @[InputUnit.scala:158:7]
input clock, // @[InputUnit.scala:158:7]
input reset, // @[InputUnit.scala:158:7]
output [1:0] io_router_req_bits_src_virt_id, // @[InputUnit.scala:170:14]
output [1:0] io_router_req_bits_flow_vnet_id, // @[InputUnit.scala:170:14]
output [3:0] io_router_req_bits_flow_ingress_node, // @[InputUnit.scala:170:14]
output [2:0] io_router_req_bits_flow_ingress_node_id, // @[InputUnit.scala:170:14]
output [3:0] io_router_req_bits_flow_egress_node, // @[InputUnit.scala:170:14]
output [1:0] io_router_req_bits_flow_egress_node_id, // @[InputUnit.scala:170:14]
input io_router_resp_vc_sel_2_0, // @[InputUnit.scala:170:14]
input io_router_resp_vc_sel_2_1, // @[InputUnit.scala:170:14]
input io_router_resp_vc_sel_2_2, // @[InputUnit.scala:170:14]
input io_router_resp_vc_sel_1_0, // @[InputUnit.scala:170:14]
input io_router_resp_vc_sel_1_1, // @[InputUnit.scala:170:14]
input io_router_resp_vc_sel_1_2, // @[InputUnit.scala:170:14]
input io_router_resp_vc_sel_0_0, // @[InputUnit.scala:170:14]
input io_router_resp_vc_sel_0_1, // @[InputUnit.scala:170:14]
input io_router_resp_vc_sel_0_2, // @[InputUnit.scala:170:14]
input io_vcalloc_req_ready, // @[InputUnit.scala:170:14]
output io_vcalloc_req_valid, // @[InputUnit.scala:170:14]
output io_vcalloc_req_bits_vc_sel_3_0, // @[InputUnit.scala:170:14]
output io_vcalloc_req_bits_vc_sel_2_0, // @[InputUnit.scala:170:14]
output io_vcalloc_req_bits_vc_sel_2_1, // @[InputUnit.scala:170:14]
output io_vcalloc_req_bits_vc_sel_2_2, // @[InputUnit.scala:170:14]
output io_vcalloc_req_bits_vc_sel_1_0, // @[InputUnit.scala:170:14]
output io_vcalloc_req_bits_vc_sel_1_1, // @[InputUnit.scala:170:14]
output io_vcalloc_req_bits_vc_sel_1_2, // @[InputUnit.scala:170:14]
output io_vcalloc_req_bits_vc_sel_0_0, // @[InputUnit.scala:170:14]
output io_vcalloc_req_bits_vc_sel_0_1, // @[InputUnit.scala:170:14]
output io_vcalloc_req_bits_vc_sel_0_2, // @[InputUnit.scala:170:14]
input io_vcalloc_resp_vc_sel_3_0, // @[InputUnit.scala:170:14]
input io_vcalloc_resp_vc_sel_2_0, // @[InputUnit.scala:170:14]
input io_out_credit_available_3_0, // @[InputUnit.scala:170:14]
input io_out_credit_available_2_0, // @[InputUnit.scala:170:14]
input io_out_credit_available_1_1, // @[InputUnit.scala:170:14]
input io_out_credit_available_1_2, // @[InputUnit.scala:170:14]
input io_out_credit_available_0_0, // @[InputUnit.scala:170:14]
input io_salloc_req_0_ready, // @[InputUnit.scala:170:14]
output io_salloc_req_0_valid, // @[InputUnit.scala:170:14]
output io_salloc_req_0_bits_vc_sel_3_0, // @[InputUnit.scala:170:14]
output io_salloc_req_0_bits_vc_sel_2_0, // @[InputUnit.scala:170:14]
output io_salloc_req_0_bits_vc_sel_2_1, // @[InputUnit.scala:170:14]
output io_salloc_req_0_bits_vc_sel_2_2, // @[InputUnit.scala:170:14]
output io_salloc_req_0_bits_vc_sel_1_0, // @[InputUnit.scala:170:14]
output io_salloc_req_0_bits_vc_sel_1_1, // @[InputUnit.scala:170:14]
output io_salloc_req_0_bits_vc_sel_1_2, // @[InputUnit.scala:170:14]
output io_salloc_req_0_bits_vc_sel_0_0, // @[InputUnit.scala:170:14]
output io_salloc_req_0_bits_vc_sel_0_1, // @[InputUnit.scala:170:14]
output io_salloc_req_0_bits_vc_sel_0_2, // @[InputUnit.scala:170:14]
output io_salloc_req_0_bits_tail, // @[InputUnit.scala:170:14]
output io_out_0_valid, // @[InputUnit.scala:170:14]
output io_out_0_bits_flit_head, // @[InputUnit.scala:170:14]
output io_out_0_bits_flit_tail, // @[InputUnit.scala:170:14]
output [144:0] io_out_0_bits_flit_payload, // @[InputUnit.scala:170:14]
output [1:0] io_out_0_bits_flit_flow_vnet_id, // @[InputUnit.scala:170:14]
output [3:0] io_out_0_bits_flit_flow_ingress_node, // @[InputUnit.scala:170:14]
output [2:0] io_out_0_bits_flit_flow_ingress_node_id, // @[InputUnit.scala:170:14]
output [3:0] io_out_0_bits_flit_flow_egress_node, // @[InputUnit.scala:170:14]
output [1:0] io_out_0_bits_flit_flow_egress_node_id, // @[InputUnit.scala:170:14]
output [1:0] io_out_0_bits_out_virt_channel, // @[InputUnit.scala:170:14]
output [1:0] io_debug_va_stall, // @[InputUnit.scala:170:14]
output [1:0] io_debug_sa_stall, // @[InputUnit.scala:170:14]
input io_in_flit_0_valid, // @[InputUnit.scala:170:14]
input io_in_flit_0_bits_head, // @[InputUnit.scala:170:14]
input io_in_flit_0_bits_tail, // @[InputUnit.scala:170:14]
input [144:0] io_in_flit_0_bits_payload, // @[InputUnit.scala:170:14]
input [1:0] io_in_flit_0_bits_flow_vnet_id, // @[InputUnit.scala:170:14]
input [3:0] io_in_flit_0_bits_flow_ingress_node, // @[InputUnit.scala:170:14]
input [2:0] io_in_flit_0_bits_flow_ingress_node_id, // @[InputUnit.scala:170:14]
input [3:0] io_in_flit_0_bits_flow_egress_node, // @[InputUnit.scala:170:14]
input [1:0] io_in_flit_0_bits_flow_egress_node_id, // @[InputUnit.scala:170:14]
input [1:0] io_in_flit_0_bits_virt_channel_id, // @[InputUnit.scala:170:14]
output [2:0] io_in_credit_return, // @[InputUnit.scala:170:14]
output [2:0] io_in_vc_free // @[InputUnit.scala:170:14]
);
wire _GEN; // @[MixedVec.scala:116:9]
wire vcalloc_reqs_0_vc_sel_2_0; // @[MixedVec.scala:116:9]
wire vcalloc_vals_0; // @[InputUnit.scala:266:25, :272:46, :273:29]
wire _salloc_arb_io_in_0_ready; // @[InputUnit.scala:296:26]
wire _salloc_arb_io_out_0_valid; // @[InputUnit.scala:296:26]
wire [2:0] _salloc_arb_io_chosen_oh_0; // @[InputUnit.scala:296:26]
wire _route_arbiter_io_out_valid; // @[InputUnit.scala:187:29]
wire [1:0] _route_arbiter_io_out_bits_src_virt_id; // @[InputUnit.scala:187:29]
wire _input_buffer_io_deq_0_valid; // @[InputUnit.scala:181:28]
wire _input_buffer_io_deq_0_bits_head; // @[InputUnit.scala:181:28]
wire _input_buffer_io_deq_0_bits_tail; // @[InputUnit.scala:181:28]
wire [144:0] _input_buffer_io_deq_0_bits_payload; // @[InputUnit.scala:181:28]
wire _input_buffer_io_deq_1_bits_head; // @[InputUnit.scala:181:28]
wire _input_buffer_io_deq_1_bits_tail; // @[InputUnit.scala:181:28]
wire [144:0] _input_buffer_io_deq_1_bits_payload; // @[InputUnit.scala:181:28]
wire _input_buffer_io_deq_2_bits_head; // @[InputUnit.scala:181:28]
wire _input_buffer_io_deq_2_bits_tail; // @[InputUnit.scala:181:28]
wire [144:0] _input_buffer_io_deq_2_bits_payload; // @[InputUnit.scala:181:28]
reg [2:0] states_0_g; // @[InputUnit.scala:192:19]
reg states_0_vc_sel_3_0; // @[InputUnit.scala:192:19]
reg states_0_vc_sel_2_0; // @[InputUnit.scala:192:19]
reg [1:0] states_0_flow_vnet_id; // @[InputUnit.scala:192:19]
reg [3:0] states_0_flow_ingress_node; // @[InputUnit.scala:192:19]
reg [2:0] states_0_flow_ingress_node_id; // @[InputUnit.scala:192:19]
reg [3:0] states_0_flow_egress_node; // @[InputUnit.scala:192:19]
reg [1:0] states_0_flow_egress_node_id; // @[InputUnit.scala:192:19]
wire _GEN_0 = io_in_flit_0_valid & io_in_flit_0_bits_head; // @[InputUnit.scala:205:30]
wire route_arbiter_io_in_0_valid = states_0_g == 3'h1; // @[InputUnit.scala:192:19, :229:22] |
Generate the Verilog code corresponding to the following Chisel files.
File FPU.scala:
// See LICENSE.Berkeley for license details.
// See LICENSE.SiFive for license details.
package freechips.rocketchip.tile
import chisel3._
import chisel3.util._
import chisel3.{DontCare, WireInit, withClock, withReset}
import chisel3.experimental.SourceInfo
import chisel3.experimental.dataview._
import org.chipsalliance.cde.config.Parameters
import freechips.rocketchip.rocket._
import freechips.rocketchip.rocket.Instructions._
import freechips.rocketchip.util._
import freechips.rocketchip.util.property
case class FPUParams(
minFLen: Int = 32,
fLen: Int = 64,
divSqrt: Boolean = true,
sfmaLatency: Int = 3,
dfmaLatency: Int = 4,
fpmuLatency: Int = 2,
ifpuLatency: Int = 2
)
object FPConstants
{
val RM_SZ = 3
val FLAGS_SZ = 5
}
trait HasFPUCtrlSigs {
val ldst = Bool()
val wen = Bool()
val ren1 = Bool()
val ren2 = Bool()
val ren3 = Bool()
val swap12 = Bool()
val swap23 = Bool()
val typeTagIn = UInt(2.W)
val typeTagOut = UInt(2.W)
val fromint = Bool()
val toint = Bool()
val fastpipe = Bool()
val fma = Bool()
val div = Bool()
val sqrt = Bool()
val wflags = Bool()
val vec = Bool()
}
class FPUCtrlSigs extends Bundle with HasFPUCtrlSigs
class FPUDecoder(implicit p: Parameters) extends FPUModule()(p) {
val io = IO(new Bundle {
val inst = Input(Bits(32.W))
val sigs = Output(new FPUCtrlSigs())
})
private val X2 = BitPat.dontCare(2)
val default = List(X,X,X,X,X,X,X,X2,X2,X,X,X,X,X,X,X,N)
val h: Array[(BitPat, List[BitPat])] =
Array(FLH -> List(Y,Y,N,N,N,X,X,X2,X2,N,N,N,N,N,N,N,N),
FSH -> List(Y,N,N,Y,N,Y,X, I, H,N,Y,N,N,N,N,N,N),
FMV_H_X -> List(N,Y,N,N,N,X,X, H, I,Y,N,N,N,N,N,N,N),
FCVT_H_W -> List(N,Y,N,N,N,X,X, H, H,Y,N,N,N,N,N,Y,N),
FCVT_H_WU-> List(N,Y,N,N,N,X,X, H, H,Y,N,N,N,N,N,Y,N),
FCVT_H_L -> List(N,Y,N,N,N,X,X, H, H,Y,N,N,N,N,N,Y,N),
FCVT_H_LU-> List(N,Y,N,N,N,X,X, H, H,Y,N,N,N,N,N,Y,N),
FMV_X_H -> List(N,N,Y,N,N,N,X, I, H,N,Y,N,N,N,N,N,N),
FCLASS_H -> List(N,N,Y,N,N,N,X, H, H,N,Y,N,N,N,N,N,N),
FCVT_W_H -> List(N,N,Y,N,N,N,X, H,X2,N,Y,N,N,N,N,Y,N),
FCVT_WU_H-> List(N,N,Y,N,N,N,X, H,X2,N,Y,N,N,N,N,Y,N),
FCVT_L_H -> List(N,N,Y,N,N,N,X, H,X2,N,Y,N,N,N,N,Y,N),
FCVT_LU_H-> List(N,N,Y,N,N,N,X, H,X2,N,Y,N,N,N,N,Y,N),
FCVT_S_H -> List(N,Y,Y,N,N,N,X, H, S,N,N,Y,N,N,N,Y,N),
FCVT_H_S -> List(N,Y,Y,N,N,N,X, S, H,N,N,Y,N,N,N,Y,N),
FEQ_H -> List(N,N,Y,Y,N,N,N, H, H,N,Y,N,N,N,N,Y,N),
FLT_H -> List(N,N,Y,Y,N,N,N, H, H,N,Y,N,N,N,N,Y,N),
FLE_H -> List(N,N,Y,Y,N,N,N, H, H,N,Y,N,N,N,N,Y,N),
FSGNJ_H -> List(N,Y,Y,Y,N,N,N, H, H,N,N,Y,N,N,N,N,N),
FSGNJN_H -> List(N,Y,Y,Y,N,N,N, H, H,N,N,Y,N,N,N,N,N),
FSGNJX_H -> List(N,Y,Y,Y,N,N,N, H, H,N,N,Y,N,N,N,N,N),
FMIN_H -> List(N,Y,Y,Y,N,N,N, H, H,N,N,Y,N,N,N,Y,N),
FMAX_H -> List(N,Y,Y,Y,N,N,N, H, H,N,N,Y,N,N,N,Y,N),
FADD_H -> List(N,Y,Y,Y,N,N,Y, H, H,N,N,N,Y,N,N,Y,N),
FSUB_H -> List(N,Y,Y,Y,N,N,Y, H, H,N,N,N,Y,N,N,Y,N),
FMUL_H -> List(N,Y,Y,Y,N,N,N, H, H,N,N,N,Y,N,N,Y,N),
FMADD_H -> List(N,Y,Y,Y,Y,N,N, H, H,N,N,N,Y,N,N,Y,N),
FMSUB_H -> List(N,Y,Y,Y,Y,N,N, H, H,N,N,N,Y,N,N,Y,N),
FNMADD_H -> List(N,Y,Y,Y,Y,N,N, H, H,N,N,N,Y,N,N,Y,N),
FNMSUB_H -> List(N,Y,Y,Y,Y,N,N, H, H,N,N,N,Y,N,N,Y,N),
FDIV_H -> List(N,Y,Y,Y,N,N,N, H, H,N,N,N,N,Y,N,Y,N),
FSQRT_H -> List(N,Y,Y,N,N,N,X, H, H,N,N,N,N,N,Y,Y,N))
val f: Array[(BitPat, List[BitPat])] =
Array(FLW -> List(Y,Y,N,N,N,X,X,X2,X2,N,N,N,N,N,N,N,N),
FSW -> List(Y,N,N,Y,N,Y,X, I, S,N,Y,N,N,N,N,N,N),
FMV_W_X -> List(N,Y,N,N,N,X,X, S, I,Y,N,N,N,N,N,N,N),
FCVT_S_W -> List(N,Y,N,N,N,X,X, S, S,Y,N,N,N,N,N,Y,N),
FCVT_S_WU-> List(N,Y,N,N,N,X,X, S, S,Y,N,N,N,N,N,Y,N),
FCVT_S_L -> List(N,Y,N,N,N,X,X, S, S,Y,N,N,N,N,N,Y,N),
FCVT_S_LU-> List(N,Y,N,N,N,X,X, S, S,Y,N,N,N,N,N,Y,N),
FMV_X_W -> List(N,N,Y,N,N,N,X, I, S,N,Y,N,N,N,N,N,N),
FCLASS_S -> List(N,N,Y,N,N,N,X, S, S,N,Y,N,N,N,N,N,N),
FCVT_W_S -> List(N,N,Y,N,N,N,X, S,X2,N,Y,N,N,N,N,Y,N),
FCVT_WU_S-> List(N,N,Y,N,N,N,X, S,X2,N,Y,N,N,N,N,Y,N),
FCVT_L_S -> List(N,N,Y,N,N,N,X, S,X2,N,Y,N,N,N,N,Y,N),
FCVT_LU_S-> List(N,N,Y,N,N,N,X, S,X2,N,Y,N,N,N,N,Y,N),
FEQ_S -> List(N,N,Y,Y,N,N,N, S, S,N,Y,N,N,N,N,Y,N),
FLT_S -> List(N,N,Y,Y,N,N,N, S, S,N,Y,N,N,N,N,Y,N),
FLE_S -> List(N,N,Y,Y,N,N,N, S, S,N,Y,N,N,N,N,Y,N),
FSGNJ_S -> List(N,Y,Y,Y,N,N,N, S, S,N,N,Y,N,N,N,N,N),
FSGNJN_S -> List(N,Y,Y,Y,N,N,N, S, S,N,N,Y,N,N,N,N,N),
FSGNJX_S -> List(N,Y,Y,Y,N,N,N, S, S,N,N,Y,N,N,N,N,N),
FMIN_S -> List(N,Y,Y,Y,N,N,N, S, S,N,N,Y,N,N,N,Y,N),
FMAX_S -> List(N,Y,Y,Y,N,N,N, S, S,N,N,Y,N,N,N,Y,N),
FADD_S -> List(N,Y,Y,Y,N,N,Y, S, S,N,N,N,Y,N,N,Y,N),
FSUB_S -> List(N,Y,Y,Y,N,N,Y, S, S,N,N,N,Y,N,N,Y,N),
FMUL_S -> List(N,Y,Y,Y,N,N,N, S, S,N,N,N,Y,N,N,Y,N),
FMADD_S -> List(N,Y,Y,Y,Y,N,N, S, S,N,N,N,Y,N,N,Y,N),
FMSUB_S -> List(N,Y,Y,Y,Y,N,N, S, S,N,N,N,Y,N,N,Y,N),
FNMADD_S -> List(N,Y,Y,Y,Y,N,N, S, S,N,N,N,Y,N,N,Y,N),
FNMSUB_S -> List(N,Y,Y,Y,Y,N,N, S, S,N,N,N,Y,N,N,Y,N),
FDIV_S -> List(N,Y,Y,Y,N,N,N, S, S,N,N,N,N,Y,N,Y,N),
FSQRT_S -> List(N,Y,Y,N,N,N,X, S, S,N,N,N,N,N,Y,Y,N))
val d: Array[(BitPat, List[BitPat])] =
Array(FLD -> List(Y,Y,N,N,N,X,X,X2,X2,N,N,N,N,N,N,N,N),
FSD -> List(Y,N,N,Y,N,Y,X, I, D,N,Y,N,N,N,N,N,N),
FMV_D_X -> List(N,Y,N,N,N,X,X, D, I,Y,N,N,N,N,N,N,N),
FCVT_D_W -> List(N,Y,N,N,N,X,X, D, D,Y,N,N,N,N,N,Y,N),
FCVT_D_WU-> List(N,Y,N,N,N,X,X, D, D,Y,N,N,N,N,N,Y,N),
FCVT_D_L -> List(N,Y,N,N,N,X,X, D, D,Y,N,N,N,N,N,Y,N),
FCVT_D_LU-> List(N,Y,N,N,N,X,X, D, D,Y,N,N,N,N,N,Y,N),
FMV_X_D -> List(N,N,Y,N,N,N,X, I, D,N,Y,N,N,N,N,N,N),
FCLASS_D -> List(N,N,Y,N,N,N,X, D, D,N,Y,N,N,N,N,N,N),
FCVT_W_D -> List(N,N,Y,N,N,N,X, D,X2,N,Y,N,N,N,N,Y,N),
FCVT_WU_D-> List(N,N,Y,N,N,N,X, D,X2,N,Y,N,N,N,N,Y,N),
FCVT_L_D -> List(N,N,Y,N,N,N,X, D,X2,N,Y,N,N,N,N,Y,N),
FCVT_LU_D-> List(N,N,Y,N,N,N,X, D,X2,N,Y,N,N,N,N,Y,N),
FCVT_S_D -> List(N,Y,Y,N,N,N,X, D, S,N,N,Y,N,N,N,Y,N),
FCVT_D_S -> List(N,Y,Y,N,N,N,X, S, D,N,N,Y,N,N,N,Y,N),
FEQ_D -> List(N,N,Y,Y,N,N,N, D, D,N,Y,N,N,N,N,Y,N),
FLT_D -> List(N,N,Y,Y,N,N,N, D, D,N,Y,N,N,N,N,Y,N),
FLE_D -> List(N,N,Y,Y,N,N,N, D, D,N,Y,N,N,N,N,Y,N),
FSGNJ_D -> List(N,Y,Y,Y,N,N,N, D, D,N,N,Y,N,N,N,N,N),
FSGNJN_D -> List(N,Y,Y,Y,N,N,N, D, D,N,N,Y,N,N,N,N,N),
FSGNJX_D -> List(N,Y,Y,Y,N,N,N, D, D,N,N,Y,N,N,N,N,N),
FMIN_D -> List(N,Y,Y,Y,N,N,N, D, D,N,N,Y,N,N,N,Y,N),
FMAX_D -> List(N,Y,Y,Y,N,N,N, D, D,N,N,Y,N,N,N,Y,N),
FADD_D -> List(N,Y,Y,Y,N,N,Y, D, D,N,N,N,Y,N,N,Y,N),
FSUB_D -> List(N,Y,Y,Y,N,N,Y, D, D,N,N,N,Y,N,N,Y,N),
FMUL_D -> List(N,Y,Y,Y,N,N,N, D, D,N,N,N,Y,N,N,Y,N),
FMADD_D -> List(N,Y,Y,Y,Y,N,N, D, D,N,N,N,Y,N,N,Y,N),
FMSUB_D -> List(N,Y,Y,Y,Y,N,N, D, D,N,N,N,Y,N,N,Y,N),
FNMADD_D -> List(N,Y,Y,Y,Y,N,N, D, D,N,N,N,Y,N,N,Y,N),
FNMSUB_D -> List(N,Y,Y,Y,Y,N,N, D, D,N,N,N,Y,N,N,Y,N),
FDIV_D -> List(N,Y,Y,Y,N,N,N, D, D,N,N,N,N,Y,N,Y,N),
FSQRT_D -> List(N,Y,Y,N,N,N,X, D, D,N,N,N,N,N,Y,Y,N))
val fcvt_hd: Array[(BitPat, List[BitPat])] =
Array(FCVT_H_D -> List(N,Y,Y,N,N,N,X, D, H,N,N,Y,N,N,N,Y,N),
FCVT_D_H -> List(N,Y,Y,N,N,N,X, H, D,N,N,Y,N,N,N,Y,N))
val vfmv_f_s: Array[(BitPat, List[BitPat])] =
Array(VFMV_F_S -> List(N,Y,N,N,N,N,X,X2,X2,N,N,N,N,N,N,N,Y))
val insns = ((minFLen, fLen) match {
case (32, 32) => f
case (16, 32) => h ++ f
case (32, 64) => f ++ d
case (16, 64) => h ++ f ++ d ++ fcvt_hd
case other => throw new Exception(s"minFLen = ${minFLen} & fLen = ${fLen} is an unsupported configuration")
}) ++ (if (usingVector) vfmv_f_s else Array[(BitPat, List[BitPat])]())
val decoder = DecodeLogic(io.inst, default, insns)
val s = io.sigs
val sigs = Seq(s.ldst, s.wen, s.ren1, s.ren2, s.ren3, s.swap12,
s.swap23, s.typeTagIn, s.typeTagOut, s.fromint, s.toint,
s.fastpipe, s.fma, s.div, s.sqrt, s.wflags, s.vec)
sigs zip decoder map {case(s,d) => s := d}
}
class FPUCoreIO(implicit p: Parameters) extends CoreBundle()(p) {
val hartid = Input(UInt(hartIdLen.W))
val time = Input(UInt(xLen.W))
val inst = Input(Bits(32.W))
val fromint_data = Input(Bits(xLen.W))
val fcsr_rm = Input(Bits(FPConstants.RM_SZ.W))
val fcsr_flags = Valid(Bits(FPConstants.FLAGS_SZ.W))
val v_sew = Input(UInt(3.W))
val store_data = Output(Bits(fLen.W))
val toint_data = Output(Bits(xLen.W))
val ll_resp_val = Input(Bool())
val ll_resp_type = Input(Bits(3.W))
val ll_resp_tag = Input(UInt(5.W))
val ll_resp_data = Input(Bits(fLen.W))
val valid = Input(Bool())
val fcsr_rdy = Output(Bool())
val nack_mem = Output(Bool())
val illegal_rm = Output(Bool())
val killx = Input(Bool())
val killm = Input(Bool())
val dec = Output(new FPUCtrlSigs())
val sboard_set = Output(Bool())
val sboard_clr = Output(Bool())
val sboard_clra = Output(UInt(5.W))
val keep_clock_enabled = Input(Bool())
}
class FPUIO(implicit p: Parameters) extends FPUCoreIO ()(p) {
val cp_req = Flipped(Decoupled(new FPInput())) //cp doesn't pay attn to kill sigs
val cp_resp = Decoupled(new FPResult())
}
class FPResult(implicit p: Parameters) extends CoreBundle()(p) {
val data = Bits((fLen+1).W)
val exc = Bits(FPConstants.FLAGS_SZ.W)
}
class IntToFPInput(implicit p: Parameters) extends CoreBundle()(p) with HasFPUCtrlSigs {
val rm = Bits(FPConstants.RM_SZ.W)
val typ = Bits(2.W)
val in1 = Bits(xLen.W)
}
class FPInput(implicit p: Parameters) extends CoreBundle()(p) with HasFPUCtrlSigs {
val rm = Bits(FPConstants.RM_SZ.W)
val fmaCmd = Bits(2.W)
val typ = Bits(2.W)
val fmt = Bits(2.W)
val in1 = Bits((fLen+1).W)
val in2 = Bits((fLen+1).W)
val in3 = Bits((fLen+1).W)
}
case class FType(exp: Int, sig: Int) {
def ieeeWidth = exp + sig
def recodedWidth = ieeeWidth + 1
def ieeeQNaN = ((BigInt(1) << (ieeeWidth - 1)) - (BigInt(1) << (sig - 2))).U(ieeeWidth.W)
def qNaN = ((BigInt(7) << (exp + sig - 3)) + (BigInt(1) << (sig - 2))).U(recodedWidth.W)
def isNaN(x: UInt) = x(sig + exp - 1, sig + exp - 3).andR
def isSNaN(x: UInt) = isNaN(x) && !x(sig - 2)
def classify(x: UInt) = {
val sign = x(sig + exp)
val code = x(exp + sig - 1, exp + sig - 3)
val codeHi = code(2, 1)
val isSpecial = codeHi === 3.U
val isHighSubnormalIn = x(exp + sig - 3, sig - 1) < 2.U
val isSubnormal = code === 1.U || codeHi === 1.U && isHighSubnormalIn
val isNormal = codeHi === 1.U && !isHighSubnormalIn || codeHi === 2.U
val isZero = code === 0.U
val isInf = isSpecial && !code(0)
val isNaN = code.andR
val isSNaN = isNaN && !x(sig-2)
val isQNaN = isNaN && x(sig-2)
Cat(isQNaN, isSNaN, isInf && !sign, isNormal && !sign,
isSubnormal && !sign, isZero && !sign, isZero && sign,
isSubnormal && sign, isNormal && sign, isInf && sign)
}
// convert between formats, ignoring rounding, range, NaN
def unsafeConvert(x: UInt, to: FType) = if (this == to) x else {
val sign = x(sig + exp)
val fractIn = x(sig - 2, 0)
val expIn = x(sig + exp - 1, sig - 1)
val fractOut = fractIn << to.sig >> sig
val expOut = {
val expCode = expIn(exp, exp - 2)
val commonCase = (expIn + (1 << to.exp).U) - (1 << exp).U
Mux(expCode === 0.U || expCode >= 6.U, Cat(expCode, commonCase(to.exp - 3, 0)), commonCase(to.exp, 0))
}
Cat(sign, expOut, fractOut)
}
private def ieeeBundle = {
val expWidth = exp
class IEEEBundle extends Bundle {
val sign = Bool()
val exp = UInt(expWidth.W)
val sig = UInt((ieeeWidth-expWidth-1).W)
}
new IEEEBundle
}
def unpackIEEE(x: UInt) = x.asTypeOf(ieeeBundle)
def recode(x: UInt) = hardfloat.recFNFromFN(exp, sig, x)
def ieee(x: UInt) = hardfloat.fNFromRecFN(exp, sig, x)
}
object FType {
val H = new FType(5, 11)
val S = new FType(8, 24)
val D = new FType(11, 53)
val all = List(H, S, D)
}
trait HasFPUParameters {
require(fLen == 0 || FType.all.exists(_.ieeeWidth == fLen))
val minFLen: Int
val fLen: Int
def xLen: Int
val minXLen = 32
val nIntTypes = log2Ceil(xLen/minXLen) + 1
def floatTypes = FType.all.filter(t => minFLen <= t.ieeeWidth && t.ieeeWidth <= fLen)
def minType = floatTypes.head
def maxType = floatTypes.last
def prevType(t: FType) = floatTypes(typeTag(t) - 1)
def maxExpWidth = maxType.exp
def maxSigWidth = maxType.sig
def typeTag(t: FType) = floatTypes.indexOf(t)
def typeTagWbOffset = (FType.all.indexOf(minType) + 1).U
def typeTagGroup(t: FType) = (if (floatTypes.contains(t)) typeTag(t) else typeTag(maxType)).U
// typeTag
def H = typeTagGroup(FType.H)
def S = typeTagGroup(FType.S)
def D = typeTagGroup(FType.D)
def I = typeTag(maxType).U
private def isBox(x: UInt, t: FType): Bool = x(t.sig + t.exp, t.sig + t.exp - 4).andR
private def box(x: UInt, xt: FType, y: UInt, yt: FType): UInt = {
require(xt.ieeeWidth == 2 * yt.ieeeWidth)
val swizzledNaN = Cat(
x(xt.sig + xt.exp, xt.sig + xt.exp - 3),
x(xt.sig - 2, yt.recodedWidth - 1).andR,
x(xt.sig + xt.exp - 5, xt.sig),
y(yt.recodedWidth - 2),
x(xt.sig - 2, yt.recodedWidth - 1),
y(yt.recodedWidth - 1),
y(yt.recodedWidth - 3, 0))
Mux(xt.isNaN(x), swizzledNaN, x)
}
// implement NaN unboxing for FU inputs
def unbox(x: UInt, tag: UInt, exactType: Option[FType]): UInt = {
val outType = exactType.getOrElse(maxType)
def helper(x: UInt, t: FType): Seq[(Bool, UInt)] = {
val prev =
if (t == minType) {
Seq()
} else {
val prevT = prevType(t)
val unswizzled = Cat(
x(prevT.sig + prevT.exp - 1),
x(t.sig - 1),
x(prevT.sig + prevT.exp - 2, 0))
val prev = helper(unswizzled, prevT)
val isbox = isBox(x, t)
prev.map(p => (isbox && p._1, p._2))
}
prev :+ (true.B, t.unsafeConvert(x, outType))
}
val (oks, floats) = helper(x, maxType).unzip
if (exactType.isEmpty || floatTypes.size == 1) {
Mux(oks(tag), floats(tag), maxType.qNaN)
} else {
val t = exactType.get
floats(typeTag(t)) | Mux(oks(typeTag(t)), 0.U, t.qNaN)
}
}
// make sure that the redundant bits in the NaN-boxed encoding are consistent
def consistent(x: UInt): Bool = {
def helper(x: UInt, t: FType): Bool = if (typeTag(t) == 0) true.B else {
val prevT = prevType(t)
val unswizzled = Cat(
x(prevT.sig + prevT.exp - 1),
x(t.sig - 1),
x(prevT.sig + prevT.exp - 2, 0))
val prevOK = !isBox(x, t) || helper(unswizzled, prevT)
val curOK = !t.isNaN(x) || x(t.sig + t.exp - 4) === x(t.sig - 2, prevT.recodedWidth - 1).andR
prevOK && curOK
}
helper(x, maxType)
}
// generate a NaN box from an FU result
def box(x: UInt, t: FType): UInt = {
if (t == maxType) {
x
} else {
val nt = floatTypes(typeTag(t) + 1)
val bigger = box(((BigInt(1) << nt.recodedWidth)-1).U, nt, x, t)
bigger | ((BigInt(1) << maxType.recodedWidth) - (BigInt(1) << nt.recodedWidth)).U
}
}
// generate a NaN box from an FU result
def box(x: UInt, tag: UInt): UInt = {
val opts = floatTypes.map(t => box(x, t))
opts(tag)
}
// zap bits that hardfloat thinks are don't-cares, but we do care about
def sanitizeNaN(x: UInt, t: FType): UInt = {
if (typeTag(t) == 0) {
x
} else {
val maskedNaN = x & ~((BigInt(1) << (t.sig-1)) | (BigInt(1) << (t.sig+t.exp-4))).U(t.recodedWidth.W)
Mux(t.isNaN(x), maskedNaN, x)
}
}
// implement NaN boxing and recoding for FL*/fmv.*.x
def recode(x: UInt, tag: UInt): UInt = {
def helper(x: UInt, t: FType): UInt = {
if (typeTag(t) == 0) {
t.recode(x)
} else {
val prevT = prevType(t)
box(t.recode(x), t, helper(x, prevT), prevT)
}
}
// fill MSBs of subword loads to emulate a wider load of a NaN-boxed value
val boxes = floatTypes.map(t => ((BigInt(1) << maxType.ieeeWidth) - (BigInt(1) << t.ieeeWidth)).U)
helper(boxes(tag) | x, maxType)
}
// implement NaN unboxing and un-recoding for FS*/fmv.x.*
def ieee(x: UInt, t: FType = maxType): UInt = {
if (typeTag(t) == 0) {
t.ieee(x)
} else {
val unrecoded = t.ieee(x)
val prevT = prevType(t)
val prevRecoded = Cat(
x(prevT.recodedWidth-2),
x(t.sig-1),
x(prevT.recodedWidth-3, 0))
val prevUnrecoded = ieee(prevRecoded, prevT)
Cat(unrecoded >> prevT.ieeeWidth, Mux(t.isNaN(x), prevUnrecoded, unrecoded(prevT.ieeeWidth-1, 0)))
}
}
}
abstract class FPUModule(implicit val p: Parameters) extends Module with HasCoreParameters with HasFPUParameters
class FPToInt(implicit p: Parameters) extends FPUModule()(p) with ShouldBeRetimed {
class Output extends Bundle {
val in = new FPInput
val lt = Bool()
val store = Bits(fLen.W)
val toint = Bits(xLen.W)
val exc = Bits(FPConstants.FLAGS_SZ.W)
}
val io = IO(new Bundle {
val in = Flipped(Valid(new FPInput))
val out = Valid(new Output)
})
val in = RegEnable(io.in.bits, io.in.valid)
val valid = RegNext(io.in.valid)
val dcmp = Module(new hardfloat.CompareRecFN(maxExpWidth, maxSigWidth))
dcmp.io.a := in.in1
dcmp.io.b := in.in2
dcmp.io.signaling := !in.rm(1)
val tag = in.typeTagOut
val toint_ieee = (floatTypes.map(t => if (t == FType.H) Fill(maxType.ieeeWidth / minXLen, ieee(in.in1)(15, 0).sextTo(minXLen))
else Fill(maxType.ieeeWidth / t.ieeeWidth, ieee(in.in1)(t.ieeeWidth - 1, 0))): Seq[UInt])(tag)
val toint = WireDefault(toint_ieee)
val intType = WireDefault(in.fmt(0))
io.out.bits.store := (floatTypes.map(t => Fill(fLen / t.ieeeWidth, ieee(in.in1)(t.ieeeWidth - 1, 0))): Seq[UInt])(tag)
io.out.bits.toint := ((0 until nIntTypes).map(i => toint((minXLen << i) - 1, 0).sextTo(xLen)): Seq[UInt])(intType)
io.out.bits.exc := 0.U
when (in.rm(0)) {
val classify_out = (floatTypes.map(t => t.classify(maxType.unsafeConvert(in.in1, t))): Seq[UInt])(tag)
toint := classify_out | (toint_ieee >> minXLen << minXLen)
intType := false.B
}
when (in.wflags) { // feq/flt/fle, fcvt
toint := (~in.rm & Cat(dcmp.io.lt, dcmp.io.eq)).orR | (toint_ieee >> minXLen << minXLen)
io.out.bits.exc := dcmp.io.exceptionFlags
intType := false.B
when (!in.ren2) { // fcvt
val cvtType = in.typ.extract(log2Ceil(nIntTypes), 1)
intType := cvtType
val conv = Module(new hardfloat.RecFNToIN(maxExpWidth, maxSigWidth, xLen))
conv.io.in := in.in1
conv.io.roundingMode := in.rm
conv.io.signedOut := ~in.typ(0)
toint := conv.io.out
io.out.bits.exc := Cat(conv.io.intExceptionFlags(2, 1).orR, 0.U(3.W), conv.io.intExceptionFlags(0))
for (i <- 0 until nIntTypes-1) {
val w = minXLen << i
when (cvtType === i.U) {
val narrow = Module(new hardfloat.RecFNToIN(maxExpWidth, maxSigWidth, w))
narrow.io.in := in.in1
narrow.io.roundingMode := in.rm
narrow.io.signedOut := ~in.typ(0)
val excSign = in.in1(maxExpWidth + maxSigWidth) && !maxType.isNaN(in.in1)
val excOut = Cat(conv.io.signedOut === excSign, Fill(w-1, !excSign))
val invalid = conv.io.intExceptionFlags(2) || narrow.io.intExceptionFlags(1)
when (invalid) { toint := Cat(conv.io.out >> w, excOut) }
io.out.bits.exc := Cat(invalid, 0.U(3.W), !invalid && conv.io.intExceptionFlags(0))
}
}
}
}
io.out.valid := valid
io.out.bits.lt := dcmp.io.lt || (dcmp.io.a.asSInt < 0.S && dcmp.io.b.asSInt >= 0.S)
io.out.bits.in := in
}
class IntToFP(val latency: Int)(implicit p: Parameters) extends FPUModule()(p) with ShouldBeRetimed {
val io = IO(new Bundle {
val in = Flipped(Valid(new IntToFPInput))
val out = Valid(new FPResult)
})
val in = Pipe(io.in)
val tag = in.bits.typeTagIn
val mux = Wire(new FPResult)
mux.exc := 0.U
mux.data := recode(in.bits.in1, tag)
val intValue = {
val res = WireDefault(in.bits.in1.asSInt)
for (i <- 0 until nIntTypes-1) {
val smallInt = in.bits.in1((minXLen << i) - 1, 0)
when (in.bits.typ.extract(log2Ceil(nIntTypes), 1) === i.U) {
res := Mux(in.bits.typ(0), smallInt.zext, smallInt.asSInt)
}
}
res.asUInt
}
when (in.bits.wflags) { // fcvt
// could be improved for RVD/RVQ with a single variable-position rounding
// unit, rather than N fixed-position ones
val i2fResults = for (t <- floatTypes) yield {
val i2f = Module(new hardfloat.INToRecFN(xLen, t.exp, t.sig))
i2f.io.signedIn := ~in.bits.typ(0)
i2f.io.in := intValue
i2f.io.roundingMode := in.bits.rm
i2f.io.detectTininess := hardfloat.consts.tininess_afterRounding
(sanitizeNaN(i2f.io.out, t), i2f.io.exceptionFlags)
}
val (data, exc) = i2fResults.unzip
val dataPadded = data.init.map(d => Cat(data.last >> d.getWidth, d)) :+ data.last
mux.data := dataPadded(tag)
mux.exc := exc(tag)
}
io.out <> Pipe(in.valid, mux, latency-1)
}
class FPToFP(val latency: Int)(implicit p: Parameters) extends FPUModule()(p) with ShouldBeRetimed {
val io = IO(new Bundle {
val in = Flipped(Valid(new FPInput))
val out = Valid(new FPResult)
val lt = Input(Bool()) // from FPToInt
})
val in = Pipe(io.in)
val signNum = Mux(in.bits.rm(1), in.bits.in1 ^ in.bits.in2, Mux(in.bits.rm(0), ~in.bits.in2, in.bits.in2))
val fsgnj = Cat(signNum(fLen), in.bits.in1(fLen-1, 0))
val fsgnjMux = Wire(new FPResult)
fsgnjMux.exc := 0.U
fsgnjMux.data := fsgnj
when (in.bits.wflags) { // fmin/fmax
val isnan1 = maxType.isNaN(in.bits.in1)
val isnan2 = maxType.isNaN(in.bits.in2)
val isInvalid = maxType.isSNaN(in.bits.in1) || maxType.isSNaN(in.bits.in2)
val isNaNOut = isnan1 && isnan2
val isLHS = isnan2 || in.bits.rm(0) =/= io.lt && !isnan1
fsgnjMux.exc := isInvalid << 4
fsgnjMux.data := Mux(isNaNOut, maxType.qNaN, Mux(isLHS, in.bits.in1, in.bits.in2))
}
val inTag = in.bits.typeTagIn
val outTag = in.bits.typeTagOut
val mux = WireDefault(fsgnjMux)
for (t <- floatTypes.init) {
when (outTag === typeTag(t).U) {
mux.data := Cat(fsgnjMux.data >> t.recodedWidth, maxType.unsafeConvert(fsgnjMux.data, t))
}
}
when (in.bits.wflags && !in.bits.ren2) { // fcvt
if (floatTypes.size > 1) {
// widening conversions simply canonicalize NaN operands
val widened = Mux(maxType.isNaN(in.bits.in1), maxType.qNaN, in.bits.in1)
fsgnjMux.data := widened
fsgnjMux.exc := maxType.isSNaN(in.bits.in1) << 4
// narrowing conversions require rounding (for RVQ, this could be
// optimized to use a single variable-position rounding unit, rather
// than two fixed-position ones)
for (outType <- floatTypes.init) when (outTag === typeTag(outType).U && ((typeTag(outType) == 0).B || outTag < inTag)) {
val narrower = Module(new hardfloat.RecFNToRecFN(maxType.exp, maxType.sig, outType.exp, outType.sig))
narrower.io.in := in.bits.in1
narrower.io.roundingMode := in.bits.rm
narrower.io.detectTininess := hardfloat.consts.tininess_afterRounding
val narrowed = sanitizeNaN(narrower.io.out, outType)
mux.data := Cat(fsgnjMux.data >> narrowed.getWidth, narrowed)
mux.exc := narrower.io.exceptionFlags
}
}
}
io.out <> Pipe(in.valid, mux, latency-1)
}
class MulAddRecFNPipe(latency: Int, expWidth: Int, sigWidth: Int) extends Module
{
override def desiredName = s"MulAddRecFNPipe_l${latency}_e${expWidth}_s${sigWidth}"
require(latency<=2)
val io = IO(new Bundle {
val validin = Input(Bool())
val op = Input(Bits(2.W))
val a = Input(Bits((expWidth + sigWidth + 1).W))
val b = Input(Bits((expWidth + sigWidth + 1).W))
val c = Input(Bits((expWidth + sigWidth + 1).W))
val roundingMode = Input(UInt(3.W))
val detectTininess = Input(UInt(1.W))
val out = Output(Bits((expWidth + sigWidth + 1).W))
val exceptionFlags = Output(Bits(5.W))
val validout = Output(Bool())
})
//------------------------------------------------------------------------
//------------------------------------------------------------------------
val mulAddRecFNToRaw_preMul = Module(new hardfloat.MulAddRecFNToRaw_preMul(expWidth, sigWidth))
val mulAddRecFNToRaw_postMul = Module(new hardfloat.MulAddRecFNToRaw_postMul(expWidth, sigWidth))
mulAddRecFNToRaw_preMul.io.op := io.op
mulAddRecFNToRaw_preMul.io.a := io.a
mulAddRecFNToRaw_preMul.io.b := io.b
mulAddRecFNToRaw_preMul.io.c := io.c
val mulAddResult =
(mulAddRecFNToRaw_preMul.io.mulAddA *
mulAddRecFNToRaw_preMul.io.mulAddB) +&
mulAddRecFNToRaw_preMul.io.mulAddC
val valid_stage0 = Wire(Bool())
val roundingMode_stage0 = Wire(UInt(3.W))
val detectTininess_stage0 = Wire(UInt(1.W))
val postmul_regs = if(latency>0) 1 else 0
mulAddRecFNToRaw_postMul.io.fromPreMul := Pipe(io.validin, mulAddRecFNToRaw_preMul.io.toPostMul, postmul_regs).bits
mulAddRecFNToRaw_postMul.io.mulAddResult := Pipe(io.validin, mulAddResult, postmul_regs).bits
mulAddRecFNToRaw_postMul.io.roundingMode := Pipe(io.validin, io.roundingMode, postmul_regs).bits
roundingMode_stage0 := Pipe(io.validin, io.roundingMode, postmul_regs).bits
detectTininess_stage0 := Pipe(io.validin, io.detectTininess, postmul_regs).bits
valid_stage0 := Pipe(io.validin, false.B, postmul_regs).valid
//------------------------------------------------------------------------
//------------------------------------------------------------------------
val roundRawFNToRecFN = Module(new hardfloat.RoundRawFNToRecFN(expWidth, sigWidth, 0))
val round_regs = if(latency==2) 1 else 0
roundRawFNToRecFN.io.invalidExc := Pipe(valid_stage0, mulAddRecFNToRaw_postMul.io.invalidExc, round_regs).bits
roundRawFNToRecFN.io.in := Pipe(valid_stage0, mulAddRecFNToRaw_postMul.io.rawOut, round_regs).bits
roundRawFNToRecFN.io.roundingMode := Pipe(valid_stage0, roundingMode_stage0, round_regs).bits
roundRawFNToRecFN.io.detectTininess := Pipe(valid_stage0, detectTininess_stage0, round_regs).bits
io.validout := Pipe(valid_stage0, false.B, round_regs).valid
roundRawFNToRecFN.io.infiniteExc := false.B
io.out := roundRawFNToRecFN.io.out
io.exceptionFlags := roundRawFNToRecFN.io.exceptionFlags
}
class FPUFMAPipe(val latency: Int, val t: FType)
(implicit p: Parameters) extends FPUModule()(p) with ShouldBeRetimed {
override def desiredName = s"FPUFMAPipe_l${latency}_f${t.ieeeWidth}"
require(latency>0)
val io = IO(new Bundle {
val in = Flipped(Valid(new FPInput))
val out = Valid(new FPResult)
})
val valid = RegNext(io.in.valid)
val in = Reg(new FPInput)
when (io.in.valid) {
val one = 1.U << (t.sig + t.exp - 1)
val zero = (io.in.bits.in1 ^ io.in.bits.in2) & (1.U << (t.sig + t.exp))
val cmd_fma = io.in.bits.ren3
val cmd_addsub = io.in.bits.swap23
in := io.in.bits
when (cmd_addsub) { in.in2 := one }
when (!(cmd_fma || cmd_addsub)) { in.in3 := zero }
}
val fma = Module(new MulAddRecFNPipe((latency-1) min 2, t.exp, t.sig))
fma.io.validin := valid
fma.io.op := in.fmaCmd
fma.io.roundingMode := in.rm
fma.io.detectTininess := hardfloat.consts.tininess_afterRounding
fma.io.a := in.in1
fma.io.b := in.in2
fma.io.c := in.in3
val res = Wire(new FPResult)
res.data := sanitizeNaN(fma.io.out, t)
res.exc := fma.io.exceptionFlags
io.out := Pipe(fma.io.validout, res, (latency-3) max 0)
}
class FPU(cfg: FPUParams)(implicit p: Parameters) extends FPUModule()(p) {
val io = IO(new FPUIO)
val (useClockGating, useDebugROB) = coreParams match {
case r: RocketCoreParams =>
val sz = if (r.debugROB.isDefined) r.debugROB.get.size else 1
(r.clockGate, sz < 1)
case _ => (false, false)
}
val clock_en_reg = Reg(Bool())
val clock_en = clock_en_reg || io.cp_req.valid
val gated_clock =
if (!useClockGating) clock
else ClockGate(clock, clock_en, "fpu_clock_gate")
val fp_decoder = Module(new FPUDecoder)
fp_decoder.io.inst := io.inst
val id_ctrl = WireInit(fp_decoder.io.sigs)
coreParams match { case r: RocketCoreParams => r.vector.map(v => {
val v_decode = v.decoder(p) // Only need to get ren1
v_decode.io.inst := io.inst
v_decode.io.vconfig := DontCare // core deals with this
when (v_decode.io.legal && v_decode.io.read_frs1) {
id_ctrl.ren1 := true.B
id_ctrl.swap12 := false.B
id_ctrl.toint := true.B
id_ctrl.typeTagIn := I
id_ctrl.typeTagOut := Mux(io.v_sew === 3.U, D, S)
}
when (v_decode.io.write_frd) { id_ctrl.wen := true.B }
})}
val ex_reg_valid = RegNext(io.valid, false.B)
val ex_reg_inst = RegEnable(io.inst, io.valid)
val ex_reg_ctrl = RegEnable(id_ctrl, io.valid)
val ex_ra = List.fill(3)(Reg(UInt()))
// load/vector response
val load_wb = RegNext(io.ll_resp_val)
val load_wb_typeTag = RegEnable(io.ll_resp_type(1,0) - typeTagWbOffset, io.ll_resp_val)
val load_wb_data = RegEnable(io.ll_resp_data, io.ll_resp_val)
val load_wb_tag = RegEnable(io.ll_resp_tag, io.ll_resp_val)
class FPUImpl { // entering gated-clock domain
val req_valid = ex_reg_valid || io.cp_req.valid
val ex_cp_valid = io.cp_req.fire
val mem_cp_valid = RegNext(ex_cp_valid, false.B)
val wb_cp_valid = RegNext(mem_cp_valid, false.B)
val mem_reg_valid = RegInit(false.B)
val killm = (io.killm || io.nack_mem) && !mem_cp_valid
// Kill X-stage instruction if M-stage is killed. This prevents it from
// speculatively being sent to the div-sqrt unit, which can cause priority
// inversion for two back-to-back divides, the first of which is killed.
val killx = io.killx || mem_reg_valid && killm
mem_reg_valid := ex_reg_valid && !killx || ex_cp_valid
val mem_reg_inst = RegEnable(ex_reg_inst, ex_reg_valid)
val wb_reg_valid = RegNext(mem_reg_valid && (!killm || mem_cp_valid), false.B)
val cp_ctrl = Wire(new FPUCtrlSigs)
cp_ctrl :<>= io.cp_req.bits.viewAsSupertype(new FPUCtrlSigs)
io.cp_resp.valid := false.B
io.cp_resp.bits.data := 0.U
io.cp_resp.bits.exc := DontCare
val ex_ctrl = Mux(ex_cp_valid, cp_ctrl, ex_reg_ctrl)
val mem_ctrl = RegEnable(ex_ctrl, req_valid)
val wb_ctrl = RegEnable(mem_ctrl, mem_reg_valid)
// CoreMonitorBundle to monitor fp register file writes
val frfWriteBundle = Seq.fill(2)(WireInit(new CoreMonitorBundle(xLen, fLen), DontCare))
frfWriteBundle.foreach { i =>
i.clock := clock
i.reset := reset
i.hartid := io.hartid
i.timer := io.time(31,0)
i.valid := false.B
i.wrenx := false.B
i.wrenf := false.B
i.excpt := false.B
}
// regfile
val regfile = Mem(32, Bits((fLen+1).W))
when (load_wb) {
val wdata = recode(load_wb_data, load_wb_typeTag)
regfile(load_wb_tag) := wdata
assert(consistent(wdata))
if (enableCommitLog)
printf("f%d p%d 0x%x\n", load_wb_tag, load_wb_tag + 32.U, ieee(wdata))
if (useDebugROB)
DebugROB.pushWb(clock, reset, io.hartid, load_wb, load_wb_tag + 32.U, ieee(wdata))
frfWriteBundle(0).wrdst := load_wb_tag
frfWriteBundle(0).wrenf := true.B
frfWriteBundle(0).wrdata := ieee(wdata)
}
val ex_rs = ex_ra.map(a => regfile(a))
when (io.valid) {
when (id_ctrl.ren1) {
when (!id_ctrl.swap12) { ex_ra(0) := io.inst(19,15) }
when (id_ctrl.swap12) { ex_ra(1) := io.inst(19,15) }
}
when (id_ctrl.ren2) {
when (id_ctrl.swap12) { ex_ra(0) := io.inst(24,20) }
when (id_ctrl.swap23) { ex_ra(2) := io.inst(24,20) }
when (!id_ctrl.swap12 && !id_ctrl.swap23) { ex_ra(1) := io.inst(24,20) }
}
when (id_ctrl.ren3) { ex_ra(2) := io.inst(31,27) }
}
val ex_rm = Mux(ex_reg_inst(14,12) === 7.U, io.fcsr_rm, ex_reg_inst(14,12))
def fuInput(minT: Option[FType]): FPInput = {
val req = Wire(new FPInput)
val tag = ex_ctrl.typeTagIn
req.viewAsSupertype(new Bundle with HasFPUCtrlSigs) :#= ex_ctrl.viewAsSupertype(new Bundle with HasFPUCtrlSigs)
req.rm := ex_rm
req.in1 := unbox(ex_rs(0), tag, minT)
req.in2 := unbox(ex_rs(1), tag, minT)
req.in3 := unbox(ex_rs(2), tag, minT)
req.typ := ex_reg_inst(21,20)
req.fmt := ex_reg_inst(26,25)
req.fmaCmd := ex_reg_inst(3,2) | (!ex_ctrl.ren3 && ex_reg_inst(27))
when (ex_cp_valid) {
req := io.cp_req.bits
when (io.cp_req.bits.swap12) {
req.in1 := io.cp_req.bits.in2
req.in2 := io.cp_req.bits.in1
}
when (io.cp_req.bits.swap23) {
req.in2 := io.cp_req.bits.in3
req.in3 := io.cp_req.bits.in2
}
}
req
}
val sfma = Module(new FPUFMAPipe(cfg.sfmaLatency, FType.S))
sfma.io.in.valid := req_valid && ex_ctrl.fma && ex_ctrl.typeTagOut === S
sfma.io.in.bits := fuInput(Some(sfma.t))
val fpiu = Module(new FPToInt)
fpiu.io.in.valid := req_valid && (ex_ctrl.toint || ex_ctrl.div || ex_ctrl.sqrt || (ex_ctrl.fastpipe && ex_ctrl.wflags))
fpiu.io.in.bits := fuInput(None)
io.store_data := fpiu.io.out.bits.store
io.toint_data := fpiu.io.out.bits.toint
when(fpiu.io.out.valid && mem_cp_valid && mem_ctrl.toint){
io.cp_resp.bits.data := fpiu.io.out.bits.toint
io.cp_resp.valid := true.B
}
val ifpu = Module(new IntToFP(cfg.ifpuLatency))
ifpu.io.in.valid := req_valid && ex_ctrl.fromint
ifpu.io.in.bits := fpiu.io.in.bits
ifpu.io.in.bits.in1 := Mux(ex_cp_valid, io.cp_req.bits.in1, io.fromint_data)
val fpmu = Module(new FPToFP(cfg.fpmuLatency))
fpmu.io.in.valid := req_valid && ex_ctrl.fastpipe
fpmu.io.in.bits := fpiu.io.in.bits
fpmu.io.lt := fpiu.io.out.bits.lt
val divSqrt_wen = WireDefault(false.B)
val divSqrt_inFlight = WireDefault(false.B)
val divSqrt_waddr = Reg(UInt(5.W))
val divSqrt_cp = Reg(Bool())
val divSqrt_typeTag = Wire(UInt(log2Up(floatTypes.size).W))
val divSqrt_wdata = Wire(UInt((fLen+1).W))
val divSqrt_flags = Wire(UInt(FPConstants.FLAGS_SZ.W))
divSqrt_typeTag := DontCare
divSqrt_wdata := DontCare
divSqrt_flags := DontCare
// writeback arbitration
case class Pipe(p: Module, lat: Int, cond: (FPUCtrlSigs) => Bool, res: FPResult)
val pipes = List(
Pipe(fpmu, fpmu.latency, (c: FPUCtrlSigs) => c.fastpipe, fpmu.io.out.bits),
Pipe(ifpu, ifpu.latency, (c: FPUCtrlSigs) => c.fromint, ifpu.io.out.bits),
Pipe(sfma, sfma.latency, (c: FPUCtrlSigs) => c.fma && c.typeTagOut === S, sfma.io.out.bits)) ++
(fLen > 32).option({
val dfma = Module(new FPUFMAPipe(cfg.dfmaLatency, FType.D))
dfma.io.in.valid := req_valid && ex_ctrl.fma && ex_ctrl.typeTagOut === D
dfma.io.in.bits := fuInput(Some(dfma.t))
Pipe(dfma, dfma.latency, (c: FPUCtrlSigs) => c.fma && c.typeTagOut === D, dfma.io.out.bits)
}) ++
(minFLen == 16).option({
val hfma = Module(new FPUFMAPipe(cfg.sfmaLatency, FType.H))
hfma.io.in.valid := req_valid && ex_ctrl.fma && ex_ctrl.typeTagOut === H
hfma.io.in.bits := fuInput(Some(hfma.t))
Pipe(hfma, hfma.latency, (c: FPUCtrlSigs) => c.fma && c.typeTagOut === H, hfma.io.out.bits)
})
def latencyMask(c: FPUCtrlSigs, offset: Int) = {
require(pipes.forall(_.lat >= offset))
pipes.map(p => Mux(p.cond(c), (1 << p.lat-offset).U, 0.U)).reduce(_|_)
}
def pipeid(c: FPUCtrlSigs) = pipes.zipWithIndex.map(p => Mux(p._1.cond(c), p._2.U, 0.U)).reduce(_|_)
val maxLatency = pipes.map(_.lat).max
val memLatencyMask = latencyMask(mem_ctrl, 2)
class WBInfo extends Bundle {
val rd = UInt(5.W)
val typeTag = UInt(log2Up(floatTypes.size).W)
val cp = Bool()
val pipeid = UInt(log2Ceil(pipes.size).W)
}
val wen = RegInit(0.U((maxLatency-1).W))
val wbInfo = Reg(Vec(maxLatency-1, new WBInfo))
val mem_wen = mem_reg_valid && (mem_ctrl.fma || mem_ctrl.fastpipe || mem_ctrl.fromint)
val write_port_busy = RegEnable(mem_wen && (memLatencyMask & latencyMask(ex_ctrl, 1)).orR || (wen & latencyMask(ex_ctrl, 0)).orR, req_valid)
ccover(mem_reg_valid && write_port_busy, "WB_STRUCTURAL", "structural hazard on writeback")
for (i <- 0 until maxLatency-2) {
when (wen(i+1)) { wbInfo(i) := wbInfo(i+1) }
}
wen := wen >> 1
when (mem_wen) {
when (!killm) {
wen := wen >> 1 | memLatencyMask
}
for (i <- 0 until maxLatency-1) {
when (!write_port_busy && memLatencyMask(i)) {
wbInfo(i).cp := mem_cp_valid
wbInfo(i).typeTag := mem_ctrl.typeTagOut
wbInfo(i).pipeid := pipeid(mem_ctrl)
wbInfo(i).rd := mem_reg_inst(11,7)
}
}
}
val waddr = Mux(divSqrt_wen, divSqrt_waddr, wbInfo(0).rd)
val wb_cp = Mux(divSqrt_wen, divSqrt_cp, wbInfo(0).cp)
val wtypeTag = Mux(divSqrt_wen, divSqrt_typeTag, wbInfo(0).typeTag)
val wdata = box(Mux(divSqrt_wen, divSqrt_wdata, (pipes.map(_.res.data): Seq[UInt])(wbInfo(0).pipeid)), wtypeTag)
val wexc = (pipes.map(_.res.exc): Seq[UInt])(wbInfo(0).pipeid)
when ((!wbInfo(0).cp && wen(0)) || divSqrt_wen) {
assert(consistent(wdata))
regfile(waddr) := wdata
if (enableCommitLog) {
printf("f%d p%d 0x%x\n", waddr, waddr + 32.U, ieee(wdata))
}
frfWriteBundle(1).wrdst := waddr
frfWriteBundle(1).wrenf := true.B
frfWriteBundle(1).wrdata := ieee(wdata)
}
if (useDebugROB) {
DebugROB.pushWb(clock, reset, io.hartid, (!wbInfo(0).cp && wen(0)) || divSqrt_wen, waddr + 32.U, ieee(wdata))
}
when (wb_cp && (wen(0) || divSqrt_wen)) {
io.cp_resp.bits.data := wdata
io.cp_resp.valid := true.B
}
assert(!io.cp_req.valid || pipes.forall(_.lat == pipes.head.lat).B,
s"FPU only supports coprocessor if FMA pipes have uniform latency ${pipes.map(_.lat)}")
// Avoid structural hazards and nacking of external requests
// toint responds in the MEM stage, so an incoming toint can induce a structural hazard against inflight FMAs
io.cp_req.ready := !ex_reg_valid && !(cp_ctrl.toint && wen =/= 0.U) && !divSqrt_inFlight
val wb_toint_valid = wb_reg_valid && wb_ctrl.toint
val wb_toint_exc = RegEnable(fpiu.io.out.bits.exc, mem_ctrl.toint)
io.fcsr_flags.valid := wb_toint_valid || divSqrt_wen || wen(0)
io.fcsr_flags.bits :=
Mux(wb_toint_valid, wb_toint_exc, 0.U) |
Mux(divSqrt_wen, divSqrt_flags, 0.U) |
Mux(wen(0), wexc, 0.U)
val divSqrt_write_port_busy = (mem_ctrl.div || mem_ctrl.sqrt) && wen.orR
io.fcsr_rdy := !(ex_reg_valid && ex_ctrl.wflags || mem_reg_valid && mem_ctrl.wflags || wb_reg_valid && wb_ctrl.toint || wen.orR || divSqrt_inFlight)
io.nack_mem := (write_port_busy || divSqrt_write_port_busy || divSqrt_inFlight) && !mem_cp_valid
io.dec <> id_ctrl
def useScoreboard(f: ((Pipe, Int)) => Bool) = pipes.zipWithIndex.filter(_._1.lat > 3).map(x => f(x)).fold(false.B)(_||_)
io.sboard_set := wb_reg_valid && !wb_cp_valid && RegNext(useScoreboard(_._1.cond(mem_ctrl)) || mem_ctrl.div || mem_ctrl.sqrt || mem_ctrl.vec)
io.sboard_clr := !wb_cp_valid && (divSqrt_wen || (wen(0) && useScoreboard(x => wbInfo(0).pipeid === x._2.U)))
io.sboard_clra := waddr
ccover(io.sboard_clr && load_wb, "DUAL_WRITEBACK", "load and FMA writeback on same cycle")
// we don't currently support round-max-magnitude (rm=4)
io.illegal_rm := io.inst(14,12).isOneOf(5.U, 6.U) || io.inst(14,12) === 7.U && io.fcsr_rm >= 5.U
if (cfg.divSqrt) {
val divSqrt_inValid = mem_reg_valid && (mem_ctrl.div || mem_ctrl.sqrt) && !divSqrt_inFlight
val divSqrt_killed = RegNext(divSqrt_inValid && killm, true.B)
when (divSqrt_inValid) {
divSqrt_waddr := mem_reg_inst(11,7)
divSqrt_cp := mem_cp_valid
}
ccover(divSqrt_inFlight && divSqrt_killed, "DIV_KILLED", "divide killed after issued to divider")
ccover(divSqrt_inFlight && mem_reg_valid && (mem_ctrl.div || mem_ctrl.sqrt), "DIV_BUSY", "divider structural hazard")
ccover(mem_reg_valid && divSqrt_write_port_busy, "DIV_WB_STRUCTURAL", "structural hazard on division writeback")
for (t <- floatTypes) {
val tag = mem_ctrl.typeTagOut
val divSqrt = withReset(divSqrt_killed) { Module(new hardfloat.DivSqrtRecFN_small(t.exp, t.sig, 0)) }
divSqrt.io.inValid := divSqrt_inValid && tag === typeTag(t).U
divSqrt.io.sqrtOp := mem_ctrl.sqrt
divSqrt.io.a := maxType.unsafeConvert(fpiu.io.out.bits.in.in1, t)
divSqrt.io.b := maxType.unsafeConvert(fpiu.io.out.bits.in.in2, t)
divSqrt.io.roundingMode := fpiu.io.out.bits.in.rm
divSqrt.io.detectTininess := hardfloat.consts.tininess_afterRounding
when (!divSqrt.io.inReady) { divSqrt_inFlight := true.B } // only 1 in flight
when (divSqrt.io.outValid_div || divSqrt.io.outValid_sqrt) {
divSqrt_wen := !divSqrt_killed
divSqrt_wdata := sanitizeNaN(divSqrt.io.out, t)
divSqrt_flags := divSqrt.io.exceptionFlags
divSqrt_typeTag := typeTag(t).U
}
}
when (divSqrt_killed) { divSqrt_inFlight := false.B }
} else {
when (id_ctrl.div || id_ctrl.sqrt) { io.illegal_rm := true.B }
}
// gate the clock
clock_en_reg := !useClockGating.B ||
io.keep_clock_enabled || // chicken bit
io.valid || // ID stage
req_valid || // EX stage
mem_reg_valid || mem_cp_valid || // MEM stage
wb_reg_valid || wb_cp_valid || // WB stage
wen.orR || divSqrt_inFlight || // post-WB stage
io.ll_resp_val // load writeback
} // leaving gated-clock domain
val fpuImpl = withClock (gated_clock) { new FPUImpl }
def ccover(cond: Bool, label: String, desc: String)(implicit sourceInfo: SourceInfo) =
property.cover(cond, s"FPU_$label", "Core;;" + desc)
}
File util.scala:
//******************************************************************************
// Copyright (c) 2015 - 2019, The Regents of the University of California (Regents).
// All Rights Reserved. See LICENSE and LICENSE.SiFive for license details.
//------------------------------------------------------------------------------
//------------------------------------------------------------------------------
//------------------------------------------------------------------------------
// Utility Functions
//------------------------------------------------------------------------------
//------------------------------------------------------------------------------
package boom.v4.util
import chisel3._
import chisel3.util._
import freechips.rocketchip.rocket.Instructions._
import freechips.rocketchip.rocket._
import freechips.rocketchip.util.{Str}
import org.chipsalliance.cde.config.{Parameters}
import freechips.rocketchip.tile.{TileKey}
import boom.v4.common.{MicroOp}
import boom.v4.exu.{BrUpdateInfo}
/**
* Object to XOR fold a input register of fullLength into a compressedLength.
*/
object Fold
{
def apply(input: UInt, compressedLength: Int, fullLength: Int): UInt = {
val clen = compressedLength
val hlen = fullLength
if (hlen <= clen) {
input
} else {
var res = 0.U(clen.W)
var remaining = input.asUInt
for (i <- 0 to hlen-1 by clen) {
val len = if (i + clen > hlen ) (hlen - i) else clen
require(len > 0)
res = res(clen-1,0) ^ remaining(len-1,0)
remaining = remaining >> len.U
}
res
}
}
}
/**
* Object to check if MicroOp was killed due to a branch mispredict.
* Uses "Fast" branch masks
*/
object IsKilledByBranch
{
def apply(brupdate: BrUpdateInfo, flush: Bool, uop: MicroOp): Bool = {
return apply(brupdate, flush, uop.br_mask)
}
def apply(brupdate: BrUpdateInfo, flush: Bool, uop_mask: UInt): Bool = {
return maskMatch(brupdate.b1.mispredict_mask, uop_mask) || flush
}
def apply[T <: boom.v4.common.HasBoomUOP](brupdate: BrUpdateInfo, flush: Bool, bundle: T): Bool = {
return apply(brupdate, flush, bundle.uop)
}
def apply[T <: boom.v4.common.HasBoomUOP](brupdate: BrUpdateInfo, flush: Bool, bundle: Valid[T]): Bool = {
return apply(brupdate, flush, bundle.bits)
}
}
/**
* Object to return new MicroOp with a new BR mask given a MicroOp mask
* and old BR mask.
*/
object GetNewUopAndBrMask
{
def apply(uop: MicroOp, brupdate: BrUpdateInfo)
(implicit p: Parameters): MicroOp = {
val newuop = WireInit(uop)
newuop.br_mask := uop.br_mask & ~brupdate.b1.resolve_mask
newuop
}
}
/**
* Object to return a BR mask given a MicroOp mask and old BR mask.
*/
object GetNewBrMask
{
def apply(brupdate: BrUpdateInfo, uop: MicroOp): UInt = {
return uop.br_mask & ~brupdate.b1.resolve_mask
}
def apply(brupdate: BrUpdateInfo, br_mask: UInt): UInt = {
return br_mask & ~brupdate.b1.resolve_mask
}
}
object UpdateBrMask
{
def apply(brupdate: BrUpdateInfo, uop: MicroOp): MicroOp = {
val out = WireInit(uop)
out.br_mask := GetNewBrMask(brupdate, uop)
out
}
def apply[T <: boom.v4.common.HasBoomUOP](brupdate: BrUpdateInfo, bundle: T): T = {
val out = WireInit(bundle)
out.uop.br_mask := GetNewBrMask(brupdate, bundle.uop.br_mask)
out
}
def apply[T <: boom.v4.common.HasBoomUOP](brupdate: BrUpdateInfo, flush: Bool, bundle: Valid[T]): Valid[T] = {
val out = WireInit(bundle)
out.bits.uop.br_mask := GetNewBrMask(brupdate, bundle.bits.uop.br_mask)
out.valid := bundle.valid && !IsKilledByBranch(brupdate, flush, bundle.bits.uop.br_mask)
out
}
}
/**
* Object to check if at least 1 bit matches in two masks
*/
object maskMatch
{
def apply(msk1: UInt, msk2: UInt): Bool = (msk1 & msk2) =/= 0.U
}
/**
* Object to clear one bit in a mask given an index
*/
object clearMaskBit
{
def apply(msk: UInt, idx: UInt): UInt = (msk & ~(1.U << idx))(msk.getWidth-1, 0)
}
/**
* Object to shift a register over by one bit and concat a new one
*/
object PerformShiftRegister
{
def apply(reg_val: UInt, new_bit: Bool): UInt = {
reg_val := Cat(reg_val(reg_val.getWidth-1, 0).asUInt, new_bit.asUInt).asUInt
reg_val
}
}
/**
* Object to shift a register over by one bit, wrapping the top bit around to the bottom
* (XOR'ed with a new-bit), and evicting a bit at index HLEN.
* This is used to simulate a longer HLEN-width shift register that is folded
* down to a compressed CLEN.
*/
object PerformCircularShiftRegister
{
def apply(csr: UInt, new_bit: Bool, evict_bit: Bool, hlen: Int, clen: Int): UInt = {
val carry = csr(clen-1)
val newval = Cat(csr, new_bit ^ carry) ^ (evict_bit << (hlen % clen).U)
newval
}
}
/**
* Object to increment an input value, wrapping it if
* necessary.
*/
object WrapAdd
{
// "n" is the number of increments, so we wrap at n-1.
def apply(value: UInt, amt: UInt, n: Int): UInt = {
if (isPow2(n)) {
(value + amt)(log2Ceil(n)-1,0)
} else {
val sum = Cat(0.U(1.W), value) + Cat(0.U(1.W), amt)
Mux(sum >= n.U,
sum - n.U,
sum)
}
}
}
/**
* Object to decrement an input value, wrapping it if
* necessary.
*/
object WrapSub
{
// "n" is the number of increments, so we wrap to n-1.
def apply(value: UInt, amt: Int, n: Int): UInt = {
if (isPow2(n)) {
(value - amt.U)(log2Ceil(n)-1,0)
} else {
val v = Cat(0.U(1.W), value)
val b = Cat(0.U(1.W), amt.U)
Mux(value >= amt.U,
value - amt.U,
n.U - amt.U + value)
}
}
}
/**
* Object to increment an input value, wrapping it if
* necessary.
*/
object WrapInc
{
// "n" is the number of increments, so we wrap at n-1.
def apply(value: UInt, n: Int): UInt = {
if (isPow2(n)) {
(value + 1.U)(log2Ceil(n)-1,0)
} else {
val wrap = (value === (n-1).U)
Mux(wrap, 0.U, value + 1.U)
}
}
}
/**
* Object to decrement an input value, wrapping it if
* necessary.
*/
object WrapDec
{
// "n" is the number of increments, so we wrap at n-1.
def apply(value: UInt, n: Int): UInt = {
if (isPow2(n)) {
(value - 1.U)(log2Ceil(n)-1,0)
} else {
val wrap = (value === 0.U)
Mux(wrap, (n-1).U, value - 1.U)
}
}
}
/**
* Object to mask off lower bits of a PC to align to a "b"
* Byte boundary.
*/
object AlignPCToBoundary
{
def apply(pc: UInt, b: Int): UInt = {
// Invert for scenario where pc longer than b
// (which would clear all bits above size(b)).
~(~pc | (b-1).U)
}
}
/**
* Object to rotate a signal left by one
*/
object RotateL1
{
def apply(signal: UInt): UInt = {
val w = signal.getWidth
val out = Cat(signal(w-2,0), signal(w-1))
return out
}
}
/**
* Object to sext a value to a particular length.
*/
object Sext
{
def apply(x: UInt, length: Int): UInt = {
if (x.getWidth == length) return x
else return Cat(Fill(length-x.getWidth, x(x.getWidth-1)), x)
}
}
/**
* Object to translate from BOOM's special "packed immediate" to a 32b signed immediate
* Asking for U-type gives it shifted up 12 bits.
*/
object ImmGen
{
import boom.v4.common.{LONGEST_IMM_SZ, IS_B, IS_I, IS_J, IS_S, IS_U, IS_N}
def apply(i: UInt, isel: UInt): UInt = {
val ip = Mux(isel === IS_N, 0.U(LONGEST_IMM_SZ.W), i)
val sign = ip(LONGEST_IMM_SZ-1).asSInt
val i30_20 = Mux(isel === IS_U, ip(18,8).asSInt, sign)
val i19_12 = Mux(isel === IS_U || isel === IS_J, ip(7,0).asSInt, sign)
val i11 = Mux(isel === IS_U, 0.S,
Mux(isel === IS_J || isel === IS_B, ip(8).asSInt, sign))
val i10_5 = Mux(isel === IS_U, 0.S, ip(18,14).asSInt)
val i4_1 = Mux(isel === IS_U, 0.S, ip(13,9).asSInt)
val i0 = Mux(isel === IS_S || isel === IS_I, ip(8).asSInt, 0.S)
return Cat(sign, i30_20, i19_12, i11, i10_5, i4_1, i0)
}
}
/**
* Object to see if an instruction is a JALR.
*/
object DebugIsJALR
{
def apply(inst: UInt): Bool = {
// TODO Chisel not sure why this won't compile
// val is_jalr = rocket.DecodeLogic(inst, List(Bool(false)),
// Array(
// JALR -> Bool(true)))
inst(6,0) === "b1100111".U
}
}
/**
* Object to take an instruction and output its branch or jal target. Only used
* for a debug assert (no where else would we jump straight from instruction
* bits to a target).
*/
object DebugGetBJImm
{
def apply(inst: UInt): UInt = {
// TODO Chisel not sure why this won't compile
//val csignals =
//rocket.DecodeLogic(inst,
// List(Bool(false), Bool(false)),
// Array(
// BEQ -> List(Bool(true ), Bool(false)),
// BNE -> List(Bool(true ), Bool(false)),
// BGE -> List(Bool(true ), Bool(false)),
// BGEU -> List(Bool(true ), Bool(false)),
// BLT -> List(Bool(true ), Bool(false)),
// BLTU -> List(Bool(true ), Bool(false))
// ))
//val is_br :: nothing :: Nil = csignals
val is_br = (inst(6,0) === "b1100011".U)
val br_targ = Cat(Fill(12, inst(31)), Fill(8,inst(31)), inst(7), inst(30,25), inst(11,8), 0.U(1.W))
val jal_targ= Cat(Fill(12, inst(31)), inst(19,12), inst(20), inst(30,25), inst(24,21), 0.U(1.W))
Mux(is_br, br_targ, jal_targ)
}
}
/**
* Object to return the lowest bit position after the head.
*/
object AgePriorityEncoder
{
def apply(in: Seq[Bool], head: UInt): UInt = {
val n = in.size
val width = log2Ceil(in.size)
val n_padded = 1 << width
val temp_vec = (0 until n_padded).map(i => if (i < n) in(i) && i.U >= head else false.B) ++ in
val idx = PriorityEncoder(temp_vec)
idx(width-1, 0) //discard msb
}
}
/**
* Object to determine whether queue
* index i0 is older than index i1.
*/
object IsOlder
{
def apply(i0: UInt, i1: UInt, head: UInt) = ((i0 < i1) ^ (i0 < head) ^ (i1 < head))
}
object IsYoungerMask
{
def apply(i: UInt, head: UInt, n: Integer): UInt = {
val hi_mask = ~MaskLower(UIntToOH(i)(n-1,0))
val lo_mask = ~MaskUpper(UIntToOH(head)(n-1,0))
Mux(i < head, hi_mask & lo_mask, hi_mask | lo_mask)(n-1,0)
}
}
/**
* Set all bits at or below the highest order '1'.
*/
object MaskLower
{
def apply(in: UInt) = {
val n = in.getWidth
(0 until n).map(i => in >> i.U).reduce(_|_)
}
}
/**
* Set all bits at or above the lowest order '1'.
*/
object MaskUpper
{
def apply(in: UInt) = {
val n = in.getWidth
(0 until n).map(i => (in << i.U)(n-1,0)).reduce(_|_)
}
}
/**
* Transpose a matrix of Chisel Vecs.
*/
object Transpose
{
def apply[T <: chisel3.Data](in: Vec[Vec[T]]) = {
val n = in(0).size
VecInit((0 until n).map(i => VecInit(in.map(row => row(i)))))
}
}
/**
* N-wide one-hot priority encoder.
*/
object SelectFirstN
{
def apply(in: UInt, n: Int) = {
val sels = Wire(Vec(n, UInt(in.getWidth.W)))
var mask = in
for (i <- 0 until n) {
sels(i) := PriorityEncoderOH(mask)
mask = mask & ~sels(i)
}
sels
}
}
/**
* Connect the first k of n valid input interfaces to k output interfaces.
*/
class Compactor[T <: chisel3.Data](n: Int, k: Int, gen: T) extends Module
{
require(n >= k)
val io = IO(new Bundle {
val in = Vec(n, Flipped(DecoupledIO(gen)))
val out = Vec(k, DecoupledIO(gen))
})
if (n == k) {
io.out <> io.in
} else {
val counts = io.in.map(_.valid).scanLeft(1.U(k.W)) ((c,e) => Mux(e, (c<<1)(k-1,0), c))
val sels = Transpose(VecInit(counts map (c => VecInit(c.asBools)))) map (col =>
(col zip io.in.map(_.valid)) map {case (c,v) => c && v})
val in_readys = counts map (row => (row.asBools zip io.out.map(_.ready)) map {case (c,r) => c && r} reduce (_||_))
val out_valids = sels map (col => col.reduce(_||_))
val out_data = sels map (s => Mux1H(s, io.in.map(_.bits)))
in_readys zip io.in foreach {case (r,i) => i.ready := r}
out_valids zip out_data zip io.out foreach {case ((v,d),o) => o.valid := v; o.bits := d}
}
}
/**
* Create a queue that can be killed with a branch kill signal.
* Assumption: enq.valid only high if not killed by branch (so don't check IsKilled on io.enq).
*/
class BranchKillableQueue[T <: boom.v4.common.HasBoomUOP](gen: T, entries: Int, flush_fn: boom.v4.common.MicroOp => Bool = u => true.B, fastDeq: Boolean = false)
(implicit p: org.chipsalliance.cde.config.Parameters)
extends boom.v4.common.BoomModule()(p)
with boom.v4.common.HasBoomCoreParameters
{
val io = IO(new Bundle {
val enq = Flipped(Decoupled(gen))
val deq = Decoupled(gen)
val brupdate = Input(new BrUpdateInfo())
val flush = Input(Bool())
val empty = Output(Bool())
val count = Output(UInt(log2Ceil(entries).W))
})
if (fastDeq && entries > 1) {
// Pipeline dequeue selection so the mux gets an entire cycle
val main = Module(new BranchKillableQueue(gen, entries-1, flush_fn, false))
val out_reg = Reg(gen)
val out_valid = RegInit(false.B)
val out_uop = Reg(new MicroOp)
main.io.enq <> io.enq
main.io.brupdate := io.brupdate
main.io.flush := io.flush
io.empty := main.io.empty && !out_valid
io.count := main.io.count + out_valid
io.deq.valid := out_valid
io.deq.bits := out_reg
io.deq.bits.uop := out_uop
out_uop := UpdateBrMask(io.brupdate, out_uop)
out_valid := out_valid && !IsKilledByBranch(io.brupdate, false.B, out_uop) && !(io.flush && flush_fn(out_uop))
main.io.deq.ready := false.B
when (io.deq.fire || !out_valid) {
out_valid := main.io.deq.valid && !IsKilledByBranch(io.brupdate, false.B, main.io.deq.bits.uop) && !(io.flush && flush_fn(main.io.deq.bits.uop))
out_reg := main.io.deq.bits
out_uop := UpdateBrMask(io.brupdate, main.io.deq.bits.uop)
main.io.deq.ready := true.B
}
} else {
val ram = Mem(entries, gen)
val valids = RegInit(VecInit(Seq.fill(entries) {false.B}))
val uops = Reg(Vec(entries, new MicroOp))
val enq_ptr = Counter(entries)
val deq_ptr = Counter(entries)
val maybe_full = RegInit(false.B)
val ptr_match = enq_ptr.value === deq_ptr.value
io.empty := ptr_match && !maybe_full
val full = ptr_match && maybe_full
val do_enq = WireInit(io.enq.fire && !IsKilledByBranch(io.brupdate, false.B, io.enq.bits.uop) && !(io.flush && flush_fn(io.enq.bits.uop)))
val do_deq = WireInit((io.deq.ready || !valids(deq_ptr.value)) && !io.empty)
for (i <- 0 until entries) {
val mask = uops(i).br_mask
val uop = uops(i)
valids(i) := valids(i) && !IsKilledByBranch(io.brupdate, false.B, mask) && !(io.flush && flush_fn(uop))
when (valids(i)) {
uops(i).br_mask := GetNewBrMask(io.brupdate, mask)
}
}
when (do_enq) {
ram(enq_ptr.value) := io.enq.bits
valids(enq_ptr.value) := true.B
uops(enq_ptr.value) := io.enq.bits.uop
uops(enq_ptr.value).br_mask := GetNewBrMask(io.brupdate, io.enq.bits.uop)
enq_ptr.inc()
}
when (do_deq) {
valids(deq_ptr.value) := false.B
deq_ptr.inc()
}
when (do_enq =/= do_deq) {
maybe_full := do_enq
}
io.enq.ready := !full
val out = Wire(gen)
out := ram(deq_ptr.value)
out.uop := uops(deq_ptr.value)
io.deq.valid := !io.empty && valids(deq_ptr.value)
io.deq.bits := out
val ptr_diff = enq_ptr.value - deq_ptr.value
if (isPow2(entries)) {
io.count := Cat(maybe_full && ptr_match, ptr_diff)
}
else {
io.count := Mux(ptr_match,
Mux(maybe_full,
entries.asUInt, 0.U),
Mux(deq_ptr.value > enq_ptr.value,
entries.asUInt + ptr_diff, ptr_diff))
}
}
}
// ------------------------------------------
// Printf helper functions
// ------------------------------------------
object BoolToChar
{
/**
* Take in a Chisel Bool and convert it into a Str
* based on the Chars given
*
* @param c_bool Chisel Bool
* @param trueChar Scala Char if bool is true
* @param falseChar Scala Char if bool is false
* @return UInt ASCII Char for "trueChar" or "falseChar"
*/
def apply(c_bool: Bool, trueChar: Char, falseChar: Char = '-'): UInt = {
Mux(c_bool, Str(trueChar), Str(falseChar))
}
}
object CfiTypeToChars
{
/**
* Get a Vec of Strs that can be used for printing
*
* @param cfi_type specific cfi type
* @return Vec of Strs (must be indexed to get specific char)
*/
def apply(cfi_type: UInt) = {
val strings = Seq("----", "BR ", "JAL ", "JALR")
val multiVec = VecInit(for(string <- strings) yield { VecInit(for (c <- string) yield { Str(c) }) })
multiVec(cfi_type)
}
}
object BpdTypeToChars
{
/**
* Get a Vec of Strs that can be used for printing
*
* @param bpd_type specific bpd type
* @return Vec of Strs (must be indexed to get specific char)
*/
def apply(bpd_type: UInt) = {
val strings = Seq("BR ", "JUMP", "----", "RET ", "----", "CALL", "----", "----")
val multiVec = VecInit(for(string <- strings) yield { VecInit(for (c <- string) yield { Str(c) }) })
multiVec(bpd_type)
}
}
object RobTypeToChars
{
/**
* Get a Vec of Strs that can be used for printing
*
* @param rob_type specific rob type
* @return Vec of Strs (must be indexed to get specific char)
*/
def apply(rob_type: UInt) = {
val strings = Seq("RST", "NML", "RBK", " WT")
val multiVec = VecInit(for(string <- strings) yield { VecInit(for (c <- string) yield { Str(c) }) })
multiVec(rob_type)
}
}
object XRegToChars
{
/**
* Get a Vec of Strs that can be used for printing
*
* @param xreg specific register number
* @return Vec of Strs (must be indexed to get specific char)
*/
def apply(xreg: UInt) = {
val strings = Seq(" x0", " ra", " sp", " gp",
" tp", " t0", " t1", " t2",
" s0", " s1", " a0", " a1",
" a2", " a3", " a4", " a5",
" a6", " a7", " s2", " s3",
" s4", " s5", " s6", " s7",
" s8", " s9", "s10", "s11",
" t3", " t4", " t5", " t6")
val multiVec = VecInit(for(string <- strings) yield { VecInit(for (c <- string) yield { Str(c) }) })
multiVec(xreg)
}
}
object FPRegToChars
{
/**
* Get a Vec of Strs that can be used for printing
*
* @param fpreg specific register number
* @return Vec of Strs (must be indexed to get specific char)
*/
def apply(fpreg: UInt) = {
val strings = Seq(" ft0", " ft1", " ft2", " ft3",
" ft4", " ft5", " ft6", " ft7",
" fs0", " fs1", " fa0", " fa1",
" fa2", " fa3", " fa4", " fa5",
" fa6", " fa7", " fs2", " fs3",
" fs4", " fs5", " fs6", " fs7",
" fs8", " fs9", "fs10", "fs11",
" ft8", " ft9", "ft10", "ft11")
val multiVec = VecInit(for(string <- strings) yield { VecInit(for (c <- string) yield { Str(c) }) })
multiVec(fpreg)
}
}
object BoomCoreStringPrefix
{
/**
* Add prefix to BOOM strings (currently only adds the hartId)
*
* @param strs list of strings
* @return String combining the list with the prefix per line
*/
def apply(strs: String*)(implicit p: Parameters) = {
val prefix = "[C" + s"${p(TileKey).tileId}" + "] "
strs.map(str => prefix + str + "\n").mkString("")
}
}
class BranchKillablePipeline[T <: boom.v4.common.HasBoomUOP](gen: T, stages: Int)
(implicit p: org.chipsalliance.cde.config.Parameters)
extends boom.v4.common.BoomModule()(p)
with boom.v4.common.HasBoomCoreParameters
{
val io = IO(new Bundle {
val req = Input(Valid(gen))
val flush = Input(Bool())
val brupdate = Input(new BrUpdateInfo)
val resp = Output(Vec(stages, Valid(gen)))
})
require(stages > 0)
val uops = Reg(Vec(stages, Valid(gen)))
uops(0).valid := io.req.valid && !IsKilledByBranch(io.brupdate, io.flush, io.req.bits)
uops(0).bits := UpdateBrMask(io.brupdate, io.req.bits)
for (i <- 1 until stages) {
uops(i).valid := uops(i-1).valid && !IsKilledByBranch(io.brupdate, io.flush, uops(i-1).bits)
uops(i).bits := UpdateBrMask(io.brupdate, uops(i-1).bits)
}
for (i <- 0 until stages) { when (reset.asBool) { uops(i).valid := false.B } }
io.resp := uops
}
File fdiv.scala:
//******************************************************************************
// Copyright (c) 2016 - 2018, The Regents of the University of California (Regents).
// All Rights Reserved. See LICENSE and LICENSE.SiFive for license details.
//------------------------------------------------------------------------------
//------------------------------------------------------------------------------
//------------------------------------------------------------------------------
// FDiv/FSqrt Unit
//------------------------------------------------------------------------------
//------------------------------------------------------------------------------
package boom.v4.exu
import chisel3._
import chisel3.util._
import chisel3.experimental.dataview._
import org.chipsalliance.cde.config.Parameters
import freechips.rocketchip.tile.FPConstants._
import freechips.rocketchip.tile
import boom.v4.common._
import boom.v4.util._
import freechips.rocketchip.tile.HasFPUParameters
import freechips.rocketchip.util.uintToBitPat
/**
* Modern implementation that doesn't rely on upconverting, compared to original FDivSqrtUnit
*/
class FDivSqrtUnit2(implicit p: Parameters)
extends FunctionalUnit(
dataWidth = 65,
needsFcsr = true)
with tile.HasFPUParameters
{
val divSqrt_inFlight = WireInit(false.B)
val r_req = Reg(Valid(new FuncUnitReq(dataWidth=65)))
val r_sigs = Reg(new tile.FPUCtrlSigs)
val r_rm = Reg(UInt())
val r_out_valid = Reg(Bool())
val r_out_flags = Reg(UInt())
val r_out_wdata = Reg(UInt())
val kill = IsKilledByBranch(io.brupdate, io.kill, r_req)
io.req.ready := !r_req.valid
r_req := UpdateBrMask(io.brupdate, io.kill, r_req)
r_out_valid := r_out_valid && !kill
io.req.ready := !r_req.valid && !divSqrt_inFlight && !r_out_valid
val fpiu = Module(new tile.FPToInt)
fpiu.io.in.valid := io.req.valid
fpiu.io.in.bits.viewAsSupertype(new tile.FPUCtrlSigs) := io.req.bits.uop.fp_ctrl
fpiu.io.in.bits.rm := io.req.bits.uop.fp_rm
fpiu.io.in.bits.in1 := unbox(io.req.bits.rs1_data, io.req.bits.uop.fp_ctrl.typeTagIn, None)
fpiu.io.in.bits.in2 := unbox(io.req.bits.rs2_data, io.req.bits.uop.fp_ctrl.typeTagIn, None)
fpiu.io.in.bits.in3 := DontCare
fpiu.io.in.bits.typ := io.req.bits.uop.fp_typ
fpiu.io.in.bits.fmaCmd := 0.U
fpiu.io.in.bits.fmt := DontCare
when (io.req.fire) {
r_req.valid := !IsKilledByBranch(io.brupdate, io.kill, io.req.bits.uop.br_mask)
r_req.bits := UpdateBrMask(io.brupdate, io.req.bits)
r_sigs := io.req.bits.uop.fp_ctrl
r_rm := io.fcsr_rm
}
for (t <- floatTypes) {
val tag = r_sigs.typeTagOut
val divSqrt = Module(new hardfloat.DivSqrtRecFN_small(t.exp, t.sig, 0))
divSqrt.io.inValid := r_req.valid && (tag === typeTag(t).U) && (r_sigs.div || r_sigs.sqrt) && !divSqrt_inFlight && !r_out_valid
divSqrt.io.sqrtOp := r_sigs.sqrt
divSqrt.io.a := maxType.unsafeConvert(fpiu.io.out.bits.in.in1, t)
divSqrt.io.b := maxType.unsafeConvert(fpiu.io.out.bits.in.in2, t)
divSqrt.io.roundingMode := fpiu.io.out.bits.in.rm
divSqrt.io.detectTininess := hardfloat.consts.tininess_afterRounding
when (!divSqrt.io.inReady || divSqrt.io.outValid_div || divSqrt.io.outValid_sqrt) { divSqrt_inFlight := true.B }
when (divSqrt.io.outValid_div || divSqrt.io.outValid_sqrt) {
r_out_valid := r_req.valid && !kill
r_out_flags := divSqrt.io.exceptionFlags
r_out_wdata := box(sanitizeNaN(divSqrt.io.out, t), tag)
}
}
io.resp.valid := r_out_valid && r_req.valid
io.resp.bits.uop := r_req.bits.uop
io.resp.bits.data := r_out_wdata
io.resp.bits.fflags.valid := io.resp.valid
io.resp.bits.fflags.bits := r_out_flags
when (io.resp.fire || reset.asBool) {
r_req.valid := false.B
r_out_valid := false.B
}
}
File functional-unit.scala:
//******************************************************************************
// Copyright (c) 2013 - 2018, The Regents of the University of California (Regents).
// All Rights Reserved. See LICENSE and LICENSE.SiFive for license details.
//------------------------------------------------------------------------------
//------------------------------------------------------------------------------
//------------------------------------------------------------------------------
// Functional Units
//------------------------------------------------------------------------------
//------------------------------------------------------------------------------
//
// If regfile bypassing is disabled, then the functional unit must do its own
// bypassing in here on the WB stage (i.e., bypassing the io.resp.data)
//
// TODO: explore possibility of conditional IO fields? if a branch unit... how to add extra to IO in subclass?
package boom.v4.exu
import chisel3._
import chisel3.util._
import chisel3.experimental.dataview._
import org.chipsalliance.cde.config.Parameters
import freechips.rocketchip.util._
import freechips.rocketchip.tile
import freechips.rocketchip.rocket.{PipelinedMultiplier,BP,BreakpointUnit,Causes,CSR}
import freechips.rocketchip.rocket.ALU._
import boom.v4.common._
import boom.v4.ifu._
import boom.v4.util._
/**
* Bundle for signals sent to the functional unit
*
* @param dataWidth width of the data sent to the functional unit
*/
class FuncUnitReq(val dataWidth: Int)(implicit p: Parameters) extends BoomBundle
with HasBoomUOP
{
val numOperands = 3
val rs1_data = UInt(dataWidth.W)
val rs2_data = UInt(dataWidth.W)
val rs3_data = UInt(dataWidth.W) // only used for FMA units
val ftq_info = Vec(2, new FTQInfo) // Need this-pc and next-pc for JALR
val pred_data = Bool()
val imm_data = UInt(xLen.W) // only used for integer ALU and AGen units
}
class BrInfoBundle(implicit p: Parameters) extends BoomBundle
{
val ldq_idx = UInt(ldqAddrSz.W)
val stq_idx = UInt(stqAddrSz.W)
val rxq_idx = UInt(log2Ceil(numRxqEntries).W)
}
/**
* Branch resolution information given from the branch unit
*/
class BrResolutionInfo(implicit p: Parameters) extends BoomBundle with HasBoomUOP
{
val mispredict = Bool()
val taken = Bool() // which direction did the branch go?
val cfi_type = UInt(CFI_SZ.W)
// Info for recalculating the pc for this branch
val pc_sel = UInt(2.W)
val jalr_target = UInt(vaddrBitsExtended.W)
val target_offset = SInt(21.W)
}
class BrUpdateInfo(implicit p: Parameters) extends BoomBundle
{
// On the first cycle we get masks to kill registers
val b1 = new BrUpdateMasks
// On the second cycle we get indices to reset pointers
val b2 = new BrResolutionInfo
}
class BrUpdateMasks(implicit p: Parameters) extends BoomBundle
{
val resolve_mask = UInt(maxBrCount.W)
val mispredict_mask = UInt(maxBrCount.W)
}
/**
* Abstract top level functional unit class that wraps a lower level hand made functional unit
*
* @param isPipelined is the functional unit pipelined?
* @param numStages how many pipeline stages does the functional unit have
* @param dataWidth width of the data being operated on in the functional unit
* @param hasBranchUnit does this functional unit have a branch unit?
*/
abstract class FunctionalUnit(
val dataWidth: Int,
val isAluUnit: Boolean = false,
val needsFcsr: Boolean = false)
(implicit p: Parameters) extends BoomModule
{
val io = IO(new Bundle {
val kill = Input(Bool())
val req = Flipped(new DecoupledIO(new FuncUnitReq(dataWidth)))
val resp = (new DecoupledIO(new ExeUnitResp(dataWidth)))
//val fflags = new ValidIO(new FFlagsResp)
val brupdate = Input(new BrUpdateInfo())
// only used by the fpu unit
val fcsr_rm = if (needsFcsr) Input(UInt(tile.FPConstants.RM_SZ.W)) else null
// only used by branch unit
val brinfo = if (isAluUnit) Output(Valid(new BrResolutionInfo)) else null
})
io.resp.bits.fflags.valid := false.B
io.resp.bits.fflags.bits := DontCare
io.resp.bits.predicated := false.B
}
/**
* Functional unit that wraps RocketChips ALU
*
* @param isBranchUnit is this a branch unit?
* @param numStages how many pipeline stages does the functional unit have
* @param dataWidth width of the data being operated on in the functional unit
*/
class ALUUnit(dataWidth: Int)(implicit p: Parameters)
extends FunctionalUnit(
isAluUnit = true,
dataWidth = dataWidth)
with boom.v4.ifu.HasBoomFrontendParameters
with freechips.rocketchip.rocket.constants.ScalarOpConstants
{
io.req.ready := true.B
val uop = io.req.bits.uop
// immediate generation
val imm_xprlen = io.req.bits.imm_data //ImmGen(uop.imm_packed, uop.imm_sel)
// operand 1 select
// Get the uop PC for jumps
val block_pc = AlignPCToBoundary(io.req.bits.ftq_info(0).pc, icBlockBytes)
val uop_pc = (block_pc | uop.pc_lob) - Mux(uop.edge_inst, 2.U, 0.U)
val op1_shamt = Mux(uop.fcn_op === FN_ADD, io.req.bits.uop.pimm(2,1), 0.U)
val op1_shl = Mux(uop.fcn_dw === DW_32, // shaddw
io.req.bits.rs1_data(31,0), io.req.bits.rs1_data) << op1_shamt
val op1_data = MuxLookup(uop.op1_sel, 0.U)(Seq(
OP1_RS1 -> io.req.bits.rs1_data,
OP1_PC -> Sext(uop_pc, xLen),
OP1_RS1SHL -> op1_shl
))
// operand 2 select
val op2_oh = UIntToOH(Mux(uop.op2_sel(0), // rs1
io.req.bits.rs2_data, imm_xprlen)(log2Ceil(xLen)-1,0))
val op2_data = MuxLookup(uop.op2_sel, 0.U)(Seq(
OP2_IMM -> Sext(imm_xprlen, xLen),
OP2_IMMC -> io.req.bits.uop.prs1(4,0),
OP2_RS2 -> io.req.bits.rs2_data,
OP2_NEXT -> Mux(uop.is_rvc, 2.U, 4.U),
OP2_RS2OH -> op2_oh,
OP2_IMMOH -> op2_oh
))
val alu = Module(new freechips.rocketchip.rocket.ALU())
alu.io.in1 := op1_data.asUInt
alu.io.in2 := op2_data.asUInt
alu.io.fn := uop.fcn_op
alu.io.dw := Mux(uop.op1_sel === OP1_RS1SHL, DW_64, uop.fcn_dw)
val rs1 = io.req.bits.rs1_data
val rs2 = io.req.bits.rs2_data
val br_eq = (rs1 === rs2)
val br_ltu = (rs1.asUInt < rs2.asUInt)
val br_lt = (~(rs1(xLen-1) ^ rs2(xLen-1)) & br_ltu |
rs1(xLen-1) & ~rs2(xLen-1)).asBool
val pc_sel = MuxLookup(uop.br_type, PC_PLUS4)(
Seq( B_N -> PC_PLUS4,
B_NE -> Mux(!br_eq, PC_BRJMP, PC_PLUS4),
B_EQ -> Mux( br_eq, PC_BRJMP, PC_PLUS4),
B_GE -> Mux(!br_lt, PC_BRJMP, PC_PLUS4),
B_GEU -> Mux(!br_ltu, PC_BRJMP, PC_PLUS4),
B_LT -> Mux( br_lt, PC_BRJMP, PC_PLUS4),
B_LTU -> Mux( br_ltu, PC_BRJMP, PC_PLUS4),
B_J -> PC_BRJMP,
B_JR -> PC_JALR
))
val is_taken = io.req.valid &&
(uop.br_type =/= BR_N) &&
(pc_sel =/= PC_PLUS4)
// Branch/Jump Target Calculation
// For jumps we read the FTQ, and can calculate the target
// For branches we emit the offset for the core to redirect if necessary
val target_offset = imm_xprlen(20,0).asSInt
def encodeVirtualAddress(a0: UInt, ea: UInt) = if (vaddrBitsExtended == vaddrBits) {
ea
} else {
// Efficient means to compress 64-bit VA into vaddrBits+1 bits.
// (VA is bad if VA(vaddrBits) != VA(vaddrBits-1)).
val a = a0.asSInt >> vaddrBits
val msb = Mux(a === 0.S || a === -1.S, ea(vaddrBits), !ea(vaddrBits-1))
Cat(msb, ea(vaddrBits-1,0))
}
// "mispredict" means that a branch has been resolved and it must be killed
val mispredict = WireInit(false.B)
val is_br = io.req.valid && uop.is_br && !uop.is_sfb
val is_jal = io.req.valid && uop.is_jal
val is_jalr = io.req.valid && uop.is_jalr
val jalr_target_base = io.req.bits.rs1_data.asSInt
val jalr_target_xlen = Wire(UInt(xLen.W))
jalr_target_xlen := (jalr_target_base + target_offset).asUInt
val jalr_target = (encodeVirtualAddress(jalr_target_xlen, jalr_target_xlen).asSInt & -2.S).asUInt
val cfi_idx = ((uop.pc_lob ^ Mux(io.req.bits.ftq_info(0).entry.start_bank === 1.U, 1.U << log2Ceil(bankBytes), 0.U)))(log2Ceil(fetchWidth),1)
when (is_br || is_jalr) {
when (pc_sel === PC_PLUS4) {
mispredict := uop.taken
}
when (pc_sel === PC_BRJMP) {
mispredict := !uop.taken
}
when (pc_sel === PC_JALR) {
mispredict := (!io.req.bits.ftq_info(1).valid ||
(io.req.bits.ftq_info(1).pc =/= jalr_target) ||
!io.req.bits.ftq_info(0).entry.cfi_idx.valid ||
(io.req.bits.ftq_info(0).entry.cfi_idx.bits =/= cfi_idx))
}
}
val brinfo = Wire(Valid(new BrResolutionInfo))
// note: jal doesn't allocate a branch-mask, so don't clear a br-mask bit
brinfo.valid := is_br || is_jalr
brinfo.bits.mispredict := mispredict
brinfo.bits.uop := uop
brinfo.bits.cfi_type := Mux(is_jalr, CFI_JALR,
Mux(is_br , CFI_BR, CFI_X))
brinfo.bits.taken := is_taken
brinfo.bits.pc_sel := pc_sel
brinfo.bits.jalr_target := DontCare
brinfo.bits.jalr_target := jalr_target
brinfo.bits.target_offset := target_offset
io.brinfo := brinfo
// Response
// TODO add clock gate on resp bits from functional units
// io.resp.bits.data := RegEnable(alu.io.out, io.req.valid)
// val reg_data = Reg(outType = Bits(width = xLen))
// reg_data := alu.io.out
// io.resp.bits.data := reg_data
val alu_out = Mux(io.req.bits.uop.is_sfb_shadow && io.req.bits.pred_data,
Mux(io.req.bits.uop.ldst_is_rs1, io.req.bits.rs1_data, io.req.bits.rs2_data),
Mux(io.req.bits.uop.is_mov, io.req.bits.rs2_data, alu.io.out))
io.resp.valid := io.req.valid
io.resp.bits.uop := io.req.bits.uop
io.resp.bits.data := Mux(io.req.bits.uop.is_sfb_br, pc_sel === PC_BRJMP, alu_out)
io.resp.bits.predicated := io.req.bits.uop.is_sfb_shadow && io.req.bits.pred_data
assert(io.resp.ready)
}
/**
* Functional unit to wrap lower level FPU
*
* Currently, bypassing is unsupported!
* All FP instructions are padded out to the max latency unit for easy
* write-port scheduling.
*/
class FPUUnit(implicit p: Parameters)
extends FunctionalUnit(
//numBypassStages = 0,
dataWidth = 65,
needsFcsr = true)
{
io.req.ready := true.B
val numStages = p(tile.TileKey).core.fpu.get.dfmaLatency
val pipe = Module(new BranchKillablePipeline(new FuncUnitReq(dataWidth), numStages))
pipe.io.req := io.req
pipe.io.flush := io.kill
pipe.io.brupdate := io.brupdate
val fpu = Module(new FPU())
fpu.io.req.valid := io.req.valid
fpu.io.req.bits.uop := io.req.bits.uop
fpu.io.req.bits.rs1_data := io.req.bits.rs1_data
fpu.io.req.bits.rs2_data := io.req.bits.rs2_data
fpu.io.req.bits.rs3_data := io.req.bits.rs3_data
fpu.io.req.bits.fcsr_rm := io.fcsr_rm
io.resp.valid := pipe.io.resp(numStages-1).valid
io.resp.bits.uop := pipe.io.resp(numStages-1).bits.uop
io.resp.bits.data := fpu.io.resp.bits.data
io.resp.bits.fflags.valid := io.resp.valid
io.resp.bits.fflags.bits := fpu.io.resp.bits.fflags.bits
}
/**
* Int to FP conversion functional unit
*
* @param latency the amount of stages to delay by
*/
class IntToFPUnit(latency: Int)(implicit p: Parameters)
extends FunctionalUnit(
//numBypassStages = 0,
dataWidth = 65,
needsFcsr = true)
with tile.HasFPUParameters
{
val io_req = io.req.bits
io.req.ready := true.B
val pipe = Module(new BranchKillablePipeline(new FuncUnitReq(dataWidth), latency))
pipe.io.req := io.req
pipe.io.flush := io.kill
pipe.io.brupdate := io.brupdate
val fp_ctrl = io_req.uop.fp_ctrl
val fp_rm = Mux(io_req.uop.fp_rm === 7.U, io.fcsr_rm, io_req.uop.fp_rm)
val req = Wire(new tile.FPInput)
val tag = fp_ctrl.typeTagIn
req.viewAsSupertype(new tile.FPUCtrlSigs) <> fp_ctrl
req.rm := fp_rm
req.in1 := unbox(io_req.rs1_data, tag, None)
req.in2 := unbox(io_req.rs2_data, tag, None)
req.in3 := DontCare
req.typ := io_req.uop.fp_typ
req.fmt := DontCare // FIXME: this may not be the right thing to do here
req.fmaCmd := DontCare
assert (!(io.req.valid && fp_ctrl.fromint && req.in1(xLen).asBool),
"[func] IntToFP integer input has 65th high-order bit set!")
assert (!(io.req.valid && !fp_ctrl.fromint),
"[func] Only support fromInt micro-ops.")
val ifpu = Module(new tile.IntToFP(intToFpLatency))
ifpu.io.in.valid := io.req.valid
ifpu.io.in.bits := req
ifpu.io.in.bits.in1 := io_req.rs1_data
val out_double = Pipe(io.req.valid, fp_ctrl.typeTagOut === D, intToFpLatency).bits
io.resp.valid := pipe.io.resp(latency-1).valid
io.resp.bits.uop := pipe.io.resp(latency-1).bits.uop
io.resp.bits.data := box(ifpu.io.out.bits.data, out_double)
io.resp.bits.fflags.valid := io.resp.valid
io.resp.bits.fflags.bits := ifpu.io.out.bits.exc
}
/**
* Divide functional unit.
*
* @param dataWidth data to be passed into the functional unit
*/
class DivUnit(dataWidth: Int)(implicit p: Parameters)
extends FunctionalUnit(dataWidth = dataWidth)
{
// We don't use the iterative multiply functionality here.
// Instead we use the PipelinedMultiplier
val div = Module(new freechips.rocketchip.rocket.MulDiv(mulDivParams, width = dataWidth))
val req = Reg(Valid(new MicroOp()))
when (io.req.fire) {
req.valid := !IsKilledByBranch(io.brupdate, io.kill, io.req.bits)
req.bits := UpdateBrMask(io.brupdate, io.req.bits.uop)
} .otherwise {
req.valid := !IsKilledByBranch(io.brupdate, io.kill, req.bits) && req.valid
req.bits := UpdateBrMask(io.brupdate, req.bits)
}
when (reset.asBool) {
req.valid := false.B
}
// request
div.io.req.valid := io.req.valid && !IsKilledByBranch(io.brupdate, io.kill, io.req.bits)
div.io.req.bits.dw := io.req.bits.uop.fcn_dw
div.io.req.bits.fn := io.req.bits.uop.fcn_op
div.io.req.bits.in1 := io.req.bits.rs1_data
div.io.req.bits.in2 := io.req.bits.rs2_data
div.io.req.bits.tag := DontCare
io.req.ready := div.io.req.ready && !req.valid
// handle pipeline kills and branch misspeculations
div.io.kill := (req.valid && IsKilledByBranch(io.brupdate, io.kill, req.bits))
// response
io.resp.valid := div.io.resp.valid && req.valid
div.io.resp.ready := io.resp.ready
io.resp.valid := div.io.resp.valid && req.valid
io.resp.bits.data := div.io.resp.bits.data
io.resp.bits.uop := req.bits
when (io.resp.fire) {
req.valid := false.B
}
}
/**
* Pipelined multiplier functional unit that wraps around the RocketChip pipelined multiplier
*
* @param numStages number of pipeline stages
* @param dataWidth size of the data being passed into the functional unit
*/
class PipelinedMulUnit(numStages: Int, dataWidth: Int)(implicit p: Parameters)
extends FunctionalUnit(dataWidth = dataWidth)
{
io.req.ready := true.B
val imul = Module(new PipelinedMultiplier(xLen, numStages))
val pipe = Module(new BranchKillablePipeline(new FuncUnitReq(dataWidth), numStages))
// request
imul.io.req.valid := io.req.valid
imul.io.req.bits.fn := io.req.bits.uop.fcn_op
imul.io.req.bits.dw := io.req.bits.uop.fcn_dw
imul.io.req.bits.in1 := io.req.bits.rs1_data
imul.io.req.bits.in2 := io.req.bits.rs2_data
imul.io.req.bits.tag := DontCare
pipe.io.req := io.req
pipe.io.flush := io.kill
pipe.io.brupdate := io.brupdate
// response
io.resp.valid := pipe.io.resp(numStages-1).valid
io.resp.bits.uop := pipe.io.resp(numStages-1).bits.uop
io.resp.bits.data := imul.io.resp.bits.data
io.resp.bits.predicated := false.B
}
| module FDivSqrtUnit2( // @[fdiv.scala:28:7]
input clock, // @[fdiv.scala:28:7]
input reset, // @[fdiv.scala:28:7]
input io_kill, // @[functional-unit.scala:105:14]
output io_req_ready, // @[functional-unit.scala:105:14]
input io_req_valid, // @[functional-unit.scala:105:14]
input [31:0] io_req_bits_uop_inst, // @[functional-unit.scala:105:14]
input [31:0] io_req_bits_uop_debug_inst, // @[functional-unit.scala:105:14]
input io_req_bits_uop_is_rvc, // @[functional-unit.scala:105:14]
input [39:0] io_req_bits_uop_debug_pc, // @[functional-unit.scala:105:14]
input io_req_bits_uop_iq_type_0, // @[functional-unit.scala:105:14]
input io_req_bits_uop_iq_type_1, // @[functional-unit.scala:105:14]
input io_req_bits_uop_iq_type_2, // @[functional-unit.scala:105:14]
input io_req_bits_uop_iq_type_3, // @[functional-unit.scala:105:14]
input io_req_bits_uop_fu_code_0, // @[functional-unit.scala:105:14]
input io_req_bits_uop_fu_code_1, // @[functional-unit.scala:105:14]
input io_req_bits_uop_fu_code_2, // @[functional-unit.scala:105:14]
input io_req_bits_uop_fu_code_3, // @[functional-unit.scala:105:14]
input io_req_bits_uop_fu_code_4, // @[functional-unit.scala:105:14]
input io_req_bits_uop_fu_code_5, // @[functional-unit.scala:105:14]
input io_req_bits_uop_fu_code_6, // @[functional-unit.scala:105:14]
input io_req_bits_uop_fu_code_7, // @[functional-unit.scala:105:14]
input io_req_bits_uop_fu_code_8, // @[functional-unit.scala:105:14]
input io_req_bits_uop_fu_code_9, // @[functional-unit.scala:105:14]
input io_req_bits_uop_iw_issued, // @[functional-unit.scala:105:14]
input io_req_bits_uop_iw_issued_partial_agen, // @[functional-unit.scala:105:14]
input io_req_bits_uop_iw_issued_partial_dgen, // @[functional-unit.scala:105:14]
input [2:0] io_req_bits_uop_iw_p1_speculative_child, // @[functional-unit.scala:105:14]
input [2:0] io_req_bits_uop_iw_p2_speculative_child, // @[functional-unit.scala:105:14]
input io_req_bits_uop_iw_p1_bypass_hint, // @[functional-unit.scala:105:14]
input io_req_bits_uop_iw_p2_bypass_hint, // @[functional-unit.scala:105:14]
input io_req_bits_uop_iw_p3_bypass_hint, // @[functional-unit.scala:105:14]
input [2:0] io_req_bits_uop_dis_col_sel, // @[functional-unit.scala:105:14]
input [15:0] io_req_bits_uop_br_mask, // @[functional-unit.scala:105:14]
input [3:0] io_req_bits_uop_br_tag, // @[functional-unit.scala:105:14]
input [3:0] io_req_bits_uop_br_type, // @[functional-unit.scala:105:14]
input io_req_bits_uop_is_sfb, // @[functional-unit.scala:105:14]
input io_req_bits_uop_is_fence, // @[functional-unit.scala:105:14]
input io_req_bits_uop_is_fencei, // @[functional-unit.scala:105:14]
input io_req_bits_uop_is_sfence, // @[functional-unit.scala:105:14]
input io_req_bits_uop_is_amo, // @[functional-unit.scala:105:14]
input io_req_bits_uop_is_eret, // @[functional-unit.scala:105:14]
input io_req_bits_uop_is_sys_pc2epc, // @[functional-unit.scala:105:14]
input io_req_bits_uop_is_rocc, // @[functional-unit.scala:105:14]
input io_req_bits_uop_is_mov, // @[functional-unit.scala:105:14]
input [4:0] io_req_bits_uop_ftq_idx, // @[functional-unit.scala:105:14]
input io_req_bits_uop_edge_inst, // @[functional-unit.scala:105:14]
input [5:0] io_req_bits_uop_pc_lob, // @[functional-unit.scala:105:14]
input io_req_bits_uop_taken, // @[functional-unit.scala:105:14]
input io_req_bits_uop_imm_rename, // @[functional-unit.scala:105:14]
input [2:0] io_req_bits_uop_imm_sel, // @[functional-unit.scala:105:14]
input [4:0] io_req_bits_uop_pimm, // @[functional-unit.scala:105:14]
input [19:0] io_req_bits_uop_imm_packed, // @[functional-unit.scala:105:14]
input [1:0] io_req_bits_uop_op1_sel, // @[functional-unit.scala:105:14]
input [2:0] io_req_bits_uop_op2_sel, // @[functional-unit.scala:105:14]
input io_req_bits_uop_fp_ctrl_ldst, // @[functional-unit.scala:105:14]
input io_req_bits_uop_fp_ctrl_wen, // @[functional-unit.scala:105:14]
input io_req_bits_uop_fp_ctrl_ren1, // @[functional-unit.scala:105:14]
input io_req_bits_uop_fp_ctrl_ren2, // @[functional-unit.scala:105:14]
input io_req_bits_uop_fp_ctrl_ren3, // @[functional-unit.scala:105:14]
input io_req_bits_uop_fp_ctrl_swap12, // @[functional-unit.scala:105:14]
input io_req_bits_uop_fp_ctrl_swap23, // @[functional-unit.scala:105:14]
input [1:0] io_req_bits_uop_fp_ctrl_typeTagIn, // @[functional-unit.scala:105:14]
input [1:0] io_req_bits_uop_fp_ctrl_typeTagOut, // @[functional-unit.scala:105:14]
input io_req_bits_uop_fp_ctrl_fromint, // @[functional-unit.scala:105:14]
input io_req_bits_uop_fp_ctrl_toint, // @[functional-unit.scala:105:14]
input io_req_bits_uop_fp_ctrl_fastpipe, // @[functional-unit.scala:105:14]
input io_req_bits_uop_fp_ctrl_fma, // @[functional-unit.scala:105:14]
input io_req_bits_uop_fp_ctrl_div, // @[functional-unit.scala:105:14]
input io_req_bits_uop_fp_ctrl_sqrt, // @[functional-unit.scala:105:14]
input io_req_bits_uop_fp_ctrl_wflags, // @[functional-unit.scala:105:14]
input io_req_bits_uop_fp_ctrl_vec, // @[functional-unit.scala:105:14]
input [6:0] io_req_bits_uop_rob_idx, // @[functional-unit.scala:105:14]
input [4:0] io_req_bits_uop_ldq_idx, // @[functional-unit.scala:105:14]
input [4:0] io_req_bits_uop_stq_idx, // @[functional-unit.scala:105:14]
input [1:0] io_req_bits_uop_rxq_idx, // @[functional-unit.scala:105:14]
input [6:0] io_req_bits_uop_pdst, // @[functional-unit.scala:105:14]
input [6:0] io_req_bits_uop_prs1, // @[functional-unit.scala:105:14]
input [6:0] io_req_bits_uop_prs2, // @[functional-unit.scala:105:14]
input [6:0] io_req_bits_uop_prs3, // @[functional-unit.scala:105:14]
input [4:0] io_req_bits_uop_ppred, // @[functional-unit.scala:105:14]
input io_req_bits_uop_prs1_busy, // @[functional-unit.scala:105:14]
input io_req_bits_uop_prs2_busy, // @[functional-unit.scala:105:14]
input io_req_bits_uop_prs3_busy, // @[functional-unit.scala:105:14]
input io_req_bits_uop_ppred_busy, // @[functional-unit.scala:105:14]
input [6:0] io_req_bits_uop_stale_pdst, // @[functional-unit.scala:105:14]
input io_req_bits_uop_exception, // @[functional-unit.scala:105:14]
input [63:0] io_req_bits_uop_exc_cause, // @[functional-unit.scala:105:14]
input [4:0] io_req_bits_uop_mem_cmd, // @[functional-unit.scala:105:14]
input [1:0] io_req_bits_uop_mem_size, // @[functional-unit.scala:105:14]
input io_req_bits_uop_mem_signed, // @[functional-unit.scala:105:14]
input io_req_bits_uop_uses_ldq, // @[functional-unit.scala:105:14]
input io_req_bits_uop_uses_stq, // @[functional-unit.scala:105:14]
input io_req_bits_uop_is_unique, // @[functional-unit.scala:105:14]
input io_req_bits_uop_flush_on_commit, // @[functional-unit.scala:105:14]
input [2:0] io_req_bits_uop_csr_cmd, // @[functional-unit.scala:105:14]
input io_req_bits_uop_ldst_is_rs1, // @[functional-unit.scala:105:14]
input [5:0] io_req_bits_uop_ldst, // @[functional-unit.scala:105:14]
input [5:0] io_req_bits_uop_lrs1, // @[functional-unit.scala:105:14]
input [5:0] io_req_bits_uop_lrs2, // @[functional-unit.scala:105:14]
input [5:0] io_req_bits_uop_lrs3, // @[functional-unit.scala:105:14]
input [1:0] io_req_bits_uop_dst_rtype, // @[functional-unit.scala:105:14]
input [1:0] io_req_bits_uop_lrs1_rtype, // @[functional-unit.scala:105:14]
input [1:0] io_req_bits_uop_lrs2_rtype, // @[functional-unit.scala:105:14]
input io_req_bits_uop_frs3_en, // @[functional-unit.scala:105:14]
input io_req_bits_uop_fcn_dw, // @[functional-unit.scala:105:14]
input [4:0] io_req_bits_uop_fcn_op, // @[functional-unit.scala:105:14]
input io_req_bits_uop_fp_val, // @[functional-unit.scala:105:14]
input [2:0] io_req_bits_uop_fp_rm, // @[functional-unit.scala:105:14]
input [1:0] io_req_bits_uop_fp_typ, // @[functional-unit.scala:105:14]
input io_req_bits_uop_xcpt_pf_if, // @[functional-unit.scala:105:14]
input io_req_bits_uop_xcpt_ae_if, // @[functional-unit.scala:105:14]
input io_req_bits_uop_xcpt_ma_if, // @[functional-unit.scala:105:14]
input io_req_bits_uop_bp_debug_if, // @[functional-unit.scala:105:14]
input io_req_bits_uop_bp_xcpt_if, // @[functional-unit.scala:105:14]
input [2:0] io_req_bits_uop_debug_fsrc, // @[functional-unit.scala:105:14]
input [2:0] io_req_bits_uop_debug_tsrc, // @[functional-unit.scala:105:14]
input [64:0] io_req_bits_rs1_data, // @[functional-unit.scala:105:14]
input [64:0] io_req_bits_rs2_data, // @[functional-unit.scala:105:14]
input [64:0] io_req_bits_rs3_data, // @[functional-unit.scala:105:14]
input io_resp_ready, // @[functional-unit.scala:105:14]
output io_resp_valid, // @[functional-unit.scala:105:14]
output [31:0] io_resp_bits_uop_inst, // @[functional-unit.scala:105:14]
output [31:0] io_resp_bits_uop_debug_inst, // @[functional-unit.scala:105:14]
output io_resp_bits_uop_is_rvc, // @[functional-unit.scala:105:14]
output [39:0] io_resp_bits_uop_debug_pc, // @[functional-unit.scala:105:14]
output io_resp_bits_uop_iq_type_0, // @[functional-unit.scala:105:14]
output io_resp_bits_uop_iq_type_1, // @[functional-unit.scala:105:14]
output io_resp_bits_uop_iq_type_2, // @[functional-unit.scala:105:14]
output io_resp_bits_uop_iq_type_3, // @[functional-unit.scala:105:14]
output io_resp_bits_uop_fu_code_0, // @[functional-unit.scala:105:14]
output io_resp_bits_uop_fu_code_1, // @[functional-unit.scala:105:14]
output io_resp_bits_uop_fu_code_2, // @[functional-unit.scala:105:14]
output io_resp_bits_uop_fu_code_3, // @[functional-unit.scala:105:14]
output io_resp_bits_uop_fu_code_4, // @[functional-unit.scala:105:14]
output io_resp_bits_uop_fu_code_5, // @[functional-unit.scala:105:14]
output io_resp_bits_uop_fu_code_6, // @[functional-unit.scala:105:14]
output io_resp_bits_uop_fu_code_7, // @[functional-unit.scala:105:14]
output io_resp_bits_uop_fu_code_8, // @[functional-unit.scala:105:14]
output io_resp_bits_uop_fu_code_9, // @[functional-unit.scala:105:14]
output io_resp_bits_uop_iw_issued, // @[functional-unit.scala:105:14]
output io_resp_bits_uop_iw_issued_partial_agen, // @[functional-unit.scala:105:14]
output io_resp_bits_uop_iw_issued_partial_dgen, // @[functional-unit.scala:105:14]
output [2:0] io_resp_bits_uop_iw_p1_speculative_child, // @[functional-unit.scala:105:14]
output [2:0] io_resp_bits_uop_iw_p2_speculative_child, // @[functional-unit.scala:105:14]
output io_resp_bits_uop_iw_p1_bypass_hint, // @[functional-unit.scala:105:14]
output io_resp_bits_uop_iw_p2_bypass_hint, // @[functional-unit.scala:105:14]
output io_resp_bits_uop_iw_p3_bypass_hint, // @[functional-unit.scala:105:14]
output [2:0] io_resp_bits_uop_dis_col_sel, // @[functional-unit.scala:105:14]
output [15:0] io_resp_bits_uop_br_mask, // @[functional-unit.scala:105:14]
output [3:0] io_resp_bits_uop_br_tag, // @[functional-unit.scala:105:14]
output [3:0] io_resp_bits_uop_br_type, // @[functional-unit.scala:105:14]
output io_resp_bits_uop_is_sfb, // @[functional-unit.scala:105:14]
output io_resp_bits_uop_is_fence, // @[functional-unit.scala:105:14]
output io_resp_bits_uop_is_fencei, // @[functional-unit.scala:105:14]
output io_resp_bits_uop_is_sfence, // @[functional-unit.scala:105:14]
output io_resp_bits_uop_is_amo, // @[functional-unit.scala:105:14]
output io_resp_bits_uop_is_eret, // @[functional-unit.scala:105:14]
output io_resp_bits_uop_is_sys_pc2epc, // @[functional-unit.scala:105:14]
output io_resp_bits_uop_is_rocc, // @[functional-unit.scala:105:14]
output io_resp_bits_uop_is_mov, // @[functional-unit.scala:105:14]
output [4:0] io_resp_bits_uop_ftq_idx, // @[functional-unit.scala:105:14]
output io_resp_bits_uop_edge_inst, // @[functional-unit.scala:105:14]
output [5:0] io_resp_bits_uop_pc_lob, // @[functional-unit.scala:105:14]
output io_resp_bits_uop_taken, // @[functional-unit.scala:105:14]
output io_resp_bits_uop_imm_rename, // @[functional-unit.scala:105:14]
output [2:0] io_resp_bits_uop_imm_sel, // @[functional-unit.scala:105:14]
output [4:0] io_resp_bits_uop_pimm, // @[functional-unit.scala:105:14]
output [19:0] io_resp_bits_uop_imm_packed, // @[functional-unit.scala:105:14]
output [1:0] io_resp_bits_uop_op1_sel, // @[functional-unit.scala:105:14]
output [2:0] io_resp_bits_uop_op2_sel, // @[functional-unit.scala:105:14]
output io_resp_bits_uop_fp_ctrl_ldst, // @[functional-unit.scala:105:14]
output io_resp_bits_uop_fp_ctrl_wen, // @[functional-unit.scala:105:14]
output io_resp_bits_uop_fp_ctrl_ren1, // @[functional-unit.scala:105:14]
output io_resp_bits_uop_fp_ctrl_ren2, // @[functional-unit.scala:105:14]
output io_resp_bits_uop_fp_ctrl_ren3, // @[functional-unit.scala:105:14]
output io_resp_bits_uop_fp_ctrl_swap12, // @[functional-unit.scala:105:14]
output io_resp_bits_uop_fp_ctrl_swap23, // @[functional-unit.scala:105:14]
output [1:0] io_resp_bits_uop_fp_ctrl_typeTagIn, // @[functional-unit.scala:105:14]
output [1:0] io_resp_bits_uop_fp_ctrl_typeTagOut, // @[functional-unit.scala:105:14]
output io_resp_bits_uop_fp_ctrl_fromint, // @[functional-unit.scala:105:14]
output io_resp_bits_uop_fp_ctrl_toint, // @[functional-unit.scala:105:14]
output io_resp_bits_uop_fp_ctrl_fastpipe, // @[functional-unit.scala:105:14]
output io_resp_bits_uop_fp_ctrl_fma, // @[functional-unit.scala:105:14]
output io_resp_bits_uop_fp_ctrl_div, // @[functional-unit.scala:105:14]
output io_resp_bits_uop_fp_ctrl_sqrt, // @[functional-unit.scala:105:14]
output io_resp_bits_uop_fp_ctrl_wflags, // @[functional-unit.scala:105:14]
output io_resp_bits_uop_fp_ctrl_vec, // @[functional-unit.scala:105:14]
output [6:0] io_resp_bits_uop_rob_idx, // @[functional-unit.scala:105:14]
output [4:0] io_resp_bits_uop_ldq_idx, // @[functional-unit.scala:105:14]
output [4:0] io_resp_bits_uop_stq_idx, // @[functional-unit.scala:105:14]
output [1:0] io_resp_bits_uop_rxq_idx, // @[functional-unit.scala:105:14]
output [6:0] io_resp_bits_uop_pdst, // @[functional-unit.scala:105:14]
output [6:0] io_resp_bits_uop_prs1, // @[functional-unit.scala:105:14]
output [6:0] io_resp_bits_uop_prs2, // @[functional-unit.scala:105:14]
output [6:0] io_resp_bits_uop_prs3, // @[functional-unit.scala:105:14]
output [4:0] io_resp_bits_uop_ppred, // @[functional-unit.scala:105:14]
output io_resp_bits_uop_prs1_busy, // @[functional-unit.scala:105:14]
output io_resp_bits_uop_prs2_busy, // @[functional-unit.scala:105:14]
output io_resp_bits_uop_prs3_busy, // @[functional-unit.scala:105:14]
output io_resp_bits_uop_ppred_busy, // @[functional-unit.scala:105:14]
output [6:0] io_resp_bits_uop_stale_pdst, // @[functional-unit.scala:105:14]
output io_resp_bits_uop_exception, // @[functional-unit.scala:105:14]
output [63:0] io_resp_bits_uop_exc_cause, // @[functional-unit.scala:105:14]
output [4:0] io_resp_bits_uop_mem_cmd, // @[functional-unit.scala:105:14]
output [1:0] io_resp_bits_uop_mem_size, // @[functional-unit.scala:105:14]
output io_resp_bits_uop_mem_signed, // @[functional-unit.scala:105:14]
output io_resp_bits_uop_uses_ldq, // @[functional-unit.scala:105:14]
output io_resp_bits_uop_uses_stq, // @[functional-unit.scala:105:14]
output io_resp_bits_uop_is_unique, // @[functional-unit.scala:105:14]
output io_resp_bits_uop_flush_on_commit, // @[functional-unit.scala:105:14]
output [2:0] io_resp_bits_uop_csr_cmd, // @[functional-unit.scala:105:14]
output io_resp_bits_uop_ldst_is_rs1, // @[functional-unit.scala:105:14]
output [5:0] io_resp_bits_uop_ldst, // @[functional-unit.scala:105:14]
output [5:0] io_resp_bits_uop_lrs1, // @[functional-unit.scala:105:14]
output [5:0] io_resp_bits_uop_lrs2, // @[functional-unit.scala:105:14]
output [5:0] io_resp_bits_uop_lrs3, // @[functional-unit.scala:105:14]
output [1:0] io_resp_bits_uop_dst_rtype, // @[functional-unit.scala:105:14]
output [1:0] io_resp_bits_uop_lrs1_rtype, // @[functional-unit.scala:105:14]
output [1:0] io_resp_bits_uop_lrs2_rtype, // @[functional-unit.scala:105:14]
output io_resp_bits_uop_frs3_en, // @[functional-unit.scala:105:14]
output io_resp_bits_uop_fcn_dw, // @[functional-unit.scala:105:14]
output [4:0] io_resp_bits_uop_fcn_op, // @[functional-unit.scala:105:14]
output io_resp_bits_uop_fp_val, // @[functional-unit.scala:105:14]
output [2:0] io_resp_bits_uop_fp_rm, // @[functional-unit.scala:105:14]
output [1:0] io_resp_bits_uop_fp_typ, // @[functional-unit.scala:105:14]
output io_resp_bits_uop_xcpt_pf_if, // @[functional-unit.scala:105:14]
output io_resp_bits_uop_xcpt_ae_if, // @[functional-unit.scala:105:14]
output io_resp_bits_uop_xcpt_ma_if, // @[functional-unit.scala:105:14]
output io_resp_bits_uop_bp_debug_if, // @[functional-unit.scala:105:14]
output io_resp_bits_uop_bp_xcpt_if, // @[functional-unit.scala:105:14]
output [2:0] io_resp_bits_uop_debug_fsrc, // @[functional-unit.scala:105:14]
output [2:0] io_resp_bits_uop_debug_tsrc, // @[functional-unit.scala:105:14]
output [64:0] io_resp_bits_data, // @[functional-unit.scala:105:14]
output io_resp_bits_fflags_valid, // @[functional-unit.scala:105:14]
output [4:0] io_resp_bits_fflags_bits, // @[functional-unit.scala:105:14]
input [15:0] io_brupdate_b1_resolve_mask, // @[functional-unit.scala:105:14]
input [15:0] io_brupdate_b1_mispredict_mask, // @[functional-unit.scala:105:14]
input [31:0] io_brupdate_b2_uop_inst, // @[functional-unit.scala:105:14]
input [31:0] io_brupdate_b2_uop_debug_inst, // @[functional-unit.scala:105:14]
input io_brupdate_b2_uop_is_rvc, // @[functional-unit.scala:105:14]
input [39:0] io_brupdate_b2_uop_debug_pc, // @[functional-unit.scala:105:14]
input io_brupdate_b2_uop_iq_type_0, // @[functional-unit.scala:105:14]
input io_brupdate_b2_uop_iq_type_1, // @[functional-unit.scala:105:14]
input io_brupdate_b2_uop_iq_type_2, // @[functional-unit.scala:105:14]
input io_brupdate_b2_uop_iq_type_3, // @[functional-unit.scala:105:14]
input io_brupdate_b2_uop_fu_code_0, // @[functional-unit.scala:105:14]
input io_brupdate_b2_uop_fu_code_1, // @[functional-unit.scala:105:14]
input io_brupdate_b2_uop_fu_code_2, // @[functional-unit.scala:105:14]
input io_brupdate_b2_uop_fu_code_3, // @[functional-unit.scala:105:14]
input io_brupdate_b2_uop_fu_code_4, // @[functional-unit.scala:105:14]
input io_brupdate_b2_uop_fu_code_5, // @[functional-unit.scala:105:14]
input io_brupdate_b2_uop_fu_code_6, // @[functional-unit.scala:105:14]
input io_brupdate_b2_uop_fu_code_7, // @[functional-unit.scala:105:14]
input io_brupdate_b2_uop_fu_code_8, // @[functional-unit.scala:105:14]
input io_brupdate_b2_uop_fu_code_9, // @[functional-unit.scala:105:14]
input io_brupdate_b2_uop_iw_issued, // @[functional-unit.scala:105:14]
input io_brupdate_b2_uop_iw_issued_partial_agen, // @[functional-unit.scala:105:14]
input io_brupdate_b2_uop_iw_issued_partial_dgen, // @[functional-unit.scala:105:14]
input [2:0] io_brupdate_b2_uop_iw_p1_speculative_child, // @[functional-unit.scala:105:14]
input [2:0] io_brupdate_b2_uop_iw_p2_speculative_child, // @[functional-unit.scala:105:14]
input io_brupdate_b2_uop_iw_p1_bypass_hint, // @[functional-unit.scala:105:14]
input io_brupdate_b2_uop_iw_p2_bypass_hint, // @[functional-unit.scala:105:14]
input io_brupdate_b2_uop_iw_p3_bypass_hint, // @[functional-unit.scala:105:14]
input [2:0] io_brupdate_b2_uop_dis_col_sel, // @[functional-unit.scala:105:14]
input [15:0] io_brupdate_b2_uop_br_mask, // @[functional-unit.scala:105:14]
input [3:0] io_brupdate_b2_uop_br_tag, // @[functional-unit.scala:105:14]
input [3:0] io_brupdate_b2_uop_br_type, // @[functional-unit.scala:105:14]
input io_brupdate_b2_uop_is_sfb, // @[functional-unit.scala:105:14]
input io_brupdate_b2_uop_is_fence, // @[functional-unit.scala:105:14]
input io_brupdate_b2_uop_is_fencei, // @[functional-unit.scala:105:14]
input io_brupdate_b2_uop_is_sfence, // @[functional-unit.scala:105:14]
input io_brupdate_b2_uop_is_amo, // @[functional-unit.scala:105:14]
input io_brupdate_b2_uop_is_eret, // @[functional-unit.scala:105:14]
input io_brupdate_b2_uop_is_sys_pc2epc, // @[functional-unit.scala:105:14]
input io_brupdate_b2_uop_is_rocc, // @[functional-unit.scala:105:14]
input io_brupdate_b2_uop_is_mov, // @[functional-unit.scala:105:14]
input [4:0] io_brupdate_b2_uop_ftq_idx, // @[functional-unit.scala:105:14]
input io_brupdate_b2_uop_edge_inst, // @[functional-unit.scala:105:14]
input [5:0] io_brupdate_b2_uop_pc_lob, // @[functional-unit.scala:105:14]
input io_brupdate_b2_uop_taken, // @[functional-unit.scala:105:14]
input io_brupdate_b2_uop_imm_rename, // @[functional-unit.scala:105:14]
input [2:0] io_brupdate_b2_uop_imm_sel, // @[functional-unit.scala:105:14]
input [4:0] io_brupdate_b2_uop_pimm, // @[functional-unit.scala:105:14]
input [19:0] io_brupdate_b2_uop_imm_packed, // @[functional-unit.scala:105:14]
input [1:0] io_brupdate_b2_uop_op1_sel, // @[functional-unit.scala:105:14]
input [2:0] io_brupdate_b2_uop_op2_sel, // @[functional-unit.scala:105:14]
input io_brupdate_b2_uop_fp_ctrl_ldst, // @[functional-unit.scala:105:14]
input io_brupdate_b2_uop_fp_ctrl_wen, // @[functional-unit.scala:105:14]
input io_brupdate_b2_uop_fp_ctrl_ren1, // @[functional-unit.scala:105:14]
input io_brupdate_b2_uop_fp_ctrl_ren2, // @[functional-unit.scala:105:14]
input io_brupdate_b2_uop_fp_ctrl_ren3, // @[functional-unit.scala:105:14]
input io_brupdate_b2_uop_fp_ctrl_swap12, // @[functional-unit.scala:105:14]
input io_brupdate_b2_uop_fp_ctrl_swap23, // @[functional-unit.scala:105:14]
input [1:0] io_brupdate_b2_uop_fp_ctrl_typeTagIn, // @[functional-unit.scala:105:14]
input [1:0] io_brupdate_b2_uop_fp_ctrl_typeTagOut, // @[functional-unit.scala:105:14]
input io_brupdate_b2_uop_fp_ctrl_fromint, // @[functional-unit.scala:105:14]
input io_brupdate_b2_uop_fp_ctrl_toint, // @[functional-unit.scala:105:14]
input io_brupdate_b2_uop_fp_ctrl_fastpipe, // @[functional-unit.scala:105:14]
input io_brupdate_b2_uop_fp_ctrl_fma, // @[functional-unit.scala:105:14]
input io_brupdate_b2_uop_fp_ctrl_div, // @[functional-unit.scala:105:14]
input io_brupdate_b2_uop_fp_ctrl_sqrt, // @[functional-unit.scala:105:14]
input io_brupdate_b2_uop_fp_ctrl_wflags, // @[functional-unit.scala:105:14]
input io_brupdate_b2_uop_fp_ctrl_vec, // @[functional-unit.scala:105:14]
input [6:0] io_brupdate_b2_uop_rob_idx, // @[functional-unit.scala:105:14]
input [4:0] io_brupdate_b2_uop_ldq_idx, // @[functional-unit.scala:105:14]
input [4:0] io_brupdate_b2_uop_stq_idx, // @[functional-unit.scala:105:14]
input [1:0] io_brupdate_b2_uop_rxq_idx, // @[functional-unit.scala:105:14]
input [6:0] io_brupdate_b2_uop_pdst, // @[functional-unit.scala:105:14]
input [6:0] io_brupdate_b2_uop_prs1, // @[functional-unit.scala:105:14]
input [6:0] io_brupdate_b2_uop_prs2, // @[functional-unit.scala:105:14]
input [6:0] io_brupdate_b2_uop_prs3, // @[functional-unit.scala:105:14]
input [4:0] io_brupdate_b2_uop_ppred, // @[functional-unit.scala:105:14]
input io_brupdate_b2_uop_prs1_busy, // @[functional-unit.scala:105:14]
input io_brupdate_b2_uop_prs2_busy, // @[functional-unit.scala:105:14]
input io_brupdate_b2_uop_prs3_busy, // @[functional-unit.scala:105:14]
input io_brupdate_b2_uop_ppred_busy, // @[functional-unit.scala:105:14]
input [6:0] io_brupdate_b2_uop_stale_pdst, // @[functional-unit.scala:105:14]
input io_brupdate_b2_uop_exception, // @[functional-unit.scala:105:14]
input [63:0] io_brupdate_b2_uop_exc_cause, // @[functional-unit.scala:105:14]
input [4:0] io_brupdate_b2_uop_mem_cmd, // @[functional-unit.scala:105:14]
input [1:0] io_brupdate_b2_uop_mem_size, // @[functional-unit.scala:105:14]
input io_brupdate_b2_uop_mem_signed, // @[functional-unit.scala:105:14]
input io_brupdate_b2_uop_uses_ldq, // @[functional-unit.scala:105:14]
input io_brupdate_b2_uop_uses_stq, // @[functional-unit.scala:105:14]
input io_brupdate_b2_uop_is_unique, // @[functional-unit.scala:105:14]
input io_brupdate_b2_uop_flush_on_commit, // @[functional-unit.scala:105:14]
input [2:0] io_brupdate_b2_uop_csr_cmd, // @[functional-unit.scala:105:14]
input io_brupdate_b2_uop_ldst_is_rs1, // @[functional-unit.scala:105:14]
input [5:0] io_brupdate_b2_uop_ldst, // @[functional-unit.scala:105:14]
input [5:0] io_brupdate_b2_uop_lrs1, // @[functional-unit.scala:105:14]
input [5:0] io_brupdate_b2_uop_lrs2, // @[functional-unit.scala:105:14]
input [5:0] io_brupdate_b2_uop_lrs3, // @[functional-unit.scala:105:14]
input [1:0] io_brupdate_b2_uop_dst_rtype, // @[functional-unit.scala:105:14]
input [1:0] io_brupdate_b2_uop_lrs1_rtype, // @[functional-unit.scala:105:14]
input [1:0] io_brupdate_b2_uop_lrs2_rtype, // @[functional-unit.scala:105:14]
input io_brupdate_b2_uop_frs3_en, // @[functional-unit.scala:105:14]
input io_brupdate_b2_uop_fcn_dw, // @[functional-unit.scala:105:14]
input [4:0] io_brupdate_b2_uop_fcn_op, // @[functional-unit.scala:105:14]
input io_brupdate_b2_uop_fp_val, // @[functional-unit.scala:105:14]
input [2:0] io_brupdate_b2_uop_fp_rm, // @[functional-unit.scala:105:14]
input [1:0] io_brupdate_b2_uop_fp_typ, // @[functional-unit.scala:105:14]
input io_brupdate_b2_uop_xcpt_pf_if, // @[functional-unit.scala:105:14]
input io_brupdate_b2_uop_xcpt_ae_if, // @[functional-unit.scala:105:14]
input io_brupdate_b2_uop_xcpt_ma_if, // @[functional-unit.scala:105:14]
input io_brupdate_b2_uop_bp_debug_if, // @[functional-unit.scala:105:14]
input io_brupdate_b2_uop_bp_xcpt_if, // @[functional-unit.scala:105:14]
input [2:0] io_brupdate_b2_uop_debug_fsrc, // @[functional-unit.scala:105:14]
input [2:0] io_brupdate_b2_uop_debug_tsrc, // @[functional-unit.scala:105:14]
input io_brupdate_b2_mispredict, // @[functional-unit.scala:105:14]
input io_brupdate_b2_taken, // @[functional-unit.scala:105:14]
input [2:0] io_brupdate_b2_cfi_type, // @[functional-unit.scala:105:14]
input [1:0] io_brupdate_b2_pc_sel, // @[functional-unit.scala:105:14]
input [39:0] io_brupdate_b2_jalr_target, // @[functional-unit.scala:105:14]
input [20:0] io_brupdate_b2_target_offset, // @[functional-unit.scala:105:14]
input [2:0] io_fcsr_rm // @[functional-unit.scala:105:14]
);
wire io_resp_valid_0; // @[fdiv.scala:28:7]
wire _divSqrt_1_io_inReady; // @[fdiv.scala:68:25]
wire _divSqrt_1_io_outValid_div; // @[fdiv.scala:68:25]
wire _divSqrt_1_io_outValid_sqrt; // @[fdiv.scala:68:25]
wire [64:0] _divSqrt_1_io_out; // @[fdiv.scala:68:25]
wire [4:0] _divSqrt_1_io_exceptionFlags; // @[fdiv.scala:68:25]
wire _divSqrt_io_inReady; // @[fdiv.scala:68:25]
wire _divSqrt_io_outValid_div; // @[fdiv.scala:68:25]
wire _divSqrt_io_outValid_sqrt; // @[fdiv.scala:68:25]
wire [32:0] _divSqrt_io_out; // @[fdiv.scala:68:25]
wire [4:0] _divSqrt_io_exceptionFlags; // @[fdiv.scala:68:25]
wire [2:0] _fpiu_io_out_bits_in_rm; // @[fdiv.scala:49:20]
wire [64:0] _fpiu_io_out_bits_in_in1; // @[fdiv.scala:49:20]
wire [64:0] _fpiu_io_out_bits_in_in2; // @[fdiv.scala:49:20]
wire io_kill_0 = io_kill; // @[fdiv.scala:28:7]
wire io_req_valid_0 = io_req_valid; // @[fdiv.scala:28:7]
wire [31:0] io_req_bits_uop_inst_0 = io_req_bits_uop_inst; // @[fdiv.scala:28:7]
wire [31:0] io_req_bits_uop_debug_inst_0 = io_req_bits_uop_debug_inst; // @[fdiv.scala:28:7]
wire io_req_bits_uop_is_rvc_0 = io_req_bits_uop_is_rvc; // @[fdiv.scala:28:7]
wire [39:0] io_req_bits_uop_debug_pc_0 = io_req_bits_uop_debug_pc; // @[fdiv.scala:28:7]
wire io_req_bits_uop_iq_type_0_0 = io_req_bits_uop_iq_type_0; // @[fdiv.scala:28:7]
wire io_req_bits_uop_iq_type_1_0 = io_req_bits_uop_iq_type_1; // @[fdiv.scala:28:7]
wire io_req_bits_uop_iq_type_2_0 = io_req_bits_uop_iq_type_2; // @[fdiv.scala:28:7]
wire io_req_bits_uop_iq_type_3_0 = io_req_bits_uop_iq_type_3; // @[fdiv.scala:28:7]
wire io_req_bits_uop_fu_code_0_0 = io_req_bits_uop_fu_code_0; // @[fdiv.scala:28:7]
wire io_req_bits_uop_fu_code_1_0 = io_req_bits_uop_fu_code_1; // @[fdiv.scala:28:7]
wire io_req_bits_uop_fu_code_2_0 = io_req_bits_uop_fu_code_2; // @[fdiv.scala:28:7]
wire io_req_bits_uop_fu_code_3_0 = io_req_bits_uop_fu_code_3; // @[fdiv.scala:28:7]
wire io_req_bits_uop_fu_code_4_0 = io_req_bits_uop_fu_code_4; // @[fdiv.scala:28:7]
wire io_req_bits_uop_fu_code_5_0 = io_req_bits_uop_fu_code_5; // @[fdiv.scala:28:7]
wire io_req_bits_uop_fu_code_6_0 = io_req_bits_uop_fu_code_6; // @[fdiv.scala:28:7]
wire io_req_bits_uop_fu_code_7_0 = io_req_bits_uop_fu_code_7; // @[fdiv.scala:28:7]
wire io_req_bits_uop_fu_code_8_0 = io_req_bits_uop_fu_code_8; // @[fdiv.scala:28:7]
wire io_req_bits_uop_fu_code_9_0 = io_req_bits_uop_fu_code_9; // @[fdiv.scala:28:7]
wire io_req_bits_uop_iw_issued_0 = io_req_bits_uop_iw_issued; // @[fdiv.scala:28:7]
wire io_req_bits_uop_iw_issued_partial_agen_0 = io_req_bits_uop_iw_issued_partial_agen; // @[fdiv.scala:28:7]
wire io_req_bits_uop_iw_issued_partial_dgen_0 = io_req_bits_uop_iw_issued_partial_dgen; // @[fdiv.scala:28:7]
wire [2:0] io_req_bits_uop_iw_p1_speculative_child_0 = io_req_bits_uop_iw_p1_speculative_child; // @[fdiv.scala:28:7]
wire [2:0] io_req_bits_uop_iw_p2_speculative_child_0 = io_req_bits_uop_iw_p2_speculative_child; // @[fdiv.scala:28:7]
wire io_req_bits_uop_iw_p1_bypass_hint_0 = io_req_bits_uop_iw_p1_bypass_hint; // @[fdiv.scala:28:7]
wire io_req_bits_uop_iw_p2_bypass_hint_0 = io_req_bits_uop_iw_p2_bypass_hint; // @[fdiv.scala:28:7]
wire io_req_bits_uop_iw_p3_bypass_hint_0 = io_req_bits_uop_iw_p3_bypass_hint; // @[fdiv.scala:28:7]
wire [2:0] io_req_bits_uop_dis_col_sel_0 = io_req_bits_uop_dis_col_sel; // @[fdiv.scala:28:7]
wire [15:0] io_req_bits_uop_br_mask_0 = io_req_bits_uop_br_mask; // @[fdiv.scala:28:7]
wire [3:0] io_req_bits_uop_br_tag_0 = io_req_bits_uop_br_tag; // @[fdiv.scala:28:7]
wire [3:0] io_req_bits_uop_br_type_0 = io_req_bits_uop_br_type; // @[fdiv.scala:28:7]
wire io_req_bits_uop_is_sfb_0 = io_req_bits_uop_is_sfb; // @[fdiv.scala:28:7]
wire io_req_bits_uop_is_fence_0 = io_req_bits_uop_is_fence; // @[fdiv.scala:28:7]
wire io_req_bits_uop_is_fencei_0 = io_req_bits_uop_is_fencei; // @[fdiv.scala:28:7]
wire io_req_bits_uop_is_sfence_0 = io_req_bits_uop_is_sfence; // @[fdiv.scala:28:7]
wire io_req_bits_uop_is_amo_0 = io_req_bits_uop_is_amo; // @[fdiv.scala:28:7]
wire io_req_bits_uop_is_eret_0 = io_req_bits_uop_is_eret; // @[fdiv.scala:28:7]
wire io_req_bits_uop_is_sys_pc2epc_0 = io_req_bits_uop_is_sys_pc2epc; // @[fdiv.scala:28:7]
wire io_req_bits_uop_is_rocc_0 = io_req_bits_uop_is_rocc; // @[fdiv.scala:28:7]
wire io_req_bits_uop_is_mov_0 = io_req_bits_uop_is_mov; // @[fdiv.scala:28:7]
wire [4:0] io_req_bits_uop_ftq_idx_0 = io_req_bits_uop_ftq_idx; // @[fdiv.scala:28:7]
wire io_req_bits_uop_edge_inst_0 = io_req_bits_uop_edge_inst; // @[fdiv.scala:28:7]
wire [5:0] io_req_bits_uop_pc_lob_0 = io_req_bits_uop_pc_lob; // @[fdiv.scala:28:7]
wire io_req_bits_uop_taken_0 = io_req_bits_uop_taken; // @[fdiv.scala:28:7]
wire io_req_bits_uop_imm_rename_0 = io_req_bits_uop_imm_rename; // @[fdiv.scala:28:7]
wire [2:0] io_req_bits_uop_imm_sel_0 = io_req_bits_uop_imm_sel; // @[fdiv.scala:28:7]
wire [4:0] io_req_bits_uop_pimm_0 = io_req_bits_uop_pimm; // @[fdiv.scala:28:7]
wire [19:0] io_req_bits_uop_imm_packed_0 = io_req_bits_uop_imm_packed; // @[fdiv.scala:28:7]
wire [1:0] io_req_bits_uop_op1_sel_0 = io_req_bits_uop_op1_sel; // @[fdiv.scala:28:7]
wire [2:0] io_req_bits_uop_op2_sel_0 = io_req_bits_uop_op2_sel; // @[fdiv.scala:28:7]
wire io_req_bits_uop_fp_ctrl_ldst_0 = io_req_bits_uop_fp_ctrl_ldst; // @[fdiv.scala:28:7]
wire io_req_bits_uop_fp_ctrl_wen_0 = io_req_bits_uop_fp_ctrl_wen; // @[fdiv.scala:28:7]
wire io_req_bits_uop_fp_ctrl_ren1_0 = io_req_bits_uop_fp_ctrl_ren1; // @[fdiv.scala:28:7]
wire io_req_bits_uop_fp_ctrl_ren2_0 = io_req_bits_uop_fp_ctrl_ren2; // @[fdiv.scala:28:7]
wire io_req_bits_uop_fp_ctrl_ren3_0 = io_req_bits_uop_fp_ctrl_ren3; // @[fdiv.scala:28:7]
wire io_req_bits_uop_fp_ctrl_swap12_0 = io_req_bits_uop_fp_ctrl_swap12; // @[fdiv.scala:28:7]
wire io_req_bits_uop_fp_ctrl_swap23_0 = io_req_bits_uop_fp_ctrl_swap23; // @[fdiv.scala:28:7]
wire [1:0] io_req_bits_uop_fp_ctrl_typeTagIn_0 = io_req_bits_uop_fp_ctrl_typeTagIn; // @[fdiv.scala:28:7]
wire [1:0] io_req_bits_uop_fp_ctrl_typeTagOut_0 = io_req_bits_uop_fp_ctrl_typeTagOut; // @[fdiv.scala:28:7]
wire io_req_bits_uop_fp_ctrl_fromint_0 = io_req_bits_uop_fp_ctrl_fromint; // @[fdiv.scala:28:7]
wire io_req_bits_uop_fp_ctrl_toint_0 = io_req_bits_uop_fp_ctrl_toint; // @[fdiv.scala:28:7]
wire io_req_bits_uop_fp_ctrl_fastpipe_0 = io_req_bits_uop_fp_ctrl_fastpipe; // @[fdiv.scala:28:7]
wire io_req_bits_uop_fp_ctrl_fma_0 = io_req_bits_uop_fp_ctrl_fma; // @[fdiv.scala:28:7]
wire io_req_bits_uop_fp_ctrl_div_0 = io_req_bits_uop_fp_ctrl_div; // @[fdiv.scala:28:7]
wire io_req_bits_uop_fp_ctrl_sqrt_0 = io_req_bits_uop_fp_ctrl_sqrt; // @[fdiv.scala:28:7]
wire io_req_bits_uop_fp_ctrl_wflags_0 = io_req_bits_uop_fp_ctrl_wflags; // @[fdiv.scala:28:7]
wire io_req_bits_uop_fp_ctrl_vec_0 = io_req_bits_uop_fp_ctrl_vec; // @[fdiv.scala:28:7]
wire [6:0] io_req_bits_uop_rob_idx_0 = io_req_bits_uop_rob_idx; // @[fdiv.scala:28:7]
wire [4:0] io_req_bits_uop_ldq_idx_0 = io_req_bits_uop_ldq_idx; // @[fdiv.scala:28:7]
wire [4:0] io_req_bits_uop_stq_idx_0 = io_req_bits_uop_stq_idx; // @[fdiv.scala:28:7]
wire [1:0] io_req_bits_uop_rxq_idx_0 = io_req_bits_uop_rxq_idx; // @[fdiv.scala:28:7]
wire [6:0] io_req_bits_uop_pdst_0 = io_req_bits_uop_pdst; // @[fdiv.scala:28:7]
wire [6:0] io_req_bits_uop_prs1_0 = io_req_bits_uop_prs1; // @[fdiv.scala:28:7]
wire [6:0] io_req_bits_uop_prs2_0 = io_req_bits_uop_prs2; // @[fdiv.scala:28:7]
wire [6:0] io_req_bits_uop_prs3_0 = io_req_bits_uop_prs3; // @[fdiv.scala:28:7]
wire [4:0] io_req_bits_uop_ppred_0 = io_req_bits_uop_ppred; // @[fdiv.scala:28:7]
wire io_req_bits_uop_prs1_busy_0 = io_req_bits_uop_prs1_busy; // @[fdiv.scala:28:7]
wire io_req_bits_uop_prs2_busy_0 = io_req_bits_uop_prs2_busy; // @[fdiv.scala:28:7]
wire io_req_bits_uop_prs3_busy_0 = io_req_bits_uop_prs3_busy; // @[fdiv.scala:28:7]
wire io_req_bits_uop_ppred_busy_0 = io_req_bits_uop_ppred_busy; // @[fdiv.scala:28:7]
wire [6:0] io_req_bits_uop_stale_pdst_0 = io_req_bits_uop_stale_pdst; // @[fdiv.scala:28:7]
wire io_req_bits_uop_exception_0 = io_req_bits_uop_exception; // @[fdiv.scala:28:7]
wire [63:0] io_req_bits_uop_exc_cause_0 = io_req_bits_uop_exc_cause; // @[fdiv.scala:28:7]
wire [4:0] io_req_bits_uop_mem_cmd_0 = io_req_bits_uop_mem_cmd; // @[fdiv.scala:28:7]
wire [1:0] io_req_bits_uop_mem_size_0 = io_req_bits_uop_mem_size; // @[fdiv.scala:28:7]
wire io_req_bits_uop_mem_signed_0 = io_req_bits_uop_mem_signed; // @[fdiv.scala:28:7]
wire io_req_bits_uop_uses_ldq_0 = io_req_bits_uop_uses_ldq; // @[fdiv.scala:28:7]
wire io_req_bits_uop_uses_stq_0 = io_req_bits_uop_uses_stq; // @[fdiv.scala:28:7]
wire io_req_bits_uop_is_unique_0 = io_req_bits_uop_is_unique; // @[fdiv.scala:28:7]
wire io_req_bits_uop_flush_on_commit_0 = io_req_bits_uop_flush_on_commit; // @[fdiv.scala:28:7]
wire [2:0] io_req_bits_uop_csr_cmd_0 = io_req_bits_uop_csr_cmd; // @[fdiv.scala:28:7]
wire io_req_bits_uop_ldst_is_rs1_0 = io_req_bits_uop_ldst_is_rs1; // @[fdiv.scala:28:7]
wire [5:0] io_req_bits_uop_ldst_0 = io_req_bits_uop_ldst; // @[fdiv.scala:28:7]
wire [5:0] io_req_bits_uop_lrs1_0 = io_req_bits_uop_lrs1; // @[fdiv.scala:28:7]
wire [5:0] io_req_bits_uop_lrs2_0 = io_req_bits_uop_lrs2; // @[fdiv.scala:28:7]
wire [5:0] io_req_bits_uop_lrs3_0 = io_req_bits_uop_lrs3; // @[fdiv.scala:28:7]
wire [1:0] io_req_bits_uop_dst_rtype_0 = io_req_bits_uop_dst_rtype; // @[fdiv.scala:28:7]
wire [1:0] io_req_bits_uop_lrs1_rtype_0 = io_req_bits_uop_lrs1_rtype; // @[fdiv.scala:28:7]
wire [1:0] io_req_bits_uop_lrs2_rtype_0 = io_req_bits_uop_lrs2_rtype; // @[fdiv.scala:28:7]
wire io_req_bits_uop_frs3_en_0 = io_req_bits_uop_frs3_en; // @[fdiv.scala:28:7]
wire io_req_bits_uop_fcn_dw_0 = io_req_bits_uop_fcn_dw; // @[fdiv.scala:28:7]
wire [4:0] io_req_bits_uop_fcn_op_0 = io_req_bits_uop_fcn_op; // @[fdiv.scala:28:7]
wire io_req_bits_uop_fp_val_0 = io_req_bits_uop_fp_val; // @[fdiv.scala:28:7]
wire [2:0] io_req_bits_uop_fp_rm_0 = io_req_bits_uop_fp_rm; // @[fdiv.scala:28:7]
wire [1:0] io_req_bits_uop_fp_typ_0 = io_req_bits_uop_fp_typ; // @[fdiv.scala:28:7]
wire io_req_bits_uop_xcpt_pf_if_0 = io_req_bits_uop_xcpt_pf_if; // @[fdiv.scala:28:7]
wire io_req_bits_uop_xcpt_ae_if_0 = io_req_bits_uop_xcpt_ae_if; // @[fdiv.scala:28:7]
wire io_req_bits_uop_xcpt_ma_if_0 = io_req_bits_uop_xcpt_ma_if; // @[fdiv.scala:28:7]
wire io_req_bits_uop_bp_debug_if_0 = io_req_bits_uop_bp_debug_if; // @[fdiv.scala:28:7]
wire io_req_bits_uop_bp_xcpt_if_0 = io_req_bits_uop_bp_xcpt_if; // @[fdiv.scala:28:7]
wire [2:0] io_req_bits_uop_debug_fsrc_0 = io_req_bits_uop_debug_fsrc; // @[fdiv.scala:28:7]
wire [2:0] io_req_bits_uop_debug_tsrc_0 = io_req_bits_uop_debug_tsrc; // @[fdiv.scala:28:7]
wire [64:0] io_req_bits_rs1_data_0 = io_req_bits_rs1_data; // @[fdiv.scala:28:7]
wire [64:0] io_req_bits_rs2_data_0 = io_req_bits_rs2_data; // @[fdiv.scala:28:7]
wire [64:0] io_req_bits_rs3_data_0 = io_req_bits_rs3_data; // @[fdiv.scala:28:7]
wire io_resp_ready_0 = io_resp_ready; // @[fdiv.scala:28:7]
wire [15:0] io_brupdate_b1_resolve_mask_0 = io_brupdate_b1_resolve_mask; // @[fdiv.scala:28:7]
wire [15:0] io_brupdate_b1_mispredict_mask_0 = io_brupdate_b1_mispredict_mask; // @[fdiv.scala:28:7]
wire [31:0] io_brupdate_b2_uop_inst_0 = io_brupdate_b2_uop_inst; // @[fdiv.scala:28:7]
wire [31:0] io_brupdate_b2_uop_debug_inst_0 = io_brupdate_b2_uop_debug_inst; // @[fdiv.scala:28:7]
wire io_brupdate_b2_uop_is_rvc_0 = io_brupdate_b2_uop_is_rvc; // @[fdiv.scala:28:7]
wire [39:0] io_brupdate_b2_uop_debug_pc_0 = io_brupdate_b2_uop_debug_pc; // @[fdiv.scala:28:7]
wire io_brupdate_b2_uop_iq_type_0_0 = io_brupdate_b2_uop_iq_type_0; // @[fdiv.scala:28:7]
wire io_brupdate_b2_uop_iq_type_1_0 = io_brupdate_b2_uop_iq_type_1; // @[fdiv.scala:28:7]
wire io_brupdate_b2_uop_iq_type_2_0 = io_brupdate_b2_uop_iq_type_2; // @[fdiv.scala:28:7]
wire io_brupdate_b2_uop_iq_type_3_0 = io_brupdate_b2_uop_iq_type_3; // @[fdiv.scala:28:7]
wire io_brupdate_b2_uop_fu_code_0_0 = io_brupdate_b2_uop_fu_code_0; // @[fdiv.scala:28:7]
wire io_brupdate_b2_uop_fu_code_1_0 = io_brupdate_b2_uop_fu_code_1; // @[fdiv.scala:28:7]
wire io_brupdate_b2_uop_fu_code_2_0 = io_brupdate_b2_uop_fu_code_2; // @[fdiv.scala:28:7]
wire io_brupdate_b2_uop_fu_code_3_0 = io_brupdate_b2_uop_fu_code_3; // @[fdiv.scala:28:7]
wire io_brupdate_b2_uop_fu_code_4_0 = io_brupdate_b2_uop_fu_code_4; // @[fdiv.scala:28:7]
wire io_brupdate_b2_uop_fu_code_5_0 = io_brupdate_b2_uop_fu_code_5; // @[fdiv.scala:28:7]
wire io_brupdate_b2_uop_fu_code_6_0 = io_brupdate_b2_uop_fu_code_6; // @[fdiv.scala:28:7]
wire io_brupdate_b2_uop_fu_code_7_0 = io_brupdate_b2_uop_fu_code_7; // @[fdiv.scala:28:7]
wire io_brupdate_b2_uop_fu_code_8_0 = io_brupdate_b2_uop_fu_code_8; // @[fdiv.scala:28:7]
wire io_brupdate_b2_uop_fu_code_9_0 = io_brupdate_b2_uop_fu_code_9; // @[fdiv.scala:28:7]
wire io_brupdate_b2_uop_iw_issued_0 = io_brupdate_b2_uop_iw_issued; // @[fdiv.scala:28:7]
wire io_brupdate_b2_uop_iw_issued_partial_agen_0 = io_brupdate_b2_uop_iw_issued_partial_agen; // @[fdiv.scala:28:7]
wire io_brupdate_b2_uop_iw_issued_partial_dgen_0 = io_brupdate_b2_uop_iw_issued_partial_dgen; // @[fdiv.scala:28:7]
wire [2:0] io_brupdate_b2_uop_iw_p1_speculative_child_0 = io_brupdate_b2_uop_iw_p1_speculative_child; // @[fdiv.scala:28:7]
wire [2:0] io_brupdate_b2_uop_iw_p2_speculative_child_0 = io_brupdate_b2_uop_iw_p2_speculative_child; // @[fdiv.scala:28:7]
wire io_brupdate_b2_uop_iw_p1_bypass_hint_0 = io_brupdate_b2_uop_iw_p1_bypass_hint; // @[fdiv.scala:28:7]
wire io_brupdate_b2_uop_iw_p2_bypass_hint_0 = io_brupdate_b2_uop_iw_p2_bypass_hint; // @[fdiv.scala:28:7]
wire io_brupdate_b2_uop_iw_p3_bypass_hint_0 = io_brupdate_b2_uop_iw_p3_bypass_hint; // @[fdiv.scala:28:7]
wire [2:0] io_brupdate_b2_uop_dis_col_sel_0 = io_brupdate_b2_uop_dis_col_sel; // @[fdiv.scala:28:7]
wire [15:0] io_brupdate_b2_uop_br_mask_0 = io_brupdate_b2_uop_br_mask; // @[fdiv.scala:28:7]
wire [3:0] io_brupdate_b2_uop_br_tag_0 = io_brupdate_b2_uop_br_tag; // @[fdiv.scala:28:7]
wire [3:0] io_brupdate_b2_uop_br_type_0 = io_brupdate_b2_uop_br_type; // @[fdiv.scala:28:7]
wire io_brupdate_b2_uop_is_sfb_0 = io_brupdate_b2_uop_is_sfb; // @[fdiv.scala:28:7]
wire io_brupdate_b2_uop_is_fence_0 = io_brupdate_b2_uop_is_fence; // @[fdiv.scala:28:7]
wire io_brupdate_b2_uop_is_fencei_0 = io_brupdate_b2_uop_is_fencei; // @[fdiv.scala:28:7]
wire io_brupdate_b2_uop_is_sfence_0 = io_brupdate_b2_uop_is_sfence; // @[fdiv.scala:28:7]
wire io_brupdate_b2_uop_is_amo_0 = io_brupdate_b2_uop_is_amo; // @[fdiv.scala:28:7]
wire io_brupdate_b2_uop_is_eret_0 = io_brupdate_b2_uop_is_eret; // @[fdiv.scala:28:7]
wire io_brupdate_b2_uop_is_sys_pc2epc_0 = io_brupdate_b2_uop_is_sys_pc2epc; // @[fdiv.scala:28:7]
wire io_brupdate_b2_uop_is_rocc_0 = io_brupdate_b2_uop_is_rocc; // @[fdiv.scala:28:7]
wire io_brupdate_b2_uop_is_mov_0 = io_brupdate_b2_uop_is_mov; // @[fdiv.scala:28:7]
wire [4:0] io_brupdate_b2_uop_ftq_idx_0 = io_brupdate_b2_uop_ftq_idx; // @[fdiv.scala:28:7]
wire io_brupdate_b2_uop_edge_inst_0 = io_brupdate_b2_uop_edge_inst; // @[fdiv.scala:28:7]
wire [5:0] io_brupdate_b2_uop_pc_lob_0 = io_brupdate_b2_uop_pc_lob; // @[fdiv.scala:28:7]
wire io_brupdate_b2_uop_taken_0 = io_brupdate_b2_uop_taken; // @[fdiv.scala:28:7]
wire io_brupdate_b2_uop_imm_rename_0 = io_brupdate_b2_uop_imm_rename; // @[fdiv.scala:28:7]
wire [2:0] io_brupdate_b2_uop_imm_sel_0 = io_brupdate_b2_uop_imm_sel; // @[fdiv.scala:28:7]
wire [4:0] io_brupdate_b2_uop_pimm_0 = io_brupdate_b2_uop_pimm; // @[fdiv.scala:28:7]
wire [19:0] io_brupdate_b2_uop_imm_packed_0 = io_brupdate_b2_uop_imm_packed; // @[fdiv.scala:28:7]
wire [1:0] io_brupdate_b2_uop_op1_sel_0 = io_brupdate_b2_uop_op1_sel; // @[fdiv.scala:28:7]
wire [2:0] io_brupdate_b2_uop_op2_sel_0 = io_brupdate_b2_uop_op2_sel; // @[fdiv.scala:28:7]
wire io_brupdate_b2_uop_fp_ctrl_ldst_0 = io_brupdate_b2_uop_fp_ctrl_ldst; // @[fdiv.scala:28:7]
wire io_brupdate_b2_uop_fp_ctrl_wen_0 = io_brupdate_b2_uop_fp_ctrl_wen; // @[fdiv.scala:28:7]
wire io_brupdate_b2_uop_fp_ctrl_ren1_0 = io_brupdate_b2_uop_fp_ctrl_ren1; // @[fdiv.scala:28:7]
wire io_brupdate_b2_uop_fp_ctrl_ren2_0 = io_brupdate_b2_uop_fp_ctrl_ren2; // @[fdiv.scala:28:7]
wire io_brupdate_b2_uop_fp_ctrl_ren3_0 = io_brupdate_b2_uop_fp_ctrl_ren3; // @[fdiv.scala:28:7]
wire io_brupdate_b2_uop_fp_ctrl_swap12_0 = io_brupdate_b2_uop_fp_ctrl_swap12; // @[fdiv.scala:28:7]
wire io_brupdate_b2_uop_fp_ctrl_swap23_0 = io_brupdate_b2_uop_fp_ctrl_swap23; // @[fdiv.scala:28:7]
wire [1:0] io_brupdate_b2_uop_fp_ctrl_typeTagIn_0 = io_brupdate_b2_uop_fp_ctrl_typeTagIn; // @[fdiv.scala:28:7]
wire [1:0] io_brupdate_b2_uop_fp_ctrl_typeTagOut_0 = io_brupdate_b2_uop_fp_ctrl_typeTagOut; // @[fdiv.scala:28:7]
wire io_brupdate_b2_uop_fp_ctrl_fromint_0 = io_brupdate_b2_uop_fp_ctrl_fromint; // @[fdiv.scala:28:7]
wire io_brupdate_b2_uop_fp_ctrl_toint_0 = io_brupdate_b2_uop_fp_ctrl_toint; // @[fdiv.scala:28:7]
wire io_brupdate_b2_uop_fp_ctrl_fastpipe_0 = io_brupdate_b2_uop_fp_ctrl_fastpipe; // @[fdiv.scala:28:7]
wire io_brupdate_b2_uop_fp_ctrl_fma_0 = io_brupdate_b2_uop_fp_ctrl_fma; // @[fdiv.scala:28:7]
wire io_brupdate_b2_uop_fp_ctrl_div_0 = io_brupdate_b2_uop_fp_ctrl_div; // @[fdiv.scala:28:7]
wire io_brupdate_b2_uop_fp_ctrl_sqrt_0 = io_brupdate_b2_uop_fp_ctrl_sqrt; // @[fdiv.scala:28:7]
wire io_brupdate_b2_uop_fp_ctrl_wflags_0 = io_brupdate_b2_uop_fp_ctrl_wflags; // @[fdiv.scala:28:7]
wire io_brupdate_b2_uop_fp_ctrl_vec_0 = io_brupdate_b2_uop_fp_ctrl_vec; // @[fdiv.scala:28:7]
wire [6:0] io_brupdate_b2_uop_rob_idx_0 = io_brupdate_b2_uop_rob_idx; // @[fdiv.scala:28:7]
wire [4:0] io_brupdate_b2_uop_ldq_idx_0 = io_brupdate_b2_uop_ldq_idx; // @[fdiv.scala:28:7]
wire [4:0] io_brupdate_b2_uop_stq_idx_0 = io_brupdate_b2_uop_stq_idx; // @[fdiv.scala:28:7]
wire [1:0] io_brupdate_b2_uop_rxq_idx_0 = io_brupdate_b2_uop_rxq_idx; // @[fdiv.scala:28:7]
wire [6:0] io_brupdate_b2_uop_pdst_0 = io_brupdate_b2_uop_pdst; // @[fdiv.scala:28:7]
wire [6:0] io_brupdate_b2_uop_prs1_0 = io_brupdate_b2_uop_prs1; // @[fdiv.scala:28:7]
wire [6:0] io_brupdate_b2_uop_prs2_0 = io_brupdate_b2_uop_prs2; // @[fdiv.scala:28:7]
wire [6:0] io_brupdate_b2_uop_prs3_0 = io_brupdate_b2_uop_prs3; // @[fdiv.scala:28:7]
wire [4:0] io_brupdate_b2_uop_ppred_0 = io_brupdate_b2_uop_ppred; // @[fdiv.scala:28:7]
wire io_brupdate_b2_uop_prs1_busy_0 = io_brupdate_b2_uop_prs1_busy; // @[fdiv.scala:28:7]
wire io_brupdate_b2_uop_prs2_busy_0 = io_brupdate_b2_uop_prs2_busy; // @[fdiv.scala:28:7]
wire io_brupdate_b2_uop_prs3_busy_0 = io_brupdate_b2_uop_prs3_busy; // @[fdiv.scala:28:7]
wire io_brupdate_b2_uop_ppred_busy_0 = io_brupdate_b2_uop_ppred_busy; // @[fdiv.scala:28:7]
wire [6:0] io_brupdate_b2_uop_stale_pdst_0 = io_brupdate_b2_uop_stale_pdst; // @[fdiv.scala:28:7]
wire io_brupdate_b2_uop_exception_0 = io_brupdate_b2_uop_exception; // @[fdiv.scala:28:7]
wire [63:0] io_brupdate_b2_uop_exc_cause_0 = io_brupdate_b2_uop_exc_cause; // @[fdiv.scala:28:7]
wire [4:0] io_brupdate_b2_uop_mem_cmd_0 = io_brupdate_b2_uop_mem_cmd; // @[fdiv.scala:28:7]
wire [1:0] io_brupdate_b2_uop_mem_size_0 = io_brupdate_b2_uop_mem_size; // @[fdiv.scala:28:7]
wire io_brupdate_b2_uop_mem_signed_0 = io_brupdate_b2_uop_mem_signed; // @[fdiv.scala:28:7]
wire io_brupdate_b2_uop_uses_ldq_0 = io_brupdate_b2_uop_uses_ldq; // @[fdiv.scala:28:7]
wire io_brupdate_b2_uop_uses_stq_0 = io_brupdate_b2_uop_uses_stq; // @[fdiv.scala:28:7]
wire io_brupdate_b2_uop_is_unique_0 = io_brupdate_b2_uop_is_unique; // @[fdiv.scala:28:7]
wire io_brupdate_b2_uop_flush_on_commit_0 = io_brupdate_b2_uop_flush_on_commit; // @[fdiv.scala:28:7]
wire [2:0] io_brupdate_b2_uop_csr_cmd_0 = io_brupdate_b2_uop_csr_cmd; // @[fdiv.scala:28:7]
wire io_brupdate_b2_uop_ldst_is_rs1_0 = io_brupdate_b2_uop_ldst_is_rs1; // @[fdiv.scala:28:7]
wire [5:0] io_brupdate_b2_uop_ldst_0 = io_brupdate_b2_uop_ldst; // @[fdiv.scala:28:7]
wire [5:0] io_brupdate_b2_uop_lrs1_0 = io_brupdate_b2_uop_lrs1; // @[fdiv.scala:28:7]
wire [5:0] io_brupdate_b2_uop_lrs2_0 = io_brupdate_b2_uop_lrs2; // @[fdiv.scala:28:7]
wire [5:0] io_brupdate_b2_uop_lrs3_0 = io_brupdate_b2_uop_lrs3; // @[fdiv.scala:28:7]
wire [1:0] io_brupdate_b2_uop_dst_rtype_0 = io_brupdate_b2_uop_dst_rtype; // @[fdiv.scala:28:7]
wire [1:0] io_brupdate_b2_uop_lrs1_rtype_0 = io_brupdate_b2_uop_lrs1_rtype; // @[fdiv.scala:28:7]
wire [1:0] io_brupdate_b2_uop_lrs2_rtype_0 = io_brupdate_b2_uop_lrs2_rtype; // @[fdiv.scala:28:7]
wire io_brupdate_b2_uop_frs3_en_0 = io_brupdate_b2_uop_frs3_en; // @[fdiv.scala:28:7]
wire io_brupdate_b2_uop_fcn_dw_0 = io_brupdate_b2_uop_fcn_dw; // @[fdiv.scala:28:7]
wire [4:0] io_brupdate_b2_uop_fcn_op_0 = io_brupdate_b2_uop_fcn_op; // @[fdiv.scala:28:7]
wire io_brupdate_b2_uop_fp_val_0 = io_brupdate_b2_uop_fp_val; // @[fdiv.scala:28:7]
wire [2:0] io_brupdate_b2_uop_fp_rm_0 = io_brupdate_b2_uop_fp_rm; // @[fdiv.scala:28:7]
wire [1:0] io_brupdate_b2_uop_fp_typ_0 = io_brupdate_b2_uop_fp_typ; // @[fdiv.scala:28:7]
wire io_brupdate_b2_uop_xcpt_pf_if_0 = io_brupdate_b2_uop_xcpt_pf_if; // @[fdiv.scala:28:7]
wire io_brupdate_b2_uop_xcpt_ae_if_0 = io_brupdate_b2_uop_xcpt_ae_if; // @[fdiv.scala:28:7]
wire io_brupdate_b2_uop_xcpt_ma_if_0 = io_brupdate_b2_uop_xcpt_ma_if; // @[fdiv.scala:28:7]
wire io_brupdate_b2_uop_bp_debug_if_0 = io_brupdate_b2_uop_bp_debug_if; // @[fdiv.scala:28:7]
wire io_brupdate_b2_uop_bp_xcpt_if_0 = io_brupdate_b2_uop_bp_xcpt_if; // @[fdiv.scala:28:7]
wire [2:0] io_brupdate_b2_uop_debug_fsrc_0 = io_brupdate_b2_uop_debug_fsrc; // @[fdiv.scala:28:7]
wire [2:0] io_brupdate_b2_uop_debug_tsrc_0 = io_brupdate_b2_uop_debug_tsrc; // @[fdiv.scala:28:7]
wire io_brupdate_b2_mispredict_0 = io_brupdate_b2_mispredict; // @[fdiv.scala:28:7]
wire io_brupdate_b2_taken_0 = io_brupdate_b2_taken; // @[fdiv.scala:28:7]
wire [2:0] io_brupdate_b2_cfi_type_0 = io_brupdate_b2_cfi_type; // @[fdiv.scala:28:7]
wire [1:0] io_brupdate_b2_pc_sel_0 = io_brupdate_b2_pc_sel; // @[fdiv.scala:28:7]
wire [39:0] io_brupdate_b2_jalr_target_0 = io_brupdate_b2_jalr_target; // @[fdiv.scala:28:7]
wire [20:0] io_brupdate_b2_target_offset_0 = io_brupdate_b2_target_offset; // @[fdiv.scala:28:7]
wire [2:0] io_fcsr_rm_0 = io_fcsr_rm; // @[fdiv.scala:28:7]
wire [64:0] _r_out_wdata_maskedNaN_T = 65'h1EFEFFFFFFFFFFFFF; // @[FPU.scala:413:27]
wire [4:0] r_out_wdata_opts_bigger_swizzledNaN_hi_hi = 5'h1F; // @[FPU.scala:336:26]
wire [4:0] r_out_wdata_opts_bigger_swizzledNaN_hi_hi_1 = 5'h1F; // @[FPU.scala:336:26]
wire _r_out_wdata_opts_bigger_swizzledNaN_T = 1'h1; // @[FPU.scala:338:42]
wire _r_out_wdata_opts_bigger_T = 1'h1; // @[FPU.scala:249:56]
wire _r_out_wdata_opts_bigger_swizzledNaN_T_4 = 1'h1; // @[FPU.scala:338:42]
wire _r_out_wdata_opts_bigger_T_1 = 1'h1; // @[FPU.scala:249:56]
wire [63:0] io_req_bits_ftq_info_0_ghist_old_history = 64'h0; // @[util.scala:109:23]
wire [63:0] io_req_bits_ftq_info_1_ghist_old_history = 64'h0; // @[util.scala:109:23]
wire [63:0] io_req_bits_imm_data = 64'h0; // @[util.scala:109:23]
wire [63:0] r_req_bits_out_ftq_info_0_ghist_old_history = 64'h0; // @[util.scala:109:23]
wire [63:0] r_req_bits_out_ftq_info_1_ghist_old_history = 64'h0; // @[util.scala:109:23]
wire [63:0] r_req_bits_out_imm_data = 64'h0; // @[util.scala:109:23]
wire [4:0] io_req_bits_ftq_info_0_entry_ras_idx = 5'h0; // @[util.scala:109:23]
wire [4:0] io_req_bits_ftq_info_0_ghist_ras_idx = 5'h0; // @[util.scala:109:23]
wire [4:0] io_req_bits_ftq_info_1_entry_ras_idx = 5'h0; // @[util.scala:109:23]
wire [4:0] io_req_bits_ftq_info_1_ghist_ras_idx = 5'h0; // @[util.scala:109:23]
wire [4:0] r_req_bits_out_ftq_info_0_entry_ras_idx = 5'h0; // @[util.scala:109:23]
wire [4:0] r_req_bits_out_ftq_info_0_ghist_ras_idx = 5'h0; // @[util.scala:109:23]
wire [4:0] r_req_bits_out_ftq_info_1_entry_ras_idx = 5'h0; // @[util.scala:109:23]
wire [4:0] r_req_bits_out_ftq_info_1_ghist_ras_idx = 5'h0; // @[util.scala:109:23]
wire [39:0] io_req_bits_ftq_info_0_entry_ras_top = 40'h0; // @[util.scala:109:23]
wire [39:0] io_req_bits_ftq_info_0_pc = 40'h0; // @[util.scala:109:23]
wire [39:0] io_req_bits_ftq_info_1_entry_ras_top = 40'h0; // @[util.scala:109:23]
wire [39:0] io_req_bits_ftq_info_1_pc = 40'h0; // @[util.scala:109:23]
wire [39:0] r_req_bits_out_ftq_info_0_entry_ras_top = 40'h0; // @[util.scala:109:23]
wire [39:0] r_req_bits_out_ftq_info_0_pc = 40'h0; // @[util.scala:109:23]
wire [39:0] r_req_bits_out_ftq_info_1_entry_ras_top = 40'h0; // @[util.scala:109:23]
wire [39:0] r_req_bits_out_ftq_info_1_pc = 40'h0; // @[util.scala:109:23]
wire [7:0] io_req_bits_ftq_info_0_entry_br_mask = 8'h0; // @[util.scala:109:23]
wire [7:0] io_req_bits_ftq_info_1_entry_br_mask = 8'h0; // @[util.scala:109:23]
wire [7:0] r_req_bits_out_ftq_info_0_entry_br_mask = 8'h0; // @[util.scala:109:23]
wire [7:0] r_req_bits_out_ftq_info_1_entry_br_mask = 8'h0; // @[util.scala:109:23]
wire [2:0] io_req_bits_ftq_info_0_entry_cfi_idx_bits = 3'h0; // @[util.scala:109:23]
wire [2:0] io_req_bits_ftq_info_0_entry_cfi_type = 3'h0; // @[util.scala:109:23]
wire [2:0] io_req_bits_ftq_info_1_entry_cfi_idx_bits = 3'h0; // @[util.scala:109:23]
wire [2:0] io_req_bits_ftq_info_1_entry_cfi_type = 3'h0; // @[util.scala:109:23]
wire [2:0] r_req_bits_out_ftq_info_0_entry_cfi_idx_bits = 3'h0; // @[util.scala:109:23]
wire [2:0] r_req_bits_out_ftq_info_0_entry_cfi_type = 3'h0; // @[util.scala:109:23]
wire [2:0] r_req_bits_out_ftq_info_1_entry_cfi_idx_bits = 3'h0; // @[util.scala:109:23]
wire [2:0] r_req_bits_out_ftq_info_1_entry_cfi_type = 3'h0; // @[util.scala:109:23]
wire io_req_bits_ftq_info_0_valid = 1'h0; // @[fdiv.scala:28:7]
wire io_req_bits_ftq_info_0_entry_cfi_idx_valid = 1'h0; // @[fdiv.scala:28:7]
wire io_req_bits_ftq_info_0_entry_cfi_taken = 1'h0; // @[fdiv.scala:28:7]
wire io_req_bits_ftq_info_0_entry_cfi_mispredicted = 1'h0; // @[fdiv.scala:28:7]
wire io_req_bits_ftq_info_0_entry_cfi_is_call = 1'h0; // @[fdiv.scala:28:7]
wire io_req_bits_ftq_info_0_entry_cfi_is_ret = 1'h0; // @[fdiv.scala:28:7]
wire io_req_bits_ftq_info_0_entry_cfi_npc_plus4 = 1'h0; // @[fdiv.scala:28:7]
wire io_req_bits_ftq_info_0_entry_start_bank = 1'h0; // @[fdiv.scala:28:7]
wire io_req_bits_ftq_info_0_ghist_current_saw_branch_not_taken = 1'h0; // @[fdiv.scala:28:7]
wire io_req_bits_ftq_info_0_ghist_new_saw_branch_not_taken = 1'h0; // @[fdiv.scala:28:7]
wire io_req_bits_ftq_info_0_ghist_new_saw_branch_taken = 1'h0; // @[fdiv.scala:28:7]
wire io_req_bits_ftq_info_1_valid = 1'h0; // @[fdiv.scala:28:7]
wire io_req_bits_ftq_info_1_entry_cfi_idx_valid = 1'h0; // @[fdiv.scala:28:7]
wire io_req_bits_ftq_info_1_entry_cfi_taken = 1'h0; // @[fdiv.scala:28:7]
wire io_req_bits_ftq_info_1_entry_cfi_mispredicted = 1'h0; // @[fdiv.scala:28:7]
wire io_req_bits_ftq_info_1_entry_cfi_is_call = 1'h0; // @[fdiv.scala:28:7]
wire io_req_bits_ftq_info_1_entry_cfi_is_ret = 1'h0; // @[fdiv.scala:28:7]
wire io_req_bits_ftq_info_1_entry_cfi_npc_plus4 = 1'h0; // @[fdiv.scala:28:7]
wire io_req_bits_ftq_info_1_entry_start_bank = 1'h0; // @[fdiv.scala:28:7]
wire io_req_bits_ftq_info_1_ghist_current_saw_branch_not_taken = 1'h0; // @[fdiv.scala:28:7]
wire io_req_bits_ftq_info_1_ghist_new_saw_branch_not_taken = 1'h0; // @[fdiv.scala:28:7]
wire io_req_bits_ftq_info_1_ghist_new_saw_branch_taken = 1'h0; // @[fdiv.scala:28:7]
wire io_req_bits_pred_data = 1'h0; // @[fdiv.scala:28:7]
wire io_resp_bits_predicated = 1'h0; // @[fdiv.scala:28:7]
wire r_req_bits_out_ftq_info_0_valid = 1'h0; // @[util.scala:109:23]
wire r_req_bits_out_ftq_info_0_entry_cfi_idx_valid = 1'h0; // @[util.scala:109:23]
wire r_req_bits_out_ftq_info_0_entry_cfi_taken = 1'h0; // @[util.scala:109:23]
wire r_req_bits_out_ftq_info_0_entry_cfi_mispredicted = 1'h0; // @[util.scala:109:23]
wire r_req_bits_out_ftq_info_0_entry_cfi_is_call = 1'h0; // @[util.scala:109:23]
wire r_req_bits_out_ftq_info_0_entry_cfi_is_ret = 1'h0; // @[util.scala:109:23]
wire r_req_bits_out_ftq_info_0_entry_cfi_npc_plus4 = 1'h0; // @[util.scala:109:23]
wire r_req_bits_out_ftq_info_0_entry_start_bank = 1'h0; // @[util.scala:109:23]
wire r_req_bits_out_ftq_info_0_ghist_current_saw_branch_not_taken = 1'h0; // @[util.scala:109:23]
wire r_req_bits_out_ftq_info_0_ghist_new_saw_branch_not_taken = 1'h0; // @[util.scala:109:23]
wire r_req_bits_out_ftq_info_0_ghist_new_saw_branch_taken = 1'h0; // @[util.scala:109:23]
wire r_req_bits_out_ftq_info_1_valid = 1'h0; // @[util.scala:109:23]
wire r_req_bits_out_ftq_info_1_entry_cfi_idx_valid = 1'h0; // @[util.scala:109:23]
wire r_req_bits_out_ftq_info_1_entry_cfi_taken = 1'h0; // @[util.scala:109:23]
wire r_req_bits_out_ftq_info_1_entry_cfi_mispredicted = 1'h0; // @[util.scala:109:23]
wire r_req_bits_out_ftq_info_1_entry_cfi_is_call = 1'h0; // @[util.scala:109:23]
wire r_req_bits_out_ftq_info_1_entry_cfi_is_ret = 1'h0; // @[util.scala:109:23]
wire r_req_bits_out_ftq_info_1_entry_cfi_npc_plus4 = 1'h0; // @[util.scala:109:23]
wire r_req_bits_out_ftq_info_1_entry_start_bank = 1'h0; // @[util.scala:109:23]
wire r_req_bits_out_ftq_info_1_ghist_current_saw_branch_not_taken = 1'h0; // @[util.scala:109:23]
wire r_req_bits_out_ftq_info_1_ghist_new_saw_branch_not_taken = 1'h0; // @[util.scala:109:23]
wire r_req_bits_out_ftq_info_1_ghist_new_saw_branch_taken = 1'h0; // @[util.scala:109:23]
wire r_req_bits_out_pred_data = 1'h0; // @[util.scala:109:23]
wire _io_req_ready_T_5; // @[fdiv.scala:47:53]
wire [31:0] r_req_bits_out_uop_inst = io_req_bits_uop_inst_0; // @[util.scala:109:23]
wire [31:0] r_req_bits_out_uop_debug_inst = io_req_bits_uop_debug_inst_0; // @[util.scala:109:23]
wire r_req_bits_out_uop_is_rvc = io_req_bits_uop_is_rvc_0; // @[util.scala:109:23]
wire [39:0] r_req_bits_out_uop_debug_pc = io_req_bits_uop_debug_pc_0; // @[util.scala:109:23]
wire r_req_bits_out_uop_iq_type_0 = io_req_bits_uop_iq_type_0_0; // @[util.scala:109:23]
wire r_req_bits_out_uop_iq_type_1 = io_req_bits_uop_iq_type_1_0; // @[util.scala:109:23]
wire r_req_bits_out_uop_iq_type_2 = io_req_bits_uop_iq_type_2_0; // @[util.scala:109:23]
wire r_req_bits_out_uop_iq_type_3 = io_req_bits_uop_iq_type_3_0; // @[util.scala:109:23]
wire r_req_bits_out_uop_fu_code_0 = io_req_bits_uop_fu_code_0_0; // @[util.scala:109:23]
wire r_req_bits_out_uop_fu_code_1 = io_req_bits_uop_fu_code_1_0; // @[util.scala:109:23]
wire r_req_bits_out_uop_fu_code_2 = io_req_bits_uop_fu_code_2_0; // @[util.scala:109:23]
wire r_req_bits_out_uop_fu_code_3 = io_req_bits_uop_fu_code_3_0; // @[util.scala:109:23]
wire r_req_bits_out_uop_fu_code_4 = io_req_bits_uop_fu_code_4_0; // @[util.scala:109:23]
wire r_req_bits_out_uop_fu_code_5 = io_req_bits_uop_fu_code_5_0; // @[util.scala:109:23]
wire r_req_bits_out_uop_fu_code_6 = io_req_bits_uop_fu_code_6_0; // @[util.scala:109:23]
wire r_req_bits_out_uop_fu_code_7 = io_req_bits_uop_fu_code_7_0; // @[util.scala:109:23]
wire r_req_bits_out_uop_fu_code_8 = io_req_bits_uop_fu_code_8_0; // @[util.scala:109:23]
wire r_req_bits_out_uop_fu_code_9 = io_req_bits_uop_fu_code_9_0; // @[util.scala:109:23]
wire r_req_bits_out_uop_iw_issued = io_req_bits_uop_iw_issued_0; // @[util.scala:109:23]
wire r_req_bits_out_uop_iw_issued_partial_agen = io_req_bits_uop_iw_issued_partial_agen_0; // @[util.scala:109:23]
wire r_req_bits_out_uop_iw_issued_partial_dgen = io_req_bits_uop_iw_issued_partial_dgen_0; // @[util.scala:109:23]
wire [2:0] r_req_bits_out_uop_iw_p1_speculative_child = io_req_bits_uop_iw_p1_speculative_child_0; // @[util.scala:109:23]
wire [2:0] r_req_bits_out_uop_iw_p2_speculative_child = io_req_bits_uop_iw_p2_speculative_child_0; // @[util.scala:109:23]
wire r_req_bits_out_uop_iw_p1_bypass_hint = io_req_bits_uop_iw_p1_bypass_hint_0; // @[util.scala:109:23]
wire r_req_bits_out_uop_iw_p2_bypass_hint = io_req_bits_uop_iw_p2_bypass_hint_0; // @[util.scala:109:23]
wire r_req_bits_out_uop_iw_p3_bypass_hint = io_req_bits_uop_iw_p3_bypass_hint_0; // @[util.scala:109:23]
wire [2:0] r_req_bits_out_uop_dis_col_sel = io_req_bits_uop_dis_col_sel_0; // @[util.scala:109:23]
wire [3:0] r_req_bits_out_uop_br_tag = io_req_bits_uop_br_tag_0; // @[util.scala:109:23]
wire [3:0] r_req_bits_out_uop_br_type = io_req_bits_uop_br_type_0; // @[util.scala:109:23]
wire r_req_bits_out_uop_is_sfb = io_req_bits_uop_is_sfb_0; // @[util.scala:109:23]
wire r_req_bits_out_uop_is_fence = io_req_bits_uop_is_fence_0; // @[util.scala:109:23]
wire r_req_bits_out_uop_is_fencei = io_req_bits_uop_is_fencei_0; // @[util.scala:109:23]
wire r_req_bits_out_uop_is_sfence = io_req_bits_uop_is_sfence_0; // @[util.scala:109:23]
wire r_req_bits_out_uop_is_amo = io_req_bits_uop_is_amo_0; // @[util.scala:109:23]
wire r_req_bits_out_uop_is_eret = io_req_bits_uop_is_eret_0; // @[util.scala:109:23]
wire r_req_bits_out_uop_is_sys_pc2epc = io_req_bits_uop_is_sys_pc2epc_0; // @[util.scala:109:23]
wire r_req_bits_out_uop_is_rocc = io_req_bits_uop_is_rocc_0; // @[util.scala:109:23]
wire r_req_bits_out_uop_is_mov = io_req_bits_uop_is_mov_0; // @[util.scala:109:23]
wire [4:0] r_req_bits_out_uop_ftq_idx = io_req_bits_uop_ftq_idx_0; // @[util.scala:109:23]
wire r_req_bits_out_uop_edge_inst = io_req_bits_uop_edge_inst_0; // @[util.scala:109:23]
wire [5:0] r_req_bits_out_uop_pc_lob = io_req_bits_uop_pc_lob_0; // @[util.scala:109:23]
wire r_req_bits_out_uop_taken = io_req_bits_uop_taken_0; // @[util.scala:109:23]
wire r_req_bits_out_uop_imm_rename = io_req_bits_uop_imm_rename_0; // @[util.scala:109:23]
wire [2:0] r_req_bits_out_uop_imm_sel = io_req_bits_uop_imm_sel_0; // @[util.scala:109:23]
wire [4:0] r_req_bits_out_uop_pimm = io_req_bits_uop_pimm_0; // @[util.scala:109:23]
wire [19:0] r_req_bits_out_uop_imm_packed = io_req_bits_uop_imm_packed_0; // @[util.scala:109:23]
wire [1:0] r_req_bits_out_uop_op1_sel = io_req_bits_uop_op1_sel_0; // @[util.scala:109:23]
wire [2:0] r_req_bits_out_uop_op2_sel = io_req_bits_uop_op2_sel_0; // @[util.scala:109:23]
wire r_req_bits_out_uop_fp_ctrl_ldst = io_req_bits_uop_fp_ctrl_ldst_0; // @[util.scala:109:23]
wire r_req_bits_out_uop_fp_ctrl_wen = io_req_bits_uop_fp_ctrl_wen_0; // @[util.scala:109:23]
wire r_req_bits_out_uop_fp_ctrl_ren1 = io_req_bits_uop_fp_ctrl_ren1_0; // @[util.scala:109:23]
wire r_req_bits_out_uop_fp_ctrl_ren2 = io_req_bits_uop_fp_ctrl_ren2_0; // @[util.scala:109:23]
wire r_req_bits_out_uop_fp_ctrl_ren3 = io_req_bits_uop_fp_ctrl_ren3_0; // @[util.scala:109:23]
wire r_req_bits_out_uop_fp_ctrl_swap12 = io_req_bits_uop_fp_ctrl_swap12_0; // @[util.scala:109:23]
wire r_req_bits_out_uop_fp_ctrl_swap23 = io_req_bits_uop_fp_ctrl_swap23_0; // @[util.scala:109:23]
wire [1:0] _fpiu_io_in_bits_in1_truncIdx_T = io_req_bits_uop_fp_ctrl_typeTagIn_0; // @[package.scala:38:21]
wire [1:0] _fpiu_io_in_bits_in1_truncIdx_T_1 = io_req_bits_uop_fp_ctrl_typeTagIn_0; // @[package.scala:38:21]
wire [1:0] _fpiu_io_in_bits_in2_truncIdx_T = io_req_bits_uop_fp_ctrl_typeTagIn_0; // @[package.scala:38:21]
wire [1:0] _fpiu_io_in_bits_in2_truncIdx_T_1 = io_req_bits_uop_fp_ctrl_typeTagIn_0; // @[package.scala:38:21]
wire [1:0] r_req_bits_out_uop_fp_ctrl_typeTagIn = io_req_bits_uop_fp_ctrl_typeTagIn_0; // @[util.scala:109:23]
wire [1:0] r_req_bits_out_uop_fp_ctrl_typeTagOut = io_req_bits_uop_fp_ctrl_typeTagOut_0; // @[util.scala:109:23]
wire r_req_bits_out_uop_fp_ctrl_fromint = io_req_bits_uop_fp_ctrl_fromint_0; // @[util.scala:109:23]
wire r_req_bits_out_uop_fp_ctrl_toint = io_req_bits_uop_fp_ctrl_toint_0; // @[util.scala:109:23]
wire r_req_bits_out_uop_fp_ctrl_fastpipe = io_req_bits_uop_fp_ctrl_fastpipe_0; // @[util.scala:109:23]
wire r_req_bits_out_uop_fp_ctrl_fma = io_req_bits_uop_fp_ctrl_fma_0; // @[util.scala:109:23]
wire r_req_bits_out_uop_fp_ctrl_div = io_req_bits_uop_fp_ctrl_div_0; // @[util.scala:109:23]
wire r_req_bits_out_uop_fp_ctrl_sqrt = io_req_bits_uop_fp_ctrl_sqrt_0; // @[util.scala:109:23]
wire r_req_bits_out_uop_fp_ctrl_wflags = io_req_bits_uop_fp_ctrl_wflags_0; // @[util.scala:109:23]
wire r_req_bits_out_uop_fp_ctrl_vec = io_req_bits_uop_fp_ctrl_vec_0; // @[util.scala:109:23]
wire [6:0] r_req_bits_out_uop_rob_idx = io_req_bits_uop_rob_idx_0; // @[util.scala:109:23]
wire [4:0] r_req_bits_out_uop_ldq_idx = io_req_bits_uop_ldq_idx_0; // @[util.scala:109:23]
wire [4:0] r_req_bits_out_uop_stq_idx = io_req_bits_uop_stq_idx_0; // @[util.scala:109:23]
wire [1:0] r_req_bits_out_uop_rxq_idx = io_req_bits_uop_rxq_idx_0; // @[util.scala:109:23]
wire [6:0] r_req_bits_out_uop_pdst = io_req_bits_uop_pdst_0; // @[util.scala:109:23]
wire [6:0] r_req_bits_out_uop_prs1 = io_req_bits_uop_prs1_0; // @[util.scala:109:23]
wire [6:0] r_req_bits_out_uop_prs2 = io_req_bits_uop_prs2_0; // @[util.scala:109:23]
wire [6:0] r_req_bits_out_uop_prs3 = io_req_bits_uop_prs3_0; // @[util.scala:109:23]
wire [4:0] r_req_bits_out_uop_ppred = io_req_bits_uop_ppred_0; // @[util.scala:109:23]
wire r_req_bits_out_uop_prs1_busy = io_req_bits_uop_prs1_busy_0; // @[util.scala:109:23]
wire r_req_bits_out_uop_prs2_busy = io_req_bits_uop_prs2_busy_0; // @[util.scala:109:23]
wire r_req_bits_out_uop_prs3_busy = io_req_bits_uop_prs3_busy_0; // @[util.scala:109:23]
wire r_req_bits_out_uop_ppred_busy = io_req_bits_uop_ppred_busy_0; // @[util.scala:109:23]
wire [6:0] r_req_bits_out_uop_stale_pdst = io_req_bits_uop_stale_pdst_0; // @[util.scala:109:23]
wire r_req_bits_out_uop_exception = io_req_bits_uop_exception_0; // @[util.scala:109:23]
wire [63:0] r_req_bits_out_uop_exc_cause = io_req_bits_uop_exc_cause_0; // @[util.scala:109:23]
wire [4:0] r_req_bits_out_uop_mem_cmd = io_req_bits_uop_mem_cmd_0; // @[util.scala:109:23]
wire [1:0] r_req_bits_out_uop_mem_size = io_req_bits_uop_mem_size_0; // @[util.scala:109:23]
wire r_req_bits_out_uop_mem_signed = io_req_bits_uop_mem_signed_0; // @[util.scala:109:23]
wire r_req_bits_out_uop_uses_ldq = io_req_bits_uop_uses_ldq_0; // @[util.scala:109:23]
wire r_req_bits_out_uop_uses_stq = io_req_bits_uop_uses_stq_0; // @[util.scala:109:23]
wire r_req_bits_out_uop_is_unique = io_req_bits_uop_is_unique_0; // @[util.scala:109:23]
wire r_req_bits_out_uop_flush_on_commit = io_req_bits_uop_flush_on_commit_0; // @[util.scala:109:23]
wire [2:0] r_req_bits_out_uop_csr_cmd = io_req_bits_uop_csr_cmd_0; // @[util.scala:109:23]
wire r_req_bits_out_uop_ldst_is_rs1 = io_req_bits_uop_ldst_is_rs1_0; // @[util.scala:109:23]
wire [5:0] r_req_bits_out_uop_ldst = io_req_bits_uop_ldst_0; // @[util.scala:109:23]
wire [5:0] r_req_bits_out_uop_lrs1 = io_req_bits_uop_lrs1_0; // @[util.scala:109:23]
wire [5:0] r_req_bits_out_uop_lrs2 = io_req_bits_uop_lrs2_0; // @[util.scala:109:23]
wire [5:0] r_req_bits_out_uop_lrs3 = io_req_bits_uop_lrs3_0; // @[util.scala:109:23]
wire [1:0] r_req_bits_out_uop_dst_rtype = io_req_bits_uop_dst_rtype_0; // @[util.scala:109:23]
wire [1:0] r_req_bits_out_uop_lrs1_rtype = io_req_bits_uop_lrs1_rtype_0; // @[util.scala:109:23]
wire [1:0] r_req_bits_out_uop_lrs2_rtype = io_req_bits_uop_lrs2_rtype_0; // @[util.scala:109:23]
wire r_req_bits_out_uop_frs3_en = io_req_bits_uop_frs3_en_0; // @[util.scala:109:23]
wire r_req_bits_out_uop_fcn_dw = io_req_bits_uop_fcn_dw_0; // @[util.scala:109:23]
wire [4:0] r_req_bits_out_uop_fcn_op = io_req_bits_uop_fcn_op_0; // @[util.scala:109:23]
wire r_req_bits_out_uop_fp_val = io_req_bits_uop_fp_val_0; // @[util.scala:109:23]
wire [2:0] r_req_bits_out_uop_fp_rm = io_req_bits_uop_fp_rm_0; // @[util.scala:109:23]
wire [1:0] r_req_bits_out_uop_fp_typ = io_req_bits_uop_fp_typ_0; // @[util.scala:109:23]
wire r_req_bits_out_uop_xcpt_pf_if = io_req_bits_uop_xcpt_pf_if_0; // @[util.scala:109:23]
wire r_req_bits_out_uop_xcpt_ae_if = io_req_bits_uop_xcpt_ae_if_0; // @[util.scala:109:23]
wire r_req_bits_out_uop_xcpt_ma_if = io_req_bits_uop_xcpt_ma_if_0; // @[util.scala:109:23]
wire r_req_bits_out_uop_bp_debug_if = io_req_bits_uop_bp_debug_if_0; // @[util.scala:109:23]
wire r_req_bits_out_uop_bp_xcpt_if = io_req_bits_uop_bp_xcpt_if_0; // @[util.scala:109:23]
wire [2:0] r_req_bits_out_uop_debug_fsrc = io_req_bits_uop_debug_fsrc_0; // @[util.scala:109:23]
wire [2:0] r_req_bits_out_uop_debug_tsrc = io_req_bits_uop_debug_tsrc_0; // @[util.scala:109:23]
wire [64:0] r_req_bits_out_rs1_data = io_req_bits_rs1_data_0; // @[util.scala:109:23]
wire [64:0] r_req_bits_out_rs2_data = io_req_bits_rs2_data_0; // @[util.scala:109:23]
wire [64:0] r_req_bits_out_rs3_data = io_req_bits_rs3_data_0; // @[util.scala:109:23]
wire _io_resp_valid_T; // @[fdiv.scala:83:32]
wire io_resp_bits_fflags_valid_0 = io_resp_valid_0; // @[fdiv.scala:28:7]
wire io_req_ready_0; // @[fdiv.scala:28:7]
wire io_resp_bits_uop_iq_type_0_0; // @[fdiv.scala:28:7]
wire io_resp_bits_uop_iq_type_1_0; // @[fdiv.scala:28:7]
wire io_resp_bits_uop_iq_type_2_0; // @[fdiv.scala:28:7]
wire io_resp_bits_uop_iq_type_3_0; // @[fdiv.scala:28:7]
wire io_resp_bits_uop_fu_code_0_0; // @[fdiv.scala:28:7]
wire io_resp_bits_uop_fu_code_1_0; // @[fdiv.scala:28:7]
wire io_resp_bits_uop_fu_code_2_0; // @[fdiv.scala:28:7]
wire io_resp_bits_uop_fu_code_3_0; // @[fdiv.scala:28:7]
wire io_resp_bits_uop_fu_code_4_0; // @[fdiv.scala:28:7]
wire io_resp_bits_uop_fu_code_5_0; // @[fdiv.scala:28:7]
wire io_resp_bits_uop_fu_code_6_0; // @[fdiv.scala:28:7]
wire io_resp_bits_uop_fu_code_7_0; // @[fdiv.scala:28:7]
wire io_resp_bits_uop_fu_code_8_0; // @[fdiv.scala:28:7]
wire io_resp_bits_uop_fu_code_9_0; // @[fdiv.scala:28:7]
wire io_resp_bits_uop_fp_ctrl_ldst_0; // @[fdiv.scala:28:7]
wire io_resp_bits_uop_fp_ctrl_wen_0; // @[fdiv.scala:28:7]
wire io_resp_bits_uop_fp_ctrl_ren1_0; // @[fdiv.scala:28:7]
wire io_resp_bits_uop_fp_ctrl_ren2_0; // @[fdiv.scala:28:7]
wire io_resp_bits_uop_fp_ctrl_ren3_0; // @[fdiv.scala:28:7]
wire io_resp_bits_uop_fp_ctrl_swap12_0; // @[fdiv.scala:28:7]
wire io_resp_bits_uop_fp_ctrl_swap23_0; // @[fdiv.scala:28:7]
wire [1:0] io_resp_bits_uop_fp_ctrl_typeTagIn_0; // @[fdiv.scala:28:7]
wire [1:0] io_resp_bits_uop_fp_ctrl_typeTagOut_0; // @[fdiv.scala:28:7]
wire io_resp_bits_uop_fp_ctrl_fromint_0; // @[fdiv.scala:28:7]
wire io_resp_bits_uop_fp_ctrl_toint_0; // @[fdiv.scala:28:7]
wire io_resp_bits_uop_fp_ctrl_fastpipe_0; // @[fdiv.scala:28:7]
wire io_resp_bits_uop_fp_ctrl_fma_0; // @[fdiv.scala:28:7]
wire io_resp_bits_uop_fp_ctrl_div_0; // @[fdiv.scala:28:7]
wire io_resp_bits_uop_fp_ctrl_sqrt_0; // @[fdiv.scala:28:7]
wire io_resp_bits_uop_fp_ctrl_wflags_0; // @[fdiv.scala:28:7]
wire io_resp_bits_uop_fp_ctrl_vec_0; // @[fdiv.scala:28:7]
wire [31:0] io_resp_bits_uop_inst_0; // @[fdiv.scala:28:7]
wire [31:0] io_resp_bits_uop_debug_inst_0; // @[fdiv.scala:28:7]
wire io_resp_bits_uop_is_rvc_0; // @[fdiv.scala:28:7]
wire [39:0] io_resp_bits_uop_debug_pc_0; // @[fdiv.scala:28:7]
wire io_resp_bits_uop_iw_issued_0; // @[fdiv.scala:28:7]
wire io_resp_bits_uop_iw_issued_partial_agen_0; // @[fdiv.scala:28:7]
wire io_resp_bits_uop_iw_issued_partial_dgen_0; // @[fdiv.scala:28:7]
wire [2:0] io_resp_bits_uop_iw_p1_speculative_child_0; // @[fdiv.scala:28:7]
wire [2:0] io_resp_bits_uop_iw_p2_speculative_child_0; // @[fdiv.scala:28:7]
wire io_resp_bits_uop_iw_p1_bypass_hint_0; // @[fdiv.scala:28:7]
wire io_resp_bits_uop_iw_p2_bypass_hint_0; // @[fdiv.scala:28:7]
wire io_resp_bits_uop_iw_p3_bypass_hint_0; // @[fdiv.scala:28:7]
wire [2:0] io_resp_bits_uop_dis_col_sel_0; // @[fdiv.scala:28:7]
wire [15:0] io_resp_bits_uop_br_mask_0; // @[fdiv.scala:28:7]
wire [3:0] io_resp_bits_uop_br_tag_0; // @[fdiv.scala:28:7]
wire [3:0] io_resp_bits_uop_br_type_0; // @[fdiv.scala:28:7]
wire io_resp_bits_uop_is_sfb_0; // @[fdiv.scala:28:7]
wire io_resp_bits_uop_is_fence_0; // @[fdiv.scala:28:7]
wire io_resp_bits_uop_is_fencei_0; // @[fdiv.scala:28:7]
wire io_resp_bits_uop_is_sfence_0; // @[fdiv.scala:28:7]
wire io_resp_bits_uop_is_amo_0; // @[fdiv.scala:28:7]
wire io_resp_bits_uop_is_eret_0; // @[fdiv.scala:28:7]
wire io_resp_bits_uop_is_sys_pc2epc_0; // @[fdiv.scala:28:7]
wire io_resp_bits_uop_is_rocc_0; // @[fdiv.scala:28:7]
wire io_resp_bits_uop_is_mov_0; // @[fdiv.scala:28:7]
wire [4:0] io_resp_bits_uop_ftq_idx_0; // @[fdiv.scala:28:7]
wire io_resp_bits_uop_edge_inst_0; // @[fdiv.scala:28:7]
wire [5:0] io_resp_bits_uop_pc_lob_0; // @[fdiv.scala:28:7]
wire io_resp_bits_uop_taken_0; // @[fdiv.scala:28:7]
wire io_resp_bits_uop_imm_rename_0; // @[fdiv.scala:28:7]
wire [2:0] io_resp_bits_uop_imm_sel_0; // @[fdiv.scala:28:7]
wire [4:0] io_resp_bits_uop_pimm_0; // @[fdiv.scala:28:7]
wire [19:0] io_resp_bits_uop_imm_packed_0; // @[fdiv.scala:28:7]
wire [1:0] io_resp_bits_uop_op1_sel_0; // @[fdiv.scala:28:7]
wire [2:0] io_resp_bits_uop_op2_sel_0; // @[fdiv.scala:28:7]
wire [6:0] io_resp_bits_uop_rob_idx_0; // @[fdiv.scala:28:7]
wire [4:0] io_resp_bits_uop_ldq_idx_0; // @[fdiv.scala:28:7]
wire [4:0] io_resp_bits_uop_stq_idx_0; // @[fdiv.scala:28:7]
wire [1:0] io_resp_bits_uop_rxq_idx_0; // @[fdiv.scala:28:7]
wire [6:0] io_resp_bits_uop_pdst_0; // @[fdiv.scala:28:7]
wire [6:0] io_resp_bits_uop_prs1_0; // @[fdiv.scala:28:7]
wire [6:0] io_resp_bits_uop_prs2_0; // @[fdiv.scala:28:7]
wire [6:0] io_resp_bits_uop_prs3_0; // @[fdiv.scala:28:7]
wire [4:0] io_resp_bits_uop_ppred_0; // @[fdiv.scala:28:7]
wire io_resp_bits_uop_prs1_busy_0; // @[fdiv.scala:28:7]
wire io_resp_bits_uop_prs2_busy_0; // @[fdiv.scala:28:7]
wire io_resp_bits_uop_prs3_busy_0; // @[fdiv.scala:28:7]
wire io_resp_bits_uop_ppred_busy_0; // @[fdiv.scala:28:7]
wire [6:0] io_resp_bits_uop_stale_pdst_0; // @[fdiv.scala:28:7]
wire io_resp_bits_uop_exception_0; // @[fdiv.scala:28:7]
wire [63:0] io_resp_bits_uop_exc_cause_0; // @[fdiv.scala:28:7]
wire [4:0] io_resp_bits_uop_mem_cmd_0; // @[fdiv.scala:28:7]
wire [1:0] io_resp_bits_uop_mem_size_0; // @[fdiv.scala:28:7]
wire io_resp_bits_uop_mem_signed_0; // @[fdiv.scala:28:7]
wire io_resp_bits_uop_uses_ldq_0; // @[fdiv.scala:28:7]
wire io_resp_bits_uop_uses_stq_0; // @[fdiv.scala:28:7]
wire io_resp_bits_uop_is_unique_0; // @[fdiv.scala:28:7]
wire io_resp_bits_uop_flush_on_commit_0; // @[fdiv.scala:28:7]
wire [2:0] io_resp_bits_uop_csr_cmd_0; // @[fdiv.scala:28:7]
wire io_resp_bits_uop_ldst_is_rs1_0; // @[fdiv.scala:28:7]
wire [5:0] io_resp_bits_uop_ldst_0; // @[fdiv.scala:28:7]
wire [5:0] io_resp_bits_uop_lrs1_0; // @[fdiv.scala:28:7]
wire [5:0] io_resp_bits_uop_lrs2_0; // @[fdiv.scala:28:7]
wire [5:0] io_resp_bits_uop_lrs3_0; // @[fdiv.scala:28:7]
wire [1:0] io_resp_bits_uop_dst_rtype_0; // @[fdiv.scala:28:7]
wire [1:0] io_resp_bits_uop_lrs1_rtype_0; // @[fdiv.scala:28:7]
wire [1:0] io_resp_bits_uop_lrs2_rtype_0; // @[fdiv.scala:28:7]
wire io_resp_bits_uop_frs3_en_0; // @[fdiv.scala:28:7]
wire io_resp_bits_uop_fcn_dw_0; // @[fdiv.scala:28:7]
wire [4:0] io_resp_bits_uop_fcn_op_0; // @[fdiv.scala:28:7]
wire io_resp_bits_uop_fp_val_0; // @[fdiv.scala:28:7]
wire [2:0] io_resp_bits_uop_fp_rm_0; // @[fdiv.scala:28:7]
wire [1:0] io_resp_bits_uop_fp_typ_0; // @[fdiv.scala:28:7]
wire io_resp_bits_uop_xcpt_pf_if_0; // @[fdiv.scala:28:7]
wire io_resp_bits_uop_xcpt_ae_if_0; // @[fdiv.scala:28:7]
wire io_resp_bits_uop_xcpt_ma_if_0; // @[fdiv.scala:28:7]
wire io_resp_bits_uop_bp_debug_if_0; // @[fdiv.scala:28:7]
wire io_resp_bits_uop_bp_xcpt_if_0; // @[fdiv.scala:28:7]
wire [2:0] io_resp_bits_uop_debug_fsrc_0; // @[fdiv.scala:28:7]
wire [2:0] io_resp_bits_uop_debug_tsrc_0; // @[fdiv.scala:28:7]
wire [4:0] io_resp_bits_fflags_bits_0; // @[fdiv.scala:28:7]
wire [64:0] io_resp_bits_data_0; // @[fdiv.scala:28:7]
wire divSqrt_inFlight; // @[fdiv.scala:34:34]
reg r_req_valid; // @[fdiv.scala:36:18]
reg [31:0] r_req_bits_uop_inst; // @[fdiv.scala:36:18]
assign io_resp_bits_uop_inst_0 = r_req_bits_uop_inst; // @[fdiv.scala:28:7, :36:18]
wire [31:0] r_req_out_bits_uop_inst = r_req_bits_uop_inst; // @[util.scala:114:23]
reg [31:0] r_req_bits_uop_debug_inst; // @[fdiv.scala:36:18]
assign io_resp_bits_uop_debug_inst_0 = r_req_bits_uop_debug_inst; // @[fdiv.scala:28:7, :36:18]
wire [31:0] r_req_out_bits_uop_debug_inst = r_req_bits_uop_debug_inst; // @[util.scala:114:23]
reg r_req_bits_uop_is_rvc; // @[fdiv.scala:36:18]
assign io_resp_bits_uop_is_rvc_0 = r_req_bits_uop_is_rvc; // @[fdiv.scala:28:7, :36:18]
wire r_req_out_bits_uop_is_rvc = r_req_bits_uop_is_rvc; // @[util.scala:114:23]
reg [39:0] r_req_bits_uop_debug_pc; // @[fdiv.scala:36:18]
assign io_resp_bits_uop_debug_pc_0 = r_req_bits_uop_debug_pc; // @[fdiv.scala:28:7, :36:18]
wire [39:0] r_req_out_bits_uop_debug_pc = r_req_bits_uop_debug_pc; // @[util.scala:114:23]
reg r_req_bits_uop_iq_type_0; // @[fdiv.scala:36:18]
assign io_resp_bits_uop_iq_type_0_0 = r_req_bits_uop_iq_type_0; // @[fdiv.scala:28:7, :36:18]
wire r_req_out_bits_uop_iq_type_0 = r_req_bits_uop_iq_type_0; // @[util.scala:114:23]
reg r_req_bits_uop_iq_type_1; // @[fdiv.scala:36:18]
assign io_resp_bits_uop_iq_type_1_0 = r_req_bits_uop_iq_type_1; // @[fdiv.scala:28:7, :36:18]
wire r_req_out_bits_uop_iq_type_1 = r_req_bits_uop_iq_type_1; // @[util.scala:114:23]
reg r_req_bits_uop_iq_type_2; // @[fdiv.scala:36:18]
assign io_resp_bits_uop_iq_type_2_0 = r_req_bits_uop_iq_type_2; // @[fdiv.scala:28:7, :36:18]
wire r_req_out_bits_uop_iq_type_2 = r_req_bits_uop_iq_type_2; // @[util.scala:114:23]
reg r_req_bits_uop_iq_type_3; // @[fdiv.scala:36:18]
assign io_resp_bits_uop_iq_type_3_0 = r_req_bits_uop_iq_type_3; // @[fdiv.scala:28:7, :36:18]
wire r_req_out_bits_uop_iq_type_3 = r_req_bits_uop_iq_type_3; // @[util.scala:114:23]
reg r_req_bits_uop_fu_code_0; // @[fdiv.scala:36:18]
assign io_resp_bits_uop_fu_code_0_0 = r_req_bits_uop_fu_code_0; // @[fdiv.scala:28:7, :36:18]
wire r_req_out_bits_uop_fu_code_0 = r_req_bits_uop_fu_code_0; // @[util.scala:114:23]
reg r_req_bits_uop_fu_code_1; // @[fdiv.scala:36:18]
assign io_resp_bits_uop_fu_code_1_0 = r_req_bits_uop_fu_code_1; // @[fdiv.scala:28:7, :36:18]
wire r_req_out_bits_uop_fu_code_1 = r_req_bits_uop_fu_code_1; // @[util.scala:114:23]
reg r_req_bits_uop_fu_code_2; // @[fdiv.scala:36:18]
assign io_resp_bits_uop_fu_code_2_0 = r_req_bits_uop_fu_code_2; // @[fdiv.scala:28:7, :36:18]
wire r_req_out_bits_uop_fu_code_2 = r_req_bits_uop_fu_code_2; // @[util.scala:114:23]
reg r_req_bits_uop_fu_code_3; // @[fdiv.scala:36:18]
assign io_resp_bits_uop_fu_code_3_0 = r_req_bits_uop_fu_code_3; // @[fdiv.scala:28:7, :36:18]
wire r_req_out_bits_uop_fu_code_3 = r_req_bits_uop_fu_code_3; // @[util.scala:114:23]
reg r_req_bits_uop_fu_code_4; // @[fdiv.scala:36:18]
assign io_resp_bits_uop_fu_code_4_0 = r_req_bits_uop_fu_code_4; // @[fdiv.scala:28:7, :36:18]
wire r_req_out_bits_uop_fu_code_4 = r_req_bits_uop_fu_code_4; // @[util.scala:114:23]
reg r_req_bits_uop_fu_code_5; // @[fdiv.scala:36:18]
assign io_resp_bits_uop_fu_code_5_0 = r_req_bits_uop_fu_code_5; // @[fdiv.scala:28:7, :36:18]
wire r_req_out_bits_uop_fu_code_5 = r_req_bits_uop_fu_code_5; // @[util.scala:114:23]
reg r_req_bits_uop_fu_code_6; // @[fdiv.scala:36:18]
assign io_resp_bits_uop_fu_code_6_0 = r_req_bits_uop_fu_code_6; // @[fdiv.scala:28:7, :36:18]
wire r_req_out_bits_uop_fu_code_6 = r_req_bits_uop_fu_code_6; // @[util.scala:114:23]
reg r_req_bits_uop_fu_code_7; // @[fdiv.scala:36:18]
assign io_resp_bits_uop_fu_code_7_0 = r_req_bits_uop_fu_code_7; // @[fdiv.scala:28:7, :36:18]
wire r_req_out_bits_uop_fu_code_7 = r_req_bits_uop_fu_code_7; // @[util.scala:114:23]
reg r_req_bits_uop_fu_code_8; // @[fdiv.scala:36:18]
assign io_resp_bits_uop_fu_code_8_0 = r_req_bits_uop_fu_code_8; // @[fdiv.scala:28:7, :36:18]
wire r_req_out_bits_uop_fu_code_8 = r_req_bits_uop_fu_code_8; // @[util.scala:114:23]
reg r_req_bits_uop_fu_code_9; // @[fdiv.scala:36:18]
assign io_resp_bits_uop_fu_code_9_0 = r_req_bits_uop_fu_code_9; // @[fdiv.scala:28:7, :36:18]
wire r_req_out_bits_uop_fu_code_9 = r_req_bits_uop_fu_code_9; // @[util.scala:114:23]
reg r_req_bits_uop_iw_issued; // @[fdiv.scala:36:18]
assign io_resp_bits_uop_iw_issued_0 = r_req_bits_uop_iw_issued; // @[fdiv.scala:28:7, :36:18]
wire r_req_out_bits_uop_iw_issued = r_req_bits_uop_iw_issued; // @[util.scala:114:23]
reg r_req_bits_uop_iw_issued_partial_agen; // @[fdiv.scala:36:18]
assign io_resp_bits_uop_iw_issued_partial_agen_0 = r_req_bits_uop_iw_issued_partial_agen; // @[fdiv.scala:28:7, :36:18]
wire r_req_out_bits_uop_iw_issued_partial_agen = r_req_bits_uop_iw_issued_partial_agen; // @[util.scala:114:23]
reg r_req_bits_uop_iw_issued_partial_dgen; // @[fdiv.scala:36:18]
assign io_resp_bits_uop_iw_issued_partial_dgen_0 = r_req_bits_uop_iw_issued_partial_dgen; // @[fdiv.scala:28:7, :36:18]
wire r_req_out_bits_uop_iw_issued_partial_dgen = r_req_bits_uop_iw_issued_partial_dgen; // @[util.scala:114:23]
reg [2:0] r_req_bits_uop_iw_p1_speculative_child; // @[fdiv.scala:36:18]
assign io_resp_bits_uop_iw_p1_speculative_child_0 = r_req_bits_uop_iw_p1_speculative_child; // @[fdiv.scala:28:7, :36:18]
wire [2:0] r_req_out_bits_uop_iw_p1_speculative_child = r_req_bits_uop_iw_p1_speculative_child; // @[util.scala:114:23]
reg [2:0] r_req_bits_uop_iw_p2_speculative_child; // @[fdiv.scala:36:18]
assign io_resp_bits_uop_iw_p2_speculative_child_0 = r_req_bits_uop_iw_p2_speculative_child; // @[fdiv.scala:28:7, :36:18]
wire [2:0] r_req_out_bits_uop_iw_p2_speculative_child = r_req_bits_uop_iw_p2_speculative_child; // @[util.scala:114:23]
reg r_req_bits_uop_iw_p1_bypass_hint; // @[fdiv.scala:36:18]
assign io_resp_bits_uop_iw_p1_bypass_hint_0 = r_req_bits_uop_iw_p1_bypass_hint; // @[fdiv.scala:28:7, :36:18]
wire r_req_out_bits_uop_iw_p1_bypass_hint = r_req_bits_uop_iw_p1_bypass_hint; // @[util.scala:114:23]
reg r_req_bits_uop_iw_p2_bypass_hint; // @[fdiv.scala:36:18]
assign io_resp_bits_uop_iw_p2_bypass_hint_0 = r_req_bits_uop_iw_p2_bypass_hint; // @[fdiv.scala:28:7, :36:18]
wire r_req_out_bits_uop_iw_p2_bypass_hint = r_req_bits_uop_iw_p2_bypass_hint; // @[util.scala:114:23]
reg r_req_bits_uop_iw_p3_bypass_hint; // @[fdiv.scala:36:18]
assign io_resp_bits_uop_iw_p3_bypass_hint_0 = r_req_bits_uop_iw_p3_bypass_hint; // @[fdiv.scala:28:7, :36:18]
wire r_req_out_bits_uop_iw_p3_bypass_hint = r_req_bits_uop_iw_p3_bypass_hint; // @[util.scala:114:23]
reg [2:0] r_req_bits_uop_dis_col_sel; // @[fdiv.scala:36:18]
assign io_resp_bits_uop_dis_col_sel_0 = r_req_bits_uop_dis_col_sel; // @[fdiv.scala:28:7, :36:18]
wire [2:0] r_req_out_bits_uop_dis_col_sel = r_req_bits_uop_dis_col_sel; // @[util.scala:114:23]
reg [15:0] r_req_bits_uop_br_mask; // @[fdiv.scala:36:18]
assign io_resp_bits_uop_br_mask_0 = r_req_bits_uop_br_mask; // @[fdiv.scala:28:7, :36:18]
reg [3:0] r_req_bits_uop_br_tag; // @[fdiv.scala:36:18]
assign io_resp_bits_uop_br_tag_0 = r_req_bits_uop_br_tag; // @[fdiv.scala:28:7, :36:18]
wire [3:0] r_req_out_bits_uop_br_tag = r_req_bits_uop_br_tag; // @[util.scala:114:23]
reg [3:0] r_req_bits_uop_br_type; // @[fdiv.scala:36:18]
assign io_resp_bits_uop_br_type_0 = r_req_bits_uop_br_type; // @[fdiv.scala:28:7, :36:18]
wire [3:0] r_req_out_bits_uop_br_type = r_req_bits_uop_br_type; // @[util.scala:114:23]
reg r_req_bits_uop_is_sfb; // @[fdiv.scala:36:18]
assign io_resp_bits_uop_is_sfb_0 = r_req_bits_uop_is_sfb; // @[fdiv.scala:28:7, :36:18]
wire r_req_out_bits_uop_is_sfb = r_req_bits_uop_is_sfb; // @[util.scala:114:23]
reg r_req_bits_uop_is_fence; // @[fdiv.scala:36:18]
assign io_resp_bits_uop_is_fence_0 = r_req_bits_uop_is_fence; // @[fdiv.scala:28:7, :36:18]
wire r_req_out_bits_uop_is_fence = r_req_bits_uop_is_fence; // @[util.scala:114:23]
reg r_req_bits_uop_is_fencei; // @[fdiv.scala:36:18]
assign io_resp_bits_uop_is_fencei_0 = r_req_bits_uop_is_fencei; // @[fdiv.scala:28:7, :36:18]
wire r_req_out_bits_uop_is_fencei = r_req_bits_uop_is_fencei; // @[util.scala:114:23]
reg r_req_bits_uop_is_sfence; // @[fdiv.scala:36:18]
assign io_resp_bits_uop_is_sfence_0 = r_req_bits_uop_is_sfence; // @[fdiv.scala:28:7, :36:18]
wire r_req_out_bits_uop_is_sfence = r_req_bits_uop_is_sfence; // @[util.scala:114:23]
reg r_req_bits_uop_is_amo; // @[fdiv.scala:36:18]
assign io_resp_bits_uop_is_amo_0 = r_req_bits_uop_is_amo; // @[fdiv.scala:28:7, :36:18]
wire r_req_out_bits_uop_is_amo = r_req_bits_uop_is_amo; // @[util.scala:114:23]
reg r_req_bits_uop_is_eret; // @[fdiv.scala:36:18]
assign io_resp_bits_uop_is_eret_0 = r_req_bits_uop_is_eret; // @[fdiv.scala:28:7, :36:18]
wire r_req_out_bits_uop_is_eret = r_req_bits_uop_is_eret; // @[util.scala:114:23]
reg r_req_bits_uop_is_sys_pc2epc; // @[fdiv.scala:36:18]
assign io_resp_bits_uop_is_sys_pc2epc_0 = r_req_bits_uop_is_sys_pc2epc; // @[fdiv.scala:28:7, :36:18]
wire r_req_out_bits_uop_is_sys_pc2epc = r_req_bits_uop_is_sys_pc2epc; // @[util.scala:114:23]
reg r_req_bits_uop_is_rocc; // @[fdiv.scala:36:18]
assign io_resp_bits_uop_is_rocc_0 = r_req_bits_uop_is_rocc; // @[fdiv.scala:28:7, :36:18]
wire r_req_out_bits_uop_is_rocc = r_req_bits_uop_is_rocc; // @[util.scala:114:23]
reg r_req_bits_uop_is_mov; // @[fdiv.scala:36:18]
assign io_resp_bits_uop_is_mov_0 = r_req_bits_uop_is_mov; // @[fdiv.scala:28:7, :36:18]
wire r_req_out_bits_uop_is_mov = r_req_bits_uop_is_mov; // @[util.scala:114:23]
reg [4:0] r_req_bits_uop_ftq_idx; // @[fdiv.scala:36:18]
assign io_resp_bits_uop_ftq_idx_0 = r_req_bits_uop_ftq_idx; // @[fdiv.scala:28:7, :36:18]
wire [4:0] r_req_out_bits_uop_ftq_idx = r_req_bits_uop_ftq_idx; // @[util.scala:114:23]
reg r_req_bits_uop_edge_inst; // @[fdiv.scala:36:18]
assign io_resp_bits_uop_edge_inst_0 = r_req_bits_uop_edge_inst; // @[fdiv.scala:28:7, :36:18]
wire r_req_out_bits_uop_edge_inst = r_req_bits_uop_edge_inst; // @[util.scala:114:23]
reg [5:0] r_req_bits_uop_pc_lob; // @[fdiv.scala:36:18]
assign io_resp_bits_uop_pc_lob_0 = r_req_bits_uop_pc_lob; // @[fdiv.scala:28:7, :36:18]
wire [5:0] r_req_out_bits_uop_pc_lob = r_req_bits_uop_pc_lob; // @[util.scala:114:23]
reg r_req_bits_uop_taken; // @[fdiv.scala:36:18]
assign io_resp_bits_uop_taken_0 = r_req_bits_uop_taken; // @[fdiv.scala:28:7, :36:18]
wire r_req_out_bits_uop_taken = r_req_bits_uop_taken; // @[util.scala:114:23]
reg r_req_bits_uop_imm_rename; // @[fdiv.scala:36:18]
assign io_resp_bits_uop_imm_rename_0 = r_req_bits_uop_imm_rename; // @[fdiv.scala:28:7, :36:18]
wire r_req_out_bits_uop_imm_rename = r_req_bits_uop_imm_rename; // @[util.scala:114:23]
reg [2:0] r_req_bits_uop_imm_sel; // @[fdiv.scala:36:18]
assign io_resp_bits_uop_imm_sel_0 = r_req_bits_uop_imm_sel; // @[fdiv.scala:28:7, :36:18]
wire [2:0] r_req_out_bits_uop_imm_sel = r_req_bits_uop_imm_sel; // @[util.scala:114:23]
reg [4:0] r_req_bits_uop_pimm; // @[fdiv.scala:36:18]
assign io_resp_bits_uop_pimm_0 = r_req_bits_uop_pimm; // @[fdiv.scala:28:7, :36:18]
wire [4:0] r_req_out_bits_uop_pimm = r_req_bits_uop_pimm; // @[util.scala:114:23]
reg [19:0] r_req_bits_uop_imm_packed; // @[fdiv.scala:36:18]
assign io_resp_bits_uop_imm_packed_0 = r_req_bits_uop_imm_packed; // @[fdiv.scala:28:7, :36:18]
wire [19:0] r_req_out_bits_uop_imm_packed = r_req_bits_uop_imm_packed; // @[util.scala:114:23]
reg [1:0] r_req_bits_uop_op1_sel; // @[fdiv.scala:36:18]
assign io_resp_bits_uop_op1_sel_0 = r_req_bits_uop_op1_sel; // @[fdiv.scala:28:7, :36:18]
wire [1:0] r_req_out_bits_uop_op1_sel = r_req_bits_uop_op1_sel; // @[util.scala:114:23]
reg [2:0] r_req_bits_uop_op2_sel; // @[fdiv.scala:36:18]
assign io_resp_bits_uop_op2_sel_0 = r_req_bits_uop_op2_sel; // @[fdiv.scala:28:7, :36:18]
wire [2:0] r_req_out_bits_uop_op2_sel = r_req_bits_uop_op2_sel; // @[util.scala:114:23]
reg r_req_bits_uop_fp_ctrl_ldst; // @[fdiv.scala:36:18]
assign io_resp_bits_uop_fp_ctrl_ldst_0 = r_req_bits_uop_fp_ctrl_ldst; // @[fdiv.scala:28:7, :36:18]
wire r_req_out_bits_uop_fp_ctrl_ldst = r_req_bits_uop_fp_ctrl_ldst; // @[util.scala:114:23]
reg r_req_bits_uop_fp_ctrl_wen; // @[fdiv.scala:36:18]
assign io_resp_bits_uop_fp_ctrl_wen_0 = r_req_bits_uop_fp_ctrl_wen; // @[fdiv.scala:28:7, :36:18]
wire r_req_out_bits_uop_fp_ctrl_wen = r_req_bits_uop_fp_ctrl_wen; // @[util.scala:114:23]
reg r_req_bits_uop_fp_ctrl_ren1; // @[fdiv.scala:36:18]
assign io_resp_bits_uop_fp_ctrl_ren1_0 = r_req_bits_uop_fp_ctrl_ren1; // @[fdiv.scala:28:7, :36:18]
wire r_req_out_bits_uop_fp_ctrl_ren1 = r_req_bits_uop_fp_ctrl_ren1; // @[util.scala:114:23]
reg r_req_bits_uop_fp_ctrl_ren2; // @[fdiv.scala:36:18]
assign io_resp_bits_uop_fp_ctrl_ren2_0 = r_req_bits_uop_fp_ctrl_ren2; // @[fdiv.scala:28:7, :36:18]
wire r_req_out_bits_uop_fp_ctrl_ren2 = r_req_bits_uop_fp_ctrl_ren2; // @[util.scala:114:23]
reg r_req_bits_uop_fp_ctrl_ren3; // @[fdiv.scala:36:18]
assign io_resp_bits_uop_fp_ctrl_ren3_0 = r_req_bits_uop_fp_ctrl_ren3; // @[fdiv.scala:28:7, :36:18]
wire r_req_out_bits_uop_fp_ctrl_ren3 = r_req_bits_uop_fp_ctrl_ren3; // @[util.scala:114:23]
reg r_req_bits_uop_fp_ctrl_swap12; // @[fdiv.scala:36:18]
assign io_resp_bits_uop_fp_ctrl_swap12_0 = r_req_bits_uop_fp_ctrl_swap12; // @[fdiv.scala:28:7, :36:18]
wire r_req_out_bits_uop_fp_ctrl_swap12 = r_req_bits_uop_fp_ctrl_swap12; // @[util.scala:114:23]
reg r_req_bits_uop_fp_ctrl_swap23; // @[fdiv.scala:36:18]
assign io_resp_bits_uop_fp_ctrl_swap23_0 = r_req_bits_uop_fp_ctrl_swap23; // @[fdiv.scala:28:7, :36:18]
wire r_req_out_bits_uop_fp_ctrl_swap23 = r_req_bits_uop_fp_ctrl_swap23; // @[util.scala:114:23]
reg [1:0] r_req_bits_uop_fp_ctrl_typeTagIn; // @[fdiv.scala:36:18]
assign io_resp_bits_uop_fp_ctrl_typeTagIn_0 = r_req_bits_uop_fp_ctrl_typeTagIn; // @[fdiv.scala:28:7, :36:18]
wire [1:0] r_req_out_bits_uop_fp_ctrl_typeTagIn = r_req_bits_uop_fp_ctrl_typeTagIn; // @[util.scala:114:23]
reg [1:0] r_req_bits_uop_fp_ctrl_typeTagOut; // @[fdiv.scala:36:18]
assign io_resp_bits_uop_fp_ctrl_typeTagOut_0 = r_req_bits_uop_fp_ctrl_typeTagOut; // @[fdiv.scala:28:7, :36:18]
wire [1:0] r_req_out_bits_uop_fp_ctrl_typeTagOut = r_req_bits_uop_fp_ctrl_typeTagOut; // @[util.scala:114:23]
reg r_req_bits_uop_fp_ctrl_fromint; // @[fdiv.scala:36:18]
assign io_resp_bits_uop_fp_ctrl_fromint_0 = r_req_bits_uop_fp_ctrl_fromint; // @[fdiv.scala:28:7, :36:18]
wire r_req_out_bits_uop_fp_ctrl_fromint = r_req_bits_uop_fp_ctrl_fromint; // @[util.scala:114:23]
reg r_req_bits_uop_fp_ctrl_toint; // @[fdiv.scala:36:18]
assign io_resp_bits_uop_fp_ctrl_toint_0 = r_req_bits_uop_fp_ctrl_toint; // @[fdiv.scala:28:7, :36:18]
wire r_req_out_bits_uop_fp_ctrl_toint = r_req_bits_uop_fp_ctrl_toint; // @[util.scala:114:23]
reg r_req_bits_uop_fp_ctrl_fastpipe; // @[fdiv.scala:36:18]
assign io_resp_bits_uop_fp_ctrl_fastpipe_0 = r_req_bits_uop_fp_ctrl_fastpipe; // @[fdiv.scala:28:7, :36:18]
wire r_req_out_bits_uop_fp_ctrl_fastpipe = r_req_bits_uop_fp_ctrl_fastpipe; // @[util.scala:114:23]
reg r_req_bits_uop_fp_ctrl_fma; // @[fdiv.scala:36:18]
assign io_resp_bits_uop_fp_ctrl_fma_0 = r_req_bits_uop_fp_ctrl_fma; // @[fdiv.scala:28:7, :36:18]
wire r_req_out_bits_uop_fp_ctrl_fma = r_req_bits_uop_fp_ctrl_fma; // @[util.scala:114:23]
reg r_req_bits_uop_fp_ctrl_div; // @[fdiv.scala:36:18]
assign io_resp_bits_uop_fp_ctrl_div_0 = r_req_bits_uop_fp_ctrl_div; // @[fdiv.scala:28:7, :36:18]
wire r_req_out_bits_uop_fp_ctrl_div = r_req_bits_uop_fp_ctrl_div; // @[util.scala:114:23]
reg r_req_bits_uop_fp_ctrl_sqrt; // @[fdiv.scala:36:18]
assign io_resp_bits_uop_fp_ctrl_sqrt_0 = r_req_bits_uop_fp_ctrl_sqrt; // @[fdiv.scala:28:7, :36:18]
wire r_req_out_bits_uop_fp_ctrl_sqrt = r_req_bits_uop_fp_ctrl_sqrt; // @[util.scala:114:23]
reg r_req_bits_uop_fp_ctrl_wflags; // @[fdiv.scala:36:18]
assign io_resp_bits_uop_fp_ctrl_wflags_0 = r_req_bits_uop_fp_ctrl_wflags; // @[fdiv.scala:28:7, :36:18]
wire r_req_out_bits_uop_fp_ctrl_wflags = r_req_bits_uop_fp_ctrl_wflags; // @[util.scala:114:23]
reg r_req_bits_uop_fp_ctrl_vec; // @[fdiv.scala:36:18]
assign io_resp_bits_uop_fp_ctrl_vec_0 = r_req_bits_uop_fp_ctrl_vec; // @[fdiv.scala:28:7, :36:18]
wire r_req_out_bits_uop_fp_ctrl_vec = r_req_bits_uop_fp_ctrl_vec; // @[util.scala:114:23]
reg [6:0] r_req_bits_uop_rob_idx; // @[fdiv.scala:36:18]
assign io_resp_bits_uop_rob_idx_0 = r_req_bits_uop_rob_idx; // @[fdiv.scala:28:7, :36:18]
wire [6:0] r_req_out_bits_uop_rob_idx = r_req_bits_uop_rob_idx; // @[util.scala:114:23]
reg [4:0] r_req_bits_uop_ldq_idx; // @[fdiv.scala:36:18]
assign io_resp_bits_uop_ldq_idx_0 = r_req_bits_uop_ldq_idx; // @[fdiv.scala:28:7, :36:18]
wire [4:0] r_req_out_bits_uop_ldq_idx = r_req_bits_uop_ldq_idx; // @[util.scala:114:23]
reg [4:0] r_req_bits_uop_stq_idx; // @[fdiv.scala:36:18]
assign io_resp_bits_uop_stq_idx_0 = r_req_bits_uop_stq_idx; // @[fdiv.scala:28:7, :36:18]
wire [4:0] r_req_out_bits_uop_stq_idx = r_req_bits_uop_stq_idx; // @[util.scala:114:23]
reg [1:0] r_req_bits_uop_rxq_idx; // @[fdiv.scala:36:18]
assign io_resp_bits_uop_rxq_idx_0 = r_req_bits_uop_rxq_idx; // @[fdiv.scala:28:7, :36:18]
wire [1:0] r_req_out_bits_uop_rxq_idx = r_req_bits_uop_rxq_idx; // @[util.scala:114:23]
reg [6:0] r_req_bits_uop_pdst; // @[fdiv.scala:36:18]
assign io_resp_bits_uop_pdst_0 = r_req_bits_uop_pdst; // @[fdiv.scala:28:7, :36:18]
wire [6:0] r_req_out_bits_uop_pdst = r_req_bits_uop_pdst; // @[util.scala:114:23]
reg [6:0] r_req_bits_uop_prs1; // @[fdiv.scala:36:18]
assign io_resp_bits_uop_prs1_0 = r_req_bits_uop_prs1; // @[fdiv.scala:28:7, :36:18]
wire [6:0] r_req_out_bits_uop_prs1 = r_req_bits_uop_prs1; // @[util.scala:114:23]
reg [6:0] r_req_bits_uop_prs2; // @[fdiv.scala:36:18]
assign io_resp_bits_uop_prs2_0 = r_req_bits_uop_prs2; // @[fdiv.scala:28:7, :36:18]
wire [6:0] r_req_out_bits_uop_prs2 = r_req_bits_uop_prs2; // @[util.scala:114:23]
reg [6:0] r_req_bits_uop_prs3; // @[fdiv.scala:36:18]
assign io_resp_bits_uop_prs3_0 = r_req_bits_uop_prs3; // @[fdiv.scala:28:7, :36:18]
wire [6:0] r_req_out_bits_uop_prs3 = r_req_bits_uop_prs3; // @[util.scala:114:23]
reg [4:0] r_req_bits_uop_ppred; // @[fdiv.scala:36:18]
assign io_resp_bits_uop_ppred_0 = r_req_bits_uop_ppred; // @[fdiv.scala:28:7, :36:18]
wire [4:0] r_req_out_bits_uop_ppred = r_req_bits_uop_ppred; // @[util.scala:114:23]
reg r_req_bits_uop_prs1_busy; // @[fdiv.scala:36:18]
assign io_resp_bits_uop_prs1_busy_0 = r_req_bits_uop_prs1_busy; // @[fdiv.scala:28:7, :36:18]
wire r_req_out_bits_uop_prs1_busy = r_req_bits_uop_prs1_busy; // @[util.scala:114:23]
reg r_req_bits_uop_prs2_busy; // @[fdiv.scala:36:18]
assign io_resp_bits_uop_prs2_busy_0 = r_req_bits_uop_prs2_busy; // @[fdiv.scala:28:7, :36:18]
wire r_req_out_bits_uop_prs2_busy = r_req_bits_uop_prs2_busy; // @[util.scala:114:23]
reg r_req_bits_uop_prs3_busy; // @[fdiv.scala:36:18]
assign io_resp_bits_uop_prs3_busy_0 = r_req_bits_uop_prs3_busy; // @[fdiv.scala:28:7, :36:18]
wire r_req_out_bits_uop_prs3_busy = r_req_bits_uop_prs3_busy; // @[util.scala:114:23]
reg r_req_bits_uop_ppred_busy; // @[fdiv.scala:36:18]
assign io_resp_bits_uop_ppred_busy_0 = r_req_bits_uop_ppred_busy; // @[fdiv.scala:28:7, :36:18]
wire r_req_out_bits_uop_ppred_busy = r_req_bits_uop_ppred_busy; // @[util.scala:114:23]
reg [6:0] r_req_bits_uop_stale_pdst; // @[fdiv.scala:36:18]
assign io_resp_bits_uop_stale_pdst_0 = r_req_bits_uop_stale_pdst; // @[fdiv.scala:28:7, :36:18]
wire [6:0] r_req_out_bits_uop_stale_pdst = r_req_bits_uop_stale_pdst; // @[util.scala:114:23]
reg r_req_bits_uop_exception; // @[fdiv.scala:36:18]
assign io_resp_bits_uop_exception_0 = r_req_bits_uop_exception; // @[fdiv.scala:28:7, :36:18]
wire r_req_out_bits_uop_exception = r_req_bits_uop_exception; // @[util.scala:114:23]
reg [63:0] r_req_bits_uop_exc_cause; // @[fdiv.scala:36:18]
assign io_resp_bits_uop_exc_cause_0 = r_req_bits_uop_exc_cause; // @[fdiv.scala:28:7, :36:18]
wire [63:0] r_req_out_bits_uop_exc_cause = r_req_bits_uop_exc_cause; // @[util.scala:114:23]
reg [4:0] r_req_bits_uop_mem_cmd; // @[fdiv.scala:36:18]
assign io_resp_bits_uop_mem_cmd_0 = r_req_bits_uop_mem_cmd; // @[fdiv.scala:28:7, :36:18]
wire [4:0] r_req_out_bits_uop_mem_cmd = r_req_bits_uop_mem_cmd; // @[util.scala:114:23]
reg [1:0] r_req_bits_uop_mem_size; // @[fdiv.scala:36:18]
assign io_resp_bits_uop_mem_size_0 = r_req_bits_uop_mem_size; // @[fdiv.scala:28:7, :36:18]
wire [1:0] r_req_out_bits_uop_mem_size = r_req_bits_uop_mem_size; // @[util.scala:114:23]
reg r_req_bits_uop_mem_signed; // @[fdiv.scala:36:18]
assign io_resp_bits_uop_mem_signed_0 = r_req_bits_uop_mem_signed; // @[fdiv.scala:28:7, :36:18]
wire r_req_out_bits_uop_mem_signed = r_req_bits_uop_mem_signed; // @[util.scala:114:23]
reg r_req_bits_uop_uses_ldq; // @[fdiv.scala:36:18]
assign io_resp_bits_uop_uses_ldq_0 = r_req_bits_uop_uses_ldq; // @[fdiv.scala:28:7, :36:18]
wire r_req_out_bits_uop_uses_ldq = r_req_bits_uop_uses_ldq; // @[util.scala:114:23]
reg r_req_bits_uop_uses_stq; // @[fdiv.scala:36:18]
assign io_resp_bits_uop_uses_stq_0 = r_req_bits_uop_uses_stq; // @[fdiv.scala:28:7, :36:18]
wire r_req_out_bits_uop_uses_stq = r_req_bits_uop_uses_stq; // @[util.scala:114:23]
reg r_req_bits_uop_is_unique; // @[fdiv.scala:36:18]
assign io_resp_bits_uop_is_unique_0 = r_req_bits_uop_is_unique; // @[fdiv.scala:28:7, :36:18]
wire r_req_out_bits_uop_is_unique = r_req_bits_uop_is_unique; // @[util.scala:114:23]
reg r_req_bits_uop_flush_on_commit; // @[fdiv.scala:36:18]
assign io_resp_bits_uop_flush_on_commit_0 = r_req_bits_uop_flush_on_commit; // @[fdiv.scala:28:7, :36:18]
wire r_req_out_bits_uop_flush_on_commit = r_req_bits_uop_flush_on_commit; // @[util.scala:114:23]
reg [2:0] r_req_bits_uop_csr_cmd; // @[fdiv.scala:36:18]
assign io_resp_bits_uop_csr_cmd_0 = r_req_bits_uop_csr_cmd; // @[fdiv.scala:28:7, :36:18]
wire [2:0] r_req_out_bits_uop_csr_cmd = r_req_bits_uop_csr_cmd; // @[util.scala:114:23]
reg r_req_bits_uop_ldst_is_rs1; // @[fdiv.scala:36:18]
assign io_resp_bits_uop_ldst_is_rs1_0 = r_req_bits_uop_ldst_is_rs1; // @[fdiv.scala:28:7, :36:18]
wire r_req_out_bits_uop_ldst_is_rs1 = r_req_bits_uop_ldst_is_rs1; // @[util.scala:114:23]
reg [5:0] r_req_bits_uop_ldst; // @[fdiv.scala:36:18]
assign io_resp_bits_uop_ldst_0 = r_req_bits_uop_ldst; // @[fdiv.scala:28:7, :36:18]
wire [5:0] r_req_out_bits_uop_ldst = r_req_bits_uop_ldst; // @[util.scala:114:23]
reg [5:0] r_req_bits_uop_lrs1; // @[fdiv.scala:36:18]
assign io_resp_bits_uop_lrs1_0 = r_req_bits_uop_lrs1; // @[fdiv.scala:28:7, :36:18]
wire [5:0] r_req_out_bits_uop_lrs1 = r_req_bits_uop_lrs1; // @[util.scala:114:23]
reg [5:0] r_req_bits_uop_lrs2; // @[fdiv.scala:36:18]
assign io_resp_bits_uop_lrs2_0 = r_req_bits_uop_lrs2; // @[fdiv.scala:28:7, :36:18]
wire [5:0] r_req_out_bits_uop_lrs2 = r_req_bits_uop_lrs2; // @[util.scala:114:23]
reg [5:0] r_req_bits_uop_lrs3; // @[fdiv.scala:36:18]
assign io_resp_bits_uop_lrs3_0 = r_req_bits_uop_lrs3; // @[fdiv.scala:28:7, :36:18]
wire [5:0] r_req_out_bits_uop_lrs3 = r_req_bits_uop_lrs3; // @[util.scala:114:23]
reg [1:0] r_req_bits_uop_dst_rtype; // @[fdiv.scala:36:18]
assign io_resp_bits_uop_dst_rtype_0 = r_req_bits_uop_dst_rtype; // @[fdiv.scala:28:7, :36:18]
wire [1:0] r_req_out_bits_uop_dst_rtype = r_req_bits_uop_dst_rtype; // @[util.scala:114:23]
reg [1:0] r_req_bits_uop_lrs1_rtype; // @[fdiv.scala:36:18]
assign io_resp_bits_uop_lrs1_rtype_0 = r_req_bits_uop_lrs1_rtype; // @[fdiv.scala:28:7, :36:18]
wire [1:0] r_req_out_bits_uop_lrs1_rtype = r_req_bits_uop_lrs1_rtype; // @[util.scala:114:23]
reg [1:0] r_req_bits_uop_lrs2_rtype; // @[fdiv.scala:36:18]
assign io_resp_bits_uop_lrs2_rtype_0 = r_req_bits_uop_lrs2_rtype; // @[fdiv.scala:28:7, :36:18]
wire [1:0] r_req_out_bits_uop_lrs2_rtype = r_req_bits_uop_lrs2_rtype; // @[util.scala:114:23]
reg r_req_bits_uop_frs3_en; // @[fdiv.scala:36:18]
assign io_resp_bits_uop_frs3_en_0 = r_req_bits_uop_frs3_en; // @[fdiv.scala:28:7, :36:18]
wire r_req_out_bits_uop_frs3_en = r_req_bits_uop_frs3_en; // @[util.scala:114:23]
reg r_req_bits_uop_fcn_dw; // @[fdiv.scala:36:18]
assign io_resp_bits_uop_fcn_dw_0 = r_req_bits_uop_fcn_dw; // @[fdiv.scala:28:7, :36:18]
wire r_req_out_bits_uop_fcn_dw = r_req_bits_uop_fcn_dw; // @[util.scala:114:23]
reg [4:0] r_req_bits_uop_fcn_op; // @[fdiv.scala:36:18]
assign io_resp_bits_uop_fcn_op_0 = r_req_bits_uop_fcn_op; // @[fdiv.scala:28:7, :36:18]
wire [4:0] r_req_out_bits_uop_fcn_op = r_req_bits_uop_fcn_op; // @[util.scala:114:23]
reg r_req_bits_uop_fp_val; // @[fdiv.scala:36:18]
assign io_resp_bits_uop_fp_val_0 = r_req_bits_uop_fp_val; // @[fdiv.scala:28:7, :36:18]
wire r_req_out_bits_uop_fp_val = r_req_bits_uop_fp_val; // @[util.scala:114:23]
reg [2:0] r_req_bits_uop_fp_rm; // @[fdiv.scala:36:18]
assign io_resp_bits_uop_fp_rm_0 = r_req_bits_uop_fp_rm; // @[fdiv.scala:28:7, :36:18]
wire [2:0] r_req_out_bits_uop_fp_rm = r_req_bits_uop_fp_rm; // @[util.scala:114:23]
reg [1:0] r_req_bits_uop_fp_typ; // @[fdiv.scala:36:18]
assign io_resp_bits_uop_fp_typ_0 = r_req_bits_uop_fp_typ; // @[fdiv.scala:28:7, :36:18]
wire [1:0] r_req_out_bits_uop_fp_typ = r_req_bits_uop_fp_typ; // @[util.scala:114:23]
reg r_req_bits_uop_xcpt_pf_if; // @[fdiv.scala:36:18]
assign io_resp_bits_uop_xcpt_pf_if_0 = r_req_bits_uop_xcpt_pf_if; // @[fdiv.scala:28:7, :36:18]
wire r_req_out_bits_uop_xcpt_pf_if = r_req_bits_uop_xcpt_pf_if; // @[util.scala:114:23]
reg r_req_bits_uop_xcpt_ae_if; // @[fdiv.scala:36:18]
assign io_resp_bits_uop_xcpt_ae_if_0 = r_req_bits_uop_xcpt_ae_if; // @[fdiv.scala:28:7, :36:18]
wire r_req_out_bits_uop_xcpt_ae_if = r_req_bits_uop_xcpt_ae_if; // @[util.scala:114:23]
reg r_req_bits_uop_xcpt_ma_if; // @[fdiv.scala:36:18]
assign io_resp_bits_uop_xcpt_ma_if_0 = r_req_bits_uop_xcpt_ma_if; // @[fdiv.scala:28:7, :36:18]
wire r_req_out_bits_uop_xcpt_ma_if = r_req_bits_uop_xcpt_ma_if; // @[util.scala:114:23]
reg r_req_bits_uop_bp_debug_if; // @[fdiv.scala:36:18]
assign io_resp_bits_uop_bp_debug_if_0 = r_req_bits_uop_bp_debug_if; // @[fdiv.scala:28:7, :36:18]
wire r_req_out_bits_uop_bp_debug_if = r_req_bits_uop_bp_debug_if; // @[util.scala:114:23]
reg r_req_bits_uop_bp_xcpt_if; // @[fdiv.scala:36:18]
assign io_resp_bits_uop_bp_xcpt_if_0 = r_req_bits_uop_bp_xcpt_if; // @[fdiv.scala:28:7, :36:18]
wire r_req_out_bits_uop_bp_xcpt_if = r_req_bits_uop_bp_xcpt_if; // @[util.scala:114:23]
reg [2:0] r_req_bits_uop_debug_fsrc; // @[fdiv.scala:36:18]
assign io_resp_bits_uop_debug_fsrc_0 = r_req_bits_uop_debug_fsrc; // @[fdiv.scala:28:7, :36:18]
wire [2:0] r_req_out_bits_uop_debug_fsrc = r_req_bits_uop_debug_fsrc; // @[util.scala:114:23]
reg [2:0] r_req_bits_uop_debug_tsrc; // @[fdiv.scala:36:18]
assign io_resp_bits_uop_debug_tsrc_0 = r_req_bits_uop_debug_tsrc; // @[fdiv.scala:28:7, :36:18]
wire [2:0] r_req_out_bits_uop_debug_tsrc = r_req_bits_uop_debug_tsrc; // @[util.scala:114:23]
reg [64:0] r_req_bits_rs1_data; // @[fdiv.scala:36:18]
wire [64:0] r_req_out_bits_rs1_data = r_req_bits_rs1_data; // @[util.scala:114:23]
reg [64:0] r_req_bits_rs2_data; // @[fdiv.scala:36:18]
wire [64:0] r_req_out_bits_rs2_data = r_req_bits_rs2_data; // @[util.scala:114:23]
reg [64:0] r_req_bits_rs3_data; // @[fdiv.scala:36:18]
wire [64:0] r_req_out_bits_rs3_data = r_req_bits_rs3_data; // @[util.scala:114:23]
reg r_req_bits_ftq_info_0_valid; // @[fdiv.scala:36:18]
wire r_req_out_bits_ftq_info_0_valid = r_req_bits_ftq_info_0_valid; // @[util.scala:114:23]
reg r_req_bits_ftq_info_0_entry_cfi_idx_valid; // @[fdiv.scala:36:18]
wire r_req_out_bits_ftq_info_0_entry_cfi_idx_valid = r_req_bits_ftq_info_0_entry_cfi_idx_valid; // @[util.scala:114:23]
reg [2:0] r_req_bits_ftq_info_0_entry_cfi_idx_bits; // @[fdiv.scala:36:18]
wire [2:0] r_req_out_bits_ftq_info_0_entry_cfi_idx_bits = r_req_bits_ftq_info_0_entry_cfi_idx_bits; // @[util.scala:114:23]
reg r_req_bits_ftq_info_0_entry_cfi_taken; // @[fdiv.scala:36:18]
wire r_req_out_bits_ftq_info_0_entry_cfi_taken = r_req_bits_ftq_info_0_entry_cfi_taken; // @[util.scala:114:23]
reg r_req_bits_ftq_info_0_entry_cfi_mispredicted; // @[fdiv.scala:36:18]
wire r_req_out_bits_ftq_info_0_entry_cfi_mispredicted = r_req_bits_ftq_info_0_entry_cfi_mispredicted; // @[util.scala:114:23]
reg [2:0] r_req_bits_ftq_info_0_entry_cfi_type; // @[fdiv.scala:36:18]
wire [2:0] r_req_out_bits_ftq_info_0_entry_cfi_type = r_req_bits_ftq_info_0_entry_cfi_type; // @[util.scala:114:23]
reg [7:0] r_req_bits_ftq_info_0_entry_br_mask; // @[fdiv.scala:36:18]
wire [7:0] r_req_out_bits_ftq_info_0_entry_br_mask = r_req_bits_ftq_info_0_entry_br_mask; // @[util.scala:114:23]
reg r_req_bits_ftq_info_0_entry_cfi_is_call; // @[fdiv.scala:36:18]
wire r_req_out_bits_ftq_info_0_entry_cfi_is_call = r_req_bits_ftq_info_0_entry_cfi_is_call; // @[util.scala:114:23]
reg r_req_bits_ftq_info_0_entry_cfi_is_ret; // @[fdiv.scala:36:18]
wire r_req_out_bits_ftq_info_0_entry_cfi_is_ret = r_req_bits_ftq_info_0_entry_cfi_is_ret; // @[util.scala:114:23]
reg r_req_bits_ftq_info_0_entry_cfi_npc_plus4; // @[fdiv.scala:36:18]
wire r_req_out_bits_ftq_info_0_entry_cfi_npc_plus4 = r_req_bits_ftq_info_0_entry_cfi_npc_plus4; // @[util.scala:114:23]
reg [39:0] r_req_bits_ftq_info_0_entry_ras_top; // @[fdiv.scala:36:18]
wire [39:0] r_req_out_bits_ftq_info_0_entry_ras_top = r_req_bits_ftq_info_0_entry_ras_top; // @[util.scala:114:23]
reg [4:0] r_req_bits_ftq_info_0_entry_ras_idx; // @[fdiv.scala:36:18]
wire [4:0] r_req_out_bits_ftq_info_0_entry_ras_idx = r_req_bits_ftq_info_0_entry_ras_idx; // @[util.scala:114:23]
reg r_req_bits_ftq_info_0_entry_start_bank; // @[fdiv.scala:36:18]
wire r_req_out_bits_ftq_info_0_entry_start_bank = r_req_bits_ftq_info_0_entry_start_bank; // @[util.scala:114:23]
reg [63:0] r_req_bits_ftq_info_0_ghist_old_history; // @[fdiv.scala:36:18]
wire [63:0] r_req_out_bits_ftq_info_0_ghist_old_history = r_req_bits_ftq_info_0_ghist_old_history; // @[util.scala:114:23]
reg r_req_bits_ftq_info_0_ghist_current_saw_branch_not_taken; // @[fdiv.scala:36:18]
wire r_req_out_bits_ftq_info_0_ghist_current_saw_branch_not_taken = r_req_bits_ftq_info_0_ghist_current_saw_branch_not_taken; // @[util.scala:114:23]
reg r_req_bits_ftq_info_0_ghist_new_saw_branch_not_taken; // @[fdiv.scala:36:18]
wire r_req_out_bits_ftq_info_0_ghist_new_saw_branch_not_taken = r_req_bits_ftq_info_0_ghist_new_saw_branch_not_taken; // @[util.scala:114:23]
reg r_req_bits_ftq_info_0_ghist_new_saw_branch_taken; // @[fdiv.scala:36:18]
wire r_req_out_bits_ftq_info_0_ghist_new_saw_branch_taken = r_req_bits_ftq_info_0_ghist_new_saw_branch_taken; // @[util.scala:114:23]
reg [4:0] r_req_bits_ftq_info_0_ghist_ras_idx; // @[fdiv.scala:36:18]
wire [4:0] r_req_out_bits_ftq_info_0_ghist_ras_idx = r_req_bits_ftq_info_0_ghist_ras_idx; // @[util.scala:114:23]
reg [39:0] r_req_bits_ftq_info_0_pc; // @[fdiv.scala:36:18]
wire [39:0] r_req_out_bits_ftq_info_0_pc = r_req_bits_ftq_info_0_pc; // @[util.scala:114:23]
reg r_req_bits_ftq_info_1_valid; // @[fdiv.scala:36:18]
wire r_req_out_bits_ftq_info_1_valid = r_req_bits_ftq_info_1_valid; // @[util.scala:114:23]
reg r_req_bits_ftq_info_1_entry_cfi_idx_valid; // @[fdiv.scala:36:18]
wire r_req_out_bits_ftq_info_1_entry_cfi_idx_valid = r_req_bits_ftq_info_1_entry_cfi_idx_valid; // @[util.scala:114:23]
reg [2:0] r_req_bits_ftq_info_1_entry_cfi_idx_bits; // @[fdiv.scala:36:18]
wire [2:0] r_req_out_bits_ftq_info_1_entry_cfi_idx_bits = r_req_bits_ftq_info_1_entry_cfi_idx_bits; // @[util.scala:114:23]
reg r_req_bits_ftq_info_1_entry_cfi_taken; // @[fdiv.scala:36:18]
wire r_req_out_bits_ftq_info_1_entry_cfi_taken = r_req_bits_ftq_info_1_entry_cfi_taken; // @[util.scala:114:23]
reg r_req_bits_ftq_info_1_entry_cfi_mispredicted; // @[fdiv.scala:36:18]
wire r_req_out_bits_ftq_info_1_entry_cfi_mispredicted = r_req_bits_ftq_info_1_entry_cfi_mispredicted; // @[util.scala:114:23]
reg [2:0] r_req_bits_ftq_info_1_entry_cfi_type; // @[fdiv.scala:36:18]
wire [2:0] r_req_out_bits_ftq_info_1_entry_cfi_type = r_req_bits_ftq_info_1_entry_cfi_type; // @[util.scala:114:23]
reg [7:0] r_req_bits_ftq_info_1_entry_br_mask; // @[fdiv.scala:36:18]
wire [7:0] r_req_out_bits_ftq_info_1_entry_br_mask = r_req_bits_ftq_info_1_entry_br_mask; // @[util.scala:114:23]
reg r_req_bits_ftq_info_1_entry_cfi_is_call; // @[fdiv.scala:36:18]
wire r_req_out_bits_ftq_info_1_entry_cfi_is_call = r_req_bits_ftq_info_1_entry_cfi_is_call; // @[util.scala:114:23]
reg r_req_bits_ftq_info_1_entry_cfi_is_ret; // @[fdiv.scala:36:18]
wire r_req_out_bits_ftq_info_1_entry_cfi_is_ret = r_req_bits_ftq_info_1_entry_cfi_is_ret; // @[util.scala:114:23]
reg r_req_bits_ftq_info_1_entry_cfi_npc_plus4; // @[fdiv.scala:36:18]
wire r_req_out_bits_ftq_info_1_entry_cfi_npc_plus4 = r_req_bits_ftq_info_1_entry_cfi_npc_plus4; // @[util.scala:114:23]
reg [39:0] r_req_bits_ftq_info_1_entry_ras_top; // @[fdiv.scala:36:18]
wire [39:0] r_req_out_bits_ftq_info_1_entry_ras_top = r_req_bits_ftq_info_1_entry_ras_top; // @[util.scala:114:23]
reg [4:0] r_req_bits_ftq_info_1_entry_ras_idx; // @[fdiv.scala:36:18]
wire [4:0] r_req_out_bits_ftq_info_1_entry_ras_idx = r_req_bits_ftq_info_1_entry_ras_idx; // @[util.scala:114:23]
reg r_req_bits_ftq_info_1_entry_start_bank; // @[fdiv.scala:36:18]
wire r_req_out_bits_ftq_info_1_entry_start_bank = r_req_bits_ftq_info_1_entry_start_bank; // @[util.scala:114:23]
reg [63:0] r_req_bits_ftq_info_1_ghist_old_history; // @[fdiv.scala:36:18]
wire [63:0] r_req_out_bits_ftq_info_1_ghist_old_history = r_req_bits_ftq_info_1_ghist_old_history; // @[util.scala:114:23]
reg r_req_bits_ftq_info_1_ghist_current_saw_branch_not_taken; // @[fdiv.scala:36:18]
wire r_req_out_bits_ftq_info_1_ghist_current_saw_branch_not_taken = r_req_bits_ftq_info_1_ghist_current_saw_branch_not_taken; // @[util.scala:114:23]
reg r_req_bits_ftq_info_1_ghist_new_saw_branch_not_taken; // @[fdiv.scala:36:18]
wire r_req_out_bits_ftq_info_1_ghist_new_saw_branch_not_taken = r_req_bits_ftq_info_1_ghist_new_saw_branch_not_taken; // @[util.scala:114:23]
reg r_req_bits_ftq_info_1_ghist_new_saw_branch_taken; // @[fdiv.scala:36:18]
wire r_req_out_bits_ftq_info_1_ghist_new_saw_branch_taken = r_req_bits_ftq_info_1_ghist_new_saw_branch_taken; // @[util.scala:114:23]
reg [4:0] r_req_bits_ftq_info_1_ghist_ras_idx; // @[fdiv.scala:36:18]
wire [4:0] r_req_out_bits_ftq_info_1_ghist_ras_idx = r_req_bits_ftq_info_1_ghist_ras_idx; // @[util.scala:114:23]
reg [39:0] r_req_bits_ftq_info_1_pc; // @[fdiv.scala:36:18]
wire [39:0] r_req_out_bits_ftq_info_1_pc = r_req_bits_ftq_info_1_pc; // @[util.scala:114:23]
reg r_req_bits_pred_data; // @[fdiv.scala:36:18]
wire r_req_out_bits_pred_data = r_req_bits_pred_data; // @[util.scala:114:23]
reg [63:0] r_req_bits_imm_data; // @[fdiv.scala:36:18]
wire [63:0] r_req_out_bits_imm_data = r_req_bits_imm_data; // @[util.scala:114:23]
reg r_sigs_ldst; // @[fdiv.scala:37:19]
reg r_sigs_wen; // @[fdiv.scala:37:19]
reg r_sigs_ren1; // @[fdiv.scala:37:19]
reg r_sigs_ren2; // @[fdiv.scala:37:19]
reg r_sigs_ren3; // @[fdiv.scala:37:19]
reg r_sigs_swap12; // @[fdiv.scala:37:19]
reg r_sigs_swap23; // @[fdiv.scala:37:19]
reg [1:0] r_sigs_typeTagIn; // @[fdiv.scala:37:19]
reg [1:0] r_sigs_typeTagOut; // @[fdiv.scala:37:19]
wire [1:0] _r_out_wdata_truncIdx_T = r_sigs_typeTagOut; // @[package.scala:38:21]
wire [1:0] _r_out_wdata_truncIdx_T_1 = r_sigs_typeTagOut; // @[package.scala:38:21]
reg r_sigs_fromint; // @[fdiv.scala:37:19]
reg r_sigs_toint; // @[fdiv.scala:37:19]
reg r_sigs_fastpipe; // @[fdiv.scala:37:19]
reg r_sigs_fma; // @[fdiv.scala:37:19]
reg r_sigs_div; // @[fdiv.scala:37:19]
reg r_sigs_sqrt; // @[fdiv.scala:37:19]
reg r_sigs_wflags; // @[fdiv.scala:37:19]
reg r_sigs_vec; // @[fdiv.scala:37:19]
reg [2:0] r_rm; // @[fdiv.scala:38:17]
reg r_out_valid; // @[fdiv.scala:39:24]
reg [4:0] r_out_flags; // @[fdiv.scala:40:24]
assign io_resp_bits_fflags_bits_0 = r_out_flags; // @[fdiv.scala:28:7, :40:24]
reg [64:0] r_out_wdata; // @[fdiv.scala:41:24]
assign io_resp_bits_data_0 = r_out_wdata; // @[fdiv.scala:28:7, :41:24]
wire [15:0] _GEN = io_brupdate_b1_mispredict_mask_0 & r_req_bits_uop_br_mask; // @[util.scala:126:51]
wire [15:0] _kill_T; // @[util.scala:126:51]
assign _kill_T = _GEN; // @[util.scala:126:51]
wire [15:0] _r_req_out_valid_T; // @[util.scala:126:51]
assign _r_req_out_valid_T = _GEN; // @[util.scala:126:51]
wire _kill_T_1 = |_kill_T; // @[util.scala:126:{51,59}]
wire kill = _kill_T_1 | io_kill_0; // @[util.scala:61:61, :126:59]
wire _io_req_ready_T = ~r_req_valid; // @[fdiv.scala:36:18, :43:19]
wire _r_req_out_valid_T_4; // @[util.scala:116:31]
wire [15:0] _r_req_out_bits_uop_br_mask_T_1; // @[util.scala:97:21]
wire [15:0] r_req_out_bits_uop_br_mask; // @[util.scala:114:23]
wire r_req_out_valid; // @[util.scala:114:23]
wire [15:0] _r_req_out_bits_uop_br_mask_T = ~io_brupdate_b1_resolve_mask_0; // @[util.scala:97:23]
assign _r_req_out_bits_uop_br_mask_T_1 = r_req_bits_uop_br_mask & _r_req_out_bits_uop_br_mask_T; // @[util.scala:97:{21,23}]
assign r_req_out_bits_uop_br_mask = _r_req_out_bits_uop_br_mask_T_1; // @[util.scala:97:21, :114:23]
wire _r_req_out_valid_T_1 = |_r_req_out_valid_T; // @[util.scala:126:{51,59}]
wire _r_req_out_valid_T_2 = _r_req_out_valid_T_1 | io_kill_0; // @[util.scala:61:61, :126:59]
wire _r_req_out_valid_T_3 = ~_r_req_out_valid_T_2; // @[util.scala:61:61, :116:34]
assign _r_req_out_valid_T_4 = r_req_valid & _r_req_out_valid_T_3; // @[util.scala:116:{31,34}]
assign r_req_out_valid = _r_req_out_valid_T_4; // @[util.scala:114:23, :116:31]
wire _r_out_valid_T = ~kill; // @[util.scala:61:61]
wire _r_out_valid_T_1 = r_out_valid & _r_out_valid_T; // @[fdiv.scala:39:24, :46:{30,33}]
wire _io_req_ready_T_1 = ~r_req_valid; // @[fdiv.scala:36:18, :43:19, :47:19]
wire _io_req_ready_T_2 = ~divSqrt_inFlight; // @[fdiv.scala:34:34, :47:35]
wire _io_req_ready_T_3 = _io_req_ready_T_1 & _io_req_ready_T_2; // @[fdiv.scala:47:{19,32,35}]
wire _io_req_ready_T_4 = ~r_out_valid; // @[fdiv.scala:39:24, :47:56]
assign _io_req_ready_T_5 = _io_req_ready_T_3 & _io_req_ready_T_4; // @[fdiv.scala:47:{32,53,56}]
assign io_req_ready_0 = _io_req_ready_T_5; // @[fdiv.scala:28:7, :47:53]
wire _fpiu_io_in_bits_in1_prev_unswizzled_T = io_req_bits_rs1_data_0[31]; // @[FPU.scala:357:14]
wire _fpiu_io_in_bits_in1_prev_unswizzled_T_1 = io_req_bits_rs1_data_0[52]; // @[FPU.scala:358:14]
wire [30:0] _fpiu_io_in_bits_in1_prev_unswizzled_T_2 = io_req_bits_rs1_data_0[30:0]; // @[FPU.scala:359:14]
wire [1:0] fpiu_io_in_bits_in1_prev_unswizzled_hi = {_fpiu_io_in_bits_in1_prev_unswizzled_T, _fpiu_io_in_bits_in1_prev_unswizzled_T_1}; // @[FPU.scala:356:31, :357:14, :358:14]
wire [32:0] fpiu_io_in_bits_in1_prev_unswizzled = {fpiu_io_in_bits_in1_prev_unswizzled_hi, _fpiu_io_in_bits_in1_prev_unswizzled_T_2}; // @[FPU.scala:356:31, :359:14]
wire fpiu_io_in_bits_in1_prev_prev_sign = fpiu_io_in_bits_in1_prev_unswizzled[32]; // @[FPU.scala:274:17, :356:31]
wire [22:0] fpiu_io_in_bits_in1_prev_prev_fractIn = fpiu_io_in_bits_in1_prev_unswizzled[22:0]; // @[FPU.scala:275:20, :356:31]
wire [8:0] fpiu_io_in_bits_in1_prev_prev_expIn = fpiu_io_in_bits_in1_prev_unswizzled[31:23]; // @[FPU.scala:276:18, :356:31]
wire [75:0] _fpiu_io_in_bits_in1_prev_prev_fractOut_T = {fpiu_io_in_bits_in1_prev_prev_fractIn, 53'h0}; // @[FPU.scala:275:20, :277:28]
wire [51:0] fpiu_io_in_bits_in1_prev_prev_fractOut = _fpiu_io_in_bits_in1_prev_prev_fractOut_T[75:24]; // @[FPU.scala:277:{28,38}]
wire [2:0] fpiu_io_in_bits_in1_prev_prev_expOut_expCode = fpiu_io_in_bits_in1_prev_prev_expIn[8:6]; // @[FPU.scala:276:18, :279:26]
wire [12:0] _fpiu_io_in_bits_in1_prev_prev_expOut_commonCase_T = {4'h0, fpiu_io_in_bits_in1_prev_prev_expIn} + 13'h800; // @[FPU.scala:276:18, :280:31]
wire [11:0] _fpiu_io_in_bits_in1_prev_prev_expOut_commonCase_T_1 = _fpiu_io_in_bits_in1_prev_prev_expOut_commonCase_T[11:0]; // @[FPU.scala:280:31]
wire [12:0] _fpiu_io_in_bits_in1_prev_prev_expOut_commonCase_T_2 = {1'h0, _fpiu_io_in_bits_in1_prev_prev_expOut_commonCase_T_1} - 13'h100; // @[FPU.scala:280:{31,50}]
wire [11:0] fpiu_io_in_bits_in1_prev_prev_expOut_commonCase = _fpiu_io_in_bits_in1_prev_prev_expOut_commonCase_T_2[11:0]; // @[FPU.scala:280:50]
wire [11:0] _fpiu_io_in_bits_in1_prev_prev_expOut_T_5 = fpiu_io_in_bits_in1_prev_prev_expOut_commonCase; // @[FPU.scala:280:50, :281:97]
wire _fpiu_io_in_bits_in1_prev_prev_expOut_T = fpiu_io_in_bits_in1_prev_prev_expOut_expCode == 3'h0; // @[FPU.scala:279:26, :281:19]
wire _fpiu_io_in_bits_in1_prev_prev_expOut_T_1 = fpiu_io_in_bits_in1_prev_prev_expOut_expCode > 3'h5; // @[FPU.scala:279:26, :281:38]
wire _fpiu_io_in_bits_in1_prev_prev_expOut_T_2 = _fpiu_io_in_bits_in1_prev_prev_expOut_T | _fpiu_io_in_bits_in1_prev_prev_expOut_T_1; // @[FPU.scala:281:{19,27,38}]
wire [8:0] _fpiu_io_in_bits_in1_prev_prev_expOut_T_3 = fpiu_io_in_bits_in1_prev_prev_expOut_commonCase[8:0]; // @[FPU.scala:280:50, :281:69]
wire [11:0] _fpiu_io_in_bits_in1_prev_prev_expOut_T_4 = {fpiu_io_in_bits_in1_prev_prev_expOut_expCode, _fpiu_io_in_bits_in1_prev_prev_expOut_T_3}; // @[FPU.scala:279:26, :281:{49,69}]
wire [11:0] fpiu_io_in_bits_in1_prev_prev_expOut = _fpiu_io_in_bits_in1_prev_prev_expOut_T_2 ? _fpiu_io_in_bits_in1_prev_prev_expOut_T_4 : _fpiu_io_in_bits_in1_prev_prev_expOut_T_5; // @[FPU.scala:281:{10,27,49,97}]
wire [12:0] fpiu_io_in_bits_in1_prev_prev_hi = {fpiu_io_in_bits_in1_prev_prev_sign, fpiu_io_in_bits_in1_prev_prev_expOut}; // @[FPU.scala:274:17, :281:10, :283:8]
wire [64:0] fpiu_io_in_bits_in1_floats_0 = {fpiu_io_in_bits_in1_prev_prev_hi, fpiu_io_in_bits_in1_prev_prev_fractOut}; // @[FPU.scala:277:38, :283:8]
wire [4:0] _fpiu_io_in_bits_in1_prev_isbox_T = io_req_bits_rs1_data_0[64:60]; // @[FPU.scala:332:49]
wire fpiu_io_in_bits_in1_prev_isbox = &_fpiu_io_in_bits_in1_prev_isbox_T; // @[FPU.scala:332:{49,84}]
wire fpiu_io_in_bits_in1_oks_0 = fpiu_io_in_bits_in1_prev_isbox; // @[FPU.scala:332:84, :362:32]
wire fpiu_io_in_bits_in1_truncIdx = _fpiu_io_in_bits_in1_truncIdx_T[0]; // @[package.scala:38:{21,47}]
wire _fpiu_io_in_bits_in1_T = fpiu_io_in_bits_in1_truncIdx; // @[package.scala:38:47, :39:86]
wire _fpiu_io_in_bits_in1_T_1 = _fpiu_io_in_bits_in1_T | fpiu_io_in_bits_in1_oks_0; // @[package.scala:39:{76,86}]
wire fpiu_io_in_bits_in1_truncIdx_1 = _fpiu_io_in_bits_in1_truncIdx_T_1[0]; // @[package.scala:38:{21,47}]
wire _fpiu_io_in_bits_in1_T_2 = fpiu_io_in_bits_in1_truncIdx_1; // @[package.scala:38:47, :39:86]
wire [64:0] _fpiu_io_in_bits_in1_T_3 = _fpiu_io_in_bits_in1_T_2 ? io_req_bits_rs1_data_0 : fpiu_io_in_bits_in1_floats_0; // @[package.scala:39:{76,86}]
wire [64:0] _fpiu_io_in_bits_in1_T_4 = _fpiu_io_in_bits_in1_T_1 ? _fpiu_io_in_bits_in1_T_3 : 65'hE008000000000000; // @[package.scala:39:76]
wire _fpiu_io_in_bits_in2_prev_unswizzled_T = io_req_bits_rs2_data_0[31]; // @[FPU.scala:357:14]
wire _fpiu_io_in_bits_in2_prev_unswizzled_T_1 = io_req_bits_rs2_data_0[52]; // @[FPU.scala:358:14]
wire [30:0] _fpiu_io_in_bits_in2_prev_unswizzled_T_2 = io_req_bits_rs2_data_0[30:0]; // @[FPU.scala:359:14]
wire [1:0] fpiu_io_in_bits_in2_prev_unswizzled_hi = {_fpiu_io_in_bits_in2_prev_unswizzled_T, _fpiu_io_in_bits_in2_prev_unswizzled_T_1}; // @[FPU.scala:356:31, :357:14, :358:14]
wire [32:0] fpiu_io_in_bits_in2_prev_unswizzled = {fpiu_io_in_bits_in2_prev_unswizzled_hi, _fpiu_io_in_bits_in2_prev_unswizzled_T_2}; // @[FPU.scala:356:31, :359:14]
wire fpiu_io_in_bits_in2_prev_prev_sign = fpiu_io_in_bits_in2_prev_unswizzled[32]; // @[FPU.scala:274:17, :356:31]
wire [22:0] fpiu_io_in_bits_in2_prev_prev_fractIn = fpiu_io_in_bits_in2_prev_unswizzled[22:0]; // @[FPU.scala:275:20, :356:31]
wire [8:0] fpiu_io_in_bits_in2_prev_prev_expIn = fpiu_io_in_bits_in2_prev_unswizzled[31:23]; // @[FPU.scala:276:18, :356:31]
wire [75:0] _fpiu_io_in_bits_in2_prev_prev_fractOut_T = {fpiu_io_in_bits_in2_prev_prev_fractIn, 53'h0}; // @[FPU.scala:275:20, :277:28]
wire [51:0] fpiu_io_in_bits_in2_prev_prev_fractOut = _fpiu_io_in_bits_in2_prev_prev_fractOut_T[75:24]; // @[FPU.scala:277:{28,38}]
wire [2:0] fpiu_io_in_bits_in2_prev_prev_expOut_expCode = fpiu_io_in_bits_in2_prev_prev_expIn[8:6]; // @[FPU.scala:276:18, :279:26]
wire [12:0] _fpiu_io_in_bits_in2_prev_prev_expOut_commonCase_T = {4'h0, fpiu_io_in_bits_in2_prev_prev_expIn} + 13'h800; // @[FPU.scala:276:18, :280:31]
wire [11:0] _fpiu_io_in_bits_in2_prev_prev_expOut_commonCase_T_1 = _fpiu_io_in_bits_in2_prev_prev_expOut_commonCase_T[11:0]; // @[FPU.scala:280:31]
wire [12:0] _fpiu_io_in_bits_in2_prev_prev_expOut_commonCase_T_2 = {1'h0, _fpiu_io_in_bits_in2_prev_prev_expOut_commonCase_T_1} - 13'h100; // @[FPU.scala:280:{31,50}]
wire [11:0] fpiu_io_in_bits_in2_prev_prev_expOut_commonCase = _fpiu_io_in_bits_in2_prev_prev_expOut_commonCase_T_2[11:0]; // @[FPU.scala:280:50]
wire [11:0] _fpiu_io_in_bits_in2_prev_prev_expOut_T_5 = fpiu_io_in_bits_in2_prev_prev_expOut_commonCase; // @[FPU.scala:280:50, :281:97]
wire _fpiu_io_in_bits_in2_prev_prev_expOut_T = fpiu_io_in_bits_in2_prev_prev_expOut_expCode == 3'h0; // @[FPU.scala:279:26, :281:19]
wire _fpiu_io_in_bits_in2_prev_prev_expOut_T_1 = fpiu_io_in_bits_in2_prev_prev_expOut_expCode > 3'h5; // @[FPU.scala:279:26, :281:38]
wire _fpiu_io_in_bits_in2_prev_prev_expOut_T_2 = _fpiu_io_in_bits_in2_prev_prev_expOut_T | _fpiu_io_in_bits_in2_prev_prev_expOut_T_1; // @[FPU.scala:281:{19,27,38}]
wire [8:0] _fpiu_io_in_bits_in2_prev_prev_expOut_T_3 = fpiu_io_in_bits_in2_prev_prev_expOut_commonCase[8:0]; // @[FPU.scala:280:50, :281:69]
wire [11:0] _fpiu_io_in_bits_in2_prev_prev_expOut_T_4 = {fpiu_io_in_bits_in2_prev_prev_expOut_expCode, _fpiu_io_in_bits_in2_prev_prev_expOut_T_3}; // @[FPU.scala:279:26, :281:{49,69}]
wire [11:0] fpiu_io_in_bits_in2_prev_prev_expOut = _fpiu_io_in_bits_in2_prev_prev_expOut_T_2 ? _fpiu_io_in_bits_in2_prev_prev_expOut_T_4 : _fpiu_io_in_bits_in2_prev_prev_expOut_T_5; // @[FPU.scala:281:{10,27,49,97}]
wire [12:0] fpiu_io_in_bits_in2_prev_prev_hi = {fpiu_io_in_bits_in2_prev_prev_sign, fpiu_io_in_bits_in2_prev_prev_expOut}; // @[FPU.scala:274:17, :281:10, :283:8]
wire [64:0] fpiu_io_in_bits_in2_floats_0 = {fpiu_io_in_bits_in2_prev_prev_hi, fpiu_io_in_bits_in2_prev_prev_fractOut}; // @[FPU.scala:277:38, :283:8]
wire [4:0] _fpiu_io_in_bits_in2_prev_isbox_T = io_req_bits_rs2_data_0[64:60]; // @[FPU.scala:332:49]
wire fpiu_io_in_bits_in2_prev_isbox = &_fpiu_io_in_bits_in2_prev_isbox_T; // @[FPU.scala:332:{49,84}]
wire fpiu_io_in_bits_in2_oks_0 = fpiu_io_in_bits_in2_prev_isbox; // @[FPU.scala:332:84, :362:32]
wire fpiu_io_in_bits_in2_truncIdx = _fpiu_io_in_bits_in2_truncIdx_T[0]; // @[package.scala:38:{21,47}]
wire _fpiu_io_in_bits_in2_T = fpiu_io_in_bits_in2_truncIdx; // @[package.scala:38:47, :39:86]
wire _fpiu_io_in_bits_in2_T_1 = _fpiu_io_in_bits_in2_T | fpiu_io_in_bits_in2_oks_0; // @[package.scala:39:{76,86}]
wire fpiu_io_in_bits_in2_truncIdx_1 = _fpiu_io_in_bits_in2_truncIdx_T_1[0]; // @[package.scala:38:{21,47}]
wire _fpiu_io_in_bits_in2_T_2 = fpiu_io_in_bits_in2_truncIdx_1; // @[package.scala:38:47, :39:86]
wire [64:0] _fpiu_io_in_bits_in2_T_3 = _fpiu_io_in_bits_in2_T_2 ? io_req_bits_rs2_data_0 : fpiu_io_in_bits_in2_floats_0; // @[package.scala:39:{76,86}]
wire [64:0] _fpiu_io_in_bits_in2_T_4 = _fpiu_io_in_bits_in2_T_1 ? _fpiu_io_in_bits_in2_T_3 : 65'hE008000000000000; // @[package.scala:39:76]
wire [15:0] _r_req_valid_T = io_brupdate_b1_mispredict_mask_0 & io_req_bits_uop_br_mask_0; // @[util.scala:126:51]
wire _r_req_valid_T_1 = |_r_req_valid_T; // @[util.scala:126:{51,59}]
wire _r_req_valid_T_2 = _r_req_valid_T_1 | io_kill_0; // @[util.scala:61:61, :126:59]
wire _r_req_valid_T_3 = ~_r_req_valid_T_2; // @[util.scala:61:61]
wire [15:0] _r_req_bits_out_uop_br_mask_T_1; // @[util.scala:97:21]
wire [15:0] r_req_bits_out_uop_br_mask; // @[util.scala:109:23]
wire [15:0] _r_req_bits_out_uop_br_mask_T = ~io_brupdate_b1_resolve_mask_0; // @[util.scala:97:23]
assign _r_req_bits_out_uop_br_mask_T_1 = io_req_bits_uop_br_mask_0 & _r_req_bits_out_uop_br_mask_T; // @[util.scala:97:{21,23}]
assign r_req_bits_out_uop_br_mask = _r_req_bits_out_uop_br_mask_T_1; // @[util.scala:97:21, :109:23]
wire _divSqrt_io_inValid_T = r_sigs_typeTagOut == 2'h0; // @[fdiv.scala:37:19, :69:47]
wire _divSqrt_io_inValid_T_1 = r_req_valid & _divSqrt_io_inValid_T; // @[fdiv.scala:36:18, :69:{39,47}]
wire _GEN_0 = r_sigs_div | r_sigs_sqrt; // @[fdiv.scala:37:19, :69:80]
wire _divSqrt_io_inValid_T_2; // @[fdiv.scala:69:80]
assign _divSqrt_io_inValid_T_2 = _GEN_0; // @[fdiv.scala:69:80]
wire _divSqrt_io_inValid_T_10; // @[fdiv.scala:69:80]
assign _divSqrt_io_inValid_T_10 = _GEN_0; // @[fdiv.scala:69:80]
wire _divSqrt_io_inValid_T_3 = _divSqrt_io_inValid_T_1 & _divSqrt_io_inValid_T_2; // @[fdiv.scala:69:{39,65,80}]
wire _divSqrt_io_inValid_T_4 = ~divSqrt_inFlight; // @[fdiv.scala:34:34, :47:35, :69:99]
wire _divSqrt_io_inValid_T_5 = _divSqrt_io_inValid_T_3 & _divSqrt_io_inValid_T_4; // @[fdiv.scala:69:{65,96,99}]
wire _divSqrt_io_inValid_T_6 = ~r_out_valid; // @[fdiv.scala:39:24, :47:56, :69:120]
wire _divSqrt_io_inValid_T_7 = _divSqrt_io_inValid_T_5 & _divSqrt_io_inValid_T_6; // @[fdiv.scala:69:{96,117,120}]
wire divSqrt_io_a_sign = _fpiu_io_out_bits_in_in1[64]; // @[FPU.scala:274:17]
wire [51:0] divSqrt_io_a_fractIn = _fpiu_io_out_bits_in_in1[51:0]; // @[FPU.scala:275:20]
wire [11:0] divSqrt_io_a_expIn = _fpiu_io_out_bits_in_in1[63:52]; // @[FPU.scala:276:18]
wire [75:0] _divSqrt_io_a_fractOut_T = {divSqrt_io_a_fractIn, 24'h0}; // @[FPU.scala:275:20, :277:28]
wire [22:0] divSqrt_io_a_fractOut = _divSqrt_io_a_fractOut_T[75:53]; // @[FPU.scala:277:{28,38}]
wire [2:0] divSqrt_io_a_expOut_expCode = divSqrt_io_a_expIn[11:9]; // @[FPU.scala:276:18, :279:26]
wire [12:0] _divSqrt_io_a_expOut_commonCase_T = {1'h0, divSqrt_io_a_expIn} + 13'h100; // @[FPU.scala:276:18, :280:31]
wire [11:0] _divSqrt_io_a_expOut_commonCase_T_1 = _divSqrt_io_a_expOut_commonCase_T[11:0]; // @[FPU.scala:280:31]
wire [12:0] _divSqrt_io_a_expOut_commonCase_T_2 = {1'h0, _divSqrt_io_a_expOut_commonCase_T_1} - 13'h800; // @[FPU.scala:280:{31,50}]
wire [11:0] divSqrt_io_a_expOut_commonCase = _divSqrt_io_a_expOut_commonCase_T_2[11:0]; // @[FPU.scala:280:50]
wire _divSqrt_io_a_expOut_T = divSqrt_io_a_expOut_expCode == 3'h0; // @[FPU.scala:279:26, :281:19]
wire _divSqrt_io_a_expOut_T_1 = divSqrt_io_a_expOut_expCode > 3'h5; // @[FPU.scala:279:26, :281:38]
wire _divSqrt_io_a_expOut_T_2 = _divSqrt_io_a_expOut_T | _divSqrt_io_a_expOut_T_1; // @[FPU.scala:281:{19,27,38}]
wire [5:0] _divSqrt_io_a_expOut_T_3 = divSqrt_io_a_expOut_commonCase[5:0]; // @[FPU.scala:280:50, :281:69]
wire [8:0] _divSqrt_io_a_expOut_T_4 = {divSqrt_io_a_expOut_expCode, _divSqrt_io_a_expOut_T_3}; // @[FPU.scala:279:26, :281:{49,69}]
wire [8:0] _divSqrt_io_a_expOut_T_5 = divSqrt_io_a_expOut_commonCase[8:0]; // @[FPU.scala:280:50, :281:97]
wire [8:0] divSqrt_io_a_expOut = _divSqrt_io_a_expOut_T_2 ? _divSqrt_io_a_expOut_T_4 : _divSqrt_io_a_expOut_T_5; // @[FPU.scala:281:{10,27,49,97}]
wire [9:0] divSqrt_io_a_hi = {divSqrt_io_a_sign, divSqrt_io_a_expOut}; // @[FPU.scala:274:17, :281:10, :283:8]
wire [32:0] _divSqrt_io_a_T = {divSqrt_io_a_hi, divSqrt_io_a_fractOut}; // @[FPU.scala:277:38, :283:8]
wire divSqrt_io_b_sign = _fpiu_io_out_bits_in_in2[64]; // @[FPU.scala:274:17]
wire [51:0] divSqrt_io_b_fractIn = _fpiu_io_out_bits_in_in2[51:0]; // @[FPU.scala:275:20]
wire [11:0] divSqrt_io_b_expIn = _fpiu_io_out_bits_in_in2[63:52]; // @[FPU.scala:276:18]
wire [75:0] _divSqrt_io_b_fractOut_T = {divSqrt_io_b_fractIn, 24'h0}; // @[FPU.scala:275:20, :277:28]
wire [22:0] divSqrt_io_b_fractOut = _divSqrt_io_b_fractOut_T[75:53]; // @[FPU.scala:277:{28,38}]
wire [2:0] divSqrt_io_b_expOut_expCode = divSqrt_io_b_expIn[11:9]; // @[FPU.scala:276:18, :279:26]
wire [12:0] _divSqrt_io_b_expOut_commonCase_T = {1'h0, divSqrt_io_b_expIn} + 13'h100; // @[FPU.scala:276:18, :280:31]
wire [11:0] _divSqrt_io_b_expOut_commonCase_T_1 = _divSqrt_io_b_expOut_commonCase_T[11:0]; // @[FPU.scala:280:31]
wire [12:0] _divSqrt_io_b_expOut_commonCase_T_2 = {1'h0, _divSqrt_io_b_expOut_commonCase_T_1} - 13'h800; // @[FPU.scala:280:{31,50}]
wire [11:0] divSqrt_io_b_expOut_commonCase = _divSqrt_io_b_expOut_commonCase_T_2[11:0]; // @[FPU.scala:280:50]
wire _divSqrt_io_b_expOut_T = divSqrt_io_b_expOut_expCode == 3'h0; // @[FPU.scala:279:26, :281:19]
wire _divSqrt_io_b_expOut_T_1 = divSqrt_io_b_expOut_expCode > 3'h5; // @[FPU.scala:279:26, :281:38]
wire _divSqrt_io_b_expOut_T_2 = _divSqrt_io_b_expOut_T | _divSqrt_io_b_expOut_T_1; // @[FPU.scala:281:{19,27,38}]
wire [5:0] _divSqrt_io_b_expOut_T_3 = divSqrt_io_b_expOut_commonCase[5:0]; // @[FPU.scala:280:50, :281:69]
wire [8:0] _divSqrt_io_b_expOut_T_4 = {divSqrt_io_b_expOut_expCode, _divSqrt_io_b_expOut_T_3}; // @[FPU.scala:279:26, :281:{49,69}]
wire [8:0] _divSqrt_io_b_expOut_T_5 = divSqrt_io_b_expOut_commonCase[8:0]; // @[FPU.scala:280:50, :281:97]
wire [8:0] divSqrt_io_b_expOut = _divSqrt_io_b_expOut_T_2 ? _divSqrt_io_b_expOut_T_4 : _divSqrt_io_b_expOut_T_5; // @[FPU.scala:281:{10,27,49,97}]
wire [9:0] divSqrt_io_b_hi = {divSqrt_io_b_sign, divSqrt_io_b_expOut}; // @[FPU.scala:274:17, :281:10, :283:8]
wire [32:0] _divSqrt_io_b_T = {divSqrt_io_b_hi, divSqrt_io_b_fractOut}; // @[FPU.scala:277:38, :283:8]
wire _r_out_valid_T_2 = ~kill; // @[util.scala:61:61]
wire _r_out_valid_T_3 = r_req_valid & _r_out_valid_T_2; // @[fdiv.scala:36:18, :77:{34,37}]
wire _r_out_wdata_opts_bigger_swizzledNaN_T_1 = _divSqrt_io_out[31]; // @[FPU.scala:340:8]
wire _r_out_wdata_opts_bigger_swizzledNaN_T_2 = _divSqrt_io_out[32]; // @[FPU.scala:342:8]
wire [30:0] _r_out_wdata_opts_bigger_swizzledNaN_T_3 = _divSqrt_io_out[30:0]; // @[FPU.scala:343:8]
wire [20:0] r_out_wdata_opts_bigger_swizzledNaN_lo_hi = {20'hFFFFF, _r_out_wdata_opts_bigger_swizzledNaN_T_2}; // @[FPU.scala:336:26, :342:8]
wire [51:0] r_out_wdata_opts_bigger_swizzledNaN_lo = {r_out_wdata_opts_bigger_swizzledNaN_lo_hi, _r_out_wdata_opts_bigger_swizzledNaN_T_3}; // @[FPU.scala:336:26, :343:8]
wire [7:0] r_out_wdata_opts_bigger_swizzledNaN_hi_lo = {7'h7F, _r_out_wdata_opts_bigger_swizzledNaN_T_1}; // @[FPU.scala:336:26, :340:8]
wire [12:0] r_out_wdata_opts_bigger_swizzledNaN_hi = {5'h1F, r_out_wdata_opts_bigger_swizzledNaN_hi_lo}; // @[FPU.scala:336:26]
wire [64:0] r_out_wdata_opts_bigger_swizzledNaN = {r_out_wdata_opts_bigger_swizzledNaN_hi, r_out_wdata_opts_bigger_swizzledNaN_lo}; // @[FPU.scala:336:26]
wire [64:0] r_out_wdata_opts_bigger = r_out_wdata_opts_bigger_swizzledNaN; // @[FPU.scala:336:26, :344:8]
wire [64:0] r_out_wdata_opts_0 = r_out_wdata_opts_bigger; // @[FPU.scala:344:8, :398:14]
wire r_out_wdata_truncIdx = _r_out_wdata_truncIdx_T[0]; // @[package.scala:38:{21,47}]
wire _r_out_wdata_T = r_out_wdata_truncIdx; // @[package.scala:38:47, :39:86]
wire [64:0] _r_out_wdata_T_1 = _r_out_wdata_T ? {32'h0, _divSqrt_io_out} : r_out_wdata_opts_0; // @[package.scala:39:{76,86}]
wire _divSqrt_io_inValid_T_8 = r_sigs_typeTagOut == 2'h1; // @[fdiv.scala:37:19, :69:47]
wire _divSqrt_io_inValid_T_9 = r_req_valid & _divSqrt_io_inValid_T_8; // @[fdiv.scala:36:18, :69:{39,47}]
wire _divSqrt_io_inValid_T_11 = _divSqrt_io_inValid_T_9 & _divSqrt_io_inValid_T_10; // @[fdiv.scala:69:{39,65,80}]
wire _divSqrt_io_inValid_T_12 = ~divSqrt_inFlight; // @[fdiv.scala:34:34, :47:35, :69:99]
wire _divSqrt_io_inValid_T_13 = _divSqrt_io_inValid_T_11 & _divSqrt_io_inValid_T_12; // @[fdiv.scala:69:{65,96,99}]
wire _divSqrt_io_inValid_T_14 = ~r_out_valid; // @[fdiv.scala:39:24, :47:56, :69:120]
wire _divSqrt_io_inValid_T_15 = _divSqrt_io_inValid_T_13 & _divSqrt_io_inValid_T_14; // @[fdiv.scala:69:{96,117,120}]
assign divSqrt_inFlight = ~_divSqrt_1_io_inReady | _divSqrt_1_io_outValid_div | _divSqrt_1_io_outValid_sqrt | ~_divSqrt_io_inReady | _divSqrt_io_outValid_div | _divSqrt_io_outValid_sqrt; // @[fdiv.scala:34:34, :68:25, :75:{11,31,58,87,106}]
wire _r_out_valid_T_4 = ~kill; // @[util.scala:61:61]
wire _r_out_valid_T_5 = r_req_valid & _r_out_valid_T_4; // @[fdiv.scala:36:18, :77:{34,37}]
wire [64:0] r_out_wdata_maskedNaN = _divSqrt_1_io_out & 65'h1EFEFFFFFFFFFFFFF; // @[FPU.scala:413:25]
wire [2:0] _r_out_wdata_T_2 = _divSqrt_1_io_out[63:61]; // @[FPU.scala:249:25]
wire _r_out_wdata_T_3 = &_r_out_wdata_T_2; // @[FPU.scala:249:{25,56}]
wire [64:0] _r_out_wdata_T_4 = _r_out_wdata_T_3 ? r_out_wdata_maskedNaN : _divSqrt_1_io_out; // @[FPU.scala:249:56, :413:25, :414:10]
wire _r_out_wdata_opts_bigger_swizzledNaN_T_5 = _r_out_wdata_T_4[31]; // @[FPU.scala:340:8, :414:10]
wire _r_out_wdata_opts_bigger_swizzledNaN_T_6 = _r_out_wdata_T_4[32]; // @[FPU.scala:342:8, :414:10]
wire [30:0] _r_out_wdata_opts_bigger_swizzledNaN_T_7 = _r_out_wdata_T_4[30:0]; // @[FPU.scala:343:8, :414:10]
wire [20:0] r_out_wdata_opts_bigger_swizzledNaN_lo_hi_1 = {20'hFFFFF, _r_out_wdata_opts_bigger_swizzledNaN_T_6}; // @[FPU.scala:336:26, :342:8]
wire [51:0] r_out_wdata_opts_bigger_swizzledNaN_lo_1 = {r_out_wdata_opts_bigger_swizzledNaN_lo_hi_1, _r_out_wdata_opts_bigger_swizzledNaN_T_7}; // @[FPU.scala:336:26, :343:8]
wire [7:0] r_out_wdata_opts_bigger_swizzledNaN_hi_lo_1 = {7'h7F, _r_out_wdata_opts_bigger_swizzledNaN_T_5}; // @[FPU.scala:336:26, :340:8]
wire [12:0] r_out_wdata_opts_bigger_swizzledNaN_hi_1 = {5'h1F, r_out_wdata_opts_bigger_swizzledNaN_hi_lo_1}; // @[FPU.scala:336:26]
wire [64:0] r_out_wdata_opts_bigger_swizzledNaN_1 = {r_out_wdata_opts_bigger_swizzledNaN_hi_1, r_out_wdata_opts_bigger_swizzledNaN_lo_1}; // @[FPU.scala:336:26]
wire [64:0] r_out_wdata_opts_bigger_1 = r_out_wdata_opts_bigger_swizzledNaN_1; // @[FPU.scala:336:26, :344:8]
wire [64:0] r_out_wdata_opts_0_1 = r_out_wdata_opts_bigger_1; // @[FPU.scala:344:8, :398:14]
wire r_out_wdata_truncIdx_1 = _r_out_wdata_truncIdx_T_1[0]; // @[package.scala:38:{21,47}]
wire _r_out_wdata_T_5 = r_out_wdata_truncIdx_1; // @[package.scala:38:47, :39:86]
wire [64:0] _r_out_wdata_T_6 = _r_out_wdata_T_5 ? _r_out_wdata_T_4 : r_out_wdata_opts_0_1; // @[package.scala:39:{76,86}]
assign _io_resp_valid_T = r_out_valid & r_req_valid; // @[fdiv.scala:36:18, :39:24, :83:32]
assign io_resp_valid_0 = _io_resp_valid_T; // @[fdiv.scala:28:7, :83:32]
wire _T = io_req_ready_0 & io_req_valid_0; // @[Decoupled.scala:51:35]
wire _T_4 = _divSqrt_io_outValid_div | _divSqrt_io_outValid_sqrt; // @[fdiv.scala:68:25, :76:35]
wire _T_8 = _divSqrt_1_io_outValid_div | _divSqrt_1_io_outValid_sqrt; // @[fdiv.scala:68:25, :76:35]
wire _T_11 = io_resp_ready_0 & io_resp_valid_0 | reset; // @[Decoupled.scala:51:35]
always @(posedge clock) begin // @[fdiv.scala:28:7]
r_req_valid <= ~_T_11 & (_T ? _r_req_valid_T_3 : r_req_out_valid); // @[Decoupled.scala:51:35]
r_req_bits_uop_inst <= _T ? r_req_bits_out_uop_inst : r_req_out_bits_uop_inst; // @[Decoupled.scala:51:35]
r_req_bits_uop_debug_inst <= _T ? r_req_bits_out_uop_debug_inst : r_req_out_bits_uop_debug_inst; // @[Decoupled.scala:51:35]
r_req_bits_uop_is_rvc <= _T ? r_req_bits_out_uop_is_rvc : r_req_out_bits_uop_is_rvc; // @[Decoupled.scala:51:35]
r_req_bits_uop_debug_pc <= _T ? r_req_bits_out_uop_debug_pc : r_req_out_bits_uop_debug_pc; // @[Decoupled.scala:51:35]
r_req_bits_uop_iq_type_0 <= _T ? r_req_bits_out_uop_iq_type_0 : r_req_out_bits_uop_iq_type_0; // @[Decoupled.scala:51:35]
r_req_bits_uop_iq_type_1 <= _T ? r_req_bits_out_uop_iq_type_1 : r_req_out_bits_uop_iq_type_1; // @[Decoupled.scala:51:35]
r_req_bits_uop_iq_type_2 <= _T ? r_req_bits_out_uop_iq_type_2 : r_req_out_bits_uop_iq_type_2; // @[Decoupled.scala:51:35]
r_req_bits_uop_iq_type_3 <= _T ? r_req_bits_out_uop_iq_type_3 : r_req_out_bits_uop_iq_type_3; // @[Decoupled.scala:51:35]
r_req_bits_uop_fu_code_0 <= _T ? r_req_bits_out_uop_fu_code_0 : r_req_out_bits_uop_fu_code_0; // @[Decoupled.scala:51:35]
r_req_bits_uop_fu_code_1 <= _T ? r_req_bits_out_uop_fu_code_1 : r_req_out_bits_uop_fu_code_1; // @[Decoupled.scala:51:35]
r_req_bits_uop_fu_code_2 <= _T ? r_req_bits_out_uop_fu_code_2 : r_req_out_bits_uop_fu_code_2; // @[Decoupled.scala:51:35]
r_req_bits_uop_fu_code_3 <= _T ? r_req_bits_out_uop_fu_code_3 : r_req_out_bits_uop_fu_code_3; // @[Decoupled.scala:51:35]
r_req_bits_uop_fu_code_4 <= _T ? r_req_bits_out_uop_fu_code_4 : r_req_out_bits_uop_fu_code_4; // @[Decoupled.scala:51:35]
r_req_bits_uop_fu_code_5 <= _T ? r_req_bits_out_uop_fu_code_5 : r_req_out_bits_uop_fu_code_5; // @[Decoupled.scala:51:35]
r_req_bits_uop_fu_code_6 <= _T ? r_req_bits_out_uop_fu_code_6 : r_req_out_bits_uop_fu_code_6; // @[Decoupled.scala:51:35]
r_req_bits_uop_fu_code_7 <= _T ? r_req_bits_out_uop_fu_code_7 : r_req_out_bits_uop_fu_code_7; // @[Decoupled.scala:51:35]
r_req_bits_uop_fu_code_8 <= _T ? r_req_bits_out_uop_fu_code_8 : r_req_out_bits_uop_fu_code_8; // @[Decoupled.scala:51:35]
r_req_bits_uop_fu_code_9 <= _T ? r_req_bits_out_uop_fu_code_9 : r_req_out_bits_uop_fu_code_9; // @[Decoupled.scala:51:35]
r_req_bits_uop_iw_issued <= _T ? r_req_bits_out_uop_iw_issued : r_req_out_bits_uop_iw_issued; // @[Decoupled.scala:51:35]
r_req_bits_uop_iw_issued_partial_agen <= _T ? r_req_bits_out_uop_iw_issued_partial_agen : r_req_out_bits_uop_iw_issued_partial_agen; // @[Decoupled.scala:51:35]
r_req_bits_uop_iw_issued_partial_dgen <= _T ? r_req_bits_out_uop_iw_issued_partial_dgen : r_req_out_bits_uop_iw_issued_partial_dgen; // @[Decoupled.scala:51:35]
r_req_bits_uop_iw_p1_speculative_child <= _T ? r_req_bits_out_uop_iw_p1_speculative_child : r_req_out_bits_uop_iw_p1_speculative_child; // @[Decoupled.scala:51:35]
r_req_bits_uop_iw_p2_speculative_child <= _T ? r_req_bits_out_uop_iw_p2_speculative_child : r_req_out_bits_uop_iw_p2_speculative_child; // @[Decoupled.scala:51:35]
r_req_bits_uop_iw_p1_bypass_hint <= _T ? r_req_bits_out_uop_iw_p1_bypass_hint : r_req_out_bits_uop_iw_p1_bypass_hint; // @[Decoupled.scala:51:35]
r_req_bits_uop_iw_p2_bypass_hint <= _T ? r_req_bits_out_uop_iw_p2_bypass_hint : r_req_out_bits_uop_iw_p2_bypass_hint; // @[Decoupled.scala:51:35]
r_req_bits_uop_iw_p3_bypass_hint <= _T ? r_req_bits_out_uop_iw_p3_bypass_hint : r_req_out_bits_uop_iw_p3_bypass_hint; // @[Decoupled.scala:51:35]
r_req_bits_uop_dis_col_sel <= _T ? r_req_bits_out_uop_dis_col_sel : r_req_out_bits_uop_dis_col_sel; // @[Decoupled.scala:51:35]
r_req_bits_uop_br_mask <= _T ? r_req_bits_out_uop_br_mask : r_req_out_bits_uop_br_mask; // @[Decoupled.scala:51:35]
r_req_bits_uop_br_tag <= _T ? r_req_bits_out_uop_br_tag : r_req_out_bits_uop_br_tag; // @[Decoupled.scala:51:35]
r_req_bits_uop_br_type <= _T ? r_req_bits_out_uop_br_type : r_req_out_bits_uop_br_type; // @[Decoupled.scala:51:35]
r_req_bits_uop_is_sfb <= _T ? r_req_bits_out_uop_is_sfb : r_req_out_bits_uop_is_sfb; // @[Decoupled.scala:51:35]
r_req_bits_uop_is_fence <= _T ? r_req_bits_out_uop_is_fence : r_req_out_bits_uop_is_fence; // @[Decoupled.scala:51:35]
r_req_bits_uop_is_fencei <= _T ? r_req_bits_out_uop_is_fencei : r_req_out_bits_uop_is_fencei; // @[Decoupled.scala:51:35]
r_req_bits_uop_is_sfence <= _T ? r_req_bits_out_uop_is_sfence : r_req_out_bits_uop_is_sfence; // @[Decoupled.scala:51:35]
r_req_bits_uop_is_amo <= _T ? r_req_bits_out_uop_is_amo : r_req_out_bits_uop_is_amo; // @[Decoupled.scala:51:35]
r_req_bits_uop_is_eret <= _T ? r_req_bits_out_uop_is_eret : r_req_out_bits_uop_is_eret; // @[Decoupled.scala:51:35]
r_req_bits_uop_is_sys_pc2epc <= _T ? r_req_bits_out_uop_is_sys_pc2epc : r_req_out_bits_uop_is_sys_pc2epc; // @[Decoupled.scala:51:35]
r_req_bits_uop_is_rocc <= _T ? r_req_bits_out_uop_is_rocc : r_req_out_bits_uop_is_rocc; // @[Decoupled.scala:51:35]
r_req_bits_uop_is_mov <= _T ? r_req_bits_out_uop_is_mov : r_req_out_bits_uop_is_mov; // @[Decoupled.scala:51:35]
r_req_bits_uop_ftq_idx <= _T ? r_req_bits_out_uop_ftq_idx : r_req_out_bits_uop_ftq_idx; // @[Decoupled.scala:51:35]
r_req_bits_uop_edge_inst <= _T ? r_req_bits_out_uop_edge_inst : r_req_out_bits_uop_edge_inst; // @[Decoupled.scala:51:35]
r_req_bits_uop_pc_lob <= _T ? r_req_bits_out_uop_pc_lob : r_req_out_bits_uop_pc_lob; // @[Decoupled.scala:51:35]
r_req_bits_uop_taken <= _T ? r_req_bits_out_uop_taken : r_req_out_bits_uop_taken; // @[Decoupled.scala:51:35]
r_req_bits_uop_imm_rename <= _T ? r_req_bits_out_uop_imm_rename : r_req_out_bits_uop_imm_rename; // @[Decoupled.scala:51:35]
r_req_bits_uop_imm_sel <= _T ? r_req_bits_out_uop_imm_sel : r_req_out_bits_uop_imm_sel; // @[Decoupled.scala:51:35]
r_req_bits_uop_pimm <= _T ? r_req_bits_out_uop_pimm : r_req_out_bits_uop_pimm; // @[Decoupled.scala:51:35]
r_req_bits_uop_imm_packed <= _T ? r_req_bits_out_uop_imm_packed : r_req_out_bits_uop_imm_packed; // @[Decoupled.scala:51:35]
r_req_bits_uop_op1_sel <= _T ? r_req_bits_out_uop_op1_sel : r_req_out_bits_uop_op1_sel; // @[Decoupled.scala:51:35]
r_req_bits_uop_op2_sel <= _T ? r_req_bits_out_uop_op2_sel : r_req_out_bits_uop_op2_sel; // @[Decoupled.scala:51:35]
r_req_bits_uop_fp_ctrl_ldst <= _T ? r_req_bits_out_uop_fp_ctrl_ldst : r_req_out_bits_uop_fp_ctrl_ldst; // @[Decoupled.scala:51:35]
r_req_bits_uop_fp_ctrl_wen <= _T ? r_req_bits_out_uop_fp_ctrl_wen : r_req_out_bits_uop_fp_ctrl_wen; // @[Decoupled.scala:51:35]
r_req_bits_uop_fp_ctrl_ren1 <= _T ? r_req_bits_out_uop_fp_ctrl_ren1 : r_req_out_bits_uop_fp_ctrl_ren1; // @[Decoupled.scala:51:35]
r_req_bits_uop_fp_ctrl_ren2 <= _T ? r_req_bits_out_uop_fp_ctrl_ren2 : r_req_out_bits_uop_fp_ctrl_ren2; // @[Decoupled.scala:51:35]
r_req_bits_uop_fp_ctrl_ren3 <= _T ? r_req_bits_out_uop_fp_ctrl_ren3 : r_req_out_bits_uop_fp_ctrl_ren3; // @[Decoupled.scala:51:35]
r_req_bits_uop_fp_ctrl_swap12 <= _T ? r_req_bits_out_uop_fp_ctrl_swap12 : r_req_out_bits_uop_fp_ctrl_swap12; // @[Decoupled.scala:51:35]
r_req_bits_uop_fp_ctrl_swap23 <= _T ? r_req_bits_out_uop_fp_ctrl_swap23 : r_req_out_bits_uop_fp_ctrl_swap23; // @[Decoupled.scala:51:35]
r_req_bits_uop_fp_ctrl_typeTagIn <= _T ? r_req_bits_out_uop_fp_ctrl_typeTagIn : r_req_out_bits_uop_fp_ctrl_typeTagIn; // @[Decoupled.scala:51:35]
r_req_bits_uop_fp_ctrl_typeTagOut <= _T ? r_req_bits_out_uop_fp_ctrl_typeTagOut : r_req_out_bits_uop_fp_ctrl_typeTagOut; // @[Decoupled.scala:51:35]
r_req_bits_uop_fp_ctrl_fromint <= _T ? r_req_bits_out_uop_fp_ctrl_fromint : r_req_out_bits_uop_fp_ctrl_fromint; // @[Decoupled.scala:51:35]
r_req_bits_uop_fp_ctrl_toint <= _T ? r_req_bits_out_uop_fp_ctrl_toint : r_req_out_bits_uop_fp_ctrl_toint; // @[Decoupled.scala:51:35]
r_req_bits_uop_fp_ctrl_fastpipe <= _T ? r_req_bits_out_uop_fp_ctrl_fastpipe : r_req_out_bits_uop_fp_ctrl_fastpipe; // @[Decoupled.scala:51:35]
r_req_bits_uop_fp_ctrl_fma <= _T ? r_req_bits_out_uop_fp_ctrl_fma : r_req_out_bits_uop_fp_ctrl_fma; // @[Decoupled.scala:51:35]
r_req_bits_uop_fp_ctrl_div <= _T ? r_req_bits_out_uop_fp_ctrl_div : r_req_out_bits_uop_fp_ctrl_div; // @[Decoupled.scala:51:35]
r_req_bits_uop_fp_ctrl_sqrt <= _T ? r_req_bits_out_uop_fp_ctrl_sqrt : r_req_out_bits_uop_fp_ctrl_sqrt; // @[Decoupled.scala:51:35]
r_req_bits_uop_fp_ctrl_wflags <= _T ? r_req_bits_out_uop_fp_ctrl_wflags : r_req_out_bits_uop_fp_ctrl_wflags; // @[Decoupled.scala:51:35]
r_req_bits_uop_fp_ctrl_vec <= _T ? r_req_bits_out_uop_fp_ctrl_vec : r_req_out_bits_uop_fp_ctrl_vec; // @[Decoupled.scala:51:35]
r_req_bits_uop_rob_idx <= _T ? r_req_bits_out_uop_rob_idx : r_req_out_bits_uop_rob_idx; // @[Decoupled.scala:51:35]
r_req_bits_uop_ldq_idx <= _T ? r_req_bits_out_uop_ldq_idx : r_req_out_bits_uop_ldq_idx; // @[Decoupled.scala:51:35]
r_req_bits_uop_stq_idx <= _T ? r_req_bits_out_uop_stq_idx : r_req_out_bits_uop_stq_idx; // @[Decoupled.scala:51:35]
r_req_bits_uop_rxq_idx <= _T ? r_req_bits_out_uop_rxq_idx : r_req_out_bits_uop_rxq_idx; // @[Decoupled.scala:51:35]
r_req_bits_uop_pdst <= _T ? r_req_bits_out_uop_pdst : r_req_out_bits_uop_pdst; // @[Decoupled.scala:51:35]
r_req_bits_uop_prs1 <= _T ? r_req_bits_out_uop_prs1 : r_req_out_bits_uop_prs1; // @[Decoupled.scala:51:35]
r_req_bits_uop_prs2 <= _T ? r_req_bits_out_uop_prs2 : r_req_out_bits_uop_prs2; // @[Decoupled.scala:51:35]
r_req_bits_uop_prs3 <= _T ? r_req_bits_out_uop_prs3 : r_req_out_bits_uop_prs3; // @[Decoupled.scala:51:35]
r_req_bits_uop_ppred <= _T ? r_req_bits_out_uop_ppred : r_req_out_bits_uop_ppred; // @[Decoupled.scala:51:35]
r_req_bits_uop_prs1_busy <= _T ? r_req_bits_out_uop_prs1_busy : r_req_out_bits_uop_prs1_busy; // @[Decoupled.scala:51:35]
r_req_bits_uop_prs2_busy <= _T ? r_req_bits_out_uop_prs2_busy : r_req_out_bits_uop_prs2_busy; // @[Decoupled.scala:51:35]
r_req_bits_uop_prs3_busy <= _T ? r_req_bits_out_uop_prs3_busy : r_req_out_bits_uop_prs3_busy; // @[Decoupled.scala:51:35]
r_req_bits_uop_ppred_busy <= _T ? r_req_bits_out_uop_ppred_busy : r_req_out_bits_uop_ppred_busy; // @[Decoupled.scala:51:35]
r_req_bits_uop_stale_pdst <= _T ? r_req_bits_out_uop_stale_pdst : r_req_out_bits_uop_stale_pdst; // @[Decoupled.scala:51:35]
r_req_bits_uop_exception <= _T ? r_req_bits_out_uop_exception : r_req_out_bits_uop_exception; // @[Decoupled.scala:51:35]
r_req_bits_uop_exc_cause <= _T ? r_req_bits_out_uop_exc_cause : r_req_out_bits_uop_exc_cause; // @[Decoupled.scala:51:35]
r_req_bits_uop_mem_cmd <= _T ? r_req_bits_out_uop_mem_cmd : r_req_out_bits_uop_mem_cmd; // @[Decoupled.scala:51:35]
r_req_bits_uop_mem_size <= _T ? r_req_bits_out_uop_mem_size : r_req_out_bits_uop_mem_size; // @[Decoupled.scala:51:35]
r_req_bits_uop_mem_signed <= _T ? r_req_bits_out_uop_mem_signed : r_req_out_bits_uop_mem_signed; // @[Decoupled.scala:51:35]
r_req_bits_uop_uses_ldq <= _T ? r_req_bits_out_uop_uses_ldq : r_req_out_bits_uop_uses_ldq; // @[Decoupled.scala:51:35]
r_req_bits_uop_uses_stq <= _T ? r_req_bits_out_uop_uses_stq : r_req_out_bits_uop_uses_stq; // @[Decoupled.scala:51:35]
r_req_bits_uop_is_unique <= _T ? r_req_bits_out_uop_is_unique : r_req_out_bits_uop_is_unique; // @[Decoupled.scala:51:35]
r_req_bits_uop_flush_on_commit <= _T ? r_req_bits_out_uop_flush_on_commit : r_req_out_bits_uop_flush_on_commit; // @[Decoupled.scala:51:35]
r_req_bits_uop_csr_cmd <= _T ? r_req_bits_out_uop_csr_cmd : r_req_out_bits_uop_csr_cmd; // @[Decoupled.scala:51:35]
r_req_bits_uop_ldst_is_rs1 <= _T ? r_req_bits_out_uop_ldst_is_rs1 : r_req_out_bits_uop_ldst_is_rs1; // @[Decoupled.scala:51:35]
r_req_bits_uop_ldst <= _T ? r_req_bits_out_uop_ldst : r_req_out_bits_uop_ldst; // @[Decoupled.scala:51:35]
r_req_bits_uop_lrs1 <= _T ? r_req_bits_out_uop_lrs1 : r_req_out_bits_uop_lrs1; // @[Decoupled.scala:51:35]
r_req_bits_uop_lrs2 <= _T ? r_req_bits_out_uop_lrs2 : r_req_out_bits_uop_lrs2; // @[Decoupled.scala:51:35]
r_req_bits_uop_lrs3 <= _T ? r_req_bits_out_uop_lrs3 : r_req_out_bits_uop_lrs3; // @[Decoupled.scala:51:35]
r_req_bits_uop_dst_rtype <= _T ? r_req_bits_out_uop_dst_rtype : r_req_out_bits_uop_dst_rtype; // @[Decoupled.scala:51:35]
r_req_bits_uop_lrs1_rtype <= _T ? r_req_bits_out_uop_lrs1_rtype : r_req_out_bits_uop_lrs1_rtype; // @[Decoupled.scala:51:35]
r_req_bits_uop_lrs2_rtype <= _T ? r_req_bits_out_uop_lrs2_rtype : r_req_out_bits_uop_lrs2_rtype; // @[Decoupled.scala:51:35]
r_req_bits_uop_frs3_en <= _T ? r_req_bits_out_uop_frs3_en : r_req_out_bits_uop_frs3_en; // @[Decoupled.scala:51:35]
r_req_bits_uop_fcn_dw <= _T ? r_req_bits_out_uop_fcn_dw : r_req_out_bits_uop_fcn_dw; // @[Decoupled.scala:51:35]
r_req_bits_uop_fcn_op <= _T ? r_req_bits_out_uop_fcn_op : r_req_out_bits_uop_fcn_op; // @[Decoupled.scala:51:35]
r_req_bits_uop_fp_val <= _T ? r_req_bits_out_uop_fp_val : r_req_out_bits_uop_fp_val; // @[Decoupled.scala:51:35]
r_req_bits_uop_fp_rm <= _T ? r_req_bits_out_uop_fp_rm : r_req_out_bits_uop_fp_rm; // @[Decoupled.scala:51:35]
r_req_bits_uop_fp_typ <= _T ? r_req_bits_out_uop_fp_typ : r_req_out_bits_uop_fp_typ; // @[Decoupled.scala:51:35]
r_req_bits_uop_xcpt_pf_if <= _T ? r_req_bits_out_uop_xcpt_pf_if : r_req_out_bits_uop_xcpt_pf_if; // @[Decoupled.scala:51:35]
r_req_bits_uop_xcpt_ae_if <= _T ? r_req_bits_out_uop_xcpt_ae_if : r_req_out_bits_uop_xcpt_ae_if; // @[Decoupled.scala:51:35]
r_req_bits_uop_xcpt_ma_if <= _T ? r_req_bits_out_uop_xcpt_ma_if : r_req_out_bits_uop_xcpt_ma_if; // @[Decoupled.scala:51:35]
r_req_bits_uop_bp_debug_if <= _T ? r_req_bits_out_uop_bp_debug_if : r_req_out_bits_uop_bp_debug_if; // @[Decoupled.scala:51:35]
r_req_bits_uop_bp_xcpt_if <= _T ? r_req_bits_out_uop_bp_xcpt_if : r_req_out_bits_uop_bp_xcpt_if; // @[Decoupled.scala:51:35]
r_req_bits_uop_debug_fsrc <= _T ? r_req_bits_out_uop_debug_fsrc : r_req_out_bits_uop_debug_fsrc; // @[Decoupled.scala:51:35]
r_req_bits_uop_debug_tsrc <= _T ? r_req_bits_out_uop_debug_tsrc : r_req_out_bits_uop_debug_tsrc; // @[Decoupled.scala:51:35]
r_req_bits_rs1_data <= _T ? r_req_bits_out_rs1_data : r_req_out_bits_rs1_data; // @[Decoupled.scala:51:35]
r_req_bits_rs2_data <= _T ? r_req_bits_out_rs2_data : r_req_out_bits_rs2_data; // @[Decoupled.scala:51:35]
r_req_bits_rs3_data <= _T ? r_req_bits_out_rs3_data : r_req_out_bits_rs3_data; // @[Decoupled.scala:51:35]
r_req_bits_ftq_info_0_valid <= ~_T & r_req_out_bits_ftq_info_0_valid; // @[Decoupled.scala:51:35]
r_req_bits_ftq_info_0_entry_cfi_idx_valid <= ~_T & r_req_out_bits_ftq_info_0_entry_cfi_idx_valid; // @[Decoupled.scala:51:35]
r_req_bits_ftq_info_0_entry_cfi_idx_bits <= _T ? 3'h0 : r_req_out_bits_ftq_info_0_entry_cfi_idx_bits; // @[Decoupled.scala:51:35]
r_req_bits_ftq_info_0_entry_cfi_taken <= ~_T & r_req_out_bits_ftq_info_0_entry_cfi_taken; // @[Decoupled.scala:51:35]
r_req_bits_ftq_info_0_entry_cfi_mispredicted <= ~_T & r_req_out_bits_ftq_info_0_entry_cfi_mispredicted; // @[Decoupled.scala:51:35]
r_req_bits_ftq_info_0_entry_cfi_type <= _T ? 3'h0 : r_req_out_bits_ftq_info_0_entry_cfi_type; // @[Decoupled.scala:51:35]
r_req_bits_ftq_info_0_entry_br_mask <= _T ? 8'h0 : r_req_out_bits_ftq_info_0_entry_br_mask; // @[Decoupled.scala:51:35]
r_req_bits_ftq_info_0_entry_cfi_is_call <= ~_T & r_req_out_bits_ftq_info_0_entry_cfi_is_call; // @[Decoupled.scala:51:35]
r_req_bits_ftq_info_0_entry_cfi_is_ret <= ~_T & r_req_out_bits_ftq_info_0_entry_cfi_is_ret; // @[Decoupled.scala:51:35]
r_req_bits_ftq_info_0_entry_cfi_npc_plus4 <= ~_T & r_req_out_bits_ftq_info_0_entry_cfi_npc_plus4; // @[Decoupled.scala:51:35]
r_req_bits_ftq_info_0_entry_ras_top <= _T ? 40'h0 : r_req_out_bits_ftq_info_0_entry_ras_top; // @[Decoupled.scala:51:35]
r_req_bits_ftq_info_0_entry_ras_idx <= _T ? 5'h0 : r_req_out_bits_ftq_info_0_entry_ras_idx; // @[Decoupled.scala:51:35]
r_req_bits_ftq_info_0_entry_start_bank <= ~_T & r_req_out_bits_ftq_info_0_entry_start_bank; // @[Decoupled.scala:51:35]
r_req_bits_ftq_info_0_ghist_old_history <= _T ? 64'h0 : r_req_out_bits_ftq_info_0_ghist_old_history; // @[Decoupled.scala:51:35]
r_req_bits_ftq_info_0_ghist_current_saw_branch_not_taken <= ~_T & r_req_out_bits_ftq_info_0_ghist_current_saw_branch_not_taken; // @[Decoupled.scala:51:35]
r_req_bits_ftq_info_0_ghist_new_saw_branch_not_taken <= ~_T & r_req_out_bits_ftq_info_0_ghist_new_saw_branch_not_taken; // @[Decoupled.scala:51:35]
r_req_bits_ftq_info_0_ghist_new_saw_branch_taken <= ~_T & r_req_out_bits_ftq_info_0_ghist_new_saw_branch_taken; // @[Decoupled.scala:51:35]
r_req_bits_ftq_info_0_ghist_ras_idx <= _T ? 5'h0 : r_req_out_bits_ftq_info_0_ghist_ras_idx; // @[Decoupled.scala:51:35]
r_req_bits_ftq_info_0_pc <= _T ? 40'h0 : r_req_out_bits_ftq_info_0_pc; // @[Decoupled.scala:51:35]
r_req_bits_ftq_info_1_valid <= ~_T & r_req_out_bits_ftq_info_1_valid; // @[Decoupled.scala:51:35]
r_req_bits_ftq_info_1_entry_cfi_idx_valid <= ~_T & r_req_out_bits_ftq_info_1_entry_cfi_idx_valid; // @[Decoupled.scala:51:35]
r_req_bits_ftq_info_1_entry_cfi_idx_bits <= _T ? 3'h0 : r_req_out_bits_ftq_info_1_entry_cfi_idx_bits; // @[Decoupled.scala:51:35]
r_req_bits_ftq_info_1_entry_cfi_taken <= ~_T & r_req_out_bits_ftq_info_1_entry_cfi_taken; // @[Decoupled.scala:51:35]
r_req_bits_ftq_info_1_entry_cfi_mispredicted <= ~_T & r_req_out_bits_ftq_info_1_entry_cfi_mispredicted; // @[Decoupled.scala:51:35]
r_req_bits_ftq_info_1_entry_cfi_type <= _T ? 3'h0 : r_req_out_bits_ftq_info_1_entry_cfi_type; // @[Decoupled.scala:51:35]
r_req_bits_ftq_info_1_entry_br_mask <= _T ? 8'h0 : r_req_out_bits_ftq_info_1_entry_br_mask; // @[Decoupled.scala:51:35]
r_req_bits_ftq_info_1_entry_cfi_is_call <= ~_T & r_req_out_bits_ftq_info_1_entry_cfi_is_call; // @[Decoupled.scala:51:35]
r_req_bits_ftq_info_1_entry_cfi_is_ret <= ~_T & r_req_out_bits_ftq_info_1_entry_cfi_is_ret; // @[Decoupled.scala:51:35]
r_req_bits_ftq_info_1_entry_cfi_npc_plus4 <= ~_T & r_req_out_bits_ftq_info_1_entry_cfi_npc_plus4; // @[Decoupled.scala:51:35]
r_req_bits_ftq_info_1_entry_ras_top <= _T ? 40'h0 : r_req_out_bits_ftq_info_1_entry_ras_top; // @[Decoupled.scala:51:35]
r_req_bits_ftq_info_1_entry_ras_idx <= _T ? 5'h0 : r_req_out_bits_ftq_info_1_entry_ras_idx; // @[Decoupled.scala:51:35]
r_req_bits_ftq_info_1_entry_start_bank <= ~_T & r_req_out_bits_ftq_info_1_entry_start_bank; // @[Decoupled.scala:51:35]
r_req_bits_ftq_info_1_ghist_old_history <= _T ? 64'h0 : r_req_out_bits_ftq_info_1_ghist_old_history; // @[Decoupled.scala:51:35]
r_req_bits_ftq_info_1_ghist_current_saw_branch_not_taken <= ~_T & r_req_out_bits_ftq_info_1_ghist_current_saw_branch_not_taken; // @[Decoupled.scala:51:35]
r_req_bits_ftq_info_1_ghist_new_saw_branch_not_taken <= ~_T & r_req_out_bits_ftq_info_1_ghist_new_saw_branch_not_taken; // @[Decoupled.scala:51:35]
r_req_bits_ftq_info_1_ghist_new_saw_branch_taken <= ~_T & r_req_out_bits_ftq_info_1_ghist_new_saw_branch_taken; // @[Decoupled.scala:51:35]
r_req_bits_ftq_info_1_ghist_ras_idx <= _T ? 5'h0 : r_req_out_bits_ftq_info_1_ghist_ras_idx; // @[Decoupled.scala:51:35]
r_req_bits_ftq_info_1_pc <= _T ? 40'h0 : r_req_out_bits_ftq_info_1_pc; // @[Decoupled.scala:51:35]
r_req_bits_pred_data <= ~_T & r_req_out_bits_pred_data; // @[Decoupled.scala:51:35]
r_req_bits_imm_data <= _T ? 64'h0 : r_req_out_bits_imm_data; // @[Decoupled.scala:51:35]
if (_T) begin // @[Decoupled.scala:51:35]
r_sigs_ldst <= io_req_bits_uop_fp_ctrl_ldst_0; // @[fdiv.scala:28:7, :37:19]
r_sigs_wen <= io_req_bits_uop_fp_ctrl_wen_0; // @[fdiv.scala:28:7, :37:19]
r_sigs_ren1 <= io_req_bits_uop_fp_ctrl_ren1_0; // @[fdiv.scala:28:7, :37:19]
r_sigs_ren2 <= io_req_bits_uop_fp_ctrl_ren2_0; // @[fdiv.scala:28:7, :37:19]
r_sigs_ren3 <= io_req_bits_uop_fp_ctrl_ren3_0; // @[fdiv.scala:28:7, :37:19]
r_sigs_swap12 <= io_req_bits_uop_fp_ctrl_swap12_0; // @[fdiv.scala:28:7, :37:19]
r_sigs_swap23 <= io_req_bits_uop_fp_ctrl_swap23_0; // @[fdiv.scala:28:7, :37:19]
r_sigs_typeTagIn <= io_req_bits_uop_fp_ctrl_typeTagIn_0; // @[fdiv.scala:28:7, :37:19]
r_sigs_typeTagOut <= io_req_bits_uop_fp_ctrl_typeTagOut_0; // @[fdiv.scala:28:7, :37:19]
r_sigs_fromint <= io_req_bits_uop_fp_ctrl_fromint_0; // @[fdiv.scala:28:7, :37:19]
r_sigs_toint <= io_req_bits_uop_fp_ctrl_toint_0; // @[fdiv.scala:28:7, :37:19]
r_sigs_fastpipe <= io_req_bits_uop_fp_ctrl_fastpipe_0; // @[fdiv.scala:28:7, :37:19]
r_sigs_fma <= io_req_bits_uop_fp_ctrl_fma_0; // @[fdiv.scala:28:7, :37:19]
r_sigs_div <= io_req_bits_uop_fp_ctrl_div_0; // @[fdiv.scala:28:7, :37:19]
r_sigs_sqrt <= io_req_bits_uop_fp_ctrl_sqrt_0; // @[fdiv.scala:28:7, :37:19]
r_sigs_wflags <= io_req_bits_uop_fp_ctrl_wflags_0; // @[fdiv.scala:28:7, :37:19]
r_sigs_vec <= io_req_bits_uop_fp_ctrl_vec_0; // @[fdiv.scala:28:7, :37:19]
r_rm <= io_fcsr_rm_0; // @[fdiv.scala:28:7, :38:17]
end
r_out_valid <= ~_T_11 & (_T_8 ? _r_out_valid_T_5 : _T_4 ? _r_out_valid_T_3 : _r_out_valid_T_1); // @[fdiv.scala:39:24, :46:{15,30}, :60:22, :76:{35,64}, :77:{19,34}, :88:{22,39}, :89:17, :90:17]
if (_T_8) begin // @[fdiv.scala:76:35]
r_out_flags <= _divSqrt_1_io_exceptionFlags; // @[fdiv.scala:40:24, :68:25]
r_out_wdata <= _r_out_wdata_T_6; // @[package.scala:39:76]
end
else if (_T_4) begin // @[fdiv.scala:76:35]
r_out_flags <= _divSqrt_io_exceptionFlags; // @[fdiv.scala:40:24, :68:25]
r_out_wdata <= _r_out_wdata_T_1; // @[package.scala:39:76]
end
always @(posedge)
FPToInt_1 fpiu ( // @[fdiv.scala:49:20]
.clock (clock),
.reset (reset),
.io_in_valid (io_req_valid_0), // @[fdiv.scala:28:7]
.io_in_bits_ldst (io_req_bits_uop_fp_ctrl_ldst_0), // @[fdiv.scala:28:7]
.io_in_bits_wen (io_req_bits_uop_fp_ctrl_wen_0), // @[fdiv.scala:28:7]
.io_in_bits_ren1 (io_req_bits_uop_fp_ctrl_ren1_0), // @[fdiv.scala:28:7]
.io_in_bits_ren2 (io_req_bits_uop_fp_ctrl_ren2_0), // @[fdiv.scala:28:7]
.io_in_bits_ren3 (io_req_bits_uop_fp_ctrl_ren3_0), // @[fdiv.scala:28:7]
.io_in_bits_swap12 (io_req_bits_uop_fp_ctrl_swap12_0), // @[fdiv.scala:28:7]
.io_in_bits_swap23 (io_req_bits_uop_fp_ctrl_swap23_0), // @[fdiv.scala:28:7]
.io_in_bits_typeTagIn (io_req_bits_uop_fp_ctrl_typeTagIn_0), // @[fdiv.scala:28:7]
.io_in_bits_typeTagOut (io_req_bits_uop_fp_ctrl_typeTagOut_0), // @[fdiv.scala:28:7]
.io_in_bits_fromint (io_req_bits_uop_fp_ctrl_fromint_0), // @[fdiv.scala:28:7]
.io_in_bits_toint (io_req_bits_uop_fp_ctrl_toint_0), // @[fdiv.scala:28:7]
.io_in_bits_fastpipe (io_req_bits_uop_fp_ctrl_fastpipe_0), // @[fdiv.scala:28:7]
.io_in_bits_fma (io_req_bits_uop_fp_ctrl_fma_0), // @[fdiv.scala:28:7]
.io_in_bits_div (io_req_bits_uop_fp_ctrl_div_0), // @[fdiv.scala:28:7]
.io_in_bits_sqrt (io_req_bits_uop_fp_ctrl_sqrt_0), // @[fdiv.scala:28:7]
.io_in_bits_wflags (io_req_bits_uop_fp_ctrl_wflags_0), // @[fdiv.scala:28:7]
.io_in_bits_vec (io_req_bits_uop_fp_ctrl_vec_0), // @[fdiv.scala:28:7]
.io_in_bits_rm (io_req_bits_uop_fp_rm_0), // @[fdiv.scala:28:7]
.io_in_bits_typ (io_req_bits_uop_fp_typ_0), // @[fdiv.scala:28:7]
.io_in_bits_in1 (_fpiu_io_in_bits_in1_T_4), // @[FPU.scala:369:10]
.io_in_bits_in2 (_fpiu_io_in_bits_in2_T_4), // @[FPU.scala:369:10]
.io_out_bits_in_rm (_fpiu_io_out_bits_in_rm),
.io_out_bits_in_in1 (_fpiu_io_out_bits_in_in1),
.io_out_bits_in_in2 (_fpiu_io_out_bits_in_in2)
); // @[fdiv.scala:49:20]
DivSqrtRecFM_small_e8_s24 divSqrt ( // @[fdiv.scala:68:25]
.clock (clock),
.reset (reset),
.io_inReady (_divSqrt_io_inReady),
.io_inValid (_divSqrt_io_inValid_T_7), // @[fdiv.scala:69:117]
.io_sqrtOp (r_sigs_sqrt), // @[fdiv.scala:37:19]
.io_a (_divSqrt_io_a_T), // @[FPU.scala:283:8]
.io_b (_divSqrt_io_b_T), // @[FPU.scala:283:8]
.io_roundingMode (_fpiu_io_out_bits_in_rm), // @[fdiv.scala:49:20]
.io_outValid_div (_divSqrt_io_outValid_div),
.io_outValid_sqrt (_divSqrt_io_outValid_sqrt),
.io_out (_divSqrt_io_out),
.io_exceptionFlags (_divSqrt_io_exceptionFlags)
); // @[fdiv.scala:68:25]
DivSqrtRecFM_small_e11_s53 divSqrt_1 ( // @[fdiv.scala:68:25]
.clock (clock),
.reset (reset),
.io_inReady (_divSqrt_1_io_inReady),
.io_inValid (_divSqrt_io_inValid_T_15), // @[fdiv.scala:69:117]
.io_sqrtOp (r_sigs_sqrt), // @[fdiv.scala:37:19]
.io_a (_fpiu_io_out_bits_in_in1), // @[fdiv.scala:49:20]
.io_b (_fpiu_io_out_bits_in_in2), // @[fdiv.scala:49:20]
.io_roundingMode (_fpiu_io_out_bits_in_rm), // @[fdiv.scala:49:20]
.io_outValid_div (_divSqrt_1_io_outValid_div),
.io_outValid_sqrt (_divSqrt_1_io_outValid_sqrt),
.io_out (_divSqrt_1_io_out),
.io_exceptionFlags (_divSqrt_1_io_exceptionFlags)
); // @[fdiv.scala:68:25]
assign io_req_ready = io_req_ready_0; // @[fdiv.scala:28:7]
assign io_resp_valid = io_resp_valid_0; // @[fdiv.scala:28:7]
assign io_resp_bits_uop_inst = io_resp_bits_uop_inst_0; // @[fdiv.scala:28:7]
assign io_resp_bits_uop_debug_inst = io_resp_bits_uop_debug_inst_0; // @[fdiv.scala:28:7]
assign io_resp_bits_uop_is_rvc = io_resp_bits_uop_is_rvc_0; // @[fdiv.scala:28:7]
assign io_resp_bits_uop_debug_pc = io_resp_bits_uop_debug_pc_0; // @[fdiv.scala:28:7]
assign io_resp_bits_uop_iq_type_0 = io_resp_bits_uop_iq_type_0_0; // @[fdiv.scala:28:7]
assign io_resp_bits_uop_iq_type_1 = io_resp_bits_uop_iq_type_1_0; // @[fdiv.scala:28:7]
assign io_resp_bits_uop_iq_type_2 = io_resp_bits_uop_iq_type_2_0; // @[fdiv.scala:28:7]
assign io_resp_bits_uop_iq_type_3 = io_resp_bits_uop_iq_type_3_0; // @[fdiv.scala:28:7]
assign io_resp_bits_uop_fu_code_0 = io_resp_bits_uop_fu_code_0_0; // @[fdiv.scala:28:7]
assign io_resp_bits_uop_fu_code_1 = io_resp_bits_uop_fu_code_1_0; // @[fdiv.scala:28:7]
assign io_resp_bits_uop_fu_code_2 = io_resp_bits_uop_fu_code_2_0; // @[fdiv.scala:28:7]
assign io_resp_bits_uop_fu_code_3 = io_resp_bits_uop_fu_code_3_0; // @[fdiv.scala:28:7]
assign io_resp_bits_uop_fu_code_4 = io_resp_bits_uop_fu_code_4_0; // @[fdiv.scala:28:7]
assign io_resp_bits_uop_fu_code_5 = io_resp_bits_uop_fu_code_5_0; // @[fdiv.scala:28:7]
assign io_resp_bits_uop_fu_code_6 = io_resp_bits_uop_fu_code_6_0; // @[fdiv.scala:28:7]
assign io_resp_bits_uop_fu_code_7 = io_resp_bits_uop_fu_code_7_0; // @[fdiv.scala:28:7]
assign io_resp_bits_uop_fu_code_8 = io_resp_bits_uop_fu_code_8_0; // @[fdiv.scala:28:7]
assign io_resp_bits_uop_fu_code_9 = io_resp_bits_uop_fu_code_9_0; // @[fdiv.scala:28:7]
assign io_resp_bits_uop_iw_issued = io_resp_bits_uop_iw_issued_0; // @[fdiv.scala:28:7]
assign io_resp_bits_uop_iw_issued_partial_agen = io_resp_bits_uop_iw_issued_partial_agen_0; // @[fdiv.scala:28:7]
assign io_resp_bits_uop_iw_issued_partial_dgen = io_resp_bits_uop_iw_issued_partial_dgen_0; // @[fdiv.scala:28:7]
assign io_resp_bits_uop_iw_p1_speculative_child = io_resp_bits_uop_iw_p1_speculative_child_0; // @[fdiv.scala:28:7]
assign io_resp_bits_uop_iw_p2_speculative_child = io_resp_bits_uop_iw_p2_speculative_child_0; // @[fdiv.scala:28:7]
assign io_resp_bits_uop_iw_p1_bypass_hint = io_resp_bits_uop_iw_p1_bypass_hint_0; // @[fdiv.scala:28:7]
assign io_resp_bits_uop_iw_p2_bypass_hint = io_resp_bits_uop_iw_p2_bypass_hint_0; // @[fdiv.scala:28:7]
assign io_resp_bits_uop_iw_p3_bypass_hint = io_resp_bits_uop_iw_p3_bypass_hint_0; // @[fdiv.scala:28:7]
assign io_resp_bits_uop_dis_col_sel = io_resp_bits_uop_dis_col_sel_0; // @[fdiv.scala:28:7]
assign io_resp_bits_uop_br_mask = io_resp_bits_uop_br_mask_0; // @[fdiv.scala:28:7]
assign io_resp_bits_uop_br_tag = io_resp_bits_uop_br_tag_0; // @[fdiv.scala:28:7]
assign io_resp_bits_uop_br_type = io_resp_bits_uop_br_type_0; // @[fdiv.scala:28:7]
assign io_resp_bits_uop_is_sfb = io_resp_bits_uop_is_sfb_0; // @[fdiv.scala:28:7]
assign io_resp_bits_uop_is_fence = io_resp_bits_uop_is_fence_0; // @[fdiv.scala:28:7]
assign io_resp_bits_uop_is_fencei = io_resp_bits_uop_is_fencei_0; // @[fdiv.scala:28:7]
assign io_resp_bits_uop_is_sfence = io_resp_bits_uop_is_sfence_0; // @[fdiv.scala:28:7]
assign io_resp_bits_uop_is_amo = io_resp_bits_uop_is_amo_0; // @[fdiv.scala:28:7]
assign io_resp_bits_uop_is_eret = io_resp_bits_uop_is_eret_0; // @[fdiv.scala:28:7]
assign io_resp_bits_uop_is_sys_pc2epc = io_resp_bits_uop_is_sys_pc2epc_0; // @[fdiv.scala:28:7]
assign io_resp_bits_uop_is_rocc = io_resp_bits_uop_is_rocc_0; // @[fdiv.scala:28:7]
assign io_resp_bits_uop_is_mov = io_resp_bits_uop_is_mov_0; // @[fdiv.scala:28:7]
assign io_resp_bits_uop_ftq_idx = io_resp_bits_uop_ftq_idx_0; // @[fdiv.scala:28:7]
assign io_resp_bits_uop_edge_inst = io_resp_bits_uop_edge_inst_0; // @[fdiv.scala:28:7]
assign io_resp_bits_uop_pc_lob = io_resp_bits_uop_pc_lob_0; // @[fdiv.scala:28:7]
assign io_resp_bits_uop_taken = io_resp_bits_uop_taken_0; // @[fdiv.scala:28:7]
assign io_resp_bits_uop_imm_rename = io_resp_bits_uop_imm_rename_0; // @[fdiv.scala:28:7]
assign io_resp_bits_uop_imm_sel = io_resp_bits_uop_imm_sel_0; // @[fdiv.scala:28:7]
assign io_resp_bits_uop_pimm = io_resp_bits_uop_pimm_0; // @[fdiv.scala:28:7]
assign io_resp_bits_uop_imm_packed = io_resp_bits_uop_imm_packed_0; // @[fdiv.scala:28:7]
assign io_resp_bits_uop_op1_sel = io_resp_bits_uop_op1_sel_0; // @[fdiv.scala:28:7]
assign io_resp_bits_uop_op2_sel = io_resp_bits_uop_op2_sel_0; // @[fdiv.scala:28:7]
assign io_resp_bits_uop_fp_ctrl_ldst = io_resp_bits_uop_fp_ctrl_ldst_0; // @[fdiv.scala:28:7]
assign io_resp_bits_uop_fp_ctrl_wen = io_resp_bits_uop_fp_ctrl_wen_0; // @[fdiv.scala:28:7]
assign io_resp_bits_uop_fp_ctrl_ren1 = io_resp_bits_uop_fp_ctrl_ren1_0; // @[fdiv.scala:28:7]
assign io_resp_bits_uop_fp_ctrl_ren2 = io_resp_bits_uop_fp_ctrl_ren2_0; // @[fdiv.scala:28:7]
assign io_resp_bits_uop_fp_ctrl_ren3 = io_resp_bits_uop_fp_ctrl_ren3_0; // @[fdiv.scala:28:7]
assign io_resp_bits_uop_fp_ctrl_swap12 = io_resp_bits_uop_fp_ctrl_swap12_0; // @[fdiv.scala:28:7]
assign io_resp_bits_uop_fp_ctrl_swap23 = io_resp_bits_uop_fp_ctrl_swap23_0; // @[fdiv.scala:28:7]
assign io_resp_bits_uop_fp_ctrl_typeTagIn = io_resp_bits_uop_fp_ctrl_typeTagIn_0; // @[fdiv.scala:28:7]
assign io_resp_bits_uop_fp_ctrl_typeTagOut = io_resp_bits_uop_fp_ctrl_typeTagOut_0; // @[fdiv.scala:28:7]
assign io_resp_bits_uop_fp_ctrl_fromint = io_resp_bits_uop_fp_ctrl_fromint_0; // @[fdiv.scala:28:7]
assign io_resp_bits_uop_fp_ctrl_toint = io_resp_bits_uop_fp_ctrl_toint_0; // @[fdiv.scala:28:7]
assign io_resp_bits_uop_fp_ctrl_fastpipe = io_resp_bits_uop_fp_ctrl_fastpipe_0; // @[fdiv.scala:28:7]
assign io_resp_bits_uop_fp_ctrl_fma = io_resp_bits_uop_fp_ctrl_fma_0; // @[fdiv.scala:28:7]
assign io_resp_bits_uop_fp_ctrl_div = io_resp_bits_uop_fp_ctrl_div_0; // @[fdiv.scala:28:7]
assign io_resp_bits_uop_fp_ctrl_sqrt = io_resp_bits_uop_fp_ctrl_sqrt_0; // @[fdiv.scala:28:7]
assign io_resp_bits_uop_fp_ctrl_wflags = io_resp_bits_uop_fp_ctrl_wflags_0; // @[fdiv.scala:28:7]
assign io_resp_bits_uop_fp_ctrl_vec = io_resp_bits_uop_fp_ctrl_vec_0; // @[fdiv.scala:28:7]
assign io_resp_bits_uop_rob_idx = io_resp_bits_uop_rob_idx_0; // @[fdiv.scala:28:7]
assign io_resp_bits_uop_ldq_idx = io_resp_bits_uop_ldq_idx_0; // @[fdiv.scala:28:7]
assign io_resp_bits_uop_stq_idx = io_resp_bits_uop_stq_idx_0; // @[fdiv.scala:28:7]
assign io_resp_bits_uop_rxq_idx = io_resp_bits_uop_rxq_idx_0; // @[fdiv.scala:28:7]
assign io_resp_bits_uop_pdst = io_resp_bits_uop_pdst_0; // @[fdiv.scala:28:7]
assign io_resp_bits_uop_prs1 = io_resp_bits_uop_prs1_0; // @[fdiv.scala:28:7]
assign io_resp_bits_uop_prs2 = io_resp_bits_uop_prs2_0; // @[fdiv.scala:28:7]
assign io_resp_bits_uop_prs3 = io_resp_bits_uop_prs3_0; // @[fdiv.scala:28:7]
assign io_resp_bits_uop_ppred = io_resp_bits_uop_ppred_0; // @[fdiv.scala:28:7]
assign io_resp_bits_uop_prs1_busy = io_resp_bits_uop_prs1_busy_0; // @[fdiv.scala:28:7]
assign io_resp_bits_uop_prs2_busy = io_resp_bits_uop_prs2_busy_0; // @[fdiv.scala:28:7]
assign io_resp_bits_uop_prs3_busy = io_resp_bits_uop_prs3_busy_0; // @[fdiv.scala:28:7]
assign io_resp_bits_uop_ppred_busy = io_resp_bits_uop_ppred_busy_0; // @[fdiv.scala:28:7]
assign io_resp_bits_uop_stale_pdst = io_resp_bits_uop_stale_pdst_0; // @[fdiv.scala:28:7]
assign io_resp_bits_uop_exception = io_resp_bits_uop_exception_0; // @[fdiv.scala:28:7]
assign io_resp_bits_uop_exc_cause = io_resp_bits_uop_exc_cause_0; // @[fdiv.scala:28:7]
assign io_resp_bits_uop_mem_cmd = io_resp_bits_uop_mem_cmd_0; // @[fdiv.scala:28:7]
assign io_resp_bits_uop_mem_size = io_resp_bits_uop_mem_size_0; // @[fdiv.scala:28:7]
assign io_resp_bits_uop_mem_signed = io_resp_bits_uop_mem_signed_0; // @[fdiv.scala:28:7]
assign io_resp_bits_uop_uses_ldq = io_resp_bits_uop_uses_ldq_0; // @[fdiv.scala:28:7]
assign io_resp_bits_uop_uses_stq = io_resp_bits_uop_uses_stq_0; // @[fdiv.scala:28:7]
assign io_resp_bits_uop_is_unique = io_resp_bits_uop_is_unique_0; // @[fdiv.scala:28:7]
assign io_resp_bits_uop_flush_on_commit = io_resp_bits_uop_flush_on_commit_0; // @[fdiv.scala:28:7]
assign io_resp_bits_uop_csr_cmd = io_resp_bits_uop_csr_cmd_0; // @[fdiv.scala:28:7]
assign io_resp_bits_uop_ldst_is_rs1 = io_resp_bits_uop_ldst_is_rs1_0; // @[fdiv.scala:28:7]
assign io_resp_bits_uop_ldst = io_resp_bits_uop_ldst_0; // @[fdiv.scala:28:7]
assign io_resp_bits_uop_lrs1 = io_resp_bits_uop_lrs1_0; // @[fdiv.scala:28:7]
assign io_resp_bits_uop_lrs2 = io_resp_bits_uop_lrs2_0; // @[fdiv.scala:28:7]
assign io_resp_bits_uop_lrs3 = io_resp_bits_uop_lrs3_0; // @[fdiv.scala:28:7]
assign io_resp_bits_uop_dst_rtype = io_resp_bits_uop_dst_rtype_0; // @[fdiv.scala:28:7]
assign io_resp_bits_uop_lrs1_rtype = io_resp_bits_uop_lrs1_rtype_0; // @[fdiv.scala:28:7]
assign io_resp_bits_uop_lrs2_rtype = io_resp_bits_uop_lrs2_rtype_0; // @[fdiv.scala:28:7]
assign io_resp_bits_uop_frs3_en = io_resp_bits_uop_frs3_en_0; // @[fdiv.scala:28:7]
assign io_resp_bits_uop_fcn_dw = io_resp_bits_uop_fcn_dw_0; // @[fdiv.scala:28:7]
assign io_resp_bits_uop_fcn_op = io_resp_bits_uop_fcn_op_0; // @[fdiv.scala:28:7]
assign io_resp_bits_uop_fp_val = io_resp_bits_uop_fp_val_0; // @[fdiv.scala:28:7]
assign io_resp_bits_uop_fp_rm = io_resp_bits_uop_fp_rm_0; // @[fdiv.scala:28:7]
assign io_resp_bits_uop_fp_typ = io_resp_bits_uop_fp_typ_0; // @[fdiv.scala:28:7]
assign io_resp_bits_uop_xcpt_pf_if = io_resp_bits_uop_xcpt_pf_if_0; // @[fdiv.scala:28:7]
assign io_resp_bits_uop_xcpt_ae_if = io_resp_bits_uop_xcpt_ae_if_0; // @[fdiv.scala:28:7]
assign io_resp_bits_uop_xcpt_ma_if = io_resp_bits_uop_xcpt_ma_if_0; // @[fdiv.scala:28:7]
assign io_resp_bits_uop_bp_debug_if = io_resp_bits_uop_bp_debug_if_0; // @[fdiv.scala:28:7]
assign io_resp_bits_uop_bp_xcpt_if = io_resp_bits_uop_bp_xcpt_if_0; // @[fdiv.scala:28:7]
assign io_resp_bits_uop_debug_fsrc = io_resp_bits_uop_debug_fsrc_0; // @[fdiv.scala:28:7]
assign io_resp_bits_uop_debug_tsrc = io_resp_bits_uop_debug_tsrc_0; // @[fdiv.scala:28:7]
assign io_resp_bits_data = io_resp_bits_data_0; // @[fdiv.scala:28:7]
assign io_resp_bits_fflags_valid = io_resp_bits_fflags_valid_0; // @[fdiv.scala:28:7]
assign io_resp_bits_fflags_bits = io_resp_bits_fflags_bits_0; // @[fdiv.scala:28:7]
endmodule |
Generate the Verilog code corresponding to the following Chisel files.
File MulRecFN.scala:
/*============================================================================
This Chisel source file is part of a pre-release version of the HardFloat IEEE
Floating-Point Arithmetic Package, by John R. Hauser (ported from Verilog to
Chisel by Andrew Waterman).
Copyright 2019, 2020 The Regents of the University of California. All rights
reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
1. Redistributions of source code must retain the above copyright notice,
this list of conditions, and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice,
this list of conditions, and the following disclaimer in the documentation
and/or other materials provided with the distribution.
3. Neither the name of the University nor the names of its contributors may
be used to endorse or promote products derived from this software without
specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS "AS IS", AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ARE
DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
=============================================================================*/
package hardfloat
import chisel3._
import chisel3.util._
import consts._
//----------------------------------------------------------------------------
//----------------------------------------------------------------------------
class MulFullRawFN(expWidth: Int, sigWidth: Int) extends chisel3.RawModule
{
val io = IO(new Bundle {
val a = Input(new RawFloat(expWidth, sigWidth))
val b = Input(new RawFloat(expWidth, sigWidth))
val invalidExc = Output(Bool())
val rawOut = Output(new RawFloat(expWidth, sigWidth*2 - 1))
})
/*------------------------------------------------------------------------
*------------------------------------------------------------------------*/
val notSigNaN_invalidExc = (io.a.isInf && io.b.isZero) || (io.a.isZero && io.b.isInf)
val notNaN_isInfOut = io.a.isInf || io.b.isInf
val notNaN_isZeroOut = io.a.isZero || io.b.isZero
val notNaN_signOut = io.a.sign ^ io.b.sign
val common_sExpOut = io.a.sExp + io.b.sExp - (1<<expWidth).S
val common_sigOut = (io.a.sig * io.b.sig)(sigWidth*2 - 1, 0)
/*------------------------------------------------------------------------
*------------------------------------------------------------------------*/
io.invalidExc := isSigNaNRawFloat(io.a) || isSigNaNRawFloat(io.b) || notSigNaN_invalidExc
io.rawOut.isInf := notNaN_isInfOut
io.rawOut.isZero := notNaN_isZeroOut
io.rawOut.sExp := common_sExpOut
io.rawOut.isNaN := io.a.isNaN || io.b.isNaN
io.rawOut.sign := notNaN_signOut
io.rawOut.sig := common_sigOut
}
class MulRawFN(expWidth: Int, sigWidth: Int) extends chisel3.RawModule
{
val io = IO(new Bundle {
val a = Input(new RawFloat(expWidth, sigWidth))
val b = Input(new RawFloat(expWidth, sigWidth))
val invalidExc = Output(Bool())
val rawOut = Output(new RawFloat(expWidth, sigWidth + 2))
})
val mulFullRaw = Module(new MulFullRawFN(expWidth, sigWidth))
mulFullRaw.io.a := io.a
mulFullRaw.io.b := io.b
io.invalidExc := mulFullRaw.io.invalidExc
io.rawOut := mulFullRaw.io.rawOut
io.rawOut.sig := {
val sig = mulFullRaw.io.rawOut.sig
Cat(sig >> (sigWidth - 2), sig(sigWidth - 3, 0).orR)
}
}
//----------------------------------------------------------------------------
//----------------------------------------------------------------------------
class MulRecFN(expWidth: Int, sigWidth: Int) extends chisel3.RawModule
{
val io = IO(new Bundle {
val a = Input(UInt((expWidth + sigWidth + 1).W))
val b = Input(UInt((expWidth + sigWidth + 1).W))
val roundingMode = Input(UInt(3.W))
val detectTininess = Input(Bool())
val out = Output(UInt((expWidth + sigWidth + 1).W))
val exceptionFlags = Output(UInt(5.W))
})
//------------------------------------------------------------------------
//------------------------------------------------------------------------
val mulRawFN = Module(new MulRawFN(expWidth, sigWidth))
mulRawFN.io.a := rawFloatFromRecFN(expWidth, sigWidth, io.a)
mulRawFN.io.b := rawFloatFromRecFN(expWidth, sigWidth, io.b)
//------------------------------------------------------------------------
//------------------------------------------------------------------------
val roundRawFNToRecFN =
Module(new RoundRawFNToRecFN(expWidth, sigWidth, 0))
roundRawFNToRecFN.io.invalidExc := mulRawFN.io.invalidExc
roundRawFNToRecFN.io.infiniteExc := false.B
roundRawFNToRecFN.io.in := mulRawFN.io.rawOut
roundRawFNToRecFN.io.roundingMode := io.roundingMode
roundRawFNToRecFN.io.detectTininess := io.detectTininess
io.out := roundRawFNToRecFN.io.out
io.exceptionFlags := roundRawFNToRecFN.io.exceptionFlags
}
File rawFloatFromRecFN.scala:
/*============================================================================
This Chisel source file is part of a pre-release version of the HardFloat IEEE
Floating-Point Arithmetic Package, by John R. Hauser (with some contributions
from Yunsup Lee and Andrew Waterman, mainly concerning testing).
Copyright 2010, 2011, 2012, 2013, 2014, 2015, 2016 The Regents of the
University of California. All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
1. Redistributions of source code must retain the above copyright notice,
this list of conditions, and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice,
this list of conditions, and the following disclaimer in the documentation
and/or other materials provided with the distribution.
3. Neither the name of the University nor the names of its contributors may
be used to endorse or promote products derived from this software without
specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS "AS IS", AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ARE
DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
=============================================================================*/
package hardfloat
import chisel3._
import chisel3.util._
/*----------------------------------------------------------------------------
| In the result, no more than one of 'isNaN', 'isInf', and 'isZero' will be
| set.
*----------------------------------------------------------------------------*/
object rawFloatFromRecFN
{
def apply(expWidth: Int, sigWidth: Int, in: Bits): RawFloat =
{
val exp = in(expWidth + sigWidth - 1, sigWidth - 1)
val isZero = exp(expWidth, expWidth - 2) === 0.U
val isSpecial = exp(expWidth, expWidth - 1) === 3.U
val out = Wire(new RawFloat(expWidth, sigWidth))
out.isNaN := isSpecial && exp(expWidth - 2)
out.isInf := isSpecial && ! exp(expWidth - 2)
out.isZero := isZero
out.sign := in(expWidth + sigWidth)
out.sExp := exp.zext
out.sig := 0.U(1.W) ## ! isZero ## in(sigWidth - 2, 0)
out
}
}
| module MulRecFN_9( // @[MulRecFN.scala:100:7]
input [32:0] io_a, // @[MulRecFN.scala:102:16]
input [32:0] io_b, // @[MulRecFN.scala:102:16]
output [32:0] io_out // @[MulRecFN.scala:102:16]
);
wire _mulRawFN_io_invalidExc; // @[MulRecFN.scala:113:26]
wire _mulRawFN_io_rawOut_isNaN; // @[MulRecFN.scala:113:26]
wire _mulRawFN_io_rawOut_isInf; // @[MulRecFN.scala:113:26]
wire _mulRawFN_io_rawOut_isZero; // @[MulRecFN.scala:113:26]
wire _mulRawFN_io_rawOut_sign; // @[MulRecFN.scala:113:26]
wire [9:0] _mulRawFN_io_rawOut_sExp; // @[MulRecFN.scala:113:26]
wire [26:0] _mulRawFN_io_rawOut_sig; // @[MulRecFN.scala:113:26]
wire [32:0] io_a_0 = io_a; // @[MulRecFN.scala:100:7]
wire [32:0] io_b_0 = io_b; // @[MulRecFN.scala:100:7]
wire io_detectTininess = 1'h1; // @[MulRecFN.scala:100:7, :102:16, :121:15]
wire [2:0] io_roundingMode = 3'h0; // @[MulRecFN.scala:100:7, :102:16, :121:15]
wire [32:0] io_out_0; // @[MulRecFN.scala:100:7]
wire [4:0] io_exceptionFlags; // @[MulRecFN.scala:100:7]
wire [8:0] mulRawFN_io_a_exp = io_a_0[31:23]; // @[rawFloatFromRecFN.scala:51:21]
wire [2:0] _mulRawFN_io_a_isZero_T = mulRawFN_io_a_exp[8:6]; // @[rawFloatFromRecFN.scala:51:21, :52:28]
wire mulRawFN_io_a_isZero = _mulRawFN_io_a_isZero_T == 3'h0; // @[rawFloatFromRecFN.scala:52:{28,53}]
wire mulRawFN_io_a_out_isZero = mulRawFN_io_a_isZero; // @[rawFloatFromRecFN.scala:52:53, :55:23]
wire [1:0] _mulRawFN_io_a_isSpecial_T = mulRawFN_io_a_exp[8:7]; // @[rawFloatFromRecFN.scala:51:21, :53:28]
wire mulRawFN_io_a_isSpecial = &_mulRawFN_io_a_isSpecial_T; // @[rawFloatFromRecFN.scala:53:{28,53}]
wire _mulRawFN_io_a_out_isNaN_T_1; // @[rawFloatFromRecFN.scala:56:33]
wire _mulRawFN_io_a_out_isInf_T_2; // @[rawFloatFromRecFN.scala:57:33]
wire _mulRawFN_io_a_out_sign_T; // @[rawFloatFromRecFN.scala:59:25]
wire [9:0] _mulRawFN_io_a_out_sExp_T; // @[rawFloatFromRecFN.scala:60:27]
wire [24:0] _mulRawFN_io_a_out_sig_T_3; // @[rawFloatFromRecFN.scala:61:44]
wire mulRawFN_io_a_out_isNaN; // @[rawFloatFromRecFN.scala:55:23]
wire mulRawFN_io_a_out_isInf; // @[rawFloatFromRecFN.scala:55:23]
wire mulRawFN_io_a_out_sign; // @[rawFloatFromRecFN.scala:55:23]
wire [9:0] mulRawFN_io_a_out_sExp; // @[rawFloatFromRecFN.scala:55:23]
wire [24:0] mulRawFN_io_a_out_sig; // @[rawFloatFromRecFN.scala:55:23]
wire _mulRawFN_io_a_out_isNaN_T = mulRawFN_io_a_exp[6]; // @[rawFloatFromRecFN.scala:51:21, :56:41]
wire _mulRawFN_io_a_out_isInf_T = mulRawFN_io_a_exp[6]; // @[rawFloatFromRecFN.scala:51:21, :56:41, :57:41]
assign _mulRawFN_io_a_out_isNaN_T_1 = mulRawFN_io_a_isSpecial & _mulRawFN_io_a_out_isNaN_T; // @[rawFloatFromRecFN.scala:53:53, :56:{33,41}]
assign mulRawFN_io_a_out_isNaN = _mulRawFN_io_a_out_isNaN_T_1; // @[rawFloatFromRecFN.scala:55:23, :56:33]
wire _mulRawFN_io_a_out_isInf_T_1 = ~_mulRawFN_io_a_out_isInf_T; // @[rawFloatFromRecFN.scala:57:{36,41}]
assign _mulRawFN_io_a_out_isInf_T_2 = mulRawFN_io_a_isSpecial & _mulRawFN_io_a_out_isInf_T_1; // @[rawFloatFromRecFN.scala:53:53, :57:{33,36}]
assign mulRawFN_io_a_out_isInf = _mulRawFN_io_a_out_isInf_T_2; // @[rawFloatFromRecFN.scala:55:23, :57:33]
assign _mulRawFN_io_a_out_sign_T = io_a_0[32]; // @[rawFloatFromRecFN.scala:59:25]
assign mulRawFN_io_a_out_sign = _mulRawFN_io_a_out_sign_T; // @[rawFloatFromRecFN.scala:55:23, :59:25]
assign _mulRawFN_io_a_out_sExp_T = {1'h0, mulRawFN_io_a_exp}; // @[rawFloatFromRecFN.scala:51:21, :60:27]
assign mulRawFN_io_a_out_sExp = _mulRawFN_io_a_out_sExp_T; // @[rawFloatFromRecFN.scala:55:23, :60:27]
wire _mulRawFN_io_a_out_sig_T = ~mulRawFN_io_a_isZero; // @[rawFloatFromRecFN.scala:52:53, :61:35]
wire [1:0] _mulRawFN_io_a_out_sig_T_1 = {1'h0, _mulRawFN_io_a_out_sig_T}; // @[rawFloatFromRecFN.scala:61:{32,35}]
wire [22:0] _mulRawFN_io_a_out_sig_T_2 = io_a_0[22:0]; // @[rawFloatFromRecFN.scala:61:49]
assign _mulRawFN_io_a_out_sig_T_3 = {_mulRawFN_io_a_out_sig_T_1, _mulRawFN_io_a_out_sig_T_2}; // @[rawFloatFromRecFN.scala:61:{32,44,49}]
assign mulRawFN_io_a_out_sig = _mulRawFN_io_a_out_sig_T_3; // @[rawFloatFromRecFN.scala:55:23, :61:44]
wire [8:0] mulRawFN_io_b_exp = io_b_0[31:23]; // @[rawFloatFromRecFN.scala:51:21]
wire [2:0] _mulRawFN_io_b_isZero_T = mulRawFN_io_b_exp[8:6]; // @[rawFloatFromRecFN.scala:51:21, :52:28]
wire mulRawFN_io_b_isZero = _mulRawFN_io_b_isZero_T == 3'h0; // @[rawFloatFromRecFN.scala:52:{28,53}]
wire mulRawFN_io_b_out_isZero = mulRawFN_io_b_isZero; // @[rawFloatFromRecFN.scala:52:53, :55:23]
wire [1:0] _mulRawFN_io_b_isSpecial_T = mulRawFN_io_b_exp[8:7]; // @[rawFloatFromRecFN.scala:51:21, :53:28]
wire mulRawFN_io_b_isSpecial = &_mulRawFN_io_b_isSpecial_T; // @[rawFloatFromRecFN.scala:53:{28,53}]
wire _mulRawFN_io_b_out_isNaN_T_1; // @[rawFloatFromRecFN.scala:56:33]
wire _mulRawFN_io_b_out_isInf_T_2; // @[rawFloatFromRecFN.scala:57:33]
wire _mulRawFN_io_b_out_sign_T; // @[rawFloatFromRecFN.scala:59:25]
wire [9:0] _mulRawFN_io_b_out_sExp_T; // @[rawFloatFromRecFN.scala:60:27]
wire [24:0] _mulRawFN_io_b_out_sig_T_3; // @[rawFloatFromRecFN.scala:61:44]
wire mulRawFN_io_b_out_isNaN; // @[rawFloatFromRecFN.scala:55:23]
wire mulRawFN_io_b_out_isInf; // @[rawFloatFromRecFN.scala:55:23]
wire mulRawFN_io_b_out_sign; // @[rawFloatFromRecFN.scala:55:23]
wire [9:0] mulRawFN_io_b_out_sExp; // @[rawFloatFromRecFN.scala:55:23]
wire [24:0] mulRawFN_io_b_out_sig; // @[rawFloatFromRecFN.scala:55:23]
wire _mulRawFN_io_b_out_isNaN_T = mulRawFN_io_b_exp[6]; // @[rawFloatFromRecFN.scala:51:21, :56:41]
wire _mulRawFN_io_b_out_isInf_T = mulRawFN_io_b_exp[6]; // @[rawFloatFromRecFN.scala:51:21, :56:41, :57:41]
assign _mulRawFN_io_b_out_isNaN_T_1 = mulRawFN_io_b_isSpecial & _mulRawFN_io_b_out_isNaN_T; // @[rawFloatFromRecFN.scala:53:53, :56:{33,41}]
assign mulRawFN_io_b_out_isNaN = _mulRawFN_io_b_out_isNaN_T_1; // @[rawFloatFromRecFN.scala:55:23, :56:33]
wire _mulRawFN_io_b_out_isInf_T_1 = ~_mulRawFN_io_b_out_isInf_T; // @[rawFloatFromRecFN.scala:57:{36,41}]
assign _mulRawFN_io_b_out_isInf_T_2 = mulRawFN_io_b_isSpecial & _mulRawFN_io_b_out_isInf_T_1; // @[rawFloatFromRecFN.scala:53:53, :57:{33,36}]
assign mulRawFN_io_b_out_isInf = _mulRawFN_io_b_out_isInf_T_2; // @[rawFloatFromRecFN.scala:55:23, :57:33]
assign _mulRawFN_io_b_out_sign_T = io_b_0[32]; // @[rawFloatFromRecFN.scala:59:25]
assign mulRawFN_io_b_out_sign = _mulRawFN_io_b_out_sign_T; // @[rawFloatFromRecFN.scala:55:23, :59:25]
assign _mulRawFN_io_b_out_sExp_T = {1'h0, mulRawFN_io_b_exp}; // @[rawFloatFromRecFN.scala:51:21, :60:27]
assign mulRawFN_io_b_out_sExp = _mulRawFN_io_b_out_sExp_T; // @[rawFloatFromRecFN.scala:55:23, :60:27]
wire _mulRawFN_io_b_out_sig_T = ~mulRawFN_io_b_isZero; // @[rawFloatFromRecFN.scala:52:53, :61:35]
wire [1:0] _mulRawFN_io_b_out_sig_T_1 = {1'h0, _mulRawFN_io_b_out_sig_T}; // @[rawFloatFromRecFN.scala:61:{32,35}]
wire [22:0] _mulRawFN_io_b_out_sig_T_2 = io_b_0[22:0]; // @[rawFloatFromRecFN.scala:61:49]
assign _mulRawFN_io_b_out_sig_T_3 = {_mulRawFN_io_b_out_sig_T_1, _mulRawFN_io_b_out_sig_T_2}; // @[rawFloatFromRecFN.scala:61:{32,44,49}]
assign mulRawFN_io_b_out_sig = _mulRawFN_io_b_out_sig_T_3; // @[rawFloatFromRecFN.scala:55:23, :61:44]
MulRawFN_9 mulRawFN ( // @[MulRecFN.scala:113:26]
.io_a_isNaN (mulRawFN_io_a_out_isNaN), // @[rawFloatFromRecFN.scala:55:23]
.io_a_isInf (mulRawFN_io_a_out_isInf), // @[rawFloatFromRecFN.scala:55:23]
.io_a_isZero (mulRawFN_io_a_out_isZero), // @[rawFloatFromRecFN.scala:55:23]
.io_a_sign (mulRawFN_io_a_out_sign), // @[rawFloatFromRecFN.scala:55:23]
.io_a_sExp (mulRawFN_io_a_out_sExp), // @[rawFloatFromRecFN.scala:55:23]
.io_a_sig (mulRawFN_io_a_out_sig), // @[rawFloatFromRecFN.scala:55:23]
.io_b_isNaN (mulRawFN_io_b_out_isNaN), // @[rawFloatFromRecFN.scala:55:23]
.io_b_isInf (mulRawFN_io_b_out_isInf), // @[rawFloatFromRecFN.scala:55:23]
.io_b_isZero (mulRawFN_io_b_out_isZero), // @[rawFloatFromRecFN.scala:55:23]
.io_b_sign (mulRawFN_io_b_out_sign), // @[rawFloatFromRecFN.scala:55:23]
.io_b_sExp (mulRawFN_io_b_out_sExp), // @[rawFloatFromRecFN.scala:55:23]
.io_b_sig (mulRawFN_io_b_out_sig), // @[rawFloatFromRecFN.scala:55:23]
.io_invalidExc (_mulRawFN_io_invalidExc),
.io_rawOut_isNaN (_mulRawFN_io_rawOut_isNaN),
.io_rawOut_isInf (_mulRawFN_io_rawOut_isInf),
.io_rawOut_isZero (_mulRawFN_io_rawOut_isZero),
.io_rawOut_sign (_mulRawFN_io_rawOut_sign),
.io_rawOut_sExp (_mulRawFN_io_rawOut_sExp),
.io_rawOut_sig (_mulRawFN_io_rawOut_sig)
); // @[MulRecFN.scala:113:26]
RoundRawFNToRecFN_e8_s24_18 roundRawFNToRecFN ( // @[MulRecFN.scala:121:15]
.io_invalidExc (_mulRawFN_io_invalidExc), // @[MulRecFN.scala:113:26]
.io_in_isNaN (_mulRawFN_io_rawOut_isNaN), // @[MulRecFN.scala:113:26]
.io_in_isInf (_mulRawFN_io_rawOut_isInf), // @[MulRecFN.scala:113:26]
.io_in_isZero (_mulRawFN_io_rawOut_isZero), // @[MulRecFN.scala:113:26]
.io_in_sign (_mulRawFN_io_rawOut_sign), // @[MulRecFN.scala:113:26]
.io_in_sExp (_mulRawFN_io_rawOut_sExp), // @[MulRecFN.scala:113:26]
.io_in_sig (_mulRawFN_io_rawOut_sig), // @[MulRecFN.scala:113:26]
.io_out (io_out_0),
.io_exceptionFlags (io_exceptionFlags)
); // @[MulRecFN.scala:121:15]
assign io_out = io_out_0; // @[MulRecFN.scala:100:7]
endmodule |
Generate the Verilog code corresponding to the following Chisel files.
File util.scala:
//******************************************************************************
// Copyright (c) 2015 - 2019, The Regents of the University of California (Regents).
// All Rights Reserved. See LICENSE and LICENSE.SiFive for license details.
//------------------------------------------------------------------------------
//------------------------------------------------------------------------------
//------------------------------------------------------------------------------
// Utility Functions
//------------------------------------------------------------------------------
//------------------------------------------------------------------------------
package boom.v4.util
import chisel3._
import chisel3.util._
import freechips.rocketchip.rocket.Instructions._
import freechips.rocketchip.rocket._
import freechips.rocketchip.util.{Str}
import org.chipsalliance.cde.config.{Parameters}
import freechips.rocketchip.tile.{TileKey}
import boom.v4.common.{MicroOp}
import boom.v4.exu.{BrUpdateInfo}
/**
* Object to XOR fold a input register of fullLength into a compressedLength.
*/
object Fold
{
def apply(input: UInt, compressedLength: Int, fullLength: Int): UInt = {
val clen = compressedLength
val hlen = fullLength
if (hlen <= clen) {
input
} else {
var res = 0.U(clen.W)
var remaining = input.asUInt
for (i <- 0 to hlen-1 by clen) {
val len = if (i + clen > hlen ) (hlen - i) else clen
require(len > 0)
res = res(clen-1,0) ^ remaining(len-1,0)
remaining = remaining >> len.U
}
res
}
}
}
/**
* Object to check if MicroOp was killed due to a branch mispredict.
* Uses "Fast" branch masks
*/
object IsKilledByBranch
{
def apply(brupdate: BrUpdateInfo, flush: Bool, uop: MicroOp): Bool = {
return apply(brupdate, flush, uop.br_mask)
}
def apply(brupdate: BrUpdateInfo, flush: Bool, uop_mask: UInt): Bool = {
return maskMatch(brupdate.b1.mispredict_mask, uop_mask) || flush
}
def apply[T <: boom.v4.common.HasBoomUOP](brupdate: BrUpdateInfo, flush: Bool, bundle: T): Bool = {
return apply(brupdate, flush, bundle.uop)
}
def apply[T <: boom.v4.common.HasBoomUOP](brupdate: BrUpdateInfo, flush: Bool, bundle: Valid[T]): Bool = {
return apply(brupdate, flush, bundle.bits)
}
}
/**
* Object to return new MicroOp with a new BR mask given a MicroOp mask
* and old BR mask.
*/
object GetNewUopAndBrMask
{
def apply(uop: MicroOp, brupdate: BrUpdateInfo)
(implicit p: Parameters): MicroOp = {
val newuop = WireInit(uop)
newuop.br_mask := uop.br_mask & ~brupdate.b1.resolve_mask
newuop
}
}
/**
* Object to return a BR mask given a MicroOp mask and old BR mask.
*/
object GetNewBrMask
{
def apply(brupdate: BrUpdateInfo, uop: MicroOp): UInt = {
return uop.br_mask & ~brupdate.b1.resolve_mask
}
def apply(brupdate: BrUpdateInfo, br_mask: UInt): UInt = {
return br_mask & ~brupdate.b1.resolve_mask
}
}
object UpdateBrMask
{
def apply(brupdate: BrUpdateInfo, uop: MicroOp): MicroOp = {
val out = WireInit(uop)
out.br_mask := GetNewBrMask(brupdate, uop)
out
}
def apply[T <: boom.v4.common.HasBoomUOP](brupdate: BrUpdateInfo, bundle: T): T = {
val out = WireInit(bundle)
out.uop.br_mask := GetNewBrMask(brupdate, bundle.uop.br_mask)
out
}
def apply[T <: boom.v4.common.HasBoomUOP](brupdate: BrUpdateInfo, flush: Bool, bundle: Valid[T]): Valid[T] = {
val out = WireInit(bundle)
out.bits.uop.br_mask := GetNewBrMask(brupdate, bundle.bits.uop.br_mask)
out.valid := bundle.valid && !IsKilledByBranch(brupdate, flush, bundle.bits.uop.br_mask)
out
}
}
/**
* Object to check if at least 1 bit matches in two masks
*/
object maskMatch
{
def apply(msk1: UInt, msk2: UInt): Bool = (msk1 & msk2) =/= 0.U
}
/**
* Object to clear one bit in a mask given an index
*/
object clearMaskBit
{
def apply(msk: UInt, idx: UInt): UInt = (msk & ~(1.U << idx))(msk.getWidth-1, 0)
}
/**
* Object to shift a register over by one bit and concat a new one
*/
object PerformShiftRegister
{
def apply(reg_val: UInt, new_bit: Bool): UInt = {
reg_val := Cat(reg_val(reg_val.getWidth-1, 0).asUInt, new_bit.asUInt).asUInt
reg_val
}
}
/**
* Object to shift a register over by one bit, wrapping the top bit around to the bottom
* (XOR'ed with a new-bit), and evicting a bit at index HLEN.
* This is used to simulate a longer HLEN-width shift register that is folded
* down to a compressed CLEN.
*/
object PerformCircularShiftRegister
{
def apply(csr: UInt, new_bit: Bool, evict_bit: Bool, hlen: Int, clen: Int): UInt = {
val carry = csr(clen-1)
val newval = Cat(csr, new_bit ^ carry) ^ (evict_bit << (hlen % clen).U)
newval
}
}
/**
* Object to increment an input value, wrapping it if
* necessary.
*/
object WrapAdd
{
// "n" is the number of increments, so we wrap at n-1.
def apply(value: UInt, amt: UInt, n: Int): UInt = {
if (isPow2(n)) {
(value + amt)(log2Ceil(n)-1,0)
} else {
val sum = Cat(0.U(1.W), value) + Cat(0.U(1.W), amt)
Mux(sum >= n.U,
sum - n.U,
sum)
}
}
}
/**
* Object to decrement an input value, wrapping it if
* necessary.
*/
object WrapSub
{
// "n" is the number of increments, so we wrap to n-1.
def apply(value: UInt, amt: Int, n: Int): UInt = {
if (isPow2(n)) {
(value - amt.U)(log2Ceil(n)-1,0)
} else {
val v = Cat(0.U(1.W), value)
val b = Cat(0.U(1.W), amt.U)
Mux(value >= amt.U,
value - amt.U,
n.U - amt.U + value)
}
}
}
/**
* Object to increment an input value, wrapping it if
* necessary.
*/
object WrapInc
{
// "n" is the number of increments, so we wrap at n-1.
def apply(value: UInt, n: Int): UInt = {
if (isPow2(n)) {
(value + 1.U)(log2Ceil(n)-1,0)
} else {
val wrap = (value === (n-1).U)
Mux(wrap, 0.U, value + 1.U)
}
}
}
/**
* Object to decrement an input value, wrapping it if
* necessary.
*/
object WrapDec
{
// "n" is the number of increments, so we wrap at n-1.
def apply(value: UInt, n: Int): UInt = {
if (isPow2(n)) {
(value - 1.U)(log2Ceil(n)-1,0)
} else {
val wrap = (value === 0.U)
Mux(wrap, (n-1).U, value - 1.U)
}
}
}
/**
* Object to mask off lower bits of a PC to align to a "b"
* Byte boundary.
*/
object AlignPCToBoundary
{
def apply(pc: UInt, b: Int): UInt = {
// Invert for scenario where pc longer than b
// (which would clear all bits above size(b)).
~(~pc | (b-1).U)
}
}
/**
* Object to rotate a signal left by one
*/
object RotateL1
{
def apply(signal: UInt): UInt = {
val w = signal.getWidth
val out = Cat(signal(w-2,0), signal(w-1))
return out
}
}
/**
* Object to sext a value to a particular length.
*/
object Sext
{
def apply(x: UInt, length: Int): UInt = {
if (x.getWidth == length) return x
else return Cat(Fill(length-x.getWidth, x(x.getWidth-1)), x)
}
}
/**
* Object to translate from BOOM's special "packed immediate" to a 32b signed immediate
* Asking for U-type gives it shifted up 12 bits.
*/
object ImmGen
{
import boom.v4.common.{LONGEST_IMM_SZ, IS_B, IS_I, IS_J, IS_S, IS_U, IS_N}
def apply(i: UInt, isel: UInt): UInt = {
val ip = Mux(isel === IS_N, 0.U(LONGEST_IMM_SZ.W), i)
val sign = ip(LONGEST_IMM_SZ-1).asSInt
val i30_20 = Mux(isel === IS_U, ip(18,8).asSInt, sign)
val i19_12 = Mux(isel === IS_U || isel === IS_J, ip(7,0).asSInt, sign)
val i11 = Mux(isel === IS_U, 0.S,
Mux(isel === IS_J || isel === IS_B, ip(8).asSInt, sign))
val i10_5 = Mux(isel === IS_U, 0.S, ip(18,14).asSInt)
val i4_1 = Mux(isel === IS_U, 0.S, ip(13,9).asSInt)
val i0 = Mux(isel === IS_S || isel === IS_I, ip(8).asSInt, 0.S)
return Cat(sign, i30_20, i19_12, i11, i10_5, i4_1, i0)
}
}
/**
* Object to see if an instruction is a JALR.
*/
object DebugIsJALR
{
def apply(inst: UInt): Bool = {
// TODO Chisel not sure why this won't compile
// val is_jalr = rocket.DecodeLogic(inst, List(Bool(false)),
// Array(
// JALR -> Bool(true)))
inst(6,0) === "b1100111".U
}
}
/**
* Object to take an instruction and output its branch or jal target. Only used
* for a debug assert (no where else would we jump straight from instruction
* bits to a target).
*/
object DebugGetBJImm
{
def apply(inst: UInt): UInt = {
// TODO Chisel not sure why this won't compile
//val csignals =
//rocket.DecodeLogic(inst,
// List(Bool(false), Bool(false)),
// Array(
// BEQ -> List(Bool(true ), Bool(false)),
// BNE -> List(Bool(true ), Bool(false)),
// BGE -> List(Bool(true ), Bool(false)),
// BGEU -> List(Bool(true ), Bool(false)),
// BLT -> List(Bool(true ), Bool(false)),
// BLTU -> List(Bool(true ), Bool(false))
// ))
//val is_br :: nothing :: Nil = csignals
val is_br = (inst(6,0) === "b1100011".U)
val br_targ = Cat(Fill(12, inst(31)), Fill(8,inst(31)), inst(7), inst(30,25), inst(11,8), 0.U(1.W))
val jal_targ= Cat(Fill(12, inst(31)), inst(19,12), inst(20), inst(30,25), inst(24,21), 0.U(1.W))
Mux(is_br, br_targ, jal_targ)
}
}
/**
* Object to return the lowest bit position after the head.
*/
object AgePriorityEncoder
{
def apply(in: Seq[Bool], head: UInt): UInt = {
val n = in.size
val width = log2Ceil(in.size)
val n_padded = 1 << width
val temp_vec = (0 until n_padded).map(i => if (i < n) in(i) && i.U >= head else false.B) ++ in
val idx = PriorityEncoder(temp_vec)
idx(width-1, 0) //discard msb
}
}
/**
* Object to determine whether queue
* index i0 is older than index i1.
*/
object IsOlder
{
def apply(i0: UInt, i1: UInt, head: UInt) = ((i0 < i1) ^ (i0 < head) ^ (i1 < head))
}
object IsYoungerMask
{
def apply(i: UInt, head: UInt, n: Integer): UInt = {
val hi_mask = ~MaskLower(UIntToOH(i)(n-1,0))
val lo_mask = ~MaskUpper(UIntToOH(head)(n-1,0))
Mux(i < head, hi_mask & lo_mask, hi_mask | lo_mask)(n-1,0)
}
}
/**
* Set all bits at or below the highest order '1'.
*/
object MaskLower
{
def apply(in: UInt) = {
val n = in.getWidth
(0 until n).map(i => in >> i.U).reduce(_|_)
}
}
/**
* Set all bits at or above the lowest order '1'.
*/
object MaskUpper
{
def apply(in: UInt) = {
val n = in.getWidth
(0 until n).map(i => (in << i.U)(n-1,0)).reduce(_|_)
}
}
/**
* Transpose a matrix of Chisel Vecs.
*/
object Transpose
{
def apply[T <: chisel3.Data](in: Vec[Vec[T]]) = {
val n = in(0).size
VecInit((0 until n).map(i => VecInit(in.map(row => row(i)))))
}
}
/**
* N-wide one-hot priority encoder.
*/
object SelectFirstN
{
def apply(in: UInt, n: Int) = {
val sels = Wire(Vec(n, UInt(in.getWidth.W)))
var mask = in
for (i <- 0 until n) {
sels(i) := PriorityEncoderOH(mask)
mask = mask & ~sels(i)
}
sels
}
}
/**
* Connect the first k of n valid input interfaces to k output interfaces.
*/
class Compactor[T <: chisel3.Data](n: Int, k: Int, gen: T) extends Module
{
require(n >= k)
val io = IO(new Bundle {
val in = Vec(n, Flipped(DecoupledIO(gen)))
val out = Vec(k, DecoupledIO(gen))
})
if (n == k) {
io.out <> io.in
} else {
val counts = io.in.map(_.valid).scanLeft(1.U(k.W)) ((c,e) => Mux(e, (c<<1)(k-1,0), c))
val sels = Transpose(VecInit(counts map (c => VecInit(c.asBools)))) map (col =>
(col zip io.in.map(_.valid)) map {case (c,v) => c && v})
val in_readys = counts map (row => (row.asBools zip io.out.map(_.ready)) map {case (c,r) => c && r} reduce (_||_))
val out_valids = sels map (col => col.reduce(_||_))
val out_data = sels map (s => Mux1H(s, io.in.map(_.bits)))
in_readys zip io.in foreach {case (r,i) => i.ready := r}
out_valids zip out_data zip io.out foreach {case ((v,d),o) => o.valid := v; o.bits := d}
}
}
/**
* Create a queue that can be killed with a branch kill signal.
* Assumption: enq.valid only high if not killed by branch (so don't check IsKilled on io.enq).
*/
class BranchKillableQueue[T <: boom.v4.common.HasBoomUOP](gen: T, entries: Int, flush_fn: boom.v4.common.MicroOp => Bool = u => true.B, fastDeq: Boolean = false)
(implicit p: org.chipsalliance.cde.config.Parameters)
extends boom.v4.common.BoomModule()(p)
with boom.v4.common.HasBoomCoreParameters
{
val io = IO(new Bundle {
val enq = Flipped(Decoupled(gen))
val deq = Decoupled(gen)
val brupdate = Input(new BrUpdateInfo())
val flush = Input(Bool())
val empty = Output(Bool())
val count = Output(UInt(log2Ceil(entries).W))
})
if (fastDeq && entries > 1) {
// Pipeline dequeue selection so the mux gets an entire cycle
val main = Module(new BranchKillableQueue(gen, entries-1, flush_fn, false))
val out_reg = Reg(gen)
val out_valid = RegInit(false.B)
val out_uop = Reg(new MicroOp)
main.io.enq <> io.enq
main.io.brupdate := io.brupdate
main.io.flush := io.flush
io.empty := main.io.empty && !out_valid
io.count := main.io.count + out_valid
io.deq.valid := out_valid
io.deq.bits := out_reg
io.deq.bits.uop := out_uop
out_uop := UpdateBrMask(io.brupdate, out_uop)
out_valid := out_valid && !IsKilledByBranch(io.brupdate, false.B, out_uop) && !(io.flush && flush_fn(out_uop))
main.io.deq.ready := false.B
when (io.deq.fire || !out_valid) {
out_valid := main.io.deq.valid && !IsKilledByBranch(io.brupdate, false.B, main.io.deq.bits.uop) && !(io.flush && flush_fn(main.io.deq.bits.uop))
out_reg := main.io.deq.bits
out_uop := UpdateBrMask(io.brupdate, main.io.deq.bits.uop)
main.io.deq.ready := true.B
}
} else {
val ram = Mem(entries, gen)
val valids = RegInit(VecInit(Seq.fill(entries) {false.B}))
val uops = Reg(Vec(entries, new MicroOp))
val enq_ptr = Counter(entries)
val deq_ptr = Counter(entries)
val maybe_full = RegInit(false.B)
val ptr_match = enq_ptr.value === deq_ptr.value
io.empty := ptr_match && !maybe_full
val full = ptr_match && maybe_full
val do_enq = WireInit(io.enq.fire && !IsKilledByBranch(io.brupdate, false.B, io.enq.bits.uop) && !(io.flush && flush_fn(io.enq.bits.uop)))
val do_deq = WireInit((io.deq.ready || !valids(deq_ptr.value)) && !io.empty)
for (i <- 0 until entries) {
val mask = uops(i).br_mask
val uop = uops(i)
valids(i) := valids(i) && !IsKilledByBranch(io.brupdate, false.B, mask) && !(io.flush && flush_fn(uop))
when (valids(i)) {
uops(i).br_mask := GetNewBrMask(io.brupdate, mask)
}
}
when (do_enq) {
ram(enq_ptr.value) := io.enq.bits
valids(enq_ptr.value) := true.B
uops(enq_ptr.value) := io.enq.bits.uop
uops(enq_ptr.value).br_mask := GetNewBrMask(io.brupdate, io.enq.bits.uop)
enq_ptr.inc()
}
when (do_deq) {
valids(deq_ptr.value) := false.B
deq_ptr.inc()
}
when (do_enq =/= do_deq) {
maybe_full := do_enq
}
io.enq.ready := !full
val out = Wire(gen)
out := ram(deq_ptr.value)
out.uop := uops(deq_ptr.value)
io.deq.valid := !io.empty && valids(deq_ptr.value)
io.deq.bits := out
val ptr_diff = enq_ptr.value - deq_ptr.value
if (isPow2(entries)) {
io.count := Cat(maybe_full && ptr_match, ptr_diff)
}
else {
io.count := Mux(ptr_match,
Mux(maybe_full,
entries.asUInt, 0.U),
Mux(deq_ptr.value > enq_ptr.value,
entries.asUInt + ptr_diff, ptr_diff))
}
}
}
// ------------------------------------------
// Printf helper functions
// ------------------------------------------
object BoolToChar
{
/**
* Take in a Chisel Bool and convert it into a Str
* based on the Chars given
*
* @param c_bool Chisel Bool
* @param trueChar Scala Char if bool is true
* @param falseChar Scala Char if bool is false
* @return UInt ASCII Char for "trueChar" or "falseChar"
*/
def apply(c_bool: Bool, trueChar: Char, falseChar: Char = '-'): UInt = {
Mux(c_bool, Str(trueChar), Str(falseChar))
}
}
object CfiTypeToChars
{
/**
* Get a Vec of Strs that can be used for printing
*
* @param cfi_type specific cfi type
* @return Vec of Strs (must be indexed to get specific char)
*/
def apply(cfi_type: UInt) = {
val strings = Seq("----", "BR ", "JAL ", "JALR")
val multiVec = VecInit(for(string <- strings) yield { VecInit(for (c <- string) yield { Str(c) }) })
multiVec(cfi_type)
}
}
object BpdTypeToChars
{
/**
* Get a Vec of Strs that can be used for printing
*
* @param bpd_type specific bpd type
* @return Vec of Strs (must be indexed to get specific char)
*/
def apply(bpd_type: UInt) = {
val strings = Seq("BR ", "JUMP", "----", "RET ", "----", "CALL", "----", "----")
val multiVec = VecInit(for(string <- strings) yield { VecInit(for (c <- string) yield { Str(c) }) })
multiVec(bpd_type)
}
}
object RobTypeToChars
{
/**
* Get a Vec of Strs that can be used for printing
*
* @param rob_type specific rob type
* @return Vec of Strs (must be indexed to get specific char)
*/
def apply(rob_type: UInt) = {
val strings = Seq("RST", "NML", "RBK", " WT")
val multiVec = VecInit(for(string <- strings) yield { VecInit(for (c <- string) yield { Str(c) }) })
multiVec(rob_type)
}
}
object XRegToChars
{
/**
* Get a Vec of Strs that can be used for printing
*
* @param xreg specific register number
* @return Vec of Strs (must be indexed to get specific char)
*/
def apply(xreg: UInt) = {
val strings = Seq(" x0", " ra", " sp", " gp",
" tp", " t0", " t1", " t2",
" s0", " s1", " a0", " a1",
" a2", " a3", " a4", " a5",
" a6", " a7", " s2", " s3",
" s4", " s5", " s6", " s7",
" s8", " s9", "s10", "s11",
" t3", " t4", " t5", " t6")
val multiVec = VecInit(for(string <- strings) yield { VecInit(for (c <- string) yield { Str(c) }) })
multiVec(xreg)
}
}
object FPRegToChars
{
/**
* Get a Vec of Strs that can be used for printing
*
* @param fpreg specific register number
* @return Vec of Strs (must be indexed to get specific char)
*/
def apply(fpreg: UInt) = {
val strings = Seq(" ft0", " ft1", " ft2", " ft3",
" ft4", " ft5", " ft6", " ft7",
" fs0", " fs1", " fa0", " fa1",
" fa2", " fa3", " fa4", " fa5",
" fa6", " fa7", " fs2", " fs3",
" fs4", " fs5", " fs6", " fs7",
" fs8", " fs9", "fs10", "fs11",
" ft8", " ft9", "ft10", "ft11")
val multiVec = VecInit(for(string <- strings) yield { VecInit(for (c <- string) yield { Str(c) }) })
multiVec(fpreg)
}
}
object BoomCoreStringPrefix
{
/**
* Add prefix to BOOM strings (currently only adds the hartId)
*
* @param strs list of strings
* @return String combining the list with the prefix per line
*/
def apply(strs: String*)(implicit p: Parameters) = {
val prefix = "[C" + s"${p(TileKey).tileId}" + "] "
strs.map(str => prefix + str + "\n").mkString("")
}
}
class BranchKillablePipeline[T <: boom.v4.common.HasBoomUOP](gen: T, stages: Int)
(implicit p: org.chipsalliance.cde.config.Parameters)
extends boom.v4.common.BoomModule()(p)
with boom.v4.common.HasBoomCoreParameters
{
val io = IO(new Bundle {
val req = Input(Valid(gen))
val flush = Input(Bool())
val brupdate = Input(new BrUpdateInfo)
val resp = Output(Vec(stages, Valid(gen)))
})
require(stages > 0)
val uops = Reg(Vec(stages, Valid(gen)))
uops(0).valid := io.req.valid && !IsKilledByBranch(io.brupdate, io.flush, io.req.bits)
uops(0).bits := UpdateBrMask(io.brupdate, io.req.bits)
for (i <- 1 until stages) {
uops(i).valid := uops(i-1).valid && !IsKilledByBranch(io.brupdate, io.flush, uops(i-1).bits)
uops(i).bits := UpdateBrMask(io.brupdate, uops(i-1).bits)
}
for (i <- 0 until stages) { when (reset.asBool) { uops(i).valid := false.B } }
io.resp := uops
}
File issue-slot.scala:
//******************************************************************************
// Copyright (c) 2015 - 2018, The Regents of the University of California (Regents).
// All Rights Reserved. See LICENSE and LICENSE.SiFive for license details.
//------------------------------------------------------------------------------
//------------------------------------------------------------------------------
//------------------------------------------------------------------------------
// RISCV Processor Issue Slot Logic
//--------------------------------------------------------------------------
//------------------------------------------------------------------------------
//
// Note: stores (and AMOs) are "broken down" into 2 uops, but stored within a single issue-slot.
// TODO XXX make a separate issueSlot for MemoryIssueSlots, and only they break apart stores.
// TODO Disable ldspec for FP queue.
package boom.v4.exu
import chisel3._
import chisel3.util._
import org.chipsalliance.cde.config.Parameters
import boom.v4.common._
import boom.v4.util._
class IssueSlotIO(val numWakeupPorts: Int)(implicit p: Parameters) extends BoomBundle
{
val valid = Output(Bool())
val will_be_valid = Output(Bool()) // TODO code review, do we need this signal so explicitely?
val request = Output(Bool())
val grant = Input(Bool())
val iss_uop = Output(new MicroOp())
val in_uop = Input(Valid(new MicroOp())) // if valid, this WILL overwrite an entry!
val out_uop = Output(new MicroOp())
val brupdate = Input(new BrUpdateInfo())
val kill = Input(Bool()) // pipeline flush
val clear = Input(Bool()) // entry being moved elsewhere (not mutually exclusive with grant)
val squash_grant = Input(Bool())
val wakeup_ports = Flipped(Vec(numWakeupPorts, Valid(new Wakeup)))
val pred_wakeup_port = Flipped(Valid(UInt(log2Ceil(ftqSz).W)))
val child_rebusys = Input(UInt(aluWidth.W))
}
class IssueSlot(val numWakeupPorts: Int, val isMem: Boolean, val isFp: Boolean)(implicit p: Parameters)
extends BoomModule
{
val io = IO(new IssueSlotIO(numWakeupPorts))
val slot_valid = RegInit(false.B)
val slot_uop = Reg(new MicroOp())
val next_valid = WireInit(slot_valid)
val next_uop = WireInit(UpdateBrMask(io.brupdate, slot_uop))
val killed = IsKilledByBranch(io.brupdate, io.kill, slot_uop)
io.valid := slot_valid
io.out_uop := next_uop
io.will_be_valid := next_valid && !killed
when (io.kill) {
slot_valid := false.B
} .elsewhen (io.in_uop.valid) {
slot_valid := true.B
} .elsewhen (io.clear) {
slot_valid := false.B
} .otherwise {
slot_valid := next_valid && !killed
}
when (io.in_uop.valid) {
slot_uop := io.in_uop.bits
assert (!slot_valid || io.clear || io.kill)
} .otherwise {
slot_uop := next_uop
}
// Wakeups
next_uop.iw_p1_bypass_hint := false.B
next_uop.iw_p2_bypass_hint := false.B
next_uop.iw_p3_bypass_hint := false.B
next_uop.iw_p1_speculative_child := 0.U
next_uop.iw_p2_speculative_child := 0.U
val rebusied_prs1 = WireInit(false.B)
val rebusied_prs2 = WireInit(false.B)
val rebusied = rebusied_prs1 || rebusied_prs2
val prs1_matches = io.wakeup_ports.map { w => w.bits.uop.pdst === slot_uop.prs1 }
val prs2_matches = io.wakeup_ports.map { w => w.bits.uop.pdst === slot_uop.prs2 }
val prs3_matches = io.wakeup_ports.map { w => w.bits.uop.pdst === slot_uop.prs3 }
val prs1_wakeups = (io.wakeup_ports zip prs1_matches).map { case (w,m) => w.valid && m }
val prs2_wakeups = (io.wakeup_ports zip prs2_matches).map { case (w,m) => w.valid && m }
val prs3_wakeups = (io.wakeup_ports zip prs3_matches).map { case (w,m) => w.valid && m }
val prs1_rebusys = (io.wakeup_ports zip prs1_matches).map { case (w,m) => w.bits.rebusy && m }
val prs2_rebusys = (io.wakeup_ports zip prs2_matches).map { case (w,m) => w.bits.rebusy && m }
val bypassables = io.wakeup_ports.map { w => w.bits.bypassable }
val speculative_masks = io.wakeup_ports.map { w => w.bits.speculative_mask }
when (prs1_wakeups.reduce(_||_)) {
next_uop.prs1_busy := false.B
next_uop.iw_p1_speculative_child := Mux1H(prs1_wakeups, speculative_masks)
next_uop.iw_p1_bypass_hint := Mux1H(prs1_wakeups, bypassables)
}
when ((prs1_rebusys.reduce(_||_) || ((io.child_rebusys & slot_uop.iw_p1_speculative_child) =/= 0.U)) &&
slot_uop.lrs1_rtype === RT_FIX) {
next_uop.prs1_busy := true.B
rebusied_prs1 := true.B
}
when (prs2_wakeups.reduce(_||_)) {
next_uop.prs2_busy := false.B
next_uop.iw_p2_speculative_child := Mux1H(prs2_wakeups, speculative_masks)
next_uop.iw_p2_bypass_hint := Mux1H(prs2_wakeups, bypassables)
}
when ((prs2_rebusys.reduce(_||_) || ((io.child_rebusys & slot_uop.iw_p2_speculative_child) =/= 0.U)) &&
slot_uop.lrs2_rtype === RT_FIX) {
next_uop.prs2_busy := true.B
rebusied_prs2 := true.B
}
when (prs3_wakeups.reduce(_||_)) {
next_uop.prs3_busy := false.B
next_uop.iw_p3_bypass_hint := Mux1H(prs3_wakeups, bypassables)
}
when (io.pred_wakeup_port.valid && io.pred_wakeup_port.bits === slot_uop.ppred) {
next_uop.ppred_busy := false.B
}
val iss_ready = !slot_uop.prs1_busy && !slot_uop.prs2_busy && !(slot_uop.ppred_busy && enableSFBOpt.B) && !(slot_uop.prs3_busy && isFp.B)
val agen_ready = (slot_uop.fu_code(FC_AGEN) && !slot_uop.prs1_busy && !(slot_uop.ppred_busy && enableSFBOpt.B) && isMem.B)
val dgen_ready = (slot_uop.fu_code(FC_DGEN) && !slot_uop.prs2_busy && !(slot_uop.ppred_busy && enableSFBOpt.B) && isMem.B)
io.request := slot_valid && !slot_uop.iw_issued && (
iss_ready || agen_ready || dgen_ready
)
io.iss_uop := slot_uop
// Update state for current micro-op based on grant
next_uop.iw_issued := false.B
next_uop.iw_issued_partial_agen := false.B
next_uop.iw_issued_partial_dgen := false.B
when (io.grant && !io.squash_grant) {
next_uop.iw_issued := true.B
}
if (isMem) {
when (slot_uop.fu_code(FC_AGEN) && slot_uop.fu_code(FC_DGEN)) {
when (agen_ready) {
// Issue the AGEN, next slot entry is a DGEN
when (io.grant && !io.squash_grant) {
next_uop.iw_issued_partial_agen := true.B
}
io.iss_uop.fu_code(FC_AGEN) := true.B
io.iss_uop.fu_code(FC_DGEN) := false.B
} .otherwise {
// Issue the DGEN, next slot entry is the AGEN
when (io.grant && !io.squash_grant) {
next_uop.iw_issued_partial_dgen := true.B
}
io.iss_uop.fu_code(FC_AGEN) := false.B
io.iss_uop.fu_code(FC_DGEN) := true.B
io.iss_uop.imm_sel := IS_N
io.iss_uop.prs1 := slot_uop.prs2
io.iss_uop.lrs1_rtype := slot_uop.lrs2_rtype
io.iss_uop.iw_p1_bypass_hint := slot_uop.iw_p2_bypass_hint
}
} .elsewhen (slot_uop.fu_code(FC_DGEN)) {
io.iss_uop.imm_sel := IS_N
io.iss_uop.prs1 := slot_uop.prs2
io.iss_uop.lrs1_rtype := slot_uop.lrs2_rtype
io.iss_uop.iw_p1_bypass_hint := slot_uop.iw_p2_bypass_hint
}
io.iss_uop.lrs2_rtype := RT_X
io.iss_uop.prs2 := io.iss_uop.prs1 // helps with DCE
}
when (slot_valid && slot_uop.iw_issued) {
next_valid := rebusied
if (isMem) {
when (slot_uop.iw_issued_partial_agen) {
next_valid := true.B
when (!rebusied_prs1) {
next_uop.fu_code(FC_AGEN) := false.B
next_uop.fu_code(FC_DGEN) := true.B
}
} .elsewhen (slot_uop.iw_issued_partial_dgen) {
next_valid := true.B
when (!rebusied_prs2) {
next_uop.fu_code(FC_AGEN) := true.B
next_uop.fu_code(FC_DGEN) := false.B
}
}
}
}
}
| module IssueSlot_9( // @[issue-slot.scala:49:7]
input clock, // @[issue-slot.scala:49:7]
input reset, // @[issue-slot.scala:49:7]
output io_valid, // @[issue-slot.scala:52:14]
output io_will_be_valid, // @[issue-slot.scala:52:14]
output io_request, // @[issue-slot.scala:52:14]
input io_grant, // @[issue-slot.scala:52:14]
output [31:0] io_iss_uop_inst, // @[issue-slot.scala:52:14]
output [31:0] io_iss_uop_debug_inst, // @[issue-slot.scala:52:14]
output io_iss_uop_is_rvc, // @[issue-slot.scala:52:14]
output [39:0] io_iss_uop_debug_pc, // @[issue-slot.scala:52:14]
output io_iss_uop_iq_type_0, // @[issue-slot.scala:52:14]
output io_iss_uop_iq_type_1, // @[issue-slot.scala:52:14]
output io_iss_uop_iq_type_2, // @[issue-slot.scala:52:14]
output io_iss_uop_iq_type_3, // @[issue-slot.scala:52:14]
output io_iss_uop_fu_code_0, // @[issue-slot.scala:52:14]
output io_iss_uop_fu_code_1, // @[issue-slot.scala:52:14]
output io_iss_uop_fu_code_2, // @[issue-slot.scala:52:14]
output io_iss_uop_fu_code_3, // @[issue-slot.scala:52:14]
output io_iss_uop_fu_code_4, // @[issue-slot.scala:52:14]
output io_iss_uop_fu_code_5, // @[issue-slot.scala:52:14]
output io_iss_uop_fu_code_6, // @[issue-slot.scala:52:14]
output io_iss_uop_fu_code_7, // @[issue-slot.scala:52:14]
output io_iss_uop_fu_code_8, // @[issue-slot.scala:52:14]
output io_iss_uop_fu_code_9, // @[issue-slot.scala:52:14]
output io_iss_uop_iw_issued, // @[issue-slot.scala:52:14]
output [2:0] io_iss_uop_iw_p1_speculative_child, // @[issue-slot.scala:52:14]
output [2:0] io_iss_uop_iw_p2_speculative_child, // @[issue-slot.scala:52:14]
output io_iss_uop_iw_p1_bypass_hint, // @[issue-slot.scala:52:14]
output io_iss_uop_iw_p2_bypass_hint, // @[issue-slot.scala:52:14]
output io_iss_uop_iw_p3_bypass_hint, // @[issue-slot.scala:52:14]
output [2:0] io_iss_uop_dis_col_sel, // @[issue-slot.scala:52:14]
output [15:0] io_iss_uop_br_mask, // @[issue-slot.scala:52:14]
output [3:0] io_iss_uop_br_tag, // @[issue-slot.scala:52:14]
output [3:0] io_iss_uop_br_type, // @[issue-slot.scala:52:14]
output io_iss_uop_is_sfb, // @[issue-slot.scala:52:14]
output io_iss_uop_is_fence, // @[issue-slot.scala:52:14]
output io_iss_uop_is_fencei, // @[issue-slot.scala:52:14]
output io_iss_uop_is_sfence, // @[issue-slot.scala:52:14]
output io_iss_uop_is_amo, // @[issue-slot.scala:52:14]
output io_iss_uop_is_eret, // @[issue-slot.scala:52:14]
output io_iss_uop_is_sys_pc2epc, // @[issue-slot.scala:52:14]
output io_iss_uop_is_rocc, // @[issue-slot.scala:52:14]
output io_iss_uop_is_mov, // @[issue-slot.scala:52:14]
output [4:0] io_iss_uop_ftq_idx, // @[issue-slot.scala:52:14]
output io_iss_uop_edge_inst, // @[issue-slot.scala:52:14]
output [5:0] io_iss_uop_pc_lob, // @[issue-slot.scala:52:14]
output io_iss_uop_taken, // @[issue-slot.scala:52:14]
output io_iss_uop_imm_rename, // @[issue-slot.scala:52:14]
output [2:0] io_iss_uop_imm_sel, // @[issue-slot.scala:52:14]
output [4:0] io_iss_uop_pimm, // @[issue-slot.scala:52:14]
output [19:0] io_iss_uop_imm_packed, // @[issue-slot.scala:52:14]
output [1:0] io_iss_uop_op1_sel, // @[issue-slot.scala:52:14]
output [2:0] io_iss_uop_op2_sel, // @[issue-slot.scala:52:14]
output io_iss_uop_fp_ctrl_ldst, // @[issue-slot.scala:52:14]
output io_iss_uop_fp_ctrl_wen, // @[issue-slot.scala:52:14]
output io_iss_uop_fp_ctrl_ren1, // @[issue-slot.scala:52:14]
output io_iss_uop_fp_ctrl_ren2, // @[issue-slot.scala:52:14]
output io_iss_uop_fp_ctrl_ren3, // @[issue-slot.scala:52:14]
output io_iss_uop_fp_ctrl_swap12, // @[issue-slot.scala:52:14]
output io_iss_uop_fp_ctrl_swap23, // @[issue-slot.scala:52:14]
output [1:0] io_iss_uop_fp_ctrl_typeTagIn, // @[issue-slot.scala:52:14]
output [1:0] io_iss_uop_fp_ctrl_typeTagOut, // @[issue-slot.scala:52:14]
output io_iss_uop_fp_ctrl_fromint, // @[issue-slot.scala:52:14]
output io_iss_uop_fp_ctrl_toint, // @[issue-slot.scala:52:14]
output io_iss_uop_fp_ctrl_fastpipe, // @[issue-slot.scala:52:14]
output io_iss_uop_fp_ctrl_fma, // @[issue-slot.scala:52:14]
output io_iss_uop_fp_ctrl_div, // @[issue-slot.scala:52:14]
output io_iss_uop_fp_ctrl_sqrt, // @[issue-slot.scala:52:14]
output io_iss_uop_fp_ctrl_wflags, // @[issue-slot.scala:52:14]
output io_iss_uop_fp_ctrl_vec, // @[issue-slot.scala:52:14]
output [6:0] io_iss_uop_rob_idx, // @[issue-slot.scala:52:14]
output [4:0] io_iss_uop_ldq_idx, // @[issue-slot.scala:52:14]
output [4:0] io_iss_uop_stq_idx, // @[issue-slot.scala:52:14]
output [1:0] io_iss_uop_rxq_idx, // @[issue-slot.scala:52:14]
output [6:0] io_iss_uop_pdst, // @[issue-slot.scala:52:14]
output [6:0] io_iss_uop_prs1, // @[issue-slot.scala:52:14]
output [6:0] io_iss_uop_prs2, // @[issue-slot.scala:52:14]
output [6:0] io_iss_uop_prs3, // @[issue-slot.scala:52:14]
output [4:0] io_iss_uop_ppred, // @[issue-slot.scala:52:14]
output io_iss_uop_prs1_busy, // @[issue-slot.scala:52:14]
output io_iss_uop_prs2_busy, // @[issue-slot.scala:52:14]
output io_iss_uop_prs3_busy, // @[issue-slot.scala:52:14]
output io_iss_uop_ppred_busy, // @[issue-slot.scala:52:14]
output [6:0] io_iss_uop_stale_pdst, // @[issue-slot.scala:52:14]
output io_iss_uop_exception, // @[issue-slot.scala:52:14]
output [63:0] io_iss_uop_exc_cause, // @[issue-slot.scala:52:14]
output [4:0] io_iss_uop_mem_cmd, // @[issue-slot.scala:52:14]
output [1:0] io_iss_uop_mem_size, // @[issue-slot.scala:52:14]
output io_iss_uop_mem_signed, // @[issue-slot.scala:52:14]
output io_iss_uop_uses_ldq, // @[issue-slot.scala:52:14]
output io_iss_uop_uses_stq, // @[issue-slot.scala:52:14]
output io_iss_uop_is_unique, // @[issue-slot.scala:52:14]
output io_iss_uop_flush_on_commit, // @[issue-slot.scala:52:14]
output [2:0] io_iss_uop_csr_cmd, // @[issue-slot.scala:52:14]
output io_iss_uop_ldst_is_rs1, // @[issue-slot.scala:52:14]
output [5:0] io_iss_uop_ldst, // @[issue-slot.scala:52:14]
output [5:0] io_iss_uop_lrs1, // @[issue-slot.scala:52:14]
output [5:0] io_iss_uop_lrs2, // @[issue-slot.scala:52:14]
output [5:0] io_iss_uop_lrs3, // @[issue-slot.scala:52:14]
output [1:0] io_iss_uop_dst_rtype, // @[issue-slot.scala:52:14]
output [1:0] io_iss_uop_lrs1_rtype, // @[issue-slot.scala:52:14]
output [1:0] io_iss_uop_lrs2_rtype, // @[issue-slot.scala:52:14]
output io_iss_uop_frs3_en, // @[issue-slot.scala:52:14]
output io_iss_uop_fcn_dw, // @[issue-slot.scala:52:14]
output [4:0] io_iss_uop_fcn_op, // @[issue-slot.scala:52:14]
output io_iss_uop_fp_val, // @[issue-slot.scala:52:14]
output [2:0] io_iss_uop_fp_rm, // @[issue-slot.scala:52:14]
output [1:0] io_iss_uop_fp_typ, // @[issue-slot.scala:52:14]
output io_iss_uop_xcpt_pf_if, // @[issue-slot.scala:52:14]
output io_iss_uop_xcpt_ae_if, // @[issue-slot.scala:52:14]
output io_iss_uop_xcpt_ma_if, // @[issue-slot.scala:52:14]
output io_iss_uop_bp_debug_if, // @[issue-slot.scala:52:14]
output io_iss_uop_bp_xcpt_if, // @[issue-slot.scala:52:14]
output [2:0] io_iss_uop_debug_fsrc, // @[issue-slot.scala:52:14]
output [2:0] io_iss_uop_debug_tsrc, // @[issue-slot.scala:52:14]
input io_in_uop_valid, // @[issue-slot.scala:52:14]
input [31:0] io_in_uop_bits_inst, // @[issue-slot.scala:52:14]
input [31:0] io_in_uop_bits_debug_inst, // @[issue-slot.scala:52:14]
input io_in_uop_bits_is_rvc, // @[issue-slot.scala:52:14]
input [39:0] io_in_uop_bits_debug_pc, // @[issue-slot.scala:52:14]
input io_in_uop_bits_iq_type_0, // @[issue-slot.scala:52:14]
input io_in_uop_bits_iq_type_1, // @[issue-slot.scala:52:14]
input io_in_uop_bits_iq_type_2, // @[issue-slot.scala:52:14]
input io_in_uop_bits_iq_type_3, // @[issue-slot.scala:52:14]
input io_in_uop_bits_fu_code_0, // @[issue-slot.scala:52:14]
input io_in_uop_bits_fu_code_1, // @[issue-slot.scala:52:14]
input io_in_uop_bits_fu_code_2, // @[issue-slot.scala:52:14]
input io_in_uop_bits_fu_code_3, // @[issue-slot.scala:52:14]
input io_in_uop_bits_fu_code_4, // @[issue-slot.scala:52:14]
input io_in_uop_bits_fu_code_5, // @[issue-slot.scala:52:14]
input io_in_uop_bits_fu_code_6, // @[issue-slot.scala:52:14]
input io_in_uop_bits_fu_code_7, // @[issue-slot.scala:52:14]
input io_in_uop_bits_fu_code_8, // @[issue-slot.scala:52:14]
input io_in_uop_bits_fu_code_9, // @[issue-slot.scala:52:14]
input io_in_uop_bits_iw_issued, // @[issue-slot.scala:52:14]
input io_in_uop_bits_iw_p1_bypass_hint, // @[issue-slot.scala:52:14]
input io_in_uop_bits_iw_p2_bypass_hint, // @[issue-slot.scala:52:14]
input io_in_uop_bits_iw_p3_bypass_hint, // @[issue-slot.scala:52:14]
input [2:0] io_in_uop_bits_dis_col_sel, // @[issue-slot.scala:52:14]
input [15:0] io_in_uop_bits_br_mask, // @[issue-slot.scala:52:14]
input [3:0] io_in_uop_bits_br_tag, // @[issue-slot.scala:52:14]
input [3:0] io_in_uop_bits_br_type, // @[issue-slot.scala:52:14]
input io_in_uop_bits_is_sfb, // @[issue-slot.scala:52:14]
input io_in_uop_bits_is_fence, // @[issue-slot.scala:52:14]
input io_in_uop_bits_is_fencei, // @[issue-slot.scala:52:14]
input io_in_uop_bits_is_sfence, // @[issue-slot.scala:52:14]
input io_in_uop_bits_is_amo, // @[issue-slot.scala:52:14]
input io_in_uop_bits_is_eret, // @[issue-slot.scala:52:14]
input io_in_uop_bits_is_sys_pc2epc, // @[issue-slot.scala:52:14]
input io_in_uop_bits_is_rocc, // @[issue-slot.scala:52:14]
input io_in_uop_bits_is_mov, // @[issue-slot.scala:52:14]
input [4:0] io_in_uop_bits_ftq_idx, // @[issue-slot.scala:52:14]
input io_in_uop_bits_edge_inst, // @[issue-slot.scala:52:14]
input [5:0] io_in_uop_bits_pc_lob, // @[issue-slot.scala:52:14]
input io_in_uop_bits_taken, // @[issue-slot.scala:52:14]
input io_in_uop_bits_imm_rename, // @[issue-slot.scala:52:14]
input [2:0] io_in_uop_bits_imm_sel, // @[issue-slot.scala:52:14]
input [4:0] io_in_uop_bits_pimm, // @[issue-slot.scala:52:14]
input [19:0] io_in_uop_bits_imm_packed, // @[issue-slot.scala:52:14]
input [1:0] io_in_uop_bits_op1_sel, // @[issue-slot.scala:52:14]
input [2:0] io_in_uop_bits_op2_sel, // @[issue-slot.scala:52:14]
input io_in_uop_bits_fp_ctrl_ldst, // @[issue-slot.scala:52:14]
input io_in_uop_bits_fp_ctrl_wen, // @[issue-slot.scala:52:14]
input io_in_uop_bits_fp_ctrl_ren1, // @[issue-slot.scala:52:14]
input io_in_uop_bits_fp_ctrl_ren2, // @[issue-slot.scala:52:14]
input io_in_uop_bits_fp_ctrl_ren3, // @[issue-slot.scala:52:14]
input io_in_uop_bits_fp_ctrl_swap12, // @[issue-slot.scala:52:14]
input io_in_uop_bits_fp_ctrl_swap23, // @[issue-slot.scala:52:14]
input [1:0] io_in_uop_bits_fp_ctrl_typeTagIn, // @[issue-slot.scala:52:14]
input [1:0] io_in_uop_bits_fp_ctrl_typeTagOut, // @[issue-slot.scala:52:14]
input io_in_uop_bits_fp_ctrl_fromint, // @[issue-slot.scala:52:14]
input io_in_uop_bits_fp_ctrl_toint, // @[issue-slot.scala:52:14]
input io_in_uop_bits_fp_ctrl_fastpipe, // @[issue-slot.scala:52:14]
input io_in_uop_bits_fp_ctrl_fma, // @[issue-slot.scala:52:14]
input io_in_uop_bits_fp_ctrl_div, // @[issue-slot.scala:52:14]
input io_in_uop_bits_fp_ctrl_sqrt, // @[issue-slot.scala:52:14]
input io_in_uop_bits_fp_ctrl_wflags, // @[issue-slot.scala:52:14]
input io_in_uop_bits_fp_ctrl_vec, // @[issue-slot.scala:52:14]
input [6:0] io_in_uop_bits_rob_idx, // @[issue-slot.scala:52:14]
input [4:0] io_in_uop_bits_ldq_idx, // @[issue-slot.scala:52:14]
input [4:0] io_in_uop_bits_stq_idx, // @[issue-slot.scala:52:14]
input [1:0] io_in_uop_bits_rxq_idx, // @[issue-slot.scala:52:14]
input [6:0] io_in_uop_bits_pdst, // @[issue-slot.scala:52:14]
input [6:0] io_in_uop_bits_prs1, // @[issue-slot.scala:52:14]
input [6:0] io_in_uop_bits_prs2, // @[issue-slot.scala:52:14]
input [6:0] io_in_uop_bits_prs3, // @[issue-slot.scala:52:14]
input [4:0] io_in_uop_bits_ppred, // @[issue-slot.scala:52:14]
input io_in_uop_bits_prs1_busy, // @[issue-slot.scala:52:14]
input io_in_uop_bits_prs2_busy, // @[issue-slot.scala:52:14]
input io_in_uop_bits_prs3_busy, // @[issue-slot.scala:52:14]
input io_in_uop_bits_ppred_busy, // @[issue-slot.scala:52:14]
input [6:0] io_in_uop_bits_stale_pdst, // @[issue-slot.scala:52:14]
input io_in_uop_bits_exception, // @[issue-slot.scala:52:14]
input [63:0] io_in_uop_bits_exc_cause, // @[issue-slot.scala:52:14]
input [4:0] io_in_uop_bits_mem_cmd, // @[issue-slot.scala:52:14]
input [1:0] io_in_uop_bits_mem_size, // @[issue-slot.scala:52:14]
input io_in_uop_bits_mem_signed, // @[issue-slot.scala:52:14]
input io_in_uop_bits_uses_ldq, // @[issue-slot.scala:52:14]
input io_in_uop_bits_uses_stq, // @[issue-slot.scala:52:14]
input io_in_uop_bits_is_unique, // @[issue-slot.scala:52:14]
input io_in_uop_bits_flush_on_commit, // @[issue-slot.scala:52:14]
input [2:0] io_in_uop_bits_csr_cmd, // @[issue-slot.scala:52:14]
input io_in_uop_bits_ldst_is_rs1, // @[issue-slot.scala:52:14]
input [5:0] io_in_uop_bits_ldst, // @[issue-slot.scala:52:14]
input [5:0] io_in_uop_bits_lrs1, // @[issue-slot.scala:52:14]
input [5:0] io_in_uop_bits_lrs2, // @[issue-slot.scala:52:14]
input [5:0] io_in_uop_bits_lrs3, // @[issue-slot.scala:52:14]
input [1:0] io_in_uop_bits_dst_rtype, // @[issue-slot.scala:52:14]
input [1:0] io_in_uop_bits_lrs1_rtype, // @[issue-slot.scala:52:14]
input [1:0] io_in_uop_bits_lrs2_rtype, // @[issue-slot.scala:52:14]
input io_in_uop_bits_frs3_en, // @[issue-slot.scala:52:14]
input io_in_uop_bits_fcn_dw, // @[issue-slot.scala:52:14]
input [4:0] io_in_uop_bits_fcn_op, // @[issue-slot.scala:52:14]
input io_in_uop_bits_fp_val, // @[issue-slot.scala:52:14]
input [2:0] io_in_uop_bits_fp_rm, // @[issue-slot.scala:52:14]
input [1:0] io_in_uop_bits_fp_typ, // @[issue-slot.scala:52:14]
input io_in_uop_bits_xcpt_pf_if, // @[issue-slot.scala:52:14]
input io_in_uop_bits_xcpt_ae_if, // @[issue-slot.scala:52:14]
input io_in_uop_bits_xcpt_ma_if, // @[issue-slot.scala:52:14]
input io_in_uop_bits_bp_debug_if, // @[issue-slot.scala:52:14]
input io_in_uop_bits_bp_xcpt_if, // @[issue-slot.scala:52:14]
input [2:0] io_in_uop_bits_debug_fsrc, // @[issue-slot.scala:52:14]
input [2:0] io_in_uop_bits_debug_tsrc, // @[issue-slot.scala:52:14]
output [31:0] io_out_uop_inst, // @[issue-slot.scala:52:14]
output [31:0] io_out_uop_debug_inst, // @[issue-slot.scala:52:14]
output io_out_uop_is_rvc, // @[issue-slot.scala:52:14]
output [39:0] io_out_uop_debug_pc, // @[issue-slot.scala:52:14]
output io_out_uop_iq_type_0, // @[issue-slot.scala:52:14]
output io_out_uop_iq_type_1, // @[issue-slot.scala:52:14]
output io_out_uop_iq_type_2, // @[issue-slot.scala:52:14]
output io_out_uop_iq_type_3, // @[issue-slot.scala:52:14]
output io_out_uop_fu_code_0, // @[issue-slot.scala:52:14]
output io_out_uop_fu_code_1, // @[issue-slot.scala:52:14]
output io_out_uop_fu_code_2, // @[issue-slot.scala:52:14]
output io_out_uop_fu_code_3, // @[issue-slot.scala:52:14]
output io_out_uop_fu_code_4, // @[issue-slot.scala:52:14]
output io_out_uop_fu_code_5, // @[issue-slot.scala:52:14]
output io_out_uop_fu_code_6, // @[issue-slot.scala:52:14]
output io_out_uop_fu_code_7, // @[issue-slot.scala:52:14]
output io_out_uop_fu_code_8, // @[issue-slot.scala:52:14]
output io_out_uop_fu_code_9, // @[issue-slot.scala:52:14]
output io_out_uop_iw_issued, // @[issue-slot.scala:52:14]
output io_out_uop_iw_p1_bypass_hint, // @[issue-slot.scala:52:14]
output io_out_uop_iw_p2_bypass_hint, // @[issue-slot.scala:52:14]
output io_out_uop_iw_p3_bypass_hint, // @[issue-slot.scala:52:14]
output [2:0] io_out_uop_dis_col_sel, // @[issue-slot.scala:52:14]
output [15:0] io_out_uop_br_mask, // @[issue-slot.scala:52:14]
output [3:0] io_out_uop_br_tag, // @[issue-slot.scala:52:14]
output [3:0] io_out_uop_br_type, // @[issue-slot.scala:52:14]
output io_out_uop_is_sfb, // @[issue-slot.scala:52:14]
output io_out_uop_is_fence, // @[issue-slot.scala:52:14]
output io_out_uop_is_fencei, // @[issue-slot.scala:52:14]
output io_out_uop_is_sfence, // @[issue-slot.scala:52:14]
output io_out_uop_is_amo, // @[issue-slot.scala:52:14]
output io_out_uop_is_eret, // @[issue-slot.scala:52:14]
output io_out_uop_is_sys_pc2epc, // @[issue-slot.scala:52:14]
output io_out_uop_is_rocc, // @[issue-slot.scala:52:14]
output io_out_uop_is_mov, // @[issue-slot.scala:52:14]
output [4:0] io_out_uop_ftq_idx, // @[issue-slot.scala:52:14]
output io_out_uop_edge_inst, // @[issue-slot.scala:52:14]
output [5:0] io_out_uop_pc_lob, // @[issue-slot.scala:52:14]
output io_out_uop_taken, // @[issue-slot.scala:52:14]
output io_out_uop_imm_rename, // @[issue-slot.scala:52:14]
output [2:0] io_out_uop_imm_sel, // @[issue-slot.scala:52:14]
output [4:0] io_out_uop_pimm, // @[issue-slot.scala:52:14]
output [19:0] io_out_uop_imm_packed, // @[issue-slot.scala:52:14]
output [1:0] io_out_uop_op1_sel, // @[issue-slot.scala:52:14]
output [2:0] io_out_uop_op2_sel, // @[issue-slot.scala:52:14]
output io_out_uop_fp_ctrl_ldst, // @[issue-slot.scala:52:14]
output io_out_uop_fp_ctrl_wen, // @[issue-slot.scala:52:14]
output io_out_uop_fp_ctrl_ren1, // @[issue-slot.scala:52:14]
output io_out_uop_fp_ctrl_ren2, // @[issue-slot.scala:52:14]
output io_out_uop_fp_ctrl_ren3, // @[issue-slot.scala:52:14]
output io_out_uop_fp_ctrl_swap12, // @[issue-slot.scala:52:14]
output io_out_uop_fp_ctrl_swap23, // @[issue-slot.scala:52:14]
output [1:0] io_out_uop_fp_ctrl_typeTagIn, // @[issue-slot.scala:52:14]
output [1:0] io_out_uop_fp_ctrl_typeTagOut, // @[issue-slot.scala:52:14]
output io_out_uop_fp_ctrl_fromint, // @[issue-slot.scala:52:14]
output io_out_uop_fp_ctrl_toint, // @[issue-slot.scala:52:14]
output io_out_uop_fp_ctrl_fastpipe, // @[issue-slot.scala:52:14]
output io_out_uop_fp_ctrl_fma, // @[issue-slot.scala:52:14]
output io_out_uop_fp_ctrl_div, // @[issue-slot.scala:52:14]
output io_out_uop_fp_ctrl_sqrt, // @[issue-slot.scala:52:14]
output io_out_uop_fp_ctrl_wflags, // @[issue-slot.scala:52:14]
output io_out_uop_fp_ctrl_vec, // @[issue-slot.scala:52:14]
output [6:0] io_out_uop_rob_idx, // @[issue-slot.scala:52:14]
output [4:0] io_out_uop_ldq_idx, // @[issue-slot.scala:52:14]
output [4:0] io_out_uop_stq_idx, // @[issue-slot.scala:52:14]
output [1:0] io_out_uop_rxq_idx, // @[issue-slot.scala:52:14]
output [6:0] io_out_uop_pdst, // @[issue-slot.scala:52:14]
output [6:0] io_out_uop_prs1, // @[issue-slot.scala:52:14]
output [6:0] io_out_uop_prs2, // @[issue-slot.scala:52:14]
output [6:0] io_out_uop_prs3, // @[issue-slot.scala:52:14]
output [4:0] io_out_uop_ppred, // @[issue-slot.scala:52:14]
output io_out_uop_prs1_busy, // @[issue-slot.scala:52:14]
output io_out_uop_prs2_busy, // @[issue-slot.scala:52:14]
output io_out_uop_prs3_busy, // @[issue-slot.scala:52:14]
output io_out_uop_ppred_busy, // @[issue-slot.scala:52:14]
output [6:0] io_out_uop_stale_pdst, // @[issue-slot.scala:52:14]
output io_out_uop_exception, // @[issue-slot.scala:52:14]
output [63:0] io_out_uop_exc_cause, // @[issue-slot.scala:52:14]
output [4:0] io_out_uop_mem_cmd, // @[issue-slot.scala:52:14]
output [1:0] io_out_uop_mem_size, // @[issue-slot.scala:52:14]
output io_out_uop_mem_signed, // @[issue-slot.scala:52:14]
output io_out_uop_uses_ldq, // @[issue-slot.scala:52:14]
output io_out_uop_uses_stq, // @[issue-slot.scala:52:14]
output io_out_uop_is_unique, // @[issue-slot.scala:52:14]
output io_out_uop_flush_on_commit, // @[issue-slot.scala:52:14]
output [2:0] io_out_uop_csr_cmd, // @[issue-slot.scala:52:14]
output io_out_uop_ldst_is_rs1, // @[issue-slot.scala:52:14]
output [5:0] io_out_uop_ldst, // @[issue-slot.scala:52:14]
output [5:0] io_out_uop_lrs1, // @[issue-slot.scala:52:14]
output [5:0] io_out_uop_lrs2, // @[issue-slot.scala:52:14]
output [5:0] io_out_uop_lrs3, // @[issue-slot.scala:52:14]
output [1:0] io_out_uop_dst_rtype, // @[issue-slot.scala:52:14]
output [1:0] io_out_uop_lrs1_rtype, // @[issue-slot.scala:52:14]
output [1:0] io_out_uop_lrs2_rtype, // @[issue-slot.scala:52:14]
output io_out_uop_frs3_en, // @[issue-slot.scala:52:14]
output io_out_uop_fcn_dw, // @[issue-slot.scala:52:14]
output [4:0] io_out_uop_fcn_op, // @[issue-slot.scala:52:14]
output io_out_uop_fp_val, // @[issue-slot.scala:52:14]
output [2:0] io_out_uop_fp_rm, // @[issue-slot.scala:52:14]
output [1:0] io_out_uop_fp_typ, // @[issue-slot.scala:52:14]
output io_out_uop_xcpt_pf_if, // @[issue-slot.scala:52:14]
output io_out_uop_xcpt_ae_if, // @[issue-slot.scala:52:14]
output io_out_uop_xcpt_ma_if, // @[issue-slot.scala:52:14]
output io_out_uop_bp_debug_if, // @[issue-slot.scala:52:14]
output io_out_uop_bp_xcpt_if, // @[issue-slot.scala:52:14]
output [2:0] io_out_uop_debug_fsrc, // @[issue-slot.scala:52:14]
output [2:0] io_out_uop_debug_tsrc, // @[issue-slot.scala:52:14]
input [15:0] io_brupdate_b1_resolve_mask, // @[issue-slot.scala:52:14]
input [15:0] io_brupdate_b1_mispredict_mask, // @[issue-slot.scala:52:14]
input [31:0] io_brupdate_b2_uop_inst, // @[issue-slot.scala:52:14]
input [31:0] io_brupdate_b2_uop_debug_inst, // @[issue-slot.scala:52:14]
input io_brupdate_b2_uop_is_rvc, // @[issue-slot.scala:52:14]
input [39:0] io_brupdate_b2_uop_debug_pc, // @[issue-slot.scala:52:14]
input io_brupdate_b2_uop_iq_type_0, // @[issue-slot.scala:52:14]
input io_brupdate_b2_uop_iq_type_1, // @[issue-slot.scala:52:14]
input io_brupdate_b2_uop_iq_type_2, // @[issue-slot.scala:52:14]
input io_brupdate_b2_uop_iq_type_3, // @[issue-slot.scala:52:14]
input io_brupdate_b2_uop_fu_code_0, // @[issue-slot.scala:52:14]
input io_brupdate_b2_uop_fu_code_1, // @[issue-slot.scala:52:14]
input io_brupdate_b2_uop_fu_code_2, // @[issue-slot.scala:52:14]
input io_brupdate_b2_uop_fu_code_3, // @[issue-slot.scala:52:14]
input io_brupdate_b2_uop_fu_code_4, // @[issue-slot.scala:52:14]
input io_brupdate_b2_uop_fu_code_5, // @[issue-slot.scala:52:14]
input io_brupdate_b2_uop_fu_code_6, // @[issue-slot.scala:52:14]
input io_brupdate_b2_uop_fu_code_7, // @[issue-slot.scala:52:14]
input io_brupdate_b2_uop_fu_code_8, // @[issue-slot.scala:52:14]
input io_brupdate_b2_uop_fu_code_9, // @[issue-slot.scala:52:14]
input io_brupdate_b2_uop_iw_issued, // @[issue-slot.scala:52:14]
input io_brupdate_b2_uop_iw_issued_partial_agen, // @[issue-slot.scala:52:14]
input io_brupdate_b2_uop_iw_issued_partial_dgen, // @[issue-slot.scala:52:14]
input [2:0] io_brupdate_b2_uop_iw_p1_speculative_child, // @[issue-slot.scala:52:14]
input [2:0] io_brupdate_b2_uop_iw_p2_speculative_child, // @[issue-slot.scala:52:14]
input io_brupdate_b2_uop_iw_p1_bypass_hint, // @[issue-slot.scala:52:14]
input io_brupdate_b2_uop_iw_p2_bypass_hint, // @[issue-slot.scala:52:14]
input io_brupdate_b2_uop_iw_p3_bypass_hint, // @[issue-slot.scala:52:14]
input [2:0] io_brupdate_b2_uop_dis_col_sel, // @[issue-slot.scala:52:14]
input [15:0] io_brupdate_b2_uop_br_mask, // @[issue-slot.scala:52:14]
input [3:0] io_brupdate_b2_uop_br_tag, // @[issue-slot.scala:52:14]
input [3:0] io_brupdate_b2_uop_br_type, // @[issue-slot.scala:52:14]
input io_brupdate_b2_uop_is_sfb, // @[issue-slot.scala:52:14]
input io_brupdate_b2_uop_is_fence, // @[issue-slot.scala:52:14]
input io_brupdate_b2_uop_is_fencei, // @[issue-slot.scala:52:14]
input io_brupdate_b2_uop_is_sfence, // @[issue-slot.scala:52:14]
input io_brupdate_b2_uop_is_amo, // @[issue-slot.scala:52:14]
input io_brupdate_b2_uop_is_eret, // @[issue-slot.scala:52:14]
input io_brupdate_b2_uop_is_sys_pc2epc, // @[issue-slot.scala:52:14]
input io_brupdate_b2_uop_is_rocc, // @[issue-slot.scala:52:14]
input io_brupdate_b2_uop_is_mov, // @[issue-slot.scala:52:14]
input [4:0] io_brupdate_b2_uop_ftq_idx, // @[issue-slot.scala:52:14]
input io_brupdate_b2_uop_edge_inst, // @[issue-slot.scala:52:14]
input [5:0] io_brupdate_b2_uop_pc_lob, // @[issue-slot.scala:52:14]
input io_brupdate_b2_uop_taken, // @[issue-slot.scala:52:14]
input io_brupdate_b2_uop_imm_rename, // @[issue-slot.scala:52:14]
input [2:0] io_brupdate_b2_uop_imm_sel, // @[issue-slot.scala:52:14]
input [4:0] io_brupdate_b2_uop_pimm, // @[issue-slot.scala:52:14]
input [19:0] io_brupdate_b2_uop_imm_packed, // @[issue-slot.scala:52:14]
input [1:0] io_brupdate_b2_uop_op1_sel, // @[issue-slot.scala:52:14]
input [2:0] io_brupdate_b2_uop_op2_sel, // @[issue-slot.scala:52:14]
input io_brupdate_b2_uop_fp_ctrl_ldst, // @[issue-slot.scala:52:14]
input io_brupdate_b2_uop_fp_ctrl_wen, // @[issue-slot.scala:52:14]
input io_brupdate_b2_uop_fp_ctrl_ren1, // @[issue-slot.scala:52:14]
input io_brupdate_b2_uop_fp_ctrl_ren2, // @[issue-slot.scala:52:14]
input io_brupdate_b2_uop_fp_ctrl_ren3, // @[issue-slot.scala:52:14]
input io_brupdate_b2_uop_fp_ctrl_swap12, // @[issue-slot.scala:52:14]
input io_brupdate_b2_uop_fp_ctrl_swap23, // @[issue-slot.scala:52:14]
input [1:0] io_brupdate_b2_uop_fp_ctrl_typeTagIn, // @[issue-slot.scala:52:14]
input [1:0] io_brupdate_b2_uop_fp_ctrl_typeTagOut, // @[issue-slot.scala:52:14]
input io_brupdate_b2_uop_fp_ctrl_fromint, // @[issue-slot.scala:52:14]
input io_brupdate_b2_uop_fp_ctrl_toint, // @[issue-slot.scala:52:14]
input io_brupdate_b2_uop_fp_ctrl_fastpipe, // @[issue-slot.scala:52:14]
input io_brupdate_b2_uop_fp_ctrl_fma, // @[issue-slot.scala:52:14]
input io_brupdate_b2_uop_fp_ctrl_div, // @[issue-slot.scala:52:14]
input io_brupdate_b2_uop_fp_ctrl_sqrt, // @[issue-slot.scala:52:14]
input io_brupdate_b2_uop_fp_ctrl_wflags, // @[issue-slot.scala:52:14]
input io_brupdate_b2_uop_fp_ctrl_vec, // @[issue-slot.scala:52:14]
input [6:0] io_brupdate_b2_uop_rob_idx, // @[issue-slot.scala:52:14]
input [4:0] io_brupdate_b2_uop_ldq_idx, // @[issue-slot.scala:52:14]
input [4:0] io_brupdate_b2_uop_stq_idx, // @[issue-slot.scala:52:14]
input [1:0] io_brupdate_b2_uop_rxq_idx, // @[issue-slot.scala:52:14]
input [6:0] io_brupdate_b2_uop_pdst, // @[issue-slot.scala:52:14]
input [6:0] io_brupdate_b2_uop_prs1, // @[issue-slot.scala:52:14]
input [6:0] io_brupdate_b2_uop_prs2, // @[issue-slot.scala:52:14]
input [6:0] io_brupdate_b2_uop_prs3, // @[issue-slot.scala:52:14]
input [4:0] io_brupdate_b2_uop_ppred, // @[issue-slot.scala:52:14]
input io_brupdate_b2_uop_prs1_busy, // @[issue-slot.scala:52:14]
input io_brupdate_b2_uop_prs2_busy, // @[issue-slot.scala:52:14]
input io_brupdate_b2_uop_prs3_busy, // @[issue-slot.scala:52:14]
input io_brupdate_b2_uop_ppred_busy, // @[issue-slot.scala:52:14]
input [6:0] io_brupdate_b2_uop_stale_pdst, // @[issue-slot.scala:52:14]
input io_brupdate_b2_uop_exception, // @[issue-slot.scala:52:14]
input [63:0] io_brupdate_b2_uop_exc_cause, // @[issue-slot.scala:52:14]
input [4:0] io_brupdate_b2_uop_mem_cmd, // @[issue-slot.scala:52:14]
input [1:0] io_brupdate_b2_uop_mem_size, // @[issue-slot.scala:52:14]
input io_brupdate_b2_uop_mem_signed, // @[issue-slot.scala:52:14]
input io_brupdate_b2_uop_uses_ldq, // @[issue-slot.scala:52:14]
input io_brupdate_b2_uop_uses_stq, // @[issue-slot.scala:52:14]
input io_brupdate_b2_uop_is_unique, // @[issue-slot.scala:52:14]
input io_brupdate_b2_uop_flush_on_commit, // @[issue-slot.scala:52:14]
input [2:0] io_brupdate_b2_uop_csr_cmd, // @[issue-slot.scala:52:14]
input io_brupdate_b2_uop_ldst_is_rs1, // @[issue-slot.scala:52:14]
input [5:0] io_brupdate_b2_uop_ldst, // @[issue-slot.scala:52:14]
input [5:0] io_brupdate_b2_uop_lrs1, // @[issue-slot.scala:52:14]
input [5:0] io_brupdate_b2_uop_lrs2, // @[issue-slot.scala:52:14]
input [5:0] io_brupdate_b2_uop_lrs3, // @[issue-slot.scala:52:14]
input [1:0] io_brupdate_b2_uop_dst_rtype, // @[issue-slot.scala:52:14]
input [1:0] io_brupdate_b2_uop_lrs1_rtype, // @[issue-slot.scala:52:14]
input [1:0] io_brupdate_b2_uop_lrs2_rtype, // @[issue-slot.scala:52:14]
input io_brupdate_b2_uop_frs3_en, // @[issue-slot.scala:52:14]
input io_brupdate_b2_uop_fcn_dw, // @[issue-slot.scala:52:14]
input [4:0] io_brupdate_b2_uop_fcn_op, // @[issue-slot.scala:52:14]
input io_brupdate_b2_uop_fp_val, // @[issue-slot.scala:52:14]
input [2:0] io_brupdate_b2_uop_fp_rm, // @[issue-slot.scala:52:14]
input [1:0] io_brupdate_b2_uop_fp_typ, // @[issue-slot.scala:52:14]
input io_brupdate_b2_uop_xcpt_pf_if, // @[issue-slot.scala:52:14]
input io_brupdate_b2_uop_xcpt_ae_if, // @[issue-slot.scala:52:14]
input io_brupdate_b2_uop_xcpt_ma_if, // @[issue-slot.scala:52:14]
input io_brupdate_b2_uop_bp_debug_if, // @[issue-slot.scala:52:14]
input io_brupdate_b2_uop_bp_xcpt_if, // @[issue-slot.scala:52:14]
input [2:0] io_brupdate_b2_uop_debug_fsrc, // @[issue-slot.scala:52:14]
input [2:0] io_brupdate_b2_uop_debug_tsrc, // @[issue-slot.scala:52:14]
input io_brupdate_b2_mispredict, // @[issue-slot.scala:52:14]
input io_brupdate_b2_taken, // @[issue-slot.scala:52:14]
input [2:0] io_brupdate_b2_cfi_type, // @[issue-slot.scala:52:14]
input [1:0] io_brupdate_b2_pc_sel, // @[issue-slot.scala:52:14]
input [39:0] io_brupdate_b2_jalr_target, // @[issue-slot.scala:52:14]
input [20:0] io_brupdate_b2_target_offset, // @[issue-slot.scala:52:14]
input io_kill, // @[issue-slot.scala:52:14]
input io_clear, // @[issue-slot.scala:52:14]
input io_squash_grant, // @[issue-slot.scala:52:14]
input io_wakeup_ports_0_valid, // @[issue-slot.scala:52:14]
input [31:0] io_wakeup_ports_0_bits_uop_inst, // @[issue-slot.scala:52:14]
input [31:0] io_wakeup_ports_0_bits_uop_debug_inst, // @[issue-slot.scala:52:14]
input io_wakeup_ports_0_bits_uop_is_rvc, // @[issue-slot.scala:52:14]
input [39:0] io_wakeup_ports_0_bits_uop_debug_pc, // @[issue-slot.scala:52:14]
input io_wakeup_ports_0_bits_uop_iq_type_0, // @[issue-slot.scala:52:14]
input io_wakeup_ports_0_bits_uop_iq_type_1, // @[issue-slot.scala:52:14]
input io_wakeup_ports_0_bits_uop_iq_type_2, // @[issue-slot.scala:52:14]
input io_wakeup_ports_0_bits_uop_iq_type_3, // @[issue-slot.scala:52:14]
input io_wakeup_ports_0_bits_uop_fu_code_0, // @[issue-slot.scala:52:14]
input io_wakeup_ports_0_bits_uop_fu_code_1, // @[issue-slot.scala:52:14]
input io_wakeup_ports_0_bits_uop_fu_code_2, // @[issue-slot.scala:52:14]
input io_wakeup_ports_0_bits_uop_fu_code_3, // @[issue-slot.scala:52:14]
input io_wakeup_ports_0_bits_uop_fu_code_4, // @[issue-slot.scala:52:14]
input io_wakeup_ports_0_bits_uop_fu_code_5, // @[issue-slot.scala:52:14]
input io_wakeup_ports_0_bits_uop_fu_code_6, // @[issue-slot.scala:52:14]
input io_wakeup_ports_0_bits_uop_fu_code_7, // @[issue-slot.scala:52:14]
input io_wakeup_ports_0_bits_uop_fu_code_8, // @[issue-slot.scala:52:14]
input io_wakeup_ports_0_bits_uop_fu_code_9, // @[issue-slot.scala:52:14]
input io_wakeup_ports_0_bits_uop_iw_issued, // @[issue-slot.scala:52:14]
input io_wakeup_ports_0_bits_uop_iw_issued_partial_agen, // @[issue-slot.scala:52:14]
input io_wakeup_ports_0_bits_uop_iw_issued_partial_dgen, // @[issue-slot.scala:52:14]
input [2:0] io_wakeup_ports_0_bits_uop_iw_p1_speculative_child, // @[issue-slot.scala:52:14]
input [2:0] io_wakeup_ports_0_bits_uop_iw_p2_speculative_child, // @[issue-slot.scala:52:14]
input io_wakeup_ports_0_bits_uop_iw_p1_bypass_hint, // @[issue-slot.scala:52:14]
input io_wakeup_ports_0_bits_uop_iw_p2_bypass_hint, // @[issue-slot.scala:52:14]
input io_wakeup_ports_0_bits_uop_iw_p3_bypass_hint, // @[issue-slot.scala:52:14]
input [2:0] io_wakeup_ports_0_bits_uop_dis_col_sel, // @[issue-slot.scala:52:14]
input [15:0] io_wakeup_ports_0_bits_uop_br_mask, // @[issue-slot.scala:52:14]
input [3:0] io_wakeup_ports_0_bits_uop_br_tag, // @[issue-slot.scala:52:14]
input [3:0] io_wakeup_ports_0_bits_uop_br_type, // @[issue-slot.scala:52:14]
input io_wakeup_ports_0_bits_uop_is_sfb, // @[issue-slot.scala:52:14]
input io_wakeup_ports_0_bits_uop_is_fence, // @[issue-slot.scala:52:14]
input io_wakeup_ports_0_bits_uop_is_fencei, // @[issue-slot.scala:52:14]
input io_wakeup_ports_0_bits_uop_is_sfence, // @[issue-slot.scala:52:14]
input io_wakeup_ports_0_bits_uop_is_amo, // @[issue-slot.scala:52:14]
input io_wakeup_ports_0_bits_uop_is_eret, // @[issue-slot.scala:52:14]
input io_wakeup_ports_0_bits_uop_is_sys_pc2epc, // @[issue-slot.scala:52:14]
input io_wakeup_ports_0_bits_uop_is_rocc, // @[issue-slot.scala:52:14]
input io_wakeup_ports_0_bits_uop_is_mov, // @[issue-slot.scala:52:14]
input [4:0] io_wakeup_ports_0_bits_uop_ftq_idx, // @[issue-slot.scala:52:14]
input io_wakeup_ports_0_bits_uop_edge_inst, // @[issue-slot.scala:52:14]
input [5:0] io_wakeup_ports_0_bits_uop_pc_lob, // @[issue-slot.scala:52:14]
input io_wakeup_ports_0_bits_uop_taken, // @[issue-slot.scala:52:14]
input io_wakeup_ports_0_bits_uop_imm_rename, // @[issue-slot.scala:52:14]
input [2:0] io_wakeup_ports_0_bits_uop_imm_sel, // @[issue-slot.scala:52:14]
input [4:0] io_wakeup_ports_0_bits_uop_pimm, // @[issue-slot.scala:52:14]
input [19:0] io_wakeup_ports_0_bits_uop_imm_packed, // @[issue-slot.scala:52:14]
input [1:0] io_wakeup_ports_0_bits_uop_op1_sel, // @[issue-slot.scala:52:14]
input [2:0] io_wakeup_ports_0_bits_uop_op2_sel, // @[issue-slot.scala:52:14]
input io_wakeup_ports_0_bits_uop_fp_ctrl_ldst, // @[issue-slot.scala:52:14]
input io_wakeup_ports_0_bits_uop_fp_ctrl_wen, // @[issue-slot.scala:52:14]
input io_wakeup_ports_0_bits_uop_fp_ctrl_ren1, // @[issue-slot.scala:52:14]
input io_wakeup_ports_0_bits_uop_fp_ctrl_ren2, // @[issue-slot.scala:52:14]
input io_wakeup_ports_0_bits_uop_fp_ctrl_ren3, // @[issue-slot.scala:52:14]
input io_wakeup_ports_0_bits_uop_fp_ctrl_swap12, // @[issue-slot.scala:52:14]
input io_wakeup_ports_0_bits_uop_fp_ctrl_swap23, // @[issue-slot.scala:52:14]
input [1:0] io_wakeup_ports_0_bits_uop_fp_ctrl_typeTagIn, // @[issue-slot.scala:52:14]
input [1:0] io_wakeup_ports_0_bits_uop_fp_ctrl_typeTagOut, // @[issue-slot.scala:52:14]
input io_wakeup_ports_0_bits_uop_fp_ctrl_fromint, // @[issue-slot.scala:52:14]
input io_wakeup_ports_0_bits_uop_fp_ctrl_toint, // @[issue-slot.scala:52:14]
input io_wakeup_ports_0_bits_uop_fp_ctrl_fastpipe, // @[issue-slot.scala:52:14]
input io_wakeup_ports_0_bits_uop_fp_ctrl_fma, // @[issue-slot.scala:52:14]
input io_wakeup_ports_0_bits_uop_fp_ctrl_div, // @[issue-slot.scala:52:14]
input io_wakeup_ports_0_bits_uop_fp_ctrl_sqrt, // @[issue-slot.scala:52:14]
input io_wakeup_ports_0_bits_uop_fp_ctrl_wflags, // @[issue-slot.scala:52:14]
input io_wakeup_ports_0_bits_uop_fp_ctrl_vec, // @[issue-slot.scala:52:14]
input [6:0] io_wakeup_ports_0_bits_uop_rob_idx, // @[issue-slot.scala:52:14]
input [4:0] io_wakeup_ports_0_bits_uop_ldq_idx, // @[issue-slot.scala:52:14]
input [4:0] io_wakeup_ports_0_bits_uop_stq_idx, // @[issue-slot.scala:52:14]
input [1:0] io_wakeup_ports_0_bits_uop_rxq_idx, // @[issue-slot.scala:52:14]
input [6:0] io_wakeup_ports_0_bits_uop_pdst, // @[issue-slot.scala:52:14]
input [6:0] io_wakeup_ports_0_bits_uop_prs1, // @[issue-slot.scala:52:14]
input [6:0] io_wakeup_ports_0_bits_uop_prs2, // @[issue-slot.scala:52:14]
input [6:0] io_wakeup_ports_0_bits_uop_prs3, // @[issue-slot.scala:52:14]
input [4:0] io_wakeup_ports_0_bits_uop_ppred, // @[issue-slot.scala:52:14]
input io_wakeup_ports_0_bits_uop_prs1_busy, // @[issue-slot.scala:52:14]
input io_wakeup_ports_0_bits_uop_prs2_busy, // @[issue-slot.scala:52:14]
input io_wakeup_ports_0_bits_uop_prs3_busy, // @[issue-slot.scala:52:14]
input io_wakeup_ports_0_bits_uop_ppred_busy, // @[issue-slot.scala:52:14]
input [6:0] io_wakeup_ports_0_bits_uop_stale_pdst, // @[issue-slot.scala:52:14]
input io_wakeup_ports_0_bits_uop_exception, // @[issue-slot.scala:52:14]
input [63:0] io_wakeup_ports_0_bits_uop_exc_cause, // @[issue-slot.scala:52:14]
input [4:0] io_wakeup_ports_0_bits_uop_mem_cmd, // @[issue-slot.scala:52:14]
input [1:0] io_wakeup_ports_0_bits_uop_mem_size, // @[issue-slot.scala:52:14]
input io_wakeup_ports_0_bits_uop_mem_signed, // @[issue-slot.scala:52:14]
input io_wakeup_ports_0_bits_uop_uses_ldq, // @[issue-slot.scala:52:14]
input io_wakeup_ports_0_bits_uop_uses_stq, // @[issue-slot.scala:52:14]
input io_wakeup_ports_0_bits_uop_is_unique, // @[issue-slot.scala:52:14]
input io_wakeup_ports_0_bits_uop_flush_on_commit, // @[issue-slot.scala:52:14]
input [2:0] io_wakeup_ports_0_bits_uop_csr_cmd, // @[issue-slot.scala:52:14]
input io_wakeup_ports_0_bits_uop_ldst_is_rs1, // @[issue-slot.scala:52:14]
input [5:0] io_wakeup_ports_0_bits_uop_ldst, // @[issue-slot.scala:52:14]
input [5:0] io_wakeup_ports_0_bits_uop_lrs1, // @[issue-slot.scala:52:14]
input [5:0] io_wakeup_ports_0_bits_uop_lrs2, // @[issue-slot.scala:52:14]
input [5:0] io_wakeup_ports_0_bits_uop_lrs3, // @[issue-slot.scala:52:14]
input [1:0] io_wakeup_ports_0_bits_uop_dst_rtype, // @[issue-slot.scala:52:14]
input [1:0] io_wakeup_ports_0_bits_uop_lrs1_rtype, // @[issue-slot.scala:52:14]
input [1:0] io_wakeup_ports_0_bits_uop_lrs2_rtype, // @[issue-slot.scala:52:14]
input io_wakeup_ports_0_bits_uop_frs3_en, // @[issue-slot.scala:52:14]
input io_wakeup_ports_0_bits_uop_fcn_dw, // @[issue-slot.scala:52:14]
input [4:0] io_wakeup_ports_0_bits_uop_fcn_op, // @[issue-slot.scala:52:14]
input io_wakeup_ports_0_bits_uop_fp_val, // @[issue-slot.scala:52:14]
input [2:0] io_wakeup_ports_0_bits_uop_fp_rm, // @[issue-slot.scala:52:14]
input [1:0] io_wakeup_ports_0_bits_uop_fp_typ, // @[issue-slot.scala:52:14]
input io_wakeup_ports_0_bits_uop_xcpt_pf_if, // @[issue-slot.scala:52:14]
input io_wakeup_ports_0_bits_uop_xcpt_ae_if, // @[issue-slot.scala:52:14]
input io_wakeup_ports_0_bits_uop_xcpt_ma_if, // @[issue-slot.scala:52:14]
input io_wakeup_ports_0_bits_uop_bp_debug_if, // @[issue-slot.scala:52:14]
input io_wakeup_ports_0_bits_uop_bp_xcpt_if, // @[issue-slot.scala:52:14]
input [2:0] io_wakeup_ports_0_bits_uop_debug_fsrc, // @[issue-slot.scala:52:14]
input [2:0] io_wakeup_ports_0_bits_uop_debug_tsrc, // @[issue-slot.scala:52:14]
input io_wakeup_ports_1_valid, // @[issue-slot.scala:52:14]
input [31:0] io_wakeup_ports_1_bits_uop_inst, // @[issue-slot.scala:52:14]
input [31:0] io_wakeup_ports_1_bits_uop_debug_inst, // @[issue-slot.scala:52:14]
input io_wakeup_ports_1_bits_uop_is_rvc, // @[issue-slot.scala:52:14]
input [39:0] io_wakeup_ports_1_bits_uop_debug_pc, // @[issue-slot.scala:52:14]
input io_wakeup_ports_1_bits_uop_iq_type_0, // @[issue-slot.scala:52:14]
input io_wakeup_ports_1_bits_uop_iq_type_1, // @[issue-slot.scala:52:14]
input io_wakeup_ports_1_bits_uop_iq_type_2, // @[issue-slot.scala:52:14]
input io_wakeup_ports_1_bits_uop_iq_type_3, // @[issue-slot.scala:52:14]
input io_wakeup_ports_1_bits_uop_fu_code_0, // @[issue-slot.scala:52:14]
input io_wakeup_ports_1_bits_uop_fu_code_1, // @[issue-slot.scala:52:14]
input io_wakeup_ports_1_bits_uop_fu_code_2, // @[issue-slot.scala:52:14]
input io_wakeup_ports_1_bits_uop_fu_code_3, // @[issue-slot.scala:52:14]
input io_wakeup_ports_1_bits_uop_fu_code_4, // @[issue-slot.scala:52:14]
input io_wakeup_ports_1_bits_uop_fu_code_5, // @[issue-slot.scala:52:14]
input io_wakeup_ports_1_bits_uop_fu_code_6, // @[issue-slot.scala:52:14]
input io_wakeup_ports_1_bits_uop_fu_code_7, // @[issue-slot.scala:52:14]
input io_wakeup_ports_1_bits_uop_fu_code_8, // @[issue-slot.scala:52:14]
input io_wakeup_ports_1_bits_uop_fu_code_9, // @[issue-slot.scala:52:14]
input io_wakeup_ports_1_bits_uop_iw_issued, // @[issue-slot.scala:52:14]
input io_wakeup_ports_1_bits_uop_iw_issued_partial_agen, // @[issue-slot.scala:52:14]
input io_wakeup_ports_1_bits_uop_iw_issued_partial_dgen, // @[issue-slot.scala:52:14]
input [2:0] io_wakeup_ports_1_bits_uop_iw_p1_speculative_child, // @[issue-slot.scala:52:14]
input [2:0] io_wakeup_ports_1_bits_uop_iw_p2_speculative_child, // @[issue-slot.scala:52:14]
input io_wakeup_ports_1_bits_uop_iw_p1_bypass_hint, // @[issue-slot.scala:52:14]
input io_wakeup_ports_1_bits_uop_iw_p2_bypass_hint, // @[issue-slot.scala:52:14]
input io_wakeup_ports_1_bits_uop_iw_p3_bypass_hint, // @[issue-slot.scala:52:14]
input [2:0] io_wakeup_ports_1_bits_uop_dis_col_sel, // @[issue-slot.scala:52:14]
input [15:0] io_wakeup_ports_1_bits_uop_br_mask, // @[issue-slot.scala:52:14]
input [3:0] io_wakeup_ports_1_bits_uop_br_tag, // @[issue-slot.scala:52:14]
input [3:0] io_wakeup_ports_1_bits_uop_br_type, // @[issue-slot.scala:52:14]
input io_wakeup_ports_1_bits_uop_is_sfb, // @[issue-slot.scala:52:14]
input io_wakeup_ports_1_bits_uop_is_fence, // @[issue-slot.scala:52:14]
input io_wakeup_ports_1_bits_uop_is_fencei, // @[issue-slot.scala:52:14]
input io_wakeup_ports_1_bits_uop_is_sfence, // @[issue-slot.scala:52:14]
input io_wakeup_ports_1_bits_uop_is_amo, // @[issue-slot.scala:52:14]
input io_wakeup_ports_1_bits_uop_is_eret, // @[issue-slot.scala:52:14]
input io_wakeup_ports_1_bits_uop_is_sys_pc2epc, // @[issue-slot.scala:52:14]
input io_wakeup_ports_1_bits_uop_is_rocc, // @[issue-slot.scala:52:14]
input io_wakeup_ports_1_bits_uop_is_mov, // @[issue-slot.scala:52:14]
input [4:0] io_wakeup_ports_1_bits_uop_ftq_idx, // @[issue-slot.scala:52:14]
input io_wakeup_ports_1_bits_uop_edge_inst, // @[issue-slot.scala:52:14]
input [5:0] io_wakeup_ports_1_bits_uop_pc_lob, // @[issue-slot.scala:52:14]
input io_wakeup_ports_1_bits_uop_taken, // @[issue-slot.scala:52:14]
input io_wakeup_ports_1_bits_uop_imm_rename, // @[issue-slot.scala:52:14]
input [2:0] io_wakeup_ports_1_bits_uop_imm_sel, // @[issue-slot.scala:52:14]
input [4:0] io_wakeup_ports_1_bits_uop_pimm, // @[issue-slot.scala:52:14]
input [19:0] io_wakeup_ports_1_bits_uop_imm_packed, // @[issue-slot.scala:52:14]
input [1:0] io_wakeup_ports_1_bits_uop_op1_sel, // @[issue-slot.scala:52:14]
input [2:0] io_wakeup_ports_1_bits_uop_op2_sel, // @[issue-slot.scala:52:14]
input io_wakeup_ports_1_bits_uop_fp_ctrl_ldst, // @[issue-slot.scala:52:14]
input io_wakeup_ports_1_bits_uop_fp_ctrl_wen, // @[issue-slot.scala:52:14]
input io_wakeup_ports_1_bits_uop_fp_ctrl_ren1, // @[issue-slot.scala:52:14]
input io_wakeup_ports_1_bits_uop_fp_ctrl_ren2, // @[issue-slot.scala:52:14]
input io_wakeup_ports_1_bits_uop_fp_ctrl_ren3, // @[issue-slot.scala:52:14]
input io_wakeup_ports_1_bits_uop_fp_ctrl_swap12, // @[issue-slot.scala:52:14]
input io_wakeup_ports_1_bits_uop_fp_ctrl_swap23, // @[issue-slot.scala:52:14]
input [1:0] io_wakeup_ports_1_bits_uop_fp_ctrl_typeTagIn, // @[issue-slot.scala:52:14]
input [1:0] io_wakeup_ports_1_bits_uop_fp_ctrl_typeTagOut, // @[issue-slot.scala:52:14]
input io_wakeup_ports_1_bits_uop_fp_ctrl_fromint, // @[issue-slot.scala:52:14]
input io_wakeup_ports_1_bits_uop_fp_ctrl_toint, // @[issue-slot.scala:52:14]
input io_wakeup_ports_1_bits_uop_fp_ctrl_fastpipe, // @[issue-slot.scala:52:14]
input io_wakeup_ports_1_bits_uop_fp_ctrl_fma, // @[issue-slot.scala:52:14]
input io_wakeup_ports_1_bits_uop_fp_ctrl_div, // @[issue-slot.scala:52:14]
input io_wakeup_ports_1_bits_uop_fp_ctrl_sqrt, // @[issue-slot.scala:52:14]
input io_wakeup_ports_1_bits_uop_fp_ctrl_wflags, // @[issue-slot.scala:52:14]
input io_wakeup_ports_1_bits_uop_fp_ctrl_vec, // @[issue-slot.scala:52:14]
input [6:0] io_wakeup_ports_1_bits_uop_rob_idx, // @[issue-slot.scala:52:14]
input [4:0] io_wakeup_ports_1_bits_uop_ldq_idx, // @[issue-slot.scala:52:14]
input [4:0] io_wakeup_ports_1_bits_uop_stq_idx, // @[issue-slot.scala:52:14]
input [1:0] io_wakeup_ports_1_bits_uop_rxq_idx, // @[issue-slot.scala:52:14]
input [6:0] io_wakeup_ports_1_bits_uop_pdst, // @[issue-slot.scala:52:14]
input [6:0] io_wakeup_ports_1_bits_uop_prs1, // @[issue-slot.scala:52:14]
input [6:0] io_wakeup_ports_1_bits_uop_prs2, // @[issue-slot.scala:52:14]
input [6:0] io_wakeup_ports_1_bits_uop_prs3, // @[issue-slot.scala:52:14]
input [4:0] io_wakeup_ports_1_bits_uop_ppred, // @[issue-slot.scala:52:14]
input io_wakeup_ports_1_bits_uop_prs1_busy, // @[issue-slot.scala:52:14]
input io_wakeup_ports_1_bits_uop_prs2_busy, // @[issue-slot.scala:52:14]
input io_wakeup_ports_1_bits_uop_prs3_busy, // @[issue-slot.scala:52:14]
input io_wakeup_ports_1_bits_uop_ppred_busy, // @[issue-slot.scala:52:14]
input [6:0] io_wakeup_ports_1_bits_uop_stale_pdst, // @[issue-slot.scala:52:14]
input io_wakeup_ports_1_bits_uop_exception, // @[issue-slot.scala:52:14]
input [63:0] io_wakeup_ports_1_bits_uop_exc_cause, // @[issue-slot.scala:52:14]
input [4:0] io_wakeup_ports_1_bits_uop_mem_cmd, // @[issue-slot.scala:52:14]
input [1:0] io_wakeup_ports_1_bits_uop_mem_size, // @[issue-slot.scala:52:14]
input io_wakeup_ports_1_bits_uop_mem_signed, // @[issue-slot.scala:52:14]
input io_wakeup_ports_1_bits_uop_uses_ldq, // @[issue-slot.scala:52:14]
input io_wakeup_ports_1_bits_uop_uses_stq, // @[issue-slot.scala:52:14]
input io_wakeup_ports_1_bits_uop_is_unique, // @[issue-slot.scala:52:14]
input io_wakeup_ports_1_bits_uop_flush_on_commit, // @[issue-slot.scala:52:14]
input [2:0] io_wakeup_ports_1_bits_uop_csr_cmd, // @[issue-slot.scala:52:14]
input io_wakeup_ports_1_bits_uop_ldst_is_rs1, // @[issue-slot.scala:52:14]
input [5:0] io_wakeup_ports_1_bits_uop_ldst, // @[issue-slot.scala:52:14]
input [5:0] io_wakeup_ports_1_bits_uop_lrs1, // @[issue-slot.scala:52:14]
input [5:0] io_wakeup_ports_1_bits_uop_lrs2, // @[issue-slot.scala:52:14]
input [5:0] io_wakeup_ports_1_bits_uop_lrs3, // @[issue-slot.scala:52:14]
input [1:0] io_wakeup_ports_1_bits_uop_dst_rtype, // @[issue-slot.scala:52:14]
input [1:0] io_wakeup_ports_1_bits_uop_lrs1_rtype, // @[issue-slot.scala:52:14]
input [1:0] io_wakeup_ports_1_bits_uop_lrs2_rtype, // @[issue-slot.scala:52:14]
input io_wakeup_ports_1_bits_uop_frs3_en, // @[issue-slot.scala:52:14]
input io_wakeup_ports_1_bits_uop_fcn_dw, // @[issue-slot.scala:52:14]
input [4:0] io_wakeup_ports_1_bits_uop_fcn_op, // @[issue-slot.scala:52:14]
input io_wakeup_ports_1_bits_uop_fp_val, // @[issue-slot.scala:52:14]
input [2:0] io_wakeup_ports_1_bits_uop_fp_rm, // @[issue-slot.scala:52:14]
input [1:0] io_wakeup_ports_1_bits_uop_fp_typ, // @[issue-slot.scala:52:14]
input io_wakeup_ports_1_bits_uop_xcpt_pf_if, // @[issue-slot.scala:52:14]
input io_wakeup_ports_1_bits_uop_xcpt_ae_if, // @[issue-slot.scala:52:14]
input io_wakeup_ports_1_bits_uop_xcpt_ma_if, // @[issue-slot.scala:52:14]
input io_wakeup_ports_1_bits_uop_bp_debug_if, // @[issue-slot.scala:52:14]
input io_wakeup_ports_1_bits_uop_bp_xcpt_if, // @[issue-slot.scala:52:14]
input [2:0] io_wakeup_ports_1_bits_uop_debug_fsrc, // @[issue-slot.scala:52:14]
input [2:0] io_wakeup_ports_1_bits_uop_debug_tsrc // @[issue-slot.scala:52:14]
);
wire [15:0] next_uop_out_br_mask; // @[util.scala:104:23]
wire io_grant_0 = io_grant; // @[issue-slot.scala:49:7]
wire io_in_uop_valid_0 = io_in_uop_valid; // @[issue-slot.scala:49:7]
wire [31:0] io_in_uop_bits_inst_0 = io_in_uop_bits_inst; // @[issue-slot.scala:49:7]
wire [31:0] io_in_uop_bits_debug_inst_0 = io_in_uop_bits_debug_inst; // @[issue-slot.scala:49:7]
wire io_in_uop_bits_is_rvc_0 = io_in_uop_bits_is_rvc; // @[issue-slot.scala:49:7]
wire [39:0] io_in_uop_bits_debug_pc_0 = io_in_uop_bits_debug_pc; // @[issue-slot.scala:49:7]
wire io_in_uop_bits_iq_type_0_0 = io_in_uop_bits_iq_type_0; // @[issue-slot.scala:49:7]
wire io_in_uop_bits_iq_type_1_0 = io_in_uop_bits_iq_type_1; // @[issue-slot.scala:49:7]
wire io_in_uop_bits_iq_type_2_0 = io_in_uop_bits_iq_type_2; // @[issue-slot.scala:49:7]
wire io_in_uop_bits_iq_type_3_0 = io_in_uop_bits_iq_type_3; // @[issue-slot.scala:49:7]
wire io_in_uop_bits_fu_code_0_0 = io_in_uop_bits_fu_code_0; // @[issue-slot.scala:49:7]
wire io_in_uop_bits_fu_code_1_0 = io_in_uop_bits_fu_code_1; // @[issue-slot.scala:49:7]
wire io_in_uop_bits_fu_code_2_0 = io_in_uop_bits_fu_code_2; // @[issue-slot.scala:49:7]
wire io_in_uop_bits_fu_code_3_0 = io_in_uop_bits_fu_code_3; // @[issue-slot.scala:49:7]
wire io_in_uop_bits_fu_code_4_0 = io_in_uop_bits_fu_code_4; // @[issue-slot.scala:49:7]
wire io_in_uop_bits_fu_code_5_0 = io_in_uop_bits_fu_code_5; // @[issue-slot.scala:49:7]
wire io_in_uop_bits_fu_code_6_0 = io_in_uop_bits_fu_code_6; // @[issue-slot.scala:49:7]
wire io_in_uop_bits_fu_code_7_0 = io_in_uop_bits_fu_code_7; // @[issue-slot.scala:49:7]
wire io_in_uop_bits_fu_code_8_0 = io_in_uop_bits_fu_code_8; // @[issue-slot.scala:49:7]
wire io_in_uop_bits_fu_code_9_0 = io_in_uop_bits_fu_code_9; // @[issue-slot.scala:49:7]
wire io_in_uop_bits_iw_issued_0 = io_in_uop_bits_iw_issued; // @[issue-slot.scala:49:7]
wire io_in_uop_bits_iw_p1_bypass_hint_0 = io_in_uop_bits_iw_p1_bypass_hint; // @[issue-slot.scala:49:7]
wire io_in_uop_bits_iw_p2_bypass_hint_0 = io_in_uop_bits_iw_p2_bypass_hint; // @[issue-slot.scala:49:7]
wire io_in_uop_bits_iw_p3_bypass_hint_0 = io_in_uop_bits_iw_p3_bypass_hint; // @[issue-slot.scala:49:7]
wire [2:0] io_in_uop_bits_dis_col_sel_0 = io_in_uop_bits_dis_col_sel; // @[issue-slot.scala:49:7]
wire [15:0] io_in_uop_bits_br_mask_0 = io_in_uop_bits_br_mask; // @[issue-slot.scala:49:7]
wire [3:0] io_in_uop_bits_br_tag_0 = io_in_uop_bits_br_tag; // @[issue-slot.scala:49:7]
wire [3:0] io_in_uop_bits_br_type_0 = io_in_uop_bits_br_type; // @[issue-slot.scala:49:7]
wire io_in_uop_bits_is_sfb_0 = io_in_uop_bits_is_sfb; // @[issue-slot.scala:49:7]
wire io_in_uop_bits_is_fence_0 = io_in_uop_bits_is_fence; // @[issue-slot.scala:49:7]
wire io_in_uop_bits_is_fencei_0 = io_in_uop_bits_is_fencei; // @[issue-slot.scala:49:7]
wire io_in_uop_bits_is_sfence_0 = io_in_uop_bits_is_sfence; // @[issue-slot.scala:49:7]
wire io_in_uop_bits_is_amo_0 = io_in_uop_bits_is_amo; // @[issue-slot.scala:49:7]
wire io_in_uop_bits_is_eret_0 = io_in_uop_bits_is_eret; // @[issue-slot.scala:49:7]
wire io_in_uop_bits_is_sys_pc2epc_0 = io_in_uop_bits_is_sys_pc2epc; // @[issue-slot.scala:49:7]
wire io_in_uop_bits_is_rocc_0 = io_in_uop_bits_is_rocc; // @[issue-slot.scala:49:7]
wire io_in_uop_bits_is_mov_0 = io_in_uop_bits_is_mov; // @[issue-slot.scala:49:7]
wire [4:0] io_in_uop_bits_ftq_idx_0 = io_in_uop_bits_ftq_idx; // @[issue-slot.scala:49:7]
wire io_in_uop_bits_edge_inst_0 = io_in_uop_bits_edge_inst; // @[issue-slot.scala:49:7]
wire [5:0] io_in_uop_bits_pc_lob_0 = io_in_uop_bits_pc_lob; // @[issue-slot.scala:49:7]
wire io_in_uop_bits_taken_0 = io_in_uop_bits_taken; // @[issue-slot.scala:49:7]
wire io_in_uop_bits_imm_rename_0 = io_in_uop_bits_imm_rename; // @[issue-slot.scala:49:7]
wire [2:0] io_in_uop_bits_imm_sel_0 = io_in_uop_bits_imm_sel; // @[issue-slot.scala:49:7]
wire [4:0] io_in_uop_bits_pimm_0 = io_in_uop_bits_pimm; // @[issue-slot.scala:49:7]
wire [19:0] io_in_uop_bits_imm_packed_0 = io_in_uop_bits_imm_packed; // @[issue-slot.scala:49:7]
wire [1:0] io_in_uop_bits_op1_sel_0 = io_in_uop_bits_op1_sel; // @[issue-slot.scala:49:7]
wire [2:0] io_in_uop_bits_op2_sel_0 = io_in_uop_bits_op2_sel; // @[issue-slot.scala:49:7]
wire io_in_uop_bits_fp_ctrl_ldst_0 = io_in_uop_bits_fp_ctrl_ldst; // @[issue-slot.scala:49:7]
wire io_in_uop_bits_fp_ctrl_wen_0 = io_in_uop_bits_fp_ctrl_wen; // @[issue-slot.scala:49:7]
wire io_in_uop_bits_fp_ctrl_ren1_0 = io_in_uop_bits_fp_ctrl_ren1; // @[issue-slot.scala:49:7]
wire io_in_uop_bits_fp_ctrl_ren2_0 = io_in_uop_bits_fp_ctrl_ren2; // @[issue-slot.scala:49:7]
wire io_in_uop_bits_fp_ctrl_ren3_0 = io_in_uop_bits_fp_ctrl_ren3; // @[issue-slot.scala:49:7]
wire io_in_uop_bits_fp_ctrl_swap12_0 = io_in_uop_bits_fp_ctrl_swap12; // @[issue-slot.scala:49:7]
wire io_in_uop_bits_fp_ctrl_swap23_0 = io_in_uop_bits_fp_ctrl_swap23; // @[issue-slot.scala:49:7]
wire [1:0] io_in_uop_bits_fp_ctrl_typeTagIn_0 = io_in_uop_bits_fp_ctrl_typeTagIn; // @[issue-slot.scala:49:7]
wire [1:0] io_in_uop_bits_fp_ctrl_typeTagOut_0 = io_in_uop_bits_fp_ctrl_typeTagOut; // @[issue-slot.scala:49:7]
wire io_in_uop_bits_fp_ctrl_fromint_0 = io_in_uop_bits_fp_ctrl_fromint; // @[issue-slot.scala:49:7]
wire io_in_uop_bits_fp_ctrl_toint_0 = io_in_uop_bits_fp_ctrl_toint; // @[issue-slot.scala:49:7]
wire io_in_uop_bits_fp_ctrl_fastpipe_0 = io_in_uop_bits_fp_ctrl_fastpipe; // @[issue-slot.scala:49:7]
wire io_in_uop_bits_fp_ctrl_fma_0 = io_in_uop_bits_fp_ctrl_fma; // @[issue-slot.scala:49:7]
wire io_in_uop_bits_fp_ctrl_div_0 = io_in_uop_bits_fp_ctrl_div; // @[issue-slot.scala:49:7]
wire io_in_uop_bits_fp_ctrl_sqrt_0 = io_in_uop_bits_fp_ctrl_sqrt; // @[issue-slot.scala:49:7]
wire io_in_uop_bits_fp_ctrl_wflags_0 = io_in_uop_bits_fp_ctrl_wflags; // @[issue-slot.scala:49:7]
wire io_in_uop_bits_fp_ctrl_vec_0 = io_in_uop_bits_fp_ctrl_vec; // @[issue-slot.scala:49:7]
wire [6:0] io_in_uop_bits_rob_idx_0 = io_in_uop_bits_rob_idx; // @[issue-slot.scala:49:7]
wire [4:0] io_in_uop_bits_ldq_idx_0 = io_in_uop_bits_ldq_idx; // @[issue-slot.scala:49:7]
wire [4:0] io_in_uop_bits_stq_idx_0 = io_in_uop_bits_stq_idx; // @[issue-slot.scala:49:7]
wire [1:0] io_in_uop_bits_rxq_idx_0 = io_in_uop_bits_rxq_idx; // @[issue-slot.scala:49:7]
wire [6:0] io_in_uop_bits_pdst_0 = io_in_uop_bits_pdst; // @[issue-slot.scala:49:7]
wire [6:0] io_in_uop_bits_prs1_0 = io_in_uop_bits_prs1; // @[issue-slot.scala:49:7]
wire [6:0] io_in_uop_bits_prs2_0 = io_in_uop_bits_prs2; // @[issue-slot.scala:49:7]
wire [6:0] io_in_uop_bits_prs3_0 = io_in_uop_bits_prs3; // @[issue-slot.scala:49:7]
wire [4:0] io_in_uop_bits_ppred_0 = io_in_uop_bits_ppred; // @[issue-slot.scala:49:7]
wire io_in_uop_bits_prs1_busy_0 = io_in_uop_bits_prs1_busy; // @[issue-slot.scala:49:7]
wire io_in_uop_bits_prs2_busy_0 = io_in_uop_bits_prs2_busy; // @[issue-slot.scala:49:7]
wire io_in_uop_bits_prs3_busy_0 = io_in_uop_bits_prs3_busy; // @[issue-slot.scala:49:7]
wire io_in_uop_bits_ppred_busy_0 = io_in_uop_bits_ppred_busy; // @[issue-slot.scala:49:7]
wire [6:0] io_in_uop_bits_stale_pdst_0 = io_in_uop_bits_stale_pdst; // @[issue-slot.scala:49:7]
wire io_in_uop_bits_exception_0 = io_in_uop_bits_exception; // @[issue-slot.scala:49:7]
wire [63:0] io_in_uop_bits_exc_cause_0 = io_in_uop_bits_exc_cause; // @[issue-slot.scala:49:7]
wire [4:0] io_in_uop_bits_mem_cmd_0 = io_in_uop_bits_mem_cmd; // @[issue-slot.scala:49:7]
wire [1:0] io_in_uop_bits_mem_size_0 = io_in_uop_bits_mem_size; // @[issue-slot.scala:49:7]
wire io_in_uop_bits_mem_signed_0 = io_in_uop_bits_mem_signed; // @[issue-slot.scala:49:7]
wire io_in_uop_bits_uses_ldq_0 = io_in_uop_bits_uses_ldq; // @[issue-slot.scala:49:7]
wire io_in_uop_bits_uses_stq_0 = io_in_uop_bits_uses_stq; // @[issue-slot.scala:49:7]
wire io_in_uop_bits_is_unique_0 = io_in_uop_bits_is_unique; // @[issue-slot.scala:49:7]
wire io_in_uop_bits_flush_on_commit_0 = io_in_uop_bits_flush_on_commit; // @[issue-slot.scala:49:7]
wire [2:0] io_in_uop_bits_csr_cmd_0 = io_in_uop_bits_csr_cmd; // @[issue-slot.scala:49:7]
wire io_in_uop_bits_ldst_is_rs1_0 = io_in_uop_bits_ldst_is_rs1; // @[issue-slot.scala:49:7]
wire [5:0] io_in_uop_bits_ldst_0 = io_in_uop_bits_ldst; // @[issue-slot.scala:49:7]
wire [5:0] io_in_uop_bits_lrs1_0 = io_in_uop_bits_lrs1; // @[issue-slot.scala:49:7]
wire [5:0] io_in_uop_bits_lrs2_0 = io_in_uop_bits_lrs2; // @[issue-slot.scala:49:7]
wire [5:0] io_in_uop_bits_lrs3_0 = io_in_uop_bits_lrs3; // @[issue-slot.scala:49:7]
wire [1:0] io_in_uop_bits_dst_rtype_0 = io_in_uop_bits_dst_rtype; // @[issue-slot.scala:49:7]
wire [1:0] io_in_uop_bits_lrs1_rtype_0 = io_in_uop_bits_lrs1_rtype; // @[issue-slot.scala:49:7]
wire [1:0] io_in_uop_bits_lrs2_rtype_0 = io_in_uop_bits_lrs2_rtype; // @[issue-slot.scala:49:7]
wire io_in_uop_bits_frs3_en_0 = io_in_uop_bits_frs3_en; // @[issue-slot.scala:49:7]
wire io_in_uop_bits_fcn_dw_0 = io_in_uop_bits_fcn_dw; // @[issue-slot.scala:49:7]
wire [4:0] io_in_uop_bits_fcn_op_0 = io_in_uop_bits_fcn_op; // @[issue-slot.scala:49:7]
wire io_in_uop_bits_fp_val_0 = io_in_uop_bits_fp_val; // @[issue-slot.scala:49:7]
wire [2:0] io_in_uop_bits_fp_rm_0 = io_in_uop_bits_fp_rm; // @[issue-slot.scala:49:7]
wire [1:0] io_in_uop_bits_fp_typ_0 = io_in_uop_bits_fp_typ; // @[issue-slot.scala:49:7]
wire io_in_uop_bits_xcpt_pf_if_0 = io_in_uop_bits_xcpt_pf_if; // @[issue-slot.scala:49:7]
wire io_in_uop_bits_xcpt_ae_if_0 = io_in_uop_bits_xcpt_ae_if; // @[issue-slot.scala:49:7]
wire io_in_uop_bits_xcpt_ma_if_0 = io_in_uop_bits_xcpt_ma_if; // @[issue-slot.scala:49:7]
wire io_in_uop_bits_bp_debug_if_0 = io_in_uop_bits_bp_debug_if; // @[issue-slot.scala:49:7]
wire io_in_uop_bits_bp_xcpt_if_0 = io_in_uop_bits_bp_xcpt_if; // @[issue-slot.scala:49:7]
wire [2:0] io_in_uop_bits_debug_fsrc_0 = io_in_uop_bits_debug_fsrc; // @[issue-slot.scala:49:7]
wire [2:0] io_in_uop_bits_debug_tsrc_0 = io_in_uop_bits_debug_tsrc; // @[issue-slot.scala:49:7]
wire [15:0] io_brupdate_b1_resolve_mask_0 = io_brupdate_b1_resolve_mask; // @[issue-slot.scala:49:7]
wire [15:0] io_brupdate_b1_mispredict_mask_0 = io_brupdate_b1_mispredict_mask; // @[issue-slot.scala:49:7]
wire [31:0] io_brupdate_b2_uop_inst_0 = io_brupdate_b2_uop_inst; // @[issue-slot.scala:49:7]
wire [31:0] io_brupdate_b2_uop_debug_inst_0 = io_brupdate_b2_uop_debug_inst; // @[issue-slot.scala:49:7]
wire io_brupdate_b2_uop_is_rvc_0 = io_brupdate_b2_uop_is_rvc; // @[issue-slot.scala:49:7]
wire [39:0] io_brupdate_b2_uop_debug_pc_0 = io_brupdate_b2_uop_debug_pc; // @[issue-slot.scala:49:7]
wire io_brupdate_b2_uop_iq_type_0_0 = io_brupdate_b2_uop_iq_type_0; // @[issue-slot.scala:49:7]
wire io_brupdate_b2_uop_iq_type_1_0 = io_brupdate_b2_uop_iq_type_1; // @[issue-slot.scala:49:7]
wire io_brupdate_b2_uop_iq_type_2_0 = io_brupdate_b2_uop_iq_type_2; // @[issue-slot.scala:49:7]
wire io_brupdate_b2_uop_iq_type_3_0 = io_brupdate_b2_uop_iq_type_3; // @[issue-slot.scala:49:7]
wire io_brupdate_b2_uop_fu_code_0_0 = io_brupdate_b2_uop_fu_code_0; // @[issue-slot.scala:49:7]
wire io_brupdate_b2_uop_fu_code_1_0 = io_brupdate_b2_uop_fu_code_1; // @[issue-slot.scala:49:7]
wire io_brupdate_b2_uop_fu_code_2_0 = io_brupdate_b2_uop_fu_code_2; // @[issue-slot.scala:49:7]
wire io_brupdate_b2_uop_fu_code_3_0 = io_brupdate_b2_uop_fu_code_3; // @[issue-slot.scala:49:7]
wire io_brupdate_b2_uop_fu_code_4_0 = io_brupdate_b2_uop_fu_code_4; // @[issue-slot.scala:49:7]
wire io_brupdate_b2_uop_fu_code_5_0 = io_brupdate_b2_uop_fu_code_5; // @[issue-slot.scala:49:7]
wire io_brupdate_b2_uop_fu_code_6_0 = io_brupdate_b2_uop_fu_code_6; // @[issue-slot.scala:49:7]
wire io_brupdate_b2_uop_fu_code_7_0 = io_brupdate_b2_uop_fu_code_7; // @[issue-slot.scala:49:7]
wire io_brupdate_b2_uop_fu_code_8_0 = io_brupdate_b2_uop_fu_code_8; // @[issue-slot.scala:49:7]
wire io_brupdate_b2_uop_fu_code_9_0 = io_brupdate_b2_uop_fu_code_9; // @[issue-slot.scala:49:7]
wire io_brupdate_b2_uop_iw_issued_0 = io_brupdate_b2_uop_iw_issued; // @[issue-slot.scala:49:7]
wire io_brupdate_b2_uop_iw_issued_partial_agen_0 = io_brupdate_b2_uop_iw_issued_partial_agen; // @[issue-slot.scala:49:7]
wire io_brupdate_b2_uop_iw_issued_partial_dgen_0 = io_brupdate_b2_uop_iw_issued_partial_dgen; // @[issue-slot.scala:49:7]
wire [2:0] io_brupdate_b2_uop_iw_p1_speculative_child_0 = io_brupdate_b2_uop_iw_p1_speculative_child; // @[issue-slot.scala:49:7]
wire [2:0] io_brupdate_b2_uop_iw_p2_speculative_child_0 = io_brupdate_b2_uop_iw_p2_speculative_child; // @[issue-slot.scala:49:7]
wire io_brupdate_b2_uop_iw_p1_bypass_hint_0 = io_brupdate_b2_uop_iw_p1_bypass_hint; // @[issue-slot.scala:49:7]
wire io_brupdate_b2_uop_iw_p2_bypass_hint_0 = io_brupdate_b2_uop_iw_p2_bypass_hint; // @[issue-slot.scala:49:7]
wire io_brupdate_b2_uop_iw_p3_bypass_hint_0 = io_brupdate_b2_uop_iw_p3_bypass_hint; // @[issue-slot.scala:49:7]
wire [2:0] io_brupdate_b2_uop_dis_col_sel_0 = io_brupdate_b2_uop_dis_col_sel; // @[issue-slot.scala:49:7]
wire [15:0] io_brupdate_b2_uop_br_mask_0 = io_brupdate_b2_uop_br_mask; // @[issue-slot.scala:49:7]
wire [3:0] io_brupdate_b2_uop_br_tag_0 = io_brupdate_b2_uop_br_tag; // @[issue-slot.scala:49:7]
wire [3:0] io_brupdate_b2_uop_br_type_0 = io_brupdate_b2_uop_br_type; // @[issue-slot.scala:49:7]
wire io_brupdate_b2_uop_is_sfb_0 = io_brupdate_b2_uop_is_sfb; // @[issue-slot.scala:49:7]
wire io_brupdate_b2_uop_is_fence_0 = io_brupdate_b2_uop_is_fence; // @[issue-slot.scala:49:7]
wire io_brupdate_b2_uop_is_fencei_0 = io_brupdate_b2_uop_is_fencei; // @[issue-slot.scala:49:7]
wire io_brupdate_b2_uop_is_sfence_0 = io_brupdate_b2_uop_is_sfence; // @[issue-slot.scala:49:7]
wire io_brupdate_b2_uop_is_amo_0 = io_brupdate_b2_uop_is_amo; // @[issue-slot.scala:49:7]
wire io_brupdate_b2_uop_is_eret_0 = io_brupdate_b2_uop_is_eret; // @[issue-slot.scala:49:7]
wire io_brupdate_b2_uop_is_sys_pc2epc_0 = io_brupdate_b2_uop_is_sys_pc2epc; // @[issue-slot.scala:49:7]
wire io_brupdate_b2_uop_is_rocc_0 = io_brupdate_b2_uop_is_rocc; // @[issue-slot.scala:49:7]
wire io_brupdate_b2_uop_is_mov_0 = io_brupdate_b2_uop_is_mov; // @[issue-slot.scala:49:7]
wire [4:0] io_brupdate_b2_uop_ftq_idx_0 = io_brupdate_b2_uop_ftq_idx; // @[issue-slot.scala:49:7]
wire io_brupdate_b2_uop_edge_inst_0 = io_brupdate_b2_uop_edge_inst; // @[issue-slot.scala:49:7]
wire [5:0] io_brupdate_b2_uop_pc_lob_0 = io_brupdate_b2_uop_pc_lob; // @[issue-slot.scala:49:7]
wire io_brupdate_b2_uop_taken_0 = io_brupdate_b2_uop_taken; // @[issue-slot.scala:49:7]
wire io_brupdate_b2_uop_imm_rename_0 = io_brupdate_b2_uop_imm_rename; // @[issue-slot.scala:49:7]
wire [2:0] io_brupdate_b2_uop_imm_sel_0 = io_brupdate_b2_uop_imm_sel; // @[issue-slot.scala:49:7]
wire [4:0] io_brupdate_b2_uop_pimm_0 = io_brupdate_b2_uop_pimm; // @[issue-slot.scala:49:7]
wire [19:0] io_brupdate_b2_uop_imm_packed_0 = io_brupdate_b2_uop_imm_packed; // @[issue-slot.scala:49:7]
wire [1:0] io_brupdate_b2_uop_op1_sel_0 = io_brupdate_b2_uop_op1_sel; // @[issue-slot.scala:49:7]
wire [2:0] io_brupdate_b2_uop_op2_sel_0 = io_brupdate_b2_uop_op2_sel; // @[issue-slot.scala:49:7]
wire io_brupdate_b2_uop_fp_ctrl_ldst_0 = io_brupdate_b2_uop_fp_ctrl_ldst; // @[issue-slot.scala:49:7]
wire io_brupdate_b2_uop_fp_ctrl_wen_0 = io_brupdate_b2_uop_fp_ctrl_wen; // @[issue-slot.scala:49:7]
wire io_brupdate_b2_uop_fp_ctrl_ren1_0 = io_brupdate_b2_uop_fp_ctrl_ren1; // @[issue-slot.scala:49:7]
wire io_brupdate_b2_uop_fp_ctrl_ren2_0 = io_brupdate_b2_uop_fp_ctrl_ren2; // @[issue-slot.scala:49:7]
wire io_brupdate_b2_uop_fp_ctrl_ren3_0 = io_brupdate_b2_uop_fp_ctrl_ren3; // @[issue-slot.scala:49:7]
wire io_brupdate_b2_uop_fp_ctrl_swap12_0 = io_brupdate_b2_uop_fp_ctrl_swap12; // @[issue-slot.scala:49:7]
wire io_brupdate_b2_uop_fp_ctrl_swap23_0 = io_brupdate_b2_uop_fp_ctrl_swap23; // @[issue-slot.scala:49:7]
wire [1:0] io_brupdate_b2_uop_fp_ctrl_typeTagIn_0 = io_brupdate_b2_uop_fp_ctrl_typeTagIn; // @[issue-slot.scala:49:7]
wire [1:0] io_brupdate_b2_uop_fp_ctrl_typeTagOut_0 = io_brupdate_b2_uop_fp_ctrl_typeTagOut; // @[issue-slot.scala:49:7]
wire io_brupdate_b2_uop_fp_ctrl_fromint_0 = io_brupdate_b2_uop_fp_ctrl_fromint; // @[issue-slot.scala:49:7]
wire io_brupdate_b2_uop_fp_ctrl_toint_0 = io_brupdate_b2_uop_fp_ctrl_toint; // @[issue-slot.scala:49:7]
wire io_brupdate_b2_uop_fp_ctrl_fastpipe_0 = io_brupdate_b2_uop_fp_ctrl_fastpipe; // @[issue-slot.scala:49:7]
wire io_brupdate_b2_uop_fp_ctrl_fma_0 = io_brupdate_b2_uop_fp_ctrl_fma; // @[issue-slot.scala:49:7]
wire io_brupdate_b2_uop_fp_ctrl_div_0 = io_brupdate_b2_uop_fp_ctrl_div; // @[issue-slot.scala:49:7]
wire io_brupdate_b2_uop_fp_ctrl_sqrt_0 = io_brupdate_b2_uop_fp_ctrl_sqrt; // @[issue-slot.scala:49:7]
wire io_brupdate_b2_uop_fp_ctrl_wflags_0 = io_brupdate_b2_uop_fp_ctrl_wflags; // @[issue-slot.scala:49:7]
wire io_brupdate_b2_uop_fp_ctrl_vec_0 = io_brupdate_b2_uop_fp_ctrl_vec; // @[issue-slot.scala:49:7]
wire [6:0] io_brupdate_b2_uop_rob_idx_0 = io_brupdate_b2_uop_rob_idx; // @[issue-slot.scala:49:7]
wire [4:0] io_brupdate_b2_uop_ldq_idx_0 = io_brupdate_b2_uop_ldq_idx; // @[issue-slot.scala:49:7]
wire [4:0] io_brupdate_b2_uop_stq_idx_0 = io_brupdate_b2_uop_stq_idx; // @[issue-slot.scala:49:7]
wire [1:0] io_brupdate_b2_uop_rxq_idx_0 = io_brupdate_b2_uop_rxq_idx; // @[issue-slot.scala:49:7]
wire [6:0] io_brupdate_b2_uop_pdst_0 = io_brupdate_b2_uop_pdst; // @[issue-slot.scala:49:7]
wire [6:0] io_brupdate_b2_uop_prs1_0 = io_brupdate_b2_uop_prs1; // @[issue-slot.scala:49:7]
wire [6:0] io_brupdate_b2_uop_prs2_0 = io_brupdate_b2_uop_prs2; // @[issue-slot.scala:49:7]
wire [6:0] io_brupdate_b2_uop_prs3_0 = io_brupdate_b2_uop_prs3; // @[issue-slot.scala:49:7]
wire [4:0] io_brupdate_b2_uop_ppred_0 = io_brupdate_b2_uop_ppred; // @[issue-slot.scala:49:7]
wire io_brupdate_b2_uop_prs1_busy_0 = io_brupdate_b2_uop_prs1_busy; // @[issue-slot.scala:49:7]
wire io_brupdate_b2_uop_prs2_busy_0 = io_brupdate_b2_uop_prs2_busy; // @[issue-slot.scala:49:7]
wire io_brupdate_b2_uop_prs3_busy_0 = io_brupdate_b2_uop_prs3_busy; // @[issue-slot.scala:49:7]
wire io_brupdate_b2_uop_ppred_busy_0 = io_brupdate_b2_uop_ppred_busy; // @[issue-slot.scala:49:7]
wire [6:0] io_brupdate_b2_uop_stale_pdst_0 = io_brupdate_b2_uop_stale_pdst; // @[issue-slot.scala:49:7]
wire io_brupdate_b2_uop_exception_0 = io_brupdate_b2_uop_exception; // @[issue-slot.scala:49:7]
wire [63:0] io_brupdate_b2_uop_exc_cause_0 = io_brupdate_b2_uop_exc_cause; // @[issue-slot.scala:49:7]
wire [4:0] io_brupdate_b2_uop_mem_cmd_0 = io_brupdate_b2_uop_mem_cmd; // @[issue-slot.scala:49:7]
wire [1:0] io_brupdate_b2_uop_mem_size_0 = io_brupdate_b2_uop_mem_size; // @[issue-slot.scala:49:7]
wire io_brupdate_b2_uop_mem_signed_0 = io_brupdate_b2_uop_mem_signed; // @[issue-slot.scala:49:7]
wire io_brupdate_b2_uop_uses_ldq_0 = io_brupdate_b2_uop_uses_ldq; // @[issue-slot.scala:49:7]
wire io_brupdate_b2_uop_uses_stq_0 = io_brupdate_b2_uop_uses_stq; // @[issue-slot.scala:49:7]
wire io_brupdate_b2_uop_is_unique_0 = io_brupdate_b2_uop_is_unique; // @[issue-slot.scala:49:7]
wire io_brupdate_b2_uop_flush_on_commit_0 = io_brupdate_b2_uop_flush_on_commit; // @[issue-slot.scala:49:7]
wire [2:0] io_brupdate_b2_uop_csr_cmd_0 = io_brupdate_b2_uop_csr_cmd; // @[issue-slot.scala:49:7]
wire io_brupdate_b2_uop_ldst_is_rs1_0 = io_brupdate_b2_uop_ldst_is_rs1; // @[issue-slot.scala:49:7]
wire [5:0] io_brupdate_b2_uop_ldst_0 = io_brupdate_b2_uop_ldst; // @[issue-slot.scala:49:7]
wire [5:0] io_brupdate_b2_uop_lrs1_0 = io_brupdate_b2_uop_lrs1; // @[issue-slot.scala:49:7]
wire [5:0] io_brupdate_b2_uop_lrs2_0 = io_brupdate_b2_uop_lrs2; // @[issue-slot.scala:49:7]
wire [5:0] io_brupdate_b2_uop_lrs3_0 = io_brupdate_b2_uop_lrs3; // @[issue-slot.scala:49:7]
wire [1:0] io_brupdate_b2_uop_dst_rtype_0 = io_brupdate_b2_uop_dst_rtype; // @[issue-slot.scala:49:7]
wire [1:0] io_brupdate_b2_uop_lrs1_rtype_0 = io_brupdate_b2_uop_lrs1_rtype; // @[issue-slot.scala:49:7]
wire [1:0] io_brupdate_b2_uop_lrs2_rtype_0 = io_brupdate_b2_uop_lrs2_rtype; // @[issue-slot.scala:49:7]
wire io_brupdate_b2_uop_frs3_en_0 = io_brupdate_b2_uop_frs3_en; // @[issue-slot.scala:49:7]
wire io_brupdate_b2_uop_fcn_dw_0 = io_brupdate_b2_uop_fcn_dw; // @[issue-slot.scala:49:7]
wire [4:0] io_brupdate_b2_uop_fcn_op_0 = io_brupdate_b2_uop_fcn_op; // @[issue-slot.scala:49:7]
wire io_brupdate_b2_uop_fp_val_0 = io_brupdate_b2_uop_fp_val; // @[issue-slot.scala:49:7]
wire [2:0] io_brupdate_b2_uop_fp_rm_0 = io_brupdate_b2_uop_fp_rm; // @[issue-slot.scala:49:7]
wire [1:0] io_brupdate_b2_uop_fp_typ_0 = io_brupdate_b2_uop_fp_typ; // @[issue-slot.scala:49:7]
wire io_brupdate_b2_uop_xcpt_pf_if_0 = io_brupdate_b2_uop_xcpt_pf_if; // @[issue-slot.scala:49:7]
wire io_brupdate_b2_uop_xcpt_ae_if_0 = io_brupdate_b2_uop_xcpt_ae_if; // @[issue-slot.scala:49:7]
wire io_brupdate_b2_uop_xcpt_ma_if_0 = io_brupdate_b2_uop_xcpt_ma_if; // @[issue-slot.scala:49:7]
wire io_brupdate_b2_uop_bp_debug_if_0 = io_brupdate_b2_uop_bp_debug_if; // @[issue-slot.scala:49:7]
wire io_brupdate_b2_uop_bp_xcpt_if_0 = io_brupdate_b2_uop_bp_xcpt_if; // @[issue-slot.scala:49:7]
wire [2:0] io_brupdate_b2_uop_debug_fsrc_0 = io_brupdate_b2_uop_debug_fsrc; // @[issue-slot.scala:49:7]
wire [2:0] io_brupdate_b2_uop_debug_tsrc_0 = io_brupdate_b2_uop_debug_tsrc; // @[issue-slot.scala:49:7]
wire io_brupdate_b2_mispredict_0 = io_brupdate_b2_mispredict; // @[issue-slot.scala:49:7]
wire io_brupdate_b2_taken_0 = io_brupdate_b2_taken; // @[issue-slot.scala:49:7]
wire [2:0] io_brupdate_b2_cfi_type_0 = io_brupdate_b2_cfi_type; // @[issue-slot.scala:49:7]
wire [1:0] io_brupdate_b2_pc_sel_0 = io_brupdate_b2_pc_sel; // @[issue-slot.scala:49:7]
wire [39:0] io_brupdate_b2_jalr_target_0 = io_brupdate_b2_jalr_target; // @[issue-slot.scala:49:7]
wire [20:0] io_brupdate_b2_target_offset_0 = io_brupdate_b2_target_offset; // @[issue-slot.scala:49:7]
wire io_kill_0 = io_kill; // @[issue-slot.scala:49:7]
wire io_clear_0 = io_clear; // @[issue-slot.scala:49:7]
wire io_squash_grant_0 = io_squash_grant; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_0_valid_0 = io_wakeup_ports_0_valid; // @[issue-slot.scala:49:7]
wire [31:0] io_wakeup_ports_0_bits_uop_inst_0 = io_wakeup_ports_0_bits_uop_inst; // @[issue-slot.scala:49:7]
wire [31:0] io_wakeup_ports_0_bits_uop_debug_inst_0 = io_wakeup_ports_0_bits_uop_debug_inst; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_0_bits_uop_is_rvc_0 = io_wakeup_ports_0_bits_uop_is_rvc; // @[issue-slot.scala:49:7]
wire [39:0] io_wakeup_ports_0_bits_uop_debug_pc_0 = io_wakeup_ports_0_bits_uop_debug_pc; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_0_bits_uop_iq_type_0_0 = io_wakeup_ports_0_bits_uop_iq_type_0; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_0_bits_uop_iq_type_1_0 = io_wakeup_ports_0_bits_uop_iq_type_1; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_0_bits_uop_iq_type_2_0 = io_wakeup_ports_0_bits_uop_iq_type_2; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_0_bits_uop_iq_type_3_0 = io_wakeup_ports_0_bits_uop_iq_type_3; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_0_bits_uop_fu_code_0_0 = io_wakeup_ports_0_bits_uop_fu_code_0; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_0_bits_uop_fu_code_1_0 = io_wakeup_ports_0_bits_uop_fu_code_1; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_0_bits_uop_fu_code_2_0 = io_wakeup_ports_0_bits_uop_fu_code_2; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_0_bits_uop_fu_code_3_0 = io_wakeup_ports_0_bits_uop_fu_code_3; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_0_bits_uop_fu_code_4_0 = io_wakeup_ports_0_bits_uop_fu_code_4; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_0_bits_uop_fu_code_5_0 = io_wakeup_ports_0_bits_uop_fu_code_5; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_0_bits_uop_fu_code_6_0 = io_wakeup_ports_0_bits_uop_fu_code_6; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_0_bits_uop_fu_code_7_0 = io_wakeup_ports_0_bits_uop_fu_code_7; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_0_bits_uop_fu_code_8_0 = io_wakeup_ports_0_bits_uop_fu_code_8; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_0_bits_uop_fu_code_9_0 = io_wakeup_ports_0_bits_uop_fu_code_9; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_0_bits_uop_iw_issued_0 = io_wakeup_ports_0_bits_uop_iw_issued; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_0_bits_uop_iw_issued_partial_agen_0 = io_wakeup_ports_0_bits_uop_iw_issued_partial_agen; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_0_bits_uop_iw_issued_partial_dgen_0 = io_wakeup_ports_0_bits_uop_iw_issued_partial_dgen; // @[issue-slot.scala:49:7]
wire [2:0] io_wakeup_ports_0_bits_uop_iw_p1_speculative_child_0 = io_wakeup_ports_0_bits_uop_iw_p1_speculative_child; // @[issue-slot.scala:49:7]
wire [2:0] io_wakeup_ports_0_bits_uop_iw_p2_speculative_child_0 = io_wakeup_ports_0_bits_uop_iw_p2_speculative_child; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_0_bits_uop_iw_p1_bypass_hint_0 = io_wakeup_ports_0_bits_uop_iw_p1_bypass_hint; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_0_bits_uop_iw_p2_bypass_hint_0 = io_wakeup_ports_0_bits_uop_iw_p2_bypass_hint; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_0_bits_uop_iw_p3_bypass_hint_0 = io_wakeup_ports_0_bits_uop_iw_p3_bypass_hint; // @[issue-slot.scala:49:7]
wire [2:0] io_wakeup_ports_0_bits_uop_dis_col_sel_0 = io_wakeup_ports_0_bits_uop_dis_col_sel; // @[issue-slot.scala:49:7]
wire [15:0] io_wakeup_ports_0_bits_uop_br_mask_0 = io_wakeup_ports_0_bits_uop_br_mask; // @[issue-slot.scala:49:7]
wire [3:0] io_wakeup_ports_0_bits_uop_br_tag_0 = io_wakeup_ports_0_bits_uop_br_tag; // @[issue-slot.scala:49:7]
wire [3:0] io_wakeup_ports_0_bits_uop_br_type_0 = io_wakeup_ports_0_bits_uop_br_type; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_0_bits_uop_is_sfb_0 = io_wakeup_ports_0_bits_uop_is_sfb; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_0_bits_uop_is_fence_0 = io_wakeup_ports_0_bits_uop_is_fence; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_0_bits_uop_is_fencei_0 = io_wakeup_ports_0_bits_uop_is_fencei; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_0_bits_uop_is_sfence_0 = io_wakeup_ports_0_bits_uop_is_sfence; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_0_bits_uop_is_amo_0 = io_wakeup_ports_0_bits_uop_is_amo; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_0_bits_uop_is_eret_0 = io_wakeup_ports_0_bits_uop_is_eret; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_0_bits_uop_is_sys_pc2epc_0 = io_wakeup_ports_0_bits_uop_is_sys_pc2epc; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_0_bits_uop_is_rocc_0 = io_wakeup_ports_0_bits_uop_is_rocc; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_0_bits_uop_is_mov_0 = io_wakeup_ports_0_bits_uop_is_mov; // @[issue-slot.scala:49:7]
wire [4:0] io_wakeup_ports_0_bits_uop_ftq_idx_0 = io_wakeup_ports_0_bits_uop_ftq_idx; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_0_bits_uop_edge_inst_0 = io_wakeup_ports_0_bits_uop_edge_inst; // @[issue-slot.scala:49:7]
wire [5:0] io_wakeup_ports_0_bits_uop_pc_lob_0 = io_wakeup_ports_0_bits_uop_pc_lob; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_0_bits_uop_taken_0 = io_wakeup_ports_0_bits_uop_taken; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_0_bits_uop_imm_rename_0 = io_wakeup_ports_0_bits_uop_imm_rename; // @[issue-slot.scala:49:7]
wire [2:0] io_wakeup_ports_0_bits_uop_imm_sel_0 = io_wakeup_ports_0_bits_uop_imm_sel; // @[issue-slot.scala:49:7]
wire [4:0] io_wakeup_ports_0_bits_uop_pimm_0 = io_wakeup_ports_0_bits_uop_pimm; // @[issue-slot.scala:49:7]
wire [19:0] io_wakeup_ports_0_bits_uop_imm_packed_0 = io_wakeup_ports_0_bits_uop_imm_packed; // @[issue-slot.scala:49:7]
wire [1:0] io_wakeup_ports_0_bits_uop_op1_sel_0 = io_wakeup_ports_0_bits_uop_op1_sel; // @[issue-slot.scala:49:7]
wire [2:0] io_wakeup_ports_0_bits_uop_op2_sel_0 = io_wakeup_ports_0_bits_uop_op2_sel; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_0_bits_uop_fp_ctrl_ldst_0 = io_wakeup_ports_0_bits_uop_fp_ctrl_ldst; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_0_bits_uop_fp_ctrl_wen_0 = io_wakeup_ports_0_bits_uop_fp_ctrl_wen; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_0_bits_uop_fp_ctrl_ren1_0 = io_wakeup_ports_0_bits_uop_fp_ctrl_ren1; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_0_bits_uop_fp_ctrl_ren2_0 = io_wakeup_ports_0_bits_uop_fp_ctrl_ren2; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_0_bits_uop_fp_ctrl_ren3_0 = io_wakeup_ports_0_bits_uop_fp_ctrl_ren3; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_0_bits_uop_fp_ctrl_swap12_0 = io_wakeup_ports_0_bits_uop_fp_ctrl_swap12; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_0_bits_uop_fp_ctrl_swap23_0 = io_wakeup_ports_0_bits_uop_fp_ctrl_swap23; // @[issue-slot.scala:49:7]
wire [1:0] io_wakeup_ports_0_bits_uop_fp_ctrl_typeTagIn_0 = io_wakeup_ports_0_bits_uop_fp_ctrl_typeTagIn; // @[issue-slot.scala:49:7]
wire [1:0] io_wakeup_ports_0_bits_uop_fp_ctrl_typeTagOut_0 = io_wakeup_ports_0_bits_uop_fp_ctrl_typeTagOut; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_0_bits_uop_fp_ctrl_fromint_0 = io_wakeup_ports_0_bits_uop_fp_ctrl_fromint; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_0_bits_uop_fp_ctrl_toint_0 = io_wakeup_ports_0_bits_uop_fp_ctrl_toint; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_0_bits_uop_fp_ctrl_fastpipe_0 = io_wakeup_ports_0_bits_uop_fp_ctrl_fastpipe; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_0_bits_uop_fp_ctrl_fma_0 = io_wakeup_ports_0_bits_uop_fp_ctrl_fma; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_0_bits_uop_fp_ctrl_div_0 = io_wakeup_ports_0_bits_uop_fp_ctrl_div; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_0_bits_uop_fp_ctrl_sqrt_0 = io_wakeup_ports_0_bits_uop_fp_ctrl_sqrt; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_0_bits_uop_fp_ctrl_wflags_0 = io_wakeup_ports_0_bits_uop_fp_ctrl_wflags; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_0_bits_uop_fp_ctrl_vec_0 = io_wakeup_ports_0_bits_uop_fp_ctrl_vec; // @[issue-slot.scala:49:7]
wire [6:0] io_wakeup_ports_0_bits_uop_rob_idx_0 = io_wakeup_ports_0_bits_uop_rob_idx; // @[issue-slot.scala:49:7]
wire [4:0] io_wakeup_ports_0_bits_uop_ldq_idx_0 = io_wakeup_ports_0_bits_uop_ldq_idx; // @[issue-slot.scala:49:7]
wire [4:0] io_wakeup_ports_0_bits_uop_stq_idx_0 = io_wakeup_ports_0_bits_uop_stq_idx; // @[issue-slot.scala:49:7]
wire [1:0] io_wakeup_ports_0_bits_uop_rxq_idx_0 = io_wakeup_ports_0_bits_uop_rxq_idx; // @[issue-slot.scala:49:7]
wire [6:0] io_wakeup_ports_0_bits_uop_pdst_0 = io_wakeup_ports_0_bits_uop_pdst; // @[issue-slot.scala:49:7]
wire [6:0] io_wakeup_ports_0_bits_uop_prs1_0 = io_wakeup_ports_0_bits_uop_prs1; // @[issue-slot.scala:49:7]
wire [6:0] io_wakeup_ports_0_bits_uop_prs2_0 = io_wakeup_ports_0_bits_uop_prs2; // @[issue-slot.scala:49:7]
wire [6:0] io_wakeup_ports_0_bits_uop_prs3_0 = io_wakeup_ports_0_bits_uop_prs3; // @[issue-slot.scala:49:7]
wire [4:0] io_wakeup_ports_0_bits_uop_ppred_0 = io_wakeup_ports_0_bits_uop_ppred; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_0_bits_uop_prs1_busy_0 = io_wakeup_ports_0_bits_uop_prs1_busy; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_0_bits_uop_prs2_busy_0 = io_wakeup_ports_0_bits_uop_prs2_busy; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_0_bits_uop_prs3_busy_0 = io_wakeup_ports_0_bits_uop_prs3_busy; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_0_bits_uop_ppred_busy_0 = io_wakeup_ports_0_bits_uop_ppred_busy; // @[issue-slot.scala:49:7]
wire [6:0] io_wakeup_ports_0_bits_uop_stale_pdst_0 = io_wakeup_ports_0_bits_uop_stale_pdst; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_0_bits_uop_exception_0 = io_wakeup_ports_0_bits_uop_exception; // @[issue-slot.scala:49:7]
wire [63:0] io_wakeup_ports_0_bits_uop_exc_cause_0 = io_wakeup_ports_0_bits_uop_exc_cause; // @[issue-slot.scala:49:7]
wire [4:0] io_wakeup_ports_0_bits_uop_mem_cmd_0 = io_wakeup_ports_0_bits_uop_mem_cmd; // @[issue-slot.scala:49:7]
wire [1:0] io_wakeup_ports_0_bits_uop_mem_size_0 = io_wakeup_ports_0_bits_uop_mem_size; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_0_bits_uop_mem_signed_0 = io_wakeup_ports_0_bits_uop_mem_signed; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_0_bits_uop_uses_ldq_0 = io_wakeup_ports_0_bits_uop_uses_ldq; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_0_bits_uop_uses_stq_0 = io_wakeup_ports_0_bits_uop_uses_stq; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_0_bits_uop_is_unique_0 = io_wakeup_ports_0_bits_uop_is_unique; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_0_bits_uop_flush_on_commit_0 = io_wakeup_ports_0_bits_uop_flush_on_commit; // @[issue-slot.scala:49:7]
wire [2:0] io_wakeup_ports_0_bits_uop_csr_cmd_0 = io_wakeup_ports_0_bits_uop_csr_cmd; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_0_bits_uop_ldst_is_rs1_0 = io_wakeup_ports_0_bits_uop_ldst_is_rs1; // @[issue-slot.scala:49:7]
wire [5:0] io_wakeup_ports_0_bits_uop_ldst_0 = io_wakeup_ports_0_bits_uop_ldst; // @[issue-slot.scala:49:7]
wire [5:0] io_wakeup_ports_0_bits_uop_lrs1_0 = io_wakeup_ports_0_bits_uop_lrs1; // @[issue-slot.scala:49:7]
wire [5:0] io_wakeup_ports_0_bits_uop_lrs2_0 = io_wakeup_ports_0_bits_uop_lrs2; // @[issue-slot.scala:49:7]
wire [5:0] io_wakeup_ports_0_bits_uop_lrs3_0 = io_wakeup_ports_0_bits_uop_lrs3; // @[issue-slot.scala:49:7]
wire [1:0] io_wakeup_ports_0_bits_uop_dst_rtype_0 = io_wakeup_ports_0_bits_uop_dst_rtype; // @[issue-slot.scala:49:7]
wire [1:0] io_wakeup_ports_0_bits_uop_lrs1_rtype_0 = io_wakeup_ports_0_bits_uop_lrs1_rtype; // @[issue-slot.scala:49:7]
wire [1:0] io_wakeup_ports_0_bits_uop_lrs2_rtype_0 = io_wakeup_ports_0_bits_uop_lrs2_rtype; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_0_bits_uop_frs3_en_0 = io_wakeup_ports_0_bits_uop_frs3_en; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_0_bits_uop_fcn_dw_0 = io_wakeup_ports_0_bits_uop_fcn_dw; // @[issue-slot.scala:49:7]
wire [4:0] io_wakeup_ports_0_bits_uop_fcn_op_0 = io_wakeup_ports_0_bits_uop_fcn_op; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_0_bits_uop_fp_val_0 = io_wakeup_ports_0_bits_uop_fp_val; // @[issue-slot.scala:49:7]
wire [2:0] io_wakeup_ports_0_bits_uop_fp_rm_0 = io_wakeup_ports_0_bits_uop_fp_rm; // @[issue-slot.scala:49:7]
wire [1:0] io_wakeup_ports_0_bits_uop_fp_typ_0 = io_wakeup_ports_0_bits_uop_fp_typ; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_0_bits_uop_xcpt_pf_if_0 = io_wakeup_ports_0_bits_uop_xcpt_pf_if; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_0_bits_uop_xcpt_ae_if_0 = io_wakeup_ports_0_bits_uop_xcpt_ae_if; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_0_bits_uop_xcpt_ma_if_0 = io_wakeup_ports_0_bits_uop_xcpt_ma_if; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_0_bits_uop_bp_debug_if_0 = io_wakeup_ports_0_bits_uop_bp_debug_if; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_0_bits_uop_bp_xcpt_if_0 = io_wakeup_ports_0_bits_uop_bp_xcpt_if; // @[issue-slot.scala:49:7]
wire [2:0] io_wakeup_ports_0_bits_uop_debug_fsrc_0 = io_wakeup_ports_0_bits_uop_debug_fsrc; // @[issue-slot.scala:49:7]
wire [2:0] io_wakeup_ports_0_bits_uop_debug_tsrc_0 = io_wakeup_ports_0_bits_uop_debug_tsrc; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_1_valid_0 = io_wakeup_ports_1_valid; // @[issue-slot.scala:49:7]
wire [31:0] io_wakeup_ports_1_bits_uop_inst_0 = io_wakeup_ports_1_bits_uop_inst; // @[issue-slot.scala:49:7]
wire [31:0] io_wakeup_ports_1_bits_uop_debug_inst_0 = io_wakeup_ports_1_bits_uop_debug_inst; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_1_bits_uop_is_rvc_0 = io_wakeup_ports_1_bits_uop_is_rvc; // @[issue-slot.scala:49:7]
wire [39:0] io_wakeup_ports_1_bits_uop_debug_pc_0 = io_wakeup_ports_1_bits_uop_debug_pc; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_1_bits_uop_iq_type_0_0 = io_wakeup_ports_1_bits_uop_iq_type_0; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_1_bits_uop_iq_type_1_0 = io_wakeup_ports_1_bits_uop_iq_type_1; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_1_bits_uop_iq_type_2_0 = io_wakeup_ports_1_bits_uop_iq_type_2; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_1_bits_uop_iq_type_3_0 = io_wakeup_ports_1_bits_uop_iq_type_3; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_1_bits_uop_fu_code_0_0 = io_wakeup_ports_1_bits_uop_fu_code_0; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_1_bits_uop_fu_code_1_0 = io_wakeup_ports_1_bits_uop_fu_code_1; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_1_bits_uop_fu_code_2_0 = io_wakeup_ports_1_bits_uop_fu_code_2; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_1_bits_uop_fu_code_3_0 = io_wakeup_ports_1_bits_uop_fu_code_3; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_1_bits_uop_fu_code_4_0 = io_wakeup_ports_1_bits_uop_fu_code_4; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_1_bits_uop_fu_code_5_0 = io_wakeup_ports_1_bits_uop_fu_code_5; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_1_bits_uop_fu_code_6_0 = io_wakeup_ports_1_bits_uop_fu_code_6; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_1_bits_uop_fu_code_7_0 = io_wakeup_ports_1_bits_uop_fu_code_7; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_1_bits_uop_fu_code_8_0 = io_wakeup_ports_1_bits_uop_fu_code_8; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_1_bits_uop_fu_code_9_0 = io_wakeup_ports_1_bits_uop_fu_code_9; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_1_bits_uop_iw_issued_0 = io_wakeup_ports_1_bits_uop_iw_issued; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_1_bits_uop_iw_issued_partial_agen_0 = io_wakeup_ports_1_bits_uop_iw_issued_partial_agen; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_1_bits_uop_iw_issued_partial_dgen_0 = io_wakeup_ports_1_bits_uop_iw_issued_partial_dgen; // @[issue-slot.scala:49:7]
wire [2:0] io_wakeup_ports_1_bits_uop_iw_p1_speculative_child_0 = io_wakeup_ports_1_bits_uop_iw_p1_speculative_child; // @[issue-slot.scala:49:7]
wire [2:0] io_wakeup_ports_1_bits_uop_iw_p2_speculative_child_0 = io_wakeup_ports_1_bits_uop_iw_p2_speculative_child; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_1_bits_uop_iw_p1_bypass_hint_0 = io_wakeup_ports_1_bits_uop_iw_p1_bypass_hint; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_1_bits_uop_iw_p2_bypass_hint_0 = io_wakeup_ports_1_bits_uop_iw_p2_bypass_hint; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_1_bits_uop_iw_p3_bypass_hint_0 = io_wakeup_ports_1_bits_uop_iw_p3_bypass_hint; // @[issue-slot.scala:49:7]
wire [2:0] io_wakeup_ports_1_bits_uop_dis_col_sel_0 = io_wakeup_ports_1_bits_uop_dis_col_sel; // @[issue-slot.scala:49:7]
wire [15:0] io_wakeup_ports_1_bits_uop_br_mask_0 = io_wakeup_ports_1_bits_uop_br_mask; // @[issue-slot.scala:49:7]
wire [3:0] io_wakeup_ports_1_bits_uop_br_tag_0 = io_wakeup_ports_1_bits_uop_br_tag; // @[issue-slot.scala:49:7]
wire [3:0] io_wakeup_ports_1_bits_uop_br_type_0 = io_wakeup_ports_1_bits_uop_br_type; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_1_bits_uop_is_sfb_0 = io_wakeup_ports_1_bits_uop_is_sfb; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_1_bits_uop_is_fence_0 = io_wakeup_ports_1_bits_uop_is_fence; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_1_bits_uop_is_fencei_0 = io_wakeup_ports_1_bits_uop_is_fencei; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_1_bits_uop_is_sfence_0 = io_wakeup_ports_1_bits_uop_is_sfence; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_1_bits_uop_is_amo_0 = io_wakeup_ports_1_bits_uop_is_amo; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_1_bits_uop_is_eret_0 = io_wakeup_ports_1_bits_uop_is_eret; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_1_bits_uop_is_sys_pc2epc_0 = io_wakeup_ports_1_bits_uop_is_sys_pc2epc; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_1_bits_uop_is_rocc_0 = io_wakeup_ports_1_bits_uop_is_rocc; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_1_bits_uop_is_mov_0 = io_wakeup_ports_1_bits_uop_is_mov; // @[issue-slot.scala:49:7]
wire [4:0] io_wakeup_ports_1_bits_uop_ftq_idx_0 = io_wakeup_ports_1_bits_uop_ftq_idx; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_1_bits_uop_edge_inst_0 = io_wakeup_ports_1_bits_uop_edge_inst; // @[issue-slot.scala:49:7]
wire [5:0] io_wakeup_ports_1_bits_uop_pc_lob_0 = io_wakeup_ports_1_bits_uop_pc_lob; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_1_bits_uop_taken_0 = io_wakeup_ports_1_bits_uop_taken; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_1_bits_uop_imm_rename_0 = io_wakeup_ports_1_bits_uop_imm_rename; // @[issue-slot.scala:49:7]
wire [2:0] io_wakeup_ports_1_bits_uop_imm_sel_0 = io_wakeup_ports_1_bits_uop_imm_sel; // @[issue-slot.scala:49:7]
wire [4:0] io_wakeup_ports_1_bits_uop_pimm_0 = io_wakeup_ports_1_bits_uop_pimm; // @[issue-slot.scala:49:7]
wire [19:0] io_wakeup_ports_1_bits_uop_imm_packed_0 = io_wakeup_ports_1_bits_uop_imm_packed; // @[issue-slot.scala:49:7]
wire [1:0] io_wakeup_ports_1_bits_uop_op1_sel_0 = io_wakeup_ports_1_bits_uop_op1_sel; // @[issue-slot.scala:49:7]
wire [2:0] io_wakeup_ports_1_bits_uop_op2_sel_0 = io_wakeup_ports_1_bits_uop_op2_sel; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_1_bits_uop_fp_ctrl_ldst_0 = io_wakeup_ports_1_bits_uop_fp_ctrl_ldst; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_1_bits_uop_fp_ctrl_wen_0 = io_wakeup_ports_1_bits_uop_fp_ctrl_wen; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_1_bits_uop_fp_ctrl_ren1_0 = io_wakeup_ports_1_bits_uop_fp_ctrl_ren1; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_1_bits_uop_fp_ctrl_ren2_0 = io_wakeup_ports_1_bits_uop_fp_ctrl_ren2; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_1_bits_uop_fp_ctrl_ren3_0 = io_wakeup_ports_1_bits_uop_fp_ctrl_ren3; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_1_bits_uop_fp_ctrl_swap12_0 = io_wakeup_ports_1_bits_uop_fp_ctrl_swap12; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_1_bits_uop_fp_ctrl_swap23_0 = io_wakeup_ports_1_bits_uop_fp_ctrl_swap23; // @[issue-slot.scala:49:7]
wire [1:0] io_wakeup_ports_1_bits_uop_fp_ctrl_typeTagIn_0 = io_wakeup_ports_1_bits_uop_fp_ctrl_typeTagIn; // @[issue-slot.scala:49:7]
wire [1:0] io_wakeup_ports_1_bits_uop_fp_ctrl_typeTagOut_0 = io_wakeup_ports_1_bits_uop_fp_ctrl_typeTagOut; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_1_bits_uop_fp_ctrl_fromint_0 = io_wakeup_ports_1_bits_uop_fp_ctrl_fromint; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_1_bits_uop_fp_ctrl_toint_0 = io_wakeup_ports_1_bits_uop_fp_ctrl_toint; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_1_bits_uop_fp_ctrl_fastpipe_0 = io_wakeup_ports_1_bits_uop_fp_ctrl_fastpipe; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_1_bits_uop_fp_ctrl_fma_0 = io_wakeup_ports_1_bits_uop_fp_ctrl_fma; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_1_bits_uop_fp_ctrl_div_0 = io_wakeup_ports_1_bits_uop_fp_ctrl_div; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_1_bits_uop_fp_ctrl_sqrt_0 = io_wakeup_ports_1_bits_uop_fp_ctrl_sqrt; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_1_bits_uop_fp_ctrl_wflags_0 = io_wakeup_ports_1_bits_uop_fp_ctrl_wflags; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_1_bits_uop_fp_ctrl_vec_0 = io_wakeup_ports_1_bits_uop_fp_ctrl_vec; // @[issue-slot.scala:49:7]
wire [6:0] io_wakeup_ports_1_bits_uop_rob_idx_0 = io_wakeup_ports_1_bits_uop_rob_idx; // @[issue-slot.scala:49:7]
wire [4:0] io_wakeup_ports_1_bits_uop_ldq_idx_0 = io_wakeup_ports_1_bits_uop_ldq_idx; // @[issue-slot.scala:49:7]
wire [4:0] io_wakeup_ports_1_bits_uop_stq_idx_0 = io_wakeup_ports_1_bits_uop_stq_idx; // @[issue-slot.scala:49:7]
wire [1:0] io_wakeup_ports_1_bits_uop_rxq_idx_0 = io_wakeup_ports_1_bits_uop_rxq_idx; // @[issue-slot.scala:49:7]
wire [6:0] io_wakeup_ports_1_bits_uop_pdst_0 = io_wakeup_ports_1_bits_uop_pdst; // @[issue-slot.scala:49:7]
wire [6:0] io_wakeup_ports_1_bits_uop_prs1_0 = io_wakeup_ports_1_bits_uop_prs1; // @[issue-slot.scala:49:7]
wire [6:0] io_wakeup_ports_1_bits_uop_prs2_0 = io_wakeup_ports_1_bits_uop_prs2; // @[issue-slot.scala:49:7]
wire [6:0] io_wakeup_ports_1_bits_uop_prs3_0 = io_wakeup_ports_1_bits_uop_prs3; // @[issue-slot.scala:49:7]
wire [4:0] io_wakeup_ports_1_bits_uop_ppred_0 = io_wakeup_ports_1_bits_uop_ppred; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_1_bits_uop_prs1_busy_0 = io_wakeup_ports_1_bits_uop_prs1_busy; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_1_bits_uop_prs2_busy_0 = io_wakeup_ports_1_bits_uop_prs2_busy; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_1_bits_uop_prs3_busy_0 = io_wakeup_ports_1_bits_uop_prs3_busy; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_1_bits_uop_ppred_busy_0 = io_wakeup_ports_1_bits_uop_ppred_busy; // @[issue-slot.scala:49:7]
wire [6:0] io_wakeup_ports_1_bits_uop_stale_pdst_0 = io_wakeup_ports_1_bits_uop_stale_pdst; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_1_bits_uop_exception_0 = io_wakeup_ports_1_bits_uop_exception; // @[issue-slot.scala:49:7]
wire [63:0] io_wakeup_ports_1_bits_uop_exc_cause_0 = io_wakeup_ports_1_bits_uop_exc_cause; // @[issue-slot.scala:49:7]
wire [4:0] io_wakeup_ports_1_bits_uop_mem_cmd_0 = io_wakeup_ports_1_bits_uop_mem_cmd; // @[issue-slot.scala:49:7]
wire [1:0] io_wakeup_ports_1_bits_uop_mem_size_0 = io_wakeup_ports_1_bits_uop_mem_size; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_1_bits_uop_mem_signed_0 = io_wakeup_ports_1_bits_uop_mem_signed; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_1_bits_uop_uses_ldq_0 = io_wakeup_ports_1_bits_uop_uses_ldq; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_1_bits_uop_uses_stq_0 = io_wakeup_ports_1_bits_uop_uses_stq; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_1_bits_uop_is_unique_0 = io_wakeup_ports_1_bits_uop_is_unique; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_1_bits_uop_flush_on_commit_0 = io_wakeup_ports_1_bits_uop_flush_on_commit; // @[issue-slot.scala:49:7]
wire [2:0] io_wakeup_ports_1_bits_uop_csr_cmd_0 = io_wakeup_ports_1_bits_uop_csr_cmd; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_1_bits_uop_ldst_is_rs1_0 = io_wakeup_ports_1_bits_uop_ldst_is_rs1; // @[issue-slot.scala:49:7]
wire [5:0] io_wakeup_ports_1_bits_uop_ldst_0 = io_wakeup_ports_1_bits_uop_ldst; // @[issue-slot.scala:49:7]
wire [5:0] io_wakeup_ports_1_bits_uop_lrs1_0 = io_wakeup_ports_1_bits_uop_lrs1; // @[issue-slot.scala:49:7]
wire [5:0] io_wakeup_ports_1_bits_uop_lrs2_0 = io_wakeup_ports_1_bits_uop_lrs2; // @[issue-slot.scala:49:7]
wire [5:0] io_wakeup_ports_1_bits_uop_lrs3_0 = io_wakeup_ports_1_bits_uop_lrs3; // @[issue-slot.scala:49:7]
wire [1:0] io_wakeup_ports_1_bits_uop_dst_rtype_0 = io_wakeup_ports_1_bits_uop_dst_rtype; // @[issue-slot.scala:49:7]
wire [1:0] io_wakeup_ports_1_bits_uop_lrs1_rtype_0 = io_wakeup_ports_1_bits_uop_lrs1_rtype; // @[issue-slot.scala:49:7]
wire [1:0] io_wakeup_ports_1_bits_uop_lrs2_rtype_0 = io_wakeup_ports_1_bits_uop_lrs2_rtype; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_1_bits_uop_frs3_en_0 = io_wakeup_ports_1_bits_uop_frs3_en; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_1_bits_uop_fcn_dw_0 = io_wakeup_ports_1_bits_uop_fcn_dw; // @[issue-slot.scala:49:7]
wire [4:0] io_wakeup_ports_1_bits_uop_fcn_op_0 = io_wakeup_ports_1_bits_uop_fcn_op; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_1_bits_uop_fp_val_0 = io_wakeup_ports_1_bits_uop_fp_val; // @[issue-slot.scala:49:7]
wire [2:0] io_wakeup_ports_1_bits_uop_fp_rm_0 = io_wakeup_ports_1_bits_uop_fp_rm; // @[issue-slot.scala:49:7]
wire [1:0] io_wakeup_ports_1_bits_uop_fp_typ_0 = io_wakeup_ports_1_bits_uop_fp_typ; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_1_bits_uop_xcpt_pf_if_0 = io_wakeup_ports_1_bits_uop_xcpt_pf_if; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_1_bits_uop_xcpt_ae_if_0 = io_wakeup_ports_1_bits_uop_xcpt_ae_if; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_1_bits_uop_xcpt_ma_if_0 = io_wakeup_ports_1_bits_uop_xcpt_ma_if; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_1_bits_uop_bp_debug_if_0 = io_wakeup_ports_1_bits_uop_bp_debug_if; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_1_bits_uop_bp_xcpt_if_0 = io_wakeup_ports_1_bits_uop_bp_xcpt_if; // @[issue-slot.scala:49:7]
wire [2:0] io_wakeup_ports_1_bits_uop_debug_fsrc_0 = io_wakeup_ports_1_bits_uop_debug_fsrc; // @[issue-slot.scala:49:7]
wire [2:0] io_wakeup_ports_1_bits_uop_debug_tsrc_0 = io_wakeup_ports_1_bits_uop_debug_tsrc; // @[issue-slot.scala:49:7]
wire io_iss_uop_iw_issued_partial_agen = 1'h0; // @[issue-slot.scala:49:7]
wire io_iss_uop_iw_issued_partial_dgen = 1'h0; // @[issue-slot.scala:49:7]
wire io_in_uop_bits_iw_issued_partial_agen = 1'h0; // @[issue-slot.scala:49:7]
wire io_in_uop_bits_iw_issued_partial_dgen = 1'h0; // @[issue-slot.scala:49:7]
wire io_out_uop_iw_issued_partial_agen = 1'h0; // @[issue-slot.scala:49:7]
wire io_out_uop_iw_issued_partial_dgen = 1'h0; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_0_bits_rebusy = 1'h0; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_1_bits_bypassable = 1'h0; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_1_bits_rebusy = 1'h0; // @[issue-slot.scala:49:7]
wire io_pred_wakeup_port_valid = 1'h0; // @[issue-slot.scala:49:7]
wire next_uop_out_iw_issued_partial_agen = 1'h0; // @[util.scala:104:23]
wire next_uop_out_iw_issued_partial_dgen = 1'h0; // @[util.scala:104:23]
wire next_uop_iw_issued_partial_agen = 1'h0; // @[issue-slot.scala:59:28]
wire next_uop_iw_issued_partial_dgen = 1'h0; // @[issue-slot.scala:59:28]
wire rebusied_prs1 = 1'h0; // @[issue-slot.scala:92:31]
wire rebusied_prs2 = 1'h0; // @[issue-slot.scala:93:31]
wire rebusied = 1'h0; // @[issue-slot.scala:94:32]
wire prs1_rebusys_0 = 1'h0; // @[issue-slot.scala:102:91]
wire prs1_rebusys_1 = 1'h0; // @[issue-slot.scala:102:91]
wire prs2_rebusys_0 = 1'h0; // @[issue-slot.scala:103:91]
wire prs2_rebusys_1 = 1'h0; // @[issue-slot.scala:103:91]
wire _next_uop_iw_p1_bypass_hint_T_1 = 1'h0; // @[Mux.scala:30:73]
wire _next_uop_iw_p2_bypass_hint_T_1 = 1'h0; // @[Mux.scala:30:73]
wire _next_uop_iw_p3_bypass_hint_T_1 = 1'h0; // @[Mux.scala:30:73]
wire agen_ready = 1'h0; // @[issue-slot.scala:137:114]
wire dgen_ready = 1'h0; // @[issue-slot.scala:138:114]
wire [2:0] io_in_uop_bits_iw_p1_speculative_child = 3'h0; // @[issue-slot.scala:49:7]
wire [2:0] io_in_uop_bits_iw_p2_speculative_child = 3'h0; // @[issue-slot.scala:49:7]
wire [2:0] io_out_uop_iw_p1_speculative_child = 3'h0; // @[issue-slot.scala:49:7]
wire [2:0] io_out_uop_iw_p2_speculative_child = 3'h0; // @[issue-slot.scala:49:7]
wire [2:0] io_wakeup_ports_0_bits_speculative_mask = 3'h0; // @[issue-slot.scala:49:7]
wire [2:0] io_wakeup_ports_1_bits_speculative_mask = 3'h0; // @[issue-slot.scala:49:7]
wire [2:0] io_child_rebusys = 3'h0; // @[issue-slot.scala:49:7]
wire [2:0] next_uop_iw_p1_speculative_child = 3'h0; // @[issue-slot.scala:59:28]
wire [2:0] next_uop_iw_p2_speculative_child = 3'h0; // @[issue-slot.scala:59:28]
wire [2:0] _next_uop_iw_p1_speculative_child_T = 3'h0; // @[Mux.scala:30:73]
wire [2:0] _next_uop_iw_p1_speculative_child_T_1 = 3'h0; // @[Mux.scala:30:73]
wire [2:0] _next_uop_iw_p1_speculative_child_T_2 = 3'h0; // @[Mux.scala:30:73]
wire [2:0] _next_uop_iw_p1_speculative_child_WIRE = 3'h0; // @[Mux.scala:30:73]
wire [2:0] _next_uop_iw_p2_speculative_child_T = 3'h0; // @[Mux.scala:30:73]
wire [2:0] _next_uop_iw_p2_speculative_child_T_1 = 3'h0; // @[Mux.scala:30:73]
wire [2:0] _next_uop_iw_p2_speculative_child_T_2 = 3'h0; // @[Mux.scala:30:73]
wire [2:0] _next_uop_iw_p2_speculative_child_WIRE = 3'h0; // @[Mux.scala:30:73]
wire io_wakeup_ports_0_bits_bypassable = 1'h1; // @[issue-slot.scala:49:7]
wire [4:0] io_pred_wakeup_port_bits = 5'h0; // @[issue-slot.scala:49:7]
wire _io_will_be_valid_T_1; // @[issue-slot.scala:65:34]
wire _io_request_T_4; // @[issue-slot.scala:140:51]
wire [31:0] next_uop_inst; // @[issue-slot.scala:59:28]
wire [31:0] next_uop_debug_inst; // @[issue-slot.scala:59:28]
wire next_uop_is_rvc; // @[issue-slot.scala:59:28]
wire [39:0] next_uop_debug_pc; // @[issue-slot.scala:59:28]
wire next_uop_iq_type_0; // @[issue-slot.scala:59:28]
wire next_uop_iq_type_1; // @[issue-slot.scala:59:28]
wire next_uop_iq_type_2; // @[issue-slot.scala:59:28]
wire next_uop_iq_type_3; // @[issue-slot.scala:59:28]
wire next_uop_fu_code_0; // @[issue-slot.scala:59:28]
wire next_uop_fu_code_1; // @[issue-slot.scala:59:28]
wire next_uop_fu_code_2; // @[issue-slot.scala:59:28]
wire next_uop_fu_code_3; // @[issue-slot.scala:59:28]
wire next_uop_fu_code_4; // @[issue-slot.scala:59:28]
wire next_uop_fu_code_5; // @[issue-slot.scala:59:28]
wire next_uop_fu_code_6; // @[issue-slot.scala:59:28]
wire next_uop_fu_code_7; // @[issue-slot.scala:59:28]
wire next_uop_fu_code_8; // @[issue-slot.scala:59:28]
wire next_uop_fu_code_9; // @[issue-slot.scala:59:28]
wire next_uop_iw_issued; // @[issue-slot.scala:59:28]
wire next_uop_iw_p1_bypass_hint; // @[issue-slot.scala:59:28]
wire next_uop_iw_p2_bypass_hint; // @[issue-slot.scala:59:28]
wire next_uop_iw_p3_bypass_hint; // @[issue-slot.scala:59:28]
wire [2:0] next_uop_dis_col_sel; // @[issue-slot.scala:59:28]
wire [15:0] next_uop_br_mask; // @[issue-slot.scala:59:28]
wire [3:0] next_uop_br_tag; // @[issue-slot.scala:59:28]
wire [3:0] next_uop_br_type; // @[issue-slot.scala:59:28]
wire next_uop_is_sfb; // @[issue-slot.scala:59:28]
wire next_uop_is_fence; // @[issue-slot.scala:59:28]
wire next_uop_is_fencei; // @[issue-slot.scala:59:28]
wire next_uop_is_sfence; // @[issue-slot.scala:59:28]
wire next_uop_is_amo; // @[issue-slot.scala:59:28]
wire next_uop_is_eret; // @[issue-slot.scala:59:28]
wire next_uop_is_sys_pc2epc; // @[issue-slot.scala:59:28]
wire next_uop_is_rocc; // @[issue-slot.scala:59:28]
wire next_uop_is_mov; // @[issue-slot.scala:59:28]
wire [4:0] next_uop_ftq_idx; // @[issue-slot.scala:59:28]
wire next_uop_edge_inst; // @[issue-slot.scala:59:28]
wire [5:0] next_uop_pc_lob; // @[issue-slot.scala:59:28]
wire next_uop_taken; // @[issue-slot.scala:59:28]
wire next_uop_imm_rename; // @[issue-slot.scala:59:28]
wire [2:0] next_uop_imm_sel; // @[issue-slot.scala:59:28]
wire [4:0] next_uop_pimm; // @[issue-slot.scala:59:28]
wire [19:0] next_uop_imm_packed; // @[issue-slot.scala:59:28]
wire [1:0] next_uop_op1_sel; // @[issue-slot.scala:59:28]
wire [2:0] next_uop_op2_sel; // @[issue-slot.scala:59:28]
wire next_uop_fp_ctrl_ldst; // @[issue-slot.scala:59:28]
wire next_uop_fp_ctrl_wen; // @[issue-slot.scala:59:28]
wire next_uop_fp_ctrl_ren1; // @[issue-slot.scala:59:28]
wire next_uop_fp_ctrl_ren2; // @[issue-slot.scala:59:28]
wire next_uop_fp_ctrl_ren3; // @[issue-slot.scala:59:28]
wire next_uop_fp_ctrl_swap12; // @[issue-slot.scala:59:28]
wire next_uop_fp_ctrl_swap23; // @[issue-slot.scala:59:28]
wire [1:0] next_uop_fp_ctrl_typeTagIn; // @[issue-slot.scala:59:28]
wire [1:0] next_uop_fp_ctrl_typeTagOut; // @[issue-slot.scala:59:28]
wire next_uop_fp_ctrl_fromint; // @[issue-slot.scala:59:28]
wire next_uop_fp_ctrl_toint; // @[issue-slot.scala:59:28]
wire next_uop_fp_ctrl_fastpipe; // @[issue-slot.scala:59:28]
wire next_uop_fp_ctrl_fma; // @[issue-slot.scala:59:28]
wire next_uop_fp_ctrl_div; // @[issue-slot.scala:59:28]
wire next_uop_fp_ctrl_sqrt; // @[issue-slot.scala:59:28]
wire next_uop_fp_ctrl_wflags; // @[issue-slot.scala:59:28]
wire next_uop_fp_ctrl_vec; // @[issue-slot.scala:59:28]
wire [6:0] next_uop_rob_idx; // @[issue-slot.scala:59:28]
wire [4:0] next_uop_ldq_idx; // @[issue-slot.scala:59:28]
wire [4:0] next_uop_stq_idx; // @[issue-slot.scala:59:28]
wire [1:0] next_uop_rxq_idx; // @[issue-slot.scala:59:28]
wire [6:0] next_uop_pdst; // @[issue-slot.scala:59:28]
wire [6:0] next_uop_prs1; // @[issue-slot.scala:59:28]
wire [6:0] next_uop_prs2; // @[issue-slot.scala:59:28]
wire [6:0] next_uop_prs3; // @[issue-slot.scala:59:28]
wire [4:0] next_uop_ppred; // @[issue-slot.scala:59:28]
wire next_uop_prs1_busy; // @[issue-slot.scala:59:28]
wire next_uop_prs2_busy; // @[issue-slot.scala:59:28]
wire next_uop_prs3_busy; // @[issue-slot.scala:59:28]
wire next_uop_ppred_busy; // @[issue-slot.scala:59:28]
wire [6:0] next_uop_stale_pdst; // @[issue-slot.scala:59:28]
wire next_uop_exception; // @[issue-slot.scala:59:28]
wire [63:0] next_uop_exc_cause; // @[issue-slot.scala:59:28]
wire [4:0] next_uop_mem_cmd; // @[issue-slot.scala:59:28]
wire [1:0] next_uop_mem_size; // @[issue-slot.scala:59:28]
wire next_uop_mem_signed; // @[issue-slot.scala:59:28]
wire next_uop_uses_ldq; // @[issue-slot.scala:59:28]
wire next_uop_uses_stq; // @[issue-slot.scala:59:28]
wire next_uop_is_unique; // @[issue-slot.scala:59:28]
wire next_uop_flush_on_commit; // @[issue-slot.scala:59:28]
wire [2:0] next_uop_csr_cmd; // @[issue-slot.scala:59:28]
wire next_uop_ldst_is_rs1; // @[issue-slot.scala:59:28]
wire [5:0] next_uop_ldst; // @[issue-slot.scala:59:28]
wire [5:0] next_uop_lrs1; // @[issue-slot.scala:59:28]
wire [5:0] next_uop_lrs2; // @[issue-slot.scala:59:28]
wire [5:0] next_uop_lrs3; // @[issue-slot.scala:59:28]
wire [1:0] next_uop_dst_rtype; // @[issue-slot.scala:59:28]
wire [1:0] next_uop_lrs1_rtype; // @[issue-slot.scala:59:28]
wire [1:0] next_uop_lrs2_rtype; // @[issue-slot.scala:59:28]
wire next_uop_frs3_en; // @[issue-slot.scala:59:28]
wire next_uop_fcn_dw; // @[issue-slot.scala:59:28]
wire [4:0] next_uop_fcn_op; // @[issue-slot.scala:59:28]
wire next_uop_fp_val; // @[issue-slot.scala:59:28]
wire [2:0] next_uop_fp_rm; // @[issue-slot.scala:59:28]
wire [1:0] next_uop_fp_typ; // @[issue-slot.scala:59:28]
wire next_uop_xcpt_pf_if; // @[issue-slot.scala:59:28]
wire next_uop_xcpt_ae_if; // @[issue-slot.scala:59:28]
wire next_uop_xcpt_ma_if; // @[issue-slot.scala:59:28]
wire next_uop_bp_debug_if; // @[issue-slot.scala:59:28]
wire next_uop_bp_xcpt_if; // @[issue-slot.scala:59:28]
wire [2:0] next_uop_debug_fsrc; // @[issue-slot.scala:59:28]
wire [2:0] next_uop_debug_tsrc; // @[issue-slot.scala:59:28]
wire io_iss_uop_iq_type_0_0; // @[issue-slot.scala:49:7]
wire io_iss_uop_iq_type_1_0; // @[issue-slot.scala:49:7]
wire io_iss_uop_iq_type_2_0; // @[issue-slot.scala:49:7]
wire io_iss_uop_iq_type_3_0; // @[issue-slot.scala:49:7]
wire io_iss_uop_fu_code_0_0; // @[issue-slot.scala:49:7]
wire io_iss_uop_fu_code_1_0; // @[issue-slot.scala:49:7]
wire io_iss_uop_fu_code_2_0; // @[issue-slot.scala:49:7]
wire io_iss_uop_fu_code_3_0; // @[issue-slot.scala:49:7]
wire io_iss_uop_fu_code_4_0; // @[issue-slot.scala:49:7]
wire io_iss_uop_fu_code_5_0; // @[issue-slot.scala:49:7]
wire io_iss_uop_fu_code_6_0; // @[issue-slot.scala:49:7]
wire io_iss_uop_fu_code_7_0; // @[issue-slot.scala:49:7]
wire io_iss_uop_fu_code_8_0; // @[issue-slot.scala:49:7]
wire io_iss_uop_fu_code_9_0; // @[issue-slot.scala:49:7]
wire io_iss_uop_fp_ctrl_ldst_0; // @[issue-slot.scala:49:7]
wire io_iss_uop_fp_ctrl_wen_0; // @[issue-slot.scala:49:7]
wire io_iss_uop_fp_ctrl_ren1_0; // @[issue-slot.scala:49:7]
wire io_iss_uop_fp_ctrl_ren2_0; // @[issue-slot.scala:49:7]
wire io_iss_uop_fp_ctrl_ren3_0; // @[issue-slot.scala:49:7]
wire io_iss_uop_fp_ctrl_swap12_0; // @[issue-slot.scala:49:7]
wire io_iss_uop_fp_ctrl_swap23_0; // @[issue-slot.scala:49:7]
wire [1:0] io_iss_uop_fp_ctrl_typeTagIn_0; // @[issue-slot.scala:49:7]
wire [1:0] io_iss_uop_fp_ctrl_typeTagOut_0; // @[issue-slot.scala:49:7]
wire io_iss_uop_fp_ctrl_fromint_0; // @[issue-slot.scala:49:7]
wire io_iss_uop_fp_ctrl_toint_0; // @[issue-slot.scala:49:7]
wire io_iss_uop_fp_ctrl_fastpipe_0; // @[issue-slot.scala:49:7]
wire io_iss_uop_fp_ctrl_fma_0; // @[issue-slot.scala:49:7]
wire io_iss_uop_fp_ctrl_div_0; // @[issue-slot.scala:49:7]
wire io_iss_uop_fp_ctrl_sqrt_0; // @[issue-slot.scala:49:7]
wire io_iss_uop_fp_ctrl_wflags_0; // @[issue-slot.scala:49:7]
wire io_iss_uop_fp_ctrl_vec_0; // @[issue-slot.scala:49:7]
wire [31:0] io_iss_uop_inst_0; // @[issue-slot.scala:49:7]
wire [31:0] io_iss_uop_debug_inst_0; // @[issue-slot.scala:49:7]
wire io_iss_uop_is_rvc_0; // @[issue-slot.scala:49:7]
wire [39:0] io_iss_uop_debug_pc_0; // @[issue-slot.scala:49:7]
wire io_iss_uop_iw_issued_0; // @[issue-slot.scala:49:7]
wire [2:0] io_iss_uop_iw_p1_speculative_child_0; // @[issue-slot.scala:49:7]
wire [2:0] io_iss_uop_iw_p2_speculative_child_0; // @[issue-slot.scala:49:7]
wire io_iss_uop_iw_p1_bypass_hint_0; // @[issue-slot.scala:49:7]
wire io_iss_uop_iw_p2_bypass_hint_0; // @[issue-slot.scala:49:7]
wire io_iss_uop_iw_p3_bypass_hint_0; // @[issue-slot.scala:49:7]
wire [2:0] io_iss_uop_dis_col_sel_0; // @[issue-slot.scala:49:7]
wire [15:0] io_iss_uop_br_mask_0; // @[issue-slot.scala:49:7]
wire [3:0] io_iss_uop_br_tag_0; // @[issue-slot.scala:49:7]
wire [3:0] io_iss_uop_br_type_0; // @[issue-slot.scala:49:7]
wire io_iss_uop_is_sfb_0; // @[issue-slot.scala:49:7]
wire io_iss_uop_is_fence_0; // @[issue-slot.scala:49:7]
wire io_iss_uop_is_fencei_0; // @[issue-slot.scala:49:7]
wire io_iss_uop_is_sfence_0; // @[issue-slot.scala:49:7]
wire io_iss_uop_is_amo_0; // @[issue-slot.scala:49:7]
wire io_iss_uop_is_eret_0; // @[issue-slot.scala:49:7]
wire io_iss_uop_is_sys_pc2epc_0; // @[issue-slot.scala:49:7]
wire io_iss_uop_is_rocc_0; // @[issue-slot.scala:49:7]
wire io_iss_uop_is_mov_0; // @[issue-slot.scala:49:7]
wire [4:0] io_iss_uop_ftq_idx_0; // @[issue-slot.scala:49:7]
wire io_iss_uop_edge_inst_0; // @[issue-slot.scala:49:7]
wire [5:0] io_iss_uop_pc_lob_0; // @[issue-slot.scala:49:7]
wire io_iss_uop_taken_0; // @[issue-slot.scala:49:7]
wire io_iss_uop_imm_rename_0; // @[issue-slot.scala:49:7]
wire [2:0] io_iss_uop_imm_sel_0; // @[issue-slot.scala:49:7]
wire [4:0] io_iss_uop_pimm_0; // @[issue-slot.scala:49:7]
wire [19:0] io_iss_uop_imm_packed_0; // @[issue-slot.scala:49:7]
wire [1:0] io_iss_uop_op1_sel_0; // @[issue-slot.scala:49:7]
wire [2:0] io_iss_uop_op2_sel_0; // @[issue-slot.scala:49:7]
wire [6:0] io_iss_uop_rob_idx_0; // @[issue-slot.scala:49:7]
wire [4:0] io_iss_uop_ldq_idx_0; // @[issue-slot.scala:49:7]
wire [4:0] io_iss_uop_stq_idx_0; // @[issue-slot.scala:49:7]
wire [1:0] io_iss_uop_rxq_idx_0; // @[issue-slot.scala:49:7]
wire [6:0] io_iss_uop_pdst_0; // @[issue-slot.scala:49:7]
wire [6:0] io_iss_uop_prs1_0; // @[issue-slot.scala:49:7]
wire [6:0] io_iss_uop_prs2_0; // @[issue-slot.scala:49:7]
wire [6:0] io_iss_uop_prs3_0; // @[issue-slot.scala:49:7]
wire [4:0] io_iss_uop_ppred_0; // @[issue-slot.scala:49:7]
wire io_iss_uop_prs1_busy_0; // @[issue-slot.scala:49:7]
wire io_iss_uop_prs2_busy_0; // @[issue-slot.scala:49:7]
wire io_iss_uop_prs3_busy_0; // @[issue-slot.scala:49:7]
wire io_iss_uop_ppred_busy_0; // @[issue-slot.scala:49:7]
wire [6:0] io_iss_uop_stale_pdst_0; // @[issue-slot.scala:49:7]
wire io_iss_uop_exception_0; // @[issue-slot.scala:49:7]
wire [63:0] io_iss_uop_exc_cause_0; // @[issue-slot.scala:49:7]
wire [4:0] io_iss_uop_mem_cmd_0; // @[issue-slot.scala:49:7]
wire [1:0] io_iss_uop_mem_size_0; // @[issue-slot.scala:49:7]
wire io_iss_uop_mem_signed_0; // @[issue-slot.scala:49:7]
wire io_iss_uop_uses_ldq_0; // @[issue-slot.scala:49:7]
wire io_iss_uop_uses_stq_0; // @[issue-slot.scala:49:7]
wire io_iss_uop_is_unique_0; // @[issue-slot.scala:49:7]
wire io_iss_uop_flush_on_commit_0; // @[issue-slot.scala:49:7]
wire [2:0] io_iss_uop_csr_cmd_0; // @[issue-slot.scala:49:7]
wire io_iss_uop_ldst_is_rs1_0; // @[issue-slot.scala:49:7]
wire [5:0] io_iss_uop_ldst_0; // @[issue-slot.scala:49:7]
wire [5:0] io_iss_uop_lrs1_0; // @[issue-slot.scala:49:7]
wire [5:0] io_iss_uop_lrs2_0; // @[issue-slot.scala:49:7]
wire [5:0] io_iss_uop_lrs3_0; // @[issue-slot.scala:49:7]
wire [1:0] io_iss_uop_dst_rtype_0; // @[issue-slot.scala:49:7]
wire [1:0] io_iss_uop_lrs1_rtype_0; // @[issue-slot.scala:49:7]
wire [1:0] io_iss_uop_lrs2_rtype_0; // @[issue-slot.scala:49:7]
wire io_iss_uop_frs3_en_0; // @[issue-slot.scala:49:7]
wire io_iss_uop_fcn_dw_0; // @[issue-slot.scala:49:7]
wire [4:0] io_iss_uop_fcn_op_0; // @[issue-slot.scala:49:7]
wire io_iss_uop_fp_val_0; // @[issue-slot.scala:49:7]
wire [2:0] io_iss_uop_fp_rm_0; // @[issue-slot.scala:49:7]
wire [1:0] io_iss_uop_fp_typ_0; // @[issue-slot.scala:49:7]
wire io_iss_uop_xcpt_pf_if_0; // @[issue-slot.scala:49:7]
wire io_iss_uop_xcpt_ae_if_0; // @[issue-slot.scala:49:7]
wire io_iss_uop_xcpt_ma_if_0; // @[issue-slot.scala:49:7]
wire io_iss_uop_bp_debug_if_0; // @[issue-slot.scala:49:7]
wire io_iss_uop_bp_xcpt_if_0; // @[issue-slot.scala:49:7]
wire [2:0] io_iss_uop_debug_fsrc_0; // @[issue-slot.scala:49:7]
wire [2:0] io_iss_uop_debug_tsrc_0; // @[issue-slot.scala:49:7]
wire io_out_uop_iq_type_0_0; // @[issue-slot.scala:49:7]
wire io_out_uop_iq_type_1_0; // @[issue-slot.scala:49:7]
wire io_out_uop_iq_type_2_0; // @[issue-slot.scala:49:7]
wire io_out_uop_iq_type_3_0; // @[issue-slot.scala:49:7]
wire io_out_uop_fu_code_0_0; // @[issue-slot.scala:49:7]
wire io_out_uop_fu_code_1_0; // @[issue-slot.scala:49:7]
wire io_out_uop_fu_code_2_0; // @[issue-slot.scala:49:7]
wire io_out_uop_fu_code_3_0; // @[issue-slot.scala:49:7]
wire io_out_uop_fu_code_4_0; // @[issue-slot.scala:49:7]
wire io_out_uop_fu_code_5_0; // @[issue-slot.scala:49:7]
wire io_out_uop_fu_code_6_0; // @[issue-slot.scala:49:7]
wire io_out_uop_fu_code_7_0; // @[issue-slot.scala:49:7]
wire io_out_uop_fu_code_8_0; // @[issue-slot.scala:49:7]
wire io_out_uop_fu_code_9_0; // @[issue-slot.scala:49:7]
wire io_out_uop_fp_ctrl_ldst_0; // @[issue-slot.scala:49:7]
wire io_out_uop_fp_ctrl_wen_0; // @[issue-slot.scala:49:7]
wire io_out_uop_fp_ctrl_ren1_0; // @[issue-slot.scala:49:7]
wire io_out_uop_fp_ctrl_ren2_0; // @[issue-slot.scala:49:7]
wire io_out_uop_fp_ctrl_ren3_0; // @[issue-slot.scala:49:7]
wire io_out_uop_fp_ctrl_swap12_0; // @[issue-slot.scala:49:7]
wire io_out_uop_fp_ctrl_swap23_0; // @[issue-slot.scala:49:7]
wire [1:0] io_out_uop_fp_ctrl_typeTagIn_0; // @[issue-slot.scala:49:7]
wire [1:0] io_out_uop_fp_ctrl_typeTagOut_0; // @[issue-slot.scala:49:7]
wire io_out_uop_fp_ctrl_fromint_0; // @[issue-slot.scala:49:7]
wire io_out_uop_fp_ctrl_toint_0; // @[issue-slot.scala:49:7]
wire io_out_uop_fp_ctrl_fastpipe_0; // @[issue-slot.scala:49:7]
wire io_out_uop_fp_ctrl_fma_0; // @[issue-slot.scala:49:7]
wire io_out_uop_fp_ctrl_div_0; // @[issue-slot.scala:49:7]
wire io_out_uop_fp_ctrl_sqrt_0; // @[issue-slot.scala:49:7]
wire io_out_uop_fp_ctrl_wflags_0; // @[issue-slot.scala:49:7]
wire io_out_uop_fp_ctrl_vec_0; // @[issue-slot.scala:49:7]
wire [31:0] io_out_uop_inst_0; // @[issue-slot.scala:49:7]
wire [31:0] io_out_uop_debug_inst_0; // @[issue-slot.scala:49:7]
wire io_out_uop_is_rvc_0; // @[issue-slot.scala:49:7]
wire [39:0] io_out_uop_debug_pc_0; // @[issue-slot.scala:49:7]
wire io_out_uop_iw_issued_0; // @[issue-slot.scala:49:7]
wire io_out_uop_iw_p1_bypass_hint_0; // @[issue-slot.scala:49:7]
wire io_out_uop_iw_p2_bypass_hint_0; // @[issue-slot.scala:49:7]
wire io_out_uop_iw_p3_bypass_hint_0; // @[issue-slot.scala:49:7]
wire [2:0] io_out_uop_dis_col_sel_0; // @[issue-slot.scala:49:7]
wire [15:0] io_out_uop_br_mask_0; // @[issue-slot.scala:49:7]
wire [3:0] io_out_uop_br_tag_0; // @[issue-slot.scala:49:7]
wire [3:0] io_out_uop_br_type_0; // @[issue-slot.scala:49:7]
wire io_out_uop_is_sfb_0; // @[issue-slot.scala:49:7]
wire io_out_uop_is_fence_0; // @[issue-slot.scala:49:7]
wire io_out_uop_is_fencei_0; // @[issue-slot.scala:49:7]
wire io_out_uop_is_sfence_0; // @[issue-slot.scala:49:7]
wire io_out_uop_is_amo_0; // @[issue-slot.scala:49:7]
wire io_out_uop_is_eret_0; // @[issue-slot.scala:49:7]
wire io_out_uop_is_sys_pc2epc_0; // @[issue-slot.scala:49:7]
wire io_out_uop_is_rocc_0; // @[issue-slot.scala:49:7]
wire io_out_uop_is_mov_0; // @[issue-slot.scala:49:7]
wire [4:0] io_out_uop_ftq_idx_0; // @[issue-slot.scala:49:7]
wire io_out_uop_edge_inst_0; // @[issue-slot.scala:49:7]
wire [5:0] io_out_uop_pc_lob_0; // @[issue-slot.scala:49:7]
wire io_out_uop_taken_0; // @[issue-slot.scala:49:7]
wire io_out_uop_imm_rename_0; // @[issue-slot.scala:49:7]
wire [2:0] io_out_uop_imm_sel_0; // @[issue-slot.scala:49:7]
wire [4:0] io_out_uop_pimm_0; // @[issue-slot.scala:49:7]
wire [19:0] io_out_uop_imm_packed_0; // @[issue-slot.scala:49:7]
wire [1:0] io_out_uop_op1_sel_0; // @[issue-slot.scala:49:7]
wire [2:0] io_out_uop_op2_sel_0; // @[issue-slot.scala:49:7]
wire [6:0] io_out_uop_rob_idx_0; // @[issue-slot.scala:49:7]
wire [4:0] io_out_uop_ldq_idx_0; // @[issue-slot.scala:49:7]
wire [4:0] io_out_uop_stq_idx_0; // @[issue-slot.scala:49:7]
wire [1:0] io_out_uop_rxq_idx_0; // @[issue-slot.scala:49:7]
wire [6:0] io_out_uop_pdst_0; // @[issue-slot.scala:49:7]
wire [6:0] io_out_uop_prs1_0; // @[issue-slot.scala:49:7]
wire [6:0] io_out_uop_prs2_0; // @[issue-slot.scala:49:7]
wire [6:0] io_out_uop_prs3_0; // @[issue-slot.scala:49:7]
wire [4:0] io_out_uop_ppred_0; // @[issue-slot.scala:49:7]
wire io_out_uop_prs1_busy_0; // @[issue-slot.scala:49:7]
wire io_out_uop_prs2_busy_0; // @[issue-slot.scala:49:7]
wire io_out_uop_prs3_busy_0; // @[issue-slot.scala:49:7]
wire io_out_uop_ppred_busy_0; // @[issue-slot.scala:49:7]
wire [6:0] io_out_uop_stale_pdst_0; // @[issue-slot.scala:49:7]
wire io_out_uop_exception_0; // @[issue-slot.scala:49:7]
wire [63:0] io_out_uop_exc_cause_0; // @[issue-slot.scala:49:7]
wire [4:0] io_out_uop_mem_cmd_0; // @[issue-slot.scala:49:7]
wire [1:0] io_out_uop_mem_size_0; // @[issue-slot.scala:49:7]
wire io_out_uop_mem_signed_0; // @[issue-slot.scala:49:7]
wire io_out_uop_uses_ldq_0; // @[issue-slot.scala:49:7]
wire io_out_uop_uses_stq_0; // @[issue-slot.scala:49:7]
wire io_out_uop_is_unique_0; // @[issue-slot.scala:49:7]
wire io_out_uop_flush_on_commit_0; // @[issue-slot.scala:49:7]
wire [2:0] io_out_uop_csr_cmd_0; // @[issue-slot.scala:49:7]
wire io_out_uop_ldst_is_rs1_0; // @[issue-slot.scala:49:7]
wire [5:0] io_out_uop_ldst_0; // @[issue-slot.scala:49:7]
wire [5:0] io_out_uop_lrs1_0; // @[issue-slot.scala:49:7]
wire [5:0] io_out_uop_lrs2_0; // @[issue-slot.scala:49:7]
wire [5:0] io_out_uop_lrs3_0; // @[issue-slot.scala:49:7]
wire [1:0] io_out_uop_dst_rtype_0; // @[issue-slot.scala:49:7]
wire [1:0] io_out_uop_lrs1_rtype_0; // @[issue-slot.scala:49:7]
wire [1:0] io_out_uop_lrs2_rtype_0; // @[issue-slot.scala:49:7]
wire io_out_uop_frs3_en_0; // @[issue-slot.scala:49:7]
wire io_out_uop_fcn_dw_0; // @[issue-slot.scala:49:7]
wire [4:0] io_out_uop_fcn_op_0; // @[issue-slot.scala:49:7]
wire io_out_uop_fp_val_0; // @[issue-slot.scala:49:7]
wire [2:0] io_out_uop_fp_rm_0; // @[issue-slot.scala:49:7]
wire [1:0] io_out_uop_fp_typ_0; // @[issue-slot.scala:49:7]
wire io_out_uop_xcpt_pf_if_0; // @[issue-slot.scala:49:7]
wire io_out_uop_xcpt_ae_if_0; // @[issue-slot.scala:49:7]
wire io_out_uop_xcpt_ma_if_0; // @[issue-slot.scala:49:7]
wire io_out_uop_bp_debug_if_0; // @[issue-slot.scala:49:7]
wire io_out_uop_bp_xcpt_if_0; // @[issue-slot.scala:49:7]
wire [2:0] io_out_uop_debug_fsrc_0; // @[issue-slot.scala:49:7]
wire [2:0] io_out_uop_debug_tsrc_0; // @[issue-slot.scala:49:7]
wire io_valid_0; // @[issue-slot.scala:49:7]
wire io_will_be_valid_0; // @[issue-slot.scala:49:7]
wire io_request_0; // @[issue-slot.scala:49:7]
reg slot_valid; // @[issue-slot.scala:55:27]
assign io_valid_0 = slot_valid; // @[issue-slot.scala:49:7, :55:27]
reg [31:0] slot_uop_inst; // @[issue-slot.scala:56:21]
assign io_iss_uop_inst_0 = slot_uop_inst; // @[issue-slot.scala:49:7, :56:21]
wire [31:0] next_uop_out_inst = slot_uop_inst; // @[util.scala:104:23]
reg [31:0] slot_uop_debug_inst; // @[issue-slot.scala:56:21]
assign io_iss_uop_debug_inst_0 = slot_uop_debug_inst; // @[issue-slot.scala:49:7, :56:21]
wire [31:0] next_uop_out_debug_inst = slot_uop_debug_inst; // @[util.scala:104:23]
reg slot_uop_is_rvc; // @[issue-slot.scala:56:21]
assign io_iss_uop_is_rvc_0 = slot_uop_is_rvc; // @[issue-slot.scala:49:7, :56:21]
wire next_uop_out_is_rvc = slot_uop_is_rvc; // @[util.scala:104:23]
reg [39:0] slot_uop_debug_pc; // @[issue-slot.scala:56:21]
assign io_iss_uop_debug_pc_0 = slot_uop_debug_pc; // @[issue-slot.scala:49:7, :56:21]
wire [39:0] next_uop_out_debug_pc = slot_uop_debug_pc; // @[util.scala:104:23]
reg slot_uop_iq_type_0; // @[issue-slot.scala:56:21]
assign io_iss_uop_iq_type_0_0 = slot_uop_iq_type_0; // @[issue-slot.scala:49:7, :56:21]
wire next_uop_out_iq_type_0 = slot_uop_iq_type_0; // @[util.scala:104:23]
reg slot_uop_iq_type_1; // @[issue-slot.scala:56:21]
assign io_iss_uop_iq_type_1_0 = slot_uop_iq_type_1; // @[issue-slot.scala:49:7, :56:21]
wire next_uop_out_iq_type_1 = slot_uop_iq_type_1; // @[util.scala:104:23]
reg slot_uop_iq_type_2; // @[issue-slot.scala:56:21]
assign io_iss_uop_iq_type_2_0 = slot_uop_iq_type_2; // @[issue-slot.scala:49:7, :56:21]
wire next_uop_out_iq_type_2 = slot_uop_iq_type_2; // @[util.scala:104:23]
reg slot_uop_iq_type_3; // @[issue-slot.scala:56:21]
assign io_iss_uop_iq_type_3_0 = slot_uop_iq_type_3; // @[issue-slot.scala:49:7, :56:21]
wire next_uop_out_iq_type_3 = slot_uop_iq_type_3; // @[util.scala:104:23]
reg slot_uop_fu_code_0; // @[issue-slot.scala:56:21]
assign io_iss_uop_fu_code_0_0 = slot_uop_fu_code_0; // @[issue-slot.scala:49:7, :56:21]
wire next_uop_out_fu_code_0 = slot_uop_fu_code_0; // @[util.scala:104:23]
reg slot_uop_fu_code_1; // @[issue-slot.scala:56:21]
assign io_iss_uop_fu_code_1_0 = slot_uop_fu_code_1; // @[issue-slot.scala:49:7, :56:21]
wire next_uop_out_fu_code_1 = slot_uop_fu_code_1; // @[util.scala:104:23]
reg slot_uop_fu_code_2; // @[issue-slot.scala:56:21]
assign io_iss_uop_fu_code_2_0 = slot_uop_fu_code_2; // @[issue-slot.scala:49:7, :56:21]
wire next_uop_out_fu_code_2 = slot_uop_fu_code_2; // @[util.scala:104:23]
reg slot_uop_fu_code_3; // @[issue-slot.scala:56:21]
assign io_iss_uop_fu_code_3_0 = slot_uop_fu_code_3; // @[issue-slot.scala:49:7, :56:21]
wire next_uop_out_fu_code_3 = slot_uop_fu_code_3; // @[util.scala:104:23]
reg slot_uop_fu_code_4; // @[issue-slot.scala:56:21]
assign io_iss_uop_fu_code_4_0 = slot_uop_fu_code_4; // @[issue-slot.scala:49:7, :56:21]
wire next_uop_out_fu_code_4 = slot_uop_fu_code_4; // @[util.scala:104:23]
reg slot_uop_fu_code_5; // @[issue-slot.scala:56:21]
assign io_iss_uop_fu_code_5_0 = slot_uop_fu_code_5; // @[issue-slot.scala:49:7, :56:21]
wire next_uop_out_fu_code_5 = slot_uop_fu_code_5; // @[util.scala:104:23]
reg slot_uop_fu_code_6; // @[issue-slot.scala:56:21]
assign io_iss_uop_fu_code_6_0 = slot_uop_fu_code_6; // @[issue-slot.scala:49:7, :56:21]
wire next_uop_out_fu_code_6 = slot_uop_fu_code_6; // @[util.scala:104:23]
reg slot_uop_fu_code_7; // @[issue-slot.scala:56:21]
assign io_iss_uop_fu_code_7_0 = slot_uop_fu_code_7; // @[issue-slot.scala:49:7, :56:21]
wire next_uop_out_fu_code_7 = slot_uop_fu_code_7; // @[util.scala:104:23]
reg slot_uop_fu_code_8; // @[issue-slot.scala:56:21]
assign io_iss_uop_fu_code_8_0 = slot_uop_fu_code_8; // @[issue-slot.scala:49:7, :56:21]
wire next_uop_out_fu_code_8 = slot_uop_fu_code_8; // @[util.scala:104:23]
reg slot_uop_fu_code_9; // @[issue-slot.scala:56:21]
assign io_iss_uop_fu_code_9_0 = slot_uop_fu_code_9; // @[issue-slot.scala:49:7, :56:21]
wire next_uop_out_fu_code_9 = slot_uop_fu_code_9; // @[util.scala:104:23]
reg slot_uop_iw_issued; // @[issue-slot.scala:56:21]
assign io_iss_uop_iw_issued_0 = slot_uop_iw_issued; // @[issue-slot.scala:49:7, :56:21]
wire next_uop_out_iw_issued = slot_uop_iw_issued; // @[util.scala:104:23]
reg [2:0] slot_uop_iw_p1_speculative_child; // @[issue-slot.scala:56:21]
assign io_iss_uop_iw_p1_speculative_child_0 = slot_uop_iw_p1_speculative_child; // @[issue-slot.scala:49:7, :56:21]
wire [2:0] next_uop_out_iw_p1_speculative_child = slot_uop_iw_p1_speculative_child; // @[util.scala:104:23]
reg [2:0] slot_uop_iw_p2_speculative_child; // @[issue-slot.scala:56:21]
assign io_iss_uop_iw_p2_speculative_child_0 = slot_uop_iw_p2_speculative_child; // @[issue-slot.scala:49:7, :56:21]
wire [2:0] next_uop_out_iw_p2_speculative_child = slot_uop_iw_p2_speculative_child; // @[util.scala:104:23]
reg slot_uop_iw_p1_bypass_hint; // @[issue-slot.scala:56:21]
assign io_iss_uop_iw_p1_bypass_hint_0 = slot_uop_iw_p1_bypass_hint; // @[issue-slot.scala:49:7, :56:21]
wire next_uop_out_iw_p1_bypass_hint = slot_uop_iw_p1_bypass_hint; // @[util.scala:104:23]
reg slot_uop_iw_p2_bypass_hint; // @[issue-slot.scala:56:21]
assign io_iss_uop_iw_p2_bypass_hint_0 = slot_uop_iw_p2_bypass_hint; // @[issue-slot.scala:49:7, :56:21]
wire next_uop_out_iw_p2_bypass_hint = slot_uop_iw_p2_bypass_hint; // @[util.scala:104:23]
reg slot_uop_iw_p3_bypass_hint; // @[issue-slot.scala:56:21]
assign io_iss_uop_iw_p3_bypass_hint_0 = slot_uop_iw_p3_bypass_hint; // @[issue-slot.scala:49:7, :56:21]
wire next_uop_out_iw_p3_bypass_hint = slot_uop_iw_p3_bypass_hint; // @[util.scala:104:23]
reg [2:0] slot_uop_dis_col_sel; // @[issue-slot.scala:56:21]
assign io_iss_uop_dis_col_sel_0 = slot_uop_dis_col_sel; // @[issue-slot.scala:49:7, :56:21]
wire [2:0] next_uop_out_dis_col_sel = slot_uop_dis_col_sel; // @[util.scala:104:23]
reg [15:0] slot_uop_br_mask; // @[issue-slot.scala:56:21]
assign io_iss_uop_br_mask_0 = slot_uop_br_mask; // @[issue-slot.scala:49:7, :56:21]
reg [3:0] slot_uop_br_tag; // @[issue-slot.scala:56:21]
assign io_iss_uop_br_tag_0 = slot_uop_br_tag; // @[issue-slot.scala:49:7, :56:21]
wire [3:0] next_uop_out_br_tag = slot_uop_br_tag; // @[util.scala:104:23]
reg [3:0] slot_uop_br_type; // @[issue-slot.scala:56:21]
assign io_iss_uop_br_type_0 = slot_uop_br_type; // @[issue-slot.scala:49:7, :56:21]
wire [3:0] next_uop_out_br_type = slot_uop_br_type; // @[util.scala:104:23]
reg slot_uop_is_sfb; // @[issue-slot.scala:56:21]
assign io_iss_uop_is_sfb_0 = slot_uop_is_sfb; // @[issue-slot.scala:49:7, :56:21]
wire next_uop_out_is_sfb = slot_uop_is_sfb; // @[util.scala:104:23]
reg slot_uop_is_fence; // @[issue-slot.scala:56:21]
assign io_iss_uop_is_fence_0 = slot_uop_is_fence; // @[issue-slot.scala:49:7, :56:21]
wire next_uop_out_is_fence = slot_uop_is_fence; // @[util.scala:104:23]
reg slot_uop_is_fencei; // @[issue-slot.scala:56:21]
assign io_iss_uop_is_fencei_0 = slot_uop_is_fencei; // @[issue-slot.scala:49:7, :56:21]
wire next_uop_out_is_fencei = slot_uop_is_fencei; // @[util.scala:104:23]
reg slot_uop_is_sfence; // @[issue-slot.scala:56:21]
assign io_iss_uop_is_sfence_0 = slot_uop_is_sfence; // @[issue-slot.scala:49:7, :56:21]
wire next_uop_out_is_sfence = slot_uop_is_sfence; // @[util.scala:104:23]
reg slot_uop_is_amo; // @[issue-slot.scala:56:21]
assign io_iss_uop_is_amo_0 = slot_uop_is_amo; // @[issue-slot.scala:49:7, :56:21]
wire next_uop_out_is_amo = slot_uop_is_amo; // @[util.scala:104:23]
reg slot_uop_is_eret; // @[issue-slot.scala:56:21]
assign io_iss_uop_is_eret_0 = slot_uop_is_eret; // @[issue-slot.scala:49:7, :56:21]
wire next_uop_out_is_eret = slot_uop_is_eret; // @[util.scala:104:23]
reg slot_uop_is_sys_pc2epc; // @[issue-slot.scala:56:21]
assign io_iss_uop_is_sys_pc2epc_0 = slot_uop_is_sys_pc2epc; // @[issue-slot.scala:49:7, :56:21]
wire next_uop_out_is_sys_pc2epc = slot_uop_is_sys_pc2epc; // @[util.scala:104:23]
reg slot_uop_is_rocc; // @[issue-slot.scala:56:21]
assign io_iss_uop_is_rocc_0 = slot_uop_is_rocc; // @[issue-slot.scala:49:7, :56:21]
wire next_uop_out_is_rocc = slot_uop_is_rocc; // @[util.scala:104:23]
reg slot_uop_is_mov; // @[issue-slot.scala:56:21]
assign io_iss_uop_is_mov_0 = slot_uop_is_mov; // @[issue-slot.scala:49:7, :56:21]
wire next_uop_out_is_mov = slot_uop_is_mov; // @[util.scala:104:23]
reg [4:0] slot_uop_ftq_idx; // @[issue-slot.scala:56:21]
assign io_iss_uop_ftq_idx_0 = slot_uop_ftq_idx; // @[issue-slot.scala:49:7, :56:21]
wire [4:0] next_uop_out_ftq_idx = slot_uop_ftq_idx; // @[util.scala:104:23]
reg slot_uop_edge_inst; // @[issue-slot.scala:56:21]
assign io_iss_uop_edge_inst_0 = slot_uop_edge_inst; // @[issue-slot.scala:49:7, :56:21]
wire next_uop_out_edge_inst = slot_uop_edge_inst; // @[util.scala:104:23]
reg [5:0] slot_uop_pc_lob; // @[issue-slot.scala:56:21]
assign io_iss_uop_pc_lob_0 = slot_uop_pc_lob; // @[issue-slot.scala:49:7, :56:21]
wire [5:0] next_uop_out_pc_lob = slot_uop_pc_lob; // @[util.scala:104:23]
reg slot_uop_taken; // @[issue-slot.scala:56:21]
assign io_iss_uop_taken_0 = slot_uop_taken; // @[issue-slot.scala:49:7, :56:21]
wire next_uop_out_taken = slot_uop_taken; // @[util.scala:104:23]
reg slot_uop_imm_rename; // @[issue-slot.scala:56:21]
assign io_iss_uop_imm_rename_0 = slot_uop_imm_rename; // @[issue-slot.scala:49:7, :56:21]
wire next_uop_out_imm_rename = slot_uop_imm_rename; // @[util.scala:104:23]
reg [2:0] slot_uop_imm_sel; // @[issue-slot.scala:56:21]
assign io_iss_uop_imm_sel_0 = slot_uop_imm_sel; // @[issue-slot.scala:49:7, :56:21]
wire [2:0] next_uop_out_imm_sel = slot_uop_imm_sel; // @[util.scala:104:23]
reg [4:0] slot_uop_pimm; // @[issue-slot.scala:56:21]
assign io_iss_uop_pimm_0 = slot_uop_pimm; // @[issue-slot.scala:49:7, :56:21]
wire [4:0] next_uop_out_pimm = slot_uop_pimm; // @[util.scala:104:23]
reg [19:0] slot_uop_imm_packed; // @[issue-slot.scala:56:21]
assign io_iss_uop_imm_packed_0 = slot_uop_imm_packed; // @[issue-slot.scala:49:7, :56:21]
wire [19:0] next_uop_out_imm_packed = slot_uop_imm_packed; // @[util.scala:104:23]
reg [1:0] slot_uop_op1_sel; // @[issue-slot.scala:56:21]
assign io_iss_uop_op1_sel_0 = slot_uop_op1_sel; // @[issue-slot.scala:49:7, :56:21]
wire [1:0] next_uop_out_op1_sel = slot_uop_op1_sel; // @[util.scala:104:23]
reg [2:0] slot_uop_op2_sel; // @[issue-slot.scala:56:21]
assign io_iss_uop_op2_sel_0 = slot_uop_op2_sel; // @[issue-slot.scala:49:7, :56:21]
wire [2:0] next_uop_out_op2_sel = slot_uop_op2_sel; // @[util.scala:104:23]
reg slot_uop_fp_ctrl_ldst; // @[issue-slot.scala:56:21]
assign io_iss_uop_fp_ctrl_ldst_0 = slot_uop_fp_ctrl_ldst; // @[issue-slot.scala:49:7, :56:21]
wire next_uop_out_fp_ctrl_ldst = slot_uop_fp_ctrl_ldst; // @[util.scala:104:23]
reg slot_uop_fp_ctrl_wen; // @[issue-slot.scala:56:21]
assign io_iss_uop_fp_ctrl_wen_0 = slot_uop_fp_ctrl_wen; // @[issue-slot.scala:49:7, :56:21]
wire next_uop_out_fp_ctrl_wen = slot_uop_fp_ctrl_wen; // @[util.scala:104:23]
reg slot_uop_fp_ctrl_ren1; // @[issue-slot.scala:56:21]
assign io_iss_uop_fp_ctrl_ren1_0 = slot_uop_fp_ctrl_ren1; // @[issue-slot.scala:49:7, :56:21]
wire next_uop_out_fp_ctrl_ren1 = slot_uop_fp_ctrl_ren1; // @[util.scala:104:23]
reg slot_uop_fp_ctrl_ren2; // @[issue-slot.scala:56:21]
assign io_iss_uop_fp_ctrl_ren2_0 = slot_uop_fp_ctrl_ren2; // @[issue-slot.scala:49:7, :56:21]
wire next_uop_out_fp_ctrl_ren2 = slot_uop_fp_ctrl_ren2; // @[util.scala:104:23]
reg slot_uop_fp_ctrl_ren3; // @[issue-slot.scala:56:21]
assign io_iss_uop_fp_ctrl_ren3_0 = slot_uop_fp_ctrl_ren3; // @[issue-slot.scala:49:7, :56:21]
wire next_uop_out_fp_ctrl_ren3 = slot_uop_fp_ctrl_ren3; // @[util.scala:104:23]
reg slot_uop_fp_ctrl_swap12; // @[issue-slot.scala:56:21]
assign io_iss_uop_fp_ctrl_swap12_0 = slot_uop_fp_ctrl_swap12; // @[issue-slot.scala:49:7, :56:21]
wire next_uop_out_fp_ctrl_swap12 = slot_uop_fp_ctrl_swap12; // @[util.scala:104:23]
reg slot_uop_fp_ctrl_swap23; // @[issue-slot.scala:56:21]
assign io_iss_uop_fp_ctrl_swap23_0 = slot_uop_fp_ctrl_swap23; // @[issue-slot.scala:49:7, :56:21]
wire next_uop_out_fp_ctrl_swap23 = slot_uop_fp_ctrl_swap23; // @[util.scala:104:23]
reg [1:0] slot_uop_fp_ctrl_typeTagIn; // @[issue-slot.scala:56:21]
assign io_iss_uop_fp_ctrl_typeTagIn_0 = slot_uop_fp_ctrl_typeTagIn; // @[issue-slot.scala:49:7, :56:21]
wire [1:0] next_uop_out_fp_ctrl_typeTagIn = slot_uop_fp_ctrl_typeTagIn; // @[util.scala:104:23]
reg [1:0] slot_uop_fp_ctrl_typeTagOut; // @[issue-slot.scala:56:21]
assign io_iss_uop_fp_ctrl_typeTagOut_0 = slot_uop_fp_ctrl_typeTagOut; // @[issue-slot.scala:49:7, :56:21]
wire [1:0] next_uop_out_fp_ctrl_typeTagOut = slot_uop_fp_ctrl_typeTagOut; // @[util.scala:104:23]
reg slot_uop_fp_ctrl_fromint; // @[issue-slot.scala:56:21]
assign io_iss_uop_fp_ctrl_fromint_0 = slot_uop_fp_ctrl_fromint; // @[issue-slot.scala:49:7, :56:21]
wire next_uop_out_fp_ctrl_fromint = slot_uop_fp_ctrl_fromint; // @[util.scala:104:23]
reg slot_uop_fp_ctrl_toint; // @[issue-slot.scala:56:21]
assign io_iss_uop_fp_ctrl_toint_0 = slot_uop_fp_ctrl_toint; // @[issue-slot.scala:49:7, :56:21]
wire next_uop_out_fp_ctrl_toint = slot_uop_fp_ctrl_toint; // @[util.scala:104:23]
reg slot_uop_fp_ctrl_fastpipe; // @[issue-slot.scala:56:21]
assign io_iss_uop_fp_ctrl_fastpipe_0 = slot_uop_fp_ctrl_fastpipe; // @[issue-slot.scala:49:7, :56:21]
wire next_uop_out_fp_ctrl_fastpipe = slot_uop_fp_ctrl_fastpipe; // @[util.scala:104:23]
reg slot_uop_fp_ctrl_fma; // @[issue-slot.scala:56:21]
assign io_iss_uop_fp_ctrl_fma_0 = slot_uop_fp_ctrl_fma; // @[issue-slot.scala:49:7, :56:21]
wire next_uop_out_fp_ctrl_fma = slot_uop_fp_ctrl_fma; // @[util.scala:104:23]
reg slot_uop_fp_ctrl_div; // @[issue-slot.scala:56:21]
assign io_iss_uop_fp_ctrl_div_0 = slot_uop_fp_ctrl_div; // @[issue-slot.scala:49:7, :56:21]
wire next_uop_out_fp_ctrl_div = slot_uop_fp_ctrl_div; // @[util.scala:104:23]
reg slot_uop_fp_ctrl_sqrt; // @[issue-slot.scala:56:21]
assign io_iss_uop_fp_ctrl_sqrt_0 = slot_uop_fp_ctrl_sqrt; // @[issue-slot.scala:49:7, :56:21]
wire next_uop_out_fp_ctrl_sqrt = slot_uop_fp_ctrl_sqrt; // @[util.scala:104:23]
reg slot_uop_fp_ctrl_wflags; // @[issue-slot.scala:56:21]
assign io_iss_uop_fp_ctrl_wflags_0 = slot_uop_fp_ctrl_wflags; // @[issue-slot.scala:49:7, :56:21]
wire next_uop_out_fp_ctrl_wflags = slot_uop_fp_ctrl_wflags; // @[util.scala:104:23]
reg slot_uop_fp_ctrl_vec; // @[issue-slot.scala:56:21]
assign io_iss_uop_fp_ctrl_vec_0 = slot_uop_fp_ctrl_vec; // @[issue-slot.scala:49:7, :56:21]
wire next_uop_out_fp_ctrl_vec = slot_uop_fp_ctrl_vec; // @[util.scala:104:23]
reg [6:0] slot_uop_rob_idx; // @[issue-slot.scala:56:21]
assign io_iss_uop_rob_idx_0 = slot_uop_rob_idx; // @[issue-slot.scala:49:7, :56:21]
wire [6:0] next_uop_out_rob_idx = slot_uop_rob_idx; // @[util.scala:104:23]
reg [4:0] slot_uop_ldq_idx; // @[issue-slot.scala:56:21]
assign io_iss_uop_ldq_idx_0 = slot_uop_ldq_idx; // @[issue-slot.scala:49:7, :56:21]
wire [4:0] next_uop_out_ldq_idx = slot_uop_ldq_idx; // @[util.scala:104:23]
reg [4:0] slot_uop_stq_idx; // @[issue-slot.scala:56:21]
assign io_iss_uop_stq_idx_0 = slot_uop_stq_idx; // @[issue-slot.scala:49:7, :56:21]
wire [4:0] next_uop_out_stq_idx = slot_uop_stq_idx; // @[util.scala:104:23]
reg [1:0] slot_uop_rxq_idx; // @[issue-slot.scala:56:21]
assign io_iss_uop_rxq_idx_0 = slot_uop_rxq_idx; // @[issue-slot.scala:49:7, :56:21]
wire [1:0] next_uop_out_rxq_idx = slot_uop_rxq_idx; // @[util.scala:104:23]
reg [6:0] slot_uop_pdst; // @[issue-slot.scala:56:21]
assign io_iss_uop_pdst_0 = slot_uop_pdst; // @[issue-slot.scala:49:7, :56:21]
wire [6:0] next_uop_out_pdst = slot_uop_pdst; // @[util.scala:104:23]
reg [6:0] slot_uop_prs1; // @[issue-slot.scala:56:21]
assign io_iss_uop_prs1_0 = slot_uop_prs1; // @[issue-slot.scala:49:7, :56:21]
wire [6:0] next_uop_out_prs1 = slot_uop_prs1; // @[util.scala:104:23]
reg [6:0] slot_uop_prs2; // @[issue-slot.scala:56:21]
assign io_iss_uop_prs2_0 = slot_uop_prs2; // @[issue-slot.scala:49:7, :56:21]
wire [6:0] next_uop_out_prs2 = slot_uop_prs2; // @[util.scala:104:23]
reg [6:0] slot_uop_prs3; // @[issue-slot.scala:56:21]
assign io_iss_uop_prs3_0 = slot_uop_prs3; // @[issue-slot.scala:49:7, :56:21]
wire [6:0] next_uop_out_prs3 = slot_uop_prs3; // @[util.scala:104:23]
reg [4:0] slot_uop_ppred; // @[issue-slot.scala:56:21]
assign io_iss_uop_ppred_0 = slot_uop_ppred; // @[issue-slot.scala:49:7, :56:21]
wire [4:0] next_uop_out_ppred = slot_uop_ppred; // @[util.scala:104:23]
reg slot_uop_prs1_busy; // @[issue-slot.scala:56:21]
assign io_iss_uop_prs1_busy_0 = slot_uop_prs1_busy; // @[issue-slot.scala:49:7, :56:21]
wire next_uop_out_prs1_busy = slot_uop_prs1_busy; // @[util.scala:104:23]
reg slot_uop_prs2_busy; // @[issue-slot.scala:56:21]
assign io_iss_uop_prs2_busy_0 = slot_uop_prs2_busy; // @[issue-slot.scala:49:7, :56:21]
wire next_uop_out_prs2_busy = slot_uop_prs2_busy; // @[util.scala:104:23]
reg slot_uop_prs3_busy; // @[issue-slot.scala:56:21]
assign io_iss_uop_prs3_busy_0 = slot_uop_prs3_busy; // @[issue-slot.scala:49:7, :56:21]
wire next_uop_out_prs3_busy = slot_uop_prs3_busy; // @[util.scala:104:23]
wire _iss_ready_T_6 = slot_uop_prs3_busy; // @[issue-slot.scala:56:21, :136:131]
reg slot_uop_ppred_busy; // @[issue-slot.scala:56:21]
assign io_iss_uop_ppred_busy_0 = slot_uop_ppred_busy; // @[issue-slot.scala:49:7, :56:21]
wire next_uop_out_ppred_busy = slot_uop_ppred_busy; // @[util.scala:104:23]
wire _iss_ready_T_3 = slot_uop_ppred_busy; // @[issue-slot.scala:56:21, :136:88]
wire _agen_ready_T_2 = slot_uop_ppred_busy; // @[issue-slot.scala:56:21, :137:95]
wire _dgen_ready_T_2 = slot_uop_ppred_busy; // @[issue-slot.scala:56:21, :138:95]
reg [6:0] slot_uop_stale_pdst; // @[issue-slot.scala:56:21]
assign io_iss_uop_stale_pdst_0 = slot_uop_stale_pdst; // @[issue-slot.scala:49:7, :56:21]
wire [6:0] next_uop_out_stale_pdst = slot_uop_stale_pdst; // @[util.scala:104:23]
reg slot_uop_exception; // @[issue-slot.scala:56:21]
assign io_iss_uop_exception_0 = slot_uop_exception; // @[issue-slot.scala:49:7, :56:21]
wire next_uop_out_exception = slot_uop_exception; // @[util.scala:104:23]
reg [63:0] slot_uop_exc_cause; // @[issue-slot.scala:56:21]
assign io_iss_uop_exc_cause_0 = slot_uop_exc_cause; // @[issue-slot.scala:49:7, :56:21]
wire [63:0] next_uop_out_exc_cause = slot_uop_exc_cause; // @[util.scala:104:23]
reg [4:0] slot_uop_mem_cmd; // @[issue-slot.scala:56:21]
assign io_iss_uop_mem_cmd_0 = slot_uop_mem_cmd; // @[issue-slot.scala:49:7, :56:21]
wire [4:0] next_uop_out_mem_cmd = slot_uop_mem_cmd; // @[util.scala:104:23]
reg [1:0] slot_uop_mem_size; // @[issue-slot.scala:56:21]
assign io_iss_uop_mem_size_0 = slot_uop_mem_size; // @[issue-slot.scala:49:7, :56:21]
wire [1:0] next_uop_out_mem_size = slot_uop_mem_size; // @[util.scala:104:23]
reg slot_uop_mem_signed; // @[issue-slot.scala:56:21]
assign io_iss_uop_mem_signed_0 = slot_uop_mem_signed; // @[issue-slot.scala:49:7, :56:21]
wire next_uop_out_mem_signed = slot_uop_mem_signed; // @[util.scala:104:23]
reg slot_uop_uses_ldq; // @[issue-slot.scala:56:21]
assign io_iss_uop_uses_ldq_0 = slot_uop_uses_ldq; // @[issue-slot.scala:49:7, :56:21]
wire next_uop_out_uses_ldq = slot_uop_uses_ldq; // @[util.scala:104:23]
reg slot_uop_uses_stq; // @[issue-slot.scala:56:21]
assign io_iss_uop_uses_stq_0 = slot_uop_uses_stq; // @[issue-slot.scala:49:7, :56:21]
wire next_uop_out_uses_stq = slot_uop_uses_stq; // @[util.scala:104:23]
reg slot_uop_is_unique; // @[issue-slot.scala:56:21]
assign io_iss_uop_is_unique_0 = slot_uop_is_unique; // @[issue-slot.scala:49:7, :56:21]
wire next_uop_out_is_unique = slot_uop_is_unique; // @[util.scala:104:23]
reg slot_uop_flush_on_commit; // @[issue-slot.scala:56:21]
assign io_iss_uop_flush_on_commit_0 = slot_uop_flush_on_commit; // @[issue-slot.scala:49:7, :56:21]
wire next_uop_out_flush_on_commit = slot_uop_flush_on_commit; // @[util.scala:104:23]
reg [2:0] slot_uop_csr_cmd; // @[issue-slot.scala:56:21]
assign io_iss_uop_csr_cmd_0 = slot_uop_csr_cmd; // @[issue-slot.scala:49:7, :56:21]
wire [2:0] next_uop_out_csr_cmd = slot_uop_csr_cmd; // @[util.scala:104:23]
reg slot_uop_ldst_is_rs1; // @[issue-slot.scala:56:21]
assign io_iss_uop_ldst_is_rs1_0 = slot_uop_ldst_is_rs1; // @[issue-slot.scala:49:7, :56:21]
wire next_uop_out_ldst_is_rs1 = slot_uop_ldst_is_rs1; // @[util.scala:104:23]
reg [5:0] slot_uop_ldst; // @[issue-slot.scala:56:21]
assign io_iss_uop_ldst_0 = slot_uop_ldst; // @[issue-slot.scala:49:7, :56:21]
wire [5:0] next_uop_out_ldst = slot_uop_ldst; // @[util.scala:104:23]
reg [5:0] slot_uop_lrs1; // @[issue-slot.scala:56:21]
assign io_iss_uop_lrs1_0 = slot_uop_lrs1; // @[issue-slot.scala:49:7, :56:21]
wire [5:0] next_uop_out_lrs1 = slot_uop_lrs1; // @[util.scala:104:23]
reg [5:0] slot_uop_lrs2; // @[issue-slot.scala:56:21]
assign io_iss_uop_lrs2_0 = slot_uop_lrs2; // @[issue-slot.scala:49:7, :56:21]
wire [5:0] next_uop_out_lrs2 = slot_uop_lrs2; // @[util.scala:104:23]
reg [5:0] slot_uop_lrs3; // @[issue-slot.scala:56:21]
assign io_iss_uop_lrs3_0 = slot_uop_lrs3; // @[issue-slot.scala:49:7, :56:21]
wire [5:0] next_uop_out_lrs3 = slot_uop_lrs3; // @[util.scala:104:23]
reg [1:0] slot_uop_dst_rtype; // @[issue-slot.scala:56:21]
assign io_iss_uop_dst_rtype_0 = slot_uop_dst_rtype; // @[issue-slot.scala:49:7, :56:21]
wire [1:0] next_uop_out_dst_rtype = slot_uop_dst_rtype; // @[util.scala:104:23]
reg [1:0] slot_uop_lrs1_rtype; // @[issue-slot.scala:56:21]
assign io_iss_uop_lrs1_rtype_0 = slot_uop_lrs1_rtype; // @[issue-slot.scala:49:7, :56:21]
wire [1:0] next_uop_out_lrs1_rtype = slot_uop_lrs1_rtype; // @[util.scala:104:23]
reg [1:0] slot_uop_lrs2_rtype; // @[issue-slot.scala:56:21]
assign io_iss_uop_lrs2_rtype_0 = slot_uop_lrs2_rtype; // @[issue-slot.scala:49:7, :56:21]
wire [1:0] next_uop_out_lrs2_rtype = slot_uop_lrs2_rtype; // @[util.scala:104:23]
reg slot_uop_frs3_en; // @[issue-slot.scala:56:21]
assign io_iss_uop_frs3_en_0 = slot_uop_frs3_en; // @[issue-slot.scala:49:7, :56:21]
wire next_uop_out_frs3_en = slot_uop_frs3_en; // @[util.scala:104:23]
reg slot_uop_fcn_dw; // @[issue-slot.scala:56:21]
assign io_iss_uop_fcn_dw_0 = slot_uop_fcn_dw; // @[issue-slot.scala:49:7, :56:21]
wire next_uop_out_fcn_dw = slot_uop_fcn_dw; // @[util.scala:104:23]
reg [4:0] slot_uop_fcn_op; // @[issue-slot.scala:56:21]
assign io_iss_uop_fcn_op_0 = slot_uop_fcn_op; // @[issue-slot.scala:49:7, :56:21]
wire [4:0] next_uop_out_fcn_op = slot_uop_fcn_op; // @[util.scala:104:23]
reg slot_uop_fp_val; // @[issue-slot.scala:56:21]
assign io_iss_uop_fp_val_0 = slot_uop_fp_val; // @[issue-slot.scala:49:7, :56:21]
wire next_uop_out_fp_val = slot_uop_fp_val; // @[util.scala:104:23]
reg [2:0] slot_uop_fp_rm; // @[issue-slot.scala:56:21]
assign io_iss_uop_fp_rm_0 = slot_uop_fp_rm; // @[issue-slot.scala:49:7, :56:21]
wire [2:0] next_uop_out_fp_rm = slot_uop_fp_rm; // @[util.scala:104:23]
reg [1:0] slot_uop_fp_typ; // @[issue-slot.scala:56:21]
assign io_iss_uop_fp_typ_0 = slot_uop_fp_typ; // @[issue-slot.scala:49:7, :56:21]
wire [1:0] next_uop_out_fp_typ = slot_uop_fp_typ; // @[util.scala:104:23]
reg slot_uop_xcpt_pf_if; // @[issue-slot.scala:56:21]
assign io_iss_uop_xcpt_pf_if_0 = slot_uop_xcpt_pf_if; // @[issue-slot.scala:49:7, :56:21]
wire next_uop_out_xcpt_pf_if = slot_uop_xcpt_pf_if; // @[util.scala:104:23]
reg slot_uop_xcpt_ae_if; // @[issue-slot.scala:56:21]
assign io_iss_uop_xcpt_ae_if_0 = slot_uop_xcpt_ae_if; // @[issue-slot.scala:49:7, :56:21]
wire next_uop_out_xcpt_ae_if = slot_uop_xcpt_ae_if; // @[util.scala:104:23]
reg slot_uop_xcpt_ma_if; // @[issue-slot.scala:56:21]
assign io_iss_uop_xcpt_ma_if_0 = slot_uop_xcpt_ma_if; // @[issue-slot.scala:49:7, :56:21]
wire next_uop_out_xcpt_ma_if = slot_uop_xcpt_ma_if; // @[util.scala:104:23]
reg slot_uop_bp_debug_if; // @[issue-slot.scala:56:21]
assign io_iss_uop_bp_debug_if_0 = slot_uop_bp_debug_if; // @[issue-slot.scala:49:7, :56:21]
wire next_uop_out_bp_debug_if = slot_uop_bp_debug_if; // @[util.scala:104:23]
reg slot_uop_bp_xcpt_if; // @[issue-slot.scala:56:21]
assign io_iss_uop_bp_xcpt_if_0 = slot_uop_bp_xcpt_if; // @[issue-slot.scala:49:7, :56:21]
wire next_uop_out_bp_xcpt_if = slot_uop_bp_xcpt_if; // @[util.scala:104:23]
reg [2:0] slot_uop_debug_fsrc; // @[issue-slot.scala:56:21]
assign io_iss_uop_debug_fsrc_0 = slot_uop_debug_fsrc; // @[issue-slot.scala:49:7, :56:21]
wire [2:0] next_uop_out_debug_fsrc = slot_uop_debug_fsrc; // @[util.scala:104:23]
reg [2:0] slot_uop_debug_tsrc; // @[issue-slot.scala:56:21]
assign io_iss_uop_debug_tsrc_0 = slot_uop_debug_tsrc; // @[issue-slot.scala:49:7, :56:21]
wire [2:0] next_uop_out_debug_tsrc = slot_uop_debug_tsrc; // @[util.scala:104:23]
wire next_valid; // @[issue-slot.scala:58:28]
assign next_uop_inst = next_uop_out_inst; // @[util.scala:104:23]
assign next_uop_debug_inst = next_uop_out_debug_inst; // @[util.scala:104:23]
assign next_uop_is_rvc = next_uop_out_is_rvc; // @[util.scala:104:23]
assign next_uop_debug_pc = next_uop_out_debug_pc; // @[util.scala:104:23]
assign next_uop_iq_type_0 = next_uop_out_iq_type_0; // @[util.scala:104:23]
assign next_uop_iq_type_1 = next_uop_out_iq_type_1; // @[util.scala:104:23]
assign next_uop_iq_type_2 = next_uop_out_iq_type_2; // @[util.scala:104:23]
assign next_uop_iq_type_3 = next_uop_out_iq_type_3; // @[util.scala:104:23]
assign next_uop_fu_code_0 = next_uop_out_fu_code_0; // @[util.scala:104:23]
assign next_uop_fu_code_1 = next_uop_out_fu_code_1; // @[util.scala:104:23]
assign next_uop_fu_code_2 = next_uop_out_fu_code_2; // @[util.scala:104:23]
assign next_uop_fu_code_3 = next_uop_out_fu_code_3; // @[util.scala:104:23]
assign next_uop_fu_code_4 = next_uop_out_fu_code_4; // @[util.scala:104:23]
assign next_uop_fu_code_5 = next_uop_out_fu_code_5; // @[util.scala:104:23]
assign next_uop_fu_code_6 = next_uop_out_fu_code_6; // @[util.scala:104:23]
assign next_uop_fu_code_7 = next_uop_out_fu_code_7; // @[util.scala:104:23]
assign next_uop_fu_code_8 = next_uop_out_fu_code_8; // @[util.scala:104:23]
assign next_uop_fu_code_9 = next_uop_out_fu_code_9; // @[util.scala:104:23]
wire [15:0] _next_uop_out_br_mask_T_1; // @[util.scala:93:25]
assign next_uop_dis_col_sel = next_uop_out_dis_col_sel; // @[util.scala:104:23]
assign next_uop_br_mask = next_uop_out_br_mask; // @[util.scala:104:23]
assign next_uop_br_tag = next_uop_out_br_tag; // @[util.scala:104:23]
assign next_uop_br_type = next_uop_out_br_type; // @[util.scala:104:23]
assign next_uop_is_sfb = next_uop_out_is_sfb; // @[util.scala:104:23]
assign next_uop_is_fence = next_uop_out_is_fence; // @[util.scala:104:23]
assign next_uop_is_fencei = next_uop_out_is_fencei; // @[util.scala:104:23]
assign next_uop_is_sfence = next_uop_out_is_sfence; // @[util.scala:104:23]
assign next_uop_is_amo = next_uop_out_is_amo; // @[util.scala:104:23]
assign next_uop_is_eret = next_uop_out_is_eret; // @[util.scala:104:23]
assign next_uop_is_sys_pc2epc = next_uop_out_is_sys_pc2epc; // @[util.scala:104:23]
assign next_uop_is_rocc = next_uop_out_is_rocc; // @[util.scala:104:23]
assign next_uop_is_mov = next_uop_out_is_mov; // @[util.scala:104:23]
assign next_uop_ftq_idx = next_uop_out_ftq_idx; // @[util.scala:104:23]
assign next_uop_edge_inst = next_uop_out_edge_inst; // @[util.scala:104:23]
assign next_uop_pc_lob = next_uop_out_pc_lob; // @[util.scala:104:23]
assign next_uop_taken = next_uop_out_taken; // @[util.scala:104:23]
assign next_uop_imm_rename = next_uop_out_imm_rename; // @[util.scala:104:23]
assign next_uop_imm_sel = next_uop_out_imm_sel; // @[util.scala:104:23]
assign next_uop_pimm = next_uop_out_pimm; // @[util.scala:104:23]
assign next_uop_imm_packed = next_uop_out_imm_packed; // @[util.scala:104:23]
assign next_uop_op1_sel = next_uop_out_op1_sel; // @[util.scala:104:23]
assign next_uop_op2_sel = next_uop_out_op2_sel; // @[util.scala:104:23]
assign next_uop_fp_ctrl_ldst = next_uop_out_fp_ctrl_ldst; // @[util.scala:104:23]
assign next_uop_fp_ctrl_wen = next_uop_out_fp_ctrl_wen; // @[util.scala:104:23]
assign next_uop_fp_ctrl_ren1 = next_uop_out_fp_ctrl_ren1; // @[util.scala:104:23]
assign next_uop_fp_ctrl_ren2 = next_uop_out_fp_ctrl_ren2; // @[util.scala:104:23]
assign next_uop_fp_ctrl_ren3 = next_uop_out_fp_ctrl_ren3; // @[util.scala:104:23]
assign next_uop_fp_ctrl_swap12 = next_uop_out_fp_ctrl_swap12; // @[util.scala:104:23]
assign next_uop_fp_ctrl_swap23 = next_uop_out_fp_ctrl_swap23; // @[util.scala:104:23]
assign next_uop_fp_ctrl_typeTagIn = next_uop_out_fp_ctrl_typeTagIn; // @[util.scala:104:23]
assign next_uop_fp_ctrl_typeTagOut = next_uop_out_fp_ctrl_typeTagOut; // @[util.scala:104:23]
assign next_uop_fp_ctrl_fromint = next_uop_out_fp_ctrl_fromint; // @[util.scala:104:23]
assign next_uop_fp_ctrl_toint = next_uop_out_fp_ctrl_toint; // @[util.scala:104:23]
assign next_uop_fp_ctrl_fastpipe = next_uop_out_fp_ctrl_fastpipe; // @[util.scala:104:23]
assign next_uop_fp_ctrl_fma = next_uop_out_fp_ctrl_fma; // @[util.scala:104:23]
assign next_uop_fp_ctrl_div = next_uop_out_fp_ctrl_div; // @[util.scala:104:23]
assign next_uop_fp_ctrl_sqrt = next_uop_out_fp_ctrl_sqrt; // @[util.scala:104:23]
assign next_uop_fp_ctrl_wflags = next_uop_out_fp_ctrl_wflags; // @[util.scala:104:23]
assign next_uop_fp_ctrl_vec = next_uop_out_fp_ctrl_vec; // @[util.scala:104:23]
assign next_uop_rob_idx = next_uop_out_rob_idx; // @[util.scala:104:23]
assign next_uop_ldq_idx = next_uop_out_ldq_idx; // @[util.scala:104:23]
assign next_uop_stq_idx = next_uop_out_stq_idx; // @[util.scala:104:23]
assign next_uop_rxq_idx = next_uop_out_rxq_idx; // @[util.scala:104:23]
assign next_uop_pdst = next_uop_out_pdst; // @[util.scala:104:23]
assign next_uop_prs1 = next_uop_out_prs1; // @[util.scala:104:23]
assign next_uop_prs2 = next_uop_out_prs2; // @[util.scala:104:23]
assign next_uop_prs3 = next_uop_out_prs3; // @[util.scala:104:23]
assign next_uop_ppred = next_uop_out_ppred; // @[util.scala:104:23]
assign next_uop_ppred_busy = next_uop_out_ppred_busy; // @[util.scala:104:23]
assign next_uop_stale_pdst = next_uop_out_stale_pdst; // @[util.scala:104:23]
assign next_uop_exception = next_uop_out_exception; // @[util.scala:104:23]
assign next_uop_exc_cause = next_uop_out_exc_cause; // @[util.scala:104:23]
assign next_uop_mem_cmd = next_uop_out_mem_cmd; // @[util.scala:104:23]
assign next_uop_mem_size = next_uop_out_mem_size; // @[util.scala:104:23]
assign next_uop_mem_signed = next_uop_out_mem_signed; // @[util.scala:104:23]
assign next_uop_uses_ldq = next_uop_out_uses_ldq; // @[util.scala:104:23]
assign next_uop_uses_stq = next_uop_out_uses_stq; // @[util.scala:104:23]
assign next_uop_is_unique = next_uop_out_is_unique; // @[util.scala:104:23]
assign next_uop_flush_on_commit = next_uop_out_flush_on_commit; // @[util.scala:104:23]
assign next_uop_csr_cmd = next_uop_out_csr_cmd; // @[util.scala:104:23]
assign next_uop_ldst_is_rs1 = next_uop_out_ldst_is_rs1; // @[util.scala:104:23]
assign next_uop_ldst = next_uop_out_ldst; // @[util.scala:104:23]
assign next_uop_lrs1 = next_uop_out_lrs1; // @[util.scala:104:23]
assign next_uop_lrs2 = next_uop_out_lrs2; // @[util.scala:104:23]
assign next_uop_lrs3 = next_uop_out_lrs3; // @[util.scala:104:23]
assign next_uop_dst_rtype = next_uop_out_dst_rtype; // @[util.scala:104:23]
assign next_uop_lrs1_rtype = next_uop_out_lrs1_rtype; // @[util.scala:104:23]
assign next_uop_lrs2_rtype = next_uop_out_lrs2_rtype; // @[util.scala:104:23]
assign next_uop_frs3_en = next_uop_out_frs3_en; // @[util.scala:104:23]
assign next_uop_fcn_dw = next_uop_out_fcn_dw; // @[util.scala:104:23]
assign next_uop_fcn_op = next_uop_out_fcn_op; // @[util.scala:104:23]
assign next_uop_fp_val = next_uop_out_fp_val; // @[util.scala:104:23]
assign next_uop_fp_rm = next_uop_out_fp_rm; // @[util.scala:104:23]
assign next_uop_fp_typ = next_uop_out_fp_typ; // @[util.scala:104:23]
assign next_uop_xcpt_pf_if = next_uop_out_xcpt_pf_if; // @[util.scala:104:23]
assign next_uop_xcpt_ae_if = next_uop_out_xcpt_ae_if; // @[util.scala:104:23]
assign next_uop_xcpt_ma_if = next_uop_out_xcpt_ma_if; // @[util.scala:104:23]
assign next_uop_bp_debug_if = next_uop_out_bp_debug_if; // @[util.scala:104:23]
assign next_uop_bp_xcpt_if = next_uop_out_bp_xcpt_if; // @[util.scala:104:23]
assign next_uop_debug_fsrc = next_uop_out_debug_fsrc; // @[util.scala:104:23]
assign next_uop_debug_tsrc = next_uop_out_debug_tsrc; // @[util.scala:104:23]
wire [15:0] _next_uop_out_br_mask_T = ~io_brupdate_b1_resolve_mask_0; // @[util.scala:93:27]
assign _next_uop_out_br_mask_T_1 = slot_uop_br_mask & _next_uop_out_br_mask_T; // @[util.scala:93:{25,27}]
assign next_uop_out_br_mask = _next_uop_out_br_mask_T_1; // @[util.scala:93:25, :104:23]
assign io_out_uop_inst_0 = next_uop_inst; // @[issue-slot.scala:49:7, :59:28]
assign io_out_uop_debug_inst_0 = next_uop_debug_inst; // @[issue-slot.scala:49:7, :59:28]
assign io_out_uop_is_rvc_0 = next_uop_is_rvc; // @[issue-slot.scala:49:7, :59:28]
assign io_out_uop_debug_pc_0 = next_uop_debug_pc; // @[issue-slot.scala:49:7, :59:28]
assign io_out_uop_iq_type_0_0 = next_uop_iq_type_0; // @[issue-slot.scala:49:7, :59:28]
assign io_out_uop_iq_type_1_0 = next_uop_iq_type_1; // @[issue-slot.scala:49:7, :59:28]
assign io_out_uop_iq_type_2_0 = next_uop_iq_type_2; // @[issue-slot.scala:49:7, :59:28]
assign io_out_uop_iq_type_3_0 = next_uop_iq_type_3; // @[issue-slot.scala:49:7, :59:28]
assign io_out_uop_fu_code_0_0 = next_uop_fu_code_0; // @[issue-slot.scala:49:7, :59:28]
assign io_out_uop_fu_code_1_0 = next_uop_fu_code_1; // @[issue-slot.scala:49:7, :59:28]
assign io_out_uop_fu_code_2_0 = next_uop_fu_code_2; // @[issue-slot.scala:49:7, :59:28]
assign io_out_uop_fu_code_3_0 = next_uop_fu_code_3; // @[issue-slot.scala:49:7, :59:28]
assign io_out_uop_fu_code_4_0 = next_uop_fu_code_4; // @[issue-slot.scala:49:7, :59:28]
assign io_out_uop_fu_code_5_0 = next_uop_fu_code_5; // @[issue-slot.scala:49:7, :59:28]
assign io_out_uop_fu_code_6_0 = next_uop_fu_code_6; // @[issue-slot.scala:49:7, :59:28]
assign io_out_uop_fu_code_7_0 = next_uop_fu_code_7; // @[issue-slot.scala:49:7, :59:28]
assign io_out_uop_fu_code_8_0 = next_uop_fu_code_8; // @[issue-slot.scala:49:7, :59:28]
assign io_out_uop_fu_code_9_0 = next_uop_fu_code_9; // @[issue-slot.scala:49:7, :59:28]
assign io_out_uop_iw_issued_0 = next_uop_iw_issued; // @[issue-slot.scala:49:7, :59:28]
assign io_out_uop_iw_p1_bypass_hint_0 = next_uop_iw_p1_bypass_hint; // @[issue-slot.scala:49:7, :59:28]
assign io_out_uop_iw_p2_bypass_hint_0 = next_uop_iw_p2_bypass_hint; // @[issue-slot.scala:49:7, :59:28]
assign io_out_uop_iw_p3_bypass_hint_0 = next_uop_iw_p3_bypass_hint; // @[issue-slot.scala:49:7, :59:28]
assign io_out_uop_dis_col_sel_0 = next_uop_dis_col_sel; // @[issue-slot.scala:49:7, :59:28]
assign io_out_uop_br_mask_0 = next_uop_br_mask; // @[issue-slot.scala:49:7, :59:28]
assign io_out_uop_br_tag_0 = next_uop_br_tag; // @[issue-slot.scala:49:7, :59:28]
assign io_out_uop_br_type_0 = next_uop_br_type; // @[issue-slot.scala:49:7, :59:28]
assign io_out_uop_is_sfb_0 = next_uop_is_sfb; // @[issue-slot.scala:49:7, :59:28]
assign io_out_uop_is_fence_0 = next_uop_is_fence; // @[issue-slot.scala:49:7, :59:28]
assign io_out_uop_is_fencei_0 = next_uop_is_fencei; // @[issue-slot.scala:49:7, :59:28]
assign io_out_uop_is_sfence_0 = next_uop_is_sfence; // @[issue-slot.scala:49:7, :59:28]
assign io_out_uop_is_amo_0 = next_uop_is_amo; // @[issue-slot.scala:49:7, :59:28]
assign io_out_uop_is_eret_0 = next_uop_is_eret; // @[issue-slot.scala:49:7, :59:28]
assign io_out_uop_is_sys_pc2epc_0 = next_uop_is_sys_pc2epc; // @[issue-slot.scala:49:7, :59:28]
assign io_out_uop_is_rocc_0 = next_uop_is_rocc; // @[issue-slot.scala:49:7, :59:28]
assign io_out_uop_is_mov_0 = next_uop_is_mov; // @[issue-slot.scala:49:7, :59:28]
assign io_out_uop_ftq_idx_0 = next_uop_ftq_idx; // @[issue-slot.scala:49:7, :59:28]
assign io_out_uop_edge_inst_0 = next_uop_edge_inst; // @[issue-slot.scala:49:7, :59:28]
assign io_out_uop_pc_lob_0 = next_uop_pc_lob; // @[issue-slot.scala:49:7, :59:28]
assign io_out_uop_taken_0 = next_uop_taken; // @[issue-slot.scala:49:7, :59:28]
assign io_out_uop_imm_rename_0 = next_uop_imm_rename; // @[issue-slot.scala:49:7, :59:28]
assign io_out_uop_imm_sel_0 = next_uop_imm_sel; // @[issue-slot.scala:49:7, :59:28]
assign io_out_uop_pimm_0 = next_uop_pimm; // @[issue-slot.scala:49:7, :59:28]
assign io_out_uop_imm_packed_0 = next_uop_imm_packed; // @[issue-slot.scala:49:7, :59:28]
assign io_out_uop_op1_sel_0 = next_uop_op1_sel; // @[issue-slot.scala:49:7, :59:28]
assign io_out_uop_op2_sel_0 = next_uop_op2_sel; // @[issue-slot.scala:49:7, :59:28]
assign io_out_uop_fp_ctrl_ldst_0 = next_uop_fp_ctrl_ldst; // @[issue-slot.scala:49:7, :59:28]
assign io_out_uop_fp_ctrl_wen_0 = next_uop_fp_ctrl_wen; // @[issue-slot.scala:49:7, :59:28]
assign io_out_uop_fp_ctrl_ren1_0 = next_uop_fp_ctrl_ren1; // @[issue-slot.scala:49:7, :59:28]
assign io_out_uop_fp_ctrl_ren2_0 = next_uop_fp_ctrl_ren2; // @[issue-slot.scala:49:7, :59:28]
assign io_out_uop_fp_ctrl_ren3_0 = next_uop_fp_ctrl_ren3; // @[issue-slot.scala:49:7, :59:28]
assign io_out_uop_fp_ctrl_swap12_0 = next_uop_fp_ctrl_swap12; // @[issue-slot.scala:49:7, :59:28]
assign io_out_uop_fp_ctrl_swap23_0 = next_uop_fp_ctrl_swap23; // @[issue-slot.scala:49:7, :59:28]
assign io_out_uop_fp_ctrl_typeTagIn_0 = next_uop_fp_ctrl_typeTagIn; // @[issue-slot.scala:49:7, :59:28]
assign io_out_uop_fp_ctrl_typeTagOut_0 = next_uop_fp_ctrl_typeTagOut; // @[issue-slot.scala:49:7, :59:28]
assign io_out_uop_fp_ctrl_fromint_0 = next_uop_fp_ctrl_fromint; // @[issue-slot.scala:49:7, :59:28]
assign io_out_uop_fp_ctrl_toint_0 = next_uop_fp_ctrl_toint; // @[issue-slot.scala:49:7, :59:28]
assign io_out_uop_fp_ctrl_fastpipe_0 = next_uop_fp_ctrl_fastpipe; // @[issue-slot.scala:49:7, :59:28]
assign io_out_uop_fp_ctrl_fma_0 = next_uop_fp_ctrl_fma; // @[issue-slot.scala:49:7, :59:28]
assign io_out_uop_fp_ctrl_div_0 = next_uop_fp_ctrl_div; // @[issue-slot.scala:49:7, :59:28]
assign io_out_uop_fp_ctrl_sqrt_0 = next_uop_fp_ctrl_sqrt; // @[issue-slot.scala:49:7, :59:28]
assign io_out_uop_fp_ctrl_wflags_0 = next_uop_fp_ctrl_wflags; // @[issue-slot.scala:49:7, :59:28]
assign io_out_uop_fp_ctrl_vec_0 = next_uop_fp_ctrl_vec; // @[issue-slot.scala:49:7, :59:28]
assign io_out_uop_rob_idx_0 = next_uop_rob_idx; // @[issue-slot.scala:49:7, :59:28]
assign io_out_uop_ldq_idx_0 = next_uop_ldq_idx; // @[issue-slot.scala:49:7, :59:28]
assign io_out_uop_stq_idx_0 = next_uop_stq_idx; // @[issue-slot.scala:49:7, :59:28]
assign io_out_uop_rxq_idx_0 = next_uop_rxq_idx; // @[issue-slot.scala:49:7, :59:28]
assign io_out_uop_pdst_0 = next_uop_pdst; // @[issue-slot.scala:49:7, :59:28]
assign io_out_uop_prs1_0 = next_uop_prs1; // @[issue-slot.scala:49:7, :59:28]
assign io_out_uop_prs2_0 = next_uop_prs2; // @[issue-slot.scala:49:7, :59:28]
assign io_out_uop_prs3_0 = next_uop_prs3; // @[issue-slot.scala:49:7, :59:28]
assign io_out_uop_ppred_0 = next_uop_ppred; // @[issue-slot.scala:49:7, :59:28]
assign io_out_uop_prs1_busy_0 = next_uop_prs1_busy; // @[issue-slot.scala:49:7, :59:28]
assign io_out_uop_prs2_busy_0 = next_uop_prs2_busy; // @[issue-slot.scala:49:7, :59:28]
assign io_out_uop_prs3_busy_0 = next_uop_prs3_busy; // @[issue-slot.scala:49:7, :59:28]
assign io_out_uop_ppred_busy_0 = next_uop_ppred_busy; // @[issue-slot.scala:49:7, :59:28]
assign io_out_uop_stale_pdst_0 = next_uop_stale_pdst; // @[issue-slot.scala:49:7, :59:28]
assign io_out_uop_exception_0 = next_uop_exception; // @[issue-slot.scala:49:7, :59:28]
assign io_out_uop_exc_cause_0 = next_uop_exc_cause; // @[issue-slot.scala:49:7, :59:28]
assign io_out_uop_mem_cmd_0 = next_uop_mem_cmd; // @[issue-slot.scala:49:7, :59:28]
assign io_out_uop_mem_size_0 = next_uop_mem_size; // @[issue-slot.scala:49:7, :59:28]
assign io_out_uop_mem_signed_0 = next_uop_mem_signed; // @[issue-slot.scala:49:7, :59:28]
assign io_out_uop_uses_ldq_0 = next_uop_uses_ldq; // @[issue-slot.scala:49:7, :59:28]
assign io_out_uop_uses_stq_0 = next_uop_uses_stq; // @[issue-slot.scala:49:7, :59:28]
assign io_out_uop_is_unique_0 = next_uop_is_unique; // @[issue-slot.scala:49:7, :59:28]
assign io_out_uop_flush_on_commit_0 = next_uop_flush_on_commit; // @[issue-slot.scala:49:7, :59:28]
assign io_out_uop_csr_cmd_0 = next_uop_csr_cmd; // @[issue-slot.scala:49:7, :59:28]
assign io_out_uop_ldst_is_rs1_0 = next_uop_ldst_is_rs1; // @[issue-slot.scala:49:7, :59:28]
assign io_out_uop_ldst_0 = next_uop_ldst; // @[issue-slot.scala:49:7, :59:28]
assign io_out_uop_lrs1_0 = next_uop_lrs1; // @[issue-slot.scala:49:7, :59:28]
assign io_out_uop_lrs2_0 = next_uop_lrs2; // @[issue-slot.scala:49:7, :59:28]
assign io_out_uop_lrs3_0 = next_uop_lrs3; // @[issue-slot.scala:49:7, :59:28]
assign io_out_uop_dst_rtype_0 = next_uop_dst_rtype; // @[issue-slot.scala:49:7, :59:28]
assign io_out_uop_lrs1_rtype_0 = next_uop_lrs1_rtype; // @[issue-slot.scala:49:7, :59:28]
assign io_out_uop_lrs2_rtype_0 = next_uop_lrs2_rtype; // @[issue-slot.scala:49:7, :59:28]
assign io_out_uop_frs3_en_0 = next_uop_frs3_en; // @[issue-slot.scala:49:7, :59:28]
assign io_out_uop_fcn_dw_0 = next_uop_fcn_dw; // @[issue-slot.scala:49:7, :59:28]
assign io_out_uop_fcn_op_0 = next_uop_fcn_op; // @[issue-slot.scala:49:7, :59:28]
assign io_out_uop_fp_val_0 = next_uop_fp_val; // @[issue-slot.scala:49:7, :59:28]
assign io_out_uop_fp_rm_0 = next_uop_fp_rm; // @[issue-slot.scala:49:7, :59:28]
assign io_out_uop_fp_typ_0 = next_uop_fp_typ; // @[issue-slot.scala:49:7, :59:28]
assign io_out_uop_xcpt_pf_if_0 = next_uop_xcpt_pf_if; // @[issue-slot.scala:49:7, :59:28]
assign io_out_uop_xcpt_ae_if_0 = next_uop_xcpt_ae_if; // @[issue-slot.scala:49:7, :59:28]
assign io_out_uop_xcpt_ma_if_0 = next_uop_xcpt_ma_if; // @[issue-slot.scala:49:7, :59:28]
assign io_out_uop_bp_debug_if_0 = next_uop_bp_debug_if; // @[issue-slot.scala:49:7, :59:28]
assign io_out_uop_bp_xcpt_if_0 = next_uop_bp_xcpt_if; // @[issue-slot.scala:49:7, :59:28]
assign io_out_uop_debug_fsrc_0 = next_uop_debug_fsrc; // @[issue-slot.scala:49:7, :59:28]
assign io_out_uop_debug_tsrc_0 = next_uop_debug_tsrc; // @[issue-slot.scala:49:7, :59:28]
wire [15:0] _killed_T = io_brupdate_b1_mispredict_mask_0 & slot_uop_br_mask; // @[util.scala:126:51]
wire _killed_T_1 = |_killed_T; // @[util.scala:126:{51,59}]
wire killed = _killed_T_1 | io_kill_0; // @[util.scala:61:61, :126:59]
wire _io_will_be_valid_T = ~killed; // @[util.scala:61:61]
assign _io_will_be_valid_T_1 = next_valid & _io_will_be_valid_T; // @[issue-slot.scala:58:28, :65:{34,37}]
assign io_will_be_valid_0 = _io_will_be_valid_T_1; // @[issue-slot.scala:49:7, :65:34]
wire _slot_valid_T = ~killed; // @[util.scala:61:61]
wire _slot_valid_T_1 = next_valid & _slot_valid_T; // @[issue-slot.scala:58:28, :74:{30,33}] |
Generate the Verilog code corresponding to the following Chisel files.
File AsyncResetReg.scala:
// See LICENSE.SiFive for license details.
package freechips.rocketchip.util
import chisel3._
/** This black-boxes an Async Reset
* (or Set)
* Register.
*
* Because Chisel doesn't support
* parameterized black boxes,
* we unfortunately have to
* instantiate a number of these.
*
* We also have to hard-code the set/
* reset behavior.
*
* Do not confuse an asynchronous
* reset signal with an asynchronously
* reset reg. You should still
* properly synchronize your reset
* deassertion.
*
* @param d Data input
* @param q Data Output
* @param clk Clock Input
* @param rst Reset Input
* @param en Write Enable Input
*
*/
class AsyncResetReg(resetValue: Int = 0) extends RawModule {
val io = IO(new Bundle {
val d = Input(Bool())
val q = Output(Bool())
val en = Input(Bool())
val clk = Input(Clock())
val rst = Input(Reset())
})
val reg = withClockAndReset(io.clk, io.rst.asAsyncReset)(RegInit(resetValue.U(1.W)))
when (io.en) {
reg := io.d
}
io.q := reg
}
class SimpleRegIO(val w: Int) extends Bundle{
val d = Input(UInt(w.W))
val q = Output(UInt(w.W))
val en = Input(Bool())
}
class AsyncResetRegVec(val w: Int, val init: BigInt) extends Module {
override def desiredName = s"AsyncResetRegVec_w${w}_i${init}"
val io = IO(new SimpleRegIO(w))
val reg = withReset(reset.asAsyncReset)(RegInit(init.U(w.W)))
when (io.en) {
reg := io.d
}
io.q := reg
}
object AsyncResetReg {
// Create Single Registers
def apply(d: Bool, clk: Clock, rst: Bool, init: Boolean, name: Option[String]): Bool = {
val reg = Module(new AsyncResetReg(if (init) 1 else 0))
reg.io.d := d
reg.io.clk := clk
reg.io.rst := rst
reg.io.en := true.B
name.foreach(reg.suggestName(_))
reg.io.q
}
def apply(d: Bool, clk: Clock, rst: Bool): Bool = apply(d, clk, rst, false, None)
def apply(d: Bool, clk: Clock, rst: Bool, name: String): Bool = apply(d, clk, rst, false, Some(name))
// Create Vectors of Registers
def apply(updateData: UInt, resetData: BigInt, enable: Bool, name: Option[String] = None): UInt = {
val w = updateData.getWidth max resetData.bitLength
val reg = Module(new AsyncResetRegVec(w, resetData))
name.foreach(reg.suggestName(_))
reg.io.d := updateData
reg.io.en := enable
reg.io.q
}
def apply(updateData: UInt, resetData: BigInt, enable: Bool, name: String): UInt = apply(updateData,
resetData, enable, Some(name))
def apply(updateData: UInt, resetData: BigInt): UInt = apply(updateData, resetData, enable = true.B)
def apply(updateData: UInt, resetData: BigInt, name: String): UInt = apply(updateData, resetData, enable = true.B, Some(name))
def apply(updateData: UInt, enable: Bool): UInt = apply(updateData, resetData=BigInt(0), enable)
def apply(updateData: UInt, enable: Bool, name: String): UInt = apply(updateData, resetData = BigInt(0), enable, Some(name))
def apply(updateData: UInt): UInt = apply(updateData, resetData = BigInt(0), enable = true.B)
def apply(updateData: UInt, name:String): UInt = apply(updateData, resetData = BigInt(0), enable = true.B, Some(name))
}
| module AsyncResetRegVec_w1_i0_6( // @[AsyncResetReg.scala:56:7]
input clock, // @[AsyncResetReg.scala:56:7]
input reset, // @[AsyncResetReg.scala:56:7]
input io_d, // @[AsyncResetReg.scala:59:14]
output io_q // @[AsyncResetReg.scala:59:14]
);
wire io_d_0 = io_d; // @[AsyncResetReg.scala:56:7]
wire _reg_T = reset; // @[AsyncResetReg.scala:61:29]
wire io_en = 1'h1; // @[AsyncResetReg.scala:56:7, :59:14]
wire io_q_0; // @[AsyncResetReg.scala:56:7]
reg reg_0; // @[AsyncResetReg.scala:61:50]
assign io_q_0 = reg_0; // @[AsyncResetReg.scala:56:7, :61:50]
always @(posedge clock or posedge _reg_T) begin // @[AsyncResetReg.scala:56:7, :61:29]
if (_reg_T) // @[AsyncResetReg.scala:56:7, :61:29]
reg_0 <= 1'h0; // @[AsyncResetReg.scala:61:50]
else // @[AsyncResetReg.scala:56:7]
reg_0 <= io_d_0; // @[AsyncResetReg.scala:56:7, :61:50]
always @(posedge, posedge) |
Generate the Verilog code corresponding to the following Chisel files.
File ShiftReg.scala:
// See LICENSE.SiFive for license details.
package freechips.rocketchip.util
import chisel3._
// Similar to the Chisel ShiftRegister but allows the user to suggest a
// name to the registers that get instantiated, and
// to provide a reset value.
object ShiftRegInit {
def apply[T <: Data](in: T, n: Int, init: T, name: Option[String] = None): T =
(0 until n).foldRight(in) {
case (i, next) => {
val r = RegNext(next, init)
name.foreach { na => r.suggestName(s"${na}_${i}") }
r
}
}
}
/** These wrap behavioral
* shift registers into specific modules to allow for
* backend flows to replace or constrain
* them properly when used for CDC synchronization,
* rather than buffering.
*
* The different types vary in their reset behavior:
* AsyncResetShiftReg -- Asynchronously reset register array
* A W(width) x D(depth) sized array is constructed from D instantiations of a
* W-wide register vector. Functionally identical to AsyncResetSyncrhonizerShiftReg,
* but only used for timing applications
*/
abstract class AbstractPipelineReg(w: Int = 1) extends Module {
val io = IO(new Bundle {
val d = Input(UInt(w.W))
val q = Output(UInt(w.W))
}
)
}
object AbstractPipelineReg {
def apply [T <: Data](gen: => AbstractPipelineReg, in: T, name: Option[String] = None): T = {
val chain = Module(gen)
name.foreach{ chain.suggestName(_) }
chain.io.d := in.asUInt
chain.io.q.asTypeOf(in)
}
}
class AsyncResetShiftReg(w: Int = 1, depth: Int = 1, init: Int = 0, name: String = "pipe") extends AbstractPipelineReg(w) {
require(depth > 0, "Depth must be greater than 0.")
override def desiredName = s"AsyncResetShiftReg_w${w}_d${depth}_i${init}"
val chain = List.tabulate(depth) { i =>
Module (new AsyncResetRegVec(w, init)).suggestName(s"${name}_${i}")
}
chain.last.io.d := io.d
chain.last.io.en := true.B
(chain.init zip chain.tail).foreach { case (sink, source) =>
sink.io.d := source.io.q
sink.io.en := true.B
}
io.q := chain.head.io.q
}
object AsyncResetShiftReg {
def apply [T <: Data](in: T, depth: Int, init: Int = 0, name: Option[String] = None): T =
AbstractPipelineReg(new AsyncResetShiftReg(in.getWidth, depth, init), in, name)
def apply [T <: Data](in: T, depth: Int, name: Option[String]): T =
apply(in, depth, 0, name)
def apply [T <: Data](in: T, depth: Int, init: T, name: Option[String]): T =
apply(in, depth, init.litValue.toInt, name)
def apply [T <: Data](in: T, depth: Int, init: T): T =
apply (in, depth, init.litValue.toInt, None)
}
File SynchronizerReg.scala:
// See LICENSE.SiFive for license details.
package freechips.rocketchip.util
import chisel3._
import chisel3.util.{RegEnable, Cat}
/** These wrap behavioral
* shift and next registers into specific modules to allow for
* backend flows to replace or constrain
* them properly when used for CDC synchronization,
* rather than buffering.
*
*
* These are built up of *ResetSynchronizerPrimitiveShiftReg,
* intended to be replaced by the integrator's metastable flops chains or replaced
* at this level if they have a multi-bit wide synchronizer primitive.
* The different types vary in their reset behavior:
* NonSyncResetSynchronizerShiftReg -- Register array which does not have a reset pin
* AsyncResetSynchronizerShiftReg -- Asynchronously reset register array, constructed from W instantiations of D deep
* 1-bit-wide shift registers.
* SyncResetSynchronizerShiftReg -- Synchronously reset register array, constructed similarly to AsyncResetSynchronizerShiftReg
*
* [Inferred]ResetSynchronizerShiftReg -- TBD reset type by chisel3 reset inference.
*
* ClockCrossingReg -- Not made up of SynchronizerPrimitiveShiftReg. This is for single-deep flops which cross
* Clock Domains.
*/
object SynchronizerResetType extends Enumeration {
val NonSync, Inferred, Sync, Async = Value
}
// Note: this should not be used directly.
// Use the companion object to generate this with the correct reset type mixin.
private class SynchronizerPrimitiveShiftReg(
sync: Int,
init: Boolean,
resetType: SynchronizerResetType.Value)
extends AbstractPipelineReg(1) {
val initInt = if (init) 1 else 0
val initPostfix = resetType match {
case SynchronizerResetType.NonSync => ""
case _ => s"_i${initInt}"
}
override def desiredName = s"${resetType.toString}ResetSynchronizerPrimitiveShiftReg_d${sync}${initPostfix}"
val chain = List.tabulate(sync) { i =>
val reg = if (resetType == SynchronizerResetType.NonSync) Reg(Bool()) else RegInit(init.B)
reg.suggestName(s"sync_$i")
}
chain.last := io.d.asBool
(chain.init zip chain.tail).foreach { case (sink, source) =>
sink := source
}
io.q := chain.head.asUInt
}
private object SynchronizerPrimitiveShiftReg {
def apply (in: Bool, sync: Int, init: Boolean, resetType: SynchronizerResetType.Value): Bool = {
val gen: () => SynchronizerPrimitiveShiftReg = resetType match {
case SynchronizerResetType.NonSync =>
() => new SynchronizerPrimitiveShiftReg(sync, init, resetType)
case SynchronizerResetType.Async =>
() => new SynchronizerPrimitiveShiftReg(sync, init, resetType) with RequireAsyncReset
case SynchronizerResetType.Sync =>
() => new SynchronizerPrimitiveShiftReg(sync, init, resetType) with RequireSyncReset
case SynchronizerResetType.Inferred =>
() => new SynchronizerPrimitiveShiftReg(sync, init, resetType)
}
AbstractPipelineReg(gen(), in)
}
}
// Note: This module may end up with a non-AsyncReset type reset.
// But the Primitives within will always have AsyncReset type.
class AsyncResetSynchronizerShiftReg(w: Int = 1, sync: Int, init: Int)
extends AbstractPipelineReg(w) {
require(sync > 1, s"Sync must be greater than 1, not ${sync}.")
override def desiredName = s"AsyncResetSynchronizerShiftReg_w${w}_d${sync}_i${init}"
val output = Seq.tabulate(w) { i =>
val initBit = ((init >> i) & 1) > 0
withReset(reset.asAsyncReset){
SynchronizerPrimitiveShiftReg(io.d(i), sync, initBit, SynchronizerResetType.Async)
}
}
io.q := Cat(output.reverse)
}
object AsyncResetSynchronizerShiftReg {
def apply [T <: Data](in: T, sync: Int, init: Int, name: Option[String] = None): T =
AbstractPipelineReg(new AsyncResetSynchronizerShiftReg(in.getWidth, sync, init), in, name)
def apply [T <: Data](in: T, sync: Int, name: Option[String]): T =
apply (in, sync, 0, name)
def apply [T <: Data](in: T, sync: Int): T =
apply (in, sync, 0, None)
def apply [T <: Data](in: T, sync: Int, init: T, name: Option[String]): T =
apply(in, sync, init.litValue.toInt, name)
def apply [T <: Data](in: T, sync: Int, init: T): T =
apply (in, sync, init.litValue.toInt, None)
}
// Note: This module may end up with a non-Bool type reset.
// But the Primitives within will always have Bool reset type.
@deprecated("SyncResetSynchronizerShiftReg is unecessary with Chisel3 inferred resets. Use ResetSynchronizerShiftReg which will use the inferred reset type.", "rocket-chip 1.2")
class SyncResetSynchronizerShiftReg(w: Int = 1, sync: Int, init: Int) extends AbstractPipelineReg(w) {
require(sync > 1, s"Sync must be greater than 1, not ${sync}.")
override def desiredName = s"SyncResetSynchronizerShiftReg_w${w}_d${sync}_i${init}"
val output = Seq.tabulate(w) { i =>
val initBit = ((init >> i) & 1) > 0
withReset(reset.asBool){
SynchronizerPrimitiveShiftReg(io.d(i), sync, initBit, SynchronizerResetType.Sync)
}
}
io.q := Cat(output.reverse)
}
object SyncResetSynchronizerShiftReg {
def apply [T <: Data](in: T, sync: Int, init: Int, name: Option[String] = None): T =
if (sync == 0) in else AbstractPipelineReg(new SyncResetSynchronizerShiftReg(in.getWidth, sync, init), in, name)
def apply [T <: Data](in: T, sync: Int, name: Option[String]): T =
apply (in, sync, 0, name)
def apply [T <: Data](in: T, sync: Int): T =
apply (in, sync, 0, None)
def apply [T <: Data](in: T, sync: Int, init: T, name: Option[String]): T =
apply(in, sync, init.litValue.toInt, name)
def apply [T <: Data](in: T, sync: Int, init: T): T =
apply (in, sync, init.litValue.toInt, None)
}
class ResetSynchronizerShiftReg(w: Int = 1, sync: Int, init: Int) extends AbstractPipelineReg(w) {
require(sync > 1, s"Sync must be greater than 1, not ${sync}.")
override def desiredName = s"ResetSynchronizerShiftReg_w${w}_d${sync}_i${init}"
val output = Seq.tabulate(w) { i =>
val initBit = ((init >> i) & 1) > 0
SynchronizerPrimitiveShiftReg(io.d(i), sync, initBit, SynchronizerResetType.Inferred)
}
io.q := Cat(output.reverse)
}
object ResetSynchronizerShiftReg {
def apply [T <: Data](in: T, sync: Int, init: Int, name: Option[String] = None): T =
AbstractPipelineReg(new ResetSynchronizerShiftReg(in.getWidth, sync, init), in, name)
def apply [T <: Data](in: T, sync: Int, name: Option[String]): T =
apply (in, sync, 0, name)
def apply [T <: Data](in: T, sync: Int): T =
apply (in, sync, 0, None)
def apply [T <: Data](in: T, sync: Int, init: T, name: Option[String]): T =
apply(in, sync, init.litValue.toInt, name)
def apply [T <: Data](in: T, sync: Int, init: T): T =
apply (in, sync, init.litValue.toInt, None)
}
class SynchronizerShiftReg(w: Int = 1, sync: Int = 3) extends AbstractPipelineReg(w) {
require(sync > 1, s"Sync must be greater than 1, not ${sync}.")
override def desiredName = s"SynchronizerShiftReg_w${w}_d${sync}"
val output = Seq.tabulate(w) { i =>
SynchronizerPrimitiveShiftReg(io.d(i), sync, false, SynchronizerResetType.NonSync)
}
io.q := Cat(output.reverse)
}
object SynchronizerShiftReg {
def apply [T <: Data](in: T, sync: Int, name: Option[String] = None): T =
if (sync == 0) in else AbstractPipelineReg(new SynchronizerShiftReg(in.getWidth, sync), in, name)
def apply [T <: Data](in: T, sync: Int): T =
apply (in, sync, None)
def apply [T <: Data](in: T): T =
apply (in, 3, None)
}
class ClockCrossingReg(w: Int = 1, doInit: Boolean) extends Module {
override def desiredName = s"ClockCrossingReg_w${w}"
val io = IO(new Bundle{
val d = Input(UInt(w.W))
val q = Output(UInt(w.W))
val en = Input(Bool())
})
val cdc_reg = if (doInit) RegEnable(io.d, 0.U(w.W), io.en) else RegEnable(io.d, io.en)
io.q := cdc_reg
}
object ClockCrossingReg {
def apply [T <: Data](in: T, en: Bool, doInit: Boolean, name: Option[String] = None): T = {
val cdc_reg = Module(new ClockCrossingReg(in.getWidth, doInit))
name.foreach{ cdc_reg.suggestName(_) }
cdc_reg.io.d := in.asUInt
cdc_reg.io.en := en
cdc_reg.io.q.asTypeOf(in)
}
}
| module SynchronizerShiftReg_w1_d3_5( // @[SynchronizerReg.scala:169:7]
input clock, // @[SynchronizerReg.scala:169:7]
input reset, // @[SynchronizerReg.scala:169:7]
input io_d, // @[ShiftReg.scala:36:14]
output io_q // @[ShiftReg.scala:36:14]
);
wire io_d_0 = io_d; // @[SynchronizerReg.scala:169:7]
wire _output_T = io_d_0; // @[SynchronizerReg.scala:169:7, :173:39]
wire output_0; // @[ShiftReg.scala:48:24]
wire io_q_0; // @[SynchronizerReg.scala:169:7]
assign io_q_0 = output_0; // @[SynchronizerReg.scala:169:7]
NonSyncResetSynchronizerPrimitiveShiftReg_d3_5 output_chain ( // @[ShiftReg.scala:45:23]
.clock (clock),
.reset (reset),
.io_d (_output_T), // @[SynchronizerReg.scala:173:39]
.io_q (output_0)
); // @[ShiftReg.scala:45:23]
assign io_q = io_q_0; // @[SynchronizerReg.scala:169:7]
endmodule |
Generate the Verilog code corresponding to the following Chisel files.
File primitives.scala:
/*============================================================================
This Chisel source file is part of a pre-release version of the HardFloat IEEE
Floating-Point Arithmetic Package, by John R. Hauser (with some contributions
from Yunsup Lee and Andrew Waterman, mainly concerning testing).
Copyright 2010, 2011, 2012, 2013, 2014, 2015, 2016, 2017 The Regents of the
University of California. All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
1. Redistributions of source code must retain the above copyright notice,
this list of conditions, and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice,
this list of conditions, and the following disclaimer in the documentation
and/or other materials provided with the distribution.
3. Neither the name of the University nor the names of its contributors may
be used to endorse or promote products derived from this software without
specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS "AS IS", AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ARE
DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
=============================================================================*/
package hardfloat
import chisel3._
import chisel3.util._
//----------------------------------------------------------------------------
//----------------------------------------------------------------------------
object lowMask
{
def apply(in: UInt, topBound: BigInt, bottomBound: BigInt): UInt =
{
require(topBound != bottomBound)
val numInVals = BigInt(1)<<in.getWidth
if (topBound < bottomBound) {
lowMask(~in, numInVals - 1 - topBound, numInVals - 1 - bottomBound)
} else if (numInVals > 64 /* Empirical */) {
// For simulation performance, we should avoid generating
// exteremely wide shifters, so we divide and conquer.
// Empirically, this does not impact synthesis QoR.
val mid = numInVals / 2
val msb = in(in.getWidth - 1)
val lsbs = in(in.getWidth - 2, 0)
if (mid < topBound) {
if (mid <= bottomBound) {
Mux(msb,
lowMask(lsbs, topBound - mid, bottomBound - mid),
0.U
)
} else {
Mux(msb,
lowMask(lsbs, topBound - mid, 0) ## ((BigInt(1)<<(mid - bottomBound).toInt) - 1).U,
lowMask(lsbs, mid, bottomBound)
)
}
} else {
~Mux(msb, 0.U, ~lowMask(lsbs, topBound, bottomBound))
}
} else {
val shift = (BigInt(-1)<<numInVals.toInt).S>>in
Reverse(
shift(
(numInVals - 1 - bottomBound).toInt,
(numInVals - topBound).toInt
)
)
}
}
}
//----------------------------------------------------------------------------
//----------------------------------------------------------------------------
object countLeadingZeros
{
def apply(in: UInt): UInt = PriorityEncoder(in.asBools.reverse)
}
//----------------------------------------------------------------------------
//----------------------------------------------------------------------------
object orReduceBy2
{
def apply(in: UInt): UInt =
{
val reducedWidth = (in.getWidth + 1)>>1
val reducedVec = Wire(Vec(reducedWidth, Bool()))
for (ix <- 0 until reducedWidth - 1) {
reducedVec(ix) := in(ix * 2 + 1, ix * 2).orR
}
reducedVec(reducedWidth - 1) :=
in(in.getWidth - 1, (reducedWidth - 1) * 2).orR
reducedVec.asUInt
}
}
//----------------------------------------------------------------------------
//----------------------------------------------------------------------------
object orReduceBy4
{
def apply(in: UInt): UInt =
{
val reducedWidth = (in.getWidth + 3)>>2
val reducedVec = Wire(Vec(reducedWidth, Bool()))
for (ix <- 0 until reducedWidth - 1) {
reducedVec(ix) := in(ix * 4 + 3, ix * 4).orR
}
reducedVec(reducedWidth - 1) :=
in(in.getWidth - 1, (reducedWidth - 1) * 4).orR
reducedVec.asUInt
}
}
File RoundAnyRawFNToRecFN.scala:
/*============================================================================
This Chisel source file is part of a pre-release version of the HardFloat IEEE
Floating-Point Arithmetic Package, by John R. Hauser (with some contributions
from Yunsup Lee and Andrew Waterman, mainly concerning testing).
Copyright 2010, 2011, 2012, 2013, 2014, 2015, 2016, 2017 The Regents of the
University of California. All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
1. Redistributions of source code must retain the above copyright notice,
this list of conditions, and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice,
this list of conditions, and the following disclaimer in the documentation
and/or other materials provided with the distribution.
3. Neither the name of the University nor the names of its contributors may
be used to endorse or promote products derived from this software without
specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS "AS IS", AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ARE
DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
=============================================================================*/
package hardfloat
import chisel3._
import chisel3.util.Fill
import consts._
//----------------------------------------------------------------------------
//----------------------------------------------------------------------------
class
RoundAnyRawFNToRecFN(
inExpWidth: Int,
inSigWidth: Int,
outExpWidth: Int,
outSigWidth: Int,
options: Int
)
extends RawModule
{
override def desiredName = s"RoundAnyRawFNToRecFN_ie${inExpWidth}_is${inSigWidth}_oe${outExpWidth}_os${outSigWidth}"
val io = IO(new Bundle {
val invalidExc = Input(Bool()) // overrides 'infiniteExc' and 'in'
val infiniteExc = Input(Bool()) // overrides 'in' except for 'in.sign'
val in = Input(new RawFloat(inExpWidth, inSigWidth))
// (allowed exponent range has limits)
val roundingMode = Input(UInt(3.W))
val detectTininess = Input(UInt(1.W))
val out = Output(Bits((outExpWidth + outSigWidth + 1).W))
val exceptionFlags = Output(Bits(5.W))
})
//------------------------------------------------------------------------
//------------------------------------------------------------------------
val sigMSBitAlwaysZero = ((options & flRoundOpt_sigMSBitAlwaysZero) != 0)
val effectiveInSigWidth =
if (sigMSBitAlwaysZero) inSigWidth else inSigWidth + 1
val neverUnderflows =
((options &
(flRoundOpt_neverUnderflows | flRoundOpt_subnormsAlwaysExact)
) != 0) ||
(inExpWidth < outExpWidth)
val neverOverflows =
((options & flRoundOpt_neverOverflows) != 0) ||
(inExpWidth < outExpWidth)
val outNaNExp = BigInt(7)<<(outExpWidth - 2)
val outInfExp = BigInt(6)<<(outExpWidth - 2)
val outMaxFiniteExp = outInfExp - 1
val outMinNormExp = (BigInt(1)<<(outExpWidth - 1)) + 2
val outMinNonzeroExp = outMinNormExp - outSigWidth + 1
//------------------------------------------------------------------------
//------------------------------------------------------------------------
val roundingMode_near_even = (io.roundingMode === round_near_even)
val roundingMode_minMag = (io.roundingMode === round_minMag)
val roundingMode_min = (io.roundingMode === round_min)
val roundingMode_max = (io.roundingMode === round_max)
val roundingMode_near_maxMag = (io.roundingMode === round_near_maxMag)
val roundingMode_odd = (io.roundingMode === round_odd)
val roundMagUp =
(roundingMode_min && io.in.sign) || (roundingMode_max && ! io.in.sign)
//------------------------------------------------------------------------
//------------------------------------------------------------------------
val sAdjustedExp =
if (inExpWidth < outExpWidth)
(io.in.sExp +&
((BigInt(1)<<outExpWidth) - (BigInt(1)<<inExpWidth)).S
)(outExpWidth, 0).zext
else if (inExpWidth == outExpWidth)
io.in.sExp
else
io.in.sExp +&
((BigInt(1)<<outExpWidth) - (BigInt(1)<<inExpWidth)).S
val adjustedSig =
if (inSigWidth <= outSigWidth + 2)
io.in.sig<<(outSigWidth - inSigWidth + 2)
else
(io.in.sig(inSigWidth, inSigWidth - outSigWidth - 1) ##
io.in.sig(inSigWidth - outSigWidth - 2, 0).orR
)
val doShiftSigDown1 =
if (sigMSBitAlwaysZero) false.B else adjustedSig(outSigWidth + 2)
val common_expOut = Wire(UInt((outExpWidth + 1).W))
val common_fractOut = Wire(UInt((outSigWidth - 1).W))
val common_overflow = Wire(Bool())
val common_totalUnderflow = Wire(Bool())
val common_underflow = Wire(Bool())
val common_inexact = Wire(Bool())
if (
neverOverflows && neverUnderflows
&& (effectiveInSigWidth <= outSigWidth)
) {
//--------------------------------------------------------------------
//--------------------------------------------------------------------
common_expOut := sAdjustedExp(outExpWidth, 0) + doShiftSigDown1
common_fractOut :=
Mux(doShiftSigDown1,
adjustedSig(outSigWidth + 1, 3),
adjustedSig(outSigWidth, 2)
)
common_overflow := false.B
common_totalUnderflow := false.B
common_underflow := false.B
common_inexact := false.B
} else {
//--------------------------------------------------------------------
//--------------------------------------------------------------------
val roundMask =
if (neverUnderflows)
0.U(outSigWidth.W) ## doShiftSigDown1 ## 3.U(2.W)
else
(lowMask(
sAdjustedExp(outExpWidth, 0),
outMinNormExp - outSigWidth - 1,
outMinNormExp
) | doShiftSigDown1) ##
3.U(2.W)
val shiftedRoundMask = 0.U(1.W) ## roundMask>>1
val roundPosMask = ~shiftedRoundMask & roundMask
val roundPosBit = (adjustedSig & roundPosMask).orR
val anyRoundExtra = (adjustedSig & shiftedRoundMask).orR
val anyRound = roundPosBit || anyRoundExtra
val roundIncr =
((roundingMode_near_even || roundingMode_near_maxMag) &&
roundPosBit) ||
(roundMagUp && anyRound)
val roundedSig: Bits =
Mux(roundIncr,
(((adjustedSig | roundMask)>>2) +& 1.U) &
~Mux(roundingMode_near_even && roundPosBit &&
! anyRoundExtra,
roundMask>>1,
0.U((outSigWidth + 2).W)
),
(adjustedSig & ~roundMask)>>2 |
Mux(roundingMode_odd && anyRound, roundPosMask>>1, 0.U)
)
//*** IF SIG WIDTH IS VERY NARROW, NEED TO ACCOUNT FOR ROUND-EVEN ZEROING
//*** M.S. BIT OF SUBNORMAL SIG?
val sRoundedExp = sAdjustedExp +& (roundedSig>>outSigWidth).asUInt.zext
common_expOut := sRoundedExp(outExpWidth, 0)
common_fractOut :=
Mux(doShiftSigDown1,
roundedSig(outSigWidth - 1, 1),
roundedSig(outSigWidth - 2, 0)
)
common_overflow :=
(if (neverOverflows) false.B else
//*** REWRITE BASED ON BEFORE-ROUNDING EXPONENT?:
(sRoundedExp>>(outExpWidth - 1) >= 3.S))
common_totalUnderflow :=
(if (neverUnderflows) false.B else
//*** WOULD BE GOOD ENOUGH TO USE EXPONENT BEFORE ROUNDING?:
(sRoundedExp < outMinNonzeroExp.S))
val unboundedRange_roundPosBit =
Mux(doShiftSigDown1, adjustedSig(2), adjustedSig(1))
val unboundedRange_anyRound =
(doShiftSigDown1 && adjustedSig(2)) || adjustedSig(1, 0).orR
val unboundedRange_roundIncr =
((roundingMode_near_even || roundingMode_near_maxMag) &&
unboundedRange_roundPosBit) ||
(roundMagUp && unboundedRange_anyRound)
val roundCarry =
Mux(doShiftSigDown1,
roundedSig(outSigWidth + 1),
roundedSig(outSigWidth)
)
common_underflow :=
(if (neverUnderflows) false.B else
common_totalUnderflow ||
//*** IF SIG WIDTH IS VERY NARROW, NEED TO ACCOUNT FOR ROUND-EVEN ZEROING
//*** M.S. BIT OF SUBNORMAL SIG?
(anyRound && ((sAdjustedExp>>outExpWidth) <= 0.S) &&
Mux(doShiftSigDown1, roundMask(3), roundMask(2)) &&
! ((io.detectTininess === tininess_afterRounding) &&
! Mux(doShiftSigDown1,
roundMask(4),
roundMask(3)
) &&
roundCarry && roundPosBit &&
unboundedRange_roundIncr)))
common_inexact := common_totalUnderflow || anyRound
}
//------------------------------------------------------------------------
//------------------------------------------------------------------------
val isNaNOut = io.invalidExc || io.in.isNaN
val notNaN_isSpecialInfOut = io.infiniteExc || io.in.isInf
val commonCase = ! isNaNOut && ! notNaN_isSpecialInfOut && ! io.in.isZero
val overflow = commonCase && common_overflow
val underflow = commonCase && common_underflow
val inexact = overflow || (commonCase && common_inexact)
val overflow_roundMagUp =
roundingMode_near_even || roundingMode_near_maxMag || roundMagUp
val pegMinNonzeroMagOut =
commonCase && common_totalUnderflow && (roundMagUp || roundingMode_odd)
val pegMaxFiniteMagOut = overflow && ! overflow_roundMagUp
val notNaN_isInfOut =
notNaN_isSpecialInfOut || (overflow && overflow_roundMagUp)
val signOut = Mux(isNaNOut, false.B, io.in.sign)
val expOut =
(common_expOut &
~Mux(io.in.isZero || common_totalUnderflow,
(BigInt(7)<<(outExpWidth - 2)).U((outExpWidth + 1).W),
0.U
) &
~Mux(pegMinNonzeroMagOut,
~outMinNonzeroExp.U((outExpWidth + 1).W),
0.U
) &
~Mux(pegMaxFiniteMagOut,
(BigInt(1)<<(outExpWidth - 1)).U((outExpWidth + 1).W),
0.U
) &
~Mux(notNaN_isInfOut,
(BigInt(1)<<(outExpWidth - 2)).U((outExpWidth + 1).W),
0.U
)) |
Mux(pegMinNonzeroMagOut,
outMinNonzeroExp.U((outExpWidth + 1).W),
0.U
) |
Mux(pegMaxFiniteMagOut,
outMaxFiniteExp.U((outExpWidth + 1).W),
0.U
) |
Mux(notNaN_isInfOut, outInfExp.U((outExpWidth + 1).W), 0.U) |
Mux(isNaNOut, outNaNExp.U((outExpWidth + 1).W), 0.U)
val fractOut =
Mux(isNaNOut || io.in.isZero || common_totalUnderflow,
Mux(isNaNOut, (BigInt(1)<<(outSigWidth - 2)).U, 0.U),
common_fractOut
) |
Fill(outSigWidth - 1, pegMaxFiniteMagOut)
io.out := signOut ## expOut ## fractOut
io.exceptionFlags :=
io.invalidExc ## io.infiniteExc ## overflow ## underflow ## inexact
}
//----------------------------------------------------------------------------
//----------------------------------------------------------------------------
class
RoundRawFNToRecFN(expWidth: Int, sigWidth: Int, options: Int)
extends RawModule
{
override def desiredName = s"RoundRawFNToRecFN_e${expWidth}_s${sigWidth}"
val io = IO(new Bundle {
val invalidExc = Input(Bool()) // overrides 'infiniteExc' and 'in'
val infiniteExc = Input(Bool()) // overrides 'in' except for 'in.sign'
val in = Input(new RawFloat(expWidth, sigWidth + 2))
val roundingMode = Input(UInt(3.W))
val detectTininess = Input(UInt(1.W))
val out = Output(Bits((expWidth + sigWidth + 1).W))
val exceptionFlags = Output(Bits(5.W))
})
val roundAnyRawFNToRecFN =
Module(
new RoundAnyRawFNToRecFN(
expWidth, sigWidth + 2, expWidth, sigWidth, options))
roundAnyRawFNToRecFN.io.invalidExc := io.invalidExc
roundAnyRawFNToRecFN.io.infiniteExc := io.infiniteExc
roundAnyRawFNToRecFN.io.in := io.in
roundAnyRawFNToRecFN.io.roundingMode := io.roundingMode
roundAnyRawFNToRecFN.io.detectTininess := io.detectTininess
io.out := roundAnyRawFNToRecFN.io.out
io.exceptionFlags := roundAnyRawFNToRecFN.io.exceptionFlags
}
| module RoundAnyRawFNToRecFN_ie8_is26_oe8_os24_59( // @[RoundAnyRawFNToRecFN.scala:48:5]
input io_invalidExc, // @[RoundAnyRawFNToRecFN.scala:58:16]
input io_in_isNaN, // @[RoundAnyRawFNToRecFN.scala:58:16]
input io_in_isInf, // @[RoundAnyRawFNToRecFN.scala:58:16]
input io_in_isZero, // @[RoundAnyRawFNToRecFN.scala:58:16]
input io_in_sign, // @[RoundAnyRawFNToRecFN.scala:58:16]
input [9:0] io_in_sExp, // @[RoundAnyRawFNToRecFN.scala:58:16]
input [26:0] io_in_sig, // @[RoundAnyRawFNToRecFN.scala:58:16]
output [32:0] io_out, // @[RoundAnyRawFNToRecFN.scala:58:16]
output [4:0] io_exceptionFlags // @[RoundAnyRawFNToRecFN.scala:58:16]
);
wire io_invalidExc_0 = io_invalidExc; // @[RoundAnyRawFNToRecFN.scala:48:5]
wire io_in_isNaN_0 = io_in_isNaN; // @[RoundAnyRawFNToRecFN.scala:48:5]
wire io_in_isInf_0 = io_in_isInf; // @[RoundAnyRawFNToRecFN.scala:48:5]
wire io_in_isZero_0 = io_in_isZero; // @[RoundAnyRawFNToRecFN.scala:48:5]
wire io_in_sign_0 = io_in_sign; // @[RoundAnyRawFNToRecFN.scala:48:5]
wire [9:0] io_in_sExp_0 = io_in_sExp; // @[RoundAnyRawFNToRecFN.scala:48:5]
wire [26:0] io_in_sig_0 = io_in_sig; // @[RoundAnyRawFNToRecFN.scala:48:5]
wire [8:0] _expOut_T_4 = 9'h194; // @[RoundAnyRawFNToRecFN.scala:258:19]
wire [15:0] _roundMask_T_5 = 16'hFF; // @[primitives.scala:77:20]
wire [15:0] _roundMask_T_4 = 16'hFF00; // @[primitives.scala:77:20]
wire [15:0] _roundMask_T_10 = 16'hFF00; // @[primitives.scala:77:20]
wire [11:0] _roundMask_T_13 = 12'hFF; // @[primitives.scala:77:20]
wire [15:0] _roundMask_T_14 = 16'hFF0; // @[primitives.scala:77:20]
wire [15:0] _roundMask_T_15 = 16'hF0F; // @[primitives.scala:77:20]
wire [15:0] _roundMask_T_20 = 16'hF0F0; // @[primitives.scala:77:20]
wire [13:0] _roundMask_T_23 = 14'hF0F; // @[primitives.scala:77:20]
wire [15:0] _roundMask_T_24 = 16'h3C3C; // @[primitives.scala:77:20]
wire [15:0] _roundMask_T_25 = 16'h3333; // @[primitives.scala:77:20]
wire [15:0] _roundMask_T_30 = 16'hCCCC; // @[primitives.scala:77:20]
wire [14:0] _roundMask_T_33 = 15'h3333; // @[primitives.scala:77:20]
wire [15:0] _roundMask_T_34 = 16'h6666; // @[primitives.scala:77:20]
wire [15:0] _roundMask_T_35 = 16'h5555; // @[primitives.scala:77:20]
wire [15:0] _roundMask_T_40 = 16'hAAAA; // @[primitives.scala:77:20]
wire [25:0] _roundedSig_T_15 = 26'h0; // @[RoundAnyRawFNToRecFN.scala:181:24]
wire [8:0] _expOut_T_6 = 9'h1FF; // @[RoundAnyRawFNToRecFN.scala:257:14, :261:14]
wire [8:0] _expOut_T_9 = 9'h1FF; // @[RoundAnyRawFNToRecFN.scala:257:14, :261:14]
wire [8:0] _expOut_T_5 = 9'h0; // @[RoundAnyRawFNToRecFN.scala:257:18]
wire [8:0] _expOut_T_8 = 9'h0; // @[RoundAnyRawFNToRecFN.scala:261:18]
wire [8:0] _expOut_T_14 = 9'h0; // @[RoundAnyRawFNToRecFN.scala:269:16]
wire [8:0] _expOut_T_16 = 9'h0; // @[RoundAnyRawFNToRecFN.scala:273:16]
wire [22:0] _fractOut_T_4 = 23'h0; // @[RoundAnyRawFNToRecFN.scala:284:13]
wire io_detectTininess = 1'h1; // @[RoundAnyRawFNToRecFN.scala:48:5]
wire roundingMode_near_even = 1'h1; // @[RoundAnyRawFNToRecFN.scala:90:53]
wire _roundIncr_T = 1'h1; // @[RoundAnyRawFNToRecFN.scala:169:38]
wire _unboundedRange_roundIncr_T = 1'h1; // @[RoundAnyRawFNToRecFN.scala:207:38]
wire _common_underflow_T_7 = 1'h1; // @[RoundAnyRawFNToRecFN.scala:222:49]
wire _overflow_roundMagUp_T = 1'h1; // @[RoundAnyRawFNToRecFN.scala:243:32]
wire overflow_roundMagUp = 1'h1; // @[RoundAnyRawFNToRecFN.scala:243:60]
wire [2:0] io_roundingMode = 3'h0; // @[RoundAnyRawFNToRecFN.scala:48:5]
wire io_infiniteExc = 1'h0; // @[RoundAnyRawFNToRecFN.scala:48:5]
wire roundingMode_minMag = 1'h0; // @[RoundAnyRawFNToRecFN.scala:91:53]
wire roundingMode_min = 1'h0; // @[RoundAnyRawFNToRecFN.scala:92:53]
wire roundingMode_max = 1'h0; // @[RoundAnyRawFNToRecFN.scala:93:53]
wire roundingMode_near_maxMag = 1'h0; // @[RoundAnyRawFNToRecFN.scala:94:53]
wire roundingMode_odd = 1'h0; // @[RoundAnyRawFNToRecFN.scala:95:53]
wire _roundMagUp_T = 1'h0; // @[RoundAnyRawFNToRecFN.scala:98:27]
wire _roundMagUp_T_2 = 1'h0; // @[RoundAnyRawFNToRecFN.scala:98:63]
wire roundMagUp = 1'h0; // @[RoundAnyRawFNToRecFN.scala:98:42]
wire _roundIncr_T_2 = 1'h0; // @[RoundAnyRawFNToRecFN.scala:171:29]
wire _roundedSig_T_13 = 1'h0; // @[RoundAnyRawFNToRecFN.scala:181:42]
wire _unboundedRange_roundIncr_T_2 = 1'h0; // @[RoundAnyRawFNToRecFN.scala:209:29]
wire _pegMinNonzeroMagOut_T_1 = 1'h0; // @[RoundAnyRawFNToRecFN.scala:245:60]
wire pegMinNonzeroMagOut = 1'h0; // @[RoundAnyRawFNToRecFN.scala:245:45]
wire _pegMaxFiniteMagOut_T = 1'h0; // @[RoundAnyRawFNToRecFN.scala:246:42]
wire pegMaxFiniteMagOut = 1'h0; // @[RoundAnyRawFNToRecFN.scala:246:39]
wire notNaN_isSpecialInfOut = io_in_isInf_0; // @[RoundAnyRawFNToRecFN.scala:48:5, :236:49]
wire [26:0] adjustedSig = io_in_sig_0; // @[RoundAnyRawFNToRecFN.scala:48:5, :114:22]
wire [32:0] _io_out_T_1; // @[RoundAnyRawFNToRecFN.scala:286:33]
wire [4:0] _io_exceptionFlags_T_3; // @[RoundAnyRawFNToRecFN.scala:288:66]
wire [32:0] io_out_0; // @[RoundAnyRawFNToRecFN.scala:48:5]
wire [4:0] io_exceptionFlags_0; // @[RoundAnyRawFNToRecFN.scala:48:5]
wire _roundMagUp_T_1 = ~io_in_sign_0; // @[RoundAnyRawFNToRecFN.scala:48:5, :98:66]
wire doShiftSigDown1 = adjustedSig[26]; // @[RoundAnyRawFNToRecFN.scala:114:22, :120:57]
wire [8:0] _common_expOut_T; // @[RoundAnyRawFNToRecFN.scala:187:37]
wire [8:0] common_expOut; // @[RoundAnyRawFNToRecFN.scala:122:31]
wire [22:0] _common_fractOut_T_2; // @[RoundAnyRawFNToRecFN.scala:189:16]
wire [22:0] common_fractOut; // @[RoundAnyRawFNToRecFN.scala:123:31]
wire _common_overflow_T_1; // @[RoundAnyRawFNToRecFN.scala:196:50]
wire common_overflow; // @[RoundAnyRawFNToRecFN.scala:124:37]
wire _common_totalUnderflow_T; // @[RoundAnyRawFNToRecFN.scala:200:31]
wire common_totalUnderflow; // @[RoundAnyRawFNToRecFN.scala:125:37]
wire _common_underflow_T_18; // @[RoundAnyRawFNToRecFN.scala:217:40]
wire common_underflow; // @[RoundAnyRawFNToRecFN.scala:126:37]
wire _common_inexact_T; // @[RoundAnyRawFNToRecFN.scala:230:49]
wire common_inexact; // @[RoundAnyRawFNToRecFN.scala:127:37]
wire [8:0] _roundMask_T = io_in_sExp_0[8:0]; // @[RoundAnyRawFNToRecFN.scala:48:5, :156:37]
wire [8:0] _roundMask_T_1 = ~_roundMask_T; // @[primitives.scala:52:21]
wire roundMask_msb = _roundMask_T_1[8]; // @[primitives.scala:52:21, :58:25]
wire [7:0] roundMask_lsbs = _roundMask_T_1[7:0]; // @[primitives.scala:52:21, :59:26]
wire roundMask_msb_1 = roundMask_lsbs[7]; // @[primitives.scala:58:25, :59:26]
wire [6:0] roundMask_lsbs_1 = roundMask_lsbs[6:0]; // @[primitives.scala:59:26]
wire roundMask_msb_2 = roundMask_lsbs_1[6]; // @[primitives.scala:58:25, :59:26]
wire roundMask_msb_3 = roundMask_lsbs_1[6]; // @[primitives.scala:58:25, :59:26]
wire [5:0] roundMask_lsbs_2 = roundMask_lsbs_1[5:0]; // @[primitives.scala:59:26]
wire [5:0] roundMask_lsbs_3 = roundMask_lsbs_1[5:0]; // @[primitives.scala:59:26]
wire [64:0] roundMask_shift = $signed(65'sh10000000000000000 >>> roundMask_lsbs_2); // @[primitives.scala:59:26, :76:56]
wire [21:0] _roundMask_T_2 = roundMask_shift[63:42]; // @[primitives.scala:76:56, :78:22]
wire [15:0] _roundMask_T_3 = _roundMask_T_2[15:0]; // @[primitives.scala:77:20, :78:22]
wire [7:0] _roundMask_T_6 = _roundMask_T_3[15:8]; // @[primitives.scala:77:20]
wire [15:0] _roundMask_T_7 = {8'h0, _roundMask_T_6}; // @[primitives.scala:77:20]
wire [7:0] _roundMask_T_8 = _roundMask_T_3[7:0]; // @[primitives.scala:77:20]
wire [15:0] _roundMask_T_9 = {_roundMask_T_8, 8'h0}; // @[primitives.scala:77:20]
wire [15:0] _roundMask_T_11 = _roundMask_T_9 & 16'hFF00; // @[primitives.scala:77:20]
wire [15:0] _roundMask_T_12 = _roundMask_T_7 | _roundMask_T_11; // @[primitives.scala:77:20]
wire [11:0] _roundMask_T_16 = _roundMask_T_12[15:4]; // @[primitives.scala:77:20]
wire [15:0] _roundMask_T_17 = {4'h0, _roundMask_T_16 & 12'hF0F}; // @[primitives.scala:77:20]
wire [11:0] _roundMask_T_18 = _roundMask_T_12[11:0]; // @[primitives.scala:77:20]
wire [15:0] _roundMask_T_19 = {_roundMask_T_18, 4'h0}; // @[primitives.scala:77:20]
wire [15:0] _roundMask_T_21 = _roundMask_T_19 & 16'hF0F0; // @[primitives.scala:77:20]
wire [15:0] _roundMask_T_22 = _roundMask_T_17 | _roundMask_T_21; // @[primitives.scala:77:20]
wire [13:0] _roundMask_T_26 = _roundMask_T_22[15:2]; // @[primitives.scala:77:20]
wire [15:0] _roundMask_T_27 = {2'h0, _roundMask_T_26 & 14'h3333}; // @[primitives.scala:77:20]
wire [13:0] _roundMask_T_28 = _roundMask_T_22[13:0]; // @[primitives.scala:77:20]
wire [15:0] _roundMask_T_29 = {_roundMask_T_28, 2'h0}; // @[primitives.scala:77:20]
wire [15:0] _roundMask_T_31 = _roundMask_T_29 & 16'hCCCC; // @[primitives.scala:77:20]
wire [15:0] _roundMask_T_32 = _roundMask_T_27 | _roundMask_T_31; // @[primitives.scala:77:20]
wire [14:0] _roundMask_T_36 = _roundMask_T_32[15:1]; // @[primitives.scala:77:20]
wire [15:0] _roundMask_T_37 = {1'h0, _roundMask_T_36 & 15'h5555}; // @[primitives.scala:77:20]
wire [14:0] _roundMask_T_38 = _roundMask_T_32[14:0]; // @[primitives.scala:77:20]
wire [15:0] _roundMask_T_39 = {_roundMask_T_38, 1'h0}; // @[primitives.scala:77:20]
wire [15:0] _roundMask_T_41 = _roundMask_T_39 & 16'hAAAA; // @[primitives.scala:77:20]
wire [15:0] _roundMask_T_42 = _roundMask_T_37 | _roundMask_T_41; // @[primitives.scala:77:20]
wire [5:0] _roundMask_T_43 = _roundMask_T_2[21:16]; // @[primitives.scala:77:20, :78:22]
wire [3:0] _roundMask_T_44 = _roundMask_T_43[3:0]; // @[primitives.scala:77:20]
wire [1:0] _roundMask_T_45 = _roundMask_T_44[1:0]; // @[primitives.scala:77:20]
wire _roundMask_T_46 = _roundMask_T_45[0]; // @[primitives.scala:77:20]
wire _roundMask_T_47 = _roundMask_T_45[1]; // @[primitives.scala:77:20]
wire [1:0] _roundMask_T_48 = {_roundMask_T_46, _roundMask_T_47}; // @[primitives.scala:77:20]
wire [1:0] _roundMask_T_49 = _roundMask_T_44[3:2]; // @[primitives.scala:77:20]
wire _roundMask_T_50 = _roundMask_T_49[0]; // @[primitives.scala:77:20]
wire _roundMask_T_51 = _roundMask_T_49[1]; // @[primitives.scala:77:20]
wire [1:0] _roundMask_T_52 = {_roundMask_T_50, _roundMask_T_51}; // @[primitives.scala:77:20]
wire [3:0] _roundMask_T_53 = {_roundMask_T_48, _roundMask_T_52}; // @[primitives.scala:77:20]
wire [1:0] _roundMask_T_54 = _roundMask_T_43[5:4]; // @[primitives.scala:77:20]
wire _roundMask_T_55 = _roundMask_T_54[0]; // @[primitives.scala:77:20]
wire _roundMask_T_56 = _roundMask_T_54[1]; // @[primitives.scala:77:20]
wire [1:0] _roundMask_T_57 = {_roundMask_T_55, _roundMask_T_56}; // @[primitives.scala:77:20]
wire [5:0] _roundMask_T_58 = {_roundMask_T_53, _roundMask_T_57}; // @[primitives.scala:77:20]
wire [21:0] _roundMask_T_59 = {_roundMask_T_42, _roundMask_T_58}; // @[primitives.scala:77:20]
wire [21:0] _roundMask_T_60 = ~_roundMask_T_59; // @[primitives.scala:73:32, :77:20]
wire [21:0] _roundMask_T_61 = roundMask_msb_2 ? 22'h0 : _roundMask_T_60; // @[primitives.scala:58:25, :73:{21,32}]
wire [21:0] _roundMask_T_62 = ~_roundMask_T_61; // @[primitives.scala:73:{17,21}]
wire [24:0] _roundMask_T_63 = {_roundMask_T_62, 3'h7}; // @[primitives.scala:68:58, :73:17]
wire [64:0] roundMask_shift_1 = $signed(65'sh10000000000000000 >>> roundMask_lsbs_3); // @[primitives.scala:59:26, :76:56]
wire [2:0] _roundMask_T_64 = roundMask_shift_1[2:0]; // @[primitives.scala:76:56, :78:22]
wire [1:0] _roundMask_T_65 = _roundMask_T_64[1:0]; // @[primitives.scala:77:20, :78:22]
wire _roundMask_T_66 = _roundMask_T_65[0]; // @[primitives.scala:77:20]
wire _roundMask_T_67 = _roundMask_T_65[1]; // @[primitives.scala:77:20]
wire [1:0] _roundMask_T_68 = {_roundMask_T_66, _roundMask_T_67}; // @[primitives.scala:77:20]
wire _roundMask_T_69 = _roundMask_T_64[2]; // @[primitives.scala:77:20, :78:22]
wire [2:0] _roundMask_T_70 = {_roundMask_T_68, _roundMask_T_69}; // @[primitives.scala:77:20]
wire [2:0] _roundMask_T_71 = roundMask_msb_3 ? _roundMask_T_70 : 3'h0; // @[primitives.scala:58:25, :62:24, :77:20]
wire [24:0] _roundMask_T_72 = roundMask_msb_1 ? _roundMask_T_63 : {22'h0, _roundMask_T_71}; // @[primitives.scala:58:25, :62:24, :67:24, :68:58]
wire [24:0] _roundMask_T_73 = roundMask_msb ? _roundMask_T_72 : 25'h0; // @[primitives.scala:58:25, :62:24, :67:24]
wire [24:0] _roundMask_T_74 = {_roundMask_T_73[24:1], _roundMask_T_73[0] | doShiftSigDown1}; // @[primitives.scala:62:24]
wire [26:0] roundMask = {_roundMask_T_74, 2'h3}; // @[RoundAnyRawFNToRecFN.scala:159:{23,42}]
wire [27:0] _shiftedRoundMask_T = {1'h0, roundMask}; // @[RoundAnyRawFNToRecFN.scala:159:42, :162:41]
wire [26:0] shiftedRoundMask = _shiftedRoundMask_T[27:1]; // @[RoundAnyRawFNToRecFN.scala:162:{41,53}]
wire [26:0] _roundPosMask_T = ~shiftedRoundMask; // @[RoundAnyRawFNToRecFN.scala:162:53, :163:28]
wire [26:0] roundPosMask = _roundPosMask_T & roundMask; // @[RoundAnyRawFNToRecFN.scala:159:42, :163:{28,46}]
wire [26:0] _roundPosBit_T = adjustedSig & roundPosMask; // @[RoundAnyRawFNToRecFN.scala:114:22, :163:46, :164:40]
wire roundPosBit = |_roundPosBit_T; // @[RoundAnyRawFNToRecFN.scala:164:{40,56}]
wire _roundIncr_T_1 = roundPosBit; // @[RoundAnyRawFNToRecFN.scala:164:56, :169:67]
wire _roundedSig_T_3 = roundPosBit; // @[RoundAnyRawFNToRecFN.scala:164:56, :175:49]
wire [26:0] _anyRoundExtra_T = adjustedSig & shiftedRoundMask; // @[RoundAnyRawFNToRecFN.scala:114:22, :162:53, :165:42]
wire anyRoundExtra = |_anyRoundExtra_T; // @[RoundAnyRawFNToRecFN.scala:165:{42,62}]
wire anyRound = roundPosBit | anyRoundExtra; // @[RoundAnyRawFNToRecFN.scala:164:56, :165:62, :166:36]
wire roundIncr = _roundIncr_T_1; // @[RoundAnyRawFNToRecFN.scala:169:67, :170:31]
wire [26:0] _roundedSig_T = adjustedSig | roundMask; // @[RoundAnyRawFNToRecFN.scala:114:22, :159:42, :174:32]
wire [24:0] _roundedSig_T_1 = _roundedSig_T[26:2]; // @[RoundAnyRawFNToRecFN.scala:174:{32,44}]
wire [25:0] _roundedSig_T_2 = {1'h0, _roundedSig_T_1} + 26'h1; // @[RoundAnyRawFNToRecFN.scala:174:{44,49}]
wire _roundedSig_T_4 = ~anyRoundExtra; // @[RoundAnyRawFNToRecFN.scala:165:62, :176:30]
wire _roundedSig_T_5 = _roundedSig_T_3 & _roundedSig_T_4; // @[RoundAnyRawFNToRecFN.scala:175:{49,64}, :176:30]
wire [25:0] _roundedSig_T_6 = roundMask[26:1]; // @[RoundAnyRawFNToRecFN.scala:159:42, :177:35]
wire [25:0] _roundedSig_T_7 = _roundedSig_T_5 ? _roundedSig_T_6 : 26'h0; // @[RoundAnyRawFNToRecFN.scala:175:{25,64}, :177:35]
wire [25:0] _roundedSig_T_8 = ~_roundedSig_T_7; // @[RoundAnyRawFNToRecFN.scala:175:{21,25}]
wire [25:0] _roundedSig_T_9 = _roundedSig_T_2 & _roundedSig_T_8; // @[RoundAnyRawFNToRecFN.scala:174:{49,57}, :175:21]
wire [26:0] _roundedSig_T_10 = ~roundMask; // @[RoundAnyRawFNToRecFN.scala:159:42, :180:32]
wire [26:0] _roundedSig_T_11 = adjustedSig & _roundedSig_T_10; // @[RoundAnyRawFNToRecFN.scala:114:22, :180:{30,32}]
wire [24:0] _roundedSig_T_12 = _roundedSig_T_11[26:2]; // @[RoundAnyRawFNToRecFN.scala:180:{30,43}]
wire [25:0] _roundedSig_T_14 = roundPosMask[26:1]; // @[RoundAnyRawFNToRecFN.scala:163:46, :181:67]
wire [25:0] _roundedSig_T_16 = {1'h0, _roundedSig_T_12}; // @[RoundAnyRawFNToRecFN.scala:180:{43,47}]
wire [25:0] roundedSig = roundIncr ? _roundedSig_T_9 : _roundedSig_T_16; // @[RoundAnyRawFNToRecFN.scala:170:31, :173:16, :174:57, :180:47]
wire [1:0] _sRoundedExp_T = roundedSig[25:24]; // @[RoundAnyRawFNToRecFN.scala:173:16, :185:54]
wire [2:0] _sRoundedExp_T_1 = {1'h0, _sRoundedExp_T}; // @[RoundAnyRawFNToRecFN.scala:185:{54,76}]
wire [10:0] sRoundedExp = {io_in_sExp_0[9], io_in_sExp_0} + {{8{_sRoundedExp_T_1[2]}}, _sRoundedExp_T_1}; // @[RoundAnyRawFNToRecFN.scala:48:5, :185:{40,76}]
assign _common_expOut_T = sRoundedExp[8:0]; // @[RoundAnyRawFNToRecFN.scala:185:40, :187:37]
assign common_expOut = _common_expOut_T; // @[RoundAnyRawFNToRecFN.scala:122:31, :187:37]
wire [22:0] _common_fractOut_T = roundedSig[23:1]; // @[RoundAnyRawFNToRecFN.scala:173:16, :190:27]
wire [22:0] _common_fractOut_T_1 = roundedSig[22:0]; // @[RoundAnyRawFNToRecFN.scala:173:16, :191:27]
assign _common_fractOut_T_2 = doShiftSigDown1 ? _common_fractOut_T : _common_fractOut_T_1; // @[RoundAnyRawFNToRecFN.scala:120:57, :189:16, :190:27, :191:27]
assign common_fractOut = _common_fractOut_T_2; // @[RoundAnyRawFNToRecFN.scala:123:31, :189:16]
wire [3:0] _common_overflow_T = sRoundedExp[10:7]; // @[RoundAnyRawFNToRecFN.scala:185:40, :196:30]
assign _common_overflow_T_1 = $signed(_common_overflow_T) > 4'sh2; // @[RoundAnyRawFNToRecFN.scala:196:{30,50}]
assign common_overflow = _common_overflow_T_1; // @[RoundAnyRawFNToRecFN.scala:124:37, :196:50]
assign _common_totalUnderflow_T = $signed(sRoundedExp) < 11'sh6B; // @[RoundAnyRawFNToRecFN.scala:185:40, :200:31]
assign common_totalUnderflow = _common_totalUnderflow_T; // @[RoundAnyRawFNToRecFN.scala:125:37, :200:31]
wire _unboundedRange_roundPosBit_T = adjustedSig[2]; // @[RoundAnyRawFNToRecFN.scala:114:22, :203:45]
wire _unboundedRange_anyRound_T = adjustedSig[2]; // @[RoundAnyRawFNToRecFN.scala:114:22, :203:45, :205:44]
wire _unboundedRange_roundPosBit_T_1 = adjustedSig[1]; // @[RoundAnyRawFNToRecFN.scala:114:22, :203:61]
wire unboundedRange_roundPosBit = doShiftSigDown1 ? _unboundedRange_roundPosBit_T : _unboundedRange_roundPosBit_T_1; // @[RoundAnyRawFNToRecFN.scala:120:57, :203:{16,45,61}]
wire _unboundedRange_roundIncr_T_1 = unboundedRange_roundPosBit; // @[RoundAnyRawFNToRecFN.scala:203:16, :207:67]
wire _unboundedRange_anyRound_T_1 = doShiftSigDown1 & _unboundedRange_anyRound_T; // @[RoundAnyRawFNToRecFN.scala:120:57, :205:{30,44}]
wire [1:0] _unboundedRange_anyRound_T_2 = adjustedSig[1:0]; // @[RoundAnyRawFNToRecFN.scala:114:22, :205:63]
wire _unboundedRange_anyRound_T_3 = |_unboundedRange_anyRound_T_2; // @[RoundAnyRawFNToRecFN.scala:205:{63,70}]
wire unboundedRange_anyRound = _unboundedRange_anyRound_T_1 | _unboundedRange_anyRound_T_3; // @[RoundAnyRawFNToRecFN.scala:205:{30,49,70}]
wire unboundedRange_roundIncr = _unboundedRange_roundIncr_T_1; // @[RoundAnyRawFNToRecFN.scala:207:67, :208:46]
wire _roundCarry_T = roundedSig[25]; // @[RoundAnyRawFNToRecFN.scala:173:16, :212:27]
wire _roundCarry_T_1 = roundedSig[24]; // @[RoundAnyRawFNToRecFN.scala:173:16, :213:27]
wire roundCarry = doShiftSigDown1 ? _roundCarry_T : _roundCarry_T_1; // @[RoundAnyRawFNToRecFN.scala:120:57, :211:16, :212:27, :213:27]
wire [1:0] _common_underflow_T = io_in_sExp_0[9:8]; // @[RoundAnyRawFNToRecFN.scala:48:5, :220:49]
wire _common_underflow_T_1 = _common_underflow_T != 2'h1; // @[RoundAnyRawFNToRecFN.scala:220:{49,64}]
wire _common_underflow_T_2 = anyRound & _common_underflow_T_1; // @[RoundAnyRawFNToRecFN.scala:166:36, :220:{32,64}]
wire _common_underflow_T_3 = roundMask[3]; // @[RoundAnyRawFNToRecFN.scala:159:42, :221:57]
wire _common_underflow_T_9 = roundMask[3]; // @[RoundAnyRawFNToRecFN.scala:159:42, :221:57, :225:49]
wire _common_underflow_T_4 = roundMask[2]; // @[RoundAnyRawFNToRecFN.scala:159:42, :221:71]
wire _common_underflow_T_5 = doShiftSigDown1 ? _common_underflow_T_3 : _common_underflow_T_4; // @[RoundAnyRawFNToRecFN.scala:120:57, :221:{30,57,71}]
wire _common_underflow_T_6 = _common_underflow_T_2 & _common_underflow_T_5; // @[RoundAnyRawFNToRecFN.scala:220:{32,72}, :221:30]
wire _common_underflow_T_8 = roundMask[4]; // @[RoundAnyRawFNToRecFN.scala:159:42, :224:49]
wire _common_underflow_T_10 = doShiftSigDown1 ? _common_underflow_T_8 : _common_underflow_T_9; // @[RoundAnyRawFNToRecFN.scala:120:57, :223:39, :224:49, :225:49]
wire _common_underflow_T_11 = ~_common_underflow_T_10; // @[RoundAnyRawFNToRecFN.scala:223:{34,39}]
wire _common_underflow_T_12 = _common_underflow_T_11; // @[RoundAnyRawFNToRecFN.scala:222:77, :223:34]
wire _common_underflow_T_13 = _common_underflow_T_12 & roundCarry; // @[RoundAnyRawFNToRecFN.scala:211:16, :222:77, :226:38]
wire _common_underflow_T_14 = _common_underflow_T_13 & roundPosBit; // @[RoundAnyRawFNToRecFN.scala:164:56, :226:38, :227:45]
wire _common_underflow_T_15 = _common_underflow_T_14 & unboundedRange_roundIncr; // @[RoundAnyRawFNToRecFN.scala:208:46, :227:{45,60}]
wire _common_underflow_T_16 = ~_common_underflow_T_15; // @[RoundAnyRawFNToRecFN.scala:222:27, :227:60]
wire _common_underflow_T_17 = _common_underflow_T_6 & _common_underflow_T_16; // @[RoundAnyRawFNToRecFN.scala:220:72, :221:76, :222:27]
assign _common_underflow_T_18 = common_totalUnderflow | _common_underflow_T_17; // @[RoundAnyRawFNToRecFN.scala:125:37, :217:40, :221:76]
assign common_underflow = _common_underflow_T_18; // @[RoundAnyRawFNToRecFN.scala:126:37, :217:40]
assign _common_inexact_T = common_totalUnderflow | anyRound; // @[RoundAnyRawFNToRecFN.scala:125:37, :166:36, :230:49]
assign common_inexact = _common_inexact_T; // @[RoundAnyRawFNToRecFN.scala:127:37, :230:49]
wire isNaNOut = io_invalidExc_0 | io_in_isNaN_0; // @[RoundAnyRawFNToRecFN.scala:48:5, :235:34]
wire _commonCase_T = ~isNaNOut; // @[RoundAnyRawFNToRecFN.scala:235:34, :237:22]
wire _commonCase_T_1 = ~notNaN_isSpecialInfOut; // @[RoundAnyRawFNToRecFN.scala:236:49, :237:36]
wire _commonCase_T_2 = _commonCase_T & _commonCase_T_1; // @[RoundAnyRawFNToRecFN.scala:237:{22,33,36}]
wire _commonCase_T_3 = ~io_in_isZero_0; // @[RoundAnyRawFNToRecFN.scala:48:5, :237:64]
wire commonCase = _commonCase_T_2 & _commonCase_T_3; // @[RoundAnyRawFNToRecFN.scala:237:{33,61,64}]
wire overflow = commonCase & common_overflow; // @[RoundAnyRawFNToRecFN.scala:124:37, :237:61, :238:32]
wire _notNaN_isInfOut_T = overflow; // @[RoundAnyRawFNToRecFN.scala:238:32, :248:45]
wire underflow = commonCase & common_underflow; // @[RoundAnyRawFNToRecFN.scala:126:37, :237:61, :239:32]
wire _inexact_T = commonCase & common_inexact; // @[RoundAnyRawFNToRecFN.scala:127:37, :237:61, :240:43]
wire inexact = overflow | _inexact_T; // @[RoundAnyRawFNToRecFN.scala:238:32, :240:{28,43}]
wire _pegMinNonzeroMagOut_T = commonCase & common_totalUnderflow; // @[RoundAnyRawFNToRecFN.scala:125:37, :237:61, :245:20]
wire notNaN_isInfOut = notNaN_isSpecialInfOut | _notNaN_isInfOut_T; // @[RoundAnyRawFNToRecFN.scala:236:49, :248:{32,45}]
wire signOut = ~isNaNOut & io_in_sign_0; // @[RoundAnyRawFNToRecFN.scala:48:5, :235:34, :250:22]
wire _expOut_T = io_in_isZero_0 | common_totalUnderflow; // @[RoundAnyRawFNToRecFN.scala:48:5, :125:37, :253:32]
wire [8:0] _expOut_T_1 = _expOut_T ? 9'h1C0 : 9'h0; // @[RoundAnyRawFNToRecFN.scala:253:{18,32}]
wire [8:0] _expOut_T_2 = ~_expOut_T_1; // @[RoundAnyRawFNToRecFN.scala:253:{14,18}]
wire [8:0] _expOut_T_3 = common_expOut & _expOut_T_2; // @[RoundAnyRawFNToRecFN.scala:122:31, :252:24, :253:14]
wire [8:0] _expOut_T_7 = _expOut_T_3; // @[RoundAnyRawFNToRecFN.scala:252:24, :256:17]
wire [8:0] _expOut_T_10 = _expOut_T_7; // @[RoundAnyRawFNToRecFN.scala:256:17, :260:17]
wire [8:0] _expOut_T_11 = {2'h0, notNaN_isInfOut, 6'h0}; // @[RoundAnyRawFNToRecFN.scala:248:32, :265:18]
wire [8:0] _expOut_T_12 = ~_expOut_T_11; // @[RoundAnyRawFNToRecFN.scala:265:{14,18}]
wire [8:0] _expOut_T_13 = _expOut_T_10 & _expOut_T_12; // @[RoundAnyRawFNToRecFN.scala:260:17, :264:17, :265:14]
wire [8:0] _expOut_T_15 = _expOut_T_13; // @[RoundAnyRawFNToRecFN.scala:264:17, :268:18]
wire [8:0] _expOut_T_17 = _expOut_T_15; // @[RoundAnyRawFNToRecFN.scala:268:18, :272:15]
wire [8:0] _expOut_T_18 = notNaN_isInfOut ? 9'h180 : 9'h0; // @[RoundAnyRawFNToRecFN.scala:248:32, :277:16]
wire [8:0] _expOut_T_19 = _expOut_T_17 | _expOut_T_18; // @[RoundAnyRawFNToRecFN.scala:272:15, :276:15, :277:16]
wire [8:0] _expOut_T_20 = isNaNOut ? 9'h1C0 : 9'h0; // @[RoundAnyRawFNToRecFN.scala:235:34, :278:16]
wire [8:0] expOut = _expOut_T_19 | _expOut_T_20; // @[RoundAnyRawFNToRecFN.scala:276:15, :277:73, :278:16]
wire _fractOut_T = isNaNOut | io_in_isZero_0; // @[RoundAnyRawFNToRecFN.scala:48:5, :235:34, :280:22]
wire _fractOut_T_1 = _fractOut_T | common_totalUnderflow; // @[RoundAnyRawFNToRecFN.scala:125:37, :280:{22,38}]
wire [22:0] _fractOut_T_2 = {isNaNOut, 22'h0}; // @[RoundAnyRawFNToRecFN.scala:235:34, :281:16]
wire [22:0] _fractOut_T_3 = _fractOut_T_1 ? _fractOut_T_2 : common_fractOut; // @[RoundAnyRawFNToRecFN.scala:123:31, :280:{12,38}, :281:16]
wire [22:0] fractOut = _fractOut_T_3; // @[RoundAnyRawFNToRecFN.scala:280:12, :283:11]
wire [9:0] _io_out_T = {signOut, expOut}; // @[RoundAnyRawFNToRecFN.scala:250:22, :277:73, :286:23]
assign _io_out_T_1 = {_io_out_T, fractOut}; // @[RoundAnyRawFNToRecFN.scala:283:11, :286:{23,33}]
assign io_out_0 = _io_out_T_1; // @[RoundAnyRawFNToRecFN.scala:48:5, :286:33]
wire [1:0] _io_exceptionFlags_T = {io_invalidExc_0, 1'h0}; // @[RoundAnyRawFNToRecFN.scala:48:5, :288:23]
wire [2:0] _io_exceptionFlags_T_1 = {_io_exceptionFlags_T, overflow}; // @[RoundAnyRawFNToRecFN.scala:238:32, :288:{23,41}]
wire [3:0] _io_exceptionFlags_T_2 = {_io_exceptionFlags_T_1, underflow}; // @[RoundAnyRawFNToRecFN.scala:239:32, :288:{41,53}]
assign _io_exceptionFlags_T_3 = {_io_exceptionFlags_T_2, inexact}; // @[RoundAnyRawFNToRecFN.scala:240:28, :288:{53,66}]
assign io_exceptionFlags_0 = _io_exceptionFlags_T_3; // @[RoundAnyRawFNToRecFN.scala:48:5, :288:66]
assign io_out = io_out_0; // @[RoundAnyRawFNToRecFN.scala:48:5]
assign io_exceptionFlags = io_exceptionFlags_0; // @[RoundAnyRawFNToRecFN.scala:48:5]
endmodule |
Generate the Verilog code corresponding to the following Chisel files.
File Monitor.scala:
// See LICENSE.SiFive for license details.
package freechips.rocketchip.tilelink
import chisel3._
import chisel3.util._
import chisel3.experimental.SourceLine
import org.chipsalliance.cde.config._
import org.chipsalliance.diplomacy._
import freechips.rocketchip.diplomacy.EnableMonitors
import freechips.rocketchip.formal.{MonitorDirection, IfThen, Property, PropertyClass, TestplanTestType, TLMonitorStrictMode}
import freechips.rocketchip.util.PlusArg
case class TLMonitorArgs(edge: TLEdge)
abstract class TLMonitorBase(args: TLMonitorArgs) extends Module
{
val io = IO(new Bundle {
val in = Input(new TLBundle(args.edge.bundle))
})
def legalize(bundle: TLBundle, edge: TLEdge, reset: Reset): Unit
legalize(io.in, args.edge, reset)
}
object TLMonitor {
def apply(enable: Boolean, node: TLNode)(implicit p: Parameters): TLNode = {
if (enable) {
EnableMonitors { implicit p => node := TLEphemeralNode()(ValName("monitor")) }
} else { node }
}
}
class TLMonitor(args: TLMonitorArgs, monitorDir: MonitorDirection = MonitorDirection.Monitor) extends TLMonitorBase(args)
{
require (args.edge.params(TLMonitorStrictMode) || (! args.edge.params(TestplanTestType).formal))
val cover_prop_class = PropertyClass.Default
//Like assert but can flip to being an assumption for formal verification
def monAssert(cond: Bool, message: String): Unit =
if (monitorDir == MonitorDirection.Monitor) {
assert(cond, message)
} else {
Property(monitorDir, cond, message, PropertyClass.Default)
}
def assume(cond: Bool, message: String): Unit =
if (monitorDir == MonitorDirection.Monitor) {
assert(cond, message)
} else {
Property(monitorDir.flip, cond, message, PropertyClass.Default)
}
def extra = {
args.edge.sourceInfo match {
case SourceLine(filename, line, col) => s" (connected at $filename:$line:$col)"
case _ => ""
}
}
def visible(address: UInt, source: UInt, edge: TLEdge) =
edge.client.clients.map { c =>
!c.sourceId.contains(source) ||
c.visibility.map(_.contains(address)).reduce(_ || _)
}.reduce(_ && _)
def legalizeFormatA(bundle: TLBundleA, edge: TLEdge): Unit = {
//switch this flag to turn on diplomacy in error messages
def diplomacyInfo = if (true) "" else "\nThe diplomacy information for the edge is as follows:\n" + edge.formatEdge + "\n"
monAssert (TLMessages.isA(bundle.opcode), "'A' channel has invalid opcode" + extra)
// Reuse these subexpressions to save some firrtl lines
val source_ok = edge.client.contains(bundle.source)
val is_aligned = edge.isAligned(bundle.address, bundle.size)
val mask = edge.full_mask(bundle)
monAssert (visible(edge.address(bundle), bundle.source, edge), "'A' channel carries an address illegal for the specified bank visibility")
//The monitor doesnβt check for acquire T vs acquire B, it assumes that acquire B implies acquire T and only checks for acquire B
//TODO: check for acquireT?
when (bundle.opcode === TLMessages.AcquireBlock) {
monAssert (edge.master.emitsAcquireB(bundle.source, bundle.size) && edge.slave.supportsAcquireBSafe(edge.address(bundle), bundle.size), "'A' channel carries AcquireBlock type which is unexpected using diplomatic parameters" + diplomacyInfo + extra)
monAssert (edge.master.supportsProbe(edge.source(bundle), bundle.size) && edge.slave.emitsProbeSafe(edge.address(bundle), bundle.size), "'A' channel carries AcquireBlock from a client which does not support Probe" + diplomacyInfo + extra)
monAssert (source_ok, "'A' channel AcquireBlock carries invalid source ID" + diplomacyInfo + extra)
monAssert (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'A' channel AcquireBlock smaller than a beat" + extra)
monAssert (is_aligned, "'A' channel AcquireBlock address not aligned to size" + extra)
monAssert (TLPermissions.isGrow(bundle.param), "'A' channel AcquireBlock carries invalid grow param" + extra)
monAssert (~bundle.mask === 0.U, "'A' channel AcquireBlock contains invalid mask" + extra)
monAssert (!bundle.corrupt, "'A' channel AcquireBlock is corrupt" + extra)
}
when (bundle.opcode === TLMessages.AcquirePerm) {
monAssert (edge.master.emitsAcquireB(bundle.source, bundle.size) && edge.slave.supportsAcquireBSafe(edge.address(bundle), bundle.size), "'A' channel carries AcquirePerm type which is unexpected using diplomatic parameters" + diplomacyInfo + extra)
monAssert (edge.master.supportsProbe(edge.source(bundle), bundle.size) && edge.slave.emitsProbeSafe(edge.address(bundle), bundle.size), "'A' channel carries AcquirePerm from a client which does not support Probe" + diplomacyInfo + extra)
monAssert (source_ok, "'A' channel AcquirePerm carries invalid source ID" + diplomacyInfo + extra)
monAssert (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'A' channel AcquirePerm smaller than a beat" + extra)
monAssert (is_aligned, "'A' channel AcquirePerm address not aligned to size" + extra)
monAssert (TLPermissions.isGrow(bundle.param), "'A' channel AcquirePerm carries invalid grow param" + extra)
monAssert (bundle.param =/= TLPermissions.NtoB, "'A' channel AcquirePerm requests NtoB" + extra)
monAssert (~bundle.mask === 0.U, "'A' channel AcquirePerm contains invalid mask" + extra)
monAssert (!bundle.corrupt, "'A' channel AcquirePerm is corrupt" + extra)
}
when (bundle.opcode === TLMessages.Get) {
monAssert (edge.master.emitsGet(bundle.source, bundle.size), "'A' channel carries Get type which master claims it can't emit" + diplomacyInfo + extra)
monAssert (edge.slave.supportsGetSafe(edge.address(bundle), bundle.size, None), "'A' channel carries Get type which slave claims it can't support" + diplomacyInfo + extra)
monAssert (source_ok, "'A' channel Get carries invalid source ID" + diplomacyInfo + extra)
monAssert (is_aligned, "'A' channel Get address not aligned to size" + extra)
monAssert (bundle.param === 0.U, "'A' channel Get carries invalid param" + extra)
monAssert (bundle.mask === mask, "'A' channel Get contains invalid mask" + extra)
monAssert (!bundle.corrupt, "'A' channel Get is corrupt" + extra)
}
when (bundle.opcode === TLMessages.PutFullData) {
monAssert (edge.master.emitsPutFull(bundle.source, bundle.size) && edge.slave.supportsPutFullSafe(edge.address(bundle), bundle.size), "'A' channel carries PutFull type which is unexpected using diplomatic parameters" + diplomacyInfo + extra)
monAssert (source_ok, "'A' channel PutFull carries invalid source ID" + diplomacyInfo + extra)
monAssert (is_aligned, "'A' channel PutFull address not aligned to size" + extra)
monAssert (bundle.param === 0.U, "'A' channel PutFull carries invalid param" + extra)
monAssert (bundle.mask === mask, "'A' channel PutFull contains invalid mask" + extra)
}
when (bundle.opcode === TLMessages.PutPartialData) {
monAssert (edge.master.emitsPutPartial(bundle.source, bundle.size) && edge.slave.supportsPutPartialSafe(edge.address(bundle), bundle.size), "'A' channel carries PutPartial type which is unexpected using diplomatic parameters" + extra)
monAssert (source_ok, "'A' channel PutPartial carries invalid source ID" + diplomacyInfo + extra)
monAssert (is_aligned, "'A' channel PutPartial address not aligned to size" + extra)
monAssert (bundle.param === 0.U, "'A' channel PutPartial carries invalid param" + extra)
monAssert ((bundle.mask & ~mask) === 0.U, "'A' channel PutPartial contains invalid mask" + extra)
}
when (bundle.opcode === TLMessages.ArithmeticData) {
monAssert (edge.master.emitsArithmetic(bundle.source, bundle.size) && edge.slave.supportsArithmeticSafe(edge.address(bundle), bundle.size), "'A' channel carries Arithmetic type which is unexpected using diplomatic parameters" + extra)
monAssert (source_ok, "'A' channel Arithmetic carries invalid source ID" + diplomacyInfo + extra)
monAssert (is_aligned, "'A' channel Arithmetic address not aligned to size" + extra)
monAssert (TLAtomics.isArithmetic(bundle.param), "'A' channel Arithmetic carries invalid opcode param" + extra)
monAssert (bundle.mask === mask, "'A' channel Arithmetic contains invalid mask" + extra)
}
when (bundle.opcode === TLMessages.LogicalData) {
monAssert (edge.master.emitsLogical(bundle.source, bundle.size) && edge.slave.supportsLogicalSafe(edge.address(bundle), bundle.size), "'A' channel carries Logical type which is unexpected using diplomatic parameters" + extra)
monAssert (source_ok, "'A' channel Logical carries invalid source ID" + diplomacyInfo + extra)
monAssert (is_aligned, "'A' channel Logical address not aligned to size" + extra)
monAssert (TLAtomics.isLogical(bundle.param), "'A' channel Logical carries invalid opcode param" + extra)
monAssert (bundle.mask === mask, "'A' channel Logical contains invalid mask" + extra)
}
when (bundle.opcode === TLMessages.Hint) {
monAssert (edge.master.emitsHint(bundle.source, bundle.size) && edge.slave.supportsHintSafe(edge.address(bundle), bundle.size), "'A' channel carries Hint type which is unexpected using diplomatic parameters" + extra)
monAssert (source_ok, "'A' channel Hint carries invalid source ID" + diplomacyInfo + extra)
monAssert (is_aligned, "'A' channel Hint address not aligned to size" + extra)
monAssert (TLHints.isHints(bundle.param), "'A' channel Hint carries invalid opcode param" + extra)
monAssert (bundle.mask === mask, "'A' channel Hint contains invalid mask" + extra)
monAssert (!bundle.corrupt, "'A' channel Hint is corrupt" + extra)
}
}
def legalizeFormatB(bundle: TLBundleB, edge: TLEdge): Unit = {
monAssert (TLMessages.isB(bundle.opcode), "'B' channel has invalid opcode" + extra)
monAssert (visible(edge.address(bundle), bundle.source, edge), "'B' channel carries an address illegal for the specified bank visibility")
// Reuse these subexpressions to save some firrtl lines
val address_ok = edge.manager.containsSafe(edge.address(bundle))
val is_aligned = edge.isAligned(bundle.address, bundle.size)
val mask = edge.full_mask(bundle)
val legal_source = Mux1H(edge.client.find(bundle.source), edge.client.clients.map(c => c.sourceId.start.U)) === bundle.source
when (bundle.opcode === TLMessages.Probe) {
assume (edge.master.supportsProbe(edge.source(bundle), bundle.size) && edge.slave.emitsProbeSafe(edge.address(bundle), bundle.size), "'B' channel carries Probe type which is unexpected using diplomatic parameters" + extra)
assume (address_ok, "'B' channel Probe carries unmanaged address" + extra)
assume (legal_source, "'B' channel Probe carries source that is not first source" + extra)
assume (is_aligned, "'B' channel Probe address not aligned to size" + extra)
assume (TLPermissions.isCap(bundle.param), "'B' channel Probe carries invalid cap param" + extra)
assume (bundle.mask === mask, "'B' channel Probe contains invalid mask" + extra)
assume (!bundle.corrupt, "'B' channel Probe is corrupt" + extra)
}
when (bundle.opcode === TLMessages.Get) {
monAssert (edge.master.supportsGet(edge.source(bundle), bundle.size) && edge.slave.emitsGetSafe(edge.address(bundle), bundle.size), "'B' channel carries Get type which is unexpected using diplomatic parameters" + extra)
monAssert (address_ok, "'B' channel Get carries unmanaged address" + extra)
monAssert (legal_source, "'B' channel Get carries source that is not first source" + extra)
monAssert (is_aligned, "'B' channel Get address not aligned to size" + extra)
monAssert (bundle.param === 0.U, "'B' channel Get carries invalid param" + extra)
monAssert (bundle.mask === mask, "'B' channel Get contains invalid mask" + extra)
monAssert (!bundle.corrupt, "'B' channel Get is corrupt" + extra)
}
when (bundle.opcode === TLMessages.PutFullData) {
monAssert (edge.master.supportsPutFull(edge.source(bundle), bundle.size) && edge.slave.emitsPutFullSafe(edge.address(bundle), bundle.size), "'B' channel carries PutFull type which is unexpected using diplomatic parameters" + extra)
monAssert (address_ok, "'B' channel PutFull carries unmanaged address" + extra)
monAssert (legal_source, "'B' channel PutFull carries source that is not first source" + extra)
monAssert (is_aligned, "'B' channel PutFull address not aligned to size" + extra)
monAssert (bundle.param === 0.U, "'B' channel PutFull carries invalid param" + extra)
monAssert (bundle.mask === mask, "'B' channel PutFull contains invalid mask" + extra)
}
when (bundle.opcode === TLMessages.PutPartialData) {
monAssert (edge.master.supportsPutPartial(edge.source(bundle), bundle.size) && edge.slave.emitsPutPartialSafe(edge.address(bundle), bundle.size), "'B' channel carries PutPartial type which is unexpected using diplomatic parameters" + extra)
monAssert (address_ok, "'B' channel PutPartial carries unmanaged address" + extra)
monAssert (legal_source, "'B' channel PutPartial carries source that is not first source" + extra)
monAssert (is_aligned, "'B' channel PutPartial address not aligned to size" + extra)
monAssert (bundle.param === 0.U, "'B' channel PutPartial carries invalid param" + extra)
monAssert ((bundle.mask & ~mask) === 0.U, "'B' channel PutPartial contains invalid mask" + extra)
}
when (bundle.opcode === TLMessages.ArithmeticData) {
monAssert (edge.master.supportsArithmetic(edge.source(bundle), bundle.size) && edge.slave.emitsArithmeticSafe(edge.address(bundle), bundle.size), "'B' channel carries Arithmetic type unsupported by master" + extra)
monAssert (address_ok, "'B' channel Arithmetic carries unmanaged address" + extra)
monAssert (legal_source, "'B' channel Arithmetic carries source that is not first source" + extra)
monAssert (is_aligned, "'B' channel Arithmetic address not aligned to size" + extra)
monAssert (TLAtomics.isArithmetic(bundle.param), "'B' channel Arithmetic carries invalid opcode param" + extra)
monAssert (bundle.mask === mask, "'B' channel Arithmetic contains invalid mask" + extra)
}
when (bundle.opcode === TLMessages.LogicalData) {
monAssert (edge.master.supportsLogical(edge.source(bundle), bundle.size) && edge.slave.emitsLogicalSafe(edge.address(bundle), bundle.size), "'B' channel carries Logical type unsupported by client" + extra)
monAssert (address_ok, "'B' channel Logical carries unmanaged address" + extra)
monAssert (legal_source, "'B' channel Logical carries source that is not first source" + extra)
monAssert (is_aligned, "'B' channel Logical address not aligned to size" + extra)
monAssert (TLAtomics.isLogical(bundle.param), "'B' channel Logical carries invalid opcode param" + extra)
monAssert (bundle.mask === mask, "'B' channel Logical contains invalid mask" + extra)
}
when (bundle.opcode === TLMessages.Hint) {
monAssert (edge.master.supportsHint(edge.source(bundle), bundle.size) && edge.slave.emitsHintSafe(edge.address(bundle), bundle.size), "'B' channel carries Hint type unsupported by client" + extra)
monAssert (address_ok, "'B' channel Hint carries unmanaged address" + extra)
monAssert (legal_source, "'B' channel Hint carries source that is not first source" + extra)
monAssert (is_aligned, "'B' channel Hint address not aligned to size" + extra)
monAssert (bundle.mask === mask, "'B' channel Hint contains invalid mask" + extra)
monAssert (!bundle.corrupt, "'B' channel Hint is corrupt" + extra)
}
}
def legalizeFormatC(bundle: TLBundleC, edge: TLEdge): Unit = {
monAssert (TLMessages.isC(bundle.opcode), "'C' channel has invalid opcode" + extra)
val source_ok = edge.client.contains(bundle.source)
val is_aligned = edge.isAligned(bundle.address, bundle.size)
val address_ok = edge.manager.containsSafe(edge.address(bundle))
monAssert (visible(edge.address(bundle), bundle.source, edge), "'C' channel carries an address illegal for the specified bank visibility")
when (bundle.opcode === TLMessages.ProbeAck) {
monAssert (address_ok, "'C' channel ProbeAck carries unmanaged address" + extra)
monAssert (source_ok, "'C' channel ProbeAck carries invalid source ID" + extra)
monAssert (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'C' channel ProbeAck smaller than a beat" + extra)
monAssert (is_aligned, "'C' channel ProbeAck address not aligned to size" + extra)
monAssert (TLPermissions.isReport(bundle.param), "'C' channel ProbeAck carries invalid report param" + extra)
monAssert (!bundle.corrupt, "'C' channel ProbeAck is corrupt" + extra)
}
when (bundle.opcode === TLMessages.ProbeAckData) {
monAssert (address_ok, "'C' channel ProbeAckData carries unmanaged address" + extra)
monAssert (source_ok, "'C' channel ProbeAckData carries invalid source ID" + extra)
monAssert (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'C' channel ProbeAckData smaller than a beat" + extra)
monAssert (is_aligned, "'C' channel ProbeAckData address not aligned to size" + extra)
monAssert (TLPermissions.isReport(bundle.param), "'C' channel ProbeAckData carries invalid report param" + extra)
}
when (bundle.opcode === TLMessages.Release) {
monAssert (edge.master.emitsAcquireB(edge.source(bundle), bundle.size) && edge.slave.supportsAcquireBSafe(edge.address(bundle), bundle.size), "'C' channel carries Release type unsupported by manager" + extra)
monAssert (edge.master.supportsProbe(edge.source(bundle), bundle.size) && edge.slave.emitsProbeSafe(edge.address(bundle), bundle.size), "'C' channel carries Release from a client which does not support Probe" + extra)
monAssert (source_ok, "'C' channel Release carries invalid source ID" + extra)
monAssert (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'C' channel Release smaller than a beat" + extra)
monAssert (is_aligned, "'C' channel Release address not aligned to size" + extra)
monAssert (TLPermissions.isReport(bundle.param), "'C' channel Release carries invalid report param" + extra)
monAssert (!bundle.corrupt, "'C' channel Release is corrupt" + extra)
}
when (bundle.opcode === TLMessages.ReleaseData) {
monAssert (edge.master.emitsAcquireB(edge.source(bundle), bundle.size) && edge.slave.supportsAcquireBSafe(edge.address(bundle), bundle.size), "'C' channel carries ReleaseData type unsupported by manager" + extra)
monAssert (edge.master.supportsProbe(edge.source(bundle), bundle.size) && edge.slave.emitsProbeSafe(edge.address(bundle), bundle.size), "'C' channel carries Release from a client which does not support Probe" + extra)
monAssert (source_ok, "'C' channel ReleaseData carries invalid source ID" + extra)
monAssert (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'C' channel ReleaseData smaller than a beat" + extra)
monAssert (is_aligned, "'C' channel ReleaseData address not aligned to size" + extra)
monAssert (TLPermissions.isReport(bundle.param), "'C' channel ReleaseData carries invalid report param" + extra)
}
when (bundle.opcode === TLMessages.AccessAck) {
monAssert (address_ok, "'C' channel AccessAck carries unmanaged address" + extra)
monAssert (source_ok, "'C' channel AccessAck carries invalid source ID" + extra)
monAssert (is_aligned, "'C' channel AccessAck address not aligned to size" + extra)
monAssert (bundle.param === 0.U, "'C' channel AccessAck carries invalid param" + extra)
monAssert (!bundle.corrupt, "'C' channel AccessAck is corrupt" + extra)
}
when (bundle.opcode === TLMessages.AccessAckData) {
monAssert (address_ok, "'C' channel AccessAckData carries unmanaged address" + extra)
monAssert (source_ok, "'C' channel AccessAckData carries invalid source ID" + extra)
monAssert (is_aligned, "'C' channel AccessAckData address not aligned to size" + extra)
monAssert (bundle.param === 0.U, "'C' channel AccessAckData carries invalid param" + extra)
}
when (bundle.opcode === TLMessages.HintAck) {
monAssert (address_ok, "'C' channel HintAck carries unmanaged address" + extra)
monAssert (source_ok, "'C' channel HintAck carries invalid source ID" + extra)
monAssert (is_aligned, "'C' channel HintAck address not aligned to size" + extra)
monAssert (bundle.param === 0.U, "'C' channel HintAck carries invalid param" + extra)
monAssert (!bundle.corrupt, "'C' channel HintAck is corrupt" + extra)
}
}
def legalizeFormatD(bundle: TLBundleD, edge: TLEdge): Unit = {
assume (TLMessages.isD(bundle.opcode), "'D' channel has invalid opcode" + extra)
val source_ok = edge.client.contains(bundle.source)
val sink_ok = bundle.sink < edge.manager.endSinkId.U
val deny_put_ok = edge.manager.mayDenyPut.B
val deny_get_ok = edge.manager.mayDenyGet.B
when (bundle.opcode === TLMessages.ReleaseAck) {
assume (source_ok, "'D' channel ReleaseAck carries invalid source ID" + extra)
assume (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'D' channel ReleaseAck smaller than a beat" + extra)
assume (bundle.param === 0.U, "'D' channel ReleaseeAck carries invalid param" + extra)
assume (!bundle.corrupt, "'D' channel ReleaseAck is corrupt" + extra)
assume (!bundle.denied, "'D' channel ReleaseAck is denied" + extra)
}
when (bundle.opcode === TLMessages.Grant) {
assume (source_ok, "'D' channel Grant carries invalid source ID" + extra)
assume (sink_ok, "'D' channel Grant carries invalid sink ID" + extra)
assume (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'D' channel Grant smaller than a beat" + extra)
assume (TLPermissions.isCap(bundle.param), "'D' channel Grant carries invalid cap param" + extra)
assume (bundle.param =/= TLPermissions.toN, "'D' channel Grant carries toN param" + extra)
assume (!bundle.corrupt, "'D' channel Grant is corrupt" + extra)
assume (deny_put_ok || !bundle.denied, "'D' channel Grant is denied" + extra)
}
when (bundle.opcode === TLMessages.GrantData) {
assume (source_ok, "'D' channel GrantData carries invalid source ID" + extra)
assume (sink_ok, "'D' channel GrantData carries invalid sink ID" + extra)
assume (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'D' channel GrantData smaller than a beat" + extra)
assume (TLPermissions.isCap(bundle.param), "'D' channel GrantData carries invalid cap param" + extra)
assume (bundle.param =/= TLPermissions.toN, "'D' channel GrantData carries toN param" + extra)
assume (!bundle.denied || bundle.corrupt, "'D' channel GrantData is denied but not corrupt" + extra)
assume (deny_get_ok || !bundle.denied, "'D' channel GrantData is denied" + extra)
}
when (bundle.opcode === TLMessages.AccessAck) {
assume (source_ok, "'D' channel AccessAck carries invalid source ID" + extra)
// size is ignored
assume (bundle.param === 0.U, "'D' channel AccessAck carries invalid param" + extra)
assume (!bundle.corrupt, "'D' channel AccessAck is corrupt" + extra)
assume (deny_put_ok || !bundle.denied, "'D' channel AccessAck is denied" + extra)
}
when (bundle.opcode === TLMessages.AccessAckData) {
assume (source_ok, "'D' channel AccessAckData carries invalid source ID" + extra)
// size is ignored
assume (bundle.param === 0.U, "'D' channel AccessAckData carries invalid param" + extra)
assume (!bundle.denied || bundle.corrupt, "'D' channel AccessAckData is denied but not corrupt" + extra)
assume (deny_get_ok || !bundle.denied, "'D' channel AccessAckData is denied" + extra)
}
when (bundle.opcode === TLMessages.HintAck) {
assume (source_ok, "'D' channel HintAck carries invalid source ID" + extra)
// size is ignored
assume (bundle.param === 0.U, "'D' channel HintAck carries invalid param" + extra)
assume (!bundle.corrupt, "'D' channel HintAck is corrupt" + extra)
assume (deny_put_ok || !bundle.denied, "'D' channel HintAck is denied" + extra)
}
}
def legalizeFormatE(bundle: TLBundleE, edge: TLEdge): Unit = {
val sink_ok = bundle.sink < edge.manager.endSinkId.U
monAssert (sink_ok, "'E' channels carries invalid sink ID" + extra)
}
def legalizeFormat(bundle: TLBundle, edge: TLEdge) = {
when (bundle.a.valid) { legalizeFormatA(bundle.a.bits, edge) }
when (bundle.d.valid) { legalizeFormatD(bundle.d.bits, edge) }
if (edge.client.anySupportProbe && edge.manager.anySupportAcquireB) {
when (bundle.b.valid) { legalizeFormatB(bundle.b.bits, edge) }
when (bundle.c.valid) { legalizeFormatC(bundle.c.bits, edge) }
when (bundle.e.valid) { legalizeFormatE(bundle.e.bits, edge) }
} else {
monAssert (!bundle.b.valid, "'B' channel valid and not TL-C" + extra)
monAssert (!bundle.c.valid, "'C' channel valid and not TL-C" + extra)
monAssert (!bundle.e.valid, "'E' channel valid and not TL-C" + extra)
}
}
def legalizeMultibeatA(a: DecoupledIO[TLBundleA], edge: TLEdge): Unit = {
val a_first = edge.first(a.bits, a.fire)
val opcode = Reg(UInt())
val param = Reg(UInt())
val size = Reg(UInt())
val source = Reg(UInt())
val address = Reg(UInt())
when (a.valid && !a_first) {
monAssert (a.bits.opcode === opcode, "'A' channel opcode changed within multibeat operation" + extra)
monAssert (a.bits.param === param, "'A' channel param changed within multibeat operation" + extra)
monAssert (a.bits.size === size, "'A' channel size changed within multibeat operation" + extra)
monAssert (a.bits.source === source, "'A' channel source changed within multibeat operation" + extra)
monAssert (a.bits.address=== address,"'A' channel address changed with multibeat operation" + extra)
}
when (a.fire && a_first) {
opcode := a.bits.opcode
param := a.bits.param
size := a.bits.size
source := a.bits.source
address := a.bits.address
}
}
def legalizeMultibeatB(b: DecoupledIO[TLBundleB], edge: TLEdge): Unit = {
val b_first = edge.first(b.bits, b.fire)
val opcode = Reg(UInt())
val param = Reg(UInt())
val size = Reg(UInt())
val source = Reg(UInt())
val address = Reg(UInt())
when (b.valid && !b_first) {
monAssert (b.bits.opcode === opcode, "'B' channel opcode changed within multibeat operation" + extra)
monAssert (b.bits.param === param, "'B' channel param changed within multibeat operation" + extra)
monAssert (b.bits.size === size, "'B' channel size changed within multibeat operation" + extra)
monAssert (b.bits.source === source, "'B' channel source changed within multibeat operation" + extra)
monAssert (b.bits.address=== address,"'B' channel addresss changed with multibeat operation" + extra)
}
when (b.fire && b_first) {
opcode := b.bits.opcode
param := b.bits.param
size := b.bits.size
source := b.bits.source
address := b.bits.address
}
}
def legalizeADSourceFormal(bundle: TLBundle, edge: TLEdge): Unit = {
// Symbolic variable
val sym_source = Wire(UInt(edge.client.endSourceId.W))
// TODO: Connect sym_source to a fixed value for simulation and to a
// free wire in formal
sym_source := 0.U
// Type casting Int to UInt
val maxSourceId = Wire(UInt(edge.client.endSourceId.W))
maxSourceId := edge.client.endSourceId.U
// Delayed verison of sym_source
val sym_source_d = Reg(UInt(edge.client.endSourceId.W))
sym_source_d := sym_source
// These will be constraints for FV setup
Property(
MonitorDirection.Monitor,
(sym_source === sym_source_d),
"sym_source should remain stable",
PropertyClass.Default)
Property(
MonitorDirection.Monitor,
(sym_source <= maxSourceId),
"sym_source should take legal value",
PropertyClass.Default)
val my_resp_pend = RegInit(false.B)
val my_opcode = Reg(UInt())
val my_size = Reg(UInt())
val a_first = bundle.a.valid && edge.first(bundle.a.bits, bundle.a.fire)
val d_first = bundle.d.valid && edge.first(bundle.d.bits, bundle.d.fire)
val my_a_first_beat = a_first && (bundle.a.bits.source === sym_source)
val my_d_first_beat = d_first && (bundle.d.bits.source === sym_source)
val my_clr_resp_pend = (bundle.d.fire && my_d_first_beat)
val my_set_resp_pend = (bundle.a.fire && my_a_first_beat && !my_clr_resp_pend)
when (my_set_resp_pend) {
my_resp_pend := true.B
} .elsewhen (my_clr_resp_pend) {
my_resp_pend := false.B
}
when (my_a_first_beat) {
my_opcode := bundle.a.bits.opcode
my_size := bundle.a.bits.size
}
val my_resp_size = Mux(my_a_first_beat, bundle.a.bits.size, my_size)
val my_resp_opcode = Mux(my_a_first_beat, bundle.a.bits.opcode, my_opcode)
val my_resp_opcode_legal = Wire(Bool())
when ((my_resp_opcode === TLMessages.Get) || (my_resp_opcode === TLMessages.ArithmeticData) ||
(my_resp_opcode === TLMessages.LogicalData)) {
my_resp_opcode_legal := (bundle.d.bits.opcode === TLMessages.AccessAckData)
} .elsewhen ((my_resp_opcode === TLMessages.PutFullData) || (my_resp_opcode === TLMessages.PutPartialData)) {
my_resp_opcode_legal := (bundle.d.bits.opcode === TLMessages.AccessAck)
} .otherwise {
my_resp_opcode_legal := (bundle.d.bits.opcode === TLMessages.HintAck)
}
monAssert (IfThen(my_resp_pend, !my_a_first_beat),
"Request message should not be sent with a source ID, for which a response message" +
"is already pending (not received until current cycle) for a prior request message" +
"with the same source ID" + extra)
assume (IfThen(my_clr_resp_pend, (my_set_resp_pend || my_resp_pend)),
"Response message should be accepted with a source ID only if a request message with the" +
"same source ID has been accepted or is being accepted in the current cycle" + extra)
assume (IfThen(my_d_first_beat, (my_a_first_beat || my_resp_pend)),
"Response message should be sent with a source ID only if a request message with the" +
"same source ID has been accepted or is being sent in the current cycle" + extra)
assume (IfThen(my_d_first_beat, (bundle.d.bits.size === my_resp_size)),
"If d_valid is 1, then d_size should be same as a_size of the corresponding request" +
"message" + extra)
assume (IfThen(my_d_first_beat, my_resp_opcode_legal),
"If d_valid is 1, then d_opcode should correspond with a_opcode of the corresponding" +
"request message" + extra)
}
def legalizeMultibeatC(c: DecoupledIO[TLBundleC], edge: TLEdge): Unit = {
val c_first = edge.first(c.bits, c.fire)
val opcode = Reg(UInt())
val param = Reg(UInt())
val size = Reg(UInt())
val source = Reg(UInt())
val address = Reg(UInt())
when (c.valid && !c_first) {
monAssert (c.bits.opcode === opcode, "'C' channel opcode changed within multibeat operation" + extra)
monAssert (c.bits.param === param, "'C' channel param changed within multibeat operation" + extra)
monAssert (c.bits.size === size, "'C' channel size changed within multibeat operation" + extra)
monAssert (c.bits.source === source, "'C' channel source changed within multibeat operation" + extra)
monAssert (c.bits.address=== address,"'C' channel address changed with multibeat operation" + extra)
}
when (c.fire && c_first) {
opcode := c.bits.opcode
param := c.bits.param
size := c.bits.size
source := c.bits.source
address := c.bits.address
}
}
def legalizeMultibeatD(d: DecoupledIO[TLBundleD], edge: TLEdge): Unit = {
val d_first = edge.first(d.bits, d.fire)
val opcode = Reg(UInt())
val param = Reg(UInt())
val size = Reg(UInt())
val source = Reg(UInt())
val sink = Reg(UInt())
val denied = Reg(Bool())
when (d.valid && !d_first) {
assume (d.bits.opcode === opcode, "'D' channel opcode changed within multibeat operation" + extra)
assume (d.bits.param === param, "'D' channel param changed within multibeat operation" + extra)
assume (d.bits.size === size, "'D' channel size changed within multibeat operation" + extra)
assume (d.bits.source === source, "'D' channel source changed within multibeat operation" + extra)
assume (d.bits.sink === sink, "'D' channel sink changed with multibeat operation" + extra)
assume (d.bits.denied === denied, "'D' channel denied changed with multibeat operation" + extra)
}
when (d.fire && d_first) {
opcode := d.bits.opcode
param := d.bits.param
size := d.bits.size
source := d.bits.source
sink := d.bits.sink
denied := d.bits.denied
}
}
def legalizeMultibeat(bundle: TLBundle, edge: TLEdge): Unit = {
legalizeMultibeatA(bundle.a, edge)
legalizeMultibeatD(bundle.d, edge)
if (edge.client.anySupportProbe && edge.manager.anySupportAcquireB) {
legalizeMultibeatB(bundle.b, edge)
legalizeMultibeatC(bundle.c, edge)
}
}
//This is left in for almond which doesn't adhere to the tilelink protocol
@deprecated("Use legalizeADSource instead if possible","")
def legalizeADSourceOld(bundle: TLBundle, edge: TLEdge): Unit = {
val inflight = RegInit(0.U(edge.client.endSourceId.W))
val a_first = edge.first(bundle.a.bits, bundle.a.fire)
val d_first = edge.first(bundle.d.bits, bundle.d.fire)
val a_set = WireInit(0.U(edge.client.endSourceId.W))
when (bundle.a.fire && a_first && edge.isRequest(bundle.a.bits)) {
a_set := UIntToOH(bundle.a.bits.source)
assert(!inflight(bundle.a.bits.source), "'A' channel re-used a source ID" + extra)
}
val d_clr = WireInit(0.U(edge.client.endSourceId.W))
val d_release_ack = bundle.d.bits.opcode === TLMessages.ReleaseAck
when (bundle.d.fire && d_first && edge.isResponse(bundle.d.bits) && !d_release_ack) {
d_clr := UIntToOH(bundle.d.bits.source)
assume((a_set | inflight)(bundle.d.bits.source), "'D' channel acknowledged for nothing inflight" + extra)
}
if (edge.manager.minLatency > 0) {
assume(a_set =/= d_clr || !a_set.orR, s"'A' and 'D' concurrent, despite minlatency > 0" + extra)
}
inflight := (inflight | a_set) & ~d_clr
val watchdog = RegInit(0.U(32.W))
val limit = PlusArg("tilelink_timeout",
docstring="Kill emulation after INT waiting TileLink cycles. Off if 0.")
assert (!inflight.orR || limit === 0.U || watchdog < limit, "TileLink timeout expired" + extra)
watchdog := watchdog + 1.U
when (bundle.a.fire || bundle.d.fire) { watchdog := 0.U }
}
def legalizeADSource(bundle: TLBundle, edge: TLEdge): Unit = {
val a_size_bus_size = edge.bundle.sizeBits + 1 //add one so that 0 is not mapped to anything (size 0 -> size 1 in map, size 0 in map means unset)
val a_opcode_bus_size = 3 + 1 //opcode size is 3, but add so that 0 is not mapped to anything
val log_a_opcode_bus_size = log2Ceil(a_opcode_bus_size)
val log_a_size_bus_size = log2Ceil(a_size_bus_size)
def size_to_numfullbits(x: UInt): UInt = (1.U << x) - 1.U //convert a number to that many full bits
val inflight = RegInit(0.U((2 max edge.client.endSourceId).W)) // size up to avoid width error
inflight.suggestName("inflight")
val inflight_opcodes = RegInit(0.U((edge.client.endSourceId << log_a_opcode_bus_size).W))
inflight_opcodes.suggestName("inflight_opcodes")
val inflight_sizes = RegInit(0.U((edge.client.endSourceId << log_a_size_bus_size).W))
inflight_sizes.suggestName("inflight_sizes")
val a_first = edge.first(bundle.a.bits, bundle.a.fire)
a_first.suggestName("a_first")
val d_first = edge.first(bundle.d.bits, bundle.d.fire)
d_first.suggestName("d_first")
val a_set = WireInit(0.U(edge.client.endSourceId.W))
val a_set_wo_ready = WireInit(0.U(edge.client.endSourceId.W))
a_set.suggestName("a_set")
a_set_wo_ready.suggestName("a_set_wo_ready")
val a_opcodes_set = WireInit(0.U((edge.client.endSourceId << log_a_opcode_bus_size).W))
a_opcodes_set.suggestName("a_opcodes_set")
val a_sizes_set = WireInit(0.U((edge.client.endSourceId << log_a_size_bus_size).W))
a_sizes_set.suggestName("a_sizes_set")
val a_opcode_lookup = WireInit(0.U((a_opcode_bus_size - 1).W))
a_opcode_lookup.suggestName("a_opcode_lookup")
a_opcode_lookup := ((inflight_opcodes) >> (bundle.d.bits.source << log_a_opcode_bus_size.U) & size_to_numfullbits(1.U << log_a_opcode_bus_size.U)) >> 1.U
val a_size_lookup = WireInit(0.U((1 << log_a_size_bus_size).W))
a_size_lookup.suggestName("a_size_lookup")
a_size_lookup := ((inflight_sizes) >> (bundle.d.bits.source << log_a_size_bus_size.U) & size_to_numfullbits(1.U << log_a_size_bus_size.U)) >> 1.U
val responseMap = VecInit(Seq(TLMessages.AccessAck, TLMessages.AccessAck, TLMessages.AccessAckData, TLMessages.AccessAckData, TLMessages.AccessAckData, TLMessages.HintAck, TLMessages.Grant, TLMessages.Grant))
val responseMapSecondOption = VecInit(Seq(TLMessages.AccessAck, TLMessages.AccessAck, TLMessages.AccessAckData, TLMessages.AccessAckData, TLMessages.AccessAckData, TLMessages.HintAck, TLMessages.GrantData, TLMessages.Grant))
val a_opcodes_set_interm = WireInit(0.U(a_opcode_bus_size.W))
a_opcodes_set_interm.suggestName("a_opcodes_set_interm")
val a_sizes_set_interm = WireInit(0.U(a_size_bus_size.W))
a_sizes_set_interm.suggestName("a_sizes_set_interm")
when (bundle.a.valid && a_first && edge.isRequest(bundle.a.bits)) {
a_set_wo_ready := UIntToOH(bundle.a.bits.source)
}
when (bundle.a.fire && a_first && edge.isRequest(bundle.a.bits)) {
a_set := UIntToOH(bundle.a.bits.source)
a_opcodes_set_interm := (bundle.a.bits.opcode << 1.U) | 1.U
a_sizes_set_interm := (bundle.a.bits.size << 1.U) | 1.U
a_opcodes_set := (a_opcodes_set_interm) << (bundle.a.bits.source << log_a_opcode_bus_size.U)
a_sizes_set := (a_sizes_set_interm) << (bundle.a.bits.source << log_a_size_bus_size.U)
monAssert(!inflight(bundle.a.bits.source), "'A' channel re-used a source ID" + extra)
}
val d_clr = WireInit(0.U(edge.client.endSourceId.W))
val d_clr_wo_ready = WireInit(0.U(edge.client.endSourceId.W))
d_clr.suggestName("d_clr")
d_clr_wo_ready.suggestName("d_clr_wo_ready")
val d_opcodes_clr = WireInit(0.U((edge.client.endSourceId << log_a_opcode_bus_size).W))
d_opcodes_clr.suggestName("d_opcodes_clr")
val d_sizes_clr = WireInit(0.U((edge.client.endSourceId << log_a_size_bus_size).W))
d_sizes_clr.suggestName("d_sizes_clr")
val d_release_ack = bundle.d.bits.opcode === TLMessages.ReleaseAck
when (bundle.d.valid && d_first && edge.isResponse(bundle.d.bits) && !d_release_ack) {
d_clr_wo_ready := UIntToOH(bundle.d.bits.source)
}
when (bundle.d.fire && d_first && edge.isResponse(bundle.d.bits) && !d_release_ack) {
d_clr := UIntToOH(bundle.d.bits.source)
d_opcodes_clr := size_to_numfullbits(1.U << log_a_opcode_bus_size.U) << (bundle.d.bits.source << log_a_opcode_bus_size.U)
d_sizes_clr := size_to_numfullbits(1.U << log_a_size_bus_size.U) << (bundle.d.bits.source << log_a_size_bus_size.U)
}
when (bundle.d.valid && d_first && edge.isResponse(bundle.d.bits) && !d_release_ack) {
val same_cycle_resp = bundle.a.valid && a_first && edge.isRequest(bundle.a.bits) && (bundle.a.bits.source === bundle.d.bits.source)
assume(((inflight)(bundle.d.bits.source)) || same_cycle_resp, "'D' channel acknowledged for nothing inflight" + extra)
when (same_cycle_resp) {
assume((bundle.d.bits.opcode === responseMap(bundle.a.bits.opcode)) ||
(bundle.d.bits.opcode === responseMapSecondOption(bundle.a.bits.opcode)), "'D' channel contains improper opcode response" + extra)
assume((bundle.a.bits.size === bundle.d.bits.size), "'D' channel contains improper response size" + extra)
} .otherwise {
assume((bundle.d.bits.opcode === responseMap(a_opcode_lookup)) ||
(bundle.d.bits.opcode === responseMapSecondOption(a_opcode_lookup)), "'D' channel contains improper opcode response" + extra)
assume((bundle.d.bits.size === a_size_lookup), "'D' channel contains improper response size" + extra)
}
}
when(bundle.d.valid && d_first && a_first && bundle.a.valid && (bundle.a.bits.source === bundle.d.bits.source) && !d_release_ack) {
assume((!bundle.d.ready) || bundle.a.ready, "ready check")
}
if (edge.manager.minLatency > 0) {
assume(a_set_wo_ready =/= d_clr_wo_ready || !a_set_wo_ready.orR, s"'A' and 'D' concurrent, despite minlatency > 0" + extra)
}
inflight := (inflight | a_set) & ~d_clr
inflight_opcodes := (inflight_opcodes | a_opcodes_set) & ~d_opcodes_clr
inflight_sizes := (inflight_sizes | a_sizes_set) & ~d_sizes_clr
val watchdog = RegInit(0.U(32.W))
val limit = PlusArg("tilelink_timeout",
docstring="Kill emulation after INT waiting TileLink cycles. Off if 0.")
monAssert (!inflight.orR || limit === 0.U || watchdog < limit, "TileLink timeout expired" + extra)
watchdog := watchdog + 1.U
when (bundle.a.fire || bundle.d.fire) { watchdog := 0.U }
}
def legalizeCDSource(bundle: TLBundle, edge: TLEdge): Unit = {
val c_size_bus_size = edge.bundle.sizeBits + 1 //add one so that 0 is not mapped to anything (size 0 -> size 1 in map, size 0 in map means unset)
val c_opcode_bus_size = 3 + 1 //opcode size is 3, but add so that 0 is not mapped to anything
val log_c_opcode_bus_size = log2Ceil(c_opcode_bus_size)
val log_c_size_bus_size = log2Ceil(c_size_bus_size)
def size_to_numfullbits(x: UInt): UInt = (1.U << x) - 1.U //convert a number to that many full bits
val inflight = RegInit(0.U((2 max edge.client.endSourceId).W))
val inflight_opcodes = RegInit(0.U((edge.client.endSourceId << log_c_opcode_bus_size).W))
val inflight_sizes = RegInit(0.U((edge.client.endSourceId << log_c_size_bus_size).W))
inflight.suggestName("inflight")
inflight_opcodes.suggestName("inflight_opcodes")
inflight_sizes.suggestName("inflight_sizes")
val c_first = edge.first(bundle.c.bits, bundle.c.fire)
val d_first = edge.first(bundle.d.bits, bundle.d.fire)
c_first.suggestName("c_first")
d_first.suggestName("d_first")
val c_set = WireInit(0.U(edge.client.endSourceId.W))
val c_set_wo_ready = WireInit(0.U(edge.client.endSourceId.W))
val c_opcodes_set = WireInit(0.U((edge.client.endSourceId << log_c_opcode_bus_size).W))
val c_sizes_set = WireInit(0.U((edge.client.endSourceId << log_c_size_bus_size).W))
c_set.suggestName("c_set")
c_set_wo_ready.suggestName("c_set_wo_ready")
c_opcodes_set.suggestName("c_opcodes_set")
c_sizes_set.suggestName("c_sizes_set")
val c_opcode_lookup = WireInit(0.U((1 << log_c_opcode_bus_size).W))
val c_size_lookup = WireInit(0.U((1 << log_c_size_bus_size).W))
c_opcode_lookup := ((inflight_opcodes) >> (bundle.d.bits.source << log_c_opcode_bus_size.U) & size_to_numfullbits(1.U << log_c_opcode_bus_size.U)) >> 1.U
c_size_lookup := ((inflight_sizes) >> (bundle.d.bits.source << log_c_size_bus_size.U) & size_to_numfullbits(1.U << log_c_size_bus_size.U)) >> 1.U
c_opcode_lookup.suggestName("c_opcode_lookup")
c_size_lookup.suggestName("c_size_lookup")
val c_opcodes_set_interm = WireInit(0.U(c_opcode_bus_size.W))
val c_sizes_set_interm = WireInit(0.U(c_size_bus_size.W))
c_opcodes_set_interm.suggestName("c_opcodes_set_interm")
c_sizes_set_interm.suggestName("c_sizes_set_interm")
when (bundle.c.valid && c_first && edge.isRequest(bundle.c.bits)) {
c_set_wo_ready := UIntToOH(bundle.c.bits.source)
}
when (bundle.c.fire && c_first && edge.isRequest(bundle.c.bits)) {
c_set := UIntToOH(bundle.c.bits.source)
c_opcodes_set_interm := (bundle.c.bits.opcode << 1.U) | 1.U
c_sizes_set_interm := (bundle.c.bits.size << 1.U) | 1.U
c_opcodes_set := (c_opcodes_set_interm) << (bundle.c.bits.source << log_c_opcode_bus_size.U)
c_sizes_set := (c_sizes_set_interm) << (bundle.c.bits.source << log_c_size_bus_size.U)
monAssert(!inflight(bundle.c.bits.source), "'C' channel re-used a source ID" + extra)
}
val c_probe_ack = bundle.c.bits.opcode === TLMessages.ProbeAck || bundle.c.bits.opcode === TLMessages.ProbeAckData
val d_clr = WireInit(0.U(edge.client.endSourceId.W))
val d_clr_wo_ready = WireInit(0.U(edge.client.endSourceId.W))
val d_opcodes_clr = WireInit(0.U((edge.client.endSourceId << log_c_opcode_bus_size).W))
val d_sizes_clr = WireInit(0.U((edge.client.endSourceId << log_c_size_bus_size).W))
d_clr.suggestName("d_clr")
d_clr_wo_ready.suggestName("d_clr_wo_ready")
d_opcodes_clr.suggestName("d_opcodes_clr")
d_sizes_clr.suggestName("d_sizes_clr")
val d_release_ack = bundle.d.bits.opcode === TLMessages.ReleaseAck
when (bundle.d.valid && d_first && edge.isResponse(bundle.d.bits) && d_release_ack) {
d_clr_wo_ready := UIntToOH(bundle.d.bits.source)
}
when (bundle.d.fire && d_first && edge.isResponse(bundle.d.bits) && d_release_ack) {
d_clr := UIntToOH(bundle.d.bits.source)
d_opcodes_clr := size_to_numfullbits(1.U << log_c_opcode_bus_size.U) << (bundle.d.bits.source << log_c_opcode_bus_size.U)
d_sizes_clr := size_to_numfullbits(1.U << log_c_size_bus_size.U) << (bundle.d.bits.source << log_c_size_bus_size.U)
}
when (bundle.d.valid && d_first && edge.isResponse(bundle.d.bits) && d_release_ack) {
val same_cycle_resp = bundle.c.valid && c_first && edge.isRequest(bundle.c.bits) && (bundle.c.bits.source === bundle.d.bits.source)
assume(((inflight)(bundle.d.bits.source)) || same_cycle_resp, "'D' channel acknowledged for nothing inflight" + extra)
when (same_cycle_resp) {
assume((bundle.d.bits.size === bundle.c.bits.size), "'D' channel contains improper response size" + extra)
} .otherwise {
assume((bundle.d.bits.size === c_size_lookup), "'D' channel contains improper response size" + extra)
}
}
when(bundle.d.valid && d_first && c_first && bundle.c.valid && (bundle.c.bits.source === bundle.d.bits.source) && d_release_ack && !c_probe_ack) {
assume((!bundle.d.ready) || bundle.c.ready, "ready check")
}
if (edge.manager.minLatency > 0) {
when (c_set_wo_ready.orR) {
assume(c_set_wo_ready =/= d_clr_wo_ready, s"'C' and 'D' concurrent, despite minlatency > 0" + extra)
}
}
inflight := (inflight | c_set) & ~d_clr
inflight_opcodes := (inflight_opcodes | c_opcodes_set) & ~d_opcodes_clr
inflight_sizes := (inflight_sizes | c_sizes_set) & ~d_sizes_clr
val watchdog = RegInit(0.U(32.W))
val limit = PlusArg("tilelink_timeout",
docstring="Kill emulation after INT waiting TileLink cycles. Off if 0.")
monAssert (!inflight.orR || limit === 0.U || watchdog < limit, "TileLink timeout expired" + extra)
watchdog := watchdog + 1.U
when (bundle.c.fire || bundle.d.fire) { watchdog := 0.U }
}
def legalizeDESink(bundle: TLBundle, edge: TLEdge): Unit = {
val inflight = RegInit(0.U(edge.manager.endSinkId.W))
val d_first = edge.first(bundle.d.bits, bundle.d.fire)
val e_first = true.B
val d_set = WireInit(0.U(edge.manager.endSinkId.W))
when (bundle.d.fire && d_first && edge.isRequest(bundle.d.bits)) {
d_set := UIntToOH(bundle.d.bits.sink)
assume(!inflight(bundle.d.bits.sink), "'D' channel re-used a sink ID" + extra)
}
val e_clr = WireInit(0.U(edge.manager.endSinkId.W))
when (bundle.e.fire && e_first && edge.isResponse(bundle.e.bits)) {
e_clr := UIntToOH(bundle.e.bits.sink)
monAssert((d_set | inflight)(bundle.e.bits.sink), "'E' channel acknowledged for nothing inflight" + extra)
}
// edge.client.minLatency applies to BC, not DE
inflight := (inflight | d_set) & ~e_clr
}
def legalizeUnique(bundle: TLBundle, edge: TLEdge): Unit = {
val sourceBits = log2Ceil(edge.client.endSourceId)
val tooBig = 14 // >16kB worth of flight information gets to be too much
if (sourceBits > tooBig) {
println(s"WARNING: TLMonitor instantiated on a bus with source bits (${sourceBits}) > ${tooBig}; A=>D transaction flight will not be checked")
} else {
if (args.edge.params(TestplanTestType).simulation) {
if (args.edge.params(TLMonitorStrictMode)) {
legalizeADSource(bundle, edge)
legalizeCDSource(bundle, edge)
} else {
legalizeADSourceOld(bundle, edge)
}
}
if (args.edge.params(TestplanTestType).formal) {
legalizeADSourceFormal(bundle, edge)
}
}
if (edge.client.anySupportProbe && edge.manager.anySupportAcquireB) {
// legalizeBCSourceAddress(bundle, edge) // too much state needed to synthesize...
val sinkBits = log2Ceil(edge.manager.endSinkId)
if (sinkBits > tooBig) {
println(s"WARNING: TLMonitor instantiated on a bus with sink bits (${sinkBits}) > ${tooBig}; D=>E transaction flight will not be checked")
} else {
legalizeDESink(bundle, edge)
}
}
}
def legalize(bundle: TLBundle, edge: TLEdge, reset: Reset): Unit = {
legalizeFormat (bundle, edge)
legalizeMultibeat (bundle, edge)
legalizeUnique (bundle, edge)
}
}
File PlusArg.scala:
// See LICENSE.SiFive for license details.
package freechips.rocketchip.util
import chisel3._
import chisel3.experimental._
import chisel3.util.HasBlackBoxResource
@deprecated("This will be removed in Rocket Chip 2020.08", "Rocket Chip 2020.05")
case class PlusArgInfo(default: BigInt, docstring: String)
/** Case class for PlusArg information
*
* @tparam A scala type of the PlusArg value
* @param default optional default value
* @param docstring text to include in the help
* @param doctype description of the Verilog type of the PlusArg value (e.g. STRING, INT)
*/
private case class PlusArgContainer[A](default: Option[A], docstring: String, doctype: String)
/** Typeclass for converting a type to a doctype string
* @tparam A some type
*/
trait Doctypeable[A] {
/** Return the doctype string for some option */
def toDoctype(a: Option[A]): String
}
/** Object containing implementations of the Doctypeable typeclass */
object Doctypes {
/** Converts an Int => "INT" */
implicit val intToDoctype = new Doctypeable[Int] { def toDoctype(a: Option[Int]) = "INT" }
/** Converts a BigInt => "INT" */
implicit val bigIntToDoctype = new Doctypeable[BigInt] { def toDoctype(a: Option[BigInt]) = "INT" }
/** Converts a String => "STRING" */
implicit val stringToDoctype = new Doctypeable[String] { def toDoctype(a: Option[String]) = "STRING" }
}
class plusarg_reader(val format: String, val default: BigInt, val docstring: String, val width: Int) extends BlackBox(Map(
"FORMAT" -> StringParam(format),
"DEFAULT" -> IntParam(default),
"WIDTH" -> IntParam(width)
)) with HasBlackBoxResource {
val io = IO(new Bundle {
val out = Output(UInt(width.W))
})
addResource("/vsrc/plusarg_reader.v")
}
/* This wrapper class has no outputs, making it clear it is a simulation-only construct */
class PlusArgTimeout(val format: String, val default: BigInt, val docstring: String, val width: Int) extends Module {
val io = IO(new Bundle {
val count = Input(UInt(width.W))
})
val max = Module(new plusarg_reader(format, default, docstring, width)).io.out
when (max > 0.U) {
assert (io.count < max, s"Timeout exceeded: $docstring")
}
}
import Doctypes._
object PlusArg
{
/** PlusArg("foo") will return 42.U if the simulation is run with +foo=42
* Do not use this as an initial register value. The value is set in an
* initial block and thus accessing it from another initial is racey.
* Add a docstring to document the arg, which can be dumped in an elaboration
* pass.
*/
def apply(name: String, default: BigInt = 0, docstring: String = "", width: Int = 32): UInt = {
PlusArgArtefacts.append(name, Some(default), docstring)
Module(new plusarg_reader(name + "=%d", default, docstring, width)).io.out
}
/** PlusArg.timeout(name, default, docstring)(count) will use chisel.assert
* to kill the simulation when count exceeds the specified integer argument.
* Default 0 will never assert.
*/
def timeout(name: String, default: BigInt = 0, docstring: String = "", width: Int = 32)(count: UInt): Unit = {
PlusArgArtefacts.append(name, Some(default), docstring)
Module(new PlusArgTimeout(name + "=%d", default, docstring, width)).io.count := count
}
}
object PlusArgArtefacts {
private var artefacts: Map[String, PlusArgContainer[_]] = Map.empty
/* Add a new PlusArg */
@deprecated(
"Use `Some(BigInt)` to specify a `default` value. This will be removed in Rocket Chip 2020.08",
"Rocket Chip 2020.05"
)
def append(name: String, default: BigInt, docstring: String): Unit = append(name, Some(default), docstring)
/** Add a new PlusArg
*
* @tparam A scala type of the PlusArg value
* @param name name for the PlusArg
* @param default optional default value
* @param docstring text to include in the help
*/
def append[A : Doctypeable](name: String, default: Option[A], docstring: String): Unit =
artefacts = artefacts ++
Map(name -> PlusArgContainer(default, docstring, implicitly[Doctypeable[A]].toDoctype(default)))
/* From plus args, generate help text */
private def serializeHelp_cHeader(tab: String = ""): String = artefacts
.map{ case(arg, info) =>
s"""|$tab+$arg=${info.doctype}\\n\\
|$tab${" "*20}${info.docstring}\\n\\
|""".stripMargin ++ info.default.map{ case default =>
s"$tab${" "*22}(default=${default})\\n\\\n"}.getOrElse("")
}.toSeq.mkString("\\n\\\n") ++ "\""
/* From plus args, generate a char array of their names */
private def serializeArray_cHeader(tab: String = ""): String = {
val prettyTab = tab + " " * 44 // Length of 'static const ...'
s"${tab}static const char * verilog_plusargs [] = {\\\n" ++
artefacts
.map{ case(arg, _) => s"""$prettyTab"$arg",\\\n""" }
.mkString("")++
s"${prettyTab}0};"
}
/* Generate C code to be included in emulator.cc that helps with
* argument parsing based on available Verilog PlusArgs */
def serialize_cHeader(): String =
s"""|#define PLUSARG_USAGE_OPTIONS \"EMULATOR VERILOG PLUSARGS\\n\\
|${serializeHelp_cHeader(" "*7)}
|${serializeArray_cHeader()}
|""".stripMargin
}
File package.scala:
// See LICENSE.SiFive for license details.
package freechips.rocketchip
import chisel3._
import chisel3.util._
import scala.math.min
import scala.collection.{immutable, mutable}
package object util {
implicit class UnzippableOption[S, T](val x: Option[(S, T)]) {
def unzip = (x.map(_._1), x.map(_._2))
}
implicit class UIntIsOneOf(private val x: UInt) extends AnyVal {
def isOneOf(s: Seq[UInt]): Bool = s.map(x === _).orR
def isOneOf(u1: UInt, u2: UInt*): Bool = isOneOf(u1 +: u2.toSeq)
}
implicit class VecToAugmentedVec[T <: Data](private val x: Vec[T]) extends AnyVal {
/** Like Vec.apply(idx), but tolerates indices of mismatched width */
def extract(idx: UInt): T = x((idx | 0.U(log2Ceil(x.size).W)).extract(log2Ceil(x.size) - 1, 0))
}
implicit class SeqToAugmentedSeq[T <: Data](private val x: Seq[T]) extends AnyVal {
def apply(idx: UInt): T = {
if (x.size <= 1) {
x.head
} else if (!isPow2(x.size)) {
// For non-power-of-2 seqs, reflect elements to simplify decoder
(x ++ x.takeRight(x.size & -x.size)).toSeq(idx)
} else {
// Ignore MSBs of idx
val truncIdx =
if (idx.isWidthKnown && idx.getWidth <= log2Ceil(x.size)) idx
else (idx | 0.U(log2Ceil(x.size).W))(log2Ceil(x.size)-1, 0)
x.zipWithIndex.tail.foldLeft(x.head) { case (prev, (cur, i)) => Mux(truncIdx === i.U, cur, prev) }
}
}
def extract(idx: UInt): T = VecInit(x).extract(idx)
def asUInt: UInt = Cat(x.map(_.asUInt).reverse)
def rotate(n: Int): Seq[T] = x.drop(n) ++ x.take(n)
def rotate(n: UInt): Seq[T] = {
if (x.size <= 1) {
x
} else {
require(isPow2(x.size))
val amt = n.padTo(log2Ceil(x.size))
(0 until log2Ceil(x.size)).foldLeft(x)((r, i) => (r.rotate(1 << i) zip r).map { case (s, a) => Mux(amt(i), s, a) })
}
}
def rotateRight(n: Int): Seq[T] = x.takeRight(n) ++ x.dropRight(n)
def rotateRight(n: UInt): Seq[T] = {
if (x.size <= 1) {
x
} else {
require(isPow2(x.size))
val amt = n.padTo(log2Ceil(x.size))
(0 until log2Ceil(x.size)).foldLeft(x)((r, i) => (r.rotateRight(1 << i) zip r).map { case (s, a) => Mux(amt(i), s, a) })
}
}
}
// allow bitwise ops on Seq[Bool] just like UInt
implicit class SeqBoolBitwiseOps(private val x: Seq[Bool]) extends AnyVal {
def & (y: Seq[Bool]): Seq[Bool] = (x zip y).map { case (a, b) => a && b }
def | (y: Seq[Bool]): Seq[Bool] = padZip(x, y).map { case (a, b) => a || b }
def ^ (y: Seq[Bool]): Seq[Bool] = padZip(x, y).map { case (a, b) => a ^ b }
def << (n: Int): Seq[Bool] = Seq.fill(n)(false.B) ++ x
def >> (n: Int): Seq[Bool] = x drop n
def unary_~ : Seq[Bool] = x.map(!_)
def andR: Bool = if (x.isEmpty) true.B else x.reduce(_&&_)
def orR: Bool = if (x.isEmpty) false.B else x.reduce(_||_)
def xorR: Bool = if (x.isEmpty) false.B else x.reduce(_^_)
private def padZip(y: Seq[Bool], z: Seq[Bool]): Seq[(Bool, Bool)] = y.padTo(z.size, false.B) zip z.padTo(y.size, false.B)
}
implicit class DataToAugmentedData[T <: Data](private val x: T) extends AnyVal {
def holdUnless(enable: Bool): T = Mux(enable, x, RegEnable(x, enable))
def getElements: Seq[Element] = x match {
case e: Element => Seq(e)
case a: Aggregate => a.getElements.flatMap(_.getElements)
}
}
/** Any Data subtype that has a Bool member named valid. */
type DataCanBeValid = Data { val valid: Bool }
implicit class SeqMemToAugmentedSeqMem[T <: Data](private val x: SyncReadMem[T]) extends AnyVal {
def readAndHold(addr: UInt, enable: Bool): T = x.read(addr, enable) holdUnless RegNext(enable)
}
implicit class StringToAugmentedString(private val x: String) extends AnyVal {
/** converts from camel case to to underscores, also removing all spaces */
def underscore: String = x.tail.foldLeft(x.headOption.map(_.toLower + "") getOrElse "") {
case (acc, c) if c.isUpper => acc + "_" + c.toLower
case (acc, c) if c == ' ' => acc
case (acc, c) => acc + c
}
/** converts spaces or underscores to hyphens, also lowering case */
def kebab: String = x.toLowerCase map {
case ' ' => '-'
case '_' => '-'
case c => c
}
def named(name: Option[String]): String = {
x + name.map("_named_" + _ ).getOrElse("_with_no_name")
}
def named(name: String): String = named(Some(name))
}
implicit def uintToBitPat(x: UInt): BitPat = BitPat(x)
implicit def wcToUInt(c: WideCounter): UInt = c.value
implicit class UIntToAugmentedUInt(private val x: UInt) extends AnyVal {
def sextTo(n: Int): UInt = {
require(x.getWidth <= n)
if (x.getWidth == n) x
else Cat(Fill(n - x.getWidth, x(x.getWidth-1)), x)
}
def padTo(n: Int): UInt = {
require(x.getWidth <= n)
if (x.getWidth == n) x
else Cat(0.U((n - x.getWidth).W), x)
}
// shifts left by n if n >= 0, or right by -n if n < 0
def << (n: SInt): UInt = {
val w = n.getWidth - 1
require(w <= 30)
val shifted = x << n(w-1, 0)
Mux(n(w), shifted >> (1 << w), shifted)
}
// shifts right by n if n >= 0, or left by -n if n < 0
def >> (n: SInt): UInt = {
val w = n.getWidth - 1
require(w <= 30)
val shifted = x << (1 << w) >> n(w-1, 0)
Mux(n(w), shifted, shifted >> (1 << w))
}
// Like UInt.apply(hi, lo), but returns 0.U for zero-width extracts
def extract(hi: Int, lo: Int): UInt = {
require(hi >= lo-1)
if (hi == lo-1) 0.U
else x(hi, lo)
}
// Like Some(UInt.apply(hi, lo)), but returns None for zero-width extracts
def extractOption(hi: Int, lo: Int): Option[UInt] = {
require(hi >= lo-1)
if (hi == lo-1) None
else Some(x(hi, lo))
}
// like x & ~y, but first truncate or zero-extend y to x's width
def andNot(y: UInt): UInt = x & ~(y | (x & 0.U))
def rotateRight(n: Int): UInt = if (n == 0) x else Cat(x(n-1, 0), x >> n)
def rotateRight(n: UInt): UInt = {
if (x.getWidth <= 1) {
x
} else {
val amt = n.padTo(log2Ceil(x.getWidth))
(0 until log2Ceil(x.getWidth)).foldLeft(x)((r, i) => Mux(amt(i), r.rotateRight(1 << i), r))
}
}
def rotateLeft(n: Int): UInt = if (n == 0) x else Cat(x(x.getWidth-1-n,0), x(x.getWidth-1,x.getWidth-n))
def rotateLeft(n: UInt): UInt = {
if (x.getWidth <= 1) {
x
} else {
val amt = n.padTo(log2Ceil(x.getWidth))
(0 until log2Ceil(x.getWidth)).foldLeft(x)((r, i) => Mux(amt(i), r.rotateLeft(1 << i), r))
}
}
// compute (this + y) % n, given (this < n) and (y < n)
def addWrap(y: UInt, n: Int): UInt = {
val z = x +& y
if (isPow2(n)) z(n.log2-1, 0) else Mux(z >= n.U, z - n.U, z)(log2Ceil(n)-1, 0)
}
// compute (this - y) % n, given (this < n) and (y < n)
def subWrap(y: UInt, n: Int): UInt = {
val z = x -& y
if (isPow2(n)) z(n.log2-1, 0) else Mux(z(z.getWidth-1), z + n.U, z)(log2Ceil(n)-1, 0)
}
def grouped(width: Int): Seq[UInt] =
(0 until x.getWidth by width).map(base => x(base + width - 1, base))
def inRange(base: UInt, bounds: UInt) = x >= base && x < bounds
def ## (y: Option[UInt]): UInt = y.map(x ## _).getOrElse(x)
// Like >=, but prevents x-prop for ('x >= 0)
def >== (y: UInt): Bool = x >= y || y === 0.U
}
implicit class OptionUIntToAugmentedOptionUInt(private val x: Option[UInt]) extends AnyVal {
def ## (y: UInt): UInt = x.map(_ ## y).getOrElse(y)
def ## (y: Option[UInt]): Option[UInt] = x.map(_ ## y)
}
implicit class BooleanToAugmentedBoolean(private val x: Boolean) extends AnyVal {
def toInt: Int = if (x) 1 else 0
// this one's snagged from scalaz
def option[T](z: => T): Option[T] = if (x) Some(z) else None
}
implicit class IntToAugmentedInt(private val x: Int) extends AnyVal {
// exact log2
def log2: Int = {
require(isPow2(x))
log2Ceil(x)
}
}
def OH1ToOH(x: UInt): UInt = (x << 1 | 1.U) & ~Cat(0.U(1.W), x)
def OH1ToUInt(x: UInt): UInt = OHToUInt(OH1ToOH(x))
def UIntToOH1(x: UInt, width: Int): UInt = ~((-1).S(width.W).asUInt << x)(width-1, 0)
def UIntToOH1(x: UInt): UInt = UIntToOH1(x, (1 << x.getWidth) - 1)
def trailingZeros(x: Int): Option[Int] = if (x > 0) Some(log2Ceil(x & -x)) else None
// Fill 1s from low bits to high bits
def leftOR(x: UInt): UInt = leftOR(x, x.getWidth, x.getWidth)
def leftOR(x: UInt, width: Integer, cap: Integer = 999999): UInt = {
val stop = min(width, cap)
def helper(s: Int, x: UInt): UInt =
if (s >= stop) x else helper(s+s, x | (x << s)(width-1,0))
helper(1, x)(width-1, 0)
}
// Fill 1s form high bits to low bits
def rightOR(x: UInt): UInt = rightOR(x, x.getWidth, x.getWidth)
def rightOR(x: UInt, width: Integer, cap: Integer = 999999): UInt = {
val stop = min(width, cap)
def helper(s: Int, x: UInt): UInt =
if (s >= stop) x else helper(s+s, x | (x >> s))
helper(1, x)(width-1, 0)
}
def OptimizationBarrier[T <: Data](in: T): T = {
val barrier = Module(new Module {
val io = IO(new Bundle {
val x = Input(chiselTypeOf(in))
val y = Output(chiselTypeOf(in))
})
io.y := io.x
override def desiredName = s"OptimizationBarrier_${in.typeName}"
})
barrier.io.x := in
barrier.io.y
}
/** Similar to Seq.groupBy except this returns a Seq instead of a Map
* Useful for deterministic code generation
*/
def groupByIntoSeq[A, K](xs: Seq[A])(f: A => K): immutable.Seq[(K, immutable.Seq[A])] = {
val map = mutable.LinkedHashMap.empty[K, mutable.ListBuffer[A]]
for (x <- xs) {
val key = f(x)
val l = map.getOrElseUpdate(key, mutable.ListBuffer.empty[A])
l += x
}
map.view.map({ case (k, vs) => k -> vs.toList }).toList
}
def heterogeneousOrGlobalSetting[T](in: Seq[T], n: Int): Seq[T] = in.size match {
case 1 => List.fill(n)(in.head)
case x if x == n => in
case _ => throw new Exception(s"must provide exactly 1 or $n of some field, but got:\n$in")
}
// HeterogeneousBag moved to standalond diplomacy
@deprecated("HeterogeneousBag has been absorbed into standalone diplomacy library", "rocketchip 2.0.0")
def HeterogeneousBag[T <: Data](elts: Seq[T]) = _root_.org.chipsalliance.diplomacy.nodes.HeterogeneousBag[T](elts)
@deprecated("HeterogeneousBag has been absorbed into standalone diplomacy library", "rocketchip 2.0.0")
val HeterogeneousBag = _root_.org.chipsalliance.diplomacy.nodes.HeterogeneousBag
}
File Edges.scala:
// See LICENSE.SiFive for license details.
package freechips.rocketchip.tilelink
import chisel3._
import chisel3.util._
import chisel3.experimental.SourceInfo
import org.chipsalliance.cde.config.Parameters
import freechips.rocketchip.util._
class TLEdge(
client: TLClientPortParameters,
manager: TLManagerPortParameters,
params: Parameters,
sourceInfo: SourceInfo)
extends TLEdgeParameters(client, manager, params, sourceInfo)
{
def isAligned(address: UInt, lgSize: UInt): Bool = {
if (maxLgSize == 0) true.B else {
val mask = UIntToOH1(lgSize, maxLgSize)
(address & mask) === 0.U
}
}
def mask(address: UInt, lgSize: UInt): UInt =
MaskGen(address, lgSize, manager.beatBytes)
def staticHasData(bundle: TLChannel): Option[Boolean] = {
bundle match {
case _:TLBundleA => {
// Do there exist A messages with Data?
val aDataYes = manager.anySupportArithmetic || manager.anySupportLogical || manager.anySupportPutFull || manager.anySupportPutPartial
// Do there exist A messages without Data?
val aDataNo = manager.anySupportAcquireB || manager.anySupportGet || manager.anySupportHint
// Statically optimize the case where hasData is a constant
if (!aDataYes) Some(false) else if (!aDataNo) Some(true) else None
}
case _:TLBundleB => {
// Do there exist B messages with Data?
val bDataYes = client.anySupportArithmetic || client.anySupportLogical || client.anySupportPutFull || client.anySupportPutPartial
// Do there exist B messages without Data?
val bDataNo = client.anySupportProbe || client.anySupportGet || client.anySupportHint
// Statically optimize the case where hasData is a constant
if (!bDataYes) Some(false) else if (!bDataNo) Some(true) else None
}
case _:TLBundleC => {
// Do there eixst C messages with Data?
val cDataYes = client.anySupportGet || client.anySupportArithmetic || client.anySupportLogical || client.anySupportProbe
// Do there exist C messages without Data?
val cDataNo = client.anySupportPutFull || client.anySupportPutPartial || client.anySupportHint || client.anySupportProbe
if (!cDataYes) Some(false) else if (!cDataNo) Some(true) else None
}
case _:TLBundleD => {
// Do there eixst D messages with Data?
val dDataYes = manager.anySupportGet || manager.anySupportArithmetic || manager.anySupportLogical || manager.anySupportAcquireB
// Do there exist D messages without Data?
val dDataNo = manager.anySupportPutFull || manager.anySupportPutPartial || manager.anySupportHint || manager.anySupportAcquireT
if (!dDataYes) Some(false) else if (!dDataNo) Some(true) else None
}
case _:TLBundleE => Some(false)
}
}
def isRequest(x: TLChannel): Bool = {
x match {
case a: TLBundleA => true.B
case b: TLBundleB => true.B
case c: TLBundleC => c.opcode(2) && c.opcode(1)
// opcode === TLMessages.Release ||
// opcode === TLMessages.ReleaseData
case d: TLBundleD => d.opcode(2) && !d.opcode(1)
// opcode === TLMessages.Grant ||
// opcode === TLMessages.GrantData
case e: TLBundleE => false.B
}
}
def isResponse(x: TLChannel): Bool = {
x match {
case a: TLBundleA => false.B
case b: TLBundleB => false.B
case c: TLBundleC => !c.opcode(2) || !c.opcode(1)
// opcode =/= TLMessages.Release &&
// opcode =/= TLMessages.ReleaseData
case d: TLBundleD => true.B // Grant isResponse + isRequest
case e: TLBundleE => true.B
}
}
def hasData(x: TLChannel): Bool = {
val opdata = x match {
case a: TLBundleA => !a.opcode(2)
// opcode === TLMessages.PutFullData ||
// opcode === TLMessages.PutPartialData ||
// opcode === TLMessages.ArithmeticData ||
// opcode === TLMessages.LogicalData
case b: TLBundleB => !b.opcode(2)
// opcode === TLMessages.PutFullData ||
// opcode === TLMessages.PutPartialData ||
// opcode === TLMessages.ArithmeticData ||
// opcode === TLMessages.LogicalData
case c: TLBundleC => c.opcode(0)
// opcode === TLMessages.AccessAckData ||
// opcode === TLMessages.ProbeAckData ||
// opcode === TLMessages.ReleaseData
case d: TLBundleD => d.opcode(0)
// opcode === TLMessages.AccessAckData ||
// opcode === TLMessages.GrantData
case e: TLBundleE => false.B
}
staticHasData(x).map(_.B).getOrElse(opdata)
}
def opcode(x: TLDataChannel): UInt = {
x match {
case a: TLBundleA => a.opcode
case b: TLBundleB => b.opcode
case c: TLBundleC => c.opcode
case d: TLBundleD => d.opcode
}
}
def param(x: TLDataChannel): UInt = {
x match {
case a: TLBundleA => a.param
case b: TLBundleB => b.param
case c: TLBundleC => c.param
case d: TLBundleD => d.param
}
}
def size(x: TLDataChannel): UInt = {
x match {
case a: TLBundleA => a.size
case b: TLBundleB => b.size
case c: TLBundleC => c.size
case d: TLBundleD => d.size
}
}
def data(x: TLDataChannel): UInt = {
x match {
case a: TLBundleA => a.data
case b: TLBundleB => b.data
case c: TLBundleC => c.data
case d: TLBundleD => d.data
}
}
def corrupt(x: TLDataChannel): Bool = {
x match {
case a: TLBundleA => a.corrupt
case b: TLBundleB => b.corrupt
case c: TLBundleC => c.corrupt
case d: TLBundleD => d.corrupt
}
}
def mask(x: TLAddrChannel): UInt = {
x match {
case a: TLBundleA => a.mask
case b: TLBundleB => b.mask
case c: TLBundleC => mask(c.address, c.size)
}
}
def full_mask(x: TLAddrChannel): UInt = {
x match {
case a: TLBundleA => mask(a.address, a.size)
case b: TLBundleB => mask(b.address, b.size)
case c: TLBundleC => mask(c.address, c.size)
}
}
def address(x: TLAddrChannel): UInt = {
x match {
case a: TLBundleA => a.address
case b: TLBundleB => b.address
case c: TLBundleC => c.address
}
}
def source(x: TLDataChannel): UInt = {
x match {
case a: TLBundleA => a.source
case b: TLBundleB => b.source
case c: TLBundleC => c.source
case d: TLBundleD => d.source
}
}
def addr_hi(x: UInt): UInt = x >> log2Ceil(manager.beatBytes)
def addr_lo(x: UInt): UInt =
if (manager.beatBytes == 1) 0.U else x(log2Ceil(manager.beatBytes)-1, 0)
def addr_hi(x: TLAddrChannel): UInt = addr_hi(address(x))
def addr_lo(x: TLAddrChannel): UInt = addr_lo(address(x))
def numBeats(x: TLChannel): UInt = {
x match {
case _: TLBundleE => 1.U
case bundle: TLDataChannel => {
val hasData = this.hasData(bundle)
val size = this.size(bundle)
val cutoff = log2Ceil(manager.beatBytes)
val small = if (manager.maxTransfer <= manager.beatBytes) true.B else size <= (cutoff).U
val decode = UIntToOH(size, maxLgSize+1) >> cutoff
Mux(hasData, decode | small.asUInt, 1.U)
}
}
}
def numBeats1(x: TLChannel): UInt = {
x match {
case _: TLBundleE => 0.U
case bundle: TLDataChannel => {
if (maxLgSize == 0) {
0.U
} else {
val decode = UIntToOH1(size(bundle), maxLgSize) >> log2Ceil(manager.beatBytes)
Mux(hasData(bundle), decode, 0.U)
}
}
}
}
def firstlastHelper(bits: TLChannel, fire: Bool): (Bool, Bool, Bool, UInt) = {
val beats1 = numBeats1(bits)
val counter = RegInit(0.U(log2Up(maxTransfer / manager.beatBytes).W))
val counter1 = counter - 1.U
val first = counter === 0.U
val last = counter === 1.U || beats1 === 0.U
val done = last && fire
val count = (beats1 & ~counter1)
when (fire) {
counter := Mux(first, beats1, counter1)
}
(first, last, done, count)
}
def first(bits: TLChannel, fire: Bool): Bool = firstlastHelper(bits, fire)._1
def first(x: DecoupledIO[TLChannel]): Bool = first(x.bits, x.fire)
def first(x: ValidIO[TLChannel]): Bool = first(x.bits, x.valid)
def last(bits: TLChannel, fire: Bool): Bool = firstlastHelper(bits, fire)._2
def last(x: DecoupledIO[TLChannel]): Bool = last(x.bits, x.fire)
def last(x: ValidIO[TLChannel]): Bool = last(x.bits, x.valid)
def done(bits: TLChannel, fire: Bool): Bool = firstlastHelper(bits, fire)._3
def done(x: DecoupledIO[TLChannel]): Bool = done(x.bits, x.fire)
def done(x: ValidIO[TLChannel]): Bool = done(x.bits, x.valid)
def firstlast(bits: TLChannel, fire: Bool): (Bool, Bool, Bool) = {
val r = firstlastHelper(bits, fire)
(r._1, r._2, r._3)
}
def firstlast(x: DecoupledIO[TLChannel]): (Bool, Bool, Bool) = firstlast(x.bits, x.fire)
def firstlast(x: ValidIO[TLChannel]): (Bool, Bool, Bool) = firstlast(x.bits, x.valid)
def count(bits: TLChannel, fire: Bool): (Bool, Bool, Bool, UInt) = {
val r = firstlastHelper(bits, fire)
(r._1, r._2, r._3, r._4)
}
def count(x: DecoupledIO[TLChannel]): (Bool, Bool, Bool, UInt) = count(x.bits, x.fire)
def count(x: ValidIO[TLChannel]): (Bool, Bool, Bool, UInt) = count(x.bits, x.valid)
def addr_inc(bits: TLChannel, fire: Bool): (Bool, Bool, Bool, UInt) = {
val r = firstlastHelper(bits, fire)
(r._1, r._2, r._3, r._4 << log2Ceil(manager.beatBytes))
}
def addr_inc(x: DecoupledIO[TLChannel]): (Bool, Bool, Bool, UInt) = addr_inc(x.bits, x.fire)
def addr_inc(x: ValidIO[TLChannel]): (Bool, Bool, Bool, UInt) = addr_inc(x.bits, x.valid)
// Does the request need T permissions to be executed?
def needT(a: TLBundleA): Bool = {
val acq_needT = MuxLookup(a.param, WireDefault(Bool(), DontCare))(Array(
TLPermissions.NtoB -> false.B,
TLPermissions.NtoT -> true.B,
TLPermissions.BtoT -> true.B))
MuxLookup(a.opcode, WireDefault(Bool(), DontCare))(Array(
TLMessages.PutFullData -> true.B,
TLMessages.PutPartialData -> true.B,
TLMessages.ArithmeticData -> true.B,
TLMessages.LogicalData -> true.B,
TLMessages.Get -> false.B,
TLMessages.Hint -> MuxLookup(a.param, WireDefault(Bool(), DontCare))(Array(
TLHints.PREFETCH_READ -> false.B,
TLHints.PREFETCH_WRITE -> true.B)),
TLMessages.AcquireBlock -> acq_needT,
TLMessages.AcquirePerm -> acq_needT))
}
// This is a very expensive circuit; use only if you really mean it!
def inFlight(x: TLBundle): (UInt, UInt) = {
val flight = RegInit(0.U(log2Ceil(3*client.endSourceId+1).W))
val bce = manager.anySupportAcquireB && client.anySupportProbe
val (a_first, a_last, _) = firstlast(x.a)
val (b_first, b_last, _) = firstlast(x.b)
val (c_first, c_last, _) = firstlast(x.c)
val (d_first, d_last, _) = firstlast(x.d)
val (e_first, e_last, _) = firstlast(x.e)
val (a_request, a_response) = (isRequest(x.a.bits), isResponse(x.a.bits))
val (b_request, b_response) = (isRequest(x.b.bits), isResponse(x.b.bits))
val (c_request, c_response) = (isRequest(x.c.bits), isResponse(x.c.bits))
val (d_request, d_response) = (isRequest(x.d.bits), isResponse(x.d.bits))
val (e_request, e_response) = (isRequest(x.e.bits), isResponse(x.e.bits))
val a_inc = x.a.fire && a_first && a_request
val b_inc = x.b.fire && b_first && b_request
val c_inc = x.c.fire && c_first && c_request
val d_inc = x.d.fire && d_first && d_request
val e_inc = x.e.fire && e_first && e_request
val inc = Cat(Seq(a_inc, d_inc) ++ (if (bce) Seq(b_inc, c_inc, e_inc) else Nil))
val a_dec = x.a.fire && a_last && a_response
val b_dec = x.b.fire && b_last && b_response
val c_dec = x.c.fire && c_last && c_response
val d_dec = x.d.fire && d_last && d_response
val e_dec = x.e.fire && e_last && e_response
val dec = Cat(Seq(a_dec, d_dec) ++ (if (bce) Seq(b_dec, c_dec, e_dec) else Nil))
val next_flight = flight + PopCount(inc) - PopCount(dec)
flight := next_flight
(flight, next_flight)
}
def prettySourceMapping(context: String): String = {
s"TL-Source mapping for $context:\n${(new TLSourceIdMap(client)).pretty}\n"
}
}
class TLEdgeOut(
client: TLClientPortParameters,
manager: TLManagerPortParameters,
params: Parameters,
sourceInfo: SourceInfo)
extends TLEdge(client, manager, params, sourceInfo)
{
// Transfers
def AcquireBlock(fromSource: UInt, toAddress: UInt, lgSize: UInt, growPermissions: UInt) = {
require (manager.anySupportAcquireB, s"TileLink: No managers visible from this edge support Acquires, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsAcquireBFast(toAddress, lgSize)
val a = Wire(new TLBundleA(bundle))
a.opcode := TLMessages.AcquireBlock
a.param := growPermissions
a.size := lgSize
a.source := fromSource
a.address := toAddress
a.user := DontCare
a.echo := DontCare
a.mask := mask(toAddress, lgSize)
a.data := DontCare
a.corrupt := false.B
(legal, a)
}
def AcquirePerm(fromSource: UInt, toAddress: UInt, lgSize: UInt, growPermissions: UInt) = {
require (manager.anySupportAcquireB, s"TileLink: No managers visible from this edge support Acquires, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsAcquireBFast(toAddress, lgSize)
val a = Wire(new TLBundleA(bundle))
a.opcode := TLMessages.AcquirePerm
a.param := growPermissions
a.size := lgSize
a.source := fromSource
a.address := toAddress
a.user := DontCare
a.echo := DontCare
a.mask := mask(toAddress, lgSize)
a.data := DontCare
a.corrupt := false.B
(legal, a)
}
def Release(fromSource: UInt, toAddress: UInt, lgSize: UInt, shrinkPermissions: UInt): (Bool, TLBundleC) = {
require (manager.anySupportAcquireB, s"TileLink: No managers visible from this edge support Acquires, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsAcquireBFast(toAddress, lgSize)
val c = Wire(new TLBundleC(bundle))
c.opcode := TLMessages.Release
c.param := shrinkPermissions
c.size := lgSize
c.source := fromSource
c.address := toAddress
c.user := DontCare
c.echo := DontCare
c.data := DontCare
c.corrupt := false.B
(legal, c)
}
def Release(fromSource: UInt, toAddress: UInt, lgSize: UInt, shrinkPermissions: UInt, data: UInt, corrupt: Bool): (Bool, TLBundleC) = {
require (manager.anySupportAcquireB, s"TileLink: No managers visible from this edge support Acquires, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsAcquireBFast(toAddress, lgSize)
val c = Wire(new TLBundleC(bundle))
c.opcode := TLMessages.ReleaseData
c.param := shrinkPermissions
c.size := lgSize
c.source := fromSource
c.address := toAddress
c.user := DontCare
c.echo := DontCare
c.data := data
c.corrupt := corrupt
(legal, c)
}
def Release(fromSource: UInt, toAddress: UInt, lgSize: UInt, shrinkPermissions: UInt, data: UInt): (Bool, TLBundleC) =
Release(fromSource, toAddress, lgSize, shrinkPermissions, data, false.B)
def ProbeAck(b: TLBundleB, reportPermissions: UInt): TLBundleC =
ProbeAck(b.source, b.address, b.size, reportPermissions)
def ProbeAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, reportPermissions: UInt): TLBundleC = {
val c = Wire(new TLBundleC(bundle))
c.opcode := TLMessages.ProbeAck
c.param := reportPermissions
c.size := lgSize
c.source := fromSource
c.address := toAddress
c.user := DontCare
c.echo := DontCare
c.data := DontCare
c.corrupt := false.B
c
}
def ProbeAck(b: TLBundleB, reportPermissions: UInt, data: UInt): TLBundleC =
ProbeAck(b.source, b.address, b.size, reportPermissions, data)
def ProbeAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, reportPermissions: UInt, data: UInt, corrupt: Bool): TLBundleC = {
val c = Wire(new TLBundleC(bundle))
c.opcode := TLMessages.ProbeAckData
c.param := reportPermissions
c.size := lgSize
c.source := fromSource
c.address := toAddress
c.user := DontCare
c.echo := DontCare
c.data := data
c.corrupt := corrupt
c
}
def ProbeAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, reportPermissions: UInt, data: UInt): TLBundleC =
ProbeAck(fromSource, toAddress, lgSize, reportPermissions, data, false.B)
def GrantAck(d: TLBundleD): TLBundleE = GrantAck(d.sink)
def GrantAck(toSink: UInt): TLBundleE = {
val e = Wire(new TLBundleE(bundle))
e.sink := toSink
e
}
// Accesses
def Get(fromSource: UInt, toAddress: UInt, lgSize: UInt) = {
require (manager.anySupportGet, s"TileLink: No managers visible from this edge support Gets, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsGetFast(toAddress, lgSize)
val a = Wire(new TLBundleA(bundle))
a.opcode := TLMessages.Get
a.param := 0.U
a.size := lgSize
a.source := fromSource
a.address := toAddress
a.user := DontCare
a.echo := DontCare
a.mask := mask(toAddress, lgSize)
a.data := DontCare
a.corrupt := false.B
(legal, a)
}
def Put(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt): (Bool, TLBundleA) =
Put(fromSource, toAddress, lgSize, data, false.B)
def Put(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, corrupt: Bool): (Bool, TLBundleA) = {
require (manager.anySupportPutFull, s"TileLink: No managers visible from this edge support Puts, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsPutFullFast(toAddress, lgSize)
val a = Wire(new TLBundleA(bundle))
a.opcode := TLMessages.PutFullData
a.param := 0.U
a.size := lgSize
a.source := fromSource
a.address := toAddress
a.user := DontCare
a.echo := DontCare
a.mask := mask(toAddress, lgSize)
a.data := data
a.corrupt := corrupt
(legal, a)
}
def Put(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, mask: UInt): (Bool, TLBundleA) =
Put(fromSource, toAddress, lgSize, data, mask, false.B)
def Put(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, mask: UInt, corrupt: Bool): (Bool, TLBundleA) = {
require (manager.anySupportPutPartial, s"TileLink: No managers visible from this edge support masked Puts, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsPutPartialFast(toAddress, lgSize)
val a = Wire(new TLBundleA(bundle))
a.opcode := TLMessages.PutPartialData
a.param := 0.U
a.size := lgSize
a.source := fromSource
a.address := toAddress
a.user := DontCare
a.echo := DontCare
a.mask := mask
a.data := data
a.corrupt := corrupt
(legal, a)
}
def Arithmetic(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, atomic: UInt, corrupt: Bool = false.B): (Bool, TLBundleA) = {
require (manager.anySupportArithmetic, s"TileLink: No managers visible from this edge support arithmetic AMOs, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsArithmeticFast(toAddress, lgSize)
val a = Wire(new TLBundleA(bundle))
a.opcode := TLMessages.ArithmeticData
a.param := atomic
a.size := lgSize
a.source := fromSource
a.address := toAddress
a.user := DontCare
a.echo := DontCare
a.mask := mask(toAddress, lgSize)
a.data := data
a.corrupt := corrupt
(legal, a)
}
def Logical(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, atomic: UInt, corrupt: Bool = false.B) = {
require (manager.anySupportLogical, s"TileLink: No managers visible from this edge support logical AMOs, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsLogicalFast(toAddress, lgSize)
val a = Wire(new TLBundleA(bundle))
a.opcode := TLMessages.LogicalData
a.param := atomic
a.size := lgSize
a.source := fromSource
a.address := toAddress
a.user := DontCare
a.echo := DontCare
a.mask := mask(toAddress, lgSize)
a.data := data
a.corrupt := corrupt
(legal, a)
}
def Hint(fromSource: UInt, toAddress: UInt, lgSize: UInt, param: UInt) = {
require (manager.anySupportHint, s"TileLink: No managers visible from this edge support Hints, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsHintFast(toAddress, lgSize)
val a = Wire(new TLBundleA(bundle))
a.opcode := TLMessages.Hint
a.param := param
a.size := lgSize
a.source := fromSource
a.address := toAddress
a.user := DontCare
a.echo := DontCare
a.mask := mask(toAddress, lgSize)
a.data := DontCare
a.corrupt := false.B
(legal, a)
}
def AccessAck(b: TLBundleB): TLBundleC = AccessAck(b.source, address(b), b.size)
def AccessAck(fromSource: UInt, toAddress: UInt, lgSize: UInt) = {
val c = Wire(new TLBundleC(bundle))
c.opcode := TLMessages.AccessAck
c.param := 0.U
c.size := lgSize
c.source := fromSource
c.address := toAddress
c.user := DontCare
c.echo := DontCare
c.data := DontCare
c.corrupt := false.B
c
}
def AccessAck(b: TLBundleB, data: UInt): TLBundleC = AccessAck(b.source, address(b), b.size, data)
def AccessAck(b: TLBundleB, data: UInt, corrupt: Bool): TLBundleC = AccessAck(b.source, address(b), b.size, data, corrupt)
def AccessAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt): TLBundleC = AccessAck(fromSource, toAddress, lgSize, data, false.B)
def AccessAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, corrupt: Bool) = {
val c = Wire(new TLBundleC(bundle))
c.opcode := TLMessages.AccessAckData
c.param := 0.U
c.size := lgSize
c.source := fromSource
c.address := toAddress
c.user := DontCare
c.echo := DontCare
c.data := data
c.corrupt := corrupt
c
}
def HintAck(b: TLBundleB): TLBundleC = HintAck(b.source, address(b), b.size)
def HintAck(fromSource: UInt, toAddress: UInt, lgSize: UInt) = {
val c = Wire(new TLBundleC(bundle))
c.opcode := TLMessages.HintAck
c.param := 0.U
c.size := lgSize
c.source := fromSource
c.address := toAddress
c.user := DontCare
c.echo := DontCare
c.data := DontCare
c.corrupt := false.B
c
}
}
class TLEdgeIn(
client: TLClientPortParameters,
manager: TLManagerPortParameters,
params: Parameters,
sourceInfo: SourceInfo)
extends TLEdge(client, manager, params, sourceInfo)
{
private def myTranspose[T](x: Seq[Seq[T]]): Seq[Seq[T]] = {
val todo = x.filter(!_.isEmpty)
val heads = todo.map(_.head)
val tails = todo.map(_.tail)
if (todo.isEmpty) Nil else { heads +: myTranspose(tails) }
}
// Transfers
def Probe(fromAddress: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt) = {
require (client.anySupportProbe, s"TileLink: No clients visible from this edge support probes, but one of these managers tried to issue one: ${manager.managers}")
val legal = client.supportsProbe(toSource, lgSize)
val b = Wire(new TLBundleB(bundle))
b.opcode := TLMessages.Probe
b.param := capPermissions
b.size := lgSize
b.source := toSource
b.address := fromAddress
b.mask := mask(fromAddress, lgSize)
b.data := DontCare
b.corrupt := false.B
(legal, b)
}
def Grant(fromSink: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt): TLBundleD = Grant(fromSink, toSource, lgSize, capPermissions, false.B)
def Grant(fromSink: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt, denied: Bool) = {
val d = Wire(new TLBundleD(bundle))
d.opcode := TLMessages.Grant
d.param := capPermissions
d.size := lgSize
d.source := toSource
d.sink := fromSink
d.denied := denied
d.user := DontCare
d.echo := DontCare
d.data := DontCare
d.corrupt := false.B
d
}
def Grant(fromSink: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt, data: UInt): TLBundleD = Grant(fromSink, toSource, lgSize, capPermissions, data, false.B, false.B)
def Grant(fromSink: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt, data: UInt, denied: Bool, corrupt: Bool) = {
val d = Wire(new TLBundleD(bundle))
d.opcode := TLMessages.GrantData
d.param := capPermissions
d.size := lgSize
d.source := toSource
d.sink := fromSink
d.denied := denied
d.user := DontCare
d.echo := DontCare
d.data := data
d.corrupt := corrupt
d
}
def ReleaseAck(c: TLBundleC): TLBundleD = ReleaseAck(c.source, c.size, false.B)
def ReleaseAck(toSource: UInt, lgSize: UInt, denied: Bool): TLBundleD = {
val d = Wire(new TLBundleD(bundle))
d.opcode := TLMessages.ReleaseAck
d.param := 0.U
d.size := lgSize
d.source := toSource
d.sink := 0.U
d.denied := denied
d.user := DontCare
d.echo := DontCare
d.data := DontCare
d.corrupt := false.B
d
}
// Accesses
def Get(fromAddress: UInt, toSource: UInt, lgSize: UInt) = {
require (client.anySupportGet, s"TileLink: No clients visible from this edge support Gets, but one of these managers would try to issue one: ${manager.managers}")
val legal = client.supportsGet(toSource, lgSize)
val b = Wire(new TLBundleB(bundle))
b.opcode := TLMessages.Get
b.param := 0.U
b.size := lgSize
b.source := toSource
b.address := fromAddress
b.mask := mask(fromAddress, lgSize)
b.data := DontCare
b.corrupt := false.B
(legal, b)
}
def Put(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt): (Bool, TLBundleB) =
Put(fromAddress, toSource, lgSize, data, false.B)
def Put(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, corrupt: Bool): (Bool, TLBundleB) = {
require (client.anySupportPutFull, s"TileLink: No clients visible from this edge support Puts, but one of these managers would try to issue one: ${manager.managers}")
val legal = client.supportsPutFull(toSource, lgSize)
val b = Wire(new TLBundleB(bundle))
b.opcode := TLMessages.PutFullData
b.param := 0.U
b.size := lgSize
b.source := toSource
b.address := fromAddress
b.mask := mask(fromAddress, lgSize)
b.data := data
b.corrupt := corrupt
(legal, b)
}
def Put(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, mask: UInt): (Bool, TLBundleB) =
Put(fromAddress, toSource, lgSize, data, mask, false.B)
def Put(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, mask: UInt, corrupt: Bool): (Bool, TLBundleB) = {
require (client.anySupportPutPartial, s"TileLink: No clients visible from this edge support masked Puts, but one of these managers would try to request one: ${manager.managers}")
val legal = client.supportsPutPartial(toSource, lgSize)
val b = Wire(new TLBundleB(bundle))
b.opcode := TLMessages.PutPartialData
b.param := 0.U
b.size := lgSize
b.source := toSource
b.address := fromAddress
b.mask := mask
b.data := data
b.corrupt := corrupt
(legal, b)
}
def Arithmetic(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, atomic: UInt, corrupt: Bool = false.B) = {
require (client.anySupportArithmetic, s"TileLink: No clients visible from this edge support arithmetic AMOs, but one of these managers would try to request one: ${manager.managers}")
val legal = client.supportsArithmetic(toSource, lgSize)
val b = Wire(new TLBundleB(bundle))
b.opcode := TLMessages.ArithmeticData
b.param := atomic
b.size := lgSize
b.source := toSource
b.address := fromAddress
b.mask := mask(fromAddress, lgSize)
b.data := data
b.corrupt := corrupt
(legal, b)
}
def Logical(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, atomic: UInt, corrupt: Bool = false.B) = {
require (client.anySupportLogical, s"TileLink: No clients visible from this edge support logical AMOs, but one of these managers would try to request one: ${manager.managers}")
val legal = client.supportsLogical(toSource, lgSize)
val b = Wire(new TLBundleB(bundle))
b.opcode := TLMessages.LogicalData
b.param := atomic
b.size := lgSize
b.source := toSource
b.address := fromAddress
b.mask := mask(fromAddress, lgSize)
b.data := data
b.corrupt := corrupt
(legal, b)
}
def Hint(fromAddress: UInt, toSource: UInt, lgSize: UInt, param: UInt) = {
require (client.anySupportHint, s"TileLink: No clients visible from this edge support Hints, but one of these managers would try to request one: ${manager.managers}")
val legal = client.supportsHint(toSource, lgSize)
val b = Wire(new TLBundleB(bundle))
b.opcode := TLMessages.Hint
b.param := param
b.size := lgSize
b.source := toSource
b.address := fromAddress
b.mask := mask(fromAddress, lgSize)
b.data := DontCare
b.corrupt := false.B
(legal, b)
}
def AccessAck(a: TLBundleA): TLBundleD = AccessAck(a.source, a.size)
def AccessAck(a: TLBundleA, denied: Bool): TLBundleD = AccessAck(a.source, a.size, denied)
def AccessAck(toSource: UInt, lgSize: UInt): TLBundleD = AccessAck(toSource, lgSize, false.B)
def AccessAck(toSource: UInt, lgSize: UInt, denied: Bool) = {
val d = Wire(new TLBundleD(bundle))
d.opcode := TLMessages.AccessAck
d.param := 0.U
d.size := lgSize
d.source := toSource
d.sink := 0.U
d.denied := denied
d.user := DontCare
d.echo := DontCare
d.data := DontCare
d.corrupt := false.B
d
}
def AccessAck(a: TLBundleA, data: UInt): TLBundleD = AccessAck(a.source, a.size, data)
def AccessAck(a: TLBundleA, data: UInt, denied: Bool, corrupt: Bool): TLBundleD = AccessAck(a.source, a.size, data, denied, corrupt)
def AccessAck(toSource: UInt, lgSize: UInt, data: UInt): TLBundleD = AccessAck(toSource, lgSize, data, false.B, false.B)
def AccessAck(toSource: UInt, lgSize: UInt, data: UInt, denied: Bool, corrupt: Bool) = {
val d = Wire(new TLBundleD(bundle))
d.opcode := TLMessages.AccessAckData
d.param := 0.U
d.size := lgSize
d.source := toSource
d.sink := 0.U
d.denied := denied
d.user := DontCare
d.echo := DontCare
d.data := data
d.corrupt := corrupt
d
}
def HintAck(a: TLBundleA): TLBundleD = HintAck(a, false.B)
def HintAck(a: TLBundleA, denied: Bool): TLBundleD = HintAck(a.source, a.size, denied)
def HintAck(toSource: UInt, lgSize: UInt): TLBundleD = HintAck(toSource, lgSize, false.B)
def HintAck(toSource: UInt, lgSize: UInt, denied: Bool) = {
val d = Wire(new TLBundleD(bundle))
d.opcode := TLMessages.HintAck
d.param := 0.U
d.size := lgSize
d.source := toSource
d.sink := 0.U
d.denied := denied
d.user := DontCare
d.echo := DontCare
d.data := DontCare
d.corrupt := false.B
d
}
}
| module TLMonitor_40( // @[Monitor.scala:36:7]
input clock, // @[Monitor.scala:36:7]
input reset, // @[Monitor.scala:36:7]
input io_in_a_ready, // @[Monitor.scala:20:14]
input io_in_a_valid, // @[Monitor.scala:20:14]
input [31:0] io_in_a_bits_address, // @[Monitor.scala:20:14]
input io_in_d_valid, // @[Monitor.scala:20:14]
input [2:0] io_in_d_bits_opcode, // @[Monitor.scala:20:14]
input [1:0] io_in_d_bits_param, // @[Monitor.scala:20:14]
input [3:0] io_in_d_bits_size, // @[Monitor.scala:20:14]
input [2:0] io_in_d_bits_sink, // @[Monitor.scala:20:14]
input io_in_d_bits_denied, // @[Monitor.scala:20:14]
input io_in_d_bits_corrupt // @[Monitor.scala:20:14]
);
wire [31:0] _plusarg_reader_1_out; // @[PlusArg.scala:80:11]
wire [31:0] _plusarg_reader_out; // @[PlusArg.scala:80:11]
wire _a_first_T_1 = io_in_a_ready & io_in_a_valid; // @[Decoupled.scala:51:35]
reg [8:0] a_first_counter; // @[Edges.scala:229:27]
reg [31:0] address; // @[Monitor.scala:391:22]
reg [8:0] d_first_counter; // @[Edges.scala:229:27]
reg [2:0] opcode_1; // @[Monitor.scala:538:22]
reg [1:0] param_1; // @[Monitor.scala:539:22]
reg [3:0] size_1; // @[Monitor.scala:540:22]
reg [2:0] sink; // @[Monitor.scala:542:22]
reg denied; // @[Monitor.scala:543:22]
reg [1:0] inflight; // @[Monitor.scala:614:27]
reg [3:0] inflight_opcodes; // @[Monitor.scala:616:35]
reg [7:0] inflight_sizes; // @[Monitor.scala:618:33]
reg [8:0] a_first_counter_1; // @[Edges.scala:229:27]
wire a_first_1 = a_first_counter_1 == 9'h0; // @[Edges.scala:229:27, :231:25]
reg [8:0] d_first_counter_1; // @[Edges.scala:229:27]
wire d_first_1 = d_first_counter_1 == 9'h0; // @[Edges.scala:229:27, :231:25]
wire a_set = _a_first_T_1 & a_first_1; // @[Decoupled.scala:51:35]
wire _GEN = io_in_d_valid & d_first_1; // @[Monitor.scala:674:26]
wire _GEN_0 = io_in_d_bits_opcode != 3'h6; // @[Monitor.scala:36:7, :673:46, :674:74]
wire d_clr = _GEN & _GEN_0; // @[Monitor.scala:673:46, :674:{26,71,74}]
reg [31:0] watchdog; // @[Monitor.scala:709:27]
reg [1:0] inflight_1; // @[Monitor.scala:726:35]
reg [7:0] inflight_sizes_1; // @[Monitor.scala:728:35]
reg [8:0] d_first_counter_2; // @[Edges.scala:229:27]
wire d_first_2 = d_first_counter_2 == 9'h0; // @[Edges.scala:229:27, :231:25]
wire d_clr_1 = io_in_d_valid & d_first_2 & io_in_d_bits_opcode == 3'h6; // @[Monitor.scala:36:7, :673:46, :784:26, :788:70]
reg [31:0] watchdog_1; // @[Monitor.scala:818:27] |
Generate the Verilog code corresponding to the following Chisel files.
File package.scala:
// See LICENSE.SiFive for license details.
package freechips.rocketchip
import chisel3._
import chisel3.util._
import scala.math.min
import scala.collection.{immutable, mutable}
package object util {
implicit class UnzippableOption[S, T](val x: Option[(S, T)]) {
def unzip = (x.map(_._1), x.map(_._2))
}
implicit class UIntIsOneOf(private val x: UInt) extends AnyVal {
def isOneOf(s: Seq[UInt]): Bool = s.map(x === _).orR
def isOneOf(u1: UInt, u2: UInt*): Bool = isOneOf(u1 +: u2.toSeq)
}
implicit class VecToAugmentedVec[T <: Data](private val x: Vec[T]) extends AnyVal {
/** Like Vec.apply(idx), but tolerates indices of mismatched width */
def extract(idx: UInt): T = x((idx | 0.U(log2Ceil(x.size).W)).extract(log2Ceil(x.size) - 1, 0))
}
implicit class SeqToAugmentedSeq[T <: Data](private val x: Seq[T]) extends AnyVal {
def apply(idx: UInt): T = {
if (x.size <= 1) {
x.head
} else if (!isPow2(x.size)) {
// For non-power-of-2 seqs, reflect elements to simplify decoder
(x ++ x.takeRight(x.size & -x.size)).toSeq(idx)
} else {
// Ignore MSBs of idx
val truncIdx =
if (idx.isWidthKnown && idx.getWidth <= log2Ceil(x.size)) idx
else (idx | 0.U(log2Ceil(x.size).W))(log2Ceil(x.size)-1, 0)
x.zipWithIndex.tail.foldLeft(x.head) { case (prev, (cur, i)) => Mux(truncIdx === i.U, cur, prev) }
}
}
def extract(idx: UInt): T = VecInit(x).extract(idx)
def asUInt: UInt = Cat(x.map(_.asUInt).reverse)
def rotate(n: Int): Seq[T] = x.drop(n) ++ x.take(n)
def rotate(n: UInt): Seq[T] = {
if (x.size <= 1) {
x
} else {
require(isPow2(x.size))
val amt = n.padTo(log2Ceil(x.size))
(0 until log2Ceil(x.size)).foldLeft(x)((r, i) => (r.rotate(1 << i) zip r).map { case (s, a) => Mux(amt(i), s, a) })
}
}
def rotateRight(n: Int): Seq[T] = x.takeRight(n) ++ x.dropRight(n)
def rotateRight(n: UInt): Seq[T] = {
if (x.size <= 1) {
x
} else {
require(isPow2(x.size))
val amt = n.padTo(log2Ceil(x.size))
(0 until log2Ceil(x.size)).foldLeft(x)((r, i) => (r.rotateRight(1 << i) zip r).map { case (s, a) => Mux(amt(i), s, a) })
}
}
}
// allow bitwise ops on Seq[Bool] just like UInt
implicit class SeqBoolBitwiseOps(private val x: Seq[Bool]) extends AnyVal {
def & (y: Seq[Bool]): Seq[Bool] = (x zip y).map { case (a, b) => a && b }
def | (y: Seq[Bool]): Seq[Bool] = padZip(x, y).map { case (a, b) => a || b }
def ^ (y: Seq[Bool]): Seq[Bool] = padZip(x, y).map { case (a, b) => a ^ b }
def << (n: Int): Seq[Bool] = Seq.fill(n)(false.B) ++ x
def >> (n: Int): Seq[Bool] = x drop n
def unary_~ : Seq[Bool] = x.map(!_)
def andR: Bool = if (x.isEmpty) true.B else x.reduce(_&&_)
def orR: Bool = if (x.isEmpty) false.B else x.reduce(_||_)
def xorR: Bool = if (x.isEmpty) false.B else x.reduce(_^_)
private def padZip(y: Seq[Bool], z: Seq[Bool]): Seq[(Bool, Bool)] = y.padTo(z.size, false.B) zip z.padTo(y.size, false.B)
}
implicit class DataToAugmentedData[T <: Data](private val x: T) extends AnyVal {
def holdUnless(enable: Bool): T = Mux(enable, x, RegEnable(x, enable))
def getElements: Seq[Element] = x match {
case e: Element => Seq(e)
case a: Aggregate => a.getElements.flatMap(_.getElements)
}
}
/** Any Data subtype that has a Bool member named valid. */
type DataCanBeValid = Data { val valid: Bool }
implicit class SeqMemToAugmentedSeqMem[T <: Data](private val x: SyncReadMem[T]) extends AnyVal {
def readAndHold(addr: UInt, enable: Bool): T = x.read(addr, enable) holdUnless RegNext(enable)
}
implicit class StringToAugmentedString(private val x: String) extends AnyVal {
/** converts from camel case to to underscores, also removing all spaces */
def underscore: String = x.tail.foldLeft(x.headOption.map(_.toLower + "") getOrElse "") {
case (acc, c) if c.isUpper => acc + "_" + c.toLower
case (acc, c) if c == ' ' => acc
case (acc, c) => acc + c
}
/** converts spaces or underscores to hyphens, also lowering case */
def kebab: String = x.toLowerCase map {
case ' ' => '-'
case '_' => '-'
case c => c
}
def named(name: Option[String]): String = {
x + name.map("_named_" + _ ).getOrElse("_with_no_name")
}
def named(name: String): String = named(Some(name))
}
implicit def uintToBitPat(x: UInt): BitPat = BitPat(x)
implicit def wcToUInt(c: WideCounter): UInt = c.value
implicit class UIntToAugmentedUInt(private val x: UInt) extends AnyVal {
def sextTo(n: Int): UInt = {
require(x.getWidth <= n)
if (x.getWidth == n) x
else Cat(Fill(n - x.getWidth, x(x.getWidth-1)), x)
}
def padTo(n: Int): UInt = {
require(x.getWidth <= n)
if (x.getWidth == n) x
else Cat(0.U((n - x.getWidth).W), x)
}
// shifts left by n if n >= 0, or right by -n if n < 0
def << (n: SInt): UInt = {
val w = n.getWidth - 1
require(w <= 30)
val shifted = x << n(w-1, 0)
Mux(n(w), shifted >> (1 << w), shifted)
}
// shifts right by n if n >= 0, or left by -n if n < 0
def >> (n: SInt): UInt = {
val w = n.getWidth - 1
require(w <= 30)
val shifted = x << (1 << w) >> n(w-1, 0)
Mux(n(w), shifted, shifted >> (1 << w))
}
// Like UInt.apply(hi, lo), but returns 0.U for zero-width extracts
def extract(hi: Int, lo: Int): UInt = {
require(hi >= lo-1)
if (hi == lo-1) 0.U
else x(hi, lo)
}
// Like Some(UInt.apply(hi, lo)), but returns None for zero-width extracts
def extractOption(hi: Int, lo: Int): Option[UInt] = {
require(hi >= lo-1)
if (hi == lo-1) None
else Some(x(hi, lo))
}
// like x & ~y, but first truncate or zero-extend y to x's width
def andNot(y: UInt): UInt = x & ~(y | (x & 0.U))
def rotateRight(n: Int): UInt = if (n == 0) x else Cat(x(n-1, 0), x >> n)
def rotateRight(n: UInt): UInt = {
if (x.getWidth <= 1) {
x
} else {
val amt = n.padTo(log2Ceil(x.getWidth))
(0 until log2Ceil(x.getWidth)).foldLeft(x)((r, i) => Mux(amt(i), r.rotateRight(1 << i), r))
}
}
def rotateLeft(n: Int): UInt = if (n == 0) x else Cat(x(x.getWidth-1-n,0), x(x.getWidth-1,x.getWidth-n))
def rotateLeft(n: UInt): UInt = {
if (x.getWidth <= 1) {
x
} else {
val amt = n.padTo(log2Ceil(x.getWidth))
(0 until log2Ceil(x.getWidth)).foldLeft(x)((r, i) => Mux(amt(i), r.rotateLeft(1 << i), r))
}
}
// compute (this + y) % n, given (this < n) and (y < n)
def addWrap(y: UInt, n: Int): UInt = {
val z = x +& y
if (isPow2(n)) z(n.log2-1, 0) else Mux(z >= n.U, z - n.U, z)(log2Ceil(n)-1, 0)
}
// compute (this - y) % n, given (this < n) and (y < n)
def subWrap(y: UInt, n: Int): UInt = {
val z = x -& y
if (isPow2(n)) z(n.log2-1, 0) else Mux(z(z.getWidth-1), z + n.U, z)(log2Ceil(n)-1, 0)
}
def grouped(width: Int): Seq[UInt] =
(0 until x.getWidth by width).map(base => x(base + width - 1, base))
def inRange(base: UInt, bounds: UInt) = x >= base && x < bounds
def ## (y: Option[UInt]): UInt = y.map(x ## _).getOrElse(x)
// Like >=, but prevents x-prop for ('x >= 0)
def >== (y: UInt): Bool = x >= y || y === 0.U
}
implicit class OptionUIntToAugmentedOptionUInt(private val x: Option[UInt]) extends AnyVal {
def ## (y: UInt): UInt = x.map(_ ## y).getOrElse(y)
def ## (y: Option[UInt]): Option[UInt] = x.map(_ ## y)
}
implicit class BooleanToAugmentedBoolean(private val x: Boolean) extends AnyVal {
def toInt: Int = if (x) 1 else 0
// this one's snagged from scalaz
def option[T](z: => T): Option[T] = if (x) Some(z) else None
}
implicit class IntToAugmentedInt(private val x: Int) extends AnyVal {
// exact log2
def log2: Int = {
require(isPow2(x))
log2Ceil(x)
}
}
def OH1ToOH(x: UInt): UInt = (x << 1 | 1.U) & ~Cat(0.U(1.W), x)
def OH1ToUInt(x: UInt): UInt = OHToUInt(OH1ToOH(x))
def UIntToOH1(x: UInt, width: Int): UInt = ~((-1).S(width.W).asUInt << x)(width-1, 0)
def UIntToOH1(x: UInt): UInt = UIntToOH1(x, (1 << x.getWidth) - 1)
def trailingZeros(x: Int): Option[Int] = if (x > 0) Some(log2Ceil(x & -x)) else None
// Fill 1s from low bits to high bits
def leftOR(x: UInt): UInt = leftOR(x, x.getWidth, x.getWidth)
def leftOR(x: UInt, width: Integer, cap: Integer = 999999): UInt = {
val stop = min(width, cap)
def helper(s: Int, x: UInt): UInt =
if (s >= stop) x else helper(s+s, x | (x << s)(width-1,0))
helper(1, x)(width-1, 0)
}
// Fill 1s form high bits to low bits
def rightOR(x: UInt): UInt = rightOR(x, x.getWidth, x.getWidth)
def rightOR(x: UInt, width: Integer, cap: Integer = 999999): UInt = {
val stop = min(width, cap)
def helper(s: Int, x: UInt): UInt =
if (s >= stop) x else helper(s+s, x | (x >> s))
helper(1, x)(width-1, 0)
}
def OptimizationBarrier[T <: Data](in: T): T = {
val barrier = Module(new Module {
val io = IO(new Bundle {
val x = Input(chiselTypeOf(in))
val y = Output(chiselTypeOf(in))
})
io.y := io.x
override def desiredName = s"OptimizationBarrier_${in.typeName}"
})
barrier.io.x := in
barrier.io.y
}
/** Similar to Seq.groupBy except this returns a Seq instead of a Map
* Useful for deterministic code generation
*/
def groupByIntoSeq[A, K](xs: Seq[A])(f: A => K): immutable.Seq[(K, immutable.Seq[A])] = {
val map = mutable.LinkedHashMap.empty[K, mutable.ListBuffer[A]]
for (x <- xs) {
val key = f(x)
val l = map.getOrElseUpdate(key, mutable.ListBuffer.empty[A])
l += x
}
map.view.map({ case (k, vs) => k -> vs.toList }).toList
}
def heterogeneousOrGlobalSetting[T](in: Seq[T], n: Int): Seq[T] = in.size match {
case 1 => List.fill(n)(in.head)
case x if x == n => in
case _ => throw new Exception(s"must provide exactly 1 or $n of some field, but got:\n$in")
}
// HeterogeneousBag moved to standalond diplomacy
@deprecated("HeterogeneousBag has been absorbed into standalone diplomacy library", "rocketchip 2.0.0")
def HeterogeneousBag[T <: Data](elts: Seq[T]) = _root_.org.chipsalliance.diplomacy.nodes.HeterogeneousBag[T](elts)
@deprecated("HeterogeneousBag has been absorbed into standalone diplomacy library", "rocketchip 2.0.0")
val HeterogeneousBag = _root_.org.chipsalliance.diplomacy.nodes.HeterogeneousBag
}
| module OptimizationBarrier_TLBEntryData_49( // @[package.scala:267:30]
input clock, // @[package.scala:267:30]
input reset, // @[package.scala:267:30]
input [19:0] io_x_ppn, // @[package.scala:268:18]
input io_x_u, // @[package.scala:268:18]
input io_x_g, // @[package.scala:268:18]
input io_x_ae_ptw, // @[package.scala:268:18]
input io_x_ae_final, // @[package.scala:268:18]
input io_x_ae_stage2, // @[package.scala:268:18]
input io_x_pf, // @[package.scala:268:18]
input io_x_gf, // @[package.scala:268:18]
input io_x_sw, // @[package.scala:268:18]
input io_x_sx, // @[package.scala:268:18]
input io_x_sr, // @[package.scala:268:18]
input io_x_hw, // @[package.scala:268:18]
input io_x_hx, // @[package.scala:268:18]
input io_x_hr, // @[package.scala:268:18]
input io_x_pw, // @[package.scala:268:18]
input io_x_px, // @[package.scala:268:18]
input io_x_pr, // @[package.scala:268:18]
input io_x_ppp, // @[package.scala:268:18]
input io_x_pal, // @[package.scala:268:18]
input io_x_paa, // @[package.scala:268:18]
input io_x_eff, // @[package.scala:268:18]
input io_x_c, // @[package.scala:268:18]
input io_x_fragmented_superpage, // @[package.scala:268:18]
output [19:0] io_y_ppn // @[package.scala:268:18]
);
wire [19:0] io_x_ppn_0 = io_x_ppn; // @[package.scala:267:30]
wire io_x_u_0 = io_x_u; // @[package.scala:267:30]
wire io_x_g_0 = io_x_g; // @[package.scala:267:30]
wire io_x_ae_ptw_0 = io_x_ae_ptw; // @[package.scala:267:30]
wire io_x_ae_final_0 = io_x_ae_final; // @[package.scala:267:30]
wire io_x_ae_stage2_0 = io_x_ae_stage2; // @[package.scala:267:30]
wire io_x_pf_0 = io_x_pf; // @[package.scala:267:30]
wire io_x_gf_0 = io_x_gf; // @[package.scala:267:30]
wire io_x_sw_0 = io_x_sw; // @[package.scala:267:30]
wire io_x_sx_0 = io_x_sx; // @[package.scala:267:30]
wire io_x_sr_0 = io_x_sr; // @[package.scala:267:30]
wire io_x_hw_0 = io_x_hw; // @[package.scala:267:30]
wire io_x_hx_0 = io_x_hx; // @[package.scala:267:30]
wire io_x_hr_0 = io_x_hr; // @[package.scala:267:30]
wire io_x_pw_0 = io_x_pw; // @[package.scala:267:30]
wire io_x_px_0 = io_x_px; // @[package.scala:267:30]
wire io_x_pr_0 = io_x_pr; // @[package.scala:267:30]
wire io_x_ppp_0 = io_x_ppp; // @[package.scala:267:30]
wire io_x_pal_0 = io_x_pal; // @[package.scala:267:30]
wire io_x_paa_0 = io_x_paa; // @[package.scala:267:30]
wire io_x_eff_0 = io_x_eff; // @[package.scala:267:30]
wire io_x_c_0 = io_x_c; // @[package.scala:267:30]
wire io_x_fragmented_superpage_0 = io_x_fragmented_superpage; // @[package.scala:267:30]
wire [19:0] io_y_ppn_0 = io_x_ppn_0; // @[package.scala:267:30]
wire io_y_u = io_x_u_0; // @[package.scala:267:30]
wire io_y_g = io_x_g_0; // @[package.scala:267:30]
wire io_y_ae_ptw = io_x_ae_ptw_0; // @[package.scala:267:30]
wire io_y_ae_final = io_x_ae_final_0; // @[package.scala:267:30]
wire io_y_ae_stage2 = io_x_ae_stage2_0; // @[package.scala:267:30]
wire io_y_pf = io_x_pf_0; // @[package.scala:267:30]
wire io_y_gf = io_x_gf_0; // @[package.scala:267:30]
wire io_y_sw = io_x_sw_0; // @[package.scala:267:30]
wire io_y_sx = io_x_sx_0; // @[package.scala:267:30]
wire io_y_sr = io_x_sr_0; // @[package.scala:267:30]
wire io_y_hw = io_x_hw_0; // @[package.scala:267:30]
wire io_y_hx = io_x_hx_0; // @[package.scala:267:30]
wire io_y_hr = io_x_hr_0; // @[package.scala:267:30]
wire io_y_pw = io_x_pw_0; // @[package.scala:267:30]
wire io_y_px = io_x_px_0; // @[package.scala:267:30]
wire io_y_pr = io_x_pr_0; // @[package.scala:267:30]
wire io_y_ppp = io_x_ppp_0; // @[package.scala:267:30]
wire io_y_pal = io_x_pal_0; // @[package.scala:267:30]
wire io_y_paa = io_x_paa_0; // @[package.scala:267:30]
wire io_y_eff = io_x_eff_0; // @[package.scala:267:30]
wire io_y_c = io_x_c_0; // @[package.scala:267:30]
wire io_y_fragmented_superpage = io_x_fragmented_superpage_0; // @[package.scala:267:30]
assign io_y_ppn = io_y_ppn_0; // @[package.scala:267:30]
endmodule |
Generate the Verilog code corresponding to the following Chisel files.
File ShiftReg.scala:
// See LICENSE.SiFive for license details.
package freechips.rocketchip.util
import chisel3._
// Similar to the Chisel ShiftRegister but allows the user to suggest a
// name to the registers that get instantiated, and
// to provide a reset value.
object ShiftRegInit {
def apply[T <: Data](in: T, n: Int, init: T, name: Option[String] = None): T =
(0 until n).foldRight(in) {
case (i, next) => {
val r = RegNext(next, init)
name.foreach { na => r.suggestName(s"${na}_${i}") }
r
}
}
}
/** These wrap behavioral
* shift registers into specific modules to allow for
* backend flows to replace or constrain
* them properly when used for CDC synchronization,
* rather than buffering.
*
* The different types vary in their reset behavior:
* AsyncResetShiftReg -- Asynchronously reset register array
* A W(width) x D(depth) sized array is constructed from D instantiations of a
* W-wide register vector. Functionally identical to AsyncResetSyncrhonizerShiftReg,
* but only used for timing applications
*/
abstract class AbstractPipelineReg(w: Int = 1) extends Module {
val io = IO(new Bundle {
val d = Input(UInt(w.W))
val q = Output(UInt(w.W))
}
)
}
object AbstractPipelineReg {
def apply [T <: Data](gen: => AbstractPipelineReg, in: T, name: Option[String] = None): T = {
val chain = Module(gen)
name.foreach{ chain.suggestName(_) }
chain.io.d := in.asUInt
chain.io.q.asTypeOf(in)
}
}
class AsyncResetShiftReg(w: Int = 1, depth: Int = 1, init: Int = 0, name: String = "pipe") extends AbstractPipelineReg(w) {
require(depth > 0, "Depth must be greater than 0.")
override def desiredName = s"AsyncResetShiftReg_w${w}_d${depth}_i${init}"
val chain = List.tabulate(depth) { i =>
Module (new AsyncResetRegVec(w, init)).suggestName(s"${name}_${i}")
}
chain.last.io.d := io.d
chain.last.io.en := true.B
(chain.init zip chain.tail).foreach { case (sink, source) =>
sink.io.d := source.io.q
sink.io.en := true.B
}
io.q := chain.head.io.q
}
object AsyncResetShiftReg {
def apply [T <: Data](in: T, depth: Int, init: Int = 0, name: Option[String] = None): T =
AbstractPipelineReg(new AsyncResetShiftReg(in.getWidth, depth, init), in, name)
def apply [T <: Data](in: T, depth: Int, name: Option[String]): T =
apply(in, depth, 0, name)
def apply [T <: Data](in: T, depth: Int, init: T, name: Option[String]): T =
apply(in, depth, init.litValue.toInt, name)
def apply [T <: Data](in: T, depth: Int, init: T): T =
apply (in, depth, init.litValue.toInt, None)
}
File SynchronizerReg.scala:
// See LICENSE.SiFive for license details.
package freechips.rocketchip.util
import chisel3._
import chisel3.util.{RegEnable, Cat}
/** These wrap behavioral
* shift and next registers into specific modules to allow for
* backend flows to replace or constrain
* them properly when used for CDC synchronization,
* rather than buffering.
*
*
* These are built up of *ResetSynchronizerPrimitiveShiftReg,
* intended to be replaced by the integrator's metastable flops chains or replaced
* at this level if they have a multi-bit wide synchronizer primitive.
* The different types vary in their reset behavior:
* NonSyncResetSynchronizerShiftReg -- Register array which does not have a reset pin
* AsyncResetSynchronizerShiftReg -- Asynchronously reset register array, constructed from W instantiations of D deep
* 1-bit-wide shift registers.
* SyncResetSynchronizerShiftReg -- Synchronously reset register array, constructed similarly to AsyncResetSynchronizerShiftReg
*
* [Inferred]ResetSynchronizerShiftReg -- TBD reset type by chisel3 reset inference.
*
* ClockCrossingReg -- Not made up of SynchronizerPrimitiveShiftReg. This is for single-deep flops which cross
* Clock Domains.
*/
object SynchronizerResetType extends Enumeration {
val NonSync, Inferred, Sync, Async = Value
}
// Note: this should not be used directly.
// Use the companion object to generate this with the correct reset type mixin.
private class SynchronizerPrimitiveShiftReg(
sync: Int,
init: Boolean,
resetType: SynchronizerResetType.Value)
extends AbstractPipelineReg(1) {
val initInt = if (init) 1 else 0
val initPostfix = resetType match {
case SynchronizerResetType.NonSync => ""
case _ => s"_i${initInt}"
}
override def desiredName = s"${resetType.toString}ResetSynchronizerPrimitiveShiftReg_d${sync}${initPostfix}"
val chain = List.tabulate(sync) { i =>
val reg = if (resetType == SynchronizerResetType.NonSync) Reg(Bool()) else RegInit(init.B)
reg.suggestName(s"sync_$i")
}
chain.last := io.d.asBool
(chain.init zip chain.tail).foreach { case (sink, source) =>
sink := source
}
io.q := chain.head.asUInt
}
private object SynchronizerPrimitiveShiftReg {
def apply (in: Bool, sync: Int, init: Boolean, resetType: SynchronizerResetType.Value): Bool = {
val gen: () => SynchronizerPrimitiveShiftReg = resetType match {
case SynchronizerResetType.NonSync =>
() => new SynchronizerPrimitiveShiftReg(sync, init, resetType)
case SynchronizerResetType.Async =>
() => new SynchronizerPrimitiveShiftReg(sync, init, resetType) with RequireAsyncReset
case SynchronizerResetType.Sync =>
() => new SynchronizerPrimitiveShiftReg(sync, init, resetType) with RequireSyncReset
case SynchronizerResetType.Inferred =>
() => new SynchronizerPrimitiveShiftReg(sync, init, resetType)
}
AbstractPipelineReg(gen(), in)
}
}
// Note: This module may end up with a non-AsyncReset type reset.
// But the Primitives within will always have AsyncReset type.
class AsyncResetSynchronizerShiftReg(w: Int = 1, sync: Int, init: Int)
extends AbstractPipelineReg(w) {
require(sync > 1, s"Sync must be greater than 1, not ${sync}.")
override def desiredName = s"AsyncResetSynchronizerShiftReg_w${w}_d${sync}_i${init}"
val output = Seq.tabulate(w) { i =>
val initBit = ((init >> i) & 1) > 0
withReset(reset.asAsyncReset){
SynchronizerPrimitiveShiftReg(io.d(i), sync, initBit, SynchronizerResetType.Async)
}
}
io.q := Cat(output.reverse)
}
object AsyncResetSynchronizerShiftReg {
def apply [T <: Data](in: T, sync: Int, init: Int, name: Option[String] = None): T =
AbstractPipelineReg(new AsyncResetSynchronizerShiftReg(in.getWidth, sync, init), in, name)
def apply [T <: Data](in: T, sync: Int, name: Option[String]): T =
apply (in, sync, 0, name)
def apply [T <: Data](in: T, sync: Int): T =
apply (in, sync, 0, None)
def apply [T <: Data](in: T, sync: Int, init: T, name: Option[String]): T =
apply(in, sync, init.litValue.toInt, name)
def apply [T <: Data](in: T, sync: Int, init: T): T =
apply (in, sync, init.litValue.toInt, None)
}
// Note: This module may end up with a non-Bool type reset.
// But the Primitives within will always have Bool reset type.
@deprecated("SyncResetSynchronizerShiftReg is unecessary with Chisel3 inferred resets. Use ResetSynchronizerShiftReg which will use the inferred reset type.", "rocket-chip 1.2")
class SyncResetSynchronizerShiftReg(w: Int = 1, sync: Int, init: Int) extends AbstractPipelineReg(w) {
require(sync > 1, s"Sync must be greater than 1, not ${sync}.")
override def desiredName = s"SyncResetSynchronizerShiftReg_w${w}_d${sync}_i${init}"
val output = Seq.tabulate(w) { i =>
val initBit = ((init >> i) & 1) > 0
withReset(reset.asBool){
SynchronizerPrimitiveShiftReg(io.d(i), sync, initBit, SynchronizerResetType.Sync)
}
}
io.q := Cat(output.reverse)
}
object SyncResetSynchronizerShiftReg {
def apply [T <: Data](in: T, sync: Int, init: Int, name: Option[String] = None): T =
if (sync == 0) in else AbstractPipelineReg(new SyncResetSynchronizerShiftReg(in.getWidth, sync, init), in, name)
def apply [T <: Data](in: T, sync: Int, name: Option[String]): T =
apply (in, sync, 0, name)
def apply [T <: Data](in: T, sync: Int): T =
apply (in, sync, 0, None)
def apply [T <: Data](in: T, sync: Int, init: T, name: Option[String]): T =
apply(in, sync, init.litValue.toInt, name)
def apply [T <: Data](in: T, sync: Int, init: T): T =
apply (in, sync, init.litValue.toInt, None)
}
class ResetSynchronizerShiftReg(w: Int = 1, sync: Int, init: Int) extends AbstractPipelineReg(w) {
require(sync > 1, s"Sync must be greater than 1, not ${sync}.")
override def desiredName = s"ResetSynchronizerShiftReg_w${w}_d${sync}_i${init}"
val output = Seq.tabulate(w) { i =>
val initBit = ((init >> i) & 1) > 0
SynchronizerPrimitiveShiftReg(io.d(i), sync, initBit, SynchronizerResetType.Inferred)
}
io.q := Cat(output.reverse)
}
object ResetSynchronizerShiftReg {
def apply [T <: Data](in: T, sync: Int, init: Int, name: Option[String] = None): T =
AbstractPipelineReg(new ResetSynchronizerShiftReg(in.getWidth, sync, init), in, name)
def apply [T <: Data](in: T, sync: Int, name: Option[String]): T =
apply (in, sync, 0, name)
def apply [T <: Data](in: T, sync: Int): T =
apply (in, sync, 0, None)
def apply [T <: Data](in: T, sync: Int, init: T, name: Option[String]): T =
apply(in, sync, init.litValue.toInt, name)
def apply [T <: Data](in: T, sync: Int, init: T): T =
apply (in, sync, init.litValue.toInt, None)
}
class SynchronizerShiftReg(w: Int = 1, sync: Int = 3) extends AbstractPipelineReg(w) {
require(sync > 1, s"Sync must be greater than 1, not ${sync}.")
override def desiredName = s"SynchronizerShiftReg_w${w}_d${sync}"
val output = Seq.tabulate(w) { i =>
SynchronizerPrimitiveShiftReg(io.d(i), sync, false, SynchronizerResetType.NonSync)
}
io.q := Cat(output.reverse)
}
object SynchronizerShiftReg {
def apply [T <: Data](in: T, sync: Int, name: Option[String] = None): T =
if (sync == 0) in else AbstractPipelineReg(new SynchronizerShiftReg(in.getWidth, sync), in, name)
def apply [T <: Data](in: T, sync: Int): T =
apply (in, sync, None)
def apply [T <: Data](in: T): T =
apply (in, 3, None)
}
class ClockCrossingReg(w: Int = 1, doInit: Boolean) extends Module {
override def desiredName = s"ClockCrossingReg_w${w}"
val io = IO(new Bundle{
val d = Input(UInt(w.W))
val q = Output(UInt(w.W))
val en = Input(Bool())
})
val cdc_reg = if (doInit) RegEnable(io.d, 0.U(w.W), io.en) else RegEnable(io.d, io.en)
io.q := cdc_reg
}
object ClockCrossingReg {
def apply [T <: Data](in: T, en: Bool, doInit: Boolean, name: Option[String] = None): T = {
val cdc_reg = Module(new ClockCrossingReg(in.getWidth, doInit))
name.foreach{ cdc_reg.suggestName(_) }
cdc_reg.io.d := in.asUInt
cdc_reg.io.en := en
cdc_reg.io.q.asTypeOf(in)
}
}
| module AsyncResetSynchronizerPrimitiveShiftReg_d3_i0_423( // @[SynchronizerReg.scala:68:19]
input clock, // @[SynchronizerReg.scala:68:19]
input reset, // @[SynchronizerReg.scala:68:19]
input io_d, // @[ShiftReg.scala:36:14]
output io_q // @[ShiftReg.scala:36:14]
);
wire io_d_0 = io_d; // @[SynchronizerReg.scala:68:19]
wire _sync_2_T = io_d_0; // @[SynchronizerReg.scala:54:22, :68:19]
wire io_q_0; // @[SynchronizerReg.scala:68:19]
reg sync_0; // @[SynchronizerReg.scala:51:87]
assign io_q_0 = sync_0; // @[SynchronizerReg.scala:51:87, :68:19]
reg sync_1; // @[SynchronizerReg.scala:51:87]
reg sync_2; // @[SynchronizerReg.scala:51:87]
always @(posedge clock or posedge reset) begin // @[SynchronizerReg.scala:68:19]
if (reset) begin // @[SynchronizerReg.scala:68:19]
sync_0 <= 1'h0; // @[SynchronizerReg.scala:51:87]
sync_1 <= 1'h0; // @[SynchronizerReg.scala:51:87]
sync_2 <= 1'h0; // @[SynchronizerReg.scala:51:87]
end
else begin // @[SynchronizerReg.scala:68:19]
sync_0 <= sync_1; // @[SynchronizerReg.scala:51:87]
sync_1 <= sync_2; // @[SynchronizerReg.scala:51:87]
sync_2 <= _sync_2_T; // @[SynchronizerReg.scala:51:87, :54:22]
end
always @(posedge, posedge) |
Generate the Verilog code corresponding to the following Chisel files.
File Tilelink.scala:
package constellation.protocol
import chisel3._
import chisel3.util._
import constellation.channel._
import constellation.noc._
import constellation.soc.{CanAttachToGlobalNoC}
import org.chipsalliance.cde.config._
import freechips.rocketchip.diplomacy._
import freechips.rocketchip.util._
import freechips.rocketchip.tilelink._
import scala.collection.immutable.{ListMap}
trait TLFieldHelper {
def getBodyFields(b: TLChannel): Seq[Data] = b match {
case b: TLBundleA => Seq(b.mask, b.data, b.corrupt)
case b: TLBundleB => Seq(b.mask, b.data, b.corrupt)
case b: TLBundleC => Seq( b.data, b.corrupt)
case b: TLBundleD => Seq( b.data, b.corrupt)
case b: TLBundleE => Seq()
}
def getConstFields(b: TLChannel): Seq[Data] = b match {
case b: TLBundleA => Seq(b.opcode, b.param, b.size, b.source, b.address, b.user, b.echo )
case b: TLBundleB => Seq(b.opcode, b.param, b.size, b.source, b.address )
case b: TLBundleC => Seq(b.opcode, b.param, b.size, b.source, b.address, b.user, b.echo )
case b: TLBundleD => Seq(b.opcode, b.param, b.size, b.source, b.user, b.echo, b.sink, b.denied)
case b: TLBundleE => Seq( b.sink )
}
def minTLPayloadWidth(b: TLChannel): Int = Seq(getBodyFields(b), getConstFields(b)).map(_.map(_.getWidth).sum).max
def minTLPayloadWidth(bs: Seq[TLChannel]): Int = bs.map(b => minTLPayloadWidth(b)).max
def minTLPayloadWidth(b: TLBundle): Int = minTLPayloadWidth(Seq(b.a, b.b, b.c, b.d, b.e).map(_.bits))
}
class TLMasterToNoC(
edgeIn: TLEdge, edgesOut: Seq[TLEdge],
sourceStart: Int, sourceSize: Int,
wideBundle: TLBundleParameters,
slaveToEgressOffset: Int => Int,
flitWidth: Int
)(implicit p: Parameters) extends Module {
val io = IO(new Bundle {
val tilelink = Flipped(new TLBundle(wideBundle))
val flits = new Bundle {
val a = Decoupled(new IngressFlit(flitWidth))
val b = Flipped(Decoupled(new EgressFlit(flitWidth)))
val c = Decoupled(new IngressFlit(flitWidth))
val d = Flipped(Decoupled(new EgressFlit(flitWidth)))
val e = Decoupled(new IngressFlit(flitWidth))
}
})
val a = Module(new TLAToNoC(edgeIn, edgesOut, wideBundle, (i) => slaveToEgressOffset(i) + 0, sourceStart))
val b = Module(new TLBFromNoC(edgeIn, wideBundle, sourceSize))
val c = Module(new TLCToNoC(edgeIn, edgesOut, wideBundle, (i) => slaveToEgressOffset(i) + 1, sourceStart))
val d = Module(new TLDFromNoC(edgeIn, wideBundle, sourceSize))
val e = Module(new TLEToNoC(edgeIn, edgesOut, wideBundle, (i) => slaveToEgressOffset(i) + 2))
a.io.protocol <> io.tilelink.a
io.tilelink.b <> b.io.protocol
c.io.protocol <> io.tilelink.c
io.tilelink.d <> d.io.protocol
e.io.protocol <> io.tilelink.e
io.flits.a <> a.io.flit
b.io.flit <> io.flits.b
io.flits.c <> c.io.flit
d.io.flit <> io.flits.d
io.flits.e <> e.io.flit
}
class TLMasterACDToNoC(
edgeIn: TLEdge, edgesOut: Seq[TLEdge],
sourceStart: Int, sourceSize: Int,
wideBundle: TLBundleParameters,
slaveToEgressOffset: Int => Int,
flitWidth: Int
)(implicit p: Parameters) extends Module {
val io = IO(new Bundle {
val tilelink = Flipped(new TLBundle(wideBundle))
val flits = new Bundle {
val a = Decoupled(new IngressFlit(flitWidth))
val c = Decoupled(new IngressFlit(flitWidth))
val d = Flipped(Decoupled(new EgressFlit(flitWidth)))
}
})
io.tilelink := DontCare
val a = Module(new TLAToNoC(edgeIn, edgesOut, wideBundle, (i) => slaveToEgressOffset(i) + 0, sourceStart))
val c = Module(new TLCToNoC(edgeIn, edgesOut, wideBundle, (i) => slaveToEgressOffset(i) + 1, sourceStart))
val d = Module(new TLDFromNoC(edgeIn, wideBundle, sourceSize))
a.io.protocol <> io.tilelink.a
c.io.protocol <> io.tilelink.c
io.tilelink.d <> d.io.protocol
io.flits.a <> a.io.flit
io.flits.c <> c.io.flit
d.io.flit <> io.flits.d
}
class TLMasterBEToNoC(
edgeIn: TLEdge, edgesOut: Seq[TLEdge],
sourceStart: Int, sourceSize: Int,
wideBundle: TLBundleParameters,
slaveToEgressOffset: Int => Int,
flitWidth: Int
)(implicit p: Parameters) extends Module {
val io = IO(new Bundle {
val tilelink = Flipped(new TLBundle(wideBundle))
val flits = new Bundle {
val b = Flipped(Decoupled(new EgressFlit(flitWidth)))
val e = Decoupled(new IngressFlit(flitWidth))
}
})
io.tilelink := DontCare
val b = Module(new TLBFromNoC(edgeIn, wideBundle, sourceSize))
val e = Module(new TLEToNoC(edgeIn, edgesOut, wideBundle, (i) => slaveToEgressOffset(i) + 0))
io.tilelink.b <> b.io.protocol
e.io.protocol <> io.tilelink.e
b.io.flit <> io.flits.b
io.flits.e <> e.io.flit
}
class TLSlaveToNoC(
edgeOut: TLEdge, edgesIn: Seq[TLEdge],
sourceStart: Int, sourceSize: Int,
wideBundle: TLBundleParameters,
masterToEgressOffset: Int => Int,
flitWidth: Int
)(implicit p: Parameters) extends Module {
val io = IO(new Bundle {
val tilelink = new TLBundle(wideBundle)
val flits = new Bundle {
val a = Flipped(Decoupled(new EgressFlit(flitWidth)))
val b = Decoupled(new IngressFlit(flitWidth))
val c = Flipped(Decoupled(new EgressFlit(flitWidth)))
val d = Decoupled(new IngressFlit(flitWidth))
val e = Flipped(Decoupled(new EgressFlit(flitWidth)))
}
})
val a = Module(new TLAFromNoC(edgeOut, wideBundle))
val b = Module(new TLBToNoC(edgeOut, edgesIn, wideBundle, (i) => masterToEgressOffset(i) + 0))
val c = Module(new TLCFromNoC(edgeOut, wideBundle))
val d = Module(new TLDToNoC(edgeOut, edgesIn, wideBundle, (i) => masterToEgressOffset(i) + 1, sourceStart))
val e = Module(new TLEFromNoC(edgeOut, wideBundle, sourceSize))
io.tilelink.a <> a.io.protocol
b.io.protocol <> io.tilelink.b
io.tilelink.c <> c.io.protocol
d.io.protocol <> io.tilelink.d
io.tilelink.e <> e.io.protocol
a.io.flit <> io.flits.a
io.flits.b <> b.io.flit
c.io.flit <> io.flits.c
io.flits.d <> d.io.flit
e.io.flit <> io.flits.e
}
class TLSlaveACDToNoC(
edgeOut: TLEdge, edgesIn: Seq[TLEdge],
sourceStart: Int, sourceSize: Int,
wideBundle: TLBundleParameters,
masterToEgressOffset: Int => Int,
flitWidth: Int
)(implicit p: Parameters) extends Module {
val io = IO(new Bundle {
val tilelink = new TLBundle(wideBundle)
val flits = new Bundle {
val a = Flipped(Decoupled(new EgressFlit(flitWidth)))
val c = Flipped(Decoupled(new EgressFlit(flitWidth)))
val d = Decoupled(new IngressFlit(flitWidth))
}
})
io.tilelink := DontCare
val a = Module(new TLAFromNoC(edgeOut, wideBundle))
val c = Module(new TLCFromNoC(edgeOut, wideBundle))
val d = Module(new TLDToNoC(edgeOut, edgesIn, wideBundle, (i) => masterToEgressOffset(i) + 0, sourceStart))
io.tilelink.a <> a.io.protocol
io.tilelink.c <> c.io.protocol
d.io.protocol <> io.tilelink.d
a.io.flit <> io.flits.a
c.io.flit <> io.flits.c
io.flits.d <> d.io.flit
}
class TLSlaveBEToNoC(
edgeOut: TLEdge, edgesIn: Seq[TLEdge],
sourceStart: Int, sourceSize: Int,
wideBundle: TLBundleParameters,
masterToEgressOffset: Int => Int,
flitWidth: Int
)(implicit p: Parameters) extends Module {
val io = IO(new Bundle {
val tilelink = new TLBundle(wideBundle)
val flits = new Bundle {
val b = Decoupled(new IngressFlit(flitWidth))
val e = Flipped(Decoupled(new EgressFlit(flitWidth)))
}
})
io.tilelink := DontCare
val b = Module(new TLBToNoC(edgeOut, edgesIn, wideBundle, (i) => masterToEgressOffset(i) + 0))
val e = Module(new TLEFromNoC(edgeOut, wideBundle, sourceSize))
b.io.protocol <> io.tilelink.b
io.tilelink.e <> e.io.protocol
io.flits.b <> b.io.flit
e.io.flit <> io.flits.e
}
class TileLinkInterconnectInterface(edgesIn: Seq[TLEdge], edgesOut: Seq[TLEdge])(implicit val p: Parameters) extends Bundle {
val in = MixedVec(edgesIn.map { e => Flipped(new TLBundle(e.bundle)) })
val out = MixedVec(edgesOut.map { e => new TLBundle(e.bundle) })
}
trait TileLinkProtocolParams extends ProtocolParams with TLFieldHelper {
def edgesIn: Seq[TLEdge]
def edgesOut: Seq[TLEdge]
def edgeInNodes: Seq[Int]
def edgeOutNodes: Seq[Int]
require(edgesIn.size == edgeInNodes.size && edgesOut.size == edgeOutNodes.size)
def wideBundle = TLBundleParameters.union(edgesIn.map(_.bundle) ++ edgesOut.map(_.bundle))
def genBundle = new TLBundle(wideBundle)
def inputIdRanges = TLXbar.mapInputIds(edgesIn.map(_.client))
def outputIdRanges = TLXbar.mapOutputIds(edgesOut.map(_.manager))
val vNetBlocking = (blocker: Int, blockee: Int) => blocker < blockee
def genIO()(implicit p: Parameters): Data = new TileLinkInterconnectInterface(edgesIn, edgesOut)
}
object TLConnect {
def apply[T <: TLBundleBase](l: DecoupledIO[T], r: DecoupledIO[T]) = {
l.valid := r.valid
r.ready := l.ready
l.bits.squeezeAll.waiveAll :<>= r.bits.squeezeAll.waiveAll
}
}
// BEGIN: TileLinkProtocolParams
case class TileLinkABCDEProtocolParams(
edgesIn: Seq[TLEdge],
edgesOut: Seq[TLEdge],
edgeInNodes: Seq[Int],
edgeOutNodes: Seq[Int]
) extends TileLinkProtocolParams {
// END: TileLinkProtocolParams
val minPayloadWidth = minTLPayloadWidth(new TLBundle(wideBundle))
val ingressNodes = (edgeInNodes.map(u => Seq.fill(3) (u)) ++ edgeOutNodes.map(u => Seq.fill (2) {u})).flatten
val egressNodes = (edgeInNodes.map(u => Seq.fill(2) (u)) ++ edgeOutNodes.map(u => Seq.fill (3) {u})).flatten
val nVirtualNetworks = 5
val flows = edgesIn.zipWithIndex.map { case (edgeIn, ii) => edgesOut.zipWithIndex.map { case (edgeOut, oi) =>
val reachable = edgeIn.client.clients.exists { c => edgeOut.manager.managers.exists { m =>
c.visibility.exists { ca => m.address.exists { ma =>
ca.overlaps(ma)
}}
}}
val probe = edgeIn.client.anySupportProbe && edgeOut.manager.managers.exists(_.regionType >= RegionType.TRACKED)
val release = edgeIn.client.anySupportProbe && edgeOut.manager.anySupportAcquireB
( (if (reachable) Some(FlowParams(ii * 3 + 0 , oi * 3 + 0 + edgesIn.size * 2, 4)) else None) ++ // A
(if (probe ) Some(FlowParams(oi * 2 + 0 + edgesIn.size * 3, ii * 2 + 0 , 3)) else None) ++ // B
(if (release ) Some(FlowParams(ii * 3 + 1 , oi * 3 + 1 + edgesIn.size * 2, 2)) else None) ++ // C
(if (reachable) Some(FlowParams(oi * 2 + 1 + edgesIn.size * 3, ii * 2 + 1 , 1)) else None) ++ // D
(if (release ) Some(FlowParams(ii * 3 + 2 , oi * 3 + 2 + edgesIn.size * 2, 0)) else None)) // E
}}.flatten.flatten
def interface(terminals: NoCTerminalIO,
ingressOffset: Int, egressOffset: Int, protocol: Data)(implicit p: Parameters) = {
val ingresses = terminals.ingress
val egresses = terminals.egress
protocol match { case protocol: TileLinkInterconnectInterface => {
edgesIn.zipWithIndex.map { case (e,i) =>
val nif_master = Module(new TLMasterToNoC(
e, edgesOut, inputIdRanges(i).start, inputIdRanges(i).size,
wideBundle,
(s) => s * 3 + edgesIn.size * 2 + egressOffset,
minPayloadWidth
))
nif_master.io.tilelink := DontCare
nif_master.io.tilelink.a.valid := false.B
nif_master.io.tilelink.c.valid := false.B
nif_master.io.tilelink.e.valid := false.B
TLConnect(nif_master.io.tilelink.a, protocol.in(i).a)
TLConnect(protocol.in(i).d, nif_master.io.tilelink.d)
if (protocol.in(i).params.hasBCE) {
TLConnect(protocol.in(i).b, nif_master.io.tilelink.b)
TLConnect(nif_master.io.tilelink.c, protocol.in(i).c)
TLConnect(nif_master.io.tilelink.e, protocol.in(i).e)
}
ingresses(i * 3 + 0).flit <> nif_master.io.flits.a
ingresses(i * 3 + 1).flit <> nif_master.io.flits.c
ingresses(i * 3 + 2).flit <> nif_master.io.flits.e
nif_master.io.flits.b <> egresses(i * 2 + 0).flit
nif_master.io.flits.d <> egresses(i * 2 + 1).flit
}
edgesOut.zipWithIndex.map { case (e,i) =>
val nif_slave = Module(new TLSlaveToNoC(
e, edgesIn, outputIdRanges(i).start, outputIdRanges(i).size,
wideBundle,
(s) => s * 2 + egressOffset,
minPayloadWidth
))
nif_slave.io.tilelink := DontCare
nif_slave.io.tilelink.b.valid := false.B
nif_slave.io.tilelink.d.valid := false.B
TLConnect(protocol.out(i).a, nif_slave.io.tilelink.a)
TLConnect(nif_slave.io.tilelink.d, protocol.out(i).d)
if (protocol.out(i).params.hasBCE) {
TLConnect(nif_slave.io.tilelink.b, protocol.out(i).b)
TLConnect(protocol.out(i).c, nif_slave.io.tilelink.c)
TLConnect(protocol.out(i).e, nif_slave.io.tilelink.e)
}
ingresses(i * 2 + 0 + edgesIn.size * 3).flit <> nif_slave.io.flits.b
ingresses(i * 2 + 1 + edgesIn.size * 3).flit <> nif_slave.io.flits.d
nif_slave.io.flits.a <> egresses(i * 3 + 0 + edgesIn.size * 2).flit
nif_slave.io.flits.c <> egresses(i * 3 + 1 + edgesIn.size * 2).flit
nif_slave.io.flits.e <> egresses(i * 3 + 2 + edgesIn.size * 2).flit
}
} }
}
}
case class TileLinkACDProtocolParams(
edgesIn: Seq[TLEdge],
edgesOut: Seq[TLEdge],
edgeInNodes: Seq[Int],
edgeOutNodes: Seq[Int]) extends TileLinkProtocolParams {
val minPayloadWidth = minTLPayloadWidth(Seq(genBundle.a, genBundle.c, genBundle.d).map(_.bits))
val ingressNodes = (edgeInNodes.map(u => Seq.fill(2) (u)) ++ edgeOutNodes.map(u => Seq.fill (1) {u})).flatten
val egressNodes = (edgeInNodes.map(u => Seq.fill(1) (u)) ++ edgeOutNodes.map(u => Seq.fill (2) {u})).flatten
val nVirtualNetworks = 3
val flows = edgesIn.zipWithIndex.map { case (edgeIn, ii) => edgesOut.zipWithIndex.map { case (edgeOut, oi) =>
val reachable = edgeIn.client.clients.exists { c => edgeOut.manager.managers.exists { m =>
c.visibility.exists { ca => m.address.exists { ma =>
ca.overlaps(ma)
}}
}}
val release = edgeIn.client.anySupportProbe && edgeOut.manager.anySupportAcquireB
( (if (reachable) Some(FlowParams(ii * 2 + 0 , oi * 2 + 0 + edgesIn.size * 1, 2)) else None) ++ // A
(if (release ) Some(FlowParams(ii * 2 + 1 , oi * 2 + 1 + edgesIn.size * 1, 1)) else None) ++ // C
(if (reachable) Some(FlowParams(oi * 1 + 0 + edgesIn.size * 2, ii * 1 + 0 , 0)) else None)) // D
}}.flatten.flatten
def interface(terminals: NoCTerminalIO,
ingressOffset: Int, egressOffset: Int, protocol: Data)(implicit p: Parameters) = {
val ingresses = terminals.ingress
val egresses = terminals.egress
protocol match { case protocol: TileLinkInterconnectInterface => {
protocol := DontCare
edgesIn.zipWithIndex.map { case (e,i) =>
val nif_master_acd = Module(new TLMasterACDToNoC(
e, edgesOut, inputIdRanges(i).start, inputIdRanges(i).size,
wideBundle,
(s) => s * 2 + edgesIn.size * 1 + egressOffset,
minPayloadWidth
))
nif_master_acd.io.tilelink := DontCare
nif_master_acd.io.tilelink.a.valid := false.B
nif_master_acd.io.tilelink.c.valid := false.B
nif_master_acd.io.tilelink.e.valid := false.B
TLConnect(nif_master_acd.io.tilelink.a, protocol.in(i).a)
TLConnect(protocol.in(i).d, nif_master_acd.io.tilelink.d)
if (protocol.in(i).params.hasBCE) {
TLConnect(nif_master_acd.io.tilelink.c, protocol.in(i).c)
}
ingresses(i * 2 + 0).flit <> nif_master_acd.io.flits.a
ingresses(i * 2 + 1).flit <> nif_master_acd.io.flits.c
nif_master_acd.io.flits.d <> egresses(i * 1 + 0).flit
}
edgesOut.zipWithIndex.map { case (e,i) =>
val nif_slave_acd = Module(new TLSlaveACDToNoC(
e, edgesIn, outputIdRanges(i).start, outputIdRanges(i).size,
wideBundle,
(s) => s * 1 + egressOffset,
minPayloadWidth
))
nif_slave_acd.io.tilelink := DontCare
nif_slave_acd.io.tilelink.b.valid := false.B
nif_slave_acd.io.tilelink.d.valid := false.B
TLConnect(protocol.out(i).a, nif_slave_acd.io.tilelink.a)
TLConnect(nif_slave_acd.io.tilelink.d, protocol.out(i).d)
if (protocol.out(i).params.hasBCE) {
TLConnect(protocol.out(i).c, nif_slave_acd.io.tilelink.c)
}
ingresses(i * 1 + 0 + edgesIn.size * 2).flit <> nif_slave_acd.io.flits.d
nif_slave_acd.io.flits.a <> egresses(i * 2 + 0 + edgesIn.size * 1).flit
nif_slave_acd.io.flits.c <> egresses(i * 2 + 1 + edgesIn.size * 1).flit
}
}}
}
}
case class TileLinkBEProtocolParams(
edgesIn: Seq[TLEdge],
edgesOut: Seq[TLEdge],
edgeInNodes: Seq[Int],
edgeOutNodes: Seq[Int]) extends TileLinkProtocolParams {
val minPayloadWidth = minTLPayloadWidth(Seq(genBundle.b, genBundle.e).map(_.bits))
val ingressNodes = (edgeInNodes.map(u => Seq.fill(1) (u)) ++ edgeOutNodes.map(u => Seq.fill (1) {u})).flatten
val egressNodes = (edgeInNodes.map(u => Seq.fill(1) (u)) ++ edgeOutNodes.map(u => Seq.fill (1) {u})).flatten
val nVirtualNetworks = 2
val flows = edgesIn.zipWithIndex.map { case (edgeIn, ii) => edgesOut.zipWithIndex.map { case (edgeOut, oi) =>
val probe = edgeIn.client.anySupportProbe && edgeOut.manager.managers.exists(_.regionType >= RegionType.TRACKED)
val release = edgeIn.client.anySupportProbe && edgeOut.manager.anySupportAcquireB
( (if (probe ) Some(FlowParams(oi * 1 + 0 + edgesIn.size * 1, ii * 1 + 0 , 1)) else None) ++ // B
(if (release ) Some(FlowParams(ii * 1 + 0 , oi * 1 + 0 + edgesIn.size * 1, 0)) else None)) // E
}}.flatten.flatten
def interface(terminals: NoCTerminalIO,
ingressOffset: Int, egressOffset: Int, protocol: Data)(implicit p: Parameters) = {
val ingresses = terminals.ingress
val egresses = terminals.egress
protocol match { case protocol: TileLinkInterconnectInterface => {
protocol := DontCare
edgesIn.zipWithIndex.map { case (e,i) =>
val nif_master_be = Module(new TLMasterBEToNoC(
e, edgesOut, inputIdRanges(i).start, inputIdRanges(i).size,
wideBundle,
(s) => s * 1 + edgesIn.size * 1 + egressOffset,
minPayloadWidth
))
nif_master_be.io.tilelink := DontCare
nif_master_be.io.tilelink.a.valid := false.B
nif_master_be.io.tilelink.c.valid := false.B
nif_master_be.io.tilelink.e.valid := false.B
if (protocol.in(i).params.hasBCE) {
TLConnect(protocol.in(i).b, nif_master_be.io.tilelink.b)
TLConnect(nif_master_be.io.tilelink.e, protocol.in(i).e)
}
ingresses(i * 1 + 0).flit <> nif_master_be.io.flits.e
nif_master_be.io.flits.b <> egresses(i * 1 + 0).flit
}
edgesOut.zipWithIndex.map { case (e,i) =>
val nif_slave_be = Module(new TLSlaveBEToNoC(
e, edgesIn, outputIdRanges(i).start, outputIdRanges(i).size,
wideBundle,
(s) => s * 1 + egressOffset,
minPayloadWidth
))
nif_slave_be.io.tilelink := DontCare
nif_slave_be.io.tilelink.b.valid := false.B
nif_slave_be.io.tilelink.d.valid := false.B
if (protocol.out(i).params.hasBCE) {
TLConnect(protocol.out(i).e, nif_slave_be.io.tilelink.e)
TLConnect(nif_slave_be.io.tilelink.b, protocol.out(i).b)
}
ingresses(i * 1 + 0 + edgesIn.size * 1).flit <> nif_slave_be.io.flits.b
nif_slave_be.io.flits.e <> egresses(i * 1 + 0 + edgesIn.size * 1).flit
}
}}
}
}
abstract class TLNoCLike(implicit p: Parameters) extends LazyModule {
val node = new TLNexusNode(
clientFn = { seq =>
seq(0).v1copy(
echoFields = BundleField.union(seq.flatMap(_.echoFields)),
requestFields = BundleField.union(seq.flatMap(_.requestFields)),
responseKeys = seq.flatMap(_.responseKeys).distinct,
minLatency = seq.map(_.minLatency).min,
clients = (TLXbar.mapInputIds(seq) zip seq) flatMap { case (range, port) =>
port.clients map { client => client.v1copy(
sourceId = client.sourceId.shift(range.start)
)}
}
)
},
managerFn = { seq =>
val fifoIdFactory = TLXbar.relabeler()
seq(0).v1copy(
responseFields = BundleField.union(seq.flatMap(_.responseFields)),
requestKeys = seq.flatMap(_.requestKeys).distinct,
minLatency = seq.map(_.minLatency).min,
endSinkId = TLXbar.mapOutputIds(seq).map(_.end).max,
managers = seq.flatMap { port =>
require (port.beatBytes == seq(0).beatBytes,
s"TLNoC (data widths don't match: ${port.managers.map(_.name)} has ${port.beatBytes}B vs ${seq(0).managers.map(_.name)} has ${seq(0).beatBytes}B")
// TileLink NoC does not preserve FIFO-ness, masters to this NoC should instantiate FIFOFixers
port.managers map { manager => manager.v1copy(fifoId = None) }
}
)
}
)
}
abstract class TLNoCModuleImp(outer: LazyModule) extends LazyModuleImp(outer) {
val edgesIn: Seq[TLEdge]
val edgesOut: Seq[TLEdge]
val nodeMapping: DiplomaticNetworkNodeMapping
val nocName: String
lazy val inNames = nodeMapping.genUniqueName(edgesIn.map(_.master.masters.map(_.name)))
lazy val outNames = nodeMapping.genUniqueName(edgesOut.map(_.slave.slaves.map(_.name)))
lazy val edgeInNodes = nodeMapping.getNodesIn(inNames)
lazy val edgeOutNodes = nodeMapping.getNodesOut(outNames)
def printNodeMappings() {
println(s"Constellation: TLNoC $nocName inwards mapping:")
for ((n, i) <- inNames zip edgeInNodes) {
val node = i.map(_.toString).getOrElse("X")
println(s" $node <- $n")
}
println(s"Constellation: TLNoC $nocName outwards mapping:")
for ((n, i) <- outNames zip edgeOutNodes) {
val node = i.map(_.toString).getOrElse("X")
println(s" $node <- $n")
}
}
}
trait TLNoCParams
// Instantiates a private TLNoC. Replaces the TLXbar
// BEGIN: TLNoCParams
case class SimpleTLNoCParams(
nodeMappings: DiplomaticNetworkNodeMapping,
nocParams: NoCParams = NoCParams(),
) extends TLNoCParams
class TLNoC(params: SimpleTLNoCParams, name: String = "test", inlineNoC: Boolean = false)(implicit p: Parameters) extends TLNoCLike {
// END: TLNoCParams
override def shouldBeInlined = inlineNoC
lazy val module = new TLNoCModuleImp(this) {
val (io_in, edgesIn) = node.in.unzip
val (io_out, edgesOut) = node.out.unzip
val nodeMapping = params.nodeMappings
val nocName = name
printNodeMappings()
val protocolParams = TileLinkABCDEProtocolParams(
edgesIn = edgesIn,
edgesOut = edgesOut,
edgeInNodes = edgeInNodes.flatten,
edgeOutNodes = edgeOutNodes.flatten
)
val noc = Module(new ProtocolNoC(ProtocolNoCParams(
params.nocParams.copy(hasCtrl = false, nocName=name, inlineNoC = inlineNoC),
Seq(protocolParams),
inlineNoC = inlineNoC
)))
noc.io.protocol(0) match {
case protocol: TileLinkInterconnectInterface => {
(protocol.in zip io_in).foreach { case (l,r) => l <> r }
(io_out zip protocol.out).foreach { case (l,r) => l <> r }
}
}
}
}
case class SplitACDxBETLNoCParams(
nodeMappings: DiplomaticNetworkNodeMapping,
acdNoCParams: NoCParams = NoCParams(),
beNoCParams: NoCParams = NoCParams(),
beDivision: Int = 2
) extends TLNoCParams
class TLSplitACDxBENoC(params: SplitACDxBETLNoCParams, name: String = "test", inlineNoC: Boolean = false)(implicit p: Parameters) extends TLNoCLike {
override def shouldBeInlined = inlineNoC
lazy val module = new TLNoCModuleImp(this) {
val (io_in, edgesIn) = node.in.unzip
val (io_out, edgesOut) = node.out.unzip
val nodeMapping = params.nodeMappings
val nocName = name
printNodeMappings()
val acdProtocolParams = TileLinkACDProtocolParams(
edgesIn = edgesIn,
edgesOut = edgesOut,
edgeInNodes = edgeInNodes.flatten,
edgeOutNodes = edgeOutNodes.flatten
)
val beProtocolParams = TileLinkBEProtocolParams(
edgesIn = edgesIn,
edgesOut = edgesOut,
edgeInNodes = edgeInNodes.flatten,
edgeOutNodes = edgeOutNodes.flatten
)
val acd_noc = Module(new ProtocolNoC(ProtocolNoCParams(
params.acdNoCParams.copy(hasCtrl = false, nocName=s"${name}_acd", inlineNoC = inlineNoC),
Seq(acdProtocolParams),
inlineNoC = inlineNoC
)))
val be_noc = Module(new ProtocolNoC(ProtocolNoCParams(
params.beNoCParams.copy(hasCtrl = false, nocName=s"${name}_be", inlineNoC = inlineNoC),
Seq(beProtocolParams),
widthDivision = params.beDivision,
inlineNoC = inlineNoC
)))
acd_noc.io.protocol(0) match { case protocol: TileLinkInterconnectInterface => {
(protocol.in zip io_in).foreach { case (l,r) =>
l := DontCare
l.a <> r.a
l.c <> r.c
l.d <> r.d
}
(io_out zip protocol.out).foreach { case (l,r) =>
r := DontCare
l.a <> r.a
l.c <> r.c
l.d <> r.d
}
}}
be_noc.io.protocol(0) match { case protocol: TileLinkInterconnectInterface => {
(protocol.in zip io_in).foreach { case (l,r) =>
l := DontCare
l.b <> r.b
l.e <> r.e
}
(io_out zip protocol.out).foreach { case (l,r) =>
r := DontCare
l.b <> r.b
l.e <> r.e
}
}}
}
}
case class GlobalTLNoCParams(
nodeMappings: DiplomaticNetworkNodeMapping
) extends TLNoCParams
// Maps this interconnect onto a global NoC
class TLGlobalNoC(params: GlobalTLNoCParams, name: String = "test")(implicit p: Parameters) extends TLNoCLike {
lazy val module = new TLNoCModuleImp(this) with CanAttachToGlobalNoC {
val (io_in, edgesIn) = node.in.unzip
val (io_out, edgesOut) = node.out.unzip
val nodeMapping = params.nodeMappings
val nocName = name
val protocolParams = TileLinkABCDEProtocolParams(
edgesIn = edgesIn,
edgesOut = edgesOut,
edgeInNodes = edgeInNodes.flatten,
edgeOutNodes = edgeOutNodes.flatten
)
printNodeMappings()
val io_global = IO(Flipped(protocolParams.genIO()))
io_global match {
case protocol: TileLinkInterconnectInterface => {
(protocol.in zip io_in).foreach { case (l,r) => l <> r }
(io_out zip protocol.out).foreach { case (l,r) => l <> r }
}
}
}
}
| module TLMasterACDToNoC_1( // @[Tilelink.scala:72:7]
input clock, // @[Tilelink.scala:72:7]
input reset, // @[Tilelink.scala:72:7]
output io_tilelink_a_ready, // @[Tilelink.scala:79:14]
input io_tilelink_a_valid, // @[Tilelink.scala:79:14]
input [2:0] io_tilelink_a_bits_opcode, // @[Tilelink.scala:79:14]
input [2:0] io_tilelink_a_bits_param, // @[Tilelink.scala:79:14]
input [3:0] io_tilelink_a_bits_size, // @[Tilelink.scala:79:14]
input [5:0] io_tilelink_a_bits_source, // @[Tilelink.scala:79:14]
input [31:0] io_tilelink_a_bits_address, // @[Tilelink.scala:79:14]
input [7:0] io_tilelink_a_bits_mask, // @[Tilelink.scala:79:14]
input [63:0] io_tilelink_a_bits_data, // @[Tilelink.scala:79:14]
input io_tilelink_a_bits_corrupt, // @[Tilelink.scala:79:14]
output io_tilelink_c_ready, // @[Tilelink.scala:79:14]
input io_tilelink_c_valid, // @[Tilelink.scala:79:14]
input [2:0] io_tilelink_c_bits_opcode, // @[Tilelink.scala:79:14]
input [2:0] io_tilelink_c_bits_param, // @[Tilelink.scala:79:14]
input [3:0] io_tilelink_c_bits_size, // @[Tilelink.scala:79:14]
input [5:0] io_tilelink_c_bits_source, // @[Tilelink.scala:79:14]
input [31:0] io_tilelink_c_bits_address, // @[Tilelink.scala:79:14]
input [63:0] io_tilelink_c_bits_data, // @[Tilelink.scala:79:14]
input io_tilelink_c_bits_corrupt, // @[Tilelink.scala:79:14]
input io_tilelink_d_ready, // @[Tilelink.scala:79:14]
output io_tilelink_d_valid, // @[Tilelink.scala:79:14]
output [2:0] io_tilelink_d_bits_opcode, // @[Tilelink.scala:79:14]
output [1:0] io_tilelink_d_bits_param, // @[Tilelink.scala:79:14]
output [3:0] io_tilelink_d_bits_size, // @[Tilelink.scala:79:14]
output [5:0] io_tilelink_d_bits_source, // @[Tilelink.scala:79:14]
output [4:0] io_tilelink_d_bits_sink, // @[Tilelink.scala:79:14]
output io_tilelink_d_bits_denied, // @[Tilelink.scala:79:14]
output [63:0] io_tilelink_d_bits_data, // @[Tilelink.scala:79:14]
output io_tilelink_d_bits_corrupt, // @[Tilelink.scala:79:14]
input io_flits_a_ready, // @[Tilelink.scala:79:14]
output io_flits_a_valid, // @[Tilelink.scala:79:14]
output io_flits_a_bits_head, // @[Tilelink.scala:79:14]
output io_flits_a_bits_tail, // @[Tilelink.scala:79:14]
output [72:0] io_flits_a_bits_payload, // @[Tilelink.scala:79:14]
output [4:0] io_flits_a_bits_egress_id, // @[Tilelink.scala:79:14]
input io_flits_c_ready, // @[Tilelink.scala:79:14]
output io_flits_c_valid, // @[Tilelink.scala:79:14]
output io_flits_c_bits_head, // @[Tilelink.scala:79:14]
output io_flits_c_bits_tail, // @[Tilelink.scala:79:14]
output [72:0] io_flits_c_bits_payload, // @[Tilelink.scala:79:14]
output [4:0] io_flits_c_bits_egress_id, // @[Tilelink.scala:79:14]
output io_flits_d_ready, // @[Tilelink.scala:79:14]
input io_flits_d_valid, // @[Tilelink.scala:79:14]
input io_flits_d_bits_head, // @[Tilelink.scala:79:14]
input io_flits_d_bits_tail, // @[Tilelink.scala:79:14]
input [72:0] io_flits_d_bits_payload // @[Tilelink.scala:79:14]
);
wire [64:0] _c_io_flit_bits_payload; // @[Tilelink.scala:89:17]
TLAToNoC_1 a ( // @[Tilelink.scala:88:17]
.clock (clock),
.reset (reset),
.io_protocol_ready (io_tilelink_a_ready),
.io_protocol_valid (io_tilelink_a_valid),
.io_protocol_bits_opcode (io_tilelink_a_bits_opcode),
.io_protocol_bits_param (io_tilelink_a_bits_param),
.io_protocol_bits_size (io_tilelink_a_bits_size),
.io_protocol_bits_source (io_tilelink_a_bits_source),
.io_protocol_bits_address (io_tilelink_a_bits_address),
.io_protocol_bits_mask (io_tilelink_a_bits_mask),
.io_protocol_bits_data (io_tilelink_a_bits_data),
.io_protocol_bits_corrupt (io_tilelink_a_bits_corrupt),
.io_flit_ready (io_flits_a_ready),
.io_flit_valid (io_flits_a_valid),
.io_flit_bits_head (io_flits_a_bits_head),
.io_flit_bits_tail (io_flits_a_bits_tail),
.io_flit_bits_payload (io_flits_a_bits_payload),
.io_flit_bits_egress_id (io_flits_a_bits_egress_id)
); // @[Tilelink.scala:88:17]
TLCToNoC_1 c ( // @[Tilelink.scala:89:17]
.clock (clock),
.reset (reset),
.io_protocol_ready (io_tilelink_c_ready),
.io_protocol_valid (io_tilelink_c_valid),
.io_protocol_bits_opcode (io_tilelink_c_bits_opcode),
.io_protocol_bits_param (io_tilelink_c_bits_param),
.io_protocol_bits_size (io_tilelink_c_bits_size),
.io_protocol_bits_source (io_tilelink_c_bits_source),
.io_protocol_bits_address (io_tilelink_c_bits_address),
.io_protocol_bits_data (io_tilelink_c_bits_data),
.io_protocol_bits_corrupt (io_tilelink_c_bits_corrupt),
.io_flit_ready (io_flits_c_ready),
.io_flit_valid (io_flits_c_valid),
.io_flit_bits_head (io_flits_c_bits_head),
.io_flit_bits_tail (io_flits_c_bits_tail),
.io_flit_bits_payload (_c_io_flit_bits_payload),
.io_flit_bits_egress_id (io_flits_c_bits_egress_id)
); // @[Tilelink.scala:89:17]
TLDFromNoC_1 d ( // @[Tilelink.scala:90:17]
.clock (clock),
.reset (reset),
.io_protocol_ready (io_tilelink_d_ready),
.io_protocol_valid (io_tilelink_d_valid),
.io_protocol_bits_opcode (io_tilelink_d_bits_opcode),
.io_protocol_bits_param (io_tilelink_d_bits_param),
.io_protocol_bits_size (io_tilelink_d_bits_size),
.io_protocol_bits_source (io_tilelink_d_bits_source),
.io_protocol_bits_sink (io_tilelink_d_bits_sink),
.io_protocol_bits_denied (io_tilelink_d_bits_denied),
.io_protocol_bits_data (io_tilelink_d_bits_data),
.io_protocol_bits_corrupt (io_tilelink_d_bits_corrupt),
.io_flit_ready (io_flits_d_ready),
.io_flit_valid (io_flits_d_valid),
.io_flit_bits_head (io_flits_d_bits_head),
.io_flit_bits_tail (io_flits_d_bits_tail),
.io_flit_bits_payload (io_flits_d_bits_payload[64:0]) // @[Tilelink.scala:97:14]
); // @[Tilelink.scala:90:17]
assign io_flits_c_bits_payload = {8'h0, _c_io_flit_bits_payload}; // @[Tilelink.scala:72:7, :89:17, :96:14]
endmodule |
Generate the Verilog code corresponding to the following Chisel files.
File Buffer.scala:
// See LICENSE.SiFive for license details.
package freechips.rocketchip.tilelink
import chisel3._
import org.chipsalliance.cde.config._
import org.chipsalliance.diplomacy._
import org.chipsalliance.diplomacy.lazymodule._
import freechips.rocketchip.diplomacy.BufferParams
class TLBufferNode (
a: BufferParams,
b: BufferParams,
c: BufferParams,
d: BufferParams,
e: BufferParams)(implicit valName: ValName) extends TLAdapterNode(
clientFn = { p => p.v1copy(minLatency = p.minLatency + b.latency + c.latency) },
managerFn = { p => p.v1copy(minLatency = p.minLatency + a.latency + d.latency) }
) {
override lazy val nodedebugstring = s"a:${a.toString}, b:${b.toString}, c:${c.toString}, d:${d.toString}, e:${e.toString}"
override def circuitIdentity = List(a,b,c,d,e).forall(_ == BufferParams.none)
}
class TLBuffer(
a: BufferParams,
b: BufferParams,
c: BufferParams,
d: BufferParams,
e: BufferParams)(implicit p: Parameters) extends LazyModule
{
def this(ace: BufferParams, bd: BufferParams)(implicit p: Parameters) = this(ace, bd, ace, bd, ace)
def this(abcde: BufferParams)(implicit p: Parameters) = this(abcde, abcde)
def this()(implicit p: Parameters) = this(BufferParams.default)
val node = new TLBufferNode(a, b, c, d, e)
lazy val module = new Impl
class Impl extends LazyModuleImp(this) {
def headBundle = node.out.head._2.bundle
override def desiredName = (Seq("TLBuffer") ++ node.out.headOption.map(_._2.bundle.shortName)).mkString("_")
(node.in zip node.out) foreach { case ((in, edgeIn), (out, edgeOut)) =>
out.a <> a(in .a)
in .d <> d(out.d)
if (edgeOut.manager.anySupportAcquireB && edgeOut.client.anySupportProbe) {
in .b <> b(out.b)
out.c <> c(in .c)
out.e <> e(in .e)
} else {
in.b.valid := false.B
in.c.ready := true.B
in.e.ready := true.B
out.b.ready := true.B
out.c.valid := false.B
out.e.valid := false.B
}
}
}
}
object TLBuffer
{
def apply() (implicit p: Parameters): TLNode = apply(BufferParams.default)
def apply(abcde: BufferParams) (implicit p: Parameters): TLNode = apply(abcde, abcde)
def apply(ace: BufferParams, bd: BufferParams)(implicit p: Parameters): TLNode = apply(ace, bd, ace, bd, ace)
def apply(
a: BufferParams,
b: BufferParams,
c: BufferParams,
d: BufferParams,
e: BufferParams)(implicit p: Parameters): TLNode =
{
val buffer = LazyModule(new TLBuffer(a, b, c, d, e))
buffer.node
}
def chain(depth: Int, name: Option[String] = None)(implicit p: Parameters): Seq[TLNode] = {
val buffers = Seq.fill(depth) { LazyModule(new TLBuffer()) }
name.foreach { n => buffers.zipWithIndex.foreach { case (b, i) => b.suggestName(s"${n}_${i}") } }
buffers.map(_.node)
}
def chainNode(depth: Int, name: Option[String] = None)(implicit p: Parameters): TLNode = {
chain(depth, name)
.reduceLeftOption(_ :*=* _)
.getOrElse(TLNameNode("no_buffer"))
}
}
File Nodes.scala:
// See LICENSE.SiFive for license details.
package freechips.rocketchip.tilelink
import chisel3._
import chisel3.experimental.SourceInfo
import org.chipsalliance.cde.config._
import org.chipsalliance.diplomacy._
import org.chipsalliance.diplomacy.nodes._
import freechips.rocketchip.util.{AsyncQueueParams,RationalDirection}
case object TLMonitorBuilder extends Field[TLMonitorArgs => TLMonitorBase](args => new TLMonitor(args))
object TLImp extends NodeImp[TLMasterPortParameters, TLSlavePortParameters, TLEdgeOut, TLEdgeIn, TLBundle]
{
def edgeO(pd: TLMasterPortParameters, pu: TLSlavePortParameters, p: Parameters, sourceInfo: SourceInfo) = new TLEdgeOut(pd, pu, p, sourceInfo)
def edgeI(pd: TLMasterPortParameters, pu: TLSlavePortParameters, p: Parameters, sourceInfo: SourceInfo) = new TLEdgeIn (pd, pu, p, sourceInfo)
def bundleO(eo: TLEdgeOut) = TLBundle(eo.bundle)
def bundleI(ei: TLEdgeIn) = TLBundle(ei.bundle)
def render(ei: TLEdgeIn) = RenderedEdge(colour = "#000000" /* black */, label = (ei.manager.beatBytes * 8).toString)
override def monitor(bundle: TLBundle, edge: TLEdgeIn): Unit = {
val monitor = Module(edge.params(TLMonitorBuilder)(TLMonitorArgs(edge)))
monitor.io.in := bundle
}
override def mixO(pd: TLMasterPortParameters, node: OutwardNode[TLMasterPortParameters, TLSlavePortParameters, TLBundle]): TLMasterPortParameters =
pd.v1copy(clients = pd.clients.map { c => c.v1copy (nodePath = node +: c.nodePath) })
override def mixI(pu: TLSlavePortParameters, node: InwardNode[TLMasterPortParameters, TLSlavePortParameters, TLBundle]): TLSlavePortParameters =
pu.v1copy(managers = pu.managers.map { m => m.v1copy (nodePath = node +: m.nodePath) })
}
trait TLFormatNode extends FormatNode[TLEdgeIn, TLEdgeOut]
case class TLClientNode(portParams: Seq[TLMasterPortParameters])(implicit valName: ValName) extends SourceNode(TLImp)(portParams) with TLFormatNode
case class TLManagerNode(portParams: Seq[TLSlavePortParameters])(implicit valName: ValName) extends SinkNode(TLImp)(portParams) with TLFormatNode
case class TLAdapterNode(
clientFn: TLMasterPortParameters => TLMasterPortParameters = { s => s },
managerFn: TLSlavePortParameters => TLSlavePortParameters = { s => s })(
implicit valName: ValName)
extends AdapterNode(TLImp)(clientFn, managerFn) with TLFormatNode
case class TLJunctionNode(
clientFn: Seq[TLMasterPortParameters] => Seq[TLMasterPortParameters],
managerFn: Seq[TLSlavePortParameters] => Seq[TLSlavePortParameters])(
implicit valName: ValName)
extends JunctionNode(TLImp)(clientFn, managerFn) with TLFormatNode
case class TLIdentityNode()(implicit valName: ValName) extends IdentityNode(TLImp)() with TLFormatNode
object TLNameNode {
def apply(name: ValName) = TLIdentityNode()(name)
def apply(name: Option[String]): TLIdentityNode = apply(ValName(name.getOrElse("with_no_name")))
def apply(name: String): TLIdentityNode = apply(Some(name))
}
case class TLEphemeralNode()(implicit valName: ValName) extends EphemeralNode(TLImp)()
object TLTempNode {
def apply(): TLEphemeralNode = TLEphemeralNode()(ValName("temp"))
}
case class TLNexusNode(
clientFn: Seq[TLMasterPortParameters] => TLMasterPortParameters,
managerFn: Seq[TLSlavePortParameters] => TLSlavePortParameters)(
implicit valName: ValName)
extends NexusNode(TLImp)(clientFn, managerFn) with TLFormatNode
abstract class TLCustomNode(implicit valName: ValName)
extends CustomNode(TLImp) with TLFormatNode
// Asynchronous crossings
trait TLAsyncFormatNode extends FormatNode[TLAsyncEdgeParameters, TLAsyncEdgeParameters]
object TLAsyncImp extends SimpleNodeImp[TLAsyncClientPortParameters, TLAsyncManagerPortParameters, TLAsyncEdgeParameters, TLAsyncBundle]
{
def edge(pd: TLAsyncClientPortParameters, pu: TLAsyncManagerPortParameters, p: Parameters, sourceInfo: SourceInfo) = TLAsyncEdgeParameters(pd, pu, p, sourceInfo)
def bundle(e: TLAsyncEdgeParameters) = new TLAsyncBundle(e.bundle)
def render(e: TLAsyncEdgeParameters) = RenderedEdge(colour = "#ff0000" /* red */, label = e.manager.async.depth.toString)
override def mixO(pd: TLAsyncClientPortParameters, node: OutwardNode[TLAsyncClientPortParameters, TLAsyncManagerPortParameters, TLAsyncBundle]): TLAsyncClientPortParameters =
pd.copy(base = pd.base.v1copy(clients = pd.base.clients.map { c => c.v1copy (nodePath = node +: c.nodePath) }))
override def mixI(pu: TLAsyncManagerPortParameters, node: InwardNode[TLAsyncClientPortParameters, TLAsyncManagerPortParameters, TLAsyncBundle]): TLAsyncManagerPortParameters =
pu.copy(base = pu.base.v1copy(managers = pu.base.managers.map { m => m.v1copy (nodePath = node +: m.nodePath) }))
}
case class TLAsyncAdapterNode(
clientFn: TLAsyncClientPortParameters => TLAsyncClientPortParameters = { s => s },
managerFn: TLAsyncManagerPortParameters => TLAsyncManagerPortParameters = { s => s })(
implicit valName: ValName)
extends AdapterNode(TLAsyncImp)(clientFn, managerFn) with TLAsyncFormatNode
case class TLAsyncIdentityNode()(implicit valName: ValName) extends IdentityNode(TLAsyncImp)() with TLAsyncFormatNode
object TLAsyncNameNode {
def apply(name: ValName) = TLAsyncIdentityNode()(name)
def apply(name: Option[String]): TLAsyncIdentityNode = apply(ValName(name.getOrElse("with_no_name")))
def apply(name: String): TLAsyncIdentityNode = apply(Some(name))
}
case class TLAsyncSourceNode(sync: Option[Int])(implicit valName: ValName)
extends MixedAdapterNode(TLImp, TLAsyncImp)(
dFn = { p => TLAsyncClientPortParameters(p) },
uFn = { p => p.base.v1copy(minLatency = p.base.minLatency + sync.getOrElse(p.async.sync)) }) with FormatNode[TLEdgeIn, TLAsyncEdgeParameters] // discard cycles in other clock domain
case class TLAsyncSinkNode(async: AsyncQueueParams)(implicit valName: ValName)
extends MixedAdapterNode(TLAsyncImp, TLImp)(
dFn = { p => p.base.v1copy(minLatency = p.base.minLatency + async.sync) },
uFn = { p => TLAsyncManagerPortParameters(async, p) }) with FormatNode[TLAsyncEdgeParameters, TLEdgeOut]
// Rationally related crossings
trait TLRationalFormatNode extends FormatNode[TLRationalEdgeParameters, TLRationalEdgeParameters]
object TLRationalImp extends SimpleNodeImp[TLRationalClientPortParameters, TLRationalManagerPortParameters, TLRationalEdgeParameters, TLRationalBundle]
{
def edge(pd: TLRationalClientPortParameters, pu: TLRationalManagerPortParameters, p: Parameters, sourceInfo: SourceInfo) = TLRationalEdgeParameters(pd, pu, p, sourceInfo)
def bundle(e: TLRationalEdgeParameters) = new TLRationalBundle(e.bundle)
def render(e: TLRationalEdgeParameters) = RenderedEdge(colour = "#00ff00" /* green */)
override def mixO(pd: TLRationalClientPortParameters, node: OutwardNode[TLRationalClientPortParameters, TLRationalManagerPortParameters, TLRationalBundle]): TLRationalClientPortParameters =
pd.copy(base = pd.base.v1copy(clients = pd.base.clients.map { c => c.v1copy (nodePath = node +: c.nodePath) }))
override def mixI(pu: TLRationalManagerPortParameters, node: InwardNode[TLRationalClientPortParameters, TLRationalManagerPortParameters, TLRationalBundle]): TLRationalManagerPortParameters =
pu.copy(base = pu.base.v1copy(managers = pu.base.managers.map { m => m.v1copy (nodePath = node +: m.nodePath) }))
}
case class TLRationalAdapterNode(
clientFn: TLRationalClientPortParameters => TLRationalClientPortParameters = { s => s },
managerFn: TLRationalManagerPortParameters => TLRationalManagerPortParameters = { s => s })(
implicit valName: ValName)
extends AdapterNode(TLRationalImp)(clientFn, managerFn) with TLRationalFormatNode
case class TLRationalIdentityNode()(implicit valName: ValName) extends IdentityNode(TLRationalImp)() with TLRationalFormatNode
object TLRationalNameNode {
def apply(name: ValName) = TLRationalIdentityNode()(name)
def apply(name: Option[String]): TLRationalIdentityNode = apply(ValName(name.getOrElse("with_no_name")))
def apply(name: String): TLRationalIdentityNode = apply(Some(name))
}
case class TLRationalSourceNode()(implicit valName: ValName)
extends MixedAdapterNode(TLImp, TLRationalImp)(
dFn = { p => TLRationalClientPortParameters(p) },
uFn = { p => p.base.v1copy(minLatency = 1) }) with FormatNode[TLEdgeIn, TLRationalEdgeParameters] // discard cycles from other clock domain
case class TLRationalSinkNode(direction: RationalDirection)(implicit valName: ValName)
extends MixedAdapterNode(TLRationalImp, TLImp)(
dFn = { p => p.base.v1copy(minLatency = 1) },
uFn = { p => TLRationalManagerPortParameters(direction, p) }) with FormatNode[TLRationalEdgeParameters, TLEdgeOut]
// Credited version of TileLink channels
trait TLCreditedFormatNode extends FormatNode[TLCreditedEdgeParameters, TLCreditedEdgeParameters]
object TLCreditedImp extends SimpleNodeImp[TLCreditedClientPortParameters, TLCreditedManagerPortParameters, TLCreditedEdgeParameters, TLCreditedBundle]
{
def edge(pd: TLCreditedClientPortParameters, pu: TLCreditedManagerPortParameters, p: Parameters, sourceInfo: SourceInfo) = TLCreditedEdgeParameters(pd, pu, p, sourceInfo)
def bundle(e: TLCreditedEdgeParameters) = new TLCreditedBundle(e.bundle)
def render(e: TLCreditedEdgeParameters) = RenderedEdge(colour = "#ffff00" /* yellow */, e.delay.toString)
override def mixO(pd: TLCreditedClientPortParameters, node: OutwardNode[TLCreditedClientPortParameters, TLCreditedManagerPortParameters, TLCreditedBundle]): TLCreditedClientPortParameters =
pd.copy(base = pd.base.v1copy(clients = pd.base.clients.map { c => c.v1copy (nodePath = node +: c.nodePath) }))
override def mixI(pu: TLCreditedManagerPortParameters, node: InwardNode[TLCreditedClientPortParameters, TLCreditedManagerPortParameters, TLCreditedBundle]): TLCreditedManagerPortParameters =
pu.copy(base = pu.base.v1copy(managers = pu.base.managers.map { m => m.v1copy (nodePath = node +: m.nodePath) }))
}
case class TLCreditedAdapterNode(
clientFn: TLCreditedClientPortParameters => TLCreditedClientPortParameters = { s => s },
managerFn: TLCreditedManagerPortParameters => TLCreditedManagerPortParameters = { s => s })(
implicit valName: ValName)
extends AdapterNode(TLCreditedImp)(clientFn, managerFn) with TLCreditedFormatNode
case class TLCreditedIdentityNode()(implicit valName: ValName) extends IdentityNode(TLCreditedImp)() with TLCreditedFormatNode
object TLCreditedNameNode {
def apply(name: ValName) = TLCreditedIdentityNode()(name)
def apply(name: Option[String]): TLCreditedIdentityNode = apply(ValName(name.getOrElse("with_no_name")))
def apply(name: String): TLCreditedIdentityNode = apply(Some(name))
}
case class TLCreditedSourceNode(delay: TLCreditedDelay)(implicit valName: ValName)
extends MixedAdapterNode(TLImp, TLCreditedImp)(
dFn = { p => TLCreditedClientPortParameters(delay, p) },
uFn = { p => p.base.v1copy(minLatency = 1) }) with FormatNode[TLEdgeIn, TLCreditedEdgeParameters] // discard cycles from other clock domain
case class TLCreditedSinkNode(delay: TLCreditedDelay)(implicit valName: ValName)
extends MixedAdapterNode(TLCreditedImp, TLImp)(
dFn = { p => p.base.v1copy(minLatency = 1) },
uFn = { p => TLCreditedManagerPortParameters(delay, p) }) with FormatNode[TLCreditedEdgeParameters, TLEdgeOut]
File LazyModuleImp.scala:
package org.chipsalliance.diplomacy.lazymodule
import chisel3.{withClockAndReset, Module, RawModule, Reset, _}
import chisel3.experimental.{ChiselAnnotation, CloneModuleAsRecord, SourceInfo}
import firrtl.passes.InlineAnnotation
import org.chipsalliance.cde.config.Parameters
import org.chipsalliance.diplomacy.nodes.Dangle
import scala.collection.immutable.SortedMap
/** Trait describing the actual [[Module]] implementation wrapped by a [[LazyModule]].
*
* This is the actual Chisel module that is lazily-evaluated in the second phase of Diplomacy.
*/
sealed trait LazyModuleImpLike extends RawModule {
/** [[LazyModule]] that contains this instance. */
val wrapper: LazyModule
/** IOs that will be automatically "punched" for this instance. */
val auto: AutoBundle
/** The metadata that describes the [[HalfEdge]]s which generated [[auto]]. */
protected[diplomacy] val dangles: Seq[Dangle]
// [[wrapper.module]] had better not be accessed while LazyModules are still being built!
require(
LazyModule.scope.isEmpty,
s"${wrapper.name}.module was constructed before LazyModule() was run on ${LazyModule.scope.get.name}"
)
/** Set module name. Defaults to the containing LazyModule's desiredName. */
override def desiredName: String = wrapper.desiredName
suggestName(wrapper.suggestedName)
/** [[Parameters]] for chisel [[Module]]s. */
implicit val p: Parameters = wrapper.p
/** instantiate this [[LazyModule]], return [[AutoBundle]] and a unconnected [[Dangle]]s from this module and
* submodules.
*/
protected[diplomacy] def instantiate(): (AutoBundle, List[Dangle]) = {
// 1. It will recursively append [[wrapper.children]] into [[chisel3.internal.Builder]],
// 2. return [[Dangle]]s from each module.
val childDangles = wrapper.children.reverse.flatMap { c =>
implicit val sourceInfo: SourceInfo = c.info
c.cloneProto.map { cp =>
// If the child is a clone, then recursively set cloneProto of its children as well
def assignCloneProtos(bases: Seq[LazyModule], clones: Seq[LazyModule]): Unit = {
require(bases.size == clones.size)
(bases.zip(clones)).map { case (l, r) =>
require(l.getClass == r.getClass, s"Cloned children class mismatch ${l.name} != ${r.name}")
l.cloneProto = Some(r)
assignCloneProtos(l.children, r.children)
}
}
assignCloneProtos(c.children, cp.children)
// Clone the child module as a record, and get its [[AutoBundle]]
val clone = CloneModuleAsRecord(cp.module).suggestName(c.suggestedName)
val clonedAuto = clone("auto").asInstanceOf[AutoBundle]
// Get the empty [[Dangle]]'s of the cloned child
val rawDangles = c.cloneDangles()
require(rawDangles.size == clonedAuto.elements.size)
// Assign the [[AutoBundle]] fields of the cloned record to the empty [[Dangle]]'s
val dangles = (rawDangles.zip(clonedAuto.elements)).map { case (d, (_, io)) => d.copy(dataOpt = Some(io)) }
dangles
}.getOrElse {
// For non-clones, instantiate the child module
val mod = try {
Module(c.module)
} catch {
case e: ChiselException => {
println(s"Chisel exception caught when instantiating ${c.name} within ${this.name} at ${c.line}")
throw e
}
}
mod.dangles
}
}
// Ask each node in this [[LazyModule]] to call [[BaseNode.instantiate]].
// This will result in a sequence of [[Dangle]] from these [[BaseNode]]s.
val nodeDangles = wrapper.nodes.reverse.flatMap(_.instantiate())
// Accumulate all the [[Dangle]]s from this node and any accumulated from its [[wrapper.children]]
val allDangles = nodeDangles ++ childDangles
// Group [[allDangles]] by their [[source]].
val pairing = SortedMap(allDangles.groupBy(_.source).toSeq: _*)
// For each [[source]] set of [[Dangle]]s of size 2, ensure that these
// can be connected as a source-sink pair (have opposite flipped value).
// Make the connection and mark them as [[done]].
val done = Set() ++ pairing.values.filter(_.size == 2).map {
case Seq(a, b) =>
require(a.flipped != b.flipped)
// @todo <> in chisel3 makes directionless connection.
if (a.flipped) {
a.data <> b.data
} else {
b.data <> a.data
}
a.source
case _ => None
}
// Find all [[Dangle]]s which are still not connected. These will end up as [[AutoBundle]] [[IO]] ports on the module.
val forward = allDangles.filter(d => !done(d.source))
// Generate [[AutoBundle]] IO from [[forward]].
val auto = IO(new AutoBundle(forward.map { d => (d.name, d.data, d.flipped) }: _*))
// Pass the [[Dangle]]s which remained and were used to generate the [[AutoBundle]] I/O ports up to the [[parent]] [[LazyModule]]
val dangles = (forward.zip(auto.elements)).map { case (d, (_, io)) =>
if (d.flipped) {
d.data <> io
} else {
io <> d.data
}
d.copy(dataOpt = Some(io), name = wrapper.suggestedName + "_" + d.name)
}
// Push all [[LazyModule.inModuleBody]] to [[chisel3.internal.Builder]].
wrapper.inModuleBody.reverse.foreach {
_()
}
if (wrapper.shouldBeInlined) {
chisel3.experimental.annotate(new ChiselAnnotation {
def toFirrtl = InlineAnnotation(toNamed)
})
}
// Return [[IO]] and [[Dangle]] of this [[LazyModuleImp]].
(auto, dangles)
}
}
/** Actual description of a [[Module]] which can be instantiated by a call to [[LazyModule.module]].
*
* @param wrapper
* the [[LazyModule]] from which the `.module` call is being made.
*/
class LazyModuleImp(val wrapper: LazyModule) extends Module with LazyModuleImpLike {
/** Instantiate hardware of this `Module`. */
val (auto, dangles) = instantiate()
}
/** Actual description of a [[RawModule]] which can be instantiated by a call to [[LazyModule.module]].
*
* @param wrapper
* the [[LazyModule]] from which the `.module` call is being made.
*/
class LazyRawModuleImp(val wrapper: LazyModule) extends RawModule with LazyModuleImpLike {
// These wires are the default clock+reset for all LazyModule children.
// It is recommended to drive these even if you manually drive the [[clock]] and [[reset]] of all of the
// [[LazyRawModuleImp]] children.
// Otherwise, anonymous children ([[Monitor]]s for example) will not have their [[clock]] and/or [[reset]] driven properly.
/** drive clock explicitly. */
val childClock: Clock = Wire(Clock())
/** drive reset explicitly. */
val childReset: Reset = Wire(Reset())
// the default is that these are disabled
childClock := false.B.asClock
childReset := chisel3.DontCare
def provideImplicitClockToLazyChildren: Boolean = false
val (auto, dangles) =
if (provideImplicitClockToLazyChildren) {
withClockAndReset(childClock, childReset) { instantiate() }
} else {
instantiate()
}
}
File MixedNode.scala:
package org.chipsalliance.diplomacy.nodes
import chisel3.{Data, DontCare, Wire}
import chisel3.experimental.SourceInfo
import org.chipsalliance.cde.config.{Field, Parameters}
import org.chipsalliance.diplomacy.ValName
import org.chipsalliance.diplomacy.sourceLine
/** One side metadata of a [[Dangle]].
*
* Describes one side of an edge going into or out of a [[BaseNode]].
*
* @param serial
* the global [[BaseNode.serial]] number of the [[BaseNode]] that this [[HalfEdge]] connects to.
* @param index
* the `index` in the [[BaseNode]]'s input or output port list that this [[HalfEdge]] belongs to.
*/
case class HalfEdge(serial: Int, index: Int) extends Ordered[HalfEdge] {
import scala.math.Ordered.orderingToOrdered
def compare(that: HalfEdge): Int = HalfEdge.unapply(this).compare(HalfEdge.unapply(that))
}
/** [[Dangle]] captures the `IO` information of a [[LazyModule]] and which two [[BaseNode]]s the [[Edges]]/[[Bundle]]
* connects.
*
* [[Dangle]]s are generated by [[BaseNode.instantiate]] using [[MixedNode.danglesOut]] and [[MixedNode.danglesIn]] ,
* [[LazyModuleImp.instantiate]] connects those that go to internal or explicit IO connections in a [[LazyModule]].
*
* @param source
* the source [[HalfEdge]] of this [[Dangle]], which captures the source [[BaseNode]] and the port `index` within
* that [[BaseNode]].
* @param sink
* sink [[HalfEdge]] of this [[Dangle]], which captures the sink [[BaseNode]] and the port `index` within that
* [[BaseNode]].
* @param flipped
* flip or not in [[AutoBundle.makeElements]]. If true this corresponds to `danglesOut`, if false it corresponds to
* `danglesIn`.
* @param dataOpt
* actual [[Data]] for the hardware connection. Can be empty if this belongs to a cloned module
*/
case class Dangle(source: HalfEdge, sink: HalfEdge, flipped: Boolean, name: String, dataOpt: Option[Data]) {
def data = dataOpt.get
}
/** [[Edges]] is a collection of parameters describing the functionality and connection for an interface, which is often
* derived from the interconnection protocol and can inform the parameterization of the hardware bundles that actually
* implement the protocol.
*/
case class Edges[EI, EO](in: Seq[EI], out: Seq[EO])
/** A field available in [[Parameters]] used to determine whether [[InwardNodeImp.monitor]] will be called. */
case object MonitorsEnabled extends Field[Boolean](true)
/** When rendering the edge in a graphical format, flip the order in which the edges' source and sink are presented.
*
* For example, when rendering graphML, yEd by default tries to put the source node vertically above the sink node, but
* [[RenderFlipped]] inverts this relationship. When a particular [[LazyModule]] contains both source nodes and sink
* nodes, flipping the rendering of one node's edge will usual produce a more concise visual layout for the
* [[LazyModule]].
*/
case object RenderFlipped extends Field[Boolean](false)
/** The sealed node class in the package, all node are derived from it.
*
* @param inner
* Sink interface implementation.
* @param outer
* Source interface implementation.
* @param valName
* val name of this node.
* @tparam DI
* Downward-flowing parameters received on the inner side of the node. It is usually a brunch of parameters
* describing the protocol parameters from a source. For an [[InwardNode]], it is determined by the connected
* [[OutwardNode]]. Since it can be connected to multiple sources, this parameter is always a Seq of source port
* parameters.
* @tparam UI
* Upward-flowing parameters generated by the inner side of the node. It is usually a brunch of parameters describing
* the protocol parameters of a sink. For an [[InwardNode]], it is determined itself.
* @tparam EI
* Edge Parameters describing a connection on the inner side of the node. It is usually a brunch of transfers
* specified for a sink according to protocol.
* @tparam BI
* Bundle type used when connecting to the inner side of the node. It is a hardware interface of this sink interface.
* It should extends from [[chisel3.Data]], which represents the real hardware.
* @tparam DO
* Downward-flowing parameters generated on the outer side of the node. It is usually a brunch of parameters
* describing the protocol parameters of a source. For an [[OutwardNode]], it is determined itself.
* @tparam UO
* Upward-flowing parameters received by the outer side of the node. It is usually a brunch of parameters describing
* the protocol parameters from a sink. For an [[OutwardNode]], it is determined by the connected [[InwardNode]].
* Since it can be connected to multiple sinks, this parameter is always a Seq of sink port parameters.
* @tparam EO
* Edge Parameters describing a connection on the outer side of the node. It is usually a brunch of transfers
* specified for a source according to protocol.
* @tparam BO
* Bundle type used when connecting to the outer side of the node. It is a hardware interface of this source
* interface. It should extends from [[chisel3.Data]], which represents the real hardware.
*
* @note
* Call Graph of [[MixedNode]]
* - line `β`: source is process by a function and generate pass to others
* - Arrow `β`: target of arrow is generated by source
*
* {{{
* (from the other node)
* ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ[[InwardNode.uiParams]]ββββββββββββββ
* β β
* (binding node when elaboration) [[OutwardNode.uoParams]]ββββββββββββββββββββββββ[[MixedNode.mapParamsU]]ββββββββββββ β
* [[InwardNode.accPI]] β β β
* β β (based on protocol) β
* β β [[MixedNode.inner.edgeI]] β
* β β β β
* β β β β
* (immobilize after elaboration) (inward port from [[OutwardNode]]) β β β
* [[InwardNode.iBindings]]βββ [[MixedNode.iDirectPorts]]βββββββββββββββββββββ[[MixedNode.iPorts]] [[InwardNode.uiParams]] β
* β β β β β β
* β β β [[OutwardNode.doParams]] β β
* β β β (from the other node) β β
* β β β β β β
* β β β β β β
* β β β ββββββββββ¬βββββββββββββββ€ β
* β β β β β β
* β β β β (based on protocol) β
* β β β β [[MixedNode.inner.edgeI]] β
* β β β β β β
* β β (from the other node) β β β
* β ββββ[[OutwardNode.oPortMapping]] [[OutwardNode.oStar]] β [[MixedNode.edgesIn]]ββββ β
* β β β β β β β
* β β β β β [[MixedNode.in]] β
* β β β β β β β
* β (solve star connection) β β β [[MixedNode.bundleIn]]βββ β
* ββββ[[MixedNode.resolveStar]]βββΌββββββββββββββββββββββββββββββ€ ββββββββββββββββββββββββββββββββββββββ β
* β β β [[MixedNode.bundleOut]]ββ β β
* β β β β β β β
* β β β β [[MixedNode.out]] β β
* β β β β β β β
* β ββββββ[[InwardNode.iPortMapping]] [[InwardNode.iStar]] [[MixedNode.edgesOut]]βββ β β
* β β (from the other node) β β β
* β β β β β β
* β β β [[MixedNode.outer.edgeO]] β β
* β β β (based on protocol) β β
* β β β β β β
* β β β ββββββββββββββββββββββββββββββββββββββββββ€ β β
* β β β β β β β
* β β β β β β β
* β β β β β β β
* (immobilize after elaboration)β β β β β β
* [[OutwardNode.oBindings]]ββ [[MixedNode.oDirectPorts]]ββββ[[MixedNode.oPorts]] [[OutwardNode.doParams]] β β
* β (inward port from [[OutwardNode]]) β β β β
* β βββββββββββββββββββββββββββββββββββββββββββ€ β β β
* β β β β β β
* β β β β β β
* [[OutwardNode.accPO]] β β β β β
* (binding node when elaboration) β [[InwardNode.diParams]]ββββββ[[MixedNode.mapParamsD]]βββββββββββββββββββββββββββββ β β
* β β β β
* β ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ β
* ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
* }}}
*/
abstract class MixedNode[DI, UI, EI, BI <: Data, DO, UO, EO, BO <: Data](
val inner: InwardNodeImp[DI, UI, EI, BI],
val outer: OutwardNodeImp[DO, UO, EO, BO]
)(
implicit valName: ValName)
extends BaseNode
with NodeHandle[DI, UI, EI, BI, DO, UO, EO, BO]
with InwardNode[DI, UI, BI]
with OutwardNode[DO, UO, BO] {
// Generate a [[NodeHandle]] with inward and outward node are both this node.
val inward = this
val outward = this
/** Debug info of nodes binding. */
def bindingInfo: String = s"""$iBindingInfo
|$oBindingInfo
|""".stripMargin
/** Debug info of ports connecting. */
def connectedPortsInfo: String = s"""${oPorts.size} outward ports connected: [${oPorts.map(_._2.name).mkString(",")}]
|${iPorts.size} inward ports connected: [${iPorts.map(_._2.name).mkString(",")}]
|""".stripMargin
/** Debug info of parameters propagations. */
def parametersInfo: String = s"""${doParams.size} downstream outward parameters: [${doParams.mkString(",")}]
|${uoParams.size} upstream outward parameters: [${uoParams.mkString(",")}]
|${diParams.size} downstream inward parameters: [${diParams.mkString(",")}]
|${uiParams.size} upstream inward parameters: [${uiParams.mkString(",")}]
|""".stripMargin
/** For a given node, converts [[OutwardNode.accPO]] and [[InwardNode.accPI]] to [[MixedNode.oPortMapping]] and
* [[MixedNode.iPortMapping]].
*
* Given counts of known inward and outward binding and inward and outward star bindings, return the resolved inward
* stars and outward stars.
*
* This method will also validate the arguments and throw a runtime error if the values are unsuitable for this type
* of node.
*
* @param iKnown
* Number of known-size ([[BIND_ONCE]]) input bindings.
* @param oKnown
* Number of known-size ([[BIND_ONCE]]) output bindings.
* @param iStar
* Number of unknown size ([[BIND_STAR]]) input bindings.
* @param oStar
* Number of unknown size ([[BIND_STAR]]) output bindings.
* @return
* A Tuple of the resolved number of input and output connections.
*/
protected[diplomacy] def resolveStar(iKnown: Int, oKnown: Int, iStar: Int, oStar: Int): (Int, Int)
/** Function to generate downward-flowing outward params from the downward-flowing input params and the current output
* ports.
*
* @param n
* The size of the output sequence to generate.
* @param p
* Sequence of downward-flowing input parameters of this node.
* @return
* A `n`-sized sequence of downward-flowing output edge parameters.
*/
protected[diplomacy] def mapParamsD(n: Int, p: Seq[DI]): Seq[DO]
/** Function to generate upward-flowing input parameters from the upward-flowing output parameters [[uiParams]].
*
* @param n
* Size of the output sequence.
* @param p
* Upward-flowing output edge parameters.
* @return
* A n-sized sequence of upward-flowing input edge parameters.
*/
protected[diplomacy] def mapParamsU(n: Int, p: Seq[UO]): Seq[UI]
/** @return
* The sink cardinality of the node, the number of outputs bound with [[BIND_QUERY]] summed with inputs bound with
* [[BIND_STAR]].
*/
protected[diplomacy] lazy val sinkCard: Int = oBindings.count(_._3 == BIND_QUERY) + iBindings.count(_._3 == BIND_STAR)
/** @return
* The source cardinality of this node, the number of inputs bound with [[BIND_QUERY]] summed with the number of
* output bindings bound with [[BIND_STAR]].
*/
protected[diplomacy] lazy val sourceCard: Int =
iBindings.count(_._3 == BIND_QUERY) + oBindings.count(_._3 == BIND_STAR)
/** @return list of nodes involved in flex bindings with this node. */
protected[diplomacy] lazy val flexes: Seq[BaseNode] =
oBindings.filter(_._3 == BIND_FLEX).map(_._2) ++ iBindings.filter(_._3 == BIND_FLEX).map(_._2)
/** Resolves the flex to be either source or sink and returns the offset where the [[BIND_STAR]] operators begin
* greedily taking up the remaining connections.
*
* @return
* A value >= 0 if it is sink cardinality, a negative value for source cardinality. The magnitude of the return
* value is not relevant.
*/
protected[diplomacy] lazy val flexOffset: Int = {
/** Recursively performs a depth-first search of the [[flexes]], [[BaseNode]]s connected to this node with flex
* operators. The algorithm bottoms out when we either get to a node we have already visited or when we get to a
* connection that is not a flex and can set the direction for us. Otherwise, recurse by visiting the `flexes` of
* each node in the current set and decide whether they should be added to the set or not.
*
* @return
* the mapping of [[BaseNode]] indexed by their serial numbers.
*/
def DFS(v: BaseNode, visited: Map[Int, BaseNode]): Map[Int, BaseNode] = {
if (visited.contains(v.serial) || !v.flexibleArityDirection) {
visited
} else {
v.flexes.foldLeft(visited + (v.serial -> v))((sum, n) => DFS(n, sum))
}
}
/** Determine which [[BaseNode]] are involved in resolving the flex connections to/from this node.
*
* @example
* {{{
* a :*=* b :*=* c
* d :*=* b
* e :*=* f
* }}}
*
* `flexSet` for `a`, `b`, `c`, or `d` will be `Set(a, b, c, d)` `flexSet` for `e` or `f` will be `Set(e,f)`
*/
val flexSet = DFS(this, Map()).values
/** The total number of :*= operators where we're on the left. */
val allSink = flexSet.map(_.sinkCard).sum
/** The total number of :=* operators used when we're on the right. */
val allSource = flexSet.map(_.sourceCard).sum
require(
allSink == 0 || allSource == 0,
s"The nodes ${flexSet.map(_.name)} which are inter-connected by :*=* have ${allSink} :*= operators and ${allSource} :=* operators connected to them, making it impossible to determine cardinality inference direction."
)
allSink - allSource
}
/** @return A value >= 0 if it is sink cardinality, a negative value for source cardinality. */
protected[diplomacy] def edgeArityDirection(n: BaseNode): Int = {
if (flexibleArityDirection) flexOffset
else if (n.flexibleArityDirection) n.flexOffset
else 0
}
/** For a node which is connected between two nodes, select the one that will influence the direction of the flex
* resolution.
*/
protected[diplomacy] def edgeAritySelect(n: BaseNode, l: => Int, r: => Int): Int = {
val dir = edgeArityDirection(n)
if (dir < 0) l
else if (dir > 0) r
else 1
}
/** Ensure that the same node is not visited twice in resolving `:*=`, etc operators. */
private var starCycleGuard = false
/** Resolve all the star operators into concrete indicies. As connections are being made, some may be "star"
* connections which need to be resolved. In some way to determine how many actual edges they correspond to. We also
* need to build up the ranges of edges which correspond to each binding operator, so that We can apply the correct
* edge parameters and later build up correct bundle connections.
*
* [[oPortMapping]]: `Seq[(Int, Int)]` where each item is the range of edges corresponding to that oPort (binding
* operator). [[iPortMapping]]: `Seq[(Int, Int)]` where each item is the range of edges corresponding to that iPort
* (binding operator). [[oStar]]: `Int` the value to return for this node `N` for any `N :*= foo` or `N :*=* foo :*=
* bar` [[iStar]]: `Int` the value to return for this node `N` for any `foo :=* N` or `bar :=* foo :*=* N`
*/
protected[diplomacy] lazy val (
oPortMapping: Seq[(Int, Int)],
iPortMapping: Seq[(Int, Int)],
oStar: Int,
iStar: Int
) = {
try {
if (starCycleGuard) throw StarCycleException()
starCycleGuard = true
// For a given node N...
// Number of foo :=* N
// + Number of bar :=* foo :*=* N
val oStars = oBindings.count { case (_, n, b, _, _) =>
b == BIND_STAR || (b == BIND_FLEX && edgeArityDirection(n) < 0)
}
// Number of N :*= foo
// + Number of N :*=* foo :*= bar
val iStars = iBindings.count { case (_, n, b, _, _) =>
b == BIND_STAR || (b == BIND_FLEX && edgeArityDirection(n) > 0)
}
// 1 for foo := N
// + bar.iStar for bar :*= foo :*=* N
// + foo.iStar for foo :*= N
// + 0 for foo :=* N
val oKnown = oBindings.map { case (_, n, b, _, _) =>
b match {
case BIND_ONCE => 1
case BIND_FLEX => edgeAritySelect(n, 0, n.iStar)
case BIND_QUERY => n.iStar
case BIND_STAR => 0
}
}.sum
// 1 for N := foo
// + bar.oStar for N :*=* foo :=* bar
// + foo.oStar for N :=* foo
// + 0 for N :*= foo
val iKnown = iBindings.map { case (_, n, b, _, _) =>
b match {
case BIND_ONCE => 1
case BIND_FLEX => edgeAritySelect(n, n.oStar, 0)
case BIND_QUERY => n.oStar
case BIND_STAR => 0
}
}.sum
// Resolve star depends on the node subclass to implement the algorithm for this.
val (iStar, oStar) = resolveStar(iKnown, oKnown, iStars, oStars)
// Cumulative list of resolved outward binding range starting points
val oSum = oBindings.map { case (_, n, b, _, _) =>
b match {
case BIND_ONCE => 1
case BIND_FLEX => edgeAritySelect(n, oStar, n.iStar)
case BIND_QUERY => n.iStar
case BIND_STAR => oStar
}
}.scanLeft(0)(_ + _)
// Cumulative list of resolved inward binding range starting points
val iSum = iBindings.map { case (_, n, b, _, _) =>
b match {
case BIND_ONCE => 1
case BIND_FLEX => edgeAritySelect(n, n.oStar, iStar)
case BIND_QUERY => n.oStar
case BIND_STAR => iStar
}
}.scanLeft(0)(_ + _)
// Create ranges for each binding based on the running sums and return
// those along with resolved values for the star operations.
(oSum.init.zip(oSum.tail), iSum.init.zip(iSum.tail), oStar, iStar)
} catch {
case c: StarCycleException => throw c.copy(loop = context +: c.loop)
}
}
/** Sequence of inward ports.
*
* This should be called after all star bindings are resolved.
*
* Each element is: `j` Port index of this binding in the Node's [[oPortMapping]] on the other side of the binding.
* `n` Instance of inward node. `p` View of [[Parameters]] where this connection was made. `s` Source info where this
* connection was made in the source code.
*/
protected[diplomacy] lazy val oDirectPorts: Seq[(Int, InwardNode[DO, UO, BO], Parameters, SourceInfo)] =
oBindings.flatMap { case (i, n, _, p, s) =>
// for each binding operator in this node, look at what it connects to
val (start, end) = n.iPortMapping(i)
(start until end).map { j => (j, n, p, s) }
}
/** Sequence of outward ports.
*
* This should be called after all star bindings are resolved.
*
* `j` Port index of this binding in the Node's [[oPortMapping]] on the other side of the binding. `n` Instance of
* outward node. `p` View of [[Parameters]] where this connection was made. `s` [[SourceInfo]] where this connection
* was made in the source code.
*/
protected[diplomacy] lazy val iDirectPorts: Seq[(Int, OutwardNode[DI, UI, BI], Parameters, SourceInfo)] =
iBindings.flatMap { case (i, n, _, p, s) =>
// query this port index range of this node in the other side of node.
val (start, end) = n.oPortMapping(i)
(start until end).map { j => (j, n, p, s) }
}
// Ephemeral nodes ( which have non-None iForward/oForward) have in_degree = out_degree
// Thus, there must exist an Eulerian path and the below algorithms terminate
@scala.annotation.tailrec
private def oTrace(
tuple: (Int, InwardNode[DO, UO, BO], Parameters, SourceInfo)
): (Int, InwardNode[DO, UO, BO], Parameters, SourceInfo) = tuple match {
case (i, n, p, s) => n.iForward(i) match {
case None => (i, n, p, s)
case Some((j, m)) => oTrace((j, m, p, s))
}
}
@scala.annotation.tailrec
private def iTrace(
tuple: (Int, OutwardNode[DI, UI, BI], Parameters, SourceInfo)
): (Int, OutwardNode[DI, UI, BI], Parameters, SourceInfo) = tuple match {
case (i, n, p, s) => n.oForward(i) match {
case None => (i, n, p, s)
case Some((j, m)) => iTrace((j, m, p, s))
}
}
/** Final output ports after all stars and port forwarding (e.g. [[EphemeralNode]]s) have been resolved.
*
* Each Port is a tuple of:
* - Numeric index of this binding in the [[InwardNode]] on the other end.
* - [[InwardNode]] on the other end of this binding.
* - A view of [[Parameters]] where the binding occurred.
* - [[SourceInfo]] for source-level error reporting.
*/
lazy val oPorts: Seq[(Int, InwardNode[DO, UO, BO], Parameters, SourceInfo)] = oDirectPorts.map(oTrace)
/** Final input ports after all stars and port forwarding (e.g. [[EphemeralNode]]s) have been resolved.
*
* Each Port is a tuple of:
* - numeric index of this binding in [[OutwardNode]] on the other end.
* - [[OutwardNode]] on the other end of this binding.
* - a view of [[Parameters]] where the binding occurred.
* - [[SourceInfo]] for source-level error reporting.
*/
lazy val iPorts: Seq[(Int, OutwardNode[DI, UI, BI], Parameters, SourceInfo)] = iDirectPorts.map(iTrace)
private var oParamsCycleGuard = false
protected[diplomacy] lazy val diParams: Seq[DI] = iPorts.map { case (i, n, _, _) => n.doParams(i) }
protected[diplomacy] lazy val doParams: Seq[DO] = {
try {
if (oParamsCycleGuard) throw DownwardCycleException()
oParamsCycleGuard = true
val o = mapParamsD(oPorts.size, diParams)
require(
o.size == oPorts.size,
s"""Diplomacy has detected a problem with your graph:
|At the following node, the number of outward ports should equal the number of produced outward parameters.
|$context
|$connectedPortsInfo
|Downstreamed inward parameters: [${diParams.mkString(",")}]
|Produced outward parameters: [${o.mkString(",")}]
|""".stripMargin
)
o.map(outer.mixO(_, this))
} catch {
case c: DownwardCycleException => throw c.copy(loop = context +: c.loop)
}
}
private var iParamsCycleGuard = false
protected[diplomacy] lazy val uoParams: Seq[UO] = oPorts.map { case (o, n, _, _) => n.uiParams(o) }
protected[diplomacy] lazy val uiParams: Seq[UI] = {
try {
if (iParamsCycleGuard) throw UpwardCycleException()
iParamsCycleGuard = true
val i = mapParamsU(iPorts.size, uoParams)
require(
i.size == iPorts.size,
s"""Diplomacy has detected a problem with your graph:
|At the following node, the number of inward ports should equal the number of produced inward parameters.
|$context
|$connectedPortsInfo
|Upstreamed outward parameters: [${uoParams.mkString(",")}]
|Produced inward parameters: [${i.mkString(",")}]
|""".stripMargin
)
i.map(inner.mixI(_, this))
} catch {
case c: UpwardCycleException => throw c.copy(loop = context +: c.loop)
}
}
/** Outward edge parameters. */
protected[diplomacy] lazy val edgesOut: Seq[EO] =
(oPorts.zip(doParams)).map { case ((i, n, p, s), o) => outer.edgeO(o, n.uiParams(i), p, s) }
/** Inward edge parameters. */
protected[diplomacy] lazy val edgesIn: Seq[EI] =
(iPorts.zip(uiParams)).map { case ((o, n, p, s), i) => inner.edgeI(n.doParams(o), i, p, s) }
/** A tuple of the input edge parameters and output edge parameters for the edges bound to this node.
*
* If you need to access to the edges of a foreign Node, use this method (in/out create bundles).
*/
lazy val edges: Edges[EI, EO] = Edges(edgesIn, edgesOut)
/** Create actual Wires corresponding to the Bundles parameterized by the outward edges of this node. */
protected[diplomacy] lazy val bundleOut: Seq[BO] = edgesOut.map { e =>
val x = Wire(outer.bundleO(e)).suggestName(s"${valName.value}Out")
// TODO: Don't care unconnected forwarded diplomatic signals for compatibility issue,
// In the future, we should add an option to decide whether allowing unconnected in the LazyModule
x := DontCare
x
}
/** Create actual Wires corresponding to the Bundles parameterized by the inward edges of this node. */
protected[diplomacy] lazy val bundleIn: Seq[BI] = edgesIn.map { e =>
val x = Wire(inner.bundleI(e)).suggestName(s"${valName.value}In")
// TODO: Don't care unconnected forwarded diplomatic signals for compatibility issue,
// In the future, we should add an option to decide whether allowing unconnected in the LazyModule
x := DontCare
x
}
private def emptyDanglesOut: Seq[Dangle] = oPorts.zipWithIndex.map { case ((j, n, _, _), i) =>
Dangle(
source = HalfEdge(serial, i),
sink = HalfEdge(n.serial, j),
flipped = false,
name = wirePrefix + "out",
dataOpt = None
)
}
private def emptyDanglesIn: Seq[Dangle] = iPorts.zipWithIndex.map { case ((j, n, _, _), i) =>
Dangle(
source = HalfEdge(n.serial, j),
sink = HalfEdge(serial, i),
flipped = true,
name = wirePrefix + "in",
dataOpt = None
)
}
/** Create the [[Dangle]]s which describe the connections from this node output to other nodes inputs. */
protected[diplomacy] def danglesOut: Seq[Dangle] = emptyDanglesOut.zipWithIndex.map { case (d, i) =>
d.copy(dataOpt = Some(bundleOut(i)))
}
/** Create the [[Dangle]]s which describe the connections from this node input from other nodes outputs. */
protected[diplomacy] def danglesIn: Seq[Dangle] = emptyDanglesIn.zipWithIndex.map { case (d, i) =>
d.copy(dataOpt = Some(bundleIn(i)))
}
private[diplomacy] var instantiated = false
/** Gather Bundle and edge parameters of outward ports.
*
* Accessors to the result of negotiation to be used within [[LazyModuleImp]] Code. Should only be used within
* [[LazyModuleImp]] code or after its instantiation has completed.
*/
def out: Seq[(BO, EO)] = {
require(
instantiated,
s"$name.out should not be called until after instantiation of its parent LazyModule.module has begun"
)
bundleOut.zip(edgesOut)
}
/** Gather Bundle and edge parameters of inward ports.
*
* Accessors to the result of negotiation to be used within [[LazyModuleImp]] Code. Should only be used within
* [[LazyModuleImp]] code or after its instantiation has completed.
*/
def in: Seq[(BI, EI)] = {
require(
instantiated,
s"$name.in should not be called until after instantiation of its parent LazyModule.module has begun"
)
bundleIn.zip(edgesIn)
}
/** Actually instantiate this node during [[LazyModuleImp]] evaluation. Mark that it's safe to use the Bundle wires,
* instantiate monitors on all input ports if appropriate, and return all the dangles of this node.
*/
protected[diplomacy] def instantiate(): Seq[Dangle] = {
instantiated = true
if (!circuitIdentity) {
(iPorts.zip(in)).foreach { case ((_, _, p, _), (b, e)) => if (p(MonitorsEnabled)) inner.monitor(b, e) }
}
danglesOut ++ danglesIn
}
protected[diplomacy] def cloneDangles(): Seq[Dangle] = emptyDanglesOut ++ emptyDanglesIn
/** Connects the outward part of a node with the inward part of this node. */
protected[diplomacy] def bind(
h: OutwardNode[DI, UI, BI],
binding: NodeBinding
)(
implicit p: Parameters,
sourceInfo: SourceInfo
): Unit = {
val x = this // x := y
val y = h
sourceLine(sourceInfo, " at ", "")
val i = x.iPushed
val o = y.oPushed
y.oPush(
i,
x,
binding match {
case BIND_ONCE => BIND_ONCE
case BIND_FLEX => BIND_FLEX
case BIND_STAR => BIND_QUERY
case BIND_QUERY => BIND_STAR
}
)
x.iPush(o, y, binding)
}
/* Metadata for printing the node graph. */
def inputs: Seq[(OutwardNode[DI, UI, BI], RenderedEdge)] = (iPorts.zip(edgesIn)).map { case ((_, n, p, _), e) =>
val re = inner.render(e)
(n, re.copy(flipped = re.flipped != p(RenderFlipped)))
}
/** Metadata for printing the node graph */
def outputs: Seq[(InwardNode[DO, UO, BO], RenderedEdge)] = oPorts.map { case (i, n, _, _) => (n, n.inputs(i)._2) }
}
| module TLBuffer_a28d64s5k1z3u_1( // @[Buffer.scala:40:9]
input clock, // @[Buffer.scala:40:9]
input reset, // @[Buffer.scala:40:9]
output auto_in_a_ready, // @[LazyModuleImp.scala:107:25]
input auto_in_a_valid, // @[LazyModuleImp.scala:107:25]
input [2:0] auto_in_a_bits_opcode, // @[LazyModuleImp.scala:107:25]
input [2:0] auto_in_a_bits_param, // @[LazyModuleImp.scala:107:25]
input [2:0] auto_in_a_bits_size, // @[LazyModuleImp.scala:107:25]
input [4:0] auto_in_a_bits_source, // @[LazyModuleImp.scala:107:25]
input [27:0] auto_in_a_bits_address, // @[LazyModuleImp.scala:107:25]
input [7:0] auto_in_a_bits_mask, // @[LazyModuleImp.scala:107:25]
input [63:0] auto_in_a_bits_data, // @[LazyModuleImp.scala:107:25]
input auto_in_a_bits_corrupt, // @[LazyModuleImp.scala:107:25]
input auto_in_d_ready, // @[LazyModuleImp.scala:107:25]
output auto_in_d_valid, // @[LazyModuleImp.scala:107:25]
output [2:0] auto_in_d_bits_opcode, // @[LazyModuleImp.scala:107:25]
output [1:0] auto_in_d_bits_param, // @[LazyModuleImp.scala:107:25]
output [2:0] auto_in_d_bits_size, // @[LazyModuleImp.scala:107:25]
output [4:0] auto_in_d_bits_source, // @[LazyModuleImp.scala:107:25]
output auto_in_d_bits_sink, // @[LazyModuleImp.scala:107:25]
output auto_in_d_bits_denied, // @[LazyModuleImp.scala:107:25]
output [63:0] auto_in_d_bits_data, // @[LazyModuleImp.scala:107:25]
output auto_in_d_bits_corrupt, // @[LazyModuleImp.scala:107:25]
input auto_out_a_ready, // @[LazyModuleImp.scala:107:25]
output auto_out_a_valid, // @[LazyModuleImp.scala:107:25]
output [2:0] auto_out_a_bits_opcode, // @[LazyModuleImp.scala:107:25]
output [2:0] auto_out_a_bits_param, // @[LazyModuleImp.scala:107:25]
output [2:0] auto_out_a_bits_size, // @[LazyModuleImp.scala:107:25]
output [4:0] auto_out_a_bits_source, // @[LazyModuleImp.scala:107:25]
output [27:0] auto_out_a_bits_address, // @[LazyModuleImp.scala:107:25]
output [7:0] auto_out_a_bits_mask, // @[LazyModuleImp.scala:107:25]
output [63:0] auto_out_a_bits_data, // @[LazyModuleImp.scala:107:25]
output auto_out_a_bits_corrupt, // @[LazyModuleImp.scala:107:25]
output auto_out_d_ready, // @[LazyModuleImp.scala:107:25]
input auto_out_d_valid, // @[LazyModuleImp.scala:107:25]
input [2:0] auto_out_d_bits_opcode, // @[LazyModuleImp.scala:107:25]
input [2:0] auto_out_d_bits_size, // @[LazyModuleImp.scala:107:25]
input [4:0] auto_out_d_bits_source, // @[LazyModuleImp.scala:107:25]
input [63:0] auto_out_d_bits_data // @[LazyModuleImp.scala:107:25]
);
wire auto_in_a_valid_0 = auto_in_a_valid; // @[Buffer.scala:40:9]
wire [2:0] auto_in_a_bits_opcode_0 = auto_in_a_bits_opcode; // @[Buffer.scala:40:9]
wire [2:0] auto_in_a_bits_param_0 = auto_in_a_bits_param; // @[Buffer.scala:40:9]
wire [2:0] auto_in_a_bits_size_0 = auto_in_a_bits_size; // @[Buffer.scala:40:9]
wire [4:0] auto_in_a_bits_source_0 = auto_in_a_bits_source; // @[Buffer.scala:40:9]
wire [27:0] auto_in_a_bits_address_0 = auto_in_a_bits_address; // @[Buffer.scala:40:9]
wire [7:0] auto_in_a_bits_mask_0 = auto_in_a_bits_mask; // @[Buffer.scala:40:9]
wire [63:0] auto_in_a_bits_data_0 = auto_in_a_bits_data; // @[Buffer.scala:40:9]
wire auto_in_a_bits_corrupt_0 = auto_in_a_bits_corrupt; // @[Buffer.scala:40:9]
wire auto_in_d_ready_0 = auto_in_d_ready; // @[Buffer.scala:40:9]
wire auto_out_a_ready_0 = auto_out_a_ready; // @[Buffer.scala:40:9]
wire auto_out_d_valid_0 = auto_out_d_valid; // @[Buffer.scala:40:9]
wire [2:0] auto_out_d_bits_opcode_0 = auto_out_d_bits_opcode; // @[Buffer.scala:40:9]
wire [2:0] auto_out_d_bits_size_0 = auto_out_d_bits_size; // @[Buffer.scala:40:9]
wire [4:0] auto_out_d_bits_source_0 = auto_out_d_bits_source; // @[Buffer.scala:40:9]
wire [63:0] auto_out_d_bits_data_0 = auto_out_d_bits_data; // @[Buffer.scala:40:9]
wire auto_out_d_bits_sink = 1'h0; // @[Decoupled.scala:362:21]
wire auto_out_d_bits_denied = 1'h0; // @[Decoupled.scala:362:21]
wire auto_out_d_bits_corrupt = 1'h0; // @[Decoupled.scala:362:21]
wire nodeOut_d_bits_sink = 1'h0; // @[Decoupled.scala:362:21]
wire nodeOut_d_bits_denied = 1'h0; // @[Decoupled.scala:362:21]
wire nodeOut_d_bits_corrupt = 1'h0; // @[Decoupled.scala:362:21]
wire [1:0] auto_out_d_bits_param = 2'h0; // @[Decoupled.scala:362:21]
wire nodeIn_a_ready; // @[MixedNode.scala:551:17]
wire [1:0] nodeOut_d_bits_param = 2'h0; // @[Decoupled.scala:362:21]
wire nodeIn_a_valid = auto_in_a_valid_0; // @[Buffer.scala:40:9]
wire [2:0] nodeIn_a_bits_opcode = auto_in_a_bits_opcode_0; // @[Buffer.scala:40:9]
wire [2:0] nodeIn_a_bits_param = auto_in_a_bits_param_0; // @[Buffer.scala:40:9]
wire [2:0] nodeIn_a_bits_size = auto_in_a_bits_size_0; // @[Buffer.scala:40:9]
wire [4:0] nodeIn_a_bits_source = auto_in_a_bits_source_0; // @[Buffer.scala:40:9]
wire [27:0] nodeIn_a_bits_address = auto_in_a_bits_address_0; // @[Buffer.scala:40:9]
wire [7:0] nodeIn_a_bits_mask = auto_in_a_bits_mask_0; // @[Buffer.scala:40:9]
wire [63:0] nodeIn_a_bits_data = auto_in_a_bits_data_0; // @[Buffer.scala:40:9]
wire nodeIn_a_bits_corrupt = auto_in_a_bits_corrupt_0; // @[Buffer.scala:40:9]
wire nodeIn_d_ready = auto_in_d_ready_0; // @[Buffer.scala:40:9]
wire nodeIn_d_valid; // @[MixedNode.scala:551:17]
wire [2:0] nodeIn_d_bits_opcode; // @[MixedNode.scala:551:17]
wire [1:0] nodeIn_d_bits_param; // @[MixedNode.scala:551:17]
wire [2:0] nodeIn_d_bits_size; // @[MixedNode.scala:551:17]
wire [4:0] nodeIn_d_bits_source; // @[MixedNode.scala:551:17]
wire nodeIn_d_bits_sink; // @[MixedNode.scala:551:17]
wire nodeIn_d_bits_denied; // @[MixedNode.scala:551:17]
wire [63:0] nodeIn_d_bits_data; // @[MixedNode.scala:551:17]
wire nodeIn_d_bits_corrupt; // @[MixedNode.scala:551:17]
wire nodeOut_a_ready = auto_out_a_ready_0; // @[Buffer.scala:40:9]
wire nodeOut_a_valid; // @[MixedNode.scala:542:17]
wire [2:0] nodeOut_a_bits_opcode; // @[MixedNode.scala:542:17]
wire [2:0] nodeOut_a_bits_param; // @[MixedNode.scala:542:17]
wire [2:0] nodeOut_a_bits_size; // @[MixedNode.scala:542:17]
wire [4:0] nodeOut_a_bits_source; // @[MixedNode.scala:542:17]
wire [27:0] nodeOut_a_bits_address; // @[MixedNode.scala:542:17]
wire [7:0] nodeOut_a_bits_mask; // @[MixedNode.scala:542:17]
wire [63:0] nodeOut_a_bits_data; // @[MixedNode.scala:542:17]
wire nodeOut_a_bits_corrupt; // @[MixedNode.scala:542:17]
wire nodeOut_d_ready; // @[MixedNode.scala:542:17]
wire nodeOut_d_valid = auto_out_d_valid_0; // @[Buffer.scala:40:9]
wire [2:0] nodeOut_d_bits_opcode = auto_out_d_bits_opcode_0; // @[Buffer.scala:40:9]
wire [2:0] nodeOut_d_bits_size = auto_out_d_bits_size_0; // @[Buffer.scala:40:9]
wire [4:0] nodeOut_d_bits_source = auto_out_d_bits_source_0; // @[Buffer.scala:40:9]
wire [63:0] nodeOut_d_bits_data = auto_out_d_bits_data_0; // @[Buffer.scala:40:9]
wire auto_in_a_ready_0; // @[Buffer.scala:40:9]
wire [2:0] auto_in_d_bits_opcode_0; // @[Buffer.scala:40:9]
wire [1:0] auto_in_d_bits_param_0; // @[Buffer.scala:40:9]
wire [2:0] auto_in_d_bits_size_0; // @[Buffer.scala:40:9]
wire [4:0] auto_in_d_bits_source_0; // @[Buffer.scala:40:9]
wire auto_in_d_bits_sink_0; // @[Buffer.scala:40:9]
wire auto_in_d_bits_denied_0; // @[Buffer.scala:40:9]
wire [63:0] auto_in_d_bits_data_0; // @[Buffer.scala:40:9]
wire auto_in_d_bits_corrupt_0; // @[Buffer.scala:40:9]
wire auto_in_d_valid_0; // @[Buffer.scala:40:9]
wire [2:0] auto_out_a_bits_opcode_0; // @[Buffer.scala:40:9]
wire [2:0] auto_out_a_bits_param_0; // @[Buffer.scala:40:9]
wire [2:0] auto_out_a_bits_size_0; // @[Buffer.scala:40:9]
wire [4:0] auto_out_a_bits_source_0; // @[Buffer.scala:40:9]
wire [27:0] auto_out_a_bits_address_0; // @[Buffer.scala:40:9]
wire [7:0] auto_out_a_bits_mask_0; // @[Buffer.scala:40:9]
wire [63:0] auto_out_a_bits_data_0; // @[Buffer.scala:40:9]
wire auto_out_a_bits_corrupt_0; // @[Buffer.scala:40:9]
wire auto_out_a_valid_0; // @[Buffer.scala:40:9]
wire auto_out_d_ready_0; // @[Buffer.scala:40:9]
assign auto_in_a_ready_0 = nodeIn_a_ready; // @[Buffer.scala:40:9]
assign auto_in_d_valid_0 = nodeIn_d_valid; // @[Buffer.scala:40:9]
assign auto_in_d_bits_opcode_0 = nodeIn_d_bits_opcode; // @[Buffer.scala:40:9]
assign auto_in_d_bits_param_0 = nodeIn_d_bits_param; // @[Buffer.scala:40:9]
assign auto_in_d_bits_size_0 = nodeIn_d_bits_size; // @[Buffer.scala:40:9]
assign auto_in_d_bits_source_0 = nodeIn_d_bits_source; // @[Buffer.scala:40:9]
assign auto_in_d_bits_sink_0 = nodeIn_d_bits_sink; // @[Buffer.scala:40:9]
assign auto_in_d_bits_denied_0 = nodeIn_d_bits_denied; // @[Buffer.scala:40:9]
assign auto_in_d_bits_data_0 = nodeIn_d_bits_data; // @[Buffer.scala:40:9]
assign auto_in_d_bits_corrupt_0 = nodeIn_d_bits_corrupt; // @[Buffer.scala:40:9]
assign auto_out_a_valid_0 = nodeOut_a_valid; // @[Buffer.scala:40:9]
assign auto_out_a_bits_opcode_0 = nodeOut_a_bits_opcode; // @[Buffer.scala:40:9]
assign auto_out_a_bits_param_0 = nodeOut_a_bits_param; // @[Buffer.scala:40:9]
assign auto_out_a_bits_size_0 = nodeOut_a_bits_size; // @[Buffer.scala:40:9]
assign auto_out_a_bits_source_0 = nodeOut_a_bits_source; // @[Buffer.scala:40:9]
assign auto_out_a_bits_address_0 = nodeOut_a_bits_address; // @[Buffer.scala:40:9]
assign auto_out_a_bits_mask_0 = nodeOut_a_bits_mask; // @[Buffer.scala:40:9]
assign auto_out_a_bits_data_0 = nodeOut_a_bits_data; // @[Buffer.scala:40:9]
assign auto_out_a_bits_corrupt_0 = nodeOut_a_bits_corrupt; // @[Buffer.scala:40:9]
assign auto_out_d_ready_0 = nodeOut_d_ready; // @[Buffer.scala:40:9]
TLMonitor_58 monitor ( // @[Nodes.scala:27:25]
.clock (clock),
.reset (reset),
.io_in_a_ready (nodeIn_a_ready), // @[MixedNode.scala:551:17]
.io_in_a_valid (nodeIn_a_valid), // @[MixedNode.scala:551:17]
.io_in_a_bits_opcode (nodeIn_a_bits_opcode), // @[MixedNode.scala:551:17]
.io_in_a_bits_param (nodeIn_a_bits_param), // @[MixedNode.scala:551:17]
.io_in_a_bits_size (nodeIn_a_bits_size), // @[MixedNode.scala:551:17]
.io_in_a_bits_source (nodeIn_a_bits_source), // @[MixedNode.scala:551:17]
.io_in_a_bits_address (nodeIn_a_bits_address), // @[MixedNode.scala:551:17]
.io_in_a_bits_mask (nodeIn_a_bits_mask), // @[MixedNode.scala:551:17]
.io_in_a_bits_data (nodeIn_a_bits_data), // @[MixedNode.scala:551:17]
.io_in_a_bits_corrupt (nodeIn_a_bits_corrupt), // @[MixedNode.scala:551:17]
.io_in_d_ready (nodeIn_d_ready), // @[MixedNode.scala:551:17]
.io_in_d_valid (nodeIn_d_valid), // @[MixedNode.scala:551:17]
.io_in_d_bits_opcode (nodeIn_d_bits_opcode), // @[MixedNode.scala:551:17]
.io_in_d_bits_param (nodeIn_d_bits_param), // @[MixedNode.scala:551:17]
.io_in_d_bits_size (nodeIn_d_bits_size), // @[MixedNode.scala:551:17]
.io_in_d_bits_source (nodeIn_d_bits_source), // @[MixedNode.scala:551:17]
.io_in_d_bits_sink (nodeIn_d_bits_sink), // @[MixedNode.scala:551:17]
.io_in_d_bits_denied (nodeIn_d_bits_denied), // @[MixedNode.scala:551:17]
.io_in_d_bits_data (nodeIn_d_bits_data), // @[MixedNode.scala:551:17]
.io_in_d_bits_corrupt (nodeIn_d_bits_corrupt) // @[MixedNode.scala:551:17]
); // @[Nodes.scala:27:25]
Queue2_TLBundleA_a28d64s5k1z3u_1 nodeOut_a_q ( // @[Decoupled.scala:362:21]
.clock (clock),
.reset (reset),
.io_enq_ready (nodeIn_a_ready),
.io_enq_valid (nodeIn_a_valid), // @[MixedNode.scala:551:17]
.io_enq_bits_opcode (nodeIn_a_bits_opcode), // @[MixedNode.scala:551:17]
.io_enq_bits_param (nodeIn_a_bits_param), // @[MixedNode.scala:551:17]
.io_enq_bits_size (nodeIn_a_bits_size), // @[MixedNode.scala:551:17]
.io_enq_bits_source (nodeIn_a_bits_source), // @[MixedNode.scala:551:17]
.io_enq_bits_address (nodeIn_a_bits_address), // @[MixedNode.scala:551:17]
.io_enq_bits_mask (nodeIn_a_bits_mask), // @[MixedNode.scala:551:17]
.io_enq_bits_data (nodeIn_a_bits_data), // @[MixedNode.scala:551:17]
.io_enq_bits_corrupt (nodeIn_a_bits_corrupt), // @[MixedNode.scala:551:17]
.io_deq_ready (nodeOut_a_ready), // @[MixedNode.scala:542:17]
.io_deq_valid (nodeOut_a_valid),
.io_deq_bits_opcode (nodeOut_a_bits_opcode),
.io_deq_bits_param (nodeOut_a_bits_param),
.io_deq_bits_size (nodeOut_a_bits_size),
.io_deq_bits_source (nodeOut_a_bits_source),
.io_deq_bits_address (nodeOut_a_bits_address),
.io_deq_bits_mask (nodeOut_a_bits_mask),
.io_deq_bits_data (nodeOut_a_bits_data),
.io_deq_bits_corrupt (nodeOut_a_bits_corrupt)
); // @[Decoupled.scala:362:21]
Queue2_TLBundleD_a28d64s5k1z3u_1 nodeIn_d_q ( // @[Decoupled.scala:362:21]
.clock (clock),
.reset (reset),
.io_enq_ready (nodeOut_d_ready),
.io_enq_valid (nodeOut_d_valid), // @[MixedNode.scala:542:17]
.io_enq_bits_opcode (nodeOut_d_bits_opcode), // @[MixedNode.scala:542:17]
.io_enq_bits_size (nodeOut_d_bits_size), // @[MixedNode.scala:542:17]
.io_enq_bits_source (nodeOut_d_bits_source), // @[MixedNode.scala:542:17]
.io_enq_bits_data (nodeOut_d_bits_data), // @[MixedNode.scala:542:17]
.io_deq_ready (nodeIn_d_ready), // @[MixedNode.scala:551:17]
.io_deq_valid (nodeIn_d_valid),
.io_deq_bits_opcode (nodeIn_d_bits_opcode),
.io_deq_bits_param (nodeIn_d_bits_param),
.io_deq_bits_size (nodeIn_d_bits_size),
.io_deq_bits_source (nodeIn_d_bits_source),
.io_deq_bits_sink (nodeIn_d_bits_sink),
.io_deq_bits_denied (nodeIn_d_bits_denied),
.io_deq_bits_data (nodeIn_d_bits_data),
.io_deq_bits_corrupt (nodeIn_d_bits_corrupt)
); // @[Decoupled.scala:362:21]
assign auto_in_a_ready = auto_in_a_ready_0; // @[Buffer.scala:40:9]
assign auto_in_d_valid = auto_in_d_valid_0; // @[Buffer.scala:40:9]
assign auto_in_d_bits_opcode = auto_in_d_bits_opcode_0; // @[Buffer.scala:40:9]
assign auto_in_d_bits_param = auto_in_d_bits_param_0; // @[Buffer.scala:40:9]
assign auto_in_d_bits_size = auto_in_d_bits_size_0; // @[Buffer.scala:40:9]
assign auto_in_d_bits_source = auto_in_d_bits_source_0; // @[Buffer.scala:40:9]
assign auto_in_d_bits_sink = auto_in_d_bits_sink_0; // @[Buffer.scala:40:9]
assign auto_in_d_bits_denied = auto_in_d_bits_denied_0; // @[Buffer.scala:40:9]
assign auto_in_d_bits_data = auto_in_d_bits_data_0; // @[Buffer.scala:40:9]
assign auto_in_d_bits_corrupt = auto_in_d_bits_corrupt_0; // @[Buffer.scala:40:9]
assign auto_out_a_valid = auto_out_a_valid_0; // @[Buffer.scala:40:9]
assign auto_out_a_bits_opcode = auto_out_a_bits_opcode_0; // @[Buffer.scala:40:9]
assign auto_out_a_bits_param = auto_out_a_bits_param_0; // @[Buffer.scala:40:9]
assign auto_out_a_bits_size = auto_out_a_bits_size_0; // @[Buffer.scala:40:9]
assign auto_out_a_bits_source = auto_out_a_bits_source_0; // @[Buffer.scala:40:9]
assign auto_out_a_bits_address = auto_out_a_bits_address_0; // @[Buffer.scala:40:9]
assign auto_out_a_bits_mask = auto_out_a_bits_mask_0; // @[Buffer.scala:40:9]
assign auto_out_a_bits_data = auto_out_a_bits_data_0; // @[Buffer.scala:40:9]
assign auto_out_a_bits_corrupt = auto_out_a_bits_corrupt_0; // @[Buffer.scala:40:9]
assign auto_out_d_ready = auto_out_d_ready_0; // @[Buffer.scala:40:9]
endmodule |
Generate the Verilog code corresponding to the following Chisel files.
File Monitor.scala:
// See LICENSE.SiFive for license details.
package freechips.rocketchip.tilelink
import chisel3._
import chisel3.util._
import chisel3.experimental.SourceLine
import org.chipsalliance.cde.config._
import org.chipsalliance.diplomacy._
import freechips.rocketchip.diplomacy.EnableMonitors
import freechips.rocketchip.formal.{MonitorDirection, IfThen, Property, PropertyClass, TestplanTestType, TLMonitorStrictMode}
import freechips.rocketchip.util.PlusArg
case class TLMonitorArgs(edge: TLEdge)
abstract class TLMonitorBase(args: TLMonitorArgs) extends Module
{
val io = IO(new Bundle {
val in = Input(new TLBundle(args.edge.bundle))
})
def legalize(bundle: TLBundle, edge: TLEdge, reset: Reset): Unit
legalize(io.in, args.edge, reset)
}
object TLMonitor {
def apply(enable: Boolean, node: TLNode)(implicit p: Parameters): TLNode = {
if (enable) {
EnableMonitors { implicit p => node := TLEphemeralNode()(ValName("monitor")) }
} else { node }
}
}
class TLMonitor(args: TLMonitorArgs, monitorDir: MonitorDirection = MonitorDirection.Monitor) extends TLMonitorBase(args)
{
require (args.edge.params(TLMonitorStrictMode) || (! args.edge.params(TestplanTestType).formal))
val cover_prop_class = PropertyClass.Default
//Like assert but can flip to being an assumption for formal verification
def monAssert(cond: Bool, message: String): Unit =
if (monitorDir == MonitorDirection.Monitor) {
assert(cond, message)
} else {
Property(monitorDir, cond, message, PropertyClass.Default)
}
def assume(cond: Bool, message: String): Unit =
if (monitorDir == MonitorDirection.Monitor) {
assert(cond, message)
} else {
Property(monitorDir.flip, cond, message, PropertyClass.Default)
}
def extra = {
args.edge.sourceInfo match {
case SourceLine(filename, line, col) => s" (connected at $filename:$line:$col)"
case _ => ""
}
}
def visible(address: UInt, source: UInt, edge: TLEdge) =
edge.client.clients.map { c =>
!c.sourceId.contains(source) ||
c.visibility.map(_.contains(address)).reduce(_ || _)
}.reduce(_ && _)
def legalizeFormatA(bundle: TLBundleA, edge: TLEdge): Unit = {
//switch this flag to turn on diplomacy in error messages
def diplomacyInfo = if (true) "" else "\nThe diplomacy information for the edge is as follows:\n" + edge.formatEdge + "\n"
monAssert (TLMessages.isA(bundle.opcode), "'A' channel has invalid opcode" + extra)
// Reuse these subexpressions to save some firrtl lines
val source_ok = edge.client.contains(bundle.source)
val is_aligned = edge.isAligned(bundle.address, bundle.size)
val mask = edge.full_mask(bundle)
monAssert (visible(edge.address(bundle), bundle.source, edge), "'A' channel carries an address illegal for the specified bank visibility")
//The monitor doesnβt check for acquire T vs acquire B, it assumes that acquire B implies acquire T and only checks for acquire B
//TODO: check for acquireT?
when (bundle.opcode === TLMessages.AcquireBlock) {
monAssert (edge.master.emitsAcquireB(bundle.source, bundle.size) && edge.slave.supportsAcquireBSafe(edge.address(bundle), bundle.size), "'A' channel carries AcquireBlock type which is unexpected using diplomatic parameters" + diplomacyInfo + extra)
monAssert (edge.master.supportsProbe(edge.source(bundle), bundle.size) && edge.slave.emitsProbeSafe(edge.address(bundle), bundle.size), "'A' channel carries AcquireBlock from a client which does not support Probe" + diplomacyInfo + extra)
monAssert (source_ok, "'A' channel AcquireBlock carries invalid source ID" + diplomacyInfo + extra)
monAssert (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'A' channel AcquireBlock smaller than a beat" + extra)
monAssert (is_aligned, "'A' channel AcquireBlock address not aligned to size" + extra)
monAssert (TLPermissions.isGrow(bundle.param), "'A' channel AcquireBlock carries invalid grow param" + extra)
monAssert (~bundle.mask === 0.U, "'A' channel AcquireBlock contains invalid mask" + extra)
monAssert (!bundle.corrupt, "'A' channel AcquireBlock is corrupt" + extra)
}
when (bundle.opcode === TLMessages.AcquirePerm) {
monAssert (edge.master.emitsAcquireB(bundle.source, bundle.size) && edge.slave.supportsAcquireBSafe(edge.address(bundle), bundle.size), "'A' channel carries AcquirePerm type which is unexpected using diplomatic parameters" + diplomacyInfo + extra)
monAssert (edge.master.supportsProbe(edge.source(bundle), bundle.size) && edge.slave.emitsProbeSafe(edge.address(bundle), bundle.size), "'A' channel carries AcquirePerm from a client which does not support Probe" + diplomacyInfo + extra)
monAssert (source_ok, "'A' channel AcquirePerm carries invalid source ID" + diplomacyInfo + extra)
monAssert (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'A' channel AcquirePerm smaller than a beat" + extra)
monAssert (is_aligned, "'A' channel AcquirePerm address not aligned to size" + extra)
monAssert (TLPermissions.isGrow(bundle.param), "'A' channel AcquirePerm carries invalid grow param" + extra)
monAssert (bundle.param =/= TLPermissions.NtoB, "'A' channel AcquirePerm requests NtoB" + extra)
monAssert (~bundle.mask === 0.U, "'A' channel AcquirePerm contains invalid mask" + extra)
monAssert (!bundle.corrupt, "'A' channel AcquirePerm is corrupt" + extra)
}
when (bundle.opcode === TLMessages.Get) {
monAssert (edge.master.emitsGet(bundle.source, bundle.size), "'A' channel carries Get type which master claims it can't emit" + diplomacyInfo + extra)
monAssert (edge.slave.supportsGetSafe(edge.address(bundle), bundle.size, None), "'A' channel carries Get type which slave claims it can't support" + diplomacyInfo + extra)
monAssert (source_ok, "'A' channel Get carries invalid source ID" + diplomacyInfo + extra)
monAssert (is_aligned, "'A' channel Get address not aligned to size" + extra)
monAssert (bundle.param === 0.U, "'A' channel Get carries invalid param" + extra)
monAssert (bundle.mask === mask, "'A' channel Get contains invalid mask" + extra)
monAssert (!bundle.corrupt, "'A' channel Get is corrupt" + extra)
}
when (bundle.opcode === TLMessages.PutFullData) {
monAssert (edge.master.emitsPutFull(bundle.source, bundle.size) && edge.slave.supportsPutFullSafe(edge.address(bundle), bundle.size), "'A' channel carries PutFull type which is unexpected using diplomatic parameters" + diplomacyInfo + extra)
monAssert (source_ok, "'A' channel PutFull carries invalid source ID" + diplomacyInfo + extra)
monAssert (is_aligned, "'A' channel PutFull address not aligned to size" + extra)
monAssert (bundle.param === 0.U, "'A' channel PutFull carries invalid param" + extra)
monAssert (bundle.mask === mask, "'A' channel PutFull contains invalid mask" + extra)
}
when (bundle.opcode === TLMessages.PutPartialData) {
monAssert (edge.master.emitsPutPartial(bundle.source, bundle.size) && edge.slave.supportsPutPartialSafe(edge.address(bundle), bundle.size), "'A' channel carries PutPartial type which is unexpected using diplomatic parameters" + extra)
monAssert (source_ok, "'A' channel PutPartial carries invalid source ID" + diplomacyInfo + extra)
monAssert (is_aligned, "'A' channel PutPartial address not aligned to size" + extra)
monAssert (bundle.param === 0.U, "'A' channel PutPartial carries invalid param" + extra)
monAssert ((bundle.mask & ~mask) === 0.U, "'A' channel PutPartial contains invalid mask" + extra)
}
when (bundle.opcode === TLMessages.ArithmeticData) {
monAssert (edge.master.emitsArithmetic(bundle.source, bundle.size) && edge.slave.supportsArithmeticSafe(edge.address(bundle), bundle.size), "'A' channel carries Arithmetic type which is unexpected using diplomatic parameters" + extra)
monAssert (source_ok, "'A' channel Arithmetic carries invalid source ID" + diplomacyInfo + extra)
monAssert (is_aligned, "'A' channel Arithmetic address not aligned to size" + extra)
monAssert (TLAtomics.isArithmetic(bundle.param), "'A' channel Arithmetic carries invalid opcode param" + extra)
monAssert (bundle.mask === mask, "'A' channel Arithmetic contains invalid mask" + extra)
}
when (bundle.opcode === TLMessages.LogicalData) {
monAssert (edge.master.emitsLogical(bundle.source, bundle.size) && edge.slave.supportsLogicalSafe(edge.address(bundle), bundle.size), "'A' channel carries Logical type which is unexpected using diplomatic parameters" + extra)
monAssert (source_ok, "'A' channel Logical carries invalid source ID" + diplomacyInfo + extra)
monAssert (is_aligned, "'A' channel Logical address not aligned to size" + extra)
monAssert (TLAtomics.isLogical(bundle.param), "'A' channel Logical carries invalid opcode param" + extra)
monAssert (bundle.mask === mask, "'A' channel Logical contains invalid mask" + extra)
}
when (bundle.opcode === TLMessages.Hint) {
monAssert (edge.master.emitsHint(bundle.source, bundle.size) && edge.slave.supportsHintSafe(edge.address(bundle), bundle.size), "'A' channel carries Hint type which is unexpected using diplomatic parameters" + extra)
monAssert (source_ok, "'A' channel Hint carries invalid source ID" + diplomacyInfo + extra)
monAssert (is_aligned, "'A' channel Hint address not aligned to size" + extra)
monAssert (TLHints.isHints(bundle.param), "'A' channel Hint carries invalid opcode param" + extra)
monAssert (bundle.mask === mask, "'A' channel Hint contains invalid mask" + extra)
monAssert (!bundle.corrupt, "'A' channel Hint is corrupt" + extra)
}
}
def legalizeFormatB(bundle: TLBundleB, edge: TLEdge): Unit = {
monAssert (TLMessages.isB(bundle.opcode), "'B' channel has invalid opcode" + extra)
monAssert (visible(edge.address(bundle), bundle.source, edge), "'B' channel carries an address illegal for the specified bank visibility")
// Reuse these subexpressions to save some firrtl lines
val address_ok = edge.manager.containsSafe(edge.address(bundle))
val is_aligned = edge.isAligned(bundle.address, bundle.size)
val mask = edge.full_mask(bundle)
val legal_source = Mux1H(edge.client.find(bundle.source), edge.client.clients.map(c => c.sourceId.start.U)) === bundle.source
when (bundle.opcode === TLMessages.Probe) {
assume (edge.master.supportsProbe(edge.source(bundle), bundle.size) && edge.slave.emitsProbeSafe(edge.address(bundle), bundle.size), "'B' channel carries Probe type which is unexpected using diplomatic parameters" + extra)
assume (address_ok, "'B' channel Probe carries unmanaged address" + extra)
assume (legal_source, "'B' channel Probe carries source that is not first source" + extra)
assume (is_aligned, "'B' channel Probe address not aligned to size" + extra)
assume (TLPermissions.isCap(bundle.param), "'B' channel Probe carries invalid cap param" + extra)
assume (bundle.mask === mask, "'B' channel Probe contains invalid mask" + extra)
assume (!bundle.corrupt, "'B' channel Probe is corrupt" + extra)
}
when (bundle.opcode === TLMessages.Get) {
monAssert (edge.master.supportsGet(edge.source(bundle), bundle.size) && edge.slave.emitsGetSafe(edge.address(bundle), bundle.size), "'B' channel carries Get type which is unexpected using diplomatic parameters" + extra)
monAssert (address_ok, "'B' channel Get carries unmanaged address" + extra)
monAssert (legal_source, "'B' channel Get carries source that is not first source" + extra)
monAssert (is_aligned, "'B' channel Get address not aligned to size" + extra)
monAssert (bundle.param === 0.U, "'B' channel Get carries invalid param" + extra)
monAssert (bundle.mask === mask, "'B' channel Get contains invalid mask" + extra)
monAssert (!bundle.corrupt, "'B' channel Get is corrupt" + extra)
}
when (bundle.opcode === TLMessages.PutFullData) {
monAssert (edge.master.supportsPutFull(edge.source(bundle), bundle.size) && edge.slave.emitsPutFullSafe(edge.address(bundle), bundle.size), "'B' channel carries PutFull type which is unexpected using diplomatic parameters" + extra)
monAssert (address_ok, "'B' channel PutFull carries unmanaged address" + extra)
monAssert (legal_source, "'B' channel PutFull carries source that is not first source" + extra)
monAssert (is_aligned, "'B' channel PutFull address not aligned to size" + extra)
monAssert (bundle.param === 0.U, "'B' channel PutFull carries invalid param" + extra)
monAssert (bundle.mask === mask, "'B' channel PutFull contains invalid mask" + extra)
}
when (bundle.opcode === TLMessages.PutPartialData) {
monAssert (edge.master.supportsPutPartial(edge.source(bundle), bundle.size) && edge.slave.emitsPutPartialSafe(edge.address(bundle), bundle.size), "'B' channel carries PutPartial type which is unexpected using diplomatic parameters" + extra)
monAssert (address_ok, "'B' channel PutPartial carries unmanaged address" + extra)
monAssert (legal_source, "'B' channel PutPartial carries source that is not first source" + extra)
monAssert (is_aligned, "'B' channel PutPartial address not aligned to size" + extra)
monAssert (bundle.param === 0.U, "'B' channel PutPartial carries invalid param" + extra)
monAssert ((bundle.mask & ~mask) === 0.U, "'B' channel PutPartial contains invalid mask" + extra)
}
when (bundle.opcode === TLMessages.ArithmeticData) {
monAssert (edge.master.supportsArithmetic(edge.source(bundle), bundle.size) && edge.slave.emitsArithmeticSafe(edge.address(bundle), bundle.size), "'B' channel carries Arithmetic type unsupported by master" + extra)
monAssert (address_ok, "'B' channel Arithmetic carries unmanaged address" + extra)
monAssert (legal_source, "'B' channel Arithmetic carries source that is not first source" + extra)
monAssert (is_aligned, "'B' channel Arithmetic address not aligned to size" + extra)
monAssert (TLAtomics.isArithmetic(bundle.param), "'B' channel Arithmetic carries invalid opcode param" + extra)
monAssert (bundle.mask === mask, "'B' channel Arithmetic contains invalid mask" + extra)
}
when (bundle.opcode === TLMessages.LogicalData) {
monAssert (edge.master.supportsLogical(edge.source(bundle), bundle.size) && edge.slave.emitsLogicalSafe(edge.address(bundle), bundle.size), "'B' channel carries Logical type unsupported by client" + extra)
monAssert (address_ok, "'B' channel Logical carries unmanaged address" + extra)
monAssert (legal_source, "'B' channel Logical carries source that is not first source" + extra)
monAssert (is_aligned, "'B' channel Logical address not aligned to size" + extra)
monAssert (TLAtomics.isLogical(bundle.param), "'B' channel Logical carries invalid opcode param" + extra)
monAssert (bundle.mask === mask, "'B' channel Logical contains invalid mask" + extra)
}
when (bundle.opcode === TLMessages.Hint) {
monAssert (edge.master.supportsHint(edge.source(bundle), bundle.size) && edge.slave.emitsHintSafe(edge.address(bundle), bundle.size), "'B' channel carries Hint type unsupported by client" + extra)
monAssert (address_ok, "'B' channel Hint carries unmanaged address" + extra)
monAssert (legal_source, "'B' channel Hint carries source that is not first source" + extra)
monAssert (is_aligned, "'B' channel Hint address not aligned to size" + extra)
monAssert (bundle.mask === mask, "'B' channel Hint contains invalid mask" + extra)
monAssert (!bundle.corrupt, "'B' channel Hint is corrupt" + extra)
}
}
def legalizeFormatC(bundle: TLBundleC, edge: TLEdge): Unit = {
monAssert (TLMessages.isC(bundle.opcode), "'C' channel has invalid opcode" + extra)
val source_ok = edge.client.contains(bundle.source)
val is_aligned = edge.isAligned(bundle.address, bundle.size)
val address_ok = edge.manager.containsSafe(edge.address(bundle))
monAssert (visible(edge.address(bundle), bundle.source, edge), "'C' channel carries an address illegal for the specified bank visibility")
when (bundle.opcode === TLMessages.ProbeAck) {
monAssert (address_ok, "'C' channel ProbeAck carries unmanaged address" + extra)
monAssert (source_ok, "'C' channel ProbeAck carries invalid source ID" + extra)
monAssert (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'C' channel ProbeAck smaller than a beat" + extra)
monAssert (is_aligned, "'C' channel ProbeAck address not aligned to size" + extra)
monAssert (TLPermissions.isReport(bundle.param), "'C' channel ProbeAck carries invalid report param" + extra)
monAssert (!bundle.corrupt, "'C' channel ProbeAck is corrupt" + extra)
}
when (bundle.opcode === TLMessages.ProbeAckData) {
monAssert (address_ok, "'C' channel ProbeAckData carries unmanaged address" + extra)
monAssert (source_ok, "'C' channel ProbeAckData carries invalid source ID" + extra)
monAssert (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'C' channel ProbeAckData smaller than a beat" + extra)
monAssert (is_aligned, "'C' channel ProbeAckData address not aligned to size" + extra)
monAssert (TLPermissions.isReport(bundle.param), "'C' channel ProbeAckData carries invalid report param" + extra)
}
when (bundle.opcode === TLMessages.Release) {
monAssert (edge.master.emitsAcquireB(edge.source(bundle), bundle.size) && edge.slave.supportsAcquireBSafe(edge.address(bundle), bundle.size), "'C' channel carries Release type unsupported by manager" + extra)
monAssert (edge.master.supportsProbe(edge.source(bundle), bundle.size) && edge.slave.emitsProbeSafe(edge.address(bundle), bundle.size), "'C' channel carries Release from a client which does not support Probe" + extra)
monAssert (source_ok, "'C' channel Release carries invalid source ID" + extra)
monAssert (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'C' channel Release smaller than a beat" + extra)
monAssert (is_aligned, "'C' channel Release address not aligned to size" + extra)
monAssert (TLPermissions.isReport(bundle.param), "'C' channel Release carries invalid report param" + extra)
monAssert (!bundle.corrupt, "'C' channel Release is corrupt" + extra)
}
when (bundle.opcode === TLMessages.ReleaseData) {
monAssert (edge.master.emitsAcquireB(edge.source(bundle), bundle.size) && edge.slave.supportsAcquireBSafe(edge.address(bundle), bundle.size), "'C' channel carries ReleaseData type unsupported by manager" + extra)
monAssert (edge.master.supportsProbe(edge.source(bundle), bundle.size) && edge.slave.emitsProbeSafe(edge.address(bundle), bundle.size), "'C' channel carries Release from a client which does not support Probe" + extra)
monAssert (source_ok, "'C' channel ReleaseData carries invalid source ID" + extra)
monAssert (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'C' channel ReleaseData smaller than a beat" + extra)
monAssert (is_aligned, "'C' channel ReleaseData address not aligned to size" + extra)
monAssert (TLPermissions.isReport(bundle.param), "'C' channel ReleaseData carries invalid report param" + extra)
}
when (bundle.opcode === TLMessages.AccessAck) {
monAssert (address_ok, "'C' channel AccessAck carries unmanaged address" + extra)
monAssert (source_ok, "'C' channel AccessAck carries invalid source ID" + extra)
monAssert (is_aligned, "'C' channel AccessAck address not aligned to size" + extra)
monAssert (bundle.param === 0.U, "'C' channel AccessAck carries invalid param" + extra)
monAssert (!bundle.corrupt, "'C' channel AccessAck is corrupt" + extra)
}
when (bundle.opcode === TLMessages.AccessAckData) {
monAssert (address_ok, "'C' channel AccessAckData carries unmanaged address" + extra)
monAssert (source_ok, "'C' channel AccessAckData carries invalid source ID" + extra)
monAssert (is_aligned, "'C' channel AccessAckData address not aligned to size" + extra)
monAssert (bundle.param === 0.U, "'C' channel AccessAckData carries invalid param" + extra)
}
when (bundle.opcode === TLMessages.HintAck) {
monAssert (address_ok, "'C' channel HintAck carries unmanaged address" + extra)
monAssert (source_ok, "'C' channel HintAck carries invalid source ID" + extra)
monAssert (is_aligned, "'C' channel HintAck address not aligned to size" + extra)
monAssert (bundle.param === 0.U, "'C' channel HintAck carries invalid param" + extra)
monAssert (!bundle.corrupt, "'C' channel HintAck is corrupt" + extra)
}
}
def legalizeFormatD(bundle: TLBundleD, edge: TLEdge): Unit = {
assume (TLMessages.isD(bundle.opcode), "'D' channel has invalid opcode" + extra)
val source_ok = edge.client.contains(bundle.source)
val sink_ok = bundle.sink < edge.manager.endSinkId.U
val deny_put_ok = edge.manager.mayDenyPut.B
val deny_get_ok = edge.manager.mayDenyGet.B
when (bundle.opcode === TLMessages.ReleaseAck) {
assume (source_ok, "'D' channel ReleaseAck carries invalid source ID" + extra)
assume (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'D' channel ReleaseAck smaller than a beat" + extra)
assume (bundle.param === 0.U, "'D' channel ReleaseeAck carries invalid param" + extra)
assume (!bundle.corrupt, "'D' channel ReleaseAck is corrupt" + extra)
assume (!bundle.denied, "'D' channel ReleaseAck is denied" + extra)
}
when (bundle.opcode === TLMessages.Grant) {
assume (source_ok, "'D' channel Grant carries invalid source ID" + extra)
assume (sink_ok, "'D' channel Grant carries invalid sink ID" + extra)
assume (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'D' channel Grant smaller than a beat" + extra)
assume (TLPermissions.isCap(bundle.param), "'D' channel Grant carries invalid cap param" + extra)
assume (bundle.param =/= TLPermissions.toN, "'D' channel Grant carries toN param" + extra)
assume (!bundle.corrupt, "'D' channel Grant is corrupt" + extra)
assume (deny_put_ok || !bundle.denied, "'D' channel Grant is denied" + extra)
}
when (bundle.opcode === TLMessages.GrantData) {
assume (source_ok, "'D' channel GrantData carries invalid source ID" + extra)
assume (sink_ok, "'D' channel GrantData carries invalid sink ID" + extra)
assume (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'D' channel GrantData smaller than a beat" + extra)
assume (TLPermissions.isCap(bundle.param), "'D' channel GrantData carries invalid cap param" + extra)
assume (bundle.param =/= TLPermissions.toN, "'D' channel GrantData carries toN param" + extra)
assume (!bundle.denied || bundle.corrupt, "'D' channel GrantData is denied but not corrupt" + extra)
assume (deny_get_ok || !bundle.denied, "'D' channel GrantData is denied" + extra)
}
when (bundle.opcode === TLMessages.AccessAck) {
assume (source_ok, "'D' channel AccessAck carries invalid source ID" + extra)
// size is ignored
assume (bundle.param === 0.U, "'D' channel AccessAck carries invalid param" + extra)
assume (!bundle.corrupt, "'D' channel AccessAck is corrupt" + extra)
assume (deny_put_ok || !bundle.denied, "'D' channel AccessAck is denied" + extra)
}
when (bundle.opcode === TLMessages.AccessAckData) {
assume (source_ok, "'D' channel AccessAckData carries invalid source ID" + extra)
// size is ignored
assume (bundle.param === 0.U, "'D' channel AccessAckData carries invalid param" + extra)
assume (!bundle.denied || bundle.corrupt, "'D' channel AccessAckData is denied but not corrupt" + extra)
assume (deny_get_ok || !bundle.denied, "'D' channel AccessAckData is denied" + extra)
}
when (bundle.opcode === TLMessages.HintAck) {
assume (source_ok, "'D' channel HintAck carries invalid source ID" + extra)
// size is ignored
assume (bundle.param === 0.U, "'D' channel HintAck carries invalid param" + extra)
assume (!bundle.corrupt, "'D' channel HintAck is corrupt" + extra)
assume (deny_put_ok || !bundle.denied, "'D' channel HintAck is denied" + extra)
}
}
def legalizeFormatE(bundle: TLBundleE, edge: TLEdge): Unit = {
val sink_ok = bundle.sink < edge.manager.endSinkId.U
monAssert (sink_ok, "'E' channels carries invalid sink ID" + extra)
}
def legalizeFormat(bundle: TLBundle, edge: TLEdge) = {
when (bundle.a.valid) { legalizeFormatA(bundle.a.bits, edge) }
when (bundle.d.valid) { legalizeFormatD(bundle.d.bits, edge) }
if (edge.client.anySupportProbe && edge.manager.anySupportAcquireB) {
when (bundle.b.valid) { legalizeFormatB(bundle.b.bits, edge) }
when (bundle.c.valid) { legalizeFormatC(bundle.c.bits, edge) }
when (bundle.e.valid) { legalizeFormatE(bundle.e.bits, edge) }
} else {
monAssert (!bundle.b.valid, "'B' channel valid and not TL-C" + extra)
monAssert (!bundle.c.valid, "'C' channel valid and not TL-C" + extra)
monAssert (!bundle.e.valid, "'E' channel valid and not TL-C" + extra)
}
}
def legalizeMultibeatA(a: DecoupledIO[TLBundleA], edge: TLEdge): Unit = {
val a_first = edge.first(a.bits, a.fire)
val opcode = Reg(UInt())
val param = Reg(UInt())
val size = Reg(UInt())
val source = Reg(UInt())
val address = Reg(UInt())
when (a.valid && !a_first) {
monAssert (a.bits.opcode === opcode, "'A' channel opcode changed within multibeat operation" + extra)
monAssert (a.bits.param === param, "'A' channel param changed within multibeat operation" + extra)
monAssert (a.bits.size === size, "'A' channel size changed within multibeat operation" + extra)
monAssert (a.bits.source === source, "'A' channel source changed within multibeat operation" + extra)
monAssert (a.bits.address=== address,"'A' channel address changed with multibeat operation" + extra)
}
when (a.fire && a_first) {
opcode := a.bits.opcode
param := a.bits.param
size := a.bits.size
source := a.bits.source
address := a.bits.address
}
}
def legalizeMultibeatB(b: DecoupledIO[TLBundleB], edge: TLEdge): Unit = {
val b_first = edge.first(b.bits, b.fire)
val opcode = Reg(UInt())
val param = Reg(UInt())
val size = Reg(UInt())
val source = Reg(UInt())
val address = Reg(UInt())
when (b.valid && !b_first) {
monAssert (b.bits.opcode === opcode, "'B' channel opcode changed within multibeat operation" + extra)
monAssert (b.bits.param === param, "'B' channel param changed within multibeat operation" + extra)
monAssert (b.bits.size === size, "'B' channel size changed within multibeat operation" + extra)
monAssert (b.bits.source === source, "'B' channel source changed within multibeat operation" + extra)
monAssert (b.bits.address=== address,"'B' channel addresss changed with multibeat operation" + extra)
}
when (b.fire && b_first) {
opcode := b.bits.opcode
param := b.bits.param
size := b.bits.size
source := b.bits.source
address := b.bits.address
}
}
def legalizeADSourceFormal(bundle: TLBundle, edge: TLEdge): Unit = {
// Symbolic variable
val sym_source = Wire(UInt(edge.client.endSourceId.W))
// TODO: Connect sym_source to a fixed value for simulation and to a
// free wire in formal
sym_source := 0.U
// Type casting Int to UInt
val maxSourceId = Wire(UInt(edge.client.endSourceId.W))
maxSourceId := edge.client.endSourceId.U
// Delayed verison of sym_source
val sym_source_d = Reg(UInt(edge.client.endSourceId.W))
sym_source_d := sym_source
// These will be constraints for FV setup
Property(
MonitorDirection.Monitor,
(sym_source === sym_source_d),
"sym_source should remain stable",
PropertyClass.Default)
Property(
MonitorDirection.Monitor,
(sym_source <= maxSourceId),
"sym_source should take legal value",
PropertyClass.Default)
val my_resp_pend = RegInit(false.B)
val my_opcode = Reg(UInt())
val my_size = Reg(UInt())
val a_first = bundle.a.valid && edge.first(bundle.a.bits, bundle.a.fire)
val d_first = bundle.d.valid && edge.first(bundle.d.bits, bundle.d.fire)
val my_a_first_beat = a_first && (bundle.a.bits.source === sym_source)
val my_d_first_beat = d_first && (bundle.d.bits.source === sym_source)
val my_clr_resp_pend = (bundle.d.fire && my_d_first_beat)
val my_set_resp_pend = (bundle.a.fire && my_a_first_beat && !my_clr_resp_pend)
when (my_set_resp_pend) {
my_resp_pend := true.B
} .elsewhen (my_clr_resp_pend) {
my_resp_pend := false.B
}
when (my_a_first_beat) {
my_opcode := bundle.a.bits.opcode
my_size := bundle.a.bits.size
}
val my_resp_size = Mux(my_a_first_beat, bundle.a.bits.size, my_size)
val my_resp_opcode = Mux(my_a_first_beat, bundle.a.bits.opcode, my_opcode)
val my_resp_opcode_legal = Wire(Bool())
when ((my_resp_opcode === TLMessages.Get) || (my_resp_opcode === TLMessages.ArithmeticData) ||
(my_resp_opcode === TLMessages.LogicalData)) {
my_resp_opcode_legal := (bundle.d.bits.opcode === TLMessages.AccessAckData)
} .elsewhen ((my_resp_opcode === TLMessages.PutFullData) || (my_resp_opcode === TLMessages.PutPartialData)) {
my_resp_opcode_legal := (bundle.d.bits.opcode === TLMessages.AccessAck)
} .otherwise {
my_resp_opcode_legal := (bundle.d.bits.opcode === TLMessages.HintAck)
}
monAssert (IfThen(my_resp_pend, !my_a_first_beat),
"Request message should not be sent with a source ID, for which a response message" +
"is already pending (not received until current cycle) for a prior request message" +
"with the same source ID" + extra)
assume (IfThen(my_clr_resp_pend, (my_set_resp_pend || my_resp_pend)),
"Response message should be accepted with a source ID only if a request message with the" +
"same source ID has been accepted or is being accepted in the current cycle" + extra)
assume (IfThen(my_d_first_beat, (my_a_first_beat || my_resp_pend)),
"Response message should be sent with a source ID only if a request message with the" +
"same source ID has been accepted or is being sent in the current cycle" + extra)
assume (IfThen(my_d_first_beat, (bundle.d.bits.size === my_resp_size)),
"If d_valid is 1, then d_size should be same as a_size of the corresponding request" +
"message" + extra)
assume (IfThen(my_d_first_beat, my_resp_opcode_legal),
"If d_valid is 1, then d_opcode should correspond with a_opcode of the corresponding" +
"request message" + extra)
}
def legalizeMultibeatC(c: DecoupledIO[TLBundleC], edge: TLEdge): Unit = {
val c_first = edge.first(c.bits, c.fire)
val opcode = Reg(UInt())
val param = Reg(UInt())
val size = Reg(UInt())
val source = Reg(UInt())
val address = Reg(UInt())
when (c.valid && !c_first) {
monAssert (c.bits.opcode === opcode, "'C' channel opcode changed within multibeat operation" + extra)
monAssert (c.bits.param === param, "'C' channel param changed within multibeat operation" + extra)
monAssert (c.bits.size === size, "'C' channel size changed within multibeat operation" + extra)
monAssert (c.bits.source === source, "'C' channel source changed within multibeat operation" + extra)
monAssert (c.bits.address=== address,"'C' channel address changed with multibeat operation" + extra)
}
when (c.fire && c_first) {
opcode := c.bits.opcode
param := c.bits.param
size := c.bits.size
source := c.bits.source
address := c.bits.address
}
}
def legalizeMultibeatD(d: DecoupledIO[TLBundleD], edge: TLEdge): Unit = {
val d_first = edge.first(d.bits, d.fire)
val opcode = Reg(UInt())
val param = Reg(UInt())
val size = Reg(UInt())
val source = Reg(UInt())
val sink = Reg(UInt())
val denied = Reg(Bool())
when (d.valid && !d_first) {
assume (d.bits.opcode === opcode, "'D' channel opcode changed within multibeat operation" + extra)
assume (d.bits.param === param, "'D' channel param changed within multibeat operation" + extra)
assume (d.bits.size === size, "'D' channel size changed within multibeat operation" + extra)
assume (d.bits.source === source, "'D' channel source changed within multibeat operation" + extra)
assume (d.bits.sink === sink, "'D' channel sink changed with multibeat operation" + extra)
assume (d.bits.denied === denied, "'D' channel denied changed with multibeat operation" + extra)
}
when (d.fire && d_first) {
opcode := d.bits.opcode
param := d.bits.param
size := d.bits.size
source := d.bits.source
sink := d.bits.sink
denied := d.bits.denied
}
}
def legalizeMultibeat(bundle: TLBundle, edge: TLEdge): Unit = {
legalizeMultibeatA(bundle.a, edge)
legalizeMultibeatD(bundle.d, edge)
if (edge.client.anySupportProbe && edge.manager.anySupportAcquireB) {
legalizeMultibeatB(bundle.b, edge)
legalizeMultibeatC(bundle.c, edge)
}
}
//This is left in for almond which doesn't adhere to the tilelink protocol
@deprecated("Use legalizeADSource instead if possible","")
def legalizeADSourceOld(bundle: TLBundle, edge: TLEdge): Unit = {
val inflight = RegInit(0.U(edge.client.endSourceId.W))
val a_first = edge.first(bundle.a.bits, bundle.a.fire)
val d_first = edge.first(bundle.d.bits, bundle.d.fire)
val a_set = WireInit(0.U(edge.client.endSourceId.W))
when (bundle.a.fire && a_first && edge.isRequest(bundle.a.bits)) {
a_set := UIntToOH(bundle.a.bits.source)
assert(!inflight(bundle.a.bits.source), "'A' channel re-used a source ID" + extra)
}
val d_clr = WireInit(0.U(edge.client.endSourceId.W))
val d_release_ack = bundle.d.bits.opcode === TLMessages.ReleaseAck
when (bundle.d.fire && d_first && edge.isResponse(bundle.d.bits) && !d_release_ack) {
d_clr := UIntToOH(bundle.d.bits.source)
assume((a_set | inflight)(bundle.d.bits.source), "'D' channel acknowledged for nothing inflight" + extra)
}
if (edge.manager.minLatency > 0) {
assume(a_set =/= d_clr || !a_set.orR, s"'A' and 'D' concurrent, despite minlatency > 0" + extra)
}
inflight := (inflight | a_set) & ~d_clr
val watchdog = RegInit(0.U(32.W))
val limit = PlusArg("tilelink_timeout",
docstring="Kill emulation after INT waiting TileLink cycles. Off if 0.")
assert (!inflight.orR || limit === 0.U || watchdog < limit, "TileLink timeout expired" + extra)
watchdog := watchdog + 1.U
when (bundle.a.fire || bundle.d.fire) { watchdog := 0.U }
}
def legalizeADSource(bundle: TLBundle, edge: TLEdge): Unit = {
val a_size_bus_size = edge.bundle.sizeBits + 1 //add one so that 0 is not mapped to anything (size 0 -> size 1 in map, size 0 in map means unset)
val a_opcode_bus_size = 3 + 1 //opcode size is 3, but add so that 0 is not mapped to anything
val log_a_opcode_bus_size = log2Ceil(a_opcode_bus_size)
val log_a_size_bus_size = log2Ceil(a_size_bus_size)
def size_to_numfullbits(x: UInt): UInt = (1.U << x) - 1.U //convert a number to that many full bits
val inflight = RegInit(0.U((2 max edge.client.endSourceId).W)) // size up to avoid width error
inflight.suggestName("inflight")
val inflight_opcodes = RegInit(0.U((edge.client.endSourceId << log_a_opcode_bus_size).W))
inflight_opcodes.suggestName("inflight_opcodes")
val inflight_sizes = RegInit(0.U((edge.client.endSourceId << log_a_size_bus_size).W))
inflight_sizes.suggestName("inflight_sizes")
val a_first = edge.first(bundle.a.bits, bundle.a.fire)
a_first.suggestName("a_first")
val d_first = edge.first(bundle.d.bits, bundle.d.fire)
d_first.suggestName("d_first")
val a_set = WireInit(0.U(edge.client.endSourceId.W))
val a_set_wo_ready = WireInit(0.U(edge.client.endSourceId.W))
a_set.suggestName("a_set")
a_set_wo_ready.suggestName("a_set_wo_ready")
val a_opcodes_set = WireInit(0.U((edge.client.endSourceId << log_a_opcode_bus_size).W))
a_opcodes_set.suggestName("a_opcodes_set")
val a_sizes_set = WireInit(0.U((edge.client.endSourceId << log_a_size_bus_size).W))
a_sizes_set.suggestName("a_sizes_set")
val a_opcode_lookup = WireInit(0.U((a_opcode_bus_size - 1).W))
a_opcode_lookup.suggestName("a_opcode_lookup")
a_opcode_lookup := ((inflight_opcodes) >> (bundle.d.bits.source << log_a_opcode_bus_size.U) & size_to_numfullbits(1.U << log_a_opcode_bus_size.U)) >> 1.U
val a_size_lookup = WireInit(0.U((1 << log_a_size_bus_size).W))
a_size_lookup.suggestName("a_size_lookup")
a_size_lookup := ((inflight_sizes) >> (bundle.d.bits.source << log_a_size_bus_size.U) & size_to_numfullbits(1.U << log_a_size_bus_size.U)) >> 1.U
val responseMap = VecInit(Seq(TLMessages.AccessAck, TLMessages.AccessAck, TLMessages.AccessAckData, TLMessages.AccessAckData, TLMessages.AccessAckData, TLMessages.HintAck, TLMessages.Grant, TLMessages.Grant))
val responseMapSecondOption = VecInit(Seq(TLMessages.AccessAck, TLMessages.AccessAck, TLMessages.AccessAckData, TLMessages.AccessAckData, TLMessages.AccessAckData, TLMessages.HintAck, TLMessages.GrantData, TLMessages.Grant))
val a_opcodes_set_interm = WireInit(0.U(a_opcode_bus_size.W))
a_opcodes_set_interm.suggestName("a_opcodes_set_interm")
val a_sizes_set_interm = WireInit(0.U(a_size_bus_size.W))
a_sizes_set_interm.suggestName("a_sizes_set_interm")
when (bundle.a.valid && a_first && edge.isRequest(bundle.a.bits)) {
a_set_wo_ready := UIntToOH(bundle.a.bits.source)
}
when (bundle.a.fire && a_first && edge.isRequest(bundle.a.bits)) {
a_set := UIntToOH(bundle.a.bits.source)
a_opcodes_set_interm := (bundle.a.bits.opcode << 1.U) | 1.U
a_sizes_set_interm := (bundle.a.bits.size << 1.U) | 1.U
a_opcodes_set := (a_opcodes_set_interm) << (bundle.a.bits.source << log_a_opcode_bus_size.U)
a_sizes_set := (a_sizes_set_interm) << (bundle.a.bits.source << log_a_size_bus_size.U)
monAssert(!inflight(bundle.a.bits.source), "'A' channel re-used a source ID" + extra)
}
val d_clr = WireInit(0.U(edge.client.endSourceId.W))
val d_clr_wo_ready = WireInit(0.U(edge.client.endSourceId.W))
d_clr.suggestName("d_clr")
d_clr_wo_ready.suggestName("d_clr_wo_ready")
val d_opcodes_clr = WireInit(0.U((edge.client.endSourceId << log_a_opcode_bus_size).W))
d_opcodes_clr.suggestName("d_opcodes_clr")
val d_sizes_clr = WireInit(0.U((edge.client.endSourceId << log_a_size_bus_size).W))
d_sizes_clr.suggestName("d_sizes_clr")
val d_release_ack = bundle.d.bits.opcode === TLMessages.ReleaseAck
when (bundle.d.valid && d_first && edge.isResponse(bundle.d.bits) && !d_release_ack) {
d_clr_wo_ready := UIntToOH(bundle.d.bits.source)
}
when (bundle.d.fire && d_first && edge.isResponse(bundle.d.bits) && !d_release_ack) {
d_clr := UIntToOH(bundle.d.bits.source)
d_opcodes_clr := size_to_numfullbits(1.U << log_a_opcode_bus_size.U) << (bundle.d.bits.source << log_a_opcode_bus_size.U)
d_sizes_clr := size_to_numfullbits(1.U << log_a_size_bus_size.U) << (bundle.d.bits.source << log_a_size_bus_size.U)
}
when (bundle.d.valid && d_first && edge.isResponse(bundle.d.bits) && !d_release_ack) {
val same_cycle_resp = bundle.a.valid && a_first && edge.isRequest(bundle.a.bits) && (bundle.a.bits.source === bundle.d.bits.source)
assume(((inflight)(bundle.d.bits.source)) || same_cycle_resp, "'D' channel acknowledged for nothing inflight" + extra)
when (same_cycle_resp) {
assume((bundle.d.bits.opcode === responseMap(bundle.a.bits.opcode)) ||
(bundle.d.bits.opcode === responseMapSecondOption(bundle.a.bits.opcode)), "'D' channel contains improper opcode response" + extra)
assume((bundle.a.bits.size === bundle.d.bits.size), "'D' channel contains improper response size" + extra)
} .otherwise {
assume((bundle.d.bits.opcode === responseMap(a_opcode_lookup)) ||
(bundle.d.bits.opcode === responseMapSecondOption(a_opcode_lookup)), "'D' channel contains improper opcode response" + extra)
assume((bundle.d.bits.size === a_size_lookup), "'D' channel contains improper response size" + extra)
}
}
when(bundle.d.valid && d_first && a_first && bundle.a.valid && (bundle.a.bits.source === bundle.d.bits.source) && !d_release_ack) {
assume((!bundle.d.ready) || bundle.a.ready, "ready check")
}
if (edge.manager.minLatency > 0) {
assume(a_set_wo_ready =/= d_clr_wo_ready || !a_set_wo_ready.orR, s"'A' and 'D' concurrent, despite minlatency > 0" + extra)
}
inflight := (inflight | a_set) & ~d_clr
inflight_opcodes := (inflight_opcodes | a_opcodes_set) & ~d_opcodes_clr
inflight_sizes := (inflight_sizes | a_sizes_set) & ~d_sizes_clr
val watchdog = RegInit(0.U(32.W))
val limit = PlusArg("tilelink_timeout",
docstring="Kill emulation after INT waiting TileLink cycles. Off if 0.")
monAssert (!inflight.orR || limit === 0.U || watchdog < limit, "TileLink timeout expired" + extra)
watchdog := watchdog + 1.U
when (bundle.a.fire || bundle.d.fire) { watchdog := 0.U }
}
def legalizeCDSource(bundle: TLBundle, edge: TLEdge): Unit = {
val c_size_bus_size = edge.bundle.sizeBits + 1 //add one so that 0 is not mapped to anything (size 0 -> size 1 in map, size 0 in map means unset)
val c_opcode_bus_size = 3 + 1 //opcode size is 3, but add so that 0 is not mapped to anything
val log_c_opcode_bus_size = log2Ceil(c_opcode_bus_size)
val log_c_size_bus_size = log2Ceil(c_size_bus_size)
def size_to_numfullbits(x: UInt): UInt = (1.U << x) - 1.U //convert a number to that many full bits
val inflight = RegInit(0.U((2 max edge.client.endSourceId).W))
val inflight_opcodes = RegInit(0.U((edge.client.endSourceId << log_c_opcode_bus_size).W))
val inflight_sizes = RegInit(0.U((edge.client.endSourceId << log_c_size_bus_size).W))
inflight.suggestName("inflight")
inflight_opcodes.suggestName("inflight_opcodes")
inflight_sizes.suggestName("inflight_sizes")
val c_first = edge.first(bundle.c.bits, bundle.c.fire)
val d_first = edge.first(bundle.d.bits, bundle.d.fire)
c_first.suggestName("c_first")
d_first.suggestName("d_first")
val c_set = WireInit(0.U(edge.client.endSourceId.W))
val c_set_wo_ready = WireInit(0.U(edge.client.endSourceId.W))
val c_opcodes_set = WireInit(0.U((edge.client.endSourceId << log_c_opcode_bus_size).W))
val c_sizes_set = WireInit(0.U((edge.client.endSourceId << log_c_size_bus_size).W))
c_set.suggestName("c_set")
c_set_wo_ready.suggestName("c_set_wo_ready")
c_opcodes_set.suggestName("c_opcodes_set")
c_sizes_set.suggestName("c_sizes_set")
val c_opcode_lookup = WireInit(0.U((1 << log_c_opcode_bus_size).W))
val c_size_lookup = WireInit(0.U((1 << log_c_size_bus_size).W))
c_opcode_lookup := ((inflight_opcodes) >> (bundle.d.bits.source << log_c_opcode_bus_size.U) & size_to_numfullbits(1.U << log_c_opcode_bus_size.U)) >> 1.U
c_size_lookup := ((inflight_sizes) >> (bundle.d.bits.source << log_c_size_bus_size.U) & size_to_numfullbits(1.U << log_c_size_bus_size.U)) >> 1.U
c_opcode_lookup.suggestName("c_opcode_lookup")
c_size_lookup.suggestName("c_size_lookup")
val c_opcodes_set_interm = WireInit(0.U(c_opcode_bus_size.W))
val c_sizes_set_interm = WireInit(0.U(c_size_bus_size.W))
c_opcodes_set_interm.suggestName("c_opcodes_set_interm")
c_sizes_set_interm.suggestName("c_sizes_set_interm")
when (bundle.c.valid && c_first && edge.isRequest(bundle.c.bits)) {
c_set_wo_ready := UIntToOH(bundle.c.bits.source)
}
when (bundle.c.fire && c_first && edge.isRequest(bundle.c.bits)) {
c_set := UIntToOH(bundle.c.bits.source)
c_opcodes_set_interm := (bundle.c.bits.opcode << 1.U) | 1.U
c_sizes_set_interm := (bundle.c.bits.size << 1.U) | 1.U
c_opcodes_set := (c_opcodes_set_interm) << (bundle.c.bits.source << log_c_opcode_bus_size.U)
c_sizes_set := (c_sizes_set_interm) << (bundle.c.bits.source << log_c_size_bus_size.U)
monAssert(!inflight(bundle.c.bits.source), "'C' channel re-used a source ID" + extra)
}
val c_probe_ack = bundle.c.bits.opcode === TLMessages.ProbeAck || bundle.c.bits.opcode === TLMessages.ProbeAckData
val d_clr = WireInit(0.U(edge.client.endSourceId.W))
val d_clr_wo_ready = WireInit(0.U(edge.client.endSourceId.W))
val d_opcodes_clr = WireInit(0.U((edge.client.endSourceId << log_c_opcode_bus_size).W))
val d_sizes_clr = WireInit(0.U((edge.client.endSourceId << log_c_size_bus_size).W))
d_clr.suggestName("d_clr")
d_clr_wo_ready.suggestName("d_clr_wo_ready")
d_opcodes_clr.suggestName("d_opcodes_clr")
d_sizes_clr.suggestName("d_sizes_clr")
val d_release_ack = bundle.d.bits.opcode === TLMessages.ReleaseAck
when (bundle.d.valid && d_first && edge.isResponse(bundle.d.bits) && d_release_ack) {
d_clr_wo_ready := UIntToOH(bundle.d.bits.source)
}
when (bundle.d.fire && d_first && edge.isResponse(bundle.d.bits) && d_release_ack) {
d_clr := UIntToOH(bundle.d.bits.source)
d_opcodes_clr := size_to_numfullbits(1.U << log_c_opcode_bus_size.U) << (bundle.d.bits.source << log_c_opcode_bus_size.U)
d_sizes_clr := size_to_numfullbits(1.U << log_c_size_bus_size.U) << (bundle.d.bits.source << log_c_size_bus_size.U)
}
when (bundle.d.valid && d_first && edge.isResponse(bundle.d.bits) && d_release_ack) {
val same_cycle_resp = bundle.c.valid && c_first && edge.isRequest(bundle.c.bits) && (bundle.c.bits.source === bundle.d.bits.source)
assume(((inflight)(bundle.d.bits.source)) || same_cycle_resp, "'D' channel acknowledged for nothing inflight" + extra)
when (same_cycle_resp) {
assume((bundle.d.bits.size === bundle.c.bits.size), "'D' channel contains improper response size" + extra)
} .otherwise {
assume((bundle.d.bits.size === c_size_lookup), "'D' channel contains improper response size" + extra)
}
}
when(bundle.d.valid && d_first && c_first && bundle.c.valid && (bundle.c.bits.source === bundle.d.bits.source) && d_release_ack && !c_probe_ack) {
assume((!bundle.d.ready) || bundle.c.ready, "ready check")
}
if (edge.manager.minLatency > 0) {
when (c_set_wo_ready.orR) {
assume(c_set_wo_ready =/= d_clr_wo_ready, s"'C' and 'D' concurrent, despite minlatency > 0" + extra)
}
}
inflight := (inflight | c_set) & ~d_clr
inflight_opcodes := (inflight_opcodes | c_opcodes_set) & ~d_opcodes_clr
inflight_sizes := (inflight_sizes | c_sizes_set) & ~d_sizes_clr
val watchdog = RegInit(0.U(32.W))
val limit = PlusArg("tilelink_timeout",
docstring="Kill emulation after INT waiting TileLink cycles. Off if 0.")
monAssert (!inflight.orR || limit === 0.U || watchdog < limit, "TileLink timeout expired" + extra)
watchdog := watchdog + 1.U
when (bundle.c.fire || bundle.d.fire) { watchdog := 0.U }
}
def legalizeDESink(bundle: TLBundle, edge: TLEdge): Unit = {
val inflight = RegInit(0.U(edge.manager.endSinkId.W))
val d_first = edge.first(bundle.d.bits, bundle.d.fire)
val e_first = true.B
val d_set = WireInit(0.U(edge.manager.endSinkId.W))
when (bundle.d.fire && d_first && edge.isRequest(bundle.d.bits)) {
d_set := UIntToOH(bundle.d.bits.sink)
assume(!inflight(bundle.d.bits.sink), "'D' channel re-used a sink ID" + extra)
}
val e_clr = WireInit(0.U(edge.manager.endSinkId.W))
when (bundle.e.fire && e_first && edge.isResponse(bundle.e.bits)) {
e_clr := UIntToOH(bundle.e.bits.sink)
monAssert((d_set | inflight)(bundle.e.bits.sink), "'E' channel acknowledged for nothing inflight" + extra)
}
// edge.client.minLatency applies to BC, not DE
inflight := (inflight | d_set) & ~e_clr
}
def legalizeUnique(bundle: TLBundle, edge: TLEdge): Unit = {
val sourceBits = log2Ceil(edge.client.endSourceId)
val tooBig = 14 // >16kB worth of flight information gets to be too much
if (sourceBits > tooBig) {
println(s"WARNING: TLMonitor instantiated on a bus with source bits (${sourceBits}) > ${tooBig}; A=>D transaction flight will not be checked")
} else {
if (args.edge.params(TestplanTestType).simulation) {
if (args.edge.params(TLMonitorStrictMode)) {
legalizeADSource(bundle, edge)
legalizeCDSource(bundle, edge)
} else {
legalizeADSourceOld(bundle, edge)
}
}
if (args.edge.params(TestplanTestType).formal) {
legalizeADSourceFormal(bundle, edge)
}
}
if (edge.client.anySupportProbe && edge.manager.anySupportAcquireB) {
// legalizeBCSourceAddress(bundle, edge) // too much state needed to synthesize...
val sinkBits = log2Ceil(edge.manager.endSinkId)
if (sinkBits > tooBig) {
println(s"WARNING: TLMonitor instantiated on a bus with sink bits (${sinkBits}) > ${tooBig}; D=>E transaction flight will not be checked")
} else {
legalizeDESink(bundle, edge)
}
}
}
def legalize(bundle: TLBundle, edge: TLEdge, reset: Reset): Unit = {
legalizeFormat (bundle, edge)
legalizeMultibeat (bundle, edge)
legalizeUnique (bundle, edge)
}
}
File Misc.scala:
// See LICENSE.Berkeley for license details.
// See LICENSE.SiFive for license details.
package freechips.rocketchip.util
import chisel3._
import chisel3.util._
import chisel3.util.random.LFSR
import org.chipsalliance.cde.config.Parameters
import scala.math._
class ParameterizedBundle(implicit p: Parameters) extends Bundle
trait Clocked extends Bundle {
val clock = Clock()
val reset = Bool()
}
object DecoupledHelper {
def apply(rvs: Bool*) = new DecoupledHelper(rvs)
}
class DecoupledHelper(val rvs: Seq[Bool]) {
def fire(exclude: Bool, includes: Bool*) = {
require(rvs.contains(exclude), "Excluded Bool not present in DecoupledHelper! Note that DecoupledHelper uses referential equality for exclusion! If you don't want to exclude anything, use fire()!")
(rvs.filter(_ ne exclude) ++ includes).reduce(_ && _)
}
def fire() = {
rvs.reduce(_ && _)
}
}
object MuxT {
def apply[T <: Data, U <: Data](cond: Bool, con: (T, U), alt: (T, U)): (T, U) =
(Mux(cond, con._1, alt._1), Mux(cond, con._2, alt._2))
def apply[T <: Data, U <: Data, W <: Data](cond: Bool, con: (T, U, W), alt: (T, U, W)): (T, U, W) =
(Mux(cond, con._1, alt._1), Mux(cond, con._2, alt._2), Mux(cond, con._3, alt._3))
def apply[T <: Data, U <: Data, W <: Data, X <: Data](cond: Bool, con: (T, U, W, X), alt: (T, U, W, X)): (T, U, W, X) =
(Mux(cond, con._1, alt._1), Mux(cond, con._2, alt._2), Mux(cond, con._3, alt._3), Mux(cond, con._4, alt._4))
}
/** Creates a cascade of n MuxTs to search for a key value. */
object MuxTLookup {
def apply[S <: UInt, T <: Data, U <: Data](key: S, default: (T, U), mapping: Seq[(S, (T, U))]): (T, U) = {
var res = default
for ((k, v) <- mapping.reverse)
res = MuxT(k === key, v, res)
res
}
def apply[S <: UInt, T <: Data, U <: Data, W <: Data](key: S, default: (T, U, W), mapping: Seq[(S, (T, U, W))]): (T, U, W) = {
var res = default
for ((k, v) <- mapping.reverse)
res = MuxT(k === key, v, res)
res
}
}
object ValidMux {
def apply[T <: Data](v1: ValidIO[T], v2: ValidIO[T]*): ValidIO[T] = {
apply(v1 +: v2.toSeq)
}
def apply[T <: Data](valids: Seq[ValidIO[T]]): ValidIO[T] = {
val out = Wire(Valid(valids.head.bits.cloneType))
out.valid := valids.map(_.valid).reduce(_ || _)
out.bits := MuxCase(valids.head.bits,
valids.map(v => (v.valid -> v.bits)))
out
}
}
object Str
{
def apply(s: String): UInt = {
var i = BigInt(0)
require(s.forall(validChar _))
for (c <- s)
i = (i << 8) | c
i.U((s.length*8).W)
}
def apply(x: Char): UInt = {
require(validChar(x))
x.U(8.W)
}
def apply(x: UInt): UInt = apply(x, 10)
def apply(x: UInt, radix: Int): UInt = {
val rad = radix.U
val w = x.getWidth
require(w > 0)
var q = x
var s = digit(q % rad)
for (i <- 1 until ceil(log(2)/log(radix)*w).toInt) {
q = q / rad
s = Cat(Mux((radix == 10).B && q === 0.U, Str(' '), digit(q % rad)), s)
}
s
}
def apply(x: SInt): UInt = apply(x, 10)
def apply(x: SInt, radix: Int): UInt = {
val neg = x < 0.S
val abs = x.abs.asUInt
if (radix != 10) {
Cat(Mux(neg, Str('-'), Str(' ')), Str(abs, radix))
} else {
val rad = radix.U
val w = abs.getWidth
require(w > 0)
var q = abs
var s = digit(q % rad)
var needSign = neg
for (i <- 1 until ceil(log(2)/log(radix)*w).toInt) {
q = q / rad
val placeSpace = q === 0.U
val space = Mux(needSign, Str('-'), Str(' '))
needSign = needSign && !placeSpace
s = Cat(Mux(placeSpace, space, digit(q % rad)), s)
}
Cat(Mux(needSign, Str('-'), Str(' ')), s)
}
}
private def digit(d: UInt): UInt = Mux(d < 10.U, Str('0')+d, Str(('a'-10).toChar)+d)(7,0)
private def validChar(x: Char) = x == (x & 0xFF)
}
object Split
{
def apply(x: UInt, n0: Int) = {
val w = x.getWidth
(x.extract(w-1,n0), x.extract(n0-1,0))
}
def apply(x: UInt, n1: Int, n0: Int) = {
val w = x.getWidth
(x.extract(w-1,n1), x.extract(n1-1,n0), x.extract(n0-1,0))
}
def apply(x: UInt, n2: Int, n1: Int, n0: Int) = {
val w = x.getWidth
(x.extract(w-1,n2), x.extract(n2-1,n1), x.extract(n1-1,n0), x.extract(n0-1,0))
}
}
object Random
{
def apply(mod: Int, random: UInt): UInt = {
if (isPow2(mod)) random.extract(log2Ceil(mod)-1,0)
else PriorityEncoder(partition(apply(1 << log2Up(mod*8), random), mod))
}
def apply(mod: Int): UInt = apply(mod, randomizer)
def oneHot(mod: Int, random: UInt): UInt = {
if (isPow2(mod)) UIntToOH(random(log2Up(mod)-1,0))
else PriorityEncoderOH(partition(apply(1 << log2Up(mod*8), random), mod)).asUInt
}
def oneHot(mod: Int): UInt = oneHot(mod, randomizer)
private def randomizer = LFSR(16)
private def partition(value: UInt, slices: Int) =
Seq.tabulate(slices)(i => value < (((i + 1) << value.getWidth) / slices).U)
}
object Majority {
def apply(in: Set[Bool]): Bool = {
val n = (in.size >> 1) + 1
val clauses = in.subsets(n).map(_.reduce(_ && _))
clauses.reduce(_ || _)
}
def apply(in: Seq[Bool]): Bool = apply(in.toSet)
def apply(in: UInt): Bool = apply(in.asBools.toSet)
}
object PopCountAtLeast {
private def two(x: UInt): (Bool, Bool) = x.getWidth match {
case 1 => (x.asBool, false.B)
case n =>
val half = x.getWidth / 2
val (leftOne, leftTwo) = two(x(half - 1, 0))
val (rightOne, rightTwo) = two(x(x.getWidth - 1, half))
(leftOne || rightOne, leftTwo || rightTwo || (leftOne && rightOne))
}
def apply(x: UInt, n: Int): Bool = n match {
case 0 => true.B
case 1 => x.orR
case 2 => two(x)._2
case 3 => PopCount(x) >= n.U
}
}
// This gets used everywhere, so make the smallest circuit possible ...
// Given an address and size, create a mask of beatBytes size
// eg: (0x3, 0, 4) => 0001, (0x3, 1, 4) => 0011, (0x3, 2, 4) => 1111
// groupBy applies an interleaved OR reduction; groupBy=2 take 0010 => 01
object MaskGen {
def apply(addr_lo: UInt, lgSize: UInt, beatBytes: Int, groupBy: Int = 1): UInt = {
require (groupBy >= 1 && beatBytes >= groupBy)
require (isPow2(beatBytes) && isPow2(groupBy))
val lgBytes = log2Ceil(beatBytes)
val sizeOH = UIntToOH(lgSize | 0.U(log2Up(beatBytes).W), log2Up(beatBytes)) | (groupBy*2 - 1).U
def helper(i: Int): Seq[(Bool, Bool)] = {
if (i == 0) {
Seq((lgSize >= lgBytes.asUInt, true.B))
} else {
val sub = helper(i-1)
val size = sizeOH(lgBytes - i)
val bit = addr_lo(lgBytes - i)
val nbit = !bit
Seq.tabulate (1 << i) { j =>
val (sub_acc, sub_eq) = sub(j/2)
val eq = sub_eq && (if (j % 2 == 1) bit else nbit)
val acc = sub_acc || (size && eq)
(acc, eq)
}
}
}
if (groupBy == beatBytes) 1.U else
Cat(helper(lgBytes-log2Ceil(groupBy)).map(_._1).reverse)
}
}
File PlusArg.scala:
// See LICENSE.SiFive for license details.
package freechips.rocketchip.util
import chisel3._
import chisel3.experimental._
import chisel3.util.HasBlackBoxResource
@deprecated("This will be removed in Rocket Chip 2020.08", "Rocket Chip 2020.05")
case class PlusArgInfo(default: BigInt, docstring: String)
/** Case class for PlusArg information
*
* @tparam A scala type of the PlusArg value
* @param default optional default value
* @param docstring text to include in the help
* @param doctype description of the Verilog type of the PlusArg value (e.g. STRING, INT)
*/
private case class PlusArgContainer[A](default: Option[A], docstring: String, doctype: String)
/** Typeclass for converting a type to a doctype string
* @tparam A some type
*/
trait Doctypeable[A] {
/** Return the doctype string for some option */
def toDoctype(a: Option[A]): String
}
/** Object containing implementations of the Doctypeable typeclass */
object Doctypes {
/** Converts an Int => "INT" */
implicit val intToDoctype = new Doctypeable[Int] { def toDoctype(a: Option[Int]) = "INT" }
/** Converts a BigInt => "INT" */
implicit val bigIntToDoctype = new Doctypeable[BigInt] { def toDoctype(a: Option[BigInt]) = "INT" }
/** Converts a String => "STRING" */
implicit val stringToDoctype = new Doctypeable[String] { def toDoctype(a: Option[String]) = "STRING" }
}
class plusarg_reader(val format: String, val default: BigInt, val docstring: String, val width: Int) extends BlackBox(Map(
"FORMAT" -> StringParam(format),
"DEFAULT" -> IntParam(default),
"WIDTH" -> IntParam(width)
)) with HasBlackBoxResource {
val io = IO(new Bundle {
val out = Output(UInt(width.W))
})
addResource("/vsrc/plusarg_reader.v")
}
/* This wrapper class has no outputs, making it clear it is a simulation-only construct */
class PlusArgTimeout(val format: String, val default: BigInt, val docstring: String, val width: Int) extends Module {
val io = IO(new Bundle {
val count = Input(UInt(width.W))
})
val max = Module(new plusarg_reader(format, default, docstring, width)).io.out
when (max > 0.U) {
assert (io.count < max, s"Timeout exceeded: $docstring")
}
}
import Doctypes._
object PlusArg
{
/** PlusArg("foo") will return 42.U if the simulation is run with +foo=42
* Do not use this as an initial register value. The value is set in an
* initial block and thus accessing it from another initial is racey.
* Add a docstring to document the arg, which can be dumped in an elaboration
* pass.
*/
def apply(name: String, default: BigInt = 0, docstring: String = "", width: Int = 32): UInt = {
PlusArgArtefacts.append(name, Some(default), docstring)
Module(new plusarg_reader(name + "=%d", default, docstring, width)).io.out
}
/** PlusArg.timeout(name, default, docstring)(count) will use chisel.assert
* to kill the simulation when count exceeds the specified integer argument.
* Default 0 will never assert.
*/
def timeout(name: String, default: BigInt = 0, docstring: String = "", width: Int = 32)(count: UInt): Unit = {
PlusArgArtefacts.append(name, Some(default), docstring)
Module(new PlusArgTimeout(name + "=%d", default, docstring, width)).io.count := count
}
}
object PlusArgArtefacts {
private var artefacts: Map[String, PlusArgContainer[_]] = Map.empty
/* Add a new PlusArg */
@deprecated(
"Use `Some(BigInt)` to specify a `default` value. This will be removed in Rocket Chip 2020.08",
"Rocket Chip 2020.05"
)
def append(name: String, default: BigInt, docstring: String): Unit = append(name, Some(default), docstring)
/** Add a new PlusArg
*
* @tparam A scala type of the PlusArg value
* @param name name for the PlusArg
* @param default optional default value
* @param docstring text to include in the help
*/
def append[A : Doctypeable](name: String, default: Option[A], docstring: String): Unit =
artefacts = artefacts ++
Map(name -> PlusArgContainer(default, docstring, implicitly[Doctypeable[A]].toDoctype(default)))
/* From plus args, generate help text */
private def serializeHelp_cHeader(tab: String = ""): String = artefacts
.map{ case(arg, info) =>
s"""|$tab+$arg=${info.doctype}\\n\\
|$tab${" "*20}${info.docstring}\\n\\
|""".stripMargin ++ info.default.map{ case default =>
s"$tab${" "*22}(default=${default})\\n\\\n"}.getOrElse("")
}.toSeq.mkString("\\n\\\n") ++ "\""
/* From plus args, generate a char array of their names */
private def serializeArray_cHeader(tab: String = ""): String = {
val prettyTab = tab + " " * 44 // Length of 'static const ...'
s"${tab}static const char * verilog_plusargs [] = {\\\n" ++
artefacts
.map{ case(arg, _) => s"""$prettyTab"$arg",\\\n""" }
.mkString("")++
s"${prettyTab}0};"
}
/* Generate C code to be included in emulator.cc that helps with
* argument parsing based on available Verilog PlusArgs */
def serialize_cHeader(): String =
s"""|#define PLUSARG_USAGE_OPTIONS \"EMULATOR VERILOG PLUSARGS\\n\\
|${serializeHelp_cHeader(" "*7)}
|${serializeArray_cHeader()}
|""".stripMargin
}
File package.scala:
// See LICENSE.SiFive for license details.
package freechips.rocketchip
import chisel3._
import chisel3.util._
import scala.math.min
import scala.collection.{immutable, mutable}
package object util {
implicit class UnzippableOption[S, T](val x: Option[(S, T)]) {
def unzip = (x.map(_._1), x.map(_._2))
}
implicit class UIntIsOneOf(private val x: UInt) extends AnyVal {
def isOneOf(s: Seq[UInt]): Bool = s.map(x === _).orR
def isOneOf(u1: UInt, u2: UInt*): Bool = isOneOf(u1 +: u2.toSeq)
}
implicit class VecToAugmentedVec[T <: Data](private val x: Vec[T]) extends AnyVal {
/** Like Vec.apply(idx), but tolerates indices of mismatched width */
def extract(idx: UInt): T = x((idx | 0.U(log2Ceil(x.size).W)).extract(log2Ceil(x.size) - 1, 0))
}
implicit class SeqToAugmentedSeq[T <: Data](private val x: Seq[T]) extends AnyVal {
def apply(idx: UInt): T = {
if (x.size <= 1) {
x.head
} else if (!isPow2(x.size)) {
// For non-power-of-2 seqs, reflect elements to simplify decoder
(x ++ x.takeRight(x.size & -x.size)).toSeq(idx)
} else {
// Ignore MSBs of idx
val truncIdx =
if (idx.isWidthKnown && idx.getWidth <= log2Ceil(x.size)) idx
else (idx | 0.U(log2Ceil(x.size).W))(log2Ceil(x.size)-1, 0)
x.zipWithIndex.tail.foldLeft(x.head) { case (prev, (cur, i)) => Mux(truncIdx === i.U, cur, prev) }
}
}
def extract(idx: UInt): T = VecInit(x).extract(idx)
def asUInt: UInt = Cat(x.map(_.asUInt).reverse)
def rotate(n: Int): Seq[T] = x.drop(n) ++ x.take(n)
def rotate(n: UInt): Seq[T] = {
if (x.size <= 1) {
x
} else {
require(isPow2(x.size))
val amt = n.padTo(log2Ceil(x.size))
(0 until log2Ceil(x.size)).foldLeft(x)((r, i) => (r.rotate(1 << i) zip r).map { case (s, a) => Mux(amt(i), s, a) })
}
}
def rotateRight(n: Int): Seq[T] = x.takeRight(n) ++ x.dropRight(n)
def rotateRight(n: UInt): Seq[T] = {
if (x.size <= 1) {
x
} else {
require(isPow2(x.size))
val amt = n.padTo(log2Ceil(x.size))
(0 until log2Ceil(x.size)).foldLeft(x)((r, i) => (r.rotateRight(1 << i) zip r).map { case (s, a) => Mux(amt(i), s, a) })
}
}
}
// allow bitwise ops on Seq[Bool] just like UInt
implicit class SeqBoolBitwiseOps(private val x: Seq[Bool]) extends AnyVal {
def & (y: Seq[Bool]): Seq[Bool] = (x zip y).map { case (a, b) => a && b }
def | (y: Seq[Bool]): Seq[Bool] = padZip(x, y).map { case (a, b) => a || b }
def ^ (y: Seq[Bool]): Seq[Bool] = padZip(x, y).map { case (a, b) => a ^ b }
def << (n: Int): Seq[Bool] = Seq.fill(n)(false.B) ++ x
def >> (n: Int): Seq[Bool] = x drop n
def unary_~ : Seq[Bool] = x.map(!_)
def andR: Bool = if (x.isEmpty) true.B else x.reduce(_&&_)
def orR: Bool = if (x.isEmpty) false.B else x.reduce(_||_)
def xorR: Bool = if (x.isEmpty) false.B else x.reduce(_^_)
private def padZip(y: Seq[Bool], z: Seq[Bool]): Seq[(Bool, Bool)] = y.padTo(z.size, false.B) zip z.padTo(y.size, false.B)
}
implicit class DataToAugmentedData[T <: Data](private val x: T) extends AnyVal {
def holdUnless(enable: Bool): T = Mux(enable, x, RegEnable(x, enable))
def getElements: Seq[Element] = x match {
case e: Element => Seq(e)
case a: Aggregate => a.getElements.flatMap(_.getElements)
}
}
/** Any Data subtype that has a Bool member named valid. */
type DataCanBeValid = Data { val valid: Bool }
implicit class SeqMemToAugmentedSeqMem[T <: Data](private val x: SyncReadMem[T]) extends AnyVal {
def readAndHold(addr: UInt, enable: Bool): T = x.read(addr, enable) holdUnless RegNext(enable)
}
implicit class StringToAugmentedString(private val x: String) extends AnyVal {
/** converts from camel case to to underscores, also removing all spaces */
def underscore: String = x.tail.foldLeft(x.headOption.map(_.toLower + "") getOrElse "") {
case (acc, c) if c.isUpper => acc + "_" + c.toLower
case (acc, c) if c == ' ' => acc
case (acc, c) => acc + c
}
/** converts spaces or underscores to hyphens, also lowering case */
def kebab: String = x.toLowerCase map {
case ' ' => '-'
case '_' => '-'
case c => c
}
def named(name: Option[String]): String = {
x + name.map("_named_" + _ ).getOrElse("_with_no_name")
}
def named(name: String): String = named(Some(name))
}
implicit def uintToBitPat(x: UInt): BitPat = BitPat(x)
implicit def wcToUInt(c: WideCounter): UInt = c.value
implicit class UIntToAugmentedUInt(private val x: UInt) extends AnyVal {
def sextTo(n: Int): UInt = {
require(x.getWidth <= n)
if (x.getWidth == n) x
else Cat(Fill(n - x.getWidth, x(x.getWidth-1)), x)
}
def padTo(n: Int): UInt = {
require(x.getWidth <= n)
if (x.getWidth == n) x
else Cat(0.U((n - x.getWidth).W), x)
}
// shifts left by n if n >= 0, or right by -n if n < 0
def << (n: SInt): UInt = {
val w = n.getWidth - 1
require(w <= 30)
val shifted = x << n(w-1, 0)
Mux(n(w), shifted >> (1 << w), shifted)
}
// shifts right by n if n >= 0, or left by -n if n < 0
def >> (n: SInt): UInt = {
val w = n.getWidth - 1
require(w <= 30)
val shifted = x << (1 << w) >> n(w-1, 0)
Mux(n(w), shifted, shifted >> (1 << w))
}
// Like UInt.apply(hi, lo), but returns 0.U for zero-width extracts
def extract(hi: Int, lo: Int): UInt = {
require(hi >= lo-1)
if (hi == lo-1) 0.U
else x(hi, lo)
}
// Like Some(UInt.apply(hi, lo)), but returns None for zero-width extracts
def extractOption(hi: Int, lo: Int): Option[UInt] = {
require(hi >= lo-1)
if (hi == lo-1) None
else Some(x(hi, lo))
}
// like x & ~y, but first truncate or zero-extend y to x's width
def andNot(y: UInt): UInt = x & ~(y | (x & 0.U))
def rotateRight(n: Int): UInt = if (n == 0) x else Cat(x(n-1, 0), x >> n)
def rotateRight(n: UInt): UInt = {
if (x.getWidth <= 1) {
x
} else {
val amt = n.padTo(log2Ceil(x.getWidth))
(0 until log2Ceil(x.getWidth)).foldLeft(x)((r, i) => Mux(amt(i), r.rotateRight(1 << i), r))
}
}
def rotateLeft(n: Int): UInt = if (n == 0) x else Cat(x(x.getWidth-1-n,0), x(x.getWidth-1,x.getWidth-n))
def rotateLeft(n: UInt): UInt = {
if (x.getWidth <= 1) {
x
} else {
val amt = n.padTo(log2Ceil(x.getWidth))
(0 until log2Ceil(x.getWidth)).foldLeft(x)((r, i) => Mux(amt(i), r.rotateLeft(1 << i), r))
}
}
// compute (this + y) % n, given (this < n) and (y < n)
def addWrap(y: UInt, n: Int): UInt = {
val z = x +& y
if (isPow2(n)) z(n.log2-1, 0) else Mux(z >= n.U, z - n.U, z)(log2Ceil(n)-1, 0)
}
// compute (this - y) % n, given (this < n) and (y < n)
def subWrap(y: UInt, n: Int): UInt = {
val z = x -& y
if (isPow2(n)) z(n.log2-1, 0) else Mux(z(z.getWidth-1), z + n.U, z)(log2Ceil(n)-1, 0)
}
def grouped(width: Int): Seq[UInt] =
(0 until x.getWidth by width).map(base => x(base + width - 1, base))
def inRange(base: UInt, bounds: UInt) = x >= base && x < bounds
def ## (y: Option[UInt]): UInt = y.map(x ## _).getOrElse(x)
// Like >=, but prevents x-prop for ('x >= 0)
def >== (y: UInt): Bool = x >= y || y === 0.U
}
implicit class OptionUIntToAugmentedOptionUInt(private val x: Option[UInt]) extends AnyVal {
def ## (y: UInt): UInt = x.map(_ ## y).getOrElse(y)
def ## (y: Option[UInt]): Option[UInt] = x.map(_ ## y)
}
implicit class BooleanToAugmentedBoolean(private val x: Boolean) extends AnyVal {
def toInt: Int = if (x) 1 else 0
// this one's snagged from scalaz
def option[T](z: => T): Option[T] = if (x) Some(z) else None
}
implicit class IntToAugmentedInt(private val x: Int) extends AnyVal {
// exact log2
def log2: Int = {
require(isPow2(x))
log2Ceil(x)
}
}
def OH1ToOH(x: UInt): UInt = (x << 1 | 1.U) & ~Cat(0.U(1.W), x)
def OH1ToUInt(x: UInt): UInt = OHToUInt(OH1ToOH(x))
def UIntToOH1(x: UInt, width: Int): UInt = ~((-1).S(width.W).asUInt << x)(width-1, 0)
def UIntToOH1(x: UInt): UInt = UIntToOH1(x, (1 << x.getWidth) - 1)
def trailingZeros(x: Int): Option[Int] = if (x > 0) Some(log2Ceil(x & -x)) else None
// Fill 1s from low bits to high bits
def leftOR(x: UInt): UInt = leftOR(x, x.getWidth, x.getWidth)
def leftOR(x: UInt, width: Integer, cap: Integer = 999999): UInt = {
val stop = min(width, cap)
def helper(s: Int, x: UInt): UInt =
if (s >= stop) x else helper(s+s, x | (x << s)(width-1,0))
helper(1, x)(width-1, 0)
}
// Fill 1s form high bits to low bits
def rightOR(x: UInt): UInt = rightOR(x, x.getWidth, x.getWidth)
def rightOR(x: UInt, width: Integer, cap: Integer = 999999): UInt = {
val stop = min(width, cap)
def helper(s: Int, x: UInt): UInt =
if (s >= stop) x else helper(s+s, x | (x >> s))
helper(1, x)(width-1, 0)
}
def OptimizationBarrier[T <: Data](in: T): T = {
val barrier = Module(new Module {
val io = IO(new Bundle {
val x = Input(chiselTypeOf(in))
val y = Output(chiselTypeOf(in))
})
io.y := io.x
override def desiredName = s"OptimizationBarrier_${in.typeName}"
})
barrier.io.x := in
barrier.io.y
}
/** Similar to Seq.groupBy except this returns a Seq instead of a Map
* Useful for deterministic code generation
*/
def groupByIntoSeq[A, K](xs: Seq[A])(f: A => K): immutable.Seq[(K, immutable.Seq[A])] = {
val map = mutable.LinkedHashMap.empty[K, mutable.ListBuffer[A]]
for (x <- xs) {
val key = f(x)
val l = map.getOrElseUpdate(key, mutable.ListBuffer.empty[A])
l += x
}
map.view.map({ case (k, vs) => k -> vs.toList }).toList
}
def heterogeneousOrGlobalSetting[T](in: Seq[T], n: Int): Seq[T] = in.size match {
case 1 => List.fill(n)(in.head)
case x if x == n => in
case _ => throw new Exception(s"must provide exactly 1 or $n of some field, but got:\n$in")
}
// HeterogeneousBag moved to standalond diplomacy
@deprecated("HeterogeneousBag has been absorbed into standalone diplomacy library", "rocketchip 2.0.0")
def HeterogeneousBag[T <: Data](elts: Seq[T]) = _root_.org.chipsalliance.diplomacy.nodes.HeterogeneousBag[T](elts)
@deprecated("HeterogeneousBag has been absorbed into standalone diplomacy library", "rocketchip 2.0.0")
val HeterogeneousBag = _root_.org.chipsalliance.diplomacy.nodes.HeterogeneousBag
}
File Bundles.scala:
// See LICENSE.SiFive for license details.
package freechips.rocketchip.tilelink
import chisel3._
import freechips.rocketchip.util._
import scala.collection.immutable.ListMap
import chisel3.util.Decoupled
import chisel3.util.DecoupledIO
import chisel3.reflect.DataMirror
abstract class TLBundleBase(val params: TLBundleParameters) extends Bundle
// common combos in lazy policy:
// Put + Acquire
// Release + AccessAck
object TLMessages
{
// A B C D E
def PutFullData = 0.U // . . => AccessAck
def PutPartialData = 1.U // . . => AccessAck
def ArithmeticData = 2.U // . . => AccessAckData
def LogicalData = 3.U // . . => AccessAckData
def Get = 4.U // . . => AccessAckData
def Hint = 5.U // . . => HintAck
def AcquireBlock = 6.U // . => Grant[Data]
def AcquirePerm = 7.U // . => Grant[Data]
def Probe = 6.U // . => ProbeAck[Data]
def AccessAck = 0.U // . .
def AccessAckData = 1.U // . .
def HintAck = 2.U // . .
def ProbeAck = 4.U // .
def ProbeAckData = 5.U // .
def Release = 6.U // . => ReleaseAck
def ReleaseData = 7.U // . => ReleaseAck
def Grant = 4.U // . => GrantAck
def GrantData = 5.U // . => GrantAck
def ReleaseAck = 6.U // .
def GrantAck = 0.U // .
def isA(x: UInt) = x <= AcquirePerm
def isB(x: UInt) = x <= Probe
def isC(x: UInt) = x <= ReleaseData
def isD(x: UInt) = x <= ReleaseAck
def adResponse = VecInit(AccessAck, AccessAck, AccessAckData, AccessAckData, AccessAckData, HintAck, Grant, Grant)
def bcResponse = VecInit(AccessAck, AccessAck, AccessAckData, AccessAckData, AccessAckData, HintAck, ProbeAck, ProbeAck)
def a = Seq( ("PutFullData",TLPermissions.PermMsgReserved),
("PutPartialData",TLPermissions.PermMsgReserved),
("ArithmeticData",TLAtomics.ArithMsg),
("LogicalData",TLAtomics.LogicMsg),
("Get",TLPermissions.PermMsgReserved),
("Hint",TLHints.HintsMsg),
("AcquireBlock",TLPermissions.PermMsgGrow),
("AcquirePerm",TLPermissions.PermMsgGrow))
def b = Seq( ("PutFullData",TLPermissions.PermMsgReserved),
("PutPartialData",TLPermissions.PermMsgReserved),
("ArithmeticData",TLAtomics.ArithMsg),
("LogicalData",TLAtomics.LogicMsg),
("Get",TLPermissions.PermMsgReserved),
("Hint",TLHints.HintsMsg),
("Probe",TLPermissions.PermMsgCap))
def c = Seq( ("AccessAck",TLPermissions.PermMsgReserved),
("AccessAckData",TLPermissions.PermMsgReserved),
("HintAck",TLPermissions.PermMsgReserved),
("Invalid Opcode",TLPermissions.PermMsgReserved),
("ProbeAck",TLPermissions.PermMsgReport),
("ProbeAckData",TLPermissions.PermMsgReport),
("Release",TLPermissions.PermMsgReport),
("ReleaseData",TLPermissions.PermMsgReport))
def d = Seq( ("AccessAck",TLPermissions.PermMsgReserved),
("AccessAckData",TLPermissions.PermMsgReserved),
("HintAck",TLPermissions.PermMsgReserved),
("Invalid Opcode",TLPermissions.PermMsgReserved),
("Grant",TLPermissions.PermMsgCap),
("GrantData",TLPermissions.PermMsgCap),
("ReleaseAck",TLPermissions.PermMsgReserved))
}
/**
* The three primary TileLink permissions are:
* (T)runk: the agent is (or is on inwards path to) the global point of serialization.
* (B)ranch: the agent is on an outwards path to
* (N)one:
* These permissions are permuted by transfer operations in various ways.
* Operations can cap permissions, request for them to be grown or shrunk,
* or for a report on their current status.
*/
object TLPermissions
{
val aWidth = 2
val bdWidth = 2
val cWidth = 3
// Cap types (Grant = new permissions, Probe = permisions <= target)
def toT = 0.U(bdWidth.W)
def toB = 1.U(bdWidth.W)
def toN = 2.U(bdWidth.W)
def isCap(x: UInt) = x <= toN
// Grow types (Acquire = permissions >= target)
def NtoB = 0.U(aWidth.W)
def NtoT = 1.U(aWidth.W)
def BtoT = 2.U(aWidth.W)
def isGrow(x: UInt) = x <= BtoT
// Shrink types (ProbeAck, Release)
def TtoB = 0.U(cWidth.W)
def TtoN = 1.U(cWidth.W)
def BtoN = 2.U(cWidth.W)
def isShrink(x: UInt) = x <= BtoN
// Report types (ProbeAck, Release)
def TtoT = 3.U(cWidth.W)
def BtoB = 4.U(cWidth.W)
def NtoN = 5.U(cWidth.W)
def isReport(x: UInt) = x <= NtoN
def PermMsgGrow:Seq[String] = Seq("Grow NtoB", "Grow NtoT", "Grow BtoT")
def PermMsgCap:Seq[String] = Seq("Cap toT", "Cap toB", "Cap toN")
def PermMsgReport:Seq[String] = Seq("Shrink TtoB", "Shrink TtoN", "Shrink BtoN", "Report TotT", "Report BtoB", "Report NtoN")
def PermMsgReserved:Seq[String] = Seq("Reserved")
}
object TLAtomics
{
val width = 3
// Arithmetic types
def MIN = 0.U(width.W)
def MAX = 1.U(width.W)
def MINU = 2.U(width.W)
def MAXU = 3.U(width.W)
def ADD = 4.U(width.W)
def isArithmetic(x: UInt) = x <= ADD
// Logical types
def XOR = 0.U(width.W)
def OR = 1.U(width.W)
def AND = 2.U(width.W)
def SWAP = 3.U(width.W)
def isLogical(x: UInt) = x <= SWAP
def ArithMsg:Seq[String] = Seq("MIN", "MAX", "MINU", "MAXU", "ADD")
def LogicMsg:Seq[String] = Seq("XOR", "OR", "AND", "SWAP")
}
object TLHints
{
val width = 1
def PREFETCH_READ = 0.U(width.W)
def PREFETCH_WRITE = 1.U(width.W)
def isHints(x: UInt) = x <= PREFETCH_WRITE
def HintsMsg:Seq[String] = Seq("PrefetchRead", "PrefetchWrite")
}
sealed trait TLChannel extends TLBundleBase {
val channelName: String
}
sealed trait TLDataChannel extends TLChannel
sealed trait TLAddrChannel extends TLDataChannel
final class TLBundleA(params: TLBundleParameters)
extends TLBundleBase(params) with TLAddrChannel
{
override def typeName = s"TLBundleA_${params.shortName}"
val channelName = "'A' channel"
// fixed fields during multibeat:
val opcode = UInt(3.W)
val param = UInt(List(TLAtomics.width, TLPermissions.aWidth, TLHints.width).max.W) // amo_opcode || grow perms || hint
val size = UInt(params.sizeBits.W)
val source = UInt(params.sourceBits.W) // from
val address = UInt(params.addressBits.W) // to
val user = BundleMap(params.requestFields)
val echo = BundleMap(params.echoFields)
// variable fields during multibeat:
val mask = UInt((params.dataBits/8).W)
val data = UInt(params.dataBits.W)
val corrupt = Bool() // only applies to *Data messages
}
final class TLBundleB(params: TLBundleParameters)
extends TLBundleBase(params) with TLAddrChannel
{
override def typeName = s"TLBundleB_${params.shortName}"
val channelName = "'B' channel"
// fixed fields during multibeat:
val opcode = UInt(3.W)
val param = UInt(TLPermissions.bdWidth.W) // cap perms
val size = UInt(params.sizeBits.W)
val source = UInt(params.sourceBits.W) // to
val address = UInt(params.addressBits.W) // from
// variable fields during multibeat:
val mask = UInt((params.dataBits/8).W)
val data = UInt(params.dataBits.W)
val corrupt = Bool() // only applies to *Data messages
}
final class TLBundleC(params: TLBundleParameters)
extends TLBundleBase(params) with TLAddrChannel
{
override def typeName = s"TLBundleC_${params.shortName}"
val channelName = "'C' channel"
// fixed fields during multibeat:
val opcode = UInt(3.W)
val param = UInt(TLPermissions.cWidth.W) // shrink or report perms
val size = UInt(params.sizeBits.W)
val source = UInt(params.sourceBits.W) // from
val address = UInt(params.addressBits.W) // to
val user = BundleMap(params.requestFields)
val echo = BundleMap(params.echoFields)
// variable fields during multibeat:
val data = UInt(params.dataBits.W)
val corrupt = Bool() // only applies to *Data messages
}
final class TLBundleD(params: TLBundleParameters)
extends TLBundleBase(params) with TLDataChannel
{
override def typeName = s"TLBundleD_${params.shortName}"
val channelName = "'D' channel"
// fixed fields during multibeat:
val opcode = UInt(3.W)
val param = UInt(TLPermissions.bdWidth.W) // cap perms
val size = UInt(params.sizeBits.W)
val source = UInt(params.sourceBits.W) // to
val sink = UInt(params.sinkBits.W) // from
val denied = Bool() // implies corrupt iff *Data
val user = BundleMap(params.responseFields)
val echo = BundleMap(params.echoFields)
// variable fields during multibeat:
val data = UInt(params.dataBits.W)
val corrupt = Bool() // only applies to *Data messages
}
final class TLBundleE(params: TLBundleParameters)
extends TLBundleBase(params) with TLChannel
{
override def typeName = s"TLBundleE_${params.shortName}"
val channelName = "'E' channel"
val sink = UInt(params.sinkBits.W) // to
}
class TLBundle(val params: TLBundleParameters) extends Record
{
// Emulate a Bundle with elements abcde or ad depending on params.hasBCE
private val optA = Some (Decoupled(new TLBundleA(params)))
private val optB = params.hasBCE.option(Flipped(Decoupled(new TLBundleB(params))))
private val optC = params.hasBCE.option(Decoupled(new TLBundleC(params)))
private val optD = Some (Flipped(Decoupled(new TLBundleD(params))))
private val optE = params.hasBCE.option(Decoupled(new TLBundleE(params)))
def a: DecoupledIO[TLBundleA] = optA.getOrElse(WireDefault(0.U.asTypeOf(Decoupled(new TLBundleA(params)))))
def b: DecoupledIO[TLBundleB] = optB.getOrElse(WireDefault(0.U.asTypeOf(Decoupled(new TLBundleB(params)))))
def c: DecoupledIO[TLBundleC] = optC.getOrElse(WireDefault(0.U.asTypeOf(Decoupled(new TLBundleC(params)))))
def d: DecoupledIO[TLBundleD] = optD.getOrElse(WireDefault(0.U.asTypeOf(Decoupled(new TLBundleD(params)))))
def e: DecoupledIO[TLBundleE] = optE.getOrElse(WireDefault(0.U.asTypeOf(Decoupled(new TLBundleE(params)))))
val elements =
if (params.hasBCE) ListMap("e" -> e, "d" -> d, "c" -> c, "b" -> b, "a" -> a)
else ListMap("d" -> d, "a" -> a)
def tieoff(): Unit = {
DataMirror.specifiedDirectionOf(a.ready) match {
case SpecifiedDirection.Input =>
a.ready := false.B
c.ready := false.B
e.ready := false.B
b.valid := false.B
d.valid := false.B
case SpecifiedDirection.Output =>
a.valid := false.B
c.valid := false.B
e.valid := false.B
b.ready := false.B
d.ready := false.B
case _ =>
}
}
}
object TLBundle
{
def apply(params: TLBundleParameters) = new TLBundle(params)
}
class TLAsyncBundleBase(val params: TLAsyncBundleParameters) extends Bundle
class TLAsyncBundle(params: TLAsyncBundleParameters) extends TLAsyncBundleBase(params)
{
val a = new AsyncBundle(new TLBundleA(params.base), params.async)
val b = Flipped(new AsyncBundle(new TLBundleB(params.base), params.async))
val c = new AsyncBundle(new TLBundleC(params.base), params.async)
val d = Flipped(new AsyncBundle(new TLBundleD(params.base), params.async))
val e = new AsyncBundle(new TLBundleE(params.base), params.async)
}
class TLRationalBundle(params: TLBundleParameters) extends TLBundleBase(params)
{
val a = RationalIO(new TLBundleA(params))
val b = Flipped(RationalIO(new TLBundleB(params)))
val c = RationalIO(new TLBundleC(params))
val d = Flipped(RationalIO(new TLBundleD(params)))
val e = RationalIO(new TLBundleE(params))
}
class TLCreditedBundle(params: TLBundleParameters) extends TLBundleBase(params)
{
val a = CreditedIO(new TLBundleA(params))
val b = Flipped(CreditedIO(new TLBundleB(params)))
val c = CreditedIO(new TLBundleC(params))
val d = Flipped(CreditedIO(new TLBundleD(params)))
val e = CreditedIO(new TLBundleE(params))
}
File Parameters.scala:
// See LICENSE.SiFive for license details.
package freechips.rocketchip.diplomacy
import chisel3._
import chisel3.util.{DecoupledIO, Queue, ReadyValidIO, isPow2, log2Ceil, log2Floor}
import freechips.rocketchip.util.ShiftQueue
/** Options for describing the attributes of memory regions */
object RegionType {
// Define the 'more relaxed than' ordering
val cases = Seq(CACHED, TRACKED, UNCACHED, IDEMPOTENT, VOLATILE, PUT_EFFECTS, GET_EFFECTS)
sealed trait T extends Ordered[T] {
def compare(that: T): Int = cases.indexOf(that) compare cases.indexOf(this)
}
case object CACHED extends T // an intermediate agent may have cached a copy of the region for you
case object TRACKED extends T // the region may have been cached by another master, but coherence is being provided
case object UNCACHED extends T // the region has not been cached yet, but should be cached when possible
case object IDEMPOTENT extends T // gets return most recently put content, but content should not be cached
case object VOLATILE extends T // content may change without a put, but puts and gets have no side effects
case object PUT_EFFECTS extends T // puts produce side effects and so must not be combined/delayed
case object GET_EFFECTS extends T // gets produce side effects and so must not be issued speculatively
}
// A non-empty half-open range; [start, end)
case class IdRange(start: Int, end: Int) extends Ordered[IdRange]
{
require (start >= 0, s"Ids cannot be negative, but got: $start.")
require (start <= end, "Id ranges cannot be negative.")
def compare(x: IdRange) = {
val primary = (this.start - x.start).signum
val secondary = (x.end - this.end).signum
if (primary != 0) primary else secondary
}
def overlaps(x: IdRange) = start < x.end && x.start < end
def contains(x: IdRange) = start <= x.start && x.end <= end
def contains(x: Int) = start <= x && x < end
def contains(x: UInt) =
if (size == 0) {
false.B
} else if (size == 1) { // simple comparison
x === start.U
} else {
// find index of largest different bit
val largestDeltaBit = log2Floor(start ^ (end-1))
val smallestCommonBit = largestDeltaBit + 1 // may not exist in x
val uncommonMask = (1 << smallestCommonBit) - 1
val uncommonBits = (x | 0.U(smallestCommonBit.W))(largestDeltaBit, 0)
// the prefix must match exactly (note: may shift ALL bits away)
(x >> smallestCommonBit) === (start >> smallestCommonBit).U &&
// firrtl constant prop range analysis can eliminate these two:
(start & uncommonMask).U <= uncommonBits &&
uncommonBits <= ((end-1) & uncommonMask).U
}
def shift(x: Int) = IdRange(start+x, end+x)
def size = end - start
def isEmpty = end == start
def range = start until end
}
object IdRange
{
def overlaps(s: Seq[IdRange]) = if (s.isEmpty) None else {
val ranges = s.sorted
(ranges.tail zip ranges.init) find { case (a, b) => a overlaps b }
}
}
// An potentially empty inclusive range of 2-powers [min, max] (in bytes)
case class TransferSizes(min: Int, max: Int)
{
def this(x: Int) = this(x, x)
require (min <= max, s"Min transfer $min > max transfer $max")
require (min >= 0 && max >= 0, s"TransferSizes must be positive, got: ($min, $max)")
require (max == 0 || isPow2(max), s"TransferSizes must be a power of 2, got: $max")
require (min == 0 || isPow2(min), s"TransferSizes must be a power of 2, got: $min")
require (max == 0 || min != 0, s"TransferSize 0 is forbidden unless (0,0), got: ($min, $max)")
def none = min == 0
def contains(x: Int) = isPow2(x) && min <= x && x <= max
def containsLg(x: Int) = contains(1 << x)
def containsLg(x: UInt) =
if (none) false.B
else if (min == max) { log2Ceil(min).U === x }
else { log2Ceil(min).U <= x && x <= log2Ceil(max).U }
def contains(x: TransferSizes) = x.none || (min <= x.min && x.max <= max)
def intersect(x: TransferSizes) =
if (x.max < min || max < x.min) TransferSizes.none
else TransferSizes(scala.math.max(min, x.min), scala.math.min(max, x.max))
// Not a union, because the result may contain sizes contained by neither term
// NOT TO BE CONFUSED WITH COVERPOINTS
def mincover(x: TransferSizes) = {
if (none) {
x
} else if (x.none) {
this
} else {
TransferSizes(scala.math.min(min, x.min), scala.math.max(max, x.max))
}
}
override def toString() = "TransferSizes[%d, %d]".format(min, max)
}
object TransferSizes {
def apply(x: Int) = new TransferSizes(x)
val none = new TransferSizes(0)
def mincover(seq: Seq[TransferSizes]) = seq.foldLeft(none)(_ mincover _)
def intersect(seq: Seq[TransferSizes]) = seq.reduce(_ intersect _)
implicit def asBool(x: TransferSizes) = !x.none
}
// AddressSets specify the address space managed by the manager
// Base is the base address, and mask are the bits consumed by the manager
// e.g: base=0x200, mask=0xff describes a device managing 0x200-0x2ff
// e.g: base=0x1000, mask=0xf0f decribes a device managing 0x1000-0x100f, 0x1100-0x110f, ...
case class AddressSet(base: BigInt, mask: BigInt) extends Ordered[AddressSet]
{
// Forbid misaligned base address (and empty sets)
require ((base & mask) == 0, s"Mis-aligned AddressSets are forbidden, got: ${this.toString}")
require (base >= 0, s"AddressSet negative base is ambiguous: $base") // TL2 address widths are not fixed => negative is ambiguous
// We do allow negative mask (=> ignore all high bits)
def contains(x: BigInt) = ((x ^ base) & ~mask) == 0
def contains(x: UInt) = ((x ^ base.U).zext & (~mask).S) === 0.S
// turn x into an address contained in this set
def legalize(x: UInt): UInt = base.U | (mask.U & x)
// overlap iff bitwise: both care (~mask0 & ~mask1) => both equal (base0=base1)
def overlaps(x: AddressSet) = (~(mask | x.mask) & (base ^ x.base)) == 0
// contains iff bitwise: x.mask => mask && contains(x.base)
def contains(x: AddressSet) = ((x.mask | (base ^ x.base)) & ~mask) == 0
// The number of bytes to which the manager must be aligned
def alignment = ((mask + 1) & ~mask)
// Is this a contiguous memory range
def contiguous = alignment == mask+1
def finite = mask >= 0
def max = { require (finite, "Max cannot be calculated on infinite mask"); base | mask }
// Widen the match function to ignore all bits in imask
def widen(imask: BigInt) = AddressSet(base & ~imask, mask | imask)
// Return an AddressSet that only contains the addresses both sets contain
def intersect(x: AddressSet): Option[AddressSet] = {
if (!overlaps(x)) {
None
} else {
val r_mask = mask & x.mask
val r_base = base | x.base
Some(AddressSet(r_base, r_mask))
}
}
def subtract(x: AddressSet): Seq[AddressSet] = {
intersect(x) match {
case None => Seq(this)
case Some(remove) => AddressSet.enumerateBits(mask & ~remove.mask).map { bit =>
val nmask = (mask & (bit-1)) | remove.mask
val nbase = (remove.base ^ bit) & ~nmask
AddressSet(nbase, nmask)
}
}
}
// AddressSets have one natural Ordering (the containment order, if contiguous)
def compare(x: AddressSet) = {
val primary = (this.base - x.base).signum // smallest address first
val secondary = (x.mask - this.mask).signum // largest mask first
if (primary != 0) primary else secondary
}
// We always want to see things in hex
override def toString() = {
if (mask >= 0) {
"AddressSet(0x%x, 0x%x)".format(base, mask)
} else {
"AddressSet(0x%x, ~0x%x)".format(base, ~mask)
}
}
def toRanges = {
require (finite, "Ranges cannot be calculated on infinite mask")
val size = alignment
val fragments = mask & ~(size-1)
val bits = bitIndexes(fragments)
(BigInt(0) until (BigInt(1) << bits.size)).map { i =>
val off = bitIndexes(i).foldLeft(base) { case (a, b) => a.setBit(bits(b)) }
AddressRange(off, size)
}
}
}
object AddressSet
{
val everything = AddressSet(0, -1)
def misaligned(base: BigInt, size: BigInt, tail: Seq[AddressSet] = Seq()): Seq[AddressSet] = {
if (size == 0) tail.reverse else {
val maxBaseAlignment = base & (-base) // 0 for infinite (LSB)
val maxSizeAlignment = BigInt(1) << log2Floor(size) // MSB of size
val step =
if (maxBaseAlignment == 0 || maxBaseAlignment > maxSizeAlignment)
maxSizeAlignment else maxBaseAlignment
misaligned(base+step, size-step, AddressSet(base, step-1) +: tail)
}
}
def unify(seq: Seq[AddressSet], bit: BigInt): Seq[AddressSet] = {
// Pair terms up by ignoring 'bit'
seq.distinct.groupBy(x => x.copy(base = x.base & ~bit)).map { case (key, seq) =>
if (seq.size == 1) {
seq.head // singleton -> unaffected
} else {
key.copy(mask = key.mask | bit) // pair - widen mask by bit
}
}.toList
}
def unify(seq: Seq[AddressSet]): Seq[AddressSet] = {
val bits = seq.map(_.base).foldLeft(BigInt(0))(_ | _)
AddressSet.enumerateBits(bits).foldLeft(seq) { case (acc, bit) => unify(acc, bit) }.sorted
}
def enumerateMask(mask: BigInt): Seq[BigInt] = {
def helper(id: BigInt, tail: Seq[BigInt]): Seq[BigInt] =
if (id == mask) (id +: tail).reverse else helper(((~mask | id) + 1) & mask, id +: tail)
helper(0, Nil)
}
def enumerateBits(mask: BigInt): Seq[BigInt] = {
def helper(x: BigInt): Seq[BigInt] = {
if (x == 0) {
Nil
} else {
val bit = x & (-x)
bit +: helper(x & ~bit)
}
}
helper(mask)
}
}
case class BufferParams(depth: Int, flow: Boolean, pipe: Boolean)
{
require (depth >= 0, "Buffer depth must be >= 0")
def isDefined = depth > 0
def latency = if (isDefined && !flow) 1 else 0
def apply[T <: Data](x: DecoupledIO[T]) =
if (isDefined) Queue(x, depth, flow=flow, pipe=pipe)
else x
def irrevocable[T <: Data](x: ReadyValidIO[T]) =
if (isDefined) Queue.irrevocable(x, depth, flow=flow, pipe=pipe)
else x
def sq[T <: Data](x: DecoupledIO[T]) =
if (!isDefined) x else {
val sq = Module(new ShiftQueue(x.bits, depth, flow=flow, pipe=pipe))
sq.io.enq <> x
sq.io.deq
}
override def toString() = "BufferParams:%d%s%s".format(depth, if (flow) "F" else "", if (pipe) "P" else "")
}
object BufferParams
{
implicit def apply(depth: Int): BufferParams = BufferParams(depth, false, false)
val default = BufferParams(2)
val none = BufferParams(0)
val flow = BufferParams(1, true, false)
val pipe = BufferParams(1, false, true)
}
case class TriStateValue(value: Boolean, set: Boolean)
{
def update(orig: Boolean) = if (set) value else orig
}
object TriStateValue
{
implicit def apply(value: Boolean): TriStateValue = TriStateValue(value, true)
def unset = TriStateValue(false, false)
}
trait DirectedBuffers[T] {
def copyIn(x: BufferParams): T
def copyOut(x: BufferParams): T
def copyInOut(x: BufferParams): T
}
trait IdMapEntry {
def name: String
def from: IdRange
def to: IdRange
def isCache: Boolean
def requestFifo: Boolean
def maxTransactionsInFlight: Option[Int]
def pretty(fmt: String) =
if (from ne to) { // if the subclass uses the same reference for both from and to, assume its format string has an arity of 5
fmt.format(to.start, to.end, from.start, from.end, s""""$name"""", if (isCache) " [CACHE]" else "", if (requestFifo) " [FIFO]" else "")
} else {
fmt.format(from.start, from.end, s""""$name"""", if (isCache) " [CACHE]" else "", if (requestFifo) " [FIFO]" else "")
}
}
abstract class IdMap[T <: IdMapEntry] {
protected val fmt: String
val mapping: Seq[T]
def pretty: String = mapping.map(_.pretty(fmt)).mkString(",\n")
}
File Edges.scala:
// See LICENSE.SiFive for license details.
package freechips.rocketchip.tilelink
import chisel3._
import chisel3.util._
import chisel3.experimental.SourceInfo
import org.chipsalliance.cde.config.Parameters
import freechips.rocketchip.util._
class TLEdge(
client: TLClientPortParameters,
manager: TLManagerPortParameters,
params: Parameters,
sourceInfo: SourceInfo)
extends TLEdgeParameters(client, manager, params, sourceInfo)
{
def isAligned(address: UInt, lgSize: UInt): Bool = {
if (maxLgSize == 0) true.B else {
val mask = UIntToOH1(lgSize, maxLgSize)
(address & mask) === 0.U
}
}
def mask(address: UInt, lgSize: UInt): UInt =
MaskGen(address, lgSize, manager.beatBytes)
def staticHasData(bundle: TLChannel): Option[Boolean] = {
bundle match {
case _:TLBundleA => {
// Do there exist A messages with Data?
val aDataYes = manager.anySupportArithmetic || manager.anySupportLogical || manager.anySupportPutFull || manager.anySupportPutPartial
// Do there exist A messages without Data?
val aDataNo = manager.anySupportAcquireB || manager.anySupportGet || manager.anySupportHint
// Statically optimize the case where hasData is a constant
if (!aDataYes) Some(false) else if (!aDataNo) Some(true) else None
}
case _:TLBundleB => {
// Do there exist B messages with Data?
val bDataYes = client.anySupportArithmetic || client.anySupportLogical || client.anySupportPutFull || client.anySupportPutPartial
// Do there exist B messages without Data?
val bDataNo = client.anySupportProbe || client.anySupportGet || client.anySupportHint
// Statically optimize the case where hasData is a constant
if (!bDataYes) Some(false) else if (!bDataNo) Some(true) else None
}
case _:TLBundleC => {
// Do there eixst C messages with Data?
val cDataYes = client.anySupportGet || client.anySupportArithmetic || client.anySupportLogical || client.anySupportProbe
// Do there exist C messages without Data?
val cDataNo = client.anySupportPutFull || client.anySupportPutPartial || client.anySupportHint || client.anySupportProbe
if (!cDataYes) Some(false) else if (!cDataNo) Some(true) else None
}
case _:TLBundleD => {
// Do there eixst D messages with Data?
val dDataYes = manager.anySupportGet || manager.anySupportArithmetic || manager.anySupportLogical || manager.anySupportAcquireB
// Do there exist D messages without Data?
val dDataNo = manager.anySupportPutFull || manager.anySupportPutPartial || manager.anySupportHint || manager.anySupportAcquireT
if (!dDataYes) Some(false) else if (!dDataNo) Some(true) else None
}
case _:TLBundleE => Some(false)
}
}
def isRequest(x: TLChannel): Bool = {
x match {
case a: TLBundleA => true.B
case b: TLBundleB => true.B
case c: TLBundleC => c.opcode(2) && c.opcode(1)
// opcode === TLMessages.Release ||
// opcode === TLMessages.ReleaseData
case d: TLBundleD => d.opcode(2) && !d.opcode(1)
// opcode === TLMessages.Grant ||
// opcode === TLMessages.GrantData
case e: TLBundleE => false.B
}
}
def isResponse(x: TLChannel): Bool = {
x match {
case a: TLBundleA => false.B
case b: TLBundleB => false.B
case c: TLBundleC => !c.opcode(2) || !c.opcode(1)
// opcode =/= TLMessages.Release &&
// opcode =/= TLMessages.ReleaseData
case d: TLBundleD => true.B // Grant isResponse + isRequest
case e: TLBundleE => true.B
}
}
def hasData(x: TLChannel): Bool = {
val opdata = x match {
case a: TLBundleA => !a.opcode(2)
// opcode === TLMessages.PutFullData ||
// opcode === TLMessages.PutPartialData ||
// opcode === TLMessages.ArithmeticData ||
// opcode === TLMessages.LogicalData
case b: TLBundleB => !b.opcode(2)
// opcode === TLMessages.PutFullData ||
// opcode === TLMessages.PutPartialData ||
// opcode === TLMessages.ArithmeticData ||
// opcode === TLMessages.LogicalData
case c: TLBundleC => c.opcode(0)
// opcode === TLMessages.AccessAckData ||
// opcode === TLMessages.ProbeAckData ||
// opcode === TLMessages.ReleaseData
case d: TLBundleD => d.opcode(0)
// opcode === TLMessages.AccessAckData ||
// opcode === TLMessages.GrantData
case e: TLBundleE => false.B
}
staticHasData(x).map(_.B).getOrElse(opdata)
}
def opcode(x: TLDataChannel): UInt = {
x match {
case a: TLBundleA => a.opcode
case b: TLBundleB => b.opcode
case c: TLBundleC => c.opcode
case d: TLBundleD => d.opcode
}
}
def param(x: TLDataChannel): UInt = {
x match {
case a: TLBundleA => a.param
case b: TLBundleB => b.param
case c: TLBundleC => c.param
case d: TLBundleD => d.param
}
}
def size(x: TLDataChannel): UInt = {
x match {
case a: TLBundleA => a.size
case b: TLBundleB => b.size
case c: TLBundleC => c.size
case d: TLBundleD => d.size
}
}
def data(x: TLDataChannel): UInt = {
x match {
case a: TLBundleA => a.data
case b: TLBundleB => b.data
case c: TLBundleC => c.data
case d: TLBundleD => d.data
}
}
def corrupt(x: TLDataChannel): Bool = {
x match {
case a: TLBundleA => a.corrupt
case b: TLBundleB => b.corrupt
case c: TLBundleC => c.corrupt
case d: TLBundleD => d.corrupt
}
}
def mask(x: TLAddrChannel): UInt = {
x match {
case a: TLBundleA => a.mask
case b: TLBundleB => b.mask
case c: TLBundleC => mask(c.address, c.size)
}
}
def full_mask(x: TLAddrChannel): UInt = {
x match {
case a: TLBundleA => mask(a.address, a.size)
case b: TLBundleB => mask(b.address, b.size)
case c: TLBundleC => mask(c.address, c.size)
}
}
def address(x: TLAddrChannel): UInt = {
x match {
case a: TLBundleA => a.address
case b: TLBundleB => b.address
case c: TLBundleC => c.address
}
}
def source(x: TLDataChannel): UInt = {
x match {
case a: TLBundleA => a.source
case b: TLBundleB => b.source
case c: TLBundleC => c.source
case d: TLBundleD => d.source
}
}
def addr_hi(x: UInt): UInt = x >> log2Ceil(manager.beatBytes)
def addr_lo(x: UInt): UInt =
if (manager.beatBytes == 1) 0.U else x(log2Ceil(manager.beatBytes)-1, 0)
def addr_hi(x: TLAddrChannel): UInt = addr_hi(address(x))
def addr_lo(x: TLAddrChannel): UInt = addr_lo(address(x))
def numBeats(x: TLChannel): UInt = {
x match {
case _: TLBundleE => 1.U
case bundle: TLDataChannel => {
val hasData = this.hasData(bundle)
val size = this.size(bundle)
val cutoff = log2Ceil(manager.beatBytes)
val small = if (manager.maxTransfer <= manager.beatBytes) true.B else size <= (cutoff).U
val decode = UIntToOH(size, maxLgSize+1) >> cutoff
Mux(hasData, decode | small.asUInt, 1.U)
}
}
}
def numBeats1(x: TLChannel): UInt = {
x match {
case _: TLBundleE => 0.U
case bundle: TLDataChannel => {
if (maxLgSize == 0) {
0.U
} else {
val decode = UIntToOH1(size(bundle), maxLgSize) >> log2Ceil(manager.beatBytes)
Mux(hasData(bundle), decode, 0.U)
}
}
}
}
def firstlastHelper(bits: TLChannel, fire: Bool): (Bool, Bool, Bool, UInt) = {
val beats1 = numBeats1(bits)
val counter = RegInit(0.U(log2Up(maxTransfer / manager.beatBytes).W))
val counter1 = counter - 1.U
val first = counter === 0.U
val last = counter === 1.U || beats1 === 0.U
val done = last && fire
val count = (beats1 & ~counter1)
when (fire) {
counter := Mux(first, beats1, counter1)
}
(first, last, done, count)
}
def first(bits: TLChannel, fire: Bool): Bool = firstlastHelper(bits, fire)._1
def first(x: DecoupledIO[TLChannel]): Bool = first(x.bits, x.fire)
def first(x: ValidIO[TLChannel]): Bool = first(x.bits, x.valid)
def last(bits: TLChannel, fire: Bool): Bool = firstlastHelper(bits, fire)._2
def last(x: DecoupledIO[TLChannel]): Bool = last(x.bits, x.fire)
def last(x: ValidIO[TLChannel]): Bool = last(x.bits, x.valid)
def done(bits: TLChannel, fire: Bool): Bool = firstlastHelper(bits, fire)._3
def done(x: DecoupledIO[TLChannel]): Bool = done(x.bits, x.fire)
def done(x: ValidIO[TLChannel]): Bool = done(x.bits, x.valid)
def firstlast(bits: TLChannel, fire: Bool): (Bool, Bool, Bool) = {
val r = firstlastHelper(bits, fire)
(r._1, r._2, r._3)
}
def firstlast(x: DecoupledIO[TLChannel]): (Bool, Bool, Bool) = firstlast(x.bits, x.fire)
def firstlast(x: ValidIO[TLChannel]): (Bool, Bool, Bool) = firstlast(x.bits, x.valid)
def count(bits: TLChannel, fire: Bool): (Bool, Bool, Bool, UInt) = {
val r = firstlastHelper(bits, fire)
(r._1, r._2, r._3, r._4)
}
def count(x: DecoupledIO[TLChannel]): (Bool, Bool, Bool, UInt) = count(x.bits, x.fire)
def count(x: ValidIO[TLChannel]): (Bool, Bool, Bool, UInt) = count(x.bits, x.valid)
def addr_inc(bits: TLChannel, fire: Bool): (Bool, Bool, Bool, UInt) = {
val r = firstlastHelper(bits, fire)
(r._1, r._2, r._3, r._4 << log2Ceil(manager.beatBytes))
}
def addr_inc(x: DecoupledIO[TLChannel]): (Bool, Bool, Bool, UInt) = addr_inc(x.bits, x.fire)
def addr_inc(x: ValidIO[TLChannel]): (Bool, Bool, Bool, UInt) = addr_inc(x.bits, x.valid)
// Does the request need T permissions to be executed?
def needT(a: TLBundleA): Bool = {
val acq_needT = MuxLookup(a.param, WireDefault(Bool(), DontCare))(Array(
TLPermissions.NtoB -> false.B,
TLPermissions.NtoT -> true.B,
TLPermissions.BtoT -> true.B))
MuxLookup(a.opcode, WireDefault(Bool(), DontCare))(Array(
TLMessages.PutFullData -> true.B,
TLMessages.PutPartialData -> true.B,
TLMessages.ArithmeticData -> true.B,
TLMessages.LogicalData -> true.B,
TLMessages.Get -> false.B,
TLMessages.Hint -> MuxLookup(a.param, WireDefault(Bool(), DontCare))(Array(
TLHints.PREFETCH_READ -> false.B,
TLHints.PREFETCH_WRITE -> true.B)),
TLMessages.AcquireBlock -> acq_needT,
TLMessages.AcquirePerm -> acq_needT))
}
// This is a very expensive circuit; use only if you really mean it!
def inFlight(x: TLBundle): (UInt, UInt) = {
val flight = RegInit(0.U(log2Ceil(3*client.endSourceId+1).W))
val bce = manager.anySupportAcquireB && client.anySupportProbe
val (a_first, a_last, _) = firstlast(x.a)
val (b_first, b_last, _) = firstlast(x.b)
val (c_first, c_last, _) = firstlast(x.c)
val (d_first, d_last, _) = firstlast(x.d)
val (e_first, e_last, _) = firstlast(x.e)
val (a_request, a_response) = (isRequest(x.a.bits), isResponse(x.a.bits))
val (b_request, b_response) = (isRequest(x.b.bits), isResponse(x.b.bits))
val (c_request, c_response) = (isRequest(x.c.bits), isResponse(x.c.bits))
val (d_request, d_response) = (isRequest(x.d.bits), isResponse(x.d.bits))
val (e_request, e_response) = (isRequest(x.e.bits), isResponse(x.e.bits))
val a_inc = x.a.fire && a_first && a_request
val b_inc = x.b.fire && b_first && b_request
val c_inc = x.c.fire && c_first && c_request
val d_inc = x.d.fire && d_first && d_request
val e_inc = x.e.fire && e_first && e_request
val inc = Cat(Seq(a_inc, d_inc) ++ (if (bce) Seq(b_inc, c_inc, e_inc) else Nil))
val a_dec = x.a.fire && a_last && a_response
val b_dec = x.b.fire && b_last && b_response
val c_dec = x.c.fire && c_last && c_response
val d_dec = x.d.fire && d_last && d_response
val e_dec = x.e.fire && e_last && e_response
val dec = Cat(Seq(a_dec, d_dec) ++ (if (bce) Seq(b_dec, c_dec, e_dec) else Nil))
val next_flight = flight + PopCount(inc) - PopCount(dec)
flight := next_flight
(flight, next_flight)
}
def prettySourceMapping(context: String): String = {
s"TL-Source mapping for $context:\n${(new TLSourceIdMap(client)).pretty}\n"
}
}
class TLEdgeOut(
client: TLClientPortParameters,
manager: TLManagerPortParameters,
params: Parameters,
sourceInfo: SourceInfo)
extends TLEdge(client, manager, params, sourceInfo)
{
// Transfers
def AcquireBlock(fromSource: UInt, toAddress: UInt, lgSize: UInt, growPermissions: UInt) = {
require (manager.anySupportAcquireB, s"TileLink: No managers visible from this edge support Acquires, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsAcquireBFast(toAddress, lgSize)
val a = Wire(new TLBundleA(bundle))
a.opcode := TLMessages.AcquireBlock
a.param := growPermissions
a.size := lgSize
a.source := fromSource
a.address := toAddress
a.user := DontCare
a.echo := DontCare
a.mask := mask(toAddress, lgSize)
a.data := DontCare
a.corrupt := false.B
(legal, a)
}
def AcquirePerm(fromSource: UInt, toAddress: UInt, lgSize: UInt, growPermissions: UInt) = {
require (manager.anySupportAcquireB, s"TileLink: No managers visible from this edge support Acquires, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsAcquireBFast(toAddress, lgSize)
val a = Wire(new TLBundleA(bundle))
a.opcode := TLMessages.AcquirePerm
a.param := growPermissions
a.size := lgSize
a.source := fromSource
a.address := toAddress
a.user := DontCare
a.echo := DontCare
a.mask := mask(toAddress, lgSize)
a.data := DontCare
a.corrupt := false.B
(legal, a)
}
def Release(fromSource: UInt, toAddress: UInt, lgSize: UInt, shrinkPermissions: UInt): (Bool, TLBundleC) = {
require (manager.anySupportAcquireB, s"TileLink: No managers visible from this edge support Acquires, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsAcquireBFast(toAddress, lgSize)
val c = Wire(new TLBundleC(bundle))
c.opcode := TLMessages.Release
c.param := shrinkPermissions
c.size := lgSize
c.source := fromSource
c.address := toAddress
c.user := DontCare
c.echo := DontCare
c.data := DontCare
c.corrupt := false.B
(legal, c)
}
def Release(fromSource: UInt, toAddress: UInt, lgSize: UInt, shrinkPermissions: UInt, data: UInt, corrupt: Bool): (Bool, TLBundleC) = {
require (manager.anySupportAcquireB, s"TileLink: No managers visible from this edge support Acquires, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsAcquireBFast(toAddress, lgSize)
val c = Wire(new TLBundleC(bundle))
c.opcode := TLMessages.ReleaseData
c.param := shrinkPermissions
c.size := lgSize
c.source := fromSource
c.address := toAddress
c.user := DontCare
c.echo := DontCare
c.data := data
c.corrupt := corrupt
(legal, c)
}
def Release(fromSource: UInt, toAddress: UInt, lgSize: UInt, shrinkPermissions: UInt, data: UInt): (Bool, TLBundleC) =
Release(fromSource, toAddress, lgSize, shrinkPermissions, data, false.B)
def ProbeAck(b: TLBundleB, reportPermissions: UInt): TLBundleC =
ProbeAck(b.source, b.address, b.size, reportPermissions)
def ProbeAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, reportPermissions: UInt): TLBundleC = {
val c = Wire(new TLBundleC(bundle))
c.opcode := TLMessages.ProbeAck
c.param := reportPermissions
c.size := lgSize
c.source := fromSource
c.address := toAddress
c.user := DontCare
c.echo := DontCare
c.data := DontCare
c.corrupt := false.B
c
}
def ProbeAck(b: TLBundleB, reportPermissions: UInt, data: UInt): TLBundleC =
ProbeAck(b.source, b.address, b.size, reportPermissions, data)
def ProbeAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, reportPermissions: UInt, data: UInt, corrupt: Bool): TLBundleC = {
val c = Wire(new TLBundleC(bundle))
c.opcode := TLMessages.ProbeAckData
c.param := reportPermissions
c.size := lgSize
c.source := fromSource
c.address := toAddress
c.user := DontCare
c.echo := DontCare
c.data := data
c.corrupt := corrupt
c
}
def ProbeAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, reportPermissions: UInt, data: UInt): TLBundleC =
ProbeAck(fromSource, toAddress, lgSize, reportPermissions, data, false.B)
def GrantAck(d: TLBundleD): TLBundleE = GrantAck(d.sink)
def GrantAck(toSink: UInt): TLBundleE = {
val e = Wire(new TLBundleE(bundle))
e.sink := toSink
e
}
// Accesses
def Get(fromSource: UInt, toAddress: UInt, lgSize: UInt) = {
require (manager.anySupportGet, s"TileLink: No managers visible from this edge support Gets, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsGetFast(toAddress, lgSize)
val a = Wire(new TLBundleA(bundle))
a.opcode := TLMessages.Get
a.param := 0.U
a.size := lgSize
a.source := fromSource
a.address := toAddress
a.user := DontCare
a.echo := DontCare
a.mask := mask(toAddress, lgSize)
a.data := DontCare
a.corrupt := false.B
(legal, a)
}
def Put(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt): (Bool, TLBundleA) =
Put(fromSource, toAddress, lgSize, data, false.B)
def Put(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, corrupt: Bool): (Bool, TLBundleA) = {
require (manager.anySupportPutFull, s"TileLink: No managers visible from this edge support Puts, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsPutFullFast(toAddress, lgSize)
val a = Wire(new TLBundleA(bundle))
a.opcode := TLMessages.PutFullData
a.param := 0.U
a.size := lgSize
a.source := fromSource
a.address := toAddress
a.user := DontCare
a.echo := DontCare
a.mask := mask(toAddress, lgSize)
a.data := data
a.corrupt := corrupt
(legal, a)
}
def Put(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, mask: UInt): (Bool, TLBundleA) =
Put(fromSource, toAddress, lgSize, data, mask, false.B)
def Put(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, mask: UInt, corrupt: Bool): (Bool, TLBundleA) = {
require (manager.anySupportPutPartial, s"TileLink: No managers visible from this edge support masked Puts, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsPutPartialFast(toAddress, lgSize)
val a = Wire(new TLBundleA(bundle))
a.opcode := TLMessages.PutPartialData
a.param := 0.U
a.size := lgSize
a.source := fromSource
a.address := toAddress
a.user := DontCare
a.echo := DontCare
a.mask := mask
a.data := data
a.corrupt := corrupt
(legal, a)
}
def Arithmetic(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, atomic: UInt, corrupt: Bool = false.B): (Bool, TLBundleA) = {
require (manager.anySupportArithmetic, s"TileLink: No managers visible from this edge support arithmetic AMOs, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsArithmeticFast(toAddress, lgSize)
val a = Wire(new TLBundleA(bundle))
a.opcode := TLMessages.ArithmeticData
a.param := atomic
a.size := lgSize
a.source := fromSource
a.address := toAddress
a.user := DontCare
a.echo := DontCare
a.mask := mask(toAddress, lgSize)
a.data := data
a.corrupt := corrupt
(legal, a)
}
def Logical(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, atomic: UInt, corrupt: Bool = false.B) = {
require (manager.anySupportLogical, s"TileLink: No managers visible from this edge support logical AMOs, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsLogicalFast(toAddress, lgSize)
val a = Wire(new TLBundleA(bundle))
a.opcode := TLMessages.LogicalData
a.param := atomic
a.size := lgSize
a.source := fromSource
a.address := toAddress
a.user := DontCare
a.echo := DontCare
a.mask := mask(toAddress, lgSize)
a.data := data
a.corrupt := corrupt
(legal, a)
}
def Hint(fromSource: UInt, toAddress: UInt, lgSize: UInt, param: UInt) = {
require (manager.anySupportHint, s"TileLink: No managers visible from this edge support Hints, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsHintFast(toAddress, lgSize)
val a = Wire(new TLBundleA(bundle))
a.opcode := TLMessages.Hint
a.param := param
a.size := lgSize
a.source := fromSource
a.address := toAddress
a.user := DontCare
a.echo := DontCare
a.mask := mask(toAddress, lgSize)
a.data := DontCare
a.corrupt := false.B
(legal, a)
}
def AccessAck(b: TLBundleB): TLBundleC = AccessAck(b.source, address(b), b.size)
def AccessAck(fromSource: UInt, toAddress: UInt, lgSize: UInt) = {
val c = Wire(new TLBundleC(bundle))
c.opcode := TLMessages.AccessAck
c.param := 0.U
c.size := lgSize
c.source := fromSource
c.address := toAddress
c.user := DontCare
c.echo := DontCare
c.data := DontCare
c.corrupt := false.B
c
}
def AccessAck(b: TLBundleB, data: UInt): TLBundleC = AccessAck(b.source, address(b), b.size, data)
def AccessAck(b: TLBundleB, data: UInt, corrupt: Bool): TLBundleC = AccessAck(b.source, address(b), b.size, data, corrupt)
def AccessAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt): TLBundleC = AccessAck(fromSource, toAddress, lgSize, data, false.B)
def AccessAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, corrupt: Bool) = {
val c = Wire(new TLBundleC(bundle))
c.opcode := TLMessages.AccessAckData
c.param := 0.U
c.size := lgSize
c.source := fromSource
c.address := toAddress
c.user := DontCare
c.echo := DontCare
c.data := data
c.corrupt := corrupt
c
}
def HintAck(b: TLBundleB): TLBundleC = HintAck(b.source, address(b), b.size)
def HintAck(fromSource: UInt, toAddress: UInt, lgSize: UInt) = {
val c = Wire(new TLBundleC(bundle))
c.opcode := TLMessages.HintAck
c.param := 0.U
c.size := lgSize
c.source := fromSource
c.address := toAddress
c.user := DontCare
c.echo := DontCare
c.data := DontCare
c.corrupt := false.B
c
}
}
class TLEdgeIn(
client: TLClientPortParameters,
manager: TLManagerPortParameters,
params: Parameters,
sourceInfo: SourceInfo)
extends TLEdge(client, manager, params, sourceInfo)
{
private def myTranspose[T](x: Seq[Seq[T]]): Seq[Seq[T]] = {
val todo = x.filter(!_.isEmpty)
val heads = todo.map(_.head)
val tails = todo.map(_.tail)
if (todo.isEmpty) Nil else { heads +: myTranspose(tails) }
}
// Transfers
def Probe(fromAddress: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt) = {
require (client.anySupportProbe, s"TileLink: No clients visible from this edge support probes, but one of these managers tried to issue one: ${manager.managers}")
val legal = client.supportsProbe(toSource, lgSize)
val b = Wire(new TLBundleB(bundle))
b.opcode := TLMessages.Probe
b.param := capPermissions
b.size := lgSize
b.source := toSource
b.address := fromAddress
b.mask := mask(fromAddress, lgSize)
b.data := DontCare
b.corrupt := false.B
(legal, b)
}
def Grant(fromSink: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt): TLBundleD = Grant(fromSink, toSource, lgSize, capPermissions, false.B)
def Grant(fromSink: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt, denied: Bool) = {
val d = Wire(new TLBundleD(bundle))
d.opcode := TLMessages.Grant
d.param := capPermissions
d.size := lgSize
d.source := toSource
d.sink := fromSink
d.denied := denied
d.user := DontCare
d.echo := DontCare
d.data := DontCare
d.corrupt := false.B
d
}
def Grant(fromSink: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt, data: UInt): TLBundleD = Grant(fromSink, toSource, lgSize, capPermissions, data, false.B, false.B)
def Grant(fromSink: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt, data: UInt, denied: Bool, corrupt: Bool) = {
val d = Wire(new TLBundleD(bundle))
d.opcode := TLMessages.GrantData
d.param := capPermissions
d.size := lgSize
d.source := toSource
d.sink := fromSink
d.denied := denied
d.user := DontCare
d.echo := DontCare
d.data := data
d.corrupt := corrupt
d
}
def ReleaseAck(c: TLBundleC): TLBundleD = ReleaseAck(c.source, c.size, false.B)
def ReleaseAck(toSource: UInt, lgSize: UInt, denied: Bool): TLBundleD = {
val d = Wire(new TLBundleD(bundle))
d.opcode := TLMessages.ReleaseAck
d.param := 0.U
d.size := lgSize
d.source := toSource
d.sink := 0.U
d.denied := denied
d.user := DontCare
d.echo := DontCare
d.data := DontCare
d.corrupt := false.B
d
}
// Accesses
def Get(fromAddress: UInt, toSource: UInt, lgSize: UInt) = {
require (client.anySupportGet, s"TileLink: No clients visible from this edge support Gets, but one of these managers would try to issue one: ${manager.managers}")
val legal = client.supportsGet(toSource, lgSize)
val b = Wire(new TLBundleB(bundle))
b.opcode := TLMessages.Get
b.param := 0.U
b.size := lgSize
b.source := toSource
b.address := fromAddress
b.mask := mask(fromAddress, lgSize)
b.data := DontCare
b.corrupt := false.B
(legal, b)
}
def Put(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt): (Bool, TLBundleB) =
Put(fromAddress, toSource, lgSize, data, false.B)
def Put(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, corrupt: Bool): (Bool, TLBundleB) = {
require (client.anySupportPutFull, s"TileLink: No clients visible from this edge support Puts, but one of these managers would try to issue one: ${manager.managers}")
val legal = client.supportsPutFull(toSource, lgSize)
val b = Wire(new TLBundleB(bundle))
b.opcode := TLMessages.PutFullData
b.param := 0.U
b.size := lgSize
b.source := toSource
b.address := fromAddress
b.mask := mask(fromAddress, lgSize)
b.data := data
b.corrupt := corrupt
(legal, b)
}
def Put(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, mask: UInt): (Bool, TLBundleB) =
Put(fromAddress, toSource, lgSize, data, mask, false.B)
def Put(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, mask: UInt, corrupt: Bool): (Bool, TLBundleB) = {
require (client.anySupportPutPartial, s"TileLink: No clients visible from this edge support masked Puts, but one of these managers would try to request one: ${manager.managers}")
val legal = client.supportsPutPartial(toSource, lgSize)
val b = Wire(new TLBundleB(bundle))
b.opcode := TLMessages.PutPartialData
b.param := 0.U
b.size := lgSize
b.source := toSource
b.address := fromAddress
b.mask := mask
b.data := data
b.corrupt := corrupt
(legal, b)
}
def Arithmetic(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, atomic: UInt, corrupt: Bool = false.B) = {
require (client.anySupportArithmetic, s"TileLink: No clients visible from this edge support arithmetic AMOs, but one of these managers would try to request one: ${manager.managers}")
val legal = client.supportsArithmetic(toSource, lgSize)
val b = Wire(new TLBundleB(bundle))
b.opcode := TLMessages.ArithmeticData
b.param := atomic
b.size := lgSize
b.source := toSource
b.address := fromAddress
b.mask := mask(fromAddress, lgSize)
b.data := data
b.corrupt := corrupt
(legal, b)
}
def Logical(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, atomic: UInt, corrupt: Bool = false.B) = {
require (client.anySupportLogical, s"TileLink: No clients visible from this edge support logical AMOs, but one of these managers would try to request one: ${manager.managers}")
val legal = client.supportsLogical(toSource, lgSize)
val b = Wire(new TLBundleB(bundle))
b.opcode := TLMessages.LogicalData
b.param := atomic
b.size := lgSize
b.source := toSource
b.address := fromAddress
b.mask := mask(fromAddress, lgSize)
b.data := data
b.corrupt := corrupt
(legal, b)
}
def Hint(fromAddress: UInt, toSource: UInt, lgSize: UInt, param: UInt) = {
require (client.anySupportHint, s"TileLink: No clients visible from this edge support Hints, but one of these managers would try to request one: ${manager.managers}")
val legal = client.supportsHint(toSource, lgSize)
val b = Wire(new TLBundleB(bundle))
b.opcode := TLMessages.Hint
b.param := param
b.size := lgSize
b.source := toSource
b.address := fromAddress
b.mask := mask(fromAddress, lgSize)
b.data := DontCare
b.corrupt := false.B
(legal, b)
}
def AccessAck(a: TLBundleA): TLBundleD = AccessAck(a.source, a.size)
def AccessAck(a: TLBundleA, denied: Bool): TLBundleD = AccessAck(a.source, a.size, denied)
def AccessAck(toSource: UInt, lgSize: UInt): TLBundleD = AccessAck(toSource, lgSize, false.B)
def AccessAck(toSource: UInt, lgSize: UInt, denied: Bool) = {
val d = Wire(new TLBundleD(bundle))
d.opcode := TLMessages.AccessAck
d.param := 0.U
d.size := lgSize
d.source := toSource
d.sink := 0.U
d.denied := denied
d.user := DontCare
d.echo := DontCare
d.data := DontCare
d.corrupt := false.B
d
}
def AccessAck(a: TLBundleA, data: UInt): TLBundleD = AccessAck(a.source, a.size, data)
def AccessAck(a: TLBundleA, data: UInt, denied: Bool, corrupt: Bool): TLBundleD = AccessAck(a.source, a.size, data, denied, corrupt)
def AccessAck(toSource: UInt, lgSize: UInt, data: UInt): TLBundleD = AccessAck(toSource, lgSize, data, false.B, false.B)
def AccessAck(toSource: UInt, lgSize: UInt, data: UInt, denied: Bool, corrupt: Bool) = {
val d = Wire(new TLBundleD(bundle))
d.opcode := TLMessages.AccessAckData
d.param := 0.U
d.size := lgSize
d.source := toSource
d.sink := 0.U
d.denied := denied
d.user := DontCare
d.echo := DontCare
d.data := data
d.corrupt := corrupt
d
}
def HintAck(a: TLBundleA): TLBundleD = HintAck(a, false.B)
def HintAck(a: TLBundleA, denied: Bool): TLBundleD = HintAck(a.source, a.size, denied)
def HintAck(toSource: UInt, lgSize: UInt): TLBundleD = HintAck(toSource, lgSize, false.B)
def HintAck(toSource: UInt, lgSize: UInt, denied: Bool) = {
val d = Wire(new TLBundleD(bundle))
d.opcode := TLMessages.HintAck
d.param := 0.U
d.size := lgSize
d.source := toSource
d.sink := 0.U
d.denied := denied
d.user := DontCare
d.echo := DontCare
d.data := DontCare
d.corrupt := false.B
d
}
}
| module TLMonitor_58( // @[Monitor.scala:36:7]
input clock, // @[Monitor.scala:36:7]
input reset, // @[Monitor.scala:36:7]
input io_in_a_ready, // @[Monitor.scala:20:14]
input io_in_a_valid, // @[Monitor.scala:20:14]
input [2:0] io_in_a_bits_opcode, // @[Monitor.scala:20:14]
input [2:0] io_in_a_bits_param, // @[Monitor.scala:20:14]
input [2:0] io_in_a_bits_size, // @[Monitor.scala:20:14]
input [3:0] io_in_a_bits_source, // @[Monitor.scala:20:14]
input [27:0] io_in_a_bits_address, // @[Monitor.scala:20:14]
input [7:0] io_in_a_bits_mask, // @[Monitor.scala:20:14]
input [63:0] io_in_a_bits_data, // @[Monitor.scala:20:14]
input io_in_a_bits_corrupt, // @[Monitor.scala:20:14]
input io_in_d_ready, // @[Monitor.scala:20:14]
input io_in_d_valid, // @[Monitor.scala:20:14]
input [2:0] io_in_d_bits_opcode, // @[Monitor.scala:20:14]
input [2:0] io_in_d_bits_size, // @[Monitor.scala:20:14]
input [3:0] io_in_d_bits_source, // @[Monitor.scala:20:14]
input [63:0] io_in_d_bits_data // @[Monitor.scala:20:14]
);
wire [31:0] _plusarg_reader_1_out; // @[PlusArg.scala:80:11]
wire [31:0] _plusarg_reader_out; // @[PlusArg.scala:80:11]
wire io_in_a_ready_0 = io_in_a_ready; // @[Monitor.scala:36:7]
wire io_in_a_valid_0 = io_in_a_valid; // @[Monitor.scala:36:7]
wire [2:0] io_in_a_bits_opcode_0 = io_in_a_bits_opcode; // @[Monitor.scala:36:7]
wire [2:0] io_in_a_bits_param_0 = io_in_a_bits_param; // @[Monitor.scala:36:7]
wire [2:0] io_in_a_bits_size_0 = io_in_a_bits_size; // @[Monitor.scala:36:7]
wire [3:0] io_in_a_bits_source_0 = io_in_a_bits_source; // @[Monitor.scala:36:7]
wire [27:0] io_in_a_bits_address_0 = io_in_a_bits_address; // @[Monitor.scala:36:7]
wire [7:0] io_in_a_bits_mask_0 = io_in_a_bits_mask; // @[Monitor.scala:36:7]
wire [63:0] io_in_a_bits_data_0 = io_in_a_bits_data; // @[Monitor.scala:36:7]
wire io_in_a_bits_corrupt_0 = io_in_a_bits_corrupt; // @[Monitor.scala:36:7]
wire io_in_d_ready_0 = io_in_d_ready; // @[Monitor.scala:36:7]
wire io_in_d_valid_0 = io_in_d_valid; // @[Monitor.scala:36:7]
wire [2:0] io_in_d_bits_opcode_0 = io_in_d_bits_opcode; // @[Monitor.scala:36:7]
wire [2:0] io_in_d_bits_size_0 = io_in_d_bits_size; // @[Monitor.scala:36:7]
wire [3:0] io_in_d_bits_source_0 = io_in_d_bits_source; // @[Monitor.scala:36:7]
wire [63:0] io_in_d_bits_data_0 = io_in_d_bits_data; // @[Monitor.scala:36:7]
wire io_in_d_bits_sink = 1'h0; // @[Monitor.scala:36:7]
wire io_in_d_bits_denied = 1'h0; // @[Monitor.scala:36:7]
wire io_in_d_bits_corrupt = 1'h0; // @[Monitor.scala:36:7]
wire _source_ok_T = 1'h0; // @[Parameters.scala:54:10]
wire _source_ok_T_6 = 1'h0; // @[Parameters.scala:54:10]
wire sink_ok = 1'h0; // @[Monitor.scala:309:31]
wire _c_first_WIRE_ready = 1'h0; // @[Bundles.scala:265:74]
wire _c_first_WIRE_valid = 1'h0; // @[Bundles.scala:265:74]
wire _c_first_WIRE_bits_corrupt = 1'h0; // @[Bundles.scala:265:74]
wire _c_first_WIRE_1_ready = 1'h0; // @[Bundles.scala:265:61]
wire _c_first_WIRE_1_valid = 1'h0; // @[Bundles.scala:265:61]
wire _c_first_WIRE_1_bits_corrupt = 1'h0; // @[Bundles.scala:265:61]
wire _c_first_WIRE_2_ready = 1'h0; // @[Bundles.scala:265:74]
wire _c_first_WIRE_2_valid = 1'h0; // @[Bundles.scala:265:74]
wire _c_first_WIRE_2_bits_corrupt = 1'h0; // @[Bundles.scala:265:74]
wire _c_first_WIRE_3_ready = 1'h0; // @[Bundles.scala:265:61]
wire _c_first_WIRE_3_valid = 1'h0; // @[Bundles.scala:265:61]
wire _c_first_WIRE_3_bits_corrupt = 1'h0; // @[Bundles.scala:265:61]
wire _c_first_T = 1'h0; // @[Decoupled.scala:51:35]
wire c_first_beats1_opdata = 1'h0; // @[Edges.scala:102:36]
wire _c_first_last_T = 1'h0; // @[Edges.scala:232:25]
wire c_first_done = 1'h0; // @[Edges.scala:233:22]
wire _c_set_wo_ready_WIRE_ready = 1'h0; // @[Bundles.scala:265:74]
wire _c_set_wo_ready_WIRE_valid = 1'h0; // @[Bundles.scala:265:74]
wire _c_set_wo_ready_WIRE_bits_corrupt = 1'h0; // @[Bundles.scala:265:74]
wire _c_set_wo_ready_WIRE_1_ready = 1'h0; // @[Bundles.scala:265:61]
wire _c_set_wo_ready_WIRE_1_valid = 1'h0; // @[Bundles.scala:265:61]
wire _c_set_wo_ready_WIRE_1_bits_corrupt = 1'h0; // @[Bundles.scala:265:61]
wire _c_set_WIRE_ready = 1'h0; // @[Bundles.scala:265:74]
wire _c_set_WIRE_valid = 1'h0; // @[Bundles.scala:265:74]
wire _c_set_WIRE_bits_corrupt = 1'h0; // @[Bundles.scala:265:74]
wire _c_set_WIRE_1_ready = 1'h0; // @[Bundles.scala:265:61]
wire _c_set_WIRE_1_valid = 1'h0; // @[Bundles.scala:265:61]
wire _c_set_WIRE_1_bits_corrupt = 1'h0; // @[Bundles.scala:265:61]
wire _c_opcodes_set_interm_WIRE_ready = 1'h0; // @[Bundles.scala:265:74]
wire _c_opcodes_set_interm_WIRE_valid = 1'h0; // @[Bundles.scala:265:74]
wire _c_opcodes_set_interm_WIRE_bits_corrupt = 1'h0; // @[Bundles.scala:265:74]
wire _c_opcodes_set_interm_WIRE_1_ready = 1'h0; // @[Bundles.scala:265:61]
wire _c_opcodes_set_interm_WIRE_1_valid = 1'h0; // @[Bundles.scala:265:61]
wire _c_opcodes_set_interm_WIRE_1_bits_corrupt = 1'h0; // @[Bundles.scala:265:61]
wire _c_sizes_set_interm_WIRE_ready = 1'h0; // @[Bundles.scala:265:74]
wire _c_sizes_set_interm_WIRE_valid = 1'h0; // @[Bundles.scala:265:74]
wire _c_sizes_set_interm_WIRE_bits_corrupt = 1'h0; // @[Bundles.scala:265:74]
wire _c_sizes_set_interm_WIRE_1_ready = 1'h0; // @[Bundles.scala:265:61]
wire _c_sizes_set_interm_WIRE_1_valid = 1'h0; // @[Bundles.scala:265:61]
wire _c_sizes_set_interm_WIRE_1_bits_corrupt = 1'h0; // @[Bundles.scala:265:61]
wire _c_opcodes_set_WIRE_ready = 1'h0; // @[Bundles.scala:265:74]
wire _c_opcodes_set_WIRE_valid = 1'h0; // @[Bundles.scala:265:74]
wire _c_opcodes_set_WIRE_bits_corrupt = 1'h0; // @[Bundles.scala:265:74]
wire _c_opcodes_set_WIRE_1_ready = 1'h0; // @[Bundles.scala:265:61]
wire _c_opcodes_set_WIRE_1_valid = 1'h0; // @[Bundles.scala:265:61]
wire _c_opcodes_set_WIRE_1_bits_corrupt = 1'h0; // @[Bundles.scala:265:61]
wire _c_sizes_set_WIRE_ready = 1'h0; // @[Bundles.scala:265:74]
wire _c_sizes_set_WIRE_valid = 1'h0; // @[Bundles.scala:265:74]
wire _c_sizes_set_WIRE_bits_corrupt = 1'h0; // @[Bundles.scala:265:74]
wire _c_sizes_set_WIRE_1_ready = 1'h0; // @[Bundles.scala:265:61]
wire _c_sizes_set_WIRE_1_valid = 1'h0; // @[Bundles.scala:265:61]
wire _c_sizes_set_WIRE_1_bits_corrupt = 1'h0; // @[Bundles.scala:265:61]
wire _c_probe_ack_WIRE_ready = 1'h0; // @[Bundles.scala:265:74]
wire _c_probe_ack_WIRE_valid = 1'h0; // @[Bundles.scala:265:74]
wire _c_probe_ack_WIRE_bits_corrupt = 1'h0; // @[Bundles.scala:265:74]
wire _c_probe_ack_WIRE_1_ready = 1'h0; // @[Bundles.scala:265:61]
wire _c_probe_ack_WIRE_1_valid = 1'h0; // @[Bundles.scala:265:61]
wire _c_probe_ack_WIRE_1_bits_corrupt = 1'h0; // @[Bundles.scala:265:61]
wire _c_probe_ack_T = 1'h0; // @[Monitor.scala:772:47]
wire _c_probe_ack_WIRE_2_ready = 1'h0; // @[Bundles.scala:265:74]
wire _c_probe_ack_WIRE_2_valid = 1'h0; // @[Bundles.scala:265:74]
wire _c_probe_ack_WIRE_2_bits_corrupt = 1'h0; // @[Bundles.scala:265:74]
wire _c_probe_ack_WIRE_3_ready = 1'h0; // @[Bundles.scala:265:61]
wire _c_probe_ack_WIRE_3_valid = 1'h0; // @[Bundles.scala:265:61]
wire _c_probe_ack_WIRE_3_bits_corrupt = 1'h0; // @[Bundles.scala:265:61]
wire _c_probe_ack_T_1 = 1'h0; // @[Monitor.scala:772:95]
wire c_probe_ack = 1'h0; // @[Monitor.scala:772:71]
wire _same_cycle_resp_WIRE_ready = 1'h0; // @[Bundles.scala:265:74]
wire _same_cycle_resp_WIRE_valid = 1'h0; // @[Bundles.scala:265:74]
wire _same_cycle_resp_WIRE_bits_corrupt = 1'h0; // @[Bundles.scala:265:74]
wire _same_cycle_resp_WIRE_1_ready = 1'h0; // @[Bundles.scala:265:61]
wire _same_cycle_resp_WIRE_1_valid = 1'h0; // @[Bundles.scala:265:61]
wire _same_cycle_resp_WIRE_1_bits_corrupt = 1'h0; // @[Bundles.scala:265:61]
wire _same_cycle_resp_T_3 = 1'h0; // @[Monitor.scala:795:44]
wire _same_cycle_resp_WIRE_2_ready = 1'h0; // @[Bundles.scala:265:74]
wire _same_cycle_resp_WIRE_2_valid = 1'h0; // @[Bundles.scala:265:74]
wire _same_cycle_resp_WIRE_2_bits_corrupt = 1'h0; // @[Bundles.scala:265:74]
wire _same_cycle_resp_WIRE_3_ready = 1'h0; // @[Bundles.scala:265:61]
wire _same_cycle_resp_WIRE_3_valid = 1'h0; // @[Bundles.scala:265:61]
wire _same_cycle_resp_WIRE_3_bits_corrupt = 1'h0; // @[Bundles.scala:265:61]
wire _same_cycle_resp_T_4 = 1'h0; // @[Edges.scala:68:36]
wire _same_cycle_resp_T_5 = 1'h0; // @[Edges.scala:68:51]
wire _same_cycle_resp_T_6 = 1'h0; // @[Edges.scala:68:40]
wire _same_cycle_resp_T_7 = 1'h0; // @[Monitor.scala:795:55]
wire _same_cycle_resp_WIRE_4_ready = 1'h0; // @[Bundles.scala:265:74]
wire _same_cycle_resp_WIRE_4_valid = 1'h0; // @[Bundles.scala:265:74]
wire _same_cycle_resp_WIRE_4_bits_corrupt = 1'h0; // @[Bundles.scala:265:74]
wire _same_cycle_resp_WIRE_5_ready = 1'h0; // @[Bundles.scala:265:61]
wire _same_cycle_resp_WIRE_5_valid = 1'h0; // @[Bundles.scala:265:61]
wire _same_cycle_resp_WIRE_5_bits_corrupt = 1'h0; // @[Bundles.scala:265:61]
wire same_cycle_resp_1 = 1'h0; // @[Monitor.scala:795:88]
wire [2:0] responseMap_0 = 3'h0; // @[Monitor.scala:643:42]
wire [2:0] responseMap_1 = 3'h0; // @[Monitor.scala:643:42]
wire [2:0] responseMapSecondOption_0 = 3'h0; // @[Monitor.scala:644:42]
wire [2:0] responseMapSecondOption_1 = 3'h0; // @[Monitor.scala:644:42]
wire [2:0] _c_first_WIRE_bits_opcode = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_first_WIRE_bits_param = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_first_WIRE_bits_size = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_first_WIRE_1_bits_opcode = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _c_first_WIRE_1_bits_param = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _c_first_WIRE_1_bits_size = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _c_first_WIRE_2_bits_opcode = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_first_WIRE_2_bits_param = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_first_WIRE_2_bits_size = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_first_WIRE_3_bits_opcode = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _c_first_WIRE_3_bits_param = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _c_first_WIRE_3_bits_size = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] c_first_beats1_decode = 3'h0; // @[Edges.scala:220:59]
wire [2:0] c_first_beats1 = 3'h0; // @[Edges.scala:221:14]
wire [2:0] _c_first_count_T = 3'h0; // @[Edges.scala:234:27]
wire [2:0] c_first_count = 3'h0; // @[Edges.scala:234:25]
wire [2:0] _c_first_counter_T = 3'h0; // @[Edges.scala:236:21]
wire [2:0] _c_set_wo_ready_WIRE_bits_opcode = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_set_wo_ready_WIRE_bits_param = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_set_wo_ready_WIRE_bits_size = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_set_wo_ready_WIRE_1_bits_opcode = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _c_set_wo_ready_WIRE_1_bits_param = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _c_set_wo_ready_WIRE_1_bits_size = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _c_set_WIRE_bits_opcode = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_set_WIRE_bits_param = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_set_WIRE_bits_size = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_set_WIRE_1_bits_opcode = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _c_set_WIRE_1_bits_param = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _c_set_WIRE_1_bits_size = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _c_opcodes_set_interm_WIRE_bits_opcode = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_opcodes_set_interm_WIRE_bits_param = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_opcodes_set_interm_WIRE_bits_size = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_opcodes_set_interm_WIRE_1_bits_opcode = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _c_opcodes_set_interm_WIRE_1_bits_param = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _c_opcodes_set_interm_WIRE_1_bits_size = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _c_sizes_set_interm_WIRE_bits_opcode = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_sizes_set_interm_WIRE_bits_param = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_sizes_set_interm_WIRE_bits_size = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_sizes_set_interm_WIRE_1_bits_opcode = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _c_sizes_set_interm_WIRE_1_bits_param = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _c_sizes_set_interm_WIRE_1_bits_size = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _c_opcodes_set_WIRE_bits_opcode = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_opcodes_set_WIRE_bits_param = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_opcodes_set_WIRE_bits_size = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_opcodes_set_WIRE_1_bits_opcode = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _c_opcodes_set_WIRE_1_bits_param = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _c_opcodes_set_WIRE_1_bits_size = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _c_sizes_set_WIRE_bits_opcode = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_sizes_set_WIRE_bits_param = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_sizes_set_WIRE_bits_size = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_sizes_set_WIRE_1_bits_opcode = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _c_sizes_set_WIRE_1_bits_param = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _c_sizes_set_WIRE_1_bits_size = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _c_probe_ack_WIRE_bits_opcode = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_probe_ack_WIRE_bits_param = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_probe_ack_WIRE_bits_size = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_probe_ack_WIRE_1_bits_opcode = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _c_probe_ack_WIRE_1_bits_param = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _c_probe_ack_WIRE_1_bits_size = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _c_probe_ack_WIRE_2_bits_opcode = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_probe_ack_WIRE_2_bits_param = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_probe_ack_WIRE_2_bits_size = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_probe_ack_WIRE_3_bits_opcode = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _c_probe_ack_WIRE_3_bits_param = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _c_probe_ack_WIRE_3_bits_size = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _same_cycle_resp_WIRE_bits_opcode = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _same_cycle_resp_WIRE_bits_param = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _same_cycle_resp_WIRE_bits_size = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _same_cycle_resp_WIRE_1_bits_opcode = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _same_cycle_resp_WIRE_1_bits_param = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _same_cycle_resp_WIRE_1_bits_size = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _same_cycle_resp_WIRE_2_bits_opcode = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _same_cycle_resp_WIRE_2_bits_param = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _same_cycle_resp_WIRE_2_bits_size = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _same_cycle_resp_WIRE_3_bits_opcode = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _same_cycle_resp_WIRE_3_bits_param = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _same_cycle_resp_WIRE_3_bits_size = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _same_cycle_resp_WIRE_4_bits_opcode = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _same_cycle_resp_WIRE_4_bits_param = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _same_cycle_resp_WIRE_4_bits_size = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _same_cycle_resp_WIRE_5_bits_opcode = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _same_cycle_resp_WIRE_5_bits_param = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _same_cycle_resp_WIRE_5_bits_size = 3'h0; // @[Bundles.scala:265:61]
wire _source_ok_T_1 = 1'h1; // @[Parameters.scala:54:32]
wire _source_ok_T_2 = 1'h1; // @[Parameters.scala:56:32]
wire _source_ok_T_3 = 1'h1; // @[Parameters.scala:54:67]
wire _source_ok_T_7 = 1'h1; // @[Parameters.scala:54:32]
wire _source_ok_T_8 = 1'h1; // @[Parameters.scala:56:32]
wire _source_ok_T_9 = 1'h1; // @[Parameters.scala:54:67]
wire c_first = 1'h1; // @[Edges.scala:231:25]
wire _c_first_last_T_1 = 1'h1; // @[Edges.scala:232:43]
wire c_first_last = 1'h1; // @[Edges.scala:232:33]
wire [2:0] c_first_counter1 = 3'h7; // @[Edges.scala:230:28]
wire [3:0] _c_first_counter1_T = 4'hF; // @[Edges.scala:230:28]
wire [1:0] io_in_d_bits_param = 2'h0; // @[Monitor.scala:36:7]
wire [63:0] _c_first_WIRE_bits_data = 64'h0; // @[Bundles.scala:265:74]
wire [63:0] _c_first_WIRE_1_bits_data = 64'h0; // @[Bundles.scala:265:61]
wire [63:0] _c_first_WIRE_2_bits_data = 64'h0; // @[Bundles.scala:265:74]
wire [63:0] _c_first_WIRE_3_bits_data = 64'h0; // @[Bundles.scala:265:61]
wire [63:0] _c_set_wo_ready_WIRE_bits_data = 64'h0; // @[Bundles.scala:265:74]
wire [63:0] _c_set_wo_ready_WIRE_1_bits_data = 64'h0; // @[Bundles.scala:265:61]
wire [63:0] _c_set_WIRE_bits_data = 64'h0; // @[Bundles.scala:265:74]
wire [63:0] _c_set_WIRE_1_bits_data = 64'h0; // @[Bundles.scala:265:61]
wire [63:0] _c_opcodes_set_interm_WIRE_bits_data = 64'h0; // @[Bundles.scala:265:74]
wire [63:0] _c_opcodes_set_interm_WIRE_1_bits_data = 64'h0; // @[Bundles.scala:265:61]
wire [63:0] _c_sizes_set_interm_WIRE_bits_data = 64'h0; // @[Bundles.scala:265:74]
wire [63:0] _c_sizes_set_interm_WIRE_1_bits_data = 64'h0; // @[Bundles.scala:265:61]
wire [63:0] _c_opcodes_set_WIRE_bits_data = 64'h0; // @[Bundles.scala:265:74]
wire [63:0] _c_opcodes_set_WIRE_1_bits_data = 64'h0; // @[Bundles.scala:265:61]
wire [63:0] _c_sizes_set_WIRE_bits_data = 64'h0; // @[Bundles.scala:265:74]
wire [63:0] _c_sizes_set_WIRE_1_bits_data = 64'h0; // @[Bundles.scala:265:61]
wire [63:0] _c_probe_ack_WIRE_bits_data = 64'h0; // @[Bundles.scala:265:74]
wire [63:0] _c_probe_ack_WIRE_1_bits_data = 64'h0; // @[Bundles.scala:265:61]
wire [63:0] _c_probe_ack_WIRE_2_bits_data = 64'h0; // @[Bundles.scala:265:74]
wire [63:0] _c_probe_ack_WIRE_3_bits_data = 64'h0; // @[Bundles.scala:265:61]
wire [63:0] _same_cycle_resp_WIRE_bits_data = 64'h0; // @[Bundles.scala:265:74]
wire [63:0] _same_cycle_resp_WIRE_1_bits_data = 64'h0; // @[Bundles.scala:265:61]
wire [63:0] _same_cycle_resp_WIRE_2_bits_data = 64'h0; // @[Bundles.scala:265:74]
wire [63:0] _same_cycle_resp_WIRE_3_bits_data = 64'h0; // @[Bundles.scala:265:61]
wire [63:0] _same_cycle_resp_WIRE_4_bits_data = 64'h0; // @[Bundles.scala:265:74]
wire [63:0] _same_cycle_resp_WIRE_5_bits_data = 64'h0; // @[Bundles.scala:265:61]
wire [27:0] _c_first_WIRE_bits_address = 28'h0; // @[Bundles.scala:265:74]
wire [27:0] _c_first_WIRE_1_bits_address = 28'h0; // @[Bundles.scala:265:61]
wire [27:0] _c_first_WIRE_2_bits_address = 28'h0; // @[Bundles.scala:265:74]
wire [27:0] _c_first_WIRE_3_bits_address = 28'h0; // @[Bundles.scala:265:61]
wire [27:0] _c_set_wo_ready_WIRE_bits_address = 28'h0; // @[Bundles.scala:265:74]
wire [27:0] _c_set_wo_ready_WIRE_1_bits_address = 28'h0; // @[Bundles.scala:265:61]
wire [27:0] _c_set_WIRE_bits_address = 28'h0; // @[Bundles.scala:265:74]
wire [27:0] _c_set_WIRE_1_bits_address = 28'h0; // @[Bundles.scala:265:61]
wire [27:0] _c_opcodes_set_interm_WIRE_bits_address = 28'h0; // @[Bundles.scala:265:74]
wire [27:0] _c_opcodes_set_interm_WIRE_1_bits_address = 28'h0; // @[Bundles.scala:265:61]
wire [27:0] _c_sizes_set_interm_WIRE_bits_address = 28'h0; // @[Bundles.scala:265:74]
wire [27:0] _c_sizes_set_interm_WIRE_1_bits_address = 28'h0; // @[Bundles.scala:265:61]
wire [27:0] _c_opcodes_set_WIRE_bits_address = 28'h0; // @[Bundles.scala:265:74]
wire [27:0] _c_opcodes_set_WIRE_1_bits_address = 28'h0; // @[Bundles.scala:265:61]
wire [27:0] _c_sizes_set_WIRE_bits_address = 28'h0; // @[Bundles.scala:265:74]
wire [27:0] _c_sizes_set_WIRE_1_bits_address = 28'h0; // @[Bundles.scala:265:61]
wire [27:0] _c_probe_ack_WIRE_bits_address = 28'h0; // @[Bundles.scala:265:74]
wire [27:0] _c_probe_ack_WIRE_1_bits_address = 28'h0; // @[Bundles.scala:265:61]
wire [27:0] _c_probe_ack_WIRE_2_bits_address = 28'h0; // @[Bundles.scala:265:74]
wire [27:0] _c_probe_ack_WIRE_3_bits_address = 28'h0; // @[Bundles.scala:265:61]
wire [27:0] _same_cycle_resp_WIRE_bits_address = 28'h0; // @[Bundles.scala:265:74]
wire [27:0] _same_cycle_resp_WIRE_1_bits_address = 28'h0; // @[Bundles.scala:265:61]
wire [27:0] _same_cycle_resp_WIRE_2_bits_address = 28'h0; // @[Bundles.scala:265:74]
wire [27:0] _same_cycle_resp_WIRE_3_bits_address = 28'h0; // @[Bundles.scala:265:61]
wire [27:0] _same_cycle_resp_WIRE_4_bits_address = 28'h0; // @[Bundles.scala:265:74]
wire [27:0] _same_cycle_resp_WIRE_5_bits_address = 28'h0; // @[Bundles.scala:265:61]
wire [3:0] _c_first_WIRE_bits_source = 4'h0; // @[Bundles.scala:265:74]
wire [3:0] _c_first_WIRE_1_bits_source = 4'h0; // @[Bundles.scala:265:61]
wire [3:0] _c_first_WIRE_2_bits_source = 4'h0; // @[Bundles.scala:265:74]
wire [3:0] _c_first_WIRE_3_bits_source = 4'h0; // @[Bundles.scala:265:61]
wire [3:0] c_opcodes_set_interm = 4'h0; // @[Monitor.scala:754:40]
wire [3:0] c_sizes_set_interm = 4'h0; // @[Monitor.scala:755:40]
wire [3:0] _c_set_wo_ready_WIRE_bits_source = 4'h0; // @[Bundles.scala:265:74]
wire [3:0] _c_set_wo_ready_WIRE_1_bits_source = 4'h0; // @[Bundles.scala:265:61]
wire [3:0] _c_set_WIRE_bits_source = 4'h0; // @[Bundles.scala:265:74]
wire [3:0] _c_set_WIRE_1_bits_source = 4'h0; // @[Bundles.scala:265:61]
wire [3:0] _c_opcodes_set_interm_WIRE_bits_source = 4'h0; // @[Bundles.scala:265:74]
wire [3:0] _c_opcodes_set_interm_WIRE_1_bits_source = 4'h0; // @[Bundles.scala:265:61]
wire [3:0] _c_opcodes_set_interm_T = 4'h0; // @[Monitor.scala:765:53]
wire [3:0] _c_sizes_set_interm_WIRE_bits_source = 4'h0; // @[Bundles.scala:265:74]
wire [3:0] _c_sizes_set_interm_WIRE_1_bits_source = 4'h0; // @[Bundles.scala:265:61]
wire [3:0] _c_sizes_set_interm_T = 4'h0; // @[Monitor.scala:766:51]
wire [3:0] _c_opcodes_set_WIRE_bits_source = 4'h0; // @[Bundles.scala:265:74]
wire [3:0] _c_opcodes_set_WIRE_1_bits_source = 4'h0; // @[Bundles.scala:265:61]
wire [3:0] _c_sizes_set_WIRE_bits_source = 4'h0; // @[Bundles.scala:265:74]
wire [3:0] _c_sizes_set_WIRE_1_bits_source = 4'h0; // @[Bundles.scala:265:61]
wire [3:0] _c_probe_ack_WIRE_bits_source = 4'h0; // @[Bundles.scala:265:74]
wire [3:0] _c_probe_ack_WIRE_1_bits_source = 4'h0; // @[Bundles.scala:265:61]
wire [3:0] _c_probe_ack_WIRE_2_bits_source = 4'h0; // @[Bundles.scala:265:74]
wire [3:0] _c_probe_ack_WIRE_3_bits_source = 4'h0; // @[Bundles.scala:265:61]
wire [3:0] _same_cycle_resp_WIRE_bits_source = 4'h0; // @[Bundles.scala:265:74]
wire [3:0] _same_cycle_resp_WIRE_1_bits_source = 4'h0; // @[Bundles.scala:265:61]
wire [3:0] _same_cycle_resp_WIRE_2_bits_source = 4'h0; // @[Bundles.scala:265:74]
wire [3:0] _same_cycle_resp_WIRE_3_bits_source = 4'h0; // @[Bundles.scala:265:61]
wire [3:0] _same_cycle_resp_WIRE_4_bits_source = 4'h0; // @[Bundles.scala:265:74]
wire [3:0] _same_cycle_resp_WIRE_5_bits_source = 4'h0; // @[Bundles.scala:265:61]
wire [15:0] _a_opcode_lookup_T_5 = 16'hF; // @[Monitor.scala:612:57]
wire [15:0] _a_size_lookup_T_5 = 16'hF; // @[Monitor.scala:612:57]
wire [15:0] _d_opcodes_clr_T_3 = 16'hF; // @[Monitor.scala:612:57]
wire [15:0] _d_sizes_clr_T_3 = 16'hF; // @[Monitor.scala:612:57]
wire [15:0] _c_opcode_lookup_T_5 = 16'hF; // @[Monitor.scala:724:57]
wire [15:0] _c_size_lookup_T_5 = 16'hF; // @[Monitor.scala:724:57]
wire [15:0] _d_opcodes_clr_T_9 = 16'hF; // @[Monitor.scala:724:57]
wire [15:0] _d_sizes_clr_T_9 = 16'hF; // @[Monitor.scala:724:57]
wire [16:0] _a_opcode_lookup_T_4 = 17'hF; // @[Monitor.scala:612:57]
wire [16:0] _a_size_lookup_T_4 = 17'hF; // @[Monitor.scala:612:57]
wire [16:0] _d_opcodes_clr_T_2 = 17'hF; // @[Monitor.scala:612:57]
wire [16:0] _d_sizes_clr_T_2 = 17'hF; // @[Monitor.scala:612:57]
wire [16:0] _c_opcode_lookup_T_4 = 17'hF; // @[Monitor.scala:724:57]
wire [16:0] _c_size_lookup_T_4 = 17'hF; // @[Monitor.scala:724:57]
wire [16:0] _d_opcodes_clr_T_8 = 17'hF; // @[Monitor.scala:724:57]
wire [16:0] _d_sizes_clr_T_8 = 17'hF; // @[Monitor.scala:724:57]
wire [15:0] _a_opcode_lookup_T_3 = 16'h10; // @[Monitor.scala:612:51]
wire [15:0] _a_size_lookup_T_3 = 16'h10; // @[Monitor.scala:612:51]
wire [15:0] _d_opcodes_clr_T_1 = 16'h10; // @[Monitor.scala:612:51]
wire [15:0] _d_sizes_clr_T_1 = 16'h10; // @[Monitor.scala:612:51]
wire [15:0] _c_opcode_lookup_T_3 = 16'h10; // @[Monitor.scala:724:51]
wire [15:0] _c_size_lookup_T_3 = 16'h10; // @[Monitor.scala:724:51]
wire [15:0] _d_opcodes_clr_T_7 = 16'h10; // @[Monitor.scala:724:51]
wire [15:0] _d_sizes_clr_T_7 = 16'h10; // @[Monitor.scala:724:51]
wire [130:0] _c_opcodes_set_T_1 = 131'h0; // @[Monitor.scala:767:54]
wire [130:0] _c_sizes_set_T_1 = 131'h0; // @[Monitor.scala:768:52]
wire [6:0] _c_opcodes_set_T = 7'h0; // @[Monitor.scala:767:79]
wire [6:0] _c_sizes_set_T = 7'h0; // @[Monitor.scala:768:77]
wire [3:0] _c_opcodes_set_interm_T_1 = 4'h1; // @[Monitor.scala:765:61]
wire [3:0] _c_sizes_set_interm_T_1 = 4'h1; // @[Monitor.scala:766:59]
wire [15:0] _c_set_wo_ready_T = 16'h1; // @[OneHot.scala:58:35]
wire [15:0] _c_set_T = 16'h1; // @[OneHot.scala:58:35]
wire [39:0] c_opcodes_set = 40'h0; // @[Monitor.scala:740:34]
wire [39:0] c_sizes_set = 40'h0; // @[Monitor.scala:741:34]
wire [9:0] c_set = 10'h0; // @[Monitor.scala:738:34]
wire [9:0] c_set_wo_ready = 10'h0; // @[Monitor.scala:739:34]
wire [5:0] _c_first_beats1_decode_T_2 = 6'h0; // @[package.scala:243:46]
wire [5:0] _c_first_beats1_decode_T_1 = 6'h3F; // @[package.scala:243:76]
wire [12:0] _c_first_beats1_decode_T = 13'h3F; // @[package.scala:243:71]
wire [2:0] responseMap_6 = 3'h4; // @[Monitor.scala:643:42]
wire [2:0] responseMap_7 = 3'h4; // @[Monitor.scala:643:42]
wire [2:0] responseMapSecondOption_7 = 3'h4; // @[Monitor.scala:644:42]
wire [2:0] responseMapSecondOption_6 = 3'h5; // @[Monitor.scala:644:42]
wire [2:0] responseMap_5 = 3'h2; // @[Monitor.scala:643:42]
wire [2:0] responseMapSecondOption_5 = 3'h2; // @[Monitor.scala:644:42]
wire [2:0] responseMap_2 = 3'h1; // @[Monitor.scala:643:42]
wire [2:0] responseMap_3 = 3'h1; // @[Monitor.scala:643:42]
wire [2:0] responseMap_4 = 3'h1; // @[Monitor.scala:643:42]
wire [2:0] responseMapSecondOption_2 = 3'h1; // @[Monitor.scala:644:42]
wire [2:0] responseMapSecondOption_3 = 3'h1; // @[Monitor.scala:644:42]
wire [2:0] responseMapSecondOption_4 = 3'h1; // @[Monitor.scala:644:42]
wire [3:0] _a_opcode_lookup_T_2 = 4'h4; // @[Monitor.scala:637:123]
wire [3:0] _a_size_lookup_T_2 = 4'h4; // @[Monitor.scala:641:117]
wire [3:0] _d_opcodes_clr_T = 4'h4; // @[Monitor.scala:680:48]
wire [3:0] _d_sizes_clr_T = 4'h4; // @[Monitor.scala:681:48]
wire [3:0] _c_opcode_lookup_T_2 = 4'h4; // @[Monitor.scala:749:123]
wire [3:0] _c_size_lookup_T_2 = 4'h4; // @[Monitor.scala:750:119]
wire [3:0] _d_opcodes_clr_T_6 = 4'h4; // @[Monitor.scala:790:48]
wire [3:0] _d_sizes_clr_T_6 = 4'h4; // @[Monitor.scala:791:48]
wire [2:0] _mask_sizeOH_T = io_in_a_bits_size_0; // @[Misc.scala:202:34]
wire [3:0] _source_ok_uncommonBits_T = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [3:0] _uncommonBits_T = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [3:0] _uncommonBits_T_1 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [3:0] _uncommonBits_T_2 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [3:0] _uncommonBits_T_3 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [3:0] _uncommonBits_T_4 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [3:0] _uncommonBits_T_5 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [3:0] _uncommonBits_T_6 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [3:0] _uncommonBits_T_7 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [3:0] _uncommonBits_T_8 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [3:0] _source_ok_uncommonBits_T_1 = io_in_d_bits_source_0; // @[Monitor.scala:36:7]
wire [3:0] source_ok_uncommonBits = _source_ok_uncommonBits_T; // @[Parameters.scala:52:{29,56}]
wire _source_ok_T_4 = source_ok_uncommonBits < 4'hA; // @[Parameters.scala:52:56, :57:20]
wire _source_ok_T_5 = _source_ok_T_4; // @[Parameters.scala:56:48, :57:20]
wire _source_ok_WIRE_0 = _source_ok_T_5; // @[Parameters.scala:1138:31]
wire [12:0] _GEN = 13'h3F << io_in_a_bits_size_0; // @[package.scala:243:71]
wire [12:0] _is_aligned_mask_T; // @[package.scala:243:71]
assign _is_aligned_mask_T = _GEN; // @[package.scala:243:71]
wire [12:0] _a_first_beats1_decode_T; // @[package.scala:243:71]
assign _a_first_beats1_decode_T = _GEN; // @[package.scala:243:71]
wire [12:0] _a_first_beats1_decode_T_3; // @[package.scala:243:71]
assign _a_first_beats1_decode_T_3 = _GEN; // @[package.scala:243:71]
wire [5:0] _is_aligned_mask_T_1 = _is_aligned_mask_T[5:0]; // @[package.scala:243:{71,76}]
wire [5:0] is_aligned_mask = ~_is_aligned_mask_T_1; // @[package.scala:243:{46,76}]
wire [27:0] _is_aligned_T = {22'h0, io_in_a_bits_address_0[5:0] & is_aligned_mask}; // @[package.scala:243:46]
wire is_aligned = _is_aligned_T == 28'h0; // @[Edges.scala:21:{16,24}]
wire [1:0] mask_sizeOH_shiftAmount = _mask_sizeOH_T[1:0]; // @[OneHot.scala:64:49]
wire [3:0] _mask_sizeOH_T_1 = 4'h1 << mask_sizeOH_shiftAmount; // @[OneHot.scala:64:49, :65:12]
wire [2:0] _mask_sizeOH_T_2 = _mask_sizeOH_T_1[2:0]; // @[OneHot.scala:65:{12,27}]
wire [2:0] mask_sizeOH = {_mask_sizeOH_T_2[2:1], 1'h1}; // @[OneHot.scala:65:27]
wire mask_sub_sub_sub_0_1 = io_in_a_bits_size_0 > 3'h2; // @[Misc.scala:206:21]
wire mask_sub_sub_size = mask_sizeOH[2]; // @[Misc.scala:202:81, :209:26]
wire mask_sub_sub_bit = io_in_a_bits_address_0[2]; // @[Misc.scala:210:26]
wire mask_sub_sub_1_2 = mask_sub_sub_bit; // @[Misc.scala:210:26, :214:27]
wire mask_sub_sub_nbit = ~mask_sub_sub_bit; // @[Misc.scala:210:26, :211:20]
wire mask_sub_sub_0_2 = mask_sub_sub_nbit; // @[Misc.scala:211:20, :214:27]
wire _mask_sub_sub_acc_T = mask_sub_sub_size & mask_sub_sub_0_2; // @[Misc.scala:209:26, :214:27, :215:38]
wire mask_sub_sub_0_1 = mask_sub_sub_sub_0_1 | _mask_sub_sub_acc_T; // @[Misc.scala:206:21, :215:{29,38}]
wire _mask_sub_sub_acc_T_1 = mask_sub_sub_size & mask_sub_sub_1_2; // @[Misc.scala:209:26, :214:27, :215:38]
wire mask_sub_sub_1_1 = mask_sub_sub_sub_0_1 | _mask_sub_sub_acc_T_1; // @[Misc.scala:206:21, :215:{29,38}]
wire mask_sub_size = mask_sizeOH[1]; // @[Misc.scala:202:81, :209:26]
wire mask_sub_bit = io_in_a_bits_address_0[1]; // @[Misc.scala:210:26]
wire mask_sub_nbit = ~mask_sub_bit; // @[Misc.scala:210:26, :211:20]
wire mask_sub_0_2 = mask_sub_sub_0_2 & mask_sub_nbit; // @[Misc.scala:211:20, :214:27]
wire _mask_sub_acc_T = mask_sub_size & mask_sub_0_2; // @[Misc.scala:209:26, :214:27, :215:38]
wire mask_sub_0_1 = mask_sub_sub_0_1 | _mask_sub_acc_T; // @[Misc.scala:215:{29,38}]
wire mask_sub_1_2 = mask_sub_sub_0_2 & mask_sub_bit; // @[Misc.scala:210:26, :214:27]
wire _mask_sub_acc_T_1 = mask_sub_size & mask_sub_1_2; // @[Misc.scala:209:26, :214:27, :215:38]
wire mask_sub_1_1 = mask_sub_sub_0_1 | _mask_sub_acc_T_1; // @[Misc.scala:215:{29,38}]
wire mask_sub_2_2 = mask_sub_sub_1_2 & mask_sub_nbit; // @[Misc.scala:211:20, :214:27]
wire _mask_sub_acc_T_2 = mask_sub_size & mask_sub_2_2; // @[Misc.scala:209:26, :214:27, :215:38]
wire mask_sub_2_1 = mask_sub_sub_1_1 | _mask_sub_acc_T_2; // @[Misc.scala:215:{29,38}]
wire mask_sub_3_2 = mask_sub_sub_1_2 & mask_sub_bit; // @[Misc.scala:210:26, :214:27]
wire _mask_sub_acc_T_3 = mask_sub_size & mask_sub_3_2; // @[Misc.scala:209:26, :214:27, :215:38]
wire mask_sub_3_1 = mask_sub_sub_1_1 | _mask_sub_acc_T_3; // @[Misc.scala:215:{29,38}]
wire mask_size = mask_sizeOH[0]; // @[Misc.scala:202:81, :209:26]
wire mask_bit = io_in_a_bits_address_0[0]; // @[Misc.scala:210:26]
wire mask_nbit = ~mask_bit; // @[Misc.scala:210:26, :211:20]
wire mask_eq = mask_sub_0_2 & mask_nbit; // @[Misc.scala:211:20, :214:27]
wire _mask_acc_T = mask_size & mask_eq; // @[Misc.scala:209:26, :214:27, :215:38]
wire mask_acc = mask_sub_0_1 | _mask_acc_T; // @[Misc.scala:215:{29,38}]
wire mask_eq_1 = mask_sub_0_2 & mask_bit; // @[Misc.scala:210:26, :214:27]
wire _mask_acc_T_1 = mask_size & mask_eq_1; // @[Misc.scala:209:26, :214:27, :215:38]
wire mask_acc_1 = mask_sub_0_1 | _mask_acc_T_1; // @[Misc.scala:215:{29,38}]
wire mask_eq_2 = mask_sub_1_2 & mask_nbit; // @[Misc.scala:211:20, :214:27]
wire _mask_acc_T_2 = mask_size & mask_eq_2; // @[Misc.scala:209:26, :214:27, :215:38]
wire mask_acc_2 = mask_sub_1_1 | _mask_acc_T_2; // @[Misc.scala:215:{29,38}]
wire mask_eq_3 = mask_sub_1_2 & mask_bit; // @[Misc.scala:210:26, :214:27]
wire _mask_acc_T_3 = mask_size & mask_eq_3; // @[Misc.scala:209:26, :214:27, :215:38]
wire mask_acc_3 = mask_sub_1_1 | _mask_acc_T_3; // @[Misc.scala:215:{29,38}]
wire mask_eq_4 = mask_sub_2_2 & mask_nbit; // @[Misc.scala:211:20, :214:27]
wire _mask_acc_T_4 = mask_size & mask_eq_4; // @[Misc.scala:209:26, :214:27, :215:38]
wire mask_acc_4 = mask_sub_2_1 | _mask_acc_T_4; // @[Misc.scala:215:{29,38}]
wire mask_eq_5 = mask_sub_2_2 & mask_bit; // @[Misc.scala:210:26, :214:27]
wire _mask_acc_T_5 = mask_size & mask_eq_5; // @[Misc.scala:209:26, :214:27, :215:38]
wire mask_acc_5 = mask_sub_2_1 | _mask_acc_T_5; // @[Misc.scala:215:{29,38}]
wire mask_eq_6 = mask_sub_3_2 & mask_nbit; // @[Misc.scala:211:20, :214:27]
wire _mask_acc_T_6 = mask_size & mask_eq_6; // @[Misc.scala:209:26, :214:27, :215:38]
wire mask_acc_6 = mask_sub_3_1 | _mask_acc_T_6; // @[Misc.scala:215:{29,38}]
wire mask_eq_7 = mask_sub_3_2 & mask_bit; // @[Misc.scala:210:26, :214:27]
wire _mask_acc_T_7 = mask_size & mask_eq_7; // @[Misc.scala:209:26, :214:27, :215:38]
wire mask_acc_7 = mask_sub_3_1 | _mask_acc_T_7; // @[Misc.scala:215:{29,38}]
wire [1:0] mask_lo_lo = {mask_acc_1, mask_acc}; // @[Misc.scala:215:29, :222:10]
wire [1:0] mask_lo_hi = {mask_acc_3, mask_acc_2}; // @[Misc.scala:215:29, :222:10]
wire [3:0] mask_lo = {mask_lo_hi, mask_lo_lo}; // @[Misc.scala:222:10]
wire [1:0] mask_hi_lo = {mask_acc_5, mask_acc_4}; // @[Misc.scala:215:29, :222:10]
wire [1:0] mask_hi_hi = {mask_acc_7, mask_acc_6}; // @[Misc.scala:215:29, :222:10]
wire [3:0] mask_hi = {mask_hi_hi, mask_hi_lo}; // @[Misc.scala:222:10]
wire [7:0] mask = {mask_hi, mask_lo}; // @[Misc.scala:222:10]
wire [3:0] uncommonBits = _uncommonBits_T; // @[Parameters.scala:52:{29,56}]
wire [3:0] uncommonBits_1 = _uncommonBits_T_1; // @[Parameters.scala:52:{29,56}]
wire [3:0] uncommonBits_2 = _uncommonBits_T_2; // @[Parameters.scala:52:{29,56}]
wire [3:0] uncommonBits_3 = _uncommonBits_T_3; // @[Parameters.scala:52:{29,56}]
wire [3:0] uncommonBits_4 = _uncommonBits_T_4; // @[Parameters.scala:52:{29,56}]
wire [3:0] uncommonBits_5 = _uncommonBits_T_5; // @[Parameters.scala:52:{29,56}]
wire [3:0] uncommonBits_6 = _uncommonBits_T_6; // @[Parameters.scala:52:{29,56}]
wire [3:0] uncommonBits_7 = _uncommonBits_T_7; // @[Parameters.scala:52:{29,56}]
wire [3:0] uncommonBits_8 = _uncommonBits_T_8; // @[Parameters.scala:52:{29,56}]
wire [3:0] source_ok_uncommonBits_1 = _source_ok_uncommonBits_T_1; // @[Parameters.scala:52:{29,56}]
wire _source_ok_T_10 = source_ok_uncommonBits_1 < 4'hA; // @[Parameters.scala:52:56, :57:20]
wire _source_ok_T_11 = _source_ok_T_10; // @[Parameters.scala:56:48, :57:20]
wire _source_ok_WIRE_1_0 = _source_ok_T_11; // @[Parameters.scala:1138:31]
wire _T_672 = io_in_a_ready_0 & io_in_a_valid_0; // @[Decoupled.scala:51:35]
wire _a_first_T; // @[Decoupled.scala:51:35]
assign _a_first_T = _T_672; // @[Decoupled.scala:51:35]
wire _a_first_T_1; // @[Decoupled.scala:51:35]
assign _a_first_T_1 = _T_672; // @[Decoupled.scala:51:35]
wire [5:0] _a_first_beats1_decode_T_1 = _a_first_beats1_decode_T[5:0]; // @[package.scala:243:{71,76}]
wire [5:0] _a_first_beats1_decode_T_2 = ~_a_first_beats1_decode_T_1; // @[package.scala:243:{46,76}]
wire [2:0] a_first_beats1_decode = _a_first_beats1_decode_T_2[5:3]; // @[package.scala:243:46]
wire _a_first_beats1_opdata_T = io_in_a_bits_opcode_0[2]; // @[Monitor.scala:36:7]
wire _a_first_beats1_opdata_T_1 = io_in_a_bits_opcode_0[2]; // @[Monitor.scala:36:7]
wire a_first_beats1_opdata = ~_a_first_beats1_opdata_T; // @[Edges.scala:92:{28,37}]
wire [2:0] a_first_beats1 = a_first_beats1_opdata ? a_first_beats1_decode : 3'h0; // @[Edges.scala:92:28, :220:59, :221:14]
reg [2:0] a_first_counter; // @[Edges.scala:229:27]
wire [3:0] _a_first_counter1_T = {1'h0, a_first_counter} - 4'h1; // @[Edges.scala:229:27, :230:28]
wire [2:0] a_first_counter1 = _a_first_counter1_T[2:0]; // @[Edges.scala:230:28]
wire a_first = a_first_counter == 3'h0; // @[Edges.scala:229:27, :231:25]
wire _a_first_last_T = a_first_counter == 3'h1; // @[Edges.scala:229:27, :232:25]
wire _a_first_last_T_1 = a_first_beats1 == 3'h0; // @[Edges.scala:221:14, :232:43]
wire a_first_last = _a_first_last_T | _a_first_last_T_1; // @[Edges.scala:232:{25,33,43}]
wire a_first_done = a_first_last & _a_first_T; // @[Decoupled.scala:51:35]
wire [2:0] _a_first_count_T = ~a_first_counter1; // @[Edges.scala:230:28, :234:27]
wire [2:0] a_first_count = a_first_beats1 & _a_first_count_T; // @[Edges.scala:221:14, :234:{25,27}]
wire [2:0] _a_first_counter_T = a_first ? a_first_beats1 : a_first_counter1; // @[Edges.scala:221:14, :230:28, :231:25, :236:21]
reg [2:0] opcode; // @[Monitor.scala:387:22]
reg [2:0] param; // @[Monitor.scala:388:22]
reg [2:0] size; // @[Monitor.scala:389:22]
reg [3:0] source; // @[Monitor.scala:390:22]
reg [27:0] address; // @[Monitor.scala:391:22]
wire _T_745 = io_in_d_ready_0 & io_in_d_valid_0; // @[Decoupled.scala:51:35]
wire _d_first_T; // @[Decoupled.scala:51:35]
assign _d_first_T = _T_745; // @[Decoupled.scala:51:35]
wire _d_first_T_1; // @[Decoupled.scala:51:35]
assign _d_first_T_1 = _T_745; // @[Decoupled.scala:51:35]
wire _d_first_T_2; // @[Decoupled.scala:51:35]
assign _d_first_T_2 = _T_745; // @[Decoupled.scala:51:35]
wire [12:0] _GEN_0 = 13'h3F << io_in_d_bits_size_0; // @[package.scala:243:71]
wire [12:0] _d_first_beats1_decode_T; // @[package.scala:243:71]
assign _d_first_beats1_decode_T = _GEN_0; // @[package.scala:243:71]
wire [12:0] _d_first_beats1_decode_T_3; // @[package.scala:243:71]
assign _d_first_beats1_decode_T_3 = _GEN_0; // @[package.scala:243:71]
wire [12:0] _d_first_beats1_decode_T_6; // @[package.scala:243:71]
assign _d_first_beats1_decode_T_6 = _GEN_0; // @[package.scala:243:71]
wire [5:0] _d_first_beats1_decode_T_1 = _d_first_beats1_decode_T[5:0]; // @[package.scala:243:{71,76}]
wire [5:0] _d_first_beats1_decode_T_2 = ~_d_first_beats1_decode_T_1; // @[package.scala:243:{46,76}]
wire [2:0] d_first_beats1_decode = _d_first_beats1_decode_T_2[5:3]; // @[package.scala:243:46]
wire d_first_beats1_opdata = io_in_d_bits_opcode_0[0]; // @[Monitor.scala:36:7]
wire d_first_beats1_opdata_1 = io_in_d_bits_opcode_0[0]; // @[Monitor.scala:36:7]
wire d_first_beats1_opdata_2 = io_in_d_bits_opcode_0[0]; // @[Monitor.scala:36:7]
wire [2:0] d_first_beats1 = d_first_beats1_opdata ? d_first_beats1_decode : 3'h0; // @[Edges.scala:106:36, :220:59, :221:14]
reg [2:0] d_first_counter; // @[Edges.scala:229:27]
wire [3:0] _d_first_counter1_T = {1'h0, d_first_counter} - 4'h1; // @[Edges.scala:229:27, :230:28]
wire [2:0] d_first_counter1 = _d_first_counter1_T[2:0]; // @[Edges.scala:230:28]
wire d_first = d_first_counter == 3'h0; // @[Edges.scala:229:27, :231:25]
wire _d_first_last_T = d_first_counter == 3'h1; // @[Edges.scala:229:27, :232:25]
wire _d_first_last_T_1 = d_first_beats1 == 3'h0; // @[Edges.scala:221:14, :232:43]
wire d_first_last = _d_first_last_T | _d_first_last_T_1; // @[Edges.scala:232:{25,33,43}]
wire d_first_done = d_first_last & _d_first_T; // @[Decoupled.scala:51:35]
wire [2:0] _d_first_count_T = ~d_first_counter1; // @[Edges.scala:230:28, :234:27]
wire [2:0] d_first_count = d_first_beats1 & _d_first_count_T; // @[Edges.scala:221:14, :234:{25,27}]
wire [2:0] _d_first_counter_T = d_first ? d_first_beats1 : d_first_counter1; // @[Edges.scala:221:14, :230:28, :231:25, :236:21]
reg [2:0] opcode_1; // @[Monitor.scala:538:22]
reg [2:0] size_1; // @[Monitor.scala:540:22]
reg [3:0] source_1; // @[Monitor.scala:541:22]
reg [9:0] inflight; // @[Monitor.scala:614:27]
reg [39:0] inflight_opcodes; // @[Monitor.scala:616:35]
reg [39:0] inflight_sizes; // @[Monitor.scala:618:33]
wire [5:0] _a_first_beats1_decode_T_4 = _a_first_beats1_decode_T_3[5:0]; // @[package.scala:243:{71,76}]
wire [5:0] _a_first_beats1_decode_T_5 = ~_a_first_beats1_decode_T_4; // @[package.scala:243:{46,76}]
wire [2:0] a_first_beats1_decode_1 = _a_first_beats1_decode_T_5[5:3]; // @[package.scala:243:46]
wire a_first_beats1_opdata_1 = ~_a_first_beats1_opdata_T_1; // @[Edges.scala:92:{28,37}]
wire [2:0] a_first_beats1_1 = a_first_beats1_opdata_1 ? a_first_beats1_decode_1 : 3'h0; // @[Edges.scala:92:28, :220:59, :221:14]
reg [2:0] a_first_counter_1; // @[Edges.scala:229:27]
wire [3:0] _a_first_counter1_T_1 = {1'h0, a_first_counter_1} - 4'h1; // @[Edges.scala:229:27, :230:28]
wire [2:0] a_first_counter1_1 = _a_first_counter1_T_1[2:0]; // @[Edges.scala:230:28]
wire a_first_1 = a_first_counter_1 == 3'h0; // @[Edges.scala:229:27, :231:25]
wire _a_first_last_T_2 = a_first_counter_1 == 3'h1; // @[Edges.scala:229:27, :232:25]
wire _a_first_last_T_3 = a_first_beats1_1 == 3'h0; // @[Edges.scala:221:14, :232:43]
wire a_first_last_1 = _a_first_last_T_2 | _a_first_last_T_3; // @[Edges.scala:232:{25,33,43}]
wire a_first_done_1 = a_first_last_1 & _a_first_T_1; // @[Decoupled.scala:51:35]
wire [2:0] _a_first_count_T_1 = ~a_first_counter1_1; // @[Edges.scala:230:28, :234:27]
wire [2:0] a_first_count_1 = a_first_beats1_1 & _a_first_count_T_1; // @[Edges.scala:221:14, :234:{25,27}]
wire [2:0] _a_first_counter_T_1 = a_first_1 ? a_first_beats1_1 : a_first_counter1_1; // @[Edges.scala:221:14, :230:28, :231:25, :236:21]
wire [5:0] _d_first_beats1_decode_T_4 = _d_first_beats1_decode_T_3[5:0]; // @[package.scala:243:{71,76}]
wire [5:0] _d_first_beats1_decode_T_5 = ~_d_first_beats1_decode_T_4; // @[package.scala:243:{46,76}]
wire [2:0] d_first_beats1_decode_1 = _d_first_beats1_decode_T_5[5:3]; // @[package.scala:243:46]
wire [2:0] d_first_beats1_1 = d_first_beats1_opdata_1 ? d_first_beats1_decode_1 : 3'h0; // @[Edges.scala:106:36, :220:59, :221:14]
reg [2:0] d_first_counter_1; // @[Edges.scala:229:27]
wire [3:0] _d_first_counter1_T_1 = {1'h0, d_first_counter_1} - 4'h1; // @[Edges.scala:229:27, :230:28]
wire [2:0] d_first_counter1_1 = _d_first_counter1_T_1[2:0]; // @[Edges.scala:230:28]
wire d_first_1 = d_first_counter_1 == 3'h0; // @[Edges.scala:229:27, :231:25]
wire _d_first_last_T_2 = d_first_counter_1 == 3'h1; // @[Edges.scala:229:27, :232:25]
wire _d_first_last_T_3 = d_first_beats1_1 == 3'h0; // @[Edges.scala:221:14, :232:43]
wire d_first_last_1 = _d_first_last_T_2 | _d_first_last_T_3; // @[Edges.scala:232:{25,33,43}]
wire d_first_done_1 = d_first_last_1 & _d_first_T_1; // @[Decoupled.scala:51:35]
wire [2:0] _d_first_count_T_1 = ~d_first_counter1_1; // @[Edges.scala:230:28, :234:27]
wire [2:0] d_first_count_1 = d_first_beats1_1 & _d_first_count_T_1; // @[Edges.scala:221:14, :234:{25,27}]
wire [2:0] _d_first_counter_T_1 = d_first_1 ? d_first_beats1_1 : d_first_counter1_1; // @[Edges.scala:221:14, :230:28, :231:25, :236:21]
wire [9:0] a_set; // @[Monitor.scala:626:34]
wire [9:0] a_set_wo_ready; // @[Monitor.scala:627:34]
wire [39:0] a_opcodes_set; // @[Monitor.scala:630:33]
wire [39:0] a_sizes_set; // @[Monitor.scala:632:31]
wire [2:0] a_opcode_lookup; // @[Monitor.scala:635:35]
wire [6:0] _GEN_1 = {1'h0, io_in_d_bits_source_0, 2'h0}; // @[Monitor.scala:36:7, :637:69]
wire [6:0] _a_opcode_lookup_T; // @[Monitor.scala:637:69]
assign _a_opcode_lookup_T = _GEN_1; // @[Monitor.scala:637:69]
wire [6:0] _a_size_lookup_T; // @[Monitor.scala:641:65]
assign _a_size_lookup_T = _GEN_1; // @[Monitor.scala:637:69, :641:65]
wire [6:0] _d_opcodes_clr_T_4; // @[Monitor.scala:680:101]
assign _d_opcodes_clr_T_4 = _GEN_1; // @[Monitor.scala:637:69, :680:101]
wire [6:0] _d_sizes_clr_T_4; // @[Monitor.scala:681:99]
assign _d_sizes_clr_T_4 = _GEN_1; // @[Monitor.scala:637:69, :681:99]
wire [6:0] _c_opcode_lookup_T; // @[Monitor.scala:749:69]
assign _c_opcode_lookup_T = _GEN_1; // @[Monitor.scala:637:69, :749:69]
wire [6:0] _c_size_lookup_T; // @[Monitor.scala:750:67]
assign _c_size_lookup_T = _GEN_1; // @[Monitor.scala:637:69, :750:67]
wire [6:0] _d_opcodes_clr_T_10; // @[Monitor.scala:790:101]
assign _d_opcodes_clr_T_10 = _GEN_1; // @[Monitor.scala:637:69, :790:101]
wire [6:0] _d_sizes_clr_T_10; // @[Monitor.scala:791:99]
assign _d_sizes_clr_T_10 = _GEN_1; // @[Monitor.scala:637:69, :791:99]
wire [39:0] _a_opcode_lookup_T_1 = inflight_opcodes >> _a_opcode_lookup_T; // @[Monitor.scala:616:35, :637:{44,69}]
wire [39:0] _a_opcode_lookup_T_6 = {36'h0, _a_opcode_lookup_T_1[3:0]}; // @[Monitor.scala:637:{44,97}]
wire [39:0] _a_opcode_lookup_T_7 = {1'h0, _a_opcode_lookup_T_6[39:1]}; // @[Monitor.scala:637:{97,152}]
assign a_opcode_lookup = _a_opcode_lookup_T_7[2:0]; // @[Monitor.scala:635:35, :637:{21,152}]
wire [3:0] a_size_lookup; // @[Monitor.scala:639:33]
wire [39:0] _a_size_lookup_T_1 = inflight_sizes >> _a_size_lookup_T; // @[Monitor.scala:618:33, :641:{40,65}]
wire [39:0] _a_size_lookup_T_6 = {36'h0, _a_size_lookup_T_1[3:0]}; // @[Monitor.scala:641:{40,91}]
wire [39:0] _a_size_lookup_T_7 = {1'h0, _a_size_lookup_T_6[39:1]}; // @[Monitor.scala:641:{91,144}]
assign a_size_lookup = _a_size_lookup_T_7[3:0]; // @[Monitor.scala:639:33, :641:{19,144}]
wire [3:0] a_opcodes_set_interm; // @[Monitor.scala:646:40]
wire [3:0] a_sizes_set_interm; // @[Monitor.scala:648:38]
wire _same_cycle_resp_T = io_in_a_valid_0 & a_first_1; // @[Monitor.scala:36:7, :651:26, :684:44]
wire [15:0] _GEN_2 = 16'h1 << io_in_a_bits_source_0; // @[OneHot.scala:58:35]
wire [15:0] _a_set_wo_ready_T; // @[OneHot.scala:58:35]
assign _a_set_wo_ready_T = _GEN_2; // @[OneHot.scala:58:35]
wire [15:0] _a_set_T; // @[OneHot.scala:58:35]
assign _a_set_T = _GEN_2; // @[OneHot.scala:58:35]
assign a_set_wo_ready = _same_cycle_resp_T ? _a_set_wo_ready_T[9:0] : 10'h0; // @[OneHot.scala:58:35]
wire _T_598 = _T_672 & a_first_1; // @[Decoupled.scala:51:35]
assign a_set = _T_598 ? _a_set_T[9:0] : 10'h0; // @[OneHot.scala:58:35]
wire [3:0] _a_opcodes_set_interm_T = {io_in_a_bits_opcode_0, 1'h0}; // @[Monitor.scala:36:7, :657:53]
wire [3:0] _a_opcodes_set_interm_T_1 = {_a_opcodes_set_interm_T[3:1], 1'h1}; // @[Monitor.scala:657:{53,61}]
assign a_opcodes_set_interm = _T_598 ? _a_opcodes_set_interm_T_1 : 4'h0; // @[Monitor.scala:646:40, :655:{25,70}, :657:{28,61}]
wire [3:0] _a_sizes_set_interm_T = {io_in_a_bits_size_0, 1'h0}; // @[Monitor.scala:36:7, :658:51]
wire [3:0] _a_sizes_set_interm_T_1 = {_a_sizes_set_interm_T[3:1], 1'h1}; // @[Monitor.scala:658:{51,59}]
assign a_sizes_set_interm = _T_598 ? _a_sizes_set_interm_T_1 : 4'h0; // @[Monitor.scala:648:38, :655:{25,70}, :658:{28,59}]
wire [6:0] _GEN_3 = {1'h0, io_in_a_bits_source_0, 2'h0}; // @[Monitor.scala:36:7, :659:79]
wire [6:0] _a_opcodes_set_T; // @[Monitor.scala:659:79]
assign _a_opcodes_set_T = _GEN_3; // @[Monitor.scala:659:79]
wire [6:0] _a_sizes_set_T; // @[Monitor.scala:660:77]
assign _a_sizes_set_T = _GEN_3; // @[Monitor.scala:659:79, :660:77]
wire [130:0] _a_opcodes_set_T_1 = {127'h0, a_opcodes_set_interm} << _a_opcodes_set_T; // @[Monitor.scala:646:40, :659:{54,79}]
assign a_opcodes_set = _T_598 ? _a_opcodes_set_T_1[39:0] : 40'h0; // @[Monitor.scala:630:33, :655:{25,70}, :659:{28,54}]
wire [130:0] _a_sizes_set_T_1 = {127'h0, a_sizes_set_interm} << _a_sizes_set_T; // @[Monitor.scala:648:38, :659:54, :660:{52,77}]
assign a_sizes_set = _T_598 ? _a_sizes_set_T_1[39:0] : 40'h0; // @[Monitor.scala:632:31, :655:{25,70}, :660:{28,52}]
wire [9:0] d_clr; // @[Monitor.scala:664:34]
wire [9:0] d_clr_wo_ready; // @[Monitor.scala:665:34]
wire [39:0] d_opcodes_clr; // @[Monitor.scala:668:33]
wire [39:0] d_sizes_clr; // @[Monitor.scala:670:31]
wire _GEN_4 = io_in_d_bits_opcode_0 == 3'h6; // @[Monitor.scala:36:7, :673:46]
wire d_release_ack; // @[Monitor.scala:673:46]
assign d_release_ack = _GEN_4; // @[Monitor.scala:673:46]
wire d_release_ack_1; // @[Monitor.scala:783:46]
assign d_release_ack_1 = _GEN_4; // @[Monitor.scala:673:46, :783:46]
wire _T_644 = io_in_d_valid_0 & d_first_1; // @[Monitor.scala:36:7, :674:26]
wire [15:0] _GEN_5 = 16'h1 << io_in_d_bits_source_0; // @[OneHot.scala:58:35]
wire [15:0] _d_clr_wo_ready_T; // @[OneHot.scala:58:35]
assign _d_clr_wo_ready_T = _GEN_5; // @[OneHot.scala:58:35]
wire [15:0] _d_clr_T; // @[OneHot.scala:58:35]
assign _d_clr_T = _GEN_5; // @[OneHot.scala:58:35]
wire [15:0] _d_clr_wo_ready_T_1; // @[OneHot.scala:58:35]
assign _d_clr_wo_ready_T_1 = _GEN_5; // @[OneHot.scala:58:35]
wire [15:0] _d_clr_T_1; // @[OneHot.scala:58:35]
assign _d_clr_T_1 = _GEN_5; // @[OneHot.scala:58:35]
assign d_clr_wo_ready = _T_644 & ~d_release_ack ? _d_clr_wo_ready_T[9:0] : 10'h0; // @[OneHot.scala:58:35]
wire _T_613 = _T_745 & d_first_1 & ~d_release_ack; // @[Decoupled.scala:51:35]
assign d_clr = _T_613 ? _d_clr_T[9:0] : 10'h0; // @[OneHot.scala:58:35]
wire [142:0] _d_opcodes_clr_T_5 = 143'hF << _d_opcodes_clr_T_4; // @[Monitor.scala:680:{76,101}]
assign d_opcodes_clr = _T_613 ? _d_opcodes_clr_T_5[39:0] : 40'h0; // @[Monitor.scala:668:33, :678:{25,70,89}, :680:{21,76}]
wire [142:0] _d_sizes_clr_T_5 = 143'hF << _d_sizes_clr_T_4; // @[Monitor.scala:681:{74,99}]
assign d_sizes_clr = _T_613 ? _d_sizes_clr_T_5[39:0] : 40'h0; // @[Monitor.scala:670:31, :678:{25,70,89}, :681:{21,74}]
wire _same_cycle_resp_T_1 = _same_cycle_resp_T; // @[Monitor.scala:684:{44,55}]
wire _same_cycle_resp_T_2 = io_in_a_bits_source_0 == io_in_d_bits_source_0; // @[Monitor.scala:36:7, :684:113]
wire same_cycle_resp = _same_cycle_resp_T_1 & _same_cycle_resp_T_2; // @[Monitor.scala:684:{55,88,113}]
wire [9:0] _inflight_T = inflight | a_set; // @[Monitor.scala:614:27, :626:34, :705:27]
wire [9:0] _inflight_T_1 = ~d_clr; // @[Monitor.scala:664:34, :705:38]
wire [9:0] _inflight_T_2 = _inflight_T & _inflight_T_1; // @[Monitor.scala:705:{27,36,38}]
wire [39:0] _inflight_opcodes_T = inflight_opcodes | a_opcodes_set; // @[Monitor.scala:616:35, :630:33, :706:43]
wire [39:0] _inflight_opcodes_T_1 = ~d_opcodes_clr; // @[Monitor.scala:668:33, :706:62]
wire [39:0] _inflight_opcodes_T_2 = _inflight_opcodes_T & _inflight_opcodes_T_1; // @[Monitor.scala:706:{43,60,62}]
wire [39:0] _inflight_sizes_T = inflight_sizes | a_sizes_set; // @[Monitor.scala:618:33, :632:31, :707:39]
wire [39:0] _inflight_sizes_T_1 = ~d_sizes_clr; // @[Monitor.scala:670:31, :707:56]
wire [39:0] _inflight_sizes_T_2 = _inflight_sizes_T & _inflight_sizes_T_1; // @[Monitor.scala:707:{39,54,56}]
reg [31:0] watchdog; // @[Monitor.scala:709:27]
wire [32:0] _watchdog_T = {1'h0, watchdog} + 33'h1; // @[Monitor.scala:709:27, :714:26]
wire [31:0] _watchdog_T_1 = _watchdog_T[31:0]; // @[Monitor.scala:714:26]
reg [9:0] inflight_1; // @[Monitor.scala:726:35]
wire [9:0] _inflight_T_3 = inflight_1; // @[Monitor.scala:726:35, :814:35]
reg [39:0] inflight_opcodes_1; // @[Monitor.scala:727:35]
wire [39:0] _inflight_opcodes_T_3 = inflight_opcodes_1; // @[Monitor.scala:727:35, :815:43]
reg [39:0] inflight_sizes_1; // @[Monitor.scala:728:35]
wire [39:0] _inflight_sizes_T_3 = inflight_sizes_1; // @[Monitor.scala:728:35, :816:41]
wire [5:0] _d_first_beats1_decode_T_7 = _d_first_beats1_decode_T_6[5:0]; // @[package.scala:243:{71,76}]
wire [5:0] _d_first_beats1_decode_T_8 = ~_d_first_beats1_decode_T_7; // @[package.scala:243:{46,76}]
wire [2:0] d_first_beats1_decode_2 = _d_first_beats1_decode_T_8[5:3]; // @[package.scala:243:46]
wire [2:0] d_first_beats1_2 = d_first_beats1_opdata_2 ? d_first_beats1_decode_2 : 3'h0; // @[Edges.scala:106:36, :220:59, :221:14]
reg [2:0] d_first_counter_2; // @[Edges.scala:229:27]
wire [3:0] _d_first_counter1_T_2 = {1'h0, d_first_counter_2} - 4'h1; // @[Edges.scala:229:27, :230:28]
wire [2:0] d_first_counter1_2 = _d_first_counter1_T_2[2:0]; // @[Edges.scala:230:28]
wire d_first_2 = d_first_counter_2 == 3'h0; // @[Edges.scala:229:27, :231:25]
wire _d_first_last_T_4 = d_first_counter_2 == 3'h1; // @[Edges.scala:229:27, :232:25]
wire _d_first_last_T_5 = d_first_beats1_2 == 3'h0; // @[Edges.scala:221:14, :232:43]
wire d_first_last_2 = _d_first_last_T_4 | _d_first_last_T_5; // @[Edges.scala:232:{25,33,43}]
wire d_first_done_2 = d_first_last_2 & _d_first_T_2; // @[Decoupled.scala:51:35]
wire [2:0] _d_first_count_T_2 = ~d_first_counter1_2; // @[Edges.scala:230:28, :234:27]
wire [2:0] d_first_count_2 = d_first_beats1_2 & _d_first_count_T_2; // @[Edges.scala:221:14, :234:{25,27}]
wire [2:0] _d_first_counter_T_2 = d_first_2 ? d_first_beats1_2 : d_first_counter1_2; // @[Edges.scala:221:14, :230:28, :231:25, :236:21]
wire [3:0] c_opcode_lookup; // @[Monitor.scala:747:35]
wire [3:0] c_size_lookup; // @[Monitor.scala:748:35]
wire [39:0] _c_opcode_lookup_T_1 = inflight_opcodes_1 >> _c_opcode_lookup_T; // @[Monitor.scala:727:35, :749:{44,69}]
wire [39:0] _c_opcode_lookup_T_6 = {36'h0, _c_opcode_lookup_T_1[3:0]}; // @[Monitor.scala:749:{44,97}]
wire [39:0] _c_opcode_lookup_T_7 = {1'h0, _c_opcode_lookup_T_6[39:1]}; // @[Monitor.scala:749:{97,152}]
assign c_opcode_lookup = _c_opcode_lookup_T_7[3:0]; // @[Monitor.scala:747:35, :749:{21,152}]
wire [39:0] _c_size_lookup_T_1 = inflight_sizes_1 >> _c_size_lookup_T; // @[Monitor.scala:728:35, :750:{42,67}]
wire [39:0] _c_size_lookup_T_6 = {36'h0, _c_size_lookup_T_1[3:0]}; // @[Monitor.scala:750:{42,93}]
wire [39:0] _c_size_lookup_T_7 = {1'h0, _c_size_lookup_T_6[39:1]}; // @[Monitor.scala:750:{93,146}]
assign c_size_lookup = _c_size_lookup_T_7[3:0]; // @[Monitor.scala:748:35, :750:{21,146}]
wire [9:0] d_clr_1; // @[Monitor.scala:774:34]
wire [9:0] d_clr_wo_ready_1; // @[Monitor.scala:775:34]
wire [39:0] d_opcodes_clr_1; // @[Monitor.scala:776:34]
wire [39:0] d_sizes_clr_1; // @[Monitor.scala:777:34]
wire _T_716 = io_in_d_valid_0 & d_first_2; // @[Monitor.scala:36:7, :784:26]
assign d_clr_wo_ready_1 = _T_716 & d_release_ack_1 ? _d_clr_wo_ready_T_1[9:0] : 10'h0; // @[OneHot.scala:58:35]
wire _T_698 = _T_745 & d_first_2 & d_release_ack_1; // @[Decoupled.scala:51:35]
assign d_clr_1 = _T_698 ? _d_clr_T_1[9:0] : 10'h0; // @[OneHot.scala:58:35]
wire [142:0] _d_opcodes_clr_T_11 = 143'hF << _d_opcodes_clr_T_10; // @[Monitor.scala:790:{76,101}]
assign d_opcodes_clr_1 = _T_698 ? _d_opcodes_clr_T_11[39:0] : 40'h0; // @[Monitor.scala:776:34, :788:{25,70,88}, :790:{21,76}]
wire [142:0] _d_sizes_clr_T_11 = 143'hF << _d_sizes_clr_T_10; // @[Monitor.scala:791:{74,99}]
assign d_sizes_clr_1 = _T_698 ? _d_sizes_clr_T_11[39:0] : 40'h0; // @[Monitor.scala:777:34, :788:{25,70,88}, :791:{21,74}]
wire _same_cycle_resp_T_8 = io_in_d_bits_source_0 == 4'h0; // @[Monitor.scala:36:7, :795:113]
wire [9:0] _inflight_T_4 = ~d_clr_1; // @[Monitor.scala:774:34, :814:46]
wire [9:0] _inflight_T_5 = _inflight_T_3 & _inflight_T_4; // @[Monitor.scala:814:{35,44,46}]
wire [39:0] _inflight_opcodes_T_4 = ~d_opcodes_clr_1; // @[Monitor.scala:776:34, :815:62]
wire [39:0] _inflight_opcodes_T_5 = _inflight_opcodes_T_3 & _inflight_opcodes_T_4; // @[Monitor.scala:815:{43,60,62}]
wire [39:0] _inflight_sizes_T_4 = ~d_sizes_clr_1; // @[Monitor.scala:777:34, :816:58]
wire [39:0] _inflight_sizes_T_5 = _inflight_sizes_T_3 & _inflight_sizes_T_4; // @[Monitor.scala:816:{41,56,58}]
reg [31:0] watchdog_1; // @[Monitor.scala:818:27] |
Generate the Verilog code corresponding to the following Chisel files.
File FSECompressorHufWeights.scala:
package compressacc
import chisel3._
import chisel3.util._
import chisel3.util._
import chisel3.{Printable}
import freechips.rocketchip.tile._
import org.chipsalliance.cde.config._
import freechips.rocketchip.diplomacy._
import freechips.rocketchip.rocket.{TLBConfig, HellaCacheArbiter}
import freechips.rocketchip.util.DecoupledHelper
import freechips.rocketchip.rocket.constants.MemoryOpConstants
import freechips.rocketchip.tilelink._
class FSECompressorHufWeights(implicit val p: Parameters) extends Module {
val io = IO(new Bundle{
val nb_seq = Flipped(Decoupled(UInt(64.W)))
val input_stream = Flipped(new MemLoaderConsumerBundle) // forward
val input_stream2 = Flipped(new MemLoaderConsumerBundle) // reverse
val memwrites_out = Decoupled(new WriterBundle)
val header_size_info = Decoupled(UInt(8.W))
})
val select_set = RegInit(false.B)
val select_raw = RegInit(false.B)
val nbseq = RegInit(0.U(64.W))
when (io.nb_seq.valid && !select_set) {
select_raw := (io.nb_seq.bits <= 128.U)
select_set := true.B
nbseq := io.nb_seq.bits
CompressAccelLogger.logInfo("HUF_HEADER_COMPRESSOR io.nb_seq.valid\n")
CompressAccelLogger.logInfo("io.nb_seq.bits: %d\n", io.nb_seq.bits)
}
val fse_compressor = Module(new FSECompressorCompHufWeights)
val raw_compressor = Module(new FSECompressorRawHufWeights)
val nb_seq_fire = DecoupledHelper(
io.nb_seq.valid,
fse_compressor.io.nb_seq.ready
)
val select_valid_raw = select_set && select_raw
val select_valid_fse = select_set && !select_raw
fse_compressor.io.nb_seq.bits := io.nb_seq.bits
fse_compressor.io.nb_seq.valid := io.nb_seq.valid && select_valid_fse
fse_compressor.io.input_stream.output_data := io.input_stream.output_data
fse_compressor.io.input_stream.output_last_chunk := io.input_stream.output_last_chunk
fse_compressor.io.input_stream.available_output_bytes := io.input_stream.available_output_bytes
fse_compressor.io.input_stream.output_valid := io.input_stream.output_valid && select_valid_fse
fse_compressor.io.input_stream2.output_data := io.input_stream2.output_data
fse_compressor.io.input_stream2.output_last_chunk := io.input_stream2.output_last_chunk
fse_compressor.io.input_stream2.available_output_bytes := io.input_stream2.available_output_bytes
fse_compressor.io.input_stream2.output_valid := io.input_stream2.output_valid && select_valid_fse
raw_compressor.io.input_stream.output_data := io.input_stream.output_data
raw_compressor.io.input_stream.output_last_chunk := io.input_stream.output_last_chunk
raw_compressor.io.input_stream.available_output_bytes := io.input_stream.available_output_bytes
raw_compressor.io.input_stream.output_valid := io.input_stream.output_valid && select_valid_raw
io.nb_seq.ready := (fse_compressor.io.nb_seq.ready && select_valid_fse) || select_valid_raw
io.input_stream.user_consumed_bytes := Mux(select_valid_raw,
raw_compressor.io.input_stream.user_consumed_bytes,
fse_compressor.io.input_stream.user_consumed_bytes)
io.input_stream.output_ready := Mux(select_valid_raw,
raw_compressor.io.input_stream.output_ready,
fse_compressor.io.input_stream.output_ready)
io.input_stream2.user_consumed_bytes := Mux(select_valid_raw,
io.input_stream2.available_output_bytes,
fse_compressor.io.input_stream2.user_consumed_bytes)
io.input_stream2.output_ready := Mux(select_valid_raw,
true.B,
fse_compressor.io.input_stream2.output_ready)
io.memwrites_out.bits := Mux(select_valid_raw, raw_compressor.io.memwrites_out.bits, fse_compressor.io.memwrites_out.bits)
io.memwrites_out.valid := Mux(select_valid_raw, raw_compressor.io.memwrites_out.valid, fse_compressor.io.memwrites_out.valid)
raw_compressor.io.memwrites_out.ready := Mux(select_valid_raw, io.memwrites_out.ready, false.B)
fse_compressor.io.memwrites_out.ready := Mux(select_valid_raw, false.B, io.memwrites_out.ready)
val track_written_bytes = RegInit(0.U(64.W))
val end_of_message_fired = RegInit(false.B)
when (io.memwrites_out.fire) {
track_written_bytes := track_written_bytes + io.memwrites_out.bits.validbytes
when (io.memwrites_out.bits.end_of_message) {
end_of_message_fired := true.B
}
CompressAccelLogger.logInfo("HUF_WEIGHT_COMP_MEMWRITES_FIRE\n")
CompressAccelLogger.logInfo("io.memwrites_out.bits.validbytes: %d\n", io.memwrites_out.bits.validbytes)
CompressAccelLogger.logInfo("io.memwrites_out.bits.end_of_message: %d\n", io.memwrites_out.bits.end_of_message)
}
io.header_size_info.bits := Mux(select_valid_raw, (128.U + nbseq - 1.U), track_written_bytes)
io.header_size_info.valid := end_of_message_fired
when (io.header_size_info.fire) {
select_set := false.B
track_written_bytes := 0.U
end_of_message_fired := false.B
nbseq := 0.U
}
}
class FSECompressorCompHufWeights(implicit val p: Parameters) extends Module {
val io = IO(new Bundle{
val nb_seq = Flipped(Decoupled(UInt(64.W)))
val input_stream = Flipped(new MemLoaderConsumerBundle)
val input_stream2 = Flipped(new MemLoaderConsumerBundle)
val memwrites_out = Decoupled(new WriterBundle)
})
val interleave_cnt = 2
val cmd_que_depth = 4
val dic_builder = Module(new FSECompressorDicBuilder(printInfo="HufWeights",
interleave_cnt=interleave_cnt,
as_zstd_submodule=false,
max_symbol_value=12,
max_table_log=6,
predefined_table_log=6))
dic_builder.io.nb_seq <> io.nb_seq
dic_builder.io.ll_stream <> io.input_stream
dic_builder.io.predefined_mode.ready := true.B
val encoder = Module(new FSECompressorEncoder(cmd_que_depth, interleave_cnt))
encoder.io.src_stream <> io.input_stream2
encoder.io.table_log <> dic_builder.io.ll_table_log
encoder.io.header_writes <> dic_builder.io.header_writes
dic_builder.io.lookup_done <> encoder.io.lookup_done
for (i <- 0 until interleave_cnt) {
dic_builder.io.symbol_info(i) <> encoder.io.symbol_info(i)
encoder.io.comp_trans_table(i) <> dic_builder.io.symbolTT_info(i)
dic_builder.io.state_table_idx(i) := encoder.io.state_table_idx(i)
encoder.io.new_state(i) <> dic_builder.io.new_state(i)
}
io.memwrites_out <> encoder.io.memwrites_out
}
class FSECompressorRawHufWeights(implicit val p: Parameters) extends Module {
val io = IO(new Bundle {
val input_stream = Flipped(new MemLoaderConsumerBundle)
val memwrites_out = Decoupled(new WriterBundle)
})
val avail_bytes = io.input_stream.available_output_bytes
val SBUS_BYTES = 32
val input_data_bytes_vec = WireInit(VecInit(Seq.fill(SBUS_BYTES)(0.U(8.W))))
for (i <- 0 until SBUS_BYTES) {
input_data_bytes_vec(i) := Mux(i.U < avail_bytes, io.input_stream.output_data(8*(i+1)-1, 8*i), 0.U)
}
val input_data_half_bytes = WireInit(VecInit(Seq.fill(SBUS_BYTES)(0.U(4.W))))
for (i <- 0 until SBUS_BYTES) {
input_data_half_bytes(i) := input_data_bytes_vec(i)(3, 0)
}
val input_data_cat_half_bytes = WireInit(VecInit(Seq.fill(SBUS_BYTES/2)(0.U(8.W))))
for (i <- 0 until SBUS_BYTES/2) {
input_data_cat_half_bytes(i) := Cat(input_data_half_bytes(2*i), input_data_half_bytes(2*(i+1)-1))
}
val data = Cat(input_data_cat_half_bytes.reverse)
val avail_bytes_2 = avail_bytes >> 1.U
val avail_bytes_odd = (avail_bytes - (avail_bytes_2 << 1.U)) > 0.U
val write_bytes = Mux(avail_bytes_odd, avail_bytes_2 + 1.U, avail_bytes_2)
when (io.memwrites_out.fire) {
CompressAccelLogger.logInfo("RAW_HEADER_COMPRESSOR WRITEFIRE\n")
for (i <- 0 until SBUS_BYTES) {
CompressAccelLogger.logInfo("input_data_bytes_vec(%d): %d\n", i.U, input_data_bytes_vec(i))
}
CompressAccelLogger.logInfo("avail_bytes: %d\n", avail_bytes)
CompressAccelLogger.logInfo("avail_bytes_2: %d\n", avail_bytes_2)
CompressAccelLogger.logInfo("avail_bytes_odd: %d\n", avail_bytes_odd)
CompressAccelLogger.logInfo("write_bytes: %d\n", write_bytes)
CompressAccelLogger.logInfo("end_of_message: %d\n", io.memwrites_out.bits.end_of_message)
CompressAccelLogger.logInfo("data: 0x%x\n", io.memwrites_out.bits.data)
CompressAccelLogger.logInfo("validbytes: %d\n", io.memwrites_out.bits.validbytes)
}
io.memwrites_out.valid := io.input_stream.output_valid
io.memwrites_out.bits.data := data
io.memwrites_out.bits.validbytes := write_bytes
io.memwrites_out.bits.end_of_message := io.input_stream.output_last_chunk
io.input_stream.output_ready := io.memwrites_out.ready
io.input_stream.user_consumed_bytes := avail_bytes
}
File Util.scala:
package compressacc
import chisel3._
import chisel3.util._
import chisel3.{Printable}
import freechips.rocketchip.tile._
import org.chipsalliance.cde.config._
import freechips.rocketchip.diplomacy._
import freechips.rocketchip.rocket.{TLBConfig}
import freechips.rocketchip.util.DecoupledHelper
import freechips.rocketchip.rocket.constants.MemoryOpConstants
object CompressAccelLogger {
def logInfo(format: String, args: Bits*)(implicit p: Parameters) {
val loginfo_cycles = RegInit(0.U(64.W))
loginfo_cycles := loginfo_cycles + 1.U
printf("cy: %d, ", loginfo_cycles)
printf(Printable.pack(format, args:_*))
}
def logCritical(format: String, args: Bits*)(implicit p: Parameters) {
val loginfo_cycles = RegInit(0.U(64.W))
loginfo_cycles := loginfo_cycles + 1.U
if (p(CompressAccelPrintfEnable)) {
printf(midas.targetutils.SynthesizePrintf("cy: %d, ", loginfo_cycles))
printf(midas.targetutils.SynthesizePrintf(format, args:_*))
} else {
printf("cy: %d, ", loginfo_cycles)
printf(Printable.pack(format, args:_*))
}
}
def logWaveStyle(format: String, args: Bits*)(implicit p: Parameters) {
}
}
object CompressAccelParams {
}
| module FSECompressorHufWeights( // @[FSECompressorHufWeights.scala:15:7]
input clock, // @[FSECompressorHufWeights.scala:15:7]
input reset, // @[FSECompressorHufWeights.scala:15:7]
output io_nb_seq_ready, // @[FSECompressorHufWeights.scala:16:14]
input io_nb_seq_valid, // @[FSECompressorHufWeights.scala:16:14]
input [63:0] io_nb_seq_bits, // @[FSECompressorHufWeights.scala:16:14]
output [5:0] io_input_stream_user_consumed_bytes, // @[FSECompressorHufWeights.scala:16:14]
input [5:0] io_input_stream_available_output_bytes, // @[FSECompressorHufWeights.scala:16:14]
input io_input_stream_output_valid, // @[FSECompressorHufWeights.scala:16:14]
output io_input_stream_output_ready, // @[FSECompressorHufWeights.scala:16:14]
input [255:0] io_input_stream_output_data, // @[FSECompressorHufWeights.scala:16:14]
input io_input_stream_output_last_chunk, // @[FSECompressorHufWeights.scala:16:14]
output [5:0] io_input_stream2_user_consumed_bytes, // @[FSECompressorHufWeights.scala:16:14]
input [5:0] io_input_stream2_available_output_bytes, // @[FSECompressorHufWeights.scala:16:14]
input io_input_stream2_output_valid, // @[FSECompressorHufWeights.scala:16:14]
output io_input_stream2_output_ready, // @[FSECompressorHufWeights.scala:16:14]
input [255:0] io_input_stream2_output_data, // @[FSECompressorHufWeights.scala:16:14]
input io_input_stream2_output_last_chunk, // @[FSECompressorHufWeights.scala:16:14]
input io_memwrites_out_ready, // @[FSECompressorHufWeights.scala:16:14]
output io_memwrites_out_valid, // @[FSECompressorHufWeights.scala:16:14]
output [255:0] io_memwrites_out_bits_data, // @[FSECompressorHufWeights.scala:16:14]
output [5:0] io_memwrites_out_bits_validbytes, // @[FSECompressorHufWeights.scala:16:14]
output io_memwrites_out_bits_end_of_message, // @[FSECompressorHufWeights.scala:16:14]
input io_header_size_info_ready, // @[FSECompressorHufWeights.scala:16:14]
output io_header_size_info_valid, // @[FSECompressorHufWeights.scala:16:14]
output [7:0] io_header_size_info_bits // @[FSECompressorHufWeights.scala:16:14]
);
wire [5:0] _raw_compressor_io_input_stream_user_consumed_bytes; // @[FSECompressorHufWeights.scala:38:30]
wire _raw_compressor_io_input_stream_output_ready; // @[FSECompressorHufWeights.scala:38:30]
wire _raw_compressor_io_memwrites_out_valid; // @[FSECompressorHufWeights.scala:38:30]
wire [255:0] _raw_compressor_io_memwrites_out_bits_data; // @[FSECompressorHufWeights.scala:38:30]
wire [5:0] _raw_compressor_io_memwrites_out_bits_validbytes; // @[FSECompressorHufWeights.scala:38:30]
wire _raw_compressor_io_memwrites_out_bits_end_of_message; // @[FSECompressorHufWeights.scala:38:30]
wire _fse_compressor_io_nb_seq_ready; // @[FSECompressorHufWeights.scala:37:30]
wire [5:0] _fse_compressor_io_input_stream_user_consumed_bytes; // @[FSECompressorHufWeights.scala:37:30]
wire _fse_compressor_io_input_stream_output_ready; // @[FSECompressorHufWeights.scala:37:30]
wire [5:0] _fse_compressor_io_input_stream2_user_consumed_bytes; // @[FSECompressorHufWeights.scala:37:30]
wire _fse_compressor_io_input_stream2_output_ready; // @[FSECompressorHufWeights.scala:37:30]
wire _fse_compressor_io_memwrites_out_valid; // @[FSECompressorHufWeights.scala:37:30]
wire [255:0] _fse_compressor_io_memwrites_out_bits_data; // @[FSECompressorHufWeights.scala:37:30]
wire [5:0] _fse_compressor_io_memwrites_out_bits_validbytes; // @[FSECompressorHufWeights.scala:37:30]
wire _fse_compressor_io_memwrites_out_bits_end_of_message; // @[FSECompressorHufWeights.scala:37:30]
wire io_nb_seq_valid_0 = io_nb_seq_valid; // @[FSECompressorHufWeights.scala:15:7]
wire [63:0] io_nb_seq_bits_0 = io_nb_seq_bits; // @[FSECompressorHufWeights.scala:15:7]
wire [5:0] io_input_stream_available_output_bytes_0 = io_input_stream_available_output_bytes; // @[FSECompressorHufWeights.scala:15:7]
wire io_input_stream_output_valid_0 = io_input_stream_output_valid; // @[FSECompressorHufWeights.scala:15:7]
wire [255:0] io_input_stream_output_data_0 = io_input_stream_output_data; // @[FSECompressorHufWeights.scala:15:7]
wire io_input_stream_output_last_chunk_0 = io_input_stream_output_last_chunk; // @[FSECompressorHufWeights.scala:15:7]
wire [5:0] io_input_stream2_available_output_bytes_0 = io_input_stream2_available_output_bytes; // @[FSECompressorHufWeights.scala:15:7]
wire io_input_stream2_output_valid_0 = io_input_stream2_output_valid; // @[FSECompressorHufWeights.scala:15:7]
wire [255:0] io_input_stream2_output_data_0 = io_input_stream2_output_data; // @[FSECompressorHufWeights.scala:15:7]
wire io_input_stream2_output_last_chunk_0 = io_input_stream2_output_last_chunk; // @[FSECompressorHufWeights.scala:15:7]
wire io_memwrites_out_ready_0 = io_memwrites_out_ready; // @[FSECompressorHufWeights.scala:15:7]
wire io_header_size_info_ready_0 = io_header_size_info_ready; // @[FSECompressorHufWeights.scala:15:7]
wire _io_nb_seq_ready_T_1; // @[FSECompressorHufWeights.scala:67:75]
wire [5:0] _io_input_stream_user_consumed_bytes_T; // @[FSECompressorHufWeights.scala:68:45]
wire _io_input_stream_output_ready_T; // @[FSECompressorHufWeights.scala:71:38]
wire [5:0] _io_input_stream2_user_consumed_bytes_T; // @[FSECompressorHufWeights.scala:75:46]
wire _io_input_stream2_output_ready_T; // @[FSECompressorHufWeights.scala:78:39]
wire _io_memwrites_out_valid_T; // @[FSECompressorHufWeights.scala:83:32]
wire [255:0] _io_memwrites_out_bits_T_data; // @[FSECompressorHufWeights.scala:82:31]
wire [5:0] _io_memwrites_out_bits_T_validbytes; // @[FSECompressorHufWeights.scala:82:31]
wire _io_memwrites_out_bits_T_end_of_message; // @[FSECompressorHufWeights.scala:82:31]
wire io_nb_seq_ready_0; // @[FSECompressorHufWeights.scala:15:7]
wire [5:0] io_input_stream_user_consumed_bytes_0; // @[FSECompressorHufWeights.scala:15:7]
wire io_input_stream_output_ready_0; // @[FSECompressorHufWeights.scala:15:7]
wire [5:0] io_input_stream2_user_consumed_bytes_0; // @[FSECompressorHufWeights.scala:15:7]
wire io_input_stream2_output_ready_0; // @[FSECompressorHufWeights.scala:15:7]
wire [255:0] io_memwrites_out_bits_data_0; // @[FSECompressorHufWeights.scala:15:7]
wire [5:0] io_memwrites_out_bits_validbytes_0; // @[FSECompressorHufWeights.scala:15:7]
wire io_memwrites_out_bits_end_of_message_0; // @[FSECompressorHufWeights.scala:15:7]
wire io_memwrites_out_valid_0; // @[FSECompressorHufWeights.scala:15:7]
wire io_header_size_info_valid_0; // @[FSECompressorHufWeights.scala:15:7]
wire [7:0] io_header_size_info_bits_0; // @[FSECompressorHufWeights.scala:15:7]
reg select_set; // @[FSECompressorHufWeights.scala:24:27]
reg select_raw; // @[FSECompressorHufWeights.scala:25:27]
reg [63:0] nbseq; // @[FSECompressorHufWeights.scala:26:22]
wire _T_1 = io_nb_seq_valid_0 & ~select_set; // @[FSECompressorHufWeights.scala:15:7, :24:27, :28:{25,28}]
wire _select_raw_T = io_nb_seq_bits_0 < 64'h81; // @[FSECompressorHufWeights.scala:15:7, :29:35]
reg [63:0] loginfo_cycles; // @[Util.scala:18:33]
wire [64:0] _loginfo_cycles_T = {1'h0, loginfo_cycles} + 65'h1; // @[Util.scala:18:33, :19:38]
wire [63:0] _loginfo_cycles_T_1 = _loginfo_cycles_T[63:0]; // @[Util.scala:19:38]
reg [63:0] loginfo_cycles_1; // @[Util.scala:18:33]
wire [64:0] _loginfo_cycles_T_2 = {1'h0, loginfo_cycles_1} + 65'h1; // @[Util.scala:18:33, :19:38]
wire [63:0] _loginfo_cycles_T_3 = _loginfo_cycles_T_2[63:0]; // @[Util.scala:19:38]
wire select_valid_raw = select_set & select_raw; // @[FSECompressorHufWeights.scala:24:27, :25:27, :45:37]
wire _select_valid_fse_T = ~select_raw; // @[FSECompressorHufWeights.scala:25:27, :46:40]
wire select_valid_fse = select_set & _select_valid_fse_T; // @[FSECompressorHufWeights.scala:24:27, :46:{37,40}]
wire _fse_compressor_io_nb_seq_valid_T = io_nb_seq_valid_0 & select_valid_fse; // @[FSECompressorHufWeights.scala:15:7, :46:37, :49:53]
wire _fse_compressor_io_input_stream_output_valid_T = io_input_stream_output_valid_0 & select_valid_fse; // @[FSECompressorHufWeights.scala:15:7, :46:37, :54:79]
wire _fse_compressor_io_input_stream2_output_valid_T = io_input_stream2_output_valid_0 & select_valid_fse; // @[FSECompressorHufWeights.scala:15:7, :46:37, :59:81]
wire _raw_compressor_io_input_stream_output_valid_T = io_input_stream_output_valid_0 & select_valid_raw; // @[FSECompressorHufWeights.scala:15:7, :45:37, :65:79]
wire _io_nb_seq_ready_T = _fse_compressor_io_nb_seq_ready & select_valid_fse; // @[FSECompressorHufWeights.scala:37:30, :46:37, :67:54]
assign _io_nb_seq_ready_T_1 = _io_nb_seq_ready_T | select_valid_raw; // @[FSECompressorHufWeights.scala:45:37, :67:{54,75}]
assign io_nb_seq_ready_0 = _io_nb_seq_ready_T_1; // @[FSECompressorHufWeights.scala:15:7, :67:75]
assign _io_input_stream_user_consumed_bytes_T = select_valid_raw ? _raw_compressor_io_input_stream_user_consumed_bytes : _fse_compressor_io_input_stream_user_consumed_bytes; // @[FSECompressorHufWeights.scala:37:30, :38:30, :45:37, :68:45]
assign io_input_stream_user_consumed_bytes_0 = _io_input_stream_user_consumed_bytes_T; // @[FSECompressorHufWeights.scala:15:7, :68:45]
assign _io_input_stream_output_ready_T = select_valid_raw ? _raw_compressor_io_input_stream_output_ready : _fse_compressor_io_input_stream_output_ready; // @[FSECompressorHufWeights.scala:37:30, :38:30, :45:37, :71:38]
assign io_input_stream_output_ready_0 = _io_input_stream_output_ready_T; // @[FSECompressorHufWeights.scala:15:7, :71:38]
assign _io_input_stream2_user_consumed_bytes_T = select_valid_raw ? io_input_stream2_available_output_bytes_0 : _fse_compressor_io_input_stream2_user_consumed_bytes; // @[FSECompressorHufWeights.scala:15:7, :37:30, :45:37, :75:46]
assign io_input_stream2_user_consumed_bytes_0 = _io_input_stream2_user_consumed_bytes_T; // @[FSECompressorHufWeights.scala:15:7, :75:46]
assign _io_input_stream2_output_ready_T = select_valid_raw | _fse_compressor_io_input_stream2_output_ready; // @[FSECompressorHufWeights.scala:37:30, :45:37, :78:39]
assign io_input_stream2_output_ready_0 = _io_input_stream2_output_ready_T; // @[FSECompressorHufWeights.scala:15:7, :78:39]
assign _io_memwrites_out_bits_T_data = select_valid_raw ? _raw_compressor_io_memwrites_out_bits_data : _fse_compressor_io_memwrites_out_bits_data; // @[FSECompressorHufWeights.scala:37:30, :38:30, :45:37, :82:31]
assign _io_memwrites_out_bits_T_validbytes = select_valid_raw ? _raw_compressor_io_memwrites_out_bits_validbytes : _fse_compressor_io_memwrites_out_bits_validbytes; // @[FSECompressorHufWeights.scala:37:30, :38:30, :45:37, :82:31]
assign _io_memwrites_out_bits_T_end_of_message = select_valid_raw ? _raw_compressor_io_memwrites_out_bits_end_of_message : _fse_compressor_io_memwrites_out_bits_end_of_message; // @[FSECompressorHufWeights.scala:37:30, :38:30, :45:37, :82:31]
assign io_memwrites_out_bits_data_0 = _io_memwrites_out_bits_T_data; // @[FSECompressorHufWeights.scala:15:7, :82:31]
assign io_memwrites_out_bits_validbytes_0 = _io_memwrites_out_bits_T_validbytes; // @[FSECompressorHufWeights.scala:15:7, :82:31]
assign io_memwrites_out_bits_end_of_message_0 = _io_memwrites_out_bits_T_end_of_message; // @[FSECompressorHufWeights.scala:15:7, :82:31]
assign _io_memwrites_out_valid_T = select_valid_raw ? _raw_compressor_io_memwrites_out_valid : _fse_compressor_io_memwrites_out_valid; // @[FSECompressorHufWeights.scala:37:30, :38:30, :45:37, :83:32]
assign io_memwrites_out_valid_0 = _io_memwrites_out_valid_T; // @[FSECompressorHufWeights.scala:15:7, :83:32]
wire _raw_compressor_io_memwrites_out_ready_T = select_valid_raw & io_memwrites_out_ready_0; // @[FSECompressorHufWeights.scala:15:7, :45:37, :84:47]
wire _fse_compressor_io_memwrites_out_ready_T = ~select_valid_raw & io_memwrites_out_ready_0; // @[FSECompressorHufWeights.scala:15:7, :45:37, :85:47]
reg [63:0] track_written_bytes; // @[FSECompressorHufWeights.scala:87:36]
reg end_of_message_fired; // @[FSECompressorHufWeights.scala:88:37]
assign io_header_size_info_valid_0 = end_of_message_fired; // @[FSECompressorHufWeights.scala:15:7, :88:37]
wire _T_10 = io_memwrites_out_ready_0 & io_memwrites_out_valid_0; // @[Decoupled.scala:51:35]
wire [64:0] _track_written_bytes_T = {1'h0, track_written_bytes} + {59'h0, io_memwrites_out_bits_validbytes_0}; // @[FSECompressorHufWeights.scala:15:7, :87:36, :90:48]
wire [63:0] _track_written_bytes_T_1 = _track_written_bytes_T[63:0]; // @[FSECompressorHufWeights.scala:90:48]
reg [63:0] loginfo_cycles_2; // @[Util.scala:18:33]
wire [64:0] _loginfo_cycles_T_4 = {1'h0, loginfo_cycles_2} + 65'h1; // @[Util.scala:18:33, :19:38]
wire [63:0] _loginfo_cycles_T_5 = _loginfo_cycles_T_4[63:0]; // @[Util.scala:19:38]
reg [63:0] loginfo_cycles_3; // @[Util.scala:18:33]
wire [64:0] _loginfo_cycles_T_6 = {1'h0, loginfo_cycles_3} + 65'h1; // @[Util.scala:18:33, :19:38]
wire [63:0] _loginfo_cycles_T_7 = _loginfo_cycles_T_6[63:0]; // @[Util.scala:19:38]
reg [63:0] loginfo_cycles_4; // @[Util.scala:18:33]
wire [64:0] _loginfo_cycles_T_8 = {1'h0, loginfo_cycles_4} + 65'h1; // @[Util.scala:18:33, :19:38]
wire [63:0] _loginfo_cycles_T_9 = _loginfo_cycles_T_8[63:0]; // @[Util.scala:19:38] |
Generate the Verilog code corresponding to the following Chisel files.
File util.scala:
//******************************************************************************
// Copyright (c) 2015 - 2019, The Regents of the University of California (Regents).
// All Rights Reserved. See LICENSE and LICENSE.SiFive for license details.
//------------------------------------------------------------------------------
//------------------------------------------------------------------------------
//------------------------------------------------------------------------------
// Utility Functions
//------------------------------------------------------------------------------
//------------------------------------------------------------------------------
package boom.v3.util
import chisel3._
import chisel3.util._
import freechips.rocketchip.rocket.Instructions._
import freechips.rocketchip.rocket._
import freechips.rocketchip.util.{Str}
import org.chipsalliance.cde.config.{Parameters}
import freechips.rocketchip.tile.{TileKey}
import boom.v3.common.{MicroOp}
import boom.v3.exu.{BrUpdateInfo}
/**
* Object to XOR fold a input register of fullLength into a compressedLength.
*/
object Fold
{
def apply(input: UInt, compressedLength: Int, fullLength: Int): UInt = {
val clen = compressedLength
val hlen = fullLength
if (hlen <= clen) {
input
} else {
var res = 0.U(clen.W)
var remaining = input.asUInt
for (i <- 0 to hlen-1 by clen) {
val len = if (i + clen > hlen ) (hlen - i) else clen
require(len > 0)
res = res(clen-1,0) ^ remaining(len-1,0)
remaining = remaining >> len.U
}
res
}
}
}
/**
* Object to check if MicroOp was killed due to a branch mispredict.
* Uses "Fast" branch masks
*/
object IsKilledByBranch
{
def apply(brupdate: BrUpdateInfo, uop: MicroOp): Bool = {
return maskMatch(brupdate.b1.mispredict_mask, uop.br_mask)
}
def apply(brupdate: BrUpdateInfo, uop_mask: UInt): Bool = {
return maskMatch(brupdate.b1.mispredict_mask, uop_mask)
}
}
/**
* Object to return new MicroOp with a new BR mask given a MicroOp mask
* and old BR mask.
*/
object GetNewUopAndBrMask
{
def apply(uop: MicroOp, brupdate: BrUpdateInfo)
(implicit p: Parameters): MicroOp = {
val newuop = WireInit(uop)
newuop.br_mask := uop.br_mask & ~brupdate.b1.resolve_mask
newuop
}
}
/**
* Object to return a BR mask given a MicroOp mask and old BR mask.
*/
object GetNewBrMask
{
def apply(brupdate: BrUpdateInfo, uop: MicroOp): UInt = {
return uop.br_mask & ~brupdate.b1.resolve_mask
}
def apply(brupdate: BrUpdateInfo, br_mask: UInt): UInt = {
return br_mask & ~brupdate.b1.resolve_mask
}
}
object UpdateBrMask
{
def apply(brupdate: BrUpdateInfo, uop: MicroOp): MicroOp = {
val out = WireInit(uop)
out.br_mask := GetNewBrMask(brupdate, uop)
out
}
def apply[T <: boom.v3.common.HasBoomUOP](brupdate: BrUpdateInfo, bundle: T): T = {
val out = WireInit(bundle)
out.uop.br_mask := GetNewBrMask(brupdate, bundle.uop.br_mask)
out
}
def apply[T <: boom.v3.common.HasBoomUOP](brupdate: BrUpdateInfo, bundle: Valid[T]): Valid[T] = {
val out = WireInit(bundle)
out.bits.uop.br_mask := GetNewBrMask(brupdate, bundle.bits.uop.br_mask)
out.valid := bundle.valid && !IsKilledByBranch(brupdate, bundle.bits.uop.br_mask)
out
}
}
/**
* Object to check if at least 1 bit matches in two masks
*/
object maskMatch
{
def apply(msk1: UInt, msk2: UInt): Bool = (msk1 & msk2) =/= 0.U
}
/**
* Object to clear one bit in a mask given an index
*/
object clearMaskBit
{
def apply(msk: UInt, idx: UInt): UInt = (msk & ~(1.U << idx))(msk.getWidth-1, 0)
}
/**
* Object to shift a register over by one bit and concat a new one
*/
object PerformShiftRegister
{
def apply(reg_val: UInt, new_bit: Bool): UInt = {
reg_val := Cat(reg_val(reg_val.getWidth-1, 0).asUInt, new_bit.asUInt).asUInt
reg_val
}
}
/**
* Object to shift a register over by one bit, wrapping the top bit around to the bottom
* (XOR'ed with a new-bit), and evicting a bit at index HLEN.
* This is used to simulate a longer HLEN-width shift register that is folded
* down to a compressed CLEN.
*/
object PerformCircularShiftRegister
{
def apply(csr: UInt, new_bit: Bool, evict_bit: Bool, hlen: Int, clen: Int): UInt = {
val carry = csr(clen-1)
val newval = Cat(csr, new_bit ^ carry) ^ (evict_bit << (hlen % clen).U)
newval
}
}
/**
* Object to increment an input value, wrapping it if
* necessary.
*/
object WrapAdd
{
// "n" is the number of increments, so we wrap at n-1.
def apply(value: UInt, amt: UInt, n: Int): UInt = {
if (isPow2(n)) {
(value + amt)(log2Ceil(n)-1,0)
} else {
val sum = Cat(0.U(1.W), value) + Cat(0.U(1.W), amt)
Mux(sum >= n.U,
sum - n.U,
sum)
}
}
}
/**
* Object to decrement an input value, wrapping it if
* necessary.
*/
object WrapSub
{
// "n" is the number of increments, so we wrap to n-1.
def apply(value: UInt, amt: Int, n: Int): UInt = {
if (isPow2(n)) {
(value - amt.U)(log2Ceil(n)-1,0)
} else {
val v = Cat(0.U(1.W), value)
val b = Cat(0.U(1.W), amt.U)
Mux(value >= amt.U,
value - amt.U,
n.U - amt.U + value)
}
}
}
/**
* Object to increment an input value, wrapping it if
* necessary.
*/
object WrapInc
{
// "n" is the number of increments, so we wrap at n-1.
def apply(value: UInt, n: Int): UInt = {
if (isPow2(n)) {
(value + 1.U)(log2Ceil(n)-1,0)
} else {
val wrap = (value === (n-1).U)
Mux(wrap, 0.U, value + 1.U)
}
}
}
/**
* Object to decrement an input value, wrapping it if
* necessary.
*/
object WrapDec
{
// "n" is the number of increments, so we wrap at n-1.
def apply(value: UInt, n: Int): UInt = {
if (isPow2(n)) {
(value - 1.U)(log2Ceil(n)-1,0)
} else {
val wrap = (value === 0.U)
Mux(wrap, (n-1).U, value - 1.U)
}
}
}
/**
* Object to mask off lower bits of a PC to align to a "b"
* Byte boundary.
*/
object AlignPCToBoundary
{
def apply(pc: UInt, b: Int): UInt = {
// Invert for scenario where pc longer than b
// (which would clear all bits above size(b)).
~(~pc | (b-1).U)
}
}
/**
* Object to rotate a signal left by one
*/
object RotateL1
{
def apply(signal: UInt): UInt = {
val w = signal.getWidth
val out = Cat(signal(w-2,0), signal(w-1))
return out
}
}
/**
* Object to sext a value to a particular length.
*/
object Sext
{
def apply(x: UInt, length: Int): UInt = {
if (x.getWidth == length) return x
else return Cat(Fill(length-x.getWidth, x(x.getWidth-1)), x)
}
}
/**
* Object to translate from BOOM's special "packed immediate" to a 32b signed immediate
* Asking for U-type gives it shifted up 12 bits.
*/
object ImmGen
{
import boom.v3.common.{LONGEST_IMM_SZ, IS_B, IS_I, IS_J, IS_S, IS_U}
def apply(ip: UInt, isel: UInt): SInt = {
val sign = ip(LONGEST_IMM_SZ-1).asSInt
val i30_20 = Mux(isel === IS_U, ip(18,8).asSInt, sign)
val i19_12 = Mux(isel === IS_U || isel === IS_J, ip(7,0).asSInt, sign)
val i11 = Mux(isel === IS_U, 0.S,
Mux(isel === IS_J || isel === IS_B, ip(8).asSInt, sign))
val i10_5 = Mux(isel === IS_U, 0.S, ip(18,14).asSInt)
val i4_1 = Mux(isel === IS_U, 0.S, ip(13,9).asSInt)
val i0 = Mux(isel === IS_S || isel === IS_I, ip(8).asSInt, 0.S)
return Cat(sign, i30_20, i19_12, i11, i10_5, i4_1, i0).asSInt
}
}
/**
* Object to get the FP rounding mode out of a packed immediate.
*/
object ImmGenRm { def apply(ip: UInt): UInt = { return ip(2,0) } }
/**
* Object to get the FP function fype from a packed immediate.
* Note: only works if !(IS_B or IS_S)
*/
object ImmGenTyp { def apply(ip: UInt): UInt = { return ip(9,8) } }
/**
* Object to see if an instruction is a JALR.
*/
object DebugIsJALR
{
def apply(inst: UInt): Bool = {
// TODO Chisel not sure why this won't compile
// val is_jalr = rocket.DecodeLogic(inst, List(Bool(false)),
// Array(
// JALR -> Bool(true)))
inst(6,0) === "b1100111".U
}
}
/**
* Object to take an instruction and output its branch or jal target. Only used
* for a debug assert (no where else would we jump straight from instruction
* bits to a target).
*/
object DebugGetBJImm
{
def apply(inst: UInt): UInt = {
// TODO Chisel not sure why this won't compile
//val csignals =
//rocket.DecodeLogic(inst,
// List(Bool(false), Bool(false)),
// Array(
// BEQ -> List(Bool(true ), Bool(false)),
// BNE -> List(Bool(true ), Bool(false)),
// BGE -> List(Bool(true ), Bool(false)),
// BGEU -> List(Bool(true ), Bool(false)),
// BLT -> List(Bool(true ), Bool(false)),
// BLTU -> List(Bool(true ), Bool(false))
// ))
//val is_br :: nothing :: Nil = csignals
val is_br = (inst(6,0) === "b1100011".U)
val br_targ = Cat(Fill(12, inst(31)), Fill(8,inst(31)), inst(7), inst(30,25), inst(11,8), 0.U(1.W))
val jal_targ= Cat(Fill(12, inst(31)), inst(19,12), inst(20), inst(30,25), inst(24,21), 0.U(1.W))
Mux(is_br, br_targ, jal_targ)
}
}
/**
* Object to return the lowest bit position after the head.
*/
object AgePriorityEncoder
{
def apply(in: Seq[Bool], head: UInt): UInt = {
val n = in.size
val width = log2Ceil(in.size)
val n_padded = 1 << width
val temp_vec = (0 until n_padded).map(i => if (i < n) in(i) && i.U >= head else false.B) ++ in
val idx = PriorityEncoder(temp_vec)
idx(width-1, 0) //discard msb
}
}
/**
* Object to determine whether queue
* index i0 is older than index i1.
*/
object IsOlder
{
def apply(i0: UInt, i1: UInt, head: UInt) = ((i0 < i1) ^ (i0 < head) ^ (i1 < head))
}
/**
* Set all bits at or below the highest order '1'.
*/
object MaskLower
{
def apply(in: UInt) = {
val n = in.getWidth
(0 until n).map(i => in >> i.U).reduce(_|_)
}
}
/**
* Set all bits at or above the lowest order '1'.
*/
object MaskUpper
{
def apply(in: UInt) = {
val n = in.getWidth
(0 until n).map(i => (in << i.U)(n-1,0)).reduce(_|_)
}
}
/**
* Transpose a matrix of Chisel Vecs.
*/
object Transpose
{
def apply[T <: chisel3.Data](in: Vec[Vec[T]]) = {
val n = in(0).size
VecInit((0 until n).map(i => VecInit(in.map(row => row(i)))))
}
}
/**
* N-wide one-hot priority encoder.
*/
object SelectFirstN
{
def apply(in: UInt, n: Int) = {
val sels = Wire(Vec(n, UInt(in.getWidth.W)))
var mask = in
for (i <- 0 until n) {
sels(i) := PriorityEncoderOH(mask)
mask = mask & ~sels(i)
}
sels
}
}
/**
* Connect the first k of n valid input interfaces to k output interfaces.
*/
class Compactor[T <: chisel3.Data](n: Int, k: Int, gen: T) extends Module
{
require(n >= k)
val io = IO(new Bundle {
val in = Vec(n, Flipped(DecoupledIO(gen)))
val out = Vec(k, DecoupledIO(gen))
})
if (n == k) {
io.out <> io.in
} else {
val counts = io.in.map(_.valid).scanLeft(1.U(k.W)) ((c,e) => Mux(e, (c<<1)(k-1,0), c))
val sels = Transpose(VecInit(counts map (c => VecInit(c.asBools)))) map (col =>
(col zip io.in.map(_.valid)) map {case (c,v) => c && v})
val in_readys = counts map (row => (row.asBools zip io.out.map(_.ready)) map {case (c,r) => c && r} reduce (_||_))
val out_valids = sels map (col => col.reduce(_||_))
val out_data = sels map (s => Mux1H(s, io.in.map(_.bits)))
in_readys zip io.in foreach {case (r,i) => i.ready := r}
out_valids zip out_data zip io.out foreach {case ((v,d),o) => o.valid := v; o.bits := d}
}
}
/**
* Create a queue that can be killed with a branch kill signal.
* Assumption: enq.valid only high if not killed by branch (so don't check IsKilled on io.enq).
*/
class BranchKillableQueue[T <: boom.v3.common.HasBoomUOP](gen: T, entries: Int, flush_fn: boom.v3.common.MicroOp => Bool = u => true.B, flow: Boolean = true)
(implicit p: org.chipsalliance.cde.config.Parameters)
extends boom.v3.common.BoomModule()(p)
with boom.v3.common.HasBoomCoreParameters
{
val io = IO(new Bundle {
val enq = Flipped(Decoupled(gen))
val deq = Decoupled(gen)
val brupdate = Input(new BrUpdateInfo())
val flush = Input(Bool())
val empty = Output(Bool())
val count = Output(UInt(log2Ceil(entries).W))
})
val ram = Mem(entries, gen)
val valids = RegInit(VecInit(Seq.fill(entries) {false.B}))
val uops = Reg(Vec(entries, new MicroOp))
val enq_ptr = Counter(entries)
val deq_ptr = Counter(entries)
val maybe_full = RegInit(false.B)
val ptr_match = enq_ptr.value === deq_ptr.value
io.empty := ptr_match && !maybe_full
val full = ptr_match && maybe_full
val do_enq = WireInit(io.enq.fire)
val do_deq = WireInit((io.deq.ready || !valids(deq_ptr.value)) && !io.empty)
for (i <- 0 until entries) {
val mask = uops(i).br_mask
val uop = uops(i)
valids(i) := valids(i) && !IsKilledByBranch(io.brupdate, mask) && !(io.flush && flush_fn(uop))
when (valids(i)) {
uops(i).br_mask := GetNewBrMask(io.brupdate, mask)
}
}
when (do_enq) {
ram(enq_ptr.value) := io.enq.bits
valids(enq_ptr.value) := true.B //!IsKilledByBranch(io.brupdate, io.enq.bits.uop)
uops(enq_ptr.value) := io.enq.bits.uop
uops(enq_ptr.value).br_mask := GetNewBrMask(io.brupdate, io.enq.bits.uop)
enq_ptr.inc()
}
when (do_deq) {
valids(deq_ptr.value) := false.B
deq_ptr.inc()
}
when (do_enq =/= do_deq) {
maybe_full := do_enq
}
io.enq.ready := !full
val out = Wire(gen)
out := ram(deq_ptr.value)
out.uop := uops(deq_ptr.value)
io.deq.valid := !io.empty && valids(deq_ptr.value) && !IsKilledByBranch(io.brupdate, out.uop) && !(io.flush && flush_fn(out.uop))
io.deq.bits := out
io.deq.bits.uop.br_mask := GetNewBrMask(io.brupdate, out.uop)
// For flow queue behavior.
if (flow) {
when (io.empty) {
io.deq.valid := io.enq.valid //&& !IsKilledByBranch(io.brupdate, io.enq.bits.uop)
io.deq.bits := io.enq.bits
io.deq.bits.uop.br_mask := GetNewBrMask(io.brupdate, io.enq.bits.uop)
do_deq := false.B
when (io.deq.ready) { do_enq := false.B }
}
}
private val ptr_diff = enq_ptr.value - deq_ptr.value
if (isPow2(entries)) {
io.count := Cat(maybe_full && ptr_match, ptr_diff)
}
else {
io.count := Mux(ptr_match,
Mux(maybe_full,
entries.asUInt, 0.U),
Mux(deq_ptr.value > enq_ptr.value,
entries.asUInt + ptr_diff, ptr_diff))
}
}
// ------------------------------------------
// Printf helper functions
// ------------------------------------------
object BoolToChar
{
/**
* Take in a Chisel Bool and convert it into a Str
* based on the Chars given
*
* @param c_bool Chisel Bool
* @param trueChar Scala Char if bool is true
* @param falseChar Scala Char if bool is false
* @return UInt ASCII Char for "trueChar" or "falseChar"
*/
def apply(c_bool: Bool, trueChar: Char, falseChar: Char = '-'): UInt = {
Mux(c_bool, Str(trueChar), Str(falseChar))
}
}
object CfiTypeToChars
{
/**
* Get a Vec of Strs that can be used for printing
*
* @param cfi_type specific cfi type
* @return Vec of Strs (must be indexed to get specific char)
*/
def apply(cfi_type: UInt) = {
val strings = Seq("----", "BR ", "JAL ", "JALR")
val multiVec = VecInit(for(string <- strings) yield { VecInit(for (c <- string) yield { Str(c) }) })
multiVec(cfi_type)
}
}
object BpdTypeToChars
{
/**
* Get a Vec of Strs that can be used for printing
*
* @param bpd_type specific bpd type
* @return Vec of Strs (must be indexed to get specific char)
*/
def apply(bpd_type: UInt) = {
val strings = Seq("BR ", "JUMP", "----", "RET ", "----", "CALL", "----", "----")
val multiVec = VecInit(for(string <- strings) yield { VecInit(for (c <- string) yield { Str(c) }) })
multiVec(bpd_type)
}
}
object RobTypeToChars
{
/**
* Get a Vec of Strs that can be used for printing
*
* @param rob_type specific rob type
* @return Vec of Strs (must be indexed to get specific char)
*/
def apply(rob_type: UInt) = {
val strings = Seq("RST", "NML", "RBK", " WT")
val multiVec = VecInit(for(string <- strings) yield { VecInit(for (c <- string) yield { Str(c) }) })
multiVec(rob_type)
}
}
object XRegToChars
{
/**
* Get a Vec of Strs that can be used for printing
*
* @param xreg specific register number
* @return Vec of Strs (must be indexed to get specific char)
*/
def apply(xreg: UInt) = {
val strings = Seq(" x0", " ra", " sp", " gp",
" tp", " t0", " t1", " t2",
" s0", " s1", " a0", " a1",
" a2", " a3", " a4", " a5",
" a6", " a7", " s2", " s3",
" s4", " s5", " s6", " s7",
" s8", " s9", "s10", "s11",
" t3", " t4", " t5", " t6")
val multiVec = VecInit(for(string <- strings) yield { VecInit(for (c <- string) yield { Str(c) }) })
multiVec(xreg)
}
}
object FPRegToChars
{
/**
* Get a Vec of Strs that can be used for printing
*
* @param fpreg specific register number
* @return Vec of Strs (must be indexed to get specific char)
*/
def apply(fpreg: UInt) = {
val strings = Seq(" ft0", " ft1", " ft2", " ft3",
" ft4", " ft5", " ft6", " ft7",
" fs0", " fs1", " fa0", " fa1",
" fa2", " fa3", " fa4", " fa5",
" fa6", " fa7", " fs2", " fs3",
" fs4", " fs5", " fs6", " fs7",
" fs8", " fs9", "fs10", "fs11",
" ft8", " ft9", "ft10", "ft11")
val multiVec = VecInit(for(string <- strings) yield { VecInit(for (c <- string) yield { Str(c) }) })
multiVec(fpreg)
}
}
object BoomCoreStringPrefix
{
/**
* Add prefix to BOOM strings (currently only adds the hartId)
*
* @param strs list of strings
* @return String combining the list with the prefix per line
*/
def apply(strs: String*)(implicit p: Parameters) = {
val prefix = "[C" + s"${p(TileKey).tileId}" + "] "
strs.map(str => prefix + str + "\n").mkString("")
}
}
File tage.scala:
package boom.v3.ifu
import chisel3._
import chisel3.util._
import org.chipsalliance.cde.config.{Field, Parameters}
import freechips.rocketchip.diplomacy._
import freechips.rocketchip.tilelink._
import boom.v3.common._
import boom.v3.util.{BoomCoreStringPrefix, MaskLower, WrapInc}
import scala.math.min
class TageResp extends Bundle {
val ctr = UInt(3.W)
val u = UInt(2.W)
}
class TageTable(val nRows: Int, val tagSz: Int, val histLength: Int, val uBitPeriod: Int)
(implicit p: Parameters) extends BoomModule()(p)
with HasBoomFrontendParameters
{
require(histLength <= globalHistoryLength)
val nWrBypassEntries = 2
val io = IO( new Bundle {
val f1_req_valid = Input(Bool())
val f1_req_pc = Input(UInt(vaddrBitsExtended.W))
val f1_req_ghist = Input(UInt(globalHistoryLength.W))
val f3_resp = Output(Vec(bankWidth, Valid(new TageResp)))
val update_mask = Input(Vec(bankWidth, Bool()))
val update_taken = Input(Vec(bankWidth, Bool()))
val update_alloc = Input(Vec(bankWidth, Bool()))
val update_old_ctr = Input(Vec(bankWidth, UInt(3.W)))
val update_pc = Input(UInt())
val update_hist = Input(UInt())
val update_u_mask = Input(Vec(bankWidth, Bool()))
val update_u = Input(Vec(bankWidth, UInt(2.W)))
})
def compute_folded_hist(hist: UInt, l: Int) = {
val nChunks = (histLength + l - 1) / l
val hist_chunks = (0 until nChunks) map {i =>
hist(min((i+1)*l, histLength)-1, i*l)
}
hist_chunks.reduce(_^_)
}
def compute_tag_and_hash(unhashed_idx: UInt, hist: UInt) = {
val idx_history = compute_folded_hist(hist, log2Ceil(nRows))
val idx = (unhashed_idx ^ idx_history)(log2Ceil(nRows)-1,0)
val tag_history = compute_folded_hist(hist, tagSz)
val tag = ((unhashed_idx >> log2Ceil(nRows)) ^ tag_history)(tagSz-1,0)
(idx, tag)
}
def inc_ctr(ctr: UInt, taken: Bool): UInt = {
Mux(!taken, Mux(ctr === 0.U, 0.U, ctr - 1.U),
Mux(ctr === 7.U, 7.U, ctr + 1.U))
}
val doing_reset = RegInit(true.B)
val reset_idx = RegInit(0.U(log2Ceil(nRows).W))
reset_idx := reset_idx + doing_reset
when (reset_idx === (nRows-1).U) { doing_reset := false.B }
class TageEntry extends Bundle {
val valid = Bool() // TODO: Remove this valid bit
val tag = UInt(tagSz.W)
val ctr = UInt(3.W)
}
val tageEntrySz = 1 + tagSz + 3
val (s1_hashed_idx, s1_tag) = compute_tag_and_hash(fetchIdx(io.f1_req_pc), io.f1_req_ghist)
val hi_us = SyncReadMem(nRows, Vec(bankWidth, Bool()))
val lo_us = SyncReadMem(nRows, Vec(bankWidth, Bool()))
val table = SyncReadMem(nRows, Vec(bankWidth, UInt(tageEntrySz.W)))
val mems = Seq((f"tage_l$histLength", nRows, bankWidth * tageEntrySz))
val s2_tag = RegNext(s1_tag)
val s2_req_rtage = VecInit(table.read(s1_hashed_idx, io.f1_req_valid).map(_.asTypeOf(new TageEntry)))
val s2_req_rhius = hi_us.read(s1_hashed_idx, io.f1_req_valid)
val s2_req_rlous = lo_us.read(s1_hashed_idx, io.f1_req_valid)
val s2_req_rhits = VecInit(s2_req_rtage.map(e => e.valid && e.tag === s2_tag && !doing_reset))
for (w <- 0 until bankWidth) {
// This bit indicates the TAGE table matched here
io.f3_resp(w).valid := RegNext(s2_req_rhits(w))
io.f3_resp(w).bits.u := RegNext(Cat(s2_req_rhius(w), s2_req_rlous(w)))
io.f3_resp(w).bits.ctr := RegNext(s2_req_rtage(w).ctr)
}
val clear_u_ctr = RegInit(0.U((log2Ceil(uBitPeriod) + log2Ceil(nRows) + 1).W))
when (doing_reset) { clear_u_ctr := 1.U } .otherwise { clear_u_ctr := clear_u_ctr + 1.U }
val doing_clear_u = clear_u_ctr(log2Ceil(uBitPeriod)-1,0) === 0.U
val doing_clear_u_hi = doing_clear_u && clear_u_ctr(log2Ceil(uBitPeriod) + log2Ceil(nRows)) === 1.U
val doing_clear_u_lo = doing_clear_u && clear_u_ctr(log2Ceil(uBitPeriod) + log2Ceil(nRows)) === 0.U
val clear_u_idx = clear_u_ctr >> log2Ceil(uBitPeriod)
val (update_idx, update_tag) = compute_tag_and_hash(fetchIdx(io.update_pc), io.update_hist)
val update_wdata = Wire(Vec(bankWidth, new TageEntry))
table.write(
Mux(doing_reset, reset_idx , update_idx),
Mux(doing_reset, VecInit(Seq.fill(bankWidth) { 0.U(tageEntrySz.W) }), VecInit(update_wdata.map(_.asUInt))),
Mux(doing_reset, ~(0.U(bankWidth.W)) , io.update_mask.asUInt).asBools
)
val update_hi_wdata = Wire(Vec(bankWidth, Bool()))
hi_us.write(
Mux(doing_reset, reset_idx, Mux(doing_clear_u_hi, clear_u_idx, update_idx)),
Mux(doing_reset || doing_clear_u_hi, VecInit((0.U(bankWidth.W)).asBools), update_hi_wdata),
Mux(doing_reset || doing_clear_u_hi, ~(0.U(bankWidth.W)), io.update_u_mask.asUInt).asBools
)
val update_lo_wdata = Wire(Vec(bankWidth, Bool()))
lo_us.write(
Mux(doing_reset, reset_idx, Mux(doing_clear_u_lo, clear_u_idx, update_idx)),
Mux(doing_reset || doing_clear_u_lo, VecInit((0.U(bankWidth.W)).asBools), update_lo_wdata),
Mux(doing_reset || doing_clear_u_lo, ~(0.U(bankWidth.W)), io.update_u_mask.asUInt).asBools
)
val wrbypass_tags = Reg(Vec(nWrBypassEntries, UInt(tagSz.W)))
val wrbypass_idxs = Reg(Vec(nWrBypassEntries, UInt(log2Ceil(nRows).W)))
val wrbypass = Reg(Vec(nWrBypassEntries, Vec(bankWidth, UInt(3.W))))
val wrbypass_enq_idx = RegInit(0.U(log2Ceil(nWrBypassEntries).W))
val wrbypass_hits = VecInit((0 until nWrBypassEntries) map { i =>
!doing_reset &&
wrbypass_tags(i) === update_tag &&
wrbypass_idxs(i) === update_idx
})
val wrbypass_hit = wrbypass_hits.reduce(_||_)
val wrbypass_hit_idx = PriorityEncoder(wrbypass_hits)
for (w <- 0 until bankWidth) {
update_wdata(w).ctr := Mux(io.update_alloc(w),
Mux(io.update_taken(w), 4.U,
3.U
),
Mux(wrbypass_hit, inc_ctr(wrbypass(wrbypass_hit_idx)(w), io.update_taken(w)),
inc_ctr(io.update_old_ctr(w), io.update_taken(w))
)
)
update_wdata(w).valid := true.B
update_wdata(w).tag := update_tag
update_hi_wdata(w) := io.update_u(w)(1)
update_lo_wdata(w) := io.update_u(w)(0)
}
when (io.update_mask.reduce(_||_)) {
when (wrbypass_hits.reduce(_||_)) {
wrbypass(wrbypass_hit_idx) := VecInit(update_wdata.map(_.ctr))
} .otherwise {
wrbypass (wrbypass_enq_idx) := VecInit(update_wdata.map(_.ctr))
wrbypass_tags(wrbypass_enq_idx) := update_tag
wrbypass_idxs(wrbypass_enq_idx) := update_idx
wrbypass_enq_idx := WrapInc(wrbypass_enq_idx, nWrBypassEntries)
}
}
}
case class BoomTageParams(
// nSets, histLen, tagSz
tableInfo: Seq[Tuple3[Int, Int, Int]] = Seq(( 128, 2, 7),
( 128, 4, 7),
( 256, 8, 8),
( 256, 16, 8),
( 128, 32, 9),
( 128, 64, 9)),
uBitPeriod: Int = 2048
)
class TageBranchPredictorBank(params: BoomTageParams = BoomTageParams())(implicit p: Parameters) extends BranchPredictorBank()(p)
{
val tageUBitPeriod = params.uBitPeriod
val tageNTables = params.tableInfo.size
class TageMeta extends Bundle
{
val provider = Vec(bankWidth, Valid(UInt(log2Ceil(tageNTables).W)))
val alt_differs = Vec(bankWidth, Output(Bool()))
val provider_u = Vec(bankWidth, Output(UInt(2.W)))
val provider_ctr = Vec(bankWidth, Output(UInt(3.W)))
val allocate = Vec(bankWidth, Valid(UInt(log2Ceil(tageNTables).W)))
}
val f3_meta = Wire(new TageMeta)
override val metaSz = f3_meta.asUInt.getWidth
require(metaSz <= bpdMaxMetaLength)
def inc_u(u: UInt, alt_differs: Bool, mispredict: Bool): UInt = {
Mux(!alt_differs, u,
Mux(mispredict, Mux(u === 0.U, 0.U, u - 1.U),
Mux(u === 3.U, 3.U, u + 1.U)))
}
val tt = params.tableInfo map {
case (n, l, s) => {
val t = Module(new TageTable(n, s, l, params.uBitPeriod))
t.io.f1_req_valid := RegNext(io.f0_valid)
t.io.f1_req_pc := RegNext(io.f0_pc)
t.io.f1_req_ghist := io.f1_ghist
(t, t.mems)
}
}
val tables = tt.map(_._1)
val mems = tt.map(_._2).flatten
val f3_resps = VecInit(tables.map(_.io.f3_resp))
val s1_update_meta = s1_update.bits.meta.asTypeOf(new TageMeta)
val s1_update_mispredict_mask = UIntToOH(s1_update.bits.cfi_idx.bits) &
Fill(bankWidth, s1_update.bits.cfi_mispredicted)
val s1_update_mask = WireInit((0.U).asTypeOf(Vec(tageNTables, Vec(bankWidth, Bool()))))
val s1_update_u_mask = WireInit((0.U).asTypeOf(Vec(tageNTables, Vec(bankWidth, UInt(1.W)))))
val s1_update_taken = Wire(Vec(tageNTables, Vec(bankWidth, Bool())))
val s1_update_old_ctr = Wire(Vec(tageNTables, Vec(bankWidth, UInt(3.W))))
val s1_update_alloc = Wire(Vec(tageNTables, Vec(bankWidth, Bool())))
val s1_update_u = Wire(Vec(tageNTables, Vec(bankWidth, UInt(2.W))))
s1_update_taken := DontCare
s1_update_old_ctr := DontCare
s1_update_alloc := DontCare
s1_update_u := DontCare
for (w <- 0 until bankWidth) {
var altpred = io.resp_in(0).f3(w).taken
val final_altpred = WireInit(io.resp_in(0).f3(w).taken)
var provided = false.B
var provider = 0.U
io.resp.f3(w).taken := io.resp_in(0).f3(w).taken
for (i <- 0 until tageNTables) {
val hit = f3_resps(i)(w).valid
val ctr = f3_resps(i)(w).bits.ctr
when (hit) {
io.resp.f3(w).taken := Mux(ctr === 3.U || ctr === 4.U, altpred, ctr(2))
final_altpred := altpred
}
provided = provided || hit
provider = Mux(hit, i.U, provider)
altpred = Mux(hit, f3_resps(i)(w).bits.ctr(2), altpred)
}
f3_meta.provider(w).valid := provided
f3_meta.provider(w).bits := provider
f3_meta.alt_differs(w) := final_altpred =/= io.resp.f3(w).taken
f3_meta.provider_u(w) := f3_resps(provider)(w).bits.u
f3_meta.provider_ctr(w) := f3_resps(provider)(w).bits.ctr
// Create a mask of tables which did not hit our query, and also contain useless entries
// and also uses a longer history than the provider
val allocatable_slots = (
VecInit(f3_resps.map(r => !r(w).valid && r(w).bits.u === 0.U)).asUInt &
~(MaskLower(UIntToOH(provider)) & Fill(tageNTables, provided))
)
val alloc_lfsr = random.LFSR(tageNTables max 2)
val first_entry = PriorityEncoder(allocatable_slots)
val masked_entry = PriorityEncoder(allocatable_slots & alloc_lfsr)
val alloc_entry = Mux(allocatable_slots(masked_entry),
masked_entry,
first_entry)
f3_meta.allocate(w).valid := allocatable_slots =/= 0.U
f3_meta.allocate(w).bits := alloc_entry
val update_was_taken = (s1_update.bits.cfi_idx.valid &&
(s1_update.bits.cfi_idx.bits === w.U) &&
s1_update.bits.cfi_taken)
when (s1_update.bits.br_mask(w) && s1_update.valid && s1_update.bits.is_commit_update) {
when (s1_update_meta.provider(w).valid) {
val provider = s1_update_meta.provider(w).bits
s1_update_mask(provider)(w) := true.B
s1_update_u_mask(provider)(w) := true.B
val new_u = inc_u(s1_update_meta.provider_u(w),
s1_update_meta.alt_differs(w),
s1_update_mispredict_mask(w))
s1_update_u (provider)(w) := new_u
s1_update_taken (provider)(w) := update_was_taken
s1_update_old_ctr(provider)(w) := s1_update_meta.provider_ctr(w)
s1_update_alloc (provider)(w) := false.B
}
}
}
when (s1_update.valid && s1_update.bits.is_commit_update && s1_update.bits.cfi_mispredicted && s1_update.bits.cfi_idx.valid) {
val idx = s1_update.bits.cfi_idx.bits
val allocate = s1_update_meta.allocate(idx)
when (allocate.valid) {
s1_update_mask (allocate.bits)(idx) := true.B
s1_update_taken(allocate.bits)(idx) := s1_update.bits.cfi_taken
s1_update_alloc(allocate.bits)(idx) := true.B
s1_update_u_mask(allocate.bits)(idx) := true.B
s1_update_u (allocate.bits)(idx) := 0.U
} .otherwise {
val provider = s1_update_meta.provider(idx)
val decr_mask = Mux(provider.valid, ~MaskLower(UIntToOH(provider.bits)), 0.U)
for (i <- 0 until tageNTables) {
when (decr_mask(i)) {
s1_update_u_mask(i)(idx) := true.B
s1_update_u (i)(idx) := 0.U
}
}
}
}
for (i <- 0 until tageNTables) {
for (w <- 0 until bankWidth) {
tables(i).io.update_mask(w) := RegNext(s1_update_mask(i)(w))
tables(i).io.update_taken(w) := RegNext(s1_update_taken(i)(w))
tables(i).io.update_alloc(w) := RegNext(s1_update_alloc(i)(w))
tables(i).io.update_old_ctr(w) := RegNext(s1_update_old_ctr(i)(w))
tables(i).io.update_u_mask(w) := RegNext(s1_update_u_mask(i)(w))
tables(i).io.update_u(w) := RegNext(s1_update_u(i)(w))
}
tables(i).io.update_pc := RegNext(s1_update.bits.pc)
tables(i).io.update_hist := RegNext(s1_update.bits.ghist)
}
//io.f3_meta := Cat(f3_meta.asUInt, micro.io.f3_meta(micro.metaSz-1,0), base.io.f3_meta(base.metaSz-1, 0))
io.f3_meta := f3_meta.asUInt
}
| module TageTable_7( // @[tage.scala:24:7]
input clock, // @[tage.scala:24:7]
input reset, // @[tage.scala:24:7]
input io_f1_req_valid, // @[tage.scala:31:14]
input [39:0] io_f1_req_pc, // @[tage.scala:31:14]
input [63:0] io_f1_req_ghist, // @[tage.scala:31:14]
output io_f3_resp_0_valid, // @[tage.scala:31:14]
output [2:0] io_f3_resp_0_bits_ctr, // @[tage.scala:31:14]
output [1:0] io_f3_resp_0_bits_u, // @[tage.scala:31:14]
output io_f3_resp_1_valid, // @[tage.scala:31:14]
output [2:0] io_f3_resp_1_bits_ctr, // @[tage.scala:31:14]
output [1:0] io_f3_resp_1_bits_u, // @[tage.scala:31:14]
output io_f3_resp_2_valid, // @[tage.scala:31:14]
output [2:0] io_f3_resp_2_bits_ctr, // @[tage.scala:31:14]
output [1:0] io_f3_resp_2_bits_u, // @[tage.scala:31:14]
output io_f3_resp_3_valid, // @[tage.scala:31:14]
output [2:0] io_f3_resp_3_bits_ctr, // @[tage.scala:31:14]
output [1:0] io_f3_resp_3_bits_u, // @[tage.scala:31:14]
input io_update_mask_0, // @[tage.scala:31:14]
input io_update_mask_1, // @[tage.scala:31:14]
input io_update_mask_2, // @[tage.scala:31:14]
input io_update_mask_3, // @[tage.scala:31:14]
input io_update_taken_0, // @[tage.scala:31:14]
input io_update_taken_1, // @[tage.scala:31:14]
input io_update_taken_2, // @[tage.scala:31:14]
input io_update_taken_3, // @[tage.scala:31:14]
input io_update_alloc_0, // @[tage.scala:31:14]
input io_update_alloc_1, // @[tage.scala:31:14]
input io_update_alloc_2, // @[tage.scala:31:14]
input io_update_alloc_3, // @[tage.scala:31:14]
input [2:0] io_update_old_ctr_0, // @[tage.scala:31:14]
input [2:0] io_update_old_ctr_1, // @[tage.scala:31:14]
input [2:0] io_update_old_ctr_2, // @[tage.scala:31:14]
input [2:0] io_update_old_ctr_3, // @[tage.scala:31:14]
input [39:0] io_update_pc, // @[tage.scala:31:14]
input [63:0] io_update_hist, // @[tage.scala:31:14]
input io_update_u_mask_0, // @[tage.scala:31:14]
input io_update_u_mask_1, // @[tage.scala:31:14]
input io_update_u_mask_2, // @[tage.scala:31:14]
input io_update_u_mask_3, // @[tage.scala:31:14]
input [1:0] io_update_u_0, // @[tage.scala:31:14]
input [1:0] io_update_u_1, // @[tage.scala:31:14]
input [1:0] io_update_u_2, // @[tage.scala:31:14]
input [1:0] io_update_u_3 // @[tage.scala:31:14]
);
wire lo_us_MPORT_2_data_3; // @[tage.scala:137:8]
wire lo_us_MPORT_2_data_2; // @[tage.scala:137:8]
wire lo_us_MPORT_2_data_1; // @[tage.scala:137:8]
wire lo_us_MPORT_2_data_0; // @[tage.scala:137:8]
wire hi_us_MPORT_1_data_3; // @[tage.scala:130:8]
wire hi_us_MPORT_1_data_2; // @[tage.scala:130:8]
wire hi_us_MPORT_1_data_1; // @[tage.scala:130:8]
wire hi_us_MPORT_1_data_0; // @[tage.scala:130:8]
wire [10:0] table_MPORT_data_3; // @[tage.scala:123:8]
wire [10:0] table_MPORT_data_2; // @[tage.scala:123:8]
wire [10:0] table_MPORT_data_1; // @[tage.scala:123:8]
wire [10:0] table_MPORT_data_0; // @[tage.scala:123:8]
wire _s2_req_rtage_WIRE_7_valid; // @[tage.scala:97:87]
wire [6:0] _s2_req_rtage_WIRE_7_tag; // @[tage.scala:97:87]
wire [2:0] _s2_req_rtage_WIRE_7_ctr; // @[tage.scala:97:87]
wire _s2_req_rtage_WIRE_5_valid; // @[tage.scala:97:87]
wire [6:0] _s2_req_rtage_WIRE_5_tag; // @[tage.scala:97:87]
wire [2:0] _s2_req_rtage_WIRE_5_ctr; // @[tage.scala:97:87]
wire _s2_req_rtage_WIRE_3_valid; // @[tage.scala:97:87]
wire [6:0] _s2_req_rtage_WIRE_3_tag; // @[tage.scala:97:87]
wire [2:0] _s2_req_rtage_WIRE_3_ctr; // @[tage.scala:97:87]
wire _s2_req_rtage_WIRE_1_valid; // @[tage.scala:97:87]
wire [6:0] _s2_req_rtage_WIRE_1_tag; // @[tage.scala:97:87]
wire [2:0] _s2_req_rtage_WIRE_1_ctr; // @[tage.scala:97:87]
wire [43:0] _table_R0_data; // @[tage.scala:91:27]
wire [3:0] _lo_us_R0_data; // @[tage.scala:90:27]
wire [3:0] _hi_us_R0_data; // @[tage.scala:89:27]
wire io_f1_req_valid_0 = io_f1_req_valid; // @[tage.scala:24:7]
wire [39:0] io_f1_req_pc_0 = io_f1_req_pc; // @[tage.scala:24:7]
wire [63:0] io_f1_req_ghist_0 = io_f1_req_ghist; // @[tage.scala:24:7]
wire io_update_mask_0_0 = io_update_mask_0; // @[tage.scala:24:7]
wire io_update_mask_1_0 = io_update_mask_1; // @[tage.scala:24:7]
wire io_update_mask_2_0 = io_update_mask_2; // @[tage.scala:24:7]
wire io_update_mask_3_0 = io_update_mask_3; // @[tage.scala:24:7]
wire io_update_taken_0_0 = io_update_taken_0; // @[tage.scala:24:7]
wire io_update_taken_1_0 = io_update_taken_1; // @[tage.scala:24:7]
wire io_update_taken_2_0 = io_update_taken_2; // @[tage.scala:24:7]
wire io_update_taken_3_0 = io_update_taken_3; // @[tage.scala:24:7]
wire io_update_alloc_0_0 = io_update_alloc_0; // @[tage.scala:24:7]
wire io_update_alloc_1_0 = io_update_alloc_1; // @[tage.scala:24:7]
wire io_update_alloc_2_0 = io_update_alloc_2; // @[tage.scala:24:7]
wire io_update_alloc_3_0 = io_update_alloc_3; // @[tage.scala:24:7]
wire [2:0] io_update_old_ctr_0_0 = io_update_old_ctr_0; // @[tage.scala:24:7]
wire [2:0] io_update_old_ctr_1_0 = io_update_old_ctr_1; // @[tage.scala:24:7]
wire [2:0] io_update_old_ctr_2_0 = io_update_old_ctr_2; // @[tage.scala:24:7]
wire [2:0] io_update_old_ctr_3_0 = io_update_old_ctr_3; // @[tage.scala:24:7]
wire [39:0] io_update_pc_0 = io_update_pc; // @[tage.scala:24:7]
wire [63:0] io_update_hist_0 = io_update_hist; // @[tage.scala:24:7]
wire io_update_u_mask_0_0 = io_update_u_mask_0; // @[tage.scala:24:7]
wire io_update_u_mask_1_0 = io_update_u_mask_1; // @[tage.scala:24:7]
wire io_update_u_mask_2_0 = io_update_u_mask_2; // @[tage.scala:24:7]
wire io_update_u_mask_3_0 = io_update_u_mask_3; // @[tage.scala:24:7]
wire [1:0] io_update_u_0_0 = io_update_u_0; // @[tage.scala:24:7]
wire [1:0] io_update_u_1_0 = io_update_u_1; // @[tage.scala:24:7]
wire [1:0] io_update_u_2_0 = io_update_u_2; // @[tage.scala:24:7]
wire [1:0] io_update_u_3_0 = io_update_u_3; // @[tage.scala:24:7]
wire update_wdata_0_valid = 1'h1; // @[tage.scala:119:26]
wire update_wdata_1_valid = 1'h1; // @[tage.scala:119:26]
wire update_wdata_2_valid = 1'h1; // @[tage.scala:119:26]
wire update_wdata_3_valid = 1'h1; // @[tage.scala:119:26]
wire [2:0] io_f3_resp_0_bits_ctr_0; // @[tage.scala:24:7]
wire [1:0] io_f3_resp_0_bits_u_0; // @[tage.scala:24:7]
wire io_f3_resp_0_valid_0; // @[tage.scala:24:7]
wire [2:0] io_f3_resp_1_bits_ctr_0; // @[tage.scala:24:7]
wire [1:0] io_f3_resp_1_bits_u_0; // @[tage.scala:24:7]
wire io_f3_resp_1_valid_0; // @[tage.scala:24:7]
wire [2:0] io_f3_resp_2_bits_ctr_0; // @[tage.scala:24:7]
wire [1:0] io_f3_resp_2_bits_u_0; // @[tage.scala:24:7]
wire io_f3_resp_2_valid_0; // @[tage.scala:24:7]
wire [2:0] io_f3_resp_3_bits_ctr_0; // @[tage.scala:24:7]
wire [1:0] io_f3_resp_3_bits_u_0; // @[tage.scala:24:7]
wire io_f3_resp_3_valid_0; // @[tage.scala:24:7]
reg doing_reset; // @[tage.scala:72:28]
reg [6:0] reset_idx; // @[tage.scala:73:26]
wire [7:0] _reset_idx_T = {1'h0, reset_idx} + {7'h0, doing_reset}; // @[tage.scala:72:28, :73:26, :74:26]
wire [6:0] _reset_idx_T_1 = _reset_idx_T[6:0]; // @[tage.scala:74:26]
wire [3:0] idx_history = io_f1_req_ghist_0[3:0]; // @[tage.scala:24:7, :53:11]
wire [3:0] tag_history = io_f1_req_ghist_0[3:0]; // @[tage.scala:24:7, :53:11]
wire [35:0] _idx_T = {io_f1_req_pc_0[39:8], io_f1_req_pc_0[7:4] ^ idx_history}; // @[frontend.scala:162:35]
wire [6:0] s1_hashed_idx = _idx_T[6:0]; // @[tage.scala:60:{29,43}]
wire [6:0] _s2_req_rtage_WIRE = s1_hashed_idx; // @[tage.scala:60:43, :97:40]
wire [6:0] _s2_req_rhius_WIRE = s1_hashed_idx; // @[tage.scala:60:43, :98:32]
wire [6:0] _s2_req_rlous_WIRE = s1_hashed_idx; // @[tage.scala:60:43, :99:32]
wire [28:0] _tag_T = io_f1_req_pc_0[39:11]; // @[frontend.scala:162:35]
wire [28:0] _tag_T_1 = {_tag_T[28:4], _tag_T[3:0] ^ tag_history}; // @[tage.scala:53:11, :62:{30,50}]
wire [6:0] s1_tag = _tag_T_1[6:0]; // @[tage.scala:62:{50,64}]
wire [10:0] _s2_req_rtage_WIRE_2 = _table_R0_data[10:0]; // @[tage.scala:91:27, :97:87]
wire [10:0] _s2_req_rtage_WIRE_4 = _table_R0_data[21:11]; // @[tage.scala:91:27, :97:87]
wire [10:0] _s2_req_rtage_WIRE_6 = _table_R0_data[32:22]; // @[tage.scala:91:27, :97:87]
wire [10:0] _s2_req_rtage_WIRE_8 = _table_R0_data[43:33]; // @[tage.scala:91:27, :97:87]
reg [6:0] s2_tag; // @[tage.scala:95:29]
wire _s2_req_rtage_T_2; // @[tage.scala:97:87]
wire [6:0] _s2_req_rtage_T_1; // @[tage.scala:97:87]
wire s2_req_rtage_0_valid = _s2_req_rtage_WIRE_1_valid; // @[tage.scala:97:{29,87}]
wire [2:0] _s2_req_rtage_T; // @[tage.scala:97:87]
wire [6:0] s2_req_rtage_0_tag = _s2_req_rtage_WIRE_1_tag; // @[tage.scala:97:{29,87}]
wire [2:0] s2_req_rtage_0_ctr = _s2_req_rtage_WIRE_1_ctr; // @[tage.scala:97:{29,87}]
assign _s2_req_rtage_T = _s2_req_rtage_WIRE_2[2:0]; // @[tage.scala:97:87]
assign _s2_req_rtage_WIRE_1_ctr = _s2_req_rtage_T; // @[tage.scala:97:87]
assign _s2_req_rtage_T_1 = _s2_req_rtage_WIRE_2[9:3]; // @[tage.scala:97:87]
assign _s2_req_rtage_WIRE_1_tag = _s2_req_rtage_T_1; // @[tage.scala:97:87]
assign _s2_req_rtage_T_2 = _s2_req_rtage_WIRE_2[10]; // @[tage.scala:97:87]
assign _s2_req_rtage_WIRE_1_valid = _s2_req_rtage_T_2; // @[tage.scala:97:87]
wire _s2_req_rtage_T_5; // @[tage.scala:97:87]
wire [6:0] _s2_req_rtage_T_4; // @[tage.scala:97:87]
wire s2_req_rtage_1_valid = _s2_req_rtage_WIRE_3_valid; // @[tage.scala:97:{29,87}]
wire [2:0] _s2_req_rtage_T_3; // @[tage.scala:97:87]
wire [6:0] s2_req_rtage_1_tag = _s2_req_rtage_WIRE_3_tag; // @[tage.scala:97:{29,87}]
wire [2:0] s2_req_rtage_1_ctr = _s2_req_rtage_WIRE_3_ctr; // @[tage.scala:97:{29,87}]
assign _s2_req_rtage_T_3 = _s2_req_rtage_WIRE_4[2:0]; // @[tage.scala:97:87]
assign _s2_req_rtage_WIRE_3_ctr = _s2_req_rtage_T_3; // @[tage.scala:97:87]
assign _s2_req_rtage_T_4 = _s2_req_rtage_WIRE_4[9:3]; // @[tage.scala:97:87]
assign _s2_req_rtage_WIRE_3_tag = _s2_req_rtage_T_4; // @[tage.scala:97:87]
assign _s2_req_rtage_T_5 = _s2_req_rtage_WIRE_4[10]; // @[tage.scala:97:87]
assign _s2_req_rtage_WIRE_3_valid = _s2_req_rtage_T_5; // @[tage.scala:97:87]
wire _s2_req_rtage_T_8; // @[tage.scala:97:87]
wire [6:0] _s2_req_rtage_T_7; // @[tage.scala:97:87]
wire s2_req_rtage_2_valid = _s2_req_rtage_WIRE_5_valid; // @[tage.scala:97:{29,87}]
wire [2:0] _s2_req_rtage_T_6; // @[tage.scala:97:87]
wire [6:0] s2_req_rtage_2_tag = _s2_req_rtage_WIRE_5_tag; // @[tage.scala:97:{29,87}]
wire [2:0] s2_req_rtage_2_ctr = _s2_req_rtage_WIRE_5_ctr; // @[tage.scala:97:{29,87}]
assign _s2_req_rtage_T_6 = _s2_req_rtage_WIRE_6[2:0]; // @[tage.scala:97:87]
assign _s2_req_rtage_WIRE_5_ctr = _s2_req_rtage_T_6; // @[tage.scala:97:87]
assign _s2_req_rtage_T_7 = _s2_req_rtage_WIRE_6[9:3]; // @[tage.scala:97:87]
assign _s2_req_rtage_WIRE_5_tag = _s2_req_rtage_T_7; // @[tage.scala:97:87]
assign _s2_req_rtage_T_8 = _s2_req_rtage_WIRE_6[10]; // @[tage.scala:97:87]
assign _s2_req_rtage_WIRE_5_valid = _s2_req_rtage_T_8; // @[tage.scala:97:87]
wire _s2_req_rtage_T_11; // @[tage.scala:97:87]
wire [6:0] _s2_req_rtage_T_10; // @[tage.scala:97:87]
wire s2_req_rtage_3_valid = _s2_req_rtage_WIRE_7_valid; // @[tage.scala:97:{29,87}]
wire [2:0] _s2_req_rtage_T_9; // @[tage.scala:97:87]
wire [6:0] s2_req_rtage_3_tag = _s2_req_rtage_WIRE_7_tag; // @[tage.scala:97:{29,87}]
wire [2:0] s2_req_rtage_3_ctr = _s2_req_rtage_WIRE_7_ctr; // @[tage.scala:97:{29,87}]
assign _s2_req_rtage_T_9 = _s2_req_rtage_WIRE_8[2:0]; // @[tage.scala:97:87]
assign _s2_req_rtage_WIRE_7_ctr = _s2_req_rtage_T_9; // @[tage.scala:97:87]
assign _s2_req_rtage_T_10 = _s2_req_rtage_WIRE_8[9:3]; // @[tage.scala:97:87]
assign _s2_req_rtage_WIRE_7_tag = _s2_req_rtage_T_10; // @[tage.scala:97:87]
assign _s2_req_rtage_T_11 = _s2_req_rtage_WIRE_8[10]; // @[tage.scala:97:87]
assign _s2_req_rtage_WIRE_7_valid = _s2_req_rtage_T_11; // @[tage.scala:97:87]
wire _s2_req_rhits_T = s2_req_rtage_0_tag == s2_tag; // @[tage.scala:95:29, :97:29, :100:69]
wire _s2_req_rhits_T_1 = s2_req_rtage_0_valid & _s2_req_rhits_T; // @[tage.scala:97:29, :100:{60,69}]
wire _s2_req_rhits_T_2 = ~doing_reset; // @[tage.scala:72:28, :100:83]
wire _s2_req_rhits_T_3 = _s2_req_rhits_T_1 & _s2_req_rhits_T_2; // @[tage.scala:100:{60,80,83}]
wire s2_req_rhits_0 = _s2_req_rhits_T_3; // @[tage.scala:100:{29,80}]
wire _s2_req_rhits_T_4 = s2_req_rtage_1_tag == s2_tag; // @[tage.scala:95:29, :97:29, :100:69]
wire _s2_req_rhits_T_5 = s2_req_rtage_1_valid & _s2_req_rhits_T_4; // @[tage.scala:97:29, :100:{60,69}]
wire _s2_req_rhits_T_6 = ~doing_reset; // @[tage.scala:72:28, :100:83]
wire _s2_req_rhits_T_7 = _s2_req_rhits_T_5 & _s2_req_rhits_T_6; // @[tage.scala:100:{60,80,83}]
wire s2_req_rhits_1 = _s2_req_rhits_T_7; // @[tage.scala:100:{29,80}]
wire _s2_req_rhits_T_8 = s2_req_rtage_2_tag == s2_tag; // @[tage.scala:95:29, :97:29, :100:69]
wire _s2_req_rhits_T_9 = s2_req_rtage_2_valid & _s2_req_rhits_T_8; // @[tage.scala:97:29, :100:{60,69}]
wire _s2_req_rhits_T_10 = ~doing_reset; // @[tage.scala:72:28, :100:83]
wire _s2_req_rhits_T_11 = _s2_req_rhits_T_9 & _s2_req_rhits_T_10; // @[tage.scala:100:{60,80,83}]
wire s2_req_rhits_2 = _s2_req_rhits_T_11; // @[tage.scala:100:{29,80}]
wire _s2_req_rhits_T_12 = s2_req_rtage_3_tag == s2_tag; // @[tage.scala:95:29, :97:29, :100:69]
wire _s2_req_rhits_T_13 = s2_req_rtage_3_valid & _s2_req_rhits_T_12; // @[tage.scala:97:29, :100:{60,69}]
wire _s2_req_rhits_T_14 = ~doing_reset; // @[tage.scala:72:28, :100:83]
wire _s2_req_rhits_T_15 = _s2_req_rhits_T_13 & _s2_req_rhits_T_14; // @[tage.scala:100:{60,80,83}]
wire s2_req_rhits_3 = _s2_req_rhits_T_15; // @[tage.scala:100:{29,80}]
reg io_f3_resp_0_valid_REG; // @[tage.scala:104:38]
assign io_f3_resp_0_valid_0 = io_f3_resp_0_valid_REG; // @[tage.scala:24:7, :104:38]
wire [1:0] _io_f3_resp_0_bits_u_T = {_hi_us_R0_data[0], _lo_us_R0_data[0]}; // @[tage.scala:89:27, :90:27, :105:42]
reg [1:0] io_f3_resp_0_bits_u_REG; // @[tage.scala:105:38]
assign io_f3_resp_0_bits_u_0 = io_f3_resp_0_bits_u_REG; // @[tage.scala:24:7, :105:38]
reg [2:0] io_f3_resp_0_bits_ctr_REG; // @[tage.scala:106:38]
assign io_f3_resp_0_bits_ctr_0 = io_f3_resp_0_bits_ctr_REG; // @[tage.scala:24:7, :106:38]
reg io_f3_resp_1_valid_REG; // @[tage.scala:104:38]
assign io_f3_resp_1_valid_0 = io_f3_resp_1_valid_REG; // @[tage.scala:24:7, :104:38]
wire [1:0] _io_f3_resp_1_bits_u_T = {_hi_us_R0_data[1], _lo_us_R0_data[1]}; // @[tage.scala:89:27, :90:27, :105:42]
reg [1:0] io_f3_resp_1_bits_u_REG; // @[tage.scala:105:38]
assign io_f3_resp_1_bits_u_0 = io_f3_resp_1_bits_u_REG; // @[tage.scala:24:7, :105:38]
reg [2:0] io_f3_resp_1_bits_ctr_REG; // @[tage.scala:106:38]
assign io_f3_resp_1_bits_ctr_0 = io_f3_resp_1_bits_ctr_REG; // @[tage.scala:24:7, :106:38]
reg io_f3_resp_2_valid_REG; // @[tage.scala:104:38]
assign io_f3_resp_2_valid_0 = io_f3_resp_2_valid_REG; // @[tage.scala:24:7, :104:38]
wire [1:0] _io_f3_resp_2_bits_u_T = {_hi_us_R0_data[2], _lo_us_R0_data[2]}; // @[tage.scala:89:27, :90:27, :105:42]
reg [1:0] io_f3_resp_2_bits_u_REG; // @[tage.scala:105:38]
assign io_f3_resp_2_bits_u_0 = io_f3_resp_2_bits_u_REG; // @[tage.scala:24:7, :105:38]
reg [2:0] io_f3_resp_2_bits_ctr_REG; // @[tage.scala:106:38]
assign io_f3_resp_2_bits_ctr_0 = io_f3_resp_2_bits_ctr_REG; // @[tage.scala:24:7, :106:38]
reg io_f3_resp_3_valid_REG; // @[tage.scala:104:38]
assign io_f3_resp_3_valid_0 = io_f3_resp_3_valid_REG; // @[tage.scala:24:7, :104:38]
wire [1:0] _io_f3_resp_3_bits_u_T = {_hi_us_R0_data[3], _lo_us_R0_data[3]}; // @[tage.scala:89:27, :90:27, :105:42]
reg [1:0] io_f3_resp_3_bits_u_REG; // @[tage.scala:105:38]
assign io_f3_resp_3_bits_u_0 = io_f3_resp_3_bits_u_REG; // @[tage.scala:24:7, :105:38]
reg [2:0] io_f3_resp_3_bits_ctr_REG; // @[tage.scala:106:38]
assign io_f3_resp_3_bits_ctr_0 = io_f3_resp_3_bits_ctr_REG; // @[tage.scala:24:7, :106:38]
reg [18:0] clear_u_ctr; // @[tage.scala:109:28]
wire [19:0] _clear_u_ctr_T = {1'h0, clear_u_ctr} + 20'h1; // @[tage.scala:109:28, :110:85]
wire [18:0] _clear_u_ctr_T_1 = _clear_u_ctr_T[18:0]; // @[tage.scala:110:85]
wire [10:0] _doing_clear_u_T = clear_u_ctr[10:0]; // @[tage.scala:109:28, :112:34]
wire doing_clear_u = _doing_clear_u_T == 11'h0; // @[tage.scala:112:{34,61}]
wire _doing_clear_u_hi_T = clear_u_ctr[18]; // @[tage.scala:109:28, :113:54]
wire _doing_clear_u_lo_T = clear_u_ctr[18]; // @[tage.scala:109:28, :113:54, :114:54]
wire _doing_clear_u_hi_T_1 = _doing_clear_u_hi_T; // @[tage.scala:113:{54,95}]
wire doing_clear_u_hi = doing_clear_u & _doing_clear_u_hi_T_1; // @[tage.scala:112:61, :113:{40,95}]
wire _doing_clear_u_lo_T_1 = ~_doing_clear_u_lo_T; // @[tage.scala:114:{54,95}]
wire doing_clear_u_lo = doing_clear_u & _doing_clear_u_lo_T_1; // @[tage.scala:112:61, :114:{40,95}]
wire [7:0] clear_u_idx = clear_u_ctr[18:11]; // @[tage.scala:109:28, :115:33]
wire [3:0] idx_history_1 = io_update_hist_0[3:0]; // @[tage.scala:24:7, :53:11]
wire [3:0] tag_history_1 = io_update_hist_0[3:0]; // @[tage.scala:24:7, :53:11]
wire [35:0] _idx_T_1 = {io_update_pc_0[39:8], io_update_pc_0[7:4] ^ idx_history_1}; // @[frontend.scala:162:35]
wire [6:0] update_idx = _idx_T_1[6:0]; // @[tage.scala:60:{29,43}]
wire [28:0] _tag_T_2 = io_update_pc_0[39:11]; // @[frontend.scala:162:35]
wire [28:0] _tag_T_3 = {_tag_T_2[28:4], _tag_T_2[3:0] ^ tag_history_1}; // @[tage.scala:53:11, :62:{30,50}]
wire [6:0] update_tag = _tag_T_3[6:0]; // @[tage.scala:62:{50,64}]
wire [6:0] update_wdata_0_tag = update_tag; // @[tage.scala:62:64, :119:26]
wire [6:0] update_wdata_1_tag = update_tag; // @[tage.scala:62:64, :119:26]
wire [6:0] update_wdata_2_tag = update_tag; // @[tage.scala:62:64, :119:26]
wire [6:0] update_wdata_3_tag = update_tag; // @[tage.scala:62:64, :119:26]
wire [2:0] _update_wdata_0_ctr_T_22; // @[tage.scala:155:33]
wire [2:0] _update_wdata_1_ctr_T_22; // @[tage.scala:155:33]
wire [2:0] _update_wdata_2_ctr_T_22; // @[tage.scala:155:33]
wire [2:0] _update_wdata_3_ctr_T_22; // @[tage.scala:155:33]
wire [2:0] update_wdata_0_ctr; // @[tage.scala:119:26]
wire [2:0] update_wdata_1_ctr; // @[tage.scala:119:26]
wire [2:0] update_wdata_2_ctr; // @[tage.scala:119:26]
wire [2:0] update_wdata_3_ctr; // @[tage.scala:119:26]
wire [7:0] hi = {1'h1, update_wdata_0_tag}; // @[tage.scala:119:26, :123:102]
wire [7:0] hi_1 = {1'h1, update_wdata_1_tag}; // @[tage.scala:119:26, :123:102]
wire [7:0] hi_2 = {1'h1, update_wdata_2_tag}; // @[tage.scala:119:26, :123:102]
wire [7:0] hi_3 = {1'h1, update_wdata_3_tag}; // @[tage.scala:119:26, :123:102]
assign table_MPORT_data_0 = doing_reset ? 11'h0 : {hi, update_wdata_0_ctr}; // @[tage.scala:72:28, :119:26, :123:{8,102}]
assign table_MPORT_data_1 = doing_reset ? 11'h0 : {hi_1, update_wdata_1_ctr}; // @[tage.scala:72:28, :119:26, :123:{8,102}]
assign table_MPORT_data_2 = doing_reset ? 11'h0 : {hi_2, update_wdata_2_ctr}; // @[tage.scala:72:28, :119:26, :123:{8,102}]
assign table_MPORT_data_3 = doing_reset ? 11'h0 : {hi_3, update_wdata_3_ctr}; // @[tage.scala:72:28, :119:26, :123:{8,102}]
wire [1:0] lo = {io_update_mask_1_0, io_update_mask_0_0}; // @[tage.scala:24:7, :124:90]
wire [1:0] hi_4 = {io_update_mask_3_0, io_update_mask_2_0}; // @[tage.scala:24:7, :124:90]
wire _update_hi_wdata_0_T; // @[tage.scala:166:44]
wire _update_hi_wdata_1_T; // @[tage.scala:166:44]
wire _update_hi_wdata_2_T; // @[tage.scala:166:44]
wire _update_hi_wdata_3_T; // @[tage.scala:166:44]
wire update_hi_wdata_0; // @[tage.scala:127:29]
wire update_hi_wdata_1; // @[tage.scala:127:29]
wire update_hi_wdata_2; // @[tage.scala:127:29]
wire update_hi_wdata_3; // @[tage.scala:127:29]
wire _T_20 = doing_reset | doing_clear_u_hi; // @[tage.scala:72:28, :113:40, :130:21]
assign hi_us_MPORT_1_data_0 = ~_T_20 & update_hi_wdata_0; // @[tage.scala:127:29, :130:{8,21}]
assign hi_us_MPORT_1_data_1 = ~_T_20 & update_hi_wdata_1; // @[tage.scala:127:29, :130:{8,21}]
assign hi_us_MPORT_1_data_2 = ~_T_20 & update_hi_wdata_2; // @[tage.scala:127:29, :130:{8,21}]
assign hi_us_MPORT_1_data_3 = ~_T_20 & update_hi_wdata_3; // @[tage.scala:127:29, :130:{8,21}]
wire [1:0] _GEN = {io_update_u_mask_1_0, io_update_u_mask_0_0}; // @[tage.scala:24:7, :131:80]
wire [1:0] lo_1; // @[tage.scala:131:80]
assign lo_1 = _GEN; // @[tage.scala:131:80]
wire [1:0] lo_2; // @[tage.scala:138:80]
assign lo_2 = _GEN; // @[tage.scala:131:80, :138:80]
wire [1:0] _GEN_0 = {io_update_u_mask_3_0, io_update_u_mask_2_0}; // @[tage.scala:24:7, :131:80]
wire [1:0] hi_5; // @[tage.scala:131:80]
assign hi_5 = _GEN_0; // @[tage.scala:131:80]
wire [1:0] hi_6; // @[tage.scala:138:80]
assign hi_6 = _GEN_0; // @[tage.scala:131:80, :138:80]
wire _update_lo_wdata_0_T; // @[tage.scala:167:44]
wire _update_lo_wdata_1_T; // @[tage.scala:167:44]
wire _update_lo_wdata_2_T; // @[tage.scala:167:44]
wire _update_lo_wdata_3_T; // @[tage.scala:167:44]
wire update_lo_wdata_0; // @[tage.scala:134:29]
wire update_lo_wdata_1; // @[tage.scala:134:29]
wire update_lo_wdata_2; // @[tage.scala:134:29]
wire update_lo_wdata_3; // @[tage.scala:134:29]
wire _T_33 = doing_reset | doing_clear_u_lo; // @[tage.scala:72:28, :114:40, :137:21]
assign lo_us_MPORT_2_data_0 = ~_T_33 & update_lo_wdata_0; // @[tage.scala:134:29, :137:{8,21}]
assign lo_us_MPORT_2_data_1 = ~_T_33 & update_lo_wdata_1; // @[tage.scala:134:29, :137:{8,21}]
assign lo_us_MPORT_2_data_2 = ~_T_33 & update_lo_wdata_2; // @[tage.scala:134:29, :137:{8,21}]
assign lo_us_MPORT_2_data_3 = ~_T_33 & update_lo_wdata_3; // @[tage.scala:134:29, :137:{8,21}]
reg [6:0] wrbypass_tags_0; // @[tage.scala:141:29]
reg [6:0] wrbypass_tags_1; // @[tage.scala:141:29]
reg [6:0] wrbypass_idxs_0; // @[tage.scala:142:29]
reg [6:0] wrbypass_idxs_1; // @[tage.scala:142:29]
reg [2:0] wrbypass_0_0; // @[tage.scala:143:29]
reg [2:0] wrbypass_0_1; // @[tage.scala:143:29]
reg [2:0] wrbypass_0_2; // @[tage.scala:143:29]
reg [2:0] wrbypass_0_3; // @[tage.scala:143:29]
reg [2:0] wrbypass_1_0; // @[tage.scala:143:29]
reg [2:0] wrbypass_1_1; // @[tage.scala:143:29]
reg [2:0] wrbypass_1_2; // @[tage.scala:143:29]
reg [2:0] wrbypass_1_3; // @[tage.scala:143:29]
reg wrbypass_enq_idx; // @[tage.scala:144:33]
wire _wrbypass_hits_T = ~doing_reset; // @[tage.scala:72:28, :100:83, :147:5]
wire _wrbypass_hits_T_1 = wrbypass_tags_0 == update_tag; // @[tage.scala:62:64, :141:29, :148:22]
wire _wrbypass_hits_T_2 = _wrbypass_hits_T & _wrbypass_hits_T_1; // @[tage.scala:147:{5,18}, :148:22]
wire _wrbypass_hits_T_3 = wrbypass_idxs_0 == update_idx; // @[tage.scala:60:43, :142:29, :149:22]
wire _wrbypass_hits_T_4 = _wrbypass_hits_T_2 & _wrbypass_hits_T_3; // @[tage.scala:147:18, :148:37, :149:22]
wire wrbypass_hits_0 = _wrbypass_hits_T_4; // @[tage.scala:146:33, :148:37]
wire _wrbypass_hits_T_5 = ~doing_reset; // @[tage.scala:72:28, :100:83, :147:5]
wire _wrbypass_hits_T_6 = wrbypass_tags_1 == update_tag; // @[tage.scala:62:64, :141:29, :148:22]
wire _wrbypass_hits_T_7 = _wrbypass_hits_T_5 & _wrbypass_hits_T_6; // @[tage.scala:147:{5,18}, :148:22]
wire _wrbypass_hits_T_8 = wrbypass_idxs_1 == update_idx; // @[tage.scala:60:43, :142:29, :149:22]
wire _wrbypass_hits_T_9 = _wrbypass_hits_T_7 & _wrbypass_hits_T_8; // @[tage.scala:147:18, :148:37, :149:22]
wire wrbypass_hits_1 = _wrbypass_hits_T_9; // @[tage.scala:146:33, :148:37]
wire wrbypass_hit = wrbypass_hits_0 | wrbypass_hits_1; // @[tage.scala:146:33, :151:48]
wire wrbypass_hit_idx = ~wrbypass_hits_0; // @[Mux.scala:50:70]
wire [2:0] _update_wdata_0_ctr_T = io_update_taken_0_0 ? 3'h4 : 3'h3; // @[tage.scala:24:7, :156:10]
wire _update_wdata_0_ctr_T_1 = ~io_update_taken_0_0; // @[tage.scala:24:7, :67:9]
wire [2:0] _GEN_1 = wrbypass_hit_idx ? wrbypass_1_0 : wrbypass_0_0; // @[Mux.scala:50:70]
wire [2:0] _GEN_2 = wrbypass_hit_idx ? wrbypass_1_1 : wrbypass_0_1; // @[Mux.scala:50:70]
wire [2:0] _GEN_3 = wrbypass_hit_idx ? wrbypass_1_2 : wrbypass_0_2; // @[Mux.scala:50:70]
wire [2:0] _GEN_4 = wrbypass_hit_idx ? wrbypass_1_3 : wrbypass_0_3; // @[Mux.scala:50:70]
wire _update_wdata_0_ctr_T_2 = _GEN_1 == 3'h0; // @[tage.scala:67:25]
wire [3:0] _GEN_5 = {1'h0, _GEN_1}; // @[tage.scala:67:{25,43}]
wire [3:0] _update_wdata_0_ctr_T_3 = _GEN_5 - 4'h1; // @[tage.scala:67:43]
wire [2:0] _update_wdata_0_ctr_T_4 = _update_wdata_0_ctr_T_3[2:0]; // @[tage.scala:67:43]
wire [2:0] _update_wdata_0_ctr_T_5 = _update_wdata_0_ctr_T_2 ? 3'h0 : _update_wdata_0_ctr_T_4; // @[tage.scala:67:{20,25,43}]
wire _update_wdata_0_ctr_T_6 = &_GEN_1; // @[tage.scala:67:25, :68:25]
wire [3:0] _update_wdata_0_ctr_T_7 = _GEN_5 + 4'h1; // @[tage.scala:67:43, :68:43]
wire [2:0] _update_wdata_0_ctr_T_8 = _update_wdata_0_ctr_T_7[2:0]; // @[tage.scala:68:43]
wire [2:0] _update_wdata_0_ctr_T_9 = _update_wdata_0_ctr_T_6 ? 3'h7 : _update_wdata_0_ctr_T_8; // @[tage.scala:68:{20,25,43}]
wire [2:0] _update_wdata_0_ctr_T_10 = _update_wdata_0_ctr_T_1 ? _update_wdata_0_ctr_T_5 : _update_wdata_0_ctr_T_9; // @[tage.scala:67:{8,9,20}, :68:20]
wire _update_wdata_0_ctr_T_11 = ~io_update_taken_0_0; // @[tage.scala:24:7, :67:9]
wire _update_wdata_0_ctr_T_12 = io_update_old_ctr_0_0 == 3'h0; // @[tage.scala:24:7, :67:25]
wire [3:0] _GEN_6 = {1'h0, io_update_old_ctr_0_0}; // @[tage.scala:24:7, :67:43]
wire [3:0] _update_wdata_0_ctr_T_13 = _GEN_6 - 4'h1; // @[tage.scala:67:43]
wire [2:0] _update_wdata_0_ctr_T_14 = _update_wdata_0_ctr_T_13[2:0]; // @[tage.scala:67:43]
wire [2:0] _update_wdata_0_ctr_T_15 = _update_wdata_0_ctr_T_12 ? 3'h0 : _update_wdata_0_ctr_T_14; // @[tage.scala:67:{20,25,43}]
wire _update_wdata_0_ctr_T_16 = &io_update_old_ctr_0_0; // @[tage.scala:24:7, :68:25]
wire [3:0] _update_wdata_0_ctr_T_17 = _GEN_6 + 4'h1; // @[tage.scala:67:43, :68:43]
wire [2:0] _update_wdata_0_ctr_T_18 = _update_wdata_0_ctr_T_17[2:0]; // @[tage.scala:68:43]
wire [2:0] _update_wdata_0_ctr_T_19 = _update_wdata_0_ctr_T_16 ? 3'h7 : _update_wdata_0_ctr_T_18; // @[tage.scala:68:{20,25,43}]
wire [2:0] _update_wdata_0_ctr_T_20 = _update_wdata_0_ctr_T_11 ? _update_wdata_0_ctr_T_15 : _update_wdata_0_ctr_T_19; // @[tage.scala:67:{8,9,20}, :68:20]
wire [2:0] _update_wdata_0_ctr_T_21 = wrbypass_hit ? _update_wdata_0_ctr_T_10 : _update_wdata_0_ctr_T_20; // @[tage.scala:67:8, :151:48, :159:10]
assign _update_wdata_0_ctr_T_22 = io_update_alloc_0_0 ? _update_wdata_0_ctr_T : _update_wdata_0_ctr_T_21; // @[tage.scala:24:7, :155:33, :156:10, :159:10]
assign update_wdata_0_ctr = _update_wdata_0_ctr_T_22; // @[tage.scala:119:26, :155:33]
assign _update_hi_wdata_0_T = io_update_u_0_0[1]; // @[tage.scala:24:7, :166:44]
assign update_hi_wdata_0 = _update_hi_wdata_0_T; // @[tage.scala:127:29, :166:44]
assign _update_lo_wdata_0_T = io_update_u_0_0[0]; // @[tage.scala:24:7, :167:44]
assign update_lo_wdata_0 = _update_lo_wdata_0_T; // @[tage.scala:134:29, :167:44]
wire [2:0] _update_wdata_1_ctr_T = io_update_taken_1_0 ? 3'h4 : 3'h3; // @[tage.scala:24:7, :156:10]
wire _update_wdata_1_ctr_T_1 = ~io_update_taken_1_0; // @[tage.scala:24:7, :67:9]
wire _update_wdata_1_ctr_T_2 = _GEN_2 == 3'h0; // @[tage.scala:67:25]
wire [3:0] _GEN_7 = {1'h0, _GEN_2}; // @[tage.scala:67:{25,43}]
wire [3:0] _update_wdata_1_ctr_T_3 = _GEN_7 - 4'h1; // @[tage.scala:67:43]
wire [2:0] _update_wdata_1_ctr_T_4 = _update_wdata_1_ctr_T_3[2:0]; // @[tage.scala:67:43]
wire [2:0] _update_wdata_1_ctr_T_5 = _update_wdata_1_ctr_T_2 ? 3'h0 : _update_wdata_1_ctr_T_4; // @[tage.scala:67:{20,25,43}]
wire _update_wdata_1_ctr_T_6 = &_GEN_2; // @[tage.scala:67:25, :68:25]
wire [3:0] _update_wdata_1_ctr_T_7 = _GEN_7 + 4'h1; // @[tage.scala:67:43, :68:43]
wire [2:0] _update_wdata_1_ctr_T_8 = _update_wdata_1_ctr_T_7[2:0]; // @[tage.scala:68:43]
wire [2:0] _update_wdata_1_ctr_T_9 = _update_wdata_1_ctr_T_6 ? 3'h7 : _update_wdata_1_ctr_T_8; // @[tage.scala:68:{20,25,43}]
wire [2:0] _update_wdata_1_ctr_T_10 = _update_wdata_1_ctr_T_1 ? _update_wdata_1_ctr_T_5 : _update_wdata_1_ctr_T_9; // @[tage.scala:67:{8,9,20}, :68:20]
wire _update_wdata_1_ctr_T_11 = ~io_update_taken_1_0; // @[tage.scala:24:7, :67:9]
wire _update_wdata_1_ctr_T_12 = io_update_old_ctr_1_0 == 3'h0; // @[tage.scala:24:7, :67:25]
wire [3:0] _GEN_8 = {1'h0, io_update_old_ctr_1_0}; // @[tage.scala:24:7, :67:43]
wire [3:0] _update_wdata_1_ctr_T_13 = _GEN_8 - 4'h1; // @[tage.scala:67:43]
wire [2:0] _update_wdata_1_ctr_T_14 = _update_wdata_1_ctr_T_13[2:0]; // @[tage.scala:67:43]
wire [2:0] _update_wdata_1_ctr_T_15 = _update_wdata_1_ctr_T_12 ? 3'h0 : _update_wdata_1_ctr_T_14; // @[tage.scala:67:{20,25,43}]
wire _update_wdata_1_ctr_T_16 = &io_update_old_ctr_1_0; // @[tage.scala:24:7, :68:25]
wire [3:0] _update_wdata_1_ctr_T_17 = _GEN_8 + 4'h1; // @[tage.scala:67:43, :68:43]
wire [2:0] _update_wdata_1_ctr_T_18 = _update_wdata_1_ctr_T_17[2:0]; // @[tage.scala:68:43]
wire [2:0] _update_wdata_1_ctr_T_19 = _update_wdata_1_ctr_T_16 ? 3'h7 : _update_wdata_1_ctr_T_18; // @[tage.scala:68:{20,25,43}]
wire [2:0] _update_wdata_1_ctr_T_20 = _update_wdata_1_ctr_T_11 ? _update_wdata_1_ctr_T_15 : _update_wdata_1_ctr_T_19; // @[tage.scala:67:{8,9,20}, :68:20]
wire [2:0] _update_wdata_1_ctr_T_21 = wrbypass_hit ? _update_wdata_1_ctr_T_10 : _update_wdata_1_ctr_T_20; // @[tage.scala:67:8, :151:48, :159:10]
assign _update_wdata_1_ctr_T_22 = io_update_alloc_1_0 ? _update_wdata_1_ctr_T : _update_wdata_1_ctr_T_21; // @[tage.scala:24:7, :155:33, :156:10, :159:10]
assign update_wdata_1_ctr = _update_wdata_1_ctr_T_22; // @[tage.scala:119:26, :155:33]
assign _update_hi_wdata_1_T = io_update_u_1_0[1]; // @[tage.scala:24:7, :166:44]
assign update_hi_wdata_1 = _update_hi_wdata_1_T; // @[tage.scala:127:29, :166:44]
assign _update_lo_wdata_1_T = io_update_u_1_0[0]; // @[tage.scala:24:7, :167:44]
assign update_lo_wdata_1 = _update_lo_wdata_1_T; // @[tage.scala:134:29, :167:44]
wire [2:0] _update_wdata_2_ctr_T = io_update_taken_2_0 ? 3'h4 : 3'h3; // @[tage.scala:24:7, :156:10]
wire _update_wdata_2_ctr_T_1 = ~io_update_taken_2_0; // @[tage.scala:24:7, :67:9]
wire _update_wdata_2_ctr_T_2 = _GEN_3 == 3'h0; // @[tage.scala:67:25]
wire [3:0] _GEN_9 = {1'h0, _GEN_3}; // @[tage.scala:67:{25,43}]
wire [3:0] _update_wdata_2_ctr_T_3 = _GEN_9 - 4'h1; // @[tage.scala:67:43]
wire [2:0] _update_wdata_2_ctr_T_4 = _update_wdata_2_ctr_T_3[2:0]; // @[tage.scala:67:43]
wire [2:0] _update_wdata_2_ctr_T_5 = _update_wdata_2_ctr_T_2 ? 3'h0 : _update_wdata_2_ctr_T_4; // @[tage.scala:67:{20,25,43}]
wire _update_wdata_2_ctr_T_6 = &_GEN_3; // @[tage.scala:67:25, :68:25]
wire [3:0] _update_wdata_2_ctr_T_7 = _GEN_9 + 4'h1; // @[tage.scala:67:43, :68:43]
wire [2:0] _update_wdata_2_ctr_T_8 = _update_wdata_2_ctr_T_7[2:0]; // @[tage.scala:68:43]
wire [2:0] _update_wdata_2_ctr_T_9 = _update_wdata_2_ctr_T_6 ? 3'h7 : _update_wdata_2_ctr_T_8; // @[tage.scala:68:{20,25,43}]
wire [2:0] _update_wdata_2_ctr_T_10 = _update_wdata_2_ctr_T_1 ? _update_wdata_2_ctr_T_5 : _update_wdata_2_ctr_T_9; // @[tage.scala:67:{8,9,20}, :68:20]
wire _update_wdata_2_ctr_T_11 = ~io_update_taken_2_0; // @[tage.scala:24:7, :67:9]
wire _update_wdata_2_ctr_T_12 = io_update_old_ctr_2_0 == 3'h0; // @[tage.scala:24:7, :67:25]
wire [3:0] _GEN_10 = {1'h0, io_update_old_ctr_2_0}; // @[tage.scala:24:7, :67:43]
wire [3:0] _update_wdata_2_ctr_T_13 = _GEN_10 - 4'h1; // @[tage.scala:67:43]
wire [2:0] _update_wdata_2_ctr_T_14 = _update_wdata_2_ctr_T_13[2:0]; // @[tage.scala:67:43]
wire [2:0] _update_wdata_2_ctr_T_15 = _update_wdata_2_ctr_T_12 ? 3'h0 : _update_wdata_2_ctr_T_14; // @[tage.scala:67:{20,25,43}]
wire _update_wdata_2_ctr_T_16 = &io_update_old_ctr_2_0; // @[tage.scala:24:7, :68:25]
wire [3:0] _update_wdata_2_ctr_T_17 = _GEN_10 + 4'h1; // @[tage.scala:67:43, :68:43]
wire [2:0] _update_wdata_2_ctr_T_18 = _update_wdata_2_ctr_T_17[2:0]; // @[tage.scala:68:43]
wire [2:0] _update_wdata_2_ctr_T_19 = _update_wdata_2_ctr_T_16 ? 3'h7 : _update_wdata_2_ctr_T_18; // @[tage.scala:68:{20,25,43}]
wire [2:0] _update_wdata_2_ctr_T_20 = _update_wdata_2_ctr_T_11 ? _update_wdata_2_ctr_T_15 : _update_wdata_2_ctr_T_19; // @[tage.scala:67:{8,9,20}, :68:20]
wire [2:0] _update_wdata_2_ctr_T_21 = wrbypass_hit ? _update_wdata_2_ctr_T_10 : _update_wdata_2_ctr_T_20; // @[tage.scala:67:8, :151:48, :159:10]
assign _update_wdata_2_ctr_T_22 = io_update_alloc_2_0 ? _update_wdata_2_ctr_T : _update_wdata_2_ctr_T_21; // @[tage.scala:24:7, :155:33, :156:10, :159:10]
assign update_wdata_2_ctr = _update_wdata_2_ctr_T_22; // @[tage.scala:119:26, :155:33]
assign _update_hi_wdata_2_T = io_update_u_2_0[1]; // @[tage.scala:24:7, :166:44]
assign update_hi_wdata_2 = _update_hi_wdata_2_T; // @[tage.scala:127:29, :166:44]
assign _update_lo_wdata_2_T = io_update_u_2_0[0]; // @[tage.scala:24:7, :167:44]
assign update_lo_wdata_2 = _update_lo_wdata_2_T; // @[tage.scala:134:29, :167:44]
wire [2:0] _update_wdata_3_ctr_T = io_update_taken_3_0 ? 3'h4 : 3'h3; // @[tage.scala:24:7, :156:10]
wire _update_wdata_3_ctr_T_1 = ~io_update_taken_3_0; // @[tage.scala:24:7, :67:9]
wire _update_wdata_3_ctr_T_2 = _GEN_4 == 3'h0; // @[tage.scala:67:25]
wire [3:0] _GEN_11 = {1'h0, _GEN_4}; // @[tage.scala:67:{25,43}]
wire [3:0] _update_wdata_3_ctr_T_3 = _GEN_11 - 4'h1; // @[tage.scala:67:43]
wire [2:0] _update_wdata_3_ctr_T_4 = _update_wdata_3_ctr_T_3[2:0]; // @[tage.scala:67:43]
wire [2:0] _update_wdata_3_ctr_T_5 = _update_wdata_3_ctr_T_2 ? 3'h0 : _update_wdata_3_ctr_T_4; // @[tage.scala:67:{20,25,43}]
wire _update_wdata_3_ctr_T_6 = &_GEN_4; // @[tage.scala:67:25, :68:25]
wire [3:0] _update_wdata_3_ctr_T_7 = _GEN_11 + 4'h1; // @[tage.scala:67:43, :68:43]
wire [2:0] _update_wdata_3_ctr_T_8 = _update_wdata_3_ctr_T_7[2:0]; // @[tage.scala:68:43]
wire [2:0] _update_wdata_3_ctr_T_9 = _update_wdata_3_ctr_T_6 ? 3'h7 : _update_wdata_3_ctr_T_8; // @[tage.scala:68:{20,25,43}]
wire [2:0] _update_wdata_3_ctr_T_10 = _update_wdata_3_ctr_T_1 ? _update_wdata_3_ctr_T_5 : _update_wdata_3_ctr_T_9; // @[tage.scala:67:{8,9,20}, :68:20]
wire _update_wdata_3_ctr_T_11 = ~io_update_taken_3_0; // @[tage.scala:24:7, :67:9]
wire _update_wdata_3_ctr_T_12 = io_update_old_ctr_3_0 == 3'h0; // @[tage.scala:24:7, :67:25]
wire [3:0] _GEN_12 = {1'h0, io_update_old_ctr_3_0}; // @[tage.scala:24:7, :67:43]
wire [3:0] _update_wdata_3_ctr_T_13 = _GEN_12 - 4'h1; // @[tage.scala:67:43]
wire [2:0] _update_wdata_3_ctr_T_14 = _update_wdata_3_ctr_T_13[2:0]; // @[tage.scala:67:43]
wire [2:0] _update_wdata_3_ctr_T_15 = _update_wdata_3_ctr_T_12 ? 3'h0 : _update_wdata_3_ctr_T_14; // @[tage.scala:67:{20,25,43}]
wire _update_wdata_3_ctr_T_16 = &io_update_old_ctr_3_0; // @[tage.scala:24:7, :68:25]
wire [3:0] _update_wdata_3_ctr_T_17 = _GEN_12 + 4'h1; // @[tage.scala:67:43, :68:43]
wire [2:0] _update_wdata_3_ctr_T_18 = _update_wdata_3_ctr_T_17[2:0]; // @[tage.scala:68:43]
wire [2:0] _update_wdata_3_ctr_T_19 = _update_wdata_3_ctr_T_16 ? 3'h7 : _update_wdata_3_ctr_T_18; // @[tage.scala:68:{20,25,43}]
wire [2:0] _update_wdata_3_ctr_T_20 = _update_wdata_3_ctr_T_11 ? _update_wdata_3_ctr_T_15 : _update_wdata_3_ctr_T_19; // @[tage.scala:67:{8,9,20}, :68:20]
wire [2:0] _update_wdata_3_ctr_T_21 = wrbypass_hit ? _update_wdata_3_ctr_T_10 : _update_wdata_3_ctr_T_20; // @[tage.scala:67:8, :151:48, :159:10]
assign _update_wdata_3_ctr_T_22 = io_update_alloc_3_0 ? _update_wdata_3_ctr_T : _update_wdata_3_ctr_T_21; // @[tage.scala:24:7, :155:33, :156:10, :159:10]
assign update_wdata_3_ctr = _update_wdata_3_ctr_T_22; // @[tage.scala:119:26, :155:33]
assign _update_hi_wdata_3_T = io_update_u_3_0[1]; // @[tage.scala:24:7, :166:44]
assign update_hi_wdata_3 = _update_hi_wdata_3_T; // @[tage.scala:127:29, :166:44]
assign _update_lo_wdata_3_T = io_update_u_3_0[0]; // @[tage.scala:24:7, :167:44]
assign update_lo_wdata_3 = _update_lo_wdata_3_T; // @[tage.scala:134:29, :167:44]
wire [1:0] _wrbypass_enq_idx_T = {1'h0, wrbypass_enq_idx} + 2'h1; // @[util.scala:203:14]
wire _wrbypass_enq_idx_T_1 = _wrbypass_enq_idx_T[0]; // @[util.scala:203:14]
wire _wrbypass_enq_idx_T_2 = _wrbypass_enq_idx_T_1; // @[util.scala:203:{14,20}]
wire _T_44 = io_update_mask_0_0 | io_update_mask_1_0 | io_update_mask_2_0 | io_update_mask_3_0; // @[tage.scala:24:7, :170:32]
wire _GEN_13 = wrbypass_hit ? wrbypass_hit_idx : wrbypass_enq_idx; // @[Mux.scala:50:70]
wire _GEN_14 = ~_T_44 | wrbypass_hit | wrbypass_enq_idx; // @[tage.scala:141:29, :143:29, :144:33, :151:48, :170:{32,38}, :171:39, :175:39]
wire _GEN_15 = ~_T_44 | wrbypass_hit | ~wrbypass_enq_idx; // @[tage.scala:141:29, :143:29, :144:33, :151:48, :170:{32,38}, :171:39, :175:39]
always @(posedge clock) begin // @[tage.scala:24:7]
if (reset) begin // @[tage.scala:24:7]
doing_reset <= 1'h1; // @[tage.scala:72:28]
reset_idx <= 7'h0; // @[tage.scala:73:26]
clear_u_ctr <= 19'h0; // @[tage.scala:109:28]
wrbypass_enq_idx <= 1'h0; // @[tage.scala:144:33]
end
else begin // @[tage.scala:24:7]
doing_reset <= reset_idx != 7'h7F & doing_reset; // @[tage.scala:72:28, :73:26, :75:{19,36,50}]
reset_idx <= _reset_idx_T_1; // @[tage.scala:73:26, :74:26]
clear_u_ctr <= doing_reset ? 19'h1 : _clear_u_ctr_T_1; // @[tage.scala:72:28, :109:28, :110:{22,36,70,85}]
if (~_T_44 | wrbypass_hit) begin // @[tage.scala:143:29, :144:33, :151:48, :170:{32,38}, :171:39]
end
else // @[tage.scala:144:33, :170:38, :171:39]
wrbypass_enq_idx <= _wrbypass_enq_idx_T_2; // @[util.scala:203:20]
end
s2_tag <= s1_tag; // @[tage.scala:62:64, :95:29]
io_f3_resp_0_valid_REG <= s2_req_rhits_0; // @[tage.scala:100:29, :104:38]
io_f3_resp_0_bits_u_REG <= _io_f3_resp_0_bits_u_T; // @[tage.scala:105:{38,42}]
io_f3_resp_0_bits_ctr_REG <= s2_req_rtage_0_ctr; // @[tage.scala:97:29, :106:38]
io_f3_resp_1_valid_REG <= s2_req_rhits_1; // @[tage.scala:100:29, :104:38]
io_f3_resp_1_bits_u_REG <= _io_f3_resp_1_bits_u_T; // @[tage.scala:105:{38,42}]
io_f3_resp_1_bits_ctr_REG <= s2_req_rtage_1_ctr; // @[tage.scala:97:29, :106:38]
io_f3_resp_2_valid_REG <= s2_req_rhits_2; // @[tage.scala:100:29, :104:38]
io_f3_resp_2_bits_u_REG <= _io_f3_resp_2_bits_u_T; // @[tage.scala:105:{38,42}]
io_f3_resp_2_bits_ctr_REG <= s2_req_rtage_2_ctr; // @[tage.scala:97:29, :106:38]
io_f3_resp_3_valid_REG <= s2_req_rhits_3; // @[tage.scala:100:29, :104:38]
io_f3_resp_3_bits_u_REG <= _io_f3_resp_3_bits_u_T; // @[tage.scala:105:{38,42}]
io_f3_resp_3_bits_ctr_REG <= s2_req_rtage_3_ctr; // @[tage.scala:97:29, :106:38]
if (_GEN_14) begin // @[tage.scala:141:29, :170:38, :171:39, :175:39]
end
else // @[tage.scala:141:29, :170:38, :171:39, :175:39]
wrbypass_tags_0 <= update_tag; // @[tage.scala:62:64, :141:29]
if (_GEN_15) begin // @[tage.scala:141:29, :170:38, :171:39, :175:39]
end
else // @[tage.scala:141:29, :170:38, :171:39, :175:39]
wrbypass_tags_1 <= update_tag; // @[tage.scala:62:64, :141:29]
if (_GEN_14) begin // @[tage.scala:141:29, :142:29, :170:38, :171:39, :175:39, :176:39]
end
else // @[tage.scala:142:29, :170:38, :171:39, :176:39]
wrbypass_idxs_0 <= update_idx; // @[tage.scala:60:43, :142:29]
if (_GEN_15) begin // @[tage.scala:141:29, :142:29, :170:38, :171:39, :175:39, :176:39]
end
else // @[tage.scala:142:29, :170:38, :171:39, :176:39]
wrbypass_idxs_1 <= update_idx; // @[tage.scala:60:43, :142:29]
if (~_T_44 | _GEN_13) begin // @[tage.scala:143:29, :170:{32,38}, :171:39, :172:34, :174:39]
end
else begin // @[tage.scala:143:29, :170:38, :171:39]
wrbypass_0_0 <= update_wdata_0_ctr; // @[tage.scala:119:26, :143:29]
wrbypass_0_1 <= update_wdata_1_ctr; // @[tage.scala:119:26, :143:29]
wrbypass_0_2 <= update_wdata_2_ctr; // @[tage.scala:119:26, :143:29]
wrbypass_0_3 <= update_wdata_3_ctr; // @[tage.scala:119:26, :143:29]
end
if (_T_44 & _GEN_13) begin // @[tage.scala:143:29, :170:{32,38}, :171:39, :172:34, :174:39]
wrbypass_1_0 <= update_wdata_0_ctr; // @[tage.scala:119:26, :143:29]
wrbypass_1_1 <= update_wdata_1_ctr; // @[tage.scala:119:26, :143:29]
wrbypass_1_2 <= update_wdata_2_ctr; // @[tage.scala:119:26, :143:29]
wrbypass_1_3 <= update_wdata_3_ctr; // @[tage.scala:119:26, :143:29]
end
always @(posedge)
hi_us_6 hi_us ( // @[tage.scala:89:27]
.R0_addr (_s2_req_rhius_WIRE), // @[tage.scala:98:32]
.R0_en (io_f1_req_valid_0), // @[tage.scala:24:7]
.R0_clk (clock),
.R0_data (_hi_us_R0_data),
.W0_addr (doing_reset ? reset_idx : doing_clear_u_hi ? clear_u_idx[6:0] : update_idx), // @[tage.scala:60:43, :72:28, :73:26, :113:40, :115:33, :129:{8,36}]
.W0_clk (clock),
.W0_data ({hi_us_MPORT_1_data_3, hi_us_MPORT_1_data_2, hi_us_MPORT_1_data_1, hi_us_MPORT_1_data_0}), // @[tage.scala:89:27, :130:8]
.W0_mask (_T_20 ? 4'hF : {hi_5, lo_1}) // @[tage.scala:130:21, :131:{8,80}]
); // @[tage.scala:89:27]
lo_us_6 lo_us ( // @[tage.scala:90:27]
.R0_addr (_s2_req_rlous_WIRE), // @[tage.scala:99:32]
.R0_en (io_f1_req_valid_0), // @[tage.scala:24:7]
.R0_clk (clock),
.R0_data (_lo_us_R0_data),
.W0_addr (doing_reset ? reset_idx : doing_clear_u_lo ? clear_u_idx[6:0] : update_idx), // @[tage.scala:60:43, :72:28, :73:26, :114:40, :115:33, :136:{8,36}]
.W0_clk (clock),
.W0_data ({lo_us_MPORT_2_data_3, lo_us_MPORT_2_data_2, lo_us_MPORT_2_data_1, lo_us_MPORT_2_data_0}), // @[tage.scala:90:27, :137:8]
.W0_mask (_T_33 ? 4'hF : {hi_6, lo_2}) // @[tage.scala:137:21, :138:{8,80}]
); // @[tage.scala:90:27]
table_6 table_0 ( // @[tage.scala:91:27]
.R0_addr (_s2_req_rtage_WIRE), // @[tage.scala:97:40]
.R0_en (io_f1_req_valid_0), // @[tage.scala:24:7]
.R0_clk (clock),
.R0_data (_table_R0_data),
.W0_addr (doing_reset ? reset_idx : update_idx), // @[tage.scala:60:43, :72:28, :73:26, :122:8]
.W0_clk (clock),
.W0_data ({table_MPORT_data_3, table_MPORT_data_2, table_MPORT_data_1, table_MPORT_data_0}), // @[tage.scala:91:27, :123:8]
.W0_mask (doing_reset ? 4'hF : {hi_4, lo}) // @[tage.scala:72:28, :124:{8,90}]
); // @[tage.scala:91:27]
assign io_f3_resp_0_valid = io_f3_resp_0_valid_0; // @[tage.scala:24:7]
assign io_f3_resp_0_bits_ctr = io_f3_resp_0_bits_ctr_0; // @[tage.scala:24:7]
assign io_f3_resp_0_bits_u = io_f3_resp_0_bits_u_0; // @[tage.scala:24:7]
assign io_f3_resp_1_valid = io_f3_resp_1_valid_0; // @[tage.scala:24:7]
assign io_f3_resp_1_bits_ctr = io_f3_resp_1_bits_ctr_0; // @[tage.scala:24:7]
assign io_f3_resp_1_bits_u = io_f3_resp_1_bits_u_0; // @[tage.scala:24:7]
assign io_f3_resp_2_valid = io_f3_resp_2_valid_0; // @[tage.scala:24:7]
assign io_f3_resp_2_bits_ctr = io_f3_resp_2_bits_ctr_0; // @[tage.scala:24:7]
assign io_f3_resp_2_bits_u = io_f3_resp_2_bits_u_0; // @[tage.scala:24:7]
assign io_f3_resp_3_valid = io_f3_resp_3_valid_0; // @[tage.scala:24:7]
assign io_f3_resp_3_bits_ctr = io_f3_resp_3_bits_ctr_0; // @[tage.scala:24:7]
assign io_f3_resp_3_bits_u = io_f3_resp_3_bits_u_0; // @[tage.scala:24:7]
endmodule |
Generate the Verilog code corresponding to the following Chisel files.
File ShiftRegisterPriorityQueue.scala:
package compressacc
import chisel3._
import chisel3.util._
import chisel3.util._
// TODO : support enq & deq at the same cycle
class PriorityQueueStageIO(keyWidth: Int, value: ValueInfo) extends Bundle {
val output_prev = KeyValue(keyWidth, value)
val output_nxt = KeyValue(keyWidth, value)
val input_prev = Flipped(KeyValue(keyWidth, value))
val input_nxt = Flipped(KeyValue(keyWidth, value))
val cmd = Flipped(Valid(UInt(1.W)))
val insert_here = Input(Bool())
val cur_input_keyval = Flipped(KeyValue(keyWidth, value))
val cur_output_keyval = KeyValue(keyWidth, value)
}
class PriorityQueueStage(keyWidth: Int, value: ValueInfo) extends Module {
val io = IO(new PriorityQueueStageIO(keyWidth, value))
dontTouch(io)
val CMD_DEQ = 0.U
val CMD_ENQ = 1.U
val MAX_VALUE = (1 << keyWidth) - 1
val key_reg = RegInit(MAX_VALUE.U(keyWidth.W))
val value_reg = Reg(value)
io.output_prev.key := key_reg
io.output_prev.value := value_reg
io.output_nxt.key := key_reg
io.output_nxt.value := value_reg
io.cur_output_keyval.key := key_reg
io.cur_output_keyval.value := value_reg
when (io.cmd.valid) {
switch (io.cmd.bits) {
is (CMD_DEQ) {
key_reg := io.input_nxt.key
value_reg := io.input_nxt.value
}
is (CMD_ENQ) {
when (io.insert_here) {
key_reg := io.cur_input_keyval.key
value_reg := io.cur_input_keyval.value
} .elsewhen (key_reg >= io.cur_input_keyval.key) {
key_reg := io.input_prev.key
value_reg := io.input_prev.value
} .otherwise {
// do nothing
}
}
}
}
}
object PriorityQueueStage {
def apply(keyWidth: Int, v: ValueInfo): PriorityQueueStage = new PriorityQueueStage(keyWidth, v)
}
// TODO
// - This design is not scalable as the enqued_keyval is broadcasted to all the stages
// - Add pipeline registers later
class PriorityQueueIO(queSize: Int, keyWidth: Int, value: ValueInfo) extends Bundle {
val cnt_bits = log2Ceil(queSize+1)
val counter = Output(UInt(cnt_bits.W))
val enq = Flipped(Decoupled(KeyValue(keyWidth, value)))
val deq = Decoupled(KeyValue(keyWidth, value))
}
class PriorityQueue(queSize: Int, keyWidth: Int, value: ValueInfo) extends Module {
val keyWidthInternal = keyWidth + 1
val CMD_DEQ = 0.U
val CMD_ENQ = 1.U
val io = IO(new PriorityQueueIO(queSize, keyWidthInternal, value))
dontTouch(io)
val MAX_VALUE = ((1 << keyWidthInternal) - 1).U
val cnt_bits = log2Ceil(queSize+1)
// do not consider cases where we are inserting more entries then the queSize
val counter = RegInit(0.U(cnt_bits.W))
io.counter := counter
val full = (counter === queSize.U)
val empty = (counter === 0.U)
io.deq.valid := !empty
io.enq.ready := !full
when (io.enq.fire) {
counter := counter + 1.U
}
when (io.deq.fire) {
counter := counter - 1.U
}
val cmd_valid = io.enq.valid || io.deq.ready
val cmd = Mux(io.enq.valid, CMD_ENQ, CMD_DEQ)
assert(!(io.enq.valid && io.deq.ready))
val stages = Seq.fill(queSize)(Module(new PriorityQueueStage(keyWidthInternal, value)))
for (i <- 0 until (queSize - 1)) {
stages(i+1).io.input_prev <> stages(i).io.output_nxt
stages(i).io.input_nxt <> stages(i+1).io.output_prev
}
stages(queSize-1).io.input_nxt.key := MAX_VALUE
// stages(queSize-1).io.input_nxt.value :=
stages(queSize-1).io.input_nxt.value.symbol := 0.U
// stages(queSize-1).io.input_nxt.value.child(0) := 0.U
// stages(queSize-1).io.input_nxt.value.child(1) := 0.U
stages(0).io.input_prev.key := io.enq.bits.key
stages(0).io.input_prev.value <> io.enq.bits.value
for (i <- 0 until queSize) {
stages(i).io.cmd.valid := cmd_valid
stages(i).io.cmd.bits := cmd
stages(i).io.cur_input_keyval <> io.enq.bits
}
val is_large_or_equal = WireInit(VecInit(Seq.fill(queSize)(false.B)))
for (i <- 0 until queSize) {
is_large_or_equal(i) := (stages(i).io.cur_output_keyval.key >= io.enq.bits.key)
}
val is_large_or_equal_cat = Wire(UInt(queSize.W))
is_large_or_equal_cat := Cat(is_large_or_equal.reverse)
val insert_here_idx = PriorityEncoder(is_large_or_equal_cat)
for (i <- 0 until queSize) {
when (i.U === insert_here_idx) {
stages(i).io.insert_here := true.B
} .otherwise {
stages(i).io.insert_here := false.B
}
}
io.deq.bits <> stages(0).io.output_prev
}
| module PriorityQueueStage_134( // @[ShiftRegisterPriorityQueue.scala:21:7]
input clock, // @[ShiftRegisterPriorityQueue.scala:21:7]
input reset, // @[ShiftRegisterPriorityQueue.scala:21:7]
output [30:0] io_output_prev_key, // @[ShiftRegisterPriorityQueue.scala:22:14]
output [9:0] io_output_prev_value_symbol, // @[ShiftRegisterPriorityQueue.scala:22:14]
output [30:0] io_output_nxt_key, // @[ShiftRegisterPriorityQueue.scala:22:14]
output [9:0] io_output_nxt_value_symbol, // @[ShiftRegisterPriorityQueue.scala:22:14]
input [30:0] io_input_prev_key, // @[ShiftRegisterPriorityQueue.scala:22:14]
input [9:0] io_input_prev_value_symbol, // @[ShiftRegisterPriorityQueue.scala:22:14]
input [30:0] io_input_nxt_key, // @[ShiftRegisterPriorityQueue.scala:22:14]
input [9:0] io_input_nxt_value_symbol, // @[ShiftRegisterPriorityQueue.scala:22:14]
input io_cmd_valid, // @[ShiftRegisterPriorityQueue.scala:22:14]
input io_cmd_bits, // @[ShiftRegisterPriorityQueue.scala:22:14]
input io_insert_here, // @[ShiftRegisterPriorityQueue.scala:22:14]
input [30:0] io_cur_input_keyval_key, // @[ShiftRegisterPriorityQueue.scala:22:14]
input [9:0] io_cur_input_keyval_value_symbol, // @[ShiftRegisterPriorityQueue.scala:22:14]
output [30:0] io_cur_output_keyval_key, // @[ShiftRegisterPriorityQueue.scala:22:14]
output [9:0] io_cur_output_keyval_value_symbol // @[ShiftRegisterPriorityQueue.scala:22:14]
);
wire [30:0] io_input_prev_key_0 = io_input_prev_key; // @[ShiftRegisterPriorityQueue.scala:21:7]
wire [9:0] io_input_prev_value_symbol_0 = io_input_prev_value_symbol; // @[ShiftRegisterPriorityQueue.scala:21:7]
wire [30:0] io_input_nxt_key_0 = io_input_nxt_key; // @[ShiftRegisterPriorityQueue.scala:21:7]
wire [9:0] io_input_nxt_value_symbol_0 = io_input_nxt_value_symbol; // @[ShiftRegisterPriorityQueue.scala:21:7]
wire io_cmd_valid_0 = io_cmd_valid; // @[ShiftRegisterPriorityQueue.scala:21:7]
wire io_cmd_bits_0 = io_cmd_bits; // @[ShiftRegisterPriorityQueue.scala:21:7]
wire io_insert_here_0 = io_insert_here; // @[ShiftRegisterPriorityQueue.scala:21:7]
wire [30:0] io_cur_input_keyval_key_0 = io_cur_input_keyval_key; // @[ShiftRegisterPriorityQueue.scala:21:7]
wire [9:0] io_cur_input_keyval_value_symbol_0 = io_cur_input_keyval_value_symbol; // @[ShiftRegisterPriorityQueue.scala:21:7]
wire [9:0] io_output_prev_value_symbol_0; // @[ShiftRegisterPriorityQueue.scala:21:7]
wire [30:0] io_output_prev_key_0; // @[ShiftRegisterPriorityQueue.scala:21:7]
wire [9:0] io_output_nxt_value_symbol_0; // @[ShiftRegisterPriorityQueue.scala:21:7]
wire [30:0] io_output_nxt_key_0; // @[ShiftRegisterPriorityQueue.scala:21:7]
wire [9:0] io_cur_output_keyval_value_symbol_0; // @[ShiftRegisterPriorityQueue.scala:21:7]
wire [30:0] io_cur_output_keyval_key_0; // @[ShiftRegisterPriorityQueue.scala:21:7]
reg [30:0] key_reg; // @[ShiftRegisterPriorityQueue.scala:30:24]
assign io_output_prev_key_0 = key_reg; // @[ShiftRegisterPriorityQueue.scala:21:7, :30:24]
assign io_output_nxt_key_0 = key_reg; // @[ShiftRegisterPriorityQueue.scala:21:7, :30:24]
assign io_cur_output_keyval_key_0 = key_reg; // @[ShiftRegisterPriorityQueue.scala:21:7, :30:24]
reg [9:0] value_reg_symbol; // @[ShiftRegisterPriorityQueue.scala:31:22]
assign io_output_prev_value_symbol_0 = value_reg_symbol; // @[ShiftRegisterPriorityQueue.scala:21:7, :31:22]
assign io_output_nxt_value_symbol_0 = value_reg_symbol; // @[ShiftRegisterPriorityQueue.scala:21:7, :31:22]
assign io_cur_output_keyval_value_symbol_0 = value_reg_symbol; // @[ShiftRegisterPriorityQueue.scala:21:7, :31:22]
wire _T_2 = key_reg >= io_cur_input_keyval_key_0; // @[ShiftRegisterPriorityQueue.scala:21:7, :30:24, :52:30]
always @(posedge clock) begin // @[ShiftRegisterPriorityQueue.scala:21:7]
if (reset) // @[ShiftRegisterPriorityQueue.scala:21:7]
key_reg <= 31'h7FFFFFFF; // @[ShiftRegisterPriorityQueue.scala:30:24]
else if (io_cmd_valid_0) begin // @[ShiftRegisterPriorityQueue.scala:21:7]
if (io_cmd_bits_0) begin // @[ShiftRegisterPriorityQueue.scala:21:7]
if (io_insert_here_0) // @[ShiftRegisterPriorityQueue.scala:21:7]
key_reg <= io_cur_input_keyval_key_0; // @[ShiftRegisterPriorityQueue.scala:21:7, :30:24]
else if (_T_2) // @[ShiftRegisterPriorityQueue.scala:52:30]
key_reg <= io_input_prev_key_0; // @[ShiftRegisterPriorityQueue.scala:21:7, :30:24]
end
else // @[ShiftRegisterPriorityQueue.scala:21:7]
key_reg <= io_input_nxt_key_0; // @[ShiftRegisterPriorityQueue.scala:21:7, :30:24]
end
if (io_cmd_valid_0) begin // @[ShiftRegisterPriorityQueue.scala:21:7]
if (io_cmd_bits_0) begin // @[ShiftRegisterPriorityQueue.scala:21:7]
if (io_insert_here_0) // @[ShiftRegisterPriorityQueue.scala:21:7]
value_reg_symbol <= io_cur_input_keyval_value_symbol_0; // @[ShiftRegisterPriorityQueue.scala:21:7, :31:22]
else if (_T_2) // @[ShiftRegisterPriorityQueue.scala:52:30]
value_reg_symbol <= io_input_prev_value_symbol_0; // @[ShiftRegisterPriorityQueue.scala:21:7, :31:22]
end
else // @[ShiftRegisterPriorityQueue.scala:21:7]
value_reg_symbol <= io_input_nxt_value_symbol_0; // @[ShiftRegisterPriorityQueue.scala:21:7, :31:22]
end
always @(posedge)
assign io_output_prev_key = io_output_prev_key_0; // @[ShiftRegisterPriorityQueue.scala:21:7]
assign io_output_prev_value_symbol = io_output_prev_value_symbol_0; // @[ShiftRegisterPriorityQueue.scala:21:7]
assign io_output_nxt_key = io_output_nxt_key_0; // @[ShiftRegisterPriorityQueue.scala:21:7]
assign io_output_nxt_value_symbol = io_output_nxt_value_symbol_0; // @[ShiftRegisterPriorityQueue.scala:21:7]
assign io_cur_output_keyval_key = io_cur_output_keyval_key_0; // @[ShiftRegisterPriorityQueue.scala:21:7]
assign io_cur_output_keyval_value_symbol = io_cur_output_keyval_value_symbol_0; // @[ShiftRegisterPriorityQueue.scala:21:7]
endmodule |
Generate the Verilog code corresponding to the following Chisel files.
File regfile.scala:
//******************************************************************************
// Copyright (c) 2013 - 2018, The Regents of the University of California (Regents).
// All Rights Reserved. See LICENSE and LICENSE.SiFive for license details.
//------------------------------------------------------------------------------
//------------------------------------------------------------------------------
//------------------------------------------------------------------------------
// Register File (Abstract class and Synthesizable RegFile)
//------------------------------------------------------------------------------
//------------------------------------------------------------------------------
package boom.v4.exu
import scala.collection.mutable.ArrayBuffer
import chisel3._
import chisel3.util._
import org.chipsalliance.cde.config.Parameters
import boom.v4.common._
import boom.v4.util._
abstract class RegisterFile[T <: Data](
dType: T,
numRegisters: Int,
numReadPorts: Int,
numWritePorts: Int)
(implicit p: Parameters) extends BoomModule
{
val io = IO(new BoomBundle {
val arb_read_reqs = Vec(numReadPorts, Flipped(Decoupled(UInt(log2Ceil(numRegisters).W))))
val rrd_read_resps = Vec(numReadPorts, Output(dType))
val write_ports = Vec(numWritePorts, Flipped(Valid(new Bundle {
val addr = Output(UInt(maxPregSz.W))
val data = Output(dType)
})))
})
// ensure there is only 1 writer per register (unless to preg0)
if (numWritePorts > 1) {
for (i <- 0 until (numWritePorts - 1)) {
for (j <- (i + 1) until numWritePorts) {
assert(!io.write_ports(i).valid ||
!io.write_ports(j).valid ||
(io.write_ports(i).bits.addr =/= io.write_ports(j).bits.addr),
"[regfile] too many writers a register")
}
}
}
}
class BankedRF[T <: Data](
dType: T,
numBanks: Int,
numLogicalReadPortsPerBank: Int,
numRegisters: Int,
numLogicalReadPorts: Int,
numPhysicalReadPorts: Int,
numWritePorts: Int,
bankedWritePortArray: Seq[Option[Int]],
typeStr: String
)(implicit p: Parameters)
extends RegisterFile(dType, numRegisters, numLogicalReadPorts, numWritePorts)
{
require(isPow2(numBanks))
require(numRegisters % numBanks == 0)
require(bankedWritePortArray.length == numWritePorts)
val numDedicatedWritePorts = bankedWritePortArray.flatten.length
val writePortsPerBank = if (numDedicatedWritePorts == 0) {
numWritePorts
} else {
numWritePorts - numDedicatedWritePorts + 1
}
def bankIdx(i: UInt): UInt = i(log2Ceil(numBanks)-1,0)
val rfs = (0 until numBanks) map { w => Module(new PartiallyPortedRF(
dType,
numRegisters / numBanks,
numLogicalReadPortsPerBank,
numPhysicalReadPorts,
writePortsPerBank,
typeStr + s" Bank ${w}"
)) }
if (numBanks == 1) {
require(numLogicalReadPortsPerBank == numLogicalReadPorts)
io <> rfs(0).io
} else {
val widxs = Array.fill(numBanks)(0)
for (i <- 0 until numWritePorts) {
if (bankedWritePortArray(i) != None) {
val bank = bankedWritePortArray(i).get
val widx = widxs(bank)
rfs(bank).io.write_ports(widx).valid := io.write_ports(i).valid
rfs(bank).io.write_ports(widx).bits.addr := io.write_ports(i).bits.addr >> log2Ceil(numBanks)
rfs(bank).io.write_ports(widx).bits.data := io.write_ports(i).bits.data
assert(!io.write_ports(i).valid || bankIdx(io.write_ports(i).bits.addr) === bank.U)
widxs(bank) = widx + 1
} else {
for (w <- 0 until numBanks) {
val widx = widxs(w)
rfs(w).io.write_ports(widx).valid := io.write_ports(i).valid && bankIdx(io.write_ports(i).bits.addr) === w.U
rfs(w).io.write_ports(widx).bits.addr := io.write_ports(i).bits.addr >> log2Ceil(numBanks)
rfs(w).io.write_ports(widx).bits.data := io.write_ports(i).bits.data
widxs(w) = widx + 1
}
}
}
require(widxs.forall(_ == writePortsPerBank), widxs.mkString(","))
if (numLogicalReadPortsPerBank == numLogicalReadPorts) {
for (i <- 0 until numLogicalReadPorts) {
val bidx = bankIdx(io.arb_read_reqs(i).bits)
for (w <- 0 until numBanks) {
rfs(w).io.arb_read_reqs(i).valid := io.arb_read_reqs(i).valid && bankIdx(io.arb_read_reqs(i).bits) === w.U
rfs(w).io.arb_read_reqs(i).bits := io.arb_read_reqs(i).bits >> log2Ceil(numBanks)
}
val arb_data_sel = UIntToOH(bidx)
val rrd_data_sel = RegNext(arb_data_sel)
io.arb_read_reqs(i).ready := Mux1H(arb_data_sel, rfs.map(_.io.arb_read_reqs(i).ready))
io.rrd_read_resps(i) := Mux1H(rrd_data_sel, rfs.map(_.io.rrd_read_resps(i)))
}
}
}
override def toString: String = rfs.map(_.toString).mkString
}
class PartiallyPortedRF[T <: Data](
dType: T,
numRegisters: Int,
numLogicalReadPorts: Int,
numPhysicalReadPorts: Int,
numWritePorts: Int,
typeStr: String
)(implicit p: Parameters)
extends RegisterFile(dType, numRegisters, numLogicalReadPorts, numWritePorts)
{
val rf = Module(new FullyPortedRF(
dType = dType,
numRegisters = numRegisters,
numReadPorts = numPhysicalReadPorts,
numWritePorts = numWritePorts,
typeStr = "Partially Ported " + typeStr,
))
rf.io.write_ports := io.write_ports
val port_issued = Array.fill(numPhysicalReadPorts) { false.B }
val port_addrs = Array.fill(numPhysicalReadPorts) { 0.U(log2Ceil(numRegisters).W) }
val data_sels = Wire(Vec(numLogicalReadPorts , UInt(numPhysicalReadPorts.W)))
data_sels := DontCare
for (i <- 0 until numLogicalReadPorts) {
var read_issued = false.B
for (j <- 0 until numPhysicalReadPorts) {
val issue_read = WireInit(false.B)
val use_port = WireInit(false.B)
when (!read_issued && !port_issued(j) && io.arb_read_reqs(i).valid) {
issue_read := true.B
use_port := true.B
data_sels(i) := UIntToOH(j.U)
}
val was_port_issued_yet = port_issued(j)
port_issued(j) = use_port || port_issued(j)
port_addrs(j) = port_addrs(j) | Mux(was_port_issued_yet || !use_port, 0.U, io.arb_read_reqs(i).bits)
read_issued = issue_read || read_issued
}
io.arb_read_reqs(i).ready := PopCount(io.arb_read_reqs.take(i).map(_.valid)) < numPhysicalReadPorts.U
assert(!(io.arb_read_reqs(i).fire && !read_issued))
}
for (j <- 0 until numPhysicalReadPorts) {
rf.io.arb_read_reqs(j).valid := port_issued(j)
rf.io.arb_read_reqs(j).bits := port_addrs(j)
assert(rf.io.arb_read_reqs(j).ready)
}
val rrd_data_sels = RegNext(data_sels)
for (i <- 0 until numLogicalReadPorts) {
io.rrd_read_resps(i) := Mux1H(rrd_data_sels(i).asBools, rf.io.rrd_read_resps)
}
override def toString: String = rf.toString
}
class FullyPortedRF[T <: Data](
dType: T,
numRegisters: Int,
numReadPorts: Int,
numWritePorts: Int,
typeStr: String,
)(implicit p: Parameters)
extends RegisterFile(dType, numRegisters, numReadPorts, numWritePorts)
{
val rf_cost = (numReadPorts + numWritePorts) * (numReadPorts + 2*numWritePorts)
override def toString: String = BoomCoreStringPrefix(
"==" + typeStr + " Regfile==",
"Num RF Read Ports : " + numReadPorts,
"Num RF Write Ports : " + numWritePorts,
"RF Cost (R+W)*(R+2W) : " + rf_cost)
io.arb_read_reqs.map(p => p.ready := true.B)
val regfile = Mem(numRegisters, dType)
(0 until numReadPorts) map {p => io.rrd_read_resps(p) := regfile(RegNext(io.arb_read_reqs(p).bits)) }
io.write_ports map { p => when (p.valid) { regfile(p.bits.addr) := p.bits.data }}
}
| module FullyPortedRF_1( // @[regfile.scala:186:7]
input clock, // @[regfile.scala:186:7]
input reset, // @[regfile.scala:186:7]
input io_arb_read_reqs_0_valid, // @[regfile.scala:31:14]
input [5:0] io_arb_read_reqs_0_bits, // @[regfile.scala:31:14]
input io_arb_read_reqs_1_valid, // @[regfile.scala:31:14]
input [5:0] io_arb_read_reqs_1_bits, // @[regfile.scala:31:14]
input io_arb_read_reqs_2_valid, // @[regfile.scala:31:14]
input [5:0] io_arb_read_reqs_2_bits, // @[regfile.scala:31:14]
input io_arb_read_reqs_3_valid, // @[regfile.scala:31:14]
input [5:0] io_arb_read_reqs_3_bits, // @[regfile.scala:31:14]
input io_arb_read_reqs_4_valid, // @[regfile.scala:31:14]
input [5:0] io_arb_read_reqs_4_bits, // @[regfile.scala:31:14]
output [63:0] io_rrd_read_resps_0, // @[regfile.scala:31:14]
output [63:0] io_rrd_read_resps_1, // @[regfile.scala:31:14]
output [63:0] io_rrd_read_resps_2, // @[regfile.scala:31:14]
output [63:0] io_rrd_read_resps_3, // @[regfile.scala:31:14]
output [63:0] io_rrd_read_resps_4, // @[regfile.scala:31:14]
input io_write_ports_0_valid, // @[regfile.scala:31:14]
input [6:0] io_write_ports_0_bits_addr, // @[regfile.scala:31:14]
input [63:0] io_write_ports_0_bits_data, // @[regfile.scala:31:14]
input io_write_ports_1_valid, // @[regfile.scala:31:14]
input [6:0] io_write_ports_1_bits_addr, // @[regfile.scala:31:14]
input [63:0] io_write_ports_1_bits_data, // @[regfile.scala:31:14]
input io_write_ports_2_valid, // @[regfile.scala:31:14]
input [6:0] io_write_ports_2_bits_addr, // @[regfile.scala:31:14]
input [63:0] io_write_ports_2_bits_data, // @[regfile.scala:31:14]
input io_write_ports_3_valid, // @[regfile.scala:31:14]
input [6:0] io_write_ports_3_bits_addr, // @[regfile.scala:31:14]
input [63:0] io_write_ports_3_bits_data // @[regfile.scala:31:14]
);
wire io_arb_read_reqs_0_valid_0 = io_arb_read_reqs_0_valid; // @[regfile.scala:186:7]
wire [5:0] io_arb_read_reqs_0_bits_0 = io_arb_read_reqs_0_bits; // @[regfile.scala:186:7]
wire io_arb_read_reqs_1_valid_0 = io_arb_read_reqs_1_valid; // @[regfile.scala:186:7]
wire [5:0] io_arb_read_reqs_1_bits_0 = io_arb_read_reqs_1_bits; // @[regfile.scala:186:7]
wire io_arb_read_reqs_2_valid_0 = io_arb_read_reqs_2_valid; // @[regfile.scala:186:7]
wire [5:0] io_arb_read_reqs_2_bits_0 = io_arb_read_reqs_2_bits; // @[regfile.scala:186:7]
wire io_arb_read_reqs_3_valid_0 = io_arb_read_reqs_3_valid; // @[regfile.scala:186:7]
wire [5:0] io_arb_read_reqs_3_bits_0 = io_arb_read_reqs_3_bits; // @[regfile.scala:186:7]
wire io_arb_read_reqs_4_valid_0 = io_arb_read_reqs_4_valid; // @[regfile.scala:186:7]
wire [5:0] io_arb_read_reqs_4_bits_0 = io_arb_read_reqs_4_bits; // @[regfile.scala:186:7]
wire io_write_ports_0_valid_0 = io_write_ports_0_valid; // @[regfile.scala:186:7]
wire [6:0] io_write_ports_0_bits_addr_0 = io_write_ports_0_bits_addr; // @[regfile.scala:186:7]
wire [63:0] io_write_ports_0_bits_data_0 = io_write_ports_0_bits_data; // @[regfile.scala:186:7]
wire io_write_ports_1_valid_0 = io_write_ports_1_valid; // @[regfile.scala:186:7]
wire [6:0] io_write_ports_1_bits_addr_0 = io_write_ports_1_bits_addr; // @[regfile.scala:186:7]
wire [63:0] io_write_ports_1_bits_data_0 = io_write_ports_1_bits_data; // @[regfile.scala:186:7]
wire io_write_ports_2_valid_0 = io_write_ports_2_valid; // @[regfile.scala:186:7]
wire [6:0] io_write_ports_2_bits_addr_0 = io_write_ports_2_bits_addr; // @[regfile.scala:186:7]
wire [63:0] io_write_ports_2_bits_data_0 = io_write_ports_2_bits_data; // @[regfile.scala:186:7]
wire io_write_ports_3_valid_0 = io_write_ports_3_valid; // @[regfile.scala:186:7]
wire [6:0] io_write_ports_3_bits_addr_0 = io_write_ports_3_bits_addr; // @[regfile.scala:186:7]
wire [63:0] io_write_ports_3_bits_data_0 = io_write_ports_3_bits_data; // @[regfile.scala:186:7]
wire io_arb_read_reqs_0_ready = 1'h1; // @[regfile.scala:186:7]
wire io_arb_read_reqs_1_ready = 1'h1; // @[regfile.scala:186:7]
wire io_arb_read_reqs_2_ready = 1'h1; // @[regfile.scala:186:7]
wire io_arb_read_reqs_3_ready = 1'h1; // @[regfile.scala:186:7]
wire io_arb_read_reqs_4_ready = 1'h1; // @[regfile.scala:186:7]
wire [63:0] io_rrd_read_resps_0_0; // @[regfile.scala:186:7]
wire [63:0] io_rrd_read_resps_1_0; // @[regfile.scala:186:7]
wire [63:0] io_rrd_read_resps_2_0; // @[regfile.scala:186:7]
wire [63:0] io_rrd_read_resps_3_0; // @[regfile.scala:186:7]
wire [63:0] io_rrd_read_resps_4_0; // @[regfile.scala:186:7] |
Generate the Verilog code corresponding to the following Chisel files.
File DCEQueue.scala:
package saturn.common
import chisel3._
import chisel3.util._
import org.chipsalliance.cde.config.Parameters
import freechips.rocketchip.tile._
import freechips.rocketchip.util._
import freechips.rocketchip.rocket._
import freechips.rocketchip.tilelink._
import freechips.rocketchip.rocket.Instructions._
class DCEQueue[T <: Data](
val gen: T,
val entries: Int,
val pipe: Boolean = false,
val flow: Boolean = false)(implicit val p: Parameters) extends Module {
require(entries > -1, "Queue must have non-negative number of entries")
require(entries != 0, "Use companion object Queue.apply for zero entries")
val io = IO(new QueueIO(gen, entries, false) {
val peek = Output(Vec(entries, Valid(gen)))
})
val valids = RegInit(VecInit.fill(entries)(false.B))
val ram = Reg(Vec(entries, gen))
val enq_ptr = Counter(entries)
val deq_ptr = Counter(entries)
val maybe_full = RegInit(false.B)
val ptr_match = enq_ptr.value === deq_ptr.value
val empty = ptr_match && !maybe_full
val full = ptr_match && maybe_full
val do_enq = WireDefault(io.enq.fire)
val do_deq = WireDefault(io.deq.fire)
for (i <- 0 until entries) {
io.peek(i).bits := ram(i)
io.peek(i).valid := valids(i)
}
when(do_deq) {
deq_ptr.inc()
valids(deq_ptr.value) := false.B
}
when(do_enq) {
ram(enq_ptr.value) := io.enq.bits
valids(enq_ptr.value) := true.B
enq_ptr.inc()
}
when(do_enq =/= do_deq) {
maybe_full := do_enq
}
io.deq.valid := !empty
io.enq.ready := !full
io.deq.bits := ram(deq_ptr.value)
if (flow) {
when(io.enq.valid) { io.deq.valid := true.B }
when(empty) {
io.deq.bits := io.enq.bits
do_deq := false.B
when(io.deq.ready) { do_enq := false.B }
}
}
if (pipe) {
when(io.deq.ready) { io.enq.ready := true.B }
}
val ptr_diff = enq_ptr.value - deq_ptr.value
if (isPow2(entries)) {
io.count := Mux(maybe_full && ptr_match, entries.U, 0.U) | ptr_diff
} else {
io.count := Mux(
ptr_match,
Mux(maybe_full, entries.asUInt, 0.U),
Mux(deq_ptr.value > enq_ptr.value, entries.asUInt + ptr_diff, ptr_diff)
)
}
}
| module DCEQueue_5( // @[DCEQueue.scala:12:7]
input clock, // @[DCEQueue.scala:12:7]
input reset, // @[DCEQueue.scala:12:7]
output io_enq_ready, // @[DCEQueue.scala:20:14]
input io_enq_valid, // @[DCEQueue.scala:20:14]
input [127:0] io_enq_bits_rvs2_data, // @[DCEQueue.scala:20:14]
input [7:0] io_enq_bits_eidx, // @[DCEQueue.scala:20:14]
input [1:0] io_enq_bits_rvs2_eew, // @[DCEQueue.scala:20:14]
input [8:0] io_enq_bits_vl, // @[DCEQueue.scala:20:14]
input io_enq_bits_tail, // @[DCEQueue.scala:20:14]
input io_deq_ready, // @[DCEQueue.scala:20:14]
output io_deq_valid, // @[DCEQueue.scala:20:14]
output [127:0] io_deq_bits_rvs2_data, // @[DCEQueue.scala:20:14]
output [7:0] io_deq_bits_eidx, // @[DCEQueue.scala:20:14]
output [1:0] io_deq_bits_rvs2_eew, // @[DCEQueue.scala:20:14]
output [8:0] io_deq_bits_vl, // @[DCEQueue.scala:20:14]
output io_deq_bits_tail // @[DCEQueue.scala:20:14]
);
reg [127:0] ram_0_rvs2_data; // @[DCEQueue.scala:24:16]
reg [7:0] ram_0_eidx; // @[DCEQueue.scala:24:16]
reg [1:0] ram_0_rvs2_eew; // @[DCEQueue.scala:24:16]
reg [8:0] ram_0_vl; // @[DCEQueue.scala:24:16]
reg ram_0_tail; // @[DCEQueue.scala:24:16]
reg [127:0] ram_1_rvs2_data; // @[DCEQueue.scala:24:16]
reg [7:0] ram_1_eidx; // @[DCEQueue.scala:24:16]
reg [1:0] ram_1_rvs2_eew; // @[DCEQueue.scala:24:16]
reg [8:0] ram_1_vl; // @[DCEQueue.scala:24:16]
reg ram_1_tail; // @[DCEQueue.scala:24:16]
reg wrap_1; // @[Counter.scala:61:40]
reg wrap; // @[Counter.scala:61:40]
reg maybe_full; // @[DCEQueue.scala:27:27]
wire ptr_match = wrap_1 == wrap; // @[Counter.scala:61:40]
wire empty = ptr_match & ~maybe_full; // @[DCEQueue.scala:27:27, :28:33, :29:{25,28}]
wire full = ptr_match & maybe_full; // @[DCEQueue.scala:27:27, :28:33, :30:24]
wire do_deq = io_deq_ready & ~empty; // @[Decoupled.scala:51:35]
wire do_enq = ~full & io_enq_valid; // @[Decoupled.scala:51:35]
always @(posedge clock) begin // @[DCEQueue.scala:12:7]
if (do_enq & ~wrap_1) begin // @[Decoupled.scala:51:35]
ram_0_rvs2_data <= io_enq_bits_rvs2_data; // @[DCEQueue.scala:24:16]
ram_0_eidx <= io_enq_bits_eidx; // @[DCEQueue.scala:24:16]
ram_0_rvs2_eew <= io_enq_bits_rvs2_eew; // @[DCEQueue.scala:24:16]
ram_0_vl <= io_enq_bits_vl; // @[DCEQueue.scala:24:16]
ram_0_tail <= io_enq_bits_tail; // @[DCEQueue.scala:24:16]
end
if (do_enq & wrap_1) begin // @[Decoupled.scala:51:35]
ram_1_rvs2_data <= io_enq_bits_rvs2_data; // @[DCEQueue.scala:24:16]
ram_1_eidx <= io_enq_bits_eidx; // @[DCEQueue.scala:24:16]
ram_1_rvs2_eew <= io_enq_bits_rvs2_eew; // @[DCEQueue.scala:24:16]
ram_1_vl <= io_enq_bits_vl; // @[DCEQueue.scala:24:16]
ram_1_tail <= io_enq_bits_tail; // @[DCEQueue.scala:24:16]
end
if (reset) begin // @[DCEQueue.scala:12:7]
wrap_1 <= 1'h0; // @[Counter.scala:61:40]
wrap <= 1'h0; // @[Counter.scala:61:40]
maybe_full <= 1'h0; // @[DCEQueue.scala:27:27]
end
else begin // @[DCEQueue.scala:12:7]
if (do_enq) // @[Decoupled.scala:51:35]
wrap_1 <= wrap_1 - 1'h1; // @[Counter.scala:61:40, :77:24]
if (do_deq) // @[Decoupled.scala:51:35]
wrap <= wrap - 1'h1; // @[Counter.scala:61:40, :77:24]
if (~(do_enq == do_deq)) // @[Decoupled.scala:51:35]
maybe_full <= do_enq; // @[Decoupled.scala:51:35]
end
always @(posedge) |
Generate the Verilog code corresponding to the following Chisel files.
File Buffer.scala:
// See LICENSE.SiFive for license details.
package freechips.rocketchip.tilelink
import chisel3._
import org.chipsalliance.cde.config._
import org.chipsalliance.diplomacy._
import org.chipsalliance.diplomacy.lazymodule._
import freechips.rocketchip.diplomacy.BufferParams
class TLBufferNode (
a: BufferParams,
b: BufferParams,
c: BufferParams,
d: BufferParams,
e: BufferParams)(implicit valName: ValName) extends TLAdapterNode(
clientFn = { p => p.v1copy(minLatency = p.minLatency + b.latency + c.latency) },
managerFn = { p => p.v1copy(minLatency = p.minLatency + a.latency + d.latency) }
) {
override lazy val nodedebugstring = s"a:${a.toString}, b:${b.toString}, c:${c.toString}, d:${d.toString}, e:${e.toString}"
override def circuitIdentity = List(a,b,c,d,e).forall(_ == BufferParams.none)
}
class TLBuffer(
a: BufferParams,
b: BufferParams,
c: BufferParams,
d: BufferParams,
e: BufferParams)(implicit p: Parameters) extends LazyModule
{
def this(ace: BufferParams, bd: BufferParams)(implicit p: Parameters) = this(ace, bd, ace, bd, ace)
def this(abcde: BufferParams)(implicit p: Parameters) = this(abcde, abcde)
def this()(implicit p: Parameters) = this(BufferParams.default)
val node = new TLBufferNode(a, b, c, d, e)
lazy val module = new Impl
class Impl extends LazyModuleImp(this) {
def headBundle = node.out.head._2.bundle
override def desiredName = (Seq("TLBuffer") ++ node.out.headOption.map(_._2.bundle.shortName)).mkString("_")
(node.in zip node.out) foreach { case ((in, edgeIn), (out, edgeOut)) =>
out.a <> a(in .a)
in .d <> d(out.d)
if (edgeOut.manager.anySupportAcquireB && edgeOut.client.anySupportProbe) {
in .b <> b(out.b)
out.c <> c(in .c)
out.e <> e(in .e)
} else {
in.b.valid := false.B
in.c.ready := true.B
in.e.ready := true.B
out.b.ready := true.B
out.c.valid := false.B
out.e.valid := false.B
}
}
}
}
object TLBuffer
{
def apply() (implicit p: Parameters): TLNode = apply(BufferParams.default)
def apply(abcde: BufferParams) (implicit p: Parameters): TLNode = apply(abcde, abcde)
def apply(ace: BufferParams, bd: BufferParams)(implicit p: Parameters): TLNode = apply(ace, bd, ace, bd, ace)
def apply(
a: BufferParams,
b: BufferParams,
c: BufferParams,
d: BufferParams,
e: BufferParams)(implicit p: Parameters): TLNode =
{
val buffer = LazyModule(new TLBuffer(a, b, c, d, e))
buffer.node
}
def chain(depth: Int, name: Option[String] = None)(implicit p: Parameters): Seq[TLNode] = {
val buffers = Seq.fill(depth) { LazyModule(new TLBuffer()) }
name.foreach { n => buffers.zipWithIndex.foreach { case (b, i) => b.suggestName(s"${n}_${i}") } }
buffers.map(_.node)
}
def chainNode(depth: Int, name: Option[String] = None)(implicit p: Parameters): TLNode = {
chain(depth, name)
.reduceLeftOption(_ :*=* _)
.getOrElse(TLNameNode("no_buffer"))
}
}
File Nodes.scala:
// See LICENSE.SiFive for license details.
package freechips.rocketchip.tilelink
import chisel3._
import chisel3.experimental.SourceInfo
import org.chipsalliance.cde.config._
import org.chipsalliance.diplomacy._
import org.chipsalliance.diplomacy.nodes._
import freechips.rocketchip.util.{AsyncQueueParams,RationalDirection}
case object TLMonitorBuilder extends Field[TLMonitorArgs => TLMonitorBase](args => new TLMonitor(args))
object TLImp extends NodeImp[TLMasterPortParameters, TLSlavePortParameters, TLEdgeOut, TLEdgeIn, TLBundle]
{
def edgeO(pd: TLMasterPortParameters, pu: TLSlavePortParameters, p: Parameters, sourceInfo: SourceInfo) = new TLEdgeOut(pd, pu, p, sourceInfo)
def edgeI(pd: TLMasterPortParameters, pu: TLSlavePortParameters, p: Parameters, sourceInfo: SourceInfo) = new TLEdgeIn (pd, pu, p, sourceInfo)
def bundleO(eo: TLEdgeOut) = TLBundle(eo.bundle)
def bundleI(ei: TLEdgeIn) = TLBundle(ei.bundle)
def render(ei: TLEdgeIn) = RenderedEdge(colour = "#000000" /* black */, label = (ei.manager.beatBytes * 8).toString)
override def monitor(bundle: TLBundle, edge: TLEdgeIn): Unit = {
val monitor = Module(edge.params(TLMonitorBuilder)(TLMonitorArgs(edge)))
monitor.io.in := bundle
}
override def mixO(pd: TLMasterPortParameters, node: OutwardNode[TLMasterPortParameters, TLSlavePortParameters, TLBundle]): TLMasterPortParameters =
pd.v1copy(clients = pd.clients.map { c => c.v1copy (nodePath = node +: c.nodePath) })
override def mixI(pu: TLSlavePortParameters, node: InwardNode[TLMasterPortParameters, TLSlavePortParameters, TLBundle]): TLSlavePortParameters =
pu.v1copy(managers = pu.managers.map { m => m.v1copy (nodePath = node +: m.nodePath) })
}
trait TLFormatNode extends FormatNode[TLEdgeIn, TLEdgeOut]
case class TLClientNode(portParams: Seq[TLMasterPortParameters])(implicit valName: ValName) extends SourceNode(TLImp)(portParams) with TLFormatNode
case class TLManagerNode(portParams: Seq[TLSlavePortParameters])(implicit valName: ValName) extends SinkNode(TLImp)(portParams) with TLFormatNode
case class TLAdapterNode(
clientFn: TLMasterPortParameters => TLMasterPortParameters = { s => s },
managerFn: TLSlavePortParameters => TLSlavePortParameters = { s => s })(
implicit valName: ValName)
extends AdapterNode(TLImp)(clientFn, managerFn) with TLFormatNode
case class TLJunctionNode(
clientFn: Seq[TLMasterPortParameters] => Seq[TLMasterPortParameters],
managerFn: Seq[TLSlavePortParameters] => Seq[TLSlavePortParameters])(
implicit valName: ValName)
extends JunctionNode(TLImp)(clientFn, managerFn) with TLFormatNode
case class TLIdentityNode()(implicit valName: ValName) extends IdentityNode(TLImp)() with TLFormatNode
object TLNameNode {
def apply(name: ValName) = TLIdentityNode()(name)
def apply(name: Option[String]): TLIdentityNode = apply(ValName(name.getOrElse("with_no_name")))
def apply(name: String): TLIdentityNode = apply(Some(name))
}
case class TLEphemeralNode()(implicit valName: ValName) extends EphemeralNode(TLImp)()
object TLTempNode {
def apply(): TLEphemeralNode = TLEphemeralNode()(ValName("temp"))
}
case class TLNexusNode(
clientFn: Seq[TLMasterPortParameters] => TLMasterPortParameters,
managerFn: Seq[TLSlavePortParameters] => TLSlavePortParameters)(
implicit valName: ValName)
extends NexusNode(TLImp)(clientFn, managerFn) with TLFormatNode
abstract class TLCustomNode(implicit valName: ValName)
extends CustomNode(TLImp) with TLFormatNode
// Asynchronous crossings
trait TLAsyncFormatNode extends FormatNode[TLAsyncEdgeParameters, TLAsyncEdgeParameters]
object TLAsyncImp extends SimpleNodeImp[TLAsyncClientPortParameters, TLAsyncManagerPortParameters, TLAsyncEdgeParameters, TLAsyncBundle]
{
def edge(pd: TLAsyncClientPortParameters, pu: TLAsyncManagerPortParameters, p: Parameters, sourceInfo: SourceInfo) = TLAsyncEdgeParameters(pd, pu, p, sourceInfo)
def bundle(e: TLAsyncEdgeParameters) = new TLAsyncBundle(e.bundle)
def render(e: TLAsyncEdgeParameters) = RenderedEdge(colour = "#ff0000" /* red */, label = e.manager.async.depth.toString)
override def mixO(pd: TLAsyncClientPortParameters, node: OutwardNode[TLAsyncClientPortParameters, TLAsyncManagerPortParameters, TLAsyncBundle]): TLAsyncClientPortParameters =
pd.copy(base = pd.base.v1copy(clients = pd.base.clients.map { c => c.v1copy (nodePath = node +: c.nodePath) }))
override def mixI(pu: TLAsyncManagerPortParameters, node: InwardNode[TLAsyncClientPortParameters, TLAsyncManagerPortParameters, TLAsyncBundle]): TLAsyncManagerPortParameters =
pu.copy(base = pu.base.v1copy(managers = pu.base.managers.map { m => m.v1copy (nodePath = node +: m.nodePath) }))
}
case class TLAsyncAdapterNode(
clientFn: TLAsyncClientPortParameters => TLAsyncClientPortParameters = { s => s },
managerFn: TLAsyncManagerPortParameters => TLAsyncManagerPortParameters = { s => s })(
implicit valName: ValName)
extends AdapterNode(TLAsyncImp)(clientFn, managerFn) with TLAsyncFormatNode
case class TLAsyncIdentityNode()(implicit valName: ValName) extends IdentityNode(TLAsyncImp)() with TLAsyncFormatNode
object TLAsyncNameNode {
def apply(name: ValName) = TLAsyncIdentityNode()(name)
def apply(name: Option[String]): TLAsyncIdentityNode = apply(ValName(name.getOrElse("with_no_name")))
def apply(name: String): TLAsyncIdentityNode = apply(Some(name))
}
case class TLAsyncSourceNode(sync: Option[Int])(implicit valName: ValName)
extends MixedAdapterNode(TLImp, TLAsyncImp)(
dFn = { p => TLAsyncClientPortParameters(p) },
uFn = { p => p.base.v1copy(minLatency = p.base.minLatency + sync.getOrElse(p.async.sync)) }) with FormatNode[TLEdgeIn, TLAsyncEdgeParameters] // discard cycles in other clock domain
case class TLAsyncSinkNode(async: AsyncQueueParams)(implicit valName: ValName)
extends MixedAdapterNode(TLAsyncImp, TLImp)(
dFn = { p => p.base.v1copy(minLatency = p.base.minLatency + async.sync) },
uFn = { p => TLAsyncManagerPortParameters(async, p) }) with FormatNode[TLAsyncEdgeParameters, TLEdgeOut]
// Rationally related crossings
trait TLRationalFormatNode extends FormatNode[TLRationalEdgeParameters, TLRationalEdgeParameters]
object TLRationalImp extends SimpleNodeImp[TLRationalClientPortParameters, TLRationalManagerPortParameters, TLRationalEdgeParameters, TLRationalBundle]
{
def edge(pd: TLRationalClientPortParameters, pu: TLRationalManagerPortParameters, p: Parameters, sourceInfo: SourceInfo) = TLRationalEdgeParameters(pd, pu, p, sourceInfo)
def bundle(e: TLRationalEdgeParameters) = new TLRationalBundle(e.bundle)
def render(e: TLRationalEdgeParameters) = RenderedEdge(colour = "#00ff00" /* green */)
override def mixO(pd: TLRationalClientPortParameters, node: OutwardNode[TLRationalClientPortParameters, TLRationalManagerPortParameters, TLRationalBundle]): TLRationalClientPortParameters =
pd.copy(base = pd.base.v1copy(clients = pd.base.clients.map { c => c.v1copy (nodePath = node +: c.nodePath) }))
override def mixI(pu: TLRationalManagerPortParameters, node: InwardNode[TLRationalClientPortParameters, TLRationalManagerPortParameters, TLRationalBundle]): TLRationalManagerPortParameters =
pu.copy(base = pu.base.v1copy(managers = pu.base.managers.map { m => m.v1copy (nodePath = node +: m.nodePath) }))
}
case class TLRationalAdapterNode(
clientFn: TLRationalClientPortParameters => TLRationalClientPortParameters = { s => s },
managerFn: TLRationalManagerPortParameters => TLRationalManagerPortParameters = { s => s })(
implicit valName: ValName)
extends AdapterNode(TLRationalImp)(clientFn, managerFn) with TLRationalFormatNode
case class TLRationalIdentityNode()(implicit valName: ValName) extends IdentityNode(TLRationalImp)() with TLRationalFormatNode
object TLRationalNameNode {
def apply(name: ValName) = TLRationalIdentityNode()(name)
def apply(name: Option[String]): TLRationalIdentityNode = apply(ValName(name.getOrElse("with_no_name")))
def apply(name: String): TLRationalIdentityNode = apply(Some(name))
}
case class TLRationalSourceNode()(implicit valName: ValName)
extends MixedAdapterNode(TLImp, TLRationalImp)(
dFn = { p => TLRationalClientPortParameters(p) },
uFn = { p => p.base.v1copy(minLatency = 1) }) with FormatNode[TLEdgeIn, TLRationalEdgeParameters] // discard cycles from other clock domain
case class TLRationalSinkNode(direction: RationalDirection)(implicit valName: ValName)
extends MixedAdapterNode(TLRationalImp, TLImp)(
dFn = { p => p.base.v1copy(minLatency = 1) },
uFn = { p => TLRationalManagerPortParameters(direction, p) }) with FormatNode[TLRationalEdgeParameters, TLEdgeOut]
// Credited version of TileLink channels
trait TLCreditedFormatNode extends FormatNode[TLCreditedEdgeParameters, TLCreditedEdgeParameters]
object TLCreditedImp extends SimpleNodeImp[TLCreditedClientPortParameters, TLCreditedManagerPortParameters, TLCreditedEdgeParameters, TLCreditedBundle]
{
def edge(pd: TLCreditedClientPortParameters, pu: TLCreditedManagerPortParameters, p: Parameters, sourceInfo: SourceInfo) = TLCreditedEdgeParameters(pd, pu, p, sourceInfo)
def bundle(e: TLCreditedEdgeParameters) = new TLCreditedBundle(e.bundle)
def render(e: TLCreditedEdgeParameters) = RenderedEdge(colour = "#ffff00" /* yellow */, e.delay.toString)
override def mixO(pd: TLCreditedClientPortParameters, node: OutwardNode[TLCreditedClientPortParameters, TLCreditedManagerPortParameters, TLCreditedBundle]): TLCreditedClientPortParameters =
pd.copy(base = pd.base.v1copy(clients = pd.base.clients.map { c => c.v1copy (nodePath = node +: c.nodePath) }))
override def mixI(pu: TLCreditedManagerPortParameters, node: InwardNode[TLCreditedClientPortParameters, TLCreditedManagerPortParameters, TLCreditedBundle]): TLCreditedManagerPortParameters =
pu.copy(base = pu.base.v1copy(managers = pu.base.managers.map { m => m.v1copy (nodePath = node +: m.nodePath) }))
}
case class TLCreditedAdapterNode(
clientFn: TLCreditedClientPortParameters => TLCreditedClientPortParameters = { s => s },
managerFn: TLCreditedManagerPortParameters => TLCreditedManagerPortParameters = { s => s })(
implicit valName: ValName)
extends AdapterNode(TLCreditedImp)(clientFn, managerFn) with TLCreditedFormatNode
case class TLCreditedIdentityNode()(implicit valName: ValName) extends IdentityNode(TLCreditedImp)() with TLCreditedFormatNode
object TLCreditedNameNode {
def apply(name: ValName) = TLCreditedIdentityNode()(name)
def apply(name: Option[String]): TLCreditedIdentityNode = apply(ValName(name.getOrElse("with_no_name")))
def apply(name: String): TLCreditedIdentityNode = apply(Some(name))
}
case class TLCreditedSourceNode(delay: TLCreditedDelay)(implicit valName: ValName)
extends MixedAdapterNode(TLImp, TLCreditedImp)(
dFn = { p => TLCreditedClientPortParameters(delay, p) },
uFn = { p => p.base.v1copy(minLatency = 1) }) with FormatNode[TLEdgeIn, TLCreditedEdgeParameters] // discard cycles from other clock domain
case class TLCreditedSinkNode(delay: TLCreditedDelay)(implicit valName: ValName)
extends MixedAdapterNode(TLCreditedImp, TLImp)(
dFn = { p => p.base.v1copy(minLatency = 1) },
uFn = { p => TLCreditedManagerPortParameters(delay, p) }) with FormatNode[TLCreditedEdgeParameters, TLEdgeOut]
File LazyModuleImp.scala:
package org.chipsalliance.diplomacy.lazymodule
import chisel3.{withClockAndReset, Module, RawModule, Reset, _}
import chisel3.experimental.{ChiselAnnotation, CloneModuleAsRecord, SourceInfo}
import firrtl.passes.InlineAnnotation
import org.chipsalliance.cde.config.Parameters
import org.chipsalliance.diplomacy.nodes.Dangle
import scala.collection.immutable.SortedMap
/** Trait describing the actual [[Module]] implementation wrapped by a [[LazyModule]].
*
* This is the actual Chisel module that is lazily-evaluated in the second phase of Diplomacy.
*/
sealed trait LazyModuleImpLike extends RawModule {
/** [[LazyModule]] that contains this instance. */
val wrapper: LazyModule
/** IOs that will be automatically "punched" for this instance. */
val auto: AutoBundle
/** The metadata that describes the [[HalfEdge]]s which generated [[auto]]. */
protected[diplomacy] val dangles: Seq[Dangle]
// [[wrapper.module]] had better not be accessed while LazyModules are still being built!
require(
LazyModule.scope.isEmpty,
s"${wrapper.name}.module was constructed before LazyModule() was run on ${LazyModule.scope.get.name}"
)
/** Set module name. Defaults to the containing LazyModule's desiredName. */
override def desiredName: String = wrapper.desiredName
suggestName(wrapper.suggestedName)
/** [[Parameters]] for chisel [[Module]]s. */
implicit val p: Parameters = wrapper.p
/** instantiate this [[LazyModule]], return [[AutoBundle]] and a unconnected [[Dangle]]s from this module and
* submodules.
*/
protected[diplomacy] def instantiate(): (AutoBundle, List[Dangle]) = {
// 1. It will recursively append [[wrapper.children]] into [[chisel3.internal.Builder]],
// 2. return [[Dangle]]s from each module.
val childDangles = wrapper.children.reverse.flatMap { c =>
implicit val sourceInfo: SourceInfo = c.info
c.cloneProto.map { cp =>
// If the child is a clone, then recursively set cloneProto of its children as well
def assignCloneProtos(bases: Seq[LazyModule], clones: Seq[LazyModule]): Unit = {
require(bases.size == clones.size)
(bases.zip(clones)).map { case (l, r) =>
require(l.getClass == r.getClass, s"Cloned children class mismatch ${l.name} != ${r.name}")
l.cloneProto = Some(r)
assignCloneProtos(l.children, r.children)
}
}
assignCloneProtos(c.children, cp.children)
// Clone the child module as a record, and get its [[AutoBundle]]
val clone = CloneModuleAsRecord(cp.module).suggestName(c.suggestedName)
val clonedAuto = clone("auto").asInstanceOf[AutoBundle]
// Get the empty [[Dangle]]'s of the cloned child
val rawDangles = c.cloneDangles()
require(rawDangles.size == clonedAuto.elements.size)
// Assign the [[AutoBundle]] fields of the cloned record to the empty [[Dangle]]'s
val dangles = (rawDangles.zip(clonedAuto.elements)).map { case (d, (_, io)) => d.copy(dataOpt = Some(io)) }
dangles
}.getOrElse {
// For non-clones, instantiate the child module
val mod = try {
Module(c.module)
} catch {
case e: ChiselException => {
println(s"Chisel exception caught when instantiating ${c.name} within ${this.name} at ${c.line}")
throw e
}
}
mod.dangles
}
}
// Ask each node in this [[LazyModule]] to call [[BaseNode.instantiate]].
// This will result in a sequence of [[Dangle]] from these [[BaseNode]]s.
val nodeDangles = wrapper.nodes.reverse.flatMap(_.instantiate())
// Accumulate all the [[Dangle]]s from this node and any accumulated from its [[wrapper.children]]
val allDangles = nodeDangles ++ childDangles
// Group [[allDangles]] by their [[source]].
val pairing = SortedMap(allDangles.groupBy(_.source).toSeq: _*)
// For each [[source]] set of [[Dangle]]s of size 2, ensure that these
// can be connected as a source-sink pair (have opposite flipped value).
// Make the connection and mark them as [[done]].
val done = Set() ++ pairing.values.filter(_.size == 2).map {
case Seq(a, b) =>
require(a.flipped != b.flipped)
// @todo <> in chisel3 makes directionless connection.
if (a.flipped) {
a.data <> b.data
} else {
b.data <> a.data
}
a.source
case _ => None
}
// Find all [[Dangle]]s which are still not connected. These will end up as [[AutoBundle]] [[IO]] ports on the module.
val forward = allDangles.filter(d => !done(d.source))
// Generate [[AutoBundle]] IO from [[forward]].
val auto = IO(new AutoBundle(forward.map { d => (d.name, d.data, d.flipped) }: _*))
// Pass the [[Dangle]]s which remained and were used to generate the [[AutoBundle]] I/O ports up to the [[parent]] [[LazyModule]]
val dangles = (forward.zip(auto.elements)).map { case (d, (_, io)) =>
if (d.flipped) {
d.data <> io
} else {
io <> d.data
}
d.copy(dataOpt = Some(io), name = wrapper.suggestedName + "_" + d.name)
}
// Push all [[LazyModule.inModuleBody]] to [[chisel3.internal.Builder]].
wrapper.inModuleBody.reverse.foreach {
_()
}
if (wrapper.shouldBeInlined) {
chisel3.experimental.annotate(new ChiselAnnotation {
def toFirrtl = InlineAnnotation(toNamed)
})
}
// Return [[IO]] and [[Dangle]] of this [[LazyModuleImp]].
(auto, dangles)
}
}
/** Actual description of a [[Module]] which can be instantiated by a call to [[LazyModule.module]].
*
* @param wrapper
* the [[LazyModule]] from which the `.module` call is being made.
*/
class LazyModuleImp(val wrapper: LazyModule) extends Module with LazyModuleImpLike {
/** Instantiate hardware of this `Module`. */
val (auto, dangles) = instantiate()
}
/** Actual description of a [[RawModule]] which can be instantiated by a call to [[LazyModule.module]].
*
* @param wrapper
* the [[LazyModule]] from which the `.module` call is being made.
*/
class LazyRawModuleImp(val wrapper: LazyModule) extends RawModule with LazyModuleImpLike {
// These wires are the default clock+reset for all LazyModule children.
// It is recommended to drive these even if you manually drive the [[clock]] and [[reset]] of all of the
// [[LazyRawModuleImp]] children.
// Otherwise, anonymous children ([[Monitor]]s for example) will not have their [[clock]] and/or [[reset]] driven properly.
/** drive clock explicitly. */
val childClock: Clock = Wire(Clock())
/** drive reset explicitly. */
val childReset: Reset = Wire(Reset())
// the default is that these are disabled
childClock := false.B.asClock
childReset := chisel3.DontCare
def provideImplicitClockToLazyChildren: Boolean = false
val (auto, dangles) =
if (provideImplicitClockToLazyChildren) {
withClockAndReset(childClock, childReset) { instantiate() }
} else {
instantiate()
}
}
| module TLBuffer_a21d64s8k1z3u( // @[Buffer.scala:40:9]
input clock, // @[Buffer.scala:40:9]
input reset, // @[Buffer.scala:40:9]
output auto_in_a_ready, // @[LazyModuleImp.scala:107:25]
input auto_in_a_valid, // @[LazyModuleImp.scala:107:25]
input [2:0] auto_in_a_bits_opcode, // @[LazyModuleImp.scala:107:25]
input [2:0] auto_in_a_bits_param, // @[LazyModuleImp.scala:107:25]
input [2:0] auto_in_a_bits_size, // @[LazyModuleImp.scala:107:25]
input [7:0] auto_in_a_bits_source, // @[LazyModuleImp.scala:107:25]
input [20:0] auto_in_a_bits_address, // @[LazyModuleImp.scala:107:25]
input [7:0] auto_in_a_bits_mask, // @[LazyModuleImp.scala:107:25]
input [63:0] auto_in_a_bits_data, // @[LazyModuleImp.scala:107:25]
input auto_in_a_bits_corrupt, // @[LazyModuleImp.scala:107:25]
input auto_in_d_ready, // @[LazyModuleImp.scala:107:25]
output auto_in_d_valid, // @[LazyModuleImp.scala:107:25]
output [2:0] auto_in_d_bits_opcode, // @[LazyModuleImp.scala:107:25]
output [1:0] auto_in_d_bits_param, // @[LazyModuleImp.scala:107:25]
output [2:0] auto_in_d_bits_size, // @[LazyModuleImp.scala:107:25]
output [7:0] auto_in_d_bits_source, // @[LazyModuleImp.scala:107:25]
output auto_in_d_bits_sink, // @[LazyModuleImp.scala:107:25]
output auto_in_d_bits_denied, // @[LazyModuleImp.scala:107:25]
output [63:0] auto_in_d_bits_data, // @[LazyModuleImp.scala:107:25]
output auto_in_d_bits_corrupt, // @[LazyModuleImp.scala:107:25]
input auto_out_a_ready, // @[LazyModuleImp.scala:107:25]
output auto_out_a_valid, // @[LazyModuleImp.scala:107:25]
output [2:0] auto_out_a_bits_opcode, // @[LazyModuleImp.scala:107:25]
output [2:0] auto_out_a_bits_param, // @[LazyModuleImp.scala:107:25]
output [2:0] auto_out_a_bits_size, // @[LazyModuleImp.scala:107:25]
output [7:0] auto_out_a_bits_source, // @[LazyModuleImp.scala:107:25]
output [20:0] auto_out_a_bits_address, // @[LazyModuleImp.scala:107:25]
output [7:0] auto_out_a_bits_mask, // @[LazyModuleImp.scala:107:25]
output [63:0] auto_out_a_bits_data, // @[LazyModuleImp.scala:107:25]
output auto_out_a_bits_corrupt, // @[LazyModuleImp.scala:107:25]
output auto_out_d_ready, // @[LazyModuleImp.scala:107:25]
input auto_out_d_valid, // @[LazyModuleImp.scala:107:25]
input [2:0] auto_out_d_bits_opcode, // @[LazyModuleImp.scala:107:25]
input [2:0] auto_out_d_bits_size, // @[LazyModuleImp.scala:107:25]
input [7:0] auto_out_d_bits_source, // @[LazyModuleImp.scala:107:25]
input [63:0] auto_out_d_bits_data // @[LazyModuleImp.scala:107:25]
);
wire _nodeIn_d_q_io_deq_valid; // @[Decoupled.scala:362:21]
wire [2:0] _nodeIn_d_q_io_deq_bits_opcode; // @[Decoupled.scala:362:21]
wire [1:0] _nodeIn_d_q_io_deq_bits_param; // @[Decoupled.scala:362:21]
wire [2:0] _nodeIn_d_q_io_deq_bits_size; // @[Decoupled.scala:362:21]
wire [7:0] _nodeIn_d_q_io_deq_bits_source; // @[Decoupled.scala:362:21]
wire _nodeIn_d_q_io_deq_bits_sink; // @[Decoupled.scala:362:21]
wire _nodeIn_d_q_io_deq_bits_denied; // @[Decoupled.scala:362:21]
wire _nodeIn_d_q_io_deq_bits_corrupt; // @[Decoupled.scala:362:21]
wire _nodeOut_a_q_io_enq_ready; // @[Decoupled.scala:362:21]
TLMonitor_40 monitor ( // @[Nodes.scala:27:25]
.clock (clock),
.reset (reset),
.io_in_a_ready (_nodeOut_a_q_io_enq_ready), // @[Decoupled.scala:362:21]
.io_in_a_valid (auto_in_a_valid),
.io_in_a_bits_opcode (auto_in_a_bits_opcode),
.io_in_a_bits_param (auto_in_a_bits_param),
.io_in_a_bits_size (auto_in_a_bits_size),
.io_in_a_bits_source (auto_in_a_bits_source),
.io_in_a_bits_address (auto_in_a_bits_address),
.io_in_a_bits_mask (auto_in_a_bits_mask),
.io_in_a_bits_corrupt (auto_in_a_bits_corrupt),
.io_in_d_ready (auto_in_d_ready),
.io_in_d_valid (_nodeIn_d_q_io_deq_valid), // @[Decoupled.scala:362:21]
.io_in_d_bits_opcode (_nodeIn_d_q_io_deq_bits_opcode), // @[Decoupled.scala:362:21]
.io_in_d_bits_param (_nodeIn_d_q_io_deq_bits_param), // @[Decoupled.scala:362:21]
.io_in_d_bits_size (_nodeIn_d_q_io_deq_bits_size), // @[Decoupled.scala:362:21]
.io_in_d_bits_source (_nodeIn_d_q_io_deq_bits_source), // @[Decoupled.scala:362:21]
.io_in_d_bits_sink (_nodeIn_d_q_io_deq_bits_sink), // @[Decoupled.scala:362:21]
.io_in_d_bits_denied (_nodeIn_d_q_io_deq_bits_denied), // @[Decoupled.scala:362:21]
.io_in_d_bits_corrupt (_nodeIn_d_q_io_deq_bits_corrupt) // @[Decoupled.scala:362:21]
); // @[Nodes.scala:27:25]
Queue2_TLBundleA_a21d64s8k1z3u nodeOut_a_q ( // @[Decoupled.scala:362:21]
.clock (clock),
.reset (reset),
.io_enq_ready (_nodeOut_a_q_io_enq_ready),
.io_enq_valid (auto_in_a_valid),
.io_enq_bits_opcode (auto_in_a_bits_opcode),
.io_enq_bits_param (auto_in_a_bits_param),
.io_enq_bits_size (auto_in_a_bits_size),
.io_enq_bits_source (auto_in_a_bits_source),
.io_enq_bits_address (auto_in_a_bits_address),
.io_enq_bits_mask (auto_in_a_bits_mask),
.io_enq_bits_data (auto_in_a_bits_data),
.io_enq_bits_corrupt (auto_in_a_bits_corrupt),
.io_deq_ready (auto_out_a_ready),
.io_deq_valid (auto_out_a_valid),
.io_deq_bits_opcode (auto_out_a_bits_opcode),
.io_deq_bits_param (auto_out_a_bits_param),
.io_deq_bits_size (auto_out_a_bits_size),
.io_deq_bits_source (auto_out_a_bits_source),
.io_deq_bits_address (auto_out_a_bits_address),
.io_deq_bits_mask (auto_out_a_bits_mask),
.io_deq_bits_data (auto_out_a_bits_data),
.io_deq_bits_corrupt (auto_out_a_bits_corrupt)
); // @[Decoupled.scala:362:21]
Queue2_TLBundleD_a21d64s8k1z3u nodeIn_d_q ( // @[Decoupled.scala:362:21]
.clock (clock),
.reset (reset),
.io_enq_ready (auto_out_d_ready),
.io_enq_valid (auto_out_d_valid),
.io_enq_bits_opcode (auto_out_d_bits_opcode),
.io_enq_bits_size (auto_out_d_bits_size),
.io_enq_bits_source (auto_out_d_bits_source),
.io_enq_bits_data (auto_out_d_bits_data),
.io_deq_ready (auto_in_d_ready),
.io_deq_valid (_nodeIn_d_q_io_deq_valid),
.io_deq_bits_opcode (_nodeIn_d_q_io_deq_bits_opcode),
.io_deq_bits_param (_nodeIn_d_q_io_deq_bits_param),
.io_deq_bits_size (_nodeIn_d_q_io_deq_bits_size),
.io_deq_bits_source (_nodeIn_d_q_io_deq_bits_source),
.io_deq_bits_sink (_nodeIn_d_q_io_deq_bits_sink),
.io_deq_bits_denied (_nodeIn_d_q_io_deq_bits_denied),
.io_deq_bits_data (auto_in_d_bits_data),
.io_deq_bits_corrupt (_nodeIn_d_q_io_deq_bits_corrupt)
); // @[Decoupled.scala:362:21]
assign auto_in_a_ready = _nodeOut_a_q_io_enq_ready; // @[Decoupled.scala:362:21]
assign auto_in_d_valid = _nodeIn_d_q_io_deq_valid; // @[Decoupled.scala:362:21]
assign auto_in_d_bits_opcode = _nodeIn_d_q_io_deq_bits_opcode; // @[Decoupled.scala:362:21]
assign auto_in_d_bits_param = _nodeIn_d_q_io_deq_bits_param; // @[Decoupled.scala:362:21]
assign auto_in_d_bits_size = _nodeIn_d_q_io_deq_bits_size; // @[Decoupled.scala:362:21]
assign auto_in_d_bits_source = _nodeIn_d_q_io_deq_bits_source; // @[Decoupled.scala:362:21]
assign auto_in_d_bits_sink = _nodeIn_d_q_io_deq_bits_sink; // @[Decoupled.scala:362:21]
assign auto_in_d_bits_denied = _nodeIn_d_q_io_deq_bits_denied; // @[Decoupled.scala:362:21]
assign auto_in_d_bits_corrupt = _nodeIn_d_q_io_deq_bits_corrupt; // @[Decoupled.scala:362:21]
endmodule |
Generate the Verilog code corresponding to the following Chisel files.
File Switch.scala:
package constellation.router
import chisel3._
import chisel3.util._
import org.chipsalliance.cde.config.{Field, Parameters}
import freechips.rocketchip.util._
import constellation.channel.{ChannelParams, IngressChannelParams, EgressChannelParams, Flit}
class SwitchBundle(val outParams: Seq[ChannelParams], val egressParams: Seq[EgressChannelParams])(implicit val p: Parameters) extends Bundle with HasRouterOutputParams{
val flit = new Flit(allOutParams(0).payloadBits)
val out_virt_channel = UInt(log2Up(allOutParams.map(_.nVirtualChannels).max).W)
}
class Switch(
val routerParams: RouterParams,
val inParams: Seq[ChannelParams],
val outParams: Seq[ChannelParams],
val ingressParams: Seq[IngressChannelParams],
val egressParams: Seq[EgressChannelParams]
)(implicit val p: Parameters) extends Module
with HasRouterParams
with HasRouterInputParams
with HasRouterOutputParams {
val io = IO(new Bundle {
val in = MixedVec(allInParams.map { u => Vec(u.destSpeedup,
Input(Valid(new SwitchBundle(outParams, egressParams)))) })
val out = MixedVec(allOutParams.map { u => Vec(u.srcSpeedup,
Output(Valid(new Flit(u.payloadBits)))) })
val sel = MixedVec(allOutParams.map { o => Vec(o.srcSpeedup,
MixedVec(allInParams.map { i => Vec(i.destSpeedup, Input(Bool())) })) })
})
val in_flat = Wire(Vec(allInParams.map(_.destSpeedup).reduce(_+_),
Valid(new SwitchBundle(outParams, egressParams))))
var idx = 0
io.in.foreach(_.foreach { i =>
in_flat(idx) := i
idx += 1
})
for (i <- 0 until nAllOutputs) {
for (j <- 0 until allOutParams(i).srcSpeedup) {
val sel_flat = io.sel(i)(j).asUInt
assert(PopCount(sel_flat) <= 1.U)
io.out(i)(j).valid := Mux1H(sel_flat, in_flat.map(_.valid)) && sel_flat =/= 0.U
io.out(i)(j).bits := Mux1H(sel_flat, in_flat.map(_.bits.flit))
io.out(i)(j).bits.virt_channel_id := Mux1H(sel_flat, in_flat.map(_.bits.out_virt_channel))
}
}
}
| module Switch( // @[Switch.scala:16:7]
input clock, // @[Switch.scala:16:7]
input reset, // @[Switch.scala:16:7]
input io_in_5_0_valid, // @[Switch.scala:27:14]
input io_in_5_0_bits_flit_head, // @[Switch.scala:27:14]
input io_in_5_0_bits_flit_tail, // @[Switch.scala:27:14]
input [72:0] io_in_5_0_bits_flit_payload, // @[Switch.scala:27:14]
input [3:0] io_in_5_0_bits_flit_flow_vnet_id, // @[Switch.scala:27:14]
input [5:0] io_in_5_0_bits_flit_flow_ingress_node, // @[Switch.scala:27:14]
input [2:0] io_in_5_0_bits_flit_flow_ingress_node_id, // @[Switch.scala:27:14]
input [5:0] io_in_5_0_bits_flit_flow_egress_node, // @[Switch.scala:27:14]
input [2:0] io_in_5_0_bits_flit_flow_egress_node_id, // @[Switch.scala:27:14]
input [4:0] io_in_5_0_bits_out_virt_channel, // @[Switch.scala:27:14]
input io_in_4_0_valid, // @[Switch.scala:27:14]
input io_in_4_0_bits_flit_head, // @[Switch.scala:27:14]
input io_in_4_0_bits_flit_tail, // @[Switch.scala:27:14]
input [72:0] io_in_4_0_bits_flit_payload, // @[Switch.scala:27:14]
input [3:0] io_in_4_0_bits_flit_flow_vnet_id, // @[Switch.scala:27:14]
input [5:0] io_in_4_0_bits_flit_flow_ingress_node, // @[Switch.scala:27:14]
input [2:0] io_in_4_0_bits_flit_flow_ingress_node_id, // @[Switch.scala:27:14]
input [5:0] io_in_4_0_bits_flit_flow_egress_node, // @[Switch.scala:27:14]
input [2:0] io_in_4_0_bits_flit_flow_egress_node_id, // @[Switch.scala:27:14]
input [4:0] io_in_4_0_bits_out_virt_channel, // @[Switch.scala:27:14]
input io_in_3_0_valid, // @[Switch.scala:27:14]
input io_in_3_0_bits_flit_head, // @[Switch.scala:27:14]
input io_in_3_0_bits_flit_tail, // @[Switch.scala:27:14]
input [72:0] io_in_3_0_bits_flit_payload, // @[Switch.scala:27:14]
input [3:0] io_in_3_0_bits_flit_flow_vnet_id, // @[Switch.scala:27:14]
input [5:0] io_in_3_0_bits_flit_flow_ingress_node, // @[Switch.scala:27:14]
input [2:0] io_in_3_0_bits_flit_flow_ingress_node_id, // @[Switch.scala:27:14]
input [5:0] io_in_3_0_bits_flit_flow_egress_node, // @[Switch.scala:27:14]
input [2:0] io_in_3_0_bits_flit_flow_egress_node_id, // @[Switch.scala:27:14]
input [4:0] io_in_3_0_bits_out_virt_channel, // @[Switch.scala:27:14]
input io_in_2_0_valid, // @[Switch.scala:27:14]
input io_in_2_0_bits_flit_head, // @[Switch.scala:27:14]
input io_in_2_0_bits_flit_tail, // @[Switch.scala:27:14]
input [72:0] io_in_2_0_bits_flit_payload, // @[Switch.scala:27:14]
input [3:0] io_in_2_0_bits_flit_flow_vnet_id, // @[Switch.scala:27:14]
input [5:0] io_in_2_0_bits_flit_flow_ingress_node, // @[Switch.scala:27:14]
input [2:0] io_in_2_0_bits_flit_flow_ingress_node_id, // @[Switch.scala:27:14]
input [5:0] io_in_2_0_bits_flit_flow_egress_node, // @[Switch.scala:27:14]
input [2:0] io_in_2_0_bits_flit_flow_egress_node_id, // @[Switch.scala:27:14]
input [4:0] io_in_2_0_bits_out_virt_channel, // @[Switch.scala:27:14]
input io_in_1_0_valid, // @[Switch.scala:27:14]
input io_in_1_0_bits_flit_head, // @[Switch.scala:27:14]
input io_in_1_0_bits_flit_tail, // @[Switch.scala:27:14]
input [72:0] io_in_1_0_bits_flit_payload, // @[Switch.scala:27:14]
input [3:0] io_in_1_0_bits_flit_flow_vnet_id, // @[Switch.scala:27:14]
input [5:0] io_in_1_0_bits_flit_flow_ingress_node, // @[Switch.scala:27:14]
input [2:0] io_in_1_0_bits_flit_flow_ingress_node_id, // @[Switch.scala:27:14]
input [5:0] io_in_1_0_bits_flit_flow_egress_node, // @[Switch.scala:27:14]
input [2:0] io_in_1_0_bits_flit_flow_egress_node_id, // @[Switch.scala:27:14]
input [4:0] io_in_1_0_bits_out_virt_channel, // @[Switch.scala:27:14]
input io_in_0_0_valid, // @[Switch.scala:27:14]
input io_in_0_0_bits_flit_head, // @[Switch.scala:27:14]
input io_in_0_0_bits_flit_tail, // @[Switch.scala:27:14]
input [72:0] io_in_0_0_bits_flit_payload, // @[Switch.scala:27:14]
input [3:0] io_in_0_0_bits_flit_flow_vnet_id, // @[Switch.scala:27:14]
input [5:0] io_in_0_0_bits_flit_flow_ingress_node, // @[Switch.scala:27:14]
input [2:0] io_in_0_0_bits_flit_flow_ingress_node_id, // @[Switch.scala:27:14]
input [5:0] io_in_0_0_bits_flit_flow_egress_node, // @[Switch.scala:27:14]
input [2:0] io_in_0_0_bits_flit_flow_egress_node_id, // @[Switch.scala:27:14]
output io_out_5_0_valid, // @[Switch.scala:27:14]
output io_out_5_0_bits_head, // @[Switch.scala:27:14]
output io_out_5_0_bits_tail, // @[Switch.scala:27:14]
output [72:0] io_out_5_0_bits_payload, // @[Switch.scala:27:14]
output [5:0] io_out_5_0_bits_flow_ingress_node, // @[Switch.scala:27:14]
output [2:0] io_out_5_0_bits_flow_ingress_node_id, // @[Switch.scala:27:14]
output io_out_4_0_valid, // @[Switch.scala:27:14]
output io_out_4_0_bits_head, // @[Switch.scala:27:14]
output io_out_4_0_bits_tail, // @[Switch.scala:27:14]
output [72:0] io_out_4_0_bits_payload, // @[Switch.scala:27:14]
output [5:0] io_out_4_0_bits_flow_ingress_node, // @[Switch.scala:27:14]
output [2:0] io_out_4_0_bits_flow_ingress_node_id, // @[Switch.scala:27:14]
output io_out_3_0_valid, // @[Switch.scala:27:14]
output io_out_3_0_bits_head, // @[Switch.scala:27:14]
output io_out_3_0_bits_tail, // @[Switch.scala:27:14]
output [72:0] io_out_3_0_bits_payload, // @[Switch.scala:27:14]
output [5:0] io_out_3_0_bits_flow_ingress_node, // @[Switch.scala:27:14]
output [2:0] io_out_3_0_bits_flow_ingress_node_id, // @[Switch.scala:27:14]
output io_out_2_0_valid, // @[Switch.scala:27:14]
output io_out_2_0_bits_head, // @[Switch.scala:27:14]
output io_out_2_0_bits_tail, // @[Switch.scala:27:14]
output [72:0] io_out_2_0_bits_payload, // @[Switch.scala:27:14]
output [5:0] io_out_2_0_bits_flow_ingress_node, // @[Switch.scala:27:14]
output [2:0] io_out_2_0_bits_flow_ingress_node_id, // @[Switch.scala:27:14]
output io_out_1_0_valid, // @[Switch.scala:27:14]
output io_out_1_0_bits_head, // @[Switch.scala:27:14]
output io_out_1_0_bits_tail, // @[Switch.scala:27:14]
output [72:0] io_out_1_0_bits_payload, // @[Switch.scala:27:14]
output [5:0] io_out_1_0_bits_flow_ingress_node, // @[Switch.scala:27:14]
output [2:0] io_out_1_0_bits_flow_ingress_node_id, // @[Switch.scala:27:14]
output io_out_0_0_valid, // @[Switch.scala:27:14]
output io_out_0_0_bits_head, // @[Switch.scala:27:14]
output io_out_0_0_bits_tail, // @[Switch.scala:27:14]
output [72:0] io_out_0_0_bits_payload, // @[Switch.scala:27:14]
output [3:0] io_out_0_0_bits_flow_vnet_id, // @[Switch.scala:27:14]
output [5:0] io_out_0_0_bits_flow_ingress_node, // @[Switch.scala:27:14]
output [2:0] io_out_0_0_bits_flow_ingress_node_id, // @[Switch.scala:27:14]
output [5:0] io_out_0_0_bits_flow_egress_node, // @[Switch.scala:27:14]
output [2:0] io_out_0_0_bits_flow_egress_node_id, // @[Switch.scala:27:14]
output [4:0] io_out_0_0_bits_virt_channel_id, // @[Switch.scala:27:14]
input io_sel_5_0_5_0, // @[Switch.scala:27:14]
input io_sel_5_0_4_0, // @[Switch.scala:27:14]
input io_sel_5_0_3_0, // @[Switch.scala:27:14]
input io_sel_5_0_2_0, // @[Switch.scala:27:14]
input io_sel_5_0_1_0, // @[Switch.scala:27:14]
input io_sel_5_0_0_0, // @[Switch.scala:27:14]
input io_sel_4_0_5_0, // @[Switch.scala:27:14]
input io_sel_4_0_4_0, // @[Switch.scala:27:14]
input io_sel_4_0_3_0, // @[Switch.scala:27:14]
input io_sel_4_0_2_0, // @[Switch.scala:27:14]
input io_sel_4_0_1_0, // @[Switch.scala:27:14]
input io_sel_4_0_0_0, // @[Switch.scala:27:14]
input io_sel_3_0_5_0, // @[Switch.scala:27:14]
input io_sel_3_0_4_0, // @[Switch.scala:27:14]
input io_sel_3_0_3_0, // @[Switch.scala:27:14]
input io_sel_3_0_2_0, // @[Switch.scala:27:14]
input io_sel_3_0_1_0, // @[Switch.scala:27:14]
input io_sel_3_0_0_0, // @[Switch.scala:27:14]
input io_sel_2_0_5_0, // @[Switch.scala:27:14]
input io_sel_2_0_4_0, // @[Switch.scala:27:14]
input io_sel_2_0_3_0, // @[Switch.scala:27:14]
input io_sel_2_0_2_0, // @[Switch.scala:27:14]
input io_sel_2_0_1_0, // @[Switch.scala:27:14]
input io_sel_2_0_0_0, // @[Switch.scala:27:14]
input io_sel_1_0_5_0, // @[Switch.scala:27:14]
input io_sel_1_0_4_0, // @[Switch.scala:27:14]
input io_sel_1_0_3_0, // @[Switch.scala:27:14]
input io_sel_1_0_2_0, // @[Switch.scala:27:14]
input io_sel_1_0_1_0, // @[Switch.scala:27:14]
input io_sel_1_0_0_0, // @[Switch.scala:27:14]
input io_sel_0_0_5_0, // @[Switch.scala:27:14]
input io_sel_0_0_4_0, // @[Switch.scala:27:14]
input io_sel_0_0_3_0, // @[Switch.scala:27:14]
input io_sel_0_0_2_0, // @[Switch.scala:27:14]
input io_sel_0_0_1_0 // @[Switch.scala:27:14]
); |
Generate the Verilog code corresponding to the following Chisel files.
File ShiftReg.scala:
// See LICENSE.SiFive for license details.
package freechips.rocketchip.util
import chisel3._
// Similar to the Chisel ShiftRegister but allows the user to suggest a
// name to the registers that get instantiated, and
// to provide a reset value.
object ShiftRegInit {
def apply[T <: Data](in: T, n: Int, init: T, name: Option[String] = None): T =
(0 until n).foldRight(in) {
case (i, next) => {
val r = RegNext(next, init)
name.foreach { na => r.suggestName(s"${na}_${i}") }
r
}
}
}
/** These wrap behavioral
* shift registers into specific modules to allow for
* backend flows to replace or constrain
* them properly when used for CDC synchronization,
* rather than buffering.
*
* The different types vary in their reset behavior:
* AsyncResetShiftReg -- Asynchronously reset register array
* A W(width) x D(depth) sized array is constructed from D instantiations of a
* W-wide register vector. Functionally identical to AsyncResetSyncrhonizerShiftReg,
* but only used for timing applications
*/
abstract class AbstractPipelineReg(w: Int = 1) extends Module {
val io = IO(new Bundle {
val d = Input(UInt(w.W))
val q = Output(UInt(w.W))
}
)
}
object AbstractPipelineReg {
def apply [T <: Data](gen: => AbstractPipelineReg, in: T, name: Option[String] = None): T = {
val chain = Module(gen)
name.foreach{ chain.suggestName(_) }
chain.io.d := in.asUInt
chain.io.q.asTypeOf(in)
}
}
class AsyncResetShiftReg(w: Int = 1, depth: Int = 1, init: Int = 0, name: String = "pipe") extends AbstractPipelineReg(w) {
require(depth > 0, "Depth must be greater than 0.")
override def desiredName = s"AsyncResetShiftReg_w${w}_d${depth}_i${init}"
val chain = List.tabulate(depth) { i =>
Module (new AsyncResetRegVec(w, init)).suggestName(s"${name}_${i}")
}
chain.last.io.d := io.d
chain.last.io.en := true.B
(chain.init zip chain.tail).foreach { case (sink, source) =>
sink.io.d := source.io.q
sink.io.en := true.B
}
io.q := chain.head.io.q
}
object AsyncResetShiftReg {
def apply [T <: Data](in: T, depth: Int, init: Int = 0, name: Option[String] = None): T =
AbstractPipelineReg(new AsyncResetShiftReg(in.getWidth, depth, init), in, name)
def apply [T <: Data](in: T, depth: Int, name: Option[String]): T =
apply(in, depth, 0, name)
def apply [T <: Data](in: T, depth: Int, init: T, name: Option[String]): T =
apply(in, depth, init.litValue.toInt, name)
def apply [T <: Data](in: T, depth: Int, init: T): T =
apply (in, depth, init.litValue.toInt, None)
}
File AsyncQueue.scala:
// See LICENSE.SiFive for license details.
package freechips.rocketchip.util
import chisel3._
import chisel3.util._
case class AsyncQueueParams(
depth: Int = 8,
sync: Int = 3,
safe: Boolean = true,
// If safe is true, then effort is made to resynchronize the crossing indices when either side is reset.
// This makes it safe/possible to reset one side of the crossing (but not the other) when the queue is empty.
narrow: Boolean = false)
// If narrow is true then the read mux is moved to the source side of the crossing.
// This reduces the number of level shifters in the case where the clock crossing is also a voltage crossing,
// at the expense of a combinational path from the sink to the source and back to the sink.
{
require (depth > 0 && isPow2(depth))
require (sync >= 2)
val bits = log2Ceil(depth)
val wires = if (narrow) 1 else depth
}
object AsyncQueueParams {
// When there is only one entry, we don't need narrow.
def singleton(sync: Int = 3, safe: Boolean = true) = AsyncQueueParams(1, sync, safe, false)
}
class AsyncBundleSafety extends Bundle {
val ridx_valid = Input (Bool())
val widx_valid = Output(Bool())
val source_reset_n = Output(Bool())
val sink_reset_n = Input (Bool())
}
class AsyncBundle[T <: Data](private val gen: T, val params: AsyncQueueParams = AsyncQueueParams()) extends Bundle {
// Data-path synchronization
val mem = Output(Vec(params.wires, gen))
val ridx = Input (UInt((params.bits+1).W))
val widx = Output(UInt((params.bits+1).W))
val index = params.narrow.option(Input(UInt(params.bits.W)))
// Signals used to self-stabilize a safe AsyncQueue
val safe = params.safe.option(new AsyncBundleSafety)
}
object GrayCounter {
def apply(bits: Int, increment: Bool = true.B, clear: Bool = false.B, name: String = "binary"): UInt = {
val incremented = Wire(UInt(bits.W))
val binary = RegNext(next=incremented, init=0.U).suggestName(name)
incremented := Mux(clear, 0.U, binary + increment.asUInt)
incremented ^ (incremented >> 1)
}
}
class AsyncValidSync(sync: Int, desc: String) extends RawModule {
val io = IO(new Bundle {
val in = Input(Bool())
val out = Output(Bool())
})
val clock = IO(Input(Clock()))
val reset = IO(Input(AsyncReset()))
withClockAndReset(clock, reset){
io.out := AsyncResetSynchronizerShiftReg(io.in, sync, Some(desc))
}
}
class AsyncQueueSource[T <: Data](gen: T, params: AsyncQueueParams = AsyncQueueParams()) extends Module {
override def desiredName = s"AsyncQueueSource_${gen.typeName}"
val io = IO(new Bundle {
// These come from the source domain
val enq = Flipped(Decoupled(gen))
// These cross to the sink clock domain
val async = new AsyncBundle(gen, params)
})
val bits = params.bits
val sink_ready = WireInit(true.B)
val mem = Reg(Vec(params.depth, gen)) // This does NOT need to be reset at all.
val widx = withReset(reset.asAsyncReset)(GrayCounter(bits+1, io.enq.fire, !sink_ready, "widx_bin"))
val ridx = AsyncResetSynchronizerShiftReg(io.async.ridx, params.sync, Some("ridx_gray"))
val ready = sink_ready && widx =/= (ridx ^ (params.depth | params.depth >> 1).U)
val index = if (bits == 0) 0.U else io.async.widx(bits-1, 0) ^ (io.async.widx(bits, bits) << (bits-1))
when (io.enq.fire) { mem(index) := io.enq.bits }
val ready_reg = withReset(reset.asAsyncReset)(RegNext(next=ready, init=false.B).suggestName("ready_reg"))
io.enq.ready := ready_reg && sink_ready
val widx_reg = withReset(reset.asAsyncReset)(RegNext(next=widx, init=0.U).suggestName("widx_gray"))
io.async.widx := widx_reg
io.async.index match {
case Some(index) => io.async.mem(0) := mem(index)
case None => io.async.mem := mem
}
io.async.safe.foreach { sio =>
val source_valid_0 = Module(new AsyncValidSync(params.sync, "source_valid_0"))
val source_valid_1 = Module(new AsyncValidSync(params.sync, "source_valid_1"))
val sink_extend = Module(new AsyncValidSync(params.sync, "sink_extend"))
val sink_valid = Module(new AsyncValidSync(params.sync, "sink_valid"))
source_valid_0.reset := (reset.asBool || !sio.sink_reset_n).asAsyncReset
source_valid_1.reset := (reset.asBool || !sio.sink_reset_n).asAsyncReset
sink_extend .reset := (reset.asBool || !sio.sink_reset_n).asAsyncReset
sink_valid .reset := reset.asAsyncReset
source_valid_0.clock := clock
source_valid_1.clock := clock
sink_extend .clock := clock
sink_valid .clock := clock
source_valid_0.io.in := true.B
source_valid_1.io.in := source_valid_0.io.out
sio.widx_valid := source_valid_1.io.out
sink_extend.io.in := sio.ridx_valid
sink_valid.io.in := sink_extend.io.out
sink_ready := sink_valid.io.out
sio.source_reset_n := !reset.asBool
// Assert that if there is stuff in the queue, then reset cannot happen
// Impossible to write because dequeue can occur on the receiving side,
// then reset allowed to happen, but write side cannot know that dequeue
// occurred.
// TODO: write some sort of sanity check assertion for users
// that denote don't reset when there is activity
// assert (!(reset || !sio.sink_reset_n) || !io.enq.valid, "Enqueue while sink is reset and AsyncQueueSource is unprotected")
// assert (!reset_rise || prev_idx_match.asBool, "Sink reset while AsyncQueueSource not empty")
}
}
class AsyncQueueSink[T <: Data](gen: T, params: AsyncQueueParams = AsyncQueueParams()) extends Module {
override def desiredName = s"AsyncQueueSink_${gen.typeName}"
val io = IO(new Bundle {
// These come from the sink domain
val deq = Decoupled(gen)
// These cross to the source clock domain
val async = Flipped(new AsyncBundle(gen, params))
})
val bits = params.bits
val source_ready = WireInit(true.B)
val ridx = withReset(reset.asAsyncReset)(GrayCounter(bits+1, io.deq.fire, !source_ready, "ridx_bin"))
val widx = AsyncResetSynchronizerShiftReg(io.async.widx, params.sync, Some("widx_gray"))
val valid = source_ready && ridx =/= widx
// The mux is safe because timing analysis ensures ridx has reached the register
// On an ASIC, changes to the unread location cannot affect the selected value
// On an FPGA, only one input changes at a time => mem updates don't cause glitches
// The register only latches when the selected valued is not being written
val index = if (bits == 0) 0.U else ridx(bits-1, 0) ^ (ridx(bits, bits) << (bits-1))
io.async.index.foreach { _ := index }
// This register does not NEED to be reset, as its contents will not
// be considered unless the asynchronously reset deq valid register is set.
// It is possible that bits latches when the source domain is reset / has power cut
// This is safe, because isolation gates brought mem low before the zeroed widx reached us
val deq_bits_nxt = io.async.mem(if (params.narrow) 0.U else index)
io.deq.bits := ClockCrossingReg(deq_bits_nxt, en = valid, doInit = false, name = Some("deq_bits_reg"))
val valid_reg = withReset(reset.asAsyncReset)(RegNext(next=valid, init=false.B).suggestName("valid_reg"))
io.deq.valid := valid_reg && source_ready
val ridx_reg = withReset(reset.asAsyncReset)(RegNext(next=ridx, init=0.U).suggestName("ridx_gray"))
io.async.ridx := ridx_reg
io.async.safe.foreach { sio =>
val sink_valid_0 = Module(new AsyncValidSync(params.sync, "sink_valid_0"))
val sink_valid_1 = Module(new AsyncValidSync(params.sync, "sink_valid_1"))
val source_extend = Module(new AsyncValidSync(params.sync, "source_extend"))
val source_valid = Module(new AsyncValidSync(params.sync, "source_valid"))
sink_valid_0 .reset := (reset.asBool || !sio.source_reset_n).asAsyncReset
sink_valid_1 .reset := (reset.asBool || !sio.source_reset_n).asAsyncReset
source_extend.reset := (reset.asBool || !sio.source_reset_n).asAsyncReset
source_valid .reset := reset.asAsyncReset
sink_valid_0 .clock := clock
sink_valid_1 .clock := clock
source_extend.clock := clock
source_valid .clock := clock
sink_valid_0.io.in := true.B
sink_valid_1.io.in := sink_valid_0.io.out
sio.ridx_valid := sink_valid_1.io.out
source_extend.io.in := sio.widx_valid
source_valid.io.in := source_extend.io.out
source_ready := source_valid.io.out
sio.sink_reset_n := !reset.asBool
// TODO: write some sort of sanity check assertion for users
// that denote don't reset when there is activity
//
// val reset_and_extend = !source_ready || !sio.source_reset_n || reset.asBool
// val reset_and_extend_prev = RegNext(reset_and_extend, true.B)
// val reset_rise = !reset_and_extend_prev && reset_and_extend
// val prev_idx_match = AsyncResetReg(updateData=(io.async.widx===io.async.ridx), resetData=0)
// assert (!reset_rise || prev_idx_match.asBool, "Source reset while AsyncQueueSink not empty")
}
}
object FromAsyncBundle
{
// Sometimes it makes sense for the sink to have different sync than the source
def apply[T <: Data](x: AsyncBundle[T]): DecoupledIO[T] = apply(x, x.params.sync)
def apply[T <: Data](x: AsyncBundle[T], sync: Int): DecoupledIO[T] = {
val sink = Module(new AsyncQueueSink(chiselTypeOf(x.mem(0)), x.params.copy(sync = sync)))
sink.io.async <> x
sink.io.deq
}
}
object ToAsyncBundle
{
def apply[T <: Data](x: ReadyValidIO[T], params: AsyncQueueParams = AsyncQueueParams()): AsyncBundle[T] = {
val source = Module(new AsyncQueueSource(chiselTypeOf(x.bits), params))
source.io.enq <> x
source.io.async
}
}
class AsyncQueue[T <: Data](gen: T, params: AsyncQueueParams = AsyncQueueParams()) extends Crossing[T] {
val io = IO(new CrossingIO(gen))
val source = withClockAndReset(io.enq_clock, io.enq_reset) { Module(new AsyncQueueSource(gen, params)) }
val sink = withClockAndReset(io.deq_clock, io.deq_reset) { Module(new AsyncQueueSink (gen, params)) }
source.io.enq <> io.enq
io.deq <> sink.io.deq
sink.io.async <> source.io.async
}
| module AsyncValidSync_237( // @[AsyncQueue.scala:58:7]
input io_in, // @[AsyncQueue.scala:59:14]
output io_out, // @[AsyncQueue.scala:59:14]
input clock, // @[AsyncQueue.scala:63:17]
input reset // @[AsyncQueue.scala:64:17]
);
wire io_in_0 = io_in; // @[AsyncQueue.scala:58:7]
wire _io_out_WIRE; // @[ShiftReg.scala:48:24]
wire io_out_0; // @[AsyncQueue.scala:58:7]
assign io_out_0 = _io_out_WIRE; // @[ShiftReg.scala:48:24]
AsyncResetSynchronizerShiftReg_w1_d3_i0_254 io_out_sink_valid_1 ( // @[ShiftReg.scala:45:23]
.clock (clock),
.reset (reset),
.io_d (io_in_0), // @[AsyncQueue.scala:58:7]
.io_q (_io_out_WIRE)
); // @[ShiftReg.scala:45:23]
assign io_out = io_out_0; // @[AsyncQueue.scala:58:7]
endmodule |
Generate the Verilog code corresponding to the following Chisel files.
File DescribedSRAM.scala:
// See LICENSE.Berkeley for license details.
// See LICENSE.SiFive for license details.
package freechips.rocketchip.util
import chisel3.{Data, SyncReadMem, Vec}
import chisel3.util.log2Ceil
object DescribedSRAM {
def apply[T <: Data](
name: String,
desc: String,
size: BigInt, // depth
data: T
): SyncReadMem[T] = {
val mem = SyncReadMem(size, data)
mem.suggestName(name)
val granWidth = data match {
case v: Vec[_] => v.head.getWidth
case d => d.getWidth
}
val uid = 0
Annotated.srams(
component = mem,
name = name,
address_width = log2Ceil(size),
data_width = data.getWidth,
depth = size,
description = desc,
write_mask_granularity = granWidth
)
mem
}
}
| module cc_banks_5_6( // @[DescribedSRAM.scala:17:26]
input [14:0] RW0_addr,
input RW0_en,
input RW0_clk,
input RW0_wmode,
input [63:0] RW0_wdata,
output [63:0] RW0_rdata
);
cc_banks_0_ext cc_banks_0_ext ( // @[DescribedSRAM.scala:17:26]
.RW0_addr (RW0_addr),
.RW0_en (RW0_en),
.RW0_clk (RW0_clk),
.RW0_wmode (RW0_wmode),
.RW0_wdata (RW0_wdata),
.RW0_rdata (RW0_rdata)
); // @[DescribedSRAM.scala:17:26]
endmodule |
Generate the Verilog code corresponding to the following Chisel files.
File Monitor.scala:
// See LICENSE.SiFive for license details.
package freechips.rocketchip.tilelink
import chisel3._
import chisel3.util._
import chisel3.experimental.SourceLine
import org.chipsalliance.cde.config._
import org.chipsalliance.diplomacy._
import freechips.rocketchip.diplomacy.EnableMonitors
import freechips.rocketchip.formal.{MonitorDirection, IfThen, Property, PropertyClass, TestplanTestType, TLMonitorStrictMode}
import freechips.rocketchip.util.PlusArg
case class TLMonitorArgs(edge: TLEdge)
abstract class TLMonitorBase(args: TLMonitorArgs) extends Module
{
val io = IO(new Bundle {
val in = Input(new TLBundle(args.edge.bundle))
})
def legalize(bundle: TLBundle, edge: TLEdge, reset: Reset): Unit
legalize(io.in, args.edge, reset)
}
object TLMonitor {
def apply(enable: Boolean, node: TLNode)(implicit p: Parameters): TLNode = {
if (enable) {
EnableMonitors { implicit p => node := TLEphemeralNode()(ValName("monitor")) }
} else { node }
}
}
class TLMonitor(args: TLMonitorArgs, monitorDir: MonitorDirection = MonitorDirection.Monitor) extends TLMonitorBase(args)
{
require (args.edge.params(TLMonitorStrictMode) || (! args.edge.params(TestplanTestType).formal))
val cover_prop_class = PropertyClass.Default
//Like assert but can flip to being an assumption for formal verification
def monAssert(cond: Bool, message: String): Unit =
if (monitorDir == MonitorDirection.Monitor) {
assert(cond, message)
} else {
Property(monitorDir, cond, message, PropertyClass.Default)
}
def assume(cond: Bool, message: String): Unit =
if (monitorDir == MonitorDirection.Monitor) {
assert(cond, message)
} else {
Property(monitorDir.flip, cond, message, PropertyClass.Default)
}
def extra = {
args.edge.sourceInfo match {
case SourceLine(filename, line, col) => s" (connected at $filename:$line:$col)"
case _ => ""
}
}
def visible(address: UInt, source: UInt, edge: TLEdge) =
edge.client.clients.map { c =>
!c.sourceId.contains(source) ||
c.visibility.map(_.contains(address)).reduce(_ || _)
}.reduce(_ && _)
def legalizeFormatA(bundle: TLBundleA, edge: TLEdge): Unit = {
//switch this flag to turn on diplomacy in error messages
def diplomacyInfo = if (true) "" else "\nThe diplomacy information for the edge is as follows:\n" + edge.formatEdge + "\n"
monAssert (TLMessages.isA(bundle.opcode), "'A' channel has invalid opcode" + extra)
// Reuse these subexpressions to save some firrtl lines
val source_ok = edge.client.contains(bundle.source)
val is_aligned = edge.isAligned(bundle.address, bundle.size)
val mask = edge.full_mask(bundle)
monAssert (visible(edge.address(bundle), bundle.source, edge), "'A' channel carries an address illegal for the specified bank visibility")
//The monitor doesnβt check for acquire T vs acquire B, it assumes that acquire B implies acquire T and only checks for acquire B
//TODO: check for acquireT?
when (bundle.opcode === TLMessages.AcquireBlock) {
monAssert (edge.master.emitsAcquireB(bundle.source, bundle.size) && edge.slave.supportsAcquireBSafe(edge.address(bundle), bundle.size), "'A' channel carries AcquireBlock type which is unexpected using diplomatic parameters" + diplomacyInfo + extra)
monAssert (edge.master.supportsProbe(edge.source(bundle), bundle.size) && edge.slave.emitsProbeSafe(edge.address(bundle), bundle.size), "'A' channel carries AcquireBlock from a client which does not support Probe" + diplomacyInfo + extra)
monAssert (source_ok, "'A' channel AcquireBlock carries invalid source ID" + diplomacyInfo + extra)
monAssert (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'A' channel AcquireBlock smaller than a beat" + extra)
monAssert (is_aligned, "'A' channel AcquireBlock address not aligned to size" + extra)
monAssert (TLPermissions.isGrow(bundle.param), "'A' channel AcquireBlock carries invalid grow param" + extra)
monAssert (~bundle.mask === 0.U, "'A' channel AcquireBlock contains invalid mask" + extra)
monAssert (!bundle.corrupt, "'A' channel AcquireBlock is corrupt" + extra)
}
when (bundle.opcode === TLMessages.AcquirePerm) {
monAssert (edge.master.emitsAcquireB(bundle.source, bundle.size) && edge.slave.supportsAcquireBSafe(edge.address(bundle), bundle.size), "'A' channel carries AcquirePerm type which is unexpected using diplomatic parameters" + diplomacyInfo + extra)
monAssert (edge.master.supportsProbe(edge.source(bundle), bundle.size) && edge.slave.emitsProbeSafe(edge.address(bundle), bundle.size), "'A' channel carries AcquirePerm from a client which does not support Probe" + diplomacyInfo + extra)
monAssert (source_ok, "'A' channel AcquirePerm carries invalid source ID" + diplomacyInfo + extra)
monAssert (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'A' channel AcquirePerm smaller than a beat" + extra)
monAssert (is_aligned, "'A' channel AcquirePerm address not aligned to size" + extra)
monAssert (TLPermissions.isGrow(bundle.param), "'A' channel AcquirePerm carries invalid grow param" + extra)
monAssert (bundle.param =/= TLPermissions.NtoB, "'A' channel AcquirePerm requests NtoB" + extra)
monAssert (~bundle.mask === 0.U, "'A' channel AcquirePerm contains invalid mask" + extra)
monAssert (!bundle.corrupt, "'A' channel AcquirePerm is corrupt" + extra)
}
when (bundle.opcode === TLMessages.Get) {
monAssert (edge.master.emitsGet(bundle.source, bundle.size), "'A' channel carries Get type which master claims it can't emit" + diplomacyInfo + extra)
monAssert (edge.slave.supportsGetSafe(edge.address(bundle), bundle.size, None), "'A' channel carries Get type which slave claims it can't support" + diplomacyInfo + extra)
monAssert (source_ok, "'A' channel Get carries invalid source ID" + diplomacyInfo + extra)
monAssert (is_aligned, "'A' channel Get address not aligned to size" + extra)
monAssert (bundle.param === 0.U, "'A' channel Get carries invalid param" + extra)
monAssert (bundle.mask === mask, "'A' channel Get contains invalid mask" + extra)
monAssert (!bundle.corrupt, "'A' channel Get is corrupt" + extra)
}
when (bundle.opcode === TLMessages.PutFullData) {
monAssert (edge.master.emitsPutFull(bundle.source, bundle.size) && edge.slave.supportsPutFullSafe(edge.address(bundle), bundle.size), "'A' channel carries PutFull type which is unexpected using diplomatic parameters" + diplomacyInfo + extra)
monAssert (source_ok, "'A' channel PutFull carries invalid source ID" + diplomacyInfo + extra)
monAssert (is_aligned, "'A' channel PutFull address not aligned to size" + extra)
monAssert (bundle.param === 0.U, "'A' channel PutFull carries invalid param" + extra)
monAssert (bundle.mask === mask, "'A' channel PutFull contains invalid mask" + extra)
}
when (bundle.opcode === TLMessages.PutPartialData) {
monAssert (edge.master.emitsPutPartial(bundle.source, bundle.size) && edge.slave.supportsPutPartialSafe(edge.address(bundle), bundle.size), "'A' channel carries PutPartial type which is unexpected using diplomatic parameters" + extra)
monAssert (source_ok, "'A' channel PutPartial carries invalid source ID" + diplomacyInfo + extra)
monAssert (is_aligned, "'A' channel PutPartial address not aligned to size" + extra)
monAssert (bundle.param === 0.U, "'A' channel PutPartial carries invalid param" + extra)
monAssert ((bundle.mask & ~mask) === 0.U, "'A' channel PutPartial contains invalid mask" + extra)
}
when (bundle.opcode === TLMessages.ArithmeticData) {
monAssert (edge.master.emitsArithmetic(bundle.source, bundle.size) && edge.slave.supportsArithmeticSafe(edge.address(bundle), bundle.size), "'A' channel carries Arithmetic type which is unexpected using diplomatic parameters" + extra)
monAssert (source_ok, "'A' channel Arithmetic carries invalid source ID" + diplomacyInfo + extra)
monAssert (is_aligned, "'A' channel Arithmetic address not aligned to size" + extra)
monAssert (TLAtomics.isArithmetic(bundle.param), "'A' channel Arithmetic carries invalid opcode param" + extra)
monAssert (bundle.mask === mask, "'A' channel Arithmetic contains invalid mask" + extra)
}
when (bundle.opcode === TLMessages.LogicalData) {
monAssert (edge.master.emitsLogical(bundle.source, bundle.size) && edge.slave.supportsLogicalSafe(edge.address(bundle), bundle.size), "'A' channel carries Logical type which is unexpected using diplomatic parameters" + extra)
monAssert (source_ok, "'A' channel Logical carries invalid source ID" + diplomacyInfo + extra)
monAssert (is_aligned, "'A' channel Logical address not aligned to size" + extra)
monAssert (TLAtomics.isLogical(bundle.param), "'A' channel Logical carries invalid opcode param" + extra)
monAssert (bundle.mask === mask, "'A' channel Logical contains invalid mask" + extra)
}
when (bundle.opcode === TLMessages.Hint) {
monAssert (edge.master.emitsHint(bundle.source, bundle.size) && edge.slave.supportsHintSafe(edge.address(bundle), bundle.size), "'A' channel carries Hint type which is unexpected using diplomatic parameters" + extra)
monAssert (source_ok, "'A' channel Hint carries invalid source ID" + diplomacyInfo + extra)
monAssert (is_aligned, "'A' channel Hint address not aligned to size" + extra)
monAssert (TLHints.isHints(bundle.param), "'A' channel Hint carries invalid opcode param" + extra)
monAssert (bundle.mask === mask, "'A' channel Hint contains invalid mask" + extra)
monAssert (!bundle.corrupt, "'A' channel Hint is corrupt" + extra)
}
}
def legalizeFormatB(bundle: TLBundleB, edge: TLEdge): Unit = {
monAssert (TLMessages.isB(bundle.opcode), "'B' channel has invalid opcode" + extra)
monAssert (visible(edge.address(bundle), bundle.source, edge), "'B' channel carries an address illegal for the specified bank visibility")
// Reuse these subexpressions to save some firrtl lines
val address_ok = edge.manager.containsSafe(edge.address(bundle))
val is_aligned = edge.isAligned(bundle.address, bundle.size)
val mask = edge.full_mask(bundle)
val legal_source = Mux1H(edge.client.find(bundle.source), edge.client.clients.map(c => c.sourceId.start.U)) === bundle.source
when (bundle.opcode === TLMessages.Probe) {
assume (edge.master.supportsProbe(edge.source(bundle), bundle.size) && edge.slave.emitsProbeSafe(edge.address(bundle), bundle.size), "'B' channel carries Probe type which is unexpected using diplomatic parameters" + extra)
assume (address_ok, "'B' channel Probe carries unmanaged address" + extra)
assume (legal_source, "'B' channel Probe carries source that is not first source" + extra)
assume (is_aligned, "'B' channel Probe address not aligned to size" + extra)
assume (TLPermissions.isCap(bundle.param), "'B' channel Probe carries invalid cap param" + extra)
assume (bundle.mask === mask, "'B' channel Probe contains invalid mask" + extra)
assume (!bundle.corrupt, "'B' channel Probe is corrupt" + extra)
}
when (bundle.opcode === TLMessages.Get) {
monAssert (edge.master.supportsGet(edge.source(bundle), bundle.size) && edge.slave.emitsGetSafe(edge.address(bundle), bundle.size), "'B' channel carries Get type which is unexpected using diplomatic parameters" + extra)
monAssert (address_ok, "'B' channel Get carries unmanaged address" + extra)
monAssert (legal_source, "'B' channel Get carries source that is not first source" + extra)
monAssert (is_aligned, "'B' channel Get address not aligned to size" + extra)
monAssert (bundle.param === 0.U, "'B' channel Get carries invalid param" + extra)
monAssert (bundle.mask === mask, "'B' channel Get contains invalid mask" + extra)
monAssert (!bundle.corrupt, "'B' channel Get is corrupt" + extra)
}
when (bundle.opcode === TLMessages.PutFullData) {
monAssert (edge.master.supportsPutFull(edge.source(bundle), bundle.size) && edge.slave.emitsPutFullSafe(edge.address(bundle), bundle.size), "'B' channel carries PutFull type which is unexpected using diplomatic parameters" + extra)
monAssert (address_ok, "'B' channel PutFull carries unmanaged address" + extra)
monAssert (legal_source, "'B' channel PutFull carries source that is not first source" + extra)
monAssert (is_aligned, "'B' channel PutFull address not aligned to size" + extra)
monAssert (bundle.param === 0.U, "'B' channel PutFull carries invalid param" + extra)
monAssert (bundle.mask === mask, "'B' channel PutFull contains invalid mask" + extra)
}
when (bundle.opcode === TLMessages.PutPartialData) {
monAssert (edge.master.supportsPutPartial(edge.source(bundle), bundle.size) && edge.slave.emitsPutPartialSafe(edge.address(bundle), bundle.size), "'B' channel carries PutPartial type which is unexpected using diplomatic parameters" + extra)
monAssert (address_ok, "'B' channel PutPartial carries unmanaged address" + extra)
monAssert (legal_source, "'B' channel PutPartial carries source that is not first source" + extra)
monAssert (is_aligned, "'B' channel PutPartial address not aligned to size" + extra)
monAssert (bundle.param === 0.U, "'B' channel PutPartial carries invalid param" + extra)
monAssert ((bundle.mask & ~mask) === 0.U, "'B' channel PutPartial contains invalid mask" + extra)
}
when (bundle.opcode === TLMessages.ArithmeticData) {
monAssert (edge.master.supportsArithmetic(edge.source(bundle), bundle.size) && edge.slave.emitsArithmeticSafe(edge.address(bundle), bundle.size), "'B' channel carries Arithmetic type unsupported by master" + extra)
monAssert (address_ok, "'B' channel Arithmetic carries unmanaged address" + extra)
monAssert (legal_source, "'B' channel Arithmetic carries source that is not first source" + extra)
monAssert (is_aligned, "'B' channel Arithmetic address not aligned to size" + extra)
monAssert (TLAtomics.isArithmetic(bundle.param), "'B' channel Arithmetic carries invalid opcode param" + extra)
monAssert (bundle.mask === mask, "'B' channel Arithmetic contains invalid mask" + extra)
}
when (bundle.opcode === TLMessages.LogicalData) {
monAssert (edge.master.supportsLogical(edge.source(bundle), bundle.size) && edge.slave.emitsLogicalSafe(edge.address(bundle), bundle.size), "'B' channel carries Logical type unsupported by client" + extra)
monAssert (address_ok, "'B' channel Logical carries unmanaged address" + extra)
monAssert (legal_source, "'B' channel Logical carries source that is not first source" + extra)
monAssert (is_aligned, "'B' channel Logical address not aligned to size" + extra)
monAssert (TLAtomics.isLogical(bundle.param), "'B' channel Logical carries invalid opcode param" + extra)
monAssert (bundle.mask === mask, "'B' channel Logical contains invalid mask" + extra)
}
when (bundle.opcode === TLMessages.Hint) {
monAssert (edge.master.supportsHint(edge.source(bundle), bundle.size) && edge.slave.emitsHintSafe(edge.address(bundle), bundle.size), "'B' channel carries Hint type unsupported by client" + extra)
monAssert (address_ok, "'B' channel Hint carries unmanaged address" + extra)
monAssert (legal_source, "'B' channel Hint carries source that is not first source" + extra)
monAssert (is_aligned, "'B' channel Hint address not aligned to size" + extra)
monAssert (bundle.mask === mask, "'B' channel Hint contains invalid mask" + extra)
monAssert (!bundle.corrupt, "'B' channel Hint is corrupt" + extra)
}
}
def legalizeFormatC(bundle: TLBundleC, edge: TLEdge): Unit = {
monAssert (TLMessages.isC(bundle.opcode), "'C' channel has invalid opcode" + extra)
val source_ok = edge.client.contains(bundle.source)
val is_aligned = edge.isAligned(bundle.address, bundle.size)
val address_ok = edge.manager.containsSafe(edge.address(bundle))
monAssert (visible(edge.address(bundle), bundle.source, edge), "'C' channel carries an address illegal for the specified bank visibility")
when (bundle.opcode === TLMessages.ProbeAck) {
monAssert (address_ok, "'C' channel ProbeAck carries unmanaged address" + extra)
monAssert (source_ok, "'C' channel ProbeAck carries invalid source ID" + extra)
monAssert (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'C' channel ProbeAck smaller than a beat" + extra)
monAssert (is_aligned, "'C' channel ProbeAck address not aligned to size" + extra)
monAssert (TLPermissions.isReport(bundle.param), "'C' channel ProbeAck carries invalid report param" + extra)
monAssert (!bundle.corrupt, "'C' channel ProbeAck is corrupt" + extra)
}
when (bundle.opcode === TLMessages.ProbeAckData) {
monAssert (address_ok, "'C' channel ProbeAckData carries unmanaged address" + extra)
monAssert (source_ok, "'C' channel ProbeAckData carries invalid source ID" + extra)
monAssert (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'C' channel ProbeAckData smaller than a beat" + extra)
monAssert (is_aligned, "'C' channel ProbeAckData address not aligned to size" + extra)
monAssert (TLPermissions.isReport(bundle.param), "'C' channel ProbeAckData carries invalid report param" + extra)
}
when (bundle.opcode === TLMessages.Release) {
monAssert (edge.master.emitsAcquireB(edge.source(bundle), bundle.size) && edge.slave.supportsAcquireBSafe(edge.address(bundle), bundle.size), "'C' channel carries Release type unsupported by manager" + extra)
monAssert (edge.master.supportsProbe(edge.source(bundle), bundle.size) && edge.slave.emitsProbeSafe(edge.address(bundle), bundle.size), "'C' channel carries Release from a client which does not support Probe" + extra)
monAssert (source_ok, "'C' channel Release carries invalid source ID" + extra)
monAssert (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'C' channel Release smaller than a beat" + extra)
monAssert (is_aligned, "'C' channel Release address not aligned to size" + extra)
monAssert (TLPermissions.isReport(bundle.param), "'C' channel Release carries invalid report param" + extra)
monAssert (!bundle.corrupt, "'C' channel Release is corrupt" + extra)
}
when (bundle.opcode === TLMessages.ReleaseData) {
monAssert (edge.master.emitsAcquireB(edge.source(bundle), bundle.size) && edge.slave.supportsAcquireBSafe(edge.address(bundle), bundle.size), "'C' channel carries ReleaseData type unsupported by manager" + extra)
monAssert (edge.master.supportsProbe(edge.source(bundle), bundle.size) && edge.slave.emitsProbeSafe(edge.address(bundle), bundle.size), "'C' channel carries Release from a client which does not support Probe" + extra)
monAssert (source_ok, "'C' channel ReleaseData carries invalid source ID" + extra)
monAssert (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'C' channel ReleaseData smaller than a beat" + extra)
monAssert (is_aligned, "'C' channel ReleaseData address not aligned to size" + extra)
monAssert (TLPermissions.isReport(bundle.param), "'C' channel ReleaseData carries invalid report param" + extra)
}
when (bundle.opcode === TLMessages.AccessAck) {
monAssert (address_ok, "'C' channel AccessAck carries unmanaged address" + extra)
monAssert (source_ok, "'C' channel AccessAck carries invalid source ID" + extra)
monAssert (is_aligned, "'C' channel AccessAck address not aligned to size" + extra)
monAssert (bundle.param === 0.U, "'C' channel AccessAck carries invalid param" + extra)
monAssert (!bundle.corrupt, "'C' channel AccessAck is corrupt" + extra)
}
when (bundle.opcode === TLMessages.AccessAckData) {
monAssert (address_ok, "'C' channel AccessAckData carries unmanaged address" + extra)
monAssert (source_ok, "'C' channel AccessAckData carries invalid source ID" + extra)
monAssert (is_aligned, "'C' channel AccessAckData address not aligned to size" + extra)
monAssert (bundle.param === 0.U, "'C' channel AccessAckData carries invalid param" + extra)
}
when (bundle.opcode === TLMessages.HintAck) {
monAssert (address_ok, "'C' channel HintAck carries unmanaged address" + extra)
monAssert (source_ok, "'C' channel HintAck carries invalid source ID" + extra)
monAssert (is_aligned, "'C' channel HintAck address not aligned to size" + extra)
monAssert (bundle.param === 0.U, "'C' channel HintAck carries invalid param" + extra)
monAssert (!bundle.corrupt, "'C' channel HintAck is corrupt" + extra)
}
}
def legalizeFormatD(bundle: TLBundleD, edge: TLEdge): Unit = {
assume (TLMessages.isD(bundle.opcode), "'D' channel has invalid opcode" + extra)
val source_ok = edge.client.contains(bundle.source)
val sink_ok = bundle.sink < edge.manager.endSinkId.U
val deny_put_ok = edge.manager.mayDenyPut.B
val deny_get_ok = edge.manager.mayDenyGet.B
when (bundle.opcode === TLMessages.ReleaseAck) {
assume (source_ok, "'D' channel ReleaseAck carries invalid source ID" + extra)
assume (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'D' channel ReleaseAck smaller than a beat" + extra)
assume (bundle.param === 0.U, "'D' channel ReleaseeAck carries invalid param" + extra)
assume (!bundle.corrupt, "'D' channel ReleaseAck is corrupt" + extra)
assume (!bundle.denied, "'D' channel ReleaseAck is denied" + extra)
}
when (bundle.opcode === TLMessages.Grant) {
assume (source_ok, "'D' channel Grant carries invalid source ID" + extra)
assume (sink_ok, "'D' channel Grant carries invalid sink ID" + extra)
assume (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'D' channel Grant smaller than a beat" + extra)
assume (TLPermissions.isCap(bundle.param), "'D' channel Grant carries invalid cap param" + extra)
assume (bundle.param =/= TLPermissions.toN, "'D' channel Grant carries toN param" + extra)
assume (!bundle.corrupt, "'D' channel Grant is corrupt" + extra)
assume (deny_put_ok || !bundle.denied, "'D' channel Grant is denied" + extra)
}
when (bundle.opcode === TLMessages.GrantData) {
assume (source_ok, "'D' channel GrantData carries invalid source ID" + extra)
assume (sink_ok, "'D' channel GrantData carries invalid sink ID" + extra)
assume (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'D' channel GrantData smaller than a beat" + extra)
assume (TLPermissions.isCap(bundle.param), "'D' channel GrantData carries invalid cap param" + extra)
assume (bundle.param =/= TLPermissions.toN, "'D' channel GrantData carries toN param" + extra)
assume (!bundle.denied || bundle.corrupt, "'D' channel GrantData is denied but not corrupt" + extra)
assume (deny_get_ok || !bundle.denied, "'D' channel GrantData is denied" + extra)
}
when (bundle.opcode === TLMessages.AccessAck) {
assume (source_ok, "'D' channel AccessAck carries invalid source ID" + extra)
// size is ignored
assume (bundle.param === 0.U, "'D' channel AccessAck carries invalid param" + extra)
assume (!bundle.corrupt, "'D' channel AccessAck is corrupt" + extra)
assume (deny_put_ok || !bundle.denied, "'D' channel AccessAck is denied" + extra)
}
when (bundle.opcode === TLMessages.AccessAckData) {
assume (source_ok, "'D' channel AccessAckData carries invalid source ID" + extra)
// size is ignored
assume (bundle.param === 0.U, "'D' channel AccessAckData carries invalid param" + extra)
assume (!bundle.denied || bundle.corrupt, "'D' channel AccessAckData is denied but not corrupt" + extra)
assume (deny_get_ok || !bundle.denied, "'D' channel AccessAckData is denied" + extra)
}
when (bundle.opcode === TLMessages.HintAck) {
assume (source_ok, "'D' channel HintAck carries invalid source ID" + extra)
// size is ignored
assume (bundle.param === 0.U, "'D' channel HintAck carries invalid param" + extra)
assume (!bundle.corrupt, "'D' channel HintAck is corrupt" + extra)
assume (deny_put_ok || !bundle.denied, "'D' channel HintAck is denied" + extra)
}
}
def legalizeFormatE(bundle: TLBundleE, edge: TLEdge): Unit = {
val sink_ok = bundle.sink < edge.manager.endSinkId.U
monAssert (sink_ok, "'E' channels carries invalid sink ID" + extra)
}
def legalizeFormat(bundle: TLBundle, edge: TLEdge) = {
when (bundle.a.valid) { legalizeFormatA(bundle.a.bits, edge) }
when (bundle.d.valid) { legalizeFormatD(bundle.d.bits, edge) }
if (edge.client.anySupportProbe && edge.manager.anySupportAcquireB) {
when (bundle.b.valid) { legalizeFormatB(bundle.b.bits, edge) }
when (bundle.c.valid) { legalizeFormatC(bundle.c.bits, edge) }
when (bundle.e.valid) { legalizeFormatE(bundle.e.bits, edge) }
} else {
monAssert (!bundle.b.valid, "'B' channel valid and not TL-C" + extra)
monAssert (!bundle.c.valid, "'C' channel valid and not TL-C" + extra)
monAssert (!bundle.e.valid, "'E' channel valid and not TL-C" + extra)
}
}
def legalizeMultibeatA(a: DecoupledIO[TLBundleA], edge: TLEdge): Unit = {
val a_first = edge.first(a.bits, a.fire)
val opcode = Reg(UInt())
val param = Reg(UInt())
val size = Reg(UInt())
val source = Reg(UInt())
val address = Reg(UInt())
when (a.valid && !a_first) {
monAssert (a.bits.opcode === opcode, "'A' channel opcode changed within multibeat operation" + extra)
monAssert (a.bits.param === param, "'A' channel param changed within multibeat operation" + extra)
monAssert (a.bits.size === size, "'A' channel size changed within multibeat operation" + extra)
monAssert (a.bits.source === source, "'A' channel source changed within multibeat operation" + extra)
monAssert (a.bits.address=== address,"'A' channel address changed with multibeat operation" + extra)
}
when (a.fire && a_first) {
opcode := a.bits.opcode
param := a.bits.param
size := a.bits.size
source := a.bits.source
address := a.bits.address
}
}
def legalizeMultibeatB(b: DecoupledIO[TLBundleB], edge: TLEdge): Unit = {
val b_first = edge.first(b.bits, b.fire)
val opcode = Reg(UInt())
val param = Reg(UInt())
val size = Reg(UInt())
val source = Reg(UInt())
val address = Reg(UInt())
when (b.valid && !b_first) {
monAssert (b.bits.opcode === opcode, "'B' channel opcode changed within multibeat operation" + extra)
monAssert (b.bits.param === param, "'B' channel param changed within multibeat operation" + extra)
monAssert (b.bits.size === size, "'B' channel size changed within multibeat operation" + extra)
monAssert (b.bits.source === source, "'B' channel source changed within multibeat operation" + extra)
monAssert (b.bits.address=== address,"'B' channel addresss changed with multibeat operation" + extra)
}
when (b.fire && b_first) {
opcode := b.bits.opcode
param := b.bits.param
size := b.bits.size
source := b.bits.source
address := b.bits.address
}
}
def legalizeADSourceFormal(bundle: TLBundle, edge: TLEdge): Unit = {
// Symbolic variable
val sym_source = Wire(UInt(edge.client.endSourceId.W))
// TODO: Connect sym_source to a fixed value for simulation and to a
// free wire in formal
sym_source := 0.U
// Type casting Int to UInt
val maxSourceId = Wire(UInt(edge.client.endSourceId.W))
maxSourceId := edge.client.endSourceId.U
// Delayed verison of sym_source
val sym_source_d = Reg(UInt(edge.client.endSourceId.W))
sym_source_d := sym_source
// These will be constraints for FV setup
Property(
MonitorDirection.Monitor,
(sym_source === sym_source_d),
"sym_source should remain stable",
PropertyClass.Default)
Property(
MonitorDirection.Monitor,
(sym_source <= maxSourceId),
"sym_source should take legal value",
PropertyClass.Default)
val my_resp_pend = RegInit(false.B)
val my_opcode = Reg(UInt())
val my_size = Reg(UInt())
val a_first = bundle.a.valid && edge.first(bundle.a.bits, bundle.a.fire)
val d_first = bundle.d.valid && edge.first(bundle.d.bits, bundle.d.fire)
val my_a_first_beat = a_first && (bundle.a.bits.source === sym_source)
val my_d_first_beat = d_first && (bundle.d.bits.source === sym_source)
val my_clr_resp_pend = (bundle.d.fire && my_d_first_beat)
val my_set_resp_pend = (bundle.a.fire && my_a_first_beat && !my_clr_resp_pend)
when (my_set_resp_pend) {
my_resp_pend := true.B
} .elsewhen (my_clr_resp_pend) {
my_resp_pend := false.B
}
when (my_a_first_beat) {
my_opcode := bundle.a.bits.opcode
my_size := bundle.a.bits.size
}
val my_resp_size = Mux(my_a_first_beat, bundle.a.bits.size, my_size)
val my_resp_opcode = Mux(my_a_first_beat, bundle.a.bits.opcode, my_opcode)
val my_resp_opcode_legal = Wire(Bool())
when ((my_resp_opcode === TLMessages.Get) || (my_resp_opcode === TLMessages.ArithmeticData) ||
(my_resp_opcode === TLMessages.LogicalData)) {
my_resp_opcode_legal := (bundle.d.bits.opcode === TLMessages.AccessAckData)
} .elsewhen ((my_resp_opcode === TLMessages.PutFullData) || (my_resp_opcode === TLMessages.PutPartialData)) {
my_resp_opcode_legal := (bundle.d.bits.opcode === TLMessages.AccessAck)
} .otherwise {
my_resp_opcode_legal := (bundle.d.bits.opcode === TLMessages.HintAck)
}
monAssert (IfThen(my_resp_pend, !my_a_first_beat),
"Request message should not be sent with a source ID, for which a response message" +
"is already pending (not received until current cycle) for a prior request message" +
"with the same source ID" + extra)
assume (IfThen(my_clr_resp_pend, (my_set_resp_pend || my_resp_pend)),
"Response message should be accepted with a source ID only if a request message with the" +
"same source ID has been accepted or is being accepted in the current cycle" + extra)
assume (IfThen(my_d_first_beat, (my_a_first_beat || my_resp_pend)),
"Response message should be sent with a source ID only if a request message with the" +
"same source ID has been accepted or is being sent in the current cycle" + extra)
assume (IfThen(my_d_first_beat, (bundle.d.bits.size === my_resp_size)),
"If d_valid is 1, then d_size should be same as a_size of the corresponding request" +
"message" + extra)
assume (IfThen(my_d_first_beat, my_resp_opcode_legal),
"If d_valid is 1, then d_opcode should correspond with a_opcode of the corresponding" +
"request message" + extra)
}
def legalizeMultibeatC(c: DecoupledIO[TLBundleC], edge: TLEdge): Unit = {
val c_first = edge.first(c.bits, c.fire)
val opcode = Reg(UInt())
val param = Reg(UInt())
val size = Reg(UInt())
val source = Reg(UInt())
val address = Reg(UInt())
when (c.valid && !c_first) {
monAssert (c.bits.opcode === opcode, "'C' channel opcode changed within multibeat operation" + extra)
monAssert (c.bits.param === param, "'C' channel param changed within multibeat operation" + extra)
monAssert (c.bits.size === size, "'C' channel size changed within multibeat operation" + extra)
monAssert (c.bits.source === source, "'C' channel source changed within multibeat operation" + extra)
monAssert (c.bits.address=== address,"'C' channel address changed with multibeat operation" + extra)
}
when (c.fire && c_first) {
opcode := c.bits.opcode
param := c.bits.param
size := c.bits.size
source := c.bits.source
address := c.bits.address
}
}
def legalizeMultibeatD(d: DecoupledIO[TLBundleD], edge: TLEdge): Unit = {
val d_first = edge.first(d.bits, d.fire)
val opcode = Reg(UInt())
val param = Reg(UInt())
val size = Reg(UInt())
val source = Reg(UInt())
val sink = Reg(UInt())
val denied = Reg(Bool())
when (d.valid && !d_first) {
assume (d.bits.opcode === opcode, "'D' channel opcode changed within multibeat operation" + extra)
assume (d.bits.param === param, "'D' channel param changed within multibeat operation" + extra)
assume (d.bits.size === size, "'D' channel size changed within multibeat operation" + extra)
assume (d.bits.source === source, "'D' channel source changed within multibeat operation" + extra)
assume (d.bits.sink === sink, "'D' channel sink changed with multibeat operation" + extra)
assume (d.bits.denied === denied, "'D' channel denied changed with multibeat operation" + extra)
}
when (d.fire && d_first) {
opcode := d.bits.opcode
param := d.bits.param
size := d.bits.size
source := d.bits.source
sink := d.bits.sink
denied := d.bits.denied
}
}
def legalizeMultibeat(bundle: TLBundle, edge: TLEdge): Unit = {
legalizeMultibeatA(bundle.a, edge)
legalizeMultibeatD(bundle.d, edge)
if (edge.client.anySupportProbe && edge.manager.anySupportAcquireB) {
legalizeMultibeatB(bundle.b, edge)
legalizeMultibeatC(bundle.c, edge)
}
}
//This is left in for almond which doesn't adhere to the tilelink protocol
@deprecated("Use legalizeADSource instead if possible","")
def legalizeADSourceOld(bundle: TLBundle, edge: TLEdge): Unit = {
val inflight = RegInit(0.U(edge.client.endSourceId.W))
val a_first = edge.first(bundle.a.bits, bundle.a.fire)
val d_first = edge.first(bundle.d.bits, bundle.d.fire)
val a_set = WireInit(0.U(edge.client.endSourceId.W))
when (bundle.a.fire && a_first && edge.isRequest(bundle.a.bits)) {
a_set := UIntToOH(bundle.a.bits.source)
assert(!inflight(bundle.a.bits.source), "'A' channel re-used a source ID" + extra)
}
val d_clr = WireInit(0.U(edge.client.endSourceId.W))
val d_release_ack = bundle.d.bits.opcode === TLMessages.ReleaseAck
when (bundle.d.fire && d_first && edge.isResponse(bundle.d.bits) && !d_release_ack) {
d_clr := UIntToOH(bundle.d.bits.source)
assume((a_set | inflight)(bundle.d.bits.source), "'D' channel acknowledged for nothing inflight" + extra)
}
if (edge.manager.minLatency > 0) {
assume(a_set =/= d_clr || !a_set.orR, s"'A' and 'D' concurrent, despite minlatency > 0" + extra)
}
inflight := (inflight | a_set) & ~d_clr
val watchdog = RegInit(0.U(32.W))
val limit = PlusArg("tilelink_timeout",
docstring="Kill emulation after INT waiting TileLink cycles. Off if 0.")
assert (!inflight.orR || limit === 0.U || watchdog < limit, "TileLink timeout expired" + extra)
watchdog := watchdog + 1.U
when (bundle.a.fire || bundle.d.fire) { watchdog := 0.U }
}
def legalizeADSource(bundle: TLBundle, edge: TLEdge): Unit = {
val a_size_bus_size = edge.bundle.sizeBits + 1 //add one so that 0 is not mapped to anything (size 0 -> size 1 in map, size 0 in map means unset)
val a_opcode_bus_size = 3 + 1 //opcode size is 3, but add so that 0 is not mapped to anything
val log_a_opcode_bus_size = log2Ceil(a_opcode_bus_size)
val log_a_size_bus_size = log2Ceil(a_size_bus_size)
def size_to_numfullbits(x: UInt): UInt = (1.U << x) - 1.U //convert a number to that many full bits
val inflight = RegInit(0.U((2 max edge.client.endSourceId).W)) // size up to avoid width error
inflight.suggestName("inflight")
val inflight_opcodes = RegInit(0.U((edge.client.endSourceId << log_a_opcode_bus_size).W))
inflight_opcodes.suggestName("inflight_opcodes")
val inflight_sizes = RegInit(0.U((edge.client.endSourceId << log_a_size_bus_size).W))
inflight_sizes.suggestName("inflight_sizes")
val a_first = edge.first(bundle.a.bits, bundle.a.fire)
a_first.suggestName("a_first")
val d_first = edge.first(bundle.d.bits, bundle.d.fire)
d_first.suggestName("d_first")
val a_set = WireInit(0.U(edge.client.endSourceId.W))
val a_set_wo_ready = WireInit(0.U(edge.client.endSourceId.W))
a_set.suggestName("a_set")
a_set_wo_ready.suggestName("a_set_wo_ready")
val a_opcodes_set = WireInit(0.U((edge.client.endSourceId << log_a_opcode_bus_size).W))
a_opcodes_set.suggestName("a_opcodes_set")
val a_sizes_set = WireInit(0.U((edge.client.endSourceId << log_a_size_bus_size).W))
a_sizes_set.suggestName("a_sizes_set")
val a_opcode_lookup = WireInit(0.U((a_opcode_bus_size - 1).W))
a_opcode_lookup.suggestName("a_opcode_lookup")
a_opcode_lookup := ((inflight_opcodes) >> (bundle.d.bits.source << log_a_opcode_bus_size.U) & size_to_numfullbits(1.U << log_a_opcode_bus_size.U)) >> 1.U
val a_size_lookup = WireInit(0.U((1 << log_a_size_bus_size).W))
a_size_lookup.suggestName("a_size_lookup")
a_size_lookup := ((inflight_sizes) >> (bundle.d.bits.source << log_a_size_bus_size.U) & size_to_numfullbits(1.U << log_a_size_bus_size.U)) >> 1.U
val responseMap = VecInit(Seq(TLMessages.AccessAck, TLMessages.AccessAck, TLMessages.AccessAckData, TLMessages.AccessAckData, TLMessages.AccessAckData, TLMessages.HintAck, TLMessages.Grant, TLMessages.Grant))
val responseMapSecondOption = VecInit(Seq(TLMessages.AccessAck, TLMessages.AccessAck, TLMessages.AccessAckData, TLMessages.AccessAckData, TLMessages.AccessAckData, TLMessages.HintAck, TLMessages.GrantData, TLMessages.Grant))
val a_opcodes_set_interm = WireInit(0.U(a_opcode_bus_size.W))
a_opcodes_set_interm.suggestName("a_opcodes_set_interm")
val a_sizes_set_interm = WireInit(0.U(a_size_bus_size.W))
a_sizes_set_interm.suggestName("a_sizes_set_interm")
when (bundle.a.valid && a_first && edge.isRequest(bundle.a.bits)) {
a_set_wo_ready := UIntToOH(bundle.a.bits.source)
}
when (bundle.a.fire && a_first && edge.isRequest(bundle.a.bits)) {
a_set := UIntToOH(bundle.a.bits.source)
a_opcodes_set_interm := (bundle.a.bits.opcode << 1.U) | 1.U
a_sizes_set_interm := (bundle.a.bits.size << 1.U) | 1.U
a_opcodes_set := (a_opcodes_set_interm) << (bundle.a.bits.source << log_a_opcode_bus_size.U)
a_sizes_set := (a_sizes_set_interm) << (bundle.a.bits.source << log_a_size_bus_size.U)
monAssert(!inflight(bundle.a.bits.source), "'A' channel re-used a source ID" + extra)
}
val d_clr = WireInit(0.U(edge.client.endSourceId.W))
val d_clr_wo_ready = WireInit(0.U(edge.client.endSourceId.W))
d_clr.suggestName("d_clr")
d_clr_wo_ready.suggestName("d_clr_wo_ready")
val d_opcodes_clr = WireInit(0.U((edge.client.endSourceId << log_a_opcode_bus_size).W))
d_opcodes_clr.suggestName("d_opcodes_clr")
val d_sizes_clr = WireInit(0.U((edge.client.endSourceId << log_a_size_bus_size).W))
d_sizes_clr.suggestName("d_sizes_clr")
val d_release_ack = bundle.d.bits.opcode === TLMessages.ReleaseAck
when (bundle.d.valid && d_first && edge.isResponse(bundle.d.bits) && !d_release_ack) {
d_clr_wo_ready := UIntToOH(bundle.d.bits.source)
}
when (bundle.d.fire && d_first && edge.isResponse(bundle.d.bits) && !d_release_ack) {
d_clr := UIntToOH(bundle.d.bits.source)
d_opcodes_clr := size_to_numfullbits(1.U << log_a_opcode_bus_size.U) << (bundle.d.bits.source << log_a_opcode_bus_size.U)
d_sizes_clr := size_to_numfullbits(1.U << log_a_size_bus_size.U) << (bundle.d.bits.source << log_a_size_bus_size.U)
}
when (bundle.d.valid && d_first && edge.isResponse(bundle.d.bits) && !d_release_ack) {
val same_cycle_resp = bundle.a.valid && a_first && edge.isRequest(bundle.a.bits) && (bundle.a.bits.source === bundle.d.bits.source)
assume(((inflight)(bundle.d.bits.source)) || same_cycle_resp, "'D' channel acknowledged for nothing inflight" + extra)
when (same_cycle_resp) {
assume((bundle.d.bits.opcode === responseMap(bundle.a.bits.opcode)) ||
(bundle.d.bits.opcode === responseMapSecondOption(bundle.a.bits.opcode)), "'D' channel contains improper opcode response" + extra)
assume((bundle.a.bits.size === bundle.d.bits.size), "'D' channel contains improper response size" + extra)
} .otherwise {
assume((bundle.d.bits.opcode === responseMap(a_opcode_lookup)) ||
(bundle.d.bits.opcode === responseMapSecondOption(a_opcode_lookup)), "'D' channel contains improper opcode response" + extra)
assume((bundle.d.bits.size === a_size_lookup), "'D' channel contains improper response size" + extra)
}
}
when(bundle.d.valid && d_first && a_first && bundle.a.valid && (bundle.a.bits.source === bundle.d.bits.source) && !d_release_ack) {
assume((!bundle.d.ready) || bundle.a.ready, "ready check")
}
if (edge.manager.minLatency > 0) {
assume(a_set_wo_ready =/= d_clr_wo_ready || !a_set_wo_ready.orR, s"'A' and 'D' concurrent, despite minlatency > 0" + extra)
}
inflight := (inflight | a_set) & ~d_clr
inflight_opcodes := (inflight_opcodes | a_opcodes_set) & ~d_opcodes_clr
inflight_sizes := (inflight_sizes | a_sizes_set) & ~d_sizes_clr
val watchdog = RegInit(0.U(32.W))
val limit = PlusArg("tilelink_timeout",
docstring="Kill emulation after INT waiting TileLink cycles. Off if 0.")
monAssert (!inflight.orR || limit === 0.U || watchdog < limit, "TileLink timeout expired" + extra)
watchdog := watchdog + 1.U
when (bundle.a.fire || bundle.d.fire) { watchdog := 0.U }
}
def legalizeCDSource(bundle: TLBundle, edge: TLEdge): Unit = {
val c_size_bus_size = edge.bundle.sizeBits + 1 //add one so that 0 is not mapped to anything (size 0 -> size 1 in map, size 0 in map means unset)
val c_opcode_bus_size = 3 + 1 //opcode size is 3, but add so that 0 is not mapped to anything
val log_c_opcode_bus_size = log2Ceil(c_opcode_bus_size)
val log_c_size_bus_size = log2Ceil(c_size_bus_size)
def size_to_numfullbits(x: UInt): UInt = (1.U << x) - 1.U //convert a number to that many full bits
val inflight = RegInit(0.U((2 max edge.client.endSourceId).W))
val inflight_opcodes = RegInit(0.U((edge.client.endSourceId << log_c_opcode_bus_size).W))
val inflight_sizes = RegInit(0.U((edge.client.endSourceId << log_c_size_bus_size).W))
inflight.suggestName("inflight")
inflight_opcodes.suggestName("inflight_opcodes")
inflight_sizes.suggestName("inflight_sizes")
val c_first = edge.first(bundle.c.bits, bundle.c.fire)
val d_first = edge.first(bundle.d.bits, bundle.d.fire)
c_first.suggestName("c_first")
d_first.suggestName("d_first")
val c_set = WireInit(0.U(edge.client.endSourceId.W))
val c_set_wo_ready = WireInit(0.U(edge.client.endSourceId.W))
val c_opcodes_set = WireInit(0.U((edge.client.endSourceId << log_c_opcode_bus_size).W))
val c_sizes_set = WireInit(0.U((edge.client.endSourceId << log_c_size_bus_size).W))
c_set.suggestName("c_set")
c_set_wo_ready.suggestName("c_set_wo_ready")
c_opcodes_set.suggestName("c_opcodes_set")
c_sizes_set.suggestName("c_sizes_set")
val c_opcode_lookup = WireInit(0.U((1 << log_c_opcode_bus_size).W))
val c_size_lookup = WireInit(0.U((1 << log_c_size_bus_size).W))
c_opcode_lookup := ((inflight_opcodes) >> (bundle.d.bits.source << log_c_opcode_bus_size.U) & size_to_numfullbits(1.U << log_c_opcode_bus_size.U)) >> 1.U
c_size_lookup := ((inflight_sizes) >> (bundle.d.bits.source << log_c_size_bus_size.U) & size_to_numfullbits(1.U << log_c_size_bus_size.U)) >> 1.U
c_opcode_lookup.suggestName("c_opcode_lookup")
c_size_lookup.suggestName("c_size_lookup")
val c_opcodes_set_interm = WireInit(0.U(c_opcode_bus_size.W))
val c_sizes_set_interm = WireInit(0.U(c_size_bus_size.W))
c_opcodes_set_interm.suggestName("c_opcodes_set_interm")
c_sizes_set_interm.suggestName("c_sizes_set_interm")
when (bundle.c.valid && c_first && edge.isRequest(bundle.c.bits)) {
c_set_wo_ready := UIntToOH(bundle.c.bits.source)
}
when (bundle.c.fire && c_first && edge.isRequest(bundle.c.bits)) {
c_set := UIntToOH(bundle.c.bits.source)
c_opcodes_set_interm := (bundle.c.bits.opcode << 1.U) | 1.U
c_sizes_set_interm := (bundle.c.bits.size << 1.U) | 1.U
c_opcodes_set := (c_opcodes_set_interm) << (bundle.c.bits.source << log_c_opcode_bus_size.U)
c_sizes_set := (c_sizes_set_interm) << (bundle.c.bits.source << log_c_size_bus_size.U)
monAssert(!inflight(bundle.c.bits.source), "'C' channel re-used a source ID" + extra)
}
val c_probe_ack = bundle.c.bits.opcode === TLMessages.ProbeAck || bundle.c.bits.opcode === TLMessages.ProbeAckData
val d_clr = WireInit(0.U(edge.client.endSourceId.W))
val d_clr_wo_ready = WireInit(0.U(edge.client.endSourceId.W))
val d_opcodes_clr = WireInit(0.U((edge.client.endSourceId << log_c_opcode_bus_size).W))
val d_sizes_clr = WireInit(0.U((edge.client.endSourceId << log_c_size_bus_size).W))
d_clr.suggestName("d_clr")
d_clr_wo_ready.suggestName("d_clr_wo_ready")
d_opcodes_clr.suggestName("d_opcodes_clr")
d_sizes_clr.suggestName("d_sizes_clr")
val d_release_ack = bundle.d.bits.opcode === TLMessages.ReleaseAck
when (bundle.d.valid && d_first && edge.isResponse(bundle.d.bits) && d_release_ack) {
d_clr_wo_ready := UIntToOH(bundle.d.bits.source)
}
when (bundle.d.fire && d_first && edge.isResponse(bundle.d.bits) && d_release_ack) {
d_clr := UIntToOH(bundle.d.bits.source)
d_opcodes_clr := size_to_numfullbits(1.U << log_c_opcode_bus_size.U) << (bundle.d.bits.source << log_c_opcode_bus_size.U)
d_sizes_clr := size_to_numfullbits(1.U << log_c_size_bus_size.U) << (bundle.d.bits.source << log_c_size_bus_size.U)
}
when (bundle.d.valid && d_first && edge.isResponse(bundle.d.bits) && d_release_ack) {
val same_cycle_resp = bundle.c.valid && c_first && edge.isRequest(bundle.c.bits) && (bundle.c.bits.source === bundle.d.bits.source)
assume(((inflight)(bundle.d.bits.source)) || same_cycle_resp, "'D' channel acknowledged for nothing inflight" + extra)
when (same_cycle_resp) {
assume((bundle.d.bits.size === bundle.c.bits.size), "'D' channel contains improper response size" + extra)
} .otherwise {
assume((bundle.d.bits.size === c_size_lookup), "'D' channel contains improper response size" + extra)
}
}
when(bundle.d.valid && d_first && c_first && bundle.c.valid && (bundle.c.bits.source === bundle.d.bits.source) && d_release_ack && !c_probe_ack) {
assume((!bundle.d.ready) || bundle.c.ready, "ready check")
}
if (edge.manager.minLatency > 0) {
when (c_set_wo_ready.orR) {
assume(c_set_wo_ready =/= d_clr_wo_ready, s"'C' and 'D' concurrent, despite minlatency > 0" + extra)
}
}
inflight := (inflight | c_set) & ~d_clr
inflight_opcodes := (inflight_opcodes | c_opcodes_set) & ~d_opcodes_clr
inflight_sizes := (inflight_sizes | c_sizes_set) & ~d_sizes_clr
val watchdog = RegInit(0.U(32.W))
val limit = PlusArg("tilelink_timeout",
docstring="Kill emulation after INT waiting TileLink cycles. Off if 0.")
monAssert (!inflight.orR || limit === 0.U || watchdog < limit, "TileLink timeout expired" + extra)
watchdog := watchdog + 1.U
when (bundle.c.fire || bundle.d.fire) { watchdog := 0.U }
}
def legalizeDESink(bundle: TLBundle, edge: TLEdge): Unit = {
val inflight = RegInit(0.U(edge.manager.endSinkId.W))
val d_first = edge.first(bundle.d.bits, bundle.d.fire)
val e_first = true.B
val d_set = WireInit(0.U(edge.manager.endSinkId.W))
when (bundle.d.fire && d_first && edge.isRequest(bundle.d.bits)) {
d_set := UIntToOH(bundle.d.bits.sink)
assume(!inflight(bundle.d.bits.sink), "'D' channel re-used a sink ID" + extra)
}
val e_clr = WireInit(0.U(edge.manager.endSinkId.W))
when (bundle.e.fire && e_first && edge.isResponse(bundle.e.bits)) {
e_clr := UIntToOH(bundle.e.bits.sink)
monAssert((d_set | inflight)(bundle.e.bits.sink), "'E' channel acknowledged for nothing inflight" + extra)
}
// edge.client.minLatency applies to BC, not DE
inflight := (inflight | d_set) & ~e_clr
}
def legalizeUnique(bundle: TLBundle, edge: TLEdge): Unit = {
val sourceBits = log2Ceil(edge.client.endSourceId)
val tooBig = 14 // >16kB worth of flight information gets to be too much
if (sourceBits > tooBig) {
println(s"WARNING: TLMonitor instantiated on a bus with source bits (${sourceBits}) > ${tooBig}; A=>D transaction flight will not be checked")
} else {
if (args.edge.params(TestplanTestType).simulation) {
if (args.edge.params(TLMonitorStrictMode)) {
legalizeADSource(bundle, edge)
legalizeCDSource(bundle, edge)
} else {
legalizeADSourceOld(bundle, edge)
}
}
if (args.edge.params(TestplanTestType).formal) {
legalizeADSourceFormal(bundle, edge)
}
}
if (edge.client.anySupportProbe && edge.manager.anySupportAcquireB) {
// legalizeBCSourceAddress(bundle, edge) // too much state needed to synthesize...
val sinkBits = log2Ceil(edge.manager.endSinkId)
if (sinkBits > tooBig) {
println(s"WARNING: TLMonitor instantiated on a bus with sink bits (${sinkBits}) > ${tooBig}; D=>E transaction flight will not be checked")
} else {
legalizeDESink(bundle, edge)
}
}
}
def legalize(bundle: TLBundle, edge: TLEdge, reset: Reset): Unit = {
legalizeFormat (bundle, edge)
legalizeMultibeat (bundle, edge)
legalizeUnique (bundle, edge)
}
}
File Misc.scala:
// See LICENSE.Berkeley for license details.
// See LICENSE.SiFive for license details.
package freechips.rocketchip.util
import chisel3._
import chisel3.util._
import chisel3.util.random.LFSR
import org.chipsalliance.cde.config.Parameters
import scala.math._
class ParameterizedBundle(implicit p: Parameters) extends Bundle
trait Clocked extends Bundle {
val clock = Clock()
val reset = Bool()
}
object DecoupledHelper {
def apply(rvs: Bool*) = new DecoupledHelper(rvs)
}
class DecoupledHelper(val rvs: Seq[Bool]) {
def fire(exclude: Bool, includes: Bool*) = {
require(rvs.contains(exclude), "Excluded Bool not present in DecoupledHelper! Note that DecoupledHelper uses referential equality for exclusion! If you don't want to exclude anything, use fire()!")
(rvs.filter(_ ne exclude) ++ includes).reduce(_ && _)
}
def fire() = {
rvs.reduce(_ && _)
}
}
object MuxT {
def apply[T <: Data, U <: Data](cond: Bool, con: (T, U), alt: (T, U)): (T, U) =
(Mux(cond, con._1, alt._1), Mux(cond, con._2, alt._2))
def apply[T <: Data, U <: Data, W <: Data](cond: Bool, con: (T, U, W), alt: (T, U, W)): (T, U, W) =
(Mux(cond, con._1, alt._1), Mux(cond, con._2, alt._2), Mux(cond, con._3, alt._3))
def apply[T <: Data, U <: Data, W <: Data, X <: Data](cond: Bool, con: (T, U, W, X), alt: (T, U, W, X)): (T, U, W, X) =
(Mux(cond, con._1, alt._1), Mux(cond, con._2, alt._2), Mux(cond, con._3, alt._3), Mux(cond, con._4, alt._4))
}
/** Creates a cascade of n MuxTs to search for a key value. */
object MuxTLookup {
def apply[S <: UInt, T <: Data, U <: Data](key: S, default: (T, U), mapping: Seq[(S, (T, U))]): (T, U) = {
var res = default
for ((k, v) <- mapping.reverse)
res = MuxT(k === key, v, res)
res
}
def apply[S <: UInt, T <: Data, U <: Data, W <: Data](key: S, default: (T, U, W), mapping: Seq[(S, (T, U, W))]): (T, U, W) = {
var res = default
for ((k, v) <- mapping.reverse)
res = MuxT(k === key, v, res)
res
}
}
object ValidMux {
def apply[T <: Data](v1: ValidIO[T], v2: ValidIO[T]*): ValidIO[T] = {
apply(v1 +: v2.toSeq)
}
def apply[T <: Data](valids: Seq[ValidIO[T]]): ValidIO[T] = {
val out = Wire(Valid(valids.head.bits.cloneType))
out.valid := valids.map(_.valid).reduce(_ || _)
out.bits := MuxCase(valids.head.bits,
valids.map(v => (v.valid -> v.bits)))
out
}
}
object Str
{
def apply(s: String): UInt = {
var i = BigInt(0)
require(s.forall(validChar _))
for (c <- s)
i = (i << 8) | c
i.U((s.length*8).W)
}
def apply(x: Char): UInt = {
require(validChar(x))
x.U(8.W)
}
def apply(x: UInt): UInt = apply(x, 10)
def apply(x: UInt, radix: Int): UInt = {
val rad = radix.U
val w = x.getWidth
require(w > 0)
var q = x
var s = digit(q % rad)
for (i <- 1 until ceil(log(2)/log(radix)*w).toInt) {
q = q / rad
s = Cat(Mux((radix == 10).B && q === 0.U, Str(' '), digit(q % rad)), s)
}
s
}
def apply(x: SInt): UInt = apply(x, 10)
def apply(x: SInt, radix: Int): UInt = {
val neg = x < 0.S
val abs = x.abs.asUInt
if (radix != 10) {
Cat(Mux(neg, Str('-'), Str(' ')), Str(abs, radix))
} else {
val rad = radix.U
val w = abs.getWidth
require(w > 0)
var q = abs
var s = digit(q % rad)
var needSign = neg
for (i <- 1 until ceil(log(2)/log(radix)*w).toInt) {
q = q / rad
val placeSpace = q === 0.U
val space = Mux(needSign, Str('-'), Str(' '))
needSign = needSign && !placeSpace
s = Cat(Mux(placeSpace, space, digit(q % rad)), s)
}
Cat(Mux(needSign, Str('-'), Str(' ')), s)
}
}
private def digit(d: UInt): UInt = Mux(d < 10.U, Str('0')+d, Str(('a'-10).toChar)+d)(7,0)
private def validChar(x: Char) = x == (x & 0xFF)
}
object Split
{
def apply(x: UInt, n0: Int) = {
val w = x.getWidth
(x.extract(w-1,n0), x.extract(n0-1,0))
}
def apply(x: UInt, n1: Int, n0: Int) = {
val w = x.getWidth
(x.extract(w-1,n1), x.extract(n1-1,n0), x.extract(n0-1,0))
}
def apply(x: UInt, n2: Int, n1: Int, n0: Int) = {
val w = x.getWidth
(x.extract(w-1,n2), x.extract(n2-1,n1), x.extract(n1-1,n0), x.extract(n0-1,0))
}
}
object Random
{
def apply(mod: Int, random: UInt): UInt = {
if (isPow2(mod)) random.extract(log2Ceil(mod)-1,0)
else PriorityEncoder(partition(apply(1 << log2Up(mod*8), random), mod))
}
def apply(mod: Int): UInt = apply(mod, randomizer)
def oneHot(mod: Int, random: UInt): UInt = {
if (isPow2(mod)) UIntToOH(random(log2Up(mod)-1,0))
else PriorityEncoderOH(partition(apply(1 << log2Up(mod*8), random), mod)).asUInt
}
def oneHot(mod: Int): UInt = oneHot(mod, randomizer)
private def randomizer = LFSR(16)
private def partition(value: UInt, slices: Int) =
Seq.tabulate(slices)(i => value < (((i + 1) << value.getWidth) / slices).U)
}
object Majority {
def apply(in: Set[Bool]): Bool = {
val n = (in.size >> 1) + 1
val clauses = in.subsets(n).map(_.reduce(_ && _))
clauses.reduce(_ || _)
}
def apply(in: Seq[Bool]): Bool = apply(in.toSet)
def apply(in: UInt): Bool = apply(in.asBools.toSet)
}
object PopCountAtLeast {
private def two(x: UInt): (Bool, Bool) = x.getWidth match {
case 1 => (x.asBool, false.B)
case n =>
val half = x.getWidth / 2
val (leftOne, leftTwo) = two(x(half - 1, 0))
val (rightOne, rightTwo) = two(x(x.getWidth - 1, half))
(leftOne || rightOne, leftTwo || rightTwo || (leftOne && rightOne))
}
def apply(x: UInt, n: Int): Bool = n match {
case 0 => true.B
case 1 => x.orR
case 2 => two(x)._2
case 3 => PopCount(x) >= n.U
}
}
// This gets used everywhere, so make the smallest circuit possible ...
// Given an address and size, create a mask of beatBytes size
// eg: (0x3, 0, 4) => 0001, (0x3, 1, 4) => 0011, (0x3, 2, 4) => 1111
// groupBy applies an interleaved OR reduction; groupBy=2 take 0010 => 01
object MaskGen {
def apply(addr_lo: UInt, lgSize: UInt, beatBytes: Int, groupBy: Int = 1): UInt = {
require (groupBy >= 1 && beatBytes >= groupBy)
require (isPow2(beatBytes) && isPow2(groupBy))
val lgBytes = log2Ceil(beatBytes)
val sizeOH = UIntToOH(lgSize | 0.U(log2Up(beatBytes).W), log2Up(beatBytes)) | (groupBy*2 - 1).U
def helper(i: Int): Seq[(Bool, Bool)] = {
if (i == 0) {
Seq((lgSize >= lgBytes.asUInt, true.B))
} else {
val sub = helper(i-1)
val size = sizeOH(lgBytes - i)
val bit = addr_lo(lgBytes - i)
val nbit = !bit
Seq.tabulate (1 << i) { j =>
val (sub_acc, sub_eq) = sub(j/2)
val eq = sub_eq && (if (j % 2 == 1) bit else nbit)
val acc = sub_acc || (size && eq)
(acc, eq)
}
}
}
if (groupBy == beatBytes) 1.U else
Cat(helper(lgBytes-log2Ceil(groupBy)).map(_._1).reverse)
}
}
File PlusArg.scala:
// See LICENSE.SiFive for license details.
package freechips.rocketchip.util
import chisel3._
import chisel3.experimental._
import chisel3.util.HasBlackBoxResource
@deprecated("This will be removed in Rocket Chip 2020.08", "Rocket Chip 2020.05")
case class PlusArgInfo(default: BigInt, docstring: String)
/** Case class for PlusArg information
*
* @tparam A scala type of the PlusArg value
* @param default optional default value
* @param docstring text to include in the help
* @param doctype description of the Verilog type of the PlusArg value (e.g. STRING, INT)
*/
private case class PlusArgContainer[A](default: Option[A], docstring: String, doctype: String)
/** Typeclass for converting a type to a doctype string
* @tparam A some type
*/
trait Doctypeable[A] {
/** Return the doctype string for some option */
def toDoctype(a: Option[A]): String
}
/** Object containing implementations of the Doctypeable typeclass */
object Doctypes {
/** Converts an Int => "INT" */
implicit val intToDoctype = new Doctypeable[Int] { def toDoctype(a: Option[Int]) = "INT" }
/** Converts a BigInt => "INT" */
implicit val bigIntToDoctype = new Doctypeable[BigInt] { def toDoctype(a: Option[BigInt]) = "INT" }
/** Converts a String => "STRING" */
implicit val stringToDoctype = new Doctypeable[String] { def toDoctype(a: Option[String]) = "STRING" }
}
class plusarg_reader(val format: String, val default: BigInt, val docstring: String, val width: Int) extends BlackBox(Map(
"FORMAT" -> StringParam(format),
"DEFAULT" -> IntParam(default),
"WIDTH" -> IntParam(width)
)) with HasBlackBoxResource {
val io = IO(new Bundle {
val out = Output(UInt(width.W))
})
addResource("/vsrc/plusarg_reader.v")
}
/* This wrapper class has no outputs, making it clear it is a simulation-only construct */
class PlusArgTimeout(val format: String, val default: BigInt, val docstring: String, val width: Int) extends Module {
val io = IO(new Bundle {
val count = Input(UInt(width.W))
})
val max = Module(new plusarg_reader(format, default, docstring, width)).io.out
when (max > 0.U) {
assert (io.count < max, s"Timeout exceeded: $docstring")
}
}
import Doctypes._
object PlusArg
{
/** PlusArg("foo") will return 42.U if the simulation is run with +foo=42
* Do not use this as an initial register value. The value is set in an
* initial block and thus accessing it from another initial is racey.
* Add a docstring to document the arg, which can be dumped in an elaboration
* pass.
*/
def apply(name: String, default: BigInt = 0, docstring: String = "", width: Int = 32): UInt = {
PlusArgArtefacts.append(name, Some(default), docstring)
Module(new plusarg_reader(name + "=%d", default, docstring, width)).io.out
}
/** PlusArg.timeout(name, default, docstring)(count) will use chisel.assert
* to kill the simulation when count exceeds the specified integer argument.
* Default 0 will never assert.
*/
def timeout(name: String, default: BigInt = 0, docstring: String = "", width: Int = 32)(count: UInt): Unit = {
PlusArgArtefacts.append(name, Some(default), docstring)
Module(new PlusArgTimeout(name + "=%d", default, docstring, width)).io.count := count
}
}
object PlusArgArtefacts {
private var artefacts: Map[String, PlusArgContainer[_]] = Map.empty
/* Add a new PlusArg */
@deprecated(
"Use `Some(BigInt)` to specify a `default` value. This will be removed in Rocket Chip 2020.08",
"Rocket Chip 2020.05"
)
def append(name: String, default: BigInt, docstring: String): Unit = append(name, Some(default), docstring)
/** Add a new PlusArg
*
* @tparam A scala type of the PlusArg value
* @param name name for the PlusArg
* @param default optional default value
* @param docstring text to include in the help
*/
def append[A : Doctypeable](name: String, default: Option[A], docstring: String): Unit =
artefacts = artefacts ++
Map(name -> PlusArgContainer(default, docstring, implicitly[Doctypeable[A]].toDoctype(default)))
/* From plus args, generate help text */
private def serializeHelp_cHeader(tab: String = ""): String = artefacts
.map{ case(arg, info) =>
s"""|$tab+$arg=${info.doctype}\\n\\
|$tab${" "*20}${info.docstring}\\n\\
|""".stripMargin ++ info.default.map{ case default =>
s"$tab${" "*22}(default=${default})\\n\\\n"}.getOrElse("")
}.toSeq.mkString("\\n\\\n") ++ "\""
/* From plus args, generate a char array of their names */
private def serializeArray_cHeader(tab: String = ""): String = {
val prettyTab = tab + " " * 44 // Length of 'static const ...'
s"${tab}static const char * verilog_plusargs [] = {\\\n" ++
artefacts
.map{ case(arg, _) => s"""$prettyTab"$arg",\\\n""" }
.mkString("")++
s"${prettyTab}0};"
}
/* Generate C code to be included in emulator.cc that helps with
* argument parsing based on available Verilog PlusArgs */
def serialize_cHeader(): String =
s"""|#define PLUSARG_USAGE_OPTIONS \"EMULATOR VERILOG PLUSARGS\\n\\
|${serializeHelp_cHeader(" "*7)}
|${serializeArray_cHeader()}
|""".stripMargin
}
File package.scala:
// See LICENSE.SiFive for license details.
package freechips.rocketchip
import chisel3._
import chisel3.util._
import scala.math.min
import scala.collection.{immutable, mutable}
package object util {
implicit class UnzippableOption[S, T](val x: Option[(S, T)]) {
def unzip = (x.map(_._1), x.map(_._2))
}
implicit class UIntIsOneOf(private val x: UInt) extends AnyVal {
def isOneOf(s: Seq[UInt]): Bool = s.map(x === _).orR
def isOneOf(u1: UInt, u2: UInt*): Bool = isOneOf(u1 +: u2.toSeq)
}
implicit class VecToAugmentedVec[T <: Data](private val x: Vec[T]) extends AnyVal {
/** Like Vec.apply(idx), but tolerates indices of mismatched width */
def extract(idx: UInt): T = x((idx | 0.U(log2Ceil(x.size).W)).extract(log2Ceil(x.size) - 1, 0))
}
implicit class SeqToAugmentedSeq[T <: Data](private val x: Seq[T]) extends AnyVal {
def apply(idx: UInt): T = {
if (x.size <= 1) {
x.head
} else if (!isPow2(x.size)) {
// For non-power-of-2 seqs, reflect elements to simplify decoder
(x ++ x.takeRight(x.size & -x.size)).toSeq(idx)
} else {
// Ignore MSBs of idx
val truncIdx =
if (idx.isWidthKnown && idx.getWidth <= log2Ceil(x.size)) idx
else (idx | 0.U(log2Ceil(x.size).W))(log2Ceil(x.size)-1, 0)
x.zipWithIndex.tail.foldLeft(x.head) { case (prev, (cur, i)) => Mux(truncIdx === i.U, cur, prev) }
}
}
def extract(idx: UInt): T = VecInit(x).extract(idx)
def asUInt: UInt = Cat(x.map(_.asUInt).reverse)
def rotate(n: Int): Seq[T] = x.drop(n) ++ x.take(n)
def rotate(n: UInt): Seq[T] = {
if (x.size <= 1) {
x
} else {
require(isPow2(x.size))
val amt = n.padTo(log2Ceil(x.size))
(0 until log2Ceil(x.size)).foldLeft(x)((r, i) => (r.rotate(1 << i) zip r).map { case (s, a) => Mux(amt(i), s, a) })
}
}
def rotateRight(n: Int): Seq[T] = x.takeRight(n) ++ x.dropRight(n)
def rotateRight(n: UInt): Seq[T] = {
if (x.size <= 1) {
x
} else {
require(isPow2(x.size))
val amt = n.padTo(log2Ceil(x.size))
(0 until log2Ceil(x.size)).foldLeft(x)((r, i) => (r.rotateRight(1 << i) zip r).map { case (s, a) => Mux(amt(i), s, a) })
}
}
}
// allow bitwise ops on Seq[Bool] just like UInt
implicit class SeqBoolBitwiseOps(private val x: Seq[Bool]) extends AnyVal {
def & (y: Seq[Bool]): Seq[Bool] = (x zip y).map { case (a, b) => a && b }
def | (y: Seq[Bool]): Seq[Bool] = padZip(x, y).map { case (a, b) => a || b }
def ^ (y: Seq[Bool]): Seq[Bool] = padZip(x, y).map { case (a, b) => a ^ b }
def << (n: Int): Seq[Bool] = Seq.fill(n)(false.B) ++ x
def >> (n: Int): Seq[Bool] = x drop n
def unary_~ : Seq[Bool] = x.map(!_)
def andR: Bool = if (x.isEmpty) true.B else x.reduce(_&&_)
def orR: Bool = if (x.isEmpty) false.B else x.reduce(_||_)
def xorR: Bool = if (x.isEmpty) false.B else x.reduce(_^_)
private def padZip(y: Seq[Bool], z: Seq[Bool]): Seq[(Bool, Bool)] = y.padTo(z.size, false.B) zip z.padTo(y.size, false.B)
}
implicit class DataToAugmentedData[T <: Data](private val x: T) extends AnyVal {
def holdUnless(enable: Bool): T = Mux(enable, x, RegEnable(x, enable))
def getElements: Seq[Element] = x match {
case e: Element => Seq(e)
case a: Aggregate => a.getElements.flatMap(_.getElements)
}
}
/** Any Data subtype that has a Bool member named valid. */
type DataCanBeValid = Data { val valid: Bool }
implicit class SeqMemToAugmentedSeqMem[T <: Data](private val x: SyncReadMem[T]) extends AnyVal {
def readAndHold(addr: UInt, enable: Bool): T = x.read(addr, enable) holdUnless RegNext(enable)
}
implicit class StringToAugmentedString(private val x: String) extends AnyVal {
/** converts from camel case to to underscores, also removing all spaces */
def underscore: String = x.tail.foldLeft(x.headOption.map(_.toLower + "") getOrElse "") {
case (acc, c) if c.isUpper => acc + "_" + c.toLower
case (acc, c) if c == ' ' => acc
case (acc, c) => acc + c
}
/** converts spaces or underscores to hyphens, also lowering case */
def kebab: String = x.toLowerCase map {
case ' ' => '-'
case '_' => '-'
case c => c
}
def named(name: Option[String]): String = {
x + name.map("_named_" + _ ).getOrElse("_with_no_name")
}
def named(name: String): String = named(Some(name))
}
implicit def uintToBitPat(x: UInt): BitPat = BitPat(x)
implicit def wcToUInt(c: WideCounter): UInt = c.value
implicit class UIntToAugmentedUInt(private val x: UInt) extends AnyVal {
def sextTo(n: Int): UInt = {
require(x.getWidth <= n)
if (x.getWidth == n) x
else Cat(Fill(n - x.getWidth, x(x.getWidth-1)), x)
}
def padTo(n: Int): UInt = {
require(x.getWidth <= n)
if (x.getWidth == n) x
else Cat(0.U((n - x.getWidth).W), x)
}
// shifts left by n if n >= 0, or right by -n if n < 0
def << (n: SInt): UInt = {
val w = n.getWidth - 1
require(w <= 30)
val shifted = x << n(w-1, 0)
Mux(n(w), shifted >> (1 << w), shifted)
}
// shifts right by n if n >= 0, or left by -n if n < 0
def >> (n: SInt): UInt = {
val w = n.getWidth - 1
require(w <= 30)
val shifted = x << (1 << w) >> n(w-1, 0)
Mux(n(w), shifted, shifted >> (1 << w))
}
// Like UInt.apply(hi, lo), but returns 0.U for zero-width extracts
def extract(hi: Int, lo: Int): UInt = {
require(hi >= lo-1)
if (hi == lo-1) 0.U
else x(hi, lo)
}
// Like Some(UInt.apply(hi, lo)), but returns None for zero-width extracts
def extractOption(hi: Int, lo: Int): Option[UInt] = {
require(hi >= lo-1)
if (hi == lo-1) None
else Some(x(hi, lo))
}
// like x & ~y, but first truncate or zero-extend y to x's width
def andNot(y: UInt): UInt = x & ~(y | (x & 0.U))
def rotateRight(n: Int): UInt = if (n == 0) x else Cat(x(n-1, 0), x >> n)
def rotateRight(n: UInt): UInt = {
if (x.getWidth <= 1) {
x
} else {
val amt = n.padTo(log2Ceil(x.getWidth))
(0 until log2Ceil(x.getWidth)).foldLeft(x)((r, i) => Mux(amt(i), r.rotateRight(1 << i), r))
}
}
def rotateLeft(n: Int): UInt = if (n == 0) x else Cat(x(x.getWidth-1-n,0), x(x.getWidth-1,x.getWidth-n))
def rotateLeft(n: UInt): UInt = {
if (x.getWidth <= 1) {
x
} else {
val amt = n.padTo(log2Ceil(x.getWidth))
(0 until log2Ceil(x.getWidth)).foldLeft(x)((r, i) => Mux(amt(i), r.rotateLeft(1 << i), r))
}
}
// compute (this + y) % n, given (this < n) and (y < n)
def addWrap(y: UInt, n: Int): UInt = {
val z = x +& y
if (isPow2(n)) z(n.log2-1, 0) else Mux(z >= n.U, z - n.U, z)(log2Ceil(n)-1, 0)
}
// compute (this - y) % n, given (this < n) and (y < n)
def subWrap(y: UInt, n: Int): UInt = {
val z = x -& y
if (isPow2(n)) z(n.log2-1, 0) else Mux(z(z.getWidth-1), z + n.U, z)(log2Ceil(n)-1, 0)
}
def grouped(width: Int): Seq[UInt] =
(0 until x.getWidth by width).map(base => x(base + width - 1, base))
def inRange(base: UInt, bounds: UInt) = x >= base && x < bounds
def ## (y: Option[UInt]): UInt = y.map(x ## _).getOrElse(x)
// Like >=, but prevents x-prop for ('x >= 0)
def >== (y: UInt): Bool = x >= y || y === 0.U
}
implicit class OptionUIntToAugmentedOptionUInt(private val x: Option[UInt]) extends AnyVal {
def ## (y: UInt): UInt = x.map(_ ## y).getOrElse(y)
def ## (y: Option[UInt]): Option[UInt] = x.map(_ ## y)
}
implicit class BooleanToAugmentedBoolean(private val x: Boolean) extends AnyVal {
def toInt: Int = if (x) 1 else 0
// this one's snagged from scalaz
def option[T](z: => T): Option[T] = if (x) Some(z) else None
}
implicit class IntToAugmentedInt(private val x: Int) extends AnyVal {
// exact log2
def log2: Int = {
require(isPow2(x))
log2Ceil(x)
}
}
def OH1ToOH(x: UInt): UInt = (x << 1 | 1.U) & ~Cat(0.U(1.W), x)
def OH1ToUInt(x: UInt): UInt = OHToUInt(OH1ToOH(x))
def UIntToOH1(x: UInt, width: Int): UInt = ~((-1).S(width.W).asUInt << x)(width-1, 0)
def UIntToOH1(x: UInt): UInt = UIntToOH1(x, (1 << x.getWidth) - 1)
def trailingZeros(x: Int): Option[Int] = if (x > 0) Some(log2Ceil(x & -x)) else None
// Fill 1s from low bits to high bits
def leftOR(x: UInt): UInt = leftOR(x, x.getWidth, x.getWidth)
def leftOR(x: UInt, width: Integer, cap: Integer = 999999): UInt = {
val stop = min(width, cap)
def helper(s: Int, x: UInt): UInt =
if (s >= stop) x else helper(s+s, x | (x << s)(width-1,0))
helper(1, x)(width-1, 0)
}
// Fill 1s form high bits to low bits
def rightOR(x: UInt): UInt = rightOR(x, x.getWidth, x.getWidth)
def rightOR(x: UInt, width: Integer, cap: Integer = 999999): UInt = {
val stop = min(width, cap)
def helper(s: Int, x: UInt): UInt =
if (s >= stop) x else helper(s+s, x | (x >> s))
helper(1, x)(width-1, 0)
}
def OptimizationBarrier[T <: Data](in: T): T = {
val barrier = Module(new Module {
val io = IO(new Bundle {
val x = Input(chiselTypeOf(in))
val y = Output(chiselTypeOf(in))
})
io.y := io.x
override def desiredName = s"OptimizationBarrier_${in.typeName}"
})
barrier.io.x := in
barrier.io.y
}
/** Similar to Seq.groupBy except this returns a Seq instead of a Map
* Useful for deterministic code generation
*/
def groupByIntoSeq[A, K](xs: Seq[A])(f: A => K): immutable.Seq[(K, immutable.Seq[A])] = {
val map = mutable.LinkedHashMap.empty[K, mutable.ListBuffer[A]]
for (x <- xs) {
val key = f(x)
val l = map.getOrElseUpdate(key, mutable.ListBuffer.empty[A])
l += x
}
map.view.map({ case (k, vs) => k -> vs.toList }).toList
}
def heterogeneousOrGlobalSetting[T](in: Seq[T], n: Int): Seq[T] = in.size match {
case 1 => List.fill(n)(in.head)
case x if x == n => in
case _ => throw new Exception(s"must provide exactly 1 or $n of some field, but got:\n$in")
}
// HeterogeneousBag moved to standalond diplomacy
@deprecated("HeterogeneousBag has been absorbed into standalone diplomacy library", "rocketchip 2.0.0")
def HeterogeneousBag[T <: Data](elts: Seq[T]) = _root_.org.chipsalliance.diplomacy.nodes.HeterogeneousBag[T](elts)
@deprecated("HeterogeneousBag has been absorbed into standalone diplomacy library", "rocketchip 2.0.0")
val HeterogeneousBag = _root_.org.chipsalliance.diplomacy.nodes.HeterogeneousBag
}
File Bundles.scala:
// See LICENSE.SiFive for license details.
package freechips.rocketchip.tilelink
import chisel3._
import freechips.rocketchip.util._
import scala.collection.immutable.ListMap
import chisel3.util.Decoupled
import chisel3.util.DecoupledIO
import chisel3.reflect.DataMirror
abstract class TLBundleBase(val params: TLBundleParameters) extends Bundle
// common combos in lazy policy:
// Put + Acquire
// Release + AccessAck
object TLMessages
{
// A B C D E
def PutFullData = 0.U // . . => AccessAck
def PutPartialData = 1.U // . . => AccessAck
def ArithmeticData = 2.U // . . => AccessAckData
def LogicalData = 3.U // . . => AccessAckData
def Get = 4.U // . . => AccessAckData
def Hint = 5.U // . . => HintAck
def AcquireBlock = 6.U // . => Grant[Data]
def AcquirePerm = 7.U // . => Grant[Data]
def Probe = 6.U // . => ProbeAck[Data]
def AccessAck = 0.U // . .
def AccessAckData = 1.U // . .
def HintAck = 2.U // . .
def ProbeAck = 4.U // .
def ProbeAckData = 5.U // .
def Release = 6.U // . => ReleaseAck
def ReleaseData = 7.U // . => ReleaseAck
def Grant = 4.U // . => GrantAck
def GrantData = 5.U // . => GrantAck
def ReleaseAck = 6.U // .
def GrantAck = 0.U // .
def isA(x: UInt) = x <= AcquirePerm
def isB(x: UInt) = x <= Probe
def isC(x: UInt) = x <= ReleaseData
def isD(x: UInt) = x <= ReleaseAck
def adResponse = VecInit(AccessAck, AccessAck, AccessAckData, AccessAckData, AccessAckData, HintAck, Grant, Grant)
def bcResponse = VecInit(AccessAck, AccessAck, AccessAckData, AccessAckData, AccessAckData, HintAck, ProbeAck, ProbeAck)
def a = Seq( ("PutFullData",TLPermissions.PermMsgReserved),
("PutPartialData",TLPermissions.PermMsgReserved),
("ArithmeticData",TLAtomics.ArithMsg),
("LogicalData",TLAtomics.LogicMsg),
("Get",TLPermissions.PermMsgReserved),
("Hint",TLHints.HintsMsg),
("AcquireBlock",TLPermissions.PermMsgGrow),
("AcquirePerm",TLPermissions.PermMsgGrow))
def b = Seq( ("PutFullData",TLPermissions.PermMsgReserved),
("PutPartialData",TLPermissions.PermMsgReserved),
("ArithmeticData",TLAtomics.ArithMsg),
("LogicalData",TLAtomics.LogicMsg),
("Get",TLPermissions.PermMsgReserved),
("Hint",TLHints.HintsMsg),
("Probe",TLPermissions.PermMsgCap))
def c = Seq( ("AccessAck",TLPermissions.PermMsgReserved),
("AccessAckData",TLPermissions.PermMsgReserved),
("HintAck",TLPermissions.PermMsgReserved),
("Invalid Opcode",TLPermissions.PermMsgReserved),
("ProbeAck",TLPermissions.PermMsgReport),
("ProbeAckData",TLPermissions.PermMsgReport),
("Release",TLPermissions.PermMsgReport),
("ReleaseData",TLPermissions.PermMsgReport))
def d = Seq( ("AccessAck",TLPermissions.PermMsgReserved),
("AccessAckData",TLPermissions.PermMsgReserved),
("HintAck",TLPermissions.PermMsgReserved),
("Invalid Opcode",TLPermissions.PermMsgReserved),
("Grant",TLPermissions.PermMsgCap),
("GrantData",TLPermissions.PermMsgCap),
("ReleaseAck",TLPermissions.PermMsgReserved))
}
/**
* The three primary TileLink permissions are:
* (T)runk: the agent is (or is on inwards path to) the global point of serialization.
* (B)ranch: the agent is on an outwards path to
* (N)one:
* These permissions are permuted by transfer operations in various ways.
* Operations can cap permissions, request for them to be grown or shrunk,
* or for a report on their current status.
*/
object TLPermissions
{
val aWidth = 2
val bdWidth = 2
val cWidth = 3
// Cap types (Grant = new permissions, Probe = permisions <= target)
def toT = 0.U(bdWidth.W)
def toB = 1.U(bdWidth.W)
def toN = 2.U(bdWidth.W)
def isCap(x: UInt) = x <= toN
// Grow types (Acquire = permissions >= target)
def NtoB = 0.U(aWidth.W)
def NtoT = 1.U(aWidth.W)
def BtoT = 2.U(aWidth.W)
def isGrow(x: UInt) = x <= BtoT
// Shrink types (ProbeAck, Release)
def TtoB = 0.U(cWidth.W)
def TtoN = 1.U(cWidth.W)
def BtoN = 2.U(cWidth.W)
def isShrink(x: UInt) = x <= BtoN
// Report types (ProbeAck, Release)
def TtoT = 3.U(cWidth.W)
def BtoB = 4.U(cWidth.W)
def NtoN = 5.U(cWidth.W)
def isReport(x: UInt) = x <= NtoN
def PermMsgGrow:Seq[String] = Seq("Grow NtoB", "Grow NtoT", "Grow BtoT")
def PermMsgCap:Seq[String] = Seq("Cap toT", "Cap toB", "Cap toN")
def PermMsgReport:Seq[String] = Seq("Shrink TtoB", "Shrink TtoN", "Shrink BtoN", "Report TotT", "Report BtoB", "Report NtoN")
def PermMsgReserved:Seq[String] = Seq("Reserved")
}
object TLAtomics
{
val width = 3
// Arithmetic types
def MIN = 0.U(width.W)
def MAX = 1.U(width.W)
def MINU = 2.U(width.W)
def MAXU = 3.U(width.W)
def ADD = 4.U(width.W)
def isArithmetic(x: UInt) = x <= ADD
// Logical types
def XOR = 0.U(width.W)
def OR = 1.U(width.W)
def AND = 2.U(width.W)
def SWAP = 3.U(width.W)
def isLogical(x: UInt) = x <= SWAP
def ArithMsg:Seq[String] = Seq("MIN", "MAX", "MINU", "MAXU", "ADD")
def LogicMsg:Seq[String] = Seq("XOR", "OR", "AND", "SWAP")
}
object TLHints
{
val width = 1
def PREFETCH_READ = 0.U(width.W)
def PREFETCH_WRITE = 1.U(width.W)
def isHints(x: UInt) = x <= PREFETCH_WRITE
def HintsMsg:Seq[String] = Seq("PrefetchRead", "PrefetchWrite")
}
sealed trait TLChannel extends TLBundleBase {
val channelName: String
}
sealed trait TLDataChannel extends TLChannel
sealed trait TLAddrChannel extends TLDataChannel
final class TLBundleA(params: TLBundleParameters)
extends TLBundleBase(params) with TLAddrChannel
{
override def typeName = s"TLBundleA_${params.shortName}"
val channelName = "'A' channel"
// fixed fields during multibeat:
val opcode = UInt(3.W)
val param = UInt(List(TLAtomics.width, TLPermissions.aWidth, TLHints.width).max.W) // amo_opcode || grow perms || hint
val size = UInt(params.sizeBits.W)
val source = UInt(params.sourceBits.W) // from
val address = UInt(params.addressBits.W) // to
val user = BundleMap(params.requestFields)
val echo = BundleMap(params.echoFields)
// variable fields during multibeat:
val mask = UInt((params.dataBits/8).W)
val data = UInt(params.dataBits.W)
val corrupt = Bool() // only applies to *Data messages
}
final class TLBundleB(params: TLBundleParameters)
extends TLBundleBase(params) with TLAddrChannel
{
override def typeName = s"TLBundleB_${params.shortName}"
val channelName = "'B' channel"
// fixed fields during multibeat:
val opcode = UInt(3.W)
val param = UInt(TLPermissions.bdWidth.W) // cap perms
val size = UInt(params.sizeBits.W)
val source = UInt(params.sourceBits.W) // to
val address = UInt(params.addressBits.W) // from
// variable fields during multibeat:
val mask = UInt((params.dataBits/8).W)
val data = UInt(params.dataBits.W)
val corrupt = Bool() // only applies to *Data messages
}
final class TLBundleC(params: TLBundleParameters)
extends TLBundleBase(params) with TLAddrChannel
{
override def typeName = s"TLBundleC_${params.shortName}"
val channelName = "'C' channel"
// fixed fields during multibeat:
val opcode = UInt(3.W)
val param = UInt(TLPermissions.cWidth.W) // shrink or report perms
val size = UInt(params.sizeBits.W)
val source = UInt(params.sourceBits.W) // from
val address = UInt(params.addressBits.W) // to
val user = BundleMap(params.requestFields)
val echo = BundleMap(params.echoFields)
// variable fields during multibeat:
val data = UInt(params.dataBits.W)
val corrupt = Bool() // only applies to *Data messages
}
final class TLBundleD(params: TLBundleParameters)
extends TLBundleBase(params) with TLDataChannel
{
override def typeName = s"TLBundleD_${params.shortName}"
val channelName = "'D' channel"
// fixed fields during multibeat:
val opcode = UInt(3.W)
val param = UInt(TLPermissions.bdWidth.W) // cap perms
val size = UInt(params.sizeBits.W)
val source = UInt(params.sourceBits.W) // to
val sink = UInt(params.sinkBits.W) // from
val denied = Bool() // implies corrupt iff *Data
val user = BundleMap(params.responseFields)
val echo = BundleMap(params.echoFields)
// variable fields during multibeat:
val data = UInt(params.dataBits.W)
val corrupt = Bool() // only applies to *Data messages
}
final class TLBundleE(params: TLBundleParameters)
extends TLBundleBase(params) with TLChannel
{
override def typeName = s"TLBundleE_${params.shortName}"
val channelName = "'E' channel"
val sink = UInt(params.sinkBits.W) // to
}
class TLBundle(val params: TLBundleParameters) extends Record
{
// Emulate a Bundle with elements abcde or ad depending on params.hasBCE
private val optA = Some (Decoupled(new TLBundleA(params)))
private val optB = params.hasBCE.option(Flipped(Decoupled(new TLBundleB(params))))
private val optC = params.hasBCE.option(Decoupled(new TLBundleC(params)))
private val optD = Some (Flipped(Decoupled(new TLBundleD(params))))
private val optE = params.hasBCE.option(Decoupled(new TLBundleE(params)))
def a: DecoupledIO[TLBundleA] = optA.getOrElse(WireDefault(0.U.asTypeOf(Decoupled(new TLBundleA(params)))))
def b: DecoupledIO[TLBundleB] = optB.getOrElse(WireDefault(0.U.asTypeOf(Decoupled(new TLBundleB(params)))))
def c: DecoupledIO[TLBundleC] = optC.getOrElse(WireDefault(0.U.asTypeOf(Decoupled(new TLBundleC(params)))))
def d: DecoupledIO[TLBundleD] = optD.getOrElse(WireDefault(0.U.asTypeOf(Decoupled(new TLBundleD(params)))))
def e: DecoupledIO[TLBundleE] = optE.getOrElse(WireDefault(0.U.asTypeOf(Decoupled(new TLBundleE(params)))))
val elements =
if (params.hasBCE) ListMap("e" -> e, "d" -> d, "c" -> c, "b" -> b, "a" -> a)
else ListMap("d" -> d, "a" -> a)
def tieoff(): Unit = {
DataMirror.specifiedDirectionOf(a.ready) match {
case SpecifiedDirection.Input =>
a.ready := false.B
c.ready := false.B
e.ready := false.B
b.valid := false.B
d.valid := false.B
case SpecifiedDirection.Output =>
a.valid := false.B
c.valid := false.B
e.valid := false.B
b.ready := false.B
d.ready := false.B
case _ =>
}
}
}
object TLBundle
{
def apply(params: TLBundleParameters) = new TLBundle(params)
}
class TLAsyncBundleBase(val params: TLAsyncBundleParameters) extends Bundle
class TLAsyncBundle(params: TLAsyncBundleParameters) extends TLAsyncBundleBase(params)
{
val a = new AsyncBundle(new TLBundleA(params.base), params.async)
val b = Flipped(new AsyncBundle(new TLBundleB(params.base), params.async))
val c = new AsyncBundle(new TLBundleC(params.base), params.async)
val d = Flipped(new AsyncBundle(new TLBundleD(params.base), params.async))
val e = new AsyncBundle(new TLBundleE(params.base), params.async)
}
class TLRationalBundle(params: TLBundleParameters) extends TLBundleBase(params)
{
val a = RationalIO(new TLBundleA(params))
val b = Flipped(RationalIO(new TLBundleB(params)))
val c = RationalIO(new TLBundleC(params))
val d = Flipped(RationalIO(new TLBundleD(params)))
val e = RationalIO(new TLBundleE(params))
}
class TLCreditedBundle(params: TLBundleParameters) extends TLBundleBase(params)
{
val a = CreditedIO(new TLBundleA(params))
val b = Flipped(CreditedIO(new TLBundleB(params)))
val c = CreditedIO(new TLBundleC(params))
val d = Flipped(CreditedIO(new TLBundleD(params)))
val e = CreditedIO(new TLBundleE(params))
}
File Parameters.scala:
// See LICENSE.SiFive for license details.
package freechips.rocketchip.tilelink
import chisel3._
import chisel3.util._
import chisel3.experimental.SourceInfo
import org.chipsalliance.cde.config._
import org.chipsalliance.diplomacy.nodes._
import freechips.rocketchip.diplomacy.{
AddressDecoder, AddressSet, BufferParams, DirectedBuffers, IdMap, IdMapEntry,
IdRange, RegionType, TransferSizes
}
import freechips.rocketchip.resources.{Resource, ResourceAddress, ResourcePermissions}
import freechips.rocketchip.util.{
AsyncQueueParams, BundleField, BundleFieldBase, BundleKeyBase,
CreditedDelay, groupByIntoSeq, RationalDirection, SimpleProduct
}
import scala.math.max
//These transfer sizes describe requests issued from masters on the A channel that will be responded by slaves on the D channel
case class TLMasterToSlaveTransferSizes(
// Supports both Acquire+Release of the following two sizes:
acquireT: TransferSizes = TransferSizes.none,
acquireB: TransferSizes = TransferSizes.none,
arithmetic: TransferSizes = TransferSizes.none,
logical: TransferSizes = TransferSizes.none,
get: TransferSizes = TransferSizes.none,
putFull: TransferSizes = TransferSizes.none,
putPartial: TransferSizes = TransferSizes.none,
hint: TransferSizes = TransferSizes.none)
extends TLCommonTransferSizes {
def intersect(rhs: TLMasterToSlaveTransferSizes) = TLMasterToSlaveTransferSizes(
acquireT = acquireT .intersect(rhs.acquireT),
acquireB = acquireB .intersect(rhs.acquireB),
arithmetic = arithmetic.intersect(rhs.arithmetic),
logical = logical .intersect(rhs.logical),
get = get .intersect(rhs.get),
putFull = putFull .intersect(rhs.putFull),
putPartial = putPartial.intersect(rhs.putPartial),
hint = hint .intersect(rhs.hint))
def mincover(rhs: TLMasterToSlaveTransferSizes) = TLMasterToSlaveTransferSizes(
acquireT = acquireT .mincover(rhs.acquireT),
acquireB = acquireB .mincover(rhs.acquireB),
arithmetic = arithmetic.mincover(rhs.arithmetic),
logical = logical .mincover(rhs.logical),
get = get .mincover(rhs.get),
putFull = putFull .mincover(rhs.putFull),
putPartial = putPartial.mincover(rhs.putPartial),
hint = hint .mincover(rhs.hint))
// Reduce rendering to a simple yes/no per field
override def toString = {
def str(x: TransferSizes, flag: String) = if (x.none) "" else flag
def flags = Vector(
str(acquireT, "T"),
str(acquireB, "B"),
str(arithmetic, "A"),
str(logical, "L"),
str(get, "G"),
str(putFull, "F"),
str(putPartial, "P"),
str(hint, "H"))
flags.mkString
}
// Prints out the actual information in a user readable way
def infoString = {
s"""acquireT = ${acquireT}
|acquireB = ${acquireB}
|arithmetic = ${arithmetic}
|logical = ${logical}
|get = ${get}
|putFull = ${putFull}
|putPartial = ${putPartial}
|hint = ${hint}
|
|""".stripMargin
}
}
object TLMasterToSlaveTransferSizes {
def unknownEmits = TLMasterToSlaveTransferSizes(
acquireT = TransferSizes(1, 4096),
acquireB = TransferSizes(1, 4096),
arithmetic = TransferSizes(1, 4096),
logical = TransferSizes(1, 4096),
get = TransferSizes(1, 4096),
putFull = TransferSizes(1, 4096),
putPartial = TransferSizes(1, 4096),
hint = TransferSizes(1, 4096))
def unknownSupports = TLMasterToSlaveTransferSizes()
}
//These transfer sizes describe requests issued from slaves on the B channel that will be responded by masters on the C channel
case class TLSlaveToMasterTransferSizes(
probe: TransferSizes = TransferSizes.none,
arithmetic: TransferSizes = TransferSizes.none,
logical: TransferSizes = TransferSizes.none,
get: TransferSizes = TransferSizes.none,
putFull: TransferSizes = TransferSizes.none,
putPartial: TransferSizes = TransferSizes.none,
hint: TransferSizes = TransferSizes.none
) extends TLCommonTransferSizes {
def intersect(rhs: TLSlaveToMasterTransferSizes) = TLSlaveToMasterTransferSizes(
probe = probe .intersect(rhs.probe),
arithmetic = arithmetic.intersect(rhs.arithmetic),
logical = logical .intersect(rhs.logical),
get = get .intersect(rhs.get),
putFull = putFull .intersect(rhs.putFull),
putPartial = putPartial.intersect(rhs.putPartial),
hint = hint .intersect(rhs.hint)
)
def mincover(rhs: TLSlaveToMasterTransferSizes) = TLSlaveToMasterTransferSizes(
probe = probe .mincover(rhs.probe),
arithmetic = arithmetic.mincover(rhs.arithmetic),
logical = logical .mincover(rhs.logical),
get = get .mincover(rhs.get),
putFull = putFull .mincover(rhs.putFull),
putPartial = putPartial.mincover(rhs.putPartial),
hint = hint .mincover(rhs.hint)
)
// Reduce rendering to a simple yes/no per field
override def toString = {
def str(x: TransferSizes, flag: String) = if (x.none) "" else flag
def flags = Vector(
str(probe, "P"),
str(arithmetic, "A"),
str(logical, "L"),
str(get, "G"),
str(putFull, "F"),
str(putPartial, "P"),
str(hint, "H"))
flags.mkString
}
// Prints out the actual information in a user readable way
def infoString = {
s"""probe = ${probe}
|arithmetic = ${arithmetic}
|logical = ${logical}
|get = ${get}
|putFull = ${putFull}
|putPartial = ${putPartial}
|hint = ${hint}
|
|""".stripMargin
}
}
object TLSlaveToMasterTransferSizes {
def unknownEmits = TLSlaveToMasterTransferSizes(
arithmetic = TransferSizes(1, 4096),
logical = TransferSizes(1, 4096),
get = TransferSizes(1, 4096),
putFull = TransferSizes(1, 4096),
putPartial = TransferSizes(1, 4096),
hint = TransferSizes(1, 4096),
probe = TransferSizes(1, 4096))
def unknownSupports = TLSlaveToMasterTransferSizes()
}
trait TLCommonTransferSizes {
def arithmetic: TransferSizes
def logical: TransferSizes
def get: TransferSizes
def putFull: TransferSizes
def putPartial: TransferSizes
def hint: TransferSizes
}
class TLSlaveParameters private(
val nodePath: Seq[BaseNode],
val resources: Seq[Resource],
setName: Option[String],
val address: Seq[AddressSet],
val regionType: RegionType.T,
val executable: Boolean,
val fifoId: Option[Int],
val supports: TLMasterToSlaveTransferSizes,
val emits: TLSlaveToMasterTransferSizes,
// By default, slaves are forbidden from issuing 'denied' responses (it prevents Fragmentation)
val alwaysGrantsT: Boolean, // typically only true for CacheCork'd read-write devices; dual: neverReleaseData
// If fifoId=Some, all accesses sent to the same fifoId are executed and ACK'd in FIFO order
// Note: you can only rely on this FIFO behaviour if your TLMasterParameters include requestFifo
val mayDenyGet: Boolean, // applies to: AccessAckData, GrantData
val mayDenyPut: Boolean) // applies to: AccessAck, Grant, HintAck
// ReleaseAck may NEVER be denied
extends SimpleProduct
{
def sortedAddress = address.sorted
override def canEqual(that: Any): Boolean = that.isInstanceOf[TLSlaveParameters]
override def productPrefix = "TLSlaveParameters"
// We intentionally omit nodePath for equality testing / formatting
def productArity: Int = 11
def productElement(n: Int): Any = n match {
case 0 => name
case 1 => address
case 2 => resources
case 3 => regionType
case 4 => executable
case 5 => fifoId
case 6 => supports
case 7 => emits
case 8 => alwaysGrantsT
case 9 => mayDenyGet
case 10 => mayDenyPut
case _ => throw new IndexOutOfBoundsException(n.toString)
}
def supportsAcquireT: TransferSizes = supports.acquireT
def supportsAcquireB: TransferSizes = supports.acquireB
def supportsArithmetic: TransferSizes = supports.arithmetic
def supportsLogical: TransferSizes = supports.logical
def supportsGet: TransferSizes = supports.get
def supportsPutFull: TransferSizes = supports.putFull
def supportsPutPartial: TransferSizes = supports.putPartial
def supportsHint: TransferSizes = supports.hint
require (!address.isEmpty, "Address cannot be empty")
address.foreach { a => require (a.finite, "Address must be finite") }
address.combinations(2).foreach { case Seq(x,y) => require (!x.overlaps(y), s"$x and $y overlap.") }
require (supportsPutFull.contains(supportsPutPartial), s"PutFull($supportsPutFull) < PutPartial($supportsPutPartial)")
require (supportsPutFull.contains(supportsArithmetic), s"PutFull($supportsPutFull) < Arithmetic($supportsArithmetic)")
require (supportsPutFull.contains(supportsLogical), s"PutFull($supportsPutFull) < Logical($supportsLogical)")
require (supportsGet.contains(supportsArithmetic), s"Get($supportsGet) < Arithmetic($supportsArithmetic)")
require (supportsGet.contains(supportsLogical), s"Get($supportsGet) < Logical($supportsLogical)")
require (supportsAcquireB.contains(supportsAcquireT), s"AcquireB($supportsAcquireB) < AcquireT($supportsAcquireT)")
require (!alwaysGrantsT || supportsAcquireT, s"Must supportAcquireT if promising to always grantT")
// Make sure that the regionType agrees with the capabilities
require (!supportsAcquireB || regionType >= RegionType.UNCACHED) // acquire -> uncached, tracked, cached
require (regionType <= RegionType.UNCACHED || supportsAcquireB) // tracked, cached -> acquire
require (regionType != RegionType.UNCACHED || supportsGet) // uncached -> supportsGet
val name = setName.orElse(nodePath.lastOption.map(_.lazyModule.name)).getOrElse("disconnected")
val maxTransfer = List( // Largest supported transfer of all types
supportsAcquireT.max,
supportsAcquireB.max,
supportsArithmetic.max,
supportsLogical.max,
supportsGet.max,
supportsPutFull.max,
supportsPutPartial.max).max
val maxAddress = address.map(_.max).max
val minAlignment = address.map(_.alignment).min
// The device had better not support a transfer larger than its alignment
require (minAlignment >= maxTransfer, s"Bad $address: minAlignment ($minAlignment) must be >= maxTransfer ($maxTransfer)")
def toResource: ResourceAddress = {
ResourceAddress(address, ResourcePermissions(
r = supportsAcquireB || supportsGet,
w = supportsAcquireT || supportsPutFull,
x = executable,
c = supportsAcquireB,
a = supportsArithmetic && supportsLogical))
}
def findTreeViolation() = nodePath.find {
case _: MixedAdapterNode[_, _, _, _, _, _, _, _] => false
case _: SinkNode[_, _, _, _, _] => false
case node => node.inputs.size != 1
}
def isTree = findTreeViolation() == None
def infoString = {
s"""Slave Name = ${name}
|Slave Address = ${address}
|supports = ${supports.infoString}
|
|""".stripMargin
}
def v1copy(
address: Seq[AddressSet] = address,
resources: Seq[Resource] = resources,
regionType: RegionType.T = regionType,
executable: Boolean = executable,
nodePath: Seq[BaseNode] = nodePath,
supportsAcquireT: TransferSizes = supports.acquireT,
supportsAcquireB: TransferSizes = supports.acquireB,
supportsArithmetic: TransferSizes = supports.arithmetic,
supportsLogical: TransferSizes = supports.logical,
supportsGet: TransferSizes = supports.get,
supportsPutFull: TransferSizes = supports.putFull,
supportsPutPartial: TransferSizes = supports.putPartial,
supportsHint: TransferSizes = supports.hint,
mayDenyGet: Boolean = mayDenyGet,
mayDenyPut: Boolean = mayDenyPut,
alwaysGrantsT: Boolean = alwaysGrantsT,
fifoId: Option[Int] = fifoId) =
{
new TLSlaveParameters(
setName = setName,
address = address,
resources = resources,
regionType = regionType,
executable = executable,
nodePath = nodePath,
supports = TLMasterToSlaveTransferSizes(
acquireT = supportsAcquireT,
acquireB = supportsAcquireB,
arithmetic = supportsArithmetic,
logical = supportsLogical,
get = supportsGet,
putFull = supportsPutFull,
putPartial = supportsPutPartial,
hint = supportsHint),
emits = emits,
mayDenyGet = mayDenyGet,
mayDenyPut = mayDenyPut,
alwaysGrantsT = alwaysGrantsT,
fifoId = fifoId)
}
def v2copy(
nodePath: Seq[BaseNode] = nodePath,
resources: Seq[Resource] = resources,
name: Option[String] = setName,
address: Seq[AddressSet] = address,
regionType: RegionType.T = regionType,
executable: Boolean = executable,
fifoId: Option[Int] = fifoId,
supports: TLMasterToSlaveTransferSizes = supports,
emits: TLSlaveToMasterTransferSizes = emits,
alwaysGrantsT: Boolean = alwaysGrantsT,
mayDenyGet: Boolean = mayDenyGet,
mayDenyPut: Boolean = mayDenyPut) =
{
new TLSlaveParameters(
nodePath = nodePath,
resources = resources,
setName = name,
address = address,
regionType = regionType,
executable = executable,
fifoId = fifoId,
supports = supports,
emits = emits,
alwaysGrantsT = alwaysGrantsT,
mayDenyGet = mayDenyGet,
mayDenyPut = mayDenyPut)
}
@deprecated("Use v1copy instead of copy","")
def copy(
address: Seq[AddressSet] = address,
resources: Seq[Resource] = resources,
regionType: RegionType.T = regionType,
executable: Boolean = executable,
nodePath: Seq[BaseNode] = nodePath,
supportsAcquireT: TransferSizes = supports.acquireT,
supportsAcquireB: TransferSizes = supports.acquireB,
supportsArithmetic: TransferSizes = supports.arithmetic,
supportsLogical: TransferSizes = supports.logical,
supportsGet: TransferSizes = supports.get,
supportsPutFull: TransferSizes = supports.putFull,
supportsPutPartial: TransferSizes = supports.putPartial,
supportsHint: TransferSizes = supports.hint,
mayDenyGet: Boolean = mayDenyGet,
mayDenyPut: Boolean = mayDenyPut,
alwaysGrantsT: Boolean = alwaysGrantsT,
fifoId: Option[Int] = fifoId) =
{
v1copy(
address = address,
resources = resources,
regionType = regionType,
executable = executable,
nodePath = nodePath,
supportsAcquireT = supportsAcquireT,
supportsAcquireB = supportsAcquireB,
supportsArithmetic = supportsArithmetic,
supportsLogical = supportsLogical,
supportsGet = supportsGet,
supportsPutFull = supportsPutFull,
supportsPutPartial = supportsPutPartial,
supportsHint = supportsHint,
mayDenyGet = mayDenyGet,
mayDenyPut = mayDenyPut,
alwaysGrantsT = alwaysGrantsT,
fifoId = fifoId)
}
}
object TLSlaveParameters {
def v1(
address: Seq[AddressSet],
resources: Seq[Resource] = Seq(),
regionType: RegionType.T = RegionType.GET_EFFECTS,
executable: Boolean = false,
nodePath: Seq[BaseNode] = Seq(),
supportsAcquireT: TransferSizes = TransferSizes.none,
supportsAcquireB: TransferSizes = TransferSizes.none,
supportsArithmetic: TransferSizes = TransferSizes.none,
supportsLogical: TransferSizes = TransferSizes.none,
supportsGet: TransferSizes = TransferSizes.none,
supportsPutFull: TransferSizes = TransferSizes.none,
supportsPutPartial: TransferSizes = TransferSizes.none,
supportsHint: TransferSizes = TransferSizes.none,
mayDenyGet: Boolean = false,
mayDenyPut: Boolean = false,
alwaysGrantsT: Boolean = false,
fifoId: Option[Int] = None) =
{
new TLSlaveParameters(
setName = None,
address = address,
resources = resources,
regionType = regionType,
executable = executable,
nodePath = nodePath,
supports = TLMasterToSlaveTransferSizes(
acquireT = supportsAcquireT,
acquireB = supportsAcquireB,
arithmetic = supportsArithmetic,
logical = supportsLogical,
get = supportsGet,
putFull = supportsPutFull,
putPartial = supportsPutPartial,
hint = supportsHint),
emits = TLSlaveToMasterTransferSizes.unknownEmits,
mayDenyGet = mayDenyGet,
mayDenyPut = mayDenyPut,
alwaysGrantsT = alwaysGrantsT,
fifoId = fifoId)
}
def v2(
address: Seq[AddressSet],
nodePath: Seq[BaseNode] = Seq(),
resources: Seq[Resource] = Seq(),
name: Option[String] = None,
regionType: RegionType.T = RegionType.GET_EFFECTS,
executable: Boolean = false,
fifoId: Option[Int] = None,
supports: TLMasterToSlaveTransferSizes = TLMasterToSlaveTransferSizes.unknownSupports,
emits: TLSlaveToMasterTransferSizes = TLSlaveToMasterTransferSizes.unknownEmits,
alwaysGrantsT: Boolean = false,
mayDenyGet: Boolean = false,
mayDenyPut: Boolean = false) =
{
new TLSlaveParameters(
nodePath = nodePath,
resources = resources,
setName = name,
address = address,
regionType = regionType,
executable = executable,
fifoId = fifoId,
supports = supports,
emits = emits,
alwaysGrantsT = alwaysGrantsT,
mayDenyGet = mayDenyGet,
mayDenyPut = mayDenyPut)
}
}
object TLManagerParameters {
@deprecated("Use TLSlaveParameters.v1 instead of TLManagerParameters","")
def apply(
address: Seq[AddressSet],
resources: Seq[Resource] = Seq(),
regionType: RegionType.T = RegionType.GET_EFFECTS,
executable: Boolean = false,
nodePath: Seq[BaseNode] = Seq(),
supportsAcquireT: TransferSizes = TransferSizes.none,
supportsAcquireB: TransferSizes = TransferSizes.none,
supportsArithmetic: TransferSizes = TransferSizes.none,
supportsLogical: TransferSizes = TransferSizes.none,
supportsGet: TransferSizes = TransferSizes.none,
supportsPutFull: TransferSizes = TransferSizes.none,
supportsPutPartial: TransferSizes = TransferSizes.none,
supportsHint: TransferSizes = TransferSizes.none,
mayDenyGet: Boolean = false,
mayDenyPut: Boolean = false,
alwaysGrantsT: Boolean = false,
fifoId: Option[Int] = None) =
TLSlaveParameters.v1(
address,
resources,
regionType,
executable,
nodePath,
supportsAcquireT,
supportsAcquireB,
supportsArithmetic,
supportsLogical,
supportsGet,
supportsPutFull,
supportsPutPartial,
supportsHint,
mayDenyGet,
mayDenyPut,
alwaysGrantsT,
fifoId,
)
}
case class TLChannelBeatBytes(a: Option[Int], b: Option[Int], c: Option[Int], d: Option[Int])
{
def members = Seq(a, b, c, d)
members.collect { case Some(beatBytes) =>
require (isPow2(beatBytes), "Data channel width must be a power of 2")
}
}
object TLChannelBeatBytes{
def apply(beatBytes: Int): TLChannelBeatBytes = TLChannelBeatBytes(
Some(beatBytes),
Some(beatBytes),
Some(beatBytes),
Some(beatBytes))
def apply(): TLChannelBeatBytes = TLChannelBeatBytes(
None,
None,
None,
None)
}
class TLSlavePortParameters private(
val slaves: Seq[TLSlaveParameters],
val channelBytes: TLChannelBeatBytes,
val endSinkId: Int,
val minLatency: Int,
val responseFields: Seq[BundleFieldBase],
val requestKeys: Seq[BundleKeyBase]) extends SimpleProduct
{
def sortedSlaves = slaves.sortBy(_.sortedAddress.head)
override def canEqual(that: Any): Boolean = that.isInstanceOf[TLSlavePortParameters]
override def productPrefix = "TLSlavePortParameters"
def productArity: Int = 6
def productElement(n: Int): Any = n match {
case 0 => slaves
case 1 => channelBytes
case 2 => endSinkId
case 3 => minLatency
case 4 => responseFields
case 5 => requestKeys
case _ => throw new IndexOutOfBoundsException(n.toString)
}
require (!slaves.isEmpty, "Slave ports must have slaves")
require (endSinkId >= 0, "Sink ids cannot be negative")
require (minLatency >= 0, "Minimum required latency cannot be negative")
// Using this API implies you cannot handle mixed-width busses
def beatBytes = {
channelBytes.members.foreach { width =>
require (width.isDefined && width == channelBytes.a)
}
channelBytes.a.get
}
// TODO this should be deprecated
def managers = slaves
def requireFifo(policy: TLFIFOFixer.Policy = TLFIFOFixer.allFIFO) = {
val relevant = slaves.filter(m => policy(m))
relevant.foreach { m =>
require(m.fifoId == relevant.head.fifoId, s"${m.name} had fifoId ${m.fifoId}, which was not homogeneous (${slaves.map(s => (s.name, s.fifoId))}) ")
}
}
// Bounds on required sizes
def maxAddress = slaves.map(_.maxAddress).max
def maxTransfer = slaves.map(_.maxTransfer).max
def mayDenyGet = slaves.exists(_.mayDenyGet)
def mayDenyPut = slaves.exists(_.mayDenyPut)
// Diplomatically determined operation sizes emitted by all outward Slaves
// as opposed to emits* which generate circuitry to check which specific addresses
val allEmitClaims = slaves.map(_.emits).reduce( _ intersect _)
// Operation Emitted by at least one outward Slaves
// as opposed to emits* which generate circuitry to check which specific addresses
val anyEmitClaims = slaves.map(_.emits).reduce(_ mincover _)
// Diplomatically determined operation sizes supported by all outward Slaves
// as opposed to supports* which generate circuitry to check which specific addresses
val allSupportClaims = slaves.map(_.supports).reduce( _ intersect _)
val allSupportAcquireT = allSupportClaims.acquireT
val allSupportAcquireB = allSupportClaims.acquireB
val allSupportArithmetic = allSupportClaims.arithmetic
val allSupportLogical = allSupportClaims.logical
val allSupportGet = allSupportClaims.get
val allSupportPutFull = allSupportClaims.putFull
val allSupportPutPartial = allSupportClaims.putPartial
val allSupportHint = allSupportClaims.hint
// Operation supported by at least one outward Slaves
// as opposed to supports* which generate circuitry to check which specific addresses
val anySupportClaims = slaves.map(_.supports).reduce(_ mincover _)
val anySupportAcquireT = !anySupportClaims.acquireT.none
val anySupportAcquireB = !anySupportClaims.acquireB.none
val anySupportArithmetic = !anySupportClaims.arithmetic.none
val anySupportLogical = !anySupportClaims.logical.none
val anySupportGet = !anySupportClaims.get.none
val anySupportPutFull = !anySupportClaims.putFull.none
val anySupportPutPartial = !anySupportClaims.putPartial.none
val anySupportHint = !anySupportClaims.hint.none
// Supporting Acquire means being routable for GrantAck
require ((endSinkId == 0) == !anySupportAcquireB)
// These return Option[TLSlaveParameters] for your convenience
def find(address: BigInt) = slaves.find(_.address.exists(_.contains(address)))
// The safe version will check the entire address
def findSafe(address: UInt) = VecInit(sortedSlaves.map(_.address.map(_.contains(address)).reduce(_ || _)))
// The fast version assumes the address is valid (you probably want fastProperty instead of this function)
def findFast(address: UInt) = {
val routingMask = AddressDecoder(slaves.map(_.address))
VecInit(sortedSlaves.map(_.address.map(_.widen(~routingMask)).distinct.map(_.contains(address)).reduce(_ || _)))
}
// Compute the simplest AddressSets that decide a key
def fastPropertyGroup[K](p: TLSlaveParameters => K): Seq[(K, Seq[AddressSet])] = {
val groups = groupByIntoSeq(sortedSlaves.map(m => (p(m), m.address)))( _._1).map { case (k, vs) =>
k -> vs.flatMap(_._2)
}
val reductionMask = AddressDecoder(groups.map(_._2))
groups.map { case (k, seq) => k -> AddressSet.unify(seq.map(_.widen(~reductionMask)).distinct) }
}
// Select a property
def fastProperty[K, D <: Data](address: UInt, p: TLSlaveParameters => K, d: K => D): D =
Mux1H(fastPropertyGroup(p).map { case (v, a) => (a.map(_.contains(address)).reduce(_||_), d(v)) })
// Note: returns the actual fifoId + 1 or 0 if None
def findFifoIdFast(address: UInt) = fastProperty(address, _.fifoId.map(_+1).getOrElse(0), (i:Int) => i.U)
def hasFifoIdFast(address: UInt) = fastProperty(address, _.fifoId.isDefined, (b:Boolean) => b.B)
// Does this Port manage this ID/address?
def containsSafe(address: UInt) = findSafe(address).reduce(_ || _)
private def addressHelper(
// setting safe to false indicates that all addresses are expected to be legal, which might reduce circuit complexity
safe: Boolean,
// member filters out the sizes being checked based on the opcode being emitted or supported
member: TLSlaveParameters => TransferSizes,
address: UInt,
lgSize: UInt,
// range provides a limit on the sizes that are expected to be evaluated, which might reduce circuit complexity
range: Option[TransferSizes]): Bool = {
// trim reduces circuit complexity by intersecting checked sizes with the range argument
def trim(x: TransferSizes) = range.map(_.intersect(x)).getOrElse(x)
// groupBy returns an unordered map, convert back to Seq and sort the result for determinism
// groupByIntoSeq is turning slaves into trimmed membership sizes
// We are grouping all the slaves by their transfer size where
// if they support the trimmed size then
// member is the type of transfer that you are looking for (What you are trying to filter on)
// When you consider membership, you are trimming the sizes to only the ones that you care about
// you are filtering the slaves based on both whether they support a particular opcode and the size
// Grouping the slaves based on the actual transfer size range they support
// intersecting the range and checking their membership
// FOR SUPPORTCASES instead of returning the list of slaves,
// you are returning a map from transfer size to the set of
// address sets that are supported for that transfer size
// find all the slaves that support a certain type of operation and then group their addresses by the supported size
// for every size there could be multiple address ranges
// safety is a trade off between checking between all possible addresses vs only the addresses
// that are known to have supported sizes
// the trade off is 'checking all addresses is a more expensive circuit but will always give you
// the right answer even if you give it an illegal address'
// the not safe version is a cheaper circuit but if you give it an illegal address then it might produce the wrong answer
// fast presumes address legality
// This groupByIntoSeq deterministically groups all address sets for which a given `member` transfer size applies.
// In the resulting Map of cases, the keys are transfer sizes and the values are all address sets which emit or support that size.
val supportCases = groupByIntoSeq(slaves)(m => trim(member(m))).map { case (k: TransferSizes, vs: Seq[TLSlaveParameters]) =>
k -> vs.flatMap(_.address)
}
// safe produces a circuit that compares against all possible addresses,
// whereas fast presumes that the address is legal but uses an efficient address decoder
val mask = if (safe) ~BigInt(0) else AddressDecoder(supportCases.map(_._2))
// Simplified creates the most concise possible representation of each cases' address sets based on the mask.
val simplified = supportCases.map { case (k, seq) => k -> AddressSet.unify(seq.map(_.widen(~mask)).distinct) }
simplified.map { case (s, a) =>
// s is a size, you are checking for this size either the size of the operation is in s
// We return an or-reduction of all the cases, checking whether any contains both the dynamic size and dynamic address on the wire.
((Some(s) == range).B || s.containsLg(lgSize)) &&
a.map(_.contains(address)).reduce(_||_)
}.foldLeft(false.B)(_||_)
}
def supportsAcquireTSafe (address: UInt, lgSize: UInt, range: Option[TransferSizes] = None) = addressHelper(true, _.supports.acquireT, address, lgSize, range)
def supportsAcquireBSafe (address: UInt, lgSize: UInt, range: Option[TransferSizes] = None) = addressHelper(true, _.supports.acquireB, address, lgSize, range)
def supportsArithmeticSafe (address: UInt, lgSize: UInt, range: Option[TransferSizes] = None) = addressHelper(true, _.supports.arithmetic, address, lgSize, range)
def supportsLogicalSafe (address: UInt, lgSize: UInt, range: Option[TransferSizes] = None) = addressHelper(true, _.supports.logical, address, lgSize, range)
def supportsGetSafe (address: UInt, lgSize: UInt, range: Option[TransferSizes] = None) = addressHelper(true, _.supports.get, address, lgSize, range)
def supportsPutFullSafe (address: UInt, lgSize: UInt, range: Option[TransferSizes] = None) = addressHelper(true, _.supports.putFull, address, lgSize, range)
def supportsPutPartialSafe (address: UInt, lgSize: UInt, range: Option[TransferSizes] = None) = addressHelper(true, _.supports.putPartial, address, lgSize, range)
def supportsHintSafe (address: UInt, lgSize: UInt, range: Option[TransferSizes] = None) = addressHelper(true, _.supports.hint, address, lgSize, range)
def supportsAcquireTFast (address: UInt, lgSize: UInt, range: Option[TransferSizes] = None) = addressHelper(false, _.supports.acquireT, address, lgSize, range)
def supportsAcquireBFast (address: UInt, lgSize: UInt, range: Option[TransferSizes] = None) = addressHelper(false, _.supports.acquireB, address, lgSize, range)
def supportsArithmeticFast (address: UInt, lgSize: UInt, range: Option[TransferSizes] = None) = addressHelper(false, _.supports.arithmetic, address, lgSize, range)
def supportsLogicalFast (address: UInt, lgSize: UInt, range: Option[TransferSizes] = None) = addressHelper(false, _.supports.logical, address, lgSize, range)
def supportsGetFast (address: UInt, lgSize: UInt, range: Option[TransferSizes] = None) = addressHelper(false, _.supports.get, address, lgSize, range)
def supportsPutFullFast (address: UInt, lgSize: UInt, range: Option[TransferSizes] = None) = addressHelper(false, _.supports.putFull, address, lgSize, range)
def supportsPutPartialFast (address: UInt, lgSize: UInt, range: Option[TransferSizes] = None) = addressHelper(false, _.supports.putPartial, address, lgSize, range)
def supportsHintFast (address: UInt, lgSize: UInt, range: Option[TransferSizes] = None) = addressHelper(false, _.supports.hint, address, lgSize, range)
def emitsProbeSafe (address: UInt, lgSize: UInt, range: Option[TransferSizes] = None) = addressHelper(true, _.emits.probe, address, lgSize, range)
def emitsArithmeticSafe (address: UInt, lgSize: UInt, range: Option[TransferSizes] = None) = addressHelper(true, _.emits.arithmetic, address, lgSize, range)
def emitsLogicalSafe (address: UInt, lgSize: UInt, range: Option[TransferSizes] = None) = addressHelper(true, _.emits.logical, address, lgSize, range)
def emitsGetSafe (address: UInt, lgSize: UInt, range: Option[TransferSizes] = None) = addressHelper(true, _.emits.get, address, lgSize, range)
def emitsPutFullSafe (address: UInt, lgSize: UInt, range: Option[TransferSizes] = None) = addressHelper(true, _.emits.putFull, address, lgSize, range)
def emitsPutPartialSafe (address: UInt, lgSize: UInt, range: Option[TransferSizes] = None) = addressHelper(true, _.emits.putPartial, address, lgSize, range)
def emitsHintSafe (address: UInt, lgSize: UInt, range: Option[TransferSizes] = None) = addressHelper(true, _.emits.hint, address, lgSize, range)
def findTreeViolation() = slaves.flatMap(_.findTreeViolation()).headOption
def isTree = !slaves.exists(!_.isTree)
def infoString = "Slave Port Beatbytes = " + beatBytes + "\n" + "Slave Port MinLatency = " + minLatency + "\n\n" + slaves.map(_.infoString).mkString
def v1copy(
managers: Seq[TLSlaveParameters] = slaves,
beatBytes: Int = -1,
endSinkId: Int = endSinkId,
minLatency: Int = minLatency,
responseFields: Seq[BundleFieldBase] = responseFields,
requestKeys: Seq[BundleKeyBase] = requestKeys) =
{
new TLSlavePortParameters(
slaves = managers,
channelBytes = if (beatBytes != -1) TLChannelBeatBytes(beatBytes) else channelBytes,
endSinkId = endSinkId,
minLatency = minLatency,
responseFields = responseFields,
requestKeys = requestKeys)
}
def v2copy(
slaves: Seq[TLSlaveParameters] = slaves,
channelBytes: TLChannelBeatBytes = channelBytes,
endSinkId: Int = endSinkId,
minLatency: Int = minLatency,
responseFields: Seq[BundleFieldBase] = responseFields,
requestKeys: Seq[BundleKeyBase] = requestKeys) =
{
new TLSlavePortParameters(
slaves = slaves,
channelBytes = channelBytes,
endSinkId = endSinkId,
minLatency = minLatency,
responseFields = responseFields,
requestKeys = requestKeys)
}
@deprecated("Use v1copy instead of copy","")
def copy(
managers: Seq[TLSlaveParameters] = slaves,
beatBytes: Int = -1,
endSinkId: Int = endSinkId,
minLatency: Int = minLatency,
responseFields: Seq[BundleFieldBase] = responseFields,
requestKeys: Seq[BundleKeyBase] = requestKeys) =
{
v1copy(
managers,
beatBytes,
endSinkId,
minLatency,
responseFields,
requestKeys)
}
}
object TLSlavePortParameters {
def v1(
managers: Seq[TLSlaveParameters],
beatBytes: Int,
endSinkId: Int = 0,
minLatency: Int = 0,
responseFields: Seq[BundleFieldBase] = Nil,
requestKeys: Seq[BundleKeyBase] = Nil) =
{
new TLSlavePortParameters(
slaves = managers,
channelBytes = TLChannelBeatBytes(beatBytes),
endSinkId = endSinkId,
minLatency = minLatency,
responseFields = responseFields,
requestKeys = requestKeys)
}
}
object TLManagerPortParameters {
@deprecated("Use TLSlavePortParameters.v1 instead of TLManagerPortParameters","")
def apply(
managers: Seq[TLSlaveParameters],
beatBytes: Int,
endSinkId: Int = 0,
minLatency: Int = 0,
responseFields: Seq[BundleFieldBase] = Nil,
requestKeys: Seq[BundleKeyBase] = Nil) =
{
TLSlavePortParameters.v1(
managers,
beatBytes,
endSinkId,
minLatency,
responseFields,
requestKeys)
}
}
class TLMasterParameters private(
val nodePath: Seq[BaseNode],
val resources: Seq[Resource],
val name: String,
val visibility: Seq[AddressSet],
val unusedRegionTypes: Set[RegionType.T],
val executesOnly: Boolean,
val requestFifo: Boolean, // only a request, not a requirement. applies to A, not C.
val supports: TLSlaveToMasterTransferSizes,
val emits: TLMasterToSlaveTransferSizes,
val neverReleasesData: Boolean,
val sourceId: IdRange) extends SimpleProduct
{
override def canEqual(that: Any): Boolean = that.isInstanceOf[TLMasterParameters]
override def productPrefix = "TLMasterParameters"
// We intentionally omit nodePath for equality testing / formatting
def productArity: Int = 10
def productElement(n: Int): Any = n match {
case 0 => name
case 1 => sourceId
case 2 => resources
case 3 => visibility
case 4 => unusedRegionTypes
case 5 => executesOnly
case 6 => requestFifo
case 7 => supports
case 8 => emits
case 9 => neverReleasesData
case _ => throw new IndexOutOfBoundsException(n.toString)
}
require (!sourceId.isEmpty)
require (!visibility.isEmpty)
require (supports.putFull.contains(supports.putPartial))
// We only support these operations if we support Probe (ie: we're a cache)
require (supports.probe.contains(supports.arithmetic))
require (supports.probe.contains(supports.logical))
require (supports.probe.contains(supports.get))
require (supports.probe.contains(supports.putFull))
require (supports.probe.contains(supports.putPartial))
require (supports.probe.contains(supports.hint))
visibility.combinations(2).foreach { case Seq(x,y) => require (!x.overlaps(y), s"$x and $y overlap.") }
val maxTransfer = List(
supports.probe.max,
supports.arithmetic.max,
supports.logical.max,
supports.get.max,
supports.putFull.max,
supports.putPartial.max).max
def infoString = {
s"""Master Name = ${name}
|visibility = ${visibility}
|emits = ${emits.infoString}
|sourceId = ${sourceId}
|
|""".stripMargin
}
def v1copy(
name: String = name,
sourceId: IdRange = sourceId,
nodePath: Seq[BaseNode] = nodePath,
requestFifo: Boolean = requestFifo,
visibility: Seq[AddressSet] = visibility,
supportsProbe: TransferSizes = supports.probe,
supportsArithmetic: TransferSizes = supports.arithmetic,
supportsLogical: TransferSizes = supports.logical,
supportsGet: TransferSizes = supports.get,
supportsPutFull: TransferSizes = supports.putFull,
supportsPutPartial: TransferSizes = supports.putPartial,
supportsHint: TransferSizes = supports.hint) =
{
new TLMasterParameters(
nodePath = nodePath,
resources = this.resources,
name = name,
visibility = visibility,
unusedRegionTypes = this.unusedRegionTypes,
executesOnly = this.executesOnly,
requestFifo = requestFifo,
supports = TLSlaveToMasterTransferSizes(
probe = supportsProbe,
arithmetic = supportsArithmetic,
logical = supportsLogical,
get = supportsGet,
putFull = supportsPutFull,
putPartial = supportsPutPartial,
hint = supportsHint),
emits = this.emits,
neverReleasesData = this.neverReleasesData,
sourceId = sourceId)
}
def v2copy(
nodePath: Seq[BaseNode] = nodePath,
resources: Seq[Resource] = resources,
name: String = name,
visibility: Seq[AddressSet] = visibility,
unusedRegionTypes: Set[RegionType.T] = unusedRegionTypes,
executesOnly: Boolean = executesOnly,
requestFifo: Boolean = requestFifo,
supports: TLSlaveToMasterTransferSizes = supports,
emits: TLMasterToSlaveTransferSizes = emits,
neverReleasesData: Boolean = neverReleasesData,
sourceId: IdRange = sourceId) =
{
new TLMasterParameters(
nodePath = nodePath,
resources = resources,
name = name,
visibility = visibility,
unusedRegionTypes = unusedRegionTypes,
executesOnly = executesOnly,
requestFifo = requestFifo,
supports = supports,
emits = emits,
neverReleasesData = neverReleasesData,
sourceId = sourceId)
}
@deprecated("Use v1copy instead of copy","")
def copy(
name: String = name,
sourceId: IdRange = sourceId,
nodePath: Seq[BaseNode] = nodePath,
requestFifo: Boolean = requestFifo,
visibility: Seq[AddressSet] = visibility,
supportsProbe: TransferSizes = supports.probe,
supportsArithmetic: TransferSizes = supports.arithmetic,
supportsLogical: TransferSizes = supports.logical,
supportsGet: TransferSizes = supports.get,
supportsPutFull: TransferSizes = supports.putFull,
supportsPutPartial: TransferSizes = supports.putPartial,
supportsHint: TransferSizes = supports.hint) =
{
v1copy(
name = name,
sourceId = sourceId,
nodePath = nodePath,
requestFifo = requestFifo,
visibility = visibility,
supportsProbe = supportsProbe,
supportsArithmetic = supportsArithmetic,
supportsLogical = supportsLogical,
supportsGet = supportsGet,
supportsPutFull = supportsPutFull,
supportsPutPartial = supportsPutPartial,
supportsHint = supportsHint)
}
}
object TLMasterParameters {
def v1(
name: String,
sourceId: IdRange = IdRange(0,1),
nodePath: Seq[BaseNode] = Seq(),
requestFifo: Boolean = false,
visibility: Seq[AddressSet] = Seq(AddressSet(0, ~0)),
supportsProbe: TransferSizes = TransferSizes.none,
supportsArithmetic: TransferSizes = TransferSizes.none,
supportsLogical: TransferSizes = TransferSizes.none,
supportsGet: TransferSizes = TransferSizes.none,
supportsPutFull: TransferSizes = TransferSizes.none,
supportsPutPartial: TransferSizes = TransferSizes.none,
supportsHint: TransferSizes = TransferSizes.none) =
{
new TLMasterParameters(
nodePath = nodePath,
resources = Nil,
name = name,
visibility = visibility,
unusedRegionTypes = Set(),
executesOnly = false,
requestFifo = requestFifo,
supports = TLSlaveToMasterTransferSizes(
probe = supportsProbe,
arithmetic = supportsArithmetic,
logical = supportsLogical,
get = supportsGet,
putFull = supportsPutFull,
putPartial = supportsPutPartial,
hint = supportsHint),
emits = TLMasterToSlaveTransferSizes.unknownEmits,
neverReleasesData = false,
sourceId = sourceId)
}
def v2(
nodePath: Seq[BaseNode] = Seq(),
resources: Seq[Resource] = Nil,
name: String,
visibility: Seq[AddressSet] = Seq(AddressSet(0, ~0)),
unusedRegionTypes: Set[RegionType.T] = Set(),
executesOnly: Boolean = false,
requestFifo: Boolean = false,
supports: TLSlaveToMasterTransferSizes = TLSlaveToMasterTransferSizes.unknownSupports,
emits: TLMasterToSlaveTransferSizes = TLMasterToSlaveTransferSizes.unknownEmits,
neverReleasesData: Boolean = false,
sourceId: IdRange = IdRange(0,1)) =
{
new TLMasterParameters(
nodePath = nodePath,
resources = resources,
name = name,
visibility = visibility,
unusedRegionTypes = unusedRegionTypes,
executesOnly = executesOnly,
requestFifo = requestFifo,
supports = supports,
emits = emits,
neverReleasesData = neverReleasesData,
sourceId = sourceId)
}
}
object TLClientParameters {
@deprecated("Use TLMasterParameters.v1 instead of TLClientParameters","")
def apply(
name: String,
sourceId: IdRange = IdRange(0,1),
nodePath: Seq[BaseNode] = Seq(),
requestFifo: Boolean = false,
visibility: Seq[AddressSet] = Seq(AddressSet.everything),
supportsProbe: TransferSizes = TransferSizes.none,
supportsArithmetic: TransferSizes = TransferSizes.none,
supportsLogical: TransferSizes = TransferSizes.none,
supportsGet: TransferSizes = TransferSizes.none,
supportsPutFull: TransferSizes = TransferSizes.none,
supportsPutPartial: TransferSizes = TransferSizes.none,
supportsHint: TransferSizes = TransferSizes.none) =
{
TLMasterParameters.v1(
name = name,
sourceId = sourceId,
nodePath = nodePath,
requestFifo = requestFifo,
visibility = visibility,
supportsProbe = supportsProbe,
supportsArithmetic = supportsArithmetic,
supportsLogical = supportsLogical,
supportsGet = supportsGet,
supportsPutFull = supportsPutFull,
supportsPutPartial = supportsPutPartial,
supportsHint = supportsHint)
}
}
class TLMasterPortParameters private(
val masters: Seq[TLMasterParameters],
val channelBytes: TLChannelBeatBytes,
val minLatency: Int,
val echoFields: Seq[BundleFieldBase],
val requestFields: Seq[BundleFieldBase],
val responseKeys: Seq[BundleKeyBase]) extends SimpleProduct
{
override def canEqual(that: Any): Boolean = that.isInstanceOf[TLMasterPortParameters]
override def productPrefix = "TLMasterPortParameters"
def productArity: Int = 6
def productElement(n: Int): Any = n match {
case 0 => masters
case 1 => channelBytes
case 2 => minLatency
case 3 => echoFields
case 4 => requestFields
case 5 => responseKeys
case _ => throw new IndexOutOfBoundsException(n.toString)
}
require (!masters.isEmpty)
require (minLatency >= 0)
def clients = masters
// Require disjoint ranges for Ids
IdRange.overlaps(masters.map(_.sourceId)).foreach { case (x, y) =>
require (!x.overlaps(y), s"TLClientParameters.sourceId ${x} overlaps ${y}")
}
// Bounds on required sizes
def endSourceId = masters.map(_.sourceId.end).max
def maxTransfer = masters.map(_.maxTransfer).max
// The unused sources < endSourceId
def unusedSources: Seq[Int] = {
val usedSources = masters.map(_.sourceId).sortBy(_.start)
((Seq(0) ++ usedSources.map(_.end)) zip usedSources.map(_.start)) flatMap { case (end, start) =>
end until start
}
}
// Diplomatically determined operation sizes emitted by all inward Masters
// as opposed to emits* which generate circuitry to check which specific addresses
val allEmitClaims = masters.map(_.emits).reduce( _ intersect _)
// Diplomatically determined operation sizes Emitted by at least one inward Masters
// as opposed to emits* which generate circuitry to check which specific addresses
val anyEmitClaims = masters.map(_.emits).reduce(_ mincover _)
// Diplomatically determined operation sizes supported by all inward Masters
// as opposed to supports* which generate circuitry to check which specific addresses
val allSupportProbe = masters.map(_.supports.probe) .reduce(_ intersect _)
val allSupportArithmetic = masters.map(_.supports.arithmetic).reduce(_ intersect _)
val allSupportLogical = masters.map(_.supports.logical) .reduce(_ intersect _)
val allSupportGet = masters.map(_.supports.get) .reduce(_ intersect _)
val allSupportPutFull = masters.map(_.supports.putFull) .reduce(_ intersect _)
val allSupportPutPartial = masters.map(_.supports.putPartial).reduce(_ intersect _)
val allSupportHint = masters.map(_.supports.hint) .reduce(_ intersect _)
// Diplomatically determined operation sizes supported by at least one master
// as opposed to supports* which generate circuitry to check which specific addresses
val anySupportProbe = masters.map(!_.supports.probe.none) .reduce(_ || _)
val anySupportArithmetic = masters.map(!_.supports.arithmetic.none).reduce(_ || _)
val anySupportLogical = masters.map(!_.supports.logical.none) .reduce(_ || _)
val anySupportGet = masters.map(!_.supports.get.none) .reduce(_ || _)
val anySupportPutFull = masters.map(!_.supports.putFull.none) .reduce(_ || _)
val anySupportPutPartial = masters.map(!_.supports.putPartial.none).reduce(_ || _)
val anySupportHint = masters.map(!_.supports.hint.none) .reduce(_ || _)
// These return Option[TLMasterParameters] for your convenience
def find(id: Int) = masters.find(_.sourceId.contains(id))
// Synthesizable lookup methods
def find(id: UInt) = VecInit(masters.map(_.sourceId.contains(id)))
def contains(id: UInt) = find(id).reduce(_ || _)
def requestFifo(id: UInt) = Mux1H(find(id), masters.map(c => c.requestFifo.B))
// Available during RTL runtime, checks to see if (id, size) is supported by the master's (client's) diplomatic parameters
private def sourceIdHelper(member: TLMasterParameters => TransferSizes)(id: UInt, lgSize: UInt) = {
val allSame = masters.map(member(_) == member(masters(0))).reduce(_ && _)
// this if statement is a coarse generalization of the groupBy in the sourceIdHelper2 version;
// the case where there is only one group.
if (allSame) member(masters(0)).containsLg(lgSize) else {
// Find the master associated with ID and returns whether that particular master is able to receive transaction of lgSize
Mux1H(find(id), masters.map(member(_).containsLg(lgSize)))
}
}
// Check for support of a given operation at a specific id
val supportsProbe = sourceIdHelper(_.supports.probe) _
val supportsArithmetic = sourceIdHelper(_.supports.arithmetic) _
val supportsLogical = sourceIdHelper(_.supports.logical) _
val supportsGet = sourceIdHelper(_.supports.get) _
val supportsPutFull = sourceIdHelper(_.supports.putFull) _
val supportsPutPartial = sourceIdHelper(_.supports.putPartial) _
val supportsHint = sourceIdHelper(_.supports.hint) _
// TODO: Merge sourceIdHelper2 with sourceIdHelper
private def sourceIdHelper2(
member: TLMasterParameters => TransferSizes,
sourceId: UInt,
lgSize: UInt): Bool = {
// Because sourceIds are uniquely owned by each master, we use them to group the
// cases that have to be checked.
val emitCases = groupByIntoSeq(masters)(m => member(m)).map { case (k, vs) =>
k -> vs.map(_.sourceId)
}
emitCases.map { case (s, a) =>
(s.containsLg(lgSize)) &&
a.map(_.contains(sourceId)).reduce(_||_)
}.foldLeft(false.B)(_||_)
}
// Check for emit of a given operation at a specific id
def emitsAcquireT (sourceId: UInt, lgSize: UInt) = sourceIdHelper2(_.emits.acquireT, sourceId, lgSize)
def emitsAcquireB (sourceId: UInt, lgSize: UInt) = sourceIdHelper2(_.emits.acquireB, sourceId, lgSize)
def emitsArithmetic(sourceId: UInt, lgSize: UInt) = sourceIdHelper2(_.emits.arithmetic, sourceId, lgSize)
def emitsLogical (sourceId: UInt, lgSize: UInt) = sourceIdHelper2(_.emits.logical, sourceId, lgSize)
def emitsGet (sourceId: UInt, lgSize: UInt) = sourceIdHelper2(_.emits.get, sourceId, lgSize)
def emitsPutFull (sourceId: UInt, lgSize: UInt) = sourceIdHelper2(_.emits.putFull, sourceId, lgSize)
def emitsPutPartial(sourceId: UInt, lgSize: UInt) = sourceIdHelper2(_.emits.putPartial, sourceId, lgSize)
def emitsHint (sourceId: UInt, lgSize: UInt) = sourceIdHelper2(_.emits.hint, sourceId, lgSize)
def infoString = masters.map(_.infoString).mkString
def v1copy(
clients: Seq[TLMasterParameters] = masters,
minLatency: Int = minLatency,
echoFields: Seq[BundleFieldBase] = echoFields,
requestFields: Seq[BundleFieldBase] = requestFields,
responseKeys: Seq[BundleKeyBase] = responseKeys) =
{
new TLMasterPortParameters(
masters = clients,
channelBytes = channelBytes,
minLatency = minLatency,
echoFields = echoFields,
requestFields = requestFields,
responseKeys = responseKeys)
}
def v2copy(
masters: Seq[TLMasterParameters] = masters,
channelBytes: TLChannelBeatBytes = channelBytes,
minLatency: Int = minLatency,
echoFields: Seq[BundleFieldBase] = echoFields,
requestFields: Seq[BundleFieldBase] = requestFields,
responseKeys: Seq[BundleKeyBase] = responseKeys) =
{
new TLMasterPortParameters(
masters = masters,
channelBytes = channelBytes,
minLatency = minLatency,
echoFields = echoFields,
requestFields = requestFields,
responseKeys = responseKeys)
}
@deprecated("Use v1copy instead of copy","")
def copy(
clients: Seq[TLMasterParameters] = masters,
minLatency: Int = minLatency,
echoFields: Seq[BundleFieldBase] = echoFields,
requestFields: Seq[BundleFieldBase] = requestFields,
responseKeys: Seq[BundleKeyBase] = responseKeys) =
{
v1copy(
clients,
minLatency,
echoFields,
requestFields,
responseKeys)
}
}
object TLClientPortParameters {
@deprecated("Use TLMasterPortParameters.v1 instead of TLClientPortParameters","")
def apply(
clients: Seq[TLMasterParameters],
minLatency: Int = 0,
echoFields: Seq[BundleFieldBase] = Nil,
requestFields: Seq[BundleFieldBase] = Nil,
responseKeys: Seq[BundleKeyBase] = Nil) =
{
TLMasterPortParameters.v1(
clients,
minLatency,
echoFields,
requestFields,
responseKeys)
}
}
object TLMasterPortParameters {
def v1(
clients: Seq[TLMasterParameters],
minLatency: Int = 0,
echoFields: Seq[BundleFieldBase] = Nil,
requestFields: Seq[BundleFieldBase] = Nil,
responseKeys: Seq[BundleKeyBase] = Nil) =
{
new TLMasterPortParameters(
masters = clients,
channelBytes = TLChannelBeatBytes(),
minLatency = minLatency,
echoFields = echoFields,
requestFields = requestFields,
responseKeys = responseKeys)
}
def v2(
masters: Seq[TLMasterParameters],
channelBytes: TLChannelBeatBytes = TLChannelBeatBytes(),
minLatency: Int = 0,
echoFields: Seq[BundleFieldBase] = Nil,
requestFields: Seq[BundleFieldBase] = Nil,
responseKeys: Seq[BundleKeyBase] = Nil) =
{
new TLMasterPortParameters(
masters = masters,
channelBytes = channelBytes,
minLatency = minLatency,
echoFields = echoFields,
requestFields = requestFields,
responseKeys = responseKeys)
}
}
case class TLBundleParameters(
addressBits: Int,
dataBits: Int,
sourceBits: Int,
sinkBits: Int,
sizeBits: Int,
echoFields: Seq[BundleFieldBase],
requestFields: Seq[BundleFieldBase],
responseFields: Seq[BundleFieldBase],
hasBCE: Boolean)
{
// Chisel has issues with 0-width wires
require (addressBits >= 1)
require (dataBits >= 8)
require (sourceBits >= 1)
require (sinkBits >= 1)
require (sizeBits >= 1)
require (isPow2(dataBits))
echoFields.foreach { f => require (f.key.isControl, s"${f} is not a legal echo field") }
val addrLoBits = log2Up(dataBits/8)
// Used to uniquify bus IP names
def shortName = s"a${addressBits}d${dataBits}s${sourceBits}k${sinkBits}z${sizeBits}" + (if (hasBCE) "c" else "u")
def union(x: TLBundleParameters) =
TLBundleParameters(
max(addressBits, x.addressBits),
max(dataBits, x.dataBits),
max(sourceBits, x.sourceBits),
max(sinkBits, x.sinkBits),
max(sizeBits, x.sizeBits),
echoFields = BundleField.union(echoFields ++ x.echoFields),
requestFields = BundleField.union(requestFields ++ x.requestFields),
responseFields = BundleField.union(responseFields ++ x.responseFields),
hasBCE || x.hasBCE)
}
object TLBundleParameters
{
val emptyBundleParams = TLBundleParameters(
addressBits = 1,
dataBits = 8,
sourceBits = 1,
sinkBits = 1,
sizeBits = 1,
echoFields = Nil,
requestFields = Nil,
responseFields = Nil,
hasBCE = false)
def union(x: Seq[TLBundleParameters]) = x.foldLeft(emptyBundleParams)((x,y) => x.union(y))
def apply(master: TLMasterPortParameters, slave: TLSlavePortParameters) =
new TLBundleParameters(
addressBits = log2Up(slave.maxAddress + 1),
dataBits = slave.beatBytes * 8,
sourceBits = log2Up(master.endSourceId),
sinkBits = log2Up(slave.endSinkId),
sizeBits = log2Up(log2Ceil(max(master.maxTransfer, slave.maxTransfer))+1),
echoFields = master.echoFields,
requestFields = BundleField.accept(master.requestFields, slave.requestKeys),
responseFields = BundleField.accept(slave.responseFields, master.responseKeys),
hasBCE = master.anySupportProbe && slave.anySupportAcquireB)
}
case class TLEdgeParameters(
master: TLMasterPortParameters,
slave: TLSlavePortParameters,
params: Parameters,
sourceInfo: SourceInfo) extends FormatEdge
{
// legacy names:
def manager = slave
def client = master
val maxTransfer = max(master.maxTransfer, slave.maxTransfer)
val maxLgSize = log2Ceil(maxTransfer)
// Sanity check the link...
require (maxTransfer >= slave.beatBytes, s"Link's max transfer (${maxTransfer}) < ${slave.slaves.map(_.name)}'s beatBytes (${slave.beatBytes})")
def diplomaticClaimsMasterToSlave = master.anyEmitClaims.intersect(slave.anySupportClaims)
val bundle = TLBundleParameters(master, slave)
def formatEdge = master.infoString + "\n" + slave.infoString
}
case class TLCreditedDelay(
a: CreditedDelay,
b: CreditedDelay,
c: CreditedDelay,
d: CreditedDelay,
e: CreditedDelay)
{
def + (that: TLCreditedDelay): TLCreditedDelay = TLCreditedDelay(
a = a + that.a,
b = b + that.b,
c = c + that.c,
d = d + that.d,
e = e + that.e)
override def toString = s"(${a}, ${b}, ${c}, ${d}, ${e})"
}
object TLCreditedDelay {
def apply(delay: CreditedDelay): TLCreditedDelay = apply(delay, delay.flip, delay, delay.flip, delay)
}
case class TLCreditedManagerPortParameters(delay: TLCreditedDelay, base: TLSlavePortParameters) {def infoString = base.infoString}
case class TLCreditedClientPortParameters(delay: TLCreditedDelay, base: TLMasterPortParameters) {def infoString = base.infoString}
case class TLCreditedEdgeParameters(client: TLCreditedClientPortParameters, manager: TLCreditedManagerPortParameters, params: Parameters, sourceInfo: SourceInfo) extends FormatEdge
{
val delay = client.delay + manager.delay
val bundle = TLBundleParameters(client.base, manager.base)
def formatEdge = client.infoString + "\n" + manager.infoString
}
case class TLAsyncManagerPortParameters(async: AsyncQueueParams, base: TLSlavePortParameters) {def infoString = base.infoString}
case class TLAsyncClientPortParameters(base: TLMasterPortParameters) {def infoString = base.infoString}
case class TLAsyncBundleParameters(async: AsyncQueueParams, base: TLBundleParameters)
case class TLAsyncEdgeParameters(client: TLAsyncClientPortParameters, manager: TLAsyncManagerPortParameters, params: Parameters, sourceInfo: SourceInfo) extends FormatEdge
{
val bundle = TLAsyncBundleParameters(manager.async, TLBundleParameters(client.base, manager.base))
def formatEdge = client.infoString + "\n" + manager.infoString
}
case class TLRationalManagerPortParameters(direction: RationalDirection, base: TLSlavePortParameters) {def infoString = base.infoString}
case class TLRationalClientPortParameters(base: TLMasterPortParameters) {def infoString = base.infoString}
case class TLRationalEdgeParameters(client: TLRationalClientPortParameters, manager: TLRationalManagerPortParameters, params: Parameters, sourceInfo: SourceInfo) extends FormatEdge
{
val bundle = TLBundleParameters(client.base, manager.base)
def formatEdge = client.infoString + "\n" + manager.infoString
}
// To be unified, devices must agree on all of these terms
case class ManagerUnificationKey(
resources: Seq[Resource],
regionType: RegionType.T,
executable: Boolean,
supportsAcquireT: TransferSizes,
supportsAcquireB: TransferSizes,
supportsArithmetic: TransferSizes,
supportsLogical: TransferSizes,
supportsGet: TransferSizes,
supportsPutFull: TransferSizes,
supportsPutPartial: TransferSizes,
supportsHint: TransferSizes)
object ManagerUnificationKey
{
def apply(x: TLSlaveParameters): ManagerUnificationKey = ManagerUnificationKey(
resources = x.resources,
regionType = x.regionType,
executable = x.executable,
supportsAcquireT = x.supportsAcquireT,
supportsAcquireB = x.supportsAcquireB,
supportsArithmetic = x.supportsArithmetic,
supportsLogical = x.supportsLogical,
supportsGet = x.supportsGet,
supportsPutFull = x.supportsPutFull,
supportsPutPartial = x.supportsPutPartial,
supportsHint = x.supportsHint)
}
object ManagerUnification
{
def apply(slaves: Seq[TLSlaveParameters]): List[TLSlaveParameters] = {
slaves.groupBy(ManagerUnificationKey.apply).values.map { seq =>
val agree = seq.forall(_.fifoId == seq.head.fifoId)
seq(0).v1copy(
address = AddressSet.unify(seq.flatMap(_.address)),
fifoId = if (agree) seq(0).fifoId else None)
}.toList
}
}
case class TLBufferParams(
a: BufferParams = BufferParams.none,
b: BufferParams = BufferParams.none,
c: BufferParams = BufferParams.none,
d: BufferParams = BufferParams.none,
e: BufferParams = BufferParams.none
) extends DirectedBuffers[TLBufferParams] {
def copyIn(x: BufferParams) = this.copy(b = x, d = x)
def copyOut(x: BufferParams) = this.copy(a = x, c = x, e = x)
def copyInOut(x: BufferParams) = this.copyIn(x).copyOut(x)
}
/** Pretty printing of TL source id maps */
class TLSourceIdMap(tl: TLMasterPortParameters) extends IdMap[TLSourceIdMapEntry] {
private val tlDigits = String.valueOf(tl.endSourceId-1).length()
protected val fmt = s"\t[%${tlDigits}d, %${tlDigits}d) %s%s%s"
private val sorted = tl.masters.sortBy(_.sourceId)
val mapping: Seq[TLSourceIdMapEntry] = sorted.map { case c =>
TLSourceIdMapEntry(c.sourceId, c.name, c.supports.probe, c.requestFifo)
}
}
case class TLSourceIdMapEntry(tlId: IdRange, name: String, isCache: Boolean, requestFifo: Boolean)
extends IdMapEntry
{
val from = tlId
val to = tlId
val maxTransactionsInFlight = Some(tlId.size)
}
File Edges.scala:
// See LICENSE.SiFive for license details.
package freechips.rocketchip.tilelink
import chisel3._
import chisel3.util._
import chisel3.experimental.SourceInfo
import org.chipsalliance.cde.config.Parameters
import freechips.rocketchip.util._
class TLEdge(
client: TLClientPortParameters,
manager: TLManagerPortParameters,
params: Parameters,
sourceInfo: SourceInfo)
extends TLEdgeParameters(client, manager, params, sourceInfo)
{
def isAligned(address: UInt, lgSize: UInt): Bool = {
if (maxLgSize == 0) true.B else {
val mask = UIntToOH1(lgSize, maxLgSize)
(address & mask) === 0.U
}
}
def mask(address: UInt, lgSize: UInt): UInt =
MaskGen(address, lgSize, manager.beatBytes)
def staticHasData(bundle: TLChannel): Option[Boolean] = {
bundle match {
case _:TLBundleA => {
// Do there exist A messages with Data?
val aDataYes = manager.anySupportArithmetic || manager.anySupportLogical || manager.anySupportPutFull || manager.anySupportPutPartial
// Do there exist A messages without Data?
val aDataNo = manager.anySupportAcquireB || manager.anySupportGet || manager.anySupportHint
// Statically optimize the case where hasData is a constant
if (!aDataYes) Some(false) else if (!aDataNo) Some(true) else None
}
case _:TLBundleB => {
// Do there exist B messages with Data?
val bDataYes = client.anySupportArithmetic || client.anySupportLogical || client.anySupportPutFull || client.anySupportPutPartial
// Do there exist B messages without Data?
val bDataNo = client.anySupportProbe || client.anySupportGet || client.anySupportHint
// Statically optimize the case where hasData is a constant
if (!bDataYes) Some(false) else if (!bDataNo) Some(true) else None
}
case _:TLBundleC => {
// Do there eixst C messages with Data?
val cDataYes = client.anySupportGet || client.anySupportArithmetic || client.anySupportLogical || client.anySupportProbe
// Do there exist C messages without Data?
val cDataNo = client.anySupportPutFull || client.anySupportPutPartial || client.anySupportHint || client.anySupportProbe
if (!cDataYes) Some(false) else if (!cDataNo) Some(true) else None
}
case _:TLBundleD => {
// Do there eixst D messages with Data?
val dDataYes = manager.anySupportGet || manager.anySupportArithmetic || manager.anySupportLogical || manager.anySupportAcquireB
// Do there exist D messages without Data?
val dDataNo = manager.anySupportPutFull || manager.anySupportPutPartial || manager.anySupportHint || manager.anySupportAcquireT
if (!dDataYes) Some(false) else if (!dDataNo) Some(true) else None
}
case _:TLBundleE => Some(false)
}
}
def isRequest(x: TLChannel): Bool = {
x match {
case a: TLBundleA => true.B
case b: TLBundleB => true.B
case c: TLBundleC => c.opcode(2) && c.opcode(1)
// opcode === TLMessages.Release ||
// opcode === TLMessages.ReleaseData
case d: TLBundleD => d.opcode(2) && !d.opcode(1)
// opcode === TLMessages.Grant ||
// opcode === TLMessages.GrantData
case e: TLBundleE => false.B
}
}
def isResponse(x: TLChannel): Bool = {
x match {
case a: TLBundleA => false.B
case b: TLBundleB => false.B
case c: TLBundleC => !c.opcode(2) || !c.opcode(1)
// opcode =/= TLMessages.Release &&
// opcode =/= TLMessages.ReleaseData
case d: TLBundleD => true.B // Grant isResponse + isRequest
case e: TLBundleE => true.B
}
}
def hasData(x: TLChannel): Bool = {
val opdata = x match {
case a: TLBundleA => !a.opcode(2)
// opcode === TLMessages.PutFullData ||
// opcode === TLMessages.PutPartialData ||
// opcode === TLMessages.ArithmeticData ||
// opcode === TLMessages.LogicalData
case b: TLBundleB => !b.opcode(2)
// opcode === TLMessages.PutFullData ||
// opcode === TLMessages.PutPartialData ||
// opcode === TLMessages.ArithmeticData ||
// opcode === TLMessages.LogicalData
case c: TLBundleC => c.opcode(0)
// opcode === TLMessages.AccessAckData ||
// opcode === TLMessages.ProbeAckData ||
// opcode === TLMessages.ReleaseData
case d: TLBundleD => d.opcode(0)
// opcode === TLMessages.AccessAckData ||
// opcode === TLMessages.GrantData
case e: TLBundleE => false.B
}
staticHasData(x).map(_.B).getOrElse(opdata)
}
def opcode(x: TLDataChannel): UInt = {
x match {
case a: TLBundleA => a.opcode
case b: TLBundleB => b.opcode
case c: TLBundleC => c.opcode
case d: TLBundleD => d.opcode
}
}
def param(x: TLDataChannel): UInt = {
x match {
case a: TLBundleA => a.param
case b: TLBundleB => b.param
case c: TLBundleC => c.param
case d: TLBundleD => d.param
}
}
def size(x: TLDataChannel): UInt = {
x match {
case a: TLBundleA => a.size
case b: TLBundleB => b.size
case c: TLBundleC => c.size
case d: TLBundleD => d.size
}
}
def data(x: TLDataChannel): UInt = {
x match {
case a: TLBundleA => a.data
case b: TLBundleB => b.data
case c: TLBundleC => c.data
case d: TLBundleD => d.data
}
}
def corrupt(x: TLDataChannel): Bool = {
x match {
case a: TLBundleA => a.corrupt
case b: TLBundleB => b.corrupt
case c: TLBundleC => c.corrupt
case d: TLBundleD => d.corrupt
}
}
def mask(x: TLAddrChannel): UInt = {
x match {
case a: TLBundleA => a.mask
case b: TLBundleB => b.mask
case c: TLBundleC => mask(c.address, c.size)
}
}
def full_mask(x: TLAddrChannel): UInt = {
x match {
case a: TLBundleA => mask(a.address, a.size)
case b: TLBundleB => mask(b.address, b.size)
case c: TLBundleC => mask(c.address, c.size)
}
}
def address(x: TLAddrChannel): UInt = {
x match {
case a: TLBundleA => a.address
case b: TLBundleB => b.address
case c: TLBundleC => c.address
}
}
def source(x: TLDataChannel): UInt = {
x match {
case a: TLBundleA => a.source
case b: TLBundleB => b.source
case c: TLBundleC => c.source
case d: TLBundleD => d.source
}
}
def addr_hi(x: UInt): UInt = x >> log2Ceil(manager.beatBytes)
def addr_lo(x: UInt): UInt =
if (manager.beatBytes == 1) 0.U else x(log2Ceil(manager.beatBytes)-1, 0)
def addr_hi(x: TLAddrChannel): UInt = addr_hi(address(x))
def addr_lo(x: TLAddrChannel): UInt = addr_lo(address(x))
def numBeats(x: TLChannel): UInt = {
x match {
case _: TLBundleE => 1.U
case bundle: TLDataChannel => {
val hasData = this.hasData(bundle)
val size = this.size(bundle)
val cutoff = log2Ceil(manager.beatBytes)
val small = if (manager.maxTransfer <= manager.beatBytes) true.B else size <= (cutoff).U
val decode = UIntToOH(size, maxLgSize+1) >> cutoff
Mux(hasData, decode | small.asUInt, 1.U)
}
}
}
def numBeats1(x: TLChannel): UInt = {
x match {
case _: TLBundleE => 0.U
case bundle: TLDataChannel => {
if (maxLgSize == 0) {
0.U
} else {
val decode = UIntToOH1(size(bundle), maxLgSize) >> log2Ceil(manager.beatBytes)
Mux(hasData(bundle), decode, 0.U)
}
}
}
}
def firstlastHelper(bits: TLChannel, fire: Bool): (Bool, Bool, Bool, UInt) = {
val beats1 = numBeats1(bits)
val counter = RegInit(0.U(log2Up(maxTransfer / manager.beatBytes).W))
val counter1 = counter - 1.U
val first = counter === 0.U
val last = counter === 1.U || beats1 === 0.U
val done = last && fire
val count = (beats1 & ~counter1)
when (fire) {
counter := Mux(first, beats1, counter1)
}
(first, last, done, count)
}
def first(bits: TLChannel, fire: Bool): Bool = firstlastHelper(bits, fire)._1
def first(x: DecoupledIO[TLChannel]): Bool = first(x.bits, x.fire)
def first(x: ValidIO[TLChannel]): Bool = first(x.bits, x.valid)
def last(bits: TLChannel, fire: Bool): Bool = firstlastHelper(bits, fire)._2
def last(x: DecoupledIO[TLChannel]): Bool = last(x.bits, x.fire)
def last(x: ValidIO[TLChannel]): Bool = last(x.bits, x.valid)
def done(bits: TLChannel, fire: Bool): Bool = firstlastHelper(bits, fire)._3
def done(x: DecoupledIO[TLChannel]): Bool = done(x.bits, x.fire)
def done(x: ValidIO[TLChannel]): Bool = done(x.bits, x.valid)
def firstlast(bits: TLChannel, fire: Bool): (Bool, Bool, Bool) = {
val r = firstlastHelper(bits, fire)
(r._1, r._2, r._3)
}
def firstlast(x: DecoupledIO[TLChannel]): (Bool, Bool, Bool) = firstlast(x.bits, x.fire)
def firstlast(x: ValidIO[TLChannel]): (Bool, Bool, Bool) = firstlast(x.bits, x.valid)
def count(bits: TLChannel, fire: Bool): (Bool, Bool, Bool, UInt) = {
val r = firstlastHelper(bits, fire)
(r._1, r._2, r._3, r._4)
}
def count(x: DecoupledIO[TLChannel]): (Bool, Bool, Bool, UInt) = count(x.bits, x.fire)
def count(x: ValidIO[TLChannel]): (Bool, Bool, Bool, UInt) = count(x.bits, x.valid)
def addr_inc(bits: TLChannel, fire: Bool): (Bool, Bool, Bool, UInt) = {
val r = firstlastHelper(bits, fire)
(r._1, r._2, r._3, r._4 << log2Ceil(manager.beatBytes))
}
def addr_inc(x: DecoupledIO[TLChannel]): (Bool, Bool, Bool, UInt) = addr_inc(x.bits, x.fire)
def addr_inc(x: ValidIO[TLChannel]): (Bool, Bool, Bool, UInt) = addr_inc(x.bits, x.valid)
// Does the request need T permissions to be executed?
def needT(a: TLBundleA): Bool = {
val acq_needT = MuxLookup(a.param, WireDefault(Bool(), DontCare))(Array(
TLPermissions.NtoB -> false.B,
TLPermissions.NtoT -> true.B,
TLPermissions.BtoT -> true.B))
MuxLookup(a.opcode, WireDefault(Bool(), DontCare))(Array(
TLMessages.PutFullData -> true.B,
TLMessages.PutPartialData -> true.B,
TLMessages.ArithmeticData -> true.B,
TLMessages.LogicalData -> true.B,
TLMessages.Get -> false.B,
TLMessages.Hint -> MuxLookup(a.param, WireDefault(Bool(), DontCare))(Array(
TLHints.PREFETCH_READ -> false.B,
TLHints.PREFETCH_WRITE -> true.B)),
TLMessages.AcquireBlock -> acq_needT,
TLMessages.AcquirePerm -> acq_needT))
}
// This is a very expensive circuit; use only if you really mean it!
def inFlight(x: TLBundle): (UInt, UInt) = {
val flight = RegInit(0.U(log2Ceil(3*client.endSourceId+1).W))
val bce = manager.anySupportAcquireB && client.anySupportProbe
val (a_first, a_last, _) = firstlast(x.a)
val (b_first, b_last, _) = firstlast(x.b)
val (c_first, c_last, _) = firstlast(x.c)
val (d_first, d_last, _) = firstlast(x.d)
val (e_first, e_last, _) = firstlast(x.e)
val (a_request, a_response) = (isRequest(x.a.bits), isResponse(x.a.bits))
val (b_request, b_response) = (isRequest(x.b.bits), isResponse(x.b.bits))
val (c_request, c_response) = (isRequest(x.c.bits), isResponse(x.c.bits))
val (d_request, d_response) = (isRequest(x.d.bits), isResponse(x.d.bits))
val (e_request, e_response) = (isRequest(x.e.bits), isResponse(x.e.bits))
val a_inc = x.a.fire && a_first && a_request
val b_inc = x.b.fire && b_first && b_request
val c_inc = x.c.fire && c_first && c_request
val d_inc = x.d.fire && d_first && d_request
val e_inc = x.e.fire && e_first && e_request
val inc = Cat(Seq(a_inc, d_inc) ++ (if (bce) Seq(b_inc, c_inc, e_inc) else Nil))
val a_dec = x.a.fire && a_last && a_response
val b_dec = x.b.fire && b_last && b_response
val c_dec = x.c.fire && c_last && c_response
val d_dec = x.d.fire && d_last && d_response
val e_dec = x.e.fire && e_last && e_response
val dec = Cat(Seq(a_dec, d_dec) ++ (if (bce) Seq(b_dec, c_dec, e_dec) else Nil))
val next_flight = flight + PopCount(inc) - PopCount(dec)
flight := next_flight
(flight, next_flight)
}
def prettySourceMapping(context: String): String = {
s"TL-Source mapping for $context:\n${(new TLSourceIdMap(client)).pretty}\n"
}
}
class TLEdgeOut(
client: TLClientPortParameters,
manager: TLManagerPortParameters,
params: Parameters,
sourceInfo: SourceInfo)
extends TLEdge(client, manager, params, sourceInfo)
{
// Transfers
def AcquireBlock(fromSource: UInt, toAddress: UInt, lgSize: UInt, growPermissions: UInt) = {
require (manager.anySupportAcquireB, s"TileLink: No managers visible from this edge support Acquires, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsAcquireBFast(toAddress, lgSize)
val a = Wire(new TLBundleA(bundle))
a.opcode := TLMessages.AcquireBlock
a.param := growPermissions
a.size := lgSize
a.source := fromSource
a.address := toAddress
a.user := DontCare
a.echo := DontCare
a.mask := mask(toAddress, lgSize)
a.data := DontCare
a.corrupt := false.B
(legal, a)
}
def AcquirePerm(fromSource: UInt, toAddress: UInt, lgSize: UInt, growPermissions: UInt) = {
require (manager.anySupportAcquireB, s"TileLink: No managers visible from this edge support Acquires, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsAcquireBFast(toAddress, lgSize)
val a = Wire(new TLBundleA(bundle))
a.opcode := TLMessages.AcquirePerm
a.param := growPermissions
a.size := lgSize
a.source := fromSource
a.address := toAddress
a.user := DontCare
a.echo := DontCare
a.mask := mask(toAddress, lgSize)
a.data := DontCare
a.corrupt := false.B
(legal, a)
}
def Release(fromSource: UInt, toAddress: UInt, lgSize: UInt, shrinkPermissions: UInt): (Bool, TLBundleC) = {
require (manager.anySupportAcquireB, s"TileLink: No managers visible from this edge support Acquires, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsAcquireBFast(toAddress, lgSize)
val c = Wire(new TLBundleC(bundle))
c.opcode := TLMessages.Release
c.param := shrinkPermissions
c.size := lgSize
c.source := fromSource
c.address := toAddress
c.user := DontCare
c.echo := DontCare
c.data := DontCare
c.corrupt := false.B
(legal, c)
}
def Release(fromSource: UInt, toAddress: UInt, lgSize: UInt, shrinkPermissions: UInt, data: UInt, corrupt: Bool): (Bool, TLBundleC) = {
require (manager.anySupportAcquireB, s"TileLink: No managers visible from this edge support Acquires, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsAcquireBFast(toAddress, lgSize)
val c = Wire(new TLBundleC(bundle))
c.opcode := TLMessages.ReleaseData
c.param := shrinkPermissions
c.size := lgSize
c.source := fromSource
c.address := toAddress
c.user := DontCare
c.echo := DontCare
c.data := data
c.corrupt := corrupt
(legal, c)
}
def Release(fromSource: UInt, toAddress: UInt, lgSize: UInt, shrinkPermissions: UInt, data: UInt): (Bool, TLBundleC) =
Release(fromSource, toAddress, lgSize, shrinkPermissions, data, false.B)
def ProbeAck(b: TLBundleB, reportPermissions: UInt): TLBundleC =
ProbeAck(b.source, b.address, b.size, reportPermissions)
def ProbeAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, reportPermissions: UInt): TLBundleC = {
val c = Wire(new TLBundleC(bundle))
c.opcode := TLMessages.ProbeAck
c.param := reportPermissions
c.size := lgSize
c.source := fromSource
c.address := toAddress
c.user := DontCare
c.echo := DontCare
c.data := DontCare
c.corrupt := false.B
c
}
def ProbeAck(b: TLBundleB, reportPermissions: UInt, data: UInt): TLBundleC =
ProbeAck(b.source, b.address, b.size, reportPermissions, data)
def ProbeAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, reportPermissions: UInt, data: UInt, corrupt: Bool): TLBundleC = {
val c = Wire(new TLBundleC(bundle))
c.opcode := TLMessages.ProbeAckData
c.param := reportPermissions
c.size := lgSize
c.source := fromSource
c.address := toAddress
c.user := DontCare
c.echo := DontCare
c.data := data
c.corrupt := corrupt
c
}
def ProbeAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, reportPermissions: UInt, data: UInt): TLBundleC =
ProbeAck(fromSource, toAddress, lgSize, reportPermissions, data, false.B)
def GrantAck(d: TLBundleD): TLBundleE = GrantAck(d.sink)
def GrantAck(toSink: UInt): TLBundleE = {
val e = Wire(new TLBundleE(bundle))
e.sink := toSink
e
}
// Accesses
def Get(fromSource: UInt, toAddress: UInt, lgSize: UInt) = {
require (manager.anySupportGet, s"TileLink: No managers visible from this edge support Gets, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsGetFast(toAddress, lgSize)
val a = Wire(new TLBundleA(bundle))
a.opcode := TLMessages.Get
a.param := 0.U
a.size := lgSize
a.source := fromSource
a.address := toAddress
a.user := DontCare
a.echo := DontCare
a.mask := mask(toAddress, lgSize)
a.data := DontCare
a.corrupt := false.B
(legal, a)
}
def Put(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt): (Bool, TLBundleA) =
Put(fromSource, toAddress, lgSize, data, false.B)
def Put(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, corrupt: Bool): (Bool, TLBundleA) = {
require (manager.anySupportPutFull, s"TileLink: No managers visible from this edge support Puts, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsPutFullFast(toAddress, lgSize)
val a = Wire(new TLBundleA(bundle))
a.opcode := TLMessages.PutFullData
a.param := 0.U
a.size := lgSize
a.source := fromSource
a.address := toAddress
a.user := DontCare
a.echo := DontCare
a.mask := mask(toAddress, lgSize)
a.data := data
a.corrupt := corrupt
(legal, a)
}
def Put(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, mask: UInt): (Bool, TLBundleA) =
Put(fromSource, toAddress, lgSize, data, mask, false.B)
def Put(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, mask: UInt, corrupt: Bool): (Bool, TLBundleA) = {
require (manager.anySupportPutPartial, s"TileLink: No managers visible from this edge support masked Puts, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsPutPartialFast(toAddress, lgSize)
val a = Wire(new TLBundleA(bundle))
a.opcode := TLMessages.PutPartialData
a.param := 0.U
a.size := lgSize
a.source := fromSource
a.address := toAddress
a.user := DontCare
a.echo := DontCare
a.mask := mask
a.data := data
a.corrupt := corrupt
(legal, a)
}
def Arithmetic(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, atomic: UInt, corrupt: Bool = false.B): (Bool, TLBundleA) = {
require (manager.anySupportArithmetic, s"TileLink: No managers visible from this edge support arithmetic AMOs, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsArithmeticFast(toAddress, lgSize)
val a = Wire(new TLBundleA(bundle))
a.opcode := TLMessages.ArithmeticData
a.param := atomic
a.size := lgSize
a.source := fromSource
a.address := toAddress
a.user := DontCare
a.echo := DontCare
a.mask := mask(toAddress, lgSize)
a.data := data
a.corrupt := corrupt
(legal, a)
}
def Logical(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, atomic: UInt, corrupt: Bool = false.B) = {
require (manager.anySupportLogical, s"TileLink: No managers visible from this edge support logical AMOs, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsLogicalFast(toAddress, lgSize)
val a = Wire(new TLBundleA(bundle))
a.opcode := TLMessages.LogicalData
a.param := atomic
a.size := lgSize
a.source := fromSource
a.address := toAddress
a.user := DontCare
a.echo := DontCare
a.mask := mask(toAddress, lgSize)
a.data := data
a.corrupt := corrupt
(legal, a)
}
def Hint(fromSource: UInt, toAddress: UInt, lgSize: UInt, param: UInt) = {
require (manager.anySupportHint, s"TileLink: No managers visible from this edge support Hints, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsHintFast(toAddress, lgSize)
val a = Wire(new TLBundleA(bundle))
a.opcode := TLMessages.Hint
a.param := param
a.size := lgSize
a.source := fromSource
a.address := toAddress
a.user := DontCare
a.echo := DontCare
a.mask := mask(toAddress, lgSize)
a.data := DontCare
a.corrupt := false.B
(legal, a)
}
def AccessAck(b: TLBundleB): TLBundleC = AccessAck(b.source, address(b), b.size)
def AccessAck(fromSource: UInt, toAddress: UInt, lgSize: UInt) = {
val c = Wire(new TLBundleC(bundle))
c.opcode := TLMessages.AccessAck
c.param := 0.U
c.size := lgSize
c.source := fromSource
c.address := toAddress
c.user := DontCare
c.echo := DontCare
c.data := DontCare
c.corrupt := false.B
c
}
def AccessAck(b: TLBundleB, data: UInt): TLBundleC = AccessAck(b.source, address(b), b.size, data)
def AccessAck(b: TLBundleB, data: UInt, corrupt: Bool): TLBundleC = AccessAck(b.source, address(b), b.size, data, corrupt)
def AccessAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt): TLBundleC = AccessAck(fromSource, toAddress, lgSize, data, false.B)
def AccessAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, corrupt: Bool) = {
val c = Wire(new TLBundleC(bundle))
c.opcode := TLMessages.AccessAckData
c.param := 0.U
c.size := lgSize
c.source := fromSource
c.address := toAddress
c.user := DontCare
c.echo := DontCare
c.data := data
c.corrupt := corrupt
c
}
def HintAck(b: TLBundleB): TLBundleC = HintAck(b.source, address(b), b.size)
def HintAck(fromSource: UInt, toAddress: UInt, lgSize: UInt) = {
val c = Wire(new TLBundleC(bundle))
c.opcode := TLMessages.HintAck
c.param := 0.U
c.size := lgSize
c.source := fromSource
c.address := toAddress
c.user := DontCare
c.echo := DontCare
c.data := DontCare
c.corrupt := false.B
c
}
}
class TLEdgeIn(
client: TLClientPortParameters,
manager: TLManagerPortParameters,
params: Parameters,
sourceInfo: SourceInfo)
extends TLEdge(client, manager, params, sourceInfo)
{
private def myTranspose[T](x: Seq[Seq[T]]): Seq[Seq[T]] = {
val todo = x.filter(!_.isEmpty)
val heads = todo.map(_.head)
val tails = todo.map(_.tail)
if (todo.isEmpty) Nil else { heads +: myTranspose(tails) }
}
// Transfers
def Probe(fromAddress: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt) = {
require (client.anySupportProbe, s"TileLink: No clients visible from this edge support probes, but one of these managers tried to issue one: ${manager.managers}")
val legal = client.supportsProbe(toSource, lgSize)
val b = Wire(new TLBundleB(bundle))
b.opcode := TLMessages.Probe
b.param := capPermissions
b.size := lgSize
b.source := toSource
b.address := fromAddress
b.mask := mask(fromAddress, lgSize)
b.data := DontCare
b.corrupt := false.B
(legal, b)
}
def Grant(fromSink: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt): TLBundleD = Grant(fromSink, toSource, lgSize, capPermissions, false.B)
def Grant(fromSink: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt, denied: Bool) = {
val d = Wire(new TLBundleD(bundle))
d.opcode := TLMessages.Grant
d.param := capPermissions
d.size := lgSize
d.source := toSource
d.sink := fromSink
d.denied := denied
d.user := DontCare
d.echo := DontCare
d.data := DontCare
d.corrupt := false.B
d
}
def Grant(fromSink: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt, data: UInt): TLBundleD = Grant(fromSink, toSource, lgSize, capPermissions, data, false.B, false.B)
def Grant(fromSink: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt, data: UInt, denied: Bool, corrupt: Bool) = {
val d = Wire(new TLBundleD(bundle))
d.opcode := TLMessages.GrantData
d.param := capPermissions
d.size := lgSize
d.source := toSource
d.sink := fromSink
d.denied := denied
d.user := DontCare
d.echo := DontCare
d.data := data
d.corrupt := corrupt
d
}
def ReleaseAck(c: TLBundleC): TLBundleD = ReleaseAck(c.source, c.size, false.B)
def ReleaseAck(toSource: UInt, lgSize: UInt, denied: Bool): TLBundleD = {
val d = Wire(new TLBundleD(bundle))
d.opcode := TLMessages.ReleaseAck
d.param := 0.U
d.size := lgSize
d.source := toSource
d.sink := 0.U
d.denied := denied
d.user := DontCare
d.echo := DontCare
d.data := DontCare
d.corrupt := false.B
d
}
// Accesses
def Get(fromAddress: UInt, toSource: UInt, lgSize: UInt) = {
require (client.anySupportGet, s"TileLink: No clients visible from this edge support Gets, but one of these managers would try to issue one: ${manager.managers}")
val legal = client.supportsGet(toSource, lgSize)
val b = Wire(new TLBundleB(bundle))
b.opcode := TLMessages.Get
b.param := 0.U
b.size := lgSize
b.source := toSource
b.address := fromAddress
b.mask := mask(fromAddress, lgSize)
b.data := DontCare
b.corrupt := false.B
(legal, b)
}
def Put(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt): (Bool, TLBundleB) =
Put(fromAddress, toSource, lgSize, data, false.B)
def Put(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, corrupt: Bool): (Bool, TLBundleB) = {
require (client.anySupportPutFull, s"TileLink: No clients visible from this edge support Puts, but one of these managers would try to issue one: ${manager.managers}")
val legal = client.supportsPutFull(toSource, lgSize)
val b = Wire(new TLBundleB(bundle))
b.opcode := TLMessages.PutFullData
b.param := 0.U
b.size := lgSize
b.source := toSource
b.address := fromAddress
b.mask := mask(fromAddress, lgSize)
b.data := data
b.corrupt := corrupt
(legal, b)
}
def Put(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, mask: UInt): (Bool, TLBundleB) =
Put(fromAddress, toSource, lgSize, data, mask, false.B)
def Put(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, mask: UInt, corrupt: Bool): (Bool, TLBundleB) = {
require (client.anySupportPutPartial, s"TileLink: No clients visible from this edge support masked Puts, but one of these managers would try to request one: ${manager.managers}")
val legal = client.supportsPutPartial(toSource, lgSize)
val b = Wire(new TLBundleB(bundle))
b.opcode := TLMessages.PutPartialData
b.param := 0.U
b.size := lgSize
b.source := toSource
b.address := fromAddress
b.mask := mask
b.data := data
b.corrupt := corrupt
(legal, b)
}
def Arithmetic(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, atomic: UInt, corrupt: Bool = false.B) = {
require (client.anySupportArithmetic, s"TileLink: No clients visible from this edge support arithmetic AMOs, but one of these managers would try to request one: ${manager.managers}")
val legal = client.supportsArithmetic(toSource, lgSize)
val b = Wire(new TLBundleB(bundle))
b.opcode := TLMessages.ArithmeticData
b.param := atomic
b.size := lgSize
b.source := toSource
b.address := fromAddress
b.mask := mask(fromAddress, lgSize)
b.data := data
b.corrupt := corrupt
(legal, b)
}
def Logical(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, atomic: UInt, corrupt: Bool = false.B) = {
require (client.anySupportLogical, s"TileLink: No clients visible from this edge support logical AMOs, but one of these managers would try to request one: ${manager.managers}")
val legal = client.supportsLogical(toSource, lgSize)
val b = Wire(new TLBundleB(bundle))
b.opcode := TLMessages.LogicalData
b.param := atomic
b.size := lgSize
b.source := toSource
b.address := fromAddress
b.mask := mask(fromAddress, lgSize)
b.data := data
b.corrupt := corrupt
(legal, b)
}
def Hint(fromAddress: UInt, toSource: UInt, lgSize: UInt, param: UInt) = {
require (client.anySupportHint, s"TileLink: No clients visible from this edge support Hints, but one of these managers would try to request one: ${manager.managers}")
val legal = client.supportsHint(toSource, lgSize)
val b = Wire(new TLBundleB(bundle))
b.opcode := TLMessages.Hint
b.param := param
b.size := lgSize
b.source := toSource
b.address := fromAddress
b.mask := mask(fromAddress, lgSize)
b.data := DontCare
b.corrupt := false.B
(legal, b)
}
def AccessAck(a: TLBundleA): TLBundleD = AccessAck(a.source, a.size)
def AccessAck(a: TLBundleA, denied: Bool): TLBundleD = AccessAck(a.source, a.size, denied)
def AccessAck(toSource: UInt, lgSize: UInt): TLBundleD = AccessAck(toSource, lgSize, false.B)
def AccessAck(toSource: UInt, lgSize: UInt, denied: Bool) = {
val d = Wire(new TLBundleD(bundle))
d.opcode := TLMessages.AccessAck
d.param := 0.U
d.size := lgSize
d.source := toSource
d.sink := 0.U
d.denied := denied
d.user := DontCare
d.echo := DontCare
d.data := DontCare
d.corrupt := false.B
d
}
def AccessAck(a: TLBundleA, data: UInt): TLBundleD = AccessAck(a.source, a.size, data)
def AccessAck(a: TLBundleA, data: UInt, denied: Bool, corrupt: Bool): TLBundleD = AccessAck(a.source, a.size, data, denied, corrupt)
def AccessAck(toSource: UInt, lgSize: UInt, data: UInt): TLBundleD = AccessAck(toSource, lgSize, data, false.B, false.B)
def AccessAck(toSource: UInt, lgSize: UInt, data: UInt, denied: Bool, corrupt: Bool) = {
val d = Wire(new TLBundleD(bundle))
d.opcode := TLMessages.AccessAckData
d.param := 0.U
d.size := lgSize
d.source := toSource
d.sink := 0.U
d.denied := denied
d.user := DontCare
d.echo := DontCare
d.data := data
d.corrupt := corrupt
d
}
def HintAck(a: TLBundleA): TLBundleD = HintAck(a, false.B)
def HintAck(a: TLBundleA, denied: Bool): TLBundleD = HintAck(a.source, a.size, denied)
def HintAck(toSource: UInt, lgSize: UInt): TLBundleD = HintAck(toSource, lgSize, false.B)
def HintAck(toSource: UInt, lgSize: UInt, denied: Bool) = {
val d = Wire(new TLBundleD(bundle))
d.opcode := TLMessages.HintAck
d.param := 0.U
d.size := lgSize
d.source := toSource
d.sink := 0.U
d.denied := denied
d.user := DontCare
d.echo := DontCare
d.data := DontCare
d.corrupt := false.B
d
}
}
| module TLMonitor_11( // @[Monitor.scala:36:7]
input clock, // @[Monitor.scala:36:7]
input reset, // @[Monitor.scala:36:7]
input io_in_a_ready, // @[Monitor.scala:20:14]
input io_in_a_valid, // @[Monitor.scala:20:14]
input [2:0] io_in_a_bits_opcode, // @[Monitor.scala:20:14]
input [3:0] io_in_a_bits_size, // @[Monitor.scala:20:14]
input [31:0] io_in_a_bits_address, // @[Monitor.scala:20:14]
input [7:0] io_in_a_bits_mask, // @[Monitor.scala:20:14]
input [63:0] io_in_a_bits_data, // @[Monitor.scala:20:14]
input io_in_a_bits_corrupt, // @[Monitor.scala:20:14]
input io_in_d_ready, // @[Monitor.scala:20:14]
input io_in_d_valid, // @[Monitor.scala:20:14]
input [2:0] io_in_d_bits_opcode, // @[Monitor.scala:20:14]
input [1:0] io_in_d_bits_param, // @[Monitor.scala:20:14]
input [3:0] io_in_d_bits_size, // @[Monitor.scala:20:14]
input [3:0] io_in_d_bits_sink, // @[Monitor.scala:20:14]
input io_in_d_bits_denied, // @[Monitor.scala:20:14]
input [63:0] io_in_d_bits_data, // @[Monitor.scala:20:14]
input io_in_d_bits_corrupt // @[Monitor.scala:20:14]
);
wire [31:0] _plusarg_reader_1_out; // @[PlusArg.scala:80:11]
wire [31:0] _plusarg_reader_out; // @[PlusArg.scala:80:11]
wire io_in_a_ready_0 = io_in_a_ready; // @[Monitor.scala:36:7]
wire io_in_a_valid_0 = io_in_a_valid; // @[Monitor.scala:36:7]
wire [2:0] io_in_a_bits_opcode_0 = io_in_a_bits_opcode; // @[Monitor.scala:36:7]
wire [3:0] io_in_a_bits_size_0 = io_in_a_bits_size; // @[Monitor.scala:36:7]
wire [31:0] io_in_a_bits_address_0 = io_in_a_bits_address; // @[Monitor.scala:36:7]
wire [7:0] io_in_a_bits_mask_0 = io_in_a_bits_mask; // @[Monitor.scala:36:7]
wire [63:0] io_in_a_bits_data_0 = io_in_a_bits_data; // @[Monitor.scala:36:7]
wire io_in_a_bits_corrupt_0 = io_in_a_bits_corrupt; // @[Monitor.scala:36:7]
wire io_in_d_ready_0 = io_in_d_ready; // @[Monitor.scala:36:7]
wire io_in_d_valid_0 = io_in_d_valid; // @[Monitor.scala:36:7]
wire [2:0] io_in_d_bits_opcode_0 = io_in_d_bits_opcode; // @[Monitor.scala:36:7]
wire [1:0] io_in_d_bits_param_0 = io_in_d_bits_param; // @[Monitor.scala:36:7]
wire [3:0] io_in_d_bits_size_0 = io_in_d_bits_size; // @[Monitor.scala:36:7]
wire [3:0] io_in_d_bits_sink_0 = io_in_d_bits_sink; // @[Monitor.scala:36:7]
wire io_in_d_bits_denied_0 = io_in_d_bits_denied; // @[Monitor.scala:36:7]
wire [63:0] io_in_d_bits_data_0 = io_in_d_bits_data; // @[Monitor.scala:36:7]
wire io_in_d_bits_corrupt_0 = io_in_d_bits_corrupt; // @[Monitor.scala:36:7]
wire io_in_a_bits_source = 1'h0; // @[Monitor.scala:36:7]
wire io_in_d_bits_source = 1'h0; // @[Monitor.scala:36:7]
wire _c_first_WIRE_ready = 1'h0; // @[Bundles.scala:265:74]
wire _c_first_WIRE_valid = 1'h0; // @[Bundles.scala:265:74]
wire _c_first_WIRE_bits_source = 1'h0; // @[Bundles.scala:265:74]
wire _c_first_WIRE_bits_corrupt = 1'h0; // @[Bundles.scala:265:74]
wire _c_first_WIRE_1_ready = 1'h0; // @[Bundles.scala:265:61]
wire _c_first_WIRE_1_valid = 1'h0; // @[Bundles.scala:265:61]
wire _c_first_WIRE_1_bits_source = 1'h0; // @[Bundles.scala:265:61]
wire _c_first_WIRE_1_bits_corrupt = 1'h0; // @[Bundles.scala:265:61]
wire _c_first_WIRE_2_ready = 1'h0; // @[Bundles.scala:265:74]
wire _c_first_WIRE_2_valid = 1'h0; // @[Bundles.scala:265:74]
wire _c_first_WIRE_2_bits_source = 1'h0; // @[Bundles.scala:265:74]
wire _c_first_WIRE_2_bits_corrupt = 1'h0; // @[Bundles.scala:265:74]
wire _c_first_WIRE_3_ready = 1'h0; // @[Bundles.scala:265:61]
wire _c_first_WIRE_3_valid = 1'h0; // @[Bundles.scala:265:61]
wire _c_first_WIRE_3_bits_source = 1'h0; // @[Bundles.scala:265:61]
wire _c_first_WIRE_3_bits_corrupt = 1'h0; // @[Bundles.scala:265:61]
wire _c_first_T = 1'h0; // @[Decoupled.scala:51:35]
wire c_first_beats1_opdata = 1'h0; // @[Edges.scala:102:36]
wire _c_first_last_T = 1'h0; // @[Edges.scala:232:25]
wire c_first_done = 1'h0; // @[Edges.scala:233:22]
wire c_set = 1'h0; // @[Monitor.scala:738:34]
wire c_set_wo_ready = 1'h0; // @[Monitor.scala:739:34]
wire _c_set_wo_ready_WIRE_ready = 1'h0; // @[Bundles.scala:265:74]
wire _c_set_wo_ready_WIRE_valid = 1'h0; // @[Bundles.scala:265:74]
wire _c_set_wo_ready_WIRE_bits_source = 1'h0; // @[Bundles.scala:265:74]
wire _c_set_wo_ready_WIRE_bits_corrupt = 1'h0; // @[Bundles.scala:265:74]
wire _c_set_wo_ready_WIRE_1_ready = 1'h0; // @[Bundles.scala:265:61]
wire _c_set_wo_ready_WIRE_1_valid = 1'h0; // @[Bundles.scala:265:61]
wire _c_set_wo_ready_WIRE_1_bits_source = 1'h0; // @[Bundles.scala:265:61]
wire _c_set_wo_ready_WIRE_1_bits_corrupt = 1'h0; // @[Bundles.scala:265:61]
wire _c_set_WIRE_ready = 1'h0; // @[Bundles.scala:265:74]
wire _c_set_WIRE_valid = 1'h0; // @[Bundles.scala:265:74]
wire _c_set_WIRE_bits_source = 1'h0; // @[Bundles.scala:265:74]
wire _c_set_WIRE_bits_corrupt = 1'h0; // @[Bundles.scala:265:74]
wire _c_set_WIRE_1_ready = 1'h0; // @[Bundles.scala:265:61]
wire _c_set_WIRE_1_valid = 1'h0; // @[Bundles.scala:265:61]
wire _c_set_WIRE_1_bits_source = 1'h0; // @[Bundles.scala:265:61]
wire _c_set_WIRE_1_bits_corrupt = 1'h0; // @[Bundles.scala:265:61]
wire _c_opcodes_set_interm_WIRE_ready = 1'h0; // @[Bundles.scala:265:74]
wire _c_opcodes_set_interm_WIRE_valid = 1'h0; // @[Bundles.scala:265:74]
wire _c_opcodes_set_interm_WIRE_bits_source = 1'h0; // @[Bundles.scala:265:74]
wire _c_opcodes_set_interm_WIRE_bits_corrupt = 1'h0; // @[Bundles.scala:265:74]
wire _c_opcodes_set_interm_WIRE_1_ready = 1'h0; // @[Bundles.scala:265:61]
wire _c_opcodes_set_interm_WIRE_1_valid = 1'h0; // @[Bundles.scala:265:61]
wire _c_opcodes_set_interm_WIRE_1_bits_source = 1'h0; // @[Bundles.scala:265:61]
wire _c_opcodes_set_interm_WIRE_1_bits_corrupt = 1'h0; // @[Bundles.scala:265:61]
wire _c_sizes_set_interm_WIRE_ready = 1'h0; // @[Bundles.scala:265:74]
wire _c_sizes_set_interm_WIRE_valid = 1'h0; // @[Bundles.scala:265:74]
wire _c_sizes_set_interm_WIRE_bits_source = 1'h0; // @[Bundles.scala:265:74]
wire _c_sizes_set_interm_WIRE_bits_corrupt = 1'h0; // @[Bundles.scala:265:74]
wire _c_sizes_set_interm_WIRE_1_ready = 1'h0; // @[Bundles.scala:265:61]
wire _c_sizes_set_interm_WIRE_1_valid = 1'h0; // @[Bundles.scala:265:61]
wire _c_sizes_set_interm_WIRE_1_bits_source = 1'h0; // @[Bundles.scala:265:61]
wire _c_sizes_set_interm_WIRE_1_bits_corrupt = 1'h0; // @[Bundles.scala:265:61]
wire _c_opcodes_set_WIRE_ready = 1'h0; // @[Bundles.scala:265:74]
wire _c_opcodes_set_WIRE_valid = 1'h0; // @[Bundles.scala:265:74]
wire _c_opcodes_set_WIRE_bits_source = 1'h0; // @[Bundles.scala:265:74]
wire _c_opcodes_set_WIRE_bits_corrupt = 1'h0; // @[Bundles.scala:265:74]
wire _c_opcodes_set_WIRE_1_ready = 1'h0; // @[Bundles.scala:265:61]
wire _c_opcodes_set_WIRE_1_valid = 1'h0; // @[Bundles.scala:265:61]
wire _c_opcodes_set_WIRE_1_bits_source = 1'h0; // @[Bundles.scala:265:61]
wire _c_opcodes_set_WIRE_1_bits_corrupt = 1'h0; // @[Bundles.scala:265:61]
wire _c_sizes_set_WIRE_ready = 1'h0; // @[Bundles.scala:265:74]
wire _c_sizes_set_WIRE_valid = 1'h0; // @[Bundles.scala:265:74]
wire _c_sizes_set_WIRE_bits_source = 1'h0; // @[Bundles.scala:265:74]
wire _c_sizes_set_WIRE_bits_corrupt = 1'h0; // @[Bundles.scala:265:74]
wire _c_sizes_set_WIRE_1_ready = 1'h0; // @[Bundles.scala:265:61]
wire _c_sizes_set_WIRE_1_valid = 1'h0; // @[Bundles.scala:265:61]
wire _c_sizes_set_WIRE_1_bits_source = 1'h0; // @[Bundles.scala:265:61]
wire _c_sizes_set_WIRE_1_bits_corrupt = 1'h0; // @[Bundles.scala:265:61]
wire _c_probe_ack_WIRE_ready = 1'h0; // @[Bundles.scala:265:74]
wire _c_probe_ack_WIRE_valid = 1'h0; // @[Bundles.scala:265:74]
wire _c_probe_ack_WIRE_bits_source = 1'h0; // @[Bundles.scala:265:74]
wire _c_probe_ack_WIRE_bits_corrupt = 1'h0; // @[Bundles.scala:265:74]
wire _c_probe_ack_WIRE_1_ready = 1'h0; // @[Bundles.scala:265:61]
wire _c_probe_ack_WIRE_1_valid = 1'h0; // @[Bundles.scala:265:61]
wire _c_probe_ack_WIRE_1_bits_source = 1'h0; // @[Bundles.scala:265:61]
wire _c_probe_ack_WIRE_1_bits_corrupt = 1'h0; // @[Bundles.scala:265:61]
wire _c_probe_ack_T = 1'h0; // @[Monitor.scala:772:47]
wire _c_probe_ack_WIRE_2_ready = 1'h0; // @[Bundles.scala:265:74]
wire _c_probe_ack_WIRE_2_valid = 1'h0; // @[Bundles.scala:265:74]
wire _c_probe_ack_WIRE_2_bits_source = 1'h0; // @[Bundles.scala:265:74]
wire _c_probe_ack_WIRE_2_bits_corrupt = 1'h0; // @[Bundles.scala:265:74]
wire _c_probe_ack_WIRE_3_ready = 1'h0; // @[Bundles.scala:265:61]
wire _c_probe_ack_WIRE_3_valid = 1'h0; // @[Bundles.scala:265:61]
wire _c_probe_ack_WIRE_3_bits_source = 1'h0; // @[Bundles.scala:265:61]
wire _c_probe_ack_WIRE_3_bits_corrupt = 1'h0; // @[Bundles.scala:265:61]
wire _c_probe_ack_T_1 = 1'h0; // @[Monitor.scala:772:95]
wire c_probe_ack = 1'h0; // @[Monitor.scala:772:71]
wire _same_cycle_resp_WIRE_ready = 1'h0; // @[Bundles.scala:265:74]
wire _same_cycle_resp_WIRE_valid = 1'h0; // @[Bundles.scala:265:74]
wire _same_cycle_resp_WIRE_bits_source = 1'h0; // @[Bundles.scala:265:74]
wire _same_cycle_resp_WIRE_bits_corrupt = 1'h0; // @[Bundles.scala:265:74]
wire _same_cycle_resp_WIRE_1_ready = 1'h0; // @[Bundles.scala:265:61]
wire _same_cycle_resp_WIRE_1_valid = 1'h0; // @[Bundles.scala:265:61]
wire _same_cycle_resp_WIRE_1_bits_source = 1'h0; // @[Bundles.scala:265:61]
wire _same_cycle_resp_WIRE_1_bits_corrupt = 1'h0; // @[Bundles.scala:265:61]
wire _same_cycle_resp_T_3 = 1'h0; // @[Monitor.scala:795:44]
wire _same_cycle_resp_WIRE_2_ready = 1'h0; // @[Bundles.scala:265:74]
wire _same_cycle_resp_WIRE_2_valid = 1'h0; // @[Bundles.scala:265:74]
wire _same_cycle_resp_WIRE_2_bits_source = 1'h0; // @[Bundles.scala:265:74]
wire _same_cycle_resp_WIRE_2_bits_corrupt = 1'h0; // @[Bundles.scala:265:74]
wire _same_cycle_resp_WIRE_3_ready = 1'h0; // @[Bundles.scala:265:61]
wire _same_cycle_resp_WIRE_3_valid = 1'h0; // @[Bundles.scala:265:61]
wire _same_cycle_resp_WIRE_3_bits_source = 1'h0; // @[Bundles.scala:265:61]
wire _same_cycle_resp_WIRE_3_bits_corrupt = 1'h0; // @[Bundles.scala:265:61]
wire _same_cycle_resp_T_4 = 1'h0; // @[Edges.scala:68:36]
wire _same_cycle_resp_T_5 = 1'h0; // @[Edges.scala:68:51]
wire _same_cycle_resp_T_6 = 1'h0; // @[Edges.scala:68:40]
wire _same_cycle_resp_T_7 = 1'h0; // @[Monitor.scala:795:55]
wire _same_cycle_resp_WIRE_4_ready = 1'h0; // @[Bundles.scala:265:74]
wire _same_cycle_resp_WIRE_4_valid = 1'h0; // @[Bundles.scala:265:74]
wire _same_cycle_resp_WIRE_4_bits_source = 1'h0; // @[Bundles.scala:265:74]
wire _same_cycle_resp_WIRE_4_bits_corrupt = 1'h0; // @[Bundles.scala:265:74]
wire _same_cycle_resp_WIRE_5_ready = 1'h0; // @[Bundles.scala:265:61]
wire _same_cycle_resp_WIRE_5_valid = 1'h0; // @[Bundles.scala:265:61]
wire _same_cycle_resp_WIRE_5_bits_source = 1'h0; // @[Bundles.scala:265:61]
wire _same_cycle_resp_WIRE_5_bits_corrupt = 1'h0; // @[Bundles.scala:265:61]
wire same_cycle_resp_1 = 1'h0; // @[Monitor.scala:795:88]
wire _source_ok_T = 1'h1; // @[Parameters.scala:46:9]
wire _source_ok_WIRE_0 = 1'h1; // @[Parameters.scala:1138:31]
wire _source_ok_T_1 = 1'h1; // @[Parameters.scala:46:9]
wire _source_ok_WIRE_1_0 = 1'h1; // @[Parameters.scala:1138:31]
wire sink_ok = 1'h1; // @[Monitor.scala:309:31]
wire _same_cycle_resp_T_2 = 1'h1; // @[Monitor.scala:684:113]
wire c_first = 1'h1; // @[Edges.scala:231:25]
wire _c_first_last_T_1 = 1'h1; // @[Edges.scala:232:43]
wire c_first_last = 1'h1; // @[Edges.scala:232:33]
wire _same_cycle_resp_T_8 = 1'h1; // @[Monitor.scala:795:113]
wire [8:0] c_first_beats1_decode = 9'h0; // @[Edges.scala:220:59]
wire [8:0] c_first_beats1 = 9'h0; // @[Edges.scala:221:14]
wire [8:0] _c_first_count_T = 9'h0; // @[Edges.scala:234:27]
wire [8:0] c_first_count = 9'h0; // @[Edges.scala:234:25]
wire [8:0] _c_first_counter_T = 9'h0; // @[Edges.scala:236:21]
wire [8:0] c_first_counter1 = 9'h1FF; // @[Edges.scala:230:28]
wire [9:0] _c_first_counter1_T = 10'h3FF; // @[Edges.scala:230:28]
wire [2:0] io_in_a_bits_param = 3'h0; // @[Monitor.scala:36:7]
wire [2:0] responseMap_0 = 3'h0; // @[Monitor.scala:643:42]
wire [2:0] responseMap_1 = 3'h0; // @[Monitor.scala:643:42]
wire [2:0] responseMapSecondOption_0 = 3'h0; // @[Monitor.scala:644:42]
wire [2:0] responseMapSecondOption_1 = 3'h0; // @[Monitor.scala:644:42]
wire [2:0] _c_first_WIRE_bits_opcode = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_first_WIRE_bits_param = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_first_WIRE_1_bits_opcode = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _c_first_WIRE_1_bits_param = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _c_first_WIRE_2_bits_opcode = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_first_WIRE_2_bits_param = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_first_WIRE_3_bits_opcode = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _c_first_WIRE_3_bits_param = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _c_set_wo_ready_WIRE_bits_opcode = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_set_wo_ready_WIRE_bits_param = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_set_wo_ready_WIRE_1_bits_opcode = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _c_set_wo_ready_WIRE_1_bits_param = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _c_set_WIRE_bits_opcode = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_set_WIRE_bits_param = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_set_WIRE_1_bits_opcode = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _c_set_WIRE_1_bits_param = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _c_opcodes_set_interm_WIRE_bits_opcode = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_opcodes_set_interm_WIRE_bits_param = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_opcodes_set_interm_WIRE_1_bits_opcode = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _c_opcodes_set_interm_WIRE_1_bits_param = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _c_sizes_set_interm_WIRE_bits_opcode = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_sizes_set_interm_WIRE_bits_param = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_sizes_set_interm_WIRE_1_bits_opcode = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _c_sizes_set_interm_WIRE_1_bits_param = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _c_opcodes_set_WIRE_bits_opcode = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_opcodes_set_WIRE_bits_param = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_opcodes_set_WIRE_1_bits_opcode = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _c_opcodes_set_WIRE_1_bits_param = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _c_sizes_set_WIRE_bits_opcode = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_sizes_set_WIRE_bits_param = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_sizes_set_WIRE_1_bits_opcode = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _c_sizes_set_WIRE_1_bits_param = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _c_probe_ack_WIRE_bits_opcode = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_probe_ack_WIRE_bits_param = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_probe_ack_WIRE_1_bits_opcode = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _c_probe_ack_WIRE_1_bits_param = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _c_probe_ack_WIRE_2_bits_opcode = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_probe_ack_WIRE_2_bits_param = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_probe_ack_WIRE_3_bits_opcode = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _c_probe_ack_WIRE_3_bits_param = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _same_cycle_resp_WIRE_bits_opcode = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _same_cycle_resp_WIRE_bits_param = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _same_cycle_resp_WIRE_1_bits_opcode = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _same_cycle_resp_WIRE_1_bits_param = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _same_cycle_resp_WIRE_2_bits_opcode = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _same_cycle_resp_WIRE_2_bits_param = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _same_cycle_resp_WIRE_3_bits_opcode = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _same_cycle_resp_WIRE_3_bits_param = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _same_cycle_resp_WIRE_4_bits_opcode = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _same_cycle_resp_WIRE_4_bits_param = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _same_cycle_resp_WIRE_5_bits_opcode = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _same_cycle_resp_WIRE_5_bits_param = 3'h0; // @[Bundles.scala:265:61]
wire [63:0] _c_first_WIRE_bits_data = 64'h0; // @[Bundles.scala:265:74]
wire [63:0] _c_first_WIRE_1_bits_data = 64'h0; // @[Bundles.scala:265:61]
wire [63:0] _c_first_WIRE_2_bits_data = 64'h0; // @[Bundles.scala:265:74]
wire [63:0] _c_first_WIRE_3_bits_data = 64'h0; // @[Bundles.scala:265:61]
wire [63:0] _c_set_wo_ready_WIRE_bits_data = 64'h0; // @[Bundles.scala:265:74]
wire [63:0] _c_set_wo_ready_WIRE_1_bits_data = 64'h0; // @[Bundles.scala:265:61]
wire [63:0] _c_set_WIRE_bits_data = 64'h0; // @[Bundles.scala:265:74]
wire [63:0] _c_set_WIRE_1_bits_data = 64'h0; // @[Bundles.scala:265:61]
wire [63:0] _c_opcodes_set_interm_WIRE_bits_data = 64'h0; // @[Bundles.scala:265:74]
wire [63:0] _c_opcodes_set_interm_WIRE_1_bits_data = 64'h0; // @[Bundles.scala:265:61]
wire [63:0] _c_sizes_set_interm_WIRE_bits_data = 64'h0; // @[Bundles.scala:265:74]
wire [63:0] _c_sizes_set_interm_WIRE_1_bits_data = 64'h0; // @[Bundles.scala:265:61]
wire [63:0] _c_opcodes_set_WIRE_bits_data = 64'h0; // @[Bundles.scala:265:74]
wire [63:0] _c_opcodes_set_WIRE_1_bits_data = 64'h0; // @[Bundles.scala:265:61]
wire [63:0] _c_sizes_set_WIRE_bits_data = 64'h0; // @[Bundles.scala:265:74]
wire [63:0] _c_sizes_set_WIRE_1_bits_data = 64'h0; // @[Bundles.scala:265:61]
wire [63:0] _c_probe_ack_WIRE_bits_data = 64'h0; // @[Bundles.scala:265:74]
wire [63:0] _c_probe_ack_WIRE_1_bits_data = 64'h0; // @[Bundles.scala:265:61]
wire [63:0] _c_probe_ack_WIRE_2_bits_data = 64'h0; // @[Bundles.scala:265:74]
wire [63:0] _c_probe_ack_WIRE_3_bits_data = 64'h0; // @[Bundles.scala:265:61]
wire [63:0] _same_cycle_resp_WIRE_bits_data = 64'h0; // @[Bundles.scala:265:74]
wire [63:0] _same_cycle_resp_WIRE_1_bits_data = 64'h0; // @[Bundles.scala:265:61]
wire [63:0] _same_cycle_resp_WIRE_2_bits_data = 64'h0; // @[Bundles.scala:265:74]
wire [63:0] _same_cycle_resp_WIRE_3_bits_data = 64'h0; // @[Bundles.scala:265:61]
wire [63:0] _same_cycle_resp_WIRE_4_bits_data = 64'h0; // @[Bundles.scala:265:74]
wire [63:0] _same_cycle_resp_WIRE_5_bits_data = 64'h0; // @[Bundles.scala:265:61]
wire [31:0] _c_first_WIRE_bits_address = 32'h0; // @[Bundles.scala:265:74]
wire [31:0] _c_first_WIRE_1_bits_address = 32'h0; // @[Bundles.scala:265:61]
wire [31:0] _c_first_WIRE_2_bits_address = 32'h0; // @[Bundles.scala:265:74]
wire [31:0] _c_first_WIRE_3_bits_address = 32'h0; // @[Bundles.scala:265:61]
wire [31:0] _c_set_wo_ready_WIRE_bits_address = 32'h0; // @[Bundles.scala:265:74]
wire [31:0] _c_set_wo_ready_WIRE_1_bits_address = 32'h0; // @[Bundles.scala:265:61]
wire [31:0] _c_set_WIRE_bits_address = 32'h0; // @[Bundles.scala:265:74]
wire [31:0] _c_set_WIRE_1_bits_address = 32'h0; // @[Bundles.scala:265:61]
wire [31:0] _c_opcodes_set_interm_WIRE_bits_address = 32'h0; // @[Bundles.scala:265:74]
wire [31:0] _c_opcodes_set_interm_WIRE_1_bits_address = 32'h0; // @[Bundles.scala:265:61]
wire [31:0] _c_sizes_set_interm_WIRE_bits_address = 32'h0; // @[Bundles.scala:265:74]
wire [31:0] _c_sizes_set_interm_WIRE_1_bits_address = 32'h0; // @[Bundles.scala:265:61]
wire [31:0] _c_opcodes_set_WIRE_bits_address = 32'h0; // @[Bundles.scala:265:74]
wire [31:0] _c_opcodes_set_WIRE_1_bits_address = 32'h0; // @[Bundles.scala:265:61]
wire [31:0] _c_sizes_set_WIRE_bits_address = 32'h0; // @[Bundles.scala:265:74]
wire [31:0] _c_sizes_set_WIRE_1_bits_address = 32'h0; // @[Bundles.scala:265:61]
wire [31:0] _c_probe_ack_WIRE_bits_address = 32'h0; // @[Bundles.scala:265:74]
wire [31:0] _c_probe_ack_WIRE_1_bits_address = 32'h0; // @[Bundles.scala:265:61]
wire [31:0] _c_probe_ack_WIRE_2_bits_address = 32'h0; // @[Bundles.scala:265:74]
wire [31:0] _c_probe_ack_WIRE_3_bits_address = 32'h0; // @[Bundles.scala:265:61]
wire [31:0] _same_cycle_resp_WIRE_bits_address = 32'h0; // @[Bundles.scala:265:74]
wire [31:0] _same_cycle_resp_WIRE_1_bits_address = 32'h0; // @[Bundles.scala:265:61]
wire [31:0] _same_cycle_resp_WIRE_2_bits_address = 32'h0; // @[Bundles.scala:265:74]
wire [31:0] _same_cycle_resp_WIRE_3_bits_address = 32'h0; // @[Bundles.scala:265:61]
wire [31:0] _same_cycle_resp_WIRE_4_bits_address = 32'h0; // @[Bundles.scala:265:74]
wire [31:0] _same_cycle_resp_WIRE_5_bits_address = 32'h0; // @[Bundles.scala:265:61]
wire [3:0] _a_opcode_lookup_T = 4'h0; // @[Monitor.scala:637:69]
wire [3:0] _a_size_lookup_T = 4'h0; // @[Monitor.scala:641:65]
wire [3:0] _a_opcodes_set_T = 4'h0; // @[Monitor.scala:659:79]
wire [3:0] _a_sizes_set_T = 4'h0; // @[Monitor.scala:660:77]
wire [3:0] _d_opcodes_clr_T_4 = 4'h0; // @[Monitor.scala:680:101]
wire [3:0] _d_sizes_clr_T_4 = 4'h0; // @[Monitor.scala:681:99]
wire [3:0] _c_first_WIRE_bits_size = 4'h0; // @[Bundles.scala:265:74]
wire [3:0] _c_first_WIRE_1_bits_size = 4'h0; // @[Bundles.scala:265:61]
wire [3:0] _c_first_WIRE_2_bits_size = 4'h0; // @[Bundles.scala:265:74]
wire [3:0] _c_first_WIRE_3_bits_size = 4'h0; // @[Bundles.scala:265:61]
wire [3:0] c_opcodes_set = 4'h0; // @[Monitor.scala:740:34]
wire [3:0] _c_opcode_lookup_T = 4'h0; // @[Monitor.scala:749:69]
wire [3:0] _c_size_lookup_T = 4'h0; // @[Monitor.scala:750:67]
wire [3:0] c_opcodes_set_interm = 4'h0; // @[Monitor.scala:754:40]
wire [3:0] _c_set_wo_ready_WIRE_bits_size = 4'h0; // @[Bundles.scala:265:74]
wire [3:0] _c_set_wo_ready_WIRE_1_bits_size = 4'h0; // @[Bundles.scala:265:61]
wire [3:0] _c_set_WIRE_bits_size = 4'h0; // @[Bundles.scala:265:74]
wire [3:0] _c_set_WIRE_1_bits_size = 4'h0; // @[Bundles.scala:265:61]
wire [3:0] _c_opcodes_set_interm_WIRE_bits_size = 4'h0; // @[Bundles.scala:265:74]
wire [3:0] _c_opcodes_set_interm_WIRE_1_bits_size = 4'h0; // @[Bundles.scala:265:61]
wire [3:0] _c_opcodes_set_interm_T = 4'h0; // @[Monitor.scala:765:53]
wire [3:0] _c_sizes_set_interm_WIRE_bits_size = 4'h0; // @[Bundles.scala:265:74]
wire [3:0] _c_sizes_set_interm_WIRE_1_bits_size = 4'h0; // @[Bundles.scala:265:61]
wire [3:0] _c_opcodes_set_WIRE_bits_size = 4'h0; // @[Bundles.scala:265:74]
wire [3:0] _c_opcodes_set_WIRE_1_bits_size = 4'h0; // @[Bundles.scala:265:61]
wire [3:0] _c_opcodes_set_T = 4'h0; // @[Monitor.scala:767:79]
wire [3:0] _c_sizes_set_WIRE_bits_size = 4'h0; // @[Bundles.scala:265:74]
wire [3:0] _c_sizes_set_WIRE_1_bits_size = 4'h0; // @[Bundles.scala:265:61]
wire [3:0] _c_sizes_set_T = 4'h0; // @[Monitor.scala:768:77]
wire [3:0] _c_probe_ack_WIRE_bits_size = 4'h0; // @[Bundles.scala:265:74]
wire [3:0] _c_probe_ack_WIRE_1_bits_size = 4'h0; // @[Bundles.scala:265:61]
wire [3:0] _c_probe_ack_WIRE_2_bits_size = 4'h0; // @[Bundles.scala:265:74]
wire [3:0] _c_probe_ack_WIRE_3_bits_size = 4'h0; // @[Bundles.scala:265:61]
wire [3:0] _d_opcodes_clr_T_10 = 4'h0; // @[Monitor.scala:790:101]
wire [3:0] _d_sizes_clr_T_10 = 4'h0; // @[Monitor.scala:791:99]
wire [3:0] _same_cycle_resp_WIRE_bits_size = 4'h0; // @[Bundles.scala:265:74]
wire [3:0] _same_cycle_resp_WIRE_1_bits_size = 4'h0; // @[Bundles.scala:265:61]
wire [3:0] _same_cycle_resp_WIRE_2_bits_size = 4'h0; // @[Bundles.scala:265:74]
wire [3:0] _same_cycle_resp_WIRE_3_bits_size = 4'h0; // @[Bundles.scala:265:61]
wire [3:0] _same_cycle_resp_WIRE_4_bits_size = 4'h0; // @[Bundles.scala:265:74]
wire [3:0] _same_cycle_resp_WIRE_5_bits_size = 4'h0; // @[Bundles.scala:265:61]
wire [30:0] _d_sizes_clr_T_5 = 31'hFF; // @[Monitor.scala:681:74]
wire [30:0] _d_sizes_clr_T_11 = 31'hFF; // @[Monitor.scala:791:74]
wire [15:0] _a_size_lookup_T_5 = 16'hFF; // @[Monitor.scala:612:57]
wire [15:0] _d_sizes_clr_T_3 = 16'hFF; // @[Monitor.scala:612:57]
wire [15:0] _c_size_lookup_T_5 = 16'hFF; // @[Monitor.scala:724:57]
wire [15:0] _d_sizes_clr_T_9 = 16'hFF; // @[Monitor.scala:724:57]
wire [16:0] _a_size_lookup_T_4 = 17'hFF; // @[Monitor.scala:612:57]
wire [16:0] _d_sizes_clr_T_2 = 17'hFF; // @[Monitor.scala:612:57]
wire [16:0] _c_size_lookup_T_4 = 17'hFF; // @[Monitor.scala:724:57]
wire [16:0] _d_sizes_clr_T_8 = 17'hFF; // @[Monitor.scala:724:57]
wire [15:0] _a_size_lookup_T_3 = 16'h100; // @[Monitor.scala:612:51]
wire [15:0] _d_sizes_clr_T_1 = 16'h100; // @[Monitor.scala:612:51]
wire [15:0] _c_size_lookup_T_3 = 16'h100; // @[Monitor.scala:724:51]
wire [15:0] _d_sizes_clr_T_7 = 16'h100; // @[Monitor.scala:724:51]
wire [30:0] _d_opcodes_clr_T_5 = 31'hF; // @[Monitor.scala:680:76]
wire [30:0] _d_opcodes_clr_T_11 = 31'hF; // @[Monitor.scala:790:76]
wire [15:0] _a_opcode_lookup_T_5 = 16'hF; // @[Monitor.scala:612:57]
wire [15:0] _d_opcodes_clr_T_3 = 16'hF; // @[Monitor.scala:612:57]
wire [15:0] _c_opcode_lookup_T_5 = 16'hF; // @[Monitor.scala:724:57]
wire [15:0] _d_opcodes_clr_T_9 = 16'hF; // @[Monitor.scala:724:57]
wire [16:0] _a_opcode_lookup_T_4 = 17'hF; // @[Monitor.scala:612:57]
wire [16:0] _d_opcodes_clr_T_2 = 17'hF; // @[Monitor.scala:612:57]
wire [16:0] _c_opcode_lookup_T_4 = 17'hF; // @[Monitor.scala:724:57]
wire [16:0] _d_opcodes_clr_T_8 = 17'hF; // @[Monitor.scala:724:57]
wire [15:0] _a_opcode_lookup_T_3 = 16'h10; // @[Monitor.scala:612:51]
wire [15:0] _d_opcodes_clr_T_1 = 16'h10; // @[Monitor.scala:612:51]
wire [15:0] _c_opcode_lookup_T_3 = 16'h10; // @[Monitor.scala:724:51]
wire [15:0] _d_opcodes_clr_T_7 = 16'h10; // @[Monitor.scala:724:51]
wire [1:0] _a_set_wo_ready_T = 2'h1; // @[OneHot.scala:58:35]
wire [1:0] _a_set_T = 2'h1; // @[OneHot.scala:58:35]
wire [1:0] _d_clr_wo_ready_T = 2'h1; // @[OneHot.scala:58:35]
wire [1:0] _d_clr_T = 2'h1; // @[OneHot.scala:58:35]
wire [1:0] _c_set_wo_ready_T = 2'h1; // @[OneHot.scala:58:35]
wire [1:0] _c_set_T = 2'h1; // @[OneHot.scala:58:35]
wire [1:0] _d_clr_wo_ready_T_1 = 2'h1; // @[OneHot.scala:58:35]
wire [1:0] _d_clr_T_1 = 2'h1; // @[OneHot.scala:58:35]
wire [19:0] _c_sizes_set_T_1 = 20'h0; // @[Monitor.scala:768:52]
wire [18:0] _c_opcodes_set_T_1 = 19'h0; // @[Monitor.scala:767:54]
wire [4:0] _c_sizes_set_interm_T_1 = 5'h1; // @[Monitor.scala:766:59]
wire [4:0] c_sizes_set_interm = 5'h0; // @[Monitor.scala:755:40]
wire [4:0] _c_sizes_set_interm_T = 5'h0; // @[Monitor.scala:766:51]
wire [3:0] _c_opcodes_set_interm_T_1 = 4'h1; // @[Monitor.scala:765:61]
wire [7:0] c_sizes_set = 8'h0; // @[Monitor.scala:741:34]
wire [11:0] _c_first_beats1_decode_T_2 = 12'h0; // @[package.scala:243:46]
wire [11:0] _c_first_beats1_decode_T_1 = 12'hFFF; // @[package.scala:243:76]
wire [26:0] _c_first_beats1_decode_T = 27'hFFF; // @[package.scala:243:71]
wire [2:0] responseMap_6 = 3'h4; // @[Monitor.scala:643:42]
wire [2:0] responseMap_7 = 3'h4; // @[Monitor.scala:643:42]
wire [2:0] responseMapSecondOption_7 = 3'h4; // @[Monitor.scala:644:42]
wire [2:0] responseMapSecondOption_6 = 3'h5; // @[Monitor.scala:644:42]
wire [2:0] responseMap_5 = 3'h2; // @[Monitor.scala:643:42]
wire [2:0] responseMapSecondOption_5 = 3'h2; // @[Monitor.scala:644:42]
wire [2:0] responseMap_2 = 3'h1; // @[Monitor.scala:643:42]
wire [2:0] responseMap_3 = 3'h1; // @[Monitor.scala:643:42]
wire [2:0] responseMap_4 = 3'h1; // @[Monitor.scala:643:42]
wire [2:0] responseMapSecondOption_2 = 3'h1; // @[Monitor.scala:644:42]
wire [2:0] responseMapSecondOption_3 = 3'h1; // @[Monitor.scala:644:42]
wire [2:0] responseMapSecondOption_4 = 3'h1; // @[Monitor.scala:644:42]
wire [3:0] _a_size_lookup_T_2 = 4'h8; // @[Monitor.scala:641:117]
wire [3:0] _d_sizes_clr_T = 4'h8; // @[Monitor.scala:681:48]
wire [3:0] _c_size_lookup_T_2 = 4'h8; // @[Monitor.scala:750:119]
wire [3:0] _d_sizes_clr_T_6 = 4'h8; // @[Monitor.scala:791:48]
wire [3:0] _a_opcode_lookup_T_2 = 4'h4; // @[Monitor.scala:637:123]
wire [3:0] _d_opcodes_clr_T = 4'h4; // @[Monitor.scala:680:48]
wire [3:0] _c_opcode_lookup_T_2 = 4'h4; // @[Monitor.scala:749:123]
wire [3:0] _d_opcodes_clr_T_6 = 4'h4; // @[Monitor.scala:790:48]
wire [3:0] _mask_sizeOH_T = io_in_a_bits_size_0; // @[Misc.scala:202:34]
wire [26:0] _GEN = 27'hFFF << io_in_a_bits_size_0; // @[package.scala:243:71]
wire [26:0] _is_aligned_mask_T; // @[package.scala:243:71]
assign _is_aligned_mask_T = _GEN; // @[package.scala:243:71]
wire [26:0] _a_first_beats1_decode_T; // @[package.scala:243:71]
assign _a_first_beats1_decode_T = _GEN; // @[package.scala:243:71]
wire [26:0] _a_first_beats1_decode_T_3; // @[package.scala:243:71]
assign _a_first_beats1_decode_T_3 = _GEN; // @[package.scala:243:71]
wire [11:0] _is_aligned_mask_T_1 = _is_aligned_mask_T[11:0]; // @[package.scala:243:{71,76}]
wire [11:0] is_aligned_mask = ~_is_aligned_mask_T_1; // @[package.scala:243:{46,76}]
wire [31:0] _is_aligned_T = {20'h0, io_in_a_bits_address_0[11:0] & is_aligned_mask}; // @[package.scala:243:46]
wire is_aligned = _is_aligned_T == 32'h0; // @[Edges.scala:21:{16,24}]
wire [1:0] mask_sizeOH_shiftAmount = _mask_sizeOH_T[1:0]; // @[OneHot.scala:64:49]
wire [3:0] _mask_sizeOH_T_1 = 4'h1 << mask_sizeOH_shiftAmount; // @[OneHot.scala:64:49, :65:12]
wire [2:0] _mask_sizeOH_T_2 = _mask_sizeOH_T_1[2:0]; // @[OneHot.scala:65:{12,27}]
wire [2:0] mask_sizeOH = {_mask_sizeOH_T_2[2:1], 1'h1}; // @[OneHot.scala:65:27]
wire mask_sub_sub_sub_0_1 = io_in_a_bits_size_0 > 4'h2; // @[Misc.scala:206:21]
wire mask_sub_sub_size = mask_sizeOH[2]; // @[Misc.scala:202:81, :209:26]
wire mask_sub_sub_bit = io_in_a_bits_address_0[2]; // @[Misc.scala:210:26]
wire mask_sub_sub_1_2 = mask_sub_sub_bit; // @[Misc.scala:210:26, :214:27]
wire mask_sub_sub_nbit = ~mask_sub_sub_bit; // @[Misc.scala:210:26, :211:20]
wire mask_sub_sub_0_2 = mask_sub_sub_nbit; // @[Misc.scala:211:20, :214:27]
wire _mask_sub_sub_acc_T = mask_sub_sub_size & mask_sub_sub_0_2; // @[Misc.scala:209:26, :214:27, :215:38]
wire mask_sub_sub_0_1 = mask_sub_sub_sub_0_1 | _mask_sub_sub_acc_T; // @[Misc.scala:206:21, :215:{29,38}]
wire _mask_sub_sub_acc_T_1 = mask_sub_sub_size & mask_sub_sub_1_2; // @[Misc.scala:209:26, :214:27, :215:38]
wire mask_sub_sub_1_1 = mask_sub_sub_sub_0_1 | _mask_sub_sub_acc_T_1; // @[Misc.scala:206:21, :215:{29,38}]
wire mask_sub_size = mask_sizeOH[1]; // @[Misc.scala:202:81, :209:26]
wire mask_sub_bit = io_in_a_bits_address_0[1]; // @[Misc.scala:210:26]
wire mask_sub_nbit = ~mask_sub_bit; // @[Misc.scala:210:26, :211:20]
wire mask_sub_0_2 = mask_sub_sub_0_2 & mask_sub_nbit; // @[Misc.scala:211:20, :214:27]
wire _mask_sub_acc_T = mask_sub_size & mask_sub_0_2; // @[Misc.scala:209:26, :214:27, :215:38]
wire mask_sub_0_1 = mask_sub_sub_0_1 | _mask_sub_acc_T; // @[Misc.scala:215:{29,38}]
wire mask_sub_1_2 = mask_sub_sub_0_2 & mask_sub_bit; // @[Misc.scala:210:26, :214:27]
wire _mask_sub_acc_T_1 = mask_sub_size & mask_sub_1_2; // @[Misc.scala:209:26, :214:27, :215:38]
wire mask_sub_1_1 = mask_sub_sub_0_1 | _mask_sub_acc_T_1; // @[Misc.scala:215:{29,38}]
wire mask_sub_2_2 = mask_sub_sub_1_2 & mask_sub_nbit; // @[Misc.scala:211:20, :214:27]
wire _mask_sub_acc_T_2 = mask_sub_size & mask_sub_2_2; // @[Misc.scala:209:26, :214:27, :215:38]
wire mask_sub_2_1 = mask_sub_sub_1_1 | _mask_sub_acc_T_2; // @[Misc.scala:215:{29,38}]
wire mask_sub_3_2 = mask_sub_sub_1_2 & mask_sub_bit; // @[Misc.scala:210:26, :214:27]
wire _mask_sub_acc_T_3 = mask_sub_size & mask_sub_3_2; // @[Misc.scala:209:26, :214:27, :215:38]
wire mask_sub_3_1 = mask_sub_sub_1_1 | _mask_sub_acc_T_3; // @[Misc.scala:215:{29,38}]
wire mask_size = mask_sizeOH[0]; // @[Misc.scala:202:81, :209:26]
wire mask_bit = io_in_a_bits_address_0[0]; // @[Misc.scala:210:26]
wire mask_nbit = ~mask_bit; // @[Misc.scala:210:26, :211:20]
wire mask_eq = mask_sub_0_2 & mask_nbit; // @[Misc.scala:211:20, :214:27]
wire _mask_acc_T = mask_size & mask_eq; // @[Misc.scala:209:26, :214:27, :215:38]
wire mask_acc = mask_sub_0_1 | _mask_acc_T; // @[Misc.scala:215:{29,38}]
wire mask_eq_1 = mask_sub_0_2 & mask_bit; // @[Misc.scala:210:26, :214:27]
wire _mask_acc_T_1 = mask_size & mask_eq_1; // @[Misc.scala:209:26, :214:27, :215:38]
wire mask_acc_1 = mask_sub_0_1 | _mask_acc_T_1; // @[Misc.scala:215:{29,38}]
wire mask_eq_2 = mask_sub_1_2 & mask_nbit; // @[Misc.scala:211:20, :214:27]
wire _mask_acc_T_2 = mask_size & mask_eq_2; // @[Misc.scala:209:26, :214:27, :215:38]
wire mask_acc_2 = mask_sub_1_1 | _mask_acc_T_2; // @[Misc.scala:215:{29,38}]
wire mask_eq_3 = mask_sub_1_2 & mask_bit; // @[Misc.scala:210:26, :214:27]
wire _mask_acc_T_3 = mask_size & mask_eq_3; // @[Misc.scala:209:26, :214:27, :215:38]
wire mask_acc_3 = mask_sub_1_1 | _mask_acc_T_3; // @[Misc.scala:215:{29,38}]
wire mask_eq_4 = mask_sub_2_2 & mask_nbit; // @[Misc.scala:211:20, :214:27]
wire _mask_acc_T_4 = mask_size & mask_eq_4; // @[Misc.scala:209:26, :214:27, :215:38]
wire mask_acc_4 = mask_sub_2_1 | _mask_acc_T_4; // @[Misc.scala:215:{29,38}]
wire mask_eq_5 = mask_sub_2_2 & mask_bit; // @[Misc.scala:210:26, :214:27]
wire _mask_acc_T_5 = mask_size & mask_eq_5; // @[Misc.scala:209:26, :214:27, :215:38]
wire mask_acc_5 = mask_sub_2_1 | _mask_acc_T_5; // @[Misc.scala:215:{29,38}]
wire mask_eq_6 = mask_sub_3_2 & mask_nbit; // @[Misc.scala:211:20, :214:27]
wire _mask_acc_T_6 = mask_size & mask_eq_6; // @[Misc.scala:209:26, :214:27, :215:38]
wire mask_acc_6 = mask_sub_3_1 | _mask_acc_T_6; // @[Misc.scala:215:{29,38}]
wire mask_eq_7 = mask_sub_3_2 & mask_bit; // @[Misc.scala:210:26, :214:27]
wire _mask_acc_T_7 = mask_size & mask_eq_7; // @[Misc.scala:209:26, :214:27, :215:38]
wire mask_acc_7 = mask_sub_3_1 | _mask_acc_T_7; // @[Misc.scala:215:{29,38}]
wire [1:0] mask_lo_lo = {mask_acc_1, mask_acc}; // @[Misc.scala:215:29, :222:10]
wire [1:0] mask_lo_hi = {mask_acc_3, mask_acc_2}; // @[Misc.scala:215:29, :222:10]
wire [3:0] mask_lo = {mask_lo_hi, mask_lo_lo}; // @[Misc.scala:222:10]
wire [1:0] mask_hi_lo = {mask_acc_5, mask_acc_4}; // @[Misc.scala:215:29, :222:10]
wire [1:0] mask_hi_hi = {mask_acc_7, mask_acc_6}; // @[Misc.scala:215:29, :222:10]
wire [3:0] mask_hi = {mask_hi_hi, mask_hi_lo}; // @[Misc.scala:222:10]
wire [7:0] mask = {mask_hi, mask_lo}; // @[Misc.scala:222:10]
wire _T_1222 = io_in_a_ready_0 & io_in_a_valid_0; // @[Decoupled.scala:51:35]
wire _a_first_T; // @[Decoupled.scala:51:35]
assign _a_first_T = _T_1222; // @[Decoupled.scala:51:35]
wire _a_first_T_1; // @[Decoupled.scala:51:35]
assign _a_first_T_1 = _T_1222; // @[Decoupled.scala:51:35]
wire [11:0] _a_first_beats1_decode_T_1 = _a_first_beats1_decode_T[11:0]; // @[package.scala:243:{71,76}]
wire [11:0] _a_first_beats1_decode_T_2 = ~_a_first_beats1_decode_T_1; // @[package.scala:243:{46,76}]
wire [8:0] a_first_beats1_decode = _a_first_beats1_decode_T_2[11:3]; // @[package.scala:243:46]
wire _a_first_beats1_opdata_T = io_in_a_bits_opcode_0[2]; // @[Monitor.scala:36:7]
wire _a_first_beats1_opdata_T_1 = io_in_a_bits_opcode_0[2]; // @[Monitor.scala:36:7]
wire a_first_beats1_opdata = ~_a_first_beats1_opdata_T; // @[Edges.scala:92:{28,37}]
wire [8:0] a_first_beats1 = a_first_beats1_opdata ? a_first_beats1_decode : 9'h0; // @[Edges.scala:92:28, :220:59, :221:14]
reg [8:0] a_first_counter; // @[Edges.scala:229:27]
wire [9:0] _a_first_counter1_T = {1'h0, a_first_counter} - 10'h1; // @[Edges.scala:229:27, :230:28]
wire [8:0] a_first_counter1 = _a_first_counter1_T[8:0]; // @[Edges.scala:230:28]
wire a_first = a_first_counter == 9'h0; // @[Edges.scala:229:27, :231:25]
wire _a_first_last_T = a_first_counter == 9'h1; // @[Edges.scala:229:27, :232:25]
wire _a_first_last_T_1 = a_first_beats1 == 9'h0; // @[Edges.scala:221:14, :232:43]
wire a_first_last = _a_first_last_T | _a_first_last_T_1; // @[Edges.scala:232:{25,33,43}]
wire a_first_done = a_first_last & _a_first_T; // @[Decoupled.scala:51:35]
wire [8:0] _a_first_count_T = ~a_first_counter1; // @[Edges.scala:230:28, :234:27]
wire [8:0] a_first_count = a_first_beats1 & _a_first_count_T; // @[Edges.scala:221:14, :234:{25,27}]
wire [8:0] _a_first_counter_T = a_first ? a_first_beats1 : a_first_counter1; // @[Edges.scala:221:14, :230:28, :231:25, :236:21]
reg [2:0] opcode; // @[Monitor.scala:387:22]
reg [3:0] size; // @[Monitor.scala:389:22]
reg [31:0] address; // @[Monitor.scala:391:22]
wire _T_1295 = io_in_d_ready_0 & io_in_d_valid_0; // @[Decoupled.scala:51:35]
wire _d_first_T; // @[Decoupled.scala:51:35]
assign _d_first_T = _T_1295; // @[Decoupled.scala:51:35]
wire _d_first_T_1; // @[Decoupled.scala:51:35]
assign _d_first_T_1 = _T_1295; // @[Decoupled.scala:51:35]
wire _d_first_T_2; // @[Decoupled.scala:51:35]
assign _d_first_T_2 = _T_1295; // @[Decoupled.scala:51:35]
wire [26:0] _GEN_0 = 27'hFFF << io_in_d_bits_size_0; // @[package.scala:243:71]
wire [26:0] _d_first_beats1_decode_T; // @[package.scala:243:71]
assign _d_first_beats1_decode_T = _GEN_0; // @[package.scala:243:71]
wire [26:0] _d_first_beats1_decode_T_3; // @[package.scala:243:71]
assign _d_first_beats1_decode_T_3 = _GEN_0; // @[package.scala:243:71]
wire [26:0] _d_first_beats1_decode_T_6; // @[package.scala:243:71]
assign _d_first_beats1_decode_T_6 = _GEN_0; // @[package.scala:243:71]
wire [11:0] _d_first_beats1_decode_T_1 = _d_first_beats1_decode_T[11:0]; // @[package.scala:243:{71,76}]
wire [11:0] _d_first_beats1_decode_T_2 = ~_d_first_beats1_decode_T_1; // @[package.scala:243:{46,76}]
wire [8:0] d_first_beats1_decode = _d_first_beats1_decode_T_2[11:3]; // @[package.scala:243:46]
wire d_first_beats1_opdata = io_in_d_bits_opcode_0[0]; // @[Monitor.scala:36:7]
wire d_first_beats1_opdata_1 = io_in_d_bits_opcode_0[0]; // @[Monitor.scala:36:7]
wire d_first_beats1_opdata_2 = io_in_d_bits_opcode_0[0]; // @[Monitor.scala:36:7]
wire [8:0] d_first_beats1 = d_first_beats1_opdata ? d_first_beats1_decode : 9'h0; // @[Edges.scala:106:36, :220:59, :221:14]
reg [8:0] d_first_counter; // @[Edges.scala:229:27]
wire [9:0] _d_first_counter1_T = {1'h0, d_first_counter} - 10'h1; // @[Edges.scala:229:27, :230:28]
wire [8:0] d_first_counter1 = _d_first_counter1_T[8:0]; // @[Edges.scala:230:28]
wire d_first = d_first_counter == 9'h0; // @[Edges.scala:229:27, :231:25]
wire _d_first_last_T = d_first_counter == 9'h1; // @[Edges.scala:229:27, :232:25]
wire _d_first_last_T_1 = d_first_beats1 == 9'h0; // @[Edges.scala:221:14, :232:43]
wire d_first_last = _d_first_last_T | _d_first_last_T_1; // @[Edges.scala:232:{25,33,43}]
wire d_first_done = d_first_last & _d_first_T; // @[Decoupled.scala:51:35]
wire [8:0] _d_first_count_T = ~d_first_counter1; // @[Edges.scala:230:28, :234:27]
wire [8:0] d_first_count = d_first_beats1 & _d_first_count_T; // @[Edges.scala:221:14, :234:{25,27}]
wire [8:0] _d_first_counter_T = d_first ? d_first_beats1 : d_first_counter1; // @[Edges.scala:221:14, :230:28, :231:25, :236:21]
reg [2:0] opcode_1; // @[Monitor.scala:538:22]
reg [1:0] param_1; // @[Monitor.scala:539:22]
reg [3:0] size_1; // @[Monitor.scala:540:22]
reg [3:0] sink; // @[Monitor.scala:542:22]
reg denied; // @[Monitor.scala:543:22]
reg [1:0] inflight; // @[Monitor.scala:614:27]
reg [3:0] inflight_opcodes; // @[Monitor.scala:616:35]
wire [3:0] _a_opcode_lookup_T_1 = inflight_opcodes; // @[Monitor.scala:616:35, :637:44]
reg [7:0] inflight_sizes; // @[Monitor.scala:618:33]
wire [7:0] _a_size_lookup_T_1 = inflight_sizes; // @[Monitor.scala:618:33, :641:40]
wire [11:0] _a_first_beats1_decode_T_4 = _a_first_beats1_decode_T_3[11:0]; // @[package.scala:243:{71,76}]
wire [11:0] _a_first_beats1_decode_T_5 = ~_a_first_beats1_decode_T_4; // @[package.scala:243:{46,76}]
wire [8:0] a_first_beats1_decode_1 = _a_first_beats1_decode_T_5[11:3]; // @[package.scala:243:46]
wire a_first_beats1_opdata_1 = ~_a_first_beats1_opdata_T_1; // @[Edges.scala:92:{28,37}]
wire [8:0] a_first_beats1_1 = a_first_beats1_opdata_1 ? a_first_beats1_decode_1 : 9'h0; // @[Edges.scala:92:28, :220:59, :221:14]
reg [8:0] a_first_counter_1; // @[Edges.scala:229:27]
wire [9:0] _a_first_counter1_T_1 = {1'h0, a_first_counter_1} - 10'h1; // @[Edges.scala:229:27, :230:28]
wire [8:0] a_first_counter1_1 = _a_first_counter1_T_1[8:0]; // @[Edges.scala:230:28]
wire a_first_1 = a_first_counter_1 == 9'h0; // @[Edges.scala:229:27, :231:25]
wire _a_first_last_T_2 = a_first_counter_1 == 9'h1; // @[Edges.scala:229:27, :232:25]
wire _a_first_last_T_3 = a_first_beats1_1 == 9'h0; // @[Edges.scala:221:14, :232:43]
wire a_first_last_1 = _a_first_last_T_2 | _a_first_last_T_3; // @[Edges.scala:232:{25,33,43}]
wire a_first_done_1 = a_first_last_1 & _a_first_T_1; // @[Decoupled.scala:51:35]
wire [8:0] _a_first_count_T_1 = ~a_first_counter1_1; // @[Edges.scala:230:28, :234:27]
wire [8:0] a_first_count_1 = a_first_beats1_1 & _a_first_count_T_1; // @[Edges.scala:221:14, :234:{25,27}]
wire [8:0] _a_first_counter_T_1 = a_first_1 ? a_first_beats1_1 : a_first_counter1_1; // @[Edges.scala:221:14, :230:28, :231:25, :236:21]
wire [11:0] _d_first_beats1_decode_T_4 = _d_first_beats1_decode_T_3[11:0]; // @[package.scala:243:{71,76}]
wire [11:0] _d_first_beats1_decode_T_5 = ~_d_first_beats1_decode_T_4; // @[package.scala:243:{46,76}]
wire [8:0] d_first_beats1_decode_1 = _d_first_beats1_decode_T_5[11:3]; // @[package.scala:243:46]
wire [8:0] d_first_beats1_1 = d_first_beats1_opdata_1 ? d_first_beats1_decode_1 : 9'h0; // @[Edges.scala:106:36, :220:59, :221:14]
reg [8:0] d_first_counter_1; // @[Edges.scala:229:27]
wire [9:0] _d_first_counter1_T_1 = {1'h0, d_first_counter_1} - 10'h1; // @[Edges.scala:229:27, :230:28]
wire [8:0] d_first_counter1_1 = _d_first_counter1_T_1[8:0]; // @[Edges.scala:230:28]
wire d_first_1 = d_first_counter_1 == 9'h0; // @[Edges.scala:229:27, :231:25]
wire _d_first_last_T_2 = d_first_counter_1 == 9'h1; // @[Edges.scala:229:27, :232:25]
wire _d_first_last_T_3 = d_first_beats1_1 == 9'h0; // @[Edges.scala:221:14, :232:43]
wire d_first_last_1 = _d_first_last_T_2 | _d_first_last_T_3; // @[Edges.scala:232:{25,33,43}]
wire d_first_done_1 = d_first_last_1 & _d_first_T_1; // @[Decoupled.scala:51:35]
wire [8:0] _d_first_count_T_1 = ~d_first_counter1_1; // @[Edges.scala:230:28, :234:27]
wire [8:0] d_first_count_1 = d_first_beats1_1 & _d_first_count_T_1; // @[Edges.scala:221:14, :234:{25,27}]
wire [8:0] _d_first_counter_T_1 = d_first_1 ? d_first_beats1_1 : d_first_counter1_1; // @[Edges.scala:221:14, :230:28, :231:25, :236:21]
wire a_set; // @[Monitor.scala:626:34]
wire a_set_wo_ready; // @[Monitor.scala:627:34]
wire [3:0] a_opcodes_set; // @[Monitor.scala:630:33]
wire [7:0] a_sizes_set; // @[Monitor.scala:632:31]
wire [2:0] a_opcode_lookup; // @[Monitor.scala:635:35]
wire [15:0] _a_opcode_lookup_T_6 = {12'h0, _a_opcode_lookup_T_1}; // @[Monitor.scala:637:{44,97}]
wire [15:0] _a_opcode_lookup_T_7 = {1'h0, _a_opcode_lookup_T_6[15:1]}; // @[Monitor.scala:637:{97,152}]
assign a_opcode_lookup = _a_opcode_lookup_T_7[2:0]; // @[Monitor.scala:635:35, :637:{21,152}]
wire [7:0] a_size_lookup; // @[Monitor.scala:639:33]
wire [15:0] _a_size_lookup_T_6 = {8'h0, _a_size_lookup_T_1}; // @[Monitor.scala:641:{40,91}]
wire [15:0] _a_size_lookup_T_7 = {1'h0, _a_size_lookup_T_6[15:1]}; // @[Monitor.scala:641:{91,144}]
assign a_size_lookup = _a_size_lookup_T_7[7:0]; // @[Monitor.scala:639:33, :641:{19,144}]
wire [3:0] a_opcodes_set_interm; // @[Monitor.scala:646:40]
wire [4:0] a_sizes_set_interm; // @[Monitor.scala:648:38]
wire _T_1145 = io_in_a_valid_0 & a_first_1; // @[Monitor.scala:36:7, :651:26]
assign a_set_wo_ready = _T_1145; // @[Monitor.scala:627:34, :651:26]
wire _same_cycle_resp_T; // @[Monitor.scala:684:44]
assign _same_cycle_resp_T = _T_1145; // @[Monitor.scala:651:26, :684:44]
assign a_set = _T_1222 & a_first_1; // @[Decoupled.scala:51:35]
wire [3:0] _a_opcodes_set_interm_T = {io_in_a_bits_opcode_0, 1'h0}; // @[Monitor.scala:36:7, :657:53]
wire [3:0] _a_opcodes_set_interm_T_1 = {_a_opcodes_set_interm_T[3:1], 1'h1}; // @[Monitor.scala:657:{53,61}]
assign a_opcodes_set_interm = a_set ? _a_opcodes_set_interm_T_1 : 4'h0; // @[Monitor.scala:626:34, :646:40, :655:70, :657:{28,61}]
wire [4:0] _a_sizes_set_interm_T = {io_in_a_bits_size_0, 1'h0}; // @[Monitor.scala:36:7, :658:51]
wire [4:0] _a_sizes_set_interm_T_1 = {_a_sizes_set_interm_T[4:1], 1'h1}; // @[Monitor.scala:658:{51,59}]
assign a_sizes_set_interm = a_set ? _a_sizes_set_interm_T_1 : 5'h0; // @[Monitor.scala:626:34, :648:38, :655:70, :658:{28,59}]
wire [18:0] _a_opcodes_set_T_1 = {15'h0, a_opcodes_set_interm}; // @[Monitor.scala:646:40, :659:54]
assign a_opcodes_set = a_set ? _a_opcodes_set_T_1[3:0] : 4'h0; // @[Monitor.scala:626:34, :630:33, :655:70, :659:{28,54}]
wire [19:0] _a_sizes_set_T_1 = {15'h0, a_sizes_set_interm}; // @[Monitor.scala:648:38, :660:52]
assign a_sizes_set = a_set ? _a_sizes_set_T_1[7:0] : 8'h0; // @[Monitor.scala:626:34, :632:31, :655:70, :660:{28,52}]
wire d_clr; // @[Monitor.scala:664:34]
wire d_clr_wo_ready; // @[Monitor.scala:665:34]
wire [3:0] d_opcodes_clr; // @[Monitor.scala:668:33]
wire [7:0] d_sizes_clr; // @[Monitor.scala:670:31]
wire _GEN_1 = io_in_d_bits_opcode_0 == 3'h6; // @[Monitor.scala:36:7, :673:46]
wire d_release_ack; // @[Monitor.scala:673:46]
assign d_release_ack = _GEN_1; // @[Monitor.scala:673:46]
wire d_release_ack_1; // @[Monitor.scala:783:46]
assign d_release_ack_1 = _GEN_1; // @[Monitor.scala:673:46, :783:46]
wire _T_1194 = io_in_d_valid_0 & d_first_1; // @[Monitor.scala:36:7, :674:26]
assign d_clr_wo_ready = _T_1194 & ~d_release_ack; // @[Monitor.scala:665:34, :673:46, :674:{26,71,74}]
assign d_clr = _T_1295 & d_first_1 & ~d_release_ack; // @[Decoupled.scala:51:35]
assign d_opcodes_clr = {4{d_clr}}; // @[Monitor.scala:664:34, :668:33, :678:89, :680:21]
assign d_sizes_clr = {8{d_clr}}; // @[Monitor.scala:664:34, :670:31, :678:89, :681:21]
wire _same_cycle_resp_T_1 = _same_cycle_resp_T; // @[Monitor.scala:684:{44,55}]
wire same_cycle_resp = _same_cycle_resp_T_1; // @[Monitor.scala:684:{55,88}]
wire [1:0] _inflight_T = {inflight[1], inflight[0] | a_set}; // @[Monitor.scala:614:27, :626:34, :705:27]
wire _inflight_T_1 = ~d_clr; // @[Monitor.scala:664:34, :705:38]
wire [1:0] _inflight_T_2 = {1'h0, _inflight_T[0] & _inflight_T_1}; // @[Monitor.scala:705:{27,36,38}]
wire [3:0] _inflight_opcodes_T = inflight_opcodes | a_opcodes_set; // @[Monitor.scala:616:35, :630:33, :706:43]
wire [3:0] _inflight_opcodes_T_1 = ~d_opcodes_clr; // @[Monitor.scala:668:33, :706:62]
wire [3:0] _inflight_opcodes_T_2 = _inflight_opcodes_T & _inflight_opcodes_T_1; // @[Monitor.scala:706:{43,60,62}]
wire [7:0] _inflight_sizes_T = inflight_sizes | a_sizes_set; // @[Monitor.scala:618:33, :632:31, :707:39]
wire [7:0] _inflight_sizes_T_1 = ~d_sizes_clr; // @[Monitor.scala:670:31, :707:56]
wire [7:0] _inflight_sizes_T_2 = _inflight_sizes_T & _inflight_sizes_T_1; // @[Monitor.scala:707:{39,54,56}]
reg [31:0] watchdog; // @[Monitor.scala:709:27]
wire [32:0] _watchdog_T = {1'h0, watchdog} + 33'h1; // @[Monitor.scala:709:27, :714:26]
wire [31:0] _watchdog_T_1 = _watchdog_T[31:0]; // @[Monitor.scala:714:26]
reg [1:0] inflight_1; // @[Monitor.scala:726:35]
wire [1:0] _inflight_T_3 = inflight_1; // @[Monitor.scala:726:35, :814:35]
reg [3:0] inflight_opcodes_1; // @[Monitor.scala:727:35]
wire [3:0] _c_opcode_lookup_T_1 = inflight_opcodes_1; // @[Monitor.scala:727:35, :749:44]
wire [3:0] _inflight_opcodes_T_3 = inflight_opcodes_1; // @[Monitor.scala:727:35, :815:43]
reg [7:0] inflight_sizes_1; // @[Monitor.scala:728:35]
wire [7:0] _c_size_lookup_T_1 = inflight_sizes_1; // @[Monitor.scala:728:35, :750:42]
wire [7:0] _inflight_sizes_T_3 = inflight_sizes_1; // @[Monitor.scala:728:35, :816:41]
wire [11:0] _d_first_beats1_decode_T_7 = _d_first_beats1_decode_T_6[11:0]; // @[package.scala:243:{71,76}]
wire [11:0] _d_first_beats1_decode_T_8 = ~_d_first_beats1_decode_T_7; // @[package.scala:243:{46,76}]
wire [8:0] d_first_beats1_decode_2 = _d_first_beats1_decode_T_8[11:3]; // @[package.scala:243:46]
wire [8:0] d_first_beats1_2 = d_first_beats1_opdata_2 ? d_first_beats1_decode_2 : 9'h0; // @[Edges.scala:106:36, :220:59, :221:14]
reg [8:0] d_first_counter_2; // @[Edges.scala:229:27]
wire [9:0] _d_first_counter1_T_2 = {1'h0, d_first_counter_2} - 10'h1; // @[Edges.scala:229:27, :230:28]
wire [8:0] d_first_counter1_2 = _d_first_counter1_T_2[8:0]; // @[Edges.scala:230:28]
wire d_first_2 = d_first_counter_2 == 9'h0; // @[Edges.scala:229:27, :231:25]
wire _d_first_last_T_4 = d_first_counter_2 == 9'h1; // @[Edges.scala:229:27, :232:25]
wire _d_first_last_T_5 = d_first_beats1_2 == 9'h0; // @[Edges.scala:221:14, :232:43]
wire d_first_last_2 = _d_first_last_T_4 | _d_first_last_T_5; // @[Edges.scala:232:{25,33,43}]
wire d_first_done_2 = d_first_last_2 & _d_first_T_2; // @[Decoupled.scala:51:35]
wire [8:0] _d_first_count_T_2 = ~d_first_counter1_2; // @[Edges.scala:230:28, :234:27]
wire [8:0] d_first_count_2 = d_first_beats1_2 & _d_first_count_T_2; // @[Edges.scala:221:14, :234:{25,27}]
wire [8:0] _d_first_counter_T_2 = d_first_2 ? d_first_beats1_2 : d_first_counter1_2; // @[Edges.scala:221:14, :230:28, :231:25, :236:21]
wire [3:0] c_opcode_lookup; // @[Monitor.scala:747:35]
wire [7:0] c_size_lookup; // @[Monitor.scala:748:35]
wire [15:0] _c_opcode_lookup_T_6 = {12'h0, _c_opcode_lookup_T_1}; // @[Monitor.scala:749:{44,97}]
wire [15:0] _c_opcode_lookup_T_7 = {1'h0, _c_opcode_lookup_T_6[15:1]}; // @[Monitor.scala:749:{97,152}]
assign c_opcode_lookup = _c_opcode_lookup_T_7[3:0]; // @[Monitor.scala:747:35, :749:{21,152}]
wire [15:0] _c_size_lookup_T_6 = {8'h0, _c_size_lookup_T_1}; // @[Monitor.scala:750:{42,93}]
wire [15:0] _c_size_lookup_T_7 = {1'h0, _c_size_lookup_T_6[15:1]}; // @[Monitor.scala:750:{93,146}]
assign c_size_lookup = _c_size_lookup_T_7[7:0]; // @[Monitor.scala:748:35, :750:{21,146}]
wire d_clr_1; // @[Monitor.scala:774:34]
wire d_clr_wo_ready_1; // @[Monitor.scala:775:34]
wire [3:0] d_opcodes_clr_1; // @[Monitor.scala:776:34]
wire [7:0] d_sizes_clr_1; // @[Monitor.scala:777:34]
wire _T_1266 = io_in_d_valid_0 & d_first_2; // @[Monitor.scala:36:7, :784:26]
assign d_clr_wo_ready_1 = _T_1266 & d_release_ack_1; // @[Monitor.scala:775:34, :783:46, :784:{26,71}]
assign d_clr_1 = _T_1295 & d_first_2 & d_release_ack_1; // @[Decoupled.scala:51:35]
assign d_opcodes_clr_1 = {4{d_clr_1}}; // @[Monitor.scala:774:34, :776:34, :788:88, :790:21]
assign d_sizes_clr_1 = {8{d_clr_1}}; // @[Monitor.scala:774:34, :777:34, :788:88, :791:21]
wire _inflight_T_4 = ~d_clr_1; // @[Monitor.scala:774:34, :814:46]
wire [1:0] _inflight_T_5 = {1'h0, _inflight_T_3[0] & _inflight_T_4}; // @[Monitor.scala:814:{35,44,46}]
wire [3:0] _inflight_opcodes_T_4 = ~d_opcodes_clr_1; // @[Monitor.scala:776:34, :815:62]
wire [3:0] _inflight_opcodes_T_5 = _inflight_opcodes_T_3 & _inflight_opcodes_T_4; // @[Monitor.scala:815:{43,60,62}]
wire [7:0] _inflight_sizes_T_4 = ~d_sizes_clr_1; // @[Monitor.scala:777:34, :816:58]
wire [7:0] _inflight_sizes_T_5 = _inflight_sizes_T_3 & _inflight_sizes_T_4; // @[Monitor.scala:816:{41,56,58}]
reg [31:0] watchdog_1; // @[Monitor.scala:818:27] |
Generate the Verilog code corresponding to the following Chisel files.
File Monitor.scala:
// See LICENSE.SiFive for license details.
package freechips.rocketchip.tilelink
import chisel3._
import chisel3.util._
import chisel3.experimental.SourceLine
import org.chipsalliance.cde.config._
import org.chipsalliance.diplomacy._
import freechips.rocketchip.diplomacy.EnableMonitors
import freechips.rocketchip.formal.{MonitorDirection, IfThen, Property, PropertyClass, TestplanTestType, TLMonitorStrictMode}
import freechips.rocketchip.util.PlusArg
case class TLMonitorArgs(edge: TLEdge)
abstract class TLMonitorBase(args: TLMonitorArgs) extends Module
{
val io = IO(new Bundle {
val in = Input(new TLBundle(args.edge.bundle))
})
def legalize(bundle: TLBundle, edge: TLEdge, reset: Reset): Unit
legalize(io.in, args.edge, reset)
}
object TLMonitor {
def apply(enable: Boolean, node: TLNode)(implicit p: Parameters): TLNode = {
if (enable) {
EnableMonitors { implicit p => node := TLEphemeralNode()(ValName("monitor")) }
} else { node }
}
}
class TLMonitor(args: TLMonitorArgs, monitorDir: MonitorDirection = MonitorDirection.Monitor) extends TLMonitorBase(args)
{
require (args.edge.params(TLMonitorStrictMode) || (! args.edge.params(TestplanTestType).formal))
val cover_prop_class = PropertyClass.Default
//Like assert but can flip to being an assumption for formal verification
def monAssert(cond: Bool, message: String): Unit =
if (monitorDir == MonitorDirection.Monitor) {
assert(cond, message)
} else {
Property(monitorDir, cond, message, PropertyClass.Default)
}
def assume(cond: Bool, message: String): Unit =
if (monitorDir == MonitorDirection.Monitor) {
assert(cond, message)
} else {
Property(monitorDir.flip, cond, message, PropertyClass.Default)
}
def extra = {
args.edge.sourceInfo match {
case SourceLine(filename, line, col) => s" (connected at $filename:$line:$col)"
case _ => ""
}
}
def visible(address: UInt, source: UInt, edge: TLEdge) =
edge.client.clients.map { c =>
!c.sourceId.contains(source) ||
c.visibility.map(_.contains(address)).reduce(_ || _)
}.reduce(_ && _)
def legalizeFormatA(bundle: TLBundleA, edge: TLEdge): Unit = {
//switch this flag to turn on diplomacy in error messages
def diplomacyInfo = if (true) "" else "\nThe diplomacy information for the edge is as follows:\n" + edge.formatEdge + "\n"
monAssert (TLMessages.isA(bundle.opcode), "'A' channel has invalid opcode" + extra)
// Reuse these subexpressions to save some firrtl lines
val source_ok = edge.client.contains(bundle.source)
val is_aligned = edge.isAligned(bundle.address, bundle.size)
val mask = edge.full_mask(bundle)
monAssert (visible(edge.address(bundle), bundle.source, edge), "'A' channel carries an address illegal for the specified bank visibility")
//The monitor doesnβt check for acquire T vs acquire B, it assumes that acquire B implies acquire T and only checks for acquire B
//TODO: check for acquireT?
when (bundle.opcode === TLMessages.AcquireBlock) {
monAssert (edge.master.emitsAcquireB(bundle.source, bundle.size) && edge.slave.supportsAcquireBSafe(edge.address(bundle), bundle.size), "'A' channel carries AcquireBlock type which is unexpected using diplomatic parameters" + diplomacyInfo + extra)
monAssert (edge.master.supportsProbe(edge.source(bundle), bundle.size) && edge.slave.emitsProbeSafe(edge.address(bundle), bundle.size), "'A' channel carries AcquireBlock from a client which does not support Probe" + diplomacyInfo + extra)
monAssert (source_ok, "'A' channel AcquireBlock carries invalid source ID" + diplomacyInfo + extra)
monAssert (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'A' channel AcquireBlock smaller than a beat" + extra)
monAssert (is_aligned, "'A' channel AcquireBlock address not aligned to size" + extra)
monAssert (TLPermissions.isGrow(bundle.param), "'A' channel AcquireBlock carries invalid grow param" + extra)
monAssert (~bundle.mask === 0.U, "'A' channel AcquireBlock contains invalid mask" + extra)
monAssert (!bundle.corrupt, "'A' channel AcquireBlock is corrupt" + extra)
}
when (bundle.opcode === TLMessages.AcquirePerm) {
monAssert (edge.master.emitsAcquireB(bundle.source, bundle.size) && edge.slave.supportsAcquireBSafe(edge.address(bundle), bundle.size), "'A' channel carries AcquirePerm type which is unexpected using diplomatic parameters" + diplomacyInfo + extra)
monAssert (edge.master.supportsProbe(edge.source(bundle), bundle.size) && edge.slave.emitsProbeSafe(edge.address(bundle), bundle.size), "'A' channel carries AcquirePerm from a client which does not support Probe" + diplomacyInfo + extra)
monAssert (source_ok, "'A' channel AcquirePerm carries invalid source ID" + diplomacyInfo + extra)
monAssert (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'A' channel AcquirePerm smaller than a beat" + extra)
monAssert (is_aligned, "'A' channel AcquirePerm address not aligned to size" + extra)
monAssert (TLPermissions.isGrow(bundle.param), "'A' channel AcquirePerm carries invalid grow param" + extra)
monAssert (bundle.param =/= TLPermissions.NtoB, "'A' channel AcquirePerm requests NtoB" + extra)
monAssert (~bundle.mask === 0.U, "'A' channel AcquirePerm contains invalid mask" + extra)
monAssert (!bundle.corrupt, "'A' channel AcquirePerm is corrupt" + extra)
}
when (bundle.opcode === TLMessages.Get) {
monAssert (edge.master.emitsGet(bundle.source, bundle.size), "'A' channel carries Get type which master claims it can't emit" + diplomacyInfo + extra)
monAssert (edge.slave.supportsGetSafe(edge.address(bundle), bundle.size, None), "'A' channel carries Get type which slave claims it can't support" + diplomacyInfo + extra)
monAssert (source_ok, "'A' channel Get carries invalid source ID" + diplomacyInfo + extra)
monAssert (is_aligned, "'A' channel Get address not aligned to size" + extra)
monAssert (bundle.param === 0.U, "'A' channel Get carries invalid param" + extra)
monAssert (bundle.mask === mask, "'A' channel Get contains invalid mask" + extra)
monAssert (!bundle.corrupt, "'A' channel Get is corrupt" + extra)
}
when (bundle.opcode === TLMessages.PutFullData) {
monAssert (edge.master.emitsPutFull(bundle.source, bundle.size) && edge.slave.supportsPutFullSafe(edge.address(bundle), bundle.size), "'A' channel carries PutFull type which is unexpected using diplomatic parameters" + diplomacyInfo + extra)
monAssert (source_ok, "'A' channel PutFull carries invalid source ID" + diplomacyInfo + extra)
monAssert (is_aligned, "'A' channel PutFull address not aligned to size" + extra)
monAssert (bundle.param === 0.U, "'A' channel PutFull carries invalid param" + extra)
monAssert (bundle.mask === mask, "'A' channel PutFull contains invalid mask" + extra)
}
when (bundle.opcode === TLMessages.PutPartialData) {
monAssert (edge.master.emitsPutPartial(bundle.source, bundle.size) && edge.slave.supportsPutPartialSafe(edge.address(bundle), bundle.size), "'A' channel carries PutPartial type which is unexpected using diplomatic parameters" + extra)
monAssert (source_ok, "'A' channel PutPartial carries invalid source ID" + diplomacyInfo + extra)
monAssert (is_aligned, "'A' channel PutPartial address not aligned to size" + extra)
monAssert (bundle.param === 0.U, "'A' channel PutPartial carries invalid param" + extra)
monAssert ((bundle.mask & ~mask) === 0.U, "'A' channel PutPartial contains invalid mask" + extra)
}
when (bundle.opcode === TLMessages.ArithmeticData) {
monAssert (edge.master.emitsArithmetic(bundle.source, bundle.size) && edge.slave.supportsArithmeticSafe(edge.address(bundle), bundle.size), "'A' channel carries Arithmetic type which is unexpected using diplomatic parameters" + extra)
monAssert (source_ok, "'A' channel Arithmetic carries invalid source ID" + diplomacyInfo + extra)
monAssert (is_aligned, "'A' channel Arithmetic address not aligned to size" + extra)
monAssert (TLAtomics.isArithmetic(bundle.param), "'A' channel Arithmetic carries invalid opcode param" + extra)
monAssert (bundle.mask === mask, "'A' channel Arithmetic contains invalid mask" + extra)
}
when (bundle.opcode === TLMessages.LogicalData) {
monAssert (edge.master.emitsLogical(bundle.source, bundle.size) && edge.slave.supportsLogicalSafe(edge.address(bundle), bundle.size), "'A' channel carries Logical type which is unexpected using diplomatic parameters" + extra)
monAssert (source_ok, "'A' channel Logical carries invalid source ID" + diplomacyInfo + extra)
monAssert (is_aligned, "'A' channel Logical address not aligned to size" + extra)
monAssert (TLAtomics.isLogical(bundle.param), "'A' channel Logical carries invalid opcode param" + extra)
monAssert (bundle.mask === mask, "'A' channel Logical contains invalid mask" + extra)
}
when (bundle.opcode === TLMessages.Hint) {
monAssert (edge.master.emitsHint(bundle.source, bundle.size) && edge.slave.supportsHintSafe(edge.address(bundle), bundle.size), "'A' channel carries Hint type which is unexpected using diplomatic parameters" + extra)
monAssert (source_ok, "'A' channel Hint carries invalid source ID" + diplomacyInfo + extra)
monAssert (is_aligned, "'A' channel Hint address not aligned to size" + extra)
monAssert (TLHints.isHints(bundle.param), "'A' channel Hint carries invalid opcode param" + extra)
monAssert (bundle.mask === mask, "'A' channel Hint contains invalid mask" + extra)
monAssert (!bundle.corrupt, "'A' channel Hint is corrupt" + extra)
}
}
def legalizeFormatB(bundle: TLBundleB, edge: TLEdge): Unit = {
monAssert (TLMessages.isB(bundle.opcode), "'B' channel has invalid opcode" + extra)
monAssert (visible(edge.address(bundle), bundle.source, edge), "'B' channel carries an address illegal for the specified bank visibility")
// Reuse these subexpressions to save some firrtl lines
val address_ok = edge.manager.containsSafe(edge.address(bundle))
val is_aligned = edge.isAligned(bundle.address, bundle.size)
val mask = edge.full_mask(bundle)
val legal_source = Mux1H(edge.client.find(bundle.source), edge.client.clients.map(c => c.sourceId.start.U)) === bundle.source
when (bundle.opcode === TLMessages.Probe) {
assume (edge.master.supportsProbe(edge.source(bundle), bundle.size) && edge.slave.emitsProbeSafe(edge.address(bundle), bundle.size), "'B' channel carries Probe type which is unexpected using diplomatic parameters" + extra)
assume (address_ok, "'B' channel Probe carries unmanaged address" + extra)
assume (legal_source, "'B' channel Probe carries source that is not first source" + extra)
assume (is_aligned, "'B' channel Probe address not aligned to size" + extra)
assume (TLPermissions.isCap(bundle.param), "'B' channel Probe carries invalid cap param" + extra)
assume (bundle.mask === mask, "'B' channel Probe contains invalid mask" + extra)
assume (!bundle.corrupt, "'B' channel Probe is corrupt" + extra)
}
when (bundle.opcode === TLMessages.Get) {
monAssert (edge.master.supportsGet(edge.source(bundle), bundle.size) && edge.slave.emitsGetSafe(edge.address(bundle), bundle.size), "'B' channel carries Get type which is unexpected using diplomatic parameters" + extra)
monAssert (address_ok, "'B' channel Get carries unmanaged address" + extra)
monAssert (legal_source, "'B' channel Get carries source that is not first source" + extra)
monAssert (is_aligned, "'B' channel Get address not aligned to size" + extra)
monAssert (bundle.param === 0.U, "'B' channel Get carries invalid param" + extra)
monAssert (bundle.mask === mask, "'B' channel Get contains invalid mask" + extra)
monAssert (!bundle.corrupt, "'B' channel Get is corrupt" + extra)
}
when (bundle.opcode === TLMessages.PutFullData) {
monAssert (edge.master.supportsPutFull(edge.source(bundle), bundle.size) && edge.slave.emitsPutFullSafe(edge.address(bundle), bundle.size), "'B' channel carries PutFull type which is unexpected using diplomatic parameters" + extra)
monAssert (address_ok, "'B' channel PutFull carries unmanaged address" + extra)
monAssert (legal_source, "'B' channel PutFull carries source that is not first source" + extra)
monAssert (is_aligned, "'B' channel PutFull address not aligned to size" + extra)
monAssert (bundle.param === 0.U, "'B' channel PutFull carries invalid param" + extra)
monAssert (bundle.mask === mask, "'B' channel PutFull contains invalid mask" + extra)
}
when (bundle.opcode === TLMessages.PutPartialData) {
monAssert (edge.master.supportsPutPartial(edge.source(bundle), bundle.size) && edge.slave.emitsPutPartialSafe(edge.address(bundle), bundle.size), "'B' channel carries PutPartial type which is unexpected using diplomatic parameters" + extra)
monAssert (address_ok, "'B' channel PutPartial carries unmanaged address" + extra)
monAssert (legal_source, "'B' channel PutPartial carries source that is not first source" + extra)
monAssert (is_aligned, "'B' channel PutPartial address not aligned to size" + extra)
monAssert (bundle.param === 0.U, "'B' channel PutPartial carries invalid param" + extra)
monAssert ((bundle.mask & ~mask) === 0.U, "'B' channel PutPartial contains invalid mask" + extra)
}
when (bundle.opcode === TLMessages.ArithmeticData) {
monAssert (edge.master.supportsArithmetic(edge.source(bundle), bundle.size) && edge.slave.emitsArithmeticSafe(edge.address(bundle), bundle.size), "'B' channel carries Arithmetic type unsupported by master" + extra)
monAssert (address_ok, "'B' channel Arithmetic carries unmanaged address" + extra)
monAssert (legal_source, "'B' channel Arithmetic carries source that is not first source" + extra)
monAssert (is_aligned, "'B' channel Arithmetic address not aligned to size" + extra)
monAssert (TLAtomics.isArithmetic(bundle.param), "'B' channel Arithmetic carries invalid opcode param" + extra)
monAssert (bundle.mask === mask, "'B' channel Arithmetic contains invalid mask" + extra)
}
when (bundle.opcode === TLMessages.LogicalData) {
monAssert (edge.master.supportsLogical(edge.source(bundle), bundle.size) && edge.slave.emitsLogicalSafe(edge.address(bundle), bundle.size), "'B' channel carries Logical type unsupported by client" + extra)
monAssert (address_ok, "'B' channel Logical carries unmanaged address" + extra)
monAssert (legal_source, "'B' channel Logical carries source that is not first source" + extra)
monAssert (is_aligned, "'B' channel Logical address not aligned to size" + extra)
monAssert (TLAtomics.isLogical(bundle.param), "'B' channel Logical carries invalid opcode param" + extra)
monAssert (bundle.mask === mask, "'B' channel Logical contains invalid mask" + extra)
}
when (bundle.opcode === TLMessages.Hint) {
monAssert (edge.master.supportsHint(edge.source(bundle), bundle.size) && edge.slave.emitsHintSafe(edge.address(bundle), bundle.size), "'B' channel carries Hint type unsupported by client" + extra)
monAssert (address_ok, "'B' channel Hint carries unmanaged address" + extra)
monAssert (legal_source, "'B' channel Hint carries source that is not first source" + extra)
monAssert (is_aligned, "'B' channel Hint address not aligned to size" + extra)
monAssert (bundle.mask === mask, "'B' channel Hint contains invalid mask" + extra)
monAssert (!bundle.corrupt, "'B' channel Hint is corrupt" + extra)
}
}
def legalizeFormatC(bundle: TLBundleC, edge: TLEdge): Unit = {
monAssert (TLMessages.isC(bundle.opcode), "'C' channel has invalid opcode" + extra)
val source_ok = edge.client.contains(bundle.source)
val is_aligned = edge.isAligned(bundle.address, bundle.size)
val address_ok = edge.manager.containsSafe(edge.address(bundle))
monAssert (visible(edge.address(bundle), bundle.source, edge), "'C' channel carries an address illegal for the specified bank visibility")
when (bundle.opcode === TLMessages.ProbeAck) {
monAssert (address_ok, "'C' channel ProbeAck carries unmanaged address" + extra)
monAssert (source_ok, "'C' channel ProbeAck carries invalid source ID" + extra)
monAssert (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'C' channel ProbeAck smaller than a beat" + extra)
monAssert (is_aligned, "'C' channel ProbeAck address not aligned to size" + extra)
monAssert (TLPermissions.isReport(bundle.param), "'C' channel ProbeAck carries invalid report param" + extra)
monAssert (!bundle.corrupt, "'C' channel ProbeAck is corrupt" + extra)
}
when (bundle.opcode === TLMessages.ProbeAckData) {
monAssert (address_ok, "'C' channel ProbeAckData carries unmanaged address" + extra)
monAssert (source_ok, "'C' channel ProbeAckData carries invalid source ID" + extra)
monAssert (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'C' channel ProbeAckData smaller than a beat" + extra)
monAssert (is_aligned, "'C' channel ProbeAckData address not aligned to size" + extra)
monAssert (TLPermissions.isReport(bundle.param), "'C' channel ProbeAckData carries invalid report param" + extra)
}
when (bundle.opcode === TLMessages.Release) {
monAssert (edge.master.emitsAcquireB(edge.source(bundle), bundle.size) && edge.slave.supportsAcquireBSafe(edge.address(bundle), bundle.size), "'C' channel carries Release type unsupported by manager" + extra)
monAssert (edge.master.supportsProbe(edge.source(bundle), bundle.size) && edge.slave.emitsProbeSafe(edge.address(bundle), bundle.size), "'C' channel carries Release from a client which does not support Probe" + extra)
monAssert (source_ok, "'C' channel Release carries invalid source ID" + extra)
monAssert (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'C' channel Release smaller than a beat" + extra)
monAssert (is_aligned, "'C' channel Release address not aligned to size" + extra)
monAssert (TLPermissions.isReport(bundle.param), "'C' channel Release carries invalid report param" + extra)
monAssert (!bundle.corrupt, "'C' channel Release is corrupt" + extra)
}
when (bundle.opcode === TLMessages.ReleaseData) {
monAssert (edge.master.emitsAcquireB(edge.source(bundle), bundle.size) && edge.slave.supportsAcquireBSafe(edge.address(bundle), bundle.size), "'C' channel carries ReleaseData type unsupported by manager" + extra)
monAssert (edge.master.supportsProbe(edge.source(bundle), bundle.size) && edge.slave.emitsProbeSafe(edge.address(bundle), bundle.size), "'C' channel carries Release from a client which does not support Probe" + extra)
monAssert (source_ok, "'C' channel ReleaseData carries invalid source ID" + extra)
monAssert (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'C' channel ReleaseData smaller than a beat" + extra)
monAssert (is_aligned, "'C' channel ReleaseData address not aligned to size" + extra)
monAssert (TLPermissions.isReport(bundle.param), "'C' channel ReleaseData carries invalid report param" + extra)
}
when (bundle.opcode === TLMessages.AccessAck) {
monAssert (address_ok, "'C' channel AccessAck carries unmanaged address" + extra)
monAssert (source_ok, "'C' channel AccessAck carries invalid source ID" + extra)
monAssert (is_aligned, "'C' channel AccessAck address not aligned to size" + extra)
monAssert (bundle.param === 0.U, "'C' channel AccessAck carries invalid param" + extra)
monAssert (!bundle.corrupt, "'C' channel AccessAck is corrupt" + extra)
}
when (bundle.opcode === TLMessages.AccessAckData) {
monAssert (address_ok, "'C' channel AccessAckData carries unmanaged address" + extra)
monAssert (source_ok, "'C' channel AccessAckData carries invalid source ID" + extra)
monAssert (is_aligned, "'C' channel AccessAckData address not aligned to size" + extra)
monAssert (bundle.param === 0.U, "'C' channel AccessAckData carries invalid param" + extra)
}
when (bundle.opcode === TLMessages.HintAck) {
monAssert (address_ok, "'C' channel HintAck carries unmanaged address" + extra)
monAssert (source_ok, "'C' channel HintAck carries invalid source ID" + extra)
monAssert (is_aligned, "'C' channel HintAck address not aligned to size" + extra)
monAssert (bundle.param === 0.U, "'C' channel HintAck carries invalid param" + extra)
monAssert (!bundle.corrupt, "'C' channel HintAck is corrupt" + extra)
}
}
def legalizeFormatD(bundle: TLBundleD, edge: TLEdge): Unit = {
assume (TLMessages.isD(bundle.opcode), "'D' channel has invalid opcode" + extra)
val source_ok = edge.client.contains(bundle.source)
val sink_ok = bundle.sink < edge.manager.endSinkId.U
val deny_put_ok = edge.manager.mayDenyPut.B
val deny_get_ok = edge.manager.mayDenyGet.B
when (bundle.opcode === TLMessages.ReleaseAck) {
assume (source_ok, "'D' channel ReleaseAck carries invalid source ID" + extra)
assume (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'D' channel ReleaseAck smaller than a beat" + extra)
assume (bundle.param === 0.U, "'D' channel ReleaseeAck carries invalid param" + extra)
assume (!bundle.corrupt, "'D' channel ReleaseAck is corrupt" + extra)
assume (!bundle.denied, "'D' channel ReleaseAck is denied" + extra)
}
when (bundle.opcode === TLMessages.Grant) {
assume (source_ok, "'D' channel Grant carries invalid source ID" + extra)
assume (sink_ok, "'D' channel Grant carries invalid sink ID" + extra)
assume (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'D' channel Grant smaller than a beat" + extra)
assume (TLPermissions.isCap(bundle.param), "'D' channel Grant carries invalid cap param" + extra)
assume (bundle.param =/= TLPermissions.toN, "'D' channel Grant carries toN param" + extra)
assume (!bundle.corrupt, "'D' channel Grant is corrupt" + extra)
assume (deny_put_ok || !bundle.denied, "'D' channel Grant is denied" + extra)
}
when (bundle.opcode === TLMessages.GrantData) {
assume (source_ok, "'D' channel GrantData carries invalid source ID" + extra)
assume (sink_ok, "'D' channel GrantData carries invalid sink ID" + extra)
assume (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'D' channel GrantData smaller than a beat" + extra)
assume (TLPermissions.isCap(bundle.param), "'D' channel GrantData carries invalid cap param" + extra)
assume (bundle.param =/= TLPermissions.toN, "'D' channel GrantData carries toN param" + extra)
assume (!bundle.denied || bundle.corrupt, "'D' channel GrantData is denied but not corrupt" + extra)
assume (deny_get_ok || !bundle.denied, "'D' channel GrantData is denied" + extra)
}
when (bundle.opcode === TLMessages.AccessAck) {
assume (source_ok, "'D' channel AccessAck carries invalid source ID" + extra)
// size is ignored
assume (bundle.param === 0.U, "'D' channel AccessAck carries invalid param" + extra)
assume (!bundle.corrupt, "'D' channel AccessAck is corrupt" + extra)
assume (deny_put_ok || !bundle.denied, "'D' channel AccessAck is denied" + extra)
}
when (bundle.opcode === TLMessages.AccessAckData) {
assume (source_ok, "'D' channel AccessAckData carries invalid source ID" + extra)
// size is ignored
assume (bundle.param === 0.U, "'D' channel AccessAckData carries invalid param" + extra)
assume (!bundle.denied || bundle.corrupt, "'D' channel AccessAckData is denied but not corrupt" + extra)
assume (deny_get_ok || !bundle.denied, "'D' channel AccessAckData is denied" + extra)
}
when (bundle.opcode === TLMessages.HintAck) {
assume (source_ok, "'D' channel HintAck carries invalid source ID" + extra)
// size is ignored
assume (bundle.param === 0.U, "'D' channel HintAck carries invalid param" + extra)
assume (!bundle.corrupt, "'D' channel HintAck is corrupt" + extra)
assume (deny_put_ok || !bundle.denied, "'D' channel HintAck is denied" + extra)
}
}
def legalizeFormatE(bundle: TLBundleE, edge: TLEdge): Unit = {
val sink_ok = bundle.sink < edge.manager.endSinkId.U
monAssert (sink_ok, "'E' channels carries invalid sink ID" + extra)
}
def legalizeFormat(bundle: TLBundle, edge: TLEdge) = {
when (bundle.a.valid) { legalizeFormatA(bundle.a.bits, edge) }
when (bundle.d.valid) { legalizeFormatD(bundle.d.bits, edge) }
if (edge.client.anySupportProbe && edge.manager.anySupportAcquireB) {
when (bundle.b.valid) { legalizeFormatB(bundle.b.bits, edge) }
when (bundle.c.valid) { legalizeFormatC(bundle.c.bits, edge) }
when (bundle.e.valid) { legalizeFormatE(bundle.e.bits, edge) }
} else {
monAssert (!bundle.b.valid, "'B' channel valid and not TL-C" + extra)
monAssert (!bundle.c.valid, "'C' channel valid and not TL-C" + extra)
monAssert (!bundle.e.valid, "'E' channel valid and not TL-C" + extra)
}
}
def legalizeMultibeatA(a: DecoupledIO[TLBundleA], edge: TLEdge): Unit = {
val a_first = edge.first(a.bits, a.fire)
val opcode = Reg(UInt())
val param = Reg(UInt())
val size = Reg(UInt())
val source = Reg(UInt())
val address = Reg(UInt())
when (a.valid && !a_first) {
monAssert (a.bits.opcode === opcode, "'A' channel opcode changed within multibeat operation" + extra)
monAssert (a.bits.param === param, "'A' channel param changed within multibeat operation" + extra)
monAssert (a.bits.size === size, "'A' channel size changed within multibeat operation" + extra)
monAssert (a.bits.source === source, "'A' channel source changed within multibeat operation" + extra)
monAssert (a.bits.address=== address,"'A' channel address changed with multibeat operation" + extra)
}
when (a.fire && a_first) {
opcode := a.bits.opcode
param := a.bits.param
size := a.bits.size
source := a.bits.source
address := a.bits.address
}
}
def legalizeMultibeatB(b: DecoupledIO[TLBundleB], edge: TLEdge): Unit = {
val b_first = edge.first(b.bits, b.fire)
val opcode = Reg(UInt())
val param = Reg(UInt())
val size = Reg(UInt())
val source = Reg(UInt())
val address = Reg(UInt())
when (b.valid && !b_first) {
monAssert (b.bits.opcode === opcode, "'B' channel opcode changed within multibeat operation" + extra)
monAssert (b.bits.param === param, "'B' channel param changed within multibeat operation" + extra)
monAssert (b.bits.size === size, "'B' channel size changed within multibeat operation" + extra)
monAssert (b.bits.source === source, "'B' channel source changed within multibeat operation" + extra)
monAssert (b.bits.address=== address,"'B' channel addresss changed with multibeat operation" + extra)
}
when (b.fire && b_first) {
opcode := b.bits.opcode
param := b.bits.param
size := b.bits.size
source := b.bits.source
address := b.bits.address
}
}
def legalizeADSourceFormal(bundle: TLBundle, edge: TLEdge): Unit = {
// Symbolic variable
val sym_source = Wire(UInt(edge.client.endSourceId.W))
// TODO: Connect sym_source to a fixed value for simulation and to a
// free wire in formal
sym_source := 0.U
// Type casting Int to UInt
val maxSourceId = Wire(UInt(edge.client.endSourceId.W))
maxSourceId := edge.client.endSourceId.U
// Delayed verison of sym_source
val sym_source_d = Reg(UInt(edge.client.endSourceId.W))
sym_source_d := sym_source
// These will be constraints for FV setup
Property(
MonitorDirection.Monitor,
(sym_source === sym_source_d),
"sym_source should remain stable",
PropertyClass.Default)
Property(
MonitorDirection.Monitor,
(sym_source <= maxSourceId),
"sym_source should take legal value",
PropertyClass.Default)
val my_resp_pend = RegInit(false.B)
val my_opcode = Reg(UInt())
val my_size = Reg(UInt())
val a_first = bundle.a.valid && edge.first(bundle.a.bits, bundle.a.fire)
val d_first = bundle.d.valid && edge.first(bundle.d.bits, bundle.d.fire)
val my_a_first_beat = a_first && (bundle.a.bits.source === sym_source)
val my_d_first_beat = d_first && (bundle.d.bits.source === sym_source)
val my_clr_resp_pend = (bundle.d.fire && my_d_first_beat)
val my_set_resp_pend = (bundle.a.fire && my_a_first_beat && !my_clr_resp_pend)
when (my_set_resp_pend) {
my_resp_pend := true.B
} .elsewhen (my_clr_resp_pend) {
my_resp_pend := false.B
}
when (my_a_first_beat) {
my_opcode := bundle.a.bits.opcode
my_size := bundle.a.bits.size
}
val my_resp_size = Mux(my_a_first_beat, bundle.a.bits.size, my_size)
val my_resp_opcode = Mux(my_a_first_beat, bundle.a.bits.opcode, my_opcode)
val my_resp_opcode_legal = Wire(Bool())
when ((my_resp_opcode === TLMessages.Get) || (my_resp_opcode === TLMessages.ArithmeticData) ||
(my_resp_opcode === TLMessages.LogicalData)) {
my_resp_opcode_legal := (bundle.d.bits.opcode === TLMessages.AccessAckData)
} .elsewhen ((my_resp_opcode === TLMessages.PutFullData) || (my_resp_opcode === TLMessages.PutPartialData)) {
my_resp_opcode_legal := (bundle.d.bits.opcode === TLMessages.AccessAck)
} .otherwise {
my_resp_opcode_legal := (bundle.d.bits.opcode === TLMessages.HintAck)
}
monAssert (IfThen(my_resp_pend, !my_a_first_beat),
"Request message should not be sent with a source ID, for which a response message" +
"is already pending (not received until current cycle) for a prior request message" +
"with the same source ID" + extra)
assume (IfThen(my_clr_resp_pend, (my_set_resp_pend || my_resp_pend)),
"Response message should be accepted with a source ID only if a request message with the" +
"same source ID has been accepted or is being accepted in the current cycle" + extra)
assume (IfThen(my_d_first_beat, (my_a_first_beat || my_resp_pend)),
"Response message should be sent with a source ID only if a request message with the" +
"same source ID has been accepted or is being sent in the current cycle" + extra)
assume (IfThen(my_d_first_beat, (bundle.d.bits.size === my_resp_size)),
"If d_valid is 1, then d_size should be same as a_size of the corresponding request" +
"message" + extra)
assume (IfThen(my_d_first_beat, my_resp_opcode_legal),
"If d_valid is 1, then d_opcode should correspond with a_opcode of the corresponding" +
"request message" + extra)
}
def legalizeMultibeatC(c: DecoupledIO[TLBundleC], edge: TLEdge): Unit = {
val c_first = edge.first(c.bits, c.fire)
val opcode = Reg(UInt())
val param = Reg(UInt())
val size = Reg(UInt())
val source = Reg(UInt())
val address = Reg(UInt())
when (c.valid && !c_first) {
monAssert (c.bits.opcode === opcode, "'C' channel opcode changed within multibeat operation" + extra)
monAssert (c.bits.param === param, "'C' channel param changed within multibeat operation" + extra)
monAssert (c.bits.size === size, "'C' channel size changed within multibeat operation" + extra)
monAssert (c.bits.source === source, "'C' channel source changed within multibeat operation" + extra)
monAssert (c.bits.address=== address,"'C' channel address changed with multibeat operation" + extra)
}
when (c.fire && c_first) {
opcode := c.bits.opcode
param := c.bits.param
size := c.bits.size
source := c.bits.source
address := c.bits.address
}
}
def legalizeMultibeatD(d: DecoupledIO[TLBundleD], edge: TLEdge): Unit = {
val d_first = edge.first(d.bits, d.fire)
val opcode = Reg(UInt())
val param = Reg(UInt())
val size = Reg(UInt())
val source = Reg(UInt())
val sink = Reg(UInt())
val denied = Reg(Bool())
when (d.valid && !d_first) {
assume (d.bits.opcode === opcode, "'D' channel opcode changed within multibeat operation" + extra)
assume (d.bits.param === param, "'D' channel param changed within multibeat operation" + extra)
assume (d.bits.size === size, "'D' channel size changed within multibeat operation" + extra)
assume (d.bits.source === source, "'D' channel source changed within multibeat operation" + extra)
assume (d.bits.sink === sink, "'D' channel sink changed with multibeat operation" + extra)
assume (d.bits.denied === denied, "'D' channel denied changed with multibeat operation" + extra)
}
when (d.fire && d_first) {
opcode := d.bits.opcode
param := d.bits.param
size := d.bits.size
source := d.bits.source
sink := d.bits.sink
denied := d.bits.denied
}
}
def legalizeMultibeat(bundle: TLBundle, edge: TLEdge): Unit = {
legalizeMultibeatA(bundle.a, edge)
legalizeMultibeatD(bundle.d, edge)
if (edge.client.anySupportProbe && edge.manager.anySupportAcquireB) {
legalizeMultibeatB(bundle.b, edge)
legalizeMultibeatC(bundle.c, edge)
}
}
//This is left in for almond which doesn't adhere to the tilelink protocol
@deprecated("Use legalizeADSource instead if possible","")
def legalizeADSourceOld(bundle: TLBundle, edge: TLEdge): Unit = {
val inflight = RegInit(0.U(edge.client.endSourceId.W))
val a_first = edge.first(bundle.a.bits, bundle.a.fire)
val d_first = edge.first(bundle.d.bits, bundle.d.fire)
val a_set = WireInit(0.U(edge.client.endSourceId.W))
when (bundle.a.fire && a_first && edge.isRequest(bundle.a.bits)) {
a_set := UIntToOH(bundle.a.bits.source)
assert(!inflight(bundle.a.bits.source), "'A' channel re-used a source ID" + extra)
}
val d_clr = WireInit(0.U(edge.client.endSourceId.W))
val d_release_ack = bundle.d.bits.opcode === TLMessages.ReleaseAck
when (bundle.d.fire && d_first && edge.isResponse(bundle.d.bits) && !d_release_ack) {
d_clr := UIntToOH(bundle.d.bits.source)
assume((a_set | inflight)(bundle.d.bits.source), "'D' channel acknowledged for nothing inflight" + extra)
}
if (edge.manager.minLatency > 0) {
assume(a_set =/= d_clr || !a_set.orR, s"'A' and 'D' concurrent, despite minlatency > 0" + extra)
}
inflight := (inflight | a_set) & ~d_clr
val watchdog = RegInit(0.U(32.W))
val limit = PlusArg("tilelink_timeout",
docstring="Kill emulation after INT waiting TileLink cycles. Off if 0.")
assert (!inflight.orR || limit === 0.U || watchdog < limit, "TileLink timeout expired" + extra)
watchdog := watchdog + 1.U
when (bundle.a.fire || bundle.d.fire) { watchdog := 0.U }
}
def legalizeADSource(bundle: TLBundle, edge: TLEdge): Unit = {
val a_size_bus_size = edge.bundle.sizeBits + 1 //add one so that 0 is not mapped to anything (size 0 -> size 1 in map, size 0 in map means unset)
val a_opcode_bus_size = 3 + 1 //opcode size is 3, but add so that 0 is not mapped to anything
val log_a_opcode_bus_size = log2Ceil(a_opcode_bus_size)
val log_a_size_bus_size = log2Ceil(a_size_bus_size)
def size_to_numfullbits(x: UInt): UInt = (1.U << x) - 1.U //convert a number to that many full bits
val inflight = RegInit(0.U((2 max edge.client.endSourceId).W)) // size up to avoid width error
inflight.suggestName("inflight")
val inflight_opcodes = RegInit(0.U((edge.client.endSourceId << log_a_opcode_bus_size).W))
inflight_opcodes.suggestName("inflight_opcodes")
val inflight_sizes = RegInit(0.U((edge.client.endSourceId << log_a_size_bus_size).W))
inflight_sizes.suggestName("inflight_sizes")
val a_first = edge.first(bundle.a.bits, bundle.a.fire)
a_first.suggestName("a_first")
val d_first = edge.first(bundle.d.bits, bundle.d.fire)
d_first.suggestName("d_first")
val a_set = WireInit(0.U(edge.client.endSourceId.W))
val a_set_wo_ready = WireInit(0.U(edge.client.endSourceId.W))
a_set.suggestName("a_set")
a_set_wo_ready.suggestName("a_set_wo_ready")
val a_opcodes_set = WireInit(0.U((edge.client.endSourceId << log_a_opcode_bus_size).W))
a_opcodes_set.suggestName("a_opcodes_set")
val a_sizes_set = WireInit(0.U((edge.client.endSourceId << log_a_size_bus_size).W))
a_sizes_set.suggestName("a_sizes_set")
val a_opcode_lookup = WireInit(0.U((a_opcode_bus_size - 1).W))
a_opcode_lookup.suggestName("a_opcode_lookup")
a_opcode_lookup := ((inflight_opcodes) >> (bundle.d.bits.source << log_a_opcode_bus_size.U) & size_to_numfullbits(1.U << log_a_opcode_bus_size.U)) >> 1.U
val a_size_lookup = WireInit(0.U((1 << log_a_size_bus_size).W))
a_size_lookup.suggestName("a_size_lookup")
a_size_lookup := ((inflight_sizes) >> (bundle.d.bits.source << log_a_size_bus_size.U) & size_to_numfullbits(1.U << log_a_size_bus_size.U)) >> 1.U
val responseMap = VecInit(Seq(TLMessages.AccessAck, TLMessages.AccessAck, TLMessages.AccessAckData, TLMessages.AccessAckData, TLMessages.AccessAckData, TLMessages.HintAck, TLMessages.Grant, TLMessages.Grant))
val responseMapSecondOption = VecInit(Seq(TLMessages.AccessAck, TLMessages.AccessAck, TLMessages.AccessAckData, TLMessages.AccessAckData, TLMessages.AccessAckData, TLMessages.HintAck, TLMessages.GrantData, TLMessages.Grant))
val a_opcodes_set_interm = WireInit(0.U(a_opcode_bus_size.W))
a_opcodes_set_interm.suggestName("a_opcodes_set_interm")
val a_sizes_set_interm = WireInit(0.U(a_size_bus_size.W))
a_sizes_set_interm.suggestName("a_sizes_set_interm")
when (bundle.a.valid && a_first && edge.isRequest(bundle.a.bits)) {
a_set_wo_ready := UIntToOH(bundle.a.bits.source)
}
when (bundle.a.fire && a_first && edge.isRequest(bundle.a.bits)) {
a_set := UIntToOH(bundle.a.bits.source)
a_opcodes_set_interm := (bundle.a.bits.opcode << 1.U) | 1.U
a_sizes_set_interm := (bundle.a.bits.size << 1.U) | 1.U
a_opcodes_set := (a_opcodes_set_interm) << (bundle.a.bits.source << log_a_opcode_bus_size.U)
a_sizes_set := (a_sizes_set_interm) << (bundle.a.bits.source << log_a_size_bus_size.U)
monAssert(!inflight(bundle.a.bits.source), "'A' channel re-used a source ID" + extra)
}
val d_clr = WireInit(0.U(edge.client.endSourceId.W))
val d_clr_wo_ready = WireInit(0.U(edge.client.endSourceId.W))
d_clr.suggestName("d_clr")
d_clr_wo_ready.suggestName("d_clr_wo_ready")
val d_opcodes_clr = WireInit(0.U((edge.client.endSourceId << log_a_opcode_bus_size).W))
d_opcodes_clr.suggestName("d_opcodes_clr")
val d_sizes_clr = WireInit(0.U((edge.client.endSourceId << log_a_size_bus_size).W))
d_sizes_clr.suggestName("d_sizes_clr")
val d_release_ack = bundle.d.bits.opcode === TLMessages.ReleaseAck
when (bundle.d.valid && d_first && edge.isResponse(bundle.d.bits) && !d_release_ack) {
d_clr_wo_ready := UIntToOH(bundle.d.bits.source)
}
when (bundle.d.fire && d_first && edge.isResponse(bundle.d.bits) && !d_release_ack) {
d_clr := UIntToOH(bundle.d.bits.source)
d_opcodes_clr := size_to_numfullbits(1.U << log_a_opcode_bus_size.U) << (bundle.d.bits.source << log_a_opcode_bus_size.U)
d_sizes_clr := size_to_numfullbits(1.U << log_a_size_bus_size.U) << (bundle.d.bits.source << log_a_size_bus_size.U)
}
when (bundle.d.valid && d_first && edge.isResponse(bundle.d.bits) && !d_release_ack) {
val same_cycle_resp = bundle.a.valid && a_first && edge.isRequest(bundle.a.bits) && (bundle.a.bits.source === bundle.d.bits.source)
assume(((inflight)(bundle.d.bits.source)) || same_cycle_resp, "'D' channel acknowledged for nothing inflight" + extra)
when (same_cycle_resp) {
assume((bundle.d.bits.opcode === responseMap(bundle.a.bits.opcode)) ||
(bundle.d.bits.opcode === responseMapSecondOption(bundle.a.bits.opcode)), "'D' channel contains improper opcode response" + extra)
assume((bundle.a.bits.size === bundle.d.bits.size), "'D' channel contains improper response size" + extra)
} .otherwise {
assume((bundle.d.bits.opcode === responseMap(a_opcode_lookup)) ||
(bundle.d.bits.opcode === responseMapSecondOption(a_opcode_lookup)), "'D' channel contains improper opcode response" + extra)
assume((bundle.d.bits.size === a_size_lookup), "'D' channel contains improper response size" + extra)
}
}
when(bundle.d.valid && d_first && a_first && bundle.a.valid && (bundle.a.bits.source === bundle.d.bits.source) && !d_release_ack) {
assume((!bundle.d.ready) || bundle.a.ready, "ready check")
}
if (edge.manager.minLatency > 0) {
assume(a_set_wo_ready =/= d_clr_wo_ready || !a_set_wo_ready.orR, s"'A' and 'D' concurrent, despite minlatency > 0" + extra)
}
inflight := (inflight | a_set) & ~d_clr
inflight_opcodes := (inflight_opcodes | a_opcodes_set) & ~d_opcodes_clr
inflight_sizes := (inflight_sizes | a_sizes_set) & ~d_sizes_clr
val watchdog = RegInit(0.U(32.W))
val limit = PlusArg("tilelink_timeout",
docstring="Kill emulation after INT waiting TileLink cycles. Off if 0.")
monAssert (!inflight.orR || limit === 0.U || watchdog < limit, "TileLink timeout expired" + extra)
watchdog := watchdog + 1.U
when (bundle.a.fire || bundle.d.fire) { watchdog := 0.U }
}
def legalizeCDSource(bundle: TLBundle, edge: TLEdge): Unit = {
val c_size_bus_size = edge.bundle.sizeBits + 1 //add one so that 0 is not mapped to anything (size 0 -> size 1 in map, size 0 in map means unset)
val c_opcode_bus_size = 3 + 1 //opcode size is 3, but add so that 0 is not mapped to anything
val log_c_opcode_bus_size = log2Ceil(c_opcode_bus_size)
val log_c_size_bus_size = log2Ceil(c_size_bus_size)
def size_to_numfullbits(x: UInt): UInt = (1.U << x) - 1.U //convert a number to that many full bits
val inflight = RegInit(0.U((2 max edge.client.endSourceId).W))
val inflight_opcodes = RegInit(0.U((edge.client.endSourceId << log_c_opcode_bus_size).W))
val inflight_sizes = RegInit(0.U((edge.client.endSourceId << log_c_size_bus_size).W))
inflight.suggestName("inflight")
inflight_opcodes.suggestName("inflight_opcodes")
inflight_sizes.suggestName("inflight_sizes")
val c_first = edge.first(bundle.c.bits, bundle.c.fire)
val d_first = edge.first(bundle.d.bits, bundle.d.fire)
c_first.suggestName("c_first")
d_first.suggestName("d_first")
val c_set = WireInit(0.U(edge.client.endSourceId.W))
val c_set_wo_ready = WireInit(0.U(edge.client.endSourceId.W))
val c_opcodes_set = WireInit(0.U((edge.client.endSourceId << log_c_opcode_bus_size).W))
val c_sizes_set = WireInit(0.U((edge.client.endSourceId << log_c_size_bus_size).W))
c_set.suggestName("c_set")
c_set_wo_ready.suggestName("c_set_wo_ready")
c_opcodes_set.suggestName("c_opcodes_set")
c_sizes_set.suggestName("c_sizes_set")
val c_opcode_lookup = WireInit(0.U((1 << log_c_opcode_bus_size).W))
val c_size_lookup = WireInit(0.U((1 << log_c_size_bus_size).W))
c_opcode_lookup := ((inflight_opcodes) >> (bundle.d.bits.source << log_c_opcode_bus_size.U) & size_to_numfullbits(1.U << log_c_opcode_bus_size.U)) >> 1.U
c_size_lookup := ((inflight_sizes) >> (bundle.d.bits.source << log_c_size_bus_size.U) & size_to_numfullbits(1.U << log_c_size_bus_size.U)) >> 1.U
c_opcode_lookup.suggestName("c_opcode_lookup")
c_size_lookup.suggestName("c_size_lookup")
val c_opcodes_set_interm = WireInit(0.U(c_opcode_bus_size.W))
val c_sizes_set_interm = WireInit(0.U(c_size_bus_size.W))
c_opcodes_set_interm.suggestName("c_opcodes_set_interm")
c_sizes_set_interm.suggestName("c_sizes_set_interm")
when (bundle.c.valid && c_first && edge.isRequest(bundle.c.bits)) {
c_set_wo_ready := UIntToOH(bundle.c.bits.source)
}
when (bundle.c.fire && c_first && edge.isRequest(bundle.c.bits)) {
c_set := UIntToOH(bundle.c.bits.source)
c_opcodes_set_interm := (bundle.c.bits.opcode << 1.U) | 1.U
c_sizes_set_interm := (bundle.c.bits.size << 1.U) | 1.U
c_opcodes_set := (c_opcodes_set_interm) << (bundle.c.bits.source << log_c_opcode_bus_size.U)
c_sizes_set := (c_sizes_set_interm) << (bundle.c.bits.source << log_c_size_bus_size.U)
monAssert(!inflight(bundle.c.bits.source), "'C' channel re-used a source ID" + extra)
}
val c_probe_ack = bundle.c.bits.opcode === TLMessages.ProbeAck || bundle.c.bits.opcode === TLMessages.ProbeAckData
val d_clr = WireInit(0.U(edge.client.endSourceId.W))
val d_clr_wo_ready = WireInit(0.U(edge.client.endSourceId.W))
val d_opcodes_clr = WireInit(0.U((edge.client.endSourceId << log_c_opcode_bus_size).W))
val d_sizes_clr = WireInit(0.U((edge.client.endSourceId << log_c_size_bus_size).W))
d_clr.suggestName("d_clr")
d_clr_wo_ready.suggestName("d_clr_wo_ready")
d_opcodes_clr.suggestName("d_opcodes_clr")
d_sizes_clr.suggestName("d_sizes_clr")
val d_release_ack = bundle.d.bits.opcode === TLMessages.ReleaseAck
when (bundle.d.valid && d_first && edge.isResponse(bundle.d.bits) && d_release_ack) {
d_clr_wo_ready := UIntToOH(bundle.d.bits.source)
}
when (bundle.d.fire && d_first && edge.isResponse(bundle.d.bits) && d_release_ack) {
d_clr := UIntToOH(bundle.d.bits.source)
d_opcodes_clr := size_to_numfullbits(1.U << log_c_opcode_bus_size.U) << (bundle.d.bits.source << log_c_opcode_bus_size.U)
d_sizes_clr := size_to_numfullbits(1.U << log_c_size_bus_size.U) << (bundle.d.bits.source << log_c_size_bus_size.U)
}
when (bundle.d.valid && d_first && edge.isResponse(bundle.d.bits) && d_release_ack) {
val same_cycle_resp = bundle.c.valid && c_first && edge.isRequest(bundle.c.bits) && (bundle.c.bits.source === bundle.d.bits.source)
assume(((inflight)(bundle.d.bits.source)) || same_cycle_resp, "'D' channel acknowledged for nothing inflight" + extra)
when (same_cycle_resp) {
assume((bundle.d.bits.size === bundle.c.bits.size), "'D' channel contains improper response size" + extra)
} .otherwise {
assume((bundle.d.bits.size === c_size_lookup), "'D' channel contains improper response size" + extra)
}
}
when(bundle.d.valid && d_first && c_first && bundle.c.valid && (bundle.c.bits.source === bundle.d.bits.source) && d_release_ack && !c_probe_ack) {
assume((!bundle.d.ready) || bundle.c.ready, "ready check")
}
if (edge.manager.minLatency > 0) {
when (c_set_wo_ready.orR) {
assume(c_set_wo_ready =/= d_clr_wo_ready, s"'C' and 'D' concurrent, despite minlatency > 0" + extra)
}
}
inflight := (inflight | c_set) & ~d_clr
inflight_opcodes := (inflight_opcodes | c_opcodes_set) & ~d_opcodes_clr
inflight_sizes := (inflight_sizes | c_sizes_set) & ~d_sizes_clr
val watchdog = RegInit(0.U(32.W))
val limit = PlusArg("tilelink_timeout",
docstring="Kill emulation after INT waiting TileLink cycles. Off if 0.")
monAssert (!inflight.orR || limit === 0.U || watchdog < limit, "TileLink timeout expired" + extra)
watchdog := watchdog + 1.U
when (bundle.c.fire || bundle.d.fire) { watchdog := 0.U }
}
def legalizeDESink(bundle: TLBundle, edge: TLEdge): Unit = {
val inflight = RegInit(0.U(edge.manager.endSinkId.W))
val d_first = edge.first(bundle.d.bits, bundle.d.fire)
val e_first = true.B
val d_set = WireInit(0.U(edge.manager.endSinkId.W))
when (bundle.d.fire && d_first && edge.isRequest(bundle.d.bits)) {
d_set := UIntToOH(bundle.d.bits.sink)
assume(!inflight(bundle.d.bits.sink), "'D' channel re-used a sink ID" + extra)
}
val e_clr = WireInit(0.U(edge.manager.endSinkId.W))
when (bundle.e.fire && e_first && edge.isResponse(bundle.e.bits)) {
e_clr := UIntToOH(bundle.e.bits.sink)
monAssert((d_set | inflight)(bundle.e.bits.sink), "'E' channel acknowledged for nothing inflight" + extra)
}
// edge.client.minLatency applies to BC, not DE
inflight := (inflight | d_set) & ~e_clr
}
def legalizeUnique(bundle: TLBundle, edge: TLEdge): Unit = {
val sourceBits = log2Ceil(edge.client.endSourceId)
val tooBig = 14 // >16kB worth of flight information gets to be too much
if (sourceBits > tooBig) {
println(s"WARNING: TLMonitor instantiated on a bus with source bits (${sourceBits}) > ${tooBig}; A=>D transaction flight will not be checked")
} else {
if (args.edge.params(TestplanTestType).simulation) {
if (args.edge.params(TLMonitorStrictMode)) {
legalizeADSource(bundle, edge)
legalizeCDSource(bundle, edge)
} else {
legalizeADSourceOld(bundle, edge)
}
}
if (args.edge.params(TestplanTestType).formal) {
legalizeADSourceFormal(bundle, edge)
}
}
if (edge.client.anySupportProbe && edge.manager.anySupportAcquireB) {
// legalizeBCSourceAddress(bundle, edge) // too much state needed to synthesize...
val sinkBits = log2Ceil(edge.manager.endSinkId)
if (sinkBits > tooBig) {
println(s"WARNING: TLMonitor instantiated on a bus with sink bits (${sinkBits}) > ${tooBig}; D=>E transaction flight will not be checked")
} else {
legalizeDESink(bundle, edge)
}
}
}
def legalize(bundle: TLBundle, edge: TLEdge, reset: Reset): Unit = {
legalizeFormat (bundle, edge)
legalizeMultibeat (bundle, edge)
legalizeUnique (bundle, edge)
}
}
File Misc.scala:
// See LICENSE.Berkeley for license details.
// See LICENSE.SiFive for license details.
package freechips.rocketchip.util
import chisel3._
import chisel3.util._
import chisel3.util.random.LFSR
import org.chipsalliance.cde.config.Parameters
import scala.math._
class ParameterizedBundle(implicit p: Parameters) extends Bundle
trait Clocked extends Bundle {
val clock = Clock()
val reset = Bool()
}
object DecoupledHelper {
def apply(rvs: Bool*) = new DecoupledHelper(rvs)
}
class DecoupledHelper(val rvs: Seq[Bool]) {
def fire(exclude: Bool, includes: Bool*) = {
require(rvs.contains(exclude), "Excluded Bool not present in DecoupledHelper! Note that DecoupledHelper uses referential equality for exclusion! If you don't want to exclude anything, use fire()!")
(rvs.filter(_ ne exclude) ++ includes).reduce(_ && _)
}
def fire() = {
rvs.reduce(_ && _)
}
}
object MuxT {
def apply[T <: Data, U <: Data](cond: Bool, con: (T, U), alt: (T, U)): (T, U) =
(Mux(cond, con._1, alt._1), Mux(cond, con._2, alt._2))
def apply[T <: Data, U <: Data, W <: Data](cond: Bool, con: (T, U, W), alt: (T, U, W)): (T, U, W) =
(Mux(cond, con._1, alt._1), Mux(cond, con._2, alt._2), Mux(cond, con._3, alt._3))
def apply[T <: Data, U <: Data, W <: Data, X <: Data](cond: Bool, con: (T, U, W, X), alt: (T, U, W, X)): (T, U, W, X) =
(Mux(cond, con._1, alt._1), Mux(cond, con._2, alt._2), Mux(cond, con._3, alt._3), Mux(cond, con._4, alt._4))
}
/** Creates a cascade of n MuxTs to search for a key value. */
object MuxTLookup {
def apply[S <: UInt, T <: Data, U <: Data](key: S, default: (T, U), mapping: Seq[(S, (T, U))]): (T, U) = {
var res = default
for ((k, v) <- mapping.reverse)
res = MuxT(k === key, v, res)
res
}
def apply[S <: UInt, T <: Data, U <: Data, W <: Data](key: S, default: (T, U, W), mapping: Seq[(S, (T, U, W))]): (T, U, W) = {
var res = default
for ((k, v) <- mapping.reverse)
res = MuxT(k === key, v, res)
res
}
}
object ValidMux {
def apply[T <: Data](v1: ValidIO[T], v2: ValidIO[T]*): ValidIO[T] = {
apply(v1 +: v2.toSeq)
}
def apply[T <: Data](valids: Seq[ValidIO[T]]): ValidIO[T] = {
val out = Wire(Valid(valids.head.bits.cloneType))
out.valid := valids.map(_.valid).reduce(_ || _)
out.bits := MuxCase(valids.head.bits,
valids.map(v => (v.valid -> v.bits)))
out
}
}
object Str
{
def apply(s: String): UInt = {
var i = BigInt(0)
require(s.forall(validChar _))
for (c <- s)
i = (i << 8) | c
i.U((s.length*8).W)
}
def apply(x: Char): UInt = {
require(validChar(x))
x.U(8.W)
}
def apply(x: UInt): UInt = apply(x, 10)
def apply(x: UInt, radix: Int): UInt = {
val rad = radix.U
val w = x.getWidth
require(w > 0)
var q = x
var s = digit(q % rad)
for (i <- 1 until ceil(log(2)/log(radix)*w).toInt) {
q = q / rad
s = Cat(Mux((radix == 10).B && q === 0.U, Str(' '), digit(q % rad)), s)
}
s
}
def apply(x: SInt): UInt = apply(x, 10)
def apply(x: SInt, radix: Int): UInt = {
val neg = x < 0.S
val abs = x.abs.asUInt
if (radix != 10) {
Cat(Mux(neg, Str('-'), Str(' ')), Str(abs, radix))
} else {
val rad = radix.U
val w = abs.getWidth
require(w > 0)
var q = abs
var s = digit(q % rad)
var needSign = neg
for (i <- 1 until ceil(log(2)/log(radix)*w).toInt) {
q = q / rad
val placeSpace = q === 0.U
val space = Mux(needSign, Str('-'), Str(' '))
needSign = needSign && !placeSpace
s = Cat(Mux(placeSpace, space, digit(q % rad)), s)
}
Cat(Mux(needSign, Str('-'), Str(' ')), s)
}
}
private def digit(d: UInt): UInt = Mux(d < 10.U, Str('0')+d, Str(('a'-10).toChar)+d)(7,0)
private def validChar(x: Char) = x == (x & 0xFF)
}
object Split
{
def apply(x: UInt, n0: Int) = {
val w = x.getWidth
(x.extract(w-1,n0), x.extract(n0-1,0))
}
def apply(x: UInt, n1: Int, n0: Int) = {
val w = x.getWidth
(x.extract(w-1,n1), x.extract(n1-1,n0), x.extract(n0-1,0))
}
def apply(x: UInt, n2: Int, n1: Int, n0: Int) = {
val w = x.getWidth
(x.extract(w-1,n2), x.extract(n2-1,n1), x.extract(n1-1,n0), x.extract(n0-1,0))
}
}
object Random
{
def apply(mod: Int, random: UInt): UInt = {
if (isPow2(mod)) random.extract(log2Ceil(mod)-1,0)
else PriorityEncoder(partition(apply(1 << log2Up(mod*8), random), mod))
}
def apply(mod: Int): UInt = apply(mod, randomizer)
def oneHot(mod: Int, random: UInt): UInt = {
if (isPow2(mod)) UIntToOH(random(log2Up(mod)-1,0))
else PriorityEncoderOH(partition(apply(1 << log2Up(mod*8), random), mod)).asUInt
}
def oneHot(mod: Int): UInt = oneHot(mod, randomizer)
private def randomizer = LFSR(16)
private def partition(value: UInt, slices: Int) =
Seq.tabulate(slices)(i => value < (((i + 1) << value.getWidth) / slices).U)
}
object Majority {
def apply(in: Set[Bool]): Bool = {
val n = (in.size >> 1) + 1
val clauses = in.subsets(n).map(_.reduce(_ && _))
clauses.reduce(_ || _)
}
def apply(in: Seq[Bool]): Bool = apply(in.toSet)
def apply(in: UInt): Bool = apply(in.asBools.toSet)
}
object PopCountAtLeast {
private def two(x: UInt): (Bool, Bool) = x.getWidth match {
case 1 => (x.asBool, false.B)
case n =>
val half = x.getWidth / 2
val (leftOne, leftTwo) = two(x(half - 1, 0))
val (rightOne, rightTwo) = two(x(x.getWidth - 1, half))
(leftOne || rightOne, leftTwo || rightTwo || (leftOne && rightOne))
}
def apply(x: UInt, n: Int): Bool = n match {
case 0 => true.B
case 1 => x.orR
case 2 => two(x)._2
case 3 => PopCount(x) >= n.U
}
}
// This gets used everywhere, so make the smallest circuit possible ...
// Given an address and size, create a mask of beatBytes size
// eg: (0x3, 0, 4) => 0001, (0x3, 1, 4) => 0011, (0x3, 2, 4) => 1111
// groupBy applies an interleaved OR reduction; groupBy=2 take 0010 => 01
object MaskGen {
def apply(addr_lo: UInt, lgSize: UInt, beatBytes: Int, groupBy: Int = 1): UInt = {
require (groupBy >= 1 && beatBytes >= groupBy)
require (isPow2(beatBytes) && isPow2(groupBy))
val lgBytes = log2Ceil(beatBytes)
val sizeOH = UIntToOH(lgSize | 0.U(log2Up(beatBytes).W), log2Up(beatBytes)) | (groupBy*2 - 1).U
def helper(i: Int): Seq[(Bool, Bool)] = {
if (i == 0) {
Seq((lgSize >= lgBytes.asUInt, true.B))
} else {
val sub = helper(i-1)
val size = sizeOH(lgBytes - i)
val bit = addr_lo(lgBytes - i)
val nbit = !bit
Seq.tabulate (1 << i) { j =>
val (sub_acc, sub_eq) = sub(j/2)
val eq = sub_eq && (if (j % 2 == 1) bit else nbit)
val acc = sub_acc || (size && eq)
(acc, eq)
}
}
}
if (groupBy == beatBytes) 1.U else
Cat(helper(lgBytes-log2Ceil(groupBy)).map(_._1).reverse)
}
}
File PlusArg.scala:
// See LICENSE.SiFive for license details.
package freechips.rocketchip.util
import chisel3._
import chisel3.experimental._
import chisel3.util.HasBlackBoxResource
@deprecated("This will be removed in Rocket Chip 2020.08", "Rocket Chip 2020.05")
case class PlusArgInfo(default: BigInt, docstring: String)
/** Case class for PlusArg information
*
* @tparam A scala type of the PlusArg value
* @param default optional default value
* @param docstring text to include in the help
* @param doctype description of the Verilog type of the PlusArg value (e.g. STRING, INT)
*/
private case class PlusArgContainer[A](default: Option[A], docstring: String, doctype: String)
/** Typeclass for converting a type to a doctype string
* @tparam A some type
*/
trait Doctypeable[A] {
/** Return the doctype string for some option */
def toDoctype(a: Option[A]): String
}
/** Object containing implementations of the Doctypeable typeclass */
object Doctypes {
/** Converts an Int => "INT" */
implicit val intToDoctype = new Doctypeable[Int] { def toDoctype(a: Option[Int]) = "INT" }
/** Converts a BigInt => "INT" */
implicit val bigIntToDoctype = new Doctypeable[BigInt] { def toDoctype(a: Option[BigInt]) = "INT" }
/** Converts a String => "STRING" */
implicit val stringToDoctype = new Doctypeable[String] { def toDoctype(a: Option[String]) = "STRING" }
}
class plusarg_reader(val format: String, val default: BigInt, val docstring: String, val width: Int) extends BlackBox(Map(
"FORMAT" -> StringParam(format),
"DEFAULT" -> IntParam(default),
"WIDTH" -> IntParam(width)
)) with HasBlackBoxResource {
val io = IO(new Bundle {
val out = Output(UInt(width.W))
})
addResource("/vsrc/plusarg_reader.v")
}
/* This wrapper class has no outputs, making it clear it is a simulation-only construct */
class PlusArgTimeout(val format: String, val default: BigInt, val docstring: String, val width: Int) extends Module {
val io = IO(new Bundle {
val count = Input(UInt(width.W))
})
val max = Module(new plusarg_reader(format, default, docstring, width)).io.out
when (max > 0.U) {
assert (io.count < max, s"Timeout exceeded: $docstring")
}
}
import Doctypes._
object PlusArg
{
/** PlusArg("foo") will return 42.U if the simulation is run with +foo=42
* Do not use this as an initial register value. The value is set in an
* initial block and thus accessing it from another initial is racey.
* Add a docstring to document the arg, which can be dumped in an elaboration
* pass.
*/
def apply(name: String, default: BigInt = 0, docstring: String = "", width: Int = 32): UInt = {
PlusArgArtefacts.append(name, Some(default), docstring)
Module(new plusarg_reader(name + "=%d", default, docstring, width)).io.out
}
/** PlusArg.timeout(name, default, docstring)(count) will use chisel.assert
* to kill the simulation when count exceeds the specified integer argument.
* Default 0 will never assert.
*/
def timeout(name: String, default: BigInt = 0, docstring: String = "", width: Int = 32)(count: UInt): Unit = {
PlusArgArtefacts.append(name, Some(default), docstring)
Module(new PlusArgTimeout(name + "=%d", default, docstring, width)).io.count := count
}
}
object PlusArgArtefacts {
private var artefacts: Map[String, PlusArgContainer[_]] = Map.empty
/* Add a new PlusArg */
@deprecated(
"Use `Some(BigInt)` to specify a `default` value. This will be removed in Rocket Chip 2020.08",
"Rocket Chip 2020.05"
)
def append(name: String, default: BigInt, docstring: String): Unit = append(name, Some(default), docstring)
/** Add a new PlusArg
*
* @tparam A scala type of the PlusArg value
* @param name name for the PlusArg
* @param default optional default value
* @param docstring text to include in the help
*/
def append[A : Doctypeable](name: String, default: Option[A], docstring: String): Unit =
artefacts = artefacts ++
Map(name -> PlusArgContainer(default, docstring, implicitly[Doctypeable[A]].toDoctype(default)))
/* From plus args, generate help text */
private def serializeHelp_cHeader(tab: String = ""): String = artefacts
.map{ case(arg, info) =>
s"""|$tab+$arg=${info.doctype}\\n\\
|$tab${" "*20}${info.docstring}\\n\\
|""".stripMargin ++ info.default.map{ case default =>
s"$tab${" "*22}(default=${default})\\n\\\n"}.getOrElse("")
}.toSeq.mkString("\\n\\\n") ++ "\""
/* From plus args, generate a char array of their names */
private def serializeArray_cHeader(tab: String = ""): String = {
val prettyTab = tab + " " * 44 // Length of 'static const ...'
s"${tab}static const char * verilog_plusargs [] = {\\\n" ++
artefacts
.map{ case(arg, _) => s"""$prettyTab"$arg",\\\n""" }
.mkString("")++
s"${prettyTab}0};"
}
/* Generate C code to be included in emulator.cc that helps with
* argument parsing based on available Verilog PlusArgs */
def serialize_cHeader(): String =
s"""|#define PLUSARG_USAGE_OPTIONS \"EMULATOR VERILOG PLUSARGS\\n\\
|${serializeHelp_cHeader(" "*7)}
|${serializeArray_cHeader()}
|""".stripMargin
}
File package.scala:
// See LICENSE.SiFive for license details.
package freechips.rocketchip
import chisel3._
import chisel3.util._
import scala.math.min
import scala.collection.{immutable, mutable}
package object util {
implicit class UnzippableOption[S, T](val x: Option[(S, T)]) {
def unzip = (x.map(_._1), x.map(_._2))
}
implicit class UIntIsOneOf(private val x: UInt) extends AnyVal {
def isOneOf(s: Seq[UInt]): Bool = s.map(x === _).orR
def isOneOf(u1: UInt, u2: UInt*): Bool = isOneOf(u1 +: u2.toSeq)
}
implicit class VecToAugmentedVec[T <: Data](private val x: Vec[T]) extends AnyVal {
/** Like Vec.apply(idx), but tolerates indices of mismatched width */
def extract(idx: UInt): T = x((idx | 0.U(log2Ceil(x.size).W)).extract(log2Ceil(x.size) - 1, 0))
}
implicit class SeqToAugmentedSeq[T <: Data](private val x: Seq[T]) extends AnyVal {
def apply(idx: UInt): T = {
if (x.size <= 1) {
x.head
} else if (!isPow2(x.size)) {
// For non-power-of-2 seqs, reflect elements to simplify decoder
(x ++ x.takeRight(x.size & -x.size)).toSeq(idx)
} else {
// Ignore MSBs of idx
val truncIdx =
if (idx.isWidthKnown && idx.getWidth <= log2Ceil(x.size)) idx
else (idx | 0.U(log2Ceil(x.size).W))(log2Ceil(x.size)-1, 0)
x.zipWithIndex.tail.foldLeft(x.head) { case (prev, (cur, i)) => Mux(truncIdx === i.U, cur, prev) }
}
}
def extract(idx: UInt): T = VecInit(x).extract(idx)
def asUInt: UInt = Cat(x.map(_.asUInt).reverse)
def rotate(n: Int): Seq[T] = x.drop(n) ++ x.take(n)
def rotate(n: UInt): Seq[T] = {
if (x.size <= 1) {
x
} else {
require(isPow2(x.size))
val amt = n.padTo(log2Ceil(x.size))
(0 until log2Ceil(x.size)).foldLeft(x)((r, i) => (r.rotate(1 << i) zip r).map { case (s, a) => Mux(amt(i), s, a) })
}
}
def rotateRight(n: Int): Seq[T] = x.takeRight(n) ++ x.dropRight(n)
def rotateRight(n: UInt): Seq[T] = {
if (x.size <= 1) {
x
} else {
require(isPow2(x.size))
val amt = n.padTo(log2Ceil(x.size))
(0 until log2Ceil(x.size)).foldLeft(x)((r, i) => (r.rotateRight(1 << i) zip r).map { case (s, a) => Mux(amt(i), s, a) })
}
}
}
// allow bitwise ops on Seq[Bool] just like UInt
implicit class SeqBoolBitwiseOps(private val x: Seq[Bool]) extends AnyVal {
def & (y: Seq[Bool]): Seq[Bool] = (x zip y).map { case (a, b) => a && b }
def | (y: Seq[Bool]): Seq[Bool] = padZip(x, y).map { case (a, b) => a || b }
def ^ (y: Seq[Bool]): Seq[Bool] = padZip(x, y).map { case (a, b) => a ^ b }
def << (n: Int): Seq[Bool] = Seq.fill(n)(false.B) ++ x
def >> (n: Int): Seq[Bool] = x drop n
def unary_~ : Seq[Bool] = x.map(!_)
def andR: Bool = if (x.isEmpty) true.B else x.reduce(_&&_)
def orR: Bool = if (x.isEmpty) false.B else x.reduce(_||_)
def xorR: Bool = if (x.isEmpty) false.B else x.reduce(_^_)
private def padZip(y: Seq[Bool], z: Seq[Bool]): Seq[(Bool, Bool)] = y.padTo(z.size, false.B) zip z.padTo(y.size, false.B)
}
implicit class DataToAugmentedData[T <: Data](private val x: T) extends AnyVal {
def holdUnless(enable: Bool): T = Mux(enable, x, RegEnable(x, enable))
def getElements: Seq[Element] = x match {
case e: Element => Seq(e)
case a: Aggregate => a.getElements.flatMap(_.getElements)
}
}
/** Any Data subtype that has a Bool member named valid. */
type DataCanBeValid = Data { val valid: Bool }
implicit class SeqMemToAugmentedSeqMem[T <: Data](private val x: SyncReadMem[T]) extends AnyVal {
def readAndHold(addr: UInt, enable: Bool): T = x.read(addr, enable) holdUnless RegNext(enable)
}
implicit class StringToAugmentedString(private val x: String) extends AnyVal {
/** converts from camel case to to underscores, also removing all spaces */
def underscore: String = x.tail.foldLeft(x.headOption.map(_.toLower + "") getOrElse "") {
case (acc, c) if c.isUpper => acc + "_" + c.toLower
case (acc, c) if c == ' ' => acc
case (acc, c) => acc + c
}
/** converts spaces or underscores to hyphens, also lowering case */
def kebab: String = x.toLowerCase map {
case ' ' => '-'
case '_' => '-'
case c => c
}
def named(name: Option[String]): String = {
x + name.map("_named_" + _ ).getOrElse("_with_no_name")
}
def named(name: String): String = named(Some(name))
}
implicit def uintToBitPat(x: UInt): BitPat = BitPat(x)
implicit def wcToUInt(c: WideCounter): UInt = c.value
implicit class UIntToAugmentedUInt(private val x: UInt) extends AnyVal {
def sextTo(n: Int): UInt = {
require(x.getWidth <= n)
if (x.getWidth == n) x
else Cat(Fill(n - x.getWidth, x(x.getWidth-1)), x)
}
def padTo(n: Int): UInt = {
require(x.getWidth <= n)
if (x.getWidth == n) x
else Cat(0.U((n - x.getWidth).W), x)
}
// shifts left by n if n >= 0, or right by -n if n < 0
def << (n: SInt): UInt = {
val w = n.getWidth - 1
require(w <= 30)
val shifted = x << n(w-1, 0)
Mux(n(w), shifted >> (1 << w), shifted)
}
// shifts right by n if n >= 0, or left by -n if n < 0
def >> (n: SInt): UInt = {
val w = n.getWidth - 1
require(w <= 30)
val shifted = x << (1 << w) >> n(w-1, 0)
Mux(n(w), shifted, shifted >> (1 << w))
}
// Like UInt.apply(hi, lo), but returns 0.U for zero-width extracts
def extract(hi: Int, lo: Int): UInt = {
require(hi >= lo-1)
if (hi == lo-1) 0.U
else x(hi, lo)
}
// Like Some(UInt.apply(hi, lo)), but returns None for zero-width extracts
def extractOption(hi: Int, lo: Int): Option[UInt] = {
require(hi >= lo-1)
if (hi == lo-1) None
else Some(x(hi, lo))
}
// like x & ~y, but first truncate or zero-extend y to x's width
def andNot(y: UInt): UInt = x & ~(y | (x & 0.U))
def rotateRight(n: Int): UInt = if (n == 0) x else Cat(x(n-1, 0), x >> n)
def rotateRight(n: UInt): UInt = {
if (x.getWidth <= 1) {
x
} else {
val amt = n.padTo(log2Ceil(x.getWidth))
(0 until log2Ceil(x.getWidth)).foldLeft(x)((r, i) => Mux(amt(i), r.rotateRight(1 << i), r))
}
}
def rotateLeft(n: Int): UInt = if (n == 0) x else Cat(x(x.getWidth-1-n,0), x(x.getWidth-1,x.getWidth-n))
def rotateLeft(n: UInt): UInt = {
if (x.getWidth <= 1) {
x
} else {
val amt = n.padTo(log2Ceil(x.getWidth))
(0 until log2Ceil(x.getWidth)).foldLeft(x)((r, i) => Mux(amt(i), r.rotateLeft(1 << i), r))
}
}
// compute (this + y) % n, given (this < n) and (y < n)
def addWrap(y: UInt, n: Int): UInt = {
val z = x +& y
if (isPow2(n)) z(n.log2-1, 0) else Mux(z >= n.U, z - n.U, z)(log2Ceil(n)-1, 0)
}
// compute (this - y) % n, given (this < n) and (y < n)
def subWrap(y: UInt, n: Int): UInt = {
val z = x -& y
if (isPow2(n)) z(n.log2-1, 0) else Mux(z(z.getWidth-1), z + n.U, z)(log2Ceil(n)-1, 0)
}
def grouped(width: Int): Seq[UInt] =
(0 until x.getWidth by width).map(base => x(base + width - 1, base))
def inRange(base: UInt, bounds: UInt) = x >= base && x < bounds
def ## (y: Option[UInt]): UInt = y.map(x ## _).getOrElse(x)
// Like >=, but prevents x-prop for ('x >= 0)
def >== (y: UInt): Bool = x >= y || y === 0.U
}
implicit class OptionUIntToAugmentedOptionUInt(private val x: Option[UInt]) extends AnyVal {
def ## (y: UInt): UInt = x.map(_ ## y).getOrElse(y)
def ## (y: Option[UInt]): Option[UInt] = x.map(_ ## y)
}
implicit class BooleanToAugmentedBoolean(private val x: Boolean) extends AnyVal {
def toInt: Int = if (x) 1 else 0
// this one's snagged from scalaz
def option[T](z: => T): Option[T] = if (x) Some(z) else None
}
implicit class IntToAugmentedInt(private val x: Int) extends AnyVal {
// exact log2
def log2: Int = {
require(isPow2(x))
log2Ceil(x)
}
}
def OH1ToOH(x: UInt): UInt = (x << 1 | 1.U) & ~Cat(0.U(1.W), x)
def OH1ToUInt(x: UInt): UInt = OHToUInt(OH1ToOH(x))
def UIntToOH1(x: UInt, width: Int): UInt = ~((-1).S(width.W).asUInt << x)(width-1, 0)
def UIntToOH1(x: UInt): UInt = UIntToOH1(x, (1 << x.getWidth) - 1)
def trailingZeros(x: Int): Option[Int] = if (x > 0) Some(log2Ceil(x & -x)) else None
// Fill 1s from low bits to high bits
def leftOR(x: UInt): UInt = leftOR(x, x.getWidth, x.getWidth)
def leftOR(x: UInt, width: Integer, cap: Integer = 999999): UInt = {
val stop = min(width, cap)
def helper(s: Int, x: UInt): UInt =
if (s >= stop) x else helper(s+s, x | (x << s)(width-1,0))
helper(1, x)(width-1, 0)
}
// Fill 1s form high bits to low bits
def rightOR(x: UInt): UInt = rightOR(x, x.getWidth, x.getWidth)
def rightOR(x: UInt, width: Integer, cap: Integer = 999999): UInt = {
val stop = min(width, cap)
def helper(s: Int, x: UInt): UInt =
if (s >= stop) x else helper(s+s, x | (x >> s))
helper(1, x)(width-1, 0)
}
def OptimizationBarrier[T <: Data](in: T): T = {
val barrier = Module(new Module {
val io = IO(new Bundle {
val x = Input(chiselTypeOf(in))
val y = Output(chiselTypeOf(in))
})
io.y := io.x
override def desiredName = s"OptimizationBarrier_${in.typeName}"
})
barrier.io.x := in
barrier.io.y
}
/** Similar to Seq.groupBy except this returns a Seq instead of a Map
* Useful for deterministic code generation
*/
def groupByIntoSeq[A, K](xs: Seq[A])(f: A => K): immutable.Seq[(K, immutable.Seq[A])] = {
val map = mutable.LinkedHashMap.empty[K, mutable.ListBuffer[A]]
for (x <- xs) {
val key = f(x)
val l = map.getOrElseUpdate(key, mutable.ListBuffer.empty[A])
l += x
}
map.view.map({ case (k, vs) => k -> vs.toList }).toList
}
def heterogeneousOrGlobalSetting[T](in: Seq[T], n: Int): Seq[T] = in.size match {
case 1 => List.fill(n)(in.head)
case x if x == n => in
case _ => throw new Exception(s"must provide exactly 1 or $n of some field, but got:\n$in")
}
// HeterogeneousBag moved to standalond diplomacy
@deprecated("HeterogeneousBag has been absorbed into standalone diplomacy library", "rocketchip 2.0.0")
def HeterogeneousBag[T <: Data](elts: Seq[T]) = _root_.org.chipsalliance.diplomacy.nodes.HeterogeneousBag[T](elts)
@deprecated("HeterogeneousBag has been absorbed into standalone diplomacy library", "rocketchip 2.0.0")
val HeterogeneousBag = _root_.org.chipsalliance.diplomacy.nodes.HeterogeneousBag
}
File Parameters.scala:
// See LICENSE.SiFive for license details.
package freechips.rocketchip.diplomacy
import chisel3._
import chisel3.util.{DecoupledIO, Queue, ReadyValidIO, isPow2, log2Ceil, log2Floor}
import freechips.rocketchip.util.ShiftQueue
/** Options for describing the attributes of memory regions */
object RegionType {
// Define the 'more relaxed than' ordering
val cases = Seq(CACHED, TRACKED, UNCACHED, IDEMPOTENT, VOLATILE, PUT_EFFECTS, GET_EFFECTS)
sealed trait T extends Ordered[T] {
def compare(that: T): Int = cases.indexOf(that) compare cases.indexOf(this)
}
case object CACHED extends T // an intermediate agent may have cached a copy of the region for you
case object TRACKED extends T // the region may have been cached by another master, but coherence is being provided
case object UNCACHED extends T // the region has not been cached yet, but should be cached when possible
case object IDEMPOTENT extends T // gets return most recently put content, but content should not be cached
case object VOLATILE extends T // content may change without a put, but puts and gets have no side effects
case object PUT_EFFECTS extends T // puts produce side effects and so must not be combined/delayed
case object GET_EFFECTS extends T // gets produce side effects and so must not be issued speculatively
}
// A non-empty half-open range; [start, end)
case class IdRange(start: Int, end: Int) extends Ordered[IdRange]
{
require (start >= 0, s"Ids cannot be negative, but got: $start.")
require (start <= end, "Id ranges cannot be negative.")
def compare(x: IdRange) = {
val primary = (this.start - x.start).signum
val secondary = (x.end - this.end).signum
if (primary != 0) primary else secondary
}
def overlaps(x: IdRange) = start < x.end && x.start < end
def contains(x: IdRange) = start <= x.start && x.end <= end
def contains(x: Int) = start <= x && x < end
def contains(x: UInt) =
if (size == 0) {
false.B
} else if (size == 1) { // simple comparison
x === start.U
} else {
// find index of largest different bit
val largestDeltaBit = log2Floor(start ^ (end-1))
val smallestCommonBit = largestDeltaBit + 1 // may not exist in x
val uncommonMask = (1 << smallestCommonBit) - 1
val uncommonBits = (x | 0.U(smallestCommonBit.W))(largestDeltaBit, 0)
// the prefix must match exactly (note: may shift ALL bits away)
(x >> smallestCommonBit) === (start >> smallestCommonBit).U &&
// firrtl constant prop range analysis can eliminate these two:
(start & uncommonMask).U <= uncommonBits &&
uncommonBits <= ((end-1) & uncommonMask).U
}
def shift(x: Int) = IdRange(start+x, end+x)
def size = end - start
def isEmpty = end == start
def range = start until end
}
object IdRange
{
def overlaps(s: Seq[IdRange]) = if (s.isEmpty) None else {
val ranges = s.sorted
(ranges.tail zip ranges.init) find { case (a, b) => a overlaps b }
}
}
// An potentially empty inclusive range of 2-powers [min, max] (in bytes)
case class TransferSizes(min: Int, max: Int)
{
def this(x: Int) = this(x, x)
require (min <= max, s"Min transfer $min > max transfer $max")
require (min >= 0 && max >= 0, s"TransferSizes must be positive, got: ($min, $max)")
require (max == 0 || isPow2(max), s"TransferSizes must be a power of 2, got: $max")
require (min == 0 || isPow2(min), s"TransferSizes must be a power of 2, got: $min")
require (max == 0 || min != 0, s"TransferSize 0 is forbidden unless (0,0), got: ($min, $max)")
def none = min == 0
def contains(x: Int) = isPow2(x) && min <= x && x <= max
def containsLg(x: Int) = contains(1 << x)
def containsLg(x: UInt) =
if (none) false.B
else if (min == max) { log2Ceil(min).U === x }
else { log2Ceil(min).U <= x && x <= log2Ceil(max).U }
def contains(x: TransferSizes) = x.none || (min <= x.min && x.max <= max)
def intersect(x: TransferSizes) =
if (x.max < min || max < x.min) TransferSizes.none
else TransferSizes(scala.math.max(min, x.min), scala.math.min(max, x.max))
// Not a union, because the result may contain sizes contained by neither term
// NOT TO BE CONFUSED WITH COVERPOINTS
def mincover(x: TransferSizes) = {
if (none) {
x
} else if (x.none) {
this
} else {
TransferSizes(scala.math.min(min, x.min), scala.math.max(max, x.max))
}
}
override def toString() = "TransferSizes[%d, %d]".format(min, max)
}
object TransferSizes {
def apply(x: Int) = new TransferSizes(x)
val none = new TransferSizes(0)
def mincover(seq: Seq[TransferSizes]) = seq.foldLeft(none)(_ mincover _)
def intersect(seq: Seq[TransferSizes]) = seq.reduce(_ intersect _)
implicit def asBool(x: TransferSizes) = !x.none
}
// AddressSets specify the address space managed by the manager
// Base is the base address, and mask are the bits consumed by the manager
// e.g: base=0x200, mask=0xff describes a device managing 0x200-0x2ff
// e.g: base=0x1000, mask=0xf0f decribes a device managing 0x1000-0x100f, 0x1100-0x110f, ...
case class AddressSet(base: BigInt, mask: BigInt) extends Ordered[AddressSet]
{
// Forbid misaligned base address (and empty sets)
require ((base & mask) == 0, s"Mis-aligned AddressSets are forbidden, got: ${this.toString}")
require (base >= 0, s"AddressSet negative base is ambiguous: $base") // TL2 address widths are not fixed => negative is ambiguous
// We do allow negative mask (=> ignore all high bits)
def contains(x: BigInt) = ((x ^ base) & ~mask) == 0
def contains(x: UInt) = ((x ^ base.U).zext & (~mask).S) === 0.S
// turn x into an address contained in this set
def legalize(x: UInt): UInt = base.U | (mask.U & x)
// overlap iff bitwise: both care (~mask0 & ~mask1) => both equal (base0=base1)
def overlaps(x: AddressSet) = (~(mask | x.mask) & (base ^ x.base)) == 0
// contains iff bitwise: x.mask => mask && contains(x.base)
def contains(x: AddressSet) = ((x.mask | (base ^ x.base)) & ~mask) == 0
// The number of bytes to which the manager must be aligned
def alignment = ((mask + 1) & ~mask)
// Is this a contiguous memory range
def contiguous = alignment == mask+1
def finite = mask >= 0
def max = { require (finite, "Max cannot be calculated on infinite mask"); base | mask }
// Widen the match function to ignore all bits in imask
def widen(imask: BigInt) = AddressSet(base & ~imask, mask | imask)
// Return an AddressSet that only contains the addresses both sets contain
def intersect(x: AddressSet): Option[AddressSet] = {
if (!overlaps(x)) {
None
} else {
val r_mask = mask & x.mask
val r_base = base | x.base
Some(AddressSet(r_base, r_mask))
}
}
def subtract(x: AddressSet): Seq[AddressSet] = {
intersect(x) match {
case None => Seq(this)
case Some(remove) => AddressSet.enumerateBits(mask & ~remove.mask).map { bit =>
val nmask = (mask & (bit-1)) | remove.mask
val nbase = (remove.base ^ bit) & ~nmask
AddressSet(nbase, nmask)
}
}
}
// AddressSets have one natural Ordering (the containment order, if contiguous)
def compare(x: AddressSet) = {
val primary = (this.base - x.base).signum // smallest address first
val secondary = (x.mask - this.mask).signum // largest mask first
if (primary != 0) primary else secondary
}
// We always want to see things in hex
override def toString() = {
if (mask >= 0) {
"AddressSet(0x%x, 0x%x)".format(base, mask)
} else {
"AddressSet(0x%x, ~0x%x)".format(base, ~mask)
}
}
def toRanges = {
require (finite, "Ranges cannot be calculated on infinite mask")
val size = alignment
val fragments = mask & ~(size-1)
val bits = bitIndexes(fragments)
(BigInt(0) until (BigInt(1) << bits.size)).map { i =>
val off = bitIndexes(i).foldLeft(base) { case (a, b) => a.setBit(bits(b)) }
AddressRange(off, size)
}
}
}
object AddressSet
{
val everything = AddressSet(0, -1)
def misaligned(base: BigInt, size: BigInt, tail: Seq[AddressSet] = Seq()): Seq[AddressSet] = {
if (size == 0) tail.reverse else {
val maxBaseAlignment = base & (-base) // 0 for infinite (LSB)
val maxSizeAlignment = BigInt(1) << log2Floor(size) // MSB of size
val step =
if (maxBaseAlignment == 0 || maxBaseAlignment > maxSizeAlignment)
maxSizeAlignment else maxBaseAlignment
misaligned(base+step, size-step, AddressSet(base, step-1) +: tail)
}
}
def unify(seq: Seq[AddressSet], bit: BigInt): Seq[AddressSet] = {
// Pair terms up by ignoring 'bit'
seq.distinct.groupBy(x => x.copy(base = x.base & ~bit)).map { case (key, seq) =>
if (seq.size == 1) {
seq.head // singleton -> unaffected
} else {
key.copy(mask = key.mask | bit) // pair - widen mask by bit
}
}.toList
}
def unify(seq: Seq[AddressSet]): Seq[AddressSet] = {
val bits = seq.map(_.base).foldLeft(BigInt(0))(_ | _)
AddressSet.enumerateBits(bits).foldLeft(seq) { case (acc, bit) => unify(acc, bit) }.sorted
}
def enumerateMask(mask: BigInt): Seq[BigInt] = {
def helper(id: BigInt, tail: Seq[BigInt]): Seq[BigInt] =
if (id == mask) (id +: tail).reverse else helper(((~mask | id) + 1) & mask, id +: tail)
helper(0, Nil)
}
def enumerateBits(mask: BigInt): Seq[BigInt] = {
def helper(x: BigInt): Seq[BigInt] = {
if (x == 0) {
Nil
} else {
val bit = x & (-x)
bit +: helper(x & ~bit)
}
}
helper(mask)
}
}
case class BufferParams(depth: Int, flow: Boolean, pipe: Boolean)
{
require (depth >= 0, "Buffer depth must be >= 0")
def isDefined = depth > 0
def latency = if (isDefined && !flow) 1 else 0
def apply[T <: Data](x: DecoupledIO[T]) =
if (isDefined) Queue(x, depth, flow=flow, pipe=pipe)
else x
def irrevocable[T <: Data](x: ReadyValidIO[T]) =
if (isDefined) Queue.irrevocable(x, depth, flow=flow, pipe=pipe)
else x
def sq[T <: Data](x: DecoupledIO[T]) =
if (!isDefined) x else {
val sq = Module(new ShiftQueue(x.bits, depth, flow=flow, pipe=pipe))
sq.io.enq <> x
sq.io.deq
}
override def toString() = "BufferParams:%d%s%s".format(depth, if (flow) "F" else "", if (pipe) "P" else "")
}
object BufferParams
{
implicit def apply(depth: Int): BufferParams = BufferParams(depth, false, false)
val default = BufferParams(2)
val none = BufferParams(0)
val flow = BufferParams(1, true, false)
val pipe = BufferParams(1, false, true)
}
case class TriStateValue(value: Boolean, set: Boolean)
{
def update(orig: Boolean) = if (set) value else orig
}
object TriStateValue
{
implicit def apply(value: Boolean): TriStateValue = TriStateValue(value, true)
def unset = TriStateValue(false, false)
}
trait DirectedBuffers[T] {
def copyIn(x: BufferParams): T
def copyOut(x: BufferParams): T
def copyInOut(x: BufferParams): T
}
trait IdMapEntry {
def name: String
def from: IdRange
def to: IdRange
def isCache: Boolean
def requestFifo: Boolean
def maxTransactionsInFlight: Option[Int]
def pretty(fmt: String) =
if (from ne to) { // if the subclass uses the same reference for both from and to, assume its format string has an arity of 5
fmt.format(to.start, to.end, from.start, from.end, s""""$name"""", if (isCache) " [CACHE]" else "", if (requestFifo) " [FIFO]" else "")
} else {
fmt.format(from.start, from.end, s""""$name"""", if (isCache) " [CACHE]" else "", if (requestFifo) " [FIFO]" else "")
}
}
abstract class IdMap[T <: IdMapEntry] {
protected val fmt: String
val mapping: Seq[T]
def pretty: String = mapping.map(_.pretty(fmt)).mkString(",\n")
}
File Edges.scala:
// See LICENSE.SiFive for license details.
package freechips.rocketchip.tilelink
import chisel3._
import chisel3.util._
import chisel3.experimental.SourceInfo
import org.chipsalliance.cde.config.Parameters
import freechips.rocketchip.util._
class TLEdge(
client: TLClientPortParameters,
manager: TLManagerPortParameters,
params: Parameters,
sourceInfo: SourceInfo)
extends TLEdgeParameters(client, manager, params, sourceInfo)
{
def isAligned(address: UInt, lgSize: UInt): Bool = {
if (maxLgSize == 0) true.B else {
val mask = UIntToOH1(lgSize, maxLgSize)
(address & mask) === 0.U
}
}
def mask(address: UInt, lgSize: UInt): UInt =
MaskGen(address, lgSize, manager.beatBytes)
def staticHasData(bundle: TLChannel): Option[Boolean] = {
bundle match {
case _:TLBundleA => {
// Do there exist A messages with Data?
val aDataYes = manager.anySupportArithmetic || manager.anySupportLogical || manager.anySupportPutFull || manager.anySupportPutPartial
// Do there exist A messages without Data?
val aDataNo = manager.anySupportAcquireB || manager.anySupportGet || manager.anySupportHint
// Statically optimize the case where hasData is a constant
if (!aDataYes) Some(false) else if (!aDataNo) Some(true) else None
}
case _:TLBundleB => {
// Do there exist B messages with Data?
val bDataYes = client.anySupportArithmetic || client.anySupportLogical || client.anySupportPutFull || client.anySupportPutPartial
// Do there exist B messages without Data?
val bDataNo = client.anySupportProbe || client.anySupportGet || client.anySupportHint
// Statically optimize the case where hasData is a constant
if (!bDataYes) Some(false) else if (!bDataNo) Some(true) else None
}
case _:TLBundleC => {
// Do there eixst C messages with Data?
val cDataYes = client.anySupportGet || client.anySupportArithmetic || client.anySupportLogical || client.anySupportProbe
// Do there exist C messages without Data?
val cDataNo = client.anySupportPutFull || client.anySupportPutPartial || client.anySupportHint || client.anySupportProbe
if (!cDataYes) Some(false) else if (!cDataNo) Some(true) else None
}
case _:TLBundleD => {
// Do there eixst D messages with Data?
val dDataYes = manager.anySupportGet || manager.anySupportArithmetic || manager.anySupportLogical || manager.anySupportAcquireB
// Do there exist D messages without Data?
val dDataNo = manager.anySupportPutFull || manager.anySupportPutPartial || manager.anySupportHint || manager.anySupportAcquireT
if (!dDataYes) Some(false) else if (!dDataNo) Some(true) else None
}
case _:TLBundleE => Some(false)
}
}
def isRequest(x: TLChannel): Bool = {
x match {
case a: TLBundleA => true.B
case b: TLBundleB => true.B
case c: TLBundleC => c.opcode(2) && c.opcode(1)
// opcode === TLMessages.Release ||
// opcode === TLMessages.ReleaseData
case d: TLBundleD => d.opcode(2) && !d.opcode(1)
// opcode === TLMessages.Grant ||
// opcode === TLMessages.GrantData
case e: TLBundleE => false.B
}
}
def isResponse(x: TLChannel): Bool = {
x match {
case a: TLBundleA => false.B
case b: TLBundleB => false.B
case c: TLBundleC => !c.opcode(2) || !c.opcode(1)
// opcode =/= TLMessages.Release &&
// opcode =/= TLMessages.ReleaseData
case d: TLBundleD => true.B // Grant isResponse + isRequest
case e: TLBundleE => true.B
}
}
def hasData(x: TLChannel): Bool = {
val opdata = x match {
case a: TLBundleA => !a.opcode(2)
// opcode === TLMessages.PutFullData ||
// opcode === TLMessages.PutPartialData ||
// opcode === TLMessages.ArithmeticData ||
// opcode === TLMessages.LogicalData
case b: TLBundleB => !b.opcode(2)
// opcode === TLMessages.PutFullData ||
// opcode === TLMessages.PutPartialData ||
// opcode === TLMessages.ArithmeticData ||
// opcode === TLMessages.LogicalData
case c: TLBundleC => c.opcode(0)
// opcode === TLMessages.AccessAckData ||
// opcode === TLMessages.ProbeAckData ||
// opcode === TLMessages.ReleaseData
case d: TLBundleD => d.opcode(0)
// opcode === TLMessages.AccessAckData ||
// opcode === TLMessages.GrantData
case e: TLBundleE => false.B
}
staticHasData(x).map(_.B).getOrElse(opdata)
}
def opcode(x: TLDataChannel): UInt = {
x match {
case a: TLBundleA => a.opcode
case b: TLBundleB => b.opcode
case c: TLBundleC => c.opcode
case d: TLBundleD => d.opcode
}
}
def param(x: TLDataChannel): UInt = {
x match {
case a: TLBundleA => a.param
case b: TLBundleB => b.param
case c: TLBundleC => c.param
case d: TLBundleD => d.param
}
}
def size(x: TLDataChannel): UInt = {
x match {
case a: TLBundleA => a.size
case b: TLBundleB => b.size
case c: TLBundleC => c.size
case d: TLBundleD => d.size
}
}
def data(x: TLDataChannel): UInt = {
x match {
case a: TLBundleA => a.data
case b: TLBundleB => b.data
case c: TLBundleC => c.data
case d: TLBundleD => d.data
}
}
def corrupt(x: TLDataChannel): Bool = {
x match {
case a: TLBundleA => a.corrupt
case b: TLBundleB => b.corrupt
case c: TLBundleC => c.corrupt
case d: TLBundleD => d.corrupt
}
}
def mask(x: TLAddrChannel): UInt = {
x match {
case a: TLBundleA => a.mask
case b: TLBundleB => b.mask
case c: TLBundleC => mask(c.address, c.size)
}
}
def full_mask(x: TLAddrChannel): UInt = {
x match {
case a: TLBundleA => mask(a.address, a.size)
case b: TLBundleB => mask(b.address, b.size)
case c: TLBundleC => mask(c.address, c.size)
}
}
def address(x: TLAddrChannel): UInt = {
x match {
case a: TLBundleA => a.address
case b: TLBundleB => b.address
case c: TLBundleC => c.address
}
}
def source(x: TLDataChannel): UInt = {
x match {
case a: TLBundleA => a.source
case b: TLBundleB => b.source
case c: TLBundleC => c.source
case d: TLBundleD => d.source
}
}
def addr_hi(x: UInt): UInt = x >> log2Ceil(manager.beatBytes)
def addr_lo(x: UInt): UInt =
if (manager.beatBytes == 1) 0.U else x(log2Ceil(manager.beatBytes)-1, 0)
def addr_hi(x: TLAddrChannel): UInt = addr_hi(address(x))
def addr_lo(x: TLAddrChannel): UInt = addr_lo(address(x))
def numBeats(x: TLChannel): UInt = {
x match {
case _: TLBundleE => 1.U
case bundle: TLDataChannel => {
val hasData = this.hasData(bundle)
val size = this.size(bundle)
val cutoff = log2Ceil(manager.beatBytes)
val small = if (manager.maxTransfer <= manager.beatBytes) true.B else size <= (cutoff).U
val decode = UIntToOH(size, maxLgSize+1) >> cutoff
Mux(hasData, decode | small.asUInt, 1.U)
}
}
}
def numBeats1(x: TLChannel): UInt = {
x match {
case _: TLBundleE => 0.U
case bundle: TLDataChannel => {
if (maxLgSize == 0) {
0.U
} else {
val decode = UIntToOH1(size(bundle), maxLgSize) >> log2Ceil(manager.beatBytes)
Mux(hasData(bundle), decode, 0.U)
}
}
}
}
def firstlastHelper(bits: TLChannel, fire: Bool): (Bool, Bool, Bool, UInt) = {
val beats1 = numBeats1(bits)
val counter = RegInit(0.U(log2Up(maxTransfer / manager.beatBytes).W))
val counter1 = counter - 1.U
val first = counter === 0.U
val last = counter === 1.U || beats1 === 0.U
val done = last && fire
val count = (beats1 & ~counter1)
when (fire) {
counter := Mux(first, beats1, counter1)
}
(first, last, done, count)
}
def first(bits: TLChannel, fire: Bool): Bool = firstlastHelper(bits, fire)._1
def first(x: DecoupledIO[TLChannel]): Bool = first(x.bits, x.fire)
def first(x: ValidIO[TLChannel]): Bool = first(x.bits, x.valid)
def last(bits: TLChannel, fire: Bool): Bool = firstlastHelper(bits, fire)._2
def last(x: DecoupledIO[TLChannel]): Bool = last(x.bits, x.fire)
def last(x: ValidIO[TLChannel]): Bool = last(x.bits, x.valid)
def done(bits: TLChannel, fire: Bool): Bool = firstlastHelper(bits, fire)._3
def done(x: DecoupledIO[TLChannel]): Bool = done(x.bits, x.fire)
def done(x: ValidIO[TLChannel]): Bool = done(x.bits, x.valid)
def firstlast(bits: TLChannel, fire: Bool): (Bool, Bool, Bool) = {
val r = firstlastHelper(bits, fire)
(r._1, r._2, r._3)
}
def firstlast(x: DecoupledIO[TLChannel]): (Bool, Bool, Bool) = firstlast(x.bits, x.fire)
def firstlast(x: ValidIO[TLChannel]): (Bool, Bool, Bool) = firstlast(x.bits, x.valid)
def count(bits: TLChannel, fire: Bool): (Bool, Bool, Bool, UInt) = {
val r = firstlastHelper(bits, fire)
(r._1, r._2, r._3, r._4)
}
def count(x: DecoupledIO[TLChannel]): (Bool, Bool, Bool, UInt) = count(x.bits, x.fire)
def count(x: ValidIO[TLChannel]): (Bool, Bool, Bool, UInt) = count(x.bits, x.valid)
def addr_inc(bits: TLChannel, fire: Bool): (Bool, Bool, Bool, UInt) = {
val r = firstlastHelper(bits, fire)
(r._1, r._2, r._3, r._4 << log2Ceil(manager.beatBytes))
}
def addr_inc(x: DecoupledIO[TLChannel]): (Bool, Bool, Bool, UInt) = addr_inc(x.bits, x.fire)
def addr_inc(x: ValidIO[TLChannel]): (Bool, Bool, Bool, UInt) = addr_inc(x.bits, x.valid)
// Does the request need T permissions to be executed?
def needT(a: TLBundleA): Bool = {
val acq_needT = MuxLookup(a.param, WireDefault(Bool(), DontCare))(Array(
TLPermissions.NtoB -> false.B,
TLPermissions.NtoT -> true.B,
TLPermissions.BtoT -> true.B))
MuxLookup(a.opcode, WireDefault(Bool(), DontCare))(Array(
TLMessages.PutFullData -> true.B,
TLMessages.PutPartialData -> true.B,
TLMessages.ArithmeticData -> true.B,
TLMessages.LogicalData -> true.B,
TLMessages.Get -> false.B,
TLMessages.Hint -> MuxLookup(a.param, WireDefault(Bool(), DontCare))(Array(
TLHints.PREFETCH_READ -> false.B,
TLHints.PREFETCH_WRITE -> true.B)),
TLMessages.AcquireBlock -> acq_needT,
TLMessages.AcquirePerm -> acq_needT))
}
// This is a very expensive circuit; use only if you really mean it!
def inFlight(x: TLBundle): (UInt, UInt) = {
val flight = RegInit(0.U(log2Ceil(3*client.endSourceId+1).W))
val bce = manager.anySupportAcquireB && client.anySupportProbe
val (a_first, a_last, _) = firstlast(x.a)
val (b_first, b_last, _) = firstlast(x.b)
val (c_first, c_last, _) = firstlast(x.c)
val (d_first, d_last, _) = firstlast(x.d)
val (e_first, e_last, _) = firstlast(x.e)
val (a_request, a_response) = (isRequest(x.a.bits), isResponse(x.a.bits))
val (b_request, b_response) = (isRequest(x.b.bits), isResponse(x.b.bits))
val (c_request, c_response) = (isRequest(x.c.bits), isResponse(x.c.bits))
val (d_request, d_response) = (isRequest(x.d.bits), isResponse(x.d.bits))
val (e_request, e_response) = (isRequest(x.e.bits), isResponse(x.e.bits))
val a_inc = x.a.fire && a_first && a_request
val b_inc = x.b.fire && b_first && b_request
val c_inc = x.c.fire && c_first && c_request
val d_inc = x.d.fire && d_first && d_request
val e_inc = x.e.fire && e_first && e_request
val inc = Cat(Seq(a_inc, d_inc) ++ (if (bce) Seq(b_inc, c_inc, e_inc) else Nil))
val a_dec = x.a.fire && a_last && a_response
val b_dec = x.b.fire && b_last && b_response
val c_dec = x.c.fire && c_last && c_response
val d_dec = x.d.fire && d_last && d_response
val e_dec = x.e.fire && e_last && e_response
val dec = Cat(Seq(a_dec, d_dec) ++ (if (bce) Seq(b_dec, c_dec, e_dec) else Nil))
val next_flight = flight + PopCount(inc) - PopCount(dec)
flight := next_flight
(flight, next_flight)
}
def prettySourceMapping(context: String): String = {
s"TL-Source mapping for $context:\n${(new TLSourceIdMap(client)).pretty}\n"
}
}
class TLEdgeOut(
client: TLClientPortParameters,
manager: TLManagerPortParameters,
params: Parameters,
sourceInfo: SourceInfo)
extends TLEdge(client, manager, params, sourceInfo)
{
// Transfers
def AcquireBlock(fromSource: UInt, toAddress: UInt, lgSize: UInt, growPermissions: UInt) = {
require (manager.anySupportAcquireB, s"TileLink: No managers visible from this edge support Acquires, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsAcquireBFast(toAddress, lgSize)
val a = Wire(new TLBundleA(bundle))
a.opcode := TLMessages.AcquireBlock
a.param := growPermissions
a.size := lgSize
a.source := fromSource
a.address := toAddress
a.user := DontCare
a.echo := DontCare
a.mask := mask(toAddress, lgSize)
a.data := DontCare
a.corrupt := false.B
(legal, a)
}
def AcquirePerm(fromSource: UInt, toAddress: UInt, lgSize: UInt, growPermissions: UInt) = {
require (manager.anySupportAcquireB, s"TileLink: No managers visible from this edge support Acquires, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsAcquireBFast(toAddress, lgSize)
val a = Wire(new TLBundleA(bundle))
a.opcode := TLMessages.AcquirePerm
a.param := growPermissions
a.size := lgSize
a.source := fromSource
a.address := toAddress
a.user := DontCare
a.echo := DontCare
a.mask := mask(toAddress, lgSize)
a.data := DontCare
a.corrupt := false.B
(legal, a)
}
def Release(fromSource: UInt, toAddress: UInt, lgSize: UInt, shrinkPermissions: UInt): (Bool, TLBundleC) = {
require (manager.anySupportAcquireB, s"TileLink: No managers visible from this edge support Acquires, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsAcquireBFast(toAddress, lgSize)
val c = Wire(new TLBundleC(bundle))
c.opcode := TLMessages.Release
c.param := shrinkPermissions
c.size := lgSize
c.source := fromSource
c.address := toAddress
c.user := DontCare
c.echo := DontCare
c.data := DontCare
c.corrupt := false.B
(legal, c)
}
def Release(fromSource: UInt, toAddress: UInt, lgSize: UInt, shrinkPermissions: UInt, data: UInt, corrupt: Bool): (Bool, TLBundleC) = {
require (manager.anySupportAcquireB, s"TileLink: No managers visible from this edge support Acquires, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsAcquireBFast(toAddress, lgSize)
val c = Wire(new TLBundleC(bundle))
c.opcode := TLMessages.ReleaseData
c.param := shrinkPermissions
c.size := lgSize
c.source := fromSource
c.address := toAddress
c.user := DontCare
c.echo := DontCare
c.data := data
c.corrupt := corrupt
(legal, c)
}
def Release(fromSource: UInt, toAddress: UInt, lgSize: UInt, shrinkPermissions: UInt, data: UInt): (Bool, TLBundleC) =
Release(fromSource, toAddress, lgSize, shrinkPermissions, data, false.B)
def ProbeAck(b: TLBundleB, reportPermissions: UInt): TLBundleC =
ProbeAck(b.source, b.address, b.size, reportPermissions)
def ProbeAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, reportPermissions: UInt): TLBundleC = {
val c = Wire(new TLBundleC(bundle))
c.opcode := TLMessages.ProbeAck
c.param := reportPermissions
c.size := lgSize
c.source := fromSource
c.address := toAddress
c.user := DontCare
c.echo := DontCare
c.data := DontCare
c.corrupt := false.B
c
}
def ProbeAck(b: TLBundleB, reportPermissions: UInt, data: UInt): TLBundleC =
ProbeAck(b.source, b.address, b.size, reportPermissions, data)
def ProbeAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, reportPermissions: UInt, data: UInt, corrupt: Bool): TLBundleC = {
val c = Wire(new TLBundleC(bundle))
c.opcode := TLMessages.ProbeAckData
c.param := reportPermissions
c.size := lgSize
c.source := fromSource
c.address := toAddress
c.user := DontCare
c.echo := DontCare
c.data := data
c.corrupt := corrupt
c
}
def ProbeAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, reportPermissions: UInt, data: UInt): TLBundleC =
ProbeAck(fromSource, toAddress, lgSize, reportPermissions, data, false.B)
def GrantAck(d: TLBundleD): TLBundleE = GrantAck(d.sink)
def GrantAck(toSink: UInt): TLBundleE = {
val e = Wire(new TLBundleE(bundle))
e.sink := toSink
e
}
// Accesses
def Get(fromSource: UInt, toAddress: UInt, lgSize: UInt) = {
require (manager.anySupportGet, s"TileLink: No managers visible from this edge support Gets, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsGetFast(toAddress, lgSize)
val a = Wire(new TLBundleA(bundle))
a.opcode := TLMessages.Get
a.param := 0.U
a.size := lgSize
a.source := fromSource
a.address := toAddress
a.user := DontCare
a.echo := DontCare
a.mask := mask(toAddress, lgSize)
a.data := DontCare
a.corrupt := false.B
(legal, a)
}
def Put(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt): (Bool, TLBundleA) =
Put(fromSource, toAddress, lgSize, data, false.B)
def Put(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, corrupt: Bool): (Bool, TLBundleA) = {
require (manager.anySupportPutFull, s"TileLink: No managers visible from this edge support Puts, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsPutFullFast(toAddress, lgSize)
val a = Wire(new TLBundleA(bundle))
a.opcode := TLMessages.PutFullData
a.param := 0.U
a.size := lgSize
a.source := fromSource
a.address := toAddress
a.user := DontCare
a.echo := DontCare
a.mask := mask(toAddress, lgSize)
a.data := data
a.corrupt := corrupt
(legal, a)
}
def Put(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, mask: UInt): (Bool, TLBundleA) =
Put(fromSource, toAddress, lgSize, data, mask, false.B)
def Put(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, mask: UInt, corrupt: Bool): (Bool, TLBundleA) = {
require (manager.anySupportPutPartial, s"TileLink: No managers visible from this edge support masked Puts, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsPutPartialFast(toAddress, lgSize)
val a = Wire(new TLBundleA(bundle))
a.opcode := TLMessages.PutPartialData
a.param := 0.U
a.size := lgSize
a.source := fromSource
a.address := toAddress
a.user := DontCare
a.echo := DontCare
a.mask := mask
a.data := data
a.corrupt := corrupt
(legal, a)
}
def Arithmetic(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, atomic: UInt, corrupt: Bool = false.B): (Bool, TLBundleA) = {
require (manager.anySupportArithmetic, s"TileLink: No managers visible from this edge support arithmetic AMOs, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsArithmeticFast(toAddress, lgSize)
val a = Wire(new TLBundleA(bundle))
a.opcode := TLMessages.ArithmeticData
a.param := atomic
a.size := lgSize
a.source := fromSource
a.address := toAddress
a.user := DontCare
a.echo := DontCare
a.mask := mask(toAddress, lgSize)
a.data := data
a.corrupt := corrupt
(legal, a)
}
def Logical(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, atomic: UInt, corrupt: Bool = false.B) = {
require (manager.anySupportLogical, s"TileLink: No managers visible from this edge support logical AMOs, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsLogicalFast(toAddress, lgSize)
val a = Wire(new TLBundleA(bundle))
a.opcode := TLMessages.LogicalData
a.param := atomic
a.size := lgSize
a.source := fromSource
a.address := toAddress
a.user := DontCare
a.echo := DontCare
a.mask := mask(toAddress, lgSize)
a.data := data
a.corrupt := corrupt
(legal, a)
}
def Hint(fromSource: UInt, toAddress: UInt, lgSize: UInt, param: UInt) = {
require (manager.anySupportHint, s"TileLink: No managers visible from this edge support Hints, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsHintFast(toAddress, lgSize)
val a = Wire(new TLBundleA(bundle))
a.opcode := TLMessages.Hint
a.param := param
a.size := lgSize
a.source := fromSource
a.address := toAddress
a.user := DontCare
a.echo := DontCare
a.mask := mask(toAddress, lgSize)
a.data := DontCare
a.corrupt := false.B
(legal, a)
}
def AccessAck(b: TLBundleB): TLBundleC = AccessAck(b.source, address(b), b.size)
def AccessAck(fromSource: UInt, toAddress: UInt, lgSize: UInt) = {
val c = Wire(new TLBundleC(bundle))
c.opcode := TLMessages.AccessAck
c.param := 0.U
c.size := lgSize
c.source := fromSource
c.address := toAddress
c.user := DontCare
c.echo := DontCare
c.data := DontCare
c.corrupt := false.B
c
}
def AccessAck(b: TLBundleB, data: UInt): TLBundleC = AccessAck(b.source, address(b), b.size, data)
def AccessAck(b: TLBundleB, data: UInt, corrupt: Bool): TLBundleC = AccessAck(b.source, address(b), b.size, data, corrupt)
def AccessAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt): TLBundleC = AccessAck(fromSource, toAddress, lgSize, data, false.B)
def AccessAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, corrupt: Bool) = {
val c = Wire(new TLBundleC(bundle))
c.opcode := TLMessages.AccessAckData
c.param := 0.U
c.size := lgSize
c.source := fromSource
c.address := toAddress
c.user := DontCare
c.echo := DontCare
c.data := data
c.corrupt := corrupt
c
}
def HintAck(b: TLBundleB): TLBundleC = HintAck(b.source, address(b), b.size)
def HintAck(fromSource: UInt, toAddress: UInt, lgSize: UInt) = {
val c = Wire(new TLBundleC(bundle))
c.opcode := TLMessages.HintAck
c.param := 0.U
c.size := lgSize
c.source := fromSource
c.address := toAddress
c.user := DontCare
c.echo := DontCare
c.data := DontCare
c.corrupt := false.B
c
}
}
class TLEdgeIn(
client: TLClientPortParameters,
manager: TLManagerPortParameters,
params: Parameters,
sourceInfo: SourceInfo)
extends TLEdge(client, manager, params, sourceInfo)
{
private def myTranspose[T](x: Seq[Seq[T]]): Seq[Seq[T]] = {
val todo = x.filter(!_.isEmpty)
val heads = todo.map(_.head)
val tails = todo.map(_.tail)
if (todo.isEmpty) Nil else { heads +: myTranspose(tails) }
}
// Transfers
def Probe(fromAddress: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt) = {
require (client.anySupportProbe, s"TileLink: No clients visible from this edge support probes, but one of these managers tried to issue one: ${manager.managers}")
val legal = client.supportsProbe(toSource, lgSize)
val b = Wire(new TLBundleB(bundle))
b.opcode := TLMessages.Probe
b.param := capPermissions
b.size := lgSize
b.source := toSource
b.address := fromAddress
b.mask := mask(fromAddress, lgSize)
b.data := DontCare
b.corrupt := false.B
(legal, b)
}
def Grant(fromSink: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt): TLBundleD = Grant(fromSink, toSource, lgSize, capPermissions, false.B)
def Grant(fromSink: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt, denied: Bool) = {
val d = Wire(new TLBundleD(bundle))
d.opcode := TLMessages.Grant
d.param := capPermissions
d.size := lgSize
d.source := toSource
d.sink := fromSink
d.denied := denied
d.user := DontCare
d.echo := DontCare
d.data := DontCare
d.corrupt := false.B
d
}
def Grant(fromSink: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt, data: UInt): TLBundleD = Grant(fromSink, toSource, lgSize, capPermissions, data, false.B, false.B)
def Grant(fromSink: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt, data: UInt, denied: Bool, corrupt: Bool) = {
val d = Wire(new TLBundleD(bundle))
d.opcode := TLMessages.GrantData
d.param := capPermissions
d.size := lgSize
d.source := toSource
d.sink := fromSink
d.denied := denied
d.user := DontCare
d.echo := DontCare
d.data := data
d.corrupt := corrupt
d
}
def ReleaseAck(c: TLBundleC): TLBundleD = ReleaseAck(c.source, c.size, false.B)
def ReleaseAck(toSource: UInt, lgSize: UInt, denied: Bool): TLBundleD = {
val d = Wire(new TLBundleD(bundle))
d.opcode := TLMessages.ReleaseAck
d.param := 0.U
d.size := lgSize
d.source := toSource
d.sink := 0.U
d.denied := denied
d.user := DontCare
d.echo := DontCare
d.data := DontCare
d.corrupt := false.B
d
}
// Accesses
def Get(fromAddress: UInt, toSource: UInt, lgSize: UInt) = {
require (client.anySupportGet, s"TileLink: No clients visible from this edge support Gets, but one of these managers would try to issue one: ${manager.managers}")
val legal = client.supportsGet(toSource, lgSize)
val b = Wire(new TLBundleB(bundle))
b.opcode := TLMessages.Get
b.param := 0.U
b.size := lgSize
b.source := toSource
b.address := fromAddress
b.mask := mask(fromAddress, lgSize)
b.data := DontCare
b.corrupt := false.B
(legal, b)
}
def Put(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt): (Bool, TLBundleB) =
Put(fromAddress, toSource, lgSize, data, false.B)
def Put(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, corrupt: Bool): (Bool, TLBundleB) = {
require (client.anySupportPutFull, s"TileLink: No clients visible from this edge support Puts, but one of these managers would try to issue one: ${manager.managers}")
val legal = client.supportsPutFull(toSource, lgSize)
val b = Wire(new TLBundleB(bundle))
b.opcode := TLMessages.PutFullData
b.param := 0.U
b.size := lgSize
b.source := toSource
b.address := fromAddress
b.mask := mask(fromAddress, lgSize)
b.data := data
b.corrupt := corrupt
(legal, b)
}
def Put(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, mask: UInt): (Bool, TLBundleB) =
Put(fromAddress, toSource, lgSize, data, mask, false.B)
def Put(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, mask: UInt, corrupt: Bool): (Bool, TLBundleB) = {
require (client.anySupportPutPartial, s"TileLink: No clients visible from this edge support masked Puts, but one of these managers would try to request one: ${manager.managers}")
val legal = client.supportsPutPartial(toSource, lgSize)
val b = Wire(new TLBundleB(bundle))
b.opcode := TLMessages.PutPartialData
b.param := 0.U
b.size := lgSize
b.source := toSource
b.address := fromAddress
b.mask := mask
b.data := data
b.corrupt := corrupt
(legal, b)
}
def Arithmetic(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, atomic: UInt, corrupt: Bool = false.B) = {
require (client.anySupportArithmetic, s"TileLink: No clients visible from this edge support arithmetic AMOs, but one of these managers would try to request one: ${manager.managers}")
val legal = client.supportsArithmetic(toSource, lgSize)
val b = Wire(new TLBundleB(bundle))
b.opcode := TLMessages.ArithmeticData
b.param := atomic
b.size := lgSize
b.source := toSource
b.address := fromAddress
b.mask := mask(fromAddress, lgSize)
b.data := data
b.corrupt := corrupt
(legal, b)
}
def Logical(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, atomic: UInt, corrupt: Bool = false.B) = {
require (client.anySupportLogical, s"TileLink: No clients visible from this edge support logical AMOs, but one of these managers would try to request one: ${manager.managers}")
val legal = client.supportsLogical(toSource, lgSize)
val b = Wire(new TLBundleB(bundle))
b.opcode := TLMessages.LogicalData
b.param := atomic
b.size := lgSize
b.source := toSource
b.address := fromAddress
b.mask := mask(fromAddress, lgSize)
b.data := data
b.corrupt := corrupt
(legal, b)
}
def Hint(fromAddress: UInt, toSource: UInt, lgSize: UInt, param: UInt) = {
require (client.anySupportHint, s"TileLink: No clients visible from this edge support Hints, but one of these managers would try to request one: ${manager.managers}")
val legal = client.supportsHint(toSource, lgSize)
val b = Wire(new TLBundleB(bundle))
b.opcode := TLMessages.Hint
b.param := param
b.size := lgSize
b.source := toSource
b.address := fromAddress
b.mask := mask(fromAddress, lgSize)
b.data := DontCare
b.corrupt := false.B
(legal, b)
}
def AccessAck(a: TLBundleA): TLBundleD = AccessAck(a.source, a.size)
def AccessAck(a: TLBundleA, denied: Bool): TLBundleD = AccessAck(a.source, a.size, denied)
def AccessAck(toSource: UInt, lgSize: UInt): TLBundleD = AccessAck(toSource, lgSize, false.B)
def AccessAck(toSource: UInt, lgSize: UInt, denied: Bool) = {
val d = Wire(new TLBundleD(bundle))
d.opcode := TLMessages.AccessAck
d.param := 0.U
d.size := lgSize
d.source := toSource
d.sink := 0.U
d.denied := denied
d.user := DontCare
d.echo := DontCare
d.data := DontCare
d.corrupt := false.B
d
}
def AccessAck(a: TLBundleA, data: UInt): TLBundleD = AccessAck(a.source, a.size, data)
def AccessAck(a: TLBundleA, data: UInt, denied: Bool, corrupt: Bool): TLBundleD = AccessAck(a.source, a.size, data, denied, corrupt)
def AccessAck(toSource: UInt, lgSize: UInt, data: UInt): TLBundleD = AccessAck(toSource, lgSize, data, false.B, false.B)
def AccessAck(toSource: UInt, lgSize: UInt, data: UInt, denied: Bool, corrupt: Bool) = {
val d = Wire(new TLBundleD(bundle))
d.opcode := TLMessages.AccessAckData
d.param := 0.U
d.size := lgSize
d.source := toSource
d.sink := 0.U
d.denied := denied
d.user := DontCare
d.echo := DontCare
d.data := data
d.corrupt := corrupt
d
}
def HintAck(a: TLBundleA): TLBundleD = HintAck(a, false.B)
def HintAck(a: TLBundleA, denied: Bool): TLBundleD = HintAck(a.source, a.size, denied)
def HintAck(toSource: UInt, lgSize: UInt): TLBundleD = HintAck(toSource, lgSize, false.B)
def HintAck(toSource: UInt, lgSize: UInt, denied: Bool) = {
val d = Wire(new TLBundleD(bundle))
d.opcode := TLMessages.HintAck
d.param := 0.U
d.size := lgSize
d.source := toSource
d.sink := 0.U
d.denied := denied
d.user := DontCare
d.echo := DontCare
d.data := DontCare
d.corrupt := false.B
d
}
}
| module TLMonitor_1( // @[Monitor.scala:36:7]
input clock, // @[Monitor.scala:36:7]
input reset, // @[Monitor.scala:36:7]
input io_in_a_ready, // @[Monitor.scala:20:14]
input io_in_a_valid, // @[Monitor.scala:20:14]
input [2:0] io_in_a_bits_opcode, // @[Monitor.scala:20:14]
input [2:0] io_in_a_bits_param, // @[Monitor.scala:20:14]
input [3:0] io_in_a_bits_size, // @[Monitor.scala:20:14]
input [1:0] io_in_a_bits_source, // @[Monitor.scala:20:14]
input [31:0] io_in_a_bits_address, // @[Monitor.scala:20:14]
input [7:0] io_in_a_bits_mask, // @[Monitor.scala:20:14]
input [63:0] io_in_a_bits_data, // @[Monitor.scala:20:14]
input io_in_a_bits_corrupt, // @[Monitor.scala:20:14]
input io_in_b_ready, // @[Monitor.scala:20:14]
input io_in_b_valid, // @[Monitor.scala:20:14]
input [1:0] io_in_b_bits_param, // @[Monitor.scala:20:14]
input [1:0] io_in_b_bits_source, // @[Monitor.scala:20:14]
input [31:0] io_in_b_bits_address, // @[Monitor.scala:20:14]
input io_in_c_ready, // @[Monitor.scala:20:14]
input io_in_c_valid, // @[Monitor.scala:20:14]
input [2:0] io_in_c_bits_opcode, // @[Monitor.scala:20:14]
input [2:0] io_in_c_bits_param, // @[Monitor.scala:20:14]
input [3:0] io_in_c_bits_size, // @[Monitor.scala:20:14]
input [1:0] io_in_c_bits_source, // @[Monitor.scala:20:14]
input [31:0] io_in_c_bits_address, // @[Monitor.scala:20:14]
input [63:0] io_in_c_bits_data, // @[Monitor.scala:20:14]
input io_in_c_bits_corrupt, // @[Monitor.scala:20:14]
input io_in_d_ready, // @[Monitor.scala:20:14]
input io_in_d_valid, // @[Monitor.scala:20:14]
input [2:0] io_in_d_bits_opcode, // @[Monitor.scala:20:14]
input [1:0] io_in_d_bits_param, // @[Monitor.scala:20:14]
input [3:0] io_in_d_bits_size, // @[Monitor.scala:20:14]
input [1:0] io_in_d_bits_source, // @[Monitor.scala:20:14]
input [2:0] io_in_d_bits_sink, // @[Monitor.scala:20:14]
input io_in_d_bits_denied, // @[Monitor.scala:20:14]
input [63:0] io_in_d_bits_data, // @[Monitor.scala:20:14]
input io_in_d_bits_corrupt, // @[Monitor.scala:20:14]
input io_in_e_ready, // @[Monitor.scala:20:14]
input io_in_e_valid, // @[Monitor.scala:20:14]
input [2:0] io_in_e_bits_sink // @[Monitor.scala:20:14]
);
wire [31:0] _plusarg_reader_1_out; // @[PlusArg.scala:80:11]
wire [31:0] _plusarg_reader_out; // @[PlusArg.scala:80:11]
wire io_in_a_ready_0 = io_in_a_ready; // @[Monitor.scala:36:7]
wire io_in_a_valid_0 = io_in_a_valid; // @[Monitor.scala:36:7]
wire [2:0] io_in_a_bits_opcode_0 = io_in_a_bits_opcode; // @[Monitor.scala:36:7]
wire [2:0] io_in_a_bits_param_0 = io_in_a_bits_param; // @[Monitor.scala:36:7]
wire [3:0] io_in_a_bits_size_0 = io_in_a_bits_size; // @[Monitor.scala:36:7]
wire [1:0] io_in_a_bits_source_0 = io_in_a_bits_source; // @[Monitor.scala:36:7]
wire [31:0] io_in_a_bits_address_0 = io_in_a_bits_address; // @[Monitor.scala:36:7]
wire [7:0] io_in_a_bits_mask_0 = io_in_a_bits_mask; // @[Monitor.scala:36:7]
wire [63:0] io_in_a_bits_data_0 = io_in_a_bits_data; // @[Monitor.scala:36:7]
wire io_in_a_bits_corrupt_0 = io_in_a_bits_corrupt; // @[Monitor.scala:36:7]
wire io_in_b_ready_0 = io_in_b_ready; // @[Monitor.scala:36:7]
wire io_in_b_valid_0 = io_in_b_valid; // @[Monitor.scala:36:7]
wire [1:0] io_in_b_bits_param_0 = io_in_b_bits_param; // @[Monitor.scala:36:7]
wire [1:0] io_in_b_bits_source_0 = io_in_b_bits_source; // @[Monitor.scala:36:7]
wire [31:0] io_in_b_bits_address_0 = io_in_b_bits_address; // @[Monitor.scala:36:7]
wire io_in_c_ready_0 = io_in_c_ready; // @[Monitor.scala:36:7]
wire io_in_c_valid_0 = io_in_c_valid; // @[Monitor.scala:36:7]
wire [2:0] io_in_c_bits_opcode_0 = io_in_c_bits_opcode; // @[Monitor.scala:36:7]
wire [2:0] io_in_c_bits_param_0 = io_in_c_bits_param; // @[Monitor.scala:36:7]
wire [3:0] io_in_c_bits_size_0 = io_in_c_bits_size; // @[Monitor.scala:36:7]
wire [1:0] io_in_c_bits_source_0 = io_in_c_bits_source; // @[Monitor.scala:36:7]
wire [31:0] io_in_c_bits_address_0 = io_in_c_bits_address; // @[Monitor.scala:36:7]
wire [63:0] io_in_c_bits_data_0 = io_in_c_bits_data; // @[Monitor.scala:36:7]
wire io_in_c_bits_corrupt_0 = io_in_c_bits_corrupt; // @[Monitor.scala:36:7]
wire io_in_d_ready_0 = io_in_d_ready; // @[Monitor.scala:36:7]
wire io_in_d_valid_0 = io_in_d_valid; // @[Monitor.scala:36:7]
wire [2:0] io_in_d_bits_opcode_0 = io_in_d_bits_opcode; // @[Monitor.scala:36:7]
wire [1:0] io_in_d_bits_param_0 = io_in_d_bits_param; // @[Monitor.scala:36:7]
wire [3:0] io_in_d_bits_size_0 = io_in_d_bits_size; // @[Monitor.scala:36:7]
wire [1:0] io_in_d_bits_source_0 = io_in_d_bits_source; // @[Monitor.scala:36:7]
wire [2:0] io_in_d_bits_sink_0 = io_in_d_bits_sink; // @[Monitor.scala:36:7]
wire io_in_d_bits_denied_0 = io_in_d_bits_denied; // @[Monitor.scala:36:7]
wire [63:0] io_in_d_bits_data_0 = io_in_d_bits_data; // @[Monitor.scala:36:7]
wire io_in_d_bits_corrupt_0 = io_in_d_bits_corrupt; // @[Monitor.scala:36:7]
wire io_in_e_ready_0 = io_in_e_ready; // @[Monitor.scala:36:7]
wire io_in_e_valid_0 = io_in_e_valid; // @[Monitor.scala:36:7]
wire [2:0] io_in_e_bits_sink_0 = io_in_e_bits_sink; // @[Monitor.scala:36:7]
wire sink_ok = 1'h1; // @[Monitor.scala:309:31]
wire mask_sub_sub_sub_0_1_1 = 1'h1; // @[Misc.scala:206:21]
wire mask_sub_sub_size_1 = 1'h1; // @[Misc.scala:209:26]
wire mask_sub_sub_0_1_1 = 1'h1; // @[Misc.scala:215:29]
wire mask_sub_sub_1_1_1 = 1'h1; // @[Misc.scala:215:29]
wire mask_sub_0_1_1 = 1'h1; // @[Misc.scala:215:29]
wire mask_sub_1_1_1 = 1'h1; // @[Misc.scala:215:29]
wire mask_sub_2_1_1 = 1'h1; // @[Misc.scala:215:29]
wire mask_sub_3_1_1 = 1'h1; // @[Misc.scala:215:29]
wire mask_size_1 = 1'h1; // @[Misc.scala:209:26]
wire mask_acc_8 = 1'h1; // @[Misc.scala:215:29]
wire mask_acc_9 = 1'h1; // @[Misc.scala:215:29]
wire mask_acc_10 = 1'h1; // @[Misc.scala:215:29]
wire mask_acc_11 = 1'h1; // @[Misc.scala:215:29]
wire mask_acc_12 = 1'h1; // @[Misc.scala:215:29]
wire mask_acc_13 = 1'h1; // @[Misc.scala:215:29]
wire mask_acc_14 = 1'h1; // @[Misc.scala:215:29]
wire mask_acc_15 = 1'h1; // @[Misc.scala:215:29]
wire sink_ok_1 = 1'h1; // @[Monitor.scala:367:31]
wire _b_first_beats1_opdata_T = 1'h1; // @[Edges.scala:97:37]
wire _b_first_last_T_1 = 1'h1; // @[Edges.scala:232:43]
wire b_first_last = 1'h1; // @[Edges.scala:232:33]
wire [3:0] io_in_b_bits_size = 4'h6; // @[Monitor.scala:36:7]
wire [3:0] _mask_sizeOH_T_3 = 4'h6; // @[Misc.scala:202:34]
wire [2:0] io_in_b_bits_opcode = 3'h6; // @[Monitor.scala:36:7]
wire [7:0] io_in_b_bits_mask = 8'hFF; // @[Monitor.scala:36:7]
wire [7:0] mask_1 = 8'hFF; // @[Misc.scala:222:10]
wire [63:0] io_in_b_bits_data = 64'h0; // @[Monitor.scala:36:7]
wire io_in_b_bits_corrupt = 1'h0; // @[Monitor.scala:36:7]
wire mask_sub_size_1 = 1'h0; // @[Misc.scala:209:26]
wire _mask_sub_acc_T_4 = 1'h0; // @[Misc.scala:215:38]
wire _mask_sub_acc_T_5 = 1'h0; // @[Misc.scala:215:38]
wire _mask_sub_acc_T_6 = 1'h0; // @[Misc.scala:215:38]
wire _mask_sub_acc_T_7 = 1'h0; // @[Misc.scala:215:38]
wire _legal_source_T_3 = 1'h0; // @[Mux.scala:30:73]
wire b_first_beats1_opdata = 1'h0; // @[Edges.scala:97:28]
wire [15:0] _a_size_lookup_T_5 = 16'hFF; // @[Monitor.scala:612:57]
wire [15:0] _d_sizes_clr_T_3 = 16'hFF; // @[Monitor.scala:612:57]
wire [15:0] _c_size_lookup_T_5 = 16'hFF; // @[Monitor.scala:724:57]
wire [15:0] _d_sizes_clr_T_9 = 16'hFF; // @[Monitor.scala:724:57]
wire [16:0] _a_size_lookup_T_4 = 17'hFF; // @[Monitor.scala:612:57]
wire [16:0] _d_sizes_clr_T_2 = 17'hFF; // @[Monitor.scala:612:57]
wire [16:0] _c_size_lookup_T_4 = 17'hFF; // @[Monitor.scala:724:57]
wire [16:0] _d_sizes_clr_T_8 = 17'hFF; // @[Monitor.scala:724:57]
wire [15:0] _a_size_lookup_T_3 = 16'h100; // @[Monitor.scala:612:51]
wire [15:0] _d_sizes_clr_T_1 = 16'h100; // @[Monitor.scala:612:51]
wire [15:0] _c_size_lookup_T_3 = 16'h100; // @[Monitor.scala:724:51]
wire [15:0] _d_sizes_clr_T_7 = 16'h100; // @[Monitor.scala:724:51]
wire [15:0] _a_opcode_lookup_T_5 = 16'hF; // @[Monitor.scala:612:57]
wire [15:0] _d_opcodes_clr_T_3 = 16'hF; // @[Monitor.scala:612:57]
wire [15:0] _c_opcode_lookup_T_5 = 16'hF; // @[Monitor.scala:724:57]
wire [15:0] _d_opcodes_clr_T_9 = 16'hF; // @[Monitor.scala:724:57]
wire [16:0] _a_opcode_lookup_T_4 = 17'hF; // @[Monitor.scala:612:57]
wire [16:0] _d_opcodes_clr_T_2 = 17'hF; // @[Monitor.scala:612:57]
wire [16:0] _c_opcode_lookup_T_4 = 17'hF; // @[Monitor.scala:724:57]
wire [16:0] _d_opcodes_clr_T_8 = 17'hF; // @[Monitor.scala:724:57]
wire [15:0] _a_opcode_lookup_T_3 = 16'h10; // @[Monitor.scala:612:51]
wire [15:0] _d_opcodes_clr_T_1 = 16'h10; // @[Monitor.scala:612:51]
wire [15:0] _c_opcode_lookup_T_3 = 16'h10; // @[Monitor.scala:724:51]
wire [15:0] _d_opcodes_clr_T_7 = 16'h10; // @[Monitor.scala:724:51]
wire [3:0] _mask_sizeOH_T_4 = 4'h4; // @[OneHot.scala:65:12]
wire [3:0] _a_opcode_lookup_T_2 = 4'h4; // @[Monitor.scala:637:123]
wire [3:0] _d_opcodes_clr_T = 4'h4; // @[Monitor.scala:680:48]
wire [3:0] _c_opcode_lookup_T_2 = 4'h4; // @[Monitor.scala:749:123]
wire [3:0] _d_opcodes_clr_T_6 = 4'h4; // @[Monitor.scala:790:48]
wire [2:0] _mask_sizeOH_T_5 = 3'h4; // @[OneHot.scala:65:27]
wire [2:0] responseMap_6 = 3'h4; // @[Monitor.scala:643:42]
wire [2:0] responseMap_7 = 3'h4; // @[Monitor.scala:643:42]
wire [2:0] responseMapSecondOption_7 = 3'h4; // @[Monitor.scala:644:42]
wire [2:0] mask_sizeOH_1 = 3'h5; // @[Misc.scala:202:81]
wire [2:0] responseMapSecondOption_6 = 3'h5; // @[Monitor.scala:644:42]
wire [2:0] responseMap_5 = 3'h2; // @[Monitor.scala:643:42]
wire [2:0] responseMapSecondOption_5 = 3'h2; // @[Monitor.scala:644:42]
wire [2:0] responseMap_2 = 3'h1; // @[Monitor.scala:643:42]
wire [2:0] responseMap_3 = 3'h1; // @[Monitor.scala:643:42]
wire [2:0] responseMap_4 = 3'h1; // @[Monitor.scala:643:42]
wire [2:0] responseMapSecondOption_2 = 3'h1; // @[Monitor.scala:644:42]
wire [2:0] responseMapSecondOption_3 = 3'h1; // @[Monitor.scala:644:42]
wire [2:0] responseMapSecondOption_4 = 3'h1; // @[Monitor.scala:644:42]
wire [2:0] responseMap_0 = 3'h0; // @[Monitor.scala:643:42]
wire [2:0] responseMap_1 = 3'h0; // @[Monitor.scala:643:42]
wire [2:0] responseMapSecondOption_0 = 3'h0; // @[Monitor.scala:644:42]
wire [2:0] responseMapSecondOption_1 = 3'h0; // @[Monitor.scala:644:42]
wire [8:0] b_first_beats1 = 9'h0; // @[Edges.scala:221:14]
wire [8:0] b_first_count = 9'h0; // @[Edges.scala:234:25]
wire [8:0] b_first_beats1_decode = 9'h7; // @[Edges.scala:220:59]
wire [11:0] is_aligned_mask_1 = 12'h3F; // @[package.scala:243:46]
wire [11:0] _b_first_beats1_decode_T_2 = 12'h3F; // @[package.scala:243:46]
wire [11:0] _is_aligned_mask_T_3 = 12'hFC0; // @[package.scala:243:76]
wire [11:0] _b_first_beats1_decode_T_1 = 12'hFC0; // @[package.scala:243:76]
wire [26:0] _is_aligned_mask_T_2 = 27'h3FFC0; // @[package.scala:243:71]
wire [26:0] _b_first_beats1_decode_T = 27'h3FFC0; // @[package.scala:243:71]
wire [3:0] mask_lo_1 = 4'hF; // @[Misc.scala:222:10]
wire [3:0] mask_hi_1 = 4'hF; // @[Misc.scala:222:10]
wire [1:0] mask_lo_lo_1 = 2'h3; // @[Misc.scala:222:10]
wire [1:0] mask_lo_hi_1 = 2'h3; // @[Misc.scala:222:10]
wire [1:0] mask_hi_lo_1 = 2'h3; // @[Misc.scala:222:10]
wire [1:0] mask_hi_hi_1 = 2'h3; // @[Misc.scala:222:10]
wire [1:0] mask_sizeOH_shiftAmount_1 = 2'h2; // @[OneHot.scala:64:49]
wire [3:0] _a_size_lookup_T_2 = 4'h8; // @[Monitor.scala:641:117]
wire [3:0] _d_sizes_clr_T = 4'h8; // @[Monitor.scala:681:48]
wire [3:0] _c_size_lookup_T_2 = 4'h8; // @[Monitor.scala:750:119]
wire [3:0] _d_sizes_clr_T_6 = 4'h8; // @[Monitor.scala:791:48]
wire [3:0] _mask_sizeOH_T = io_in_a_bits_size_0; // @[Misc.scala:202:34]
wire [31:0] _address_ok_T = io_in_b_bits_address_0; // @[Monitor.scala:36:7]
wire [31:0] _address_ok_T_100 = io_in_c_bits_address_0; // @[Monitor.scala:36:7]
wire _source_ok_T = io_in_a_bits_source_0 == 2'h0; // @[Monitor.scala:36:7]
wire _source_ok_WIRE_0 = _source_ok_T; // @[Parameters.scala:1138:31]
wire _source_ok_T_1 = io_in_a_bits_source_0 == 2'h1; // @[Monitor.scala:36:7]
wire _source_ok_WIRE_1 = _source_ok_T_1; // @[Parameters.scala:1138:31]
wire _source_ok_T_2 = io_in_a_bits_source_0 == 2'h2; // @[Monitor.scala:36:7]
wire _source_ok_WIRE_2 = _source_ok_T_2; // @[Parameters.scala:1138:31]
wire _source_ok_T_3 = _source_ok_WIRE_0 | _source_ok_WIRE_1; // @[Parameters.scala:1138:31, :1139:46]
wire source_ok = _source_ok_T_3 | _source_ok_WIRE_2; // @[Parameters.scala:1138:31, :1139:46]
wire [26:0] _GEN = 27'hFFF << io_in_a_bits_size_0; // @[package.scala:243:71]
wire [26:0] _is_aligned_mask_T; // @[package.scala:243:71]
assign _is_aligned_mask_T = _GEN; // @[package.scala:243:71]
wire [26:0] _a_first_beats1_decode_T; // @[package.scala:243:71]
assign _a_first_beats1_decode_T = _GEN; // @[package.scala:243:71]
wire [26:0] _a_first_beats1_decode_T_3; // @[package.scala:243:71]
assign _a_first_beats1_decode_T_3 = _GEN; // @[package.scala:243:71]
wire [11:0] _is_aligned_mask_T_1 = _is_aligned_mask_T[11:0]; // @[package.scala:243:{71,76}]
wire [11:0] is_aligned_mask = ~_is_aligned_mask_T_1; // @[package.scala:243:{46,76}]
wire [31:0] _is_aligned_T = {20'h0, io_in_a_bits_address_0[11:0] & is_aligned_mask}; // @[package.scala:243:46]
wire is_aligned = _is_aligned_T == 32'h0; // @[Edges.scala:21:{16,24}]
wire [1:0] mask_sizeOH_shiftAmount = _mask_sizeOH_T[1:0]; // @[OneHot.scala:64:49]
wire [3:0] _mask_sizeOH_T_1 = 4'h1 << mask_sizeOH_shiftAmount; // @[OneHot.scala:64:49, :65:12]
wire [2:0] _mask_sizeOH_T_2 = _mask_sizeOH_T_1[2:0]; // @[OneHot.scala:65:{12,27}]
wire [2:0] mask_sizeOH = {_mask_sizeOH_T_2[2:1], 1'h1}; // @[OneHot.scala:65:27]
wire mask_sub_sub_sub_0_1 = io_in_a_bits_size_0 > 4'h2; // @[Misc.scala:206:21]
wire mask_sub_sub_size = mask_sizeOH[2]; // @[Misc.scala:202:81, :209:26]
wire mask_sub_sub_bit = io_in_a_bits_address_0[2]; // @[Misc.scala:210:26]
wire mask_sub_sub_1_2 = mask_sub_sub_bit; // @[Misc.scala:210:26, :214:27]
wire mask_sub_sub_nbit = ~mask_sub_sub_bit; // @[Misc.scala:210:26, :211:20]
wire mask_sub_sub_0_2 = mask_sub_sub_nbit; // @[Misc.scala:211:20, :214:27]
wire _mask_sub_sub_acc_T = mask_sub_sub_size & mask_sub_sub_0_2; // @[Misc.scala:209:26, :214:27, :215:38]
wire mask_sub_sub_0_1 = mask_sub_sub_sub_0_1 | _mask_sub_sub_acc_T; // @[Misc.scala:206:21, :215:{29,38}]
wire _mask_sub_sub_acc_T_1 = mask_sub_sub_size & mask_sub_sub_1_2; // @[Misc.scala:209:26, :214:27, :215:38]
wire mask_sub_sub_1_1 = mask_sub_sub_sub_0_1 | _mask_sub_sub_acc_T_1; // @[Misc.scala:206:21, :215:{29,38}]
wire mask_sub_size = mask_sizeOH[1]; // @[Misc.scala:202:81, :209:26]
wire mask_sub_bit = io_in_a_bits_address_0[1]; // @[Misc.scala:210:26]
wire mask_sub_nbit = ~mask_sub_bit; // @[Misc.scala:210:26, :211:20]
wire mask_sub_0_2 = mask_sub_sub_0_2 & mask_sub_nbit; // @[Misc.scala:211:20, :214:27]
wire _mask_sub_acc_T = mask_sub_size & mask_sub_0_2; // @[Misc.scala:209:26, :214:27, :215:38]
wire mask_sub_0_1 = mask_sub_sub_0_1 | _mask_sub_acc_T; // @[Misc.scala:215:{29,38}]
wire mask_sub_1_2 = mask_sub_sub_0_2 & mask_sub_bit; // @[Misc.scala:210:26, :214:27]
wire _mask_sub_acc_T_1 = mask_sub_size & mask_sub_1_2; // @[Misc.scala:209:26, :214:27, :215:38]
wire mask_sub_1_1 = mask_sub_sub_0_1 | _mask_sub_acc_T_1; // @[Misc.scala:215:{29,38}]
wire mask_sub_2_2 = mask_sub_sub_1_2 & mask_sub_nbit; // @[Misc.scala:211:20, :214:27]
wire _mask_sub_acc_T_2 = mask_sub_size & mask_sub_2_2; // @[Misc.scala:209:26, :214:27, :215:38]
wire mask_sub_2_1 = mask_sub_sub_1_1 | _mask_sub_acc_T_2; // @[Misc.scala:215:{29,38}]
wire mask_sub_3_2 = mask_sub_sub_1_2 & mask_sub_bit; // @[Misc.scala:210:26, :214:27]
wire _mask_sub_acc_T_3 = mask_sub_size & mask_sub_3_2; // @[Misc.scala:209:26, :214:27, :215:38]
wire mask_sub_3_1 = mask_sub_sub_1_1 | _mask_sub_acc_T_3; // @[Misc.scala:215:{29,38}]
wire mask_size = mask_sizeOH[0]; // @[Misc.scala:202:81, :209:26]
wire mask_bit = io_in_a_bits_address_0[0]; // @[Misc.scala:210:26]
wire mask_nbit = ~mask_bit; // @[Misc.scala:210:26, :211:20]
wire mask_eq = mask_sub_0_2 & mask_nbit; // @[Misc.scala:211:20, :214:27]
wire _mask_acc_T = mask_size & mask_eq; // @[Misc.scala:209:26, :214:27, :215:38]
wire mask_acc = mask_sub_0_1 | _mask_acc_T; // @[Misc.scala:215:{29,38}]
wire mask_eq_1 = mask_sub_0_2 & mask_bit; // @[Misc.scala:210:26, :214:27]
wire _mask_acc_T_1 = mask_size & mask_eq_1; // @[Misc.scala:209:26, :214:27, :215:38]
wire mask_acc_1 = mask_sub_0_1 | _mask_acc_T_1; // @[Misc.scala:215:{29,38}]
wire mask_eq_2 = mask_sub_1_2 & mask_nbit; // @[Misc.scala:211:20, :214:27]
wire _mask_acc_T_2 = mask_size & mask_eq_2; // @[Misc.scala:209:26, :214:27, :215:38]
wire mask_acc_2 = mask_sub_1_1 | _mask_acc_T_2; // @[Misc.scala:215:{29,38}]
wire mask_eq_3 = mask_sub_1_2 & mask_bit; // @[Misc.scala:210:26, :214:27]
wire _mask_acc_T_3 = mask_size & mask_eq_3; // @[Misc.scala:209:26, :214:27, :215:38]
wire mask_acc_3 = mask_sub_1_1 | _mask_acc_T_3; // @[Misc.scala:215:{29,38}]
wire mask_eq_4 = mask_sub_2_2 & mask_nbit; // @[Misc.scala:211:20, :214:27]
wire _mask_acc_T_4 = mask_size & mask_eq_4; // @[Misc.scala:209:26, :214:27, :215:38]
wire mask_acc_4 = mask_sub_2_1 | _mask_acc_T_4; // @[Misc.scala:215:{29,38}]
wire mask_eq_5 = mask_sub_2_2 & mask_bit; // @[Misc.scala:210:26, :214:27]
wire _mask_acc_T_5 = mask_size & mask_eq_5; // @[Misc.scala:209:26, :214:27, :215:38]
wire mask_acc_5 = mask_sub_2_1 | _mask_acc_T_5; // @[Misc.scala:215:{29,38}]
wire mask_eq_6 = mask_sub_3_2 & mask_nbit; // @[Misc.scala:211:20, :214:27]
wire _mask_acc_T_6 = mask_size & mask_eq_6; // @[Misc.scala:209:26, :214:27, :215:38]
wire mask_acc_6 = mask_sub_3_1 | _mask_acc_T_6; // @[Misc.scala:215:{29,38}]
wire mask_eq_7 = mask_sub_3_2 & mask_bit; // @[Misc.scala:210:26, :214:27]
wire _mask_acc_T_7 = mask_size & mask_eq_7; // @[Misc.scala:209:26, :214:27, :215:38]
wire mask_acc_7 = mask_sub_3_1 | _mask_acc_T_7; // @[Misc.scala:215:{29,38}]
wire [1:0] mask_lo_lo = {mask_acc_1, mask_acc}; // @[Misc.scala:215:29, :222:10]
wire [1:0] mask_lo_hi = {mask_acc_3, mask_acc_2}; // @[Misc.scala:215:29, :222:10]
wire [3:0] mask_lo = {mask_lo_hi, mask_lo_lo}; // @[Misc.scala:222:10]
wire [1:0] mask_hi_lo = {mask_acc_5, mask_acc_4}; // @[Misc.scala:215:29, :222:10]
wire [1:0] mask_hi_hi = {mask_acc_7, mask_acc_6}; // @[Misc.scala:215:29, :222:10]
wire [3:0] mask_hi = {mask_hi_hi, mask_hi_lo}; // @[Misc.scala:222:10]
wire [7:0] mask = {mask_hi, mask_lo}; // @[Misc.scala:222:10]
wire _source_ok_T_4 = io_in_d_bits_source_0 == 2'h0; // @[Monitor.scala:36:7]
wire _source_ok_WIRE_1_0 = _source_ok_T_4; // @[Parameters.scala:1138:31]
wire _source_ok_T_5 = io_in_d_bits_source_0 == 2'h1; // @[Monitor.scala:36:7]
wire _source_ok_WIRE_1_1 = _source_ok_T_5; // @[Parameters.scala:1138:31]
wire _source_ok_T_6 = io_in_d_bits_source_0 == 2'h2; // @[Monitor.scala:36:7]
wire _source_ok_WIRE_1_2 = _source_ok_T_6; // @[Parameters.scala:1138:31]
wire _source_ok_T_7 = _source_ok_WIRE_1_0 | _source_ok_WIRE_1_1; // @[Parameters.scala:1138:31, :1139:46]
wire source_ok_1 = _source_ok_T_7 | _source_ok_WIRE_1_2; // @[Parameters.scala:1138:31, :1139:46]
wire _legal_source_T = io_in_b_bits_source_0 == 2'h0; // @[Monitor.scala:36:7]
wire _legal_source_T_1 = io_in_b_bits_source_0 == 2'h1; // @[Monitor.scala:36:7]
wire _legal_source_T_2 = io_in_b_bits_source_0 == 2'h2; // @[Monitor.scala:36:7]
wire [32:0] _address_ok_T_1 = {1'h0, _address_ok_T}; // @[Parameters.scala:137:{31,41}]
wire [32:0] _address_ok_T_2 = _address_ok_T_1 & 33'h1FFFFF000; // @[Parameters.scala:137:{41,46}]
wire [32:0] _address_ok_T_3 = _address_ok_T_2; // @[Parameters.scala:137:46]
wire _address_ok_T_4 = _address_ok_T_3 == 33'h0; // @[Parameters.scala:137:{46,59}]
wire _address_ok_WIRE_0 = _address_ok_T_4; // @[Parameters.scala:612:40]
wire [31:0] _address_ok_T_5 = {io_in_b_bits_address_0[31:13], io_in_b_bits_address_0[12:0] ^ 13'h1000}; // @[Monitor.scala:36:7]
wire [32:0] _address_ok_T_6 = {1'h0, _address_ok_T_5}; // @[Parameters.scala:137:{31,41}]
wire [32:0] _address_ok_T_7 = _address_ok_T_6 & 33'h1FFFFF000; // @[Parameters.scala:137:{41,46}]
wire [32:0] _address_ok_T_8 = _address_ok_T_7; // @[Parameters.scala:137:46]
wire _address_ok_T_9 = _address_ok_T_8 == 33'h0; // @[Parameters.scala:137:{46,59}]
wire _address_ok_WIRE_1 = _address_ok_T_9; // @[Parameters.scala:612:40]
wire [13:0] _GEN_0 = io_in_b_bits_address_0[13:0] ^ 14'h3000; // @[Monitor.scala:36:7]
wire [31:0] _address_ok_T_10 = {io_in_b_bits_address_0[31:14], _GEN_0}; // @[Monitor.scala:36:7]
wire [32:0] _address_ok_T_11 = {1'h0, _address_ok_T_10}; // @[Parameters.scala:137:{31,41}]
wire [32:0] _address_ok_T_12 = _address_ok_T_11 & 33'h1FFFFF000; // @[Parameters.scala:137:{41,46}]
wire [32:0] _address_ok_T_13 = _address_ok_T_12; // @[Parameters.scala:137:46]
wire _address_ok_T_14 = _address_ok_T_13 == 33'h0; // @[Parameters.scala:137:{46,59}]
wire _address_ok_WIRE_2 = _address_ok_T_14; // @[Parameters.scala:612:40]
wire [16:0] _GEN_1 = io_in_b_bits_address_0[16:0] ^ 17'h10000; // @[Monitor.scala:36:7]
wire [31:0] _address_ok_T_15 = {io_in_b_bits_address_0[31:17], _GEN_1}; // @[Monitor.scala:36:7]
wire [32:0] _address_ok_T_16 = {1'h0, _address_ok_T_15}; // @[Parameters.scala:137:{31,41}]
wire [32:0] _address_ok_T_17 = _address_ok_T_16 & 33'h1FFFF0000; // @[Parameters.scala:137:{41,46}]
wire [32:0] _address_ok_T_18 = _address_ok_T_17; // @[Parameters.scala:137:46]
wire _address_ok_T_19 = _address_ok_T_18 == 33'h0; // @[Parameters.scala:137:{46,59}]
wire _address_ok_WIRE_3 = _address_ok_T_19; // @[Parameters.scala:612:40]
wire [17:0] _GEN_2 = io_in_b_bits_address_0[17:0] ^ 18'h20000; // @[Monitor.scala:36:7]
wire [31:0] _address_ok_T_20 = {io_in_b_bits_address_0[31:18], _GEN_2}; // @[Monitor.scala:36:7]
wire [32:0] _address_ok_T_21 = {1'h0, _address_ok_T_20}; // @[Parameters.scala:137:{31,41}]
wire [32:0] _address_ok_T_22 = _address_ok_T_21 & 33'h1FFFFF000; // @[Parameters.scala:137:{41,46}]
wire [32:0] _address_ok_T_23 = _address_ok_T_22; // @[Parameters.scala:137:46]
wire _address_ok_T_24 = _address_ok_T_23 == 33'h0; // @[Parameters.scala:137:{46,59}]
wire _address_ok_WIRE_4 = _address_ok_T_24; // @[Parameters.scala:612:40]
wire [31:0] _address_ok_T_25 = {io_in_b_bits_address_0[31:18], io_in_b_bits_address_0[17:0] ^ 18'h21000}; // @[Monitor.scala:36:7]
wire [32:0] _address_ok_T_26 = {1'h0, _address_ok_T_25}; // @[Parameters.scala:137:{31,41}]
wire [32:0] _address_ok_T_27 = _address_ok_T_26 & 33'h1FFFFF000; // @[Parameters.scala:137:{41,46}]
wire [32:0] _address_ok_T_28 = _address_ok_T_27; // @[Parameters.scala:137:46]
wire _address_ok_T_29 = _address_ok_T_28 == 33'h0; // @[Parameters.scala:137:{46,59}]
wire _address_ok_WIRE_5 = _address_ok_T_29; // @[Parameters.scala:612:40]
wire [31:0] _address_ok_T_30 = {io_in_b_bits_address_0[31:18], io_in_b_bits_address_0[17:0] ^ 18'h22000}; // @[Monitor.scala:36:7]
wire [32:0] _address_ok_T_31 = {1'h0, _address_ok_T_30}; // @[Parameters.scala:137:{31,41}]
wire [32:0] _address_ok_T_32 = _address_ok_T_31 & 33'h1FFFFF000; // @[Parameters.scala:137:{41,46}]
wire [32:0] _address_ok_T_33 = _address_ok_T_32; // @[Parameters.scala:137:46]
wire _address_ok_T_34 = _address_ok_T_33 == 33'h0; // @[Parameters.scala:137:{46,59}]
wire _address_ok_WIRE_6 = _address_ok_T_34; // @[Parameters.scala:612:40]
wire [31:0] _address_ok_T_35 = {io_in_b_bits_address_0[31:18], io_in_b_bits_address_0[17:0] ^ 18'h23000}; // @[Monitor.scala:36:7]
wire [32:0] _address_ok_T_36 = {1'h0, _address_ok_T_35}; // @[Parameters.scala:137:{31,41}]
wire [32:0] _address_ok_T_37 = _address_ok_T_36 & 33'h1FFFFF000; // @[Parameters.scala:137:{41,46}]
wire [32:0] _address_ok_T_38 = _address_ok_T_37; // @[Parameters.scala:137:46]
wire _address_ok_T_39 = _address_ok_T_38 == 33'h0; // @[Parameters.scala:137:{46,59}]
wire _address_ok_WIRE_7 = _address_ok_T_39; // @[Parameters.scala:612:40]
wire [17:0] _GEN_3 = io_in_b_bits_address_0[17:0] ^ 18'h24000; // @[Monitor.scala:36:7]
wire [31:0] _address_ok_T_40 = {io_in_b_bits_address_0[31:18], _GEN_3}; // @[Monitor.scala:36:7]
wire [32:0] _address_ok_T_41 = {1'h0, _address_ok_T_40}; // @[Parameters.scala:137:{31,41}]
wire [32:0] _address_ok_T_42 = _address_ok_T_41 & 33'h1FFFFF000; // @[Parameters.scala:137:{41,46}]
wire [32:0] _address_ok_T_43 = _address_ok_T_42; // @[Parameters.scala:137:46]
wire _address_ok_T_44 = _address_ok_T_43 == 33'h0; // @[Parameters.scala:137:{46,59}]
wire _address_ok_WIRE_8 = _address_ok_T_44; // @[Parameters.scala:612:40]
wire [20:0] _GEN_4 = io_in_b_bits_address_0[20:0] ^ 21'h100000; // @[Monitor.scala:36:7]
wire [31:0] _address_ok_T_45 = {io_in_b_bits_address_0[31:21], _GEN_4}; // @[Monitor.scala:36:7]
wire [32:0] _address_ok_T_46 = {1'h0, _address_ok_T_45}; // @[Parameters.scala:137:{31,41}]
wire [32:0] _address_ok_T_47 = _address_ok_T_46 & 33'h1FFFFF000; // @[Parameters.scala:137:{41,46}]
wire [32:0] _address_ok_T_48 = _address_ok_T_47; // @[Parameters.scala:137:46]
wire _address_ok_T_49 = _address_ok_T_48 == 33'h0; // @[Parameters.scala:137:{46,59}]
wire _address_ok_WIRE_9 = _address_ok_T_49; // @[Parameters.scala:612:40]
wire [31:0] _address_ok_T_50 = {io_in_b_bits_address_0[31:21], io_in_b_bits_address_0[20:0] ^ 21'h110000}; // @[Monitor.scala:36:7]
wire [32:0] _address_ok_T_51 = {1'h0, _address_ok_T_50}; // @[Parameters.scala:137:{31,41}]
wire [32:0] _address_ok_T_52 = _address_ok_T_51 & 33'h1FFFFF000; // @[Parameters.scala:137:{41,46}]
wire [32:0] _address_ok_T_53 = _address_ok_T_52; // @[Parameters.scala:137:46]
wire _address_ok_T_54 = _address_ok_T_53 == 33'h0; // @[Parameters.scala:137:{46,59}]
wire _address_ok_WIRE_10 = _address_ok_T_54; // @[Parameters.scala:612:40]
wire [25:0] _GEN_5 = io_in_b_bits_address_0[25:0] ^ 26'h2000000; // @[Monitor.scala:36:7]
wire [31:0] _address_ok_T_55 = {io_in_b_bits_address_0[31:26], _GEN_5}; // @[Monitor.scala:36:7]
wire [32:0] _address_ok_T_56 = {1'h0, _address_ok_T_55}; // @[Parameters.scala:137:{31,41}]
wire [32:0] _address_ok_T_57 = _address_ok_T_56 & 33'h1FFFF0000; // @[Parameters.scala:137:{41,46}]
wire [32:0] _address_ok_T_58 = _address_ok_T_57; // @[Parameters.scala:137:46]
wire _address_ok_T_59 = _address_ok_T_58 == 33'h0; // @[Parameters.scala:137:{46,59}]
wire _address_ok_WIRE_11 = _address_ok_T_59; // @[Parameters.scala:612:40]
wire [25:0] _GEN_6 = io_in_b_bits_address_0[25:0] ^ 26'h2010000; // @[Monitor.scala:36:7]
wire [31:0] _address_ok_T_60 = {io_in_b_bits_address_0[31:26], _GEN_6}; // @[Monitor.scala:36:7]
wire [32:0] _address_ok_T_61 = {1'h0, _address_ok_T_60}; // @[Parameters.scala:137:{31,41}]
wire [32:0] _address_ok_T_62 = _address_ok_T_61 & 33'h1FFFFF000; // @[Parameters.scala:137:{41,46}]
wire [32:0] _address_ok_T_63 = _address_ok_T_62; // @[Parameters.scala:137:46]
wire _address_ok_T_64 = _address_ok_T_63 == 33'h0; // @[Parameters.scala:137:{46,59}]
wire _address_ok_WIRE_12 = _address_ok_T_64; // @[Parameters.scala:612:40]
wire [27:0] _GEN_7 = io_in_b_bits_address_0[27:0] ^ 28'h8000000; // @[Monitor.scala:36:7]
wire [31:0] _address_ok_T_65 = {io_in_b_bits_address_0[31:28], _GEN_7}; // @[Monitor.scala:36:7]
wire [32:0] _address_ok_T_66 = {1'h0, _address_ok_T_65}; // @[Parameters.scala:137:{31,41}]
wire [32:0] _address_ok_T_67 = _address_ok_T_66 & 33'h1FFFF0000; // @[Parameters.scala:137:{41,46}]
wire [32:0] _address_ok_T_68 = _address_ok_T_67; // @[Parameters.scala:137:46]
wire _address_ok_T_69 = _address_ok_T_68 == 33'h0; // @[Parameters.scala:137:{46,59}]
wire _address_ok_WIRE_13 = _address_ok_T_69; // @[Parameters.scala:612:40]
wire [27:0] _GEN_8 = io_in_b_bits_address_0[27:0] ^ 28'hC000000; // @[Monitor.scala:36:7]
wire [31:0] _address_ok_T_70 = {io_in_b_bits_address_0[31:28], _GEN_8}; // @[Monitor.scala:36:7]
wire [32:0] _address_ok_T_71 = {1'h0, _address_ok_T_70}; // @[Parameters.scala:137:{31,41}]
wire [32:0] _address_ok_T_72 = _address_ok_T_71 & 33'h1FC000000; // @[Parameters.scala:137:{41,46}]
wire [32:0] _address_ok_T_73 = _address_ok_T_72; // @[Parameters.scala:137:46]
wire _address_ok_T_74 = _address_ok_T_73 == 33'h0; // @[Parameters.scala:137:{46,59}]
wire _address_ok_WIRE_14 = _address_ok_T_74; // @[Parameters.scala:612:40]
wire [28:0] _GEN_9 = io_in_b_bits_address_0[28:0] ^ 29'h10020000; // @[Monitor.scala:36:7]
wire [31:0] _address_ok_T_75 = {io_in_b_bits_address_0[31:29], _GEN_9}; // @[Monitor.scala:36:7]
wire [32:0] _address_ok_T_76 = {1'h0, _address_ok_T_75}; // @[Parameters.scala:137:{31,41}]
wire [32:0] _address_ok_T_77 = _address_ok_T_76 & 33'h1FFFFF000; // @[Parameters.scala:137:{41,46}]
wire [32:0] _address_ok_T_78 = _address_ok_T_77; // @[Parameters.scala:137:46]
wire _address_ok_T_79 = _address_ok_T_78 == 33'h0; // @[Parameters.scala:137:{46,59}]
wire _address_ok_WIRE_15 = _address_ok_T_79; // @[Parameters.scala:612:40]
wire [31:0] _address_ok_T_80 = io_in_b_bits_address_0 ^ 32'h80000000; // @[Monitor.scala:36:7]
wire [32:0] _address_ok_T_81 = {1'h0, _address_ok_T_80}; // @[Parameters.scala:137:{31,41}]
wire [32:0] _address_ok_T_82 = _address_ok_T_81 & 33'h1F0000000; // @[Parameters.scala:137:{41,46}]
wire [32:0] _address_ok_T_83 = _address_ok_T_82; // @[Parameters.scala:137:46]
wire _address_ok_T_84 = _address_ok_T_83 == 33'h0; // @[Parameters.scala:137:{46,59}]
wire _address_ok_WIRE_16 = _address_ok_T_84; // @[Parameters.scala:612:40]
wire _address_ok_T_85 = _address_ok_WIRE_0 | _address_ok_WIRE_1; // @[Parameters.scala:612:40, :636:64]
wire _address_ok_T_86 = _address_ok_T_85 | _address_ok_WIRE_2; // @[Parameters.scala:612:40, :636:64]
wire _address_ok_T_87 = _address_ok_T_86 | _address_ok_WIRE_3; // @[Parameters.scala:612:40, :636:64]
wire _address_ok_T_88 = _address_ok_T_87 | _address_ok_WIRE_4; // @[Parameters.scala:612:40, :636:64]
wire _address_ok_T_89 = _address_ok_T_88 | _address_ok_WIRE_5; // @[Parameters.scala:612:40, :636:64]
wire _address_ok_T_90 = _address_ok_T_89 | _address_ok_WIRE_6; // @[Parameters.scala:612:40, :636:64]
wire _address_ok_T_91 = _address_ok_T_90 | _address_ok_WIRE_7; // @[Parameters.scala:612:40, :636:64]
wire _address_ok_T_92 = _address_ok_T_91 | _address_ok_WIRE_8; // @[Parameters.scala:612:40, :636:64]
wire _address_ok_T_93 = _address_ok_T_92 | _address_ok_WIRE_9; // @[Parameters.scala:612:40, :636:64]
wire _address_ok_T_94 = _address_ok_T_93 | _address_ok_WIRE_10; // @[Parameters.scala:612:40, :636:64]
wire _address_ok_T_95 = _address_ok_T_94 | _address_ok_WIRE_11; // @[Parameters.scala:612:40, :636:64]
wire _address_ok_T_96 = _address_ok_T_95 | _address_ok_WIRE_12; // @[Parameters.scala:612:40, :636:64]
wire _address_ok_T_97 = _address_ok_T_96 | _address_ok_WIRE_13; // @[Parameters.scala:612:40, :636:64]
wire _address_ok_T_98 = _address_ok_T_97 | _address_ok_WIRE_14; // @[Parameters.scala:612:40, :636:64]
wire _address_ok_T_99 = _address_ok_T_98 | _address_ok_WIRE_15; // @[Parameters.scala:612:40, :636:64]
wire address_ok = _address_ok_T_99 | _address_ok_WIRE_16; // @[Parameters.scala:612:40, :636:64]
wire [31:0] _is_aligned_T_1 = {26'h0, io_in_b_bits_address_0[5:0]}; // @[Monitor.scala:36:7]
wire is_aligned_1 = _is_aligned_T_1 == 32'h0; // @[Edges.scala:21:{16,24}]
wire mask_sub_sub_bit_1 = io_in_b_bits_address_0[2]; // @[Misc.scala:210:26]
wire mask_sub_sub_1_2_1 = mask_sub_sub_bit_1; // @[Misc.scala:210:26, :214:27]
wire mask_sub_sub_nbit_1 = ~mask_sub_sub_bit_1; // @[Misc.scala:210:26, :211:20]
wire mask_sub_sub_0_2_1 = mask_sub_sub_nbit_1; // @[Misc.scala:211:20, :214:27]
wire _mask_sub_sub_acc_T_2 = mask_sub_sub_0_2_1; // @[Misc.scala:214:27, :215:38]
wire _mask_sub_sub_acc_T_3 = mask_sub_sub_1_2_1; // @[Misc.scala:214:27, :215:38]
wire mask_sub_bit_1 = io_in_b_bits_address_0[1]; // @[Misc.scala:210:26]
wire mask_sub_nbit_1 = ~mask_sub_bit_1; // @[Misc.scala:210:26, :211:20]
wire mask_sub_0_2_1 = mask_sub_sub_0_2_1 & mask_sub_nbit_1; // @[Misc.scala:211:20, :214:27]
wire mask_sub_1_2_1 = mask_sub_sub_0_2_1 & mask_sub_bit_1; // @[Misc.scala:210:26, :214:27]
wire mask_sub_2_2_1 = mask_sub_sub_1_2_1 & mask_sub_nbit_1; // @[Misc.scala:211:20, :214:27]
wire mask_sub_3_2_1 = mask_sub_sub_1_2_1 & mask_sub_bit_1; // @[Misc.scala:210:26, :214:27]
wire mask_bit_1 = io_in_b_bits_address_0[0]; // @[Misc.scala:210:26]
wire mask_nbit_1 = ~mask_bit_1; // @[Misc.scala:210:26, :211:20]
wire mask_eq_8 = mask_sub_0_2_1 & mask_nbit_1; // @[Misc.scala:211:20, :214:27]
wire _mask_acc_T_8 = mask_eq_8; // @[Misc.scala:214:27, :215:38]
wire mask_eq_9 = mask_sub_0_2_1 & mask_bit_1; // @[Misc.scala:210:26, :214:27]
wire _mask_acc_T_9 = mask_eq_9; // @[Misc.scala:214:27, :215:38]
wire mask_eq_10 = mask_sub_1_2_1 & mask_nbit_1; // @[Misc.scala:211:20, :214:27]
wire _mask_acc_T_10 = mask_eq_10; // @[Misc.scala:214:27, :215:38]
wire mask_eq_11 = mask_sub_1_2_1 & mask_bit_1; // @[Misc.scala:210:26, :214:27]
wire _mask_acc_T_11 = mask_eq_11; // @[Misc.scala:214:27, :215:38]
wire mask_eq_12 = mask_sub_2_2_1 & mask_nbit_1; // @[Misc.scala:211:20, :214:27]
wire _mask_acc_T_12 = mask_eq_12; // @[Misc.scala:214:27, :215:38]
wire mask_eq_13 = mask_sub_2_2_1 & mask_bit_1; // @[Misc.scala:210:26, :214:27]
wire _mask_acc_T_13 = mask_eq_13; // @[Misc.scala:214:27, :215:38]
wire mask_eq_14 = mask_sub_3_2_1 & mask_nbit_1; // @[Misc.scala:211:20, :214:27]
wire _mask_acc_T_14 = mask_eq_14; // @[Misc.scala:214:27, :215:38]
wire mask_eq_15 = mask_sub_3_2_1 & mask_bit_1; // @[Misc.scala:210:26, :214:27]
wire _mask_acc_T_15 = mask_eq_15; // @[Misc.scala:214:27, :215:38]
wire _legal_source_WIRE_0 = _legal_source_T; // @[Parameters.scala:1138:31]
wire _legal_source_WIRE_1 = _legal_source_T_1; // @[Parameters.scala:1138:31]
wire _legal_source_WIRE_2 = _legal_source_T_2; // @[Parameters.scala:1138:31]
wire _legal_source_T_4 = _legal_source_WIRE_1; // @[Mux.scala:30:73]
wire _legal_source_T_6 = _legal_source_T_4; // @[Mux.scala:30:73]
wire [1:0] _legal_source_T_5 = {_legal_source_WIRE_2, 1'h0}; // @[Mux.scala:30:73]
wire [1:0] _legal_source_T_7 = {1'h0, _legal_source_T_6} | _legal_source_T_5; // @[Mux.scala:30:73]
wire [1:0] _legal_source_WIRE_1_0 = _legal_source_T_7; // @[Mux.scala:30:73]
wire legal_source = _legal_source_WIRE_1_0 == io_in_b_bits_source_0; // @[Mux.scala:30:73]
wire _source_ok_T_8 = io_in_c_bits_source_0 == 2'h0; // @[Monitor.scala:36:7]
wire _source_ok_WIRE_2_0 = _source_ok_T_8; // @[Parameters.scala:1138:31]
wire _source_ok_T_9 = io_in_c_bits_source_0 == 2'h1; // @[Monitor.scala:36:7]
wire _source_ok_WIRE_2_1 = _source_ok_T_9; // @[Parameters.scala:1138:31]
wire _source_ok_T_10 = io_in_c_bits_source_0 == 2'h2; // @[Monitor.scala:36:7]
wire _source_ok_WIRE_2_2 = _source_ok_T_10; // @[Parameters.scala:1138:31]
wire _source_ok_T_11 = _source_ok_WIRE_2_0 | _source_ok_WIRE_2_1; // @[Parameters.scala:1138:31, :1139:46]
wire source_ok_2 = _source_ok_T_11 | _source_ok_WIRE_2_2; // @[Parameters.scala:1138:31, :1139:46]
wire [26:0] _GEN_10 = 27'hFFF << io_in_c_bits_size_0; // @[package.scala:243:71]
wire [26:0] _is_aligned_mask_T_4; // @[package.scala:243:71]
assign _is_aligned_mask_T_4 = _GEN_10; // @[package.scala:243:71]
wire [26:0] _c_first_beats1_decode_T; // @[package.scala:243:71]
assign _c_first_beats1_decode_T = _GEN_10; // @[package.scala:243:71]
wire [26:0] _c_first_beats1_decode_T_3; // @[package.scala:243:71]
assign _c_first_beats1_decode_T_3 = _GEN_10; // @[package.scala:243:71]
wire [11:0] _is_aligned_mask_T_5 = _is_aligned_mask_T_4[11:0]; // @[package.scala:243:{71,76}]
wire [11:0] is_aligned_mask_2 = ~_is_aligned_mask_T_5; // @[package.scala:243:{46,76}]
wire [31:0] _is_aligned_T_2 = {20'h0, io_in_c_bits_address_0[11:0] & is_aligned_mask_2}; // @[package.scala:243:46]
wire is_aligned_2 = _is_aligned_T_2 == 32'h0; // @[Edges.scala:21:{16,24}]
wire [32:0] _address_ok_T_101 = {1'h0, _address_ok_T_100}; // @[Parameters.scala:137:{31,41}]
wire [32:0] _address_ok_T_102 = _address_ok_T_101 & 33'h1FFFFF000; // @[Parameters.scala:137:{41,46}]
wire [32:0] _address_ok_T_103 = _address_ok_T_102; // @[Parameters.scala:137:46]
wire _address_ok_T_104 = _address_ok_T_103 == 33'h0; // @[Parameters.scala:137:{46,59}]
wire _address_ok_WIRE_1_0 = _address_ok_T_104; // @[Parameters.scala:612:40]
wire [31:0] _address_ok_T_105 = {io_in_c_bits_address_0[31:13], io_in_c_bits_address_0[12:0] ^ 13'h1000}; // @[Monitor.scala:36:7]
wire [32:0] _address_ok_T_106 = {1'h0, _address_ok_T_105}; // @[Parameters.scala:137:{31,41}]
wire [32:0] _address_ok_T_107 = _address_ok_T_106 & 33'h1FFFFF000; // @[Parameters.scala:137:{41,46}]
wire [32:0] _address_ok_T_108 = _address_ok_T_107; // @[Parameters.scala:137:46]
wire _address_ok_T_109 = _address_ok_T_108 == 33'h0; // @[Parameters.scala:137:{46,59}]
wire _address_ok_WIRE_1_1 = _address_ok_T_109; // @[Parameters.scala:612:40]
wire [13:0] _GEN_11 = io_in_c_bits_address_0[13:0] ^ 14'h3000; // @[Monitor.scala:36:7]
wire [31:0] _address_ok_T_110 = {io_in_c_bits_address_0[31:14], _GEN_11}; // @[Monitor.scala:36:7]
wire [32:0] _address_ok_T_111 = {1'h0, _address_ok_T_110}; // @[Parameters.scala:137:{31,41}]
wire [32:0] _address_ok_T_112 = _address_ok_T_111 & 33'h1FFFFF000; // @[Parameters.scala:137:{41,46}]
wire [32:0] _address_ok_T_113 = _address_ok_T_112; // @[Parameters.scala:137:46]
wire _address_ok_T_114 = _address_ok_T_113 == 33'h0; // @[Parameters.scala:137:{46,59}]
wire _address_ok_WIRE_1_2 = _address_ok_T_114; // @[Parameters.scala:612:40]
wire [16:0] _GEN_12 = io_in_c_bits_address_0[16:0] ^ 17'h10000; // @[Monitor.scala:36:7]
wire [31:0] _address_ok_T_115 = {io_in_c_bits_address_0[31:17], _GEN_12}; // @[Monitor.scala:36:7]
wire [32:0] _address_ok_T_116 = {1'h0, _address_ok_T_115}; // @[Parameters.scala:137:{31,41}]
wire [32:0] _address_ok_T_117 = _address_ok_T_116 & 33'h1FFFF0000; // @[Parameters.scala:137:{41,46}]
wire [32:0] _address_ok_T_118 = _address_ok_T_117; // @[Parameters.scala:137:46]
wire _address_ok_T_119 = _address_ok_T_118 == 33'h0; // @[Parameters.scala:137:{46,59}]
wire _address_ok_WIRE_1_3 = _address_ok_T_119; // @[Parameters.scala:612:40]
wire [17:0] _GEN_13 = io_in_c_bits_address_0[17:0] ^ 18'h20000; // @[Monitor.scala:36:7]
wire [31:0] _address_ok_T_120 = {io_in_c_bits_address_0[31:18], _GEN_13}; // @[Monitor.scala:36:7]
wire [32:0] _address_ok_T_121 = {1'h0, _address_ok_T_120}; // @[Parameters.scala:137:{31,41}]
wire [32:0] _address_ok_T_122 = _address_ok_T_121 & 33'h1FFFFF000; // @[Parameters.scala:137:{41,46}]
wire [32:0] _address_ok_T_123 = _address_ok_T_122; // @[Parameters.scala:137:46]
wire _address_ok_T_124 = _address_ok_T_123 == 33'h0; // @[Parameters.scala:137:{46,59}]
wire _address_ok_WIRE_1_4 = _address_ok_T_124; // @[Parameters.scala:612:40]
wire [31:0] _address_ok_T_125 = {io_in_c_bits_address_0[31:18], io_in_c_bits_address_0[17:0] ^ 18'h21000}; // @[Monitor.scala:36:7]
wire [32:0] _address_ok_T_126 = {1'h0, _address_ok_T_125}; // @[Parameters.scala:137:{31,41}]
wire [32:0] _address_ok_T_127 = _address_ok_T_126 & 33'h1FFFFF000; // @[Parameters.scala:137:{41,46}]
wire [32:0] _address_ok_T_128 = _address_ok_T_127; // @[Parameters.scala:137:46]
wire _address_ok_T_129 = _address_ok_T_128 == 33'h0; // @[Parameters.scala:137:{46,59}]
wire _address_ok_WIRE_1_5 = _address_ok_T_129; // @[Parameters.scala:612:40]
wire [31:0] _address_ok_T_130 = {io_in_c_bits_address_0[31:18], io_in_c_bits_address_0[17:0] ^ 18'h22000}; // @[Monitor.scala:36:7]
wire [32:0] _address_ok_T_131 = {1'h0, _address_ok_T_130}; // @[Parameters.scala:137:{31,41}]
wire [32:0] _address_ok_T_132 = _address_ok_T_131 & 33'h1FFFFF000; // @[Parameters.scala:137:{41,46}]
wire [32:0] _address_ok_T_133 = _address_ok_T_132; // @[Parameters.scala:137:46]
wire _address_ok_T_134 = _address_ok_T_133 == 33'h0; // @[Parameters.scala:137:{46,59}]
wire _address_ok_WIRE_1_6 = _address_ok_T_134; // @[Parameters.scala:612:40]
wire [31:0] _address_ok_T_135 = {io_in_c_bits_address_0[31:18], io_in_c_bits_address_0[17:0] ^ 18'h23000}; // @[Monitor.scala:36:7]
wire [32:0] _address_ok_T_136 = {1'h0, _address_ok_T_135}; // @[Parameters.scala:137:{31,41}]
wire [32:0] _address_ok_T_137 = _address_ok_T_136 & 33'h1FFFFF000; // @[Parameters.scala:137:{41,46}]
wire [32:0] _address_ok_T_138 = _address_ok_T_137; // @[Parameters.scala:137:46]
wire _address_ok_T_139 = _address_ok_T_138 == 33'h0; // @[Parameters.scala:137:{46,59}]
wire _address_ok_WIRE_1_7 = _address_ok_T_139; // @[Parameters.scala:612:40]
wire [17:0] _GEN_14 = io_in_c_bits_address_0[17:0] ^ 18'h24000; // @[Monitor.scala:36:7]
wire [31:0] _address_ok_T_140 = {io_in_c_bits_address_0[31:18], _GEN_14}; // @[Monitor.scala:36:7]
wire [32:0] _address_ok_T_141 = {1'h0, _address_ok_T_140}; // @[Parameters.scala:137:{31,41}]
wire [32:0] _address_ok_T_142 = _address_ok_T_141 & 33'h1FFFFF000; // @[Parameters.scala:137:{41,46}]
wire [32:0] _address_ok_T_143 = _address_ok_T_142; // @[Parameters.scala:137:46]
wire _address_ok_T_144 = _address_ok_T_143 == 33'h0; // @[Parameters.scala:137:{46,59}]
wire _address_ok_WIRE_1_8 = _address_ok_T_144; // @[Parameters.scala:612:40]
wire [20:0] _GEN_15 = io_in_c_bits_address_0[20:0] ^ 21'h100000; // @[Monitor.scala:36:7]
wire [31:0] _address_ok_T_145 = {io_in_c_bits_address_0[31:21], _GEN_15}; // @[Monitor.scala:36:7]
wire [32:0] _address_ok_T_146 = {1'h0, _address_ok_T_145}; // @[Parameters.scala:137:{31,41}]
wire [32:0] _address_ok_T_147 = _address_ok_T_146 & 33'h1FFFFF000; // @[Parameters.scala:137:{41,46}]
wire [32:0] _address_ok_T_148 = _address_ok_T_147; // @[Parameters.scala:137:46]
wire _address_ok_T_149 = _address_ok_T_148 == 33'h0; // @[Parameters.scala:137:{46,59}]
wire _address_ok_WIRE_1_9 = _address_ok_T_149; // @[Parameters.scala:612:40]
wire [31:0] _address_ok_T_150 = {io_in_c_bits_address_0[31:21], io_in_c_bits_address_0[20:0] ^ 21'h110000}; // @[Monitor.scala:36:7]
wire [32:0] _address_ok_T_151 = {1'h0, _address_ok_T_150}; // @[Parameters.scala:137:{31,41}]
wire [32:0] _address_ok_T_152 = _address_ok_T_151 & 33'h1FFFFF000; // @[Parameters.scala:137:{41,46}]
wire [32:0] _address_ok_T_153 = _address_ok_T_152; // @[Parameters.scala:137:46]
wire _address_ok_T_154 = _address_ok_T_153 == 33'h0; // @[Parameters.scala:137:{46,59}]
wire _address_ok_WIRE_1_10 = _address_ok_T_154; // @[Parameters.scala:612:40]
wire [25:0] _GEN_16 = io_in_c_bits_address_0[25:0] ^ 26'h2000000; // @[Monitor.scala:36:7]
wire [31:0] _address_ok_T_155 = {io_in_c_bits_address_0[31:26], _GEN_16}; // @[Monitor.scala:36:7]
wire [32:0] _address_ok_T_156 = {1'h0, _address_ok_T_155}; // @[Parameters.scala:137:{31,41}]
wire [32:0] _address_ok_T_157 = _address_ok_T_156 & 33'h1FFFF0000; // @[Parameters.scala:137:{41,46}]
wire [32:0] _address_ok_T_158 = _address_ok_T_157; // @[Parameters.scala:137:46]
wire _address_ok_T_159 = _address_ok_T_158 == 33'h0; // @[Parameters.scala:137:{46,59}]
wire _address_ok_WIRE_1_11 = _address_ok_T_159; // @[Parameters.scala:612:40]
wire [25:0] _GEN_17 = io_in_c_bits_address_0[25:0] ^ 26'h2010000; // @[Monitor.scala:36:7]
wire [31:0] _address_ok_T_160 = {io_in_c_bits_address_0[31:26], _GEN_17}; // @[Monitor.scala:36:7]
wire [32:0] _address_ok_T_161 = {1'h0, _address_ok_T_160}; // @[Parameters.scala:137:{31,41}]
wire [32:0] _address_ok_T_162 = _address_ok_T_161 & 33'h1FFFFF000; // @[Parameters.scala:137:{41,46}]
wire [32:0] _address_ok_T_163 = _address_ok_T_162; // @[Parameters.scala:137:46]
wire _address_ok_T_164 = _address_ok_T_163 == 33'h0; // @[Parameters.scala:137:{46,59}]
wire _address_ok_WIRE_1_12 = _address_ok_T_164; // @[Parameters.scala:612:40]
wire [27:0] _GEN_18 = io_in_c_bits_address_0[27:0] ^ 28'h8000000; // @[Monitor.scala:36:7]
wire [31:0] _address_ok_T_165 = {io_in_c_bits_address_0[31:28], _GEN_18}; // @[Monitor.scala:36:7]
wire [32:0] _address_ok_T_166 = {1'h0, _address_ok_T_165}; // @[Parameters.scala:137:{31,41}]
wire [32:0] _address_ok_T_167 = _address_ok_T_166 & 33'h1FFFF0000; // @[Parameters.scala:137:{41,46}]
wire [32:0] _address_ok_T_168 = _address_ok_T_167; // @[Parameters.scala:137:46]
wire _address_ok_T_169 = _address_ok_T_168 == 33'h0; // @[Parameters.scala:137:{46,59}]
wire _address_ok_WIRE_1_13 = _address_ok_T_169; // @[Parameters.scala:612:40]
wire [27:0] _GEN_19 = io_in_c_bits_address_0[27:0] ^ 28'hC000000; // @[Monitor.scala:36:7]
wire [31:0] _address_ok_T_170 = {io_in_c_bits_address_0[31:28], _GEN_19}; // @[Monitor.scala:36:7]
wire [32:0] _address_ok_T_171 = {1'h0, _address_ok_T_170}; // @[Parameters.scala:137:{31,41}]
wire [32:0] _address_ok_T_172 = _address_ok_T_171 & 33'h1FC000000; // @[Parameters.scala:137:{41,46}]
wire [32:0] _address_ok_T_173 = _address_ok_T_172; // @[Parameters.scala:137:46]
wire _address_ok_T_174 = _address_ok_T_173 == 33'h0; // @[Parameters.scala:137:{46,59}]
wire _address_ok_WIRE_1_14 = _address_ok_T_174; // @[Parameters.scala:612:40]
wire [28:0] _GEN_20 = io_in_c_bits_address_0[28:0] ^ 29'h10020000; // @[Monitor.scala:36:7]
wire [31:0] _address_ok_T_175 = {io_in_c_bits_address_0[31:29], _GEN_20}; // @[Monitor.scala:36:7]
wire [32:0] _address_ok_T_176 = {1'h0, _address_ok_T_175}; // @[Parameters.scala:137:{31,41}]
wire [32:0] _address_ok_T_177 = _address_ok_T_176 & 33'h1FFFFF000; // @[Parameters.scala:137:{41,46}]
wire [32:0] _address_ok_T_178 = _address_ok_T_177; // @[Parameters.scala:137:46]
wire _address_ok_T_179 = _address_ok_T_178 == 33'h0; // @[Parameters.scala:137:{46,59}]
wire _address_ok_WIRE_1_15 = _address_ok_T_179; // @[Parameters.scala:612:40]
wire [31:0] _address_ok_T_180 = io_in_c_bits_address_0 ^ 32'h80000000; // @[Monitor.scala:36:7]
wire [32:0] _address_ok_T_181 = {1'h0, _address_ok_T_180}; // @[Parameters.scala:137:{31,41}]
wire [32:0] _address_ok_T_182 = _address_ok_T_181 & 33'h1F0000000; // @[Parameters.scala:137:{41,46}]
wire [32:0] _address_ok_T_183 = _address_ok_T_182; // @[Parameters.scala:137:46]
wire _address_ok_T_184 = _address_ok_T_183 == 33'h0; // @[Parameters.scala:137:{46,59}]
wire _address_ok_WIRE_1_16 = _address_ok_T_184; // @[Parameters.scala:612:40]
wire _address_ok_T_185 = _address_ok_WIRE_1_0 | _address_ok_WIRE_1_1; // @[Parameters.scala:612:40, :636:64]
wire _address_ok_T_186 = _address_ok_T_185 | _address_ok_WIRE_1_2; // @[Parameters.scala:612:40, :636:64]
wire _address_ok_T_187 = _address_ok_T_186 | _address_ok_WIRE_1_3; // @[Parameters.scala:612:40, :636:64]
wire _address_ok_T_188 = _address_ok_T_187 | _address_ok_WIRE_1_4; // @[Parameters.scala:612:40, :636:64]
wire _address_ok_T_189 = _address_ok_T_188 | _address_ok_WIRE_1_5; // @[Parameters.scala:612:40, :636:64]
wire _address_ok_T_190 = _address_ok_T_189 | _address_ok_WIRE_1_6; // @[Parameters.scala:612:40, :636:64]
wire _address_ok_T_191 = _address_ok_T_190 | _address_ok_WIRE_1_7; // @[Parameters.scala:612:40, :636:64]
wire _address_ok_T_192 = _address_ok_T_191 | _address_ok_WIRE_1_8; // @[Parameters.scala:612:40, :636:64]
wire _address_ok_T_193 = _address_ok_T_192 | _address_ok_WIRE_1_9; // @[Parameters.scala:612:40, :636:64]
wire _address_ok_T_194 = _address_ok_T_193 | _address_ok_WIRE_1_10; // @[Parameters.scala:612:40, :636:64]
wire _address_ok_T_195 = _address_ok_T_194 | _address_ok_WIRE_1_11; // @[Parameters.scala:612:40, :636:64]
wire _address_ok_T_196 = _address_ok_T_195 | _address_ok_WIRE_1_12; // @[Parameters.scala:612:40, :636:64]
wire _address_ok_T_197 = _address_ok_T_196 | _address_ok_WIRE_1_13; // @[Parameters.scala:612:40, :636:64]
wire _address_ok_T_198 = _address_ok_T_197 | _address_ok_WIRE_1_14; // @[Parameters.scala:612:40, :636:64]
wire _address_ok_T_199 = _address_ok_T_198 | _address_ok_WIRE_1_15; // @[Parameters.scala:612:40, :636:64]
wire address_ok_1 = _address_ok_T_199 | _address_ok_WIRE_1_16; // @[Parameters.scala:612:40, :636:64]
wire _T_2718 = io_in_a_ready_0 & io_in_a_valid_0; // @[Decoupled.scala:51:35]
wire _a_first_T; // @[Decoupled.scala:51:35]
assign _a_first_T = _T_2718; // @[Decoupled.scala:51:35]
wire _a_first_T_1; // @[Decoupled.scala:51:35]
assign _a_first_T_1 = _T_2718; // @[Decoupled.scala:51:35]
wire [11:0] _a_first_beats1_decode_T_1 = _a_first_beats1_decode_T[11:0]; // @[package.scala:243:{71,76}]
wire [11:0] _a_first_beats1_decode_T_2 = ~_a_first_beats1_decode_T_1; // @[package.scala:243:{46,76}]
wire [8:0] a_first_beats1_decode = _a_first_beats1_decode_T_2[11:3]; // @[package.scala:243:46]
wire _a_first_beats1_opdata_T = io_in_a_bits_opcode_0[2]; // @[Monitor.scala:36:7]
wire _a_first_beats1_opdata_T_1 = io_in_a_bits_opcode_0[2]; // @[Monitor.scala:36:7]
wire a_first_beats1_opdata = ~_a_first_beats1_opdata_T; // @[Edges.scala:92:{28,37}]
wire [8:0] a_first_beats1 = a_first_beats1_opdata ? a_first_beats1_decode : 9'h0; // @[Edges.scala:92:28, :220:59, :221:14]
reg [8:0] a_first_counter; // @[Edges.scala:229:27]
wire [9:0] _a_first_counter1_T = {1'h0, a_first_counter} - 10'h1; // @[Edges.scala:229:27, :230:28]
wire [8:0] a_first_counter1 = _a_first_counter1_T[8:0]; // @[Edges.scala:230:28]
wire a_first = a_first_counter == 9'h0; // @[Edges.scala:229:27, :231:25]
wire _a_first_last_T = a_first_counter == 9'h1; // @[Edges.scala:229:27, :232:25]
wire _a_first_last_T_1 = a_first_beats1 == 9'h0; // @[Edges.scala:221:14, :232:43]
wire a_first_last = _a_first_last_T | _a_first_last_T_1; // @[Edges.scala:232:{25,33,43}]
wire a_first_done = a_first_last & _a_first_T; // @[Decoupled.scala:51:35]
wire [8:0] _a_first_count_T = ~a_first_counter1; // @[Edges.scala:230:28, :234:27]
wire [8:0] a_first_count = a_first_beats1 & _a_first_count_T; // @[Edges.scala:221:14, :234:{25,27}]
wire [8:0] _a_first_counter_T = a_first ? a_first_beats1 : a_first_counter1; // @[Edges.scala:221:14, :230:28, :231:25, :236:21]
reg [2:0] opcode; // @[Monitor.scala:387:22]
reg [2:0] param; // @[Monitor.scala:388:22]
reg [3:0] size; // @[Monitor.scala:389:22]
reg [1:0] source; // @[Monitor.scala:390:22]
reg [31:0] address; // @[Monitor.scala:391:22]
wire _T_2792 = io_in_d_ready_0 & io_in_d_valid_0; // @[Decoupled.scala:51:35]
wire _d_first_T; // @[Decoupled.scala:51:35]
assign _d_first_T = _T_2792; // @[Decoupled.scala:51:35]
wire _d_first_T_1; // @[Decoupled.scala:51:35]
assign _d_first_T_1 = _T_2792; // @[Decoupled.scala:51:35]
wire _d_first_T_2; // @[Decoupled.scala:51:35]
assign _d_first_T_2 = _T_2792; // @[Decoupled.scala:51:35]
wire _d_first_T_3; // @[Decoupled.scala:51:35]
assign _d_first_T_3 = _T_2792; // @[Decoupled.scala:51:35]
wire [26:0] _GEN_21 = 27'hFFF << io_in_d_bits_size_0; // @[package.scala:243:71]
wire [26:0] _d_first_beats1_decode_T; // @[package.scala:243:71]
assign _d_first_beats1_decode_T = _GEN_21; // @[package.scala:243:71]
wire [26:0] _d_first_beats1_decode_T_3; // @[package.scala:243:71]
assign _d_first_beats1_decode_T_3 = _GEN_21; // @[package.scala:243:71]
wire [26:0] _d_first_beats1_decode_T_6; // @[package.scala:243:71]
assign _d_first_beats1_decode_T_6 = _GEN_21; // @[package.scala:243:71]
wire [26:0] _d_first_beats1_decode_T_9; // @[package.scala:243:71]
assign _d_first_beats1_decode_T_9 = _GEN_21; // @[package.scala:243:71]
wire [11:0] _d_first_beats1_decode_T_1 = _d_first_beats1_decode_T[11:0]; // @[package.scala:243:{71,76}]
wire [11:0] _d_first_beats1_decode_T_2 = ~_d_first_beats1_decode_T_1; // @[package.scala:243:{46,76}]
wire [8:0] d_first_beats1_decode = _d_first_beats1_decode_T_2[11:3]; // @[package.scala:243:46]
wire d_first_beats1_opdata = io_in_d_bits_opcode_0[0]; // @[Monitor.scala:36:7]
wire d_first_beats1_opdata_1 = io_in_d_bits_opcode_0[0]; // @[Monitor.scala:36:7]
wire d_first_beats1_opdata_2 = io_in_d_bits_opcode_0[0]; // @[Monitor.scala:36:7]
wire d_first_beats1_opdata_3 = io_in_d_bits_opcode_0[0]; // @[Monitor.scala:36:7]
wire [8:0] d_first_beats1 = d_first_beats1_opdata ? d_first_beats1_decode : 9'h0; // @[Edges.scala:106:36, :220:59, :221:14]
reg [8:0] d_first_counter; // @[Edges.scala:229:27]
wire [9:0] _d_first_counter1_T = {1'h0, d_first_counter} - 10'h1; // @[Edges.scala:229:27, :230:28]
wire [8:0] d_first_counter1 = _d_first_counter1_T[8:0]; // @[Edges.scala:230:28]
wire d_first = d_first_counter == 9'h0; // @[Edges.scala:229:27, :231:25]
wire _d_first_last_T = d_first_counter == 9'h1; // @[Edges.scala:229:27, :232:25]
wire _d_first_last_T_1 = d_first_beats1 == 9'h0; // @[Edges.scala:221:14, :232:43]
wire d_first_last = _d_first_last_T | _d_first_last_T_1; // @[Edges.scala:232:{25,33,43}]
wire d_first_done = d_first_last & _d_first_T; // @[Decoupled.scala:51:35]
wire [8:0] _d_first_count_T = ~d_first_counter1; // @[Edges.scala:230:28, :234:27]
wire [8:0] d_first_count = d_first_beats1 & _d_first_count_T; // @[Edges.scala:221:14, :234:{25,27}]
wire [8:0] _d_first_counter_T = d_first ? d_first_beats1 : d_first_counter1; // @[Edges.scala:221:14, :230:28, :231:25, :236:21]
reg [2:0] opcode_1; // @[Monitor.scala:538:22]
reg [1:0] param_1; // @[Monitor.scala:539:22]
reg [3:0] size_1; // @[Monitor.scala:540:22]
reg [1:0] source_1; // @[Monitor.scala:541:22]
reg [2:0] sink; // @[Monitor.scala:542:22]
reg denied; // @[Monitor.scala:543:22]
wire _b_first_T = io_in_b_ready_0 & io_in_b_valid_0; // @[Decoupled.scala:51:35]
wire b_first_done = _b_first_T; // @[Decoupled.scala:51:35]
reg [8:0] b_first_counter; // @[Edges.scala:229:27]
wire [9:0] _b_first_counter1_T = {1'h0, b_first_counter} - 10'h1; // @[Edges.scala:229:27, :230:28]
wire [8:0] b_first_counter1 = _b_first_counter1_T[8:0]; // @[Edges.scala:230:28]
wire b_first = b_first_counter == 9'h0; // @[Edges.scala:229:27, :231:25]
wire _b_first_last_T = b_first_counter == 9'h1; // @[Edges.scala:229:27, :232:25]
wire [8:0] _b_first_count_T = ~b_first_counter1; // @[Edges.scala:230:28, :234:27]
wire [8:0] _b_first_counter_T = b_first ? 9'h0 : b_first_counter1; // @[Edges.scala:230:28, :231:25, :236:21]
reg [1:0] param_2; // @[Monitor.scala:411:22]
reg [1:0] source_2; // @[Monitor.scala:413:22]
reg [31:0] address_1; // @[Monitor.scala:414:22]
wire _T_2789 = io_in_c_ready_0 & io_in_c_valid_0; // @[Decoupled.scala:51:35]
wire _c_first_T; // @[Decoupled.scala:51:35]
assign _c_first_T = _T_2789; // @[Decoupled.scala:51:35]
wire _c_first_T_1; // @[Decoupled.scala:51:35]
assign _c_first_T_1 = _T_2789; // @[Decoupled.scala:51:35]
wire [11:0] _c_first_beats1_decode_T_1 = _c_first_beats1_decode_T[11:0]; // @[package.scala:243:{71,76}]
wire [11:0] _c_first_beats1_decode_T_2 = ~_c_first_beats1_decode_T_1; // @[package.scala:243:{46,76}]
wire [8:0] c_first_beats1_decode = _c_first_beats1_decode_T_2[11:3]; // @[package.scala:243:46]
wire c_first_beats1_opdata = io_in_c_bits_opcode_0[0]; // @[Monitor.scala:36:7]
wire c_first_beats1_opdata_1 = io_in_c_bits_opcode_0[0]; // @[Monitor.scala:36:7]
wire [8:0] c_first_beats1 = c_first_beats1_opdata ? c_first_beats1_decode : 9'h0; // @[Edges.scala:102:36, :220:59, :221:14]
reg [8:0] c_first_counter; // @[Edges.scala:229:27]
wire [9:0] _c_first_counter1_T = {1'h0, c_first_counter} - 10'h1; // @[Edges.scala:229:27, :230:28]
wire [8:0] c_first_counter1 = _c_first_counter1_T[8:0]; // @[Edges.scala:230:28]
wire c_first = c_first_counter == 9'h0; // @[Edges.scala:229:27, :231:25]
wire _c_first_last_T = c_first_counter == 9'h1; // @[Edges.scala:229:27, :232:25]
wire _c_first_last_T_1 = c_first_beats1 == 9'h0; // @[Edges.scala:221:14, :232:43]
wire c_first_last = _c_first_last_T | _c_first_last_T_1; // @[Edges.scala:232:{25,33,43}]
wire c_first_done = c_first_last & _c_first_T; // @[Decoupled.scala:51:35]
wire [8:0] _c_first_count_T = ~c_first_counter1; // @[Edges.scala:230:28, :234:27]
wire [8:0] c_first_count = c_first_beats1 & _c_first_count_T; // @[Edges.scala:221:14, :234:{25,27}]
wire [8:0] _c_first_counter_T = c_first ? c_first_beats1 : c_first_counter1; // @[Edges.scala:221:14, :230:28, :231:25, :236:21]
reg [2:0] opcode_3; // @[Monitor.scala:515:22]
reg [2:0] param_3; // @[Monitor.scala:516:22]
reg [3:0] size_3; // @[Monitor.scala:517:22]
reg [1:0] source_3; // @[Monitor.scala:518:22]
reg [31:0] address_2; // @[Monitor.scala:519:22]
reg [2:0] inflight; // @[Monitor.scala:614:27]
reg [11:0] inflight_opcodes; // @[Monitor.scala:616:35]
reg [23:0] inflight_sizes; // @[Monitor.scala:618:33]
wire [11:0] _a_first_beats1_decode_T_4 = _a_first_beats1_decode_T_3[11:0]; // @[package.scala:243:{71,76}]
wire [11:0] _a_first_beats1_decode_T_5 = ~_a_first_beats1_decode_T_4; // @[package.scala:243:{46,76}]
wire [8:0] a_first_beats1_decode_1 = _a_first_beats1_decode_T_5[11:3]; // @[package.scala:243:46]
wire a_first_beats1_opdata_1 = ~_a_first_beats1_opdata_T_1; // @[Edges.scala:92:{28,37}]
wire [8:0] a_first_beats1_1 = a_first_beats1_opdata_1 ? a_first_beats1_decode_1 : 9'h0; // @[Edges.scala:92:28, :220:59, :221:14]
reg [8:0] a_first_counter_1; // @[Edges.scala:229:27]
wire [9:0] _a_first_counter1_T_1 = {1'h0, a_first_counter_1} - 10'h1; // @[Edges.scala:229:27, :230:28]
wire [8:0] a_first_counter1_1 = _a_first_counter1_T_1[8:0]; // @[Edges.scala:230:28]
wire a_first_1 = a_first_counter_1 == 9'h0; // @[Edges.scala:229:27, :231:25]
wire _a_first_last_T_2 = a_first_counter_1 == 9'h1; // @[Edges.scala:229:27, :232:25]
wire _a_first_last_T_3 = a_first_beats1_1 == 9'h0; // @[Edges.scala:221:14, :232:43]
wire a_first_last_1 = _a_first_last_T_2 | _a_first_last_T_3; // @[Edges.scala:232:{25,33,43}]
wire a_first_done_1 = a_first_last_1 & _a_first_T_1; // @[Decoupled.scala:51:35]
wire [8:0] _a_first_count_T_1 = ~a_first_counter1_1; // @[Edges.scala:230:28, :234:27]
wire [8:0] a_first_count_1 = a_first_beats1_1 & _a_first_count_T_1; // @[Edges.scala:221:14, :234:{25,27}]
wire [8:0] _a_first_counter_T_1 = a_first_1 ? a_first_beats1_1 : a_first_counter1_1; // @[Edges.scala:221:14, :230:28, :231:25, :236:21]
wire [11:0] _d_first_beats1_decode_T_4 = _d_first_beats1_decode_T_3[11:0]; // @[package.scala:243:{71,76}]
wire [11:0] _d_first_beats1_decode_T_5 = ~_d_first_beats1_decode_T_4; // @[package.scala:243:{46,76}]
wire [8:0] d_first_beats1_decode_1 = _d_first_beats1_decode_T_5[11:3]; // @[package.scala:243:46]
wire [8:0] d_first_beats1_1 = d_first_beats1_opdata_1 ? d_first_beats1_decode_1 : 9'h0; // @[Edges.scala:106:36, :220:59, :221:14]
reg [8:0] d_first_counter_1; // @[Edges.scala:229:27]
wire [9:0] _d_first_counter1_T_1 = {1'h0, d_first_counter_1} - 10'h1; // @[Edges.scala:229:27, :230:28]
wire [8:0] d_first_counter1_1 = _d_first_counter1_T_1[8:0]; // @[Edges.scala:230:28]
wire d_first_1 = d_first_counter_1 == 9'h0; // @[Edges.scala:229:27, :231:25]
wire _d_first_last_T_2 = d_first_counter_1 == 9'h1; // @[Edges.scala:229:27, :232:25]
wire _d_first_last_T_3 = d_first_beats1_1 == 9'h0; // @[Edges.scala:221:14, :232:43]
wire d_first_last_1 = _d_first_last_T_2 | _d_first_last_T_3; // @[Edges.scala:232:{25,33,43}]
wire d_first_done_1 = d_first_last_1 & _d_first_T_1; // @[Decoupled.scala:51:35]
wire [8:0] _d_first_count_T_1 = ~d_first_counter1_1; // @[Edges.scala:230:28, :234:27]
wire [8:0] d_first_count_1 = d_first_beats1_1 & _d_first_count_T_1; // @[Edges.scala:221:14, :234:{25,27}]
wire [8:0] _d_first_counter_T_1 = d_first_1 ? d_first_beats1_1 : d_first_counter1_1; // @[Edges.scala:221:14, :230:28, :231:25, :236:21]
wire [2:0] a_set; // @[Monitor.scala:626:34]
wire [2:0] a_set_wo_ready; // @[Monitor.scala:627:34]
wire [11:0] a_opcodes_set; // @[Monitor.scala:630:33]
wire [23:0] a_sizes_set; // @[Monitor.scala:632:31]
wire [2:0] a_opcode_lookup; // @[Monitor.scala:635:35]
wire [4:0] _GEN_22 = {1'h0, io_in_d_bits_source_0, 2'h0}; // @[Monitor.scala:36:7, :637:69]
wire [4:0] _a_opcode_lookup_T; // @[Monitor.scala:637:69]
assign _a_opcode_lookup_T = _GEN_22; // @[Monitor.scala:637:69]
wire [4:0] _d_opcodes_clr_T_4; // @[Monitor.scala:680:101]
assign _d_opcodes_clr_T_4 = _GEN_22; // @[Monitor.scala:637:69, :680:101]
wire [4:0] _c_opcode_lookup_T; // @[Monitor.scala:749:69]
assign _c_opcode_lookup_T = _GEN_22; // @[Monitor.scala:637:69, :749:69]
wire [4:0] _d_opcodes_clr_T_10; // @[Monitor.scala:790:101]
assign _d_opcodes_clr_T_10 = _GEN_22; // @[Monitor.scala:637:69, :790:101]
wire [11:0] _a_opcode_lookup_T_1 = inflight_opcodes >> _a_opcode_lookup_T; // @[Monitor.scala:616:35, :637:{44,69}]
wire [15:0] _a_opcode_lookup_T_6 = {4'h0, _a_opcode_lookup_T_1 & 12'hF}; // @[Monitor.scala:637:{44,97}]
wire [15:0] _a_opcode_lookup_T_7 = {1'h0, _a_opcode_lookup_T_6[15:1]}; // @[Monitor.scala:637:{97,152}]
assign a_opcode_lookup = _a_opcode_lookup_T_7[2:0]; // @[Monitor.scala:635:35, :637:{21,152}]
wire [7:0] a_size_lookup; // @[Monitor.scala:639:33]
wire [4:0] _GEN_23 = {io_in_d_bits_source_0, 3'h0}; // @[Monitor.scala:36:7, :641:65]
wire [4:0] _a_size_lookup_T; // @[Monitor.scala:641:65]
assign _a_size_lookup_T = _GEN_23; // @[Monitor.scala:641:65]
wire [4:0] _d_sizes_clr_T_4; // @[Monitor.scala:681:99]
assign _d_sizes_clr_T_4 = _GEN_23; // @[Monitor.scala:641:65, :681:99]
wire [4:0] _c_size_lookup_T; // @[Monitor.scala:750:67]
assign _c_size_lookup_T = _GEN_23; // @[Monitor.scala:641:65, :750:67]
wire [4:0] _d_sizes_clr_T_10; // @[Monitor.scala:791:99]
assign _d_sizes_clr_T_10 = _GEN_23; // @[Monitor.scala:641:65, :791:99]
wire [23:0] _a_size_lookup_T_1 = inflight_sizes >> _a_size_lookup_T; // @[Monitor.scala:618:33, :641:{40,65}]
wire [23:0] _a_size_lookup_T_6 = {16'h0, _a_size_lookup_T_1[7:0]}; // @[Monitor.scala:641:{40,91}]
wire [23:0] _a_size_lookup_T_7 = {1'h0, _a_size_lookup_T_6[23:1]}; // @[Monitor.scala:641:{91,144}]
assign a_size_lookup = _a_size_lookup_T_7[7:0]; // @[Monitor.scala:639:33, :641:{19,144}]
wire [3:0] a_opcodes_set_interm; // @[Monitor.scala:646:40]
wire [4:0] a_sizes_set_interm; // @[Monitor.scala:648:38]
wire _same_cycle_resp_T = io_in_a_valid_0 & a_first_1; // @[Monitor.scala:36:7, :651:26, :684:44]
wire [3:0] _GEN_24 = 4'h1 << io_in_a_bits_source_0; // @[OneHot.scala:58:35]
wire [3:0] _a_set_wo_ready_T; // @[OneHot.scala:58:35]
assign _a_set_wo_ready_T = _GEN_24; // @[OneHot.scala:58:35]
wire [3:0] _a_set_T; // @[OneHot.scala:58:35]
assign _a_set_T = _GEN_24; // @[OneHot.scala:58:35]
assign a_set_wo_ready = _same_cycle_resp_T ? _a_set_wo_ready_T[2:0] : 3'h0; // @[OneHot.scala:58:35]
wire _T_2644 = _T_2718 & a_first_1; // @[Decoupled.scala:51:35]
assign a_set = _T_2644 ? _a_set_T[2:0] : 3'h0; // @[OneHot.scala:58:35]
wire [3:0] _a_opcodes_set_interm_T = {io_in_a_bits_opcode_0, 1'h0}; // @[Monitor.scala:36:7, :657:53]
wire [3:0] _a_opcodes_set_interm_T_1 = {_a_opcodes_set_interm_T[3:1], 1'h1}; // @[Monitor.scala:657:{53,61}]
assign a_opcodes_set_interm = _T_2644 ? _a_opcodes_set_interm_T_1 : 4'h0; // @[Monitor.scala:646:40, :655:{25,70}, :657:{28,61}]
wire [4:0] _a_sizes_set_interm_T = {io_in_a_bits_size_0, 1'h0}; // @[Monitor.scala:36:7, :658:51]
wire [4:0] _a_sizes_set_interm_T_1 = {_a_sizes_set_interm_T[4:1], 1'h1}; // @[Monitor.scala:658:{51,59}]
assign a_sizes_set_interm = _T_2644 ? _a_sizes_set_interm_T_1 : 5'h0; // @[Monitor.scala:648:38, :655:{25,70}, :658:{28,59}]
wire [4:0] _a_opcodes_set_T = {1'h0, io_in_a_bits_source_0, 2'h0}; // @[Monitor.scala:36:7, :659:79]
wire [34:0] _a_opcodes_set_T_1 = {31'h0, a_opcodes_set_interm} << _a_opcodes_set_T; // @[Monitor.scala:646:40, :659:{54,79}]
assign a_opcodes_set = _T_2644 ? _a_opcodes_set_T_1[11:0] : 12'h0; // @[Monitor.scala:630:33, :655:{25,70}, :659:{28,54}]
wire [4:0] _a_sizes_set_T = {io_in_a_bits_source_0, 3'h0}; // @[Monitor.scala:36:7, :660:77]
wire [35:0] _a_sizes_set_T_1 = {31'h0, a_sizes_set_interm} << _a_sizes_set_T; // @[Monitor.scala:648:38, :659:54, :660:{52,77}]
assign a_sizes_set = _T_2644 ? _a_sizes_set_T_1[23:0] : 24'h0; // @[Monitor.scala:632:31, :655:{25,70}, :660:{28,52}]
wire [2:0] d_clr; // @[Monitor.scala:664:34]
wire [2:0] d_clr_wo_ready; // @[Monitor.scala:665:34]
wire [11:0] d_opcodes_clr; // @[Monitor.scala:668:33]
wire [23:0] d_sizes_clr; // @[Monitor.scala:670:31]
wire _GEN_25 = io_in_d_bits_opcode_0 == 3'h6; // @[Monitor.scala:36:7, :673:46]
wire d_release_ack; // @[Monitor.scala:673:46]
assign d_release_ack = _GEN_25; // @[Monitor.scala:673:46]
wire d_release_ack_1; // @[Monitor.scala:783:46]
assign d_release_ack_1 = _GEN_25; // @[Monitor.scala:673:46, :783:46]
wire _T_2690 = io_in_d_valid_0 & d_first_1; // @[Monitor.scala:36:7, :674:26]
wire [3:0] _GEN_26 = 4'h1 << io_in_d_bits_source_0; // @[OneHot.scala:58:35]
wire [3:0] _d_clr_wo_ready_T; // @[OneHot.scala:58:35]
assign _d_clr_wo_ready_T = _GEN_26; // @[OneHot.scala:58:35]
wire [3:0] _d_clr_T; // @[OneHot.scala:58:35]
assign _d_clr_T = _GEN_26; // @[OneHot.scala:58:35]
wire [3:0] _d_clr_wo_ready_T_1; // @[OneHot.scala:58:35]
assign _d_clr_wo_ready_T_1 = _GEN_26; // @[OneHot.scala:58:35]
wire [3:0] _d_clr_T_1; // @[OneHot.scala:58:35]
assign _d_clr_T_1 = _GEN_26; // @[OneHot.scala:58:35]
assign d_clr_wo_ready = _T_2690 & ~d_release_ack ? _d_clr_wo_ready_T[2:0] : 3'h0; // @[OneHot.scala:58:35]
wire _T_2659 = _T_2792 & d_first_1 & ~d_release_ack; // @[Decoupled.scala:51:35]
assign d_clr = _T_2659 ? _d_clr_T[2:0] : 3'h0; // @[OneHot.scala:58:35]
wire [46:0] _d_opcodes_clr_T_5 = 47'hF << _d_opcodes_clr_T_4; // @[Monitor.scala:680:{76,101}]
assign d_opcodes_clr = _T_2659 ? _d_opcodes_clr_T_5[11:0] : 12'h0; // @[Monitor.scala:668:33, :678:{25,70,89}, :680:{21,76}]
wire [46:0] _d_sizes_clr_T_5 = 47'hFF << _d_sizes_clr_T_4; // @[Monitor.scala:681:{74,99}]
assign d_sizes_clr = _T_2659 ? _d_sizes_clr_T_5[23:0] : 24'h0; // @[Monitor.scala:670:31, :678:{25,70,89}, :681:{21,74}]
wire _same_cycle_resp_T_1 = _same_cycle_resp_T; // @[Monitor.scala:684:{44,55}]
wire _same_cycle_resp_T_2 = io_in_a_bits_source_0 == io_in_d_bits_source_0; // @[Monitor.scala:36:7, :684:113]
wire same_cycle_resp = _same_cycle_resp_T_1 & _same_cycle_resp_T_2; // @[Monitor.scala:684:{55,88,113}]
wire [2:0] _inflight_T = inflight | a_set; // @[Monitor.scala:614:27, :626:34, :705:27]
wire [2:0] _inflight_T_1 = ~d_clr; // @[Monitor.scala:664:34, :705:38]
wire [2:0] _inflight_T_2 = _inflight_T & _inflight_T_1; // @[Monitor.scala:705:{27,36,38}]
wire [11:0] _inflight_opcodes_T = inflight_opcodes | a_opcodes_set; // @[Monitor.scala:616:35, :630:33, :706:43]
wire [11:0] _inflight_opcodes_T_1 = ~d_opcodes_clr; // @[Monitor.scala:668:33, :706:62]
wire [11:0] _inflight_opcodes_T_2 = _inflight_opcodes_T & _inflight_opcodes_T_1; // @[Monitor.scala:706:{43,60,62}]
wire [23:0] _inflight_sizes_T = inflight_sizes | a_sizes_set; // @[Monitor.scala:618:33, :632:31, :707:39]
wire [23:0] _inflight_sizes_T_1 = ~d_sizes_clr; // @[Monitor.scala:670:31, :707:56]
wire [23:0] _inflight_sizes_T_2 = _inflight_sizes_T & _inflight_sizes_T_1; // @[Monitor.scala:707:{39,54,56}]
reg [31:0] watchdog; // @[Monitor.scala:709:27]
wire [32:0] _watchdog_T = {1'h0, watchdog} + 33'h1; // @[Monitor.scala:709:27, :714:26]
wire [31:0] _watchdog_T_1 = _watchdog_T[31:0]; // @[Monitor.scala:714:26]
reg [2:0] inflight_1; // @[Monitor.scala:726:35]
reg [11:0] inflight_opcodes_1; // @[Monitor.scala:727:35]
reg [23:0] inflight_sizes_1; // @[Monitor.scala:728:35]
wire [11:0] _c_first_beats1_decode_T_4 = _c_first_beats1_decode_T_3[11:0]; // @[package.scala:243:{71,76}]
wire [11:0] _c_first_beats1_decode_T_5 = ~_c_first_beats1_decode_T_4; // @[package.scala:243:{46,76}]
wire [8:0] c_first_beats1_decode_1 = _c_first_beats1_decode_T_5[11:3]; // @[package.scala:243:46]
wire [8:0] c_first_beats1_1 = c_first_beats1_opdata_1 ? c_first_beats1_decode_1 : 9'h0; // @[Edges.scala:102:36, :220:59, :221:14]
reg [8:0] c_first_counter_1; // @[Edges.scala:229:27]
wire [9:0] _c_first_counter1_T_1 = {1'h0, c_first_counter_1} - 10'h1; // @[Edges.scala:229:27, :230:28]
wire [8:0] c_first_counter1_1 = _c_first_counter1_T_1[8:0]; // @[Edges.scala:230:28]
wire c_first_1 = c_first_counter_1 == 9'h0; // @[Edges.scala:229:27, :231:25]
wire _c_first_last_T_2 = c_first_counter_1 == 9'h1; // @[Edges.scala:229:27, :232:25]
wire _c_first_last_T_3 = c_first_beats1_1 == 9'h0; // @[Edges.scala:221:14, :232:43]
wire c_first_last_1 = _c_first_last_T_2 | _c_first_last_T_3; // @[Edges.scala:232:{25,33,43}]
wire c_first_done_1 = c_first_last_1 & _c_first_T_1; // @[Decoupled.scala:51:35]
wire [8:0] _c_first_count_T_1 = ~c_first_counter1_1; // @[Edges.scala:230:28, :234:27]
wire [8:0] c_first_count_1 = c_first_beats1_1 & _c_first_count_T_1; // @[Edges.scala:221:14, :234:{25,27}]
wire [8:0] _c_first_counter_T_1 = c_first_1 ? c_first_beats1_1 : c_first_counter1_1; // @[Edges.scala:221:14, :230:28, :231:25, :236:21]
wire [11:0] _d_first_beats1_decode_T_7 = _d_first_beats1_decode_T_6[11:0]; // @[package.scala:243:{71,76}]
wire [11:0] _d_first_beats1_decode_T_8 = ~_d_first_beats1_decode_T_7; // @[package.scala:243:{46,76}]
wire [8:0] d_first_beats1_decode_2 = _d_first_beats1_decode_T_8[11:3]; // @[package.scala:243:46]
wire [8:0] d_first_beats1_2 = d_first_beats1_opdata_2 ? d_first_beats1_decode_2 : 9'h0; // @[Edges.scala:106:36, :220:59, :221:14]
reg [8:0] d_first_counter_2; // @[Edges.scala:229:27]
wire [9:0] _d_first_counter1_T_2 = {1'h0, d_first_counter_2} - 10'h1; // @[Edges.scala:229:27, :230:28]
wire [8:0] d_first_counter1_2 = _d_first_counter1_T_2[8:0]; // @[Edges.scala:230:28]
wire d_first_2 = d_first_counter_2 == 9'h0; // @[Edges.scala:229:27, :231:25]
wire _d_first_last_T_4 = d_first_counter_2 == 9'h1; // @[Edges.scala:229:27, :232:25]
wire _d_first_last_T_5 = d_first_beats1_2 == 9'h0; // @[Edges.scala:221:14, :232:43]
wire d_first_last_2 = _d_first_last_T_4 | _d_first_last_T_5; // @[Edges.scala:232:{25,33,43}]
wire d_first_done_2 = d_first_last_2 & _d_first_T_2; // @[Decoupled.scala:51:35]
wire [8:0] _d_first_count_T_2 = ~d_first_counter1_2; // @[Edges.scala:230:28, :234:27]
wire [8:0] d_first_count_2 = d_first_beats1_2 & _d_first_count_T_2; // @[Edges.scala:221:14, :234:{25,27}]
wire [8:0] _d_first_counter_T_2 = d_first_2 ? d_first_beats1_2 : d_first_counter1_2; // @[Edges.scala:221:14, :230:28, :231:25, :236:21]
wire [2:0] c_set; // @[Monitor.scala:738:34]
wire [2:0] c_set_wo_ready; // @[Monitor.scala:739:34]
wire [11:0] c_opcodes_set; // @[Monitor.scala:740:34]
wire [23:0] c_sizes_set; // @[Monitor.scala:741:34]
wire [3:0] c_opcode_lookup; // @[Monitor.scala:747:35]
wire [7:0] c_size_lookup; // @[Monitor.scala:748:35]
wire [11:0] _c_opcode_lookup_T_1 = inflight_opcodes_1 >> _c_opcode_lookup_T; // @[Monitor.scala:727:35, :749:{44,69}]
wire [15:0] _c_opcode_lookup_T_6 = {4'h0, _c_opcode_lookup_T_1 & 12'hF}; // @[Monitor.scala:749:{44,97}]
wire [15:0] _c_opcode_lookup_T_7 = {1'h0, _c_opcode_lookup_T_6[15:1]}; // @[Monitor.scala:749:{97,152}]
assign c_opcode_lookup = _c_opcode_lookup_T_7[3:0]; // @[Monitor.scala:747:35, :749:{21,152}]
wire [23:0] _c_size_lookup_T_1 = inflight_sizes_1 >> _c_size_lookup_T; // @[Monitor.scala:728:35, :750:{42,67}]
wire [23:0] _c_size_lookup_T_6 = {16'h0, _c_size_lookup_T_1[7:0]}; // @[Monitor.scala:750:{42,93}]
wire [23:0] _c_size_lookup_T_7 = {1'h0, _c_size_lookup_T_6[23:1]}; // @[Monitor.scala:750:{93,146}]
assign c_size_lookup = _c_size_lookup_T_7[7:0]; // @[Monitor.scala:748:35, :750:{21,146}]
wire [3:0] c_opcodes_set_interm; // @[Monitor.scala:754:40]
wire [4:0] c_sizes_set_interm; // @[Monitor.scala:755:40]
wire _same_cycle_resp_T_3 = io_in_c_valid_0 & c_first_1; // @[Monitor.scala:36:7, :759:26, :795:44]
wire _same_cycle_resp_T_4 = io_in_c_bits_opcode_0[2]; // @[Monitor.scala:36:7]
wire _same_cycle_resp_T_5 = io_in_c_bits_opcode_0[1]; // @[Monitor.scala:36:7]
wire [3:0] _GEN_27 = 4'h1 << io_in_c_bits_source_0; // @[OneHot.scala:58:35]
wire [3:0] _c_set_wo_ready_T; // @[OneHot.scala:58:35]
assign _c_set_wo_ready_T = _GEN_27; // @[OneHot.scala:58:35]
wire [3:0] _c_set_T; // @[OneHot.scala:58:35]
assign _c_set_T = _GEN_27; // @[OneHot.scala:58:35]
assign c_set_wo_ready = _same_cycle_resp_T_3 & _same_cycle_resp_T_4 & _same_cycle_resp_T_5 ? _c_set_wo_ready_T[2:0] : 3'h0; // @[OneHot.scala:58:35]
wire _T_2731 = _T_2789 & c_first_1 & _same_cycle_resp_T_4 & _same_cycle_resp_T_5; // @[Decoupled.scala:51:35]
assign c_set = _T_2731 ? _c_set_T[2:0] : 3'h0; // @[OneHot.scala:58:35]
wire [3:0] _c_opcodes_set_interm_T = {io_in_c_bits_opcode_0, 1'h0}; // @[Monitor.scala:36:7, :765:53]
wire [3:0] _c_opcodes_set_interm_T_1 = {_c_opcodes_set_interm_T[3:1], 1'h1}; // @[Monitor.scala:765:{53,61}]
assign c_opcodes_set_interm = _T_2731 ? _c_opcodes_set_interm_T_1 : 4'h0; // @[Monitor.scala:754:40, :763:{25,36,70}, :765:{28,61}]
wire [4:0] _c_sizes_set_interm_T = {io_in_c_bits_size_0, 1'h0}; // @[Monitor.scala:36:7, :766:51]
wire [4:0] _c_sizes_set_interm_T_1 = {_c_sizes_set_interm_T[4:1], 1'h1}; // @[Monitor.scala:766:{51,59}]
assign c_sizes_set_interm = _T_2731 ? _c_sizes_set_interm_T_1 : 5'h0; // @[Monitor.scala:755:40, :763:{25,36,70}, :766:{28,59}]
wire [4:0] _c_opcodes_set_T = {1'h0, io_in_c_bits_source_0, 2'h0}; // @[Monitor.scala:36:7, :767:79]
wire [34:0] _c_opcodes_set_T_1 = {31'h0, c_opcodes_set_interm} << _c_opcodes_set_T; // @[Monitor.scala:659:54, :754:40, :767:{54,79}]
assign c_opcodes_set = _T_2731 ? _c_opcodes_set_T_1[11:0] : 12'h0; // @[Monitor.scala:740:34, :763:{25,36,70}, :767:{28,54}]
wire [4:0] _c_sizes_set_T = {io_in_c_bits_source_0, 3'h0}; // @[Monitor.scala:36:7, :768:77]
wire [35:0] _c_sizes_set_T_1 = {31'h0, c_sizes_set_interm} << _c_sizes_set_T; // @[Monitor.scala:659:54, :755:40, :768:{52,77}]
assign c_sizes_set = _T_2731 ? _c_sizes_set_T_1[23:0] : 24'h0; // @[Monitor.scala:741:34, :763:{25,36,70}, :768:{28,52}]
wire _c_probe_ack_T = io_in_c_bits_opcode_0 == 3'h4; // @[Monitor.scala:36:7, :772:47]
wire _c_probe_ack_T_1 = io_in_c_bits_opcode_0 == 3'h5; // @[Monitor.scala:36:7, :772:95]
wire c_probe_ack = _c_probe_ack_T | _c_probe_ack_T_1; // @[Monitor.scala:772:{47,71,95}]
wire [2:0] d_clr_1; // @[Monitor.scala:774:34]
wire [2:0] d_clr_wo_ready_1; // @[Monitor.scala:775:34]
wire [11:0] d_opcodes_clr_1; // @[Monitor.scala:776:34]
wire [23:0] d_sizes_clr_1; // @[Monitor.scala:777:34]
wire _T_2762 = io_in_d_valid_0 & d_first_2; // @[Monitor.scala:36:7, :784:26]
assign d_clr_wo_ready_1 = _T_2762 & d_release_ack_1 ? _d_clr_wo_ready_T_1[2:0] : 3'h0; // @[OneHot.scala:58:35]
wire _T_2744 = _T_2792 & d_first_2 & d_release_ack_1; // @[Decoupled.scala:51:35]
assign d_clr_1 = _T_2744 ? _d_clr_T_1[2:0] : 3'h0; // @[OneHot.scala:58:35]
wire [46:0] _d_opcodes_clr_T_11 = 47'hF << _d_opcodes_clr_T_10; // @[Monitor.scala:790:{76,101}]
assign d_opcodes_clr_1 = _T_2744 ? _d_opcodes_clr_T_11[11:0] : 12'h0; // @[Monitor.scala:776:34, :788:{25,70,88}, :790:{21,76}]
wire [46:0] _d_sizes_clr_T_11 = 47'hFF << _d_sizes_clr_T_10; // @[Monitor.scala:791:{74,99}]
assign d_sizes_clr_1 = _T_2744 ? _d_sizes_clr_T_11[23:0] : 24'h0; // @[Monitor.scala:777:34, :788:{25,70,88}, :791:{21,74}]
wire _same_cycle_resp_T_6 = _same_cycle_resp_T_4 & _same_cycle_resp_T_5; // @[Edges.scala:68:{36,40,51}]
wire _same_cycle_resp_T_7 = _same_cycle_resp_T_3 & _same_cycle_resp_T_6; // @[Monitor.scala:795:{44,55}]
wire _same_cycle_resp_T_8 = io_in_c_bits_source_0 == io_in_d_bits_source_0; // @[Monitor.scala:36:7, :795:113]
wire same_cycle_resp_1 = _same_cycle_resp_T_7 & _same_cycle_resp_T_8; // @[Monitor.scala:795:{55,88,113}]
wire [2:0] _inflight_T_3 = inflight_1 | c_set; // @[Monitor.scala:726:35, :738:34, :814:35]
wire [2:0] _inflight_T_4 = ~d_clr_1; // @[Monitor.scala:774:34, :814:46]
wire [2:0] _inflight_T_5 = _inflight_T_3 & _inflight_T_4; // @[Monitor.scala:814:{35,44,46}]
wire [11:0] _inflight_opcodes_T_3 = inflight_opcodes_1 | c_opcodes_set; // @[Monitor.scala:727:35, :740:34, :815:43]
wire [11:0] _inflight_opcodes_T_4 = ~d_opcodes_clr_1; // @[Monitor.scala:776:34, :815:62]
wire [11:0] _inflight_opcodes_T_5 = _inflight_opcodes_T_3 & _inflight_opcodes_T_4; // @[Monitor.scala:815:{43,60,62}]
wire [23:0] _inflight_sizes_T_3 = inflight_sizes_1 | c_sizes_set; // @[Monitor.scala:728:35, :741:34, :816:41]
wire [23:0] _inflight_sizes_T_4 = ~d_sizes_clr_1; // @[Monitor.scala:777:34, :816:58]
wire [23:0] _inflight_sizes_T_5 = _inflight_sizes_T_3 & _inflight_sizes_T_4; // @[Monitor.scala:816:{41,56,58}]
reg [31:0] watchdog_1; // @[Monitor.scala:818:27]
wire [32:0] _watchdog_T_2 = {1'h0, watchdog_1} + 33'h1; // @[Monitor.scala:818:27, :823:26]
wire [31:0] _watchdog_T_3 = _watchdog_T_2[31:0]; // @[Monitor.scala:823:26]
reg [7:0] inflight_2; // @[Monitor.scala:828:27]
wire [11:0] _d_first_beats1_decode_T_10 = _d_first_beats1_decode_T_9[11:0]; // @[package.scala:243:{71,76}]
wire [11:0] _d_first_beats1_decode_T_11 = ~_d_first_beats1_decode_T_10; // @[package.scala:243:{46,76}]
wire [8:0] d_first_beats1_decode_3 = _d_first_beats1_decode_T_11[11:3]; // @[package.scala:243:46]
wire [8:0] d_first_beats1_3 = d_first_beats1_opdata_3 ? d_first_beats1_decode_3 : 9'h0; // @[Edges.scala:106:36, :220:59, :221:14]
reg [8:0] d_first_counter_3; // @[Edges.scala:229:27]
wire [9:0] _d_first_counter1_T_3 = {1'h0, d_first_counter_3} - 10'h1; // @[Edges.scala:229:27, :230:28]
wire [8:0] d_first_counter1_3 = _d_first_counter1_T_3[8:0]; // @[Edges.scala:230:28]
wire d_first_3 = d_first_counter_3 == 9'h0; // @[Edges.scala:229:27, :231:25]
wire _d_first_last_T_6 = d_first_counter_3 == 9'h1; // @[Edges.scala:229:27, :232:25]
wire _d_first_last_T_7 = d_first_beats1_3 == 9'h0; // @[Edges.scala:221:14, :232:43]
wire d_first_last_3 = _d_first_last_T_6 | _d_first_last_T_7; // @[Edges.scala:232:{25,33,43}]
wire d_first_done_3 = d_first_last_3 & _d_first_T_3; // @[Decoupled.scala:51:35]
wire [8:0] _d_first_count_T_3 = ~d_first_counter1_3; // @[Edges.scala:230:28, :234:27]
wire [8:0] d_first_count_3 = d_first_beats1_3 & _d_first_count_T_3; // @[Edges.scala:221:14, :234:{25,27}]
wire [8:0] _d_first_counter_T_3 = d_first_3 ? d_first_beats1_3 : d_first_counter1_3; // @[Edges.scala:221:14, :230:28, :231:25, :236:21]
wire [7:0] d_set; // @[Monitor.scala:833:25]
wire _T_2798 = _T_2792 & d_first_3 & io_in_d_bits_opcode_0[2] & ~(io_in_d_bits_opcode_0[1]); // @[Decoupled.scala:51:35]
wire [7:0] _GEN_28 = {5'h0, io_in_d_bits_sink_0}; // @[OneHot.scala:58:35]
wire [7:0] _d_set_T = 8'h1 << _GEN_28; // @[OneHot.scala:58:35]
assign d_set = _T_2798 ? _d_set_T : 8'h0; // @[OneHot.scala:58:35]
wire [7:0] e_clr; // @[Monitor.scala:839:25]
wire _T_2807 = io_in_e_ready_0 & io_in_e_valid_0; // @[Decoupled.scala:51:35]
wire [7:0] _GEN_29 = {5'h0, io_in_e_bits_sink_0}; // @[OneHot.scala:58:35]
wire [7:0] _e_clr_T = 8'h1 << _GEN_29; // @[OneHot.scala:58:35]
assign e_clr = _T_2807 ? _e_clr_T : 8'h0; // @[OneHot.scala:58:35] |
Generate the Verilog code corresponding to the following Chisel files.
File Buffer.scala:
// See LICENSE.SiFive for license details.
package freechips.rocketchip.tilelink
import chisel3._
import org.chipsalliance.cde.config._
import org.chipsalliance.diplomacy._
import org.chipsalliance.diplomacy.lazymodule._
import freechips.rocketchip.diplomacy.BufferParams
class TLBufferNode (
a: BufferParams,
b: BufferParams,
c: BufferParams,
d: BufferParams,
e: BufferParams)(implicit valName: ValName) extends TLAdapterNode(
clientFn = { p => p.v1copy(minLatency = p.minLatency + b.latency + c.latency) },
managerFn = { p => p.v1copy(minLatency = p.minLatency + a.latency + d.latency) }
) {
override lazy val nodedebugstring = s"a:${a.toString}, b:${b.toString}, c:${c.toString}, d:${d.toString}, e:${e.toString}"
override def circuitIdentity = List(a,b,c,d,e).forall(_ == BufferParams.none)
}
class TLBuffer(
a: BufferParams,
b: BufferParams,
c: BufferParams,
d: BufferParams,
e: BufferParams)(implicit p: Parameters) extends LazyModule
{
def this(ace: BufferParams, bd: BufferParams)(implicit p: Parameters) = this(ace, bd, ace, bd, ace)
def this(abcde: BufferParams)(implicit p: Parameters) = this(abcde, abcde)
def this()(implicit p: Parameters) = this(BufferParams.default)
val node = new TLBufferNode(a, b, c, d, e)
lazy val module = new Impl
class Impl extends LazyModuleImp(this) {
def headBundle = node.out.head._2.bundle
override def desiredName = (Seq("TLBuffer") ++ node.out.headOption.map(_._2.bundle.shortName)).mkString("_")
(node.in zip node.out) foreach { case ((in, edgeIn), (out, edgeOut)) =>
out.a <> a(in .a)
in .d <> d(out.d)
if (edgeOut.manager.anySupportAcquireB && edgeOut.client.anySupportProbe) {
in .b <> b(out.b)
out.c <> c(in .c)
out.e <> e(in .e)
} else {
in.b.valid := false.B
in.c.ready := true.B
in.e.ready := true.B
out.b.ready := true.B
out.c.valid := false.B
out.e.valid := false.B
}
}
}
}
object TLBuffer
{
def apply() (implicit p: Parameters): TLNode = apply(BufferParams.default)
def apply(abcde: BufferParams) (implicit p: Parameters): TLNode = apply(abcde, abcde)
def apply(ace: BufferParams, bd: BufferParams)(implicit p: Parameters): TLNode = apply(ace, bd, ace, bd, ace)
def apply(
a: BufferParams,
b: BufferParams,
c: BufferParams,
d: BufferParams,
e: BufferParams)(implicit p: Parameters): TLNode =
{
val buffer = LazyModule(new TLBuffer(a, b, c, d, e))
buffer.node
}
def chain(depth: Int, name: Option[String] = None)(implicit p: Parameters): Seq[TLNode] = {
val buffers = Seq.fill(depth) { LazyModule(new TLBuffer()) }
name.foreach { n => buffers.zipWithIndex.foreach { case (b, i) => b.suggestName(s"${n}_${i}") } }
buffers.map(_.node)
}
def chainNode(depth: Int, name: Option[String] = None)(implicit p: Parameters): TLNode = {
chain(depth, name)
.reduceLeftOption(_ :*=* _)
.getOrElse(TLNameNode("no_buffer"))
}
}
File Fragmenter.scala:
// See LICENSE.SiFive for license details.
package freechips.rocketchip.tilelink
import chisel3._
import chisel3.util._
import org.chipsalliance.cde.config._
import org.chipsalliance.diplomacy._
import org.chipsalliance.diplomacy.lazymodule._
import freechips.rocketchip.diplomacy.{AddressSet, BufferParams, IdRange, TransferSizes}
import freechips.rocketchip.util.{Repeater, OH1ToUInt, UIntToOH1}
import scala.math.min
import freechips.rocketchip.util.DataToAugmentedData
object EarlyAck {
sealed trait T
case object AllPuts extends T
case object PutFulls extends T
case object None extends T
}
// minSize: minimum size of transfers supported by all outward managers
// maxSize: maximum size of transfers supported after the Fragmenter is applied
// alwaysMin: fragment all requests down to minSize (else fragment to maximum supported by manager)
// earlyAck: should a multibeat Put should be acknowledged on the first beat or last beat
// holdFirstDeny: allow the Fragmenter to unsafely combine multibeat Gets by taking the first denied for the whole burst
// nameSuffix: appends a suffix to the module name
// Fragmenter modifies: PutFull, PutPartial, LogicalData, Get, Hint
// Fragmenter passes: ArithmeticData (truncated to minSize if alwaysMin)
// Fragmenter cannot modify acquire (could livelock); thus it is unsafe to put caches on both sides
class TLFragmenter(val minSize: Int, val maxSize: Int, val alwaysMin: Boolean = false, val earlyAck: EarlyAck.T = EarlyAck.None, val holdFirstDeny: Boolean = false, val nameSuffix: Option[String] = None)(implicit p: Parameters) extends LazyModule
{
require(isPow2 (maxSize), s"TLFragmenter expects pow2(maxSize), but got $maxSize")
require(isPow2 (minSize), s"TLFragmenter expects pow2(minSize), but got $minSize")
require(minSize <= maxSize, s"TLFragmenter expects min <= max, but got $minSize > $maxSize")
val fragmentBits = log2Ceil(maxSize / minSize)
val fullBits = if (earlyAck == EarlyAck.PutFulls) 1 else 0
val toggleBits = 1
val addedBits = fragmentBits + toggleBits + fullBits
def expandTransfer(x: TransferSizes, op: String) = if (!x) x else {
// validate that we can apply the fragmenter correctly
require (x.max >= minSize, s"TLFragmenter (with parent $parent) max transfer size $op(${x.max}) must be >= min transfer size (${minSize})")
TransferSizes(x.min, maxSize)
}
private def noChangeRequired = minSize == maxSize
private def shrinkTransfer(x: TransferSizes) =
if (!alwaysMin) x
else if (x.min <= minSize) TransferSizes(x.min, min(minSize, x.max))
else TransferSizes.none
private def mapManager(m: TLSlaveParameters) = m.v1copy(
supportsArithmetic = shrinkTransfer(m.supportsArithmetic),
supportsLogical = shrinkTransfer(m.supportsLogical),
supportsGet = expandTransfer(m.supportsGet, "Get"),
supportsPutFull = expandTransfer(m.supportsPutFull, "PutFull"),
supportsPutPartial = expandTransfer(m.supportsPutPartial, "PutParital"),
supportsHint = expandTransfer(m.supportsHint, "Hint"))
val node = new TLAdapterNode(
// We require that all the responses are mutually FIFO
// Thus we need to compact all of the masters into one big master
clientFn = { c => (if (noChangeRequired) c else c.v2copy(
masters = Seq(TLMasterParameters.v2(
name = "TLFragmenter",
sourceId = IdRange(0, if (minSize == maxSize) c.endSourceId else (c.endSourceId << addedBits)),
requestFifo = true,
emits = TLMasterToSlaveTransferSizes(
acquireT = shrinkTransfer(c.masters.map(_.emits.acquireT) .reduce(_ mincover _)),
acquireB = shrinkTransfer(c.masters.map(_.emits.acquireB) .reduce(_ mincover _)),
arithmetic = shrinkTransfer(c.masters.map(_.emits.arithmetic).reduce(_ mincover _)),
logical = shrinkTransfer(c.masters.map(_.emits.logical) .reduce(_ mincover _)),
get = shrinkTransfer(c.masters.map(_.emits.get) .reduce(_ mincover _)),
putFull = shrinkTransfer(c.masters.map(_.emits.putFull) .reduce(_ mincover _)),
putPartial = shrinkTransfer(c.masters.map(_.emits.putPartial).reduce(_ mincover _)),
hint = shrinkTransfer(c.masters.map(_.emits.hint) .reduce(_ mincover _))
)
))
))},
managerFn = { m => if (noChangeRequired) m else m.v2copy(slaves = m.slaves.map(mapManager)) }
) {
override def circuitIdentity = noChangeRequired
}
lazy val module = new Impl
class Impl extends LazyModuleImp(this) {
override def desiredName = (Seq("TLFragmenter") ++ nameSuffix).mkString("_")
(node.in zip node.out) foreach { case ((in, edgeIn), (out, edgeOut)) =>
if (noChangeRequired) {
out <> in
} else {
// All managers must share a common FIFO domain (responses might end up interleaved)
val manager = edgeOut.manager
val managers = manager.managers
val beatBytes = manager.beatBytes
val fifoId = managers(0).fifoId
require (fifoId.isDefined && managers.map(_.fifoId == fifoId).reduce(_ && _))
require (!manager.anySupportAcquireB || !edgeOut.client.anySupportProbe,
s"TLFragmenter (with parent $parent) can't fragment a caching client's requests into a cacheable region")
require (minSize >= beatBytes, s"TLFragmenter (with parent $parent) can't support fragmenting ($minSize) to sub-beat ($beatBytes) accesses")
// We can't support devices which are cached on both sides of us
require (!edgeOut.manager.anySupportAcquireB || !edgeIn.client.anySupportProbe)
// We can't support denied because we reassemble fragments
require (!edgeOut.manager.mayDenyGet || holdFirstDeny, s"TLFragmenter (with parent $parent) can't support denials without holdFirstDeny=true")
require (!edgeOut.manager.mayDenyPut || earlyAck == EarlyAck.None)
/* The Fragmenter is a bit tricky, because there are 5 sizes in play:
* max size -- the maximum transfer size possible
* orig size -- the original pre-fragmenter size
* frag size -- the modified post-fragmenter size
* min size -- the threshold below which frag=orig
* beat size -- the amount transfered on any given beat
*
* The relationships are as follows:
* max >= orig >= frag
* max > min >= beat
* It IS possible that orig <= min (then frag=orig; ie: no fragmentation)
*
* The fragment# (sent via TL.source) is measured in multiples of min size.
* Meanwhile, to track the progress, counters measure in multiples of beat size.
*
* Here is an example of a bus with max=256, min=8, beat=4 and a device supporting 16.
*
* in.A out.A (frag#) out.D (frag#) in.D gen# ack#
* get64 get16 6 ackD16 6 ackD64 12 15
* ackD16 6 ackD64 14
* ackD16 6 ackD64 13
* ackD16 6 ackD64 12
* get16 4 ackD16 4 ackD64 8 11
* ackD16 4 ackD64 10
* ackD16 4 ackD64 9
* ackD16 4 ackD64 8
* get16 2 ackD16 2 ackD64 4 7
* ackD16 2 ackD64 6
* ackD16 2 ackD64 5
* ackD16 2 ackD64 4
* get16 0 ackD16 0 ackD64 0 3
* ackD16 0 ackD64 2
* ackD16 0 ackD64 1
* ackD16 0 ackD64 0
*
* get8 get8 0 ackD8 0 ackD8 0 1
* ackD8 0 ackD8 0
*
* get4 get4 0 ackD4 0 ackD4 0 0
* get1 get1 0 ackD1 0 ackD1 0 0
*
* put64 put16 6 15
* put64 put16 6 14
* put64 put16 6 13
* put64 put16 6 ack16 6 12 12
* put64 put16 4 11
* put64 put16 4 10
* put64 put16 4 9
* put64 put16 4 ack16 4 8 8
* put64 put16 2 7
* put64 put16 2 6
* put64 put16 2 5
* put64 put16 2 ack16 2 4 4
* put64 put16 0 3
* put64 put16 0 2
* put64 put16 0 1
* put64 put16 0 ack16 0 ack64 0 0
*
* put8 put8 0 1
* put8 put8 0 ack8 0 ack8 0 0
*
* put4 put4 0 ack4 0 ack4 0 0
* put1 put1 0 ack1 0 ack1 0 0
*/
val counterBits = log2Up(maxSize/beatBytes)
val maxDownSize = if (alwaysMin) minSize else min(manager.maxTransfer, maxSize)
// Consider the following waveform for two 4-beat bursts:
// ---A----A------------
// -------D-----DDD-DDDD
// Under TL rules, the second A can use the same source as the first A,
// because the source is released for reuse on the first response beat.
//
// However, if we fragment the requests, it looks like this:
// ---3210-3210---------
// -------3-----210-3210
// ... now we've broken the rules because 210 are twice inflight.
//
// This phenomenon means we can have essentially 2*maxSize/minSize-1
// fragmented transactions in flight per original transaction source.
//
// To keep the source unique, we encode the beat counter in the low
// bits of the source. To solve the overlap, we use a toggle bit.
// Whatever toggle bit the D is reassembling, A will use the opposite.
// First, handle the return path
val acknum = RegInit(0.U(counterBits.W))
val dOrig = Reg(UInt())
val dToggle = RegInit(false.B)
val dFragnum = out.d.bits.source(fragmentBits-1, 0)
val dFirst = acknum === 0.U
val dLast = dFragnum === 0.U // only for AccessAck (!Data)
val dsizeOH = UIntToOH (out.d.bits.size, log2Ceil(maxDownSize)+1)
val dsizeOH1 = UIntToOH1(out.d.bits.size, log2Up(maxDownSize))
val dHasData = edgeOut.hasData(out.d.bits)
// calculate new acknum
val acknum_fragment = dFragnum << log2Ceil(minSize/beatBytes)
val acknum_size = dsizeOH1 >> log2Ceil(beatBytes)
assert (!out.d.valid || (acknum_fragment & acknum_size) === 0.U)
val dFirst_acknum = acknum_fragment | Mux(dHasData, acknum_size, 0.U)
val ack_decrement = Mux(dHasData, 1.U, dsizeOH >> log2Ceil(beatBytes))
// calculate the original size
val dFirst_size = OH1ToUInt((dFragnum << log2Ceil(minSize)) | dsizeOH1)
when (out.d.fire) {
acknum := Mux(dFirst, dFirst_acknum, acknum - ack_decrement)
when (dFirst) {
dOrig := dFirst_size
dToggle := out.d.bits.source(fragmentBits)
}
}
// Swallow up non-data ack fragments
val doEarlyAck = earlyAck match {
case EarlyAck.AllPuts => true.B
case EarlyAck.PutFulls => out.d.bits.source(fragmentBits+1)
case EarlyAck.None => false.B
}
val drop = !dHasData && !Mux(doEarlyAck, dFirst, dLast)
out.d.ready := in.d.ready || drop
in.d.valid := out.d.valid && !drop
in.d.bits := out.d.bits // pass most stuff unchanged
in.d.bits.source := out.d.bits.source >> addedBits
in.d.bits.size := Mux(dFirst, dFirst_size, dOrig)
if (edgeOut.manager.mayDenyPut) {
val r_denied = Reg(Bool())
val d_denied = (!dFirst && r_denied) || out.d.bits.denied
when (out.d.fire) { r_denied := d_denied }
in.d.bits.denied := d_denied
}
if (edgeOut.manager.mayDenyGet) {
// Take denied only from the first beat and hold that value
val d_denied = out.d.bits.denied holdUnless dFirst
when (dHasData) {
in.d.bits.denied := d_denied
in.d.bits.corrupt := d_denied || out.d.bits.corrupt
}
}
// What maximum transfer sizes do downstream devices support?
val maxArithmetics = managers.map(_.supportsArithmetic.max)
val maxLogicals = managers.map(_.supportsLogical.max)
val maxGets = managers.map(_.supportsGet.max)
val maxPutFulls = managers.map(_.supportsPutFull.max)
val maxPutPartials = managers.map(_.supportsPutPartial.max)
val maxHints = managers.map(m => if (m.supportsHint) maxDownSize else 0)
// We assume that the request is valid => size 0 is impossible
val lgMinSize = log2Ceil(minSize).U
val maxLgArithmetics = maxArithmetics.map(m => if (m == 0) lgMinSize else log2Ceil(m).U)
val maxLgLogicals = maxLogicals .map(m => if (m == 0) lgMinSize else log2Ceil(m).U)
val maxLgGets = maxGets .map(m => if (m == 0) lgMinSize else log2Ceil(m).U)
val maxLgPutFulls = maxPutFulls .map(m => if (m == 0) lgMinSize else log2Ceil(m).U)
val maxLgPutPartials = maxPutPartials.map(m => if (m == 0) lgMinSize else log2Ceil(m).U)
val maxLgHints = maxHints .map(m => if (m == 0) lgMinSize else log2Ceil(m).U)
// Make the request repeatable
val repeater = Module(new Repeater(in.a.bits))
repeater.io.enq <> in.a
val in_a = repeater.io.deq
// If this is infront of a single manager, these become constants
val find = manager.findFast(edgeIn.address(in_a.bits))
val maxLgArithmetic = Mux1H(find, maxLgArithmetics)
val maxLgLogical = Mux1H(find, maxLgLogicals)
val maxLgGet = Mux1H(find, maxLgGets)
val maxLgPutFull = Mux1H(find, maxLgPutFulls)
val maxLgPutPartial = Mux1H(find, maxLgPutPartials)
val maxLgHint = Mux1H(find, maxLgHints)
val limit = if (alwaysMin) lgMinSize else
MuxLookup(in_a.bits.opcode, lgMinSize)(Array(
TLMessages.PutFullData -> maxLgPutFull,
TLMessages.PutPartialData -> maxLgPutPartial,
TLMessages.ArithmeticData -> maxLgArithmetic,
TLMessages.LogicalData -> maxLgLogical,
TLMessages.Get -> maxLgGet,
TLMessages.Hint -> maxLgHint))
val aOrig = in_a.bits.size
val aFrag = Mux(aOrig > limit, limit, aOrig)
val aOrigOH1 = UIntToOH1(aOrig, log2Ceil(maxSize))
val aFragOH1 = UIntToOH1(aFrag, log2Up(maxDownSize))
val aHasData = edgeIn.hasData(in_a.bits)
val aMask = Mux(aHasData, 0.U, aFragOH1)
val gennum = RegInit(0.U(counterBits.W))
val aFirst = gennum === 0.U
val old_gennum1 = Mux(aFirst, aOrigOH1 >> log2Ceil(beatBytes), gennum - 1.U)
val new_gennum = ~(~old_gennum1 | (aMask >> log2Ceil(beatBytes))) // ~(~x|y) is width safe
val aFragnum = ~(~(old_gennum1 >> log2Ceil(minSize/beatBytes)) | (aFragOH1 >> log2Ceil(minSize)))
val aLast = aFragnum === 0.U
val aToggle = !Mux(aFirst, dToggle, RegEnable(dToggle, aFirst))
val aFull = if (earlyAck == EarlyAck.PutFulls) Some(in_a.bits.opcode === TLMessages.PutFullData) else None
when (out.a.fire) { gennum := new_gennum }
repeater.io.repeat := !aHasData && aFragnum =/= 0.U
out.a <> in_a
out.a.bits.address := in_a.bits.address | ~(old_gennum1 << log2Ceil(beatBytes) | ~aOrigOH1 | aFragOH1 | (minSize-1).U)
out.a.bits.source := Cat(Seq(in_a.bits.source) ++ aFull ++ Seq(aToggle.asUInt, aFragnum))
out.a.bits.size := aFrag
// Optimize away some of the Repeater's registers
assert (!repeater.io.full || !aHasData)
out.a.bits.data := in.a.bits.data
val fullMask = ((BigInt(1) << beatBytes) - 1).U
assert (!repeater.io.full || in_a.bits.mask === fullMask)
out.a.bits.mask := Mux(repeater.io.full, fullMask, in.a.bits.mask)
out.a.bits.user.waiveAll :<= in.a.bits.user.subset(_.isData)
// Tie off unused channels
in.b.valid := false.B
in.c.ready := true.B
in.e.ready := true.B
out.b.ready := true.B
out.c.valid := false.B
out.e.valid := false.B
}
}
}
}
object TLFragmenter
{
def apply(minSize: Int, maxSize: Int, alwaysMin: Boolean = false, earlyAck: EarlyAck.T = EarlyAck.None, holdFirstDeny: Boolean = false, nameSuffix: Option[String] = None)(implicit p: Parameters): TLNode =
{
if (minSize <= maxSize) {
val fragmenter = LazyModule(new TLFragmenter(minSize, maxSize, alwaysMin, earlyAck, holdFirstDeny, nameSuffix))
fragmenter.node
} else { TLEphemeralNode()(ValName("no_fragmenter")) }
}
def apply(wrapper: TLBusWrapper, nameSuffix: Option[String])(implicit p: Parameters): TLNode = apply(wrapper.beatBytes, wrapper.blockBytes, nameSuffix = nameSuffix)
def apply(wrapper: TLBusWrapper)(implicit p: Parameters): TLNode = apply(wrapper, None)
}
// Synthesizable unit tests
import freechips.rocketchip.unittest._
class TLRAMFragmenter(ramBeatBytes: Int, maxSize: Int, txns: Int)(implicit p: Parameters) extends LazyModule {
val fuzz = LazyModule(new TLFuzzer(txns))
val model = LazyModule(new TLRAMModel("Fragmenter"))
val ram = LazyModule(new TLRAM(AddressSet(0x0, 0x3ff), beatBytes = ramBeatBytes))
(ram.node
:= TLDelayer(0.1)
:= TLBuffer(BufferParams.flow)
:= TLDelayer(0.1)
:= TLFragmenter(ramBeatBytes, maxSize, earlyAck = EarlyAck.AllPuts)
:= TLDelayer(0.1)
:= TLBuffer(BufferParams.flow)
:= TLFragmenter(ramBeatBytes, maxSize/2)
:= TLDelayer(0.1)
:= TLBuffer(BufferParams.flow)
:= model.node
:= fuzz.node)
lazy val module = new Impl
class Impl extends LazyModuleImp(this) with UnitTestModule {
io.finished := fuzz.module.io.finished
}
}
class TLRAMFragmenterTest(ramBeatBytes: Int, maxSize: Int, txns: Int = 5000, timeout: Int = 500000)(implicit p: Parameters) extends UnitTest(timeout) {
val dut = Module(LazyModule(new TLRAMFragmenter(ramBeatBytes,maxSize,txns)).module)
io.finished := dut.io.finished
dut.io.start := io.start
}
File LazyModuleImp.scala:
package org.chipsalliance.diplomacy.lazymodule
import chisel3.{withClockAndReset, Module, RawModule, Reset, _}
import chisel3.experimental.{ChiselAnnotation, CloneModuleAsRecord, SourceInfo}
import firrtl.passes.InlineAnnotation
import org.chipsalliance.cde.config.Parameters
import org.chipsalliance.diplomacy.nodes.Dangle
import scala.collection.immutable.SortedMap
/** Trait describing the actual [[Module]] implementation wrapped by a [[LazyModule]].
*
* This is the actual Chisel module that is lazily-evaluated in the second phase of Diplomacy.
*/
sealed trait LazyModuleImpLike extends RawModule {
/** [[LazyModule]] that contains this instance. */
val wrapper: LazyModule
/** IOs that will be automatically "punched" for this instance. */
val auto: AutoBundle
/** The metadata that describes the [[HalfEdge]]s which generated [[auto]]. */
protected[diplomacy] val dangles: Seq[Dangle]
// [[wrapper.module]] had better not be accessed while LazyModules are still being built!
require(
LazyModule.scope.isEmpty,
s"${wrapper.name}.module was constructed before LazyModule() was run on ${LazyModule.scope.get.name}"
)
/** Set module name. Defaults to the containing LazyModule's desiredName. */
override def desiredName: String = wrapper.desiredName
suggestName(wrapper.suggestedName)
/** [[Parameters]] for chisel [[Module]]s. */
implicit val p: Parameters = wrapper.p
/** instantiate this [[LazyModule]], return [[AutoBundle]] and a unconnected [[Dangle]]s from this module and
* submodules.
*/
protected[diplomacy] def instantiate(): (AutoBundle, List[Dangle]) = {
// 1. It will recursively append [[wrapper.children]] into [[chisel3.internal.Builder]],
// 2. return [[Dangle]]s from each module.
val childDangles = wrapper.children.reverse.flatMap { c =>
implicit val sourceInfo: SourceInfo = c.info
c.cloneProto.map { cp =>
// If the child is a clone, then recursively set cloneProto of its children as well
def assignCloneProtos(bases: Seq[LazyModule], clones: Seq[LazyModule]): Unit = {
require(bases.size == clones.size)
(bases.zip(clones)).map { case (l, r) =>
require(l.getClass == r.getClass, s"Cloned children class mismatch ${l.name} != ${r.name}")
l.cloneProto = Some(r)
assignCloneProtos(l.children, r.children)
}
}
assignCloneProtos(c.children, cp.children)
// Clone the child module as a record, and get its [[AutoBundle]]
val clone = CloneModuleAsRecord(cp.module).suggestName(c.suggestedName)
val clonedAuto = clone("auto").asInstanceOf[AutoBundle]
// Get the empty [[Dangle]]'s of the cloned child
val rawDangles = c.cloneDangles()
require(rawDangles.size == clonedAuto.elements.size)
// Assign the [[AutoBundle]] fields of the cloned record to the empty [[Dangle]]'s
val dangles = (rawDangles.zip(clonedAuto.elements)).map { case (d, (_, io)) => d.copy(dataOpt = Some(io)) }
dangles
}.getOrElse {
// For non-clones, instantiate the child module
val mod = try {
Module(c.module)
} catch {
case e: ChiselException => {
println(s"Chisel exception caught when instantiating ${c.name} within ${this.name} at ${c.line}")
throw e
}
}
mod.dangles
}
}
// Ask each node in this [[LazyModule]] to call [[BaseNode.instantiate]].
// This will result in a sequence of [[Dangle]] from these [[BaseNode]]s.
val nodeDangles = wrapper.nodes.reverse.flatMap(_.instantiate())
// Accumulate all the [[Dangle]]s from this node and any accumulated from its [[wrapper.children]]
val allDangles = nodeDangles ++ childDangles
// Group [[allDangles]] by their [[source]].
val pairing = SortedMap(allDangles.groupBy(_.source).toSeq: _*)
// For each [[source]] set of [[Dangle]]s of size 2, ensure that these
// can be connected as a source-sink pair (have opposite flipped value).
// Make the connection and mark them as [[done]].
val done = Set() ++ pairing.values.filter(_.size == 2).map {
case Seq(a, b) =>
require(a.flipped != b.flipped)
// @todo <> in chisel3 makes directionless connection.
if (a.flipped) {
a.data <> b.data
} else {
b.data <> a.data
}
a.source
case _ => None
}
// Find all [[Dangle]]s which are still not connected. These will end up as [[AutoBundle]] [[IO]] ports on the module.
val forward = allDangles.filter(d => !done(d.source))
// Generate [[AutoBundle]] IO from [[forward]].
val auto = IO(new AutoBundle(forward.map { d => (d.name, d.data, d.flipped) }: _*))
// Pass the [[Dangle]]s which remained and were used to generate the [[AutoBundle]] I/O ports up to the [[parent]] [[LazyModule]]
val dangles = (forward.zip(auto.elements)).map { case (d, (_, io)) =>
if (d.flipped) {
d.data <> io
} else {
io <> d.data
}
d.copy(dataOpt = Some(io), name = wrapper.suggestedName + "_" + d.name)
}
// Push all [[LazyModule.inModuleBody]] to [[chisel3.internal.Builder]].
wrapper.inModuleBody.reverse.foreach {
_()
}
if (wrapper.shouldBeInlined) {
chisel3.experimental.annotate(new ChiselAnnotation {
def toFirrtl = InlineAnnotation(toNamed)
})
}
// Return [[IO]] and [[Dangle]] of this [[LazyModuleImp]].
(auto, dangles)
}
}
/** Actual description of a [[Module]] which can be instantiated by a call to [[LazyModule.module]].
*
* @param wrapper
* the [[LazyModule]] from which the `.module` call is being made.
*/
class LazyModuleImp(val wrapper: LazyModule) extends Module with LazyModuleImpLike {
/** Instantiate hardware of this `Module`. */
val (auto, dangles) = instantiate()
}
/** Actual description of a [[RawModule]] which can be instantiated by a call to [[LazyModule.module]].
*
* @param wrapper
* the [[LazyModule]] from which the `.module` call is being made.
*/
class LazyRawModuleImp(val wrapper: LazyModule) extends RawModule with LazyModuleImpLike {
// These wires are the default clock+reset for all LazyModule children.
// It is recommended to drive these even if you manually drive the [[clock]] and [[reset]] of all of the
// [[LazyRawModuleImp]] children.
// Otherwise, anonymous children ([[Monitor]]s for example) will not have their [[clock]] and/or [[reset]] driven properly.
/** drive clock explicitly. */
val childClock: Clock = Wire(Clock())
/** drive reset explicitly. */
val childReset: Reset = Wire(Reset())
// the default is that these are disabled
childClock := false.B.asClock
childReset := chisel3.DontCare
def provideImplicitClockToLazyChildren: Boolean = false
val (auto, dangles) =
if (provideImplicitClockToLazyChildren) {
withClockAndReset(childClock, childReset) { instantiate() }
} else {
instantiate()
}
}
File MixedNode.scala:
package org.chipsalliance.diplomacy.nodes
import chisel3.{Data, DontCare, Wire}
import chisel3.experimental.SourceInfo
import org.chipsalliance.cde.config.{Field, Parameters}
import org.chipsalliance.diplomacy.ValName
import org.chipsalliance.diplomacy.sourceLine
/** One side metadata of a [[Dangle]].
*
* Describes one side of an edge going into or out of a [[BaseNode]].
*
* @param serial
* the global [[BaseNode.serial]] number of the [[BaseNode]] that this [[HalfEdge]] connects to.
* @param index
* the `index` in the [[BaseNode]]'s input or output port list that this [[HalfEdge]] belongs to.
*/
case class HalfEdge(serial: Int, index: Int) extends Ordered[HalfEdge] {
import scala.math.Ordered.orderingToOrdered
def compare(that: HalfEdge): Int = HalfEdge.unapply(this).compare(HalfEdge.unapply(that))
}
/** [[Dangle]] captures the `IO` information of a [[LazyModule]] and which two [[BaseNode]]s the [[Edges]]/[[Bundle]]
* connects.
*
* [[Dangle]]s are generated by [[BaseNode.instantiate]] using [[MixedNode.danglesOut]] and [[MixedNode.danglesIn]] ,
* [[LazyModuleImp.instantiate]] connects those that go to internal or explicit IO connections in a [[LazyModule]].
*
* @param source
* the source [[HalfEdge]] of this [[Dangle]], which captures the source [[BaseNode]] and the port `index` within
* that [[BaseNode]].
* @param sink
* sink [[HalfEdge]] of this [[Dangle]], which captures the sink [[BaseNode]] and the port `index` within that
* [[BaseNode]].
* @param flipped
* flip or not in [[AutoBundle.makeElements]]. If true this corresponds to `danglesOut`, if false it corresponds to
* `danglesIn`.
* @param dataOpt
* actual [[Data]] for the hardware connection. Can be empty if this belongs to a cloned module
*/
case class Dangle(source: HalfEdge, sink: HalfEdge, flipped: Boolean, name: String, dataOpt: Option[Data]) {
def data = dataOpt.get
}
/** [[Edges]] is a collection of parameters describing the functionality and connection for an interface, which is often
* derived from the interconnection protocol and can inform the parameterization of the hardware bundles that actually
* implement the protocol.
*/
case class Edges[EI, EO](in: Seq[EI], out: Seq[EO])
/** A field available in [[Parameters]] used to determine whether [[InwardNodeImp.monitor]] will be called. */
case object MonitorsEnabled extends Field[Boolean](true)
/** When rendering the edge in a graphical format, flip the order in which the edges' source and sink are presented.
*
* For example, when rendering graphML, yEd by default tries to put the source node vertically above the sink node, but
* [[RenderFlipped]] inverts this relationship. When a particular [[LazyModule]] contains both source nodes and sink
* nodes, flipping the rendering of one node's edge will usual produce a more concise visual layout for the
* [[LazyModule]].
*/
case object RenderFlipped extends Field[Boolean](false)
/** The sealed node class in the package, all node are derived from it.
*
* @param inner
* Sink interface implementation.
* @param outer
* Source interface implementation.
* @param valName
* val name of this node.
* @tparam DI
* Downward-flowing parameters received on the inner side of the node. It is usually a brunch of parameters
* describing the protocol parameters from a source. For an [[InwardNode]], it is determined by the connected
* [[OutwardNode]]. Since it can be connected to multiple sources, this parameter is always a Seq of source port
* parameters.
* @tparam UI
* Upward-flowing parameters generated by the inner side of the node. It is usually a brunch of parameters describing
* the protocol parameters of a sink. For an [[InwardNode]], it is determined itself.
* @tparam EI
* Edge Parameters describing a connection on the inner side of the node. It is usually a brunch of transfers
* specified for a sink according to protocol.
* @tparam BI
* Bundle type used when connecting to the inner side of the node. It is a hardware interface of this sink interface.
* It should extends from [[chisel3.Data]], which represents the real hardware.
* @tparam DO
* Downward-flowing parameters generated on the outer side of the node. It is usually a brunch of parameters
* describing the protocol parameters of a source. For an [[OutwardNode]], it is determined itself.
* @tparam UO
* Upward-flowing parameters received by the outer side of the node. It is usually a brunch of parameters describing
* the protocol parameters from a sink. For an [[OutwardNode]], it is determined by the connected [[InwardNode]].
* Since it can be connected to multiple sinks, this parameter is always a Seq of sink port parameters.
* @tparam EO
* Edge Parameters describing a connection on the outer side of the node. It is usually a brunch of transfers
* specified for a source according to protocol.
* @tparam BO
* Bundle type used when connecting to the outer side of the node. It is a hardware interface of this source
* interface. It should extends from [[chisel3.Data]], which represents the real hardware.
*
* @note
* Call Graph of [[MixedNode]]
* - line `β`: source is process by a function and generate pass to others
* - Arrow `β`: target of arrow is generated by source
*
* {{{
* (from the other node)
* ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ[[InwardNode.uiParams]]ββββββββββββββ
* β β
* (binding node when elaboration) [[OutwardNode.uoParams]]ββββββββββββββββββββββββ[[MixedNode.mapParamsU]]ββββββββββββ β
* [[InwardNode.accPI]] β β β
* β β (based on protocol) β
* β β [[MixedNode.inner.edgeI]] β
* β β β β
* β β β β
* (immobilize after elaboration) (inward port from [[OutwardNode]]) β β β
* [[InwardNode.iBindings]]βββ [[MixedNode.iDirectPorts]]βββββββββββββββββββββ[[MixedNode.iPorts]] [[InwardNode.uiParams]] β
* β β β β β β
* β β β [[OutwardNode.doParams]] β β
* β β β (from the other node) β β
* β β β β β β
* β β β β β β
* β β β ββββββββββ¬βββββββββββββββ€ β
* β β β β β β
* β β β β (based on protocol) β
* β β β β [[MixedNode.inner.edgeI]] β
* β β β β β β
* β β (from the other node) β β β
* β ββββ[[OutwardNode.oPortMapping]] [[OutwardNode.oStar]] β [[MixedNode.edgesIn]]ββββ β
* β β β β β β β
* β β β β β [[MixedNode.in]] β
* β β β β β β β
* β (solve star connection) β β β [[MixedNode.bundleIn]]βββ β
* ββββ[[MixedNode.resolveStar]]βββΌββββββββββββββββββββββββββββββ€ ββββββββββββββββββββββββββββββββββββββ β
* β β β [[MixedNode.bundleOut]]ββ β β
* β β β β β β β
* β β β β [[MixedNode.out]] β β
* β β β β β β β
* β ββββββ[[InwardNode.iPortMapping]] [[InwardNode.iStar]] [[MixedNode.edgesOut]]βββ β β
* β β (from the other node) β β β
* β β β β β β
* β β β [[MixedNode.outer.edgeO]] β β
* β β β (based on protocol) β β
* β β β β β β
* β β β ββββββββββββββββββββββββββββββββββββββββββ€ β β
* β β β β β β β
* β β β β β β β
* β β β β β β β
* (immobilize after elaboration)β β β β β β
* [[OutwardNode.oBindings]]ββ [[MixedNode.oDirectPorts]]ββββ[[MixedNode.oPorts]] [[OutwardNode.doParams]] β β
* β (inward port from [[OutwardNode]]) β β β β
* β βββββββββββββββββββββββββββββββββββββββββββ€ β β β
* β β β β β β
* β β β β β β
* [[OutwardNode.accPO]] β β β β β
* (binding node when elaboration) β [[InwardNode.diParams]]ββββββ[[MixedNode.mapParamsD]]βββββββββββββββββββββββββββββ β β
* β β β β
* β ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ β
* ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
* }}}
*/
abstract class MixedNode[DI, UI, EI, BI <: Data, DO, UO, EO, BO <: Data](
val inner: InwardNodeImp[DI, UI, EI, BI],
val outer: OutwardNodeImp[DO, UO, EO, BO]
)(
implicit valName: ValName)
extends BaseNode
with NodeHandle[DI, UI, EI, BI, DO, UO, EO, BO]
with InwardNode[DI, UI, BI]
with OutwardNode[DO, UO, BO] {
// Generate a [[NodeHandle]] with inward and outward node are both this node.
val inward = this
val outward = this
/** Debug info of nodes binding. */
def bindingInfo: String = s"""$iBindingInfo
|$oBindingInfo
|""".stripMargin
/** Debug info of ports connecting. */
def connectedPortsInfo: String = s"""${oPorts.size} outward ports connected: [${oPorts.map(_._2.name).mkString(",")}]
|${iPorts.size} inward ports connected: [${iPorts.map(_._2.name).mkString(",")}]
|""".stripMargin
/** Debug info of parameters propagations. */
def parametersInfo: String = s"""${doParams.size} downstream outward parameters: [${doParams.mkString(",")}]
|${uoParams.size} upstream outward parameters: [${uoParams.mkString(",")}]
|${diParams.size} downstream inward parameters: [${diParams.mkString(",")}]
|${uiParams.size} upstream inward parameters: [${uiParams.mkString(",")}]
|""".stripMargin
/** For a given node, converts [[OutwardNode.accPO]] and [[InwardNode.accPI]] to [[MixedNode.oPortMapping]] and
* [[MixedNode.iPortMapping]].
*
* Given counts of known inward and outward binding and inward and outward star bindings, return the resolved inward
* stars and outward stars.
*
* This method will also validate the arguments and throw a runtime error if the values are unsuitable for this type
* of node.
*
* @param iKnown
* Number of known-size ([[BIND_ONCE]]) input bindings.
* @param oKnown
* Number of known-size ([[BIND_ONCE]]) output bindings.
* @param iStar
* Number of unknown size ([[BIND_STAR]]) input bindings.
* @param oStar
* Number of unknown size ([[BIND_STAR]]) output bindings.
* @return
* A Tuple of the resolved number of input and output connections.
*/
protected[diplomacy] def resolveStar(iKnown: Int, oKnown: Int, iStar: Int, oStar: Int): (Int, Int)
/** Function to generate downward-flowing outward params from the downward-flowing input params and the current output
* ports.
*
* @param n
* The size of the output sequence to generate.
* @param p
* Sequence of downward-flowing input parameters of this node.
* @return
* A `n`-sized sequence of downward-flowing output edge parameters.
*/
protected[diplomacy] def mapParamsD(n: Int, p: Seq[DI]): Seq[DO]
/** Function to generate upward-flowing input parameters from the upward-flowing output parameters [[uiParams]].
*
* @param n
* Size of the output sequence.
* @param p
* Upward-flowing output edge parameters.
* @return
* A n-sized sequence of upward-flowing input edge parameters.
*/
protected[diplomacy] def mapParamsU(n: Int, p: Seq[UO]): Seq[UI]
/** @return
* The sink cardinality of the node, the number of outputs bound with [[BIND_QUERY]] summed with inputs bound with
* [[BIND_STAR]].
*/
protected[diplomacy] lazy val sinkCard: Int = oBindings.count(_._3 == BIND_QUERY) + iBindings.count(_._3 == BIND_STAR)
/** @return
* The source cardinality of this node, the number of inputs bound with [[BIND_QUERY]] summed with the number of
* output bindings bound with [[BIND_STAR]].
*/
protected[diplomacy] lazy val sourceCard: Int =
iBindings.count(_._3 == BIND_QUERY) + oBindings.count(_._3 == BIND_STAR)
/** @return list of nodes involved in flex bindings with this node. */
protected[diplomacy] lazy val flexes: Seq[BaseNode] =
oBindings.filter(_._3 == BIND_FLEX).map(_._2) ++ iBindings.filter(_._3 == BIND_FLEX).map(_._2)
/** Resolves the flex to be either source or sink and returns the offset where the [[BIND_STAR]] operators begin
* greedily taking up the remaining connections.
*
* @return
* A value >= 0 if it is sink cardinality, a negative value for source cardinality. The magnitude of the return
* value is not relevant.
*/
protected[diplomacy] lazy val flexOffset: Int = {
/** Recursively performs a depth-first search of the [[flexes]], [[BaseNode]]s connected to this node with flex
* operators. The algorithm bottoms out when we either get to a node we have already visited or when we get to a
* connection that is not a flex and can set the direction for us. Otherwise, recurse by visiting the `flexes` of
* each node in the current set and decide whether they should be added to the set or not.
*
* @return
* the mapping of [[BaseNode]] indexed by their serial numbers.
*/
def DFS(v: BaseNode, visited: Map[Int, BaseNode]): Map[Int, BaseNode] = {
if (visited.contains(v.serial) || !v.flexibleArityDirection) {
visited
} else {
v.flexes.foldLeft(visited + (v.serial -> v))((sum, n) => DFS(n, sum))
}
}
/** Determine which [[BaseNode]] are involved in resolving the flex connections to/from this node.
*
* @example
* {{{
* a :*=* b :*=* c
* d :*=* b
* e :*=* f
* }}}
*
* `flexSet` for `a`, `b`, `c`, or `d` will be `Set(a, b, c, d)` `flexSet` for `e` or `f` will be `Set(e,f)`
*/
val flexSet = DFS(this, Map()).values
/** The total number of :*= operators where we're on the left. */
val allSink = flexSet.map(_.sinkCard).sum
/** The total number of :=* operators used when we're on the right. */
val allSource = flexSet.map(_.sourceCard).sum
require(
allSink == 0 || allSource == 0,
s"The nodes ${flexSet.map(_.name)} which are inter-connected by :*=* have ${allSink} :*= operators and ${allSource} :=* operators connected to them, making it impossible to determine cardinality inference direction."
)
allSink - allSource
}
/** @return A value >= 0 if it is sink cardinality, a negative value for source cardinality. */
protected[diplomacy] def edgeArityDirection(n: BaseNode): Int = {
if (flexibleArityDirection) flexOffset
else if (n.flexibleArityDirection) n.flexOffset
else 0
}
/** For a node which is connected between two nodes, select the one that will influence the direction of the flex
* resolution.
*/
protected[diplomacy] def edgeAritySelect(n: BaseNode, l: => Int, r: => Int): Int = {
val dir = edgeArityDirection(n)
if (dir < 0) l
else if (dir > 0) r
else 1
}
/** Ensure that the same node is not visited twice in resolving `:*=`, etc operators. */
private var starCycleGuard = false
/** Resolve all the star operators into concrete indicies. As connections are being made, some may be "star"
* connections which need to be resolved. In some way to determine how many actual edges they correspond to. We also
* need to build up the ranges of edges which correspond to each binding operator, so that We can apply the correct
* edge parameters and later build up correct bundle connections.
*
* [[oPortMapping]]: `Seq[(Int, Int)]` where each item is the range of edges corresponding to that oPort (binding
* operator). [[iPortMapping]]: `Seq[(Int, Int)]` where each item is the range of edges corresponding to that iPort
* (binding operator). [[oStar]]: `Int` the value to return for this node `N` for any `N :*= foo` or `N :*=* foo :*=
* bar` [[iStar]]: `Int` the value to return for this node `N` for any `foo :=* N` or `bar :=* foo :*=* N`
*/
protected[diplomacy] lazy val (
oPortMapping: Seq[(Int, Int)],
iPortMapping: Seq[(Int, Int)],
oStar: Int,
iStar: Int
) = {
try {
if (starCycleGuard) throw StarCycleException()
starCycleGuard = true
// For a given node N...
// Number of foo :=* N
// + Number of bar :=* foo :*=* N
val oStars = oBindings.count { case (_, n, b, _, _) =>
b == BIND_STAR || (b == BIND_FLEX && edgeArityDirection(n) < 0)
}
// Number of N :*= foo
// + Number of N :*=* foo :*= bar
val iStars = iBindings.count { case (_, n, b, _, _) =>
b == BIND_STAR || (b == BIND_FLEX && edgeArityDirection(n) > 0)
}
// 1 for foo := N
// + bar.iStar for bar :*= foo :*=* N
// + foo.iStar for foo :*= N
// + 0 for foo :=* N
val oKnown = oBindings.map { case (_, n, b, _, _) =>
b match {
case BIND_ONCE => 1
case BIND_FLEX => edgeAritySelect(n, 0, n.iStar)
case BIND_QUERY => n.iStar
case BIND_STAR => 0
}
}.sum
// 1 for N := foo
// + bar.oStar for N :*=* foo :=* bar
// + foo.oStar for N :=* foo
// + 0 for N :*= foo
val iKnown = iBindings.map { case (_, n, b, _, _) =>
b match {
case BIND_ONCE => 1
case BIND_FLEX => edgeAritySelect(n, n.oStar, 0)
case BIND_QUERY => n.oStar
case BIND_STAR => 0
}
}.sum
// Resolve star depends on the node subclass to implement the algorithm for this.
val (iStar, oStar) = resolveStar(iKnown, oKnown, iStars, oStars)
// Cumulative list of resolved outward binding range starting points
val oSum = oBindings.map { case (_, n, b, _, _) =>
b match {
case BIND_ONCE => 1
case BIND_FLEX => edgeAritySelect(n, oStar, n.iStar)
case BIND_QUERY => n.iStar
case BIND_STAR => oStar
}
}.scanLeft(0)(_ + _)
// Cumulative list of resolved inward binding range starting points
val iSum = iBindings.map { case (_, n, b, _, _) =>
b match {
case BIND_ONCE => 1
case BIND_FLEX => edgeAritySelect(n, n.oStar, iStar)
case BIND_QUERY => n.oStar
case BIND_STAR => iStar
}
}.scanLeft(0)(_ + _)
// Create ranges for each binding based on the running sums and return
// those along with resolved values for the star operations.
(oSum.init.zip(oSum.tail), iSum.init.zip(iSum.tail), oStar, iStar)
} catch {
case c: StarCycleException => throw c.copy(loop = context +: c.loop)
}
}
/** Sequence of inward ports.
*
* This should be called after all star bindings are resolved.
*
* Each element is: `j` Port index of this binding in the Node's [[oPortMapping]] on the other side of the binding.
* `n` Instance of inward node. `p` View of [[Parameters]] where this connection was made. `s` Source info where this
* connection was made in the source code.
*/
protected[diplomacy] lazy val oDirectPorts: Seq[(Int, InwardNode[DO, UO, BO], Parameters, SourceInfo)] =
oBindings.flatMap { case (i, n, _, p, s) =>
// for each binding operator in this node, look at what it connects to
val (start, end) = n.iPortMapping(i)
(start until end).map { j => (j, n, p, s) }
}
/** Sequence of outward ports.
*
* This should be called after all star bindings are resolved.
*
* `j` Port index of this binding in the Node's [[oPortMapping]] on the other side of the binding. `n` Instance of
* outward node. `p` View of [[Parameters]] where this connection was made. `s` [[SourceInfo]] where this connection
* was made in the source code.
*/
protected[diplomacy] lazy val iDirectPorts: Seq[(Int, OutwardNode[DI, UI, BI], Parameters, SourceInfo)] =
iBindings.flatMap { case (i, n, _, p, s) =>
// query this port index range of this node in the other side of node.
val (start, end) = n.oPortMapping(i)
(start until end).map { j => (j, n, p, s) }
}
// Ephemeral nodes ( which have non-None iForward/oForward) have in_degree = out_degree
// Thus, there must exist an Eulerian path and the below algorithms terminate
@scala.annotation.tailrec
private def oTrace(
tuple: (Int, InwardNode[DO, UO, BO], Parameters, SourceInfo)
): (Int, InwardNode[DO, UO, BO], Parameters, SourceInfo) = tuple match {
case (i, n, p, s) => n.iForward(i) match {
case None => (i, n, p, s)
case Some((j, m)) => oTrace((j, m, p, s))
}
}
@scala.annotation.tailrec
private def iTrace(
tuple: (Int, OutwardNode[DI, UI, BI], Parameters, SourceInfo)
): (Int, OutwardNode[DI, UI, BI], Parameters, SourceInfo) = tuple match {
case (i, n, p, s) => n.oForward(i) match {
case None => (i, n, p, s)
case Some((j, m)) => iTrace((j, m, p, s))
}
}
/** Final output ports after all stars and port forwarding (e.g. [[EphemeralNode]]s) have been resolved.
*
* Each Port is a tuple of:
* - Numeric index of this binding in the [[InwardNode]] on the other end.
* - [[InwardNode]] on the other end of this binding.
* - A view of [[Parameters]] where the binding occurred.
* - [[SourceInfo]] for source-level error reporting.
*/
lazy val oPorts: Seq[(Int, InwardNode[DO, UO, BO], Parameters, SourceInfo)] = oDirectPorts.map(oTrace)
/** Final input ports after all stars and port forwarding (e.g. [[EphemeralNode]]s) have been resolved.
*
* Each Port is a tuple of:
* - numeric index of this binding in [[OutwardNode]] on the other end.
* - [[OutwardNode]] on the other end of this binding.
* - a view of [[Parameters]] where the binding occurred.
* - [[SourceInfo]] for source-level error reporting.
*/
lazy val iPorts: Seq[(Int, OutwardNode[DI, UI, BI], Parameters, SourceInfo)] = iDirectPorts.map(iTrace)
private var oParamsCycleGuard = false
protected[diplomacy] lazy val diParams: Seq[DI] = iPorts.map { case (i, n, _, _) => n.doParams(i) }
protected[diplomacy] lazy val doParams: Seq[DO] = {
try {
if (oParamsCycleGuard) throw DownwardCycleException()
oParamsCycleGuard = true
val o = mapParamsD(oPorts.size, diParams)
require(
o.size == oPorts.size,
s"""Diplomacy has detected a problem with your graph:
|At the following node, the number of outward ports should equal the number of produced outward parameters.
|$context
|$connectedPortsInfo
|Downstreamed inward parameters: [${diParams.mkString(",")}]
|Produced outward parameters: [${o.mkString(",")}]
|""".stripMargin
)
o.map(outer.mixO(_, this))
} catch {
case c: DownwardCycleException => throw c.copy(loop = context +: c.loop)
}
}
private var iParamsCycleGuard = false
protected[diplomacy] lazy val uoParams: Seq[UO] = oPorts.map { case (o, n, _, _) => n.uiParams(o) }
protected[diplomacy] lazy val uiParams: Seq[UI] = {
try {
if (iParamsCycleGuard) throw UpwardCycleException()
iParamsCycleGuard = true
val i = mapParamsU(iPorts.size, uoParams)
require(
i.size == iPorts.size,
s"""Diplomacy has detected a problem with your graph:
|At the following node, the number of inward ports should equal the number of produced inward parameters.
|$context
|$connectedPortsInfo
|Upstreamed outward parameters: [${uoParams.mkString(",")}]
|Produced inward parameters: [${i.mkString(",")}]
|""".stripMargin
)
i.map(inner.mixI(_, this))
} catch {
case c: UpwardCycleException => throw c.copy(loop = context +: c.loop)
}
}
/** Outward edge parameters. */
protected[diplomacy] lazy val edgesOut: Seq[EO] =
(oPorts.zip(doParams)).map { case ((i, n, p, s), o) => outer.edgeO(o, n.uiParams(i), p, s) }
/** Inward edge parameters. */
protected[diplomacy] lazy val edgesIn: Seq[EI] =
(iPorts.zip(uiParams)).map { case ((o, n, p, s), i) => inner.edgeI(n.doParams(o), i, p, s) }
/** A tuple of the input edge parameters and output edge parameters for the edges bound to this node.
*
* If you need to access to the edges of a foreign Node, use this method (in/out create bundles).
*/
lazy val edges: Edges[EI, EO] = Edges(edgesIn, edgesOut)
/** Create actual Wires corresponding to the Bundles parameterized by the outward edges of this node. */
protected[diplomacy] lazy val bundleOut: Seq[BO] = edgesOut.map { e =>
val x = Wire(outer.bundleO(e)).suggestName(s"${valName.value}Out")
// TODO: Don't care unconnected forwarded diplomatic signals for compatibility issue,
// In the future, we should add an option to decide whether allowing unconnected in the LazyModule
x := DontCare
x
}
/** Create actual Wires corresponding to the Bundles parameterized by the inward edges of this node. */
protected[diplomacy] lazy val bundleIn: Seq[BI] = edgesIn.map { e =>
val x = Wire(inner.bundleI(e)).suggestName(s"${valName.value}In")
// TODO: Don't care unconnected forwarded diplomatic signals for compatibility issue,
// In the future, we should add an option to decide whether allowing unconnected in the LazyModule
x := DontCare
x
}
private def emptyDanglesOut: Seq[Dangle] = oPorts.zipWithIndex.map { case ((j, n, _, _), i) =>
Dangle(
source = HalfEdge(serial, i),
sink = HalfEdge(n.serial, j),
flipped = false,
name = wirePrefix + "out",
dataOpt = None
)
}
private def emptyDanglesIn: Seq[Dangle] = iPorts.zipWithIndex.map { case ((j, n, _, _), i) =>
Dangle(
source = HalfEdge(n.serial, j),
sink = HalfEdge(serial, i),
flipped = true,
name = wirePrefix + "in",
dataOpt = None
)
}
/** Create the [[Dangle]]s which describe the connections from this node output to other nodes inputs. */
protected[diplomacy] def danglesOut: Seq[Dangle] = emptyDanglesOut.zipWithIndex.map { case (d, i) =>
d.copy(dataOpt = Some(bundleOut(i)))
}
/** Create the [[Dangle]]s which describe the connections from this node input from other nodes outputs. */
protected[diplomacy] def danglesIn: Seq[Dangle] = emptyDanglesIn.zipWithIndex.map { case (d, i) =>
d.copy(dataOpt = Some(bundleIn(i)))
}
private[diplomacy] var instantiated = false
/** Gather Bundle and edge parameters of outward ports.
*
* Accessors to the result of negotiation to be used within [[LazyModuleImp]] Code. Should only be used within
* [[LazyModuleImp]] code or after its instantiation has completed.
*/
def out: Seq[(BO, EO)] = {
require(
instantiated,
s"$name.out should not be called until after instantiation of its parent LazyModule.module has begun"
)
bundleOut.zip(edgesOut)
}
/** Gather Bundle and edge parameters of inward ports.
*
* Accessors to the result of negotiation to be used within [[LazyModuleImp]] Code. Should only be used within
* [[LazyModuleImp]] code or after its instantiation has completed.
*/
def in: Seq[(BI, EI)] = {
require(
instantiated,
s"$name.in should not be called until after instantiation of its parent LazyModule.module has begun"
)
bundleIn.zip(edgesIn)
}
/** Actually instantiate this node during [[LazyModuleImp]] evaluation. Mark that it's safe to use the Bundle wires,
* instantiate monitors on all input ports if appropriate, and return all the dangles of this node.
*/
protected[diplomacy] def instantiate(): Seq[Dangle] = {
instantiated = true
if (!circuitIdentity) {
(iPorts.zip(in)).foreach { case ((_, _, p, _), (b, e)) => if (p(MonitorsEnabled)) inner.monitor(b, e) }
}
danglesOut ++ danglesIn
}
protected[diplomacy] def cloneDangles(): Seq[Dangle] = emptyDanglesOut ++ emptyDanglesIn
/** Connects the outward part of a node with the inward part of this node. */
protected[diplomacy] def bind(
h: OutwardNode[DI, UI, BI],
binding: NodeBinding
)(
implicit p: Parameters,
sourceInfo: SourceInfo
): Unit = {
val x = this // x := y
val y = h
sourceLine(sourceInfo, " at ", "")
val i = x.iPushed
val o = y.oPushed
y.oPush(
i,
x,
binding match {
case BIND_ONCE => BIND_ONCE
case BIND_FLEX => BIND_FLEX
case BIND_STAR => BIND_QUERY
case BIND_QUERY => BIND_STAR
}
)
x.iPush(o, y, binding)
}
/* Metadata for printing the node graph. */
def inputs: Seq[(OutwardNode[DI, UI, BI], RenderedEdge)] = (iPorts.zip(edgesIn)).map { case ((_, n, p, _), e) =>
val re = inner.render(e)
(n, re.copy(flipped = re.flipped != p(RenderFlipped)))
}
/** Metadata for printing the node graph */
def outputs: Seq[(InwardNode[DO, UO, BO], RenderedEdge)] = oPorts.map { case (i, n, _, _) => (n, n.inputs(i)._2) }
}
| module TLInterconnectCoupler_cbus_to_l2_ctrl( // @[LazyModuleImp.scala:138:7]
input clock, // @[LazyModuleImp.scala:138:7]
input reset, // @[LazyModuleImp.scala:138:7]
input auto_buffer_out_a_ready, // @[LazyModuleImp.scala:107:25]
output auto_buffer_out_a_valid, // @[LazyModuleImp.scala:107:25]
output [2:0] auto_buffer_out_a_bits_opcode, // @[LazyModuleImp.scala:107:25]
output [2:0] auto_buffer_out_a_bits_param, // @[LazyModuleImp.scala:107:25]
output [1:0] auto_buffer_out_a_bits_size, // @[LazyModuleImp.scala:107:25]
output [13:0] auto_buffer_out_a_bits_source, // @[LazyModuleImp.scala:107:25]
output [25:0] auto_buffer_out_a_bits_address, // @[LazyModuleImp.scala:107:25]
output [7:0] auto_buffer_out_a_bits_mask, // @[LazyModuleImp.scala:107:25]
output [63:0] auto_buffer_out_a_bits_data, // @[LazyModuleImp.scala:107:25]
output auto_buffer_out_a_bits_corrupt, // @[LazyModuleImp.scala:107:25]
output auto_buffer_out_d_ready, // @[LazyModuleImp.scala:107:25]
input auto_buffer_out_d_valid, // @[LazyModuleImp.scala:107:25]
input [2:0] auto_buffer_out_d_bits_opcode, // @[LazyModuleImp.scala:107:25]
input [1:0] auto_buffer_out_d_bits_size, // @[LazyModuleImp.scala:107:25]
input [13:0] auto_buffer_out_d_bits_source, // @[LazyModuleImp.scala:107:25]
input [63:0] auto_buffer_out_d_bits_data, // @[LazyModuleImp.scala:107:25]
output auto_tl_in_a_ready, // @[LazyModuleImp.scala:107:25]
input auto_tl_in_a_valid, // @[LazyModuleImp.scala:107:25]
input [2:0] auto_tl_in_a_bits_opcode, // @[LazyModuleImp.scala:107:25]
input [2:0] auto_tl_in_a_bits_param, // @[LazyModuleImp.scala:107:25]
input [2:0] auto_tl_in_a_bits_size, // @[LazyModuleImp.scala:107:25]
input [9:0] auto_tl_in_a_bits_source, // @[LazyModuleImp.scala:107:25]
input [25:0] auto_tl_in_a_bits_address, // @[LazyModuleImp.scala:107:25]
input [7:0] auto_tl_in_a_bits_mask, // @[LazyModuleImp.scala:107:25]
input [63:0] auto_tl_in_a_bits_data, // @[LazyModuleImp.scala:107:25]
input auto_tl_in_a_bits_corrupt, // @[LazyModuleImp.scala:107:25]
input auto_tl_in_d_ready, // @[LazyModuleImp.scala:107:25]
output auto_tl_in_d_valid, // @[LazyModuleImp.scala:107:25]
output [2:0] auto_tl_in_d_bits_opcode, // @[LazyModuleImp.scala:107:25]
output [1:0] auto_tl_in_d_bits_param, // @[LazyModuleImp.scala:107:25]
output [2:0] auto_tl_in_d_bits_size, // @[LazyModuleImp.scala:107:25]
output [9:0] auto_tl_in_d_bits_source, // @[LazyModuleImp.scala:107:25]
output auto_tl_in_d_bits_sink, // @[LazyModuleImp.scala:107:25]
output auto_tl_in_d_bits_denied, // @[LazyModuleImp.scala:107:25]
output [63:0] auto_tl_in_d_bits_data, // @[LazyModuleImp.scala:107:25]
output auto_tl_in_d_bits_corrupt // @[LazyModuleImp.scala:107:25]
);
wire tlOut_d_valid; // @[MixedNode.scala:542:17]
wire tlOut_d_bits_corrupt; // @[MixedNode.scala:542:17]
wire [63:0] tlOut_d_bits_data; // @[MixedNode.scala:542:17]
wire tlOut_d_bits_denied; // @[MixedNode.scala:542:17]
wire tlOut_d_bits_sink; // @[MixedNode.scala:542:17]
wire [9:0] tlOut_d_bits_source; // @[MixedNode.scala:542:17]
wire [2:0] tlOut_d_bits_size; // @[MixedNode.scala:542:17]
wire [1:0] tlOut_d_bits_param; // @[MixedNode.scala:542:17]
wire [2:0] tlOut_d_bits_opcode; // @[MixedNode.scala:542:17]
wire tlOut_a_ready; // @[MixedNode.scala:542:17]
wire _fragmenter_auto_anon_out_a_valid; // @[Fragmenter.scala:345:34]
wire [2:0] _fragmenter_auto_anon_out_a_bits_opcode; // @[Fragmenter.scala:345:34]
wire [2:0] _fragmenter_auto_anon_out_a_bits_param; // @[Fragmenter.scala:345:34]
wire [1:0] _fragmenter_auto_anon_out_a_bits_size; // @[Fragmenter.scala:345:34]
wire [13:0] _fragmenter_auto_anon_out_a_bits_source; // @[Fragmenter.scala:345:34]
wire [25:0] _fragmenter_auto_anon_out_a_bits_address; // @[Fragmenter.scala:345:34]
wire [7:0] _fragmenter_auto_anon_out_a_bits_mask; // @[Fragmenter.scala:345:34]
wire [63:0] _fragmenter_auto_anon_out_a_bits_data; // @[Fragmenter.scala:345:34]
wire _fragmenter_auto_anon_out_a_bits_corrupt; // @[Fragmenter.scala:345:34]
wire _fragmenter_auto_anon_out_d_ready; // @[Fragmenter.scala:345:34]
wire _buffer_auto_in_a_ready; // @[Buffer.scala:75:28]
wire _buffer_auto_in_d_valid; // @[Buffer.scala:75:28]
wire [2:0] _buffer_auto_in_d_bits_opcode; // @[Buffer.scala:75:28]
wire [1:0] _buffer_auto_in_d_bits_param; // @[Buffer.scala:75:28]
wire [1:0] _buffer_auto_in_d_bits_size; // @[Buffer.scala:75:28]
wire [13:0] _buffer_auto_in_d_bits_source; // @[Buffer.scala:75:28]
wire _buffer_auto_in_d_bits_sink; // @[Buffer.scala:75:28]
wire _buffer_auto_in_d_bits_denied; // @[Buffer.scala:75:28]
wire [63:0] _buffer_auto_in_d_bits_data; // @[Buffer.scala:75:28]
wire _buffer_auto_in_d_bits_corrupt; // @[Buffer.scala:75:28]
wire auto_buffer_out_a_ready_0 = auto_buffer_out_a_ready; // @[LazyModuleImp.scala:138:7]
wire auto_buffer_out_d_valid_0 = auto_buffer_out_d_valid; // @[LazyModuleImp.scala:138:7]
wire [2:0] auto_buffer_out_d_bits_opcode_0 = auto_buffer_out_d_bits_opcode; // @[LazyModuleImp.scala:138:7]
wire [1:0] auto_buffer_out_d_bits_size_0 = auto_buffer_out_d_bits_size; // @[LazyModuleImp.scala:138:7]
wire [13:0] auto_buffer_out_d_bits_source_0 = auto_buffer_out_d_bits_source; // @[LazyModuleImp.scala:138:7]
wire [63:0] auto_buffer_out_d_bits_data_0 = auto_buffer_out_d_bits_data; // @[LazyModuleImp.scala:138:7]
wire auto_tl_in_a_valid_0 = auto_tl_in_a_valid; // @[LazyModuleImp.scala:138:7]
wire [2:0] auto_tl_in_a_bits_opcode_0 = auto_tl_in_a_bits_opcode; // @[LazyModuleImp.scala:138:7]
wire [2:0] auto_tl_in_a_bits_param_0 = auto_tl_in_a_bits_param; // @[LazyModuleImp.scala:138:7]
wire [2:0] auto_tl_in_a_bits_size_0 = auto_tl_in_a_bits_size; // @[LazyModuleImp.scala:138:7]
wire [9:0] auto_tl_in_a_bits_source_0 = auto_tl_in_a_bits_source; // @[LazyModuleImp.scala:138:7]
wire [25:0] auto_tl_in_a_bits_address_0 = auto_tl_in_a_bits_address; // @[LazyModuleImp.scala:138:7]
wire [7:0] auto_tl_in_a_bits_mask_0 = auto_tl_in_a_bits_mask; // @[LazyModuleImp.scala:138:7]
wire [63:0] auto_tl_in_a_bits_data_0 = auto_tl_in_a_bits_data; // @[LazyModuleImp.scala:138:7]
wire auto_tl_in_a_bits_corrupt_0 = auto_tl_in_a_bits_corrupt; // @[LazyModuleImp.scala:138:7]
wire auto_tl_in_d_ready_0 = auto_tl_in_d_ready; // @[LazyModuleImp.scala:138:7]
wire auto_buffer_out_d_bits_sink = 1'h0; // @[Buffer.scala:75:28]
wire auto_buffer_out_d_bits_denied = 1'h0; // @[Buffer.scala:75:28]
wire auto_buffer_out_d_bits_corrupt = 1'h0; // @[Buffer.scala:75:28]
wire [1:0] auto_buffer_out_d_bits_param = 2'h0; // @[Buffer.scala:75:28]
wire tlIn_a_ready; // @[MixedNode.scala:551:17]
wire tlIn_a_valid = auto_tl_in_a_valid_0; // @[MixedNode.scala:551:17]
wire [2:0] tlIn_a_bits_opcode = auto_tl_in_a_bits_opcode_0; // @[MixedNode.scala:551:17]
wire [2:0] tlIn_a_bits_param = auto_tl_in_a_bits_param_0; // @[MixedNode.scala:551:17]
wire [2:0] tlIn_a_bits_size = auto_tl_in_a_bits_size_0; // @[MixedNode.scala:551:17]
wire [9:0] tlIn_a_bits_source = auto_tl_in_a_bits_source_0; // @[MixedNode.scala:551:17]
wire [25:0] tlIn_a_bits_address = auto_tl_in_a_bits_address_0; // @[MixedNode.scala:551:17]
wire [7:0] tlIn_a_bits_mask = auto_tl_in_a_bits_mask_0; // @[MixedNode.scala:551:17]
wire [63:0] tlIn_a_bits_data = auto_tl_in_a_bits_data_0; // @[MixedNode.scala:551:17]
wire tlIn_a_bits_corrupt = auto_tl_in_a_bits_corrupt_0; // @[MixedNode.scala:551:17]
wire tlIn_d_ready = auto_tl_in_d_ready_0; // @[MixedNode.scala:551:17]
wire tlIn_d_valid; // @[MixedNode.scala:551:17]
wire [2:0] tlIn_d_bits_opcode; // @[MixedNode.scala:551:17]
wire [1:0] tlIn_d_bits_param; // @[MixedNode.scala:551:17]
wire [2:0] tlIn_d_bits_size; // @[MixedNode.scala:551:17]
wire [9:0] tlIn_d_bits_source; // @[MixedNode.scala:551:17]
wire tlIn_d_bits_sink; // @[MixedNode.scala:551:17]
wire tlIn_d_bits_denied; // @[MixedNode.scala:551:17]
wire [63:0] tlIn_d_bits_data; // @[MixedNode.scala:551:17]
wire tlIn_d_bits_corrupt; // @[MixedNode.scala:551:17]
wire [2:0] auto_buffer_out_a_bits_opcode_0; // @[LazyModuleImp.scala:138:7]
wire [2:0] auto_buffer_out_a_bits_param_0; // @[LazyModuleImp.scala:138:7]
wire [1:0] auto_buffer_out_a_bits_size_0; // @[LazyModuleImp.scala:138:7]
wire [13:0] auto_buffer_out_a_bits_source_0; // @[LazyModuleImp.scala:138:7]
wire [25:0] auto_buffer_out_a_bits_address_0; // @[LazyModuleImp.scala:138:7]
wire [7:0] auto_buffer_out_a_bits_mask_0; // @[LazyModuleImp.scala:138:7]
wire [63:0] auto_buffer_out_a_bits_data_0; // @[LazyModuleImp.scala:138:7]
wire auto_buffer_out_a_bits_corrupt_0; // @[LazyModuleImp.scala:138:7]
wire auto_buffer_out_a_valid_0; // @[LazyModuleImp.scala:138:7]
wire auto_buffer_out_d_ready_0; // @[LazyModuleImp.scala:138:7]
wire auto_tl_in_a_ready_0; // @[LazyModuleImp.scala:138:7]
wire [2:0] auto_tl_in_d_bits_opcode_0; // @[LazyModuleImp.scala:138:7]
wire [1:0] auto_tl_in_d_bits_param_0; // @[LazyModuleImp.scala:138:7]
wire [2:0] auto_tl_in_d_bits_size_0; // @[LazyModuleImp.scala:138:7]
wire [9:0] auto_tl_in_d_bits_source_0; // @[LazyModuleImp.scala:138:7]
wire auto_tl_in_d_bits_sink_0; // @[LazyModuleImp.scala:138:7]
wire auto_tl_in_d_bits_denied_0; // @[LazyModuleImp.scala:138:7]
wire [63:0] auto_tl_in_d_bits_data_0; // @[LazyModuleImp.scala:138:7]
wire auto_tl_in_d_bits_corrupt_0; // @[LazyModuleImp.scala:138:7]
wire auto_tl_in_d_valid_0; // @[LazyModuleImp.scala:138:7]
assign tlIn_a_ready = tlOut_a_ready; // @[MixedNode.scala:542:17, :551:17]
assign tlIn_d_valid = tlOut_d_valid; // @[MixedNode.scala:542:17, :551:17]
assign tlIn_d_bits_opcode = tlOut_d_bits_opcode; // @[MixedNode.scala:542:17, :551:17]
assign tlIn_d_bits_param = tlOut_d_bits_param; // @[MixedNode.scala:542:17, :551:17]
assign tlIn_d_bits_size = tlOut_d_bits_size; // @[MixedNode.scala:542:17, :551:17]
assign tlIn_d_bits_source = tlOut_d_bits_source; // @[MixedNode.scala:542:17, :551:17]
assign tlIn_d_bits_sink = tlOut_d_bits_sink; // @[MixedNode.scala:542:17, :551:17]
assign tlIn_d_bits_denied = tlOut_d_bits_denied; // @[MixedNode.scala:542:17, :551:17]
assign tlIn_d_bits_data = tlOut_d_bits_data; // @[MixedNode.scala:542:17, :551:17]
wire [2:0] tlOut_a_bits_opcode; // @[MixedNode.scala:542:17]
wire [2:0] tlOut_a_bits_param; // @[MixedNode.scala:542:17]
wire [2:0] tlOut_a_bits_size; // @[MixedNode.scala:542:17]
wire [9:0] tlOut_a_bits_source; // @[MixedNode.scala:542:17]
wire [25:0] tlOut_a_bits_address; // @[MixedNode.scala:542:17]
wire [7:0] tlOut_a_bits_mask; // @[MixedNode.scala:542:17]
wire [63:0] tlOut_a_bits_data; // @[MixedNode.scala:542:17]
wire tlOut_a_bits_corrupt; // @[MixedNode.scala:542:17]
assign tlIn_d_bits_corrupt = tlOut_d_bits_corrupt; // @[MixedNode.scala:542:17, :551:17]
wire tlOut_a_valid; // @[MixedNode.scala:542:17]
wire tlOut_d_ready; // @[MixedNode.scala:542:17]
assign auto_tl_in_a_ready_0 = tlIn_a_ready; // @[MixedNode.scala:551:17]
assign tlOut_a_valid = tlIn_a_valid; // @[MixedNode.scala:542:17, :551:17]
assign tlOut_a_bits_opcode = tlIn_a_bits_opcode; // @[MixedNode.scala:542:17, :551:17]
assign tlOut_a_bits_param = tlIn_a_bits_param; // @[MixedNode.scala:542:17, :551:17]
assign tlOut_a_bits_size = tlIn_a_bits_size; // @[MixedNode.scala:542:17, :551:17]
assign tlOut_a_bits_source = tlIn_a_bits_source; // @[MixedNode.scala:542:17, :551:17]
assign tlOut_a_bits_address = tlIn_a_bits_address; // @[MixedNode.scala:542:17, :551:17]
assign tlOut_a_bits_mask = tlIn_a_bits_mask; // @[MixedNode.scala:542:17, :551:17]
assign tlOut_a_bits_data = tlIn_a_bits_data; // @[MixedNode.scala:542:17, :551:17]
assign tlOut_a_bits_corrupt = tlIn_a_bits_corrupt; // @[MixedNode.scala:542:17, :551:17]
assign tlOut_d_ready = tlIn_d_ready; // @[MixedNode.scala:542:17, :551:17]
assign auto_tl_in_d_valid_0 = tlIn_d_valid; // @[MixedNode.scala:551:17]
assign auto_tl_in_d_bits_opcode_0 = tlIn_d_bits_opcode; // @[MixedNode.scala:551:17]
assign auto_tl_in_d_bits_param_0 = tlIn_d_bits_param; // @[MixedNode.scala:551:17]
assign auto_tl_in_d_bits_size_0 = tlIn_d_bits_size; // @[MixedNode.scala:551:17]
assign auto_tl_in_d_bits_source_0 = tlIn_d_bits_source; // @[MixedNode.scala:551:17]
assign auto_tl_in_d_bits_sink_0 = tlIn_d_bits_sink; // @[MixedNode.scala:551:17]
assign auto_tl_in_d_bits_denied_0 = tlIn_d_bits_denied; // @[MixedNode.scala:551:17]
assign auto_tl_in_d_bits_data_0 = tlIn_d_bits_data; // @[MixedNode.scala:551:17]
assign auto_tl_in_d_bits_corrupt_0 = tlIn_d_bits_corrupt; // @[MixedNode.scala:551:17]
TLBuffer_a26d64s14k1z2u buffer ( // @[Buffer.scala:75:28]
.clock (clock),
.reset (reset),
.auto_in_a_ready (_buffer_auto_in_a_ready),
.auto_in_a_valid (_fragmenter_auto_anon_out_a_valid), // @[Fragmenter.scala:345:34]
.auto_in_a_bits_opcode (_fragmenter_auto_anon_out_a_bits_opcode), // @[Fragmenter.scala:345:34]
.auto_in_a_bits_param (_fragmenter_auto_anon_out_a_bits_param), // @[Fragmenter.scala:345:34]
.auto_in_a_bits_size (_fragmenter_auto_anon_out_a_bits_size), // @[Fragmenter.scala:345:34]
.auto_in_a_bits_source (_fragmenter_auto_anon_out_a_bits_source), // @[Fragmenter.scala:345:34]
.auto_in_a_bits_address (_fragmenter_auto_anon_out_a_bits_address), // @[Fragmenter.scala:345:34]
.auto_in_a_bits_mask (_fragmenter_auto_anon_out_a_bits_mask), // @[Fragmenter.scala:345:34]
.auto_in_a_bits_data (_fragmenter_auto_anon_out_a_bits_data), // @[Fragmenter.scala:345:34]
.auto_in_a_bits_corrupt (_fragmenter_auto_anon_out_a_bits_corrupt), // @[Fragmenter.scala:345:34]
.auto_in_d_ready (_fragmenter_auto_anon_out_d_ready), // @[Fragmenter.scala:345:34]
.auto_in_d_valid (_buffer_auto_in_d_valid),
.auto_in_d_bits_opcode (_buffer_auto_in_d_bits_opcode),
.auto_in_d_bits_param (_buffer_auto_in_d_bits_param),
.auto_in_d_bits_size (_buffer_auto_in_d_bits_size),
.auto_in_d_bits_source (_buffer_auto_in_d_bits_source),
.auto_in_d_bits_sink (_buffer_auto_in_d_bits_sink),
.auto_in_d_bits_denied (_buffer_auto_in_d_bits_denied),
.auto_in_d_bits_data (_buffer_auto_in_d_bits_data),
.auto_in_d_bits_corrupt (_buffer_auto_in_d_bits_corrupt),
.auto_out_a_ready (auto_buffer_out_a_ready_0), // @[LazyModuleImp.scala:138:7]
.auto_out_a_valid (auto_buffer_out_a_valid_0),
.auto_out_a_bits_opcode (auto_buffer_out_a_bits_opcode_0),
.auto_out_a_bits_param (auto_buffer_out_a_bits_param_0),
.auto_out_a_bits_size (auto_buffer_out_a_bits_size_0),
.auto_out_a_bits_source (auto_buffer_out_a_bits_source_0),
.auto_out_a_bits_address (auto_buffer_out_a_bits_address_0),
.auto_out_a_bits_mask (auto_buffer_out_a_bits_mask_0),
.auto_out_a_bits_data (auto_buffer_out_a_bits_data_0),
.auto_out_a_bits_corrupt (auto_buffer_out_a_bits_corrupt_0),
.auto_out_d_ready (auto_buffer_out_d_ready_0),
.auto_out_d_valid (auto_buffer_out_d_valid_0), // @[LazyModuleImp.scala:138:7]
.auto_out_d_bits_opcode (auto_buffer_out_d_bits_opcode_0), // @[LazyModuleImp.scala:138:7]
.auto_out_d_bits_size (auto_buffer_out_d_bits_size_0), // @[LazyModuleImp.scala:138:7]
.auto_out_d_bits_source (auto_buffer_out_d_bits_source_0), // @[LazyModuleImp.scala:138:7]
.auto_out_d_bits_data (auto_buffer_out_d_bits_data_0) // @[LazyModuleImp.scala:138:7]
); // @[Buffer.scala:75:28]
TLFragmenter_LLCCtrl fragmenter ( // @[Fragmenter.scala:345:34]
.clock (clock),
.reset (reset),
.auto_anon_in_a_ready (tlOut_a_ready),
.auto_anon_in_a_valid (tlOut_a_valid), // @[MixedNode.scala:542:17]
.auto_anon_in_a_bits_opcode (tlOut_a_bits_opcode), // @[MixedNode.scala:542:17]
.auto_anon_in_a_bits_param (tlOut_a_bits_param), // @[MixedNode.scala:542:17]
.auto_anon_in_a_bits_size (tlOut_a_bits_size), // @[MixedNode.scala:542:17]
.auto_anon_in_a_bits_source (tlOut_a_bits_source), // @[MixedNode.scala:542:17]
.auto_anon_in_a_bits_address (tlOut_a_bits_address), // @[MixedNode.scala:542:17]
.auto_anon_in_a_bits_mask (tlOut_a_bits_mask), // @[MixedNode.scala:542:17]
.auto_anon_in_a_bits_data (tlOut_a_bits_data), // @[MixedNode.scala:542:17]
.auto_anon_in_a_bits_corrupt (tlOut_a_bits_corrupt), // @[MixedNode.scala:542:17]
.auto_anon_in_d_ready (tlOut_d_ready), // @[MixedNode.scala:542:17]
.auto_anon_in_d_valid (tlOut_d_valid),
.auto_anon_in_d_bits_opcode (tlOut_d_bits_opcode),
.auto_anon_in_d_bits_param (tlOut_d_bits_param),
.auto_anon_in_d_bits_size (tlOut_d_bits_size),
.auto_anon_in_d_bits_source (tlOut_d_bits_source),
.auto_anon_in_d_bits_sink (tlOut_d_bits_sink),
.auto_anon_in_d_bits_denied (tlOut_d_bits_denied),
.auto_anon_in_d_bits_data (tlOut_d_bits_data),
.auto_anon_in_d_bits_corrupt (tlOut_d_bits_corrupt),
.auto_anon_out_a_ready (_buffer_auto_in_a_ready), // @[Buffer.scala:75:28]
.auto_anon_out_a_valid (_fragmenter_auto_anon_out_a_valid),
.auto_anon_out_a_bits_opcode (_fragmenter_auto_anon_out_a_bits_opcode),
.auto_anon_out_a_bits_param (_fragmenter_auto_anon_out_a_bits_param),
.auto_anon_out_a_bits_size (_fragmenter_auto_anon_out_a_bits_size),
.auto_anon_out_a_bits_source (_fragmenter_auto_anon_out_a_bits_source),
.auto_anon_out_a_bits_address (_fragmenter_auto_anon_out_a_bits_address),
.auto_anon_out_a_bits_mask (_fragmenter_auto_anon_out_a_bits_mask),
.auto_anon_out_a_bits_data (_fragmenter_auto_anon_out_a_bits_data),
.auto_anon_out_a_bits_corrupt (_fragmenter_auto_anon_out_a_bits_corrupt),
.auto_anon_out_d_ready (_fragmenter_auto_anon_out_d_ready),
.auto_anon_out_d_valid (_buffer_auto_in_d_valid), // @[Buffer.scala:75:28]
.auto_anon_out_d_bits_opcode (_buffer_auto_in_d_bits_opcode), // @[Buffer.scala:75:28]
.auto_anon_out_d_bits_param (_buffer_auto_in_d_bits_param), // @[Buffer.scala:75:28]
.auto_anon_out_d_bits_size (_buffer_auto_in_d_bits_size), // @[Buffer.scala:75:28]
.auto_anon_out_d_bits_source (_buffer_auto_in_d_bits_source), // @[Buffer.scala:75:28]
.auto_anon_out_d_bits_sink (_buffer_auto_in_d_bits_sink), // @[Buffer.scala:75:28]
.auto_anon_out_d_bits_denied (_buffer_auto_in_d_bits_denied), // @[Buffer.scala:75:28]
.auto_anon_out_d_bits_data (_buffer_auto_in_d_bits_data), // @[Buffer.scala:75:28]
.auto_anon_out_d_bits_corrupt (_buffer_auto_in_d_bits_corrupt) // @[Buffer.scala:75:28]
); // @[Fragmenter.scala:345:34]
assign auto_buffer_out_a_valid = auto_buffer_out_a_valid_0; // @[LazyModuleImp.scala:138:7]
assign auto_buffer_out_a_bits_opcode = auto_buffer_out_a_bits_opcode_0; // @[LazyModuleImp.scala:138:7]
assign auto_buffer_out_a_bits_param = auto_buffer_out_a_bits_param_0; // @[LazyModuleImp.scala:138:7]
assign auto_buffer_out_a_bits_size = auto_buffer_out_a_bits_size_0; // @[LazyModuleImp.scala:138:7]
assign auto_buffer_out_a_bits_source = auto_buffer_out_a_bits_source_0; // @[LazyModuleImp.scala:138:7]
assign auto_buffer_out_a_bits_address = auto_buffer_out_a_bits_address_0; // @[LazyModuleImp.scala:138:7]
assign auto_buffer_out_a_bits_mask = auto_buffer_out_a_bits_mask_0; // @[LazyModuleImp.scala:138:7]
assign auto_buffer_out_a_bits_data = auto_buffer_out_a_bits_data_0; // @[LazyModuleImp.scala:138:7]
assign auto_buffer_out_a_bits_corrupt = auto_buffer_out_a_bits_corrupt_0; // @[LazyModuleImp.scala:138:7]
assign auto_buffer_out_d_ready = auto_buffer_out_d_ready_0; // @[LazyModuleImp.scala:138:7]
assign auto_tl_in_a_ready = auto_tl_in_a_ready_0; // @[LazyModuleImp.scala:138:7]
assign auto_tl_in_d_valid = auto_tl_in_d_valid_0; // @[LazyModuleImp.scala:138:7]
assign auto_tl_in_d_bits_opcode = auto_tl_in_d_bits_opcode_0; // @[LazyModuleImp.scala:138:7]
assign auto_tl_in_d_bits_param = auto_tl_in_d_bits_param_0; // @[LazyModuleImp.scala:138:7]
assign auto_tl_in_d_bits_size = auto_tl_in_d_bits_size_0; // @[LazyModuleImp.scala:138:7]
assign auto_tl_in_d_bits_source = auto_tl_in_d_bits_source_0; // @[LazyModuleImp.scala:138:7]
assign auto_tl_in_d_bits_sink = auto_tl_in_d_bits_sink_0; // @[LazyModuleImp.scala:138:7]
assign auto_tl_in_d_bits_denied = auto_tl_in_d_bits_denied_0; // @[LazyModuleImp.scala:138:7]
assign auto_tl_in_d_bits_data = auto_tl_in_d_bits_data_0; // @[LazyModuleImp.scala:138:7]
assign auto_tl_in_d_bits_corrupt = auto_tl_in_d_bits_corrupt_0; // @[LazyModuleImp.scala:138:7]
endmodule |
Generate the Verilog code corresponding to the following Chisel files.
File Tilelink.scala:
package constellation.protocol
import chisel3._
import chisel3.util._
import constellation.channel._
import constellation.noc._
import constellation.soc.{CanAttachToGlobalNoC}
import org.chipsalliance.cde.config._
import freechips.rocketchip.diplomacy._
import freechips.rocketchip.util._
import freechips.rocketchip.tilelink._
import scala.collection.immutable.{ListMap}
trait TLFieldHelper {
def getBodyFields(b: TLChannel): Seq[Data] = b match {
case b: TLBundleA => Seq(b.mask, b.data, b.corrupt)
case b: TLBundleB => Seq(b.mask, b.data, b.corrupt)
case b: TLBundleC => Seq( b.data, b.corrupt)
case b: TLBundleD => Seq( b.data, b.corrupt)
case b: TLBundleE => Seq()
}
def getConstFields(b: TLChannel): Seq[Data] = b match {
case b: TLBundleA => Seq(b.opcode, b.param, b.size, b.source, b.address, b.user, b.echo )
case b: TLBundleB => Seq(b.opcode, b.param, b.size, b.source, b.address )
case b: TLBundleC => Seq(b.opcode, b.param, b.size, b.source, b.address, b.user, b.echo )
case b: TLBundleD => Seq(b.opcode, b.param, b.size, b.source, b.user, b.echo, b.sink, b.denied)
case b: TLBundleE => Seq( b.sink )
}
def minTLPayloadWidth(b: TLChannel): Int = Seq(getBodyFields(b), getConstFields(b)).map(_.map(_.getWidth).sum).max
def minTLPayloadWidth(bs: Seq[TLChannel]): Int = bs.map(b => minTLPayloadWidth(b)).max
def minTLPayloadWidth(b: TLBundle): Int = minTLPayloadWidth(Seq(b.a, b.b, b.c, b.d, b.e).map(_.bits))
}
class TLMasterToNoC(
edgeIn: TLEdge, edgesOut: Seq[TLEdge],
sourceStart: Int, sourceSize: Int,
wideBundle: TLBundleParameters,
slaveToEgressOffset: Int => Int,
flitWidth: Int
)(implicit p: Parameters) extends Module {
val io = IO(new Bundle {
val tilelink = Flipped(new TLBundle(wideBundle))
val flits = new Bundle {
val a = Decoupled(new IngressFlit(flitWidth))
val b = Flipped(Decoupled(new EgressFlit(flitWidth)))
val c = Decoupled(new IngressFlit(flitWidth))
val d = Flipped(Decoupled(new EgressFlit(flitWidth)))
val e = Decoupled(new IngressFlit(flitWidth))
}
})
val a = Module(new TLAToNoC(edgeIn, edgesOut, wideBundle, (i) => slaveToEgressOffset(i) + 0, sourceStart))
val b = Module(new TLBFromNoC(edgeIn, wideBundle, sourceSize))
val c = Module(new TLCToNoC(edgeIn, edgesOut, wideBundle, (i) => slaveToEgressOffset(i) + 1, sourceStart))
val d = Module(new TLDFromNoC(edgeIn, wideBundle, sourceSize))
val e = Module(new TLEToNoC(edgeIn, edgesOut, wideBundle, (i) => slaveToEgressOffset(i) + 2))
a.io.protocol <> io.tilelink.a
io.tilelink.b <> b.io.protocol
c.io.protocol <> io.tilelink.c
io.tilelink.d <> d.io.protocol
e.io.protocol <> io.tilelink.e
io.flits.a <> a.io.flit
b.io.flit <> io.flits.b
io.flits.c <> c.io.flit
d.io.flit <> io.flits.d
io.flits.e <> e.io.flit
}
class TLMasterACDToNoC(
edgeIn: TLEdge, edgesOut: Seq[TLEdge],
sourceStart: Int, sourceSize: Int,
wideBundle: TLBundleParameters,
slaveToEgressOffset: Int => Int,
flitWidth: Int
)(implicit p: Parameters) extends Module {
val io = IO(new Bundle {
val tilelink = Flipped(new TLBundle(wideBundle))
val flits = new Bundle {
val a = Decoupled(new IngressFlit(flitWidth))
val c = Decoupled(new IngressFlit(flitWidth))
val d = Flipped(Decoupled(new EgressFlit(flitWidth)))
}
})
io.tilelink := DontCare
val a = Module(new TLAToNoC(edgeIn, edgesOut, wideBundle, (i) => slaveToEgressOffset(i) + 0, sourceStart))
val c = Module(new TLCToNoC(edgeIn, edgesOut, wideBundle, (i) => slaveToEgressOffset(i) + 1, sourceStart))
val d = Module(new TLDFromNoC(edgeIn, wideBundle, sourceSize))
a.io.protocol <> io.tilelink.a
c.io.protocol <> io.tilelink.c
io.tilelink.d <> d.io.protocol
io.flits.a <> a.io.flit
io.flits.c <> c.io.flit
d.io.flit <> io.flits.d
}
class TLMasterBEToNoC(
edgeIn: TLEdge, edgesOut: Seq[TLEdge],
sourceStart: Int, sourceSize: Int,
wideBundle: TLBundleParameters,
slaveToEgressOffset: Int => Int,
flitWidth: Int
)(implicit p: Parameters) extends Module {
val io = IO(new Bundle {
val tilelink = Flipped(new TLBundle(wideBundle))
val flits = new Bundle {
val b = Flipped(Decoupled(new EgressFlit(flitWidth)))
val e = Decoupled(new IngressFlit(flitWidth))
}
})
io.tilelink := DontCare
val b = Module(new TLBFromNoC(edgeIn, wideBundle, sourceSize))
val e = Module(new TLEToNoC(edgeIn, edgesOut, wideBundle, (i) => slaveToEgressOffset(i) + 0))
io.tilelink.b <> b.io.protocol
e.io.protocol <> io.tilelink.e
b.io.flit <> io.flits.b
io.flits.e <> e.io.flit
}
class TLSlaveToNoC(
edgeOut: TLEdge, edgesIn: Seq[TLEdge],
sourceStart: Int, sourceSize: Int,
wideBundle: TLBundleParameters,
masterToEgressOffset: Int => Int,
flitWidth: Int
)(implicit p: Parameters) extends Module {
val io = IO(new Bundle {
val tilelink = new TLBundle(wideBundle)
val flits = new Bundle {
val a = Flipped(Decoupled(new EgressFlit(flitWidth)))
val b = Decoupled(new IngressFlit(flitWidth))
val c = Flipped(Decoupled(new EgressFlit(flitWidth)))
val d = Decoupled(new IngressFlit(flitWidth))
val e = Flipped(Decoupled(new EgressFlit(flitWidth)))
}
})
val a = Module(new TLAFromNoC(edgeOut, wideBundle))
val b = Module(new TLBToNoC(edgeOut, edgesIn, wideBundle, (i) => masterToEgressOffset(i) + 0))
val c = Module(new TLCFromNoC(edgeOut, wideBundle))
val d = Module(new TLDToNoC(edgeOut, edgesIn, wideBundle, (i) => masterToEgressOffset(i) + 1, sourceStart))
val e = Module(new TLEFromNoC(edgeOut, wideBundle, sourceSize))
io.tilelink.a <> a.io.protocol
b.io.protocol <> io.tilelink.b
io.tilelink.c <> c.io.protocol
d.io.protocol <> io.tilelink.d
io.tilelink.e <> e.io.protocol
a.io.flit <> io.flits.a
io.flits.b <> b.io.flit
c.io.flit <> io.flits.c
io.flits.d <> d.io.flit
e.io.flit <> io.flits.e
}
class TLSlaveACDToNoC(
edgeOut: TLEdge, edgesIn: Seq[TLEdge],
sourceStart: Int, sourceSize: Int,
wideBundle: TLBundleParameters,
masterToEgressOffset: Int => Int,
flitWidth: Int
)(implicit p: Parameters) extends Module {
val io = IO(new Bundle {
val tilelink = new TLBundle(wideBundle)
val flits = new Bundle {
val a = Flipped(Decoupled(new EgressFlit(flitWidth)))
val c = Flipped(Decoupled(new EgressFlit(flitWidth)))
val d = Decoupled(new IngressFlit(flitWidth))
}
})
io.tilelink := DontCare
val a = Module(new TLAFromNoC(edgeOut, wideBundle))
val c = Module(new TLCFromNoC(edgeOut, wideBundle))
val d = Module(new TLDToNoC(edgeOut, edgesIn, wideBundle, (i) => masterToEgressOffset(i) + 0, sourceStart))
io.tilelink.a <> a.io.protocol
io.tilelink.c <> c.io.protocol
d.io.protocol <> io.tilelink.d
a.io.flit <> io.flits.a
c.io.flit <> io.flits.c
io.flits.d <> d.io.flit
}
class TLSlaveBEToNoC(
edgeOut: TLEdge, edgesIn: Seq[TLEdge],
sourceStart: Int, sourceSize: Int,
wideBundle: TLBundleParameters,
masterToEgressOffset: Int => Int,
flitWidth: Int
)(implicit p: Parameters) extends Module {
val io = IO(new Bundle {
val tilelink = new TLBundle(wideBundle)
val flits = new Bundle {
val b = Decoupled(new IngressFlit(flitWidth))
val e = Flipped(Decoupled(new EgressFlit(flitWidth)))
}
})
io.tilelink := DontCare
val b = Module(new TLBToNoC(edgeOut, edgesIn, wideBundle, (i) => masterToEgressOffset(i) + 0))
val e = Module(new TLEFromNoC(edgeOut, wideBundle, sourceSize))
b.io.protocol <> io.tilelink.b
io.tilelink.e <> e.io.protocol
io.flits.b <> b.io.flit
e.io.flit <> io.flits.e
}
class TileLinkInterconnectInterface(edgesIn: Seq[TLEdge], edgesOut: Seq[TLEdge])(implicit val p: Parameters) extends Bundle {
val in = MixedVec(edgesIn.map { e => Flipped(new TLBundle(e.bundle)) })
val out = MixedVec(edgesOut.map { e => new TLBundle(e.bundle) })
}
trait TileLinkProtocolParams extends ProtocolParams with TLFieldHelper {
def edgesIn: Seq[TLEdge]
def edgesOut: Seq[TLEdge]
def edgeInNodes: Seq[Int]
def edgeOutNodes: Seq[Int]
require(edgesIn.size == edgeInNodes.size && edgesOut.size == edgeOutNodes.size)
def wideBundle = TLBundleParameters.union(edgesIn.map(_.bundle) ++ edgesOut.map(_.bundle))
def genBundle = new TLBundle(wideBundle)
def inputIdRanges = TLXbar.mapInputIds(edgesIn.map(_.client))
def outputIdRanges = TLXbar.mapOutputIds(edgesOut.map(_.manager))
val vNetBlocking = (blocker: Int, blockee: Int) => blocker < blockee
def genIO()(implicit p: Parameters): Data = new TileLinkInterconnectInterface(edgesIn, edgesOut)
}
object TLConnect {
def apply[T <: TLBundleBase](l: DecoupledIO[T], r: DecoupledIO[T]) = {
l.valid := r.valid
r.ready := l.ready
l.bits.squeezeAll.waiveAll :<>= r.bits.squeezeAll.waiveAll
}
}
// BEGIN: TileLinkProtocolParams
case class TileLinkABCDEProtocolParams(
edgesIn: Seq[TLEdge],
edgesOut: Seq[TLEdge],
edgeInNodes: Seq[Int],
edgeOutNodes: Seq[Int]
) extends TileLinkProtocolParams {
// END: TileLinkProtocolParams
val minPayloadWidth = minTLPayloadWidth(new TLBundle(wideBundle))
val ingressNodes = (edgeInNodes.map(u => Seq.fill(3) (u)) ++ edgeOutNodes.map(u => Seq.fill (2) {u})).flatten
val egressNodes = (edgeInNodes.map(u => Seq.fill(2) (u)) ++ edgeOutNodes.map(u => Seq.fill (3) {u})).flatten
val nVirtualNetworks = 5
val flows = edgesIn.zipWithIndex.map { case (edgeIn, ii) => edgesOut.zipWithIndex.map { case (edgeOut, oi) =>
val reachable = edgeIn.client.clients.exists { c => edgeOut.manager.managers.exists { m =>
c.visibility.exists { ca => m.address.exists { ma =>
ca.overlaps(ma)
}}
}}
val probe = edgeIn.client.anySupportProbe && edgeOut.manager.managers.exists(_.regionType >= RegionType.TRACKED)
val release = edgeIn.client.anySupportProbe && edgeOut.manager.anySupportAcquireB
( (if (reachable) Some(FlowParams(ii * 3 + 0 , oi * 3 + 0 + edgesIn.size * 2, 4)) else None) ++ // A
(if (probe ) Some(FlowParams(oi * 2 + 0 + edgesIn.size * 3, ii * 2 + 0 , 3)) else None) ++ // B
(if (release ) Some(FlowParams(ii * 3 + 1 , oi * 3 + 1 + edgesIn.size * 2, 2)) else None) ++ // C
(if (reachable) Some(FlowParams(oi * 2 + 1 + edgesIn.size * 3, ii * 2 + 1 , 1)) else None) ++ // D
(if (release ) Some(FlowParams(ii * 3 + 2 , oi * 3 + 2 + edgesIn.size * 2, 0)) else None)) // E
}}.flatten.flatten
def interface(terminals: NoCTerminalIO,
ingressOffset: Int, egressOffset: Int, protocol: Data)(implicit p: Parameters) = {
val ingresses = terminals.ingress
val egresses = terminals.egress
protocol match { case protocol: TileLinkInterconnectInterface => {
edgesIn.zipWithIndex.map { case (e,i) =>
val nif_master = Module(new TLMasterToNoC(
e, edgesOut, inputIdRanges(i).start, inputIdRanges(i).size,
wideBundle,
(s) => s * 3 + edgesIn.size * 2 + egressOffset,
minPayloadWidth
))
nif_master.io.tilelink := DontCare
nif_master.io.tilelink.a.valid := false.B
nif_master.io.tilelink.c.valid := false.B
nif_master.io.tilelink.e.valid := false.B
TLConnect(nif_master.io.tilelink.a, protocol.in(i).a)
TLConnect(protocol.in(i).d, nif_master.io.tilelink.d)
if (protocol.in(i).params.hasBCE) {
TLConnect(protocol.in(i).b, nif_master.io.tilelink.b)
TLConnect(nif_master.io.tilelink.c, protocol.in(i).c)
TLConnect(nif_master.io.tilelink.e, protocol.in(i).e)
}
ingresses(i * 3 + 0).flit <> nif_master.io.flits.a
ingresses(i * 3 + 1).flit <> nif_master.io.flits.c
ingresses(i * 3 + 2).flit <> nif_master.io.flits.e
nif_master.io.flits.b <> egresses(i * 2 + 0).flit
nif_master.io.flits.d <> egresses(i * 2 + 1).flit
}
edgesOut.zipWithIndex.map { case (e,i) =>
val nif_slave = Module(new TLSlaveToNoC(
e, edgesIn, outputIdRanges(i).start, outputIdRanges(i).size,
wideBundle,
(s) => s * 2 + egressOffset,
minPayloadWidth
))
nif_slave.io.tilelink := DontCare
nif_slave.io.tilelink.b.valid := false.B
nif_slave.io.tilelink.d.valid := false.B
TLConnect(protocol.out(i).a, nif_slave.io.tilelink.a)
TLConnect(nif_slave.io.tilelink.d, protocol.out(i).d)
if (protocol.out(i).params.hasBCE) {
TLConnect(nif_slave.io.tilelink.b, protocol.out(i).b)
TLConnect(protocol.out(i).c, nif_slave.io.tilelink.c)
TLConnect(protocol.out(i).e, nif_slave.io.tilelink.e)
}
ingresses(i * 2 + 0 + edgesIn.size * 3).flit <> nif_slave.io.flits.b
ingresses(i * 2 + 1 + edgesIn.size * 3).flit <> nif_slave.io.flits.d
nif_slave.io.flits.a <> egresses(i * 3 + 0 + edgesIn.size * 2).flit
nif_slave.io.flits.c <> egresses(i * 3 + 1 + edgesIn.size * 2).flit
nif_slave.io.flits.e <> egresses(i * 3 + 2 + edgesIn.size * 2).flit
}
} }
}
}
case class TileLinkACDProtocolParams(
edgesIn: Seq[TLEdge],
edgesOut: Seq[TLEdge],
edgeInNodes: Seq[Int],
edgeOutNodes: Seq[Int]) extends TileLinkProtocolParams {
val minPayloadWidth = minTLPayloadWidth(Seq(genBundle.a, genBundle.c, genBundle.d).map(_.bits))
val ingressNodes = (edgeInNodes.map(u => Seq.fill(2) (u)) ++ edgeOutNodes.map(u => Seq.fill (1) {u})).flatten
val egressNodes = (edgeInNodes.map(u => Seq.fill(1) (u)) ++ edgeOutNodes.map(u => Seq.fill (2) {u})).flatten
val nVirtualNetworks = 3
val flows = edgesIn.zipWithIndex.map { case (edgeIn, ii) => edgesOut.zipWithIndex.map { case (edgeOut, oi) =>
val reachable = edgeIn.client.clients.exists { c => edgeOut.manager.managers.exists { m =>
c.visibility.exists { ca => m.address.exists { ma =>
ca.overlaps(ma)
}}
}}
val release = edgeIn.client.anySupportProbe && edgeOut.manager.anySupportAcquireB
( (if (reachable) Some(FlowParams(ii * 2 + 0 , oi * 2 + 0 + edgesIn.size * 1, 2)) else None) ++ // A
(if (release ) Some(FlowParams(ii * 2 + 1 , oi * 2 + 1 + edgesIn.size * 1, 1)) else None) ++ // C
(if (reachable) Some(FlowParams(oi * 1 + 0 + edgesIn.size * 2, ii * 1 + 0 , 0)) else None)) // D
}}.flatten.flatten
def interface(terminals: NoCTerminalIO,
ingressOffset: Int, egressOffset: Int, protocol: Data)(implicit p: Parameters) = {
val ingresses = terminals.ingress
val egresses = terminals.egress
protocol match { case protocol: TileLinkInterconnectInterface => {
protocol := DontCare
edgesIn.zipWithIndex.map { case (e,i) =>
val nif_master_acd = Module(new TLMasterACDToNoC(
e, edgesOut, inputIdRanges(i).start, inputIdRanges(i).size,
wideBundle,
(s) => s * 2 + edgesIn.size * 1 + egressOffset,
minPayloadWidth
))
nif_master_acd.io.tilelink := DontCare
nif_master_acd.io.tilelink.a.valid := false.B
nif_master_acd.io.tilelink.c.valid := false.B
nif_master_acd.io.tilelink.e.valid := false.B
TLConnect(nif_master_acd.io.tilelink.a, protocol.in(i).a)
TLConnect(protocol.in(i).d, nif_master_acd.io.tilelink.d)
if (protocol.in(i).params.hasBCE) {
TLConnect(nif_master_acd.io.tilelink.c, protocol.in(i).c)
}
ingresses(i * 2 + 0).flit <> nif_master_acd.io.flits.a
ingresses(i * 2 + 1).flit <> nif_master_acd.io.flits.c
nif_master_acd.io.flits.d <> egresses(i * 1 + 0).flit
}
edgesOut.zipWithIndex.map { case (e,i) =>
val nif_slave_acd = Module(new TLSlaveACDToNoC(
e, edgesIn, outputIdRanges(i).start, outputIdRanges(i).size,
wideBundle,
(s) => s * 1 + egressOffset,
minPayloadWidth
))
nif_slave_acd.io.tilelink := DontCare
nif_slave_acd.io.tilelink.b.valid := false.B
nif_slave_acd.io.tilelink.d.valid := false.B
TLConnect(protocol.out(i).a, nif_slave_acd.io.tilelink.a)
TLConnect(nif_slave_acd.io.tilelink.d, protocol.out(i).d)
if (protocol.out(i).params.hasBCE) {
TLConnect(protocol.out(i).c, nif_slave_acd.io.tilelink.c)
}
ingresses(i * 1 + 0 + edgesIn.size * 2).flit <> nif_slave_acd.io.flits.d
nif_slave_acd.io.flits.a <> egresses(i * 2 + 0 + edgesIn.size * 1).flit
nif_slave_acd.io.flits.c <> egresses(i * 2 + 1 + edgesIn.size * 1).flit
}
}}
}
}
case class TileLinkBEProtocolParams(
edgesIn: Seq[TLEdge],
edgesOut: Seq[TLEdge],
edgeInNodes: Seq[Int],
edgeOutNodes: Seq[Int]) extends TileLinkProtocolParams {
val minPayloadWidth = minTLPayloadWidth(Seq(genBundle.b, genBundle.e).map(_.bits))
val ingressNodes = (edgeInNodes.map(u => Seq.fill(1) (u)) ++ edgeOutNodes.map(u => Seq.fill (1) {u})).flatten
val egressNodes = (edgeInNodes.map(u => Seq.fill(1) (u)) ++ edgeOutNodes.map(u => Seq.fill (1) {u})).flatten
val nVirtualNetworks = 2
val flows = edgesIn.zipWithIndex.map { case (edgeIn, ii) => edgesOut.zipWithIndex.map { case (edgeOut, oi) =>
val probe = edgeIn.client.anySupportProbe && edgeOut.manager.managers.exists(_.regionType >= RegionType.TRACKED)
val release = edgeIn.client.anySupportProbe && edgeOut.manager.anySupportAcquireB
( (if (probe ) Some(FlowParams(oi * 1 + 0 + edgesIn.size * 1, ii * 1 + 0 , 1)) else None) ++ // B
(if (release ) Some(FlowParams(ii * 1 + 0 , oi * 1 + 0 + edgesIn.size * 1, 0)) else None)) // E
}}.flatten.flatten
def interface(terminals: NoCTerminalIO,
ingressOffset: Int, egressOffset: Int, protocol: Data)(implicit p: Parameters) = {
val ingresses = terminals.ingress
val egresses = terminals.egress
protocol match { case protocol: TileLinkInterconnectInterface => {
protocol := DontCare
edgesIn.zipWithIndex.map { case (e,i) =>
val nif_master_be = Module(new TLMasterBEToNoC(
e, edgesOut, inputIdRanges(i).start, inputIdRanges(i).size,
wideBundle,
(s) => s * 1 + edgesIn.size * 1 + egressOffset,
minPayloadWidth
))
nif_master_be.io.tilelink := DontCare
nif_master_be.io.tilelink.a.valid := false.B
nif_master_be.io.tilelink.c.valid := false.B
nif_master_be.io.tilelink.e.valid := false.B
if (protocol.in(i).params.hasBCE) {
TLConnect(protocol.in(i).b, nif_master_be.io.tilelink.b)
TLConnect(nif_master_be.io.tilelink.e, protocol.in(i).e)
}
ingresses(i * 1 + 0).flit <> nif_master_be.io.flits.e
nif_master_be.io.flits.b <> egresses(i * 1 + 0).flit
}
edgesOut.zipWithIndex.map { case (e,i) =>
val nif_slave_be = Module(new TLSlaveBEToNoC(
e, edgesIn, outputIdRanges(i).start, outputIdRanges(i).size,
wideBundle,
(s) => s * 1 + egressOffset,
minPayloadWidth
))
nif_slave_be.io.tilelink := DontCare
nif_slave_be.io.tilelink.b.valid := false.B
nif_slave_be.io.tilelink.d.valid := false.B
if (protocol.out(i).params.hasBCE) {
TLConnect(protocol.out(i).e, nif_slave_be.io.tilelink.e)
TLConnect(nif_slave_be.io.tilelink.b, protocol.out(i).b)
}
ingresses(i * 1 + 0 + edgesIn.size * 1).flit <> nif_slave_be.io.flits.b
nif_slave_be.io.flits.e <> egresses(i * 1 + 0 + edgesIn.size * 1).flit
}
}}
}
}
abstract class TLNoCLike(implicit p: Parameters) extends LazyModule {
val node = new TLNexusNode(
clientFn = { seq =>
seq(0).v1copy(
echoFields = BundleField.union(seq.flatMap(_.echoFields)),
requestFields = BundleField.union(seq.flatMap(_.requestFields)),
responseKeys = seq.flatMap(_.responseKeys).distinct,
minLatency = seq.map(_.minLatency).min,
clients = (TLXbar.mapInputIds(seq) zip seq) flatMap { case (range, port) =>
port.clients map { client => client.v1copy(
sourceId = client.sourceId.shift(range.start)
)}
}
)
},
managerFn = { seq =>
val fifoIdFactory = TLXbar.relabeler()
seq(0).v1copy(
responseFields = BundleField.union(seq.flatMap(_.responseFields)),
requestKeys = seq.flatMap(_.requestKeys).distinct,
minLatency = seq.map(_.minLatency).min,
endSinkId = TLXbar.mapOutputIds(seq).map(_.end).max,
managers = seq.flatMap { port =>
require (port.beatBytes == seq(0).beatBytes,
s"TLNoC (data widths don't match: ${port.managers.map(_.name)} has ${port.beatBytes}B vs ${seq(0).managers.map(_.name)} has ${seq(0).beatBytes}B")
// TileLink NoC does not preserve FIFO-ness, masters to this NoC should instantiate FIFOFixers
port.managers map { manager => manager.v1copy(fifoId = None) }
}
)
}
)
}
abstract class TLNoCModuleImp(outer: LazyModule) extends LazyModuleImp(outer) {
val edgesIn: Seq[TLEdge]
val edgesOut: Seq[TLEdge]
val nodeMapping: DiplomaticNetworkNodeMapping
val nocName: String
lazy val inNames = nodeMapping.genUniqueName(edgesIn.map(_.master.masters.map(_.name)))
lazy val outNames = nodeMapping.genUniqueName(edgesOut.map(_.slave.slaves.map(_.name)))
lazy val edgeInNodes = nodeMapping.getNodesIn(inNames)
lazy val edgeOutNodes = nodeMapping.getNodesOut(outNames)
def printNodeMappings() {
println(s"Constellation: TLNoC $nocName inwards mapping:")
for ((n, i) <- inNames zip edgeInNodes) {
val node = i.map(_.toString).getOrElse("X")
println(s" $node <- $n")
}
println(s"Constellation: TLNoC $nocName outwards mapping:")
for ((n, i) <- outNames zip edgeOutNodes) {
val node = i.map(_.toString).getOrElse("X")
println(s" $node <- $n")
}
}
}
trait TLNoCParams
// Instantiates a private TLNoC. Replaces the TLXbar
// BEGIN: TLNoCParams
case class SimpleTLNoCParams(
nodeMappings: DiplomaticNetworkNodeMapping,
nocParams: NoCParams = NoCParams(),
) extends TLNoCParams
class TLNoC(params: SimpleTLNoCParams, name: String = "test", inlineNoC: Boolean = false)(implicit p: Parameters) extends TLNoCLike {
// END: TLNoCParams
override def shouldBeInlined = inlineNoC
lazy val module = new TLNoCModuleImp(this) {
val (io_in, edgesIn) = node.in.unzip
val (io_out, edgesOut) = node.out.unzip
val nodeMapping = params.nodeMappings
val nocName = name
printNodeMappings()
val protocolParams = TileLinkABCDEProtocolParams(
edgesIn = edgesIn,
edgesOut = edgesOut,
edgeInNodes = edgeInNodes.flatten,
edgeOutNodes = edgeOutNodes.flatten
)
val noc = Module(new ProtocolNoC(ProtocolNoCParams(
params.nocParams.copy(hasCtrl = false, nocName=name, inlineNoC = inlineNoC),
Seq(protocolParams),
inlineNoC = inlineNoC
)))
noc.io.protocol(0) match {
case protocol: TileLinkInterconnectInterface => {
(protocol.in zip io_in).foreach { case (l,r) => l <> r }
(io_out zip protocol.out).foreach { case (l,r) => l <> r }
}
}
}
}
case class SplitACDxBETLNoCParams(
nodeMappings: DiplomaticNetworkNodeMapping,
acdNoCParams: NoCParams = NoCParams(),
beNoCParams: NoCParams = NoCParams(),
beDivision: Int = 2
) extends TLNoCParams
class TLSplitACDxBENoC(params: SplitACDxBETLNoCParams, name: String = "test", inlineNoC: Boolean = false)(implicit p: Parameters) extends TLNoCLike {
override def shouldBeInlined = inlineNoC
lazy val module = new TLNoCModuleImp(this) {
val (io_in, edgesIn) = node.in.unzip
val (io_out, edgesOut) = node.out.unzip
val nodeMapping = params.nodeMappings
val nocName = name
printNodeMappings()
val acdProtocolParams = TileLinkACDProtocolParams(
edgesIn = edgesIn,
edgesOut = edgesOut,
edgeInNodes = edgeInNodes.flatten,
edgeOutNodes = edgeOutNodes.flatten
)
val beProtocolParams = TileLinkBEProtocolParams(
edgesIn = edgesIn,
edgesOut = edgesOut,
edgeInNodes = edgeInNodes.flatten,
edgeOutNodes = edgeOutNodes.flatten
)
val acd_noc = Module(new ProtocolNoC(ProtocolNoCParams(
params.acdNoCParams.copy(hasCtrl = false, nocName=s"${name}_acd", inlineNoC = inlineNoC),
Seq(acdProtocolParams),
inlineNoC = inlineNoC
)))
val be_noc = Module(new ProtocolNoC(ProtocolNoCParams(
params.beNoCParams.copy(hasCtrl = false, nocName=s"${name}_be", inlineNoC = inlineNoC),
Seq(beProtocolParams),
widthDivision = params.beDivision,
inlineNoC = inlineNoC
)))
acd_noc.io.protocol(0) match { case protocol: TileLinkInterconnectInterface => {
(protocol.in zip io_in).foreach { case (l,r) =>
l := DontCare
l.a <> r.a
l.c <> r.c
l.d <> r.d
}
(io_out zip protocol.out).foreach { case (l,r) =>
r := DontCare
l.a <> r.a
l.c <> r.c
l.d <> r.d
}
}}
be_noc.io.protocol(0) match { case protocol: TileLinkInterconnectInterface => {
(protocol.in zip io_in).foreach { case (l,r) =>
l := DontCare
l.b <> r.b
l.e <> r.e
}
(io_out zip protocol.out).foreach { case (l,r) =>
r := DontCare
l.b <> r.b
l.e <> r.e
}
}}
}
}
case class GlobalTLNoCParams(
nodeMappings: DiplomaticNetworkNodeMapping
) extends TLNoCParams
// Maps this interconnect onto a global NoC
class TLGlobalNoC(params: GlobalTLNoCParams, name: String = "test")(implicit p: Parameters) extends TLNoCLike {
lazy val module = new TLNoCModuleImp(this) with CanAttachToGlobalNoC {
val (io_in, edgesIn) = node.in.unzip
val (io_out, edgesOut) = node.out.unzip
val nodeMapping = params.nodeMappings
val nocName = name
val protocolParams = TileLinkABCDEProtocolParams(
edgesIn = edgesIn,
edgesOut = edgesOut,
edgeInNodes = edgeInNodes.flatten,
edgeOutNodes = edgeOutNodes.flatten
)
printNodeMappings()
val io_global = IO(Flipped(protocolParams.genIO()))
io_global match {
case protocol: TileLinkInterconnectInterface => {
(protocol.in zip io_in).foreach { case (l,r) => l <> r }
(io_out zip protocol.out).foreach { case (l,r) => l <> r }
}
}
}
}
| module TLMasterACDToNoC_2( // @[Tilelink.scala:72:7]
input clock, // @[Tilelink.scala:72:7]
input reset, // @[Tilelink.scala:72:7]
output io_tilelink_a_ready, // @[Tilelink.scala:79:14]
input io_tilelink_a_valid, // @[Tilelink.scala:79:14]
input [2:0] io_tilelink_a_bits_opcode, // @[Tilelink.scala:79:14]
input [2:0] io_tilelink_a_bits_param, // @[Tilelink.scala:79:14]
input [3:0] io_tilelink_a_bits_size, // @[Tilelink.scala:79:14]
input [6:0] io_tilelink_a_bits_source, // @[Tilelink.scala:79:14]
input [31:0] io_tilelink_a_bits_address, // @[Tilelink.scala:79:14]
input [15:0] io_tilelink_a_bits_mask, // @[Tilelink.scala:79:14]
input [127:0] io_tilelink_a_bits_data, // @[Tilelink.scala:79:14]
input io_tilelink_a_bits_corrupt, // @[Tilelink.scala:79:14]
output io_tilelink_c_ready, // @[Tilelink.scala:79:14]
input io_tilelink_c_valid, // @[Tilelink.scala:79:14]
input [2:0] io_tilelink_c_bits_opcode, // @[Tilelink.scala:79:14]
input [2:0] io_tilelink_c_bits_param, // @[Tilelink.scala:79:14]
input [3:0] io_tilelink_c_bits_size, // @[Tilelink.scala:79:14]
input [6:0] io_tilelink_c_bits_source, // @[Tilelink.scala:79:14]
input [31:0] io_tilelink_c_bits_address, // @[Tilelink.scala:79:14]
input [127:0] io_tilelink_c_bits_data, // @[Tilelink.scala:79:14]
input io_tilelink_c_bits_corrupt, // @[Tilelink.scala:79:14]
input io_tilelink_d_ready, // @[Tilelink.scala:79:14]
output io_tilelink_d_valid, // @[Tilelink.scala:79:14]
output [2:0] io_tilelink_d_bits_opcode, // @[Tilelink.scala:79:14]
output [1:0] io_tilelink_d_bits_param, // @[Tilelink.scala:79:14]
output [3:0] io_tilelink_d_bits_size, // @[Tilelink.scala:79:14]
output [6:0] io_tilelink_d_bits_source, // @[Tilelink.scala:79:14]
output [5:0] io_tilelink_d_bits_sink, // @[Tilelink.scala:79:14]
output io_tilelink_d_bits_denied, // @[Tilelink.scala:79:14]
output [127:0] io_tilelink_d_bits_data, // @[Tilelink.scala:79:14]
output io_tilelink_d_bits_corrupt, // @[Tilelink.scala:79:14]
input io_flits_a_ready, // @[Tilelink.scala:79:14]
output io_flits_a_valid, // @[Tilelink.scala:79:14]
output io_flits_a_bits_head, // @[Tilelink.scala:79:14]
output io_flits_a_bits_tail, // @[Tilelink.scala:79:14]
output [144:0] io_flits_a_bits_payload, // @[Tilelink.scala:79:14]
output [4:0] io_flits_a_bits_egress_id, // @[Tilelink.scala:79:14]
input io_flits_c_ready, // @[Tilelink.scala:79:14]
output io_flits_c_valid, // @[Tilelink.scala:79:14]
output io_flits_c_bits_head, // @[Tilelink.scala:79:14]
output io_flits_c_bits_tail, // @[Tilelink.scala:79:14]
output [144:0] io_flits_c_bits_payload, // @[Tilelink.scala:79:14]
output [4:0] io_flits_c_bits_egress_id, // @[Tilelink.scala:79:14]
output io_flits_d_ready, // @[Tilelink.scala:79:14]
input io_flits_d_valid, // @[Tilelink.scala:79:14]
input io_flits_d_bits_head, // @[Tilelink.scala:79:14]
input io_flits_d_bits_tail, // @[Tilelink.scala:79:14]
input [144:0] io_flits_d_bits_payload // @[Tilelink.scala:79:14]
);
wire [128:0] _c_io_flit_bits_payload; // @[Tilelink.scala:89:17]
TLAToNoC_2 a ( // @[Tilelink.scala:88:17]
.clock (clock),
.reset (reset),
.io_protocol_ready (io_tilelink_a_ready),
.io_protocol_valid (io_tilelink_a_valid),
.io_protocol_bits_opcode (io_tilelink_a_bits_opcode),
.io_protocol_bits_param (io_tilelink_a_bits_param),
.io_protocol_bits_size (io_tilelink_a_bits_size),
.io_protocol_bits_source (io_tilelink_a_bits_source),
.io_protocol_bits_address (io_tilelink_a_bits_address),
.io_protocol_bits_mask (io_tilelink_a_bits_mask),
.io_protocol_bits_data (io_tilelink_a_bits_data),
.io_protocol_bits_corrupt (io_tilelink_a_bits_corrupt),
.io_flit_ready (io_flits_a_ready),
.io_flit_valid (io_flits_a_valid),
.io_flit_bits_head (io_flits_a_bits_head),
.io_flit_bits_tail (io_flits_a_bits_tail),
.io_flit_bits_payload (io_flits_a_bits_payload),
.io_flit_bits_egress_id (io_flits_a_bits_egress_id)
); // @[Tilelink.scala:88:17]
TLCToNoC_2 c ( // @[Tilelink.scala:89:17]
.clock (clock),
.reset (reset),
.io_protocol_ready (io_tilelink_c_ready),
.io_protocol_valid (io_tilelink_c_valid),
.io_protocol_bits_opcode (io_tilelink_c_bits_opcode),
.io_protocol_bits_param (io_tilelink_c_bits_param),
.io_protocol_bits_size (io_tilelink_c_bits_size),
.io_protocol_bits_source (io_tilelink_c_bits_source),
.io_protocol_bits_address (io_tilelink_c_bits_address),
.io_protocol_bits_data (io_tilelink_c_bits_data),
.io_protocol_bits_corrupt (io_tilelink_c_bits_corrupt),
.io_flit_ready (io_flits_c_ready),
.io_flit_valid (io_flits_c_valid),
.io_flit_bits_head (io_flits_c_bits_head),
.io_flit_bits_tail (io_flits_c_bits_tail),
.io_flit_bits_payload (_c_io_flit_bits_payload),
.io_flit_bits_egress_id (io_flits_c_bits_egress_id)
); // @[Tilelink.scala:89:17]
TLDFromNoC_1 d ( // @[Tilelink.scala:90:17]
.clock (clock),
.reset (reset),
.io_protocol_ready (io_tilelink_d_ready),
.io_protocol_valid (io_tilelink_d_valid),
.io_protocol_bits_opcode (io_tilelink_d_bits_opcode),
.io_protocol_bits_param (io_tilelink_d_bits_param),
.io_protocol_bits_size (io_tilelink_d_bits_size),
.io_protocol_bits_source (io_tilelink_d_bits_source),
.io_protocol_bits_sink (io_tilelink_d_bits_sink),
.io_protocol_bits_denied (io_tilelink_d_bits_denied),
.io_protocol_bits_data (io_tilelink_d_bits_data),
.io_protocol_bits_corrupt (io_tilelink_d_bits_corrupt),
.io_flit_ready (io_flits_d_ready),
.io_flit_valid (io_flits_d_valid),
.io_flit_bits_head (io_flits_d_bits_head),
.io_flit_bits_tail (io_flits_d_bits_tail),
.io_flit_bits_payload (io_flits_d_bits_payload[128:0]) // @[Tilelink.scala:97:14]
); // @[Tilelink.scala:90:17]
assign io_flits_c_bits_payload = {16'h0, _c_io_flit_bits_payload}; // @[Tilelink.scala:72:7, :89:17, :96:14]
endmodule |
Generate the Verilog code corresponding to the following Chisel files.
File UnsafeAXI4ToTL.scala:
package ara
import chisel3._
import chisel3.util._
import freechips.rocketchip.amba._
import freechips.rocketchip.amba.axi4._
import org.chipsalliance.cde.config.Parameters
import freechips.rocketchip.diplomacy._
import freechips.rocketchip.tilelink._
import freechips.rocketchip.util._
class ReorderData(val dataWidth: Int, val respWidth: Int, val userFields: Seq[BundleFieldBase]) extends Bundle {
val data = UInt(dataWidth.W)
val resp = UInt(respWidth.W)
val last = Bool()
val user = BundleMap(userFields)
}
/** Parameters for [[BaseReservableListBuffer]] and all child classes.
*
* @param numEntries Total number of elements that can be stored in the 'data' RAM
* @param numLists Maximum number of linked lists
* @param numBeats Maximum number of beats per entry
*/
case class ReservableListBufferParameters(numEntries: Int, numLists: Int, numBeats: Int) {
// Avoid zero-width wires when we call 'log2Ceil'
val entryBits = if (numEntries == 1) 1 else log2Ceil(numEntries)
val listBits = if (numLists == 1) 1 else log2Ceil(numLists)
val beatBits = if (numBeats == 1) 1 else log2Ceil(numBeats)
}
case class UnsafeAXI4ToTLNode(numTlTxns: Int, wcorrupt: Boolean)(implicit valName: ValName)
extends MixedAdapterNode(AXI4Imp, TLImp)(
dFn = { case mp =>
TLMasterPortParameters.v2(
masters = mp.masters.zipWithIndex.map { case (m, i) =>
// Support 'numTlTxns' read requests and 'numTlTxns' write requests at once.
val numSourceIds = numTlTxns * 2
TLMasterParameters.v2(
name = m.name,
sourceId = IdRange(i * numSourceIds, (i + 1) * numSourceIds),
nodePath = m.nodePath
)
},
echoFields = mp.echoFields,
requestFields = AMBAProtField() +: mp.requestFields,
responseKeys = mp.responseKeys
)
},
uFn = { mp =>
AXI4SlavePortParameters(
slaves = mp.managers.map { m =>
val maxXfer = TransferSizes(1, mp.beatBytes * (1 << AXI4Parameters.lenBits))
AXI4SlaveParameters(
address = m.address,
resources = m.resources,
regionType = m.regionType,
executable = m.executable,
nodePath = m.nodePath,
supportsWrite = m.supportsPutPartial.intersect(maxXfer),
supportsRead = m.supportsGet.intersect(maxXfer),
interleavedId = Some(0) // TL2 never interleaves D beats
)
},
beatBytes = mp.beatBytes,
minLatency = mp.minLatency,
responseFields = mp.responseFields,
requestKeys = (if (wcorrupt) Seq(AMBACorrupt) else Seq()) ++ mp.requestKeys.filter(_ != AMBAProt)
)
}
)
class UnsafeAXI4ToTL(numTlTxns: Int, wcorrupt: Boolean)(implicit p: Parameters) extends LazyModule {
require(numTlTxns >= 1)
require(isPow2(numTlTxns), s"Number of TileLink transactions ($numTlTxns) must be a power of 2")
val node = UnsafeAXI4ToTLNode(numTlTxns, wcorrupt)
lazy val module = new LazyModuleImp(this) {
(node.in zip node.out) foreach { case ((in, edgeIn), (out, edgeOut)) =>
edgeIn.master.masters.foreach { m =>
require(m.aligned, "AXI4ToTL requires aligned requests")
}
val numIds = edgeIn.master.endId
val beatBytes = edgeOut.slave.beatBytes
val maxTransfer = edgeOut.slave.maxTransfer
val maxBeats = maxTransfer / beatBytes
// Look for an Error device to redirect bad requests
val errorDevs = edgeOut.slave.managers.filter(_.nodePath.last.lazyModule.className == "TLError")
require(!errorDevs.isEmpty, "There is no TLError reachable from AXI4ToTL. One must be instantiated.")
val errorDev = errorDevs.maxBy(_.maxTransfer)
val errorDevAddr = errorDev.address.head.base
require(
errorDev.supportsPutPartial.contains(maxTransfer),
s"Error device supports ${errorDev.supportsPutPartial} PutPartial but must support $maxTransfer"
)
require(
errorDev.supportsGet.contains(maxTransfer),
s"Error device supports ${errorDev.supportsGet} Get but must support $maxTransfer"
)
// All of the read-response reordering logic.
val listBufData = new ReorderData(beatBytes * 8, edgeIn.bundle.respBits, out.d.bits.user.fields)
val listBufParams = ReservableListBufferParameters(numTlTxns, numIds, maxBeats)
val listBuffer = if (numTlTxns > 1) {
Module(new ReservableListBuffer(listBufData, listBufParams))
} else {
Module(new PassthroughListBuffer(listBufData, listBufParams))
}
// To differentiate between read and write transaction IDs, we will set the MSB of the TileLink 'source' field to
// 0 for read requests and 1 for write requests.
val isReadSourceBit = 0.U(1.W)
val isWriteSourceBit = 1.U(1.W)
/* Read request logic */
val rOut = Wire(Decoupled(new TLBundleA(edgeOut.bundle)))
val rBytes1 = in.ar.bits.bytes1()
val rSize = OH1ToUInt(rBytes1)
val rOk = edgeOut.slave.supportsGetSafe(in.ar.bits.addr, rSize)
val rId = if (numTlTxns > 1) {
Cat(isReadSourceBit, listBuffer.ioReservedIndex)
} else {
isReadSourceBit
}
val rAddr = Mux(rOk, in.ar.bits.addr, errorDevAddr.U | in.ar.bits.addr(log2Ceil(beatBytes) - 1, 0))
// Indicates if there are still valid TileLink source IDs left to use.
val canIssueR = listBuffer.ioReserve.ready
listBuffer.ioReserve.bits := in.ar.bits.id
listBuffer.ioReserve.valid := in.ar.valid && rOut.ready
in.ar.ready := rOut.ready && canIssueR
rOut.valid := in.ar.valid && canIssueR
rOut.bits :<= edgeOut.Get(rId, rAddr, rSize)._2
rOut.bits.user :<= in.ar.bits.user
rOut.bits.user.lift(AMBAProt).foreach { rProt =>
rProt.privileged := in.ar.bits.prot(0)
rProt.secure := !in.ar.bits.prot(1)
rProt.fetch := in.ar.bits.prot(2)
rProt.bufferable := in.ar.bits.cache(0)
rProt.modifiable := in.ar.bits.cache(1)
rProt.readalloc := in.ar.bits.cache(2)
rProt.writealloc := in.ar.bits.cache(3)
}
/* Write request logic */
// Strip off the MSB, which identifies the transaction as read vs write.
val strippedResponseSourceId = if (numTlTxns > 1) {
out.d.bits.source((out.d.bits.source).getWidth - 2, 0)
} else {
// When there's only 1 TileLink transaction allowed for read/write, then this field is always 0.
0.U(1.W)
}
// Track when a write request burst is in progress.
val writeBurstBusy = RegInit(false.B)
when(in.w.fire) {
writeBurstBusy := !in.w.bits.last
}
val usedWriteIds = RegInit(0.U(numTlTxns.W))
val canIssueW = !usedWriteIds.andR
val usedWriteIdsSet = WireDefault(0.U(numTlTxns.W))
val usedWriteIdsClr = WireDefault(0.U(numTlTxns.W))
usedWriteIds := (usedWriteIds & ~usedWriteIdsClr) | usedWriteIdsSet
// Since write responses can show up in the middle of a write burst, we need to ensure the write burst ID doesn't
// change mid-burst.
val freeWriteIdOHRaw = Wire(UInt(numTlTxns.W))
val freeWriteIdOH = freeWriteIdOHRaw holdUnless !writeBurstBusy
val freeWriteIdIndex = OHToUInt(freeWriteIdOH)
freeWriteIdOHRaw := ~(leftOR(~usedWriteIds) << 1) & ~usedWriteIds
val wOut = Wire(Decoupled(new TLBundleA(edgeOut.bundle)))
val wBytes1 = in.aw.bits.bytes1()
val wSize = OH1ToUInt(wBytes1)
val wOk = edgeOut.slave.supportsPutPartialSafe(in.aw.bits.addr, wSize)
val wId = if (numTlTxns > 1) {
Cat(isWriteSourceBit, freeWriteIdIndex)
} else {
isWriteSourceBit
}
val wAddr = Mux(wOk, in.aw.bits.addr, errorDevAddr.U | in.aw.bits.addr(log2Ceil(beatBytes) - 1, 0))
// Here, we're taking advantage of the Irrevocable behavior of AXI4 (once 'valid' is asserted it must remain
// asserted until the handshake occurs). We will only accept W-channel beats when we have a valid AW beat, but
// the AW-channel beat won't fire until the final W-channel beat fires. So, we have stable address/size/strb
// bits during a W-channel burst.
in.aw.ready := wOut.ready && in.w.valid && in.w.bits.last && canIssueW
in.w.ready := wOut.ready && in.aw.valid && canIssueW
wOut.valid := in.aw.valid && in.w.valid && canIssueW
wOut.bits :<= edgeOut.Put(wId, wAddr, wSize, in.w.bits.data, in.w.bits.strb)._2
in.w.bits.user.lift(AMBACorrupt).foreach { wOut.bits.corrupt := _ }
wOut.bits.user :<= in.aw.bits.user
wOut.bits.user.lift(AMBAProt).foreach { wProt =>
wProt.privileged := in.aw.bits.prot(0)
wProt.secure := !in.aw.bits.prot(1)
wProt.fetch := in.aw.bits.prot(2)
wProt.bufferable := in.aw.bits.cache(0)
wProt.modifiable := in.aw.bits.cache(1)
wProt.readalloc := in.aw.bits.cache(2)
wProt.writealloc := in.aw.bits.cache(3)
}
// Merge the AXI4 read/write requests into the TL-A channel.
TLArbiter(TLArbiter.roundRobin)(out.a, (0.U, rOut), (in.aw.bits.len, wOut))
/* Read/write response logic */
val okB = Wire(Irrevocable(new AXI4BundleB(edgeIn.bundle)))
val okR = Wire(Irrevocable(new AXI4BundleR(edgeIn.bundle)))
val dResp = Mux(out.d.bits.denied || out.d.bits.corrupt, AXI4Parameters.RESP_SLVERR, AXI4Parameters.RESP_OKAY)
val dHasData = edgeOut.hasData(out.d.bits)
val (_dFirst, dLast, _dDone, dCount) = edgeOut.count(out.d)
val dNumBeats1 = edgeOut.numBeats1(out.d.bits)
// Handle cases where writeack arrives before write is done
val writeEarlyAck = (UIntToOH(strippedResponseSourceId) & usedWriteIds) === 0.U
out.d.ready := Mux(dHasData, listBuffer.ioResponse.ready, okB.ready && !writeEarlyAck)
listBuffer.ioDataOut.ready := okR.ready
okR.valid := listBuffer.ioDataOut.valid
okB.valid := out.d.valid && !dHasData && !writeEarlyAck
listBuffer.ioResponse.valid := out.d.valid && dHasData
listBuffer.ioResponse.bits.index := strippedResponseSourceId
listBuffer.ioResponse.bits.data.data := out.d.bits.data
listBuffer.ioResponse.bits.data.resp := dResp
listBuffer.ioResponse.bits.data.last := dLast
listBuffer.ioResponse.bits.data.user :<= out.d.bits.user
listBuffer.ioResponse.bits.count := dCount
listBuffer.ioResponse.bits.numBeats1 := dNumBeats1
okR.bits.id := listBuffer.ioDataOut.bits.listIndex
okR.bits.data := listBuffer.ioDataOut.bits.payload.data
okR.bits.resp := listBuffer.ioDataOut.bits.payload.resp
okR.bits.last := listBuffer.ioDataOut.bits.payload.last
okR.bits.user :<= listBuffer.ioDataOut.bits.payload.user
// Upon the final beat in a write request, record a mapping from TileLink source ID to AXI write ID. Upon a write
// response, mark the write transaction as complete.
val writeIdMap = Mem(numTlTxns, UInt(log2Ceil(numIds).W))
val writeResponseId = writeIdMap.read(strippedResponseSourceId)
when(wOut.fire) {
writeIdMap.write(freeWriteIdIndex, in.aw.bits.id)
}
when(edgeOut.done(wOut)) {
usedWriteIdsSet := freeWriteIdOH
}
when(okB.fire) {
usedWriteIdsClr := UIntToOH(strippedResponseSourceId, numTlTxns)
}
okB.bits.id := writeResponseId
okB.bits.resp := dResp
okB.bits.user :<= out.d.bits.user
// AXI4 needs irrevocable behaviour
in.r <> Queue.irrevocable(okR, 1, flow = true)
in.b <> Queue.irrevocable(okB, 1, flow = true)
// Unused channels
out.b.ready := true.B
out.c.valid := false.B
out.e.valid := false.B
/* Alignment constraints. The AXI4Fragmenter should guarantee all of these constraints. */
def checkRequest[T <: AXI4BundleA](a: IrrevocableIO[T], reqType: String): Unit = {
val lReqType = reqType.toLowerCase
when(a.valid) {
assert(a.bits.len < maxBeats.U, s"$reqType burst length (%d) must be less than $maxBeats", a.bits.len + 1.U)
// Narrow transfers and FIXED bursts must be single-beat bursts.
when(a.bits.len =/= 0.U) {
assert(
a.bits.size === log2Ceil(beatBytes).U,
s"Narrow $lReqType transfers (%d < $beatBytes bytes) can't be multi-beat bursts (%d beats)",
1.U << a.bits.size,
a.bits.len + 1.U
)
assert(
a.bits.burst =/= AXI4Parameters.BURST_FIXED,
s"Fixed $lReqType bursts can't be multi-beat bursts (%d beats)",
a.bits.len + 1.U
)
}
// Furthermore, the transfer size (a.bits.bytes1() + 1.U) must be naturally-aligned to the address (in
// particular, during both WRAP and INCR bursts), but this constraint is already checked by TileLink
// Monitors. Note that this alignment requirement means that WRAP bursts are identical to INCR bursts.
}
}
checkRequest(in.ar, "Read")
checkRequest(in.aw, "Write")
}
}
}
object UnsafeAXI4ToTL {
def apply(numTlTxns: Int = 1, wcorrupt: Boolean = true)(implicit p: Parameters) = {
val axi42tl = LazyModule(new UnsafeAXI4ToTL(numTlTxns, wcorrupt))
axi42tl.node
}
}
/* ReservableListBuffer logic, and associated classes. */
class ResponsePayload[T <: Data](val data: T, val params: ReservableListBufferParameters) extends Bundle {
val index = UInt(params.entryBits.W)
val count = UInt(params.beatBits.W)
val numBeats1 = UInt(params.beatBits.W)
}
class DataOutPayload[T <: Data](val payload: T, val params: ReservableListBufferParameters) extends Bundle {
val listIndex = UInt(params.listBits.W)
}
/** Abstract base class to unify [[ReservableListBuffer]] and [[PassthroughListBuffer]]. */
abstract class BaseReservableListBuffer[T <: Data](gen: T, params: ReservableListBufferParameters)
extends Module {
require(params.numEntries > 0)
require(params.numLists > 0)
val ioReserve = IO(Flipped(Decoupled(UInt(params.listBits.W))))
val ioReservedIndex = IO(Output(UInt(params.entryBits.W)))
val ioResponse = IO(Flipped(Decoupled(new ResponsePayload(gen, params))))
val ioDataOut = IO(Decoupled(new DataOutPayload(gen, params)))
}
/** A modified version of 'ListBuffer' from 'sifive/block-inclusivecache-sifive'. This module forces users to reserve
* linked list entries (through the 'ioReserve' port) before writing data into those linked lists (through the
* 'ioResponse' port). Each response is tagged to indicate which linked list it is written into. The responses for a
* given linked list can come back out-of-order, but they will be read out through the 'ioDataOut' port in-order.
*
* ==Constructor==
* @param gen Chisel type of linked list data element
* @param params Other parameters
*
* ==Module IO==
* @param ioReserve Index of list to reserve a new element in
* @param ioReservedIndex Index of the entry that was reserved in the linked list, valid when 'ioReserve.fire'
* @param ioResponse Payload containing response data and linked-list-entry index
* @param ioDataOut Payload containing data read from response linked list and linked list index
*/
class ReservableListBuffer[T <: Data](gen: T, params: ReservableListBufferParameters)
extends BaseReservableListBuffer(gen, params) {
val valid = RegInit(0.U(params.numLists.W))
val head = Mem(params.numLists, UInt(params.entryBits.W))
val tail = Mem(params.numLists, UInt(params.entryBits.W))
val used = RegInit(0.U(params.numEntries.W))
val next = Mem(params.numEntries, UInt(params.entryBits.W))
val map = Mem(params.numEntries, UInt(params.listBits.W))
val dataMems = Seq.fill(params.numBeats) { SyncReadMem(params.numEntries, gen) }
val dataIsPresent = RegInit(0.U(params.numEntries.W))
val beats = Mem(params.numEntries, UInt(params.beatBits.W))
// The 'data' SRAM should be single-ported (read-or-write), since dual-ported SRAMs are significantly slower.
val dataMemReadEnable = WireDefault(false.B)
val dataMemWriteEnable = WireDefault(false.B)
assert(!(dataMemReadEnable && dataMemWriteEnable))
// 'freeOH' has a single bit set, which is the least-significant bit that is cleared in 'used'. So, it's the
// lowest-index entry in the 'data' RAM which is free.
val freeOH = Wire(UInt(params.numEntries.W))
val freeIndex = OHToUInt(freeOH)
freeOH := ~(leftOR(~used) << 1) & ~used
ioReservedIndex := freeIndex
val validSet = WireDefault(0.U(params.numLists.W))
val validClr = WireDefault(0.U(params.numLists.W))
val usedSet = WireDefault(0.U(params.numEntries.W))
val usedClr = WireDefault(0.U(params.numEntries.W))
val dataIsPresentSet = WireDefault(0.U(params.numEntries.W))
val dataIsPresentClr = WireDefault(0.U(params.numEntries.W))
valid := (valid & ~validClr) | validSet
used := (used & ~usedClr) | usedSet
dataIsPresent := (dataIsPresent & ~dataIsPresentClr) | dataIsPresentSet
/* Reservation logic signals */
val reserveTail = Wire(UInt(params.entryBits.W))
val reserveIsValid = Wire(Bool())
/* Response logic signals */
val responseIndex = Wire(UInt(params.entryBits.W))
val responseListIndex = Wire(UInt(params.listBits.W))
val responseHead = Wire(UInt(params.entryBits.W))
val responseTail = Wire(UInt(params.entryBits.W))
val nextResponseHead = Wire(UInt(params.entryBits.W))
val nextDataIsPresent = Wire(Bool())
val isResponseInOrder = Wire(Bool())
val isEndOfList = Wire(Bool())
val isLastBeat = Wire(Bool())
val isLastResponseBeat = Wire(Bool())
val isLastUnwindBeat = Wire(Bool())
/* Reservation logic */
reserveTail := tail.read(ioReserve.bits)
reserveIsValid := valid(ioReserve.bits)
ioReserve.ready := !used.andR
// When we want to append-to and destroy the same linked list on the same cycle, we need to take special care that we
// actually start a new list, rather than appending to a list that's about to disappear.
val reserveResponseSameList = ioReserve.bits === responseListIndex
val appendToAndDestroyList =
ioReserve.fire && ioDataOut.fire && reserveResponseSameList && isEndOfList && isLastBeat
when(ioReserve.fire) {
validSet := UIntToOH(ioReserve.bits, params.numLists)
usedSet := freeOH
when(reserveIsValid && !appendToAndDestroyList) {
next.write(reserveTail, freeIndex)
}.otherwise {
head.write(ioReserve.bits, freeIndex)
}
tail.write(ioReserve.bits, freeIndex)
map.write(freeIndex, ioReserve.bits)
}
/* Response logic */
// The majority of the response logic (reading from and writing to the various RAMs) is common between the
// response-from-IO case (ioResponse.fire) and the response-from-unwind case (unwindDataIsValid).
// The read from the 'next' RAM should be performed at the address given by 'responseHead'. However, we only use the
// 'nextResponseHead' signal when 'isResponseInOrder' is asserted (both in the response-from-IO and
// response-from-unwind cases), which implies that 'responseHead' equals 'responseIndex'. 'responseHead' comes after
// two back-to-back RAM reads, so indexing into the 'next' RAM with 'responseIndex' is much quicker.
responseHead := head.read(responseListIndex)
responseTail := tail.read(responseListIndex)
nextResponseHead := next.read(responseIndex)
nextDataIsPresent := dataIsPresent(nextResponseHead)
// Note that when 'isEndOfList' is asserted, 'nextResponseHead' (and therefore 'nextDataIsPresent') is invalid, since
// there isn't a next element in the linked list.
isResponseInOrder := responseHead === responseIndex
isEndOfList := responseHead === responseTail
isLastResponseBeat := ioResponse.bits.count === ioResponse.bits.numBeats1
// When a response's last beat is sent to the output channel, mark it as completed. This can happen in two
// situations:
// 1. We receive an in-order response, which travels straight from 'ioResponse' to 'ioDataOut'. The 'data' SRAM
// reservation was never needed.
// 2. An entry is read out of the 'data' SRAM (within the unwind FSM).
when(ioDataOut.fire && isLastBeat) {
// Mark the reservation as no-longer-used.
usedClr := UIntToOH(responseIndex, params.numEntries)
// If the response is in-order, then we're popping an element from this linked list.
when(isEndOfList) {
// Once we pop the last element from a linked list, mark it as no-longer-present.
validClr := UIntToOH(responseListIndex, params.numLists)
}.otherwise {
// Move the linked list's head pointer to the new head pointer.
head.write(responseListIndex, nextResponseHead)
}
}
// If we get an out-of-order response, then stash it in the 'data' SRAM for later unwinding.
when(ioResponse.fire && !isResponseInOrder) {
dataMemWriteEnable := true.B
when(isLastResponseBeat) {
dataIsPresentSet := UIntToOH(ioResponse.bits.index, params.numEntries)
beats.write(ioResponse.bits.index, ioResponse.bits.numBeats1)
}
}
// Use the 'ioResponse.bits.count' index (AKA the beat number) to select which 'data' SRAM to write to.
val responseCountOH = UIntToOH(ioResponse.bits.count, params.numBeats)
(responseCountOH.asBools zip dataMems) foreach { case (select, seqMem) =>
when(select && dataMemWriteEnable) {
seqMem.write(ioResponse.bits.index, ioResponse.bits.data)
}
}
/* Response unwind logic */
// Unwind FSM state definitions
val sIdle :: sUnwinding :: Nil = Enum(2)
val unwindState = RegInit(sIdle)
val busyUnwinding = unwindState === sUnwinding
val startUnwind = Wire(Bool())
val stopUnwind = Wire(Bool())
when(startUnwind) {
unwindState := sUnwinding
}.elsewhen(stopUnwind) {
unwindState := sIdle
}
assert(!(startUnwind && stopUnwind))
// Start the unwind FSM when there is an old out-of-order response stored in the 'data' SRAM that is now about to
// become the next in-order response. As noted previously, when 'isEndOfList' is asserted, 'nextDataIsPresent' is
// invalid.
//
// Note that since an in-order response from 'ioResponse' to 'ioDataOut' starts the unwind FSM, we don't have to
// worry about overwriting the 'data' SRAM's output when we start the unwind FSM.
startUnwind := ioResponse.fire && isResponseInOrder && isLastResponseBeat && !isEndOfList && nextDataIsPresent
// Stop the unwind FSM when the output channel consumes the final beat of an element from the unwind FSM, and one of
// two things happens:
// 1. We're still waiting for the next in-order response for this list (!nextDataIsPresent)
// 2. There are no more outstanding responses in this list (isEndOfList)
//
// Including 'busyUnwinding' ensures this is a single-cycle pulse, and it never fires while in-order transactions are
// passing from 'ioResponse' to 'ioDataOut'.
stopUnwind := busyUnwinding && ioDataOut.fire && isLastUnwindBeat && (!nextDataIsPresent || isEndOfList)
val isUnwindBurstOver = Wire(Bool())
val startNewBurst = startUnwind || (isUnwindBurstOver && dataMemReadEnable)
// Track the number of beats left to unwind for each list entry. At the start of a new burst, we flop the number of
// beats in this burst (minus 1) into 'unwindBeats1', and we reset the 'beatCounter' counter. With each beat, we
// increment 'beatCounter' until it reaches 'unwindBeats1'.
val unwindBeats1 = Reg(UInt(params.beatBits.W))
val nextBeatCounter = Wire(UInt(params.beatBits.W))
val beatCounter = RegNext(nextBeatCounter)
isUnwindBurstOver := beatCounter === unwindBeats1
when(startNewBurst) {
unwindBeats1 := beats.read(nextResponseHead)
nextBeatCounter := 0.U
}.elsewhen(dataMemReadEnable) {
nextBeatCounter := beatCounter + 1.U
}.otherwise {
nextBeatCounter := beatCounter
}
// When unwinding, feed the next linked-list head pointer (read out of the 'next' RAM) back so we can unwind the next
// entry in this linked list. Only update the pointer when we're actually moving to the next 'data' SRAM entry (which
// happens at the start of reading a new stored burst).
val unwindResponseIndex = RegEnable(nextResponseHead, startNewBurst)
responseIndex := Mux(busyUnwinding, unwindResponseIndex, ioResponse.bits.index)
// Hold 'nextResponseHead' static while we're in the middle of unwinding a multi-beat burst entry. We don't want the
// SRAM read address to shift while reading beats from a burst. Note that this is identical to 'nextResponseHead
// holdUnless startNewBurst', but 'unwindResponseIndex' already implements the 'RegEnable' signal in 'holdUnless'.
val unwindReadAddress = Mux(startNewBurst, nextResponseHead, unwindResponseIndex)
// The 'data' SRAM's output is valid if we read from the SRAM on the previous cycle. The SRAM's output stays valid
// until it is consumed by the output channel (and if we don't read from the SRAM again on that same cycle).
val unwindDataIsValid = RegInit(false.B)
when(dataMemReadEnable) {
unwindDataIsValid := true.B
}.elsewhen(ioDataOut.fire) {
unwindDataIsValid := false.B
}
isLastUnwindBeat := isUnwindBurstOver && unwindDataIsValid
// Indicates if this is the last beat for both 'ioResponse'-to-'ioDataOut' and unwind-to-'ioDataOut' beats.
isLastBeat := Mux(busyUnwinding, isLastUnwindBeat, isLastResponseBeat)
// Select which SRAM to read from based on the beat counter.
val dataOutputVec = Wire(Vec(params.numBeats, gen))
val nextBeatCounterOH = UIntToOH(nextBeatCounter, params.numBeats)
(nextBeatCounterOH.asBools zip dataMems).zipWithIndex foreach { case ((select, seqMem), i) =>
dataOutputVec(i) := seqMem.read(unwindReadAddress, select && dataMemReadEnable)
}
// Select the current 'data' SRAM output beat, and save the output in a register in case we're being back-pressured
// by 'ioDataOut'. This implements the functionality of 'readAndHold', but only on the single SRAM we're reading
// from.
val dataOutput = dataOutputVec(beatCounter) holdUnless RegNext(dataMemReadEnable)
// Mark 'data' burst entries as no-longer-present as they get read out of the SRAM.
when(dataMemReadEnable) {
dataIsPresentClr := UIntToOH(unwindReadAddress, params.numEntries)
}
// As noted above, when starting the unwind FSM, we know the 'data' SRAM's output isn't valid, so it's safe to issue
// a read command. Otherwise, only issue an SRAM read when the next 'unwindState' is 'sUnwinding', and if we know
// we're not going to overwrite the SRAM's current output (the SRAM output is already valid, and it's not going to be
// consumed by the output channel).
val dontReadFromDataMem = unwindDataIsValid && !ioDataOut.ready
dataMemReadEnable := startUnwind || (busyUnwinding && !stopUnwind && !dontReadFromDataMem)
// While unwinding, prevent new reservations from overwriting the current 'map' entry that we're using. We need
// 'responseListIndex' to be coherent for the entire unwind process.
val rawResponseListIndex = map.read(responseIndex)
val unwindResponseListIndex = RegEnable(rawResponseListIndex, startNewBurst)
responseListIndex := Mux(busyUnwinding, unwindResponseListIndex, rawResponseListIndex)
// Accept responses either when they can be passed through to the output channel, or if they're out-of-order and are
// just going to be stashed in the 'data' SRAM. Never accept a response payload when we're busy unwinding, since that
// could result in reading from and writing to the 'data' SRAM in the same cycle, and we want that SRAM to be
// single-ported.
ioResponse.ready := (ioDataOut.ready || !isResponseInOrder) && !busyUnwinding
// Either pass an in-order response to the output channel, or data read from the unwind FSM.
ioDataOut.valid := Mux(busyUnwinding, unwindDataIsValid, ioResponse.valid && isResponseInOrder)
ioDataOut.bits.listIndex := responseListIndex
ioDataOut.bits.payload := Mux(busyUnwinding, dataOutput, ioResponse.bits.data)
// It's an error to get a response that isn't associated with a valid linked list.
when(ioResponse.fire || unwindDataIsValid) {
assert(
valid(responseListIndex),
"No linked list exists at index %d, mapped from %d",
responseListIndex,
responseIndex
)
}
when(busyUnwinding && dataMemReadEnable) {
assert(isResponseInOrder, "Unwind FSM must read entries from SRAM in order")
}
}
/** Specialized version of [[ReservableListBuffer]] for the case of numEntries == 1.
*
* Much of the complex logic in [[ReservableListBuffer]] can disappear in this case. For instance, we don't have to
* reorder any responses, or store any linked lists.
*/
class PassthroughListBuffer[T <: Data](gen: T, params: ReservableListBufferParameters)
extends BaseReservableListBuffer(gen, params) {
require(params.numEntries == 1, s"PassthroughListBuffer is only valid when 'numEntries' (${params.numEntries}) is 1")
val used = RegInit(0.U(params.numEntries.W))
val map = Mem(params.numEntries, UInt(params.listBits.W))
val usedSet = WireDefault(0.U(params.numEntries.W))
val usedClr = WireDefault(0.U(params.numEntries.W))
used := (used & ~usedClr) | usedSet
ioReserve.ready := used === 0.U
// Store which list index was reserved, we need to return this value when we get a response.
when(ioReserve.fire) {
usedSet := 1.U
map.write(0.U, ioReserve.bits)
}
// There's only one valid linked list entry, which is at index 0.
ioReservedIndex := 0.U
val isLastResponseBeat = ioResponse.bits.count === ioResponse.bits.numBeats1
// Mark the linked list as empty when we get the last beat in a response.
// Note that 'ioResponse.fire === ioDataOut.fire'.
when(ioResponse.fire && isLastResponseBeat) {
usedClr := 1.U
}
// Always pass the response data straight through, since we never need to reorder the response data.
ioDataOut.bits.listIndex := map.read(0.U)
ioDataOut.bits.payload := ioResponse.bits.data
ioDataOut.valid := ioResponse.valid
ioResponse.ready := ioDataOut.ready
}
| module dataMems_330( // @[UnsafeAXI4ToTL.scala:365:62]
input [4:0] R0_addr,
input R0_en,
input R0_clk,
output [66:0] R0_data,
input [4:0] W0_addr,
input W0_en,
input W0_clk,
input [66:0] W0_data
);
dataMems_0_ext dataMems_0_ext ( // @[UnsafeAXI4ToTL.scala:365:62]
.R0_addr (R0_addr),
.R0_en (R0_en),
.R0_clk (R0_clk),
.R0_data (R0_data),
.W0_addr (W0_addr),
.W0_en (W0_en),
.W0_clk (W0_clk),
.W0_data (W0_data)
); // @[UnsafeAXI4ToTL.scala:365:62]
endmodule |
Generate the Verilog code corresponding to the following Chisel files.
File MSHR.scala:
/*
* Copyright 2019 SiFive, Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You should have received a copy of LICENSE.Apache2 along with
* this software. If not, you may obtain a copy at
*
* https://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package sifive.blocks.inclusivecache
import chisel3._
import chisel3.util._
import chisel3.experimental.SourceInfo
import freechips.rocketchip.tilelink._
import TLPermissions._
import TLMessages._
import MetaData._
import chisel3.PrintableHelper
import chisel3.experimental.dataview._
class ScheduleRequest(params: InclusiveCacheParameters) extends InclusiveCacheBundle(params)
{
val a = Valid(new SourceARequest(params))
val b = Valid(new SourceBRequest(params))
val c = Valid(new SourceCRequest(params))
val d = Valid(new SourceDRequest(params))
val e = Valid(new SourceERequest(params))
val x = Valid(new SourceXRequest(params))
val dir = Valid(new DirectoryWrite(params))
val reload = Bool() // get next request via allocate (if any)
}
class MSHRStatus(params: InclusiveCacheParameters) extends InclusiveCacheBundle(params)
{
val set = UInt(params.setBits.W)
val tag = UInt(params.tagBits.W)
val way = UInt(params.wayBits.W)
val blockB = Bool()
val nestB = Bool()
val blockC = Bool()
val nestC = Bool()
}
class NestedWriteback(params: InclusiveCacheParameters) extends InclusiveCacheBundle(params)
{
val set = UInt(params.setBits.W)
val tag = UInt(params.tagBits.W)
val b_toN = Bool() // nested Probes may unhit us
val b_toB = Bool() // nested Probes may demote us
val b_clr_dirty = Bool() // nested Probes clear dirty
val c_set_dirty = Bool() // nested Releases MAY set dirty
}
sealed trait CacheState
{
val code = CacheState.index.U
CacheState.index = CacheState.index + 1
}
object CacheState
{
var index = 0
}
case object S_INVALID extends CacheState
case object S_BRANCH extends CacheState
case object S_BRANCH_C extends CacheState
case object S_TIP extends CacheState
case object S_TIP_C extends CacheState
case object S_TIP_CD extends CacheState
case object S_TIP_D extends CacheState
case object S_TRUNK_C extends CacheState
case object S_TRUNK_CD extends CacheState
class MSHR(params: InclusiveCacheParameters) extends Module
{
val io = IO(new Bundle {
val allocate = Flipped(Valid(new AllocateRequest(params))) // refills MSHR for next cycle
val directory = Flipped(Valid(new DirectoryResult(params))) // triggers schedule setup
val status = Valid(new MSHRStatus(params))
val schedule = Decoupled(new ScheduleRequest(params))
val sinkc = Flipped(Valid(new SinkCResponse(params)))
val sinkd = Flipped(Valid(new SinkDResponse(params)))
val sinke = Flipped(Valid(new SinkEResponse(params)))
val nestedwb = Flipped(new NestedWriteback(params))
})
val request_valid = RegInit(false.B)
val request = Reg(new FullRequest(params))
val meta_valid = RegInit(false.B)
val meta = Reg(new DirectoryResult(params))
// Define which states are valid
when (meta_valid) {
when (meta.state === INVALID) {
assert (!meta.clients.orR)
assert (!meta.dirty)
}
when (meta.state === BRANCH) {
assert (!meta.dirty)
}
when (meta.state === TRUNK) {
assert (meta.clients.orR)
assert ((meta.clients & (meta.clients - 1.U)) === 0.U) // at most one
}
when (meta.state === TIP) {
// noop
}
}
// Completed transitions (s_ = scheduled), (w_ = waiting)
val s_rprobe = RegInit(true.B) // B
val w_rprobeackfirst = RegInit(true.B)
val w_rprobeacklast = RegInit(true.B)
val s_release = RegInit(true.B) // CW w_rprobeackfirst
val w_releaseack = RegInit(true.B)
val s_pprobe = RegInit(true.B) // B
val s_acquire = RegInit(true.B) // A s_release, s_pprobe [1]
val s_flush = RegInit(true.B) // X w_releaseack
val w_grantfirst = RegInit(true.B)
val w_grantlast = RegInit(true.B)
val w_grant = RegInit(true.B) // first | last depending on wormhole
val w_pprobeackfirst = RegInit(true.B)
val w_pprobeacklast = RegInit(true.B)
val w_pprobeack = RegInit(true.B) // first | last depending on wormhole
val s_probeack = RegInit(true.B) // C w_pprobeackfirst (mutually exclusive with next two s_*)
val s_grantack = RegInit(true.B) // E w_grantfirst ... CAN require both outE&inD to service outD
val s_execute = RegInit(true.B) // D w_pprobeack, w_grant
val w_grantack = RegInit(true.B)
val s_writeback = RegInit(true.B) // W w_*
// [1]: We cannot issue outer Acquire while holding blockB (=> outA can stall)
// However, inB and outC are higher priority than outB, so s_release and s_pprobe
// may be safely issued while blockB. Thus we must NOT try to schedule the
// potentially stuck s_acquire with either of them (scheduler is all or none).
// Meta-data that we discover underway
val sink = Reg(UInt(params.outer.bundle.sinkBits.W))
val gotT = Reg(Bool())
val bad_grant = Reg(Bool())
val probes_done = Reg(UInt(params.clientBits.W))
val probes_toN = Reg(UInt(params.clientBits.W))
val probes_noT = Reg(Bool())
// When a nested transaction completes, update our meta data
when (meta_valid && meta.state =/= INVALID &&
io.nestedwb.set === request.set && io.nestedwb.tag === meta.tag) {
when (io.nestedwb.b_clr_dirty) { meta.dirty := false.B }
when (io.nestedwb.c_set_dirty) { meta.dirty := true.B }
when (io.nestedwb.b_toB) { meta.state := BRANCH }
when (io.nestedwb.b_toN) { meta.hit := false.B }
}
// Scheduler status
io.status.valid := request_valid
io.status.bits.set := request.set
io.status.bits.tag := request.tag
io.status.bits.way := meta.way
io.status.bits.blockB := !meta_valid || ((!w_releaseack || !w_rprobeacklast || !w_pprobeacklast) && !w_grantfirst)
io.status.bits.nestB := meta_valid && w_releaseack && w_rprobeacklast && w_pprobeacklast && !w_grantfirst
// The above rules ensure we will block and not nest an outer probe while still doing our
// own inner probes. Thus every probe wakes exactly one MSHR.
io.status.bits.blockC := !meta_valid
io.status.bits.nestC := meta_valid && (!w_rprobeackfirst || !w_pprobeackfirst || !w_grantfirst)
// The w_grantfirst in nestC is necessary to deal with:
// acquire waiting for grant, inner release gets queued, outer probe -> inner probe -> deadlock
// ... this is possible because the release+probe can be for same set, but different tag
// We can only demand: block, nest, or queue
assert (!io.status.bits.nestB || !io.status.bits.blockB)
assert (!io.status.bits.nestC || !io.status.bits.blockC)
// Scheduler requests
val no_wait = w_rprobeacklast && w_releaseack && w_grantlast && w_pprobeacklast && w_grantack
io.schedule.bits.a.valid := !s_acquire && s_release && s_pprobe
io.schedule.bits.b.valid := !s_rprobe || !s_pprobe
io.schedule.bits.c.valid := (!s_release && w_rprobeackfirst) || (!s_probeack && w_pprobeackfirst)
io.schedule.bits.d.valid := !s_execute && w_pprobeack && w_grant
io.schedule.bits.e.valid := !s_grantack && w_grantfirst
io.schedule.bits.x.valid := !s_flush && w_releaseack
io.schedule.bits.dir.valid := (!s_release && w_rprobeackfirst) || (!s_writeback && no_wait)
io.schedule.bits.reload := no_wait
io.schedule.valid := io.schedule.bits.a.valid || io.schedule.bits.b.valid || io.schedule.bits.c.valid ||
io.schedule.bits.d.valid || io.schedule.bits.e.valid || io.schedule.bits.x.valid ||
io.schedule.bits.dir.valid
// Schedule completions
when (io.schedule.ready) {
s_rprobe := true.B
when (w_rprobeackfirst) { s_release := true.B }
s_pprobe := true.B
when (s_release && s_pprobe) { s_acquire := true.B }
when (w_releaseack) { s_flush := true.B }
when (w_pprobeackfirst) { s_probeack := true.B }
when (w_grantfirst) { s_grantack := true.B }
when (w_pprobeack && w_grant) { s_execute := true.B }
when (no_wait) { s_writeback := true.B }
// Await the next operation
when (no_wait) {
request_valid := false.B
meta_valid := false.B
}
}
// Resulting meta-data
val final_meta_writeback = WireInit(meta)
val req_clientBit = params.clientBit(request.source)
val req_needT = needT(request.opcode, request.param)
val req_acquire = request.opcode === AcquireBlock || request.opcode === AcquirePerm
val meta_no_clients = !meta.clients.orR
val req_promoteT = req_acquire && Mux(meta.hit, meta_no_clients && meta.state === TIP, gotT)
when (request.prio(2) && (!params.firstLevel).B) { // always a hit
final_meta_writeback.dirty := meta.dirty || request.opcode(0)
final_meta_writeback.state := Mux(request.param =/= TtoT && meta.state === TRUNK, TIP, meta.state)
final_meta_writeback.clients := meta.clients & ~Mux(isToN(request.param), req_clientBit, 0.U)
final_meta_writeback.hit := true.B // chained requests are hits
} .elsewhen (request.control && params.control.B) { // request.prio(0)
when (meta.hit) {
final_meta_writeback.dirty := false.B
final_meta_writeback.state := INVALID
final_meta_writeback.clients := meta.clients & ~probes_toN
}
final_meta_writeback.hit := false.B
} .otherwise {
final_meta_writeback.dirty := (meta.hit && meta.dirty) || !request.opcode(2)
final_meta_writeback.state := Mux(req_needT,
Mux(req_acquire, TRUNK, TIP),
Mux(!meta.hit, Mux(gotT, Mux(req_acquire, TRUNK, TIP), BRANCH),
MuxLookup(meta.state, 0.U(2.W))(Seq(
INVALID -> BRANCH,
BRANCH -> BRANCH,
TRUNK -> TIP,
TIP -> Mux(meta_no_clients && req_acquire, TRUNK, TIP)))))
final_meta_writeback.clients := Mux(meta.hit, meta.clients & ~probes_toN, 0.U) |
Mux(req_acquire, req_clientBit, 0.U)
final_meta_writeback.tag := request.tag
final_meta_writeback.hit := true.B
}
when (bad_grant) {
when (meta.hit) {
// upgrade failed (B -> T)
assert (!meta_valid || meta.state === BRANCH)
final_meta_writeback.hit := true.B
final_meta_writeback.dirty := false.B
final_meta_writeback.state := BRANCH
final_meta_writeback.clients := meta.clients & ~probes_toN
} .otherwise {
// failed N -> (T or B)
final_meta_writeback.hit := false.B
final_meta_writeback.dirty := false.B
final_meta_writeback.state := INVALID
final_meta_writeback.clients := 0.U
}
}
val invalid = Wire(new DirectoryEntry(params))
invalid.dirty := false.B
invalid.state := INVALID
invalid.clients := 0.U
invalid.tag := 0.U
// Just because a client says BtoT, by the time we process the request he may be N.
// Therefore, we must consult our own meta-data state to confirm he owns the line still.
val honour_BtoT = meta.hit && (meta.clients & req_clientBit).orR
// The client asking us to act is proof they don't have permissions.
val excluded_client = Mux(meta.hit && request.prio(0) && skipProbeN(request.opcode, params.cache.hintsSkipProbe), req_clientBit, 0.U)
io.schedule.bits.a.bits.tag := request.tag
io.schedule.bits.a.bits.set := request.set
io.schedule.bits.a.bits.param := Mux(req_needT, Mux(meta.hit, BtoT, NtoT), NtoB)
io.schedule.bits.a.bits.block := request.size =/= log2Ceil(params.cache.blockBytes).U ||
!(request.opcode === PutFullData || request.opcode === AcquirePerm)
io.schedule.bits.a.bits.source := 0.U
io.schedule.bits.b.bits.param := Mux(!s_rprobe, toN, Mux(request.prio(1), request.param, Mux(req_needT, toN, toB)))
io.schedule.bits.b.bits.tag := Mux(!s_rprobe, meta.tag, request.tag)
io.schedule.bits.b.bits.set := request.set
io.schedule.bits.b.bits.clients := meta.clients & ~excluded_client
io.schedule.bits.c.bits.opcode := Mux(meta.dirty, ReleaseData, Release)
io.schedule.bits.c.bits.param := Mux(meta.state === BRANCH, BtoN, TtoN)
io.schedule.bits.c.bits.source := 0.U
io.schedule.bits.c.bits.tag := meta.tag
io.schedule.bits.c.bits.set := request.set
io.schedule.bits.c.bits.way := meta.way
io.schedule.bits.c.bits.dirty := meta.dirty
io.schedule.bits.d.bits.viewAsSupertype(chiselTypeOf(request)) := request
io.schedule.bits.d.bits.param := Mux(!req_acquire, request.param,
MuxLookup(request.param, request.param)(Seq(
NtoB -> Mux(req_promoteT, NtoT, NtoB),
BtoT -> Mux(honour_BtoT, BtoT, NtoT),
NtoT -> NtoT)))
io.schedule.bits.d.bits.sink := 0.U
io.schedule.bits.d.bits.way := meta.way
io.schedule.bits.d.bits.bad := bad_grant
io.schedule.bits.e.bits.sink := sink
io.schedule.bits.x.bits.fail := false.B
io.schedule.bits.dir.bits.set := request.set
io.schedule.bits.dir.bits.way := meta.way
io.schedule.bits.dir.bits.data := Mux(!s_release, invalid, WireInit(new DirectoryEntry(params), init = final_meta_writeback))
// Coverage of state transitions
def cacheState(entry: DirectoryEntry, hit: Bool) = {
val out = WireDefault(0.U)
val c = entry.clients.orR
val d = entry.dirty
switch (entry.state) {
is (BRANCH) { out := Mux(c, S_BRANCH_C.code, S_BRANCH.code) }
is (TRUNK) { out := Mux(d, S_TRUNK_CD.code, S_TRUNK_C.code) }
is (TIP) { out := Mux(c, Mux(d, S_TIP_CD.code, S_TIP_C.code), Mux(d, S_TIP_D.code, S_TIP.code)) }
is (INVALID) { out := S_INVALID.code }
}
when (!hit) { out := S_INVALID.code }
out
}
val p = !params.lastLevel // can be probed
val c = !params.firstLevel // can be acquired
val m = params.inner.client.clients.exists(!_.supports.probe) // can be written (or read)
val r = params.outer.manager.managers.exists(!_.alwaysGrantsT) // read-only devices exist
val f = params.control // flush control register exists
val cfg = (p, c, m, r, f)
val b = r || p // can reach branch state (via probe downgrade or read-only device)
// The cache must be used for something or we would not be here
require(c || m)
val evict = cacheState(meta, !meta.hit)
val before = cacheState(meta, meta.hit)
val after = cacheState(final_meta_writeback, true.B)
def eviction(from: CacheState, cover: Boolean)(implicit sourceInfo: SourceInfo) {
if (cover) {
params.ccover(evict === from.code, s"MSHR_${from}_EVICT", s"State transition from ${from} to evicted ${cfg}")
} else {
assert(!(evict === from.code), cf"State transition from ${from} to evicted should be impossible ${cfg}")
}
if (cover && f) {
params.ccover(before === from.code, s"MSHR_${from}_FLUSH", s"State transition from ${from} to flushed ${cfg}")
} else {
assert(!(before === from.code), cf"State transition from ${from} to flushed should be impossible ${cfg}")
}
}
def transition(from: CacheState, to: CacheState, cover: Boolean)(implicit sourceInfo: SourceInfo) {
if (cover) {
params.ccover(before === from.code && after === to.code, s"MSHR_${from}_${to}", s"State transition from ${from} to ${to} ${cfg}")
} else {
assert(!(before === from.code && after === to.code), cf"State transition from ${from} to ${to} should be impossible ${cfg}")
}
}
when ((!s_release && w_rprobeackfirst) && io.schedule.ready) {
eviction(S_BRANCH, b) // MMIO read to read-only device
eviction(S_BRANCH_C, b && c) // you need children to become C
eviction(S_TIP, true) // MMIO read || clean release can lead to this state
eviction(S_TIP_C, c) // needs two clients || client + mmio || downgrading client
eviction(S_TIP_CD, c) // needs two clients || client + mmio || downgrading client
eviction(S_TIP_D, true) // MMIO write || dirty release lead here
eviction(S_TRUNK_C, c) // acquire for write
eviction(S_TRUNK_CD, c) // dirty release then reacquire
}
when ((!s_writeback && no_wait) && io.schedule.ready) {
transition(S_INVALID, S_BRANCH, b && m) // only MMIO can bring us to BRANCH state
transition(S_INVALID, S_BRANCH_C, b && c) // C state is only possible if there are inner caches
transition(S_INVALID, S_TIP, m) // MMIO read
transition(S_INVALID, S_TIP_C, false) // we would go S_TRUNK_C instead
transition(S_INVALID, S_TIP_CD, false) // acquire does not cause dirty immediately
transition(S_INVALID, S_TIP_D, m) // MMIO write
transition(S_INVALID, S_TRUNK_C, c) // acquire
transition(S_INVALID, S_TRUNK_CD, false) // acquire does not cause dirty immediately
transition(S_BRANCH, S_INVALID, b && p) // probe can do this (flushes run as evictions)
transition(S_BRANCH, S_BRANCH_C, b && c) // acquire
transition(S_BRANCH, S_TIP, b && m) // prefetch write
transition(S_BRANCH, S_TIP_C, false) // we would go S_TRUNK_C instead
transition(S_BRANCH, S_TIP_CD, false) // acquire does not cause dirty immediately
transition(S_BRANCH, S_TIP_D, b && m) // MMIO write
transition(S_BRANCH, S_TRUNK_C, b && c) // acquire
transition(S_BRANCH, S_TRUNK_CD, false) // acquire does not cause dirty immediately
transition(S_BRANCH_C, S_INVALID, b && c && p)
transition(S_BRANCH_C, S_BRANCH, b && c) // clean release (optional)
transition(S_BRANCH_C, S_TIP, b && c && m) // prefetch write
transition(S_BRANCH_C, S_TIP_C, false) // we would go S_TRUNK_C instead
transition(S_BRANCH_C, S_TIP_D, b && c && m) // MMIO write
transition(S_BRANCH_C, S_TIP_CD, false) // going dirty means we must shoot down clients
transition(S_BRANCH_C, S_TRUNK_C, b && c) // acquire
transition(S_BRANCH_C, S_TRUNK_CD, false) // acquire does not cause dirty immediately
transition(S_TIP, S_INVALID, p)
transition(S_TIP, S_BRANCH, p) // losing TIP only possible via probe
transition(S_TIP, S_BRANCH_C, false) // we would go S_TRUNK_C instead
transition(S_TIP, S_TIP_C, false) // we would go S_TRUNK_C instead
transition(S_TIP, S_TIP_D, m) // direct dirty only via MMIO write
transition(S_TIP, S_TIP_CD, false) // acquire does not make us dirty immediately
transition(S_TIP, S_TRUNK_C, c) // acquire
transition(S_TIP, S_TRUNK_CD, false) // acquire does not make us dirty immediately
transition(S_TIP_C, S_INVALID, c && p)
transition(S_TIP_C, S_BRANCH, c && p) // losing TIP only possible via probe
transition(S_TIP_C, S_BRANCH_C, c && p) // losing TIP only possible via probe
transition(S_TIP_C, S_TIP, c) // probed while MMIO read || clean release (optional)
transition(S_TIP_C, S_TIP_D, c && m) // direct dirty only via MMIO write
transition(S_TIP_C, S_TIP_CD, false) // going dirty means we must shoot down clients
transition(S_TIP_C, S_TRUNK_C, c) // acquire
transition(S_TIP_C, S_TRUNK_CD, false) // acquire does not make us immediately dirty
transition(S_TIP_D, S_INVALID, p)
transition(S_TIP_D, S_BRANCH, p) // losing D is only possible via probe
transition(S_TIP_D, S_BRANCH_C, p && c) // probed while acquire shared
transition(S_TIP_D, S_TIP, p) // probed while MMIO read || outer probe.toT (optional)
transition(S_TIP_D, S_TIP_C, false) // we would go S_TRUNK_C instead
transition(S_TIP_D, S_TIP_CD, false) // we would go S_TRUNK_CD instead
transition(S_TIP_D, S_TRUNK_C, p && c) // probed while acquired
transition(S_TIP_D, S_TRUNK_CD, c) // acquire
transition(S_TIP_CD, S_INVALID, c && p)
transition(S_TIP_CD, S_BRANCH, c && p) // losing D is only possible via probe
transition(S_TIP_CD, S_BRANCH_C, c && p) // losing D is only possible via probe
transition(S_TIP_CD, S_TIP, c && p) // probed while MMIO read || outer probe.toT (optional)
transition(S_TIP_CD, S_TIP_C, false) // we would go S_TRUNK_C instead
transition(S_TIP_CD, S_TIP_D, c) // MMIO write || clean release (optional)
transition(S_TIP_CD, S_TRUNK_C, c && p) // probed while acquire
transition(S_TIP_CD, S_TRUNK_CD, c) // acquire
transition(S_TRUNK_C, S_INVALID, c && p)
transition(S_TRUNK_C, S_BRANCH, c && p) // losing TIP only possible via probe
transition(S_TRUNK_C, S_BRANCH_C, c && p) // losing TIP only possible via probe
transition(S_TRUNK_C, S_TIP, c) // MMIO read || clean release (optional)
transition(S_TRUNK_C, S_TIP_C, c) // bounce shared
transition(S_TRUNK_C, S_TIP_D, c) // dirty release
transition(S_TRUNK_C, S_TIP_CD, c) // dirty bounce shared
transition(S_TRUNK_C, S_TRUNK_CD, c) // dirty bounce
transition(S_TRUNK_CD, S_INVALID, c && p)
transition(S_TRUNK_CD, S_BRANCH, c && p) // losing D only possible via probe
transition(S_TRUNK_CD, S_BRANCH_C, c && p) // losing D only possible via probe
transition(S_TRUNK_CD, S_TIP, c && p) // probed while MMIO read || outer probe.toT (optional)
transition(S_TRUNK_CD, S_TIP_C, false) // we would go S_TRUNK_C instead
transition(S_TRUNK_CD, S_TIP_D, c) // dirty release
transition(S_TRUNK_CD, S_TIP_CD, c) // bounce shared
transition(S_TRUNK_CD, S_TRUNK_C, c && p) // probed while acquire
}
// Handle response messages
val probe_bit = params.clientBit(io.sinkc.bits.source)
val last_probe = (probes_done | probe_bit) === (meta.clients & ~excluded_client)
val probe_toN = isToN(io.sinkc.bits.param)
if (!params.firstLevel) when (io.sinkc.valid) {
params.ccover( probe_toN && io.schedule.bits.b.bits.param === toB, "MSHR_PROBE_FULL", "Client downgraded to N when asked only to do B")
params.ccover(!probe_toN && io.schedule.bits.b.bits.param === toB, "MSHR_PROBE_HALF", "Client downgraded to B when asked only to do B")
// Caution: the probe matches us only in set.
// We would never allow an outer probe to nest until both w_[rp]probeack complete, so
// it is safe to just unguardedly update the probe FSM.
probes_done := probes_done | probe_bit
probes_toN := probes_toN | Mux(probe_toN, probe_bit, 0.U)
probes_noT := probes_noT || io.sinkc.bits.param =/= TtoT
w_rprobeackfirst := w_rprobeackfirst || last_probe
w_rprobeacklast := w_rprobeacklast || (last_probe && io.sinkc.bits.last)
w_pprobeackfirst := w_pprobeackfirst || last_probe
w_pprobeacklast := w_pprobeacklast || (last_probe && io.sinkc.bits.last)
// Allow wormhole routing from sinkC if the first request beat has offset 0
val set_pprobeack = last_probe && (io.sinkc.bits.last || request.offset === 0.U)
w_pprobeack := w_pprobeack || set_pprobeack
params.ccover(!set_pprobeack && w_rprobeackfirst, "MSHR_PROBE_SERIAL", "Sequential routing of probe response data")
params.ccover( set_pprobeack && w_rprobeackfirst, "MSHR_PROBE_WORMHOLE", "Wormhole routing of probe response data")
// However, meta-data updates need to be done more cautiously
when (meta.state =/= INVALID && io.sinkc.bits.tag === meta.tag && io.sinkc.bits.data) { meta.dirty := true.B } // !!!
}
when (io.sinkd.valid) {
when (io.sinkd.bits.opcode === Grant || io.sinkd.bits.opcode === GrantData) {
sink := io.sinkd.bits.sink
w_grantfirst := true.B
w_grantlast := io.sinkd.bits.last
// Record if we need to prevent taking ownership
bad_grant := io.sinkd.bits.denied
// Allow wormhole routing for requests whose first beat has offset 0
w_grant := request.offset === 0.U || io.sinkd.bits.last
params.ccover(io.sinkd.bits.opcode === GrantData && request.offset === 0.U, "MSHR_GRANT_WORMHOLE", "Wormhole routing of grant response data")
params.ccover(io.sinkd.bits.opcode === GrantData && request.offset =/= 0.U, "MSHR_GRANT_SERIAL", "Sequential routing of grant response data")
gotT := io.sinkd.bits.param === toT
}
.elsewhen (io.sinkd.bits.opcode === ReleaseAck) {
w_releaseack := true.B
}
}
when (io.sinke.valid) {
w_grantack := true.B
}
// Bootstrap new requests
val allocate_as_full = WireInit(new FullRequest(params), init = io.allocate.bits)
val new_meta = Mux(io.allocate.valid && io.allocate.bits.repeat, final_meta_writeback, io.directory.bits)
val new_request = Mux(io.allocate.valid, allocate_as_full, request)
val new_needT = needT(new_request.opcode, new_request.param)
val new_clientBit = params.clientBit(new_request.source)
val new_skipProbe = Mux(skipProbeN(new_request.opcode, params.cache.hintsSkipProbe), new_clientBit, 0.U)
val prior = cacheState(final_meta_writeback, true.B)
def bypass(from: CacheState, cover: Boolean)(implicit sourceInfo: SourceInfo) {
if (cover) {
params.ccover(prior === from.code, s"MSHR_${from}_BYPASS", s"State bypass transition from ${from} ${cfg}")
} else {
assert(!(prior === from.code), cf"State bypass from ${from} should be impossible ${cfg}")
}
}
when (io.allocate.valid && io.allocate.bits.repeat) {
bypass(S_INVALID, f || p) // Can lose permissions (probe/flush)
bypass(S_BRANCH, b) // MMIO read to read-only device
bypass(S_BRANCH_C, b && c) // you need children to become C
bypass(S_TIP, true) // MMIO read || clean release can lead to this state
bypass(S_TIP_C, c) // needs two clients || client + mmio || downgrading client
bypass(S_TIP_CD, c) // needs two clients || client + mmio || downgrading client
bypass(S_TIP_D, true) // MMIO write || dirty release lead here
bypass(S_TRUNK_C, c) // acquire for write
bypass(S_TRUNK_CD, c) // dirty release then reacquire
}
when (io.allocate.valid) {
assert (!request_valid || (no_wait && io.schedule.fire))
request_valid := true.B
request := io.allocate.bits
}
// Create execution plan
when (io.directory.valid || (io.allocate.valid && io.allocate.bits.repeat)) {
meta_valid := true.B
meta := new_meta
probes_done := 0.U
probes_toN := 0.U
probes_noT := false.B
gotT := false.B
bad_grant := false.B
// These should already be either true or turning true
// We clear them here explicitly to simplify the mux tree
s_rprobe := true.B
w_rprobeackfirst := true.B
w_rprobeacklast := true.B
s_release := true.B
w_releaseack := true.B
s_pprobe := true.B
s_acquire := true.B
s_flush := true.B
w_grantfirst := true.B
w_grantlast := true.B
w_grant := true.B
w_pprobeackfirst := true.B
w_pprobeacklast := true.B
w_pprobeack := true.B
s_probeack := true.B
s_grantack := true.B
s_execute := true.B
w_grantack := true.B
s_writeback := true.B
// For C channel requests (ie: Release[Data])
when (new_request.prio(2) && (!params.firstLevel).B) {
s_execute := false.B
// Do we need to go dirty?
when (new_request.opcode(0) && !new_meta.dirty) {
s_writeback := false.B
}
// Does our state change?
when (isToB(new_request.param) && new_meta.state === TRUNK) {
s_writeback := false.B
}
// Do our clients change?
when (isToN(new_request.param) && (new_meta.clients & new_clientBit) =/= 0.U) {
s_writeback := false.B
}
assert (new_meta.hit)
}
// For X channel requests (ie: flush)
.elsewhen (new_request.control && params.control.B) { // new_request.prio(0)
s_flush := false.B
// Do we need to actually do something?
when (new_meta.hit) {
s_release := false.B
w_releaseack := false.B
// Do we need to shoot-down inner caches?
when ((!params.firstLevel).B && (new_meta.clients =/= 0.U)) {
s_rprobe := false.B
w_rprobeackfirst := false.B
w_rprobeacklast := false.B
}
}
}
// For A channel requests
.otherwise { // new_request.prio(0) && !new_request.control
s_execute := false.B
// Do we need an eviction?
when (!new_meta.hit && new_meta.state =/= INVALID) {
s_release := false.B
w_releaseack := false.B
// Do we need to shoot-down inner caches?
when ((!params.firstLevel).B & (new_meta.clients =/= 0.U)) {
s_rprobe := false.B
w_rprobeackfirst := false.B
w_rprobeacklast := false.B
}
}
// Do we need an acquire?
when (!new_meta.hit || (new_meta.state === BRANCH && new_needT)) {
s_acquire := false.B
w_grantfirst := false.B
w_grantlast := false.B
w_grant := false.B
s_grantack := false.B
s_writeback := false.B
}
// Do we need a probe?
when ((!params.firstLevel).B && (new_meta.hit &&
(new_needT || new_meta.state === TRUNK) &&
(new_meta.clients & ~new_skipProbe) =/= 0.U)) {
s_pprobe := false.B
w_pprobeackfirst := false.B
w_pprobeacklast := false.B
w_pprobeack := false.B
s_writeback := false.B
}
// Do we need a grantack?
when (new_request.opcode === AcquireBlock || new_request.opcode === AcquirePerm) {
w_grantack := false.B
s_writeback := false.B
}
// Becomes dirty?
when (!new_request.opcode(2) && new_meta.hit && !new_meta.dirty) {
s_writeback := false.B
}
}
}
}
File Parameters.scala:
// See LICENSE.SiFive for license details.
package freechips.rocketchip.diplomacy
import chisel3._
import chisel3.util.{DecoupledIO, Queue, ReadyValidIO, isPow2, log2Ceil, log2Floor}
import freechips.rocketchip.util.ShiftQueue
/** Options for describing the attributes of memory regions */
object RegionType {
// Define the 'more relaxed than' ordering
val cases = Seq(CACHED, TRACKED, UNCACHED, IDEMPOTENT, VOLATILE, PUT_EFFECTS, GET_EFFECTS)
sealed trait T extends Ordered[T] {
def compare(that: T): Int = cases.indexOf(that) compare cases.indexOf(this)
}
case object CACHED extends T // an intermediate agent may have cached a copy of the region for you
case object TRACKED extends T // the region may have been cached by another master, but coherence is being provided
case object UNCACHED extends T // the region has not been cached yet, but should be cached when possible
case object IDEMPOTENT extends T // gets return most recently put content, but content should not be cached
case object VOLATILE extends T // content may change without a put, but puts and gets have no side effects
case object PUT_EFFECTS extends T // puts produce side effects and so must not be combined/delayed
case object GET_EFFECTS extends T // gets produce side effects and so must not be issued speculatively
}
// A non-empty half-open range; [start, end)
case class IdRange(start: Int, end: Int) extends Ordered[IdRange]
{
require (start >= 0, s"Ids cannot be negative, but got: $start.")
require (start <= end, "Id ranges cannot be negative.")
def compare(x: IdRange) = {
val primary = (this.start - x.start).signum
val secondary = (x.end - this.end).signum
if (primary != 0) primary else secondary
}
def overlaps(x: IdRange) = start < x.end && x.start < end
def contains(x: IdRange) = start <= x.start && x.end <= end
def contains(x: Int) = start <= x && x < end
def contains(x: UInt) =
if (size == 0) {
false.B
} else if (size == 1) { // simple comparison
x === start.U
} else {
// find index of largest different bit
val largestDeltaBit = log2Floor(start ^ (end-1))
val smallestCommonBit = largestDeltaBit + 1 // may not exist in x
val uncommonMask = (1 << smallestCommonBit) - 1
val uncommonBits = (x | 0.U(smallestCommonBit.W))(largestDeltaBit, 0)
// the prefix must match exactly (note: may shift ALL bits away)
(x >> smallestCommonBit) === (start >> smallestCommonBit).U &&
// firrtl constant prop range analysis can eliminate these two:
(start & uncommonMask).U <= uncommonBits &&
uncommonBits <= ((end-1) & uncommonMask).U
}
def shift(x: Int) = IdRange(start+x, end+x)
def size = end - start
def isEmpty = end == start
def range = start until end
}
object IdRange
{
def overlaps(s: Seq[IdRange]) = if (s.isEmpty) None else {
val ranges = s.sorted
(ranges.tail zip ranges.init) find { case (a, b) => a overlaps b }
}
}
// An potentially empty inclusive range of 2-powers [min, max] (in bytes)
case class TransferSizes(min: Int, max: Int)
{
def this(x: Int) = this(x, x)
require (min <= max, s"Min transfer $min > max transfer $max")
require (min >= 0 && max >= 0, s"TransferSizes must be positive, got: ($min, $max)")
require (max == 0 || isPow2(max), s"TransferSizes must be a power of 2, got: $max")
require (min == 0 || isPow2(min), s"TransferSizes must be a power of 2, got: $min")
require (max == 0 || min != 0, s"TransferSize 0 is forbidden unless (0,0), got: ($min, $max)")
def none = min == 0
def contains(x: Int) = isPow2(x) && min <= x && x <= max
def containsLg(x: Int) = contains(1 << x)
def containsLg(x: UInt) =
if (none) false.B
else if (min == max) { log2Ceil(min).U === x }
else { log2Ceil(min).U <= x && x <= log2Ceil(max).U }
def contains(x: TransferSizes) = x.none || (min <= x.min && x.max <= max)
def intersect(x: TransferSizes) =
if (x.max < min || max < x.min) TransferSizes.none
else TransferSizes(scala.math.max(min, x.min), scala.math.min(max, x.max))
// Not a union, because the result may contain sizes contained by neither term
// NOT TO BE CONFUSED WITH COVERPOINTS
def mincover(x: TransferSizes) = {
if (none) {
x
} else if (x.none) {
this
} else {
TransferSizes(scala.math.min(min, x.min), scala.math.max(max, x.max))
}
}
override def toString() = "TransferSizes[%d, %d]".format(min, max)
}
object TransferSizes {
def apply(x: Int) = new TransferSizes(x)
val none = new TransferSizes(0)
def mincover(seq: Seq[TransferSizes]) = seq.foldLeft(none)(_ mincover _)
def intersect(seq: Seq[TransferSizes]) = seq.reduce(_ intersect _)
implicit def asBool(x: TransferSizes) = !x.none
}
// AddressSets specify the address space managed by the manager
// Base is the base address, and mask are the bits consumed by the manager
// e.g: base=0x200, mask=0xff describes a device managing 0x200-0x2ff
// e.g: base=0x1000, mask=0xf0f decribes a device managing 0x1000-0x100f, 0x1100-0x110f, ...
case class AddressSet(base: BigInt, mask: BigInt) extends Ordered[AddressSet]
{
// Forbid misaligned base address (and empty sets)
require ((base & mask) == 0, s"Mis-aligned AddressSets are forbidden, got: ${this.toString}")
require (base >= 0, s"AddressSet negative base is ambiguous: $base") // TL2 address widths are not fixed => negative is ambiguous
// We do allow negative mask (=> ignore all high bits)
def contains(x: BigInt) = ((x ^ base) & ~mask) == 0
def contains(x: UInt) = ((x ^ base.U).zext & (~mask).S) === 0.S
// turn x into an address contained in this set
def legalize(x: UInt): UInt = base.U | (mask.U & x)
// overlap iff bitwise: both care (~mask0 & ~mask1) => both equal (base0=base1)
def overlaps(x: AddressSet) = (~(mask | x.mask) & (base ^ x.base)) == 0
// contains iff bitwise: x.mask => mask && contains(x.base)
def contains(x: AddressSet) = ((x.mask | (base ^ x.base)) & ~mask) == 0
// The number of bytes to which the manager must be aligned
def alignment = ((mask + 1) & ~mask)
// Is this a contiguous memory range
def contiguous = alignment == mask+1
def finite = mask >= 0
def max = { require (finite, "Max cannot be calculated on infinite mask"); base | mask }
// Widen the match function to ignore all bits in imask
def widen(imask: BigInt) = AddressSet(base & ~imask, mask | imask)
// Return an AddressSet that only contains the addresses both sets contain
def intersect(x: AddressSet): Option[AddressSet] = {
if (!overlaps(x)) {
None
} else {
val r_mask = mask & x.mask
val r_base = base | x.base
Some(AddressSet(r_base, r_mask))
}
}
def subtract(x: AddressSet): Seq[AddressSet] = {
intersect(x) match {
case None => Seq(this)
case Some(remove) => AddressSet.enumerateBits(mask & ~remove.mask).map { bit =>
val nmask = (mask & (bit-1)) | remove.mask
val nbase = (remove.base ^ bit) & ~nmask
AddressSet(nbase, nmask)
}
}
}
// AddressSets have one natural Ordering (the containment order, if contiguous)
def compare(x: AddressSet) = {
val primary = (this.base - x.base).signum // smallest address first
val secondary = (x.mask - this.mask).signum // largest mask first
if (primary != 0) primary else secondary
}
// We always want to see things in hex
override def toString() = {
if (mask >= 0) {
"AddressSet(0x%x, 0x%x)".format(base, mask)
} else {
"AddressSet(0x%x, ~0x%x)".format(base, ~mask)
}
}
def toRanges = {
require (finite, "Ranges cannot be calculated on infinite mask")
val size = alignment
val fragments = mask & ~(size-1)
val bits = bitIndexes(fragments)
(BigInt(0) until (BigInt(1) << bits.size)).map { i =>
val off = bitIndexes(i).foldLeft(base) { case (a, b) => a.setBit(bits(b)) }
AddressRange(off, size)
}
}
}
object AddressSet
{
val everything = AddressSet(0, -1)
def misaligned(base: BigInt, size: BigInt, tail: Seq[AddressSet] = Seq()): Seq[AddressSet] = {
if (size == 0) tail.reverse else {
val maxBaseAlignment = base & (-base) // 0 for infinite (LSB)
val maxSizeAlignment = BigInt(1) << log2Floor(size) // MSB of size
val step =
if (maxBaseAlignment == 0 || maxBaseAlignment > maxSizeAlignment)
maxSizeAlignment else maxBaseAlignment
misaligned(base+step, size-step, AddressSet(base, step-1) +: tail)
}
}
def unify(seq: Seq[AddressSet], bit: BigInt): Seq[AddressSet] = {
// Pair terms up by ignoring 'bit'
seq.distinct.groupBy(x => x.copy(base = x.base & ~bit)).map { case (key, seq) =>
if (seq.size == 1) {
seq.head // singleton -> unaffected
} else {
key.copy(mask = key.mask | bit) // pair - widen mask by bit
}
}.toList
}
def unify(seq: Seq[AddressSet]): Seq[AddressSet] = {
val bits = seq.map(_.base).foldLeft(BigInt(0))(_ | _)
AddressSet.enumerateBits(bits).foldLeft(seq) { case (acc, bit) => unify(acc, bit) }.sorted
}
def enumerateMask(mask: BigInt): Seq[BigInt] = {
def helper(id: BigInt, tail: Seq[BigInt]): Seq[BigInt] =
if (id == mask) (id +: tail).reverse else helper(((~mask | id) + 1) & mask, id +: tail)
helper(0, Nil)
}
def enumerateBits(mask: BigInt): Seq[BigInt] = {
def helper(x: BigInt): Seq[BigInt] = {
if (x == 0) {
Nil
} else {
val bit = x & (-x)
bit +: helper(x & ~bit)
}
}
helper(mask)
}
}
case class BufferParams(depth: Int, flow: Boolean, pipe: Boolean)
{
require (depth >= 0, "Buffer depth must be >= 0")
def isDefined = depth > 0
def latency = if (isDefined && !flow) 1 else 0
def apply[T <: Data](x: DecoupledIO[T]) =
if (isDefined) Queue(x, depth, flow=flow, pipe=pipe)
else x
def irrevocable[T <: Data](x: ReadyValidIO[T]) =
if (isDefined) Queue.irrevocable(x, depth, flow=flow, pipe=pipe)
else x
def sq[T <: Data](x: DecoupledIO[T]) =
if (!isDefined) x else {
val sq = Module(new ShiftQueue(x.bits, depth, flow=flow, pipe=pipe))
sq.io.enq <> x
sq.io.deq
}
override def toString() = "BufferParams:%d%s%s".format(depth, if (flow) "F" else "", if (pipe) "P" else "")
}
object BufferParams
{
implicit def apply(depth: Int): BufferParams = BufferParams(depth, false, false)
val default = BufferParams(2)
val none = BufferParams(0)
val flow = BufferParams(1, true, false)
val pipe = BufferParams(1, false, true)
}
case class TriStateValue(value: Boolean, set: Boolean)
{
def update(orig: Boolean) = if (set) value else orig
}
object TriStateValue
{
implicit def apply(value: Boolean): TriStateValue = TriStateValue(value, true)
def unset = TriStateValue(false, false)
}
trait DirectedBuffers[T] {
def copyIn(x: BufferParams): T
def copyOut(x: BufferParams): T
def copyInOut(x: BufferParams): T
}
trait IdMapEntry {
def name: String
def from: IdRange
def to: IdRange
def isCache: Boolean
def requestFifo: Boolean
def maxTransactionsInFlight: Option[Int]
def pretty(fmt: String) =
if (from ne to) { // if the subclass uses the same reference for both from and to, assume its format string has an arity of 5
fmt.format(to.start, to.end, from.start, from.end, s""""$name"""", if (isCache) " [CACHE]" else "", if (requestFifo) " [FIFO]" else "")
} else {
fmt.format(from.start, from.end, s""""$name"""", if (isCache) " [CACHE]" else "", if (requestFifo) " [FIFO]" else "")
}
}
abstract class IdMap[T <: IdMapEntry] {
protected val fmt: String
val mapping: Seq[T]
def pretty: String = mapping.map(_.pretty(fmt)).mkString(",\n")
}
| module MSHR_2( // @[MSHR.scala:84:7]
input clock, // @[MSHR.scala:84:7]
input reset, // @[MSHR.scala:84:7]
input io_allocate_valid, // @[MSHR.scala:86:14]
input io_allocate_bits_prio_0, // @[MSHR.scala:86:14]
input io_allocate_bits_prio_1, // @[MSHR.scala:86:14]
input io_allocate_bits_prio_2, // @[MSHR.scala:86:14]
input io_allocate_bits_control, // @[MSHR.scala:86:14]
input [2:0] io_allocate_bits_opcode, // @[MSHR.scala:86:14]
input [2:0] io_allocate_bits_param, // @[MSHR.scala:86:14]
input [2:0] io_allocate_bits_size, // @[MSHR.scala:86:14]
input [6:0] io_allocate_bits_source, // @[MSHR.scala:86:14]
input [12:0] io_allocate_bits_tag, // @[MSHR.scala:86:14]
input [5:0] io_allocate_bits_offset, // @[MSHR.scala:86:14]
input [5:0] io_allocate_bits_put, // @[MSHR.scala:86:14]
input [9:0] io_allocate_bits_set, // @[MSHR.scala:86:14]
input io_allocate_bits_repeat, // @[MSHR.scala:86:14]
input io_directory_valid, // @[MSHR.scala:86:14]
input io_directory_bits_dirty, // @[MSHR.scala:86:14]
input [1:0] io_directory_bits_state, // @[MSHR.scala:86:14]
input [3:0] io_directory_bits_clients, // @[MSHR.scala:86:14]
input [12:0] io_directory_bits_tag, // @[MSHR.scala:86:14]
input io_directory_bits_hit, // @[MSHR.scala:86:14]
input [2:0] io_directory_bits_way, // @[MSHR.scala:86:14]
output io_status_valid, // @[MSHR.scala:86:14]
output [9:0] io_status_bits_set, // @[MSHR.scala:86:14]
output [12:0] io_status_bits_tag, // @[MSHR.scala:86:14]
output [2:0] io_status_bits_way, // @[MSHR.scala:86:14]
output io_status_bits_blockB, // @[MSHR.scala:86:14]
output io_status_bits_nestB, // @[MSHR.scala:86:14]
output io_status_bits_blockC, // @[MSHR.scala:86:14]
output io_status_bits_nestC, // @[MSHR.scala:86:14]
input io_schedule_ready, // @[MSHR.scala:86:14]
output io_schedule_valid, // @[MSHR.scala:86:14]
output io_schedule_bits_a_valid, // @[MSHR.scala:86:14]
output [12:0] io_schedule_bits_a_bits_tag, // @[MSHR.scala:86:14]
output [9:0] io_schedule_bits_a_bits_set, // @[MSHR.scala:86:14]
output [2:0] io_schedule_bits_a_bits_param, // @[MSHR.scala:86:14]
output io_schedule_bits_a_bits_block, // @[MSHR.scala:86:14]
output io_schedule_bits_b_valid, // @[MSHR.scala:86:14]
output [2:0] io_schedule_bits_b_bits_param, // @[MSHR.scala:86:14]
output [12:0] io_schedule_bits_b_bits_tag, // @[MSHR.scala:86:14]
output [9:0] io_schedule_bits_b_bits_set, // @[MSHR.scala:86:14]
output [3:0] io_schedule_bits_b_bits_clients, // @[MSHR.scala:86:14]
output io_schedule_bits_c_valid, // @[MSHR.scala:86:14]
output [2:0] io_schedule_bits_c_bits_opcode, // @[MSHR.scala:86:14]
output [2:0] io_schedule_bits_c_bits_param, // @[MSHR.scala:86:14]
output [12:0] io_schedule_bits_c_bits_tag, // @[MSHR.scala:86:14]
output [9:0] io_schedule_bits_c_bits_set, // @[MSHR.scala:86:14]
output [2:0] io_schedule_bits_c_bits_way, // @[MSHR.scala:86:14]
output io_schedule_bits_c_bits_dirty, // @[MSHR.scala:86:14]
output io_schedule_bits_d_valid, // @[MSHR.scala:86:14]
output io_schedule_bits_d_bits_prio_0, // @[MSHR.scala:86:14]
output io_schedule_bits_d_bits_prio_1, // @[MSHR.scala:86:14]
output io_schedule_bits_d_bits_prio_2, // @[MSHR.scala:86:14]
output io_schedule_bits_d_bits_control, // @[MSHR.scala:86:14]
output [2:0] io_schedule_bits_d_bits_opcode, // @[MSHR.scala:86:14]
output [2:0] io_schedule_bits_d_bits_param, // @[MSHR.scala:86:14]
output [2:0] io_schedule_bits_d_bits_size, // @[MSHR.scala:86:14]
output [6:0] io_schedule_bits_d_bits_source, // @[MSHR.scala:86:14]
output [12:0] io_schedule_bits_d_bits_tag, // @[MSHR.scala:86:14]
output [5:0] io_schedule_bits_d_bits_offset, // @[MSHR.scala:86:14]
output [5:0] io_schedule_bits_d_bits_put, // @[MSHR.scala:86:14]
output [9:0] io_schedule_bits_d_bits_set, // @[MSHR.scala:86:14]
output [2:0] io_schedule_bits_d_bits_way, // @[MSHR.scala:86:14]
output io_schedule_bits_d_bits_bad, // @[MSHR.scala:86:14]
output io_schedule_bits_e_valid, // @[MSHR.scala:86:14]
output [2:0] io_schedule_bits_e_bits_sink, // @[MSHR.scala:86:14]
output io_schedule_bits_x_valid, // @[MSHR.scala:86:14]
output io_schedule_bits_dir_valid, // @[MSHR.scala:86:14]
output [9:0] io_schedule_bits_dir_bits_set, // @[MSHR.scala:86:14]
output [2:0] io_schedule_bits_dir_bits_way, // @[MSHR.scala:86:14]
output io_schedule_bits_dir_bits_data_dirty, // @[MSHR.scala:86:14]
output [1:0] io_schedule_bits_dir_bits_data_state, // @[MSHR.scala:86:14]
output [3:0] io_schedule_bits_dir_bits_data_clients, // @[MSHR.scala:86:14]
output [12:0] io_schedule_bits_dir_bits_data_tag, // @[MSHR.scala:86:14]
output io_schedule_bits_reload, // @[MSHR.scala:86:14]
input io_sinkc_valid, // @[MSHR.scala:86:14]
input io_sinkc_bits_last, // @[MSHR.scala:86:14]
input [9:0] io_sinkc_bits_set, // @[MSHR.scala:86:14]
input [12:0] io_sinkc_bits_tag, // @[MSHR.scala:86:14]
input [6:0] io_sinkc_bits_source, // @[MSHR.scala:86:14]
input [2:0] io_sinkc_bits_param, // @[MSHR.scala:86:14]
input io_sinkc_bits_data, // @[MSHR.scala:86:14]
input io_sinkd_valid, // @[MSHR.scala:86:14]
input io_sinkd_bits_last, // @[MSHR.scala:86:14]
input [2:0] io_sinkd_bits_opcode, // @[MSHR.scala:86:14]
input [2:0] io_sinkd_bits_param, // @[MSHR.scala:86:14]
input [3:0] io_sinkd_bits_source, // @[MSHR.scala:86:14]
input [2:0] io_sinkd_bits_sink, // @[MSHR.scala:86:14]
input io_sinkd_bits_denied, // @[MSHR.scala:86:14]
input io_sinke_valid, // @[MSHR.scala:86:14]
input [3:0] io_sinke_bits_sink, // @[MSHR.scala:86:14]
input [9:0] io_nestedwb_set, // @[MSHR.scala:86:14]
input [12:0] io_nestedwb_tag, // @[MSHR.scala:86:14]
input io_nestedwb_b_toN, // @[MSHR.scala:86:14]
input io_nestedwb_b_toB, // @[MSHR.scala:86:14]
input io_nestedwb_b_clr_dirty, // @[MSHR.scala:86:14]
input io_nestedwb_c_set_dirty // @[MSHR.scala:86:14]
);
wire [12:0] final_meta_writeback_tag; // @[MSHR.scala:215:38]
wire [3:0] final_meta_writeback_clients; // @[MSHR.scala:215:38]
wire [1:0] final_meta_writeback_state; // @[MSHR.scala:215:38]
wire final_meta_writeback_dirty; // @[MSHR.scala:215:38]
wire io_allocate_valid_0 = io_allocate_valid; // @[MSHR.scala:84:7]
wire io_allocate_bits_prio_0_0 = io_allocate_bits_prio_0; // @[MSHR.scala:84:7]
wire io_allocate_bits_prio_1_0 = io_allocate_bits_prio_1; // @[MSHR.scala:84:7]
wire io_allocate_bits_prio_2_0 = io_allocate_bits_prio_2; // @[MSHR.scala:84:7]
wire io_allocate_bits_control_0 = io_allocate_bits_control; // @[MSHR.scala:84:7]
wire [2:0] io_allocate_bits_opcode_0 = io_allocate_bits_opcode; // @[MSHR.scala:84:7]
wire [2:0] io_allocate_bits_param_0 = io_allocate_bits_param; // @[MSHR.scala:84:7]
wire [2:0] io_allocate_bits_size_0 = io_allocate_bits_size; // @[MSHR.scala:84:7]
wire [6:0] io_allocate_bits_source_0 = io_allocate_bits_source; // @[MSHR.scala:84:7]
wire [12:0] io_allocate_bits_tag_0 = io_allocate_bits_tag; // @[MSHR.scala:84:7]
wire [5:0] io_allocate_bits_offset_0 = io_allocate_bits_offset; // @[MSHR.scala:84:7]
wire [5:0] io_allocate_bits_put_0 = io_allocate_bits_put; // @[MSHR.scala:84:7]
wire [9:0] io_allocate_bits_set_0 = io_allocate_bits_set; // @[MSHR.scala:84:7]
wire io_allocate_bits_repeat_0 = io_allocate_bits_repeat; // @[MSHR.scala:84:7]
wire io_directory_valid_0 = io_directory_valid; // @[MSHR.scala:84:7]
wire io_directory_bits_dirty_0 = io_directory_bits_dirty; // @[MSHR.scala:84:7]
wire [1:0] io_directory_bits_state_0 = io_directory_bits_state; // @[MSHR.scala:84:7]
wire [3:0] io_directory_bits_clients_0 = io_directory_bits_clients; // @[MSHR.scala:84:7]
wire [12:0] io_directory_bits_tag_0 = io_directory_bits_tag; // @[MSHR.scala:84:7]
wire io_directory_bits_hit_0 = io_directory_bits_hit; // @[MSHR.scala:84:7]
wire [2:0] io_directory_bits_way_0 = io_directory_bits_way; // @[MSHR.scala:84:7]
wire io_schedule_ready_0 = io_schedule_ready; // @[MSHR.scala:84:7]
wire io_sinkc_valid_0 = io_sinkc_valid; // @[MSHR.scala:84:7]
wire io_sinkc_bits_last_0 = io_sinkc_bits_last; // @[MSHR.scala:84:7]
wire [9:0] io_sinkc_bits_set_0 = io_sinkc_bits_set; // @[MSHR.scala:84:7]
wire [12:0] io_sinkc_bits_tag_0 = io_sinkc_bits_tag; // @[MSHR.scala:84:7]
wire [6:0] io_sinkc_bits_source_0 = io_sinkc_bits_source; // @[MSHR.scala:84:7]
wire [2:0] io_sinkc_bits_param_0 = io_sinkc_bits_param; // @[MSHR.scala:84:7]
wire io_sinkc_bits_data_0 = io_sinkc_bits_data; // @[MSHR.scala:84:7]
wire io_sinkd_valid_0 = io_sinkd_valid; // @[MSHR.scala:84:7]
wire io_sinkd_bits_last_0 = io_sinkd_bits_last; // @[MSHR.scala:84:7]
wire [2:0] io_sinkd_bits_opcode_0 = io_sinkd_bits_opcode; // @[MSHR.scala:84:7]
wire [2:0] io_sinkd_bits_param_0 = io_sinkd_bits_param; // @[MSHR.scala:84:7]
wire [3:0] io_sinkd_bits_source_0 = io_sinkd_bits_source; // @[MSHR.scala:84:7]
wire [2:0] io_sinkd_bits_sink_0 = io_sinkd_bits_sink; // @[MSHR.scala:84:7]
wire io_sinkd_bits_denied_0 = io_sinkd_bits_denied; // @[MSHR.scala:84:7]
wire io_sinke_valid_0 = io_sinke_valid; // @[MSHR.scala:84:7]
wire [3:0] io_sinke_bits_sink_0 = io_sinke_bits_sink; // @[MSHR.scala:84:7]
wire [9:0] io_nestedwb_set_0 = io_nestedwb_set; // @[MSHR.scala:84:7]
wire [12:0] io_nestedwb_tag_0 = io_nestedwb_tag; // @[MSHR.scala:84:7]
wire io_nestedwb_b_toN_0 = io_nestedwb_b_toN; // @[MSHR.scala:84:7]
wire io_nestedwb_b_toB_0 = io_nestedwb_b_toB; // @[MSHR.scala:84:7]
wire io_nestedwb_b_clr_dirty_0 = io_nestedwb_b_clr_dirty; // @[MSHR.scala:84:7]
wire io_nestedwb_c_set_dirty_0 = io_nestedwb_c_set_dirty; // @[MSHR.scala:84:7]
wire [3:0] io_schedule_bits_a_bits_source = 4'h0; // @[MSHR.scala:84:7]
wire [3:0] io_schedule_bits_c_bits_source = 4'h0; // @[MSHR.scala:84:7]
wire [3:0] io_schedule_bits_d_bits_sink = 4'h0; // @[MSHR.scala:84:7]
wire [3:0] invalid_clients = 4'h0; // @[MSHR.scala:268:21]
wire io_schedule_bits_x_bits_fail = 1'h0; // @[MSHR.scala:84:7]
wire _io_schedule_bits_c_valid_T_2 = 1'h0; // @[MSHR.scala:186:68]
wire _io_schedule_bits_c_valid_T_3 = 1'h0; // @[MSHR.scala:186:80]
wire invalid_dirty = 1'h0; // @[MSHR.scala:268:21]
wire _excluded_client_T_7 = 1'h0; // @[Parameters.scala:279:137]
wire _after_T_4 = 1'h0; // @[MSHR.scala:323:11]
wire _new_skipProbe_T_6 = 1'h0; // @[Parameters.scala:279:137]
wire _prior_T_4 = 1'h0; // @[MSHR.scala:323:11]
wire _req_clientBit_T_4 = 1'h1; // @[Parameters.scala:56:32]
wire _req_clientBit_T_10 = 1'h1; // @[Parameters.scala:56:32]
wire _probe_bit_T_4 = 1'h1; // @[Parameters.scala:56:32]
wire _probe_bit_T_10 = 1'h1; // @[Parameters.scala:56:32]
wire _new_clientBit_T_4 = 1'h1; // @[Parameters.scala:56:32]
wire _new_clientBit_T_10 = 1'h1; // @[Parameters.scala:56:32]
wire [12:0] invalid_tag = 13'h0; // @[MSHR.scala:268:21]
wire [1:0] invalid_state = 2'h0; // @[MSHR.scala:268:21]
wire [1:0] _final_meta_writeback_state_T_11 = 2'h1; // @[MSHR.scala:240:70]
wire allocate_as_full_prio_0 = io_allocate_bits_prio_0_0; // @[MSHR.scala:84:7, :504:34]
wire allocate_as_full_prio_1 = io_allocate_bits_prio_1_0; // @[MSHR.scala:84:7, :504:34]
wire allocate_as_full_prio_2 = io_allocate_bits_prio_2_0; // @[MSHR.scala:84:7, :504:34]
wire allocate_as_full_control = io_allocate_bits_control_0; // @[MSHR.scala:84:7, :504:34]
wire [2:0] allocate_as_full_opcode = io_allocate_bits_opcode_0; // @[MSHR.scala:84:7, :504:34]
wire [2:0] allocate_as_full_param = io_allocate_bits_param_0; // @[MSHR.scala:84:7, :504:34]
wire [2:0] allocate_as_full_size = io_allocate_bits_size_0; // @[MSHR.scala:84:7, :504:34]
wire [6:0] allocate_as_full_source = io_allocate_bits_source_0; // @[MSHR.scala:84:7, :504:34]
wire [12:0] allocate_as_full_tag = io_allocate_bits_tag_0; // @[MSHR.scala:84:7, :504:34]
wire [5:0] allocate_as_full_offset = io_allocate_bits_offset_0; // @[MSHR.scala:84:7, :504:34]
wire [5:0] allocate_as_full_put = io_allocate_bits_put_0; // @[MSHR.scala:84:7, :504:34]
wire [9:0] allocate_as_full_set = io_allocate_bits_set_0; // @[MSHR.scala:84:7, :504:34]
wire _io_status_bits_blockB_T_8; // @[MSHR.scala:168:40]
wire _io_status_bits_nestB_T_4; // @[MSHR.scala:169:93]
wire _io_status_bits_blockC_T; // @[MSHR.scala:172:28]
wire _io_status_bits_nestC_T_5; // @[MSHR.scala:173:39]
wire _io_schedule_valid_T_5; // @[MSHR.scala:193:105]
wire _io_schedule_bits_a_valid_T_2; // @[MSHR.scala:184:55]
wire _io_schedule_bits_a_bits_block_T_5; // @[MSHR.scala:283:91]
wire _io_schedule_bits_b_valid_T_2; // @[MSHR.scala:185:41]
wire [2:0] _io_schedule_bits_b_bits_param_T_3; // @[MSHR.scala:286:41]
wire [12:0] _io_schedule_bits_b_bits_tag_T_1; // @[MSHR.scala:287:41]
wire [3:0] _io_schedule_bits_b_bits_clients_T_1; // @[MSHR.scala:289:51]
wire _io_schedule_bits_c_valid_T_4; // @[MSHR.scala:186:64]
wire [2:0] _io_schedule_bits_c_bits_opcode_T; // @[MSHR.scala:290:41]
wire [2:0] _io_schedule_bits_c_bits_param_T_1; // @[MSHR.scala:291:41]
wire _io_schedule_bits_d_valid_T_2; // @[MSHR.scala:187:57]
wire [2:0] _io_schedule_bits_d_bits_param_T_9; // @[MSHR.scala:298:41]
wire _io_schedule_bits_e_valid_T_1; // @[MSHR.scala:188:43]
wire _io_schedule_bits_x_valid_T_1; // @[MSHR.scala:189:40]
wire _io_schedule_bits_dir_valid_T_4; // @[MSHR.scala:190:66]
wire _io_schedule_bits_dir_bits_data_T_1_dirty; // @[MSHR.scala:310:41]
wire [1:0] _io_schedule_bits_dir_bits_data_T_1_state; // @[MSHR.scala:310:41]
wire [3:0] _io_schedule_bits_dir_bits_data_T_1_clients; // @[MSHR.scala:310:41]
wire [12:0] _io_schedule_bits_dir_bits_data_T_1_tag; // @[MSHR.scala:310:41]
wire no_wait; // @[MSHR.scala:183:83]
wire [6:0] _probe_bit_uncommonBits_T = io_sinkc_bits_source_0; // @[Parameters.scala:52:29]
wire [6:0] _probe_bit_uncommonBits_T_1 = io_sinkc_bits_source_0; // @[Parameters.scala:52:29]
wire [9:0] io_status_bits_set_0; // @[MSHR.scala:84:7]
wire [12:0] io_status_bits_tag_0; // @[MSHR.scala:84:7]
wire [2:0] io_status_bits_way_0; // @[MSHR.scala:84:7]
wire io_status_bits_blockB_0; // @[MSHR.scala:84:7]
wire io_status_bits_nestB_0; // @[MSHR.scala:84:7]
wire io_status_bits_blockC_0; // @[MSHR.scala:84:7]
wire io_status_bits_nestC_0; // @[MSHR.scala:84:7]
wire io_status_valid_0; // @[MSHR.scala:84:7]
wire [12:0] io_schedule_bits_a_bits_tag_0; // @[MSHR.scala:84:7]
wire [9:0] io_schedule_bits_a_bits_set_0; // @[MSHR.scala:84:7]
wire [2:0] io_schedule_bits_a_bits_param_0; // @[MSHR.scala:84:7]
wire io_schedule_bits_a_bits_block_0; // @[MSHR.scala:84:7]
wire io_schedule_bits_a_valid_0; // @[MSHR.scala:84:7]
wire [2:0] io_schedule_bits_b_bits_param_0; // @[MSHR.scala:84:7]
wire [12:0] io_schedule_bits_b_bits_tag_0; // @[MSHR.scala:84:7]
wire [9:0] io_schedule_bits_b_bits_set_0; // @[MSHR.scala:84:7]
wire [3:0] io_schedule_bits_b_bits_clients_0; // @[MSHR.scala:84:7]
wire io_schedule_bits_b_valid_0; // @[MSHR.scala:84:7]
wire [2:0] io_schedule_bits_c_bits_opcode_0; // @[MSHR.scala:84:7]
wire [2:0] io_schedule_bits_c_bits_param_0; // @[MSHR.scala:84:7]
wire [12:0] io_schedule_bits_c_bits_tag_0; // @[MSHR.scala:84:7]
wire [9:0] io_schedule_bits_c_bits_set_0; // @[MSHR.scala:84:7]
wire [2:0] io_schedule_bits_c_bits_way_0; // @[MSHR.scala:84:7]
wire io_schedule_bits_c_bits_dirty_0; // @[MSHR.scala:84:7]
wire io_schedule_bits_c_valid_0; // @[MSHR.scala:84:7]
wire io_schedule_bits_d_bits_prio_0_0; // @[MSHR.scala:84:7]
wire io_schedule_bits_d_bits_prio_1_0; // @[MSHR.scala:84:7]
wire io_schedule_bits_d_bits_prio_2_0; // @[MSHR.scala:84:7]
wire io_schedule_bits_d_bits_control_0; // @[MSHR.scala:84:7]
wire [2:0] io_schedule_bits_d_bits_opcode_0; // @[MSHR.scala:84:7]
wire [2:0] io_schedule_bits_d_bits_param_0; // @[MSHR.scala:84:7]
wire [2:0] io_schedule_bits_d_bits_size_0; // @[MSHR.scala:84:7]
wire [6:0] io_schedule_bits_d_bits_source_0; // @[MSHR.scala:84:7]
wire [12:0] io_schedule_bits_d_bits_tag_0; // @[MSHR.scala:84:7]
wire [5:0] io_schedule_bits_d_bits_offset_0; // @[MSHR.scala:84:7]
wire [5:0] io_schedule_bits_d_bits_put_0; // @[MSHR.scala:84:7]
wire [9:0] io_schedule_bits_d_bits_set_0; // @[MSHR.scala:84:7]
wire [2:0] io_schedule_bits_d_bits_way_0; // @[MSHR.scala:84:7]
wire io_schedule_bits_d_bits_bad_0; // @[MSHR.scala:84:7]
wire io_schedule_bits_d_valid_0; // @[MSHR.scala:84:7]
wire [2:0] io_schedule_bits_e_bits_sink_0; // @[MSHR.scala:84:7]
wire io_schedule_bits_e_valid_0; // @[MSHR.scala:84:7]
wire io_schedule_bits_x_valid_0; // @[MSHR.scala:84:7]
wire io_schedule_bits_dir_bits_data_dirty_0; // @[MSHR.scala:84:7]
wire [1:0] io_schedule_bits_dir_bits_data_state_0; // @[MSHR.scala:84:7]
wire [3:0] io_schedule_bits_dir_bits_data_clients_0; // @[MSHR.scala:84:7]
wire [12:0] io_schedule_bits_dir_bits_data_tag_0; // @[MSHR.scala:84:7]
wire [9:0] io_schedule_bits_dir_bits_set_0; // @[MSHR.scala:84:7]
wire [2:0] io_schedule_bits_dir_bits_way_0; // @[MSHR.scala:84:7]
wire io_schedule_bits_dir_valid_0; // @[MSHR.scala:84:7]
wire io_schedule_bits_reload_0; // @[MSHR.scala:84:7]
wire io_schedule_valid_0; // @[MSHR.scala:84:7]
reg request_valid; // @[MSHR.scala:97:30]
assign io_status_valid_0 = request_valid; // @[MSHR.scala:84:7, :97:30]
reg request_prio_0; // @[MSHR.scala:98:20]
assign io_schedule_bits_d_bits_prio_0_0 = request_prio_0; // @[MSHR.scala:84:7, :98:20]
reg request_prio_1; // @[MSHR.scala:98:20]
assign io_schedule_bits_d_bits_prio_1_0 = request_prio_1; // @[MSHR.scala:84:7, :98:20]
reg request_prio_2; // @[MSHR.scala:98:20]
assign io_schedule_bits_d_bits_prio_2_0 = request_prio_2; // @[MSHR.scala:84:7, :98:20]
reg request_control; // @[MSHR.scala:98:20]
assign io_schedule_bits_d_bits_control_0 = request_control; // @[MSHR.scala:84:7, :98:20]
reg [2:0] request_opcode; // @[MSHR.scala:98:20]
assign io_schedule_bits_d_bits_opcode_0 = request_opcode; // @[MSHR.scala:84:7, :98:20]
reg [2:0] request_param; // @[MSHR.scala:98:20]
reg [2:0] request_size; // @[MSHR.scala:98:20]
assign io_schedule_bits_d_bits_size_0 = request_size; // @[MSHR.scala:84:7, :98:20]
reg [6:0] request_source; // @[MSHR.scala:98:20]
assign io_schedule_bits_d_bits_source_0 = request_source; // @[MSHR.scala:84:7, :98:20]
wire [6:0] _req_clientBit_uncommonBits_T = request_source; // @[Parameters.scala:52:29]
wire [6:0] _req_clientBit_uncommonBits_T_1 = request_source; // @[Parameters.scala:52:29]
reg [12:0] request_tag; // @[MSHR.scala:98:20]
assign io_status_bits_tag_0 = request_tag; // @[MSHR.scala:84:7, :98:20]
assign io_schedule_bits_a_bits_tag_0 = request_tag; // @[MSHR.scala:84:7, :98:20]
assign io_schedule_bits_d_bits_tag_0 = request_tag; // @[MSHR.scala:84:7, :98:20]
reg [5:0] request_offset; // @[MSHR.scala:98:20]
assign io_schedule_bits_d_bits_offset_0 = request_offset; // @[MSHR.scala:84:7, :98:20]
reg [5:0] request_put; // @[MSHR.scala:98:20]
assign io_schedule_bits_d_bits_put_0 = request_put; // @[MSHR.scala:84:7, :98:20]
reg [9:0] request_set; // @[MSHR.scala:98:20]
assign io_status_bits_set_0 = request_set; // @[MSHR.scala:84:7, :98:20]
assign io_schedule_bits_a_bits_set_0 = request_set; // @[MSHR.scala:84:7, :98:20]
assign io_schedule_bits_b_bits_set_0 = request_set; // @[MSHR.scala:84:7, :98:20]
assign io_schedule_bits_c_bits_set_0 = request_set; // @[MSHR.scala:84:7, :98:20]
assign io_schedule_bits_d_bits_set_0 = request_set; // @[MSHR.scala:84:7, :98:20]
assign io_schedule_bits_dir_bits_set_0 = request_set; // @[MSHR.scala:84:7, :98:20]
reg meta_valid; // @[MSHR.scala:99:27]
reg meta_dirty; // @[MSHR.scala:100:17]
assign io_schedule_bits_c_bits_dirty_0 = meta_dirty; // @[MSHR.scala:84:7, :100:17]
reg [1:0] meta_state; // @[MSHR.scala:100:17]
reg [3:0] meta_clients; // @[MSHR.scala:100:17]
reg [12:0] meta_tag; // @[MSHR.scala:100:17]
assign io_schedule_bits_c_bits_tag_0 = meta_tag; // @[MSHR.scala:84:7, :100:17]
reg meta_hit; // @[MSHR.scala:100:17]
reg [2:0] meta_way; // @[MSHR.scala:100:17]
assign io_status_bits_way_0 = meta_way; // @[MSHR.scala:84:7, :100:17]
assign io_schedule_bits_c_bits_way_0 = meta_way; // @[MSHR.scala:84:7, :100:17]
assign io_schedule_bits_d_bits_way_0 = meta_way; // @[MSHR.scala:84:7, :100:17]
assign io_schedule_bits_dir_bits_way_0 = meta_way; // @[MSHR.scala:84:7, :100:17]
wire [2:0] final_meta_writeback_way = meta_way; // @[MSHR.scala:100:17, :215:38]
reg s_rprobe; // @[MSHR.scala:121:33]
reg w_rprobeackfirst; // @[MSHR.scala:122:33]
reg w_rprobeacklast; // @[MSHR.scala:123:33]
reg s_release; // @[MSHR.scala:124:33]
reg w_releaseack; // @[MSHR.scala:125:33]
reg s_pprobe; // @[MSHR.scala:126:33]
reg s_acquire; // @[MSHR.scala:127:33]
reg s_flush; // @[MSHR.scala:128:33]
reg w_grantfirst; // @[MSHR.scala:129:33]
reg w_grantlast; // @[MSHR.scala:130:33]
reg w_grant; // @[MSHR.scala:131:33]
reg w_pprobeackfirst; // @[MSHR.scala:132:33]
reg w_pprobeacklast; // @[MSHR.scala:133:33]
reg w_pprobeack; // @[MSHR.scala:134:33]
reg s_grantack; // @[MSHR.scala:136:33]
reg s_execute; // @[MSHR.scala:137:33]
reg w_grantack; // @[MSHR.scala:138:33]
reg s_writeback; // @[MSHR.scala:139:33]
reg [2:0] sink; // @[MSHR.scala:147:17]
assign io_schedule_bits_e_bits_sink_0 = sink; // @[MSHR.scala:84:7, :147:17]
reg gotT; // @[MSHR.scala:148:17]
reg bad_grant; // @[MSHR.scala:149:22]
assign io_schedule_bits_d_bits_bad_0 = bad_grant; // @[MSHR.scala:84:7, :149:22]
reg [3:0] probes_done; // @[MSHR.scala:150:24]
reg [3:0] probes_toN; // @[MSHR.scala:151:23]
reg probes_noT; // @[MSHR.scala:152:23]
wire _io_status_bits_blockB_T = ~meta_valid; // @[MSHR.scala:99:27, :168:28]
wire _io_status_bits_blockB_T_1 = ~w_releaseack; // @[MSHR.scala:125:33, :168:45]
wire _io_status_bits_blockB_T_2 = ~w_rprobeacklast; // @[MSHR.scala:123:33, :168:62]
wire _io_status_bits_blockB_T_3 = _io_status_bits_blockB_T_1 | _io_status_bits_blockB_T_2; // @[MSHR.scala:168:{45,59,62}]
wire _io_status_bits_blockB_T_4 = ~w_pprobeacklast; // @[MSHR.scala:133:33, :168:82]
wire _io_status_bits_blockB_T_5 = _io_status_bits_blockB_T_3 | _io_status_bits_blockB_T_4; // @[MSHR.scala:168:{59,79,82}]
wire _io_status_bits_blockB_T_6 = ~w_grantfirst; // @[MSHR.scala:129:33, :168:103]
wire _io_status_bits_blockB_T_7 = _io_status_bits_blockB_T_5 & _io_status_bits_blockB_T_6; // @[MSHR.scala:168:{79,100,103}]
assign _io_status_bits_blockB_T_8 = _io_status_bits_blockB_T | _io_status_bits_blockB_T_7; // @[MSHR.scala:168:{28,40,100}]
assign io_status_bits_blockB_0 = _io_status_bits_blockB_T_8; // @[MSHR.scala:84:7, :168:40]
wire _io_status_bits_nestB_T = meta_valid & w_releaseack; // @[MSHR.scala:99:27, :125:33, :169:39]
wire _io_status_bits_nestB_T_1 = _io_status_bits_nestB_T & w_rprobeacklast; // @[MSHR.scala:123:33, :169:{39,55}]
wire _io_status_bits_nestB_T_2 = _io_status_bits_nestB_T_1 & w_pprobeacklast; // @[MSHR.scala:133:33, :169:{55,74}]
wire _io_status_bits_nestB_T_3 = ~w_grantfirst; // @[MSHR.scala:129:33, :168:103, :169:96]
assign _io_status_bits_nestB_T_4 = _io_status_bits_nestB_T_2 & _io_status_bits_nestB_T_3; // @[MSHR.scala:169:{74,93,96}]
assign io_status_bits_nestB_0 = _io_status_bits_nestB_T_4; // @[MSHR.scala:84:7, :169:93]
assign _io_status_bits_blockC_T = ~meta_valid; // @[MSHR.scala:99:27, :168:28, :172:28]
assign io_status_bits_blockC_0 = _io_status_bits_blockC_T; // @[MSHR.scala:84:7, :172:28]
wire _io_status_bits_nestC_T = ~w_rprobeackfirst; // @[MSHR.scala:122:33, :173:43]
wire _io_status_bits_nestC_T_1 = ~w_pprobeackfirst; // @[MSHR.scala:132:33, :173:64]
wire _io_status_bits_nestC_T_2 = _io_status_bits_nestC_T | _io_status_bits_nestC_T_1; // @[MSHR.scala:173:{43,61,64}]
wire _io_status_bits_nestC_T_3 = ~w_grantfirst; // @[MSHR.scala:129:33, :168:103, :173:85]
wire _io_status_bits_nestC_T_4 = _io_status_bits_nestC_T_2 | _io_status_bits_nestC_T_3; // @[MSHR.scala:173:{61,82,85}]
assign _io_status_bits_nestC_T_5 = meta_valid & _io_status_bits_nestC_T_4; // @[MSHR.scala:99:27, :173:{39,82}]
assign io_status_bits_nestC_0 = _io_status_bits_nestC_T_5; // @[MSHR.scala:84:7, :173:39]
wire _no_wait_T = w_rprobeacklast & w_releaseack; // @[MSHR.scala:123:33, :125:33, :183:33]
wire _no_wait_T_1 = _no_wait_T & w_grantlast; // @[MSHR.scala:130:33, :183:{33,49}]
wire _no_wait_T_2 = _no_wait_T_1 & w_pprobeacklast; // @[MSHR.scala:133:33, :183:{49,64}]
assign no_wait = _no_wait_T_2 & w_grantack; // @[MSHR.scala:138:33, :183:{64,83}]
assign io_schedule_bits_reload_0 = no_wait; // @[MSHR.scala:84:7, :183:83]
wire _io_schedule_bits_a_valid_T = ~s_acquire; // @[MSHR.scala:127:33, :184:31]
wire _io_schedule_bits_a_valid_T_1 = _io_schedule_bits_a_valid_T & s_release; // @[MSHR.scala:124:33, :184:{31,42}]
assign _io_schedule_bits_a_valid_T_2 = _io_schedule_bits_a_valid_T_1 & s_pprobe; // @[MSHR.scala:126:33, :184:{42,55}]
assign io_schedule_bits_a_valid_0 = _io_schedule_bits_a_valid_T_2; // @[MSHR.scala:84:7, :184:55]
wire _io_schedule_bits_b_valid_T = ~s_rprobe; // @[MSHR.scala:121:33, :185:31]
wire _io_schedule_bits_b_valid_T_1 = ~s_pprobe; // @[MSHR.scala:126:33, :185:44]
assign _io_schedule_bits_b_valid_T_2 = _io_schedule_bits_b_valid_T | _io_schedule_bits_b_valid_T_1; // @[MSHR.scala:185:{31,41,44}]
assign io_schedule_bits_b_valid_0 = _io_schedule_bits_b_valid_T_2; // @[MSHR.scala:84:7, :185:41]
wire _io_schedule_bits_c_valid_T = ~s_release; // @[MSHR.scala:124:33, :186:32]
wire _io_schedule_bits_c_valid_T_1 = _io_schedule_bits_c_valid_T & w_rprobeackfirst; // @[MSHR.scala:122:33, :186:{32,43}]
assign _io_schedule_bits_c_valid_T_4 = _io_schedule_bits_c_valid_T_1; // @[MSHR.scala:186:{43,64}]
assign io_schedule_bits_c_valid_0 = _io_schedule_bits_c_valid_T_4; // @[MSHR.scala:84:7, :186:64]
wire _io_schedule_bits_d_valid_T = ~s_execute; // @[MSHR.scala:137:33, :187:31]
wire _io_schedule_bits_d_valid_T_1 = _io_schedule_bits_d_valid_T & w_pprobeack; // @[MSHR.scala:134:33, :187:{31,42}]
assign _io_schedule_bits_d_valid_T_2 = _io_schedule_bits_d_valid_T_1 & w_grant; // @[MSHR.scala:131:33, :187:{42,57}]
assign io_schedule_bits_d_valid_0 = _io_schedule_bits_d_valid_T_2; // @[MSHR.scala:84:7, :187:57]
wire _io_schedule_bits_e_valid_T = ~s_grantack; // @[MSHR.scala:136:33, :188:31]
assign _io_schedule_bits_e_valid_T_1 = _io_schedule_bits_e_valid_T & w_grantfirst; // @[MSHR.scala:129:33, :188:{31,43}]
assign io_schedule_bits_e_valid_0 = _io_schedule_bits_e_valid_T_1; // @[MSHR.scala:84:7, :188:43]
wire _io_schedule_bits_x_valid_T = ~s_flush; // @[MSHR.scala:128:33, :189:31]
assign _io_schedule_bits_x_valid_T_1 = _io_schedule_bits_x_valid_T & w_releaseack; // @[MSHR.scala:125:33, :189:{31,40}]
assign io_schedule_bits_x_valid_0 = _io_schedule_bits_x_valid_T_1; // @[MSHR.scala:84:7, :189:40]
wire _io_schedule_bits_dir_valid_T = ~s_release; // @[MSHR.scala:124:33, :186:32, :190:34]
wire _io_schedule_bits_dir_valid_T_1 = _io_schedule_bits_dir_valid_T & w_rprobeackfirst; // @[MSHR.scala:122:33, :190:{34,45}]
wire _io_schedule_bits_dir_valid_T_2 = ~s_writeback; // @[MSHR.scala:139:33, :190:70]
wire _io_schedule_bits_dir_valid_T_3 = _io_schedule_bits_dir_valid_T_2 & no_wait; // @[MSHR.scala:183:83, :190:{70,83}]
assign _io_schedule_bits_dir_valid_T_4 = _io_schedule_bits_dir_valid_T_1 | _io_schedule_bits_dir_valid_T_3; // @[MSHR.scala:190:{45,66,83}]
assign io_schedule_bits_dir_valid_0 = _io_schedule_bits_dir_valid_T_4; // @[MSHR.scala:84:7, :190:66]
wire _io_schedule_valid_T = io_schedule_bits_a_valid_0 | io_schedule_bits_b_valid_0; // @[MSHR.scala:84:7, :192:49]
wire _io_schedule_valid_T_1 = _io_schedule_valid_T | io_schedule_bits_c_valid_0; // @[MSHR.scala:84:7, :192:{49,77}]
wire _io_schedule_valid_T_2 = _io_schedule_valid_T_1 | io_schedule_bits_d_valid_0; // @[MSHR.scala:84:7, :192:{77,105}]
wire _io_schedule_valid_T_3 = _io_schedule_valid_T_2 | io_schedule_bits_e_valid_0; // @[MSHR.scala:84:7, :192:105, :193:49]
wire _io_schedule_valid_T_4 = _io_schedule_valid_T_3 | io_schedule_bits_x_valid_0; // @[MSHR.scala:84:7, :193:{49,77}]
assign _io_schedule_valid_T_5 = _io_schedule_valid_T_4 | io_schedule_bits_dir_valid_0; // @[MSHR.scala:84:7, :193:{77,105}]
assign io_schedule_valid_0 = _io_schedule_valid_T_5; // @[MSHR.scala:84:7, :193:105]
wire _io_schedule_bits_dir_bits_data_WIRE_dirty = final_meta_writeback_dirty; // @[MSHR.scala:215:38, :310:71]
wire [1:0] _io_schedule_bits_dir_bits_data_WIRE_state = final_meta_writeback_state; // @[MSHR.scala:215:38, :310:71]
wire [3:0] _io_schedule_bits_dir_bits_data_WIRE_clients = final_meta_writeback_clients; // @[MSHR.scala:215:38, :310:71]
wire [12:0] _io_schedule_bits_dir_bits_data_WIRE_tag = final_meta_writeback_tag; // @[MSHR.scala:215:38, :310:71]
wire final_meta_writeback_hit; // @[MSHR.scala:215:38]
wire _req_clientBit_T = request_source == 7'h44; // @[Parameters.scala:46:9]
wire _req_clientBit_T_1 = request_source == 7'h40; // @[Parameters.scala:46:9]
wire [2:0] req_clientBit_uncommonBits = _req_clientBit_uncommonBits_T[2:0]; // @[Parameters.scala:52:{29,56}]
wire [3:0] _req_clientBit_T_2 = request_source[6:3]; // @[Parameters.scala:54:10]
wire [3:0] _req_clientBit_T_8 = request_source[6:3]; // @[Parameters.scala:54:10]
wire _req_clientBit_T_3 = _req_clientBit_T_2 == 4'h6; // @[Parameters.scala:54:{10,32}]
wire _req_clientBit_T_5 = _req_clientBit_T_3; // @[Parameters.scala:54:{32,67}]
wire _req_clientBit_T_6 = req_clientBit_uncommonBits < 3'h5; // @[Parameters.scala:52:56, :57:20]
wire _req_clientBit_T_7 = _req_clientBit_T_5 & _req_clientBit_T_6; // @[Parameters.scala:54:67, :56:48, :57:20]
wire [2:0] req_clientBit_uncommonBits_1 = _req_clientBit_uncommonBits_T_1[2:0]; // @[Parameters.scala:52:{29,56}]
wire _req_clientBit_T_9 = _req_clientBit_T_8 == 4'h4; // @[Parameters.scala:54:{10,32}]
wire _req_clientBit_T_11 = _req_clientBit_T_9; // @[Parameters.scala:54:{32,67}]
wire _req_clientBit_T_12 = req_clientBit_uncommonBits_1 < 3'h5; // @[Parameters.scala:52:56, :57:20]
wire _req_clientBit_T_13 = _req_clientBit_T_11 & _req_clientBit_T_12; // @[Parameters.scala:54:67, :56:48, :57:20]
wire [1:0] req_clientBit_lo = {_req_clientBit_T_1, _req_clientBit_T}; // @[Parameters.scala:46:9]
wire [1:0] req_clientBit_hi = {_req_clientBit_T_13, _req_clientBit_T_7}; // @[Parameters.scala:56:48]
wire [3:0] req_clientBit = {req_clientBit_hi, req_clientBit_lo}; // @[Parameters.scala:201:10]
wire _req_needT_T = request_opcode[2]; // @[Parameters.scala:269:12]
wire _final_meta_writeback_dirty_T_3 = request_opcode[2]; // @[Parameters.scala:269:12]
wire _req_needT_T_1 = ~_req_needT_T; // @[Parameters.scala:269:{5,12}]
wire _GEN = request_opcode == 3'h5; // @[Parameters.scala:270:13]
wire _req_needT_T_2; // @[Parameters.scala:270:13]
assign _req_needT_T_2 = _GEN; // @[Parameters.scala:270:13]
wire _excluded_client_T_6; // @[Parameters.scala:279:117]
assign _excluded_client_T_6 = _GEN; // @[Parameters.scala:270:13, :279:117]
wire _GEN_0 = request_param == 3'h1; // @[Parameters.scala:270:42]
wire _req_needT_T_3; // @[Parameters.scala:270:42]
assign _req_needT_T_3 = _GEN_0; // @[Parameters.scala:270:42]
wire _final_meta_writeback_clients_T; // @[Parameters.scala:282:11]
assign _final_meta_writeback_clients_T = _GEN_0; // @[Parameters.scala:270:42, :282:11]
wire _io_schedule_bits_d_bits_param_T_7; // @[MSHR.scala:299:79]
assign _io_schedule_bits_d_bits_param_T_7 = _GEN_0; // @[Parameters.scala:270:42]
wire _req_needT_T_4 = _req_needT_T_2 & _req_needT_T_3; // @[Parameters.scala:270:{13,33,42}]
wire _req_needT_T_5 = _req_needT_T_1 | _req_needT_T_4; // @[Parameters.scala:269:{5,16}, :270:33]
wire _GEN_1 = request_opcode == 3'h6; // @[Parameters.scala:271:14]
wire _req_needT_T_6; // @[Parameters.scala:271:14]
assign _req_needT_T_6 = _GEN_1; // @[Parameters.scala:271:14]
wire _req_acquire_T; // @[MSHR.scala:219:36]
assign _req_acquire_T = _GEN_1; // @[Parameters.scala:271:14]
wire _excluded_client_T_1; // @[Parameters.scala:279:12]
assign _excluded_client_T_1 = _GEN_1; // @[Parameters.scala:271:14, :279:12]
wire _req_needT_T_7 = &request_opcode; // @[Parameters.scala:271:52]
wire _req_needT_T_8 = _req_needT_T_6 | _req_needT_T_7; // @[Parameters.scala:271:{14,42,52}]
wire _req_needT_T_9 = |request_param; // @[Parameters.scala:271:89]
wire _req_needT_T_10 = _req_needT_T_8 & _req_needT_T_9; // @[Parameters.scala:271:{42,80,89}]
wire req_needT = _req_needT_T_5 | _req_needT_T_10; // @[Parameters.scala:269:16, :270:70, :271:80]
wire _req_acquire_T_1 = &request_opcode; // @[Parameters.scala:271:52]
wire req_acquire = _req_acquire_T | _req_acquire_T_1; // @[MSHR.scala:219:{36,53,71}]
wire _meta_no_clients_T = |meta_clients; // @[MSHR.scala:100:17, :220:39]
wire meta_no_clients = ~_meta_no_clients_T; // @[MSHR.scala:220:{25,39}]
wire _req_promoteT_T = &meta_state; // @[MSHR.scala:100:17, :221:81]
wire _req_promoteT_T_1 = meta_no_clients & _req_promoteT_T; // @[MSHR.scala:220:25, :221:{67,81}]
wire _req_promoteT_T_2 = meta_hit ? _req_promoteT_T_1 : gotT; // @[MSHR.scala:100:17, :148:17, :221:{40,67}]
wire req_promoteT = req_acquire & _req_promoteT_T_2; // @[MSHR.scala:219:53, :221:{34,40}]
wire _final_meta_writeback_dirty_T = request_opcode[0]; // @[MSHR.scala:98:20, :224:65]
wire _final_meta_writeback_dirty_T_1 = meta_dirty | _final_meta_writeback_dirty_T; // @[MSHR.scala:100:17, :224:{48,65}]
wire _final_meta_writeback_state_T = request_param != 3'h3; // @[MSHR.scala:98:20, :225:55]
wire _GEN_2 = meta_state == 2'h2; // @[MSHR.scala:100:17, :225:78]
wire _final_meta_writeback_state_T_1; // @[MSHR.scala:225:78]
assign _final_meta_writeback_state_T_1 = _GEN_2; // @[MSHR.scala:225:78]
wire _final_meta_writeback_state_T_12; // @[MSHR.scala:240:70]
assign _final_meta_writeback_state_T_12 = _GEN_2; // @[MSHR.scala:225:78, :240:70]
wire _evict_T_2; // @[MSHR.scala:317:26]
assign _evict_T_2 = _GEN_2; // @[MSHR.scala:225:78, :317:26]
wire _before_T_1; // @[MSHR.scala:317:26]
assign _before_T_1 = _GEN_2; // @[MSHR.scala:225:78, :317:26]
wire _final_meta_writeback_state_T_2 = _final_meta_writeback_state_T & _final_meta_writeback_state_T_1; // @[MSHR.scala:225:{55,64,78}]
wire [1:0] _final_meta_writeback_state_T_3 = _final_meta_writeback_state_T_2 ? 2'h3 : meta_state; // @[MSHR.scala:100:17, :225:{40,64}]
wire _GEN_3 = request_param == 3'h2; // @[Parameters.scala:282:43]
wire _final_meta_writeback_clients_T_1; // @[Parameters.scala:282:43]
assign _final_meta_writeback_clients_T_1 = _GEN_3; // @[Parameters.scala:282:43]
wire _io_schedule_bits_d_bits_param_T_5; // @[MSHR.scala:299:79]
assign _io_schedule_bits_d_bits_param_T_5 = _GEN_3; // @[Parameters.scala:282:43]
wire _final_meta_writeback_clients_T_2 = _final_meta_writeback_clients_T | _final_meta_writeback_clients_T_1; // @[Parameters.scala:282:{11,34,43}]
wire _final_meta_writeback_clients_T_3 = request_param == 3'h5; // @[Parameters.scala:282:75]
wire _final_meta_writeback_clients_T_4 = _final_meta_writeback_clients_T_2 | _final_meta_writeback_clients_T_3; // @[Parameters.scala:282:{34,66,75}]
wire [3:0] _final_meta_writeback_clients_T_5 = _final_meta_writeback_clients_T_4 ? req_clientBit : 4'h0; // @[Parameters.scala:201:10, :282:66]
wire [3:0] _final_meta_writeback_clients_T_6 = ~_final_meta_writeback_clients_T_5; // @[MSHR.scala:226:{52,56}]
wire [3:0] _final_meta_writeback_clients_T_7 = meta_clients & _final_meta_writeback_clients_T_6; // @[MSHR.scala:100:17, :226:{50,52}]
wire [3:0] _final_meta_writeback_clients_T_8 = ~probes_toN; // @[MSHR.scala:151:23, :232:54]
wire [3:0] _final_meta_writeback_clients_T_9 = meta_clients & _final_meta_writeback_clients_T_8; // @[MSHR.scala:100:17, :232:{52,54}]
wire _final_meta_writeback_dirty_T_2 = meta_hit & meta_dirty; // @[MSHR.scala:100:17, :236:45]
wire _final_meta_writeback_dirty_T_4 = ~_final_meta_writeback_dirty_T_3; // @[MSHR.scala:236:{63,78}]
wire _final_meta_writeback_dirty_T_5 = _final_meta_writeback_dirty_T_2 | _final_meta_writeback_dirty_T_4; // @[MSHR.scala:236:{45,60,63}]
wire [1:0] _GEN_4 = {1'h1, ~req_acquire}; // @[MSHR.scala:219:53, :238:40]
wire [1:0] _final_meta_writeback_state_T_4; // @[MSHR.scala:238:40]
assign _final_meta_writeback_state_T_4 = _GEN_4; // @[MSHR.scala:238:40]
wire [1:0] _final_meta_writeback_state_T_6; // @[MSHR.scala:239:65]
assign _final_meta_writeback_state_T_6 = _GEN_4; // @[MSHR.scala:238:40, :239:65]
wire _final_meta_writeback_state_T_5 = ~meta_hit; // @[MSHR.scala:100:17, :239:41]
wire [1:0] _final_meta_writeback_state_T_7 = gotT ? _final_meta_writeback_state_T_6 : 2'h1; // @[MSHR.scala:148:17, :239:{55,65}]
wire _final_meta_writeback_state_T_8 = meta_no_clients & req_acquire; // @[MSHR.scala:219:53, :220:25, :244:72]
wire [1:0] _final_meta_writeback_state_T_9 = {1'h1, ~_final_meta_writeback_state_T_8}; // @[MSHR.scala:244:{55,72}]
wire _GEN_5 = meta_state == 2'h1; // @[MSHR.scala:100:17, :240:70]
wire _final_meta_writeback_state_T_10; // @[MSHR.scala:240:70]
assign _final_meta_writeback_state_T_10 = _GEN_5; // @[MSHR.scala:240:70]
wire _io_schedule_bits_c_bits_param_T; // @[MSHR.scala:291:53]
assign _io_schedule_bits_c_bits_param_T = _GEN_5; // @[MSHR.scala:240:70, :291:53]
wire _evict_T_1; // @[MSHR.scala:317:26]
assign _evict_T_1 = _GEN_5; // @[MSHR.scala:240:70, :317:26]
wire _before_T; // @[MSHR.scala:317:26]
assign _before_T = _GEN_5; // @[MSHR.scala:240:70, :317:26]
wire [1:0] _final_meta_writeback_state_T_13 = {_final_meta_writeback_state_T_12, 1'h1}; // @[MSHR.scala:240:70]
wire _final_meta_writeback_state_T_14 = &meta_state; // @[MSHR.scala:100:17, :221:81, :240:70]
wire [1:0] _final_meta_writeback_state_T_15 = _final_meta_writeback_state_T_14 ? _final_meta_writeback_state_T_9 : _final_meta_writeback_state_T_13; // @[MSHR.scala:240:70, :244:55]
wire [1:0] _final_meta_writeback_state_T_16 = _final_meta_writeback_state_T_5 ? _final_meta_writeback_state_T_7 : _final_meta_writeback_state_T_15; // @[MSHR.scala:239:{40,41,55}, :240:70]
wire [1:0] _final_meta_writeback_state_T_17 = req_needT ? _final_meta_writeback_state_T_4 : _final_meta_writeback_state_T_16; // @[Parameters.scala:270:70]
wire [3:0] _final_meta_writeback_clients_T_10 = ~probes_toN; // @[MSHR.scala:151:23, :232:54, :245:66]
wire [3:0] _final_meta_writeback_clients_T_11 = meta_clients & _final_meta_writeback_clients_T_10; // @[MSHR.scala:100:17, :245:{64,66}]
wire [3:0] _final_meta_writeback_clients_T_12 = meta_hit ? _final_meta_writeback_clients_T_11 : 4'h0; // @[MSHR.scala:100:17, :245:{40,64}]
wire [3:0] _final_meta_writeback_clients_T_13 = req_acquire ? req_clientBit : 4'h0; // @[Parameters.scala:201:10]
wire [3:0] _final_meta_writeback_clients_T_14 = _final_meta_writeback_clients_T_12 | _final_meta_writeback_clients_T_13; // @[MSHR.scala:245:{40,84}, :246:40]
assign final_meta_writeback_tag = request_prio_2 | request_control ? meta_tag : request_tag; // @[MSHR.scala:98:20, :100:17, :215:38, :223:52, :228:53, :247:30]
wire [3:0] _final_meta_writeback_clients_T_15 = ~probes_toN; // @[MSHR.scala:151:23, :232:54, :258:54]
wire [3:0] _final_meta_writeback_clients_T_16 = meta_clients & _final_meta_writeback_clients_T_15; // @[MSHR.scala:100:17, :258:{52,54}]
assign final_meta_writeback_hit = bad_grant ? meta_hit : request_prio_2 | ~request_control; // @[MSHR.scala:98:20, :100:17, :149:22, :215:38, :223:52, :227:34, :228:53, :234:30, :248:30, :251:20, :252:21]
assign final_meta_writeback_dirty = ~bad_grant & (request_prio_2 ? _final_meta_writeback_dirty_T_1 : request_control ? ~meta_hit & meta_dirty : _final_meta_writeback_dirty_T_5); // @[MSHR.scala:98:20, :100:17, :149:22, :215:38, :223:52, :224:{34,48}, :228:53, :229:21, :230:36, :236:{32,60}, :251:20, :252:21]
assign final_meta_writeback_state = bad_grant ? {1'h0, meta_hit} : request_prio_2 ? _final_meta_writeback_state_T_3 : request_control ? (meta_hit ? 2'h0 : meta_state) : _final_meta_writeback_state_T_17; // @[MSHR.scala:98:20, :100:17, :149:22, :215:38, :223:52, :225:{34,40}, :228:53, :229:21, :231:36, :237:{32,38}, :251:20, :252:21, :257:36, :263:36]
assign final_meta_writeback_clients = bad_grant ? (meta_hit ? _final_meta_writeback_clients_T_16 : 4'h0) : request_prio_2 ? _final_meta_writeback_clients_T_7 : request_control ? (meta_hit ? _final_meta_writeback_clients_T_9 : meta_clients) : _final_meta_writeback_clients_T_14; // @[MSHR.scala:98:20, :100:17, :149:22, :215:38, :223:52, :226:{34,50}, :228:53, :229:21, :232:{36,52}, :245:{34,84}, :251:20, :252:21, :258:{36,52}, :264:36]
wire [3:0] _honour_BtoT_T = meta_clients & req_clientBit; // @[Parameters.scala:201:10]
wire _honour_BtoT_T_1 = |_honour_BtoT_T; // @[MSHR.scala:276:{47,64}]
wire honour_BtoT = meta_hit & _honour_BtoT_T_1; // @[MSHR.scala:100:17, :276:{30,64}]
wire _excluded_client_T = meta_hit & request_prio_0; // @[MSHR.scala:98:20, :100:17, :279:38]
wire _excluded_client_T_2 = &request_opcode; // @[Parameters.scala:271:52, :279:50]
wire _excluded_client_T_3 = _excluded_client_T_1 | _excluded_client_T_2; // @[Parameters.scala:279:{12,40,50}]
wire _excluded_client_T_4 = request_opcode == 3'h4; // @[Parameters.scala:279:87]
wire _excluded_client_T_5 = _excluded_client_T_3 | _excluded_client_T_4; // @[Parameters.scala:279:{40,77,87}]
wire _excluded_client_T_8 = _excluded_client_T_5; // @[Parameters.scala:279:{77,106}]
wire _excluded_client_T_9 = _excluded_client_T & _excluded_client_T_8; // @[Parameters.scala:279:106]
wire [3:0] excluded_client = _excluded_client_T_9 ? req_clientBit : 4'h0; // @[Parameters.scala:201:10]
wire [1:0] _io_schedule_bits_a_bits_param_T = meta_hit ? 2'h2 : 2'h1; // @[MSHR.scala:100:17, :282:56]
wire [1:0] _io_schedule_bits_a_bits_param_T_1 = req_needT ? _io_schedule_bits_a_bits_param_T : 2'h0; // @[Parameters.scala:270:70]
assign io_schedule_bits_a_bits_param_0 = {1'h0, _io_schedule_bits_a_bits_param_T_1}; // @[MSHR.scala:84:7, :282:{35,41}]
wire _io_schedule_bits_a_bits_block_T = request_size != 3'h6; // @[MSHR.scala:98:20, :283:51]
wire _io_schedule_bits_a_bits_block_T_1 = request_opcode == 3'h0; // @[MSHR.scala:98:20, :284:55]
wire _io_schedule_bits_a_bits_block_T_2 = &request_opcode; // @[Parameters.scala:271:52]
wire _io_schedule_bits_a_bits_block_T_3 = _io_schedule_bits_a_bits_block_T_1 | _io_schedule_bits_a_bits_block_T_2; // @[MSHR.scala:284:{55,71,89}]
wire _io_schedule_bits_a_bits_block_T_4 = ~_io_schedule_bits_a_bits_block_T_3; // @[MSHR.scala:284:{38,71}]
assign _io_schedule_bits_a_bits_block_T_5 = _io_schedule_bits_a_bits_block_T | _io_schedule_bits_a_bits_block_T_4; // @[MSHR.scala:283:{51,91}, :284:38]
assign io_schedule_bits_a_bits_block_0 = _io_schedule_bits_a_bits_block_T_5; // @[MSHR.scala:84:7, :283:91]
wire _io_schedule_bits_b_bits_param_T = ~s_rprobe; // @[MSHR.scala:121:33, :185:31, :286:42]
wire [1:0] _io_schedule_bits_b_bits_param_T_1 = req_needT ? 2'h2 : 2'h1; // @[Parameters.scala:270:70]
wire [2:0] _io_schedule_bits_b_bits_param_T_2 = request_prio_1 ? request_param : {1'h0, _io_schedule_bits_b_bits_param_T_1}; // @[MSHR.scala:98:20, :286:{61,97}]
assign _io_schedule_bits_b_bits_param_T_3 = _io_schedule_bits_b_bits_param_T ? 3'h2 : _io_schedule_bits_b_bits_param_T_2; // @[MSHR.scala:286:{41,42,61}]
assign io_schedule_bits_b_bits_param_0 = _io_schedule_bits_b_bits_param_T_3; // @[MSHR.scala:84:7, :286:41]
wire _io_schedule_bits_b_bits_tag_T = ~s_rprobe; // @[MSHR.scala:121:33, :185:31, :287:42]
assign _io_schedule_bits_b_bits_tag_T_1 = _io_schedule_bits_b_bits_tag_T ? meta_tag : request_tag; // @[MSHR.scala:98:20, :100:17, :287:{41,42}]
assign io_schedule_bits_b_bits_tag_0 = _io_schedule_bits_b_bits_tag_T_1; // @[MSHR.scala:84:7, :287:41]
wire [3:0] _io_schedule_bits_b_bits_clients_T = ~excluded_client; // @[MSHR.scala:279:28, :289:53]
assign _io_schedule_bits_b_bits_clients_T_1 = meta_clients & _io_schedule_bits_b_bits_clients_T; // @[MSHR.scala:100:17, :289:{51,53}]
assign io_schedule_bits_b_bits_clients_0 = _io_schedule_bits_b_bits_clients_T_1; // @[MSHR.scala:84:7, :289:51]
assign _io_schedule_bits_c_bits_opcode_T = {2'h3, meta_dirty}; // @[MSHR.scala:100:17, :290:41]
assign io_schedule_bits_c_bits_opcode_0 = _io_schedule_bits_c_bits_opcode_T; // @[MSHR.scala:84:7, :290:41]
assign _io_schedule_bits_c_bits_param_T_1 = _io_schedule_bits_c_bits_param_T ? 3'h2 : 3'h1; // @[MSHR.scala:291:{41,53}]
assign io_schedule_bits_c_bits_param_0 = _io_schedule_bits_c_bits_param_T_1; // @[MSHR.scala:84:7, :291:41]
wire _io_schedule_bits_d_bits_param_T = ~req_acquire; // @[MSHR.scala:219:53, :298:42]
wire [1:0] _io_schedule_bits_d_bits_param_T_1 = {1'h0, req_promoteT}; // @[MSHR.scala:221:34, :300:53]
wire [1:0] _io_schedule_bits_d_bits_param_T_2 = honour_BtoT ? 2'h2 : 2'h1; // @[MSHR.scala:276:30, :301:53]
wire _io_schedule_bits_d_bits_param_T_3 = ~(|request_param); // @[Parameters.scala:271:89]
wire [2:0] _io_schedule_bits_d_bits_param_T_4 = _io_schedule_bits_d_bits_param_T_3 ? {1'h0, _io_schedule_bits_d_bits_param_T_1} : request_param; // @[MSHR.scala:98:20, :299:79, :300:53]
wire [2:0] _io_schedule_bits_d_bits_param_T_6 = _io_schedule_bits_d_bits_param_T_5 ? {1'h0, _io_schedule_bits_d_bits_param_T_2} : _io_schedule_bits_d_bits_param_T_4; // @[MSHR.scala:299:79, :301:53]
wire [2:0] _io_schedule_bits_d_bits_param_T_8 = _io_schedule_bits_d_bits_param_T_7 ? 3'h1 : _io_schedule_bits_d_bits_param_T_6; // @[MSHR.scala:299:79]
assign _io_schedule_bits_d_bits_param_T_9 = _io_schedule_bits_d_bits_param_T ? request_param : _io_schedule_bits_d_bits_param_T_8; // @[MSHR.scala:98:20, :298:{41,42}, :299:79]
assign io_schedule_bits_d_bits_param_0 = _io_schedule_bits_d_bits_param_T_9; // @[MSHR.scala:84:7, :298:41]
wire _io_schedule_bits_dir_bits_data_T = ~s_release; // @[MSHR.scala:124:33, :186:32, :310:42]
assign _io_schedule_bits_dir_bits_data_T_1_dirty = ~_io_schedule_bits_dir_bits_data_T & _io_schedule_bits_dir_bits_data_WIRE_dirty; // @[MSHR.scala:310:{41,42,71}]
assign _io_schedule_bits_dir_bits_data_T_1_state = _io_schedule_bits_dir_bits_data_T ? 2'h0 : _io_schedule_bits_dir_bits_data_WIRE_state; // @[MSHR.scala:310:{41,42,71}]
assign _io_schedule_bits_dir_bits_data_T_1_clients = _io_schedule_bits_dir_bits_data_T ? 4'h0 : _io_schedule_bits_dir_bits_data_WIRE_clients; // @[MSHR.scala:310:{41,42,71}]
assign _io_schedule_bits_dir_bits_data_T_1_tag = _io_schedule_bits_dir_bits_data_T ? 13'h0 : _io_schedule_bits_dir_bits_data_WIRE_tag; // @[MSHR.scala:310:{41,42,71}]
assign io_schedule_bits_dir_bits_data_dirty_0 = _io_schedule_bits_dir_bits_data_T_1_dirty; // @[MSHR.scala:84:7, :310:41]
assign io_schedule_bits_dir_bits_data_state_0 = _io_schedule_bits_dir_bits_data_T_1_state; // @[MSHR.scala:84:7, :310:41]
assign io_schedule_bits_dir_bits_data_clients_0 = _io_schedule_bits_dir_bits_data_T_1_clients; // @[MSHR.scala:84:7, :310:41]
assign io_schedule_bits_dir_bits_data_tag_0 = _io_schedule_bits_dir_bits_data_T_1_tag; // @[MSHR.scala:84:7, :310:41]
wire _evict_T = ~meta_hit; // @[MSHR.scala:100:17, :239:41, :338:32]
wire [3:0] evict; // @[MSHR.scala:314:26]
wire evict_c = |meta_clients; // @[MSHR.scala:100:17, :220:39, :315:27]
wire _evict_out_T = ~evict_c; // @[MSHR.scala:315:27, :318:32]
wire [1:0] _GEN_6 = {1'h1, ~meta_dirty}; // @[MSHR.scala:100:17, :319:32]
wire [1:0] _evict_out_T_1; // @[MSHR.scala:319:32]
assign _evict_out_T_1 = _GEN_6; // @[MSHR.scala:319:32]
wire [1:0] _before_out_T_1; // @[MSHR.scala:319:32]
assign _before_out_T_1 = _GEN_6; // @[MSHR.scala:319:32]
wire _evict_T_3 = &meta_state; // @[MSHR.scala:100:17, :221:81, :317:26]
wire [2:0] _GEN_7 = {2'h2, ~meta_dirty}; // @[MSHR.scala:100:17, :319:32, :320:39]
wire [2:0] _evict_out_T_2; // @[MSHR.scala:320:39]
assign _evict_out_T_2 = _GEN_7; // @[MSHR.scala:320:39]
wire [2:0] _before_out_T_2; // @[MSHR.scala:320:39]
assign _before_out_T_2 = _GEN_7; // @[MSHR.scala:320:39]
wire [2:0] _GEN_8 = {2'h3, ~meta_dirty}; // @[MSHR.scala:100:17, :319:32, :320:76]
wire [2:0] _evict_out_T_3; // @[MSHR.scala:320:76]
assign _evict_out_T_3 = _GEN_8; // @[MSHR.scala:320:76]
wire [2:0] _before_out_T_3; // @[MSHR.scala:320:76]
assign _before_out_T_3 = _GEN_8; // @[MSHR.scala:320:76]
wire [2:0] _evict_out_T_4 = evict_c ? _evict_out_T_2 : _evict_out_T_3; // @[MSHR.scala:315:27, :320:{32,39,76}]
wire _evict_T_4 = ~(|meta_state); // @[MSHR.scala:100:17, :104:22, :317:26]
wire _evict_T_5 = ~_evict_T; // @[MSHR.scala:323:11, :338:32]
assign evict = _evict_T_5 ? 4'h8 : _evict_T_1 ? {3'h0, _evict_out_T} : _evict_T_2 ? {2'h0, _evict_out_T_1} : _evict_T_3 ? {1'h0, _evict_out_T_4} : {_evict_T_4, 3'h0}; // @[MSHR.scala:314:26, :317:26, :318:{26,32}, :319:{26,32}, :320:{26,32}, :321:26, :323:{11,17,23}]
wire [3:0] before_0; // @[MSHR.scala:314:26]
wire before_c = |meta_clients; // @[MSHR.scala:100:17, :220:39, :315:27]
wire _before_out_T = ~before_c; // @[MSHR.scala:315:27, :318:32]
wire _before_T_2 = &meta_state; // @[MSHR.scala:100:17, :221:81, :317:26]
wire [2:0] _before_out_T_4 = before_c ? _before_out_T_2 : _before_out_T_3; // @[MSHR.scala:315:27, :320:{32,39,76}]
wire _before_T_3 = ~(|meta_state); // @[MSHR.scala:100:17, :104:22, :317:26]
wire _before_T_4 = ~meta_hit; // @[MSHR.scala:100:17, :239:41, :323:11]
assign before_0 = _before_T_4 ? 4'h8 : _before_T ? {3'h0, _before_out_T} : _before_T_1 ? {2'h0, _before_out_T_1} : _before_T_2 ? {1'h0, _before_out_T_4} : {_before_T_3, 3'h0}; // @[MSHR.scala:314:26, :317:26, :318:{26,32}, :319:{26,32}, :320:{26,32}, :321:26, :323:{11,17,23}]
wire [3:0] after; // @[MSHR.scala:314:26]
wire after_c = |final_meta_writeback_clients; // @[MSHR.scala:215:38, :315:27]
wire _GEN_9 = final_meta_writeback_state == 2'h1; // @[MSHR.scala:215:38, :317:26]
wire _after_T; // @[MSHR.scala:317:26]
assign _after_T = _GEN_9; // @[MSHR.scala:317:26]
wire _prior_T; // @[MSHR.scala:317:26]
assign _prior_T = _GEN_9; // @[MSHR.scala:317:26]
wire _after_out_T = ~after_c; // @[MSHR.scala:315:27, :318:32]
wire _GEN_10 = final_meta_writeback_state == 2'h2; // @[MSHR.scala:215:38, :317:26]
wire _after_T_1; // @[MSHR.scala:317:26]
assign _after_T_1 = _GEN_10; // @[MSHR.scala:317:26]
wire _prior_T_1; // @[MSHR.scala:317:26]
assign _prior_T_1 = _GEN_10; // @[MSHR.scala:317:26]
wire [1:0] _GEN_11 = {1'h1, ~final_meta_writeback_dirty}; // @[MSHR.scala:215:38, :319:32]
wire [1:0] _after_out_T_1; // @[MSHR.scala:319:32]
assign _after_out_T_1 = _GEN_11; // @[MSHR.scala:319:32]
wire [1:0] _prior_out_T_1; // @[MSHR.scala:319:32]
assign _prior_out_T_1 = _GEN_11; // @[MSHR.scala:319:32]
wire _after_T_2 = &final_meta_writeback_state; // @[MSHR.scala:215:38, :317:26]
wire [2:0] _GEN_12 = {2'h2, ~final_meta_writeback_dirty}; // @[MSHR.scala:215:38, :319:32, :320:39]
wire [2:0] _after_out_T_2; // @[MSHR.scala:320:39]
assign _after_out_T_2 = _GEN_12; // @[MSHR.scala:320:39]
wire [2:0] _prior_out_T_2; // @[MSHR.scala:320:39]
assign _prior_out_T_2 = _GEN_12; // @[MSHR.scala:320:39]
wire [2:0] _GEN_13 = {2'h3, ~final_meta_writeback_dirty}; // @[MSHR.scala:215:38, :319:32, :320:76]
wire [2:0] _after_out_T_3; // @[MSHR.scala:320:76]
assign _after_out_T_3 = _GEN_13; // @[MSHR.scala:320:76]
wire [2:0] _prior_out_T_3; // @[MSHR.scala:320:76]
assign _prior_out_T_3 = _GEN_13; // @[MSHR.scala:320:76]
wire [2:0] _after_out_T_4 = after_c ? _after_out_T_2 : _after_out_T_3; // @[MSHR.scala:315:27, :320:{32,39,76}]
wire _GEN_14 = final_meta_writeback_state == 2'h0; // @[MSHR.scala:215:38, :317:26]
wire _after_T_3; // @[MSHR.scala:317:26]
assign _after_T_3 = _GEN_14; // @[MSHR.scala:317:26]
wire _prior_T_3; // @[MSHR.scala:317:26]
assign _prior_T_3 = _GEN_14; // @[MSHR.scala:317:26]
assign after = _after_T ? {3'h0, _after_out_T} : _after_T_1 ? {2'h0, _after_out_T_1} : _after_T_2 ? {1'h0, _after_out_T_4} : {_after_T_3, 3'h0}; // @[MSHR.scala:314:26, :317:26, :318:{26,32}, :319:{26,32}, :320:{26,32}, :321:26]
wire _probe_bit_T = io_sinkc_bits_source_0 == 7'h44; // @[Parameters.scala:46:9]
wire _probe_bit_T_1 = io_sinkc_bits_source_0 == 7'h40; // @[Parameters.scala:46:9]
wire [2:0] probe_bit_uncommonBits = _probe_bit_uncommonBits_T[2:0]; // @[Parameters.scala:52:{29,56}]
wire [3:0] _probe_bit_T_2 = io_sinkc_bits_source_0[6:3]; // @[Parameters.scala:54:10]
wire [3:0] _probe_bit_T_8 = io_sinkc_bits_source_0[6:3]; // @[Parameters.scala:54:10]
wire _probe_bit_T_3 = _probe_bit_T_2 == 4'h6; // @[Parameters.scala:54:{10,32}]
wire _probe_bit_T_5 = _probe_bit_T_3; // @[Parameters.scala:54:{32,67}]
wire _probe_bit_T_6 = probe_bit_uncommonBits < 3'h5; // @[Parameters.scala:52:56, :57:20]
wire _probe_bit_T_7 = _probe_bit_T_5 & _probe_bit_T_6; // @[Parameters.scala:54:67, :56:48, :57:20]
wire [2:0] probe_bit_uncommonBits_1 = _probe_bit_uncommonBits_T_1[2:0]; // @[Parameters.scala:52:{29,56}]
wire _probe_bit_T_9 = _probe_bit_T_8 == 4'h4; // @[Parameters.scala:54:{10,32}]
wire _probe_bit_T_11 = _probe_bit_T_9; // @[Parameters.scala:54:{32,67}]
wire _probe_bit_T_12 = probe_bit_uncommonBits_1 < 3'h5; // @[Parameters.scala:52:56, :57:20]
wire _probe_bit_T_13 = _probe_bit_T_11 & _probe_bit_T_12; // @[Parameters.scala:54:67, :56:48, :57:20]
wire [1:0] probe_bit_lo = {_probe_bit_T_1, _probe_bit_T}; // @[Parameters.scala:46:9]
wire [1:0] probe_bit_hi = {_probe_bit_T_13, _probe_bit_T_7}; // @[Parameters.scala:56:48]
wire [3:0] probe_bit = {probe_bit_hi, probe_bit_lo}; // @[Parameters.scala:201:10]
wire [3:0] _GEN_15 = probes_done | probe_bit; // @[Parameters.scala:201:10]
wire [3:0] _last_probe_T; // @[MSHR.scala:459:33]
assign _last_probe_T = _GEN_15; // @[MSHR.scala:459:33]
wire [3:0] _probes_done_T; // @[MSHR.scala:467:32]
assign _probes_done_T = _GEN_15; // @[MSHR.scala:459:33, :467:32]
wire [3:0] _last_probe_T_1 = ~excluded_client; // @[MSHR.scala:279:28, :289:53, :459:66]
wire [3:0] _last_probe_T_2 = meta_clients & _last_probe_T_1; // @[MSHR.scala:100:17, :459:{64,66}]
wire last_probe = _last_probe_T == _last_probe_T_2; // @[MSHR.scala:459:{33,46,64}]
wire _probe_toN_T = io_sinkc_bits_param_0 == 3'h1; // @[Parameters.scala:282:11]
wire _probe_toN_T_1 = io_sinkc_bits_param_0 == 3'h2; // @[Parameters.scala:282:43]
wire _probe_toN_T_2 = _probe_toN_T | _probe_toN_T_1; // @[Parameters.scala:282:{11,34,43}]
wire _probe_toN_T_3 = io_sinkc_bits_param_0 == 3'h5; // @[Parameters.scala:282:75]
wire probe_toN = _probe_toN_T_2 | _probe_toN_T_3; // @[Parameters.scala:282:{34,66,75}]
wire [3:0] _probes_toN_T = probe_toN ? probe_bit : 4'h0; // @[Parameters.scala:201:10, :282:66]
wire [3:0] _probes_toN_T_1 = probes_toN | _probes_toN_T; // @[MSHR.scala:151:23, :468:{30,35}]
wire _probes_noT_T = io_sinkc_bits_param_0 != 3'h3; // @[MSHR.scala:84:7, :469:53]
wire _probes_noT_T_1 = probes_noT | _probes_noT_T; // @[MSHR.scala:152:23, :469:{30,53}]
wire _w_rprobeackfirst_T = w_rprobeackfirst | last_probe; // @[MSHR.scala:122:33, :459:46, :470:42]
wire _GEN_16 = last_probe & io_sinkc_bits_last_0; // @[MSHR.scala:84:7, :459:46, :471:55]
wire _w_rprobeacklast_T; // @[MSHR.scala:471:55]
assign _w_rprobeacklast_T = _GEN_16; // @[MSHR.scala:471:55]
wire _w_pprobeacklast_T; // @[MSHR.scala:473:55]
assign _w_pprobeacklast_T = _GEN_16; // @[MSHR.scala:471:55, :473:55]
wire _w_rprobeacklast_T_1 = w_rprobeacklast | _w_rprobeacklast_T; // @[MSHR.scala:123:33, :471:{40,55}]
wire _w_pprobeackfirst_T = w_pprobeackfirst | last_probe; // @[MSHR.scala:132:33, :459:46, :472:42]
wire _w_pprobeacklast_T_1 = w_pprobeacklast | _w_pprobeacklast_T; // @[MSHR.scala:133:33, :473:{40,55}]
wire _set_pprobeack_T = ~(|request_offset); // @[MSHR.scala:98:20, :475:77]
wire _set_pprobeack_T_1 = io_sinkc_bits_last_0 | _set_pprobeack_T; // @[MSHR.scala:84:7, :475:{59,77}]
wire set_pprobeack = last_probe & _set_pprobeack_T_1; // @[MSHR.scala:459:46, :475:{36,59}]
wire _w_pprobeack_T = w_pprobeack | set_pprobeack; // @[MSHR.scala:134:33, :475:36, :476:32]
wire _w_grant_T = ~(|request_offset); // @[MSHR.scala:98:20, :475:77, :490:33]
wire _w_grant_T_1 = _w_grant_T | io_sinkd_bits_last_0; // @[MSHR.scala:84:7, :490:{33,41}]
wire _gotT_T = io_sinkd_bits_param_0 == 3'h0; // @[MSHR.scala:84:7, :493:35]
wire _new_meta_T = io_allocate_valid_0 & io_allocate_bits_repeat_0; // @[MSHR.scala:84:7, :505:40]
wire new_meta_dirty = _new_meta_T ? final_meta_writeback_dirty : io_directory_bits_dirty_0; // @[MSHR.scala:84:7, :215:38, :505:{21,40}]
wire [1:0] new_meta_state = _new_meta_T ? final_meta_writeback_state : io_directory_bits_state_0; // @[MSHR.scala:84:7, :215:38, :505:{21,40}]
wire [3:0] new_meta_clients = _new_meta_T ? final_meta_writeback_clients : io_directory_bits_clients_0; // @[MSHR.scala:84:7, :215:38, :505:{21,40}]
wire [12:0] new_meta_tag = _new_meta_T ? final_meta_writeback_tag : io_directory_bits_tag_0; // @[MSHR.scala:84:7, :215:38, :505:{21,40}]
wire new_meta_hit = _new_meta_T ? final_meta_writeback_hit : io_directory_bits_hit_0; // @[MSHR.scala:84:7, :215:38, :505:{21,40}]
wire [2:0] new_meta_way = _new_meta_T ? final_meta_writeback_way : io_directory_bits_way_0; // @[MSHR.scala:84:7, :215:38, :505:{21,40}]
wire new_request_prio_0 = io_allocate_valid_0 ? allocate_as_full_prio_0 : request_prio_0; // @[MSHR.scala:84:7, :98:20, :504:34, :506:24]
wire new_request_prio_1 = io_allocate_valid_0 ? allocate_as_full_prio_1 : request_prio_1; // @[MSHR.scala:84:7, :98:20, :504:34, :506:24]
wire new_request_prio_2 = io_allocate_valid_0 ? allocate_as_full_prio_2 : request_prio_2; // @[MSHR.scala:84:7, :98:20, :504:34, :506:24]
wire new_request_control = io_allocate_valid_0 ? allocate_as_full_control : request_control; // @[MSHR.scala:84:7, :98:20, :504:34, :506:24]
wire [2:0] new_request_opcode = io_allocate_valid_0 ? allocate_as_full_opcode : request_opcode; // @[MSHR.scala:84:7, :98:20, :504:34, :506:24]
wire [2:0] new_request_param = io_allocate_valid_0 ? allocate_as_full_param : request_param; // @[MSHR.scala:84:7, :98:20, :504:34, :506:24]
wire [2:0] new_request_size = io_allocate_valid_0 ? allocate_as_full_size : request_size; // @[MSHR.scala:84:7, :98:20, :504:34, :506:24]
wire [6:0] new_request_source = io_allocate_valid_0 ? allocate_as_full_source : request_source; // @[MSHR.scala:84:7, :98:20, :504:34, :506:24]
wire [12:0] new_request_tag = io_allocate_valid_0 ? allocate_as_full_tag : request_tag; // @[MSHR.scala:84:7, :98:20, :504:34, :506:24]
wire [5:0] new_request_offset = io_allocate_valid_0 ? allocate_as_full_offset : request_offset; // @[MSHR.scala:84:7, :98:20, :504:34, :506:24]
wire [5:0] new_request_put = io_allocate_valid_0 ? allocate_as_full_put : request_put; // @[MSHR.scala:84:7, :98:20, :504:34, :506:24]
wire [9:0] new_request_set = io_allocate_valid_0 ? allocate_as_full_set : request_set; // @[MSHR.scala:84:7, :98:20, :504:34, :506:24]
wire [6:0] _new_clientBit_uncommonBits_T = new_request_source; // @[Parameters.scala:52:29]
wire [6:0] _new_clientBit_uncommonBits_T_1 = new_request_source; // @[Parameters.scala:52:29]
wire _new_needT_T = new_request_opcode[2]; // @[Parameters.scala:269:12]
wire _new_needT_T_1 = ~_new_needT_T; // @[Parameters.scala:269:{5,12}]
wire _GEN_17 = new_request_opcode == 3'h5; // @[Parameters.scala:270:13]
wire _new_needT_T_2; // @[Parameters.scala:270:13]
assign _new_needT_T_2 = _GEN_17; // @[Parameters.scala:270:13]
wire _new_skipProbe_T_5; // @[Parameters.scala:279:117]
assign _new_skipProbe_T_5 = _GEN_17; // @[Parameters.scala:270:13, :279:117]
wire _new_needT_T_3 = new_request_param == 3'h1; // @[Parameters.scala:270:42]
wire _new_needT_T_4 = _new_needT_T_2 & _new_needT_T_3; // @[Parameters.scala:270:{13,33,42}]
wire _new_needT_T_5 = _new_needT_T_1 | _new_needT_T_4; // @[Parameters.scala:269:{5,16}, :270:33]
wire _T_615 = new_request_opcode == 3'h6; // @[Parameters.scala:271:14]
wire _new_needT_T_6; // @[Parameters.scala:271:14]
assign _new_needT_T_6 = _T_615; // @[Parameters.scala:271:14]
wire _new_skipProbe_T; // @[Parameters.scala:279:12]
assign _new_skipProbe_T = _T_615; // @[Parameters.scala:271:14, :279:12]
wire _new_needT_T_7 = &new_request_opcode; // @[Parameters.scala:271:52]
wire _new_needT_T_8 = _new_needT_T_6 | _new_needT_T_7; // @[Parameters.scala:271:{14,42,52}]
wire _new_needT_T_9 = |new_request_param; // @[Parameters.scala:271:89]
wire _new_needT_T_10 = _new_needT_T_8 & _new_needT_T_9; // @[Parameters.scala:271:{42,80,89}]
wire new_needT = _new_needT_T_5 | _new_needT_T_10; // @[Parameters.scala:269:16, :270:70, :271:80]
wire _new_clientBit_T = new_request_source == 7'h44; // @[Parameters.scala:46:9]
wire _new_clientBit_T_1 = new_request_source == 7'h40; // @[Parameters.scala:46:9]
wire [2:0] new_clientBit_uncommonBits = _new_clientBit_uncommonBits_T[2:0]; // @[Parameters.scala:52:{29,56}]
wire [3:0] _new_clientBit_T_2 = new_request_source[6:3]; // @[Parameters.scala:54:10]
wire [3:0] _new_clientBit_T_8 = new_request_source[6:3]; // @[Parameters.scala:54:10]
wire _new_clientBit_T_3 = _new_clientBit_T_2 == 4'h6; // @[Parameters.scala:54:{10,32}]
wire _new_clientBit_T_5 = _new_clientBit_T_3; // @[Parameters.scala:54:{32,67}]
wire _new_clientBit_T_6 = new_clientBit_uncommonBits < 3'h5; // @[Parameters.scala:52:56, :57:20]
wire _new_clientBit_T_7 = _new_clientBit_T_5 & _new_clientBit_T_6; // @[Parameters.scala:54:67, :56:48, :57:20]
wire [2:0] new_clientBit_uncommonBits_1 = _new_clientBit_uncommonBits_T_1[2:0]; // @[Parameters.scala:52:{29,56}]
wire _new_clientBit_T_9 = _new_clientBit_T_8 == 4'h4; // @[Parameters.scala:54:{10,32}]
wire _new_clientBit_T_11 = _new_clientBit_T_9; // @[Parameters.scala:54:{32,67}]
wire _new_clientBit_T_12 = new_clientBit_uncommonBits_1 < 3'h5; // @[Parameters.scala:52:56, :57:20]
wire _new_clientBit_T_13 = _new_clientBit_T_11 & _new_clientBit_T_12; // @[Parameters.scala:54:67, :56:48, :57:20]
wire [1:0] new_clientBit_lo = {_new_clientBit_T_1, _new_clientBit_T}; // @[Parameters.scala:46:9]
wire [1:0] new_clientBit_hi = {_new_clientBit_T_13, _new_clientBit_T_7}; // @[Parameters.scala:56:48]
wire [3:0] new_clientBit = {new_clientBit_hi, new_clientBit_lo}; // @[Parameters.scala:201:10]
wire _new_skipProbe_T_1 = &new_request_opcode; // @[Parameters.scala:271:52, :279:50]
wire _new_skipProbe_T_2 = _new_skipProbe_T | _new_skipProbe_T_1; // @[Parameters.scala:279:{12,40,50}]
wire _new_skipProbe_T_3 = new_request_opcode == 3'h4; // @[Parameters.scala:279:87]
wire _new_skipProbe_T_4 = _new_skipProbe_T_2 | _new_skipProbe_T_3; // @[Parameters.scala:279:{40,77,87}]
wire _new_skipProbe_T_7 = _new_skipProbe_T_4; // @[Parameters.scala:279:{77,106}]
wire [3:0] new_skipProbe = _new_skipProbe_T_7 ? new_clientBit : 4'h0; // @[Parameters.scala:201:10, :279:106]
wire [3:0] prior; // @[MSHR.scala:314:26]
wire prior_c = |final_meta_writeback_clients; // @[MSHR.scala:215:38, :315:27]
wire _prior_out_T = ~prior_c; // @[MSHR.scala:315:27, :318:32]
wire _prior_T_2 = &final_meta_writeback_state; // @[MSHR.scala:215:38, :317:26]
wire [2:0] _prior_out_T_4 = prior_c ? _prior_out_T_2 : _prior_out_T_3; // @[MSHR.scala:315:27, :320:{32,39,76}]
assign prior = _prior_T ? {3'h0, _prior_out_T} : _prior_T_1 ? {2'h0, _prior_out_T_1} : _prior_T_2 ? {1'h0, _prior_out_T_4} : {_prior_T_3, 3'h0}; // @[MSHR.scala:314:26, :317:26, :318:{26,32}, :319:{26,32}, :320:{26,32}, :321:26]
wire _T_574 = io_directory_valid_0 | _new_meta_T; // @[MSHR.scala:84:7, :505:40, :539:28] |
Generate the Verilog code corresponding to the following Chisel files.
File package.scala:
// See LICENSE.SiFive for license details.
package freechips.rocketchip
import chisel3._
import chisel3.util._
import scala.math.min
import scala.collection.{immutable, mutable}
package object util {
implicit class UnzippableOption[S, T](val x: Option[(S, T)]) {
def unzip = (x.map(_._1), x.map(_._2))
}
implicit class UIntIsOneOf(private val x: UInt) extends AnyVal {
def isOneOf(s: Seq[UInt]): Bool = s.map(x === _).orR
def isOneOf(u1: UInt, u2: UInt*): Bool = isOneOf(u1 +: u2.toSeq)
}
implicit class VecToAugmentedVec[T <: Data](private val x: Vec[T]) extends AnyVal {
/** Like Vec.apply(idx), but tolerates indices of mismatched width */
def extract(idx: UInt): T = x((idx | 0.U(log2Ceil(x.size).W)).extract(log2Ceil(x.size) - 1, 0))
}
implicit class SeqToAugmentedSeq[T <: Data](private val x: Seq[T]) extends AnyVal {
def apply(idx: UInt): T = {
if (x.size <= 1) {
x.head
} else if (!isPow2(x.size)) {
// For non-power-of-2 seqs, reflect elements to simplify decoder
(x ++ x.takeRight(x.size & -x.size)).toSeq(idx)
} else {
// Ignore MSBs of idx
val truncIdx =
if (idx.isWidthKnown && idx.getWidth <= log2Ceil(x.size)) idx
else (idx | 0.U(log2Ceil(x.size).W))(log2Ceil(x.size)-1, 0)
x.zipWithIndex.tail.foldLeft(x.head) { case (prev, (cur, i)) => Mux(truncIdx === i.U, cur, prev) }
}
}
def extract(idx: UInt): T = VecInit(x).extract(idx)
def asUInt: UInt = Cat(x.map(_.asUInt).reverse)
def rotate(n: Int): Seq[T] = x.drop(n) ++ x.take(n)
def rotate(n: UInt): Seq[T] = {
if (x.size <= 1) {
x
} else {
require(isPow2(x.size))
val amt = n.padTo(log2Ceil(x.size))
(0 until log2Ceil(x.size)).foldLeft(x)((r, i) => (r.rotate(1 << i) zip r).map { case (s, a) => Mux(amt(i), s, a) })
}
}
def rotateRight(n: Int): Seq[T] = x.takeRight(n) ++ x.dropRight(n)
def rotateRight(n: UInt): Seq[T] = {
if (x.size <= 1) {
x
} else {
require(isPow2(x.size))
val amt = n.padTo(log2Ceil(x.size))
(0 until log2Ceil(x.size)).foldLeft(x)((r, i) => (r.rotateRight(1 << i) zip r).map { case (s, a) => Mux(amt(i), s, a) })
}
}
}
// allow bitwise ops on Seq[Bool] just like UInt
implicit class SeqBoolBitwiseOps(private val x: Seq[Bool]) extends AnyVal {
def & (y: Seq[Bool]): Seq[Bool] = (x zip y).map { case (a, b) => a && b }
def | (y: Seq[Bool]): Seq[Bool] = padZip(x, y).map { case (a, b) => a || b }
def ^ (y: Seq[Bool]): Seq[Bool] = padZip(x, y).map { case (a, b) => a ^ b }
def << (n: Int): Seq[Bool] = Seq.fill(n)(false.B) ++ x
def >> (n: Int): Seq[Bool] = x drop n
def unary_~ : Seq[Bool] = x.map(!_)
def andR: Bool = if (x.isEmpty) true.B else x.reduce(_&&_)
def orR: Bool = if (x.isEmpty) false.B else x.reduce(_||_)
def xorR: Bool = if (x.isEmpty) false.B else x.reduce(_^_)
private def padZip(y: Seq[Bool], z: Seq[Bool]): Seq[(Bool, Bool)] = y.padTo(z.size, false.B) zip z.padTo(y.size, false.B)
}
implicit class DataToAugmentedData[T <: Data](private val x: T) extends AnyVal {
def holdUnless(enable: Bool): T = Mux(enable, x, RegEnable(x, enable))
def getElements: Seq[Element] = x match {
case e: Element => Seq(e)
case a: Aggregate => a.getElements.flatMap(_.getElements)
}
}
/** Any Data subtype that has a Bool member named valid. */
type DataCanBeValid = Data { val valid: Bool }
implicit class SeqMemToAugmentedSeqMem[T <: Data](private val x: SyncReadMem[T]) extends AnyVal {
def readAndHold(addr: UInt, enable: Bool): T = x.read(addr, enable) holdUnless RegNext(enable)
}
implicit class StringToAugmentedString(private val x: String) extends AnyVal {
/** converts from camel case to to underscores, also removing all spaces */
def underscore: String = x.tail.foldLeft(x.headOption.map(_.toLower + "") getOrElse "") {
case (acc, c) if c.isUpper => acc + "_" + c.toLower
case (acc, c) if c == ' ' => acc
case (acc, c) => acc + c
}
/** converts spaces or underscores to hyphens, also lowering case */
def kebab: String = x.toLowerCase map {
case ' ' => '-'
case '_' => '-'
case c => c
}
def named(name: Option[String]): String = {
x + name.map("_named_" + _ ).getOrElse("_with_no_name")
}
def named(name: String): String = named(Some(name))
}
implicit def uintToBitPat(x: UInt): BitPat = BitPat(x)
implicit def wcToUInt(c: WideCounter): UInt = c.value
implicit class UIntToAugmentedUInt(private val x: UInt) extends AnyVal {
def sextTo(n: Int): UInt = {
require(x.getWidth <= n)
if (x.getWidth == n) x
else Cat(Fill(n - x.getWidth, x(x.getWidth-1)), x)
}
def padTo(n: Int): UInt = {
require(x.getWidth <= n)
if (x.getWidth == n) x
else Cat(0.U((n - x.getWidth).W), x)
}
// shifts left by n if n >= 0, or right by -n if n < 0
def << (n: SInt): UInt = {
val w = n.getWidth - 1
require(w <= 30)
val shifted = x << n(w-1, 0)
Mux(n(w), shifted >> (1 << w), shifted)
}
// shifts right by n if n >= 0, or left by -n if n < 0
def >> (n: SInt): UInt = {
val w = n.getWidth - 1
require(w <= 30)
val shifted = x << (1 << w) >> n(w-1, 0)
Mux(n(w), shifted, shifted >> (1 << w))
}
// Like UInt.apply(hi, lo), but returns 0.U for zero-width extracts
def extract(hi: Int, lo: Int): UInt = {
require(hi >= lo-1)
if (hi == lo-1) 0.U
else x(hi, lo)
}
// Like Some(UInt.apply(hi, lo)), but returns None for zero-width extracts
def extractOption(hi: Int, lo: Int): Option[UInt] = {
require(hi >= lo-1)
if (hi == lo-1) None
else Some(x(hi, lo))
}
// like x & ~y, but first truncate or zero-extend y to x's width
def andNot(y: UInt): UInt = x & ~(y | (x & 0.U))
def rotateRight(n: Int): UInt = if (n == 0) x else Cat(x(n-1, 0), x >> n)
def rotateRight(n: UInt): UInt = {
if (x.getWidth <= 1) {
x
} else {
val amt = n.padTo(log2Ceil(x.getWidth))
(0 until log2Ceil(x.getWidth)).foldLeft(x)((r, i) => Mux(amt(i), r.rotateRight(1 << i), r))
}
}
def rotateLeft(n: Int): UInt = if (n == 0) x else Cat(x(x.getWidth-1-n,0), x(x.getWidth-1,x.getWidth-n))
def rotateLeft(n: UInt): UInt = {
if (x.getWidth <= 1) {
x
} else {
val amt = n.padTo(log2Ceil(x.getWidth))
(0 until log2Ceil(x.getWidth)).foldLeft(x)((r, i) => Mux(amt(i), r.rotateLeft(1 << i), r))
}
}
// compute (this + y) % n, given (this < n) and (y < n)
def addWrap(y: UInt, n: Int): UInt = {
val z = x +& y
if (isPow2(n)) z(n.log2-1, 0) else Mux(z >= n.U, z - n.U, z)(log2Ceil(n)-1, 0)
}
// compute (this - y) % n, given (this < n) and (y < n)
def subWrap(y: UInt, n: Int): UInt = {
val z = x -& y
if (isPow2(n)) z(n.log2-1, 0) else Mux(z(z.getWidth-1), z + n.U, z)(log2Ceil(n)-1, 0)
}
def grouped(width: Int): Seq[UInt] =
(0 until x.getWidth by width).map(base => x(base + width - 1, base))
def inRange(base: UInt, bounds: UInt) = x >= base && x < bounds
def ## (y: Option[UInt]): UInt = y.map(x ## _).getOrElse(x)
// Like >=, but prevents x-prop for ('x >= 0)
def >== (y: UInt): Bool = x >= y || y === 0.U
}
implicit class OptionUIntToAugmentedOptionUInt(private val x: Option[UInt]) extends AnyVal {
def ## (y: UInt): UInt = x.map(_ ## y).getOrElse(y)
def ## (y: Option[UInt]): Option[UInt] = x.map(_ ## y)
}
implicit class BooleanToAugmentedBoolean(private val x: Boolean) extends AnyVal {
def toInt: Int = if (x) 1 else 0
// this one's snagged from scalaz
def option[T](z: => T): Option[T] = if (x) Some(z) else None
}
implicit class IntToAugmentedInt(private val x: Int) extends AnyVal {
// exact log2
def log2: Int = {
require(isPow2(x))
log2Ceil(x)
}
}
def OH1ToOH(x: UInt): UInt = (x << 1 | 1.U) & ~Cat(0.U(1.W), x)
def OH1ToUInt(x: UInt): UInt = OHToUInt(OH1ToOH(x))
def UIntToOH1(x: UInt, width: Int): UInt = ~((-1).S(width.W).asUInt << x)(width-1, 0)
def UIntToOH1(x: UInt): UInt = UIntToOH1(x, (1 << x.getWidth) - 1)
def trailingZeros(x: Int): Option[Int] = if (x > 0) Some(log2Ceil(x & -x)) else None
// Fill 1s from low bits to high bits
def leftOR(x: UInt): UInt = leftOR(x, x.getWidth, x.getWidth)
def leftOR(x: UInt, width: Integer, cap: Integer = 999999): UInt = {
val stop = min(width, cap)
def helper(s: Int, x: UInt): UInt =
if (s >= stop) x else helper(s+s, x | (x << s)(width-1,0))
helper(1, x)(width-1, 0)
}
// Fill 1s form high bits to low bits
def rightOR(x: UInt): UInt = rightOR(x, x.getWidth, x.getWidth)
def rightOR(x: UInt, width: Integer, cap: Integer = 999999): UInt = {
val stop = min(width, cap)
def helper(s: Int, x: UInt): UInt =
if (s >= stop) x else helper(s+s, x | (x >> s))
helper(1, x)(width-1, 0)
}
def OptimizationBarrier[T <: Data](in: T): T = {
val barrier = Module(new Module {
val io = IO(new Bundle {
val x = Input(chiselTypeOf(in))
val y = Output(chiselTypeOf(in))
})
io.y := io.x
override def desiredName = s"OptimizationBarrier_${in.typeName}"
})
barrier.io.x := in
barrier.io.y
}
/** Similar to Seq.groupBy except this returns a Seq instead of a Map
* Useful for deterministic code generation
*/
def groupByIntoSeq[A, K](xs: Seq[A])(f: A => K): immutable.Seq[(K, immutable.Seq[A])] = {
val map = mutable.LinkedHashMap.empty[K, mutable.ListBuffer[A]]
for (x <- xs) {
val key = f(x)
val l = map.getOrElseUpdate(key, mutable.ListBuffer.empty[A])
l += x
}
map.view.map({ case (k, vs) => k -> vs.toList }).toList
}
def heterogeneousOrGlobalSetting[T](in: Seq[T], n: Int): Seq[T] = in.size match {
case 1 => List.fill(n)(in.head)
case x if x == n => in
case _ => throw new Exception(s"must provide exactly 1 or $n of some field, but got:\n$in")
}
// HeterogeneousBag moved to standalond diplomacy
@deprecated("HeterogeneousBag has been absorbed into standalone diplomacy library", "rocketchip 2.0.0")
def HeterogeneousBag[T <: Data](elts: Seq[T]) = _root_.org.chipsalliance.diplomacy.nodes.HeterogeneousBag[T](elts)
@deprecated("HeterogeneousBag has been absorbed into standalone diplomacy library", "rocketchip 2.0.0")
val HeterogeneousBag = _root_.org.chipsalliance.diplomacy.nodes.HeterogeneousBag
}
| module OptimizationBarrier_TLBEntryData_84( // @[package.scala:267:30]
input clock, // @[package.scala:267:30]
input reset, // @[package.scala:267:30]
input [19:0] io_x_ppn, // @[package.scala:268:18]
input io_x_u, // @[package.scala:268:18]
input io_x_g, // @[package.scala:268:18]
input io_x_ae_ptw, // @[package.scala:268:18]
input io_x_ae_final, // @[package.scala:268:18]
input io_x_ae_stage2, // @[package.scala:268:18]
input io_x_pf, // @[package.scala:268:18]
input io_x_gf, // @[package.scala:268:18]
input io_x_sw, // @[package.scala:268:18]
input io_x_sx, // @[package.scala:268:18]
input io_x_sr, // @[package.scala:268:18]
input io_x_hw, // @[package.scala:268:18]
input io_x_hx, // @[package.scala:268:18]
input io_x_hr, // @[package.scala:268:18]
input io_x_pw, // @[package.scala:268:18]
input io_x_px, // @[package.scala:268:18]
input io_x_pr, // @[package.scala:268:18]
input io_x_ppp, // @[package.scala:268:18]
input io_x_pal, // @[package.scala:268:18]
input io_x_paa, // @[package.scala:268:18]
input io_x_eff, // @[package.scala:268:18]
input io_x_c, // @[package.scala:268:18]
input io_x_fragmented_superpage, // @[package.scala:268:18]
output [19:0] io_y_ppn // @[package.scala:268:18]
);
wire [19:0] io_x_ppn_0 = io_x_ppn; // @[package.scala:267:30]
wire io_x_u_0 = io_x_u; // @[package.scala:267:30]
wire io_x_g_0 = io_x_g; // @[package.scala:267:30]
wire io_x_ae_ptw_0 = io_x_ae_ptw; // @[package.scala:267:30]
wire io_x_ae_final_0 = io_x_ae_final; // @[package.scala:267:30]
wire io_x_ae_stage2_0 = io_x_ae_stage2; // @[package.scala:267:30]
wire io_x_pf_0 = io_x_pf; // @[package.scala:267:30]
wire io_x_gf_0 = io_x_gf; // @[package.scala:267:30]
wire io_x_sw_0 = io_x_sw; // @[package.scala:267:30]
wire io_x_sx_0 = io_x_sx; // @[package.scala:267:30]
wire io_x_sr_0 = io_x_sr; // @[package.scala:267:30]
wire io_x_hw_0 = io_x_hw; // @[package.scala:267:30]
wire io_x_hx_0 = io_x_hx; // @[package.scala:267:30]
wire io_x_hr_0 = io_x_hr; // @[package.scala:267:30]
wire io_x_pw_0 = io_x_pw; // @[package.scala:267:30]
wire io_x_px_0 = io_x_px; // @[package.scala:267:30]
wire io_x_pr_0 = io_x_pr; // @[package.scala:267:30]
wire io_x_ppp_0 = io_x_ppp; // @[package.scala:267:30]
wire io_x_pal_0 = io_x_pal; // @[package.scala:267:30]
wire io_x_paa_0 = io_x_paa; // @[package.scala:267:30]
wire io_x_eff_0 = io_x_eff; // @[package.scala:267:30]
wire io_x_c_0 = io_x_c; // @[package.scala:267:30]
wire io_x_fragmented_superpage_0 = io_x_fragmented_superpage; // @[package.scala:267:30]
wire [19:0] io_y_ppn_0 = io_x_ppn_0; // @[package.scala:267:30]
wire io_y_u = io_x_u_0; // @[package.scala:267:30]
wire io_y_g = io_x_g_0; // @[package.scala:267:30]
wire io_y_ae_ptw = io_x_ae_ptw_0; // @[package.scala:267:30]
wire io_y_ae_final = io_x_ae_final_0; // @[package.scala:267:30]
wire io_y_ae_stage2 = io_x_ae_stage2_0; // @[package.scala:267:30]
wire io_y_pf = io_x_pf_0; // @[package.scala:267:30]
wire io_y_gf = io_x_gf_0; // @[package.scala:267:30]
wire io_y_sw = io_x_sw_0; // @[package.scala:267:30]
wire io_y_sx = io_x_sx_0; // @[package.scala:267:30]
wire io_y_sr = io_x_sr_0; // @[package.scala:267:30]
wire io_y_hw = io_x_hw_0; // @[package.scala:267:30]
wire io_y_hx = io_x_hx_0; // @[package.scala:267:30]
wire io_y_hr = io_x_hr_0; // @[package.scala:267:30]
wire io_y_pw = io_x_pw_0; // @[package.scala:267:30]
wire io_y_px = io_x_px_0; // @[package.scala:267:30]
wire io_y_pr = io_x_pr_0; // @[package.scala:267:30]
wire io_y_ppp = io_x_ppp_0; // @[package.scala:267:30]
wire io_y_pal = io_x_pal_0; // @[package.scala:267:30]
wire io_y_paa = io_x_paa_0; // @[package.scala:267:30]
wire io_y_eff = io_x_eff_0; // @[package.scala:267:30]
wire io_y_c = io_x_c_0; // @[package.scala:267:30]
wire io_y_fragmented_superpage = io_x_fragmented_superpage_0; // @[package.scala:267:30]
assign io_y_ppn = io_y_ppn_0; // @[package.scala:267:30]
endmodule |
Generate the Verilog code corresponding to the following Chisel files.
File tage.scala:
package boom.v3.ifu
import chisel3._
import chisel3.util._
import org.chipsalliance.cde.config.{Field, Parameters}
import freechips.rocketchip.diplomacy._
import freechips.rocketchip.tilelink._
import boom.v3.common._
import boom.v3.util.{BoomCoreStringPrefix, MaskLower, WrapInc}
import scala.math.min
class TageResp extends Bundle {
val ctr = UInt(3.W)
val u = UInt(2.W)
}
class TageTable(val nRows: Int, val tagSz: Int, val histLength: Int, val uBitPeriod: Int)
(implicit p: Parameters) extends BoomModule()(p)
with HasBoomFrontendParameters
{
require(histLength <= globalHistoryLength)
val nWrBypassEntries = 2
val io = IO( new Bundle {
val f1_req_valid = Input(Bool())
val f1_req_pc = Input(UInt(vaddrBitsExtended.W))
val f1_req_ghist = Input(UInt(globalHistoryLength.W))
val f3_resp = Output(Vec(bankWidth, Valid(new TageResp)))
val update_mask = Input(Vec(bankWidth, Bool()))
val update_taken = Input(Vec(bankWidth, Bool()))
val update_alloc = Input(Vec(bankWidth, Bool()))
val update_old_ctr = Input(Vec(bankWidth, UInt(3.W)))
val update_pc = Input(UInt())
val update_hist = Input(UInt())
val update_u_mask = Input(Vec(bankWidth, Bool()))
val update_u = Input(Vec(bankWidth, UInt(2.W)))
})
def compute_folded_hist(hist: UInt, l: Int) = {
val nChunks = (histLength + l - 1) / l
val hist_chunks = (0 until nChunks) map {i =>
hist(min((i+1)*l, histLength)-1, i*l)
}
hist_chunks.reduce(_^_)
}
def compute_tag_and_hash(unhashed_idx: UInt, hist: UInt) = {
val idx_history = compute_folded_hist(hist, log2Ceil(nRows))
val idx = (unhashed_idx ^ idx_history)(log2Ceil(nRows)-1,0)
val tag_history = compute_folded_hist(hist, tagSz)
val tag = ((unhashed_idx >> log2Ceil(nRows)) ^ tag_history)(tagSz-1,0)
(idx, tag)
}
def inc_ctr(ctr: UInt, taken: Bool): UInt = {
Mux(!taken, Mux(ctr === 0.U, 0.U, ctr - 1.U),
Mux(ctr === 7.U, 7.U, ctr + 1.U))
}
val doing_reset = RegInit(true.B)
val reset_idx = RegInit(0.U(log2Ceil(nRows).W))
reset_idx := reset_idx + doing_reset
when (reset_idx === (nRows-1).U) { doing_reset := false.B }
class TageEntry extends Bundle {
val valid = Bool() // TODO: Remove this valid bit
val tag = UInt(tagSz.W)
val ctr = UInt(3.W)
}
val tageEntrySz = 1 + tagSz + 3
val (s1_hashed_idx, s1_tag) = compute_tag_and_hash(fetchIdx(io.f1_req_pc), io.f1_req_ghist)
val hi_us = SyncReadMem(nRows, Vec(bankWidth, Bool()))
val lo_us = SyncReadMem(nRows, Vec(bankWidth, Bool()))
val table = SyncReadMem(nRows, Vec(bankWidth, UInt(tageEntrySz.W)))
val mems = Seq((f"tage_l$histLength", nRows, bankWidth * tageEntrySz))
val s2_tag = RegNext(s1_tag)
val s2_req_rtage = VecInit(table.read(s1_hashed_idx, io.f1_req_valid).map(_.asTypeOf(new TageEntry)))
val s2_req_rhius = hi_us.read(s1_hashed_idx, io.f1_req_valid)
val s2_req_rlous = lo_us.read(s1_hashed_idx, io.f1_req_valid)
val s2_req_rhits = VecInit(s2_req_rtage.map(e => e.valid && e.tag === s2_tag && !doing_reset))
for (w <- 0 until bankWidth) {
// This bit indicates the TAGE table matched here
io.f3_resp(w).valid := RegNext(s2_req_rhits(w))
io.f3_resp(w).bits.u := RegNext(Cat(s2_req_rhius(w), s2_req_rlous(w)))
io.f3_resp(w).bits.ctr := RegNext(s2_req_rtage(w).ctr)
}
val clear_u_ctr = RegInit(0.U((log2Ceil(uBitPeriod) + log2Ceil(nRows) + 1).W))
when (doing_reset) { clear_u_ctr := 1.U } .otherwise { clear_u_ctr := clear_u_ctr + 1.U }
val doing_clear_u = clear_u_ctr(log2Ceil(uBitPeriod)-1,0) === 0.U
val doing_clear_u_hi = doing_clear_u && clear_u_ctr(log2Ceil(uBitPeriod) + log2Ceil(nRows)) === 1.U
val doing_clear_u_lo = doing_clear_u && clear_u_ctr(log2Ceil(uBitPeriod) + log2Ceil(nRows)) === 0.U
val clear_u_idx = clear_u_ctr >> log2Ceil(uBitPeriod)
val (update_idx, update_tag) = compute_tag_and_hash(fetchIdx(io.update_pc), io.update_hist)
val update_wdata = Wire(Vec(bankWidth, new TageEntry))
table.write(
Mux(doing_reset, reset_idx , update_idx),
Mux(doing_reset, VecInit(Seq.fill(bankWidth) { 0.U(tageEntrySz.W) }), VecInit(update_wdata.map(_.asUInt))),
Mux(doing_reset, ~(0.U(bankWidth.W)) , io.update_mask.asUInt).asBools
)
val update_hi_wdata = Wire(Vec(bankWidth, Bool()))
hi_us.write(
Mux(doing_reset, reset_idx, Mux(doing_clear_u_hi, clear_u_idx, update_idx)),
Mux(doing_reset || doing_clear_u_hi, VecInit((0.U(bankWidth.W)).asBools), update_hi_wdata),
Mux(doing_reset || doing_clear_u_hi, ~(0.U(bankWidth.W)), io.update_u_mask.asUInt).asBools
)
val update_lo_wdata = Wire(Vec(bankWidth, Bool()))
lo_us.write(
Mux(doing_reset, reset_idx, Mux(doing_clear_u_lo, clear_u_idx, update_idx)),
Mux(doing_reset || doing_clear_u_lo, VecInit((0.U(bankWidth.W)).asBools), update_lo_wdata),
Mux(doing_reset || doing_clear_u_lo, ~(0.U(bankWidth.W)), io.update_u_mask.asUInt).asBools
)
val wrbypass_tags = Reg(Vec(nWrBypassEntries, UInt(tagSz.W)))
val wrbypass_idxs = Reg(Vec(nWrBypassEntries, UInt(log2Ceil(nRows).W)))
val wrbypass = Reg(Vec(nWrBypassEntries, Vec(bankWidth, UInt(3.W))))
val wrbypass_enq_idx = RegInit(0.U(log2Ceil(nWrBypassEntries).W))
val wrbypass_hits = VecInit((0 until nWrBypassEntries) map { i =>
!doing_reset &&
wrbypass_tags(i) === update_tag &&
wrbypass_idxs(i) === update_idx
})
val wrbypass_hit = wrbypass_hits.reduce(_||_)
val wrbypass_hit_idx = PriorityEncoder(wrbypass_hits)
for (w <- 0 until bankWidth) {
update_wdata(w).ctr := Mux(io.update_alloc(w),
Mux(io.update_taken(w), 4.U,
3.U
),
Mux(wrbypass_hit, inc_ctr(wrbypass(wrbypass_hit_idx)(w), io.update_taken(w)),
inc_ctr(io.update_old_ctr(w), io.update_taken(w))
)
)
update_wdata(w).valid := true.B
update_wdata(w).tag := update_tag
update_hi_wdata(w) := io.update_u(w)(1)
update_lo_wdata(w) := io.update_u(w)(0)
}
when (io.update_mask.reduce(_||_)) {
when (wrbypass_hits.reduce(_||_)) {
wrbypass(wrbypass_hit_idx) := VecInit(update_wdata.map(_.ctr))
} .otherwise {
wrbypass (wrbypass_enq_idx) := VecInit(update_wdata.map(_.ctr))
wrbypass_tags(wrbypass_enq_idx) := update_tag
wrbypass_idxs(wrbypass_enq_idx) := update_idx
wrbypass_enq_idx := WrapInc(wrbypass_enq_idx, nWrBypassEntries)
}
}
}
case class BoomTageParams(
// nSets, histLen, tagSz
tableInfo: Seq[Tuple3[Int, Int, Int]] = Seq(( 128, 2, 7),
( 128, 4, 7),
( 256, 8, 8),
( 256, 16, 8),
( 128, 32, 9),
( 128, 64, 9)),
uBitPeriod: Int = 2048
)
class TageBranchPredictorBank(params: BoomTageParams = BoomTageParams())(implicit p: Parameters) extends BranchPredictorBank()(p)
{
val tageUBitPeriod = params.uBitPeriod
val tageNTables = params.tableInfo.size
class TageMeta extends Bundle
{
val provider = Vec(bankWidth, Valid(UInt(log2Ceil(tageNTables).W)))
val alt_differs = Vec(bankWidth, Output(Bool()))
val provider_u = Vec(bankWidth, Output(UInt(2.W)))
val provider_ctr = Vec(bankWidth, Output(UInt(3.W)))
val allocate = Vec(bankWidth, Valid(UInt(log2Ceil(tageNTables).W)))
}
val f3_meta = Wire(new TageMeta)
override val metaSz = f3_meta.asUInt.getWidth
require(metaSz <= bpdMaxMetaLength)
def inc_u(u: UInt, alt_differs: Bool, mispredict: Bool): UInt = {
Mux(!alt_differs, u,
Mux(mispredict, Mux(u === 0.U, 0.U, u - 1.U),
Mux(u === 3.U, 3.U, u + 1.U)))
}
val tt = params.tableInfo map {
case (n, l, s) => {
val t = Module(new TageTable(n, s, l, params.uBitPeriod))
t.io.f1_req_valid := RegNext(io.f0_valid)
t.io.f1_req_pc := RegNext(io.f0_pc)
t.io.f1_req_ghist := io.f1_ghist
(t, t.mems)
}
}
val tables = tt.map(_._1)
val mems = tt.map(_._2).flatten
val f3_resps = VecInit(tables.map(_.io.f3_resp))
val s1_update_meta = s1_update.bits.meta.asTypeOf(new TageMeta)
val s1_update_mispredict_mask = UIntToOH(s1_update.bits.cfi_idx.bits) &
Fill(bankWidth, s1_update.bits.cfi_mispredicted)
val s1_update_mask = WireInit((0.U).asTypeOf(Vec(tageNTables, Vec(bankWidth, Bool()))))
val s1_update_u_mask = WireInit((0.U).asTypeOf(Vec(tageNTables, Vec(bankWidth, UInt(1.W)))))
val s1_update_taken = Wire(Vec(tageNTables, Vec(bankWidth, Bool())))
val s1_update_old_ctr = Wire(Vec(tageNTables, Vec(bankWidth, UInt(3.W))))
val s1_update_alloc = Wire(Vec(tageNTables, Vec(bankWidth, Bool())))
val s1_update_u = Wire(Vec(tageNTables, Vec(bankWidth, UInt(2.W))))
s1_update_taken := DontCare
s1_update_old_ctr := DontCare
s1_update_alloc := DontCare
s1_update_u := DontCare
for (w <- 0 until bankWidth) {
var altpred = io.resp_in(0).f3(w).taken
val final_altpred = WireInit(io.resp_in(0).f3(w).taken)
var provided = false.B
var provider = 0.U
io.resp.f3(w).taken := io.resp_in(0).f3(w).taken
for (i <- 0 until tageNTables) {
val hit = f3_resps(i)(w).valid
val ctr = f3_resps(i)(w).bits.ctr
when (hit) {
io.resp.f3(w).taken := Mux(ctr === 3.U || ctr === 4.U, altpred, ctr(2))
final_altpred := altpred
}
provided = provided || hit
provider = Mux(hit, i.U, provider)
altpred = Mux(hit, f3_resps(i)(w).bits.ctr(2), altpred)
}
f3_meta.provider(w).valid := provided
f3_meta.provider(w).bits := provider
f3_meta.alt_differs(w) := final_altpred =/= io.resp.f3(w).taken
f3_meta.provider_u(w) := f3_resps(provider)(w).bits.u
f3_meta.provider_ctr(w) := f3_resps(provider)(w).bits.ctr
// Create a mask of tables which did not hit our query, and also contain useless entries
// and also uses a longer history than the provider
val allocatable_slots = (
VecInit(f3_resps.map(r => !r(w).valid && r(w).bits.u === 0.U)).asUInt &
~(MaskLower(UIntToOH(provider)) & Fill(tageNTables, provided))
)
val alloc_lfsr = random.LFSR(tageNTables max 2)
val first_entry = PriorityEncoder(allocatable_slots)
val masked_entry = PriorityEncoder(allocatable_slots & alloc_lfsr)
val alloc_entry = Mux(allocatable_slots(masked_entry),
masked_entry,
first_entry)
f3_meta.allocate(w).valid := allocatable_slots =/= 0.U
f3_meta.allocate(w).bits := alloc_entry
val update_was_taken = (s1_update.bits.cfi_idx.valid &&
(s1_update.bits.cfi_idx.bits === w.U) &&
s1_update.bits.cfi_taken)
when (s1_update.bits.br_mask(w) && s1_update.valid && s1_update.bits.is_commit_update) {
when (s1_update_meta.provider(w).valid) {
val provider = s1_update_meta.provider(w).bits
s1_update_mask(provider)(w) := true.B
s1_update_u_mask(provider)(w) := true.B
val new_u = inc_u(s1_update_meta.provider_u(w),
s1_update_meta.alt_differs(w),
s1_update_mispredict_mask(w))
s1_update_u (provider)(w) := new_u
s1_update_taken (provider)(w) := update_was_taken
s1_update_old_ctr(provider)(w) := s1_update_meta.provider_ctr(w)
s1_update_alloc (provider)(w) := false.B
}
}
}
when (s1_update.valid && s1_update.bits.is_commit_update && s1_update.bits.cfi_mispredicted && s1_update.bits.cfi_idx.valid) {
val idx = s1_update.bits.cfi_idx.bits
val allocate = s1_update_meta.allocate(idx)
when (allocate.valid) {
s1_update_mask (allocate.bits)(idx) := true.B
s1_update_taken(allocate.bits)(idx) := s1_update.bits.cfi_taken
s1_update_alloc(allocate.bits)(idx) := true.B
s1_update_u_mask(allocate.bits)(idx) := true.B
s1_update_u (allocate.bits)(idx) := 0.U
} .otherwise {
val provider = s1_update_meta.provider(idx)
val decr_mask = Mux(provider.valid, ~MaskLower(UIntToOH(provider.bits)), 0.U)
for (i <- 0 until tageNTables) {
when (decr_mask(i)) {
s1_update_u_mask(i)(idx) := true.B
s1_update_u (i)(idx) := 0.U
}
}
}
}
for (i <- 0 until tageNTables) {
for (w <- 0 until bankWidth) {
tables(i).io.update_mask(w) := RegNext(s1_update_mask(i)(w))
tables(i).io.update_taken(w) := RegNext(s1_update_taken(i)(w))
tables(i).io.update_alloc(w) := RegNext(s1_update_alloc(i)(w))
tables(i).io.update_old_ctr(w) := RegNext(s1_update_old_ctr(i)(w))
tables(i).io.update_u_mask(w) := RegNext(s1_update_u_mask(i)(w))
tables(i).io.update_u(w) := RegNext(s1_update_u(i)(w))
}
tables(i).io.update_pc := RegNext(s1_update.bits.pc)
tables(i).io.update_hist := RegNext(s1_update.bits.ghist)
}
//io.f3_meta := Cat(f3_meta.asUInt, micro.io.f3_meta(micro.metaSz-1,0), base.io.f3_meta(base.metaSz-1, 0))
io.f3_meta := f3_meta.asUInt
}
| module lo_us_12( // @[tage.scala:90:27]
input [6:0] R0_addr,
input R0_en,
input R0_clk,
output [3:0] R0_data,
input [6:0] W0_addr,
input W0_clk,
input [3:0] W0_data,
input [3:0] W0_mask
);
hi_us_ext hi_us_ext ( // @[tage.scala:90:27]
.R0_addr (R0_addr),
.R0_en (R0_en),
.R0_clk (R0_clk),
.R0_data (R0_data),
.W0_addr (W0_addr),
.W0_en (1'h1), // @[tage.scala:90:27]
.W0_clk (W0_clk),
.W0_data (W0_data),
.W0_mask (W0_mask)
); // @[tage.scala:90:27]
endmodule |
Generate the Verilog code corresponding to the following Chisel files.
File UnsafeAXI4ToTL.scala:
package ara
import chisel3._
import chisel3.util._
import freechips.rocketchip.amba._
import freechips.rocketchip.amba.axi4._
import org.chipsalliance.cde.config.Parameters
import freechips.rocketchip.diplomacy._
import freechips.rocketchip.tilelink._
import freechips.rocketchip.util._
class ReorderData(val dataWidth: Int, val respWidth: Int, val userFields: Seq[BundleFieldBase]) extends Bundle {
val data = UInt(dataWidth.W)
val resp = UInt(respWidth.W)
val last = Bool()
val user = BundleMap(userFields)
}
/** Parameters for [[BaseReservableListBuffer]] and all child classes.
*
* @param numEntries Total number of elements that can be stored in the 'data' RAM
* @param numLists Maximum number of linked lists
* @param numBeats Maximum number of beats per entry
*/
case class ReservableListBufferParameters(numEntries: Int, numLists: Int, numBeats: Int) {
// Avoid zero-width wires when we call 'log2Ceil'
val entryBits = if (numEntries == 1) 1 else log2Ceil(numEntries)
val listBits = if (numLists == 1) 1 else log2Ceil(numLists)
val beatBits = if (numBeats == 1) 1 else log2Ceil(numBeats)
}
case class UnsafeAXI4ToTLNode(numTlTxns: Int, wcorrupt: Boolean)(implicit valName: ValName)
extends MixedAdapterNode(AXI4Imp, TLImp)(
dFn = { case mp =>
TLMasterPortParameters.v2(
masters = mp.masters.zipWithIndex.map { case (m, i) =>
// Support 'numTlTxns' read requests and 'numTlTxns' write requests at once.
val numSourceIds = numTlTxns * 2
TLMasterParameters.v2(
name = m.name,
sourceId = IdRange(i * numSourceIds, (i + 1) * numSourceIds),
nodePath = m.nodePath
)
},
echoFields = mp.echoFields,
requestFields = AMBAProtField() +: mp.requestFields,
responseKeys = mp.responseKeys
)
},
uFn = { mp =>
AXI4SlavePortParameters(
slaves = mp.managers.map { m =>
val maxXfer = TransferSizes(1, mp.beatBytes * (1 << AXI4Parameters.lenBits))
AXI4SlaveParameters(
address = m.address,
resources = m.resources,
regionType = m.regionType,
executable = m.executable,
nodePath = m.nodePath,
supportsWrite = m.supportsPutPartial.intersect(maxXfer),
supportsRead = m.supportsGet.intersect(maxXfer),
interleavedId = Some(0) // TL2 never interleaves D beats
)
},
beatBytes = mp.beatBytes,
minLatency = mp.minLatency,
responseFields = mp.responseFields,
requestKeys = (if (wcorrupt) Seq(AMBACorrupt) else Seq()) ++ mp.requestKeys.filter(_ != AMBAProt)
)
}
)
class UnsafeAXI4ToTL(numTlTxns: Int, wcorrupt: Boolean)(implicit p: Parameters) extends LazyModule {
require(numTlTxns >= 1)
require(isPow2(numTlTxns), s"Number of TileLink transactions ($numTlTxns) must be a power of 2")
val node = UnsafeAXI4ToTLNode(numTlTxns, wcorrupt)
lazy val module = new LazyModuleImp(this) {
(node.in zip node.out) foreach { case ((in, edgeIn), (out, edgeOut)) =>
edgeIn.master.masters.foreach { m =>
require(m.aligned, "AXI4ToTL requires aligned requests")
}
val numIds = edgeIn.master.endId
val beatBytes = edgeOut.slave.beatBytes
val maxTransfer = edgeOut.slave.maxTransfer
val maxBeats = maxTransfer / beatBytes
// Look for an Error device to redirect bad requests
val errorDevs = edgeOut.slave.managers.filter(_.nodePath.last.lazyModule.className == "TLError")
require(!errorDevs.isEmpty, "There is no TLError reachable from AXI4ToTL. One must be instantiated.")
val errorDev = errorDevs.maxBy(_.maxTransfer)
val errorDevAddr = errorDev.address.head.base
require(
errorDev.supportsPutPartial.contains(maxTransfer),
s"Error device supports ${errorDev.supportsPutPartial} PutPartial but must support $maxTransfer"
)
require(
errorDev.supportsGet.contains(maxTransfer),
s"Error device supports ${errorDev.supportsGet} Get but must support $maxTransfer"
)
// All of the read-response reordering logic.
val listBufData = new ReorderData(beatBytes * 8, edgeIn.bundle.respBits, out.d.bits.user.fields)
val listBufParams = ReservableListBufferParameters(numTlTxns, numIds, maxBeats)
val listBuffer = if (numTlTxns > 1) {
Module(new ReservableListBuffer(listBufData, listBufParams))
} else {
Module(new PassthroughListBuffer(listBufData, listBufParams))
}
// To differentiate between read and write transaction IDs, we will set the MSB of the TileLink 'source' field to
// 0 for read requests and 1 for write requests.
val isReadSourceBit = 0.U(1.W)
val isWriteSourceBit = 1.U(1.W)
/* Read request logic */
val rOut = Wire(Decoupled(new TLBundleA(edgeOut.bundle)))
val rBytes1 = in.ar.bits.bytes1()
val rSize = OH1ToUInt(rBytes1)
val rOk = edgeOut.slave.supportsGetSafe(in.ar.bits.addr, rSize)
val rId = if (numTlTxns > 1) {
Cat(isReadSourceBit, listBuffer.ioReservedIndex)
} else {
isReadSourceBit
}
val rAddr = Mux(rOk, in.ar.bits.addr, errorDevAddr.U | in.ar.bits.addr(log2Ceil(beatBytes) - 1, 0))
// Indicates if there are still valid TileLink source IDs left to use.
val canIssueR = listBuffer.ioReserve.ready
listBuffer.ioReserve.bits := in.ar.bits.id
listBuffer.ioReserve.valid := in.ar.valid && rOut.ready
in.ar.ready := rOut.ready && canIssueR
rOut.valid := in.ar.valid && canIssueR
rOut.bits :<= edgeOut.Get(rId, rAddr, rSize)._2
rOut.bits.user :<= in.ar.bits.user
rOut.bits.user.lift(AMBAProt).foreach { rProt =>
rProt.privileged := in.ar.bits.prot(0)
rProt.secure := !in.ar.bits.prot(1)
rProt.fetch := in.ar.bits.prot(2)
rProt.bufferable := in.ar.bits.cache(0)
rProt.modifiable := in.ar.bits.cache(1)
rProt.readalloc := in.ar.bits.cache(2)
rProt.writealloc := in.ar.bits.cache(3)
}
/* Write request logic */
// Strip off the MSB, which identifies the transaction as read vs write.
val strippedResponseSourceId = if (numTlTxns > 1) {
out.d.bits.source((out.d.bits.source).getWidth - 2, 0)
} else {
// When there's only 1 TileLink transaction allowed for read/write, then this field is always 0.
0.U(1.W)
}
// Track when a write request burst is in progress.
val writeBurstBusy = RegInit(false.B)
when(in.w.fire) {
writeBurstBusy := !in.w.bits.last
}
val usedWriteIds = RegInit(0.U(numTlTxns.W))
val canIssueW = !usedWriteIds.andR
val usedWriteIdsSet = WireDefault(0.U(numTlTxns.W))
val usedWriteIdsClr = WireDefault(0.U(numTlTxns.W))
usedWriteIds := (usedWriteIds & ~usedWriteIdsClr) | usedWriteIdsSet
// Since write responses can show up in the middle of a write burst, we need to ensure the write burst ID doesn't
// change mid-burst.
val freeWriteIdOHRaw = Wire(UInt(numTlTxns.W))
val freeWriteIdOH = freeWriteIdOHRaw holdUnless !writeBurstBusy
val freeWriteIdIndex = OHToUInt(freeWriteIdOH)
freeWriteIdOHRaw := ~(leftOR(~usedWriteIds) << 1) & ~usedWriteIds
val wOut = Wire(Decoupled(new TLBundleA(edgeOut.bundle)))
val wBytes1 = in.aw.bits.bytes1()
val wSize = OH1ToUInt(wBytes1)
val wOk = edgeOut.slave.supportsPutPartialSafe(in.aw.bits.addr, wSize)
val wId = if (numTlTxns > 1) {
Cat(isWriteSourceBit, freeWriteIdIndex)
} else {
isWriteSourceBit
}
val wAddr = Mux(wOk, in.aw.bits.addr, errorDevAddr.U | in.aw.bits.addr(log2Ceil(beatBytes) - 1, 0))
// Here, we're taking advantage of the Irrevocable behavior of AXI4 (once 'valid' is asserted it must remain
// asserted until the handshake occurs). We will only accept W-channel beats when we have a valid AW beat, but
// the AW-channel beat won't fire until the final W-channel beat fires. So, we have stable address/size/strb
// bits during a W-channel burst.
in.aw.ready := wOut.ready && in.w.valid && in.w.bits.last && canIssueW
in.w.ready := wOut.ready && in.aw.valid && canIssueW
wOut.valid := in.aw.valid && in.w.valid && canIssueW
wOut.bits :<= edgeOut.Put(wId, wAddr, wSize, in.w.bits.data, in.w.bits.strb)._2
in.w.bits.user.lift(AMBACorrupt).foreach { wOut.bits.corrupt := _ }
wOut.bits.user :<= in.aw.bits.user
wOut.bits.user.lift(AMBAProt).foreach { wProt =>
wProt.privileged := in.aw.bits.prot(0)
wProt.secure := !in.aw.bits.prot(1)
wProt.fetch := in.aw.bits.prot(2)
wProt.bufferable := in.aw.bits.cache(0)
wProt.modifiable := in.aw.bits.cache(1)
wProt.readalloc := in.aw.bits.cache(2)
wProt.writealloc := in.aw.bits.cache(3)
}
// Merge the AXI4 read/write requests into the TL-A channel.
TLArbiter(TLArbiter.roundRobin)(out.a, (0.U, rOut), (in.aw.bits.len, wOut))
/* Read/write response logic */
val okB = Wire(Irrevocable(new AXI4BundleB(edgeIn.bundle)))
val okR = Wire(Irrevocable(new AXI4BundleR(edgeIn.bundle)))
val dResp = Mux(out.d.bits.denied || out.d.bits.corrupt, AXI4Parameters.RESP_SLVERR, AXI4Parameters.RESP_OKAY)
val dHasData = edgeOut.hasData(out.d.bits)
val (_dFirst, dLast, _dDone, dCount) = edgeOut.count(out.d)
val dNumBeats1 = edgeOut.numBeats1(out.d.bits)
// Handle cases where writeack arrives before write is done
val writeEarlyAck = (UIntToOH(strippedResponseSourceId) & usedWriteIds) === 0.U
out.d.ready := Mux(dHasData, listBuffer.ioResponse.ready, okB.ready && !writeEarlyAck)
listBuffer.ioDataOut.ready := okR.ready
okR.valid := listBuffer.ioDataOut.valid
okB.valid := out.d.valid && !dHasData && !writeEarlyAck
listBuffer.ioResponse.valid := out.d.valid && dHasData
listBuffer.ioResponse.bits.index := strippedResponseSourceId
listBuffer.ioResponse.bits.data.data := out.d.bits.data
listBuffer.ioResponse.bits.data.resp := dResp
listBuffer.ioResponse.bits.data.last := dLast
listBuffer.ioResponse.bits.data.user :<= out.d.bits.user
listBuffer.ioResponse.bits.count := dCount
listBuffer.ioResponse.bits.numBeats1 := dNumBeats1
okR.bits.id := listBuffer.ioDataOut.bits.listIndex
okR.bits.data := listBuffer.ioDataOut.bits.payload.data
okR.bits.resp := listBuffer.ioDataOut.bits.payload.resp
okR.bits.last := listBuffer.ioDataOut.bits.payload.last
okR.bits.user :<= listBuffer.ioDataOut.bits.payload.user
// Upon the final beat in a write request, record a mapping from TileLink source ID to AXI write ID. Upon a write
// response, mark the write transaction as complete.
val writeIdMap = Mem(numTlTxns, UInt(log2Ceil(numIds).W))
val writeResponseId = writeIdMap.read(strippedResponseSourceId)
when(wOut.fire) {
writeIdMap.write(freeWriteIdIndex, in.aw.bits.id)
}
when(edgeOut.done(wOut)) {
usedWriteIdsSet := freeWriteIdOH
}
when(okB.fire) {
usedWriteIdsClr := UIntToOH(strippedResponseSourceId, numTlTxns)
}
okB.bits.id := writeResponseId
okB.bits.resp := dResp
okB.bits.user :<= out.d.bits.user
// AXI4 needs irrevocable behaviour
in.r <> Queue.irrevocable(okR, 1, flow = true)
in.b <> Queue.irrevocable(okB, 1, flow = true)
// Unused channels
out.b.ready := true.B
out.c.valid := false.B
out.e.valid := false.B
/* Alignment constraints. The AXI4Fragmenter should guarantee all of these constraints. */
def checkRequest[T <: AXI4BundleA](a: IrrevocableIO[T], reqType: String): Unit = {
val lReqType = reqType.toLowerCase
when(a.valid) {
assert(a.bits.len < maxBeats.U, s"$reqType burst length (%d) must be less than $maxBeats", a.bits.len + 1.U)
// Narrow transfers and FIXED bursts must be single-beat bursts.
when(a.bits.len =/= 0.U) {
assert(
a.bits.size === log2Ceil(beatBytes).U,
s"Narrow $lReqType transfers (%d < $beatBytes bytes) can't be multi-beat bursts (%d beats)",
1.U << a.bits.size,
a.bits.len + 1.U
)
assert(
a.bits.burst =/= AXI4Parameters.BURST_FIXED,
s"Fixed $lReqType bursts can't be multi-beat bursts (%d beats)",
a.bits.len + 1.U
)
}
// Furthermore, the transfer size (a.bits.bytes1() + 1.U) must be naturally-aligned to the address (in
// particular, during both WRAP and INCR bursts), but this constraint is already checked by TileLink
// Monitors. Note that this alignment requirement means that WRAP bursts are identical to INCR bursts.
}
}
checkRequest(in.ar, "Read")
checkRequest(in.aw, "Write")
}
}
}
object UnsafeAXI4ToTL {
def apply(numTlTxns: Int = 1, wcorrupt: Boolean = true)(implicit p: Parameters) = {
val axi42tl = LazyModule(new UnsafeAXI4ToTL(numTlTxns, wcorrupt))
axi42tl.node
}
}
/* ReservableListBuffer logic, and associated classes. */
class ResponsePayload[T <: Data](val data: T, val params: ReservableListBufferParameters) extends Bundle {
val index = UInt(params.entryBits.W)
val count = UInt(params.beatBits.W)
val numBeats1 = UInt(params.beatBits.W)
}
class DataOutPayload[T <: Data](val payload: T, val params: ReservableListBufferParameters) extends Bundle {
val listIndex = UInt(params.listBits.W)
}
/** Abstract base class to unify [[ReservableListBuffer]] and [[PassthroughListBuffer]]. */
abstract class BaseReservableListBuffer[T <: Data](gen: T, params: ReservableListBufferParameters)
extends Module {
require(params.numEntries > 0)
require(params.numLists > 0)
val ioReserve = IO(Flipped(Decoupled(UInt(params.listBits.W))))
val ioReservedIndex = IO(Output(UInt(params.entryBits.W)))
val ioResponse = IO(Flipped(Decoupled(new ResponsePayload(gen, params))))
val ioDataOut = IO(Decoupled(new DataOutPayload(gen, params)))
}
/** A modified version of 'ListBuffer' from 'sifive/block-inclusivecache-sifive'. This module forces users to reserve
* linked list entries (through the 'ioReserve' port) before writing data into those linked lists (through the
* 'ioResponse' port). Each response is tagged to indicate which linked list it is written into. The responses for a
* given linked list can come back out-of-order, but they will be read out through the 'ioDataOut' port in-order.
*
* ==Constructor==
* @param gen Chisel type of linked list data element
* @param params Other parameters
*
* ==Module IO==
* @param ioReserve Index of list to reserve a new element in
* @param ioReservedIndex Index of the entry that was reserved in the linked list, valid when 'ioReserve.fire'
* @param ioResponse Payload containing response data and linked-list-entry index
* @param ioDataOut Payload containing data read from response linked list and linked list index
*/
class ReservableListBuffer[T <: Data](gen: T, params: ReservableListBufferParameters)
extends BaseReservableListBuffer(gen, params) {
val valid = RegInit(0.U(params.numLists.W))
val head = Mem(params.numLists, UInt(params.entryBits.W))
val tail = Mem(params.numLists, UInt(params.entryBits.W))
val used = RegInit(0.U(params.numEntries.W))
val next = Mem(params.numEntries, UInt(params.entryBits.W))
val map = Mem(params.numEntries, UInt(params.listBits.W))
val dataMems = Seq.fill(params.numBeats) { SyncReadMem(params.numEntries, gen) }
val dataIsPresent = RegInit(0.U(params.numEntries.W))
val beats = Mem(params.numEntries, UInt(params.beatBits.W))
// The 'data' SRAM should be single-ported (read-or-write), since dual-ported SRAMs are significantly slower.
val dataMemReadEnable = WireDefault(false.B)
val dataMemWriteEnable = WireDefault(false.B)
assert(!(dataMemReadEnable && dataMemWriteEnable))
// 'freeOH' has a single bit set, which is the least-significant bit that is cleared in 'used'. So, it's the
// lowest-index entry in the 'data' RAM which is free.
val freeOH = Wire(UInt(params.numEntries.W))
val freeIndex = OHToUInt(freeOH)
freeOH := ~(leftOR(~used) << 1) & ~used
ioReservedIndex := freeIndex
val validSet = WireDefault(0.U(params.numLists.W))
val validClr = WireDefault(0.U(params.numLists.W))
val usedSet = WireDefault(0.U(params.numEntries.W))
val usedClr = WireDefault(0.U(params.numEntries.W))
val dataIsPresentSet = WireDefault(0.U(params.numEntries.W))
val dataIsPresentClr = WireDefault(0.U(params.numEntries.W))
valid := (valid & ~validClr) | validSet
used := (used & ~usedClr) | usedSet
dataIsPresent := (dataIsPresent & ~dataIsPresentClr) | dataIsPresentSet
/* Reservation logic signals */
val reserveTail = Wire(UInt(params.entryBits.W))
val reserveIsValid = Wire(Bool())
/* Response logic signals */
val responseIndex = Wire(UInt(params.entryBits.W))
val responseListIndex = Wire(UInt(params.listBits.W))
val responseHead = Wire(UInt(params.entryBits.W))
val responseTail = Wire(UInt(params.entryBits.W))
val nextResponseHead = Wire(UInt(params.entryBits.W))
val nextDataIsPresent = Wire(Bool())
val isResponseInOrder = Wire(Bool())
val isEndOfList = Wire(Bool())
val isLastBeat = Wire(Bool())
val isLastResponseBeat = Wire(Bool())
val isLastUnwindBeat = Wire(Bool())
/* Reservation logic */
reserveTail := tail.read(ioReserve.bits)
reserveIsValid := valid(ioReserve.bits)
ioReserve.ready := !used.andR
// When we want to append-to and destroy the same linked list on the same cycle, we need to take special care that we
// actually start a new list, rather than appending to a list that's about to disappear.
val reserveResponseSameList = ioReserve.bits === responseListIndex
val appendToAndDestroyList =
ioReserve.fire && ioDataOut.fire && reserveResponseSameList && isEndOfList && isLastBeat
when(ioReserve.fire) {
validSet := UIntToOH(ioReserve.bits, params.numLists)
usedSet := freeOH
when(reserveIsValid && !appendToAndDestroyList) {
next.write(reserveTail, freeIndex)
}.otherwise {
head.write(ioReserve.bits, freeIndex)
}
tail.write(ioReserve.bits, freeIndex)
map.write(freeIndex, ioReserve.bits)
}
/* Response logic */
// The majority of the response logic (reading from and writing to the various RAMs) is common between the
// response-from-IO case (ioResponse.fire) and the response-from-unwind case (unwindDataIsValid).
// The read from the 'next' RAM should be performed at the address given by 'responseHead'. However, we only use the
// 'nextResponseHead' signal when 'isResponseInOrder' is asserted (both in the response-from-IO and
// response-from-unwind cases), which implies that 'responseHead' equals 'responseIndex'. 'responseHead' comes after
// two back-to-back RAM reads, so indexing into the 'next' RAM with 'responseIndex' is much quicker.
responseHead := head.read(responseListIndex)
responseTail := tail.read(responseListIndex)
nextResponseHead := next.read(responseIndex)
nextDataIsPresent := dataIsPresent(nextResponseHead)
// Note that when 'isEndOfList' is asserted, 'nextResponseHead' (and therefore 'nextDataIsPresent') is invalid, since
// there isn't a next element in the linked list.
isResponseInOrder := responseHead === responseIndex
isEndOfList := responseHead === responseTail
isLastResponseBeat := ioResponse.bits.count === ioResponse.bits.numBeats1
// When a response's last beat is sent to the output channel, mark it as completed. This can happen in two
// situations:
// 1. We receive an in-order response, which travels straight from 'ioResponse' to 'ioDataOut'. The 'data' SRAM
// reservation was never needed.
// 2. An entry is read out of the 'data' SRAM (within the unwind FSM).
when(ioDataOut.fire && isLastBeat) {
// Mark the reservation as no-longer-used.
usedClr := UIntToOH(responseIndex, params.numEntries)
// If the response is in-order, then we're popping an element from this linked list.
when(isEndOfList) {
// Once we pop the last element from a linked list, mark it as no-longer-present.
validClr := UIntToOH(responseListIndex, params.numLists)
}.otherwise {
// Move the linked list's head pointer to the new head pointer.
head.write(responseListIndex, nextResponseHead)
}
}
// If we get an out-of-order response, then stash it in the 'data' SRAM for later unwinding.
when(ioResponse.fire && !isResponseInOrder) {
dataMemWriteEnable := true.B
when(isLastResponseBeat) {
dataIsPresentSet := UIntToOH(ioResponse.bits.index, params.numEntries)
beats.write(ioResponse.bits.index, ioResponse.bits.numBeats1)
}
}
// Use the 'ioResponse.bits.count' index (AKA the beat number) to select which 'data' SRAM to write to.
val responseCountOH = UIntToOH(ioResponse.bits.count, params.numBeats)
(responseCountOH.asBools zip dataMems) foreach { case (select, seqMem) =>
when(select && dataMemWriteEnable) {
seqMem.write(ioResponse.bits.index, ioResponse.bits.data)
}
}
/* Response unwind logic */
// Unwind FSM state definitions
val sIdle :: sUnwinding :: Nil = Enum(2)
val unwindState = RegInit(sIdle)
val busyUnwinding = unwindState === sUnwinding
val startUnwind = Wire(Bool())
val stopUnwind = Wire(Bool())
when(startUnwind) {
unwindState := sUnwinding
}.elsewhen(stopUnwind) {
unwindState := sIdle
}
assert(!(startUnwind && stopUnwind))
// Start the unwind FSM when there is an old out-of-order response stored in the 'data' SRAM that is now about to
// become the next in-order response. As noted previously, when 'isEndOfList' is asserted, 'nextDataIsPresent' is
// invalid.
//
// Note that since an in-order response from 'ioResponse' to 'ioDataOut' starts the unwind FSM, we don't have to
// worry about overwriting the 'data' SRAM's output when we start the unwind FSM.
startUnwind := ioResponse.fire && isResponseInOrder && isLastResponseBeat && !isEndOfList && nextDataIsPresent
// Stop the unwind FSM when the output channel consumes the final beat of an element from the unwind FSM, and one of
// two things happens:
// 1. We're still waiting for the next in-order response for this list (!nextDataIsPresent)
// 2. There are no more outstanding responses in this list (isEndOfList)
//
// Including 'busyUnwinding' ensures this is a single-cycle pulse, and it never fires while in-order transactions are
// passing from 'ioResponse' to 'ioDataOut'.
stopUnwind := busyUnwinding && ioDataOut.fire && isLastUnwindBeat && (!nextDataIsPresent || isEndOfList)
val isUnwindBurstOver = Wire(Bool())
val startNewBurst = startUnwind || (isUnwindBurstOver && dataMemReadEnable)
// Track the number of beats left to unwind for each list entry. At the start of a new burst, we flop the number of
// beats in this burst (minus 1) into 'unwindBeats1', and we reset the 'beatCounter' counter. With each beat, we
// increment 'beatCounter' until it reaches 'unwindBeats1'.
val unwindBeats1 = Reg(UInt(params.beatBits.W))
val nextBeatCounter = Wire(UInt(params.beatBits.W))
val beatCounter = RegNext(nextBeatCounter)
isUnwindBurstOver := beatCounter === unwindBeats1
when(startNewBurst) {
unwindBeats1 := beats.read(nextResponseHead)
nextBeatCounter := 0.U
}.elsewhen(dataMemReadEnable) {
nextBeatCounter := beatCounter + 1.U
}.otherwise {
nextBeatCounter := beatCounter
}
// When unwinding, feed the next linked-list head pointer (read out of the 'next' RAM) back so we can unwind the next
// entry in this linked list. Only update the pointer when we're actually moving to the next 'data' SRAM entry (which
// happens at the start of reading a new stored burst).
val unwindResponseIndex = RegEnable(nextResponseHead, startNewBurst)
responseIndex := Mux(busyUnwinding, unwindResponseIndex, ioResponse.bits.index)
// Hold 'nextResponseHead' static while we're in the middle of unwinding a multi-beat burst entry. We don't want the
// SRAM read address to shift while reading beats from a burst. Note that this is identical to 'nextResponseHead
// holdUnless startNewBurst', but 'unwindResponseIndex' already implements the 'RegEnable' signal in 'holdUnless'.
val unwindReadAddress = Mux(startNewBurst, nextResponseHead, unwindResponseIndex)
// The 'data' SRAM's output is valid if we read from the SRAM on the previous cycle. The SRAM's output stays valid
// until it is consumed by the output channel (and if we don't read from the SRAM again on that same cycle).
val unwindDataIsValid = RegInit(false.B)
when(dataMemReadEnable) {
unwindDataIsValid := true.B
}.elsewhen(ioDataOut.fire) {
unwindDataIsValid := false.B
}
isLastUnwindBeat := isUnwindBurstOver && unwindDataIsValid
// Indicates if this is the last beat for both 'ioResponse'-to-'ioDataOut' and unwind-to-'ioDataOut' beats.
isLastBeat := Mux(busyUnwinding, isLastUnwindBeat, isLastResponseBeat)
// Select which SRAM to read from based on the beat counter.
val dataOutputVec = Wire(Vec(params.numBeats, gen))
val nextBeatCounterOH = UIntToOH(nextBeatCounter, params.numBeats)
(nextBeatCounterOH.asBools zip dataMems).zipWithIndex foreach { case ((select, seqMem), i) =>
dataOutputVec(i) := seqMem.read(unwindReadAddress, select && dataMemReadEnable)
}
// Select the current 'data' SRAM output beat, and save the output in a register in case we're being back-pressured
// by 'ioDataOut'. This implements the functionality of 'readAndHold', but only on the single SRAM we're reading
// from.
val dataOutput = dataOutputVec(beatCounter) holdUnless RegNext(dataMemReadEnable)
// Mark 'data' burst entries as no-longer-present as they get read out of the SRAM.
when(dataMemReadEnable) {
dataIsPresentClr := UIntToOH(unwindReadAddress, params.numEntries)
}
// As noted above, when starting the unwind FSM, we know the 'data' SRAM's output isn't valid, so it's safe to issue
// a read command. Otherwise, only issue an SRAM read when the next 'unwindState' is 'sUnwinding', and if we know
// we're not going to overwrite the SRAM's current output (the SRAM output is already valid, and it's not going to be
// consumed by the output channel).
val dontReadFromDataMem = unwindDataIsValid && !ioDataOut.ready
dataMemReadEnable := startUnwind || (busyUnwinding && !stopUnwind && !dontReadFromDataMem)
// While unwinding, prevent new reservations from overwriting the current 'map' entry that we're using. We need
// 'responseListIndex' to be coherent for the entire unwind process.
val rawResponseListIndex = map.read(responseIndex)
val unwindResponseListIndex = RegEnable(rawResponseListIndex, startNewBurst)
responseListIndex := Mux(busyUnwinding, unwindResponseListIndex, rawResponseListIndex)
// Accept responses either when they can be passed through to the output channel, or if they're out-of-order and are
// just going to be stashed in the 'data' SRAM. Never accept a response payload when we're busy unwinding, since that
// could result in reading from and writing to the 'data' SRAM in the same cycle, and we want that SRAM to be
// single-ported.
ioResponse.ready := (ioDataOut.ready || !isResponseInOrder) && !busyUnwinding
// Either pass an in-order response to the output channel, or data read from the unwind FSM.
ioDataOut.valid := Mux(busyUnwinding, unwindDataIsValid, ioResponse.valid && isResponseInOrder)
ioDataOut.bits.listIndex := responseListIndex
ioDataOut.bits.payload := Mux(busyUnwinding, dataOutput, ioResponse.bits.data)
// It's an error to get a response that isn't associated with a valid linked list.
when(ioResponse.fire || unwindDataIsValid) {
assert(
valid(responseListIndex),
"No linked list exists at index %d, mapped from %d",
responseListIndex,
responseIndex
)
}
when(busyUnwinding && dataMemReadEnable) {
assert(isResponseInOrder, "Unwind FSM must read entries from SRAM in order")
}
}
/** Specialized version of [[ReservableListBuffer]] for the case of numEntries == 1.
*
* Much of the complex logic in [[ReservableListBuffer]] can disappear in this case. For instance, we don't have to
* reorder any responses, or store any linked lists.
*/
class PassthroughListBuffer[T <: Data](gen: T, params: ReservableListBufferParameters)
extends BaseReservableListBuffer(gen, params) {
require(params.numEntries == 1, s"PassthroughListBuffer is only valid when 'numEntries' (${params.numEntries}) is 1")
val used = RegInit(0.U(params.numEntries.W))
val map = Mem(params.numEntries, UInt(params.listBits.W))
val usedSet = WireDefault(0.U(params.numEntries.W))
val usedClr = WireDefault(0.U(params.numEntries.W))
used := (used & ~usedClr) | usedSet
ioReserve.ready := used === 0.U
// Store which list index was reserved, we need to return this value when we get a response.
when(ioReserve.fire) {
usedSet := 1.U
map.write(0.U, ioReserve.bits)
}
// There's only one valid linked list entry, which is at index 0.
ioReservedIndex := 0.U
val isLastResponseBeat = ioResponse.bits.count === ioResponse.bits.numBeats1
// Mark the linked list as empty when we get the last beat in a response.
// Note that 'ioResponse.fire === ioDataOut.fire'.
when(ioResponse.fire && isLastResponseBeat) {
usedClr := 1.U
}
// Always pass the response data straight through, since we never need to reorder the response data.
ioDataOut.bits.listIndex := map.read(0.U)
ioDataOut.bits.payload := ioResponse.bits.data
ioDataOut.valid := ioResponse.valid
ioResponse.ready := ioDataOut.ready
}
| module dataMems_54( // @[UnsafeAXI4ToTL.scala:365:62]
input [4:0] R0_addr,
input R0_en,
input R0_clk,
output [66:0] R0_data,
input [4:0] W0_addr,
input W0_en,
input W0_clk,
input [66:0] W0_data
);
dataMems_0_ext dataMems_0_ext ( // @[UnsafeAXI4ToTL.scala:365:62]
.R0_addr (R0_addr),
.R0_en (R0_en),
.R0_clk (R0_clk),
.R0_data (R0_data),
.W0_addr (W0_addr),
.W0_en (W0_en),
.W0_clk (W0_clk),
.W0_data (W0_data)
); // @[UnsafeAXI4ToTL.scala:365:62]
endmodule |
Generate the Verilog code corresponding to the following Chisel files.
File Monitor.scala:
// See LICENSE.SiFive for license details.
package freechips.rocketchip.tilelink
import chisel3._
import chisel3.util._
import chisel3.experimental.SourceLine
import org.chipsalliance.cde.config._
import org.chipsalliance.diplomacy._
import freechips.rocketchip.diplomacy.EnableMonitors
import freechips.rocketchip.formal.{MonitorDirection, IfThen, Property, PropertyClass, TestplanTestType, TLMonitorStrictMode}
import freechips.rocketchip.util.PlusArg
case class TLMonitorArgs(edge: TLEdge)
abstract class TLMonitorBase(args: TLMonitorArgs) extends Module
{
val io = IO(new Bundle {
val in = Input(new TLBundle(args.edge.bundle))
})
def legalize(bundle: TLBundle, edge: TLEdge, reset: Reset): Unit
legalize(io.in, args.edge, reset)
}
object TLMonitor {
def apply(enable: Boolean, node: TLNode)(implicit p: Parameters): TLNode = {
if (enable) {
EnableMonitors { implicit p => node := TLEphemeralNode()(ValName("monitor")) }
} else { node }
}
}
class TLMonitor(args: TLMonitorArgs, monitorDir: MonitorDirection = MonitorDirection.Monitor) extends TLMonitorBase(args)
{
require (args.edge.params(TLMonitorStrictMode) || (! args.edge.params(TestplanTestType).formal))
val cover_prop_class = PropertyClass.Default
//Like assert but can flip to being an assumption for formal verification
def monAssert(cond: Bool, message: String): Unit =
if (monitorDir == MonitorDirection.Monitor) {
assert(cond, message)
} else {
Property(monitorDir, cond, message, PropertyClass.Default)
}
def assume(cond: Bool, message: String): Unit =
if (monitorDir == MonitorDirection.Monitor) {
assert(cond, message)
} else {
Property(monitorDir.flip, cond, message, PropertyClass.Default)
}
def extra = {
args.edge.sourceInfo match {
case SourceLine(filename, line, col) => s" (connected at $filename:$line:$col)"
case _ => ""
}
}
def visible(address: UInt, source: UInt, edge: TLEdge) =
edge.client.clients.map { c =>
!c.sourceId.contains(source) ||
c.visibility.map(_.contains(address)).reduce(_ || _)
}.reduce(_ && _)
def legalizeFormatA(bundle: TLBundleA, edge: TLEdge): Unit = {
//switch this flag to turn on diplomacy in error messages
def diplomacyInfo = if (true) "" else "\nThe diplomacy information for the edge is as follows:\n" + edge.formatEdge + "\n"
monAssert (TLMessages.isA(bundle.opcode), "'A' channel has invalid opcode" + extra)
// Reuse these subexpressions to save some firrtl lines
val source_ok = edge.client.contains(bundle.source)
val is_aligned = edge.isAligned(bundle.address, bundle.size)
val mask = edge.full_mask(bundle)
monAssert (visible(edge.address(bundle), bundle.source, edge), "'A' channel carries an address illegal for the specified bank visibility")
//The monitor doesnβt check for acquire T vs acquire B, it assumes that acquire B implies acquire T and only checks for acquire B
//TODO: check for acquireT?
when (bundle.opcode === TLMessages.AcquireBlock) {
monAssert (edge.master.emitsAcquireB(bundle.source, bundle.size) && edge.slave.supportsAcquireBSafe(edge.address(bundle), bundle.size), "'A' channel carries AcquireBlock type which is unexpected using diplomatic parameters" + diplomacyInfo + extra)
monAssert (edge.master.supportsProbe(edge.source(bundle), bundle.size) && edge.slave.emitsProbeSafe(edge.address(bundle), bundle.size), "'A' channel carries AcquireBlock from a client which does not support Probe" + diplomacyInfo + extra)
monAssert (source_ok, "'A' channel AcquireBlock carries invalid source ID" + diplomacyInfo + extra)
monAssert (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'A' channel AcquireBlock smaller than a beat" + extra)
monAssert (is_aligned, "'A' channel AcquireBlock address not aligned to size" + extra)
monAssert (TLPermissions.isGrow(bundle.param), "'A' channel AcquireBlock carries invalid grow param" + extra)
monAssert (~bundle.mask === 0.U, "'A' channel AcquireBlock contains invalid mask" + extra)
monAssert (!bundle.corrupt, "'A' channel AcquireBlock is corrupt" + extra)
}
when (bundle.opcode === TLMessages.AcquirePerm) {
monAssert (edge.master.emitsAcquireB(bundle.source, bundle.size) && edge.slave.supportsAcquireBSafe(edge.address(bundle), bundle.size), "'A' channel carries AcquirePerm type which is unexpected using diplomatic parameters" + diplomacyInfo + extra)
monAssert (edge.master.supportsProbe(edge.source(bundle), bundle.size) && edge.slave.emitsProbeSafe(edge.address(bundle), bundle.size), "'A' channel carries AcquirePerm from a client which does not support Probe" + diplomacyInfo + extra)
monAssert (source_ok, "'A' channel AcquirePerm carries invalid source ID" + diplomacyInfo + extra)
monAssert (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'A' channel AcquirePerm smaller than a beat" + extra)
monAssert (is_aligned, "'A' channel AcquirePerm address not aligned to size" + extra)
monAssert (TLPermissions.isGrow(bundle.param), "'A' channel AcquirePerm carries invalid grow param" + extra)
monAssert (bundle.param =/= TLPermissions.NtoB, "'A' channel AcquirePerm requests NtoB" + extra)
monAssert (~bundle.mask === 0.U, "'A' channel AcquirePerm contains invalid mask" + extra)
monAssert (!bundle.corrupt, "'A' channel AcquirePerm is corrupt" + extra)
}
when (bundle.opcode === TLMessages.Get) {
monAssert (edge.master.emitsGet(bundle.source, bundle.size), "'A' channel carries Get type which master claims it can't emit" + diplomacyInfo + extra)
monAssert (edge.slave.supportsGetSafe(edge.address(bundle), bundle.size, None), "'A' channel carries Get type which slave claims it can't support" + diplomacyInfo + extra)
monAssert (source_ok, "'A' channel Get carries invalid source ID" + diplomacyInfo + extra)
monAssert (is_aligned, "'A' channel Get address not aligned to size" + extra)
monAssert (bundle.param === 0.U, "'A' channel Get carries invalid param" + extra)
monAssert (bundle.mask === mask, "'A' channel Get contains invalid mask" + extra)
monAssert (!bundle.corrupt, "'A' channel Get is corrupt" + extra)
}
when (bundle.opcode === TLMessages.PutFullData) {
monAssert (edge.master.emitsPutFull(bundle.source, bundle.size) && edge.slave.supportsPutFullSafe(edge.address(bundle), bundle.size), "'A' channel carries PutFull type which is unexpected using diplomatic parameters" + diplomacyInfo + extra)
monAssert (source_ok, "'A' channel PutFull carries invalid source ID" + diplomacyInfo + extra)
monAssert (is_aligned, "'A' channel PutFull address not aligned to size" + extra)
monAssert (bundle.param === 0.U, "'A' channel PutFull carries invalid param" + extra)
monAssert (bundle.mask === mask, "'A' channel PutFull contains invalid mask" + extra)
}
when (bundle.opcode === TLMessages.PutPartialData) {
monAssert (edge.master.emitsPutPartial(bundle.source, bundle.size) && edge.slave.supportsPutPartialSafe(edge.address(bundle), bundle.size), "'A' channel carries PutPartial type which is unexpected using diplomatic parameters" + extra)
monAssert (source_ok, "'A' channel PutPartial carries invalid source ID" + diplomacyInfo + extra)
monAssert (is_aligned, "'A' channel PutPartial address not aligned to size" + extra)
monAssert (bundle.param === 0.U, "'A' channel PutPartial carries invalid param" + extra)
monAssert ((bundle.mask & ~mask) === 0.U, "'A' channel PutPartial contains invalid mask" + extra)
}
when (bundle.opcode === TLMessages.ArithmeticData) {
monAssert (edge.master.emitsArithmetic(bundle.source, bundle.size) && edge.slave.supportsArithmeticSafe(edge.address(bundle), bundle.size), "'A' channel carries Arithmetic type which is unexpected using diplomatic parameters" + extra)
monAssert (source_ok, "'A' channel Arithmetic carries invalid source ID" + diplomacyInfo + extra)
monAssert (is_aligned, "'A' channel Arithmetic address not aligned to size" + extra)
monAssert (TLAtomics.isArithmetic(bundle.param), "'A' channel Arithmetic carries invalid opcode param" + extra)
monAssert (bundle.mask === mask, "'A' channel Arithmetic contains invalid mask" + extra)
}
when (bundle.opcode === TLMessages.LogicalData) {
monAssert (edge.master.emitsLogical(bundle.source, bundle.size) && edge.slave.supportsLogicalSafe(edge.address(bundle), bundle.size), "'A' channel carries Logical type which is unexpected using diplomatic parameters" + extra)
monAssert (source_ok, "'A' channel Logical carries invalid source ID" + diplomacyInfo + extra)
monAssert (is_aligned, "'A' channel Logical address not aligned to size" + extra)
monAssert (TLAtomics.isLogical(bundle.param), "'A' channel Logical carries invalid opcode param" + extra)
monAssert (bundle.mask === mask, "'A' channel Logical contains invalid mask" + extra)
}
when (bundle.opcode === TLMessages.Hint) {
monAssert (edge.master.emitsHint(bundle.source, bundle.size) && edge.slave.supportsHintSafe(edge.address(bundle), bundle.size), "'A' channel carries Hint type which is unexpected using diplomatic parameters" + extra)
monAssert (source_ok, "'A' channel Hint carries invalid source ID" + diplomacyInfo + extra)
monAssert (is_aligned, "'A' channel Hint address not aligned to size" + extra)
monAssert (TLHints.isHints(bundle.param), "'A' channel Hint carries invalid opcode param" + extra)
monAssert (bundle.mask === mask, "'A' channel Hint contains invalid mask" + extra)
monAssert (!bundle.corrupt, "'A' channel Hint is corrupt" + extra)
}
}
def legalizeFormatB(bundle: TLBundleB, edge: TLEdge): Unit = {
monAssert (TLMessages.isB(bundle.opcode), "'B' channel has invalid opcode" + extra)
monAssert (visible(edge.address(bundle), bundle.source, edge), "'B' channel carries an address illegal for the specified bank visibility")
// Reuse these subexpressions to save some firrtl lines
val address_ok = edge.manager.containsSafe(edge.address(bundle))
val is_aligned = edge.isAligned(bundle.address, bundle.size)
val mask = edge.full_mask(bundle)
val legal_source = Mux1H(edge.client.find(bundle.source), edge.client.clients.map(c => c.sourceId.start.U)) === bundle.source
when (bundle.opcode === TLMessages.Probe) {
assume (edge.master.supportsProbe(edge.source(bundle), bundle.size) && edge.slave.emitsProbeSafe(edge.address(bundle), bundle.size), "'B' channel carries Probe type which is unexpected using diplomatic parameters" + extra)
assume (address_ok, "'B' channel Probe carries unmanaged address" + extra)
assume (legal_source, "'B' channel Probe carries source that is not first source" + extra)
assume (is_aligned, "'B' channel Probe address not aligned to size" + extra)
assume (TLPermissions.isCap(bundle.param), "'B' channel Probe carries invalid cap param" + extra)
assume (bundle.mask === mask, "'B' channel Probe contains invalid mask" + extra)
assume (!bundle.corrupt, "'B' channel Probe is corrupt" + extra)
}
when (bundle.opcode === TLMessages.Get) {
monAssert (edge.master.supportsGet(edge.source(bundle), bundle.size) && edge.slave.emitsGetSafe(edge.address(bundle), bundle.size), "'B' channel carries Get type which is unexpected using diplomatic parameters" + extra)
monAssert (address_ok, "'B' channel Get carries unmanaged address" + extra)
monAssert (legal_source, "'B' channel Get carries source that is not first source" + extra)
monAssert (is_aligned, "'B' channel Get address not aligned to size" + extra)
monAssert (bundle.param === 0.U, "'B' channel Get carries invalid param" + extra)
monAssert (bundle.mask === mask, "'B' channel Get contains invalid mask" + extra)
monAssert (!bundle.corrupt, "'B' channel Get is corrupt" + extra)
}
when (bundle.opcode === TLMessages.PutFullData) {
monAssert (edge.master.supportsPutFull(edge.source(bundle), bundle.size) && edge.slave.emitsPutFullSafe(edge.address(bundle), bundle.size), "'B' channel carries PutFull type which is unexpected using diplomatic parameters" + extra)
monAssert (address_ok, "'B' channel PutFull carries unmanaged address" + extra)
monAssert (legal_source, "'B' channel PutFull carries source that is not first source" + extra)
monAssert (is_aligned, "'B' channel PutFull address not aligned to size" + extra)
monAssert (bundle.param === 0.U, "'B' channel PutFull carries invalid param" + extra)
monAssert (bundle.mask === mask, "'B' channel PutFull contains invalid mask" + extra)
}
when (bundle.opcode === TLMessages.PutPartialData) {
monAssert (edge.master.supportsPutPartial(edge.source(bundle), bundle.size) && edge.slave.emitsPutPartialSafe(edge.address(bundle), bundle.size), "'B' channel carries PutPartial type which is unexpected using diplomatic parameters" + extra)
monAssert (address_ok, "'B' channel PutPartial carries unmanaged address" + extra)
monAssert (legal_source, "'B' channel PutPartial carries source that is not first source" + extra)
monAssert (is_aligned, "'B' channel PutPartial address not aligned to size" + extra)
monAssert (bundle.param === 0.U, "'B' channel PutPartial carries invalid param" + extra)
monAssert ((bundle.mask & ~mask) === 0.U, "'B' channel PutPartial contains invalid mask" + extra)
}
when (bundle.opcode === TLMessages.ArithmeticData) {
monAssert (edge.master.supportsArithmetic(edge.source(bundle), bundle.size) && edge.slave.emitsArithmeticSafe(edge.address(bundle), bundle.size), "'B' channel carries Arithmetic type unsupported by master" + extra)
monAssert (address_ok, "'B' channel Arithmetic carries unmanaged address" + extra)
monAssert (legal_source, "'B' channel Arithmetic carries source that is not first source" + extra)
monAssert (is_aligned, "'B' channel Arithmetic address not aligned to size" + extra)
monAssert (TLAtomics.isArithmetic(bundle.param), "'B' channel Arithmetic carries invalid opcode param" + extra)
monAssert (bundle.mask === mask, "'B' channel Arithmetic contains invalid mask" + extra)
}
when (bundle.opcode === TLMessages.LogicalData) {
monAssert (edge.master.supportsLogical(edge.source(bundle), bundle.size) && edge.slave.emitsLogicalSafe(edge.address(bundle), bundle.size), "'B' channel carries Logical type unsupported by client" + extra)
monAssert (address_ok, "'B' channel Logical carries unmanaged address" + extra)
monAssert (legal_source, "'B' channel Logical carries source that is not first source" + extra)
monAssert (is_aligned, "'B' channel Logical address not aligned to size" + extra)
monAssert (TLAtomics.isLogical(bundle.param), "'B' channel Logical carries invalid opcode param" + extra)
monAssert (bundle.mask === mask, "'B' channel Logical contains invalid mask" + extra)
}
when (bundle.opcode === TLMessages.Hint) {
monAssert (edge.master.supportsHint(edge.source(bundle), bundle.size) && edge.slave.emitsHintSafe(edge.address(bundle), bundle.size), "'B' channel carries Hint type unsupported by client" + extra)
monAssert (address_ok, "'B' channel Hint carries unmanaged address" + extra)
monAssert (legal_source, "'B' channel Hint carries source that is not first source" + extra)
monAssert (is_aligned, "'B' channel Hint address not aligned to size" + extra)
monAssert (bundle.mask === mask, "'B' channel Hint contains invalid mask" + extra)
monAssert (!bundle.corrupt, "'B' channel Hint is corrupt" + extra)
}
}
def legalizeFormatC(bundle: TLBundleC, edge: TLEdge): Unit = {
monAssert (TLMessages.isC(bundle.opcode), "'C' channel has invalid opcode" + extra)
val source_ok = edge.client.contains(bundle.source)
val is_aligned = edge.isAligned(bundle.address, bundle.size)
val address_ok = edge.manager.containsSafe(edge.address(bundle))
monAssert (visible(edge.address(bundle), bundle.source, edge), "'C' channel carries an address illegal for the specified bank visibility")
when (bundle.opcode === TLMessages.ProbeAck) {
monAssert (address_ok, "'C' channel ProbeAck carries unmanaged address" + extra)
monAssert (source_ok, "'C' channel ProbeAck carries invalid source ID" + extra)
monAssert (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'C' channel ProbeAck smaller than a beat" + extra)
monAssert (is_aligned, "'C' channel ProbeAck address not aligned to size" + extra)
monAssert (TLPermissions.isReport(bundle.param), "'C' channel ProbeAck carries invalid report param" + extra)
monAssert (!bundle.corrupt, "'C' channel ProbeAck is corrupt" + extra)
}
when (bundle.opcode === TLMessages.ProbeAckData) {
monAssert (address_ok, "'C' channel ProbeAckData carries unmanaged address" + extra)
monAssert (source_ok, "'C' channel ProbeAckData carries invalid source ID" + extra)
monAssert (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'C' channel ProbeAckData smaller than a beat" + extra)
monAssert (is_aligned, "'C' channel ProbeAckData address not aligned to size" + extra)
monAssert (TLPermissions.isReport(bundle.param), "'C' channel ProbeAckData carries invalid report param" + extra)
}
when (bundle.opcode === TLMessages.Release) {
monAssert (edge.master.emitsAcquireB(edge.source(bundle), bundle.size) && edge.slave.supportsAcquireBSafe(edge.address(bundle), bundle.size), "'C' channel carries Release type unsupported by manager" + extra)
monAssert (edge.master.supportsProbe(edge.source(bundle), bundle.size) && edge.slave.emitsProbeSafe(edge.address(bundle), bundle.size), "'C' channel carries Release from a client which does not support Probe" + extra)
monAssert (source_ok, "'C' channel Release carries invalid source ID" + extra)
monAssert (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'C' channel Release smaller than a beat" + extra)
monAssert (is_aligned, "'C' channel Release address not aligned to size" + extra)
monAssert (TLPermissions.isReport(bundle.param), "'C' channel Release carries invalid report param" + extra)
monAssert (!bundle.corrupt, "'C' channel Release is corrupt" + extra)
}
when (bundle.opcode === TLMessages.ReleaseData) {
monAssert (edge.master.emitsAcquireB(edge.source(bundle), bundle.size) && edge.slave.supportsAcquireBSafe(edge.address(bundle), bundle.size), "'C' channel carries ReleaseData type unsupported by manager" + extra)
monAssert (edge.master.supportsProbe(edge.source(bundle), bundle.size) && edge.slave.emitsProbeSafe(edge.address(bundle), bundle.size), "'C' channel carries Release from a client which does not support Probe" + extra)
monAssert (source_ok, "'C' channel ReleaseData carries invalid source ID" + extra)
monAssert (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'C' channel ReleaseData smaller than a beat" + extra)
monAssert (is_aligned, "'C' channel ReleaseData address not aligned to size" + extra)
monAssert (TLPermissions.isReport(bundle.param), "'C' channel ReleaseData carries invalid report param" + extra)
}
when (bundle.opcode === TLMessages.AccessAck) {
monAssert (address_ok, "'C' channel AccessAck carries unmanaged address" + extra)
monAssert (source_ok, "'C' channel AccessAck carries invalid source ID" + extra)
monAssert (is_aligned, "'C' channel AccessAck address not aligned to size" + extra)
monAssert (bundle.param === 0.U, "'C' channel AccessAck carries invalid param" + extra)
monAssert (!bundle.corrupt, "'C' channel AccessAck is corrupt" + extra)
}
when (bundle.opcode === TLMessages.AccessAckData) {
monAssert (address_ok, "'C' channel AccessAckData carries unmanaged address" + extra)
monAssert (source_ok, "'C' channel AccessAckData carries invalid source ID" + extra)
monAssert (is_aligned, "'C' channel AccessAckData address not aligned to size" + extra)
monAssert (bundle.param === 0.U, "'C' channel AccessAckData carries invalid param" + extra)
}
when (bundle.opcode === TLMessages.HintAck) {
monAssert (address_ok, "'C' channel HintAck carries unmanaged address" + extra)
monAssert (source_ok, "'C' channel HintAck carries invalid source ID" + extra)
monAssert (is_aligned, "'C' channel HintAck address not aligned to size" + extra)
monAssert (bundle.param === 0.U, "'C' channel HintAck carries invalid param" + extra)
monAssert (!bundle.corrupt, "'C' channel HintAck is corrupt" + extra)
}
}
def legalizeFormatD(bundle: TLBundleD, edge: TLEdge): Unit = {
assume (TLMessages.isD(bundle.opcode), "'D' channel has invalid opcode" + extra)
val source_ok = edge.client.contains(bundle.source)
val sink_ok = bundle.sink < edge.manager.endSinkId.U
val deny_put_ok = edge.manager.mayDenyPut.B
val deny_get_ok = edge.manager.mayDenyGet.B
when (bundle.opcode === TLMessages.ReleaseAck) {
assume (source_ok, "'D' channel ReleaseAck carries invalid source ID" + extra)
assume (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'D' channel ReleaseAck smaller than a beat" + extra)
assume (bundle.param === 0.U, "'D' channel ReleaseeAck carries invalid param" + extra)
assume (!bundle.corrupt, "'D' channel ReleaseAck is corrupt" + extra)
assume (!bundle.denied, "'D' channel ReleaseAck is denied" + extra)
}
when (bundle.opcode === TLMessages.Grant) {
assume (source_ok, "'D' channel Grant carries invalid source ID" + extra)
assume (sink_ok, "'D' channel Grant carries invalid sink ID" + extra)
assume (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'D' channel Grant smaller than a beat" + extra)
assume (TLPermissions.isCap(bundle.param), "'D' channel Grant carries invalid cap param" + extra)
assume (bundle.param =/= TLPermissions.toN, "'D' channel Grant carries toN param" + extra)
assume (!bundle.corrupt, "'D' channel Grant is corrupt" + extra)
assume (deny_put_ok || !bundle.denied, "'D' channel Grant is denied" + extra)
}
when (bundle.opcode === TLMessages.GrantData) {
assume (source_ok, "'D' channel GrantData carries invalid source ID" + extra)
assume (sink_ok, "'D' channel GrantData carries invalid sink ID" + extra)
assume (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'D' channel GrantData smaller than a beat" + extra)
assume (TLPermissions.isCap(bundle.param), "'D' channel GrantData carries invalid cap param" + extra)
assume (bundle.param =/= TLPermissions.toN, "'D' channel GrantData carries toN param" + extra)
assume (!bundle.denied || bundle.corrupt, "'D' channel GrantData is denied but not corrupt" + extra)
assume (deny_get_ok || !bundle.denied, "'D' channel GrantData is denied" + extra)
}
when (bundle.opcode === TLMessages.AccessAck) {
assume (source_ok, "'D' channel AccessAck carries invalid source ID" + extra)
// size is ignored
assume (bundle.param === 0.U, "'D' channel AccessAck carries invalid param" + extra)
assume (!bundle.corrupt, "'D' channel AccessAck is corrupt" + extra)
assume (deny_put_ok || !bundle.denied, "'D' channel AccessAck is denied" + extra)
}
when (bundle.opcode === TLMessages.AccessAckData) {
assume (source_ok, "'D' channel AccessAckData carries invalid source ID" + extra)
// size is ignored
assume (bundle.param === 0.U, "'D' channel AccessAckData carries invalid param" + extra)
assume (!bundle.denied || bundle.corrupt, "'D' channel AccessAckData is denied but not corrupt" + extra)
assume (deny_get_ok || !bundle.denied, "'D' channel AccessAckData is denied" + extra)
}
when (bundle.opcode === TLMessages.HintAck) {
assume (source_ok, "'D' channel HintAck carries invalid source ID" + extra)
// size is ignored
assume (bundle.param === 0.U, "'D' channel HintAck carries invalid param" + extra)
assume (!bundle.corrupt, "'D' channel HintAck is corrupt" + extra)
assume (deny_put_ok || !bundle.denied, "'D' channel HintAck is denied" + extra)
}
}
def legalizeFormatE(bundle: TLBundleE, edge: TLEdge): Unit = {
val sink_ok = bundle.sink < edge.manager.endSinkId.U
monAssert (sink_ok, "'E' channels carries invalid sink ID" + extra)
}
def legalizeFormat(bundle: TLBundle, edge: TLEdge) = {
when (bundle.a.valid) { legalizeFormatA(bundle.a.bits, edge) }
when (bundle.d.valid) { legalizeFormatD(bundle.d.bits, edge) }
if (edge.client.anySupportProbe && edge.manager.anySupportAcquireB) {
when (bundle.b.valid) { legalizeFormatB(bundle.b.bits, edge) }
when (bundle.c.valid) { legalizeFormatC(bundle.c.bits, edge) }
when (bundle.e.valid) { legalizeFormatE(bundle.e.bits, edge) }
} else {
monAssert (!bundle.b.valid, "'B' channel valid and not TL-C" + extra)
monAssert (!bundle.c.valid, "'C' channel valid and not TL-C" + extra)
monAssert (!bundle.e.valid, "'E' channel valid and not TL-C" + extra)
}
}
def legalizeMultibeatA(a: DecoupledIO[TLBundleA], edge: TLEdge): Unit = {
val a_first = edge.first(a.bits, a.fire)
val opcode = Reg(UInt())
val param = Reg(UInt())
val size = Reg(UInt())
val source = Reg(UInt())
val address = Reg(UInt())
when (a.valid && !a_first) {
monAssert (a.bits.opcode === opcode, "'A' channel opcode changed within multibeat operation" + extra)
monAssert (a.bits.param === param, "'A' channel param changed within multibeat operation" + extra)
monAssert (a.bits.size === size, "'A' channel size changed within multibeat operation" + extra)
monAssert (a.bits.source === source, "'A' channel source changed within multibeat operation" + extra)
monAssert (a.bits.address=== address,"'A' channel address changed with multibeat operation" + extra)
}
when (a.fire && a_first) {
opcode := a.bits.opcode
param := a.bits.param
size := a.bits.size
source := a.bits.source
address := a.bits.address
}
}
def legalizeMultibeatB(b: DecoupledIO[TLBundleB], edge: TLEdge): Unit = {
val b_first = edge.first(b.bits, b.fire)
val opcode = Reg(UInt())
val param = Reg(UInt())
val size = Reg(UInt())
val source = Reg(UInt())
val address = Reg(UInt())
when (b.valid && !b_first) {
monAssert (b.bits.opcode === opcode, "'B' channel opcode changed within multibeat operation" + extra)
monAssert (b.bits.param === param, "'B' channel param changed within multibeat operation" + extra)
monAssert (b.bits.size === size, "'B' channel size changed within multibeat operation" + extra)
monAssert (b.bits.source === source, "'B' channel source changed within multibeat operation" + extra)
monAssert (b.bits.address=== address,"'B' channel addresss changed with multibeat operation" + extra)
}
when (b.fire && b_first) {
opcode := b.bits.opcode
param := b.bits.param
size := b.bits.size
source := b.bits.source
address := b.bits.address
}
}
def legalizeADSourceFormal(bundle: TLBundle, edge: TLEdge): Unit = {
// Symbolic variable
val sym_source = Wire(UInt(edge.client.endSourceId.W))
// TODO: Connect sym_source to a fixed value for simulation and to a
// free wire in formal
sym_source := 0.U
// Type casting Int to UInt
val maxSourceId = Wire(UInt(edge.client.endSourceId.W))
maxSourceId := edge.client.endSourceId.U
// Delayed verison of sym_source
val sym_source_d = Reg(UInt(edge.client.endSourceId.W))
sym_source_d := sym_source
// These will be constraints for FV setup
Property(
MonitorDirection.Monitor,
(sym_source === sym_source_d),
"sym_source should remain stable",
PropertyClass.Default)
Property(
MonitorDirection.Monitor,
(sym_source <= maxSourceId),
"sym_source should take legal value",
PropertyClass.Default)
val my_resp_pend = RegInit(false.B)
val my_opcode = Reg(UInt())
val my_size = Reg(UInt())
val a_first = bundle.a.valid && edge.first(bundle.a.bits, bundle.a.fire)
val d_first = bundle.d.valid && edge.first(bundle.d.bits, bundle.d.fire)
val my_a_first_beat = a_first && (bundle.a.bits.source === sym_source)
val my_d_first_beat = d_first && (bundle.d.bits.source === sym_source)
val my_clr_resp_pend = (bundle.d.fire && my_d_first_beat)
val my_set_resp_pend = (bundle.a.fire && my_a_first_beat && !my_clr_resp_pend)
when (my_set_resp_pend) {
my_resp_pend := true.B
} .elsewhen (my_clr_resp_pend) {
my_resp_pend := false.B
}
when (my_a_first_beat) {
my_opcode := bundle.a.bits.opcode
my_size := bundle.a.bits.size
}
val my_resp_size = Mux(my_a_first_beat, bundle.a.bits.size, my_size)
val my_resp_opcode = Mux(my_a_first_beat, bundle.a.bits.opcode, my_opcode)
val my_resp_opcode_legal = Wire(Bool())
when ((my_resp_opcode === TLMessages.Get) || (my_resp_opcode === TLMessages.ArithmeticData) ||
(my_resp_opcode === TLMessages.LogicalData)) {
my_resp_opcode_legal := (bundle.d.bits.opcode === TLMessages.AccessAckData)
} .elsewhen ((my_resp_opcode === TLMessages.PutFullData) || (my_resp_opcode === TLMessages.PutPartialData)) {
my_resp_opcode_legal := (bundle.d.bits.opcode === TLMessages.AccessAck)
} .otherwise {
my_resp_opcode_legal := (bundle.d.bits.opcode === TLMessages.HintAck)
}
monAssert (IfThen(my_resp_pend, !my_a_first_beat),
"Request message should not be sent with a source ID, for which a response message" +
"is already pending (not received until current cycle) for a prior request message" +
"with the same source ID" + extra)
assume (IfThen(my_clr_resp_pend, (my_set_resp_pend || my_resp_pend)),
"Response message should be accepted with a source ID only if a request message with the" +
"same source ID has been accepted or is being accepted in the current cycle" + extra)
assume (IfThen(my_d_first_beat, (my_a_first_beat || my_resp_pend)),
"Response message should be sent with a source ID only if a request message with the" +
"same source ID has been accepted or is being sent in the current cycle" + extra)
assume (IfThen(my_d_first_beat, (bundle.d.bits.size === my_resp_size)),
"If d_valid is 1, then d_size should be same as a_size of the corresponding request" +
"message" + extra)
assume (IfThen(my_d_first_beat, my_resp_opcode_legal),
"If d_valid is 1, then d_opcode should correspond with a_opcode of the corresponding" +
"request message" + extra)
}
def legalizeMultibeatC(c: DecoupledIO[TLBundleC], edge: TLEdge): Unit = {
val c_first = edge.first(c.bits, c.fire)
val opcode = Reg(UInt())
val param = Reg(UInt())
val size = Reg(UInt())
val source = Reg(UInt())
val address = Reg(UInt())
when (c.valid && !c_first) {
monAssert (c.bits.opcode === opcode, "'C' channel opcode changed within multibeat operation" + extra)
monAssert (c.bits.param === param, "'C' channel param changed within multibeat operation" + extra)
monAssert (c.bits.size === size, "'C' channel size changed within multibeat operation" + extra)
monAssert (c.bits.source === source, "'C' channel source changed within multibeat operation" + extra)
monAssert (c.bits.address=== address,"'C' channel address changed with multibeat operation" + extra)
}
when (c.fire && c_first) {
opcode := c.bits.opcode
param := c.bits.param
size := c.bits.size
source := c.bits.source
address := c.bits.address
}
}
def legalizeMultibeatD(d: DecoupledIO[TLBundleD], edge: TLEdge): Unit = {
val d_first = edge.first(d.bits, d.fire)
val opcode = Reg(UInt())
val param = Reg(UInt())
val size = Reg(UInt())
val source = Reg(UInt())
val sink = Reg(UInt())
val denied = Reg(Bool())
when (d.valid && !d_first) {
assume (d.bits.opcode === opcode, "'D' channel opcode changed within multibeat operation" + extra)
assume (d.bits.param === param, "'D' channel param changed within multibeat operation" + extra)
assume (d.bits.size === size, "'D' channel size changed within multibeat operation" + extra)
assume (d.bits.source === source, "'D' channel source changed within multibeat operation" + extra)
assume (d.bits.sink === sink, "'D' channel sink changed with multibeat operation" + extra)
assume (d.bits.denied === denied, "'D' channel denied changed with multibeat operation" + extra)
}
when (d.fire && d_first) {
opcode := d.bits.opcode
param := d.bits.param
size := d.bits.size
source := d.bits.source
sink := d.bits.sink
denied := d.bits.denied
}
}
def legalizeMultibeat(bundle: TLBundle, edge: TLEdge): Unit = {
legalizeMultibeatA(bundle.a, edge)
legalizeMultibeatD(bundle.d, edge)
if (edge.client.anySupportProbe && edge.manager.anySupportAcquireB) {
legalizeMultibeatB(bundle.b, edge)
legalizeMultibeatC(bundle.c, edge)
}
}
//This is left in for almond which doesn't adhere to the tilelink protocol
@deprecated("Use legalizeADSource instead if possible","")
def legalizeADSourceOld(bundle: TLBundle, edge: TLEdge): Unit = {
val inflight = RegInit(0.U(edge.client.endSourceId.W))
val a_first = edge.first(bundle.a.bits, bundle.a.fire)
val d_first = edge.first(bundle.d.bits, bundle.d.fire)
val a_set = WireInit(0.U(edge.client.endSourceId.W))
when (bundle.a.fire && a_first && edge.isRequest(bundle.a.bits)) {
a_set := UIntToOH(bundle.a.bits.source)
assert(!inflight(bundle.a.bits.source), "'A' channel re-used a source ID" + extra)
}
val d_clr = WireInit(0.U(edge.client.endSourceId.W))
val d_release_ack = bundle.d.bits.opcode === TLMessages.ReleaseAck
when (bundle.d.fire && d_first && edge.isResponse(bundle.d.bits) && !d_release_ack) {
d_clr := UIntToOH(bundle.d.bits.source)
assume((a_set | inflight)(bundle.d.bits.source), "'D' channel acknowledged for nothing inflight" + extra)
}
if (edge.manager.minLatency > 0) {
assume(a_set =/= d_clr || !a_set.orR, s"'A' and 'D' concurrent, despite minlatency > 0" + extra)
}
inflight := (inflight | a_set) & ~d_clr
val watchdog = RegInit(0.U(32.W))
val limit = PlusArg("tilelink_timeout",
docstring="Kill emulation after INT waiting TileLink cycles. Off if 0.")
assert (!inflight.orR || limit === 0.U || watchdog < limit, "TileLink timeout expired" + extra)
watchdog := watchdog + 1.U
when (bundle.a.fire || bundle.d.fire) { watchdog := 0.U }
}
def legalizeADSource(bundle: TLBundle, edge: TLEdge): Unit = {
val a_size_bus_size = edge.bundle.sizeBits + 1 //add one so that 0 is not mapped to anything (size 0 -> size 1 in map, size 0 in map means unset)
val a_opcode_bus_size = 3 + 1 //opcode size is 3, but add so that 0 is not mapped to anything
val log_a_opcode_bus_size = log2Ceil(a_opcode_bus_size)
val log_a_size_bus_size = log2Ceil(a_size_bus_size)
def size_to_numfullbits(x: UInt): UInt = (1.U << x) - 1.U //convert a number to that many full bits
val inflight = RegInit(0.U((2 max edge.client.endSourceId).W)) // size up to avoid width error
inflight.suggestName("inflight")
val inflight_opcodes = RegInit(0.U((edge.client.endSourceId << log_a_opcode_bus_size).W))
inflight_opcodes.suggestName("inflight_opcodes")
val inflight_sizes = RegInit(0.U((edge.client.endSourceId << log_a_size_bus_size).W))
inflight_sizes.suggestName("inflight_sizes")
val a_first = edge.first(bundle.a.bits, bundle.a.fire)
a_first.suggestName("a_first")
val d_first = edge.first(bundle.d.bits, bundle.d.fire)
d_first.suggestName("d_first")
val a_set = WireInit(0.U(edge.client.endSourceId.W))
val a_set_wo_ready = WireInit(0.U(edge.client.endSourceId.W))
a_set.suggestName("a_set")
a_set_wo_ready.suggestName("a_set_wo_ready")
val a_opcodes_set = WireInit(0.U((edge.client.endSourceId << log_a_opcode_bus_size).W))
a_opcodes_set.suggestName("a_opcodes_set")
val a_sizes_set = WireInit(0.U((edge.client.endSourceId << log_a_size_bus_size).W))
a_sizes_set.suggestName("a_sizes_set")
val a_opcode_lookup = WireInit(0.U((a_opcode_bus_size - 1).W))
a_opcode_lookup.suggestName("a_opcode_lookup")
a_opcode_lookup := ((inflight_opcodes) >> (bundle.d.bits.source << log_a_opcode_bus_size.U) & size_to_numfullbits(1.U << log_a_opcode_bus_size.U)) >> 1.U
val a_size_lookup = WireInit(0.U((1 << log_a_size_bus_size).W))
a_size_lookup.suggestName("a_size_lookup")
a_size_lookup := ((inflight_sizes) >> (bundle.d.bits.source << log_a_size_bus_size.U) & size_to_numfullbits(1.U << log_a_size_bus_size.U)) >> 1.U
val responseMap = VecInit(Seq(TLMessages.AccessAck, TLMessages.AccessAck, TLMessages.AccessAckData, TLMessages.AccessAckData, TLMessages.AccessAckData, TLMessages.HintAck, TLMessages.Grant, TLMessages.Grant))
val responseMapSecondOption = VecInit(Seq(TLMessages.AccessAck, TLMessages.AccessAck, TLMessages.AccessAckData, TLMessages.AccessAckData, TLMessages.AccessAckData, TLMessages.HintAck, TLMessages.GrantData, TLMessages.Grant))
val a_opcodes_set_interm = WireInit(0.U(a_opcode_bus_size.W))
a_opcodes_set_interm.suggestName("a_opcodes_set_interm")
val a_sizes_set_interm = WireInit(0.U(a_size_bus_size.W))
a_sizes_set_interm.suggestName("a_sizes_set_interm")
when (bundle.a.valid && a_first && edge.isRequest(bundle.a.bits)) {
a_set_wo_ready := UIntToOH(bundle.a.bits.source)
}
when (bundle.a.fire && a_first && edge.isRequest(bundle.a.bits)) {
a_set := UIntToOH(bundle.a.bits.source)
a_opcodes_set_interm := (bundle.a.bits.opcode << 1.U) | 1.U
a_sizes_set_interm := (bundle.a.bits.size << 1.U) | 1.U
a_opcodes_set := (a_opcodes_set_interm) << (bundle.a.bits.source << log_a_opcode_bus_size.U)
a_sizes_set := (a_sizes_set_interm) << (bundle.a.bits.source << log_a_size_bus_size.U)
monAssert(!inflight(bundle.a.bits.source), "'A' channel re-used a source ID" + extra)
}
val d_clr = WireInit(0.U(edge.client.endSourceId.W))
val d_clr_wo_ready = WireInit(0.U(edge.client.endSourceId.W))
d_clr.suggestName("d_clr")
d_clr_wo_ready.suggestName("d_clr_wo_ready")
val d_opcodes_clr = WireInit(0.U((edge.client.endSourceId << log_a_opcode_bus_size).W))
d_opcodes_clr.suggestName("d_opcodes_clr")
val d_sizes_clr = WireInit(0.U((edge.client.endSourceId << log_a_size_bus_size).W))
d_sizes_clr.suggestName("d_sizes_clr")
val d_release_ack = bundle.d.bits.opcode === TLMessages.ReleaseAck
when (bundle.d.valid && d_first && edge.isResponse(bundle.d.bits) && !d_release_ack) {
d_clr_wo_ready := UIntToOH(bundle.d.bits.source)
}
when (bundle.d.fire && d_first && edge.isResponse(bundle.d.bits) && !d_release_ack) {
d_clr := UIntToOH(bundle.d.bits.source)
d_opcodes_clr := size_to_numfullbits(1.U << log_a_opcode_bus_size.U) << (bundle.d.bits.source << log_a_opcode_bus_size.U)
d_sizes_clr := size_to_numfullbits(1.U << log_a_size_bus_size.U) << (bundle.d.bits.source << log_a_size_bus_size.U)
}
when (bundle.d.valid && d_first && edge.isResponse(bundle.d.bits) && !d_release_ack) {
val same_cycle_resp = bundle.a.valid && a_first && edge.isRequest(bundle.a.bits) && (bundle.a.bits.source === bundle.d.bits.source)
assume(((inflight)(bundle.d.bits.source)) || same_cycle_resp, "'D' channel acknowledged for nothing inflight" + extra)
when (same_cycle_resp) {
assume((bundle.d.bits.opcode === responseMap(bundle.a.bits.opcode)) ||
(bundle.d.bits.opcode === responseMapSecondOption(bundle.a.bits.opcode)), "'D' channel contains improper opcode response" + extra)
assume((bundle.a.bits.size === bundle.d.bits.size), "'D' channel contains improper response size" + extra)
} .otherwise {
assume((bundle.d.bits.opcode === responseMap(a_opcode_lookup)) ||
(bundle.d.bits.opcode === responseMapSecondOption(a_opcode_lookup)), "'D' channel contains improper opcode response" + extra)
assume((bundle.d.bits.size === a_size_lookup), "'D' channel contains improper response size" + extra)
}
}
when(bundle.d.valid && d_first && a_first && bundle.a.valid && (bundle.a.bits.source === bundle.d.bits.source) && !d_release_ack) {
assume((!bundle.d.ready) || bundle.a.ready, "ready check")
}
if (edge.manager.minLatency > 0) {
assume(a_set_wo_ready =/= d_clr_wo_ready || !a_set_wo_ready.orR, s"'A' and 'D' concurrent, despite minlatency > 0" + extra)
}
inflight := (inflight | a_set) & ~d_clr
inflight_opcodes := (inflight_opcodes | a_opcodes_set) & ~d_opcodes_clr
inflight_sizes := (inflight_sizes | a_sizes_set) & ~d_sizes_clr
val watchdog = RegInit(0.U(32.W))
val limit = PlusArg("tilelink_timeout",
docstring="Kill emulation after INT waiting TileLink cycles. Off if 0.")
monAssert (!inflight.orR || limit === 0.U || watchdog < limit, "TileLink timeout expired" + extra)
watchdog := watchdog + 1.U
when (bundle.a.fire || bundle.d.fire) { watchdog := 0.U }
}
def legalizeCDSource(bundle: TLBundle, edge: TLEdge): Unit = {
val c_size_bus_size = edge.bundle.sizeBits + 1 //add one so that 0 is not mapped to anything (size 0 -> size 1 in map, size 0 in map means unset)
val c_opcode_bus_size = 3 + 1 //opcode size is 3, but add so that 0 is not mapped to anything
val log_c_opcode_bus_size = log2Ceil(c_opcode_bus_size)
val log_c_size_bus_size = log2Ceil(c_size_bus_size)
def size_to_numfullbits(x: UInt): UInt = (1.U << x) - 1.U //convert a number to that many full bits
val inflight = RegInit(0.U((2 max edge.client.endSourceId).W))
val inflight_opcodes = RegInit(0.U((edge.client.endSourceId << log_c_opcode_bus_size).W))
val inflight_sizes = RegInit(0.U((edge.client.endSourceId << log_c_size_bus_size).W))
inflight.suggestName("inflight")
inflight_opcodes.suggestName("inflight_opcodes")
inflight_sizes.suggestName("inflight_sizes")
val c_first = edge.first(bundle.c.bits, bundle.c.fire)
val d_first = edge.first(bundle.d.bits, bundle.d.fire)
c_first.suggestName("c_first")
d_first.suggestName("d_first")
val c_set = WireInit(0.U(edge.client.endSourceId.W))
val c_set_wo_ready = WireInit(0.U(edge.client.endSourceId.W))
val c_opcodes_set = WireInit(0.U((edge.client.endSourceId << log_c_opcode_bus_size).W))
val c_sizes_set = WireInit(0.U((edge.client.endSourceId << log_c_size_bus_size).W))
c_set.suggestName("c_set")
c_set_wo_ready.suggestName("c_set_wo_ready")
c_opcodes_set.suggestName("c_opcodes_set")
c_sizes_set.suggestName("c_sizes_set")
val c_opcode_lookup = WireInit(0.U((1 << log_c_opcode_bus_size).W))
val c_size_lookup = WireInit(0.U((1 << log_c_size_bus_size).W))
c_opcode_lookup := ((inflight_opcodes) >> (bundle.d.bits.source << log_c_opcode_bus_size.U) & size_to_numfullbits(1.U << log_c_opcode_bus_size.U)) >> 1.U
c_size_lookup := ((inflight_sizes) >> (bundle.d.bits.source << log_c_size_bus_size.U) & size_to_numfullbits(1.U << log_c_size_bus_size.U)) >> 1.U
c_opcode_lookup.suggestName("c_opcode_lookup")
c_size_lookup.suggestName("c_size_lookup")
val c_opcodes_set_interm = WireInit(0.U(c_opcode_bus_size.W))
val c_sizes_set_interm = WireInit(0.U(c_size_bus_size.W))
c_opcodes_set_interm.suggestName("c_opcodes_set_interm")
c_sizes_set_interm.suggestName("c_sizes_set_interm")
when (bundle.c.valid && c_first && edge.isRequest(bundle.c.bits)) {
c_set_wo_ready := UIntToOH(bundle.c.bits.source)
}
when (bundle.c.fire && c_first && edge.isRequest(bundle.c.bits)) {
c_set := UIntToOH(bundle.c.bits.source)
c_opcodes_set_interm := (bundle.c.bits.opcode << 1.U) | 1.U
c_sizes_set_interm := (bundle.c.bits.size << 1.U) | 1.U
c_opcodes_set := (c_opcodes_set_interm) << (bundle.c.bits.source << log_c_opcode_bus_size.U)
c_sizes_set := (c_sizes_set_interm) << (bundle.c.bits.source << log_c_size_bus_size.U)
monAssert(!inflight(bundle.c.bits.source), "'C' channel re-used a source ID" + extra)
}
val c_probe_ack = bundle.c.bits.opcode === TLMessages.ProbeAck || bundle.c.bits.opcode === TLMessages.ProbeAckData
val d_clr = WireInit(0.U(edge.client.endSourceId.W))
val d_clr_wo_ready = WireInit(0.U(edge.client.endSourceId.W))
val d_opcodes_clr = WireInit(0.U((edge.client.endSourceId << log_c_opcode_bus_size).W))
val d_sizes_clr = WireInit(0.U((edge.client.endSourceId << log_c_size_bus_size).W))
d_clr.suggestName("d_clr")
d_clr_wo_ready.suggestName("d_clr_wo_ready")
d_opcodes_clr.suggestName("d_opcodes_clr")
d_sizes_clr.suggestName("d_sizes_clr")
val d_release_ack = bundle.d.bits.opcode === TLMessages.ReleaseAck
when (bundle.d.valid && d_first && edge.isResponse(bundle.d.bits) && d_release_ack) {
d_clr_wo_ready := UIntToOH(bundle.d.bits.source)
}
when (bundle.d.fire && d_first && edge.isResponse(bundle.d.bits) && d_release_ack) {
d_clr := UIntToOH(bundle.d.bits.source)
d_opcodes_clr := size_to_numfullbits(1.U << log_c_opcode_bus_size.U) << (bundle.d.bits.source << log_c_opcode_bus_size.U)
d_sizes_clr := size_to_numfullbits(1.U << log_c_size_bus_size.U) << (bundle.d.bits.source << log_c_size_bus_size.U)
}
when (bundle.d.valid && d_first && edge.isResponse(bundle.d.bits) && d_release_ack) {
val same_cycle_resp = bundle.c.valid && c_first && edge.isRequest(bundle.c.bits) && (bundle.c.bits.source === bundle.d.bits.source)
assume(((inflight)(bundle.d.bits.source)) || same_cycle_resp, "'D' channel acknowledged for nothing inflight" + extra)
when (same_cycle_resp) {
assume((bundle.d.bits.size === bundle.c.bits.size), "'D' channel contains improper response size" + extra)
} .otherwise {
assume((bundle.d.bits.size === c_size_lookup), "'D' channel contains improper response size" + extra)
}
}
when(bundle.d.valid && d_first && c_first && bundle.c.valid && (bundle.c.bits.source === bundle.d.bits.source) && d_release_ack && !c_probe_ack) {
assume((!bundle.d.ready) || bundle.c.ready, "ready check")
}
if (edge.manager.minLatency > 0) {
when (c_set_wo_ready.orR) {
assume(c_set_wo_ready =/= d_clr_wo_ready, s"'C' and 'D' concurrent, despite minlatency > 0" + extra)
}
}
inflight := (inflight | c_set) & ~d_clr
inflight_opcodes := (inflight_opcodes | c_opcodes_set) & ~d_opcodes_clr
inflight_sizes := (inflight_sizes | c_sizes_set) & ~d_sizes_clr
val watchdog = RegInit(0.U(32.W))
val limit = PlusArg("tilelink_timeout",
docstring="Kill emulation after INT waiting TileLink cycles. Off if 0.")
monAssert (!inflight.orR || limit === 0.U || watchdog < limit, "TileLink timeout expired" + extra)
watchdog := watchdog + 1.U
when (bundle.c.fire || bundle.d.fire) { watchdog := 0.U }
}
def legalizeDESink(bundle: TLBundle, edge: TLEdge): Unit = {
val inflight = RegInit(0.U(edge.manager.endSinkId.W))
val d_first = edge.first(bundle.d.bits, bundle.d.fire)
val e_first = true.B
val d_set = WireInit(0.U(edge.manager.endSinkId.W))
when (bundle.d.fire && d_first && edge.isRequest(bundle.d.bits)) {
d_set := UIntToOH(bundle.d.bits.sink)
assume(!inflight(bundle.d.bits.sink), "'D' channel re-used a sink ID" + extra)
}
val e_clr = WireInit(0.U(edge.manager.endSinkId.W))
when (bundle.e.fire && e_first && edge.isResponse(bundle.e.bits)) {
e_clr := UIntToOH(bundle.e.bits.sink)
monAssert((d_set | inflight)(bundle.e.bits.sink), "'E' channel acknowledged for nothing inflight" + extra)
}
// edge.client.minLatency applies to BC, not DE
inflight := (inflight | d_set) & ~e_clr
}
def legalizeUnique(bundle: TLBundle, edge: TLEdge): Unit = {
val sourceBits = log2Ceil(edge.client.endSourceId)
val tooBig = 14 // >16kB worth of flight information gets to be too much
if (sourceBits > tooBig) {
println(s"WARNING: TLMonitor instantiated on a bus with source bits (${sourceBits}) > ${tooBig}; A=>D transaction flight will not be checked")
} else {
if (args.edge.params(TestplanTestType).simulation) {
if (args.edge.params(TLMonitorStrictMode)) {
legalizeADSource(bundle, edge)
legalizeCDSource(bundle, edge)
} else {
legalizeADSourceOld(bundle, edge)
}
}
if (args.edge.params(TestplanTestType).formal) {
legalizeADSourceFormal(bundle, edge)
}
}
if (edge.client.anySupportProbe && edge.manager.anySupportAcquireB) {
// legalizeBCSourceAddress(bundle, edge) // too much state needed to synthesize...
val sinkBits = log2Ceil(edge.manager.endSinkId)
if (sinkBits > tooBig) {
println(s"WARNING: TLMonitor instantiated on a bus with sink bits (${sinkBits}) > ${tooBig}; D=>E transaction flight will not be checked")
} else {
legalizeDESink(bundle, edge)
}
}
}
def legalize(bundle: TLBundle, edge: TLEdge, reset: Reset): Unit = {
legalizeFormat (bundle, edge)
legalizeMultibeat (bundle, edge)
legalizeUnique (bundle, edge)
}
}
File Misc.scala:
// See LICENSE.Berkeley for license details.
// See LICENSE.SiFive for license details.
package freechips.rocketchip.util
import chisel3._
import chisel3.util._
import chisel3.util.random.LFSR
import org.chipsalliance.cde.config.Parameters
import scala.math._
class ParameterizedBundle(implicit p: Parameters) extends Bundle
trait Clocked extends Bundle {
val clock = Clock()
val reset = Bool()
}
object DecoupledHelper {
def apply(rvs: Bool*) = new DecoupledHelper(rvs)
}
class DecoupledHelper(val rvs: Seq[Bool]) {
def fire(exclude: Bool, includes: Bool*) = {
require(rvs.contains(exclude), "Excluded Bool not present in DecoupledHelper! Note that DecoupledHelper uses referential equality for exclusion! If you don't want to exclude anything, use fire()!")
(rvs.filter(_ ne exclude) ++ includes).reduce(_ && _)
}
def fire() = {
rvs.reduce(_ && _)
}
}
object MuxT {
def apply[T <: Data, U <: Data](cond: Bool, con: (T, U), alt: (T, U)): (T, U) =
(Mux(cond, con._1, alt._1), Mux(cond, con._2, alt._2))
def apply[T <: Data, U <: Data, W <: Data](cond: Bool, con: (T, U, W), alt: (T, U, W)): (T, U, W) =
(Mux(cond, con._1, alt._1), Mux(cond, con._2, alt._2), Mux(cond, con._3, alt._3))
def apply[T <: Data, U <: Data, W <: Data, X <: Data](cond: Bool, con: (T, U, W, X), alt: (T, U, W, X)): (T, U, W, X) =
(Mux(cond, con._1, alt._1), Mux(cond, con._2, alt._2), Mux(cond, con._3, alt._3), Mux(cond, con._4, alt._4))
}
/** Creates a cascade of n MuxTs to search for a key value. */
object MuxTLookup {
def apply[S <: UInt, T <: Data, U <: Data](key: S, default: (T, U), mapping: Seq[(S, (T, U))]): (T, U) = {
var res = default
for ((k, v) <- mapping.reverse)
res = MuxT(k === key, v, res)
res
}
def apply[S <: UInt, T <: Data, U <: Data, W <: Data](key: S, default: (T, U, W), mapping: Seq[(S, (T, U, W))]): (T, U, W) = {
var res = default
for ((k, v) <- mapping.reverse)
res = MuxT(k === key, v, res)
res
}
}
object ValidMux {
def apply[T <: Data](v1: ValidIO[T], v2: ValidIO[T]*): ValidIO[T] = {
apply(v1 +: v2.toSeq)
}
def apply[T <: Data](valids: Seq[ValidIO[T]]): ValidIO[T] = {
val out = Wire(Valid(valids.head.bits.cloneType))
out.valid := valids.map(_.valid).reduce(_ || _)
out.bits := MuxCase(valids.head.bits,
valids.map(v => (v.valid -> v.bits)))
out
}
}
object Str
{
def apply(s: String): UInt = {
var i = BigInt(0)
require(s.forall(validChar _))
for (c <- s)
i = (i << 8) | c
i.U((s.length*8).W)
}
def apply(x: Char): UInt = {
require(validChar(x))
x.U(8.W)
}
def apply(x: UInt): UInt = apply(x, 10)
def apply(x: UInt, radix: Int): UInt = {
val rad = radix.U
val w = x.getWidth
require(w > 0)
var q = x
var s = digit(q % rad)
for (i <- 1 until ceil(log(2)/log(radix)*w).toInt) {
q = q / rad
s = Cat(Mux((radix == 10).B && q === 0.U, Str(' '), digit(q % rad)), s)
}
s
}
def apply(x: SInt): UInt = apply(x, 10)
def apply(x: SInt, radix: Int): UInt = {
val neg = x < 0.S
val abs = x.abs.asUInt
if (radix != 10) {
Cat(Mux(neg, Str('-'), Str(' ')), Str(abs, radix))
} else {
val rad = radix.U
val w = abs.getWidth
require(w > 0)
var q = abs
var s = digit(q % rad)
var needSign = neg
for (i <- 1 until ceil(log(2)/log(radix)*w).toInt) {
q = q / rad
val placeSpace = q === 0.U
val space = Mux(needSign, Str('-'), Str(' '))
needSign = needSign && !placeSpace
s = Cat(Mux(placeSpace, space, digit(q % rad)), s)
}
Cat(Mux(needSign, Str('-'), Str(' ')), s)
}
}
private def digit(d: UInt): UInt = Mux(d < 10.U, Str('0')+d, Str(('a'-10).toChar)+d)(7,0)
private def validChar(x: Char) = x == (x & 0xFF)
}
object Split
{
def apply(x: UInt, n0: Int) = {
val w = x.getWidth
(x.extract(w-1,n0), x.extract(n0-1,0))
}
def apply(x: UInt, n1: Int, n0: Int) = {
val w = x.getWidth
(x.extract(w-1,n1), x.extract(n1-1,n0), x.extract(n0-1,0))
}
def apply(x: UInt, n2: Int, n1: Int, n0: Int) = {
val w = x.getWidth
(x.extract(w-1,n2), x.extract(n2-1,n1), x.extract(n1-1,n0), x.extract(n0-1,0))
}
}
object Random
{
def apply(mod: Int, random: UInt): UInt = {
if (isPow2(mod)) random.extract(log2Ceil(mod)-1,0)
else PriorityEncoder(partition(apply(1 << log2Up(mod*8), random), mod))
}
def apply(mod: Int): UInt = apply(mod, randomizer)
def oneHot(mod: Int, random: UInt): UInt = {
if (isPow2(mod)) UIntToOH(random(log2Up(mod)-1,0))
else PriorityEncoderOH(partition(apply(1 << log2Up(mod*8), random), mod)).asUInt
}
def oneHot(mod: Int): UInt = oneHot(mod, randomizer)
private def randomizer = LFSR(16)
private def partition(value: UInt, slices: Int) =
Seq.tabulate(slices)(i => value < (((i + 1) << value.getWidth) / slices).U)
}
object Majority {
def apply(in: Set[Bool]): Bool = {
val n = (in.size >> 1) + 1
val clauses = in.subsets(n).map(_.reduce(_ && _))
clauses.reduce(_ || _)
}
def apply(in: Seq[Bool]): Bool = apply(in.toSet)
def apply(in: UInt): Bool = apply(in.asBools.toSet)
}
object PopCountAtLeast {
private def two(x: UInt): (Bool, Bool) = x.getWidth match {
case 1 => (x.asBool, false.B)
case n =>
val half = x.getWidth / 2
val (leftOne, leftTwo) = two(x(half - 1, 0))
val (rightOne, rightTwo) = two(x(x.getWidth - 1, half))
(leftOne || rightOne, leftTwo || rightTwo || (leftOne && rightOne))
}
def apply(x: UInt, n: Int): Bool = n match {
case 0 => true.B
case 1 => x.orR
case 2 => two(x)._2
case 3 => PopCount(x) >= n.U
}
}
// This gets used everywhere, so make the smallest circuit possible ...
// Given an address and size, create a mask of beatBytes size
// eg: (0x3, 0, 4) => 0001, (0x3, 1, 4) => 0011, (0x3, 2, 4) => 1111
// groupBy applies an interleaved OR reduction; groupBy=2 take 0010 => 01
object MaskGen {
def apply(addr_lo: UInt, lgSize: UInt, beatBytes: Int, groupBy: Int = 1): UInt = {
require (groupBy >= 1 && beatBytes >= groupBy)
require (isPow2(beatBytes) && isPow2(groupBy))
val lgBytes = log2Ceil(beatBytes)
val sizeOH = UIntToOH(lgSize | 0.U(log2Up(beatBytes).W), log2Up(beatBytes)) | (groupBy*2 - 1).U
def helper(i: Int): Seq[(Bool, Bool)] = {
if (i == 0) {
Seq((lgSize >= lgBytes.asUInt, true.B))
} else {
val sub = helper(i-1)
val size = sizeOH(lgBytes - i)
val bit = addr_lo(lgBytes - i)
val nbit = !bit
Seq.tabulate (1 << i) { j =>
val (sub_acc, sub_eq) = sub(j/2)
val eq = sub_eq && (if (j % 2 == 1) bit else nbit)
val acc = sub_acc || (size && eq)
(acc, eq)
}
}
}
if (groupBy == beatBytes) 1.U else
Cat(helper(lgBytes-log2Ceil(groupBy)).map(_._1).reverse)
}
}
File PlusArg.scala:
// See LICENSE.SiFive for license details.
package freechips.rocketchip.util
import chisel3._
import chisel3.experimental._
import chisel3.util.HasBlackBoxResource
@deprecated("This will be removed in Rocket Chip 2020.08", "Rocket Chip 2020.05")
case class PlusArgInfo(default: BigInt, docstring: String)
/** Case class for PlusArg information
*
* @tparam A scala type of the PlusArg value
* @param default optional default value
* @param docstring text to include in the help
* @param doctype description of the Verilog type of the PlusArg value (e.g. STRING, INT)
*/
private case class PlusArgContainer[A](default: Option[A], docstring: String, doctype: String)
/** Typeclass for converting a type to a doctype string
* @tparam A some type
*/
trait Doctypeable[A] {
/** Return the doctype string for some option */
def toDoctype(a: Option[A]): String
}
/** Object containing implementations of the Doctypeable typeclass */
object Doctypes {
/** Converts an Int => "INT" */
implicit val intToDoctype = new Doctypeable[Int] { def toDoctype(a: Option[Int]) = "INT" }
/** Converts a BigInt => "INT" */
implicit val bigIntToDoctype = new Doctypeable[BigInt] { def toDoctype(a: Option[BigInt]) = "INT" }
/** Converts a String => "STRING" */
implicit val stringToDoctype = new Doctypeable[String] { def toDoctype(a: Option[String]) = "STRING" }
}
class plusarg_reader(val format: String, val default: BigInt, val docstring: String, val width: Int) extends BlackBox(Map(
"FORMAT" -> StringParam(format),
"DEFAULT" -> IntParam(default),
"WIDTH" -> IntParam(width)
)) with HasBlackBoxResource {
val io = IO(new Bundle {
val out = Output(UInt(width.W))
})
addResource("/vsrc/plusarg_reader.v")
}
/* This wrapper class has no outputs, making it clear it is a simulation-only construct */
class PlusArgTimeout(val format: String, val default: BigInt, val docstring: String, val width: Int) extends Module {
val io = IO(new Bundle {
val count = Input(UInt(width.W))
})
val max = Module(new plusarg_reader(format, default, docstring, width)).io.out
when (max > 0.U) {
assert (io.count < max, s"Timeout exceeded: $docstring")
}
}
import Doctypes._
object PlusArg
{
/** PlusArg("foo") will return 42.U if the simulation is run with +foo=42
* Do not use this as an initial register value. The value is set in an
* initial block and thus accessing it from another initial is racey.
* Add a docstring to document the arg, which can be dumped in an elaboration
* pass.
*/
def apply(name: String, default: BigInt = 0, docstring: String = "", width: Int = 32): UInt = {
PlusArgArtefacts.append(name, Some(default), docstring)
Module(new plusarg_reader(name + "=%d", default, docstring, width)).io.out
}
/** PlusArg.timeout(name, default, docstring)(count) will use chisel.assert
* to kill the simulation when count exceeds the specified integer argument.
* Default 0 will never assert.
*/
def timeout(name: String, default: BigInt = 0, docstring: String = "", width: Int = 32)(count: UInt): Unit = {
PlusArgArtefacts.append(name, Some(default), docstring)
Module(new PlusArgTimeout(name + "=%d", default, docstring, width)).io.count := count
}
}
object PlusArgArtefacts {
private var artefacts: Map[String, PlusArgContainer[_]] = Map.empty
/* Add a new PlusArg */
@deprecated(
"Use `Some(BigInt)` to specify a `default` value. This will be removed in Rocket Chip 2020.08",
"Rocket Chip 2020.05"
)
def append(name: String, default: BigInt, docstring: String): Unit = append(name, Some(default), docstring)
/** Add a new PlusArg
*
* @tparam A scala type of the PlusArg value
* @param name name for the PlusArg
* @param default optional default value
* @param docstring text to include in the help
*/
def append[A : Doctypeable](name: String, default: Option[A], docstring: String): Unit =
artefacts = artefacts ++
Map(name -> PlusArgContainer(default, docstring, implicitly[Doctypeable[A]].toDoctype(default)))
/* From plus args, generate help text */
private def serializeHelp_cHeader(tab: String = ""): String = artefacts
.map{ case(arg, info) =>
s"""|$tab+$arg=${info.doctype}\\n\\
|$tab${" "*20}${info.docstring}\\n\\
|""".stripMargin ++ info.default.map{ case default =>
s"$tab${" "*22}(default=${default})\\n\\\n"}.getOrElse("")
}.toSeq.mkString("\\n\\\n") ++ "\""
/* From plus args, generate a char array of their names */
private def serializeArray_cHeader(tab: String = ""): String = {
val prettyTab = tab + " " * 44 // Length of 'static const ...'
s"${tab}static const char * verilog_plusargs [] = {\\\n" ++
artefacts
.map{ case(arg, _) => s"""$prettyTab"$arg",\\\n""" }
.mkString("")++
s"${prettyTab}0};"
}
/* Generate C code to be included in emulator.cc that helps with
* argument parsing based on available Verilog PlusArgs */
def serialize_cHeader(): String =
s"""|#define PLUSARG_USAGE_OPTIONS \"EMULATOR VERILOG PLUSARGS\\n\\
|${serializeHelp_cHeader(" "*7)}
|${serializeArray_cHeader()}
|""".stripMargin
}
File package.scala:
// See LICENSE.SiFive for license details.
package freechips.rocketchip
import chisel3._
import chisel3.util._
import scala.math.min
import scala.collection.{immutable, mutable}
package object util {
implicit class UnzippableOption[S, T](val x: Option[(S, T)]) {
def unzip = (x.map(_._1), x.map(_._2))
}
implicit class UIntIsOneOf(private val x: UInt) extends AnyVal {
def isOneOf(s: Seq[UInt]): Bool = s.map(x === _).orR
def isOneOf(u1: UInt, u2: UInt*): Bool = isOneOf(u1 +: u2.toSeq)
}
implicit class VecToAugmentedVec[T <: Data](private val x: Vec[T]) extends AnyVal {
/** Like Vec.apply(idx), but tolerates indices of mismatched width */
def extract(idx: UInt): T = x((idx | 0.U(log2Ceil(x.size).W)).extract(log2Ceil(x.size) - 1, 0))
}
implicit class SeqToAugmentedSeq[T <: Data](private val x: Seq[T]) extends AnyVal {
def apply(idx: UInt): T = {
if (x.size <= 1) {
x.head
} else if (!isPow2(x.size)) {
// For non-power-of-2 seqs, reflect elements to simplify decoder
(x ++ x.takeRight(x.size & -x.size)).toSeq(idx)
} else {
// Ignore MSBs of idx
val truncIdx =
if (idx.isWidthKnown && idx.getWidth <= log2Ceil(x.size)) idx
else (idx | 0.U(log2Ceil(x.size).W))(log2Ceil(x.size)-1, 0)
x.zipWithIndex.tail.foldLeft(x.head) { case (prev, (cur, i)) => Mux(truncIdx === i.U, cur, prev) }
}
}
def extract(idx: UInt): T = VecInit(x).extract(idx)
def asUInt: UInt = Cat(x.map(_.asUInt).reverse)
def rotate(n: Int): Seq[T] = x.drop(n) ++ x.take(n)
def rotate(n: UInt): Seq[T] = {
if (x.size <= 1) {
x
} else {
require(isPow2(x.size))
val amt = n.padTo(log2Ceil(x.size))
(0 until log2Ceil(x.size)).foldLeft(x)((r, i) => (r.rotate(1 << i) zip r).map { case (s, a) => Mux(amt(i), s, a) })
}
}
def rotateRight(n: Int): Seq[T] = x.takeRight(n) ++ x.dropRight(n)
def rotateRight(n: UInt): Seq[T] = {
if (x.size <= 1) {
x
} else {
require(isPow2(x.size))
val amt = n.padTo(log2Ceil(x.size))
(0 until log2Ceil(x.size)).foldLeft(x)((r, i) => (r.rotateRight(1 << i) zip r).map { case (s, a) => Mux(amt(i), s, a) })
}
}
}
// allow bitwise ops on Seq[Bool] just like UInt
implicit class SeqBoolBitwiseOps(private val x: Seq[Bool]) extends AnyVal {
def & (y: Seq[Bool]): Seq[Bool] = (x zip y).map { case (a, b) => a && b }
def | (y: Seq[Bool]): Seq[Bool] = padZip(x, y).map { case (a, b) => a || b }
def ^ (y: Seq[Bool]): Seq[Bool] = padZip(x, y).map { case (a, b) => a ^ b }
def << (n: Int): Seq[Bool] = Seq.fill(n)(false.B) ++ x
def >> (n: Int): Seq[Bool] = x drop n
def unary_~ : Seq[Bool] = x.map(!_)
def andR: Bool = if (x.isEmpty) true.B else x.reduce(_&&_)
def orR: Bool = if (x.isEmpty) false.B else x.reduce(_||_)
def xorR: Bool = if (x.isEmpty) false.B else x.reduce(_^_)
private def padZip(y: Seq[Bool], z: Seq[Bool]): Seq[(Bool, Bool)] = y.padTo(z.size, false.B) zip z.padTo(y.size, false.B)
}
implicit class DataToAugmentedData[T <: Data](private val x: T) extends AnyVal {
def holdUnless(enable: Bool): T = Mux(enable, x, RegEnable(x, enable))
def getElements: Seq[Element] = x match {
case e: Element => Seq(e)
case a: Aggregate => a.getElements.flatMap(_.getElements)
}
}
/** Any Data subtype that has a Bool member named valid. */
type DataCanBeValid = Data { val valid: Bool }
implicit class SeqMemToAugmentedSeqMem[T <: Data](private val x: SyncReadMem[T]) extends AnyVal {
def readAndHold(addr: UInt, enable: Bool): T = x.read(addr, enable) holdUnless RegNext(enable)
}
implicit class StringToAugmentedString(private val x: String) extends AnyVal {
/** converts from camel case to to underscores, also removing all spaces */
def underscore: String = x.tail.foldLeft(x.headOption.map(_.toLower + "") getOrElse "") {
case (acc, c) if c.isUpper => acc + "_" + c.toLower
case (acc, c) if c == ' ' => acc
case (acc, c) => acc + c
}
/** converts spaces or underscores to hyphens, also lowering case */
def kebab: String = x.toLowerCase map {
case ' ' => '-'
case '_' => '-'
case c => c
}
def named(name: Option[String]): String = {
x + name.map("_named_" + _ ).getOrElse("_with_no_name")
}
def named(name: String): String = named(Some(name))
}
implicit def uintToBitPat(x: UInt): BitPat = BitPat(x)
implicit def wcToUInt(c: WideCounter): UInt = c.value
implicit class UIntToAugmentedUInt(private val x: UInt) extends AnyVal {
def sextTo(n: Int): UInt = {
require(x.getWidth <= n)
if (x.getWidth == n) x
else Cat(Fill(n - x.getWidth, x(x.getWidth-1)), x)
}
def padTo(n: Int): UInt = {
require(x.getWidth <= n)
if (x.getWidth == n) x
else Cat(0.U((n - x.getWidth).W), x)
}
// shifts left by n if n >= 0, or right by -n if n < 0
def << (n: SInt): UInt = {
val w = n.getWidth - 1
require(w <= 30)
val shifted = x << n(w-1, 0)
Mux(n(w), shifted >> (1 << w), shifted)
}
// shifts right by n if n >= 0, or left by -n if n < 0
def >> (n: SInt): UInt = {
val w = n.getWidth - 1
require(w <= 30)
val shifted = x << (1 << w) >> n(w-1, 0)
Mux(n(w), shifted, shifted >> (1 << w))
}
// Like UInt.apply(hi, lo), but returns 0.U for zero-width extracts
def extract(hi: Int, lo: Int): UInt = {
require(hi >= lo-1)
if (hi == lo-1) 0.U
else x(hi, lo)
}
// Like Some(UInt.apply(hi, lo)), but returns None for zero-width extracts
def extractOption(hi: Int, lo: Int): Option[UInt] = {
require(hi >= lo-1)
if (hi == lo-1) None
else Some(x(hi, lo))
}
// like x & ~y, but first truncate or zero-extend y to x's width
def andNot(y: UInt): UInt = x & ~(y | (x & 0.U))
def rotateRight(n: Int): UInt = if (n == 0) x else Cat(x(n-1, 0), x >> n)
def rotateRight(n: UInt): UInt = {
if (x.getWidth <= 1) {
x
} else {
val amt = n.padTo(log2Ceil(x.getWidth))
(0 until log2Ceil(x.getWidth)).foldLeft(x)((r, i) => Mux(amt(i), r.rotateRight(1 << i), r))
}
}
def rotateLeft(n: Int): UInt = if (n == 0) x else Cat(x(x.getWidth-1-n,0), x(x.getWidth-1,x.getWidth-n))
def rotateLeft(n: UInt): UInt = {
if (x.getWidth <= 1) {
x
} else {
val amt = n.padTo(log2Ceil(x.getWidth))
(0 until log2Ceil(x.getWidth)).foldLeft(x)((r, i) => Mux(amt(i), r.rotateLeft(1 << i), r))
}
}
// compute (this + y) % n, given (this < n) and (y < n)
def addWrap(y: UInt, n: Int): UInt = {
val z = x +& y
if (isPow2(n)) z(n.log2-1, 0) else Mux(z >= n.U, z - n.U, z)(log2Ceil(n)-1, 0)
}
// compute (this - y) % n, given (this < n) and (y < n)
def subWrap(y: UInt, n: Int): UInt = {
val z = x -& y
if (isPow2(n)) z(n.log2-1, 0) else Mux(z(z.getWidth-1), z + n.U, z)(log2Ceil(n)-1, 0)
}
def grouped(width: Int): Seq[UInt] =
(0 until x.getWidth by width).map(base => x(base + width - 1, base))
def inRange(base: UInt, bounds: UInt) = x >= base && x < bounds
def ## (y: Option[UInt]): UInt = y.map(x ## _).getOrElse(x)
// Like >=, but prevents x-prop for ('x >= 0)
def >== (y: UInt): Bool = x >= y || y === 0.U
}
implicit class OptionUIntToAugmentedOptionUInt(private val x: Option[UInt]) extends AnyVal {
def ## (y: UInt): UInt = x.map(_ ## y).getOrElse(y)
def ## (y: Option[UInt]): Option[UInt] = x.map(_ ## y)
}
implicit class BooleanToAugmentedBoolean(private val x: Boolean) extends AnyVal {
def toInt: Int = if (x) 1 else 0
// this one's snagged from scalaz
def option[T](z: => T): Option[T] = if (x) Some(z) else None
}
implicit class IntToAugmentedInt(private val x: Int) extends AnyVal {
// exact log2
def log2: Int = {
require(isPow2(x))
log2Ceil(x)
}
}
def OH1ToOH(x: UInt): UInt = (x << 1 | 1.U) & ~Cat(0.U(1.W), x)
def OH1ToUInt(x: UInt): UInt = OHToUInt(OH1ToOH(x))
def UIntToOH1(x: UInt, width: Int): UInt = ~((-1).S(width.W).asUInt << x)(width-1, 0)
def UIntToOH1(x: UInt): UInt = UIntToOH1(x, (1 << x.getWidth) - 1)
def trailingZeros(x: Int): Option[Int] = if (x > 0) Some(log2Ceil(x & -x)) else None
// Fill 1s from low bits to high bits
def leftOR(x: UInt): UInt = leftOR(x, x.getWidth, x.getWidth)
def leftOR(x: UInt, width: Integer, cap: Integer = 999999): UInt = {
val stop = min(width, cap)
def helper(s: Int, x: UInt): UInt =
if (s >= stop) x else helper(s+s, x | (x << s)(width-1,0))
helper(1, x)(width-1, 0)
}
// Fill 1s form high bits to low bits
def rightOR(x: UInt): UInt = rightOR(x, x.getWidth, x.getWidth)
def rightOR(x: UInt, width: Integer, cap: Integer = 999999): UInt = {
val stop = min(width, cap)
def helper(s: Int, x: UInt): UInt =
if (s >= stop) x else helper(s+s, x | (x >> s))
helper(1, x)(width-1, 0)
}
def OptimizationBarrier[T <: Data](in: T): T = {
val barrier = Module(new Module {
val io = IO(new Bundle {
val x = Input(chiselTypeOf(in))
val y = Output(chiselTypeOf(in))
})
io.y := io.x
override def desiredName = s"OptimizationBarrier_${in.typeName}"
})
barrier.io.x := in
barrier.io.y
}
/** Similar to Seq.groupBy except this returns a Seq instead of a Map
* Useful for deterministic code generation
*/
def groupByIntoSeq[A, K](xs: Seq[A])(f: A => K): immutable.Seq[(K, immutable.Seq[A])] = {
val map = mutable.LinkedHashMap.empty[K, mutable.ListBuffer[A]]
for (x <- xs) {
val key = f(x)
val l = map.getOrElseUpdate(key, mutable.ListBuffer.empty[A])
l += x
}
map.view.map({ case (k, vs) => k -> vs.toList }).toList
}
def heterogeneousOrGlobalSetting[T](in: Seq[T], n: Int): Seq[T] = in.size match {
case 1 => List.fill(n)(in.head)
case x if x == n => in
case _ => throw new Exception(s"must provide exactly 1 or $n of some field, but got:\n$in")
}
// HeterogeneousBag moved to standalond diplomacy
@deprecated("HeterogeneousBag has been absorbed into standalone diplomacy library", "rocketchip 2.0.0")
def HeterogeneousBag[T <: Data](elts: Seq[T]) = _root_.org.chipsalliance.diplomacy.nodes.HeterogeneousBag[T](elts)
@deprecated("HeterogeneousBag has been absorbed into standalone diplomacy library", "rocketchip 2.0.0")
val HeterogeneousBag = _root_.org.chipsalliance.diplomacy.nodes.HeterogeneousBag
}
File Parameters.scala:
// See LICENSE.SiFive for license details.
package freechips.rocketchip.diplomacy
import chisel3._
import chisel3.util.{DecoupledIO, Queue, ReadyValidIO, isPow2, log2Ceil, log2Floor}
import freechips.rocketchip.util.ShiftQueue
/** Options for describing the attributes of memory regions */
object RegionType {
// Define the 'more relaxed than' ordering
val cases = Seq(CACHED, TRACKED, UNCACHED, IDEMPOTENT, VOLATILE, PUT_EFFECTS, GET_EFFECTS)
sealed trait T extends Ordered[T] {
def compare(that: T): Int = cases.indexOf(that) compare cases.indexOf(this)
}
case object CACHED extends T // an intermediate agent may have cached a copy of the region for you
case object TRACKED extends T // the region may have been cached by another master, but coherence is being provided
case object UNCACHED extends T // the region has not been cached yet, but should be cached when possible
case object IDEMPOTENT extends T // gets return most recently put content, but content should not be cached
case object VOLATILE extends T // content may change without a put, but puts and gets have no side effects
case object PUT_EFFECTS extends T // puts produce side effects and so must not be combined/delayed
case object GET_EFFECTS extends T // gets produce side effects and so must not be issued speculatively
}
// A non-empty half-open range; [start, end)
case class IdRange(start: Int, end: Int) extends Ordered[IdRange]
{
require (start >= 0, s"Ids cannot be negative, but got: $start.")
require (start <= end, "Id ranges cannot be negative.")
def compare(x: IdRange) = {
val primary = (this.start - x.start).signum
val secondary = (x.end - this.end).signum
if (primary != 0) primary else secondary
}
def overlaps(x: IdRange) = start < x.end && x.start < end
def contains(x: IdRange) = start <= x.start && x.end <= end
def contains(x: Int) = start <= x && x < end
def contains(x: UInt) =
if (size == 0) {
false.B
} else if (size == 1) { // simple comparison
x === start.U
} else {
// find index of largest different bit
val largestDeltaBit = log2Floor(start ^ (end-1))
val smallestCommonBit = largestDeltaBit + 1 // may not exist in x
val uncommonMask = (1 << smallestCommonBit) - 1
val uncommonBits = (x | 0.U(smallestCommonBit.W))(largestDeltaBit, 0)
// the prefix must match exactly (note: may shift ALL bits away)
(x >> smallestCommonBit) === (start >> smallestCommonBit).U &&
// firrtl constant prop range analysis can eliminate these two:
(start & uncommonMask).U <= uncommonBits &&
uncommonBits <= ((end-1) & uncommonMask).U
}
def shift(x: Int) = IdRange(start+x, end+x)
def size = end - start
def isEmpty = end == start
def range = start until end
}
object IdRange
{
def overlaps(s: Seq[IdRange]) = if (s.isEmpty) None else {
val ranges = s.sorted
(ranges.tail zip ranges.init) find { case (a, b) => a overlaps b }
}
}
// An potentially empty inclusive range of 2-powers [min, max] (in bytes)
case class TransferSizes(min: Int, max: Int)
{
def this(x: Int) = this(x, x)
require (min <= max, s"Min transfer $min > max transfer $max")
require (min >= 0 && max >= 0, s"TransferSizes must be positive, got: ($min, $max)")
require (max == 0 || isPow2(max), s"TransferSizes must be a power of 2, got: $max")
require (min == 0 || isPow2(min), s"TransferSizes must be a power of 2, got: $min")
require (max == 0 || min != 0, s"TransferSize 0 is forbidden unless (0,0), got: ($min, $max)")
def none = min == 0
def contains(x: Int) = isPow2(x) && min <= x && x <= max
def containsLg(x: Int) = contains(1 << x)
def containsLg(x: UInt) =
if (none) false.B
else if (min == max) { log2Ceil(min).U === x }
else { log2Ceil(min).U <= x && x <= log2Ceil(max).U }
def contains(x: TransferSizes) = x.none || (min <= x.min && x.max <= max)
def intersect(x: TransferSizes) =
if (x.max < min || max < x.min) TransferSizes.none
else TransferSizes(scala.math.max(min, x.min), scala.math.min(max, x.max))
// Not a union, because the result may contain sizes contained by neither term
// NOT TO BE CONFUSED WITH COVERPOINTS
def mincover(x: TransferSizes) = {
if (none) {
x
} else if (x.none) {
this
} else {
TransferSizes(scala.math.min(min, x.min), scala.math.max(max, x.max))
}
}
override def toString() = "TransferSizes[%d, %d]".format(min, max)
}
object TransferSizes {
def apply(x: Int) = new TransferSizes(x)
val none = new TransferSizes(0)
def mincover(seq: Seq[TransferSizes]) = seq.foldLeft(none)(_ mincover _)
def intersect(seq: Seq[TransferSizes]) = seq.reduce(_ intersect _)
implicit def asBool(x: TransferSizes) = !x.none
}
// AddressSets specify the address space managed by the manager
// Base is the base address, and mask are the bits consumed by the manager
// e.g: base=0x200, mask=0xff describes a device managing 0x200-0x2ff
// e.g: base=0x1000, mask=0xf0f decribes a device managing 0x1000-0x100f, 0x1100-0x110f, ...
case class AddressSet(base: BigInt, mask: BigInt) extends Ordered[AddressSet]
{
// Forbid misaligned base address (and empty sets)
require ((base & mask) == 0, s"Mis-aligned AddressSets are forbidden, got: ${this.toString}")
require (base >= 0, s"AddressSet negative base is ambiguous: $base") // TL2 address widths are not fixed => negative is ambiguous
// We do allow negative mask (=> ignore all high bits)
def contains(x: BigInt) = ((x ^ base) & ~mask) == 0
def contains(x: UInt) = ((x ^ base.U).zext & (~mask).S) === 0.S
// turn x into an address contained in this set
def legalize(x: UInt): UInt = base.U | (mask.U & x)
// overlap iff bitwise: both care (~mask0 & ~mask1) => both equal (base0=base1)
def overlaps(x: AddressSet) = (~(mask | x.mask) & (base ^ x.base)) == 0
// contains iff bitwise: x.mask => mask && contains(x.base)
def contains(x: AddressSet) = ((x.mask | (base ^ x.base)) & ~mask) == 0
// The number of bytes to which the manager must be aligned
def alignment = ((mask + 1) & ~mask)
// Is this a contiguous memory range
def contiguous = alignment == mask+1
def finite = mask >= 0
def max = { require (finite, "Max cannot be calculated on infinite mask"); base | mask }
// Widen the match function to ignore all bits in imask
def widen(imask: BigInt) = AddressSet(base & ~imask, mask | imask)
// Return an AddressSet that only contains the addresses both sets contain
def intersect(x: AddressSet): Option[AddressSet] = {
if (!overlaps(x)) {
None
} else {
val r_mask = mask & x.mask
val r_base = base | x.base
Some(AddressSet(r_base, r_mask))
}
}
def subtract(x: AddressSet): Seq[AddressSet] = {
intersect(x) match {
case None => Seq(this)
case Some(remove) => AddressSet.enumerateBits(mask & ~remove.mask).map { bit =>
val nmask = (mask & (bit-1)) | remove.mask
val nbase = (remove.base ^ bit) & ~nmask
AddressSet(nbase, nmask)
}
}
}
// AddressSets have one natural Ordering (the containment order, if contiguous)
def compare(x: AddressSet) = {
val primary = (this.base - x.base).signum // smallest address first
val secondary = (x.mask - this.mask).signum // largest mask first
if (primary != 0) primary else secondary
}
// We always want to see things in hex
override def toString() = {
if (mask >= 0) {
"AddressSet(0x%x, 0x%x)".format(base, mask)
} else {
"AddressSet(0x%x, ~0x%x)".format(base, ~mask)
}
}
def toRanges = {
require (finite, "Ranges cannot be calculated on infinite mask")
val size = alignment
val fragments = mask & ~(size-1)
val bits = bitIndexes(fragments)
(BigInt(0) until (BigInt(1) << bits.size)).map { i =>
val off = bitIndexes(i).foldLeft(base) { case (a, b) => a.setBit(bits(b)) }
AddressRange(off, size)
}
}
}
object AddressSet
{
val everything = AddressSet(0, -1)
def misaligned(base: BigInt, size: BigInt, tail: Seq[AddressSet] = Seq()): Seq[AddressSet] = {
if (size == 0) tail.reverse else {
val maxBaseAlignment = base & (-base) // 0 for infinite (LSB)
val maxSizeAlignment = BigInt(1) << log2Floor(size) // MSB of size
val step =
if (maxBaseAlignment == 0 || maxBaseAlignment > maxSizeAlignment)
maxSizeAlignment else maxBaseAlignment
misaligned(base+step, size-step, AddressSet(base, step-1) +: tail)
}
}
def unify(seq: Seq[AddressSet], bit: BigInt): Seq[AddressSet] = {
// Pair terms up by ignoring 'bit'
seq.distinct.groupBy(x => x.copy(base = x.base & ~bit)).map { case (key, seq) =>
if (seq.size == 1) {
seq.head // singleton -> unaffected
} else {
key.copy(mask = key.mask | bit) // pair - widen mask by bit
}
}.toList
}
def unify(seq: Seq[AddressSet]): Seq[AddressSet] = {
val bits = seq.map(_.base).foldLeft(BigInt(0))(_ | _)
AddressSet.enumerateBits(bits).foldLeft(seq) { case (acc, bit) => unify(acc, bit) }.sorted
}
def enumerateMask(mask: BigInt): Seq[BigInt] = {
def helper(id: BigInt, tail: Seq[BigInt]): Seq[BigInt] =
if (id == mask) (id +: tail).reverse else helper(((~mask | id) + 1) & mask, id +: tail)
helper(0, Nil)
}
def enumerateBits(mask: BigInt): Seq[BigInt] = {
def helper(x: BigInt): Seq[BigInt] = {
if (x == 0) {
Nil
} else {
val bit = x & (-x)
bit +: helper(x & ~bit)
}
}
helper(mask)
}
}
case class BufferParams(depth: Int, flow: Boolean, pipe: Boolean)
{
require (depth >= 0, "Buffer depth must be >= 0")
def isDefined = depth > 0
def latency = if (isDefined && !flow) 1 else 0
def apply[T <: Data](x: DecoupledIO[T]) =
if (isDefined) Queue(x, depth, flow=flow, pipe=pipe)
else x
def irrevocable[T <: Data](x: ReadyValidIO[T]) =
if (isDefined) Queue.irrevocable(x, depth, flow=flow, pipe=pipe)
else x
def sq[T <: Data](x: DecoupledIO[T]) =
if (!isDefined) x else {
val sq = Module(new ShiftQueue(x.bits, depth, flow=flow, pipe=pipe))
sq.io.enq <> x
sq.io.deq
}
override def toString() = "BufferParams:%d%s%s".format(depth, if (flow) "F" else "", if (pipe) "P" else "")
}
object BufferParams
{
implicit def apply(depth: Int): BufferParams = BufferParams(depth, false, false)
val default = BufferParams(2)
val none = BufferParams(0)
val flow = BufferParams(1, true, false)
val pipe = BufferParams(1, false, true)
}
case class TriStateValue(value: Boolean, set: Boolean)
{
def update(orig: Boolean) = if (set) value else orig
}
object TriStateValue
{
implicit def apply(value: Boolean): TriStateValue = TriStateValue(value, true)
def unset = TriStateValue(false, false)
}
trait DirectedBuffers[T] {
def copyIn(x: BufferParams): T
def copyOut(x: BufferParams): T
def copyInOut(x: BufferParams): T
}
trait IdMapEntry {
def name: String
def from: IdRange
def to: IdRange
def isCache: Boolean
def requestFifo: Boolean
def maxTransactionsInFlight: Option[Int]
def pretty(fmt: String) =
if (from ne to) { // if the subclass uses the same reference for both from and to, assume its format string has an arity of 5
fmt.format(to.start, to.end, from.start, from.end, s""""$name"""", if (isCache) " [CACHE]" else "", if (requestFifo) " [FIFO]" else "")
} else {
fmt.format(from.start, from.end, s""""$name"""", if (isCache) " [CACHE]" else "", if (requestFifo) " [FIFO]" else "")
}
}
abstract class IdMap[T <: IdMapEntry] {
protected val fmt: String
val mapping: Seq[T]
def pretty: String = mapping.map(_.pretty(fmt)).mkString(",\n")
}
File Edges.scala:
// See LICENSE.SiFive for license details.
package freechips.rocketchip.tilelink
import chisel3._
import chisel3.util._
import chisel3.experimental.SourceInfo
import org.chipsalliance.cde.config.Parameters
import freechips.rocketchip.util._
class TLEdge(
client: TLClientPortParameters,
manager: TLManagerPortParameters,
params: Parameters,
sourceInfo: SourceInfo)
extends TLEdgeParameters(client, manager, params, sourceInfo)
{
def isAligned(address: UInt, lgSize: UInt): Bool = {
if (maxLgSize == 0) true.B else {
val mask = UIntToOH1(lgSize, maxLgSize)
(address & mask) === 0.U
}
}
def mask(address: UInt, lgSize: UInt): UInt =
MaskGen(address, lgSize, manager.beatBytes)
def staticHasData(bundle: TLChannel): Option[Boolean] = {
bundle match {
case _:TLBundleA => {
// Do there exist A messages with Data?
val aDataYes = manager.anySupportArithmetic || manager.anySupportLogical || manager.anySupportPutFull || manager.anySupportPutPartial
// Do there exist A messages without Data?
val aDataNo = manager.anySupportAcquireB || manager.anySupportGet || manager.anySupportHint
// Statically optimize the case where hasData is a constant
if (!aDataYes) Some(false) else if (!aDataNo) Some(true) else None
}
case _:TLBundleB => {
// Do there exist B messages with Data?
val bDataYes = client.anySupportArithmetic || client.anySupportLogical || client.anySupportPutFull || client.anySupportPutPartial
// Do there exist B messages without Data?
val bDataNo = client.anySupportProbe || client.anySupportGet || client.anySupportHint
// Statically optimize the case where hasData is a constant
if (!bDataYes) Some(false) else if (!bDataNo) Some(true) else None
}
case _:TLBundleC => {
// Do there eixst C messages with Data?
val cDataYes = client.anySupportGet || client.anySupportArithmetic || client.anySupportLogical || client.anySupportProbe
// Do there exist C messages without Data?
val cDataNo = client.anySupportPutFull || client.anySupportPutPartial || client.anySupportHint || client.anySupportProbe
if (!cDataYes) Some(false) else if (!cDataNo) Some(true) else None
}
case _:TLBundleD => {
// Do there eixst D messages with Data?
val dDataYes = manager.anySupportGet || manager.anySupportArithmetic || manager.anySupportLogical || manager.anySupportAcquireB
// Do there exist D messages without Data?
val dDataNo = manager.anySupportPutFull || manager.anySupportPutPartial || manager.anySupportHint || manager.anySupportAcquireT
if (!dDataYes) Some(false) else if (!dDataNo) Some(true) else None
}
case _:TLBundleE => Some(false)
}
}
def isRequest(x: TLChannel): Bool = {
x match {
case a: TLBundleA => true.B
case b: TLBundleB => true.B
case c: TLBundleC => c.opcode(2) && c.opcode(1)
// opcode === TLMessages.Release ||
// opcode === TLMessages.ReleaseData
case d: TLBundleD => d.opcode(2) && !d.opcode(1)
// opcode === TLMessages.Grant ||
// opcode === TLMessages.GrantData
case e: TLBundleE => false.B
}
}
def isResponse(x: TLChannel): Bool = {
x match {
case a: TLBundleA => false.B
case b: TLBundleB => false.B
case c: TLBundleC => !c.opcode(2) || !c.opcode(1)
// opcode =/= TLMessages.Release &&
// opcode =/= TLMessages.ReleaseData
case d: TLBundleD => true.B // Grant isResponse + isRequest
case e: TLBundleE => true.B
}
}
def hasData(x: TLChannel): Bool = {
val opdata = x match {
case a: TLBundleA => !a.opcode(2)
// opcode === TLMessages.PutFullData ||
// opcode === TLMessages.PutPartialData ||
// opcode === TLMessages.ArithmeticData ||
// opcode === TLMessages.LogicalData
case b: TLBundleB => !b.opcode(2)
// opcode === TLMessages.PutFullData ||
// opcode === TLMessages.PutPartialData ||
// opcode === TLMessages.ArithmeticData ||
// opcode === TLMessages.LogicalData
case c: TLBundleC => c.opcode(0)
// opcode === TLMessages.AccessAckData ||
// opcode === TLMessages.ProbeAckData ||
// opcode === TLMessages.ReleaseData
case d: TLBundleD => d.opcode(0)
// opcode === TLMessages.AccessAckData ||
// opcode === TLMessages.GrantData
case e: TLBundleE => false.B
}
staticHasData(x).map(_.B).getOrElse(opdata)
}
def opcode(x: TLDataChannel): UInt = {
x match {
case a: TLBundleA => a.opcode
case b: TLBundleB => b.opcode
case c: TLBundleC => c.opcode
case d: TLBundleD => d.opcode
}
}
def param(x: TLDataChannel): UInt = {
x match {
case a: TLBundleA => a.param
case b: TLBundleB => b.param
case c: TLBundleC => c.param
case d: TLBundleD => d.param
}
}
def size(x: TLDataChannel): UInt = {
x match {
case a: TLBundleA => a.size
case b: TLBundleB => b.size
case c: TLBundleC => c.size
case d: TLBundleD => d.size
}
}
def data(x: TLDataChannel): UInt = {
x match {
case a: TLBundleA => a.data
case b: TLBundleB => b.data
case c: TLBundleC => c.data
case d: TLBundleD => d.data
}
}
def corrupt(x: TLDataChannel): Bool = {
x match {
case a: TLBundleA => a.corrupt
case b: TLBundleB => b.corrupt
case c: TLBundleC => c.corrupt
case d: TLBundleD => d.corrupt
}
}
def mask(x: TLAddrChannel): UInt = {
x match {
case a: TLBundleA => a.mask
case b: TLBundleB => b.mask
case c: TLBundleC => mask(c.address, c.size)
}
}
def full_mask(x: TLAddrChannel): UInt = {
x match {
case a: TLBundleA => mask(a.address, a.size)
case b: TLBundleB => mask(b.address, b.size)
case c: TLBundleC => mask(c.address, c.size)
}
}
def address(x: TLAddrChannel): UInt = {
x match {
case a: TLBundleA => a.address
case b: TLBundleB => b.address
case c: TLBundleC => c.address
}
}
def source(x: TLDataChannel): UInt = {
x match {
case a: TLBundleA => a.source
case b: TLBundleB => b.source
case c: TLBundleC => c.source
case d: TLBundleD => d.source
}
}
def addr_hi(x: UInt): UInt = x >> log2Ceil(manager.beatBytes)
def addr_lo(x: UInt): UInt =
if (manager.beatBytes == 1) 0.U else x(log2Ceil(manager.beatBytes)-1, 0)
def addr_hi(x: TLAddrChannel): UInt = addr_hi(address(x))
def addr_lo(x: TLAddrChannel): UInt = addr_lo(address(x))
def numBeats(x: TLChannel): UInt = {
x match {
case _: TLBundleE => 1.U
case bundle: TLDataChannel => {
val hasData = this.hasData(bundle)
val size = this.size(bundle)
val cutoff = log2Ceil(manager.beatBytes)
val small = if (manager.maxTransfer <= manager.beatBytes) true.B else size <= (cutoff).U
val decode = UIntToOH(size, maxLgSize+1) >> cutoff
Mux(hasData, decode | small.asUInt, 1.U)
}
}
}
def numBeats1(x: TLChannel): UInt = {
x match {
case _: TLBundleE => 0.U
case bundle: TLDataChannel => {
if (maxLgSize == 0) {
0.U
} else {
val decode = UIntToOH1(size(bundle), maxLgSize) >> log2Ceil(manager.beatBytes)
Mux(hasData(bundle), decode, 0.U)
}
}
}
}
def firstlastHelper(bits: TLChannel, fire: Bool): (Bool, Bool, Bool, UInt) = {
val beats1 = numBeats1(bits)
val counter = RegInit(0.U(log2Up(maxTransfer / manager.beatBytes).W))
val counter1 = counter - 1.U
val first = counter === 0.U
val last = counter === 1.U || beats1 === 0.U
val done = last && fire
val count = (beats1 & ~counter1)
when (fire) {
counter := Mux(first, beats1, counter1)
}
(first, last, done, count)
}
def first(bits: TLChannel, fire: Bool): Bool = firstlastHelper(bits, fire)._1
def first(x: DecoupledIO[TLChannel]): Bool = first(x.bits, x.fire)
def first(x: ValidIO[TLChannel]): Bool = first(x.bits, x.valid)
def last(bits: TLChannel, fire: Bool): Bool = firstlastHelper(bits, fire)._2
def last(x: DecoupledIO[TLChannel]): Bool = last(x.bits, x.fire)
def last(x: ValidIO[TLChannel]): Bool = last(x.bits, x.valid)
def done(bits: TLChannel, fire: Bool): Bool = firstlastHelper(bits, fire)._3
def done(x: DecoupledIO[TLChannel]): Bool = done(x.bits, x.fire)
def done(x: ValidIO[TLChannel]): Bool = done(x.bits, x.valid)
def firstlast(bits: TLChannel, fire: Bool): (Bool, Bool, Bool) = {
val r = firstlastHelper(bits, fire)
(r._1, r._2, r._3)
}
def firstlast(x: DecoupledIO[TLChannel]): (Bool, Bool, Bool) = firstlast(x.bits, x.fire)
def firstlast(x: ValidIO[TLChannel]): (Bool, Bool, Bool) = firstlast(x.bits, x.valid)
def count(bits: TLChannel, fire: Bool): (Bool, Bool, Bool, UInt) = {
val r = firstlastHelper(bits, fire)
(r._1, r._2, r._3, r._4)
}
def count(x: DecoupledIO[TLChannel]): (Bool, Bool, Bool, UInt) = count(x.bits, x.fire)
def count(x: ValidIO[TLChannel]): (Bool, Bool, Bool, UInt) = count(x.bits, x.valid)
def addr_inc(bits: TLChannel, fire: Bool): (Bool, Bool, Bool, UInt) = {
val r = firstlastHelper(bits, fire)
(r._1, r._2, r._3, r._4 << log2Ceil(manager.beatBytes))
}
def addr_inc(x: DecoupledIO[TLChannel]): (Bool, Bool, Bool, UInt) = addr_inc(x.bits, x.fire)
def addr_inc(x: ValidIO[TLChannel]): (Bool, Bool, Bool, UInt) = addr_inc(x.bits, x.valid)
// Does the request need T permissions to be executed?
def needT(a: TLBundleA): Bool = {
val acq_needT = MuxLookup(a.param, WireDefault(Bool(), DontCare))(Array(
TLPermissions.NtoB -> false.B,
TLPermissions.NtoT -> true.B,
TLPermissions.BtoT -> true.B))
MuxLookup(a.opcode, WireDefault(Bool(), DontCare))(Array(
TLMessages.PutFullData -> true.B,
TLMessages.PutPartialData -> true.B,
TLMessages.ArithmeticData -> true.B,
TLMessages.LogicalData -> true.B,
TLMessages.Get -> false.B,
TLMessages.Hint -> MuxLookup(a.param, WireDefault(Bool(), DontCare))(Array(
TLHints.PREFETCH_READ -> false.B,
TLHints.PREFETCH_WRITE -> true.B)),
TLMessages.AcquireBlock -> acq_needT,
TLMessages.AcquirePerm -> acq_needT))
}
// This is a very expensive circuit; use only if you really mean it!
def inFlight(x: TLBundle): (UInt, UInt) = {
val flight = RegInit(0.U(log2Ceil(3*client.endSourceId+1).W))
val bce = manager.anySupportAcquireB && client.anySupportProbe
val (a_first, a_last, _) = firstlast(x.a)
val (b_first, b_last, _) = firstlast(x.b)
val (c_first, c_last, _) = firstlast(x.c)
val (d_first, d_last, _) = firstlast(x.d)
val (e_first, e_last, _) = firstlast(x.e)
val (a_request, a_response) = (isRequest(x.a.bits), isResponse(x.a.bits))
val (b_request, b_response) = (isRequest(x.b.bits), isResponse(x.b.bits))
val (c_request, c_response) = (isRequest(x.c.bits), isResponse(x.c.bits))
val (d_request, d_response) = (isRequest(x.d.bits), isResponse(x.d.bits))
val (e_request, e_response) = (isRequest(x.e.bits), isResponse(x.e.bits))
val a_inc = x.a.fire && a_first && a_request
val b_inc = x.b.fire && b_first && b_request
val c_inc = x.c.fire && c_first && c_request
val d_inc = x.d.fire && d_first && d_request
val e_inc = x.e.fire && e_first && e_request
val inc = Cat(Seq(a_inc, d_inc) ++ (if (bce) Seq(b_inc, c_inc, e_inc) else Nil))
val a_dec = x.a.fire && a_last && a_response
val b_dec = x.b.fire && b_last && b_response
val c_dec = x.c.fire && c_last && c_response
val d_dec = x.d.fire && d_last && d_response
val e_dec = x.e.fire && e_last && e_response
val dec = Cat(Seq(a_dec, d_dec) ++ (if (bce) Seq(b_dec, c_dec, e_dec) else Nil))
val next_flight = flight + PopCount(inc) - PopCount(dec)
flight := next_flight
(flight, next_flight)
}
def prettySourceMapping(context: String): String = {
s"TL-Source mapping for $context:\n${(new TLSourceIdMap(client)).pretty}\n"
}
}
class TLEdgeOut(
client: TLClientPortParameters,
manager: TLManagerPortParameters,
params: Parameters,
sourceInfo: SourceInfo)
extends TLEdge(client, manager, params, sourceInfo)
{
// Transfers
def AcquireBlock(fromSource: UInt, toAddress: UInt, lgSize: UInt, growPermissions: UInt) = {
require (manager.anySupportAcquireB, s"TileLink: No managers visible from this edge support Acquires, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsAcquireBFast(toAddress, lgSize)
val a = Wire(new TLBundleA(bundle))
a.opcode := TLMessages.AcquireBlock
a.param := growPermissions
a.size := lgSize
a.source := fromSource
a.address := toAddress
a.user := DontCare
a.echo := DontCare
a.mask := mask(toAddress, lgSize)
a.data := DontCare
a.corrupt := false.B
(legal, a)
}
def AcquirePerm(fromSource: UInt, toAddress: UInt, lgSize: UInt, growPermissions: UInt) = {
require (manager.anySupportAcquireB, s"TileLink: No managers visible from this edge support Acquires, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsAcquireBFast(toAddress, lgSize)
val a = Wire(new TLBundleA(bundle))
a.opcode := TLMessages.AcquirePerm
a.param := growPermissions
a.size := lgSize
a.source := fromSource
a.address := toAddress
a.user := DontCare
a.echo := DontCare
a.mask := mask(toAddress, lgSize)
a.data := DontCare
a.corrupt := false.B
(legal, a)
}
def Release(fromSource: UInt, toAddress: UInt, lgSize: UInt, shrinkPermissions: UInt): (Bool, TLBundleC) = {
require (manager.anySupportAcquireB, s"TileLink: No managers visible from this edge support Acquires, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsAcquireBFast(toAddress, lgSize)
val c = Wire(new TLBundleC(bundle))
c.opcode := TLMessages.Release
c.param := shrinkPermissions
c.size := lgSize
c.source := fromSource
c.address := toAddress
c.user := DontCare
c.echo := DontCare
c.data := DontCare
c.corrupt := false.B
(legal, c)
}
def Release(fromSource: UInt, toAddress: UInt, lgSize: UInt, shrinkPermissions: UInt, data: UInt, corrupt: Bool): (Bool, TLBundleC) = {
require (manager.anySupportAcquireB, s"TileLink: No managers visible from this edge support Acquires, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsAcquireBFast(toAddress, lgSize)
val c = Wire(new TLBundleC(bundle))
c.opcode := TLMessages.ReleaseData
c.param := shrinkPermissions
c.size := lgSize
c.source := fromSource
c.address := toAddress
c.user := DontCare
c.echo := DontCare
c.data := data
c.corrupt := corrupt
(legal, c)
}
def Release(fromSource: UInt, toAddress: UInt, lgSize: UInt, shrinkPermissions: UInt, data: UInt): (Bool, TLBundleC) =
Release(fromSource, toAddress, lgSize, shrinkPermissions, data, false.B)
def ProbeAck(b: TLBundleB, reportPermissions: UInt): TLBundleC =
ProbeAck(b.source, b.address, b.size, reportPermissions)
def ProbeAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, reportPermissions: UInt): TLBundleC = {
val c = Wire(new TLBundleC(bundle))
c.opcode := TLMessages.ProbeAck
c.param := reportPermissions
c.size := lgSize
c.source := fromSource
c.address := toAddress
c.user := DontCare
c.echo := DontCare
c.data := DontCare
c.corrupt := false.B
c
}
def ProbeAck(b: TLBundleB, reportPermissions: UInt, data: UInt): TLBundleC =
ProbeAck(b.source, b.address, b.size, reportPermissions, data)
def ProbeAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, reportPermissions: UInt, data: UInt, corrupt: Bool): TLBundleC = {
val c = Wire(new TLBundleC(bundle))
c.opcode := TLMessages.ProbeAckData
c.param := reportPermissions
c.size := lgSize
c.source := fromSource
c.address := toAddress
c.user := DontCare
c.echo := DontCare
c.data := data
c.corrupt := corrupt
c
}
def ProbeAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, reportPermissions: UInt, data: UInt): TLBundleC =
ProbeAck(fromSource, toAddress, lgSize, reportPermissions, data, false.B)
def GrantAck(d: TLBundleD): TLBundleE = GrantAck(d.sink)
def GrantAck(toSink: UInt): TLBundleE = {
val e = Wire(new TLBundleE(bundle))
e.sink := toSink
e
}
// Accesses
def Get(fromSource: UInt, toAddress: UInt, lgSize: UInt) = {
require (manager.anySupportGet, s"TileLink: No managers visible from this edge support Gets, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsGetFast(toAddress, lgSize)
val a = Wire(new TLBundleA(bundle))
a.opcode := TLMessages.Get
a.param := 0.U
a.size := lgSize
a.source := fromSource
a.address := toAddress
a.user := DontCare
a.echo := DontCare
a.mask := mask(toAddress, lgSize)
a.data := DontCare
a.corrupt := false.B
(legal, a)
}
def Put(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt): (Bool, TLBundleA) =
Put(fromSource, toAddress, lgSize, data, false.B)
def Put(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, corrupt: Bool): (Bool, TLBundleA) = {
require (manager.anySupportPutFull, s"TileLink: No managers visible from this edge support Puts, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsPutFullFast(toAddress, lgSize)
val a = Wire(new TLBundleA(bundle))
a.opcode := TLMessages.PutFullData
a.param := 0.U
a.size := lgSize
a.source := fromSource
a.address := toAddress
a.user := DontCare
a.echo := DontCare
a.mask := mask(toAddress, lgSize)
a.data := data
a.corrupt := corrupt
(legal, a)
}
def Put(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, mask: UInt): (Bool, TLBundleA) =
Put(fromSource, toAddress, lgSize, data, mask, false.B)
def Put(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, mask: UInt, corrupt: Bool): (Bool, TLBundleA) = {
require (manager.anySupportPutPartial, s"TileLink: No managers visible from this edge support masked Puts, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsPutPartialFast(toAddress, lgSize)
val a = Wire(new TLBundleA(bundle))
a.opcode := TLMessages.PutPartialData
a.param := 0.U
a.size := lgSize
a.source := fromSource
a.address := toAddress
a.user := DontCare
a.echo := DontCare
a.mask := mask
a.data := data
a.corrupt := corrupt
(legal, a)
}
def Arithmetic(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, atomic: UInt, corrupt: Bool = false.B): (Bool, TLBundleA) = {
require (manager.anySupportArithmetic, s"TileLink: No managers visible from this edge support arithmetic AMOs, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsArithmeticFast(toAddress, lgSize)
val a = Wire(new TLBundleA(bundle))
a.opcode := TLMessages.ArithmeticData
a.param := atomic
a.size := lgSize
a.source := fromSource
a.address := toAddress
a.user := DontCare
a.echo := DontCare
a.mask := mask(toAddress, lgSize)
a.data := data
a.corrupt := corrupt
(legal, a)
}
def Logical(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, atomic: UInt, corrupt: Bool = false.B) = {
require (manager.anySupportLogical, s"TileLink: No managers visible from this edge support logical AMOs, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsLogicalFast(toAddress, lgSize)
val a = Wire(new TLBundleA(bundle))
a.opcode := TLMessages.LogicalData
a.param := atomic
a.size := lgSize
a.source := fromSource
a.address := toAddress
a.user := DontCare
a.echo := DontCare
a.mask := mask(toAddress, lgSize)
a.data := data
a.corrupt := corrupt
(legal, a)
}
def Hint(fromSource: UInt, toAddress: UInt, lgSize: UInt, param: UInt) = {
require (manager.anySupportHint, s"TileLink: No managers visible from this edge support Hints, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsHintFast(toAddress, lgSize)
val a = Wire(new TLBundleA(bundle))
a.opcode := TLMessages.Hint
a.param := param
a.size := lgSize
a.source := fromSource
a.address := toAddress
a.user := DontCare
a.echo := DontCare
a.mask := mask(toAddress, lgSize)
a.data := DontCare
a.corrupt := false.B
(legal, a)
}
def AccessAck(b: TLBundleB): TLBundleC = AccessAck(b.source, address(b), b.size)
def AccessAck(fromSource: UInt, toAddress: UInt, lgSize: UInt) = {
val c = Wire(new TLBundleC(bundle))
c.opcode := TLMessages.AccessAck
c.param := 0.U
c.size := lgSize
c.source := fromSource
c.address := toAddress
c.user := DontCare
c.echo := DontCare
c.data := DontCare
c.corrupt := false.B
c
}
def AccessAck(b: TLBundleB, data: UInt): TLBundleC = AccessAck(b.source, address(b), b.size, data)
def AccessAck(b: TLBundleB, data: UInt, corrupt: Bool): TLBundleC = AccessAck(b.source, address(b), b.size, data, corrupt)
def AccessAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt): TLBundleC = AccessAck(fromSource, toAddress, lgSize, data, false.B)
def AccessAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, corrupt: Bool) = {
val c = Wire(new TLBundleC(bundle))
c.opcode := TLMessages.AccessAckData
c.param := 0.U
c.size := lgSize
c.source := fromSource
c.address := toAddress
c.user := DontCare
c.echo := DontCare
c.data := data
c.corrupt := corrupt
c
}
def HintAck(b: TLBundleB): TLBundleC = HintAck(b.source, address(b), b.size)
def HintAck(fromSource: UInt, toAddress: UInt, lgSize: UInt) = {
val c = Wire(new TLBundleC(bundle))
c.opcode := TLMessages.HintAck
c.param := 0.U
c.size := lgSize
c.source := fromSource
c.address := toAddress
c.user := DontCare
c.echo := DontCare
c.data := DontCare
c.corrupt := false.B
c
}
}
class TLEdgeIn(
client: TLClientPortParameters,
manager: TLManagerPortParameters,
params: Parameters,
sourceInfo: SourceInfo)
extends TLEdge(client, manager, params, sourceInfo)
{
private def myTranspose[T](x: Seq[Seq[T]]): Seq[Seq[T]] = {
val todo = x.filter(!_.isEmpty)
val heads = todo.map(_.head)
val tails = todo.map(_.tail)
if (todo.isEmpty) Nil else { heads +: myTranspose(tails) }
}
// Transfers
def Probe(fromAddress: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt) = {
require (client.anySupportProbe, s"TileLink: No clients visible from this edge support probes, but one of these managers tried to issue one: ${manager.managers}")
val legal = client.supportsProbe(toSource, lgSize)
val b = Wire(new TLBundleB(bundle))
b.opcode := TLMessages.Probe
b.param := capPermissions
b.size := lgSize
b.source := toSource
b.address := fromAddress
b.mask := mask(fromAddress, lgSize)
b.data := DontCare
b.corrupt := false.B
(legal, b)
}
def Grant(fromSink: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt): TLBundleD = Grant(fromSink, toSource, lgSize, capPermissions, false.B)
def Grant(fromSink: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt, denied: Bool) = {
val d = Wire(new TLBundleD(bundle))
d.opcode := TLMessages.Grant
d.param := capPermissions
d.size := lgSize
d.source := toSource
d.sink := fromSink
d.denied := denied
d.user := DontCare
d.echo := DontCare
d.data := DontCare
d.corrupt := false.B
d
}
def Grant(fromSink: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt, data: UInt): TLBundleD = Grant(fromSink, toSource, lgSize, capPermissions, data, false.B, false.B)
def Grant(fromSink: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt, data: UInt, denied: Bool, corrupt: Bool) = {
val d = Wire(new TLBundleD(bundle))
d.opcode := TLMessages.GrantData
d.param := capPermissions
d.size := lgSize
d.source := toSource
d.sink := fromSink
d.denied := denied
d.user := DontCare
d.echo := DontCare
d.data := data
d.corrupt := corrupt
d
}
def ReleaseAck(c: TLBundleC): TLBundleD = ReleaseAck(c.source, c.size, false.B)
def ReleaseAck(toSource: UInt, lgSize: UInt, denied: Bool): TLBundleD = {
val d = Wire(new TLBundleD(bundle))
d.opcode := TLMessages.ReleaseAck
d.param := 0.U
d.size := lgSize
d.source := toSource
d.sink := 0.U
d.denied := denied
d.user := DontCare
d.echo := DontCare
d.data := DontCare
d.corrupt := false.B
d
}
// Accesses
def Get(fromAddress: UInt, toSource: UInt, lgSize: UInt) = {
require (client.anySupportGet, s"TileLink: No clients visible from this edge support Gets, but one of these managers would try to issue one: ${manager.managers}")
val legal = client.supportsGet(toSource, lgSize)
val b = Wire(new TLBundleB(bundle))
b.opcode := TLMessages.Get
b.param := 0.U
b.size := lgSize
b.source := toSource
b.address := fromAddress
b.mask := mask(fromAddress, lgSize)
b.data := DontCare
b.corrupt := false.B
(legal, b)
}
def Put(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt): (Bool, TLBundleB) =
Put(fromAddress, toSource, lgSize, data, false.B)
def Put(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, corrupt: Bool): (Bool, TLBundleB) = {
require (client.anySupportPutFull, s"TileLink: No clients visible from this edge support Puts, but one of these managers would try to issue one: ${manager.managers}")
val legal = client.supportsPutFull(toSource, lgSize)
val b = Wire(new TLBundleB(bundle))
b.opcode := TLMessages.PutFullData
b.param := 0.U
b.size := lgSize
b.source := toSource
b.address := fromAddress
b.mask := mask(fromAddress, lgSize)
b.data := data
b.corrupt := corrupt
(legal, b)
}
def Put(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, mask: UInt): (Bool, TLBundleB) =
Put(fromAddress, toSource, lgSize, data, mask, false.B)
def Put(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, mask: UInt, corrupt: Bool): (Bool, TLBundleB) = {
require (client.anySupportPutPartial, s"TileLink: No clients visible from this edge support masked Puts, but one of these managers would try to request one: ${manager.managers}")
val legal = client.supportsPutPartial(toSource, lgSize)
val b = Wire(new TLBundleB(bundle))
b.opcode := TLMessages.PutPartialData
b.param := 0.U
b.size := lgSize
b.source := toSource
b.address := fromAddress
b.mask := mask
b.data := data
b.corrupt := corrupt
(legal, b)
}
def Arithmetic(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, atomic: UInt, corrupt: Bool = false.B) = {
require (client.anySupportArithmetic, s"TileLink: No clients visible from this edge support arithmetic AMOs, but one of these managers would try to request one: ${manager.managers}")
val legal = client.supportsArithmetic(toSource, lgSize)
val b = Wire(new TLBundleB(bundle))
b.opcode := TLMessages.ArithmeticData
b.param := atomic
b.size := lgSize
b.source := toSource
b.address := fromAddress
b.mask := mask(fromAddress, lgSize)
b.data := data
b.corrupt := corrupt
(legal, b)
}
def Logical(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, atomic: UInt, corrupt: Bool = false.B) = {
require (client.anySupportLogical, s"TileLink: No clients visible from this edge support logical AMOs, but one of these managers would try to request one: ${manager.managers}")
val legal = client.supportsLogical(toSource, lgSize)
val b = Wire(new TLBundleB(bundle))
b.opcode := TLMessages.LogicalData
b.param := atomic
b.size := lgSize
b.source := toSource
b.address := fromAddress
b.mask := mask(fromAddress, lgSize)
b.data := data
b.corrupt := corrupt
(legal, b)
}
def Hint(fromAddress: UInt, toSource: UInt, lgSize: UInt, param: UInt) = {
require (client.anySupportHint, s"TileLink: No clients visible from this edge support Hints, but one of these managers would try to request one: ${manager.managers}")
val legal = client.supportsHint(toSource, lgSize)
val b = Wire(new TLBundleB(bundle))
b.opcode := TLMessages.Hint
b.param := param
b.size := lgSize
b.source := toSource
b.address := fromAddress
b.mask := mask(fromAddress, lgSize)
b.data := DontCare
b.corrupt := false.B
(legal, b)
}
def AccessAck(a: TLBundleA): TLBundleD = AccessAck(a.source, a.size)
def AccessAck(a: TLBundleA, denied: Bool): TLBundleD = AccessAck(a.source, a.size, denied)
def AccessAck(toSource: UInt, lgSize: UInt): TLBundleD = AccessAck(toSource, lgSize, false.B)
def AccessAck(toSource: UInt, lgSize: UInt, denied: Bool) = {
val d = Wire(new TLBundleD(bundle))
d.opcode := TLMessages.AccessAck
d.param := 0.U
d.size := lgSize
d.source := toSource
d.sink := 0.U
d.denied := denied
d.user := DontCare
d.echo := DontCare
d.data := DontCare
d.corrupt := false.B
d
}
def AccessAck(a: TLBundleA, data: UInt): TLBundleD = AccessAck(a.source, a.size, data)
def AccessAck(a: TLBundleA, data: UInt, denied: Bool, corrupt: Bool): TLBundleD = AccessAck(a.source, a.size, data, denied, corrupt)
def AccessAck(toSource: UInt, lgSize: UInt, data: UInt): TLBundleD = AccessAck(toSource, lgSize, data, false.B, false.B)
def AccessAck(toSource: UInt, lgSize: UInt, data: UInt, denied: Bool, corrupt: Bool) = {
val d = Wire(new TLBundleD(bundle))
d.opcode := TLMessages.AccessAckData
d.param := 0.U
d.size := lgSize
d.source := toSource
d.sink := 0.U
d.denied := denied
d.user := DontCare
d.echo := DontCare
d.data := data
d.corrupt := corrupt
d
}
def HintAck(a: TLBundleA): TLBundleD = HintAck(a, false.B)
def HintAck(a: TLBundleA, denied: Bool): TLBundleD = HintAck(a.source, a.size, denied)
def HintAck(toSource: UInt, lgSize: UInt): TLBundleD = HintAck(toSource, lgSize, false.B)
def HintAck(toSource: UInt, lgSize: UInt, denied: Bool) = {
val d = Wire(new TLBundleD(bundle))
d.opcode := TLMessages.HintAck
d.param := 0.U
d.size := lgSize
d.source := toSource
d.sink := 0.U
d.denied := denied
d.user := DontCare
d.echo := DontCare
d.data := DontCare
d.corrupt := false.B
d
}
}
| module TLMonitor_45( // @[Monitor.scala:36:7]
input clock, // @[Monitor.scala:36:7]
input reset, // @[Monitor.scala:36:7]
input io_in_a_ready, // @[Monitor.scala:20:14]
input io_in_a_valid, // @[Monitor.scala:20:14]
input [2:0] io_in_a_bits_opcode, // @[Monitor.scala:20:14]
input [2:0] io_in_a_bits_param, // @[Monitor.scala:20:14]
input [3:0] io_in_a_bits_size, // @[Monitor.scala:20:14]
input [3:0] io_in_a_bits_source, // @[Monitor.scala:20:14]
input [31:0] io_in_a_bits_address, // @[Monitor.scala:20:14]
input [15:0] io_in_a_bits_mask, // @[Monitor.scala:20:14]
input [127:0] io_in_a_bits_data, // @[Monitor.scala:20:14]
input io_in_a_bits_corrupt, // @[Monitor.scala:20:14]
input io_in_b_ready, // @[Monitor.scala:20:14]
input io_in_b_valid, // @[Monitor.scala:20:14]
input [2:0] io_in_b_bits_opcode, // @[Monitor.scala:20:14]
input [1:0] io_in_b_bits_param, // @[Monitor.scala:20:14]
input [3:0] io_in_b_bits_size, // @[Monitor.scala:20:14]
input [3:0] io_in_b_bits_source, // @[Monitor.scala:20:14]
input [31:0] io_in_b_bits_address, // @[Monitor.scala:20:14]
input [15:0] io_in_b_bits_mask, // @[Monitor.scala:20:14]
input [127:0] io_in_b_bits_data, // @[Monitor.scala:20:14]
input io_in_b_bits_corrupt, // @[Monitor.scala:20:14]
input io_in_c_ready, // @[Monitor.scala:20:14]
input io_in_c_valid, // @[Monitor.scala:20:14]
input [2:0] io_in_c_bits_opcode, // @[Monitor.scala:20:14]
input [2:0] io_in_c_bits_param, // @[Monitor.scala:20:14]
input [3:0] io_in_c_bits_size, // @[Monitor.scala:20:14]
input [3:0] io_in_c_bits_source, // @[Monitor.scala:20:14]
input [31:0] io_in_c_bits_address, // @[Monitor.scala:20:14]
input [127:0] io_in_c_bits_data, // @[Monitor.scala:20:14]
input io_in_c_bits_corrupt, // @[Monitor.scala:20:14]
input io_in_d_ready, // @[Monitor.scala:20:14]
input io_in_d_valid, // @[Monitor.scala:20:14]
input [2:0] io_in_d_bits_opcode, // @[Monitor.scala:20:14]
input [1:0] io_in_d_bits_param, // @[Monitor.scala:20:14]
input [3:0] io_in_d_bits_size, // @[Monitor.scala:20:14]
input [3:0] io_in_d_bits_source, // @[Monitor.scala:20:14]
input [3:0] io_in_d_bits_sink, // @[Monitor.scala:20:14]
input io_in_d_bits_denied, // @[Monitor.scala:20:14]
input [127:0] io_in_d_bits_data, // @[Monitor.scala:20:14]
input io_in_d_bits_corrupt, // @[Monitor.scala:20:14]
input io_in_e_ready, // @[Monitor.scala:20:14]
input io_in_e_valid, // @[Monitor.scala:20:14]
input [3:0] io_in_e_bits_sink // @[Monitor.scala:20:14]
);
wire [31:0] _plusarg_reader_1_out; // @[PlusArg.scala:80:11]
wire [31:0] _plusarg_reader_out; // @[PlusArg.scala:80:11]
wire io_in_a_ready_0 = io_in_a_ready; // @[Monitor.scala:36:7]
wire io_in_a_valid_0 = io_in_a_valid; // @[Monitor.scala:36:7]
wire [2:0] io_in_a_bits_opcode_0 = io_in_a_bits_opcode; // @[Monitor.scala:36:7]
wire [2:0] io_in_a_bits_param_0 = io_in_a_bits_param; // @[Monitor.scala:36:7]
wire [3:0] io_in_a_bits_size_0 = io_in_a_bits_size; // @[Monitor.scala:36:7]
wire [3:0] io_in_a_bits_source_0 = io_in_a_bits_source; // @[Monitor.scala:36:7]
wire [31:0] io_in_a_bits_address_0 = io_in_a_bits_address; // @[Monitor.scala:36:7]
wire [15:0] io_in_a_bits_mask_0 = io_in_a_bits_mask; // @[Monitor.scala:36:7]
wire [127:0] io_in_a_bits_data_0 = io_in_a_bits_data; // @[Monitor.scala:36:7]
wire io_in_a_bits_corrupt_0 = io_in_a_bits_corrupt; // @[Monitor.scala:36:7]
wire io_in_b_ready_0 = io_in_b_ready; // @[Monitor.scala:36:7]
wire io_in_b_valid_0 = io_in_b_valid; // @[Monitor.scala:36:7]
wire [2:0] io_in_b_bits_opcode_0 = io_in_b_bits_opcode; // @[Monitor.scala:36:7]
wire [1:0] io_in_b_bits_param_0 = io_in_b_bits_param; // @[Monitor.scala:36:7]
wire [3:0] io_in_b_bits_size_0 = io_in_b_bits_size; // @[Monitor.scala:36:7]
wire [3:0] io_in_b_bits_source_0 = io_in_b_bits_source; // @[Monitor.scala:36:7]
wire [31:0] io_in_b_bits_address_0 = io_in_b_bits_address; // @[Monitor.scala:36:7]
wire [15:0] io_in_b_bits_mask_0 = io_in_b_bits_mask; // @[Monitor.scala:36:7]
wire [127:0] io_in_b_bits_data_0 = io_in_b_bits_data; // @[Monitor.scala:36:7]
wire io_in_b_bits_corrupt_0 = io_in_b_bits_corrupt; // @[Monitor.scala:36:7]
wire io_in_c_ready_0 = io_in_c_ready; // @[Monitor.scala:36:7]
wire io_in_c_valid_0 = io_in_c_valid; // @[Monitor.scala:36:7]
wire [2:0] io_in_c_bits_opcode_0 = io_in_c_bits_opcode; // @[Monitor.scala:36:7]
wire [2:0] io_in_c_bits_param_0 = io_in_c_bits_param; // @[Monitor.scala:36:7]
wire [3:0] io_in_c_bits_size_0 = io_in_c_bits_size; // @[Monitor.scala:36:7]
wire [3:0] io_in_c_bits_source_0 = io_in_c_bits_source; // @[Monitor.scala:36:7]
wire [31:0] io_in_c_bits_address_0 = io_in_c_bits_address; // @[Monitor.scala:36:7]
wire [127:0] io_in_c_bits_data_0 = io_in_c_bits_data; // @[Monitor.scala:36:7]
wire io_in_c_bits_corrupt_0 = io_in_c_bits_corrupt; // @[Monitor.scala:36:7]
wire io_in_d_ready_0 = io_in_d_ready; // @[Monitor.scala:36:7]
wire io_in_d_valid_0 = io_in_d_valid; // @[Monitor.scala:36:7]
wire [2:0] io_in_d_bits_opcode_0 = io_in_d_bits_opcode; // @[Monitor.scala:36:7]
wire [1:0] io_in_d_bits_param_0 = io_in_d_bits_param; // @[Monitor.scala:36:7]
wire [3:0] io_in_d_bits_size_0 = io_in_d_bits_size; // @[Monitor.scala:36:7]
wire [3:0] io_in_d_bits_source_0 = io_in_d_bits_source; // @[Monitor.scala:36:7]
wire [3:0] io_in_d_bits_sink_0 = io_in_d_bits_sink; // @[Monitor.scala:36:7]
wire io_in_d_bits_denied_0 = io_in_d_bits_denied; // @[Monitor.scala:36:7]
wire [127:0] io_in_d_bits_data_0 = io_in_d_bits_data; // @[Monitor.scala:36:7]
wire io_in_d_bits_corrupt_0 = io_in_d_bits_corrupt; // @[Monitor.scala:36:7]
wire io_in_e_ready_0 = io_in_e_ready; // @[Monitor.scala:36:7]
wire io_in_e_valid_0 = io_in_e_valid; // @[Monitor.scala:36:7]
wire [3:0] io_in_e_bits_sink_0 = io_in_e_bits_sink; // @[Monitor.scala:36:7]
wire [15:0] _a_size_lookup_T_5 = 16'hFF; // @[Monitor.scala:612:57]
wire [15:0] _d_sizes_clr_T_3 = 16'hFF; // @[Monitor.scala:612:57]
wire [15:0] _c_size_lookup_T_5 = 16'hFF; // @[Monitor.scala:724:57]
wire [15:0] _d_sizes_clr_T_9 = 16'hFF; // @[Monitor.scala:724:57]
wire [16:0] _a_size_lookup_T_4 = 17'hFF; // @[Monitor.scala:612:57]
wire [16:0] _d_sizes_clr_T_2 = 17'hFF; // @[Monitor.scala:612:57]
wire [16:0] _c_size_lookup_T_4 = 17'hFF; // @[Monitor.scala:724:57]
wire [16:0] _d_sizes_clr_T_8 = 17'hFF; // @[Monitor.scala:724:57]
wire [15:0] _a_size_lookup_T_3 = 16'h100; // @[Monitor.scala:612:51]
wire [15:0] _d_sizes_clr_T_1 = 16'h100; // @[Monitor.scala:612:51]
wire [15:0] _c_size_lookup_T_3 = 16'h100; // @[Monitor.scala:724:51]
wire [15:0] _d_sizes_clr_T_7 = 16'h100; // @[Monitor.scala:724:51]
wire [15:0] _a_opcode_lookup_T_5 = 16'hF; // @[Monitor.scala:612:57]
wire [15:0] _d_opcodes_clr_T_3 = 16'hF; // @[Monitor.scala:612:57]
wire [15:0] _c_opcode_lookup_T_5 = 16'hF; // @[Monitor.scala:724:57]
wire [15:0] _d_opcodes_clr_T_9 = 16'hF; // @[Monitor.scala:724:57]
wire [16:0] _a_opcode_lookup_T_4 = 17'hF; // @[Monitor.scala:612:57]
wire [16:0] _d_opcodes_clr_T_2 = 17'hF; // @[Monitor.scala:612:57]
wire [16:0] _c_opcode_lookup_T_4 = 17'hF; // @[Monitor.scala:724:57]
wire [16:0] _d_opcodes_clr_T_8 = 17'hF; // @[Monitor.scala:724:57]
wire [15:0] _a_opcode_lookup_T_3 = 16'h10; // @[Monitor.scala:612:51]
wire [15:0] _d_opcodes_clr_T_1 = 16'h10; // @[Monitor.scala:612:51]
wire [15:0] _c_opcode_lookup_T_3 = 16'h10; // @[Monitor.scala:724:51]
wire [15:0] _d_opcodes_clr_T_7 = 16'h10; // @[Monitor.scala:724:51]
wire [2:0] responseMap_6 = 3'h4; // @[Monitor.scala:643:42]
wire [2:0] responseMap_7 = 3'h4; // @[Monitor.scala:643:42]
wire [2:0] responseMapSecondOption_7 = 3'h4; // @[Monitor.scala:644:42]
wire [2:0] responseMapSecondOption_6 = 3'h5; // @[Monitor.scala:644:42]
wire [2:0] responseMap_5 = 3'h2; // @[Monitor.scala:643:42]
wire [2:0] responseMapSecondOption_5 = 3'h2; // @[Monitor.scala:644:42]
wire [2:0] responseMap_2 = 3'h1; // @[Monitor.scala:643:42]
wire [2:0] responseMap_3 = 3'h1; // @[Monitor.scala:643:42]
wire [2:0] responseMap_4 = 3'h1; // @[Monitor.scala:643:42]
wire [2:0] responseMapSecondOption_2 = 3'h1; // @[Monitor.scala:644:42]
wire [2:0] responseMapSecondOption_3 = 3'h1; // @[Monitor.scala:644:42]
wire [2:0] responseMapSecondOption_4 = 3'h1; // @[Monitor.scala:644:42]
wire [2:0] responseMap_0 = 3'h0; // @[Monitor.scala:643:42]
wire [2:0] responseMap_1 = 3'h0; // @[Monitor.scala:643:42]
wire [2:0] responseMapSecondOption_0 = 3'h0; // @[Monitor.scala:644:42]
wire [2:0] responseMapSecondOption_1 = 3'h0; // @[Monitor.scala:644:42]
wire [7:0] b_first_beats1 = 8'h0; // @[Edges.scala:221:14]
wire [7:0] b_first_count = 8'h0; // @[Edges.scala:234:25]
wire _source_ok_T_2 = 1'h1; // @[Parameters.scala:56:32]
wire _source_ok_T_11 = 1'h1; // @[Parameters.scala:56:32]
wire sink_ok = 1'h1; // @[Monitor.scala:309:31]
wire _legal_source_T_2 = 1'h1; // @[Parameters.scala:56:32]
wire _source_ok_T_20 = 1'h1; // @[Parameters.scala:56:32]
wire sink_ok_1 = 1'h1; // @[Monitor.scala:367:31]
wire _b_first_last_T_1 = 1'h1; // @[Edges.scala:232:43]
wire b_first_last = 1'h1; // @[Edges.scala:232:33]
wire [3:0] _a_opcode_lookup_T_2 = 4'h4; // @[Monitor.scala:637:123]
wire [3:0] _d_opcodes_clr_T = 4'h4; // @[Monitor.scala:680:48]
wire [3:0] _c_opcode_lookup_T_2 = 4'h4; // @[Monitor.scala:749:123]
wire [3:0] _d_opcodes_clr_T_6 = 4'h4; // @[Monitor.scala:790:48]
wire [3:0] _a_size_lookup_T_2 = 4'h8; // @[Monitor.scala:641:117]
wire [3:0] _d_sizes_clr_T = 4'h8; // @[Monitor.scala:681:48]
wire [3:0] _c_size_lookup_T_2 = 4'h8; // @[Monitor.scala:750:119]
wire [3:0] _d_sizes_clr_T_6 = 4'h8; // @[Monitor.scala:791:48]
wire _legal_source_T_8 = 1'h0; // @[Mux.scala:30:73]
wire [3:0] _mask_sizeOH_T = io_in_a_bits_size_0; // @[Misc.scala:202:34]
wire [3:0] _source_ok_uncommonBits_T = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [3:0] _uncommonBits_T = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [3:0] _uncommonBits_T_1 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [3:0] _uncommonBits_T_2 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [3:0] _uncommonBits_T_3 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [3:0] _uncommonBits_T_4 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [3:0] _uncommonBits_T_5 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [3:0] _uncommonBits_T_6 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [3:0] _uncommonBits_T_7 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [3:0] _uncommonBits_T_8 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [3:0] _uncommonBits_T_9 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [3:0] _uncommonBits_T_10 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [3:0] _mask_sizeOH_T_3 = io_in_b_bits_size_0; // @[Misc.scala:202:34]
wire [3:0] _uncommonBits_T_11 = io_in_b_bits_source_0; // @[Monitor.scala:36:7]
wire [3:0] _legal_source_uncommonBits_T = io_in_b_bits_source_0; // @[Monitor.scala:36:7]
wire [3:0] _uncommonBits_T_12 = io_in_b_bits_source_0; // @[Monitor.scala:36:7]
wire [31:0] _address_ok_T = io_in_b_bits_address_0; // @[Monitor.scala:36:7]
wire [3:0] _source_ok_uncommonBits_T_2 = io_in_c_bits_source_0; // @[Monitor.scala:36:7]
wire [3:0] _uncommonBits_T_13 = io_in_c_bits_source_0; // @[Monitor.scala:36:7]
wire [3:0] _uncommonBits_T_14 = io_in_c_bits_source_0; // @[Monitor.scala:36:7]
wire [3:0] _uncommonBits_T_15 = io_in_c_bits_source_0; // @[Monitor.scala:36:7]
wire [3:0] _uncommonBits_T_16 = io_in_c_bits_source_0; // @[Monitor.scala:36:7]
wire [3:0] _uncommonBits_T_17 = io_in_c_bits_source_0; // @[Monitor.scala:36:7]
wire [31:0] _address_ok_T_70 = io_in_c_bits_address_0; // @[Monitor.scala:36:7]
wire [3:0] _source_ok_uncommonBits_T_1 = io_in_d_bits_source_0; // @[Monitor.scala:36:7]
wire [2:0] source_ok_uncommonBits = _source_ok_uncommonBits_T[2:0]; // @[Parameters.scala:52:{29,56}]
wire _source_ok_T = io_in_a_bits_source_0[3]; // @[Monitor.scala:36:7]
wire _source_ok_T_1 = ~_source_ok_T; // @[Parameters.scala:54:{10,32}]
wire _source_ok_T_3 = _source_ok_T_1; // @[Parameters.scala:54:{32,67}]
wire _source_ok_T_4 = source_ok_uncommonBits < 3'h5; // @[Parameters.scala:52:56, :57:20]
wire _source_ok_T_5 = _source_ok_T_3 & _source_ok_T_4; // @[Parameters.scala:54:67, :56:48, :57:20]
wire _source_ok_WIRE_0 = _source_ok_T_5; // @[Parameters.scala:1138:31]
wire _source_ok_T_6 = io_in_a_bits_source_0 == 4'h5; // @[Monitor.scala:36:7]
wire _source_ok_WIRE_1 = _source_ok_T_6; // @[Parameters.scala:1138:31]
wire _source_ok_T_7 = io_in_a_bits_source_0 == 4'h8; // @[Monitor.scala:36:7]
wire _source_ok_WIRE_2 = _source_ok_T_7; // @[Parameters.scala:1138:31]
wire _source_ok_T_8 = _source_ok_WIRE_0 | _source_ok_WIRE_1; // @[Parameters.scala:1138:31, :1139:46]
wire source_ok = _source_ok_T_8 | _source_ok_WIRE_2; // @[Parameters.scala:1138:31, :1139:46]
wire [26:0] _GEN = 27'hFFF << io_in_a_bits_size_0; // @[package.scala:243:71]
wire [26:0] _is_aligned_mask_T; // @[package.scala:243:71]
assign _is_aligned_mask_T = _GEN; // @[package.scala:243:71]
wire [26:0] _a_first_beats1_decode_T; // @[package.scala:243:71]
assign _a_first_beats1_decode_T = _GEN; // @[package.scala:243:71]
wire [26:0] _a_first_beats1_decode_T_3; // @[package.scala:243:71]
assign _a_first_beats1_decode_T_3 = _GEN; // @[package.scala:243:71]
wire [11:0] _is_aligned_mask_T_1 = _is_aligned_mask_T[11:0]; // @[package.scala:243:{71,76}]
wire [11:0] is_aligned_mask = ~_is_aligned_mask_T_1; // @[package.scala:243:{46,76}]
wire [31:0] _is_aligned_T = {20'h0, io_in_a_bits_address_0[11:0] & is_aligned_mask}; // @[package.scala:243:46]
wire is_aligned = _is_aligned_T == 32'h0; // @[Edges.scala:21:{16,24}]
wire [1:0] mask_sizeOH_shiftAmount = _mask_sizeOH_T[1:0]; // @[OneHot.scala:64:49]
wire [3:0] _mask_sizeOH_T_1 = 4'h1 << mask_sizeOH_shiftAmount; // @[OneHot.scala:64:49, :65:12]
wire [3:0] _mask_sizeOH_T_2 = _mask_sizeOH_T_1; // @[OneHot.scala:65:{12,27}]
wire [3:0] mask_sizeOH = {_mask_sizeOH_T_2[3:1], 1'h1}; // @[OneHot.scala:65:27]
wire mask_sub_sub_sub_sub_0_1 = |(io_in_a_bits_size_0[3:2]); // @[Misc.scala:206:21]
wire mask_sub_sub_sub_size = mask_sizeOH[3]; // @[Misc.scala:202:81, :209:26]
wire mask_sub_sub_sub_bit = io_in_a_bits_address_0[3]; // @[Misc.scala:210:26]
wire mask_sub_sub_sub_1_2 = mask_sub_sub_sub_bit; // @[Misc.scala:210:26, :214:27]
wire mask_sub_sub_sub_nbit = ~mask_sub_sub_sub_bit; // @[Misc.scala:210:26, :211:20]
wire mask_sub_sub_sub_0_2 = mask_sub_sub_sub_nbit; // @[Misc.scala:211:20, :214:27]
wire _mask_sub_sub_sub_acc_T = mask_sub_sub_sub_size & mask_sub_sub_sub_0_2; // @[Misc.scala:209:26, :214:27, :215:38]
wire mask_sub_sub_sub_0_1 = mask_sub_sub_sub_sub_0_1 | _mask_sub_sub_sub_acc_T; // @[Misc.scala:206:21, :215:{29,38}]
wire _mask_sub_sub_sub_acc_T_1 = mask_sub_sub_sub_size & mask_sub_sub_sub_1_2; // @[Misc.scala:209:26, :214:27, :215:38]
wire mask_sub_sub_sub_1_1 = mask_sub_sub_sub_sub_0_1 | _mask_sub_sub_sub_acc_T_1; // @[Misc.scala:206:21, :215:{29,38}]
wire mask_sub_sub_size = mask_sizeOH[2]; // @[Misc.scala:202:81, :209:26]
wire mask_sub_sub_bit = io_in_a_bits_address_0[2]; // @[Misc.scala:210:26]
wire mask_sub_sub_nbit = ~mask_sub_sub_bit; // @[Misc.scala:210:26, :211:20]
wire mask_sub_sub_0_2 = mask_sub_sub_sub_0_2 & mask_sub_sub_nbit; // @[Misc.scala:211:20, :214:27]
wire _mask_sub_sub_acc_T = mask_sub_sub_size & mask_sub_sub_0_2; // @[Misc.scala:209:26, :214:27, :215:38]
wire mask_sub_sub_0_1 = mask_sub_sub_sub_0_1 | _mask_sub_sub_acc_T; // @[Misc.scala:215:{29,38}]
wire mask_sub_sub_1_2 = mask_sub_sub_sub_0_2 & mask_sub_sub_bit; // @[Misc.scala:210:26, :214:27]
wire _mask_sub_sub_acc_T_1 = mask_sub_sub_size & mask_sub_sub_1_2; // @[Misc.scala:209:26, :214:27, :215:38]
wire mask_sub_sub_1_1 = mask_sub_sub_sub_0_1 | _mask_sub_sub_acc_T_1; // @[Misc.scala:215:{29,38}]
wire mask_sub_sub_2_2 = mask_sub_sub_sub_1_2 & mask_sub_sub_nbit; // @[Misc.scala:211:20, :214:27]
wire _mask_sub_sub_acc_T_2 = mask_sub_sub_size & mask_sub_sub_2_2; // @[Misc.scala:209:26, :214:27, :215:38]
wire mask_sub_sub_2_1 = mask_sub_sub_sub_1_1 | _mask_sub_sub_acc_T_2; // @[Misc.scala:215:{29,38}]
wire mask_sub_sub_3_2 = mask_sub_sub_sub_1_2 & mask_sub_sub_bit; // @[Misc.scala:210:26, :214:27]
wire _mask_sub_sub_acc_T_3 = mask_sub_sub_size & mask_sub_sub_3_2; // @[Misc.scala:209:26, :214:27, :215:38]
wire mask_sub_sub_3_1 = mask_sub_sub_sub_1_1 | _mask_sub_sub_acc_T_3; // @[Misc.scala:215:{29,38}]
wire mask_sub_size = mask_sizeOH[1]; // @[Misc.scala:202:81, :209:26]
wire mask_sub_bit = io_in_a_bits_address_0[1]; // @[Misc.scala:210:26]
wire mask_sub_nbit = ~mask_sub_bit; // @[Misc.scala:210:26, :211:20]
wire mask_sub_0_2 = mask_sub_sub_0_2 & mask_sub_nbit; // @[Misc.scala:211:20, :214:27]
wire _mask_sub_acc_T = mask_sub_size & mask_sub_0_2; // @[Misc.scala:209:26, :214:27, :215:38]
wire mask_sub_0_1 = mask_sub_sub_0_1 | _mask_sub_acc_T; // @[Misc.scala:215:{29,38}]
wire mask_sub_1_2 = mask_sub_sub_0_2 & mask_sub_bit; // @[Misc.scala:210:26, :214:27]
wire _mask_sub_acc_T_1 = mask_sub_size & mask_sub_1_2; // @[Misc.scala:209:26, :214:27, :215:38]
wire mask_sub_1_1 = mask_sub_sub_0_1 | _mask_sub_acc_T_1; // @[Misc.scala:215:{29,38}]
wire mask_sub_2_2 = mask_sub_sub_1_2 & mask_sub_nbit; // @[Misc.scala:211:20, :214:27]
wire _mask_sub_acc_T_2 = mask_sub_size & mask_sub_2_2; // @[Misc.scala:209:26, :214:27, :215:38]
wire mask_sub_2_1 = mask_sub_sub_1_1 | _mask_sub_acc_T_2; // @[Misc.scala:215:{29,38}]
wire mask_sub_3_2 = mask_sub_sub_1_2 & mask_sub_bit; // @[Misc.scala:210:26, :214:27]
wire _mask_sub_acc_T_3 = mask_sub_size & mask_sub_3_2; // @[Misc.scala:209:26, :214:27, :215:38]
wire mask_sub_3_1 = mask_sub_sub_1_1 | _mask_sub_acc_T_3; // @[Misc.scala:215:{29,38}]
wire mask_sub_4_2 = mask_sub_sub_2_2 & mask_sub_nbit; // @[Misc.scala:211:20, :214:27]
wire _mask_sub_acc_T_4 = mask_sub_size & mask_sub_4_2; // @[Misc.scala:209:26, :214:27, :215:38]
wire mask_sub_4_1 = mask_sub_sub_2_1 | _mask_sub_acc_T_4; // @[Misc.scala:215:{29,38}]
wire mask_sub_5_2 = mask_sub_sub_2_2 & mask_sub_bit; // @[Misc.scala:210:26, :214:27]
wire _mask_sub_acc_T_5 = mask_sub_size & mask_sub_5_2; // @[Misc.scala:209:26, :214:27, :215:38]
wire mask_sub_5_1 = mask_sub_sub_2_1 | _mask_sub_acc_T_5; // @[Misc.scala:215:{29,38}]
wire mask_sub_6_2 = mask_sub_sub_3_2 & mask_sub_nbit; // @[Misc.scala:211:20, :214:27]
wire _mask_sub_acc_T_6 = mask_sub_size & mask_sub_6_2; // @[Misc.scala:209:26, :214:27, :215:38]
wire mask_sub_6_1 = mask_sub_sub_3_1 | _mask_sub_acc_T_6; // @[Misc.scala:215:{29,38}]
wire mask_sub_7_2 = mask_sub_sub_3_2 & mask_sub_bit; // @[Misc.scala:210:26, :214:27]
wire _mask_sub_acc_T_7 = mask_sub_size & mask_sub_7_2; // @[Misc.scala:209:26, :214:27, :215:38]
wire mask_sub_7_1 = mask_sub_sub_3_1 | _mask_sub_acc_T_7; // @[Misc.scala:215:{29,38}]
wire mask_size = mask_sizeOH[0]; // @[Misc.scala:202:81, :209:26]
wire mask_bit = io_in_a_bits_address_0[0]; // @[Misc.scala:210:26]
wire mask_nbit = ~mask_bit; // @[Misc.scala:210:26, :211:20]
wire mask_eq = mask_sub_0_2 & mask_nbit; // @[Misc.scala:211:20, :214:27]
wire _mask_acc_T = mask_size & mask_eq; // @[Misc.scala:209:26, :214:27, :215:38]
wire mask_acc = mask_sub_0_1 | _mask_acc_T; // @[Misc.scala:215:{29,38}]
wire mask_eq_1 = mask_sub_0_2 & mask_bit; // @[Misc.scala:210:26, :214:27]
wire _mask_acc_T_1 = mask_size & mask_eq_1; // @[Misc.scala:209:26, :214:27, :215:38]
wire mask_acc_1 = mask_sub_0_1 | _mask_acc_T_1; // @[Misc.scala:215:{29,38}]
wire mask_eq_2 = mask_sub_1_2 & mask_nbit; // @[Misc.scala:211:20, :214:27]
wire _mask_acc_T_2 = mask_size & mask_eq_2; // @[Misc.scala:209:26, :214:27, :215:38]
wire mask_acc_2 = mask_sub_1_1 | _mask_acc_T_2; // @[Misc.scala:215:{29,38}]
wire mask_eq_3 = mask_sub_1_2 & mask_bit; // @[Misc.scala:210:26, :214:27]
wire _mask_acc_T_3 = mask_size & mask_eq_3; // @[Misc.scala:209:26, :214:27, :215:38]
wire mask_acc_3 = mask_sub_1_1 | _mask_acc_T_3; // @[Misc.scala:215:{29,38}]
wire mask_eq_4 = mask_sub_2_2 & mask_nbit; // @[Misc.scala:211:20, :214:27]
wire _mask_acc_T_4 = mask_size & mask_eq_4; // @[Misc.scala:209:26, :214:27, :215:38]
wire mask_acc_4 = mask_sub_2_1 | _mask_acc_T_4; // @[Misc.scala:215:{29,38}]
wire mask_eq_5 = mask_sub_2_2 & mask_bit; // @[Misc.scala:210:26, :214:27]
wire _mask_acc_T_5 = mask_size & mask_eq_5; // @[Misc.scala:209:26, :214:27, :215:38]
wire mask_acc_5 = mask_sub_2_1 | _mask_acc_T_5; // @[Misc.scala:215:{29,38}]
wire mask_eq_6 = mask_sub_3_2 & mask_nbit; // @[Misc.scala:211:20, :214:27]
wire _mask_acc_T_6 = mask_size & mask_eq_6; // @[Misc.scala:209:26, :214:27, :215:38]
wire mask_acc_6 = mask_sub_3_1 | _mask_acc_T_6; // @[Misc.scala:215:{29,38}]
wire mask_eq_7 = mask_sub_3_2 & mask_bit; // @[Misc.scala:210:26, :214:27]
wire _mask_acc_T_7 = mask_size & mask_eq_7; // @[Misc.scala:209:26, :214:27, :215:38]
wire mask_acc_7 = mask_sub_3_1 | _mask_acc_T_7; // @[Misc.scala:215:{29,38}]
wire mask_eq_8 = mask_sub_4_2 & mask_nbit; // @[Misc.scala:211:20, :214:27]
wire _mask_acc_T_8 = mask_size & mask_eq_8; // @[Misc.scala:209:26, :214:27, :215:38]
wire mask_acc_8 = mask_sub_4_1 | _mask_acc_T_8; // @[Misc.scala:215:{29,38}]
wire mask_eq_9 = mask_sub_4_2 & mask_bit; // @[Misc.scala:210:26, :214:27]
wire _mask_acc_T_9 = mask_size & mask_eq_9; // @[Misc.scala:209:26, :214:27, :215:38]
wire mask_acc_9 = mask_sub_4_1 | _mask_acc_T_9; // @[Misc.scala:215:{29,38}]
wire mask_eq_10 = mask_sub_5_2 & mask_nbit; // @[Misc.scala:211:20, :214:27]
wire _mask_acc_T_10 = mask_size & mask_eq_10; // @[Misc.scala:209:26, :214:27, :215:38]
wire mask_acc_10 = mask_sub_5_1 | _mask_acc_T_10; // @[Misc.scala:215:{29,38}]
wire mask_eq_11 = mask_sub_5_2 & mask_bit; // @[Misc.scala:210:26, :214:27]
wire _mask_acc_T_11 = mask_size & mask_eq_11; // @[Misc.scala:209:26, :214:27, :215:38]
wire mask_acc_11 = mask_sub_5_1 | _mask_acc_T_11; // @[Misc.scala:215:{29,38}]
wire mask_eq_12 = mask_sub_6_2 & mask_nbit; // @[Misc.scala:211:20, :214:27]
wire _mask_acc_T_12 = mask_size & mask_eq_12; // @[Misc.scala:209:26, :214:27, :215:38]
wire mask_acc_12 = mask_sub_6_1 | _mask_acc_T_12; // @[Misc.scala:215:{29,38}]
wire mask_eq_13 = mask_sub_6_2 & mask_bit; // @[Misc.scala:210:26, :214:27]
wire _mask_acc_T_13 = mask_size & mask_eq_13; // @[Misc.scala:209:26, :214:27, :215:38]
wire mask_acc_13 = mask_sub_6_1 | _mask_acc_T_13; // @[Misc.scala:215:{29,38}]
wire mask_eq_14 = mask_sub_7_2 & mask_nbit; // @[Misc.scala:211:20, :214:27]
wire _mask_acc_T_14 = mask_size & mask_eq_14; // @[Misc.scala:209:26, :214:27, :215:38]
wire mask_acc_14 = mask_sub_7_1 | _mask_acc_T_14; // @[Misc.scala:215:{29,38}]
wire mask_eq_15 = mask_sub_7_2 & mask_bit; // @[Misc.scala:210:26, :214:27]
wire _mask_acc_T_15 = mask_size & mask_eq_15; // @[Misc.scala:209:26, :214:27, :215:38]
wire mask_acc_15 = mask_sub_7_1 | _mask_acc_T_15; // @[Misc.scala:215:{29,38}]
wire [1:0] mask_lo_lo_lo = {mask_acc_1, mask_acc}; // @[Misc.scala:215:29, :222:10]
wire [1:0] mask_lo_lo_hi = {mask_acc_3, mask_acc_2}; // @[Misc.scala:215:29, :222:10]
wire [3:0] mask_lo_lo = {mask_lo_lo_hi, mask_lo_lo_lo}; // @[Misc.scala:222:10]
wire [1:0] mask_lo_hi_lo = {mask_acc_5, mask_acc_4}; // @[Misc.scala:215:29, :222:10]
wire [1:0] mask_lo_hi_hi = {mask_acc_7, mask_acc_6}; // @[Misc.scala:215:29, :222:10]
wire [3:0] mask_lo_hi = {mask_lo_hi_hi, mask_lo_hi_lo}; // @[Misc.scala:222:10]
wire [7:0] mask_lo = {mask_lo_hi, mask_lo_lo}; // @[Misc.scala:222:10]
wire [1:0] mask_hi_lo_lo = {mask_acc_9, mask_acc_8}; // @[Misc.scala:215:29, :222:10]
wire [1:0] mask_hi_lo_hi = {mask_acc_11, mask_acc_10}; // @[Misc.scala:215:29, :222:10]
wire [3:0] mask_hi_lo = {mask_hi_lo_hi, mask_hi_lo_lo}; // @[Misc.scala:222:10]
wire [1:0] mask_hi_hi_lo = {mask_acc_13, mask_acc_12}; // @[Misc.scala:215:29, :222:10]
wire [1:0] mask_hi_hi_hi = {mask_acc_15, mask_acc_14}; // @[Misc.scala:215:29, :222:10]
wire [3:0] mask_hi_hi = {mask_hi_hi_hi, mask_hi_hi_lo}; // @[Misc.scala:222:10]
wire [7:0] mask_hi = {mask_hi_hi, mask_hi_lo}; // @[Misc.scala:222:10]
wire [15:0] mask = {mask_hi, mask_lo}; // @[Misc.scala:222:10]
wire [2:0] uncommonBits = _uncommonBits_T[2:0]; // @[Parameters.scala:52:{29,56}]
wire [2:0] uncommonBits_1 = _uncommonBits_T_1[2:0]; // @[Parameters.scala:52:{29,56}]
wire [2:0] uncommonBits_2 = _uncommonBits_T_2[2:0]; // @[Parameters.scala:52:{29,56}]
wire [2:0] uncommonBits_3 = _uncommonBits_T_3[2:0]; // @[Parameters.scala:52:{29,56}]
wire [2:0] uncommonBits_4 = _uncommonBits_T_4[2:0]; // @[Parameters.scala:52:{29,56}]
wire [2:0] uncommonBits_5 = _uncommonBits_T_5[2:0]; // @[Parameters.scala:52:{29,56}]
wire [2:0] uncommonBits_6 = _uncommonBits_T_6[2:0]; // @[Parameters.scala:52:{29,56}]
wire [2:0] uncommonBits_7 = _uncommonBits_T_7[2:0]; // @[Parameters.scala:52:{29,56}]
wire [2:0] uncommonBits_8 = _uncommonBits_T_8[2:0]; // @[Parameters.scala:52:{29,56}]
wire [2:0] uncommonBits_9 = _uncommonBits_T_9[2:0]; // @[Parameters.scala:52:{29,56}]
wire [2:0] uncommonBits_10 = _uncommonBits_T_10[2:0]; // @[Parameters.scala:52:{29,56}]
wire [2:0] source_ok_uncommonBits_1 = _source_ok_uncommonBits_T_1[2:0]; // @[Parameters.scala:52:{29,56}]
wire _source_ok_T_9 = io_in_d_bits_source_0[3]; // @[Monitor.scala:36:7]
wire _source_ok_T_10 = ~_source_ok_T_9; // @[Parameters.scala:54:{10,32}]
wire _source_ok_T_12 = _source_ok_T_10; // @[Parameters.scala:54:{32,67}]
wire _source_ok_T_13 = source_ok_uncommonBits_1 < 3'h5; // @[Parameters.scala:52:56, :57:20]
wire _source_ok_T_14 = _source_ok_T_12 & _source_ok_T_13; // @[Parameters.scala:54:67, :56:48, :57:20]
wire _source_ok_WIRE_1_0 = _source_ok_T_14; // @[Parameters.scala:1138:31]
wire _source_ok_T_15 = io_in_d_bits_source_0 == 4'h5; // @[Monitor.scala:36:7]
wire _source_ok_WIRE_1_1 = _source_ok_T_15; // @[Parameters.scala:1138:31]
wire _source_ok_T_16 = io_in_d_bits_source_0 == 4'h8; // @[Monitor.scala:36:7]
wire _source_ok_WIRE_1_2 = _source_ok_T_16; // @[Parameters.scala:1138:31]
wire _source_ok_T_17 = _source_ok_WIRE_1_0 | _source_ok_WIRE_1_1; // @[Parameters.scala:1138:31, :1139:46]
wire source_ok_1 = _source_ok_T_17 | _source_ok_WIRE_1_2; // @[Parameters.scala:1138:31, :1139:46]
wire [2:0] uncommonBits_11 = _uncommonBits_T_11[2:0]; // @[Parameters.scala:52:{29,56}]
wire _legal_source_T = io_in_b_bits_source_0[3]; // @[Monitor.scala:36:7]
wire _legal_source_T_6 = io_in_b_bits_source_0 == 4'h5; // @[Monitor.scala:36:7]
wire _legal_source_T_7 = io_in_b_bits_source_0 == 4'h8; // @[Monitor.scala:36:7]
wire [32:0] _address_ok_T_1 = {1'h0, _address_ok_T}; // @[Parameters.scala:137:{31,41}]
wire [32:0] _address_ok_T_2 = _address_ok_T_1 & 33'h1FFFFF000; // @[Parameters.scala:137:{41,46}]
wire [32:0] _address_ok_T_3 = _address_ok_T_2; // @[Parameters.scala:137:46]
wire _address_ok_T_4 = _address_ok_T_3 == 33'h0; // @[Parameters.scala:137:{46,59}]
wire _address_ok_WIRE_0 = _address_ok_T_4; // @[Parameters.scala:612:40]
wire [31:0] _address_ok_T_5 = {io_in_b_bits_address_0[31:13], io_in_b_bits_address_0[12:0] ^ 13'h1000}; // @[Monitor.scala:36:7]
wire [32:0] _address_ok_T_6 = {1'h0, _address_ok_T_5}; // @[Parameters.scala:137:{31,41}]
wire [32:0] _address_ok_T_7 = _address_ok_T_6 & 33'h1FFFFF000; // @[Parameters.scala:137:{41,46}]
wire [32:0] _address_ok_T_8 = _address_ok_T_7; // @[Parameters.scala:137:46]
wire _address_ok_T_9 = _address_ok_T_8 == 33'h0; // @[Parameters.scala:137:{46,59}]
wire _address_ok_WIRE_1 = _address_ok_T_9; // @[Parameters.scala:612:40]
wire [13:0] _GEN_0 = io_in_b_bits_address_0[13:0] ^ 14'h3000; // @[Monitor.scala:36:7]
wire [31:0] _address_ok_T_10 = {io_in_b_bits_address_0[31:14], _GEN_0}; // @[Monitor.scala:36:7]
wire [32:0] _address_ok_T_11 = {1'h0, _address_ok_T_10}; // @[Parameters.scala:137:{31,41}]
wire [32:0] _address_ok_T_12 = _address_ok_T_11 & 33'h1FFFFF000; // @[Parameters.scala:137:{41,46}]
wire [32:0] _address_ok_T_13 = _address_ok_T_12; // @[Parameters.scala:137:46]
wire _address_ok_T_14 = _address_ok_T_13 == 33'h0; // @[Parameters.scala:137:{46,59}]
wire _address_ok_WIRE_2 = _address_ok_T_14; // @[Parameters.scala:612:40]
wire [16:0] _GEN_1 = io_in_b_bits_address_0[16:0] ^ 17'h10000; // @[Monitor.scala:36:7]
wire [31:0] _address_ok_T_15 = {io_in_b_bits_address_0[31:17], _GEN_1}; // @[Monitor.scala:36:7]
wire [32:0] _address_ok_T_16 = {1'h0, _address_ok_T_15}; // @[Parameters.scala:137:{31,41}]
wire [32:0] _address_ok_T_17 = _address_ok_T_16 & 33'h1FFFF0000; // @[Parameters.scala:137:{41,46}]
wire [32:0] _address_ok_T_18 = _address_ok_T_17; // @[Parameters.scala:137:46]
wire _address_ok_T_19 = _address_ok_T_18 == 33'h0; // @[Parameters.scala:137:{46,59}]
wire _address_ok_WIRE_3 = _address_ok_T_19; // @[Parameters.scala:612:40]
wire [20:0] _GEN_2 = io_in_b_bits_address_0[20:0] ^ 21'h100000; // @[Monitor.scala:36:7]
wire [31:0] _address_ok_T_20 = {io_in_b_bits_address_0[31:21], _GEN_2}; // @[Monitor.scala:36:7]
wire [32:0] _address_ok_T_21 = {1'h0, _address_ok_T_20}; // @[Parameters.scala:137:{31,41}]
wire [32:0] _address_ok_T_22 = _address_ok_T_21 & 33'h1FFFFF000; // @[Parameters.scala:137:{41,46}]
wire [32:0] _address_ok_T_23 = _address_ok_T_22; // @[Parameters.scala:137:46]
wire _address_ok_T_24 = _address_ok_T_23 == 33'h0; // @[Parameters.scala:137:{46,59}]
wire _address_ok_WIRE_4 = _address_ok_T_24; // @[Parameters.scala:612:40]
wire [31:0] _address_ok_T_25 = {io_in_b_bits_address_0[31:21], io_in_b_bits_address_0[20:0] ^ 21'h110000}; // @[Monitor.scala:36:7]
wire [32:0] _address_ok_T_26 = {1'h0, _address_ok_T_25}; // @[Parameters.scala:137:{31,41}]
wire [32:0] _address_ok_T_27 = _address_ok_T_26 & 33'h1FFFFF000; // @[Parameters.scala:137:{41,46}]
wire [32:0] _address_ok_T_28 = _address_ok_T_27; // @[Parameters.scala:137:46]
wire _address_ok_T_29 = _address_ok_T_28 == 33'h0; // @[Parameters.scala:137:{46,59}]
wire _address_ok_WIRE_5 = _address_ok_T_29; // @[Parameters.scala:612:40]
wire [25:0] _GEN_3 = io_in_b_bits_address_0[25:0] ^ 26'h2000000; // @[Monitor.scala:36:7]
wire [31:0] _address_ok_T_30 = {io_in_b_bits_address_0[31:26], _GEN_3}; // @[Monitor.scala:36:7]
wire [32:0] _address_ok_T_31 = {1'h0, _address_ok_T_30}; // @[Parameters.scala:137:{31,41}]
wire [32:0] _address_ok_T_32 = _address_ok_T_31 & 33'h1FFFF0000; // @[Parameters.scala:137:{41,46}]
wire [32:0] _address_ok_T_33 = _address_ok_T_32; // @[Parameters.scala:137:46]
wire _address_ok_T_34 = _address_ok_T_33 == 33'h0; // @[Parameters.scala:137:{46,59}]
wire _address_ok_WIRE_6 = _address_ok_T_34; // @[Parameters.scala:612:40]
wire [25:0] _GEN_4 = io_in_b_bits_address_0[25:0] ^ 26'h2010000; // @[Monitor.scala:36:7]
wire [31:0] _address_ok_T_35 = {io_in_b_bits_address_0[31:26], _GEN_4}; // @[Monitor.scala:36:7]
wire [32:0] _address_ok_T_36 = {1'h0, _address_ok_T_35}; // @[Parameters.scala:137:{31,41}]
wire [32:0] _address_ok_T_37 = _address_ok_T_36 & 33'h1FFFFF000; // @[Parameters.scala:137:{41,46}]
wire [32:0] _address_ok_T_38 = _address_ok_T_37; // @[Parameters.scala:137:46]
wire _address_ok_T_39 = _address_ok_T_38 == 33'h0; // @[Parameters.scala:137:{46,59}]
wire _address_ok_WIRE_7 = _address_ok_T_39; // @[Parameters.scala:612:40]
wire [27:0] _GEN_5 = io_in_b_bits_address_0[27:0] ^ 28'h8000000; // @[Monitor.scala:36:7]
wire [31:0] _address_ok_T_40 = {io_in_b_bits_address_0[31:28], _GEN_5}; // @[Monitor.scala:36:7]
wire [32:0] _address_ok_T_41 = {1'h0, _address_ok_T_40}; // @[Parameters.scala:137:{31,41}]
wire [32:0] _address_ok_T_42 = _address_ok_T_41 & 33'h1FFFF0000; // @[Parameters.scala:137:{41,46}]
wire [32:0] _address_ok_T_43 = _address_ok_T_42; // @[Parameters.scala:137:46]
wire _address_ok_T_44 = _address_ok_T_43 == 33'h0; // @[Parameters.scala:137:{46,59}]
wire _address_ok_WIRE_8 = _address_ok_T_44; // @[Parameters.scala:612:40]
wire [27:0] _GEN_6 = io_in_b_bits_address_0[27:0] ^ 28'hC000000; // @[Monitor.scala:36:7]
wire [31:0] _address_ok_T_45 = {io_in_b_bits_address_0[31:28], _GEN_6}; // @[Monitor.scala:36:7]
wire [32:0] _address_ok_T_46 = {1'h0, _address_ok_T_45}; // @[Parameters.scala:137:{31,41}]
wire [32:0] _address_ok_T_47 = _address_ok_T_46 & 33'h1FC000000; // @[Parameters.scala:137:{41,46}]
wire [32:0] _address_ok_T_48 = _address_ok_T_47; // @[Parameters.scala:137:46]
wire _address_ok_T_49 = _address_ok_T_48 == 33'h0; // @[Parameters.scala:137:{46,59}]
wire _address_ok_WIRE_9 = _address_ok_T_49; // @[Parameters.scala:612:40]
wire [28:0] _GEN_7 = io_in_b_bits_address_0[28:0] ^ 29'h10020000; // @[Monitor.scala:36:7]
wire [31:0] _address_ok_T_50 = {io_in_b_bits_address_0[31:29], _GEN_7}; // @[Monitor.scala:36:7]
wire [32:0] _address_ok_T_51 = {1'h0, _address_ok_T_50}; // @[Parameters.scala:137:{31,41}]
wire [32:0] _address_ok_T_52 = _address_ok_T_51 & 33'h1FFFFF000; // @[Parameters.scala:137:{41,46}]
wire [32:0] _address_ok_T_53 = _address_ok_T_52; // @[Parameters.scala:137:46]
wire _address_ok_T_54 = _address_ok_T_53 == 33'h0; // @[Parameters.scala:137:{46,59}]
wire _address_ok_WIRE_10 = _address_ok_T_54; // @[Parameters.scala:612:40]
wire [31:0] _address_ok_T_55 = io_in_b_bits_address_0 ^ 32'h80000000; // @[Monitor.scala:36:7]
wire [32:0] _address_ok_T_56 = {1'h0, _address_ok_T_55}; // @[Parameters.scala:137:{31,41}]
wire [32:0] _address_ok_T_57 = _address_ok_T_56 & 33'h1F0000000; // @[Parameters.scala:137:{41,46}]
wire [32:0] _address_ok_T_58 = _address_ok_T_57; // @[Parameters.scala:137:46]
wire _address_ok_T_59 = _address_ok_T_58 == 33'h0; // @[Parameters.scala:137:{46,59}]
wire _address_ok_WIRE_11 = _address_ok_T_59; // @[Parameters.scala:612:40]
wire _address_ok_T_60 = _address_ok_WIRE_0 | _address_ok_WIRE_1; // @[Parameters.scala:612:40, :636:64]
wire _address_ok_T_61 = _address_ok_T_60 | _address_ok_WIRE_2; // @[Parameters.scala:612:40, :636:64]
wire _address_ok_T_62 = _address_ok_T_61 | _address_ok_WIRE_3; // @[Parameters.scala:612:40, :636:64]
wire _address_ok_T_63 = _address_ok_T_62 | _address_ok_WIRE_4; // @[Parameters.scala:612:40, :636:64]
wire _address_ok_T_64 = _address_ok_T_63 | _address_ok_WIRE_5; // @[Parameters.scala:612:40, :636:64]
wire _address_ok_T_65 = _address_ok_T_64 | _address_ok_WIRE_6; // @[Parameters.scala:612:40, :636:64]
wire _address_ok_T_66 = _address_ok_T_65 | _address_ok_WIRE_7; // @[Parameters.scala:612:40, :636:64]
wire _address_ok_T_67 = _address_ok_T_66 | _address_ok_WIRE_8; // @[Parameters.scala:612:40, :636:64]
wire _address_ok_T_68 = _address_ok_T_67 | _address_ok_WIRE_9; // @[Parameters.scala:612:40, :636:64]
wire _address_ok_T_69 = _address_ok_T_68 | _address_ok_WIRE_10; // @[Parameters.scala:612:40, :636:64]
wire address_ok = _address_ok_T_69 | _address_ok_WIRE_11; // @[Parameters.scala:612:40, :636:64]
wire [26:0] _GEN_8 = 27'hFFF << io_in_b_bits_size_0; // @[package.scala:243:71]
wire [26:0] _is_aligned_mask_T_2; // @[package.scala:243:71]
assign _is_aligned_mask_T_2 = _GEN_8; // @[package.scala:243:71]
wire [26:0] _b_first_beats1_decode_T; // @[package.scala:243:71]
assign _b_first_beats1_decode_T = _GEN_8; // @[package.scala:243:71]
wire [11:0] _is_aligned_mask_T_3 = _is_aligned_mask_T_2[11:0]; // @[package.scala:243:{71,76}]
wire [11:0] is_aligned_mask_1 = ~_is_aligned_mask_T_3; // @[package.scala:243:{46,76}]
wire [31:0] _is_aligned_T_1 = {20'h0, io_in_b_bits_address_0[11:0] & is_aligned_mask_1}; // @[package.scala:243:46]
wire is_aligned_1 = _is_aligned_T_1 == 32'h0; // @[Edges.scala:21:{16,24}]
wire [1:0] mask_sizeOH_shiftAmount_1 = _mask_sizeOH_T_3[1:0]; // @[OneHot.scala:64:49]
wire [3:0] _mask_sizeOH_T_4 = 4'h1 << mask_sizeOH_shiftAmount_1; // @[OneHot.scala:64:49, :65:12]
wire [3:0] _mask_sizeOH_T_5 = _mask_sizeOH_T_4; // @[OneHot.scala:65:{12,27}]
wire [3:0] mask_sizeOH_1 = {_mask_sizeOH_T_5[3:1], 1'h1}; // @[OneHot.scala:65:27]
wire mask_sub_sub_sub_sub_0_1_1 = |(io_in_b_bits_size_0[3:2]); // @[Misc.scala:206:21]
wire mask_sub_sub_sub_size_1 = mask_sizeOH_1[3]; // @[Misc.scala:202:81, :209:26]
wire mask_sub_sub_sub_bit_1 = io_in_b_bits_address_0[3]; // @[Misc.scala:210:26]
wire mask_sub_sub_sub_1_2_1 = mask_sub_sub_sub_bit_1; // @[Misc.scala:210:26, :214:27]
wire mask_sub_sub_sub_nbit_1 = ~mask_sub_sub_sub_bit_1; // @[Misc.scala:210:26, :211:20]
wire mask_sub_sub_sub_0_2_1 = mask_sub_sub_sub_nbit_1; // @[Misc.scala:211:20, :214:27]
wire _mask_sub_sub_sub_acc_T_2 = mask_sub_sub_sub_size_1 & mask_sub_sub_sub_0_2_1; // @[Misc.scala:209:26, :214:27, :215:38]
wire mask_sub_sub_sub_0_1_1 = mask_sub_sub_sub_sub_0_1_1 | _mask_sub_sub_sub_acc_T_2; // @[Misc.scala:206:21, :215:{29,38}]
wire _mask_sub_sub_sub_acc_T_3 = mask_sub_sub_sub_size_1 & mask_sub_sub_sub_1_2_1; // @[Misc.scala:209:26, :214:27, :215:38]
wire mask_sub_sub_sub_1_1_1 = mask_sub_sub_sub_sub_0_1_1 | _mask_sub_sub_sub_acc_T_3; // @[Misc.scala:206:21, :215:{29,38}]
wire mask_sub_sub_size_1 = mask_sizeOH_1[2]; // @[Misc.scala:202:81, :209:26]
wire mask_sub_sub_bit_1 = io_in_b_bits_address_0[2]; // @[Misc.scala:210:26]
wire mask_sub_sub_nbit_1 = ~mask_sub_sub_bit_1; // @[Misc.scala:210:26, :211:20]
wire mask_sub_sub_0_2_1 = mask_sub_sub_sub_0_2_1 & mask_sub_sub_nbit_1; // @[Misc.scala:211:20, :214:27]
wire _mask_sub_sub_acc_T_4 = mask_sub_sub_size_1 & mask_sub_sub_0_2_1; // @[Misc.scala:209:26, :214:27, :215:38]
wire mask_sub_sub_0_1_1 = mask_sub_sub_sub_0_1_1 | _mask_sub_sub_acc_T_4; // @[Misc.scala:215:{29,38}]
wire mask_sub_sub_1_2_1 = mask_sub_sub_sub_0_2_1 & mask_sub_sub_bit_1; // @[Misc.scala:210:26, :214:27]
wire _mask_sub_sub_acc_T_5 = mask_sub_sub_size_1 & mask_sub_sub_1_2_1; // @[Misc.scala:209:26, :214:27, :215:38]
wire mask_sub_sub_1_1_1 = mask_sub_sub_sub_0_1_1 | _mask_sub_sub_acc_T_5; // @[Misc.scala:215:{29,38}]
wire mask_sub_sub_2_2_1 = mask_sub_sub_sub_1_2_1 & mask_sub_sub_nbit_1; // @[Misc.scala:211:20, :214:27]
wire _mask_sub_sub_acc_T_6 = mask_sub_sub_size_1 & mask_sub_sub_2_2_1; // @[Misc.scala:209:26, :214:27, :215:38]
wire mask_sub_sub_2_1_1 = mask_sub_sub_sub_1_1_1 | _mask_sub_sub_acc_T_6; // @[Misc.scala:215:{29,38}]
wire mask_sub_sub_3_2_1 = mask_sub_sub_sub_1_2_1 & mask_sub_sub_bit_1; // @[Misc.scala:210:26, :214:27]
wire _mask_sub_sub_acc_T_7 = mask_sub_sub_size_1 & mask_sub_sub_3_2_1; // @[Misc.scala:209:26, :214:27, :215:38]
wire mask_sub_sub_3_1_1 = mask_sub_sub_sub_1_1_1 | _mask_sub_sub_acc_T_7; // @[Misc.scala:215:{29,38}]
wire mask_sub_size_1 = mask_sizeOH_1[1]; // @[Misc.scala:202:81, :209:26]
wire mask_sub_bit_1 = io_in_b_bits_address_0[1]; // @[Misc.scala:210:26]
wire mask_sub_nbit_1 = ~mask_sub_bit_1; // @[Misc.scala:210:26, :211:20]
wire mask_sub_0_2_1 = mask_sub_sub_0_2_1 & mask_sub_nbit_1; // @[Misc.scala:211:20, :214:27]
wire _mask_sub_acc_T_8 = mask_sub_size_1 & mask_sub_0_2_1; // @[Misc.scala:209:26, :214:27, :215:38]
wire mask_sub_0_1_1 = mask_sub_sub_0_1_1 | _mask_sub_acc_T_8; // @[Misc.scala:215:{29,38}]
wire mask_sub_1_2_1 = mask_sub_sub_0_2_1 & mask_sub_bit_1; // @[Misc.scala:210:26, :214:27]
wire _mask_sub_acc_T_9 = mask_sub_size_1 & mask_sub_1_2_1; // @[Misc.scala:209:26, :214:27, :215:38]
wire mask_sub_1_1_1 = mask_sub_sub_0_1_1 | _mask_sub_acc_T_9; // @[Misc.scala:215:{29,38}]
wire mask_sub_2_2_1 = mask_sub_sub_1_2_1 & mask_sub_nbit_1; // @[Misc.scala:211:20, :214:27]
wire _mask_sub_acc_T_10 = mask_sub_size_1 & mask_sub_2_2_1; // @[Misc.scala:209:26, :214:27, :215:38]
wire mask_sub_2_1_1 = mask_sub_sub_1_1_1 | _mask_sub_acc_T_10; // @[Misc.scala:215:{29,38}]
wire mask_sub_3_2_1 = mask_sub_sub_1_2_1 & mask_sub_bit_1; // @[Misc.scala:210:26, :214:27]
wire _mask_sub_acc_T_11 = mask_sub_size_1 & mask_sub_3_2_1; // @[Misc.scala:209:26, :214:27, :215:38]
wire mask_sub_3_1_1 = mask_sub_sub_1_1_1 | _mask_sub_acc_T_11; // @[Misc.scala:215:{29,38}]
wire mask_sub_4_2_1 = mask_sub_sub_2_2_1 & mask_sub_nbit_1; // @[Misc.scala:211:20, :214:27]
wire _mask_sub_acc_T_12 = mask_sub_size_1 & mask_sub_4_2_1; // @[Misc.scala:209:26, :214:27, :215:38]
wire mask_sub_4_1_1 = mask_sub_sub_2_1_1 | _mask_sub_acc_T_12; // @[Misc.scala:215:{29,38}]
wire mask_sub_5_2_1 = mask_sub_sub_2_2_1 & mask_sub_bit_1; // @[Misc.scala:210:26, :214:27]
wire _mask_sub_acc_T_13 = mask_sub_size_1 & mask_sub_5_2_1; // @[Misc.scala:209:26, :214:27, :215:38]
wire mask_sub_5_1_1 = mask_sub_sub_2_1_1 | _mask_sub_acc_T_13; // @[Misc.scala:215:{29,38}]
wire mask_sub_6_2_1 = mask_sub_sub_3_2_1 & mask_sub_nbit_1; // @[Misc.scala:211:20, :214:27]
wire _mask_sub_acc_T_14 = mask_sub_size_1 & mask_sub_6_2_1; // @[Misc.scala:209:26, :214:27, :215:38]
wire mask_sub_6_1_1 = mask_sub_sub_3_1_1 | _mask_sub_acc_T_14; // @[Misc.scala:215:{29,38}]
wire mask_sub_7_2_1 = mask_sub_sub_3_2_1 & mask_sub_bit_1; // @[Misc.scala:210:26, :214:27]
wire _mask_sub_acc_T_15 = mask_sub_size_1 & mask_sub_7_2_1; // @[Misc.scala:209:26, :214:27, :215:38]
wire mask_sub_7_1_1 = mask_sub_sub_3_1_1 | _mask_sub_acc_T_15; // @[Misc.scala:215:{29,38}]
wire mask_size_1 = mask_sizeOH_1[0]; // @[Misc.scala:202:81, :209:26]
wire mask_bit_1 = io_in_b_bits_address_0[0]; // @[Misc.scala:210:26]
wire mask_nbit_1 = ~mask_bit_1; // @[Misc.scala:210:26, :211:20]
wire mask_eq_16 = mask_sub_0_2_1 & mask_nbit_1; // @[Misc.scala:211:20, :214:27]
wire _mask_acc_T_16 = mask_size_1 & mask_eq_16; // @[Misc.scala:209:26, :214:27, :215:38]
wire mask_acc_16 = mask_sub_0_1_1 | _mask_acc_T_16; // @[Misc.scala:215:{29,38}]
wire mask_eq_17 = mask_sub_0_2_1 & mask_bit_1; // @[Misc.scala:210:26, :214:27]
wire _mask_acc_T_17 = mask_size_1 & mask_eq_17; // @[Misc.scala:209:26, :214:27, :215:38]
wire mask_acc_17 = mask_sub_0_1_1 | _mask_acc_T_17; // @[Misc.scala:215:{29,38}]
wire mask_eq_18 = mask_sub_1_2_1 & mask_nbit_1; // @[Misc.scala:211:20, :214:27]
wire _mask_acc_T_18 = mask_size_1 & mask_eq_18; // @[Misc.scala:209:26, :214:27, :215:38]
wire mask_acc_18 = mask_sub_1_1_1 | _mask_acc_T_18; // @[Misc.scala:215:{29,38}]
wire mask_eq_19 = mask_sub_1_2_1 & mask_bit_1; // @[Misc.scala:210:26, :214:27]
wire _mask_acc_T_19 = mask_size_1 & mask_eq_19; // @[Misc.scala:209:26, :214:27, :215:38]
wire mask_acc_19 = mask_sub_1_1_1 | _mask_acc_T_19; // @[Misc.scala:215:{29,38}]
wire mask_eq_20 = mask_sub_2_2_1 & mask_nbit_1; // @[Misc.scala:211:20, :214:27]
wire _mask_acc_T_20 = mask_size_1 & mask_eq_20; // @[Misc.scala:209:26, :214:27, :215:38]
wire mask_acc_20 = mask_sub_2_1_1 | _mask_acc_T_20; // @[Misc.scala:215:{29,38}]
wire mask_eq_21 = mask_sub_2_2_1 & mask_bit_1; // @[Misc.scala:210:26, :214:27]
wire _mask_acc_T_21 = mask_size_1 & mask_eq_21; // @[Misc.scala:209:26, :214:27, :215:38]
wire mask_acc_21 = mask_sub_2_1_1 | _mask_acc_T_21; // @[Misc.scala:215:{29,38}]
wire mask_eq_22 = mask_sub_3_2_1 & mask_nbit_1; // @[Misc.scala:211:20, :214:27]
wire _mask_acc_T_22 = mask_size_1 & mask_eq_22; // @[Misc.scala:209:26, :214:27, :215:38]
wire mask_acc_22 = mask_sub_3_1_1 | _mask_acc_T_22; // @[Misc.scala:215:{29,38}]
wire mask_eq_23 = mask_sub_3_2_1 & mask_bit_1; // @[Misc.scala:210:26, :214:27]
wire _mask_acc_T_23 = mask_size_1 & mask_eq_23; // @[Misc.scala:209:26, :214:27, :215:38]
wire mask_acc_23 = mask_sub_3_1_1 | _mask_acc_T_23; // @[Misc.scala:215:{29,38}]
wire mask_eq_24 = mask_sub_4_2_1 & mask_nbit_1; // @[Misc.scala:211:20, :214:27]
wire _mask_acc_T_24 = mask_size_1 & mask_eq_24; // @[Misc.scala:209:26, :214:27, :215:38]
wire mask_acc_24 = mask_sub_4_1_1 | _mask_acc_T_24; // @[Misc.scala:215:{29,38}]
wire mask_eq_25 = mask_sub_4_2_1 & mask_bit_1; // @[Misc.scala:210:26, :214:27]
wire _mask_acc_T_25 = mask_size_1 & mask_eq_25; // @[Misc.scala:209:26, :214:27, :215:38]
wire mask_acc_25 = mask_sub_4_1_1 | _mask_acc_T_25; // @[Misc.scala:215:{29,38}]
wire mask_eq_26 = mask_sub_5_2_1 & mask_nbit_1; // @[Misc.scala:211:20, :214:27]
wire _mask_acc_T_26 = mask_size_1 & mask_eq_26; // @[Misc.scala:209:26, :214:27, :215:38]
wire mask_acc_26 = mask_sub_5_1_1 | _mask_acc_T_26; // @[Misc.scala:215:{29,38}]
wire mask_eq_27 = mask_sub_5_2_1 & mask_bit_1; // @[Misc.scala:210:26, :214:27]
wire _mask_acc_T_27 = mask_size_1 & mask_eq_27; // @[Misc.scala:209:26, :214:27, :215:38]
wire mask_acc_27 = mask_sub_5_1_1 | _mask_acc_T_27; // @[Misc.scala:215:{29,38}]
wire mask_eq_28 = mask_sub_6_2_1 & mask_nbit_1; // @[Misc.scala:211:20, :214:27]
wire _mask_acc_T_28 = mask_size_1 & mask_eq_28; // @[Misc.scala:209:26, :214:27, :215:38]
wire mask_acc_28 = mask_sub_6_1_1 | _mask_acc_T_28; // @[Misc.scala:215:{29,38}]
wire mask_eq_29 = mask_sub_6_2_1 & mask_bit_1; // @[Misc.scala:210:26, :214:27]
wire _mask_acc_T_29 = mask_size_1 & mask_eq_29; // @[Misc.scala:209:26, :214:27, :215:38]
wire mask_acc_29 = mask_sub_6_1_1 | _mask_acc_T_29; // @[Misc.scala:215:{29,38}]
wire mask_eq_30 = mask_sub_7_2_1 & mask_nbit_1; // @[Misc.scala:211:20, :214:27]
wire _mask_acc_T_30 = mask_size_1 & mask_eq_30; // @[Misc.scala:209:26, :214:27, :215:38]
wire mask_acc_30 = mask_sub_7_1_1 | _mask_acc_T_30; // @[Misc.scala:215:{29,38}]
wire mask_eq_31 = mask_sub_7_2_1 & mask_bit_1; // @[Misc.scala:210:26, :214:27]
wire _mask_acc_T_31 = mask_size_1 & mask_eq_31; // @[Misc.scala:209:26, :214:27, :215:38]
wire mask_acc_31 = mask_sub_7_1_1 | _mask_acc_T_31; // @[Misc.scala:215:{29,38}]
wire [1:0] mask_lo_lo_lo_1 = {mask_acc_17, mask_acc_16}; // @[Misc.scala:215:29, :222:10]
wire [1:0] mask_lo_lo_hi_1 = {mask_acc_19, mask_acc_18}; // @[Misc.scala:215:29, :222:10]
wire [3:0] mask_lo_lo_1 = {mask_lo_lo_hi_1, mask_lo_lo_lo_1}; // @[Misc.scala:222:10]
wire [1:0] mask_lo_hi_lo_1 = {mask_acc_21, mask_acc_20}; // @[Misc.scala:215:29, :222:10]
wire [1:0] mask_lo_hi_hi_1 = {mask_acc_23, mask_acc_22}; // @[Misc.scala:215:29, :222:10]
wire [3:0] mask_lo_hi_1 = {mask_lo_hi_hi_1, mask_lo_hi_lo_1}; // @[Misc.scala:222:10]
wire [7:0] mask_lo_1 = {mask_lo_hi_1, mask_lo_lo_1}; // @[Misc.scala:222:10]
wire [1:0] mask_hi_lo_lo_1 = {mask_acc_25, mask_acc_24}; // @[Misc.scala:215:29, :222:10]
wire [1:0] mask_hi_lo_hi_1 = {mask_acc_27, mask_acc_26}; // @[Misc.scala:215:29, :222:10]
wire [3:0] mask_hi_lo_1 = {mask_hi_lo_hi_1, mask_hi_lo_lo_1}; // @[Misc.scala:222:10]
wire [1:0] mask_hi_hi_lo_1 = {mask_acc_29, mask_acc_28}; // @[Misc.scala:215:29, :222:10]
wire [1:0] mask_hi_hi_hi_1 = {mask_acc_31, mask_acc_30}; // @[Misc.scala:215:29, :222:10]
wire [3:0] mask_hi_hi_1 = {mask_hi_hi_hi_1, mask_hi_hi_lo_1}; // @[Misc.scala:222:10]
wire [7:0] mask_hi_1 = {mask_hi_hi_1, mask_hi_lo_1}; // @[Misc.scala:222:10]
wire [15:0] mask_1 = {mask_hi_1, mask_lo_1}; // @[Misc.scala:222:10]
wire [2:0] legal_source_uncommonBits = _legal_source_uncommonBits_T[2:0]; // @[Parameters.scala:52:{29,56}]
wire _legal_source_T_1 = ~_legal_source_T; // @[Parameters.scala:54:{10,32}]
wire _legal_source_T_3 = _legal_source_T_1; // @[Parameters.scala:54:{32,67}]
wire _legal_source_T_4 = legal_source_uncommonBits < 3'h5; // @[Parameters.scala:52:56, :57:20]
wire _legal_source_T_5 = _legal_source_T_3 & _legal_source_T_4; // @[Parameters.scala:54:67, :56:48, :57:20]
wire _legal_source_WIRE_0 = _legal_source_T_5; // @[Parameters.scala:1138:31]
wire _legal_source_WIRE_1 = _legal_source_T_6; // @[Parameters.scala:1138:31]
wire _legal_source_WIRE_2 = _legal_source_T_7; // @[Parameters.scala:1138:31]
wire [2:0] _legal_source_T_9 = _legal_source_WIRE_1 ? 3'h5 : 3'h0; // @[Mux.scala:30:73]
wire [2:0] _legal_source_T_11 = _legal_source_T_9; // @[Mux.scala:30:73]
wire [3:0] _legal_source_T_10 = {_legal_source_WIRE_2, 3'h0}; // @[Mux.scala:30:73]
wire [3:0] _legal_source_T_12 = {1'h0, _legal_source_T_11} | _legal_source_T_10; // @[Mux.scala:30:73]
wire [3:0] _legal_source_WIRE_1_0 = _legal_source_T_12; // @[Mux.scala:30:73]
wire legal_source = _legal_source_WIRE_1_0 == io_in_b_bits_source_0; // @[Mux.scala:30:73]
wire [2:0] uncommonBits_12 = _uncommonBits_T_12[2:0]; // @[Parameters.scala:52:{29,56}]
wire [2:0] source_ok_uncommonBits_2 = _source_ok_uncommonBits_T_2[2:0]; // @[Parameters.scala:52:{29,56}]
wire _source_ok_T_18 = io_in_c_bits_source_0[3]; // @[Monitor.scala:36:7]
wire _source_ok_T_19 = ~_source_ok_T_18; // @[Parameters.scala:54:{10,32}]
wire _source_ok_T_21 = _source_ok_T_19; // @[Parameters.scala:54:{32,67}]
wire _source_ok_T_22 = source_ok_uncommonBits_2 < 3'h5; // @[Parameters.scala:52:56, :57:20]
wire _source_ok_T_23 = _source_ok_T_21 & _source_ok_T_22; // @[Parameters.scala:54:67, :56:48, :57:20]
wire _source_ok_WIRE_2_0 = _source_ok_T_23; // @[Parameters.scala:1138:31]
wire _source_ok_T_24 = io_in_c_bits_source_0 == 4'h5; // @[Monitor.scala:36:7]
wire _source_ok_WIRE_2_1 = _source_ok_T_24; // @[Parameters.scala:1138:31]
wire _source_ok_T_25 = io_in_c_bits_source_0 == 4'h8; // @[Monitor.scala:36:7]
wire _source_ok_WIRE_2_2 = _source_ok_T_25; // @[Parameters.scala:1138:31]
wire _source_ok_T_26 = _source_ok_WIRE_2_0 | _source_ok_WIRE_2_1; // @[Parameters.scala:1138:31, :1139:46]
wire source_ok_2 = _source_ok_T_26 | _source_ok_WIRE_2_2; // @[Parameters.scala:1138:31, :1139:46]
wire [26:0] _GEN_9 = 27'hFFF << io_in_c_bits_size_0; // @[package.scala:243:71]
wire [26:0] _is_aligned_mask_T_4; // @[package.scala:243:71]
assign _is_aligned_mask_T_4 = _GEN_9; // @[package.scala:243:71]
wire [26:0] _c_first_beats1_decode_T; // @[package.scala:243:71]
assign _c_first_beats1_decode_T = _GEN_9; // @[package.scala:243:71]
wire [26:0] _c_first_beats1_decode_T_3; // @[package.scala:243:71]
assign _c_first_beats1_decode_T_3 = _GEN_9; // @[package.scala:243:71]
wire [11:0] _is_aligned_mask_T_5 = _is_aligned_mask_T_4[11:0]; // @[package.scala:243:{71,76}]
wire [11:0] is_aligned_mask_2 = ~_is_aligned_mask_T_5; // @[package.scala:243:{46,76}]
wire [31:0] _is_aligned_T_2 = {20'h0, io_in_c_bits_address_0[11:0] & is_aligned_mask_2}; // @[package.scala:243:46]
wire is_aligned_2 = _is_aligned_T_2 == 32'h0; // @[Edges.scala:21:{16,24}]
wire [32:0] _address_ok_T_71 = {1'h0, _address_ok_T_70}; // @[Parameters.scala:137:{31,41}]
wire [32:0] _address_ok_T_72 = _address_ok_T_71 & 33'h1FFFFF000; // @[Parameters.scala:137:{41,46}]
wire [32:0] _address_ok_T_73 = _address_ok_T_72; // @[Parameters.scala:137:46]
wire _address_ok_T_74 = _address_ok_T_73 == 33'h0; // @[Parameters.scala:137:{46,59}]
wire _address_ok_WIRE_1_0 = _address_ok_T_74; // @[Parameters.scala:612:40]
wire [31:0] _address_ok_T_75 = {io_in_c_bits_address_0[31:13], io_in_c_bits_address_0[12:0] ^ 13'h1000}; // @[Monitor.scala:36:7]
wire [32:0] _address_ok_T_76 = {1'h0, _address_ok_T_75}; // @[Parameters.scala:137:{31,41}]
wire [32:0] _address_ok_T_77 = _address_ok_T_76 & 33'h1FFFFF000; // @[Parameters.scala:137:{41,46}]
wire [32:0] _address_ok_T_78 = _address_ok_T_77; // @[Parameters.scala:137:46]
wire _address_ok_T_79 = _address_ok_T_78 == 33'h0; // @[Parameters.scala:137:{46,59}]
wire _address_ok_WIRE_1_1 = _address_ok_T_79; // @[Parameters.scala:612:40]
wire [13:0] _GEN_10 = io_in_c_bits_address_0[13:0] ^ 14'h3000; // @[Monitor.scala:36:7]
wire [31:0] _address_ok_T_80 = {io_in_c_bits_address_0[31:14], _GEN_10}; // @[Monitor.scala:36:7]
wire [32:0] _address_ok_T_81 = {1'h0, _address_ok_T_80}; // @[Parameters.scala:137:{31,41}]
wire [32:0] _address_ok_T_82 = _address_ok_T_81 & 33'h1FFFFF000; // @[Parameters.scala:137:{41,46}]
wire [32:0] _address_ok_T_83 = _address_ok_T_82; // @[Parameters.scala:137:46]
wire _address_ok_T_84 = _address_ok_T_83 == 33'h0; // @[Parameters.scala:137:{46,59}]
wire _address_ok_WIRE_1_2 = _address_ok_T_84; // @[Parameters.scala:612:40]
wire [16:0] _GEN_11 = io_in_c_bits_address_0[16:0] ^ 17'h10000; // @[Monitor.scala:36:7]
wire [31:0] _address_ok_T_85 = {io_in_c_bits_address_0[31:17], _GEN_11}; // @[Monitor.scala:36:7]
wire [32:0] _address_ok_T_86 = {1'h0, _address_ok_T_85}; // @[Parameters.scala:137:{31,41}]
wire [32:0] _address_ok_T_87 = _address_ok_T_86 & 33'h1FFFF0000; // @[Parameters.scala:137:{41,46}]
wire [32:0] _address_ok_T_88 = _address_ok_T_87; // @[Parameters.scala:137:46]
wire _address_ok_T_89 = _address_ok_T_88 == 33'h0; // @[Parameters.scala:137:{46,59}]
wire _address_ok_WIRE_1_3 = _address_ok_T_89; // @[Parameters.scala:612:40]
wire [20:0] _GEN_12 = io_in_c_bits_address_0[20:0] ^ 21'h100000; // @[Monitor.scala:36:7]
wire [31:0] _address_ok_T_90 = {io_in_c_bits_address_0[31:21], _GEN_12}; // @[Monitor.scala:36:7]
wire [32:0] _address_ok_T_91 = {1'h0, _address_ok_T_90}; // @[Parameters.scala:137:{31,41}]
wire [32:0] _address_ok_T_92 = _address_ok_T_91 & 33'h1FFFFF000; // @[Parameters.scala:137:{41,46}]
wire [32:0] _address_ok_T_93 = _address_ok_T_92; // @[Parameters.scala:137:46]
wire _address_ok_T_94 = _address_ok_T_93 == 33'h0; // @[Parameters.scala:137:{46,59}]
wire _address_ok_WIRE_1_4 = _address_ok_T_94; // @[Parameters.scala:612:40]
wire [31:0] _address_ok_T_95 = {io_in_c_bits_address_0[31:21], io_in_c_bits_address_0[20:0] ^ 21'h110000}; // @[Monitor.scala:36:7]
wire [32:0] _address_ok_T_96 = {1'h0, _address_ok_T_95}; // @[Parameters.scala:137:{31,41}]
wire [32:0] _address_ok_T_97 = _address_ok_T_96 & 33'h1FFFFF000; // @[Parameters.scala:137:{41,46}]
wire [32:0] _address_ok_T_98 = _address_ok_T_97; // @[Parameters.scala:137:46]
wire _address_ok_T_99 = _address_ok_T_98 == 33'h0; // @[Parameters.scala:137:{46,59}]
wire _address_ok_WIRE_1_5 = _address_ok_T_99; // @[Parameters.scala:612:40]
wire [25:0] _GEN_13 = io_in_c_bits_address_0[25:0] ^ 26'h2000000; // @[Monitor.scala:36:7]
wire [31:0] _address_ok_T_100 = {io_in_c_bits_address_0[31:26], _GEN_13}; // @[Monitor.scala:36:7]
wire [32:0] _address_ok_T_101 = {1'h0, _address_ok_T_100}; // @[Parameters.scala:137:{31,41}]
wire [32:0] _address_ok_T_102 = _address_ok_T_101 & 33'h1FFFF0000; // @[Parameters.scala:137:{41,46}]
wire [32:0] _address_ok_T_103 = _address_ok_T_102; // @[Parameters.scala:137:46]
wire _address_ok_T_104 = _address_ok_T_103 == 33'h0; // @[Parameters.scala:137:{46,59}]
wire _address_ok_WIRE_1_6 = _address_ok_T_104; // @[Parameters.scala:612:40]
wire [25:0] _GEN_14 = io_in_c_bits_address_0[25:0] ^ 26'h2010000; // @[Monitor.scala:36:7]
wire [31:0] _address_ok_T_105 = {io_in_c_bits_address_0[31:26], _GEN_14}; // @[Monitor.scala:36:7]
wire [32:0] _address_ok_T_106 = {1'h0, _address_ok_T_105}; // @[Parameters.scala:137:{31,41}]
wire [32:0] _address_ok_T_107 = _address_ok_T_106 & 33'h1FFFFF000; // @[Parameters.scala:137:{41,46}]
wire [32:0] _address_ok_T_108 = _address_ok_T_107; // @[Parameters.scala:137:46]
wire _address_ok_T_109 = _address_ok_T_108 == 33'h0; // @[Parameters.scala:137:{46,59}]
wire _address_ok_WIRE_1_7 = _address_ok_T_109; // @[Parameters.scala:612:40]
wire [27:0] _GEN_15 = io_in_c_bits_address_0[27:0] ^ 28'h8000000; // @[Monitor.scala:36:7]
wire [31:0] _address_ok_T_110 = {io_in_c_bits_address_0[31:28], _GEN_15}; // @[Monitor.scala:36:7]
wire [32:0] _address_ok_T_111 = {1'h0, _address_ok_T_110}; // @[Parameters.scala:137:{31,41}]
wire [32:0] _address_ok_T_112 = _address_ok_T_111 & 33'h1FFFF0000; // @[Parameters.scala:137:{41,46}]
wire [32:0] _address_ok_T_113 = _address_ok_T_112; // @[Parameters.scala:137:46]
wire _address_ok_T_114 = _address_ok_T_113 == 33'h0; // @[Parameters.scala:137:{46,59}]
wire _address_ok_WIRE_1_8 = _address_ok_T_114; // @[Parameters.scala:612:40]
wire [27:0] _GEN_16 = io_in_c_bits_address_0[27:0] ^ 28'hC000000; // @[Monitor.scala:36:7]
wire [31:0] _address_ok_T_115 = {io_in_c_bits_address_0[31:28], _GEN_16}; // @[Monitor.scala:36:7]
wire [32:0] _address_ok_T_116 = {1'h0, _address_ok_T_115}; // @[Parameters.scala:137:{31,41}]
wire [32:0] _address_ok_T_117 = _address_ok_T_116 & 33'h1FC000000; // @[Parameters.scala:137:{41,46}]
wire [32:0] _address_ok_T_118 = _address_ok_T_117; // @[Parameters.scala:137:46]
wire _address_ok_T_119 = _address_ok_T_118 == 33'h0; // @[Parameters.scala:137:{46,59}]
wire _address_ok_WIRE_1_9 = _address_ok_T_119; // @[Parameters.scala:612:40]
wire [28:0] _GEN_17 = io_in_c_bits_address_0[28:0] ^ 29'h10020000; // @[Monitor.scala:36:7]
wire [31:0] _address_ok_T_120 = {io_in_c_bits_address_0[31:29], _GEN_17}; // @[Monitor.scala:36:7]
wire [32:0] _address_ok_T_121 = {1'h0, _address_ok_T_120}; // @[Parameters.scala:137:{31,41}]
wire [32:0] _address_ok_T_122 = _address_ok_T_121 & 33'h1FFFFF000; // @[Parameters.scala:137:{41,46}]
wire [32:0] _address_ok_T_123 = _address_ok_T_122; // @[Parameters.scala:137:46]
wire _address_ok_T_124 = _address_ok_T_123 == 33'h0; // @[Parameters.scala:137:{46,59}]
wire _address_ok_WIRE_1_10 = _address_ok_T_124; // @[Parameters.scala:612:40]
wire [31:0] _address_ok_T_125 = io_in_c_bits_address_0 ^ 32'h80000000; // @[Monitor.scala:36:7]
wire [32:0] _address_ok_T_126 = {1'h0, _address_ok_T_125}; // @[Parameters.scala:137:{31,41}]
wire [32:0] _address_ok_T_127 = _address_ok_T_126 & 33'h1F0000000; // @[Parameters.scala:137:{41,46}]
wire [32:0] _address_ok_T_128 = _address_ok_T_127; // @[Parameters.scala:137:46]
wire _address_ok_T_129 = _address_ok_T_128 == 33'h0; // @[Parameters.scala:137:{46,59}]
wire _address_ok_WIRE_1_11 = _address_ok_T_129; // @[Parameters.scala:612:40]
wire _address_ok_T_130 = _address_ok_WIRE_1_0 | _address_ok_WIRE_1_1; // @[Parameters.scala:612:40, :636:64]
wire _address_ok_T_131 = _address_ok_T_130 | _address_ok_WIRE_1_2; // @[Parameters.scala:612:40, :636:64]
wire _address_ok_T_132 = _address_ok_T_131 | _address_ok_WIRE_1_3; // @[Parameters.scala:612:40, :636:64]
wire _address_ok_T_133 = _address_ok_T_132 | _address_ok_WIRE_1_4; // @[Parameters.scala:612:40, :636:64]
wire _address_ok_T_134 = _address_ok_T_133 | _address_ok_WIRE_1_5; // @[Parameters.scala:612:40, :636:64]
wire _address_ok_T_135 = _address_ok_T_134 | _address_ok_WIRE_1_6; // @[Parameters.scala:612:40, :636:64]
wire _address_ok_T_136 = _address_ok_T_135 | _address_ok_WIRE_1_7; // @[Parameters.scala:612:40, :636:64]
wire _address_ok_T_137 = _address_ok_T_136 | _address_ok_WIRE_1_8; // @[Parameters.scala:612:40, :636:64]
wire _address_ok_T_138 = _address_ok_T_137 | _address_ok_WIRE_1_9; // @[Parameters.scala:612:40, :636:64]
wire _address_ok_T_139 = _address_ok_T_138 | _address_ok_WIRE_1_10; // @[Parameters.scala:612:40, :636:64]
wire address_ok_1 = _address_ok_T_139 | _address_ok_WIRE_1_11; // @[Parameters.scala:612:40, :636:64]
wire [2:0] uncommonBits_13 = _uncommonBits_T_13[2:0]; // @[Parameters.scala:52:{29,56}]
wire [2:0] uncommonBits_14 = _uncommonBits_T_14[2:0]; // @[Parameters.scala:52:{29,56}]
wire [2:0] uncommonBits_15 = _uncommonBits_T_15[2:0]; // @[Parameters.scala:52:{29,56}]
wire [2:0] uncommonBits_16 = _uncommonBits_T_16[2:0]; // @[Parameters.scala:52:{29,56}]
wire [2:0] uncommonBits_17 = _uncommonBits_T_17[2:0]; // @[Parameters.scala:52:{29,56}]
wire _T_2551 = io_in_a_ready_0 & io_in_a_valid_0; // @[Decoupled.scala:51:35]
wire _a_first_T; // @[Decoupled.scala:51:35]
assign _a_first_T = _T_2551; // @[Decoupled.scala:51:35]
wire _a_first_T_1; // @[Decoupled.scala:51:35]
assign _a_first_T_1 = _T_2551; // @[Decoupled.scala:51:35]
wire [11:0] _a_first_beats1_decode_T_1 = _a_first_beats1_decode_T[11:0]; // @[package.scala:243:{71,76}]
wire [11:0] _a_first_beats1_decode_T_2 = ~_a_first_beats1_decode_T_1; // @[package.scala:243:{46,76}]
wire [7:0] a_first_beats1_decode = _a_first_beats1_decode_T_2[11:4]; // @[package.scala:243:46]
wire _a_first_beats1_opdata_T = io_in_a_bits_opcode_0[2]; // @[Monitor.scala:36:7]
wire _a_first_beats1_opdata_T_1 = io_in_a_bits_opcode_0[2]; // @[Monitor.scala:36:7]
wire a_first_beats1_opdata = ~_a_first_beats1_opdata_T; // @[Edges.scala:92:{28,37}]
wire [7:0] a_first_beats1 = a_first_beats1_opdata ? a_first_beats1_decode : 8'h0; // @[Edges.scala:92:28, :220:59, :221:14]
reg [7:0] a_first_counter; // @[Edges.scala:229:27]
wire [8:0] _a_first_counter1_T = {1'h0, a_first_counter} - 9'h1; // @[Edges.scala:229:27, :230:28]
wire [7:0] a_first_counter1 = _a_first_counter1_T[7:0]; // @[Edges.scala:230:28]
wire a_first = a_first_counter == 8'h0; // @[Edges.scala:229:27, :231:25]
wire _a_first_last_T = a_first_counter == 8'h1; // @[Edges.scala:229:27, :232:25]
wire _a_first_last_T_1 = a_first_beats1 == 8'h0; // @[Edges.scala:221:14, :232:43]
wire a_first_last = _a_first_last_T | _a_first_last_T_1; // @[Edges.scala:232:{25,33,43}]
wire a_first_done = a_first_last & _a_first_T; // @[Decoupled.scala:51:35]
wire [7:0] _a_first_count_T = ~a_first_counter1; // @[Edges.scala:230:28, :234:27]
wire [7:0] a_first_count = a_first_beats1 & _a_first_count_T; // @[Edges.scala:221:14, :234:{25,27}]
wire [7:0] _a_first_counter_T = a_first ? a_first_beats1 : a_first_counter1; // @[Edges.scala:221:14, :230:28, :231:25, :236:21]
reg [2:0] opcode; // @[Monitor.scala:387:22]
reg [2:0] param; // @[Monitor.scala:388:22]
reg [3:0] size; // @[Monitor.scala:389:22]
reg [3:0] source; // @[Monitor.scala:390:22]
reg [31:0] address; // @[Monitor.scala:391:22]
wire _T_2625 = io_in_d_ready_0 & io_in_d_valid_0; // @[Decoupled.scala:51:35]
wire _d_first_T; // @[Decoupled.scala:51:35]
assign _d_first_T = _T_2625; // @[Decoupled.scala:51:35]
wire _d_first_T_1; // @[Decoupled.scala:51:35]
assign _d_first_T_1 = _T_2625; // @[Decoupled.scala:51:35]
wire _d_first_T_2; // @[Decoupled.scala:51:35]
assign _d_first_T_2 = _T_2625; // @[Decoupled.scala:51:35]
wire _d_first_T_3; // @[Decoupled.scala:51:35]
assign _d_first_T_3 = _T_2625; // @[Decoupled.scala:51:35]
wire [26:0] _GEN_18 = 27'hFFF << io_in_d_bits_size_0; // @[package.scala:243:71]
wire [26:0] _d_first_beats1_decode_T; // @[package.scala:243:71]
assign _d_first_beats1_decode_T = _GEN_18; // @[package.scala:243:71]
wire [26:0] _d_first_beats1_decode_T_3; // @[package.scala:243:71]
assign _d_first_beats1_decode_T_3 = _GEN_18; // @[package.scala:243:71]
wire [26:0] _d_first_beats1_decode_T_6; // @[package.scala:243:71]
assign _d_first_beats1_decode_T_6 = _GEN_18; // @[package.scala:243:71]
wire [26:0] _d_first_beats1_decode_T_9; // @[package.scala:243:71]
assign _d_first_beats1_decode_T_9 = _GEN_18; // @[package.scala:243:71]
wire [11:0] _d_first_beats1_decode_T_1 = _d_first_beats1_decode_T[11:0]; // @[package.scala:243:{71,76}]
wire [11:0] _d_first_beats1_decode_T_2 = ~_d_first_beats1_decode_T_1; // @[package.scala:243:{46,76}]
wire [7:0] d_first_beats1_decode = _d_first_beats1_decode_T_2[11:4]; // @[package.scala:243:46]
wire d_first_beats1_opdata = io_in_d_bits_opcode_0[0]; // @[Monitor.scala:36:7]
wire d_first_beats1_opdata_1 = io_in_d_bits_opcode_0[0]; // @[Monitor.scala:36:7]
wire d_first_beats1_opdata_2 = io_in_d_bits_opcode_0[0]; // @[Monitor.scala:36:7]
wire d_first_beats1_opdata_3 = io_in_d_bits_opcode_0[0]; // @[Monitor.scala:36:7]
wire [7:0] d_first_beats1 = d_first_beats1_opdata ? d_first_beats1_decode : 8'h0; // @[Edges.scala:106:36, :220:59, :221:14]
reg [7:0] d_first_counter; // @[Edges.scala:229:27]
wire [8:0] _d_first_counter1_T = {1'h0, d_first_counter} - 9'h1; // @[Edges.scala:229:27, :230:28]
wire [7:0] d_first_counter1 = _d_first_counter1_T[7:0]; // @[Edges.scala:230:28]
wire d_first = d_first_counter == 8'h0; // @[Edges.scala:229:27, :231:25]
wire _d_first_last_T = d_first_counter == 8'h1; // @[Edges.scala:229:27, :232:25]
wire _d_first_last_T_1 = d_first_beats1 == 8'h0; // @[Edges.scala:221:14, :232:43]
wire d_first_last = _d_first_last_T | _d_first_last_T_1; // @[Edges.scala:232:{25,33,43}]
wire d_first_done = d_first_last & _d_first_T; // @[Decoupled.scala:51:35]
wire [7:0] _d_first_count_T = ~d_first_counter1; // @[Edges.scala:230:28, :234:27]
wire [7:0] d_first_count = d_first_beats1 & _d_first_count_T; // @[Edges.scala:221:14, :234:{25,27}]
wire [7:0] _d_first_counter_T = d_first ? d_first_beats1 : d_first_counter1; // @[Edges.scala:221:14, :230:28, :231:25, :236:21]
reg [2:0] opcode_1; // @[Monitor.scala:538:22]
reg [1:0] param_1; // @[Monitor.scala:539:22]
reg [3:0] size_1; // @[Monitor.scala:540:22]
reg [3:0] source_1; // @[Monitor.scala:541:22]
reg [3:0] sink; // @[Monitor.scala:542:22]
reg denied; // @[Monitor.scala:543:22]
wire _b_first_T = io_in_b_ready_0 & io_in_b_valid_0; // @[Decoupled.scala:51:35]
wire b_first_done = _b_first_T; // @[Decoupled.scala:51:35]
wire [11:0] _b_first_beats1_decode_T_1 = _b_first_beats1_decode_T[11:0]; // @[package.scala:243:{71,76}]
wire [11:0] _b_first_beats1_decode_T_2 = ~_b_first_beats1_decode_T_1; // @[package.scala:243:{46,76}]
wire [7:0] b_first_beats1_decode = _b_first_beats1_decode_T_2[11:4]; // @[package.scala:243:46]
wire _b_first_beats1_opdata_T = io_in_b_bits_opcode_0[2]; // @[Monitor.scala:36:7]
wire b_first_beats1_opdata = ~_b_first_beats1_opdata_T; // @[Edges.scala:97:{28,37}]
reg [7:0] b_first_counter; // @[Edges.scala:229:27]
wire [8:0] _b_first_counter1_T = {1'h0, b_first_counter} - 9'h1; // @[Edges.scala:229:27, :230:28]
wire [7:0] b_first_counter1 = _b_first_counter1_T[7:0]; // @[Edges.scala:230:28]
wire b_first = b_first_counter == 8'h0; // @[Edges.scala:229:27, :231:25]
wire _b_first_last_T = b_first_counter == 8'h1; // @[Edges.scala:229:27, :232:25]
wire [7:0] _b_first_count_T = ~b_first_counter1; // @[Edges.scala:230:28, :234:27]
wire [7:0] _b_first_counter_T = b_first ? 8'h0 : b_first_counter1; // @[Edges.scala:230:28, :231:25, :236:21]
reg [2:0] opcode_2; // @[Monitor.scala:410:22]
reg [1:0] param_2; // @[Monitor.scala:411:22]
reg [3:0] size_2; // @[Monitor.scala:412:22]
reg [3:0] source_2; // @[Monitor.scala:413:22]
reg [31:0] address_1; // @[Monitor.scala:414:22]
wire _T_2622 = io_in_c_ready_0 & io_in_c_valid_0; // @[Decoupled.scala:51:35]
wire _c_first_T; // @[Decoupled.scala:51:35]
assign _c_first_T = _T_2622; // @[Decoupled.scala:51:35]
wire _c_first_T_1; // @[Decoupled.scala:51:35]
assign _c_first_T_1 = _T_2622; // @[Decoupled.scala:51:35]
wire [11:0] _c_first_beats1_decode_T_1 = _c_first_beats1_decode_T[11:0]; // @[package.scala:243:{71,76}]
wire [11:0] _c_first_beats1_decode_T_2 = ~_c_first_beats1_decode_T_1; // @[package.scala:243:{46,76}]
wire [7:0] c_first_beats1_decode = _c_first_beats1_decode_T_2[11:4]; // @[package.scala:243:46]
wire c_first_beats1_opdata = io_in_c_bits_opcode_0[0]; // @[Monitor.scala:36:7]
wire c_first_beats1_opdata_1 = io_in_c_bits_opcode_0[0]; // @[Monitor.scala:36:7]
wire [7:0] c_first_beats1 = c_first_beats1_opdata ? c_first_beats1_decode : 8'h0; // @[Edges.scala:102:36, :220:59, :221:14]
reg [7:0] c_first_counter; // @[Edges.scala:229:27]
wire [8:0] _c_first_counter1_T = {1'h0, c_first_counter} - 9'h1; // @[Edges.scala:229:27, :230:28]
wire [7:0] c_first_counter1 = _c_first_counter1_T[7:0]; // @[Edges.scala:230:28]
wire c_first = c_first_counter == 8'h0; // @[Edges.scala:229:27, :231:25]
wire _c_first_last_T = c_first_counter == 8'h1; // @[Edges.scala:229:27, :232:25]
wire _c_first_last_T_1 = c_first_beats1 == 8'h0; // @[Edges.scala:221:14, :232:43]
wire c_first_last = _c_first_last_T | _c_first_last_T_1; // @[Edges.scala:232:{25,33,43}]
wire c_first_done = c_first_last & _c_first_T; // @[Decoupled.scala:51:35]
wire [7:0] _c_first_count_T = ~c_first_counter1; // @[Edges.scala:230:28, :234:27]
wire [7:0] c_first_count = c_first_beats1 & _c_first_count_T; // @[Edges.scala:221:14, :234:{25,27}]
wire [7:0] _c_first_counter_T = c_first ? c_first_beats1 : c_first_counter1; // @[Edges.scala:221:14, :230:28, :231:25, :236:21]
reg [2:0] opcode_3; // @[Monitor.scala:515:22]
reg [2:0] param_3; // @[Monitor.scala:516:22]
reg [3:0] size_3; // @[Monitor.scala:517:22]
reg [3:0] source_3; // @[Monitor.scala:518:22]
reg [31:0] address_2; // @[Monitor.scala:519:22]
reg [8:0] inflight; // @[Monitor.scala:614:27]
reg [35:0] inflight_opcodes; // @[Monitor.scala:616:35]
reg [71:0] inflight_sizes; // @[Monitor.scala:618:33]
wire [11:0] _a_first_beats1_decode_T_4 = _a_first_beats1_decode_T_3[11:0]; // @[package.scala:243:{71,76}]
wire [11:0] _a_first_beats1_decode_T_5 = ~_a_first_beats1_decode_T_4; // @[package.scala:243:{46,76}]
wire [7:0] a_first_beats1_decode_1 = _a_first_beats1_decode_T_5[11:4]; // @[package.scala:243:46]
wire a_first_beats1_opdata_1 = ~_a_first_beats1_opdata_T_1; // @[Edges.scala:92:{28,37}]
wire [7:0] a_first_beats1_1 = a_first_beats1_opdata_1 ? a_first_beats1_decode_1 : 8'h0; // @[Edges.scala:92:28, :220:59, :221:14]
reg [7:0] a_first_counter_1; // @[Edges.scala:229:27]
wire [8:0] _a_first_counter1_T_1 = {1'h0, a_first_counter_1} - 9'h1; // @[Edges.scala:229:27, :230:28]
wire [7:0] a_first_counter1_1 = _a_first_counter1_T_1[7:0]; // @[Edges.scala:230:28]
wire a_first_1 = a_first_counter_1 == 8'h0; // @[Edges.scala:229:27, :231:25]
wire _a_first_last_T_2 = a_first_counter_1 == 8'h1; // @[Edges.scala:229:27, :232:25]
wire _a_first_last_T_3 = a_first_beats1_1 == 8'h0; // @[Edges.scala:221:14, :232:43]
wire a_first_last_1 = _a_first_last_T_2 | _a_first_last_T_3; // @[Edges.scala:232:{25,33,43}]
wire a_first_done_1 = a_first_last_1 & _a_first_T_1; // @[Decoupled.scala:51:35]
wire [7:0] _a_first_count_T_1 = ~a_first_counter1_1; // @[Edges.scala:230:28, :234:27]
wire [7:0] a_first_count_1 = a_first_beats1_1 & _a_first_count_T_1; // @[Edges.scala:221:14, :234:{25,27}]
wire [7:0] _a_first_counter_T_1 = a_first_1 ? a_first_beats1_1 : a_first_counter1_1; // @[Edges.scala:221:14, :230:28, :231:25, :236:21]
wire [11:0] _d_first_beats1_decode_T_4 = _d_first_beats1_decode_T_3[11:0]; // @[package.scala:243:{71,76}]
wire [11:0] _d_first_beats1_decode_T_5 = ~_d_first_beats1_decode_T_4; // @[package.scala:243:{46,76}]
wire [7:0] d_first_beats1_decode_1 = _d_first_beats1_decode_T_5[11:4]; // @[package.scala:243:46]
wire [7:0] d_first_beats1_1 = d_first_beats1_opdata_1 ? d_first_beats1_decode_1 : 8'h0; // @[Edges.scala:106:36, :220:59, :221:14]
reg [7:0] d_first_counter_1; // @[Edges.scala:229:27]
wire [8:0] _d_first_counter1_T_1 = {1'h0, d_first_counter_1} - 9'h1; // @[Edges.scala:229:27, :230:28]
wire [7:0] d_first_counter1_1 = _d_first_counter1_T_1[7:0]; // @[Edges.scala:230:28]
wire d_first_1 = d_first_counter_1 == 8'h0; // @[Edges.scala:229:27, :231:25]
wire _d_first_last_T_2 = d_first_counter_1 == 8'h1; // @[Edges.scala:229:27, :232:25]
wire _d_first_last_T_3 = d_first_beats1_1 == 8'h0; // @[Edges.scala:221:14, :232:43]
wire d_first_last_1 = _d_first_last_T_2 | _d_first_last_T_3; // @[Edges.scala:232:{25,33,43}]
wire d_first_done_1 = d_first_last_1 & _d_first_T_1; // @[Decoupled.scala:51:35]
wire [7:0] _d_first_count_T_1 = ~d_first_counter1_1; // @[Edges.scala:230:28, :234:27]
wire [7:0] d_first_count_1 = d_first_beats1_1 & _d_first_count_T_1; // @[Edges.scala:221:14, :234:{25,27}]
wire [7:0] _d_first_counter_T_1 = d_first_1 ? d_first_beats1_1 : d_first_counter1_1; // @[Edges.scala:221:14, :230:28, :231:25, :236:21]
wire [8:0] a_set; // @[Monitor.scala:626:34]
wire [8:0] a_set_wo_ready; // @[Monitor.scala:627:34]
wire [35:0] a_opcodes_set; // @[Monitor.scala:630:33]
wire [71:0] a_sizes_set; // @[Monitor.scala:632:31]
wire [2:0] a_opcode_lookup; // @[Monitor.scala:635:35]
wire [6:0] _GEN_19 = {1'h0, io_in_d_bits_source_0, 2'h0}; // @[Monitor.scala:36:7, :637:69]
wire [6:0] _a_opcode_lookup_T; // @[Monitor.scala:637:69]
assign _a_opcode_lookup_T = _GEN_19; // @[Monitor.scala:637:69]
wire [6:0] _d_opcodes_clr_T_4; // @[Monitor.scala:680:101]
assign _d_opcodes_clr_T_4 = _GEN_19; // @[Monitor.scala:637:69, :680:101]
wire [6:0] _c_opcode_lookup_T; // @[Monitor.scala:749:69]
assign _c_opcode_lookup_T = _GEN_19; // @[Monitor.scala:637:69, :749:69]
wire [6:0] _d_opcodes_clr_T_10; // @[Monitor.scala:790:101]
assign _d_opcodes_clr_T_10 = _GEN_19; // @[Monitor.scala:637:69, :790:101]
wire [35:0] _a_opcode_lookup_T_1 = inflight_opcodes >> _a_opcode_lookup_T; // @[Monitor.scala:616:35, :637:{44,69}]
wire [35:0] _a_opcode_lookup_T_6 = {32'h0, _a_opcode_lookup_T_1[3:0]}; // @[Monitor.scala:637:{44,97}]
wire [35:0] _a_opcode_lookup_T_7 = {1'h0, _a_opcode_lookup_T_6[35:1]}; // @[Monitor.scala:637:{97,152}]
assign a_opcode_lookup = _a_opcode_lookup_T_7[2:0]; // @[Monitor.scala:635:35, :637:{21,152}]
wire [7:0] a_size_lookup; // @[Monitor.scala:639:33]
wire [6:0] _GEN_20 = {io_in_d_bits_source_0, 3'h0}; // @[Monitor.scala:36:7, :641:65]
wire [6:0] _a_size_lookup_T; // @[Monitor.scala:641:65]
assign _a_size_lookup_T = _GEN_20; // @[Monitor.scala:641:65]
wire [6:0] _d_sizes_clr_T_4; // @[Monitor.scala:681:99]
assign _d_sizes_clr_T_4 = _GEN_20; // @[Monitor.scala:641:65, :681:99]
wire [6:0] _c_size_lookup_T; // @[Monitor.scala:750:67]
assign _c_size_lookup_T = _GEN_20; // @[Monitor.scala:641:65, :750:67]
wire [6:0] _d_sizes_clr_T_10; // @[Monitor.scala:791:99]
assign _d_sizes_clr_T_10 = _GEN_20; // @[Monitor.scala:641:65, :791:99]
wire [71:0] _a_size_lookup_T_1 = inflight_sizes >> _a_size_lookup_T; // @[Monitor.scala:618:33, :641:{40,65}]
wire [71:0] _a_size_lookup_T_6 = {64'h0, _a_size_lookup_T_1[7:0]}; // @[Monitor.scala:641:{40,91}]
wire [71:0] _a_size_lookup_T_7 = {1'h0, _a_size_lookup_T_6[71:1]}; // @[Monitor.scala:641:{91,144}]
assign a_size_lookup = _a_size_lookup_T_7[7:0]; // @[Monitor.scala:639:33, :641:{19,144}]
wire [3:0] a_opcodes_set_interm; // @[Monitor.scala:646:40]
wire [4:0] a_sizes_set_interm; // @[Monitor.scala:648:38]
wire _same_cycle_resp_T = io_in_a_valid_0 & a_first_1; // @[Monitor.scala:36:7, :651:26, :684:44]
wire [15:0] _GEN_21 = 16'h1 << io_in_a_bits_source_0; // @[OneHot.scala:58:35]
wire [15:0] _a_set_wo_ready_T; // @[OneHot.scala:58:35]
assign _a_set_wo_ready_T = _GEN_21; // @[OneHot.scala:58:35]
wire [15:0] _a_set_T; // @[OneHot.scala:58:35]
assign _a_set_T = _GEN_21; // @[OneHot.scala:58:35]
assign a_set_wo_ready = _same_cycle_resp_T ? _a_set_wo_ready_T[8:0] : 9'h0; // @[OneHot.scala:58:35]
wire _T_2477 = _T_2551 & a_first_1; // @[Decoupled.scala:51:35]
assign a_set = _T_2477 ? _a_set_T[8:0] : 9'h0; // @[OneHot.scala:58:35]
wire [3:0] _a_opcodes_set_interm_T = {io_in_a_bits_opcode_0, 1'h0}; // @[Monitor.scala:36:7, :657:53]
wire [3:0] _a_opcodes_set_interm_T_1 = {_a_opcodes_set_interm_T[3:1], 1'h1}; // @[Monitor.scala:657:{53,61}]
assign a_opcodes_set_interm = _T_2477 ? _a_opcodes_set_interm_T_1 : 4'h0; // @[Monitor.scala:646:40, :655:{25,70}, :657:{28,61}]
wire [4:0] _a_sizes_set_interm_T = {io_in_a_bits_size_0, 1'h0}; // @[Monitor.scala:36:7, :658:51]
wire [4:0] _a_sizes_set_interm_T_1 = {_a_sizes_set_interm_T[4:1], 1'h1}; // @[Monitor.scala:658:{51,59}]
assign a_sizes_set_interm = _T_2477 ? _a_sizes_set_interm_T_1 : 5'h0; // @[Monitor.scala:648:38, :655:{25,70}, :658:{28,59}]
wire [6:0] _a_opcodes_set_T = {1'h0, io_in_a_bits_source_0, 2'h0}; // @[Monitor.scala:36:7, :659:79]
wire [130:0] _a_opcodes_set_T_1 = {127'h0, a_opcodes_set_interm} << _a_opcodes_set_T; // @[Monitor.scala:646:40, :659:{54,79}]
assign a_opcodes_set = _T_2477 ? _a_opcodes_set_T_1[35:0] : 36'h0; // @[Monitor.scala:630:33, :655:{25,70}, :659:{28,54}]
wire [6:0] _a_sizes_set_T = {io_in_a_bits_source_0, 3'h0}; // @[Monitor.scala:36:7, :660:77]
wire [131:0] _a_sizes_set_T_1 = {127'h0, a_sizes_set_interm} << _a_sizes_set_T; // @[Monitor.scala:648:38, :659:54, :660:{52,77}]
assign a_sizes_set = _T_2477 ? _a_sizes_set_T_1[71:0] : 72'h0; // @[Monitor.scala:632:31, :655:{25,70}, :660:{28,52}]
wire [8:0] d_clr; // @[Monitor.scala:664:34]
wire [8:0] d_clr_wo_ready; // @[Monitor.scala:665:34]
wire [35:0] d_opcodes_clr; // @[Monitor.scala:668:33]
wire [71:0] d_sizes_clr; // @[Monitor.scala:670:31]
wire _GEN_22 = io_in_d_bits_opcode_0 == 3'h6; // @[Monitor.scala:36:7, :673:46]
wire d_release_ack; // @[Monitor.scala:673:46]
assign d_release_ack = _GEN_22; // @[Monitor.scala:673:46]
wire d_release_ack_1; // @[Monitor.scala:783:46]
assign d_release_ack_1 = _GEN_22; // @[Monitor.scala:673:46, :783:46]
wire _T_2523 = io_in_d_valid_0 & d_first_1; // @[Monitor.scala:36:7, :674:26]
wire [15:0] _GEN_23 = 16'h1 << io_in_d_bits_source_0; // @[OneHot.scala:58:35]
wire [15:0] _d_clr_wo_ready_T; // @[OneHot.scala:58:35]
assign _d_clr_wo_ready_T = _GEN_23; // @[OneHot.scala:58:35]
wire [15:0] _d_clr_T; // @[OneHot.scala:58:35]
assign _d_clr_T = _GEN_23; // @[OneHot.scala:58:35]
wire [15:0] _d_clr_wo_ready_T_1; // @[OneHot.scala:58:35]
assign _d_clr_wo_ready_T_1 = _GEN_23; // @[OneHot.scala:58:35]
wire [15:0] _d_clr_T_1; // @[OneHot.scala:58:35]
assign _d_clr_T_1 = _GEN_23; // @[OneHot.scala:58:35]
assign d_clr_wo_ready = _T_2523 & ~d_release_ack ? _d_clr_wo_ready_T[8:0] : 9'h0; // @[OneHot.scala:58:35]
wire _T_2492 = _T_2625 & d_first_1 & ~d_release_ack; // @[Decoupled.scala:51:35]
assign d_clr = _T_2492 ? _d_clr_T[8:0] : 9'h0; // @[OneHot.scala:58:35]
wire [142:0] _d_opcodes_clr_T_5 = 143'hF << _d_opcodes_clr_T_4; // @[Monitor.scala:680:{76,101}]
assign d_opcodes_clr = _T_2492 ? _d_opcodes_clr_T_5[35:0] : 36'h0; // @[Monitor.scala:668:33, :678:{25,70,89}, :680:{21,76}]
wire [142:0] _d_sizes_clr_T_5 = 143'hFF << _d_sizes_clr_T_4; // @[Monitor.scala:681:{74,99}]
assign d_sizes_clr = _T_2492 ? _d_sizes_clr_T_5[71:0] : 72'h0; // @[Monitor.scala:670:31, :678:{25,70,89}, :681:{21,74}]
wire _same_cycle_resp_T_1 = _same_cycle_resp_T; // @[Monitor.scala:684:{44,55}]
wire _same_cycle_resp_T_2 = io_in_a_bits_source_0 == io_in_d_bits_source_0; // @[Monitor.scala:36:7, :684:113]
wire same_cycle_resp = _same_cycle_resp_T_1 & _same_cycle_resp_T_2; // @[Monitor.scala:684:{55,88,113}]
wire [8:0] _inflight_T = inflight | a_set; // @[Monitor.scala:614:27, :626:34, :705:27]
wire [8:0] _inflight_T_1 = ~d_clr; // @[Monitor.scala:664:34, :705:38]
wire [8:0] _inflight_T_2 = _inflight_T & _inflight_T_1; // @[Monitor.scala:705:{27,36,38}]
wire [35:0] _inflight_opcodes_T = inflight_opcodes | a_opcodes_set; // @[Monitor.scala:616:35, :630:33, :706:43]
wire [35:0] _inflight_opcodes_T_1 = ~d_opcodes_clr; // @[Monitor.scala:668:33, :706:62]
wire [35:0] _inflight_opcodes_T_2 = _inflight_opcodes_T & _inflight_opcodes_T_1; // @[Monitor.scala:706:{43,60,62}]
wire [71:0] _inflight_sizes_T = inflight_sizes | a_sizes_set; // @[Monitor.scala:618:33, :632:31, :707:39]
wire [71:0] _inflight_sizes_T_1 = ~d_sizes_clr; // @[Monitor.scala:670:31, :707:56]
wire [71:0] _inflight_sizes_T_2 = _inflight_sizes_T & _inflight_sizes_T_1; // @[Monitor.scala:707:{39,54,56}]
reg [31:0] watchdog; // @[Monitor.scala:709:27]
wire [32:0] _watchdog_T = {1'h0, watchdog} + 33'h1; // @[Monitor.scala:709:27, :714:26]
wire [31:0] _watchdog_T_1 = _watchdog_T[31:0]; // @[Monitor.scala:714:26]
reg [8:0] inflight_1; // @[Monitor.scala:726:35]
reg [35:0] inflight_opcodes_1; // @[Monitor.scala:727:35]
reg [71:0] inflight_sizes_1; // @[Monitor.scala:728:35]
wire [11:0] _c_first_beats1_decode_T_4 = _c_first_beats1_decode_T_3[11:0]; // @[package.scala:243:{71,76}]
wire [11:0] _c_first_beats1_decode_T_5 = ~_c_first_beats1_decode_T_4; // @[package.scala:243:{46,76}]
wire [7:0] c_first_beats1_decode_1 = _c_first_beats1_decode_T_5[11:4]; // @[package.scala:243:46]
wire [7:0] c_first_beats1_1 = c_first_beats1_opdata_1 ? c_first_beats1_decode_1 : 8'h0; // @[Edges.scala:102:36, :220:59, :221:14]
reg [7:0] c_first_counter_1; // @[Edges.scala:229:27]
wire [8:0] _c_first_counter1_T_1 = {1'h0, c_first_counter_1} - 9'h1; // @[Edges.scala:229:27, :230:28]
wire [7:0] c_first_counter1_1 = _c_first_counter1_T_1[7:0]; // @[Edges.scala:230:28]
wire c_first_1 = c_first_counter_1 == 8'h0; // @[Edges.scala:229:27, :231:25]
wire _c_first_last_T_2 = c_first_counter_1 == 8'h1; // @[Edges.scala:229:27, :232:25]
wire _c_first_last_T_3 = c_first_beats1_1 == 8'h0; // @[Edges.scala:221:14, :232:43]
wire c_first_last_1 = _c_first_last_T_2 | _c_first_last_T_3; // @[Edges.scala:232:{25,33,43}]
wire c_first_done_1 = c_first_last_1 & _c_first_T_1; // @[Decoupled.scala:51:35]
wire [7:0] _c_first_count_T_1 = ~c_first_counter1_1; // @[Edges.scala:230:28, :234:27]
wire [7:0] c_first_count_1 = c_first_beats1_1 & _c_first_count_T_1; // @[Edges.scala:221:14, :234:{25,27}]
wire [7:0] _c_first_counter_T_1 = c_first_1 ? c_first_beats1_1 : c_first_counter1_1; // @[Edges.scala:221:14, :230:28, :231:25, :236:21]
wire [11:0] _d_first_beats1_decode_T_7 = _d_first_beats1_decode_T_6[11:0]; // @[package.scala:243:{71,76}]
wire [11:0] _d_first_beats1_decode_T_8 = ~_d_first_beats1_decode_T_7; // @[package.scala:243:{46,76}]
wire [7:0] d_first_beats1_decode_2 = _d_first_beats1_decode_T_8[11:4]; // @[package.scala:243:46]
wire [7:0] d_first_beats1_2 = d_first_beats1_opdata_2 ? d_first_beats1_decode_2 : 8'h0; // @[Edges.scala:106:36, :220:59, :221:14]
reg [7:0] d_first_counter_2; // @[Edges.scala:229:27]
wire [8:0] _d_first_counter1_T_2 = {1'h0, d_first_counter_2} - 9'h1; // @[Edges.scala:229:27, :230:28]
wire [7:0] d_first_counter1_2 = _d_first_counter1_T_2[7:0]; // @[Edges.scala:230:28]
wire d_first_2 = d_first_counter_2 == 8'h0; // @[Edges.scala:229:27, :231:25]
wire _d_first_last_T_4 = d_first_counter_2 == 8'h1; // @[Edges.scala:229:27, :232:25]
wire _d_first_last_T_5 = d_first_beats1_2 == 8'h0; // @[Edges.scala:221:14, :232:43]
wire d_first_last_2 = _d_first_last_T_4 | _d_first_last_T_5; // @[Edges.scala:232:{25,33,43}]
wire d_first_done_2 = d_first_last_2 & _d_first_T_2; // @[Decoupled.scala:51:35]
wire [7:0] _d_first_count_T_2 = ~d_first_counter1_2; // @[Edges.scala:230:28, :234:27]
wire [7:0] d_first_count_2 = d_first_beats1_2 & _d_first_count_T_2; // @[Edges.scala:221:14, :234:{25,27}]
wire [7:0] _d_first_counter_T_2 = d_first_2 ? d_first_beats1_2 : d_first_counter1_2; // @[Edges.scala:221:14, :230:28, :231:25, :236:21]
wire [8:0] c_set; // @[Monitor.scala:738:34]
wire [8:0] c_set_wo_ready; // @[Monitor.scala:739:34]
wire [35:0] c_opcodes_set; // @[Monitor.scala:740:34]
wire [71:0] c_sizes_set; // @[Monitor.scala:741:34]
wire [3:0] c_opcode_lookup; // @[Monitor.scala:747:35]
wire [7:0] c_size_lookup; // @[Monitor.scala:748:35]
wire [35:0] _c_opcode_lookup_T_1 = inflight_opcodes_1 >> _c_opcode_lookup_T; // @[Monitor.scala:727:35, :749:{44,69}]
wire [35:0] _c_opcode_lookup_T_6 = {32'h0, _c_opcode_lookup_T_1[3:0]}; // @[Monitor.scala:749:{44,97}]
wire [35:0] _c_opcode_lookup_T_7 = {1'h0, _c_opcode_lookup_T_6[35:1]}; // @[Monitor.scala:749:{97,152}]
assign c_opcode_lookup = _c_opcode_lookup_T_7[3:0]; // @[Monitor.scala:747:35, :749:{21,152}]
wire [71:0] _c_size_lookup_T_1 = inflight_sizes_1 >> _c_size_lookup_T; // @[Monitor.scala:728:35, :750:{42,67}]
wire [71:0] _c_size_lookup_T_6 = {64'h0, _c_size_lookup_T_1[7:0]}; // @[Monitor.scala:750:{42,93}]
wire [71:0] _c_size_lookup_T_7 = {1'h0, _c_size_lookup_T_6[71:1]}; // @[Monitor.scala:750:{93,146}]
assign c_size_lookup = _c_size_lookup_T_7[7:0]; // @[Monitor.scala:748:35, :750:{21,146}]
wire [3:0] c_opcodes_set_interm; // @[Monitor.scala:754:40]
wire [4:0] c_sizes_set_interm; // @[Monitor.scala:755:40]
wire _same_cycle_resp_T_3 = io_in_c_valid_0 & c_first_1; // @[Monitor.scala:36:7, :759:26, :795:44]
wire _same_cycle_resp_T_4 = io_in_c_bits_opcode_0[2]; // @[Monitor.scala:36:7]
wire _same_cycle_resp_T_5 = io_in_c_bits_opcode_0[1]; // @[Monitor.scala:36:7]
wire [15:0] _GEN_24 = 16'h1 << io_in_c_bits_source_0; // @[OneHot.scala:58:35]
wire [15:0] _c_set_wo_ready_T; // @[OneHot.scala:58:35]
assign _c_set_wo_ready_T = _GEN_24; // @[OneHot.scala:58:35]
wire [15:0] _c_set_T; // @[OneHot.scala:58:35]
assign _c_set_T = _GEN_24; // @[OneHot.scala:58:35]
assign c_set_wo_ready = _same_cycle_resp_T_3 & _same_cycle_resp_T_4 & _same_cycle_resp_T_5 ? _c_set_wo_ready_T[8:0] : 9'h0; // @[OneHot.scala:58:35]
wire _T_2564 = _T_2622 & c_first_1 & _same_cycle_resp_T_4 & _same_cycle_resp_T_5; // @[Decoupled.scala:51:35]
assign c_set = _T_2564 ? _c_set_T[8:0] : 9'h0; // @[OneHot.scala:58:35]
wire [3:0] _c_opcodes_set_interm_T = {io_in_c_bits_opcode_0, 1'h0}; // @[Monitor.scala:36:7, :765:53]
wire [3:0] _c_opcodes_set_interm_T_1 = {_c_opcodes_set_interm_T[3:1], 1'h1}; // @[Monitor.scala:765:{53,61}]
assign c_opcodes_set_interm = _T_2564 ? _c_opcodes_set_interm_T_1 : 4'h0; // @[Monitor.scala:754:40, :763:{25,36,70}, :765:{28,61}]
wire [4:0] _c_sizes_set_interm_T = {io_in_c_bits_size_0, 1'h0}; // @[Monitor.scala:36:7, :766:51]
wire [4:0] _c_sizes_set_interm_T_1 = {_c_sizes_set_interm_T[4:1], 1'h1}; // @[Monitor.scala:766:{51,59}]
assign c_sizes_set_interm = _T_2564 ? _c_sizes_set_interm_T_1 : 5'h0; // @[Monitor.scala:755:40, :763:{25,36,70}, :766:{28,59}]
wire [6:0] _c_opcodes_set_T = {1'h0, io_in_c_bits_source_0, 2'h0}; // @[Monitor.scala:36:7, :767:79]
wire [130:0] _c_opcodes_set_T_1 = {127'h0, c_opcodes_set_interm} << _c_opcodes_set_T; // @[Monitor.scala:659:54, :754:40, :767:{54,79}]
assign c_opcodes_set = _T_2564 ? _c_opcodes_set_T_1[35:0] : 36'h0; // @[Monitor.scala:740:34, :763:{25,36,70}, :767:{28,54}]
wire [6:0] _c_sizes_set_T = {io_in_c_bits_source_0, 3'h0}; // @[Monitor.scala:36:7, :768:77]
wire [131:0] _c_sizes_set_T_1 = {127'h0, c_sizes_set_interm} << _c_sizes_set_T; // @[Monitor.scala:659:54, :755:40, :768:{52,77}]
assign c_sizes_set = _T_2564 ? _c_sizes_set_T_1[71:0] : 72'h0; // @[Monitor.scala:741:34, :763:{25,36,70}, :768:{28,52}]
wire _c_probe_ack_T = io_in_c_bits_opcode_0 == 3'h4; // @[Monitor.scala:36:7, :772:47]
wire _c_probe_ack_T_1 = io_in_c_bits_opcode_0 == 3'h5; // @[Monitor.scala:36:7, :772:95]
wire c_probe_ack = _c_probe_ack_T | _c_probe_ack_T_1; // @[Monitor.scala:772:{47,71,95}]
wire [8:0] d_clr_1; // @[Monitor.scala:774:34]
wire [8:0] d_clr_wo_ready_1; // @[Monitor.scala:775:34]
wire [35:0] d_opcodes_clr_1; // @[Monitor.scala:776:34]
wire [71:0] d_sizes_clr_1; // @[Monitor.scala:777:34]
wire _T_2595 = io_in_d_valid_0 & d_first_2; // @[Monitor.scala:36:7, :784:26]
assign d_clr_wo_ready_1 = _T_2595 & d_release_ack_1 ? _d_clr_wo_ready_T_1[8:0] : 9'h0; // @[OneHot.scala:58:35]
wire _T_2577 = _T_2625 & d_first_2 & d_release_ack_1; // @[Decoupled.scala:51:35]
assign d_clr_1 = _T_2577 ? _d_clr_T_1[8:0] : 9'h0; // @[OneHot.scala:58:35]
wire [142:0] _d_opcodes_clr_T_11 = 143'hF << _d_opcodes_clr_T_10; // @[Monitor.scala:790:{76,101}]
assign d_opcodes_clr_1 = _T_2577 ? _d_opcodes_clr_T_11[35:0] : 36'h0; // @[Monitor.scala:776:34, :788:{25,70,88}, :790:{21,76}]
wire [142:0] _d_sizes_clr_T_11 = 143'hFF << _d_sizes_clr_T_10; // @[Monitor.scala:791:{74,99}]
assign d_sizes_clr_1 = _T_2577 ? _d_sizes_clr_T_11[71:0] : 72'h0; // @[Monitor.scala:777:34, :788:{25,70,88}, :791:{21,74}]
wire _same_cycle_resp_T_6 = _same_cycle_resp_T_4 & _same_cycle_resp_T_5; // @[Edges.scala:68:{36,40,51}]
wire _same_cycle_resp_T_7 = _same_cycle_resp_T_3 & _same_cycle_resp_T_6; // @[Monitor.scala:795:{44,55}]
wire _same_cycle_resp_T_8 = io_in_c_bits_source_0 == io_in_d_bits_source_0; // @[Monitor.scala:36:7, :795:113]
wire same_cycle_resp_1 = _same_cycle_resp_T_7 & _same_cycle_resp_T_8; // @[Monitor.scala:795:{55,88,113}]
wire [8:0] _inflight_T_3 = inflight_1 | c_set; // @[Monitor.scala:726:35, :738:34, :814:35]
wire [8:0] _inflight_T_4 = ~d_clr_1; // @[Monitor.scala:774:34, :814:46]
wire [8:0] _inflight_T_5 = _inflight_T_3 & _inflight_T_4; // @[Monitor.scala:814:{35,44,46}]
wire [35:0] _inflight_opcodes_T_3 = inflight_opcodes_1 | c_opcodes_set; // @[Monitor.scala:727:35, :740:34, :815:43]
wire [35:0] _inflight_opcodes_T_4 = ~d_opcodes_clr_1; // @[Monitor.scala:776:34, :815:62]
wire [35:0] _inflight_opcodes_T_5 = _inflight_opcodes_T_3 & _inflight_opcodes_T_4; // @[Monitor.scala:815:{43,60,62}]
wire [71:0] _inflight_sizes_T_3 = inflight_sizes_1 | c_sizes_set; // @[Monitor.scala:728:35, :741:34, :816:41]
wire [71:0] _inflight_sizes_T_4 = ~d_sizes_clr_1; // @[Monitor.scala:777:34, :816:58]
wire [71:0] _inflight_sizes_T_5 = _inflight_sizes_T_3 & _inflight_sizes_T_4; // @[Monitor.scala:816:{41,56,58}]
reg [31:0] watchdog_1; // @[Monitor.scala:818:27]
wire [32:0] _watchdog_T_2 = {1'h0, watchdog_1} + 33'h1; // @[Monitor.scala:818:27, :823:26]
wire [31:0] _watchdog_T_3 = _watchdog_T_2[31:0]; // @[Monitor.scala:823:26]
reg [15:0] inflight_2; // @[Monitor.scala:828:27]
wire [11:0] _d_first_beats1_decode_T_10 = _d_first_beats1_decode_T_9[11:0]; // @[package.scala:243:{71,76}]
wire [11:0] _d_first_beats1_decode_T_11 = ~_d_first_beats1_decode_T_10; // @[package.scala:243:{46,76}]
wire [7:0] d_first_beats1_decode_3 = _d_first_beats1_decode_T_11[11:4]; // @[package.scala:243:46]
wire [7:0] d_first_beats1_3 = d_first_beats1_opdata_3 ? d_first_beats1_decode_3 : 8'h0; // @[Edges.scala:106:36, :220:59, :221:14]
reg [7:0] d_first_counter_3; // @[Edges.scala:229:27]
wire [8:0] _d_first_counter1_T_3 = {1'h0, d_first_counter_3} - 9'h1; // @[Edges.scala:229:27, :230:28]
wire [7:0] d_first_counter1_3 = _d_first_counter1_T_3[7:0]; // @[Edges.scala:230:28]
wire d_first_3 = d_first_counter_3 == 8'h0; // @[Edges.scala:229:27, :231:25]
wire _d_first_last_T_6 = d_first_counter_3 == 8'h1; // @[Edges.scala:229:27, :232:25]
wire _d_first_last_T_7 = d_first_beats1_3 == 8'h0; // @[Edges.scala:221:14, :232:43]
wire d_first_last_3 = _d_first_last_T_6 | _d_first_last_T_7; // @[Edges.scala:232:{25,33,43}]
wire d_first_done_3 = d_first_last_3 & _d_first_T_3; // @[Decoupled.scala:51:35]
wire [7:0] _d_first_count_T_3 = ~d_first_counter1_3; // @[Edges.scala:230:28, :234:27]
wire [7:0] d_first_count_3 = d_first_beats1_3 & _d_first_count_T_3; // @[Edges.scala:221:14, :234:{25,27}]
wire [7:0] _d_first_counter_T_3 = d_first_3 ? d_first_beats1_3 : d_first_counter1_3; // @[Edges.scala:221:14, :230:28, :231:25, :236:21]
wire [15:0] d_set; // @[Monitor.scala:833:25]
wire _T_2631 = _T_2625 & d_first_3 & io_in_d_bits_opcode_0[2] & ~(io_in_d_bits_opcode_0[1]); // @[Decoupled.scala:51:35]
wire [15:0] _GEN_25 = {12'h0, io_in_d_bits_sink_0}; // @[OneHot.scala:58:35]
wire [15:0] _d_set_T = 16'h1 << _GEN_25; // @[OneHot.scala:58:35]
assign d_set = _T_2631 ? _d_set_T : 16'h0; // @[OneHot.scala:58:35]
wire [15:0] e_clr; // @[Monitor.scala:839:25]
wire _T_2640 = io_in_e_ready_0 & io_in_e_valid_0; // @[Decoupled.scala:51:35]
wire [15:0] _GEN_26 = {12'h0, io_in_e_bits_sink_0}; // @[OneHot.scala:58:35]
wire [15:0] _e_clr_T = 16'h1 << _GEN_26; // @[OneHot.scala:58:35]
assign e_clr = _T_2640 ? _e_clr_T : 16'h0; // @[OneHot.scala:58:35] |
Generate the Verilog code corresponding to the following Chisel files.
File MSHR.scala:
/*
* Copyright 2019 SiFive, Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You should have received a copy of LICENSE.Apache2 along with
* this software. If not, you may obtain a copy at
*
* https://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package sifive.blocks.inclusivecache
import chisel3._
import chisel3.util._
import chisel3.experimental.SourceInfo
import freechips.rocketchip.tilelink._
import TLPermissions._
import TLMessages._
import MetaData._
import chisel3.PrintableHelper
import chisel3.experimental.dataview._
class ScheduleRequest(params: InclusiveCacheParameters) extends InclusiveCacheBundle(params)
{
val a = Valid(new SourceARequest(params))
val b = Valid(new SourceBRequest(params))
val c = Valid(new SourceCRequest(params))
val d = Valid(new SourceDRequest(params))
val e = Valid(new SourceERequest(params))
val x = Valid(new SourceXRequest(params))
val dir = Valid(new DirectoryWrite(params))
val reload = Bool() // get next request via allocate (if any)
}
class MSHRStatus(params: InclusiveCacheParameters) extends InclusiveCacheBundle(params)
{
val set = UInt(params.setBits.W)
val tag = UInt(params.tagBits.W)
val way = UInt(params.wayBits.W)
val blockB = Bool()
val nestB = Bool()
val blockC = Bool()
val nestC = Bool()
}
class NestedWriteback(params: InclusiveCacheParameters) extends InclusiveCacheBundle(params)
{
val set = UInt(params.setBits.W)
val tag = UInt(params.tagBits.W)
val b_toN = Bool() // nested Probes may unhit us
val b_toB = Bool() // nested Probes may demote us
val b_clr_dirty = Bool() // nested Probes clear dirty
val c_set_dirty = Bool() // nested Releases MAY set dirty
}
sealed trait CacheState
{
val code = CacheState.index.U
CacheState.index = CacheState.index + 1
}
object CacheState
{
var index = 0
}
case object S_INVALID extends CacheState
case object S_BRANCH extends CacheState
case object S_BRANCH_C extends CacheState
case object S_TIP extends CacheState
case object S_TIP_C extends CacheState
case object S_TIP_CD extends CacheState
case object S_TIP_D extends CacheState
case object S_TRUNK_C extends CacheState
case object S_TRUNK_CD extends CacheState
class MSHR(params: InclusiveCacheParameters) extends Module
{
val io = IO(new Bundle {
val allocate = Flipped(Valid(new AllocateRequest(params))) // refills MSHR for next cycle
val directory = Flipped(Valid(new DirectoryResult(params))) // triggers schedule setup
val status = Valid(new MSHRStatus(params))
val schedule = Decoupled(new ScheduleRequest(params))
val sinkc = Flipped(Valid(new SinkCResponse(params)))
val sinkd = Flipped(Valid(new SinkDResponse(params)))
val sinke = Flipped(Valid(new SinkEResponse(params)))
val nestedwb = Flipped(new NestedWriteback(params))
})
val request_valid = RegInit(false.B)
val request = Reg(new FullRequest(params))
val meta_valid = RegInit(false.B)
val meta = Reg(new DirectoryResult(params))
// Define which states are valid
when (meta_valid) {
when (meta.state === INVALID) {
assert (!meta.clients.orR)
assert (!meta.dirty)
}
when (meta.state === BRANCH) {
assert (!meta.dirty)
}
when (meta.state === TRUNK) {
assert (meta.clients.orR)
assert ((meta.clients & (meta.clients - 1.U)) === 0.U) // at most one
}
when (meta.state === TIP) {
// noop
}
}
// Completed transitions (s_ = scheduled), (w_ = waiting)
val s_rprobe = RegInit(true.B) // B
val w_rprobeackfirst = RegInit(true.B)
val w_rprobeacklast = RegInit(true.B)
val s_release = RegInit(true.B) // CW w_rprobeackfirst
val w_releaseack = RegInit(true.B)
val s_pprobe = RegInit(true.B) // B
val s_acquire = RegInit(true.B) // A s_release, s_pprobe [1]
val s_flush = RegInit(true.B) // X w_releaseack
val w_grantfirst = RegInit(true.B)
val w_grantlast = RegInit(true.B)
val w_grant = RegInit(true.B) // first | last depending on wormhole
val w_pprobeackfirst = RegInit(true.B)
val w_pprobeacklast = RegInit(true.B)
val w_pprobeack = RegInit(true.B) // first | last depending on wormhole
val s_probeack = RegInit(true.B) // C w_pprobeackfirst (mutually exclusive with next two s_*)
val s_grantack = RegInit(true.B) // E w_grantfirst ... CAN require both outE&inD to service outD
val s_execute = RegInit(true.B) // D w_pprobeack, w_grant
val w_grantack = RegInit(true.B)
val s_writeback = RegInit(true.B) // W w_*
// [1]: We cannot issue outer Acquire while holding blockB (=> outA can stall)
// However, inB and outC are higher priority than outB, so s_release and s_pprobe
// may be safely issued while blockB. Thus we must NOT try to schedule the
// potentially stuck s_acquire with either of them (scheduler is all or none).
// Meta-data that we discover underway
val sink = Reg(UInt(params.outer.bundle.sinkBits.W))
val gotT = Reg(Bool())
val bad_grant = Reg(Bool())
val probes_done = Reg(UInt(params.clientBits.W))
val probes_toN = Reg(UInt(params.clientBits.W))
val probes_noT = Reg(Bool())
// When a nested transaction completes, update our meta data
when (meta_valid && meta.state =/= INVALID &&
io.nestedwb.set === request.set && io.nestedwb.tag === meta.tag) {
when (io.nestedwb.b_clr_dirty) { meta.dirty := false.B }
when (io.nestedwb.c_set_dirty) { meta.dirty := true.B }
when (io.nestedwb.b_toB) { meta.state := BRANCH }
when (io.nestedwb.b_toN) { meta.hit := false.B }
}
// Scheduler status
io.status.valid := request_valid
io.status.bits.set := request.set
io.status.bits.tag := request.tag
io.status.bits.way := meta.way
io.status.bits.blockB := !meta_valid || ((!w_releaseack || !w_rprobeacklast || !w_pprobeacklast) && !w_grantfirst)
io.status.bits.nestB := meta_valid && w_releaseack && w_rprobeacklast && w_pprobeacklast && !w_grantfirst
// The above rules ensure we will block and not nest an outer probe while still doing our
// own inner probes. Thus every probe wakes exactly one MSHR.
io.status.bits.blockC := !meta_valid
io.status.bits.nestC := meta_valid && (!w_rprobeackfirst || !w_pprobeackfirst || !w_grantfirst)
// The w_grantfirst in nestC is necessary to deal with:
// acquire waiting for grant, inner release gets queued, outer probe -> inner probe -> deadlock
// ... this is possible because the release+probe can be for same set, but different tag
// We can only demand: block, nest, or queue
assert (!io.status.bits.nestB || !io.status.bits.blockB)
assert (!io.status.bits.nestC || !io.status.bits.blockC)
// Scheduler requests
val no_wait = w_rprobeacklast && w_releaseack && w_grantlast && w_pprobeacklast && w_grantack
io.schedule.bits.a.valid := !s_acquire && s_release && s_pprobe
io.schedule.bits.b.valid := !s_rprobe || !s_pprobe
io.schedule.bits.c.valid := (!s_release && w_rprobeackfirst) || (!s_probeack && w_pprobeackfirst)
io.schedule.bits.d.valid := !s_execute && w_pprobeack && w_grant
io.schedule.bits.e.valid := !s_grantack && w_grantfirst
io.schedule.bits.x.valid := !s_flush && w_releaseack
io.schedule.bits.dir.valid := (!s_release && w_rprobeackfirst) || (!s_writeback && no_wait)
io.schedule.bits.reload := no_wait
io.schedule.valid := io.schedule.bits.a.valid || io.schedule.bits.b.valid || io.schedule.bits.c.valid ||
io.schedule.bits.d.valid || io.schedule.bits.e.valid || io.schedule.bits.x.valid ||
io.schedule.bits.dir.valid
// Schedule completions
when (io.schedule.ready) {
s_rprobe := true.B
when (w_rprobeackfirst) { s_release := true.B }
s_pprobe := true.B
when (s_release && s_pprobe) { s_acquire := true.B }
when (w_releaseack) { s_flush := true.B }
when (w_pprobeackfirst) { s_probeack := true.B }
when (w_grantfirst) { s_grantack := true.B }
when (w_pprobeack && w_grant) { s_execute := true.B }
when (no_wait) { s_writeback := true.B }
// Await the next operation
when (no_wait) {
request_valid := false.B
meta_valid := false.B
}
}
// Resulting meta-data
val final_meta_writeback = WireInit(meta)
val req_clientBit = params.clientBit(request.source)
val req_needT = needT(request.opcode, request.param)
val req_acquire = request.opcode === AcquireBlock || request.opcode === AcquirePerm
val meta_no_clients = !meta.clients.orR
val req_promoteT = req_acquire && Mux(meta.hit, meta_no_clients && meta.state === TIP, gotT)
when (request.prio(2) && (!params.firstLevel).B) { // always a hit
final_meta_writeback.dirty := meta.dirty || request.opcode(0)
final_meta_writeback.state := Mux(request.param =/= TtoT && meta.state === TRUNK, TIP, meta.state)
final_meta_writeback.clients := meta.clients & ~Mux(isToN(request.param), req_clientBit, 0.U)
final_meta_writeback.hit := true.B // chained requests are hits
} .elsewhen (request.control && params.control.B) { // request.prio(0)
when (meta.hit) {
final_meta_writeback.dirty := false.B
final_meta_writeback.state := INVALID
final_meta_writeback.clients := meta.clients & ~probes_toN
}
final_meta_writeback.hit := false.B
} .otherwise {
final_meta_writeback.dirty := (meta.hit && meta.dirty) || !request.opcode(2)
final_meta_writeback.state := Mux(req_needT,
Mux(req_acquire, TRUNK, TIP),
Mux(!meta.hit, Mux(gotT, Mux(req_acquire, TRUNK, TIP), BRANCH),
MuxLookup(meta.state, 0.U(2.W))(Seq(
INVALID -> BRANCH,
BRANCH -> BRANCH,
TRUNK -> TIP,
TIP -> Mux(meta_no_clients && req_acquire, TRUNK, TIP)))))
final_meta_writeback.clients := Mux(meta.hit, meta.clients & ~probes_toN, 0.U) |
Mux(req_acquire, req_clientBit, 0.U)
final_meta_writeback.tag := request.tag
final_meta_writeback.hit := true.B
}
when (bad_grant) {
when (meta.hit) {
// upgrade failed (B -> T)
assert (!meta_valid || meta.state === BRANCH)
final_meta_writeback.hit := true.B
final_meta_writeback.dirty := false.B
final_meta_writeback.state := BRANCH
final_meta_writeback.clients := meta.clients & ~probes_toN
} .otherwise {
// failed N -> (T or B)
final_meta_writeback.hit := false.B
final_meta_writeback.dirty := false.B
final_meta_writeback.state := INVALID
final_meta_writeback.clients := 0.U
}
}
val invalid = Wire(new DirectoryEntry(params))
invalid.dirty := false.B
invalid.state := INVALID
invalid.clients := 0.U
invalid.tag := 0.U
// Just because a client says BtoT, by the time we process the request he may be N.
// Therefore, we must consult our own meta-data state to confirm he owns the line still.
val honour_BtoT = meta.hit && (meta.clients & req_clientBit).orR
// The client asking us to act is proof they don't have permissions.
val excluded_client = Mux(meta.hit && request.prio(0) && skipProbeN(request.opcode, params.cache.hintsSkipProbe), req_clientBit, 0.U)
io.schedule.bits.a.bits.tag := request.tag
io.schedule.bits.a.bits.set := request.set
io.schedule.bits.a.bits.param := Mux(req_needT, Mux(meta.hit, BtoT, NtoT), NtoB)
io.schedule.bits.a.bits.block := request.size =/= log2Ceil(params.cache.blockBytes).U ||
!(request.opcode === PutFullData || request.opcode === AcquirePerm)
io.schedule.bits.a.bits.source := 0.U
io.schedule.bits.b.bits.param := Mux(!s_rprobe, toN, Mux(request.prio(1), request.param, Mux(req_needT, toN, toB)))
io.schedule.bits.b.bits.tag := Mux(!s_rprobe, meta.tag, request.tag)
io.schedule.bits.b.bits.set := request.set
io.schedule.bits.b.bits.clients := meta.clients & ~excluded_client
io.schedule.bits.c.bits.opcode := Mux(meta.dirty, ReleaseData, Release)
io.schedule.bits.c.bits.param := Mux(meta.state === BRANCH, BtoN, TtoN)
io.schedule.bits.c.bits.source := 0.U
io.schedule.bits.c.bits.tag := meta.tag
io.schedule.bits.c.bits.set := request.set
io.schedule.bits.c.bits.way := meta.way
io.schedule.bits.c.bits.dirty := meta.dirty
io.schedule.bits.d.bits.viewAsSupertype(chiselTypeOf(request)) := request
io.schedule.bits.d.bits.param := Mux(!req_acquire, request.param,
MuxLookup(request.param, request.param)(Seq(
NtoB -> Mux(req_promoteT, NtoT, NtoB),
BtoT -> Mux(honour_BtoT, BtoT, NtoT),
NtoT -> NtoT)))
io.schedule.bits.d.bits.sink := 0.U
io.schedule.bits.d.bits.way := meta.way
io.schedule.bits.d.bits.bad := bad_grant
io.schedule.bits.e.bits.sink := sink
io.schedule.bits.x.bits.fail := false.B
io.schedule.bits.dir.bits.set := request.set
io.schedule.bits.dir.bits.way := meta.way
io.schedule.bits.dir.bits.data := Mux(!s_release, invalid, WireInit(new DirectoryEntry(params), init = final_meta_writeback))
// Coverage of state transitions
def cacheState(entry: DirectoryEntry, hit: Bool) = {
val out = WireDefault(0.U)
val c = entry.clients.orR
val d = entry.dirty
switch (entry.state) {
is (BRANCH) { out := Mux(c, S_BRANCH_C.code, S_BRANCH.code) }
is (TRUNK) { out := Mux(d, S_TRUNK_CD.code, S_TRUNK_C.code) }
is (TIP) { out := Mux(c, Mux(d, S_TIP_CD.code, S_TIP_C.code), Mux(d, S_TIP_D.code, S_TIP.code)) }
is (INVALID) { out := S_INVALID.code }
}
when (!hit) { out := S_INVALID.code }
out
}
val p = !params.lastLevel // can be probed
val c = !params.firstLevel // can be acquired
val m = params.inner.client.clients.exists(!_.supports.probe) // can be written (or read)
val r = params.outer.manager.managers.exists(!_.alwaysGrantsT) // read-only devices exist
val f = params.control // flush control register exists
val cfg = (p, c, m, r, f)
val b = r || p // can reach branch state (via probe downgrade or read-only device)
// The cache must be used for something or we would not be here
require(c || m)
val evict = cacheState(meta, !meta.hit)
val before = cacheState(meta, meta.hit)
val after = cacheState(final_meta_writeback, true.B)
def eviction(from: CacheState, cover: Boolean)(implicit sourceInfo: SourceInfo) {
if (cover) {
params.ccover(evict === from.code, s"MSHR_${from}_EVICT", s"State transition from ${from} to evicted ${cfg}")
} else {
assert(!(evict === from.code), cf"State transition from ${from} to evicted should be impossible ${cfg}")
}
if (cover && f) {
params.ccover(before === from.code, s"MSHR_${from}_FLUSH", s"State transition from ${from} to flushed ${cfg}")
} else {
assert(!(before === from.code), cf"State transition from ${from} to flushed should be impossible ${cfg}")
}
}
def transition(from: CacheState, to: CacheState, cover: Boolean)(implicit sourceInfo: SourceInfo) {
if (cover) {
params.ccover(before === from.code && after === to.code, s"MSHR_${from}_${to}", s"State transition from ${from} to ${to} ${cfg}")
} else {
assert(!(before === from.code && after === to.code), cf"State transition from ${from} to ${to} should be impossible ${cfg}")
}
}
when ((!s_release && w_rprobeackfirst) && io.schedule.ready) {
eviction(S_BRANCH, b) // MMIO read to read-only device
eviction(S_BRANCH_C, b && c) // you need children to become C
eviction(S_TIP, true) // MMIO read || clean release can lead to this state
eviction(S_TIP_C, c) // needs two clients || client + mmio || downgrading client
eviction(S_TIP_CD, c) // needs two clients || client + mmio || downgrading client
eviction(S_TIP_D, true) // MMIO write || dirty release lead here
eviction(S_TRUNK_C, c) // acquire for write
eviction(S_TRUNK_CD, c) // dirty release then reacquire
}
when ((!s_writeback && no_wait) && io.schedule.ready) {
transition(S_INVALID, S_BRANCH, b && m) // only MMIO can bring us to BRANCH state
transition(S_INVALID, S_BRANCH_C, b && c) // C state is only possible if there are inner caches
transition(S_INVALID, S_TIP, m) // MMIO read
transition(S_INVALID, S_TIP_C, false) // we would go S_TRUNK_C instead
transition(S_INVALID, S_TIP_CD, false) // acquire does not cause dirty immediately
transition(S_INVALID, S_TIP_D, m) // MMIO write
transition(S_INVALID, S_TRUNK_C, c) // acquire
transition(S_INVALID, S_TRUNK_CD, false) // acquire does not cause dirty immediately
transition(S_BRANCH, S_INVALID, b && p) // probe can do this (flushes run as evictions)
transition(S_BRANCH, S_BRANCH_C, b && c) // acquire
transition(S_BRANCH, S_TIP, b && m) // prefetch write
transition(S_BRANCH, S_TIP_C, false) // we would go S_TRUNK_C instead
transition(S_BRANCH, S_TIP_CD, false) // acquire does not cause dirty immediately
transition(S_BRANCH, S_TIP_D, b && m) // MMIO write
transition(S_BRANCH, S_TRUNK_C, b && c) // acquire
transition(S_BRANCH, S_TRUNK_CD, false) // acquire does not cause dirty immediately
transition(S_BRANCH_C, S_INVALID, b && c && p)
transition(S_BRANCH_C, S_BRANCH, b && c) // clean release (optional)
transition(S_BRANCH_C, S_TIP, b && c && m) // prefetch write
transition(S_BRANCH_C, S_TIP_C, false) // we would go S_TRUNK_C instead
transition(S_BRANCH_C, S_TIP_D, b && c && m) // MMIO write
transition(S_BRANCH_C, S_TIP_CD, false) // going dirty means we must shoot down clients
transition(S_BRANCH_C, S_TRUNK_C, b && c) // acquire
transition(S_BRANCH_C, S_TRUNK_CD, false) // acquire does not cause dirty immediately
transition(S_TIP, S_INVALID, p)
transition(S_TIP, S_BRANCH, p) // losing TIP only possible via probe
transition(S_TIP, S_BRANCH_C, false) // we would go S_TRUNK_C instead
transition(S_TIP, S_TIP_C, false) // we would go S_TRUNK_C instead
transition(S_TIP, S_TIP_D, m) // direct dirty only via MMIO write
transition(S_TIP, S_TIP_CD, false) // acquire does not make us dirty immediately
transition(S_TIP, S_TRUNK_C, c) // acquire
transition(S_TIP, S_TRUNK_CD, false) // acquire does not make us dirty immediately
transition(S_TIP_C, S_INVALID, c && p)
transition(S_TIP_C, S_BRANCH, c && p) // losing TIP only possible via probe
transition(S_TIP_C, S_BRANCH_C, c && p) // losing TIP only possible via probe
transition(S_TIP_C, S_TIP, c) // probed while MMIO read || clean release (optional)
transition(S_TIP_C, S_TIP_D, c && m) // direct dirty only via MMIO write
transition(S_TIP_C, S_TIP_CD, false) // going dirty means we must shoot down clients
transition(S_TIP_C, S_TRUNK_C, c) // acquire
transition(S_TIP_C, S_TRUNK_CD, false) // acquire does not make us immediately dirty
transition(S_TIP_D, S_INVALID, p)
transition(S_TIP_D, S_BRANCH, p) // losing D is only possible via probe
transition(S_TIP_D, S_BRANCH_C, p && c) // probed while acquire shared
transition(S_TIP_D, S_TIP, p) // probed while MMIO read || outer probe.toT (optional)
transition(S_TIP_D, S_TIP_C, false) // we would go S_TRUNK_C instead
transition(S_TIP_D, S_TIP_CD, false) // we would go S_TRUNK_CD instead
transition(S_TIP_D, S_TRUNK_C, p && c) // probed while acquired
transition(S_TIP_D, S_TRUNK_CD, c) // acquire
transition(S_TIP_CD, S_INVALID, c && p)
transition(S_TIP_CD, S_BRANCH, c && p) // losing D is only possible via probe
transition(S_TIP_CD, S_BRANCH_C, c && p) // losing D is only possible via probe
transition(S_TIP_CD, S_TIP, c && p) // probed while MMIO read || outer probe.toT (optional)
transition(S_TIP_CD, S_TIP_C, false) // we would go S_TRUNK_C instead
transition(S_TIP_CD, S_TIP_D, c) // MMIO write || clean release (optional)
transition(S_TIP_CD, S_TRUNK_C, c && p) // probed while acquire
transition(S_TIP_CD, S_TRUNK_CD, c) // acquire
transition(S_TRUNK_C, S_INVALID, c && p)
transition(S_TRUNK_C, S_BRANCH, c && p) // losing TIP only possible via probe
transition(S_TRUNK_C, S_BRANCH_C, c && p) // losing TIP only possible via probe
transition(S_TRUNK_C, S_TIP, c) // MMIO read || clean release (optional)
transition(S_TRUNK_C, S_TIP_C, c) // bounce shared
transition(S_TRUNK_C, S_TIP_D, c) // dirty release
transition(S_TRUNK_C, S_TIP_CD, c) // dirty bounce shared
transition(S_TRUNK_C, S_TRUNK_CD, c) // dirty bounce
transition(S_TRUNK_CD, S_INVALID, c && p)
transition(S_TRUNK_CD, S_BRANCH, c && p) // losing D only possible via probe
transition(S_TRUNK_CD, S_BRANCH_C, c && p) // losing D only possible via probe
transition(S_TRUNK_CD, S_TIP, c && p) // probed while MMIO read || outer probe.toT (optional)
transition(S_TRUNK_CD, S_TIP_C, false) // we would go S_TRUNK_C instead
transition(S_TRUNK_CD, S_TIP_D, c) // dirty release
transition(S_TRUNK_CD, S_TIP_CD, c) // bounce shared
transition(S_TRUNK_CD, S_TRUNK_C, c && p) // probed while acquire
}
// Handle response messages
val probe_bit = params.clientBit(io.sinkc.bits.source)
val last_probe = (probes_done | probe_bit) === (meta.clients & ~excluded_client)
val probe_toN = isToN(io.sinkc.bits.param)
if (!params.firstLevel) when (io.sinkc.valid) {
params.ccover( probe_toN && io.schedule.bits.b.bits.param === toB, "MSHR_PROBE_FULL", "Client downgraded to N when asked only to do B")
params.ccover(!probe_toN && io.schedule.bits.b.bits.param === toB, "MSHR_PROBE_HALF", "Client downgraded to B when asked only to do B")
// Caution: the probe matches us only in set.
// We would never allow an outer probe to nest until both w_[rp]probeack complete, so
// it is safe to just unguardedly update the probe FSM.
probes_done := probes_done | probe_bit
probes_toN := probes_toN | Mux(probe_toN, probe_bit, 0.U)
probes_noT := probes_noT || io.sinkc.bits.param =/= TtoT
w_rprobeackfirst := w_rprobeackfirst || last_probe
w_rprobeacklast := w_rprobeacklast || (last_probe && io.sinkc.bits.last)
w_pprobeackfirst := w_pprobeackfirst || last_probe
w_pprobeacklast := w_pprobeacklast || (last_probe && io.sinkc.bits.last)
// Allow wormhole routing from sinkC if the first request beat has offset 0
val set_pprobeack = last_probe && (io.sinkc.bits.last || request.offset === 0.U)
w_pprobeack := w_pprobeack || set_pprobeack
params.ccover(!set_pprobeack && w_rprobeackfirst, "MSHR_PROBE_SERIAL", "Sequential routing of probe response data")
params.ccover( set_pprobeack && w_rprobeackfirst, "MSHR_PROBE_WORMHOLE", "Wormhole routing of probe response data")
// However, meta-data updates need to be done more cautiously
when (meta.state =/= INVALID && io.sinkc.bits.tag === meta.tag && io.sinkc.bits.data) { meta.dirty := true.B } // !!!
}
when (io.sinkd.valid) {
when (io.sinkd.bits.opcode === Grant || io.sinkd.bits.opcode === GrantData) {
sink := io.sinkd.bits.sink
w_grantfirst := true.B
w_grantlast := io.sinkd.bits.last
// Record if we need to prevent taking ownership
bad_grant := io.sinkd.bits.denied
// Allow wormhole routing for requests whose first beat has offset 0
w_grant := request.offset === 0.U || io.sinkd.bits.last
params.ccover(io.sinkd.bits.opcode === GrantData && request.offset === 0.U, "MSHR_GRANT_WORMHOLE", "Wormhole routing of grant response data")
params.ccover(io.sinkd.bits.opcode === GrantData && request.offset =/= 0.U, "MSHR_GRANT_SERIAL", "Sequential routing of grant response data")
gotT := io.sinkd.bits.param === toT
}
.elsewhen (io.sinkd.bits.opcode === ReleaseAck) {
w_releaseack := true.B
}
}
when (io.sinke.valid) {
w_grantack := true.B
}
// Bootstrap new requests
val allocate_as_full = WireInit(new FullRequest(params), init = io.allocate.bits)
val new_meta = Mux(io.allocate.valid && io.allocate.bits.repeat, final_meta_writeback, io.directory.bits)
val new_request = Mux(io.allocate.valid, allocate_as_full, request)
val new_needT = needT(new_request.opcode, new_request.param)
val new_clientBit = params.clientBit(new_request.source)
val new_skipProbe = Mux(skipProbeN(new_request.opcode, params.cache.hintsSkipProbe), new_clientBit, 0.U)
val prior = cacheState(final_meta_writeback, true.B)
def bypass(from: CacheState, cover: Boolean)(implicit sourceInfo: SourceInfo) {
if (cover) {
params.ccover(prior === from.code, s"MSHR_${from}_BYPASS", s"State bypass transition from ${from} ${cfg}")
} else {
assert(!(prior === from.code), cf"State bypass from ${from} should be impossible ${cfg}")
}
}
when (io.allocate.valid && io.allocate.bits.repeat) {
bypass(S_INVALID, f || p) // Can lose permissions (probe/flush)
bypass(S_BRANCH, b) // MMIO read to read-only device
bypass(S_BRANCH_C, b && c) // you need children to become C
bypass(S_TIP, true) // MMIO read || clean release can lead to this state
bypass(S_TIP_C, c) // needs two clients || client + mmio || downgrading client
bypass(S_TIP_CD, c) // needs two clients || client + mmio || downgrading client
bypass(S_TIP_D, true) // MMIO write || dirty release lead here
bypass(S_TRUNK_C, c) // acquire for write
bypass(S_TRUNK_CD, c) // dirty release then reacquire
}
when (io.allocate.valid) {
assert (!request_valid || (no_wait && io.schedule.fire))
request_valid := true.B
request := io.allocate.bits
}
// Create execution plan
when (io.directory.valid || (io.allocate.valid && io.allocate.bits.repeat)) {
meta_valid := true.B
meta := new_meta
probes_done := 0.U
probes_toN := 0.U
probes_noT := false.B
gotT := false.B
bad_grant := false.B
// These should already be either true or turning true
// We clear them here explicitly to simplify the mux tree
s_rprobe := true.B
w_rprobeackfirst := true.B
w_rprobeacklast := true.B
s_release := true.B
w_releaseack := true.B
s_pprobe := true.B
s_acquire := true.B
s_flush := true.B
w_grantfirst := true.B
w_grantlast := true.B
w_grant := true.B
w_pprobeackfirst := true.B
w_pprobeacklast := true.B
w_pprobeack := true.B
s_probeack := true.B
s_grantack := true.B
s_execute := true.B
w_grantack := true.B
s_writeback := true.B
// For C channel requests (ie: Release[Data])
when (new_request.prio(2) && (!params.firstLevel).B) {
s_execute := false.B
// Do we need to go dirty?
when (new_request.opcode(0) && !new_meta.dirty) {
s_writeback := false.B
}
// Does our state change?
when (isToB(new_request.param) && new_meta.state === TRUNK) {
s_writeback := false.B
}
// Do our clients change?
when (isToN(new_request.param) && (new_meta.clients & new_clientBit) =/= 0.U) {
s_writeback := false.B
}
assert (new_meta.hit)
}
// For X channel requests (ie: flush)
.elsewhen (new_request.control && params.control.B) { // new_request.prio(0)
s_flush := false.B
// Do we need to actually do something?
when (new_meta.hit) {
s_release := false.B
w_releaseack := false.B
// Do we need to shoot-down inner caches?
when ((!params.firstLevel).B && (new_meta.clients =/= 0.U)) {
s_rprobe := false.B
w_rprobeackfirst := false.B
w_rprobeacklast := false.B
}
}
}
// For A channel requests
.otherwise { // new_request.prio(0) && !new_request.control
s_execute := false.B
// Do we need an eviction?
when (!new_meta.hit && new_meta.state =/= INVALID) {
s_release := false.B
w_releaseack := false.B
// Do we need to shoot-down inner caches?
when ((!params.firstLevel).B & (new_meta.clients =/= 0.U)) {
s_rprobe := false.B
w_rprobeackfirst := false.B
w_rprobeacklast := false.B
}
}
// Do we need an acquire?
when (!new_meta.hit || (new_meta.state === BRANCH && new_needT)) {
s_acquire := false.B
w_grantfirst := false.B
w_grantlast := false.B
w_grant := false.B
s_grantack := false.B
s_writeback := false.B
}
// Do we need a probe?
when ((!params.firstLevel).B && (new_meta.hit &&
(new_needT || new_meta.state === TRUNK) &&
(new_meta.clients & ~new_skipProbe) =/= 0.U)) {
s_pprobe := false.B
w_pprobeackfirst := false.B
w_pprobeacklast := false.B
w_pprobeack := false.B
s_writeback := false.B
}
// Do we need a grantack?
when (new_request.opcode === AcquireBlock || new_request.opcode === AcquirePerm) {
w_grantack := false.B
s_writeback := false.B
}
// Becomes dirty?
when (!new_request.opcode(2) && new_meta.hit && !new_meta.dirty) {
s_writeback := false.B
}
}
}
}
File Parameters.scala:
/*
* Copyright 2019 SiFive, Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You should have received a copy of LICENSE.Apache2 along with
* this software. If not, you may obtain a copy at
*
* https://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package sifive.blocks.inclusivecache
import chisel3._
import chisel3.util._
import chisel3.experimental.SourceInfo
import org.chipsalliance.cde.config._
import freechips.rocketchip.diplomacy._
import freechips.rocketchip.tilelink._
import freechips.rocketchip.util._
import freechips.rocketchip.util.property.cover
import scala.math.{min,max}
case class CacheParameters(
level: Int,
ways: Int,
sets: Int,
blockBytes: Int,
beatBytes: Int, // inner
hintsSkipProbe: Boolean)
{
require (ways > 0)
require (sets > 0)
require (blockBytes > 0 && isPow2(blockBytes))
require (beatBytes > 0 && isPow2(beatBytes))
require (blockBytes >= beatBytes)
val blocks = ways * sets
val sizeBytes = blocks * blockBytes
val blockBeats = blockBytes/beatBytes
}
case class InclusiveCachePortParameters(
a: BufferParams,
b: BufferParams,
c: BufferParams,
d: BufferParams,
e: BufferParams)
{
def apply()(implicit p: Parameters, valName: ValName) = LazyModule(new TLBuffer(a, b, c, d, e))
}
object InclusiveCachePortParameters
{
val none = InclusiveCachePortParameters(
a = BufferParams.none,
b = BufferParams.none,
c = BufferParams.none,
d = BufferParams.none,
e = BufferParams.none)
val full = InclusiveCachePortParameters(
a = BufferParams.default,
b = BufferParams.default,
c = BufferParams.default,
d = BufferParams.default,
e = BufferParams.default)
// This removes feed-through paths from C=>A and A=>C
val fullC = InclusiveCachePortParameters(
a = BufferParams.none,
b = BufferParams.none,
c = BufferParams.default,
d = BufferParams.none,
e = BufferParams.none)
val flowAD = InclusiveCachePortParameters(
a = BufferParams.flow,
b = BufferParams.none,
c = BufferParams.none,
d = BufferParams.flow,
e = BufferParams.none)
val flowAE = InclusiveCachePortParameters(
a = BufferParams.flow,
b = BufferParams.none,
c = BufferParams.none,
d = BufferParams.none,
e = BufferParams.flow)
// For innerBuf:
// SinkA: no restrictions, flows into scheduler+putbuffer
// SourceB: no restrictions, flows out of scheduler
// sinkC: no restrictions, flows into scheduler+putbuffer & buffered to bankedStore
// SourceD: no restrictions, flows out of bankedStore/regout
// SinkE: no restrictions, flows into scheduler
//
// ... so while none is possible, you probably want at least flowAC to cut ready
// from the scheduler delay and flowD to ease SourceD back-pressure
// For outerBufer:
// SourceA: must not be pipe, flows out of scheduler
// SinkB: no restrictions, flows into scheduler
// SourceC: pipe is useless, flows out of bankedStore/regout, parameter depth ignored
// SinkD: no restrictions, flows into scheduler & bankedStore
// SourceE: must not be pipe, flows out of scheduler
//
// ... AE take the channel ready into the scheduler, so you need at least flowAE
}
case class InclusiveCacheMicroParameters(
writeBytes: Int, // backing store update granularity
memCycles: Int = 40, // # of L2 clock cycles for a memory round-trip (50ns @ 800MHz)
portFactor: Int = 4, // numSubBanks = (widest TL port * portFactor) / writeBytes
dirReg: Boolean = false,
innerBuf: InclusiveCachePortParameters = InclusiveCachePortParameters.fullC, // or none
outerBuf: InclusiveCachePortParameters = InclusiveCachePortParameters.full) // or flowAE
{
require (writeBytes > 0 && isPow2(writeBytes))
require (memCycles > 0)
require (portFactor >= 2) // for inner RMW and concurrent outer Relase + Grant
}
case class InclusiveCacheControlParameters(
address: BigInt,
beatBytes: Int,
bankedControl: Boolean)
case class InclusiveCacheParameters(
cache: CacheParameters,
micro: InclusiveCacheMicroParameters,
control: Boolean,
inner: TLEdgeIn,
outer: TLEdgeOut)(implicit val p: Parameters)
{
require (cache.ways > 1)
require (cache.sets > 1 && isPow2(cache.sets))
require (micro.writeBytes <= inner.manager.beatBytes)
require (micro.writeBytes <= outer.manager.beatBytes)
require (inner.manager.beatBytes <= cache.blockBytes)
require (outer.manager.beatBytes <= cache.blockBytes)
// Require that all cached address ranges have contiguous blocks
outer.manager.managers.flatMap(_.address).foreach { a =>
require (a.alignment >= cache.blockBytes)
}
// If we are the first level cache, we do not need to support inner-BCE
val firstLevel = !inner.client.clients.exists(_.supports.probe)
// If we are the last level cache, we do not need to support outer-B
val lastLevel = !outer.manager.managers.exists(_.regionType > RegionType.UNCACHED)
require (lastLevel)
// Provision enough resources to achieve full throughput with missing single-beat accesses
val mshrs = InclusiveCacheParameters.all_mshrs(cache, micro)
val secondary = max(mshrs, micro.memCycles - mshrs)
val putLists = micro.memCycles // allow every request to be single beat
val putBeats = max(2*cache.blockBeats, micro.memCycles)
val relLists = 2
val relBeats = relLists*cache.blockBeats
val flatAddresses = AddressSet.unify(outer.manager.managers.flatMap(_.address))
val pickMask = AddressDecoder(flatAddresses.map(Seq(_)), flatAddresses.map(_.mask).reduce(_|_))
def bitOffsets(x: BigInt, offset: Int = 0, tail: List[Int] = List.empty[Int]): List[Int] =
if (x == 0) tail.reverse else bitOffsets(x >> 1, offset + 1, if ((x & 1) == 1) offset :: tail else tail)
val addressMapping = bitOffsets(pickMask)
val addressBits = addressMapping.size
// println(s"addresses: ${flatAddresses} => ${pickMask} => ${addressBits}")
val allClients = inner.client.clients.size
val clientBitsRaw = inner.client.clients.filter(_.supports.probe).size
val clientBits = max(1, clientBitsRaw)
val stateBits = 2
val wayBits = log2Ceil(cache.ways)
val setBits = log2Ceil(cache.sets)
val offsetBits = log2Ceil(cache.blockBytes)
val tagBits = addressBits - setBits - offsetBits
val putBits = log2Ceil(max(putLists, relLists))
require (tagBits > 0)
require (offsetBits > 0)
val innerBeatBits = (offsetBits - log2Ceil(inner.manager.beatBytes)) max 1
val outerBeatBits = (offsetBits - log2Ceil(outer.manager.beatBytes)) max 1
val innerMaskBits = inner.manager.beatBytes / micro.writeBytes
val outerMaskBits = outer.manager.beatBytes / micro.writeBytes
def clientBit(source: UInt): UInt = {
if (clientBitsRaw == 0) {
0.U
} else {
Cat(inner.client.clients.filter(_.supports.probe).map(_.sourceId.contains(source)).reverse)
}
}
def clientSource(bit: UInt): UInt = {
if (clientBitsRaw == 0) {
0.U
} else {
Mux1H(bit, inner.client.clients.filter(_.supports.probe).map(c => c.sourceId.start.U))
}
}
def parseAddress(x: UInt): (UInt, UInt, UInt) = {
val offset = Cat(addressMapping.map(o => x(o,o)).reverse)
val set = offset >> offsetBits
val tag = set >> setBits
(tag(tagBits-1, 0), set(setBits-1, 0), offset(offsetBits-1, 0))
}
def widen(x: UInt, width: Int): UInt = {
val y = x | 0.U(width.W)
assert (y >> width === 0.U)
y(width-1, 0)
}
def expandAddress(tag: UInt, set: UInt, offset: UInt): UInt = {
val base = Cat(widen(tag, tagBits), widen(set, setBits), widen(offset, offsetBits))
val bits = Array.fill(outer.bundle.addressBits) { 0.U(1.W) }
addressMapping.zipWithIndex.foreach { case (a, i) => bits(a) = base(i,i) }
Cat(bits.reverse)
}
def restoreAddress(expanded: UInt): UInt = {
val missingBits = flatAddresses
.map { a => (a.widen(pickMask).base, a.widen(~pickMask)) } // key is the bits to restore on match
.groupBy(_._1)
.view
.mapValues(_.map(_._2))
val muxMask = AddressDecoder(missingBits.values.toList)
val mux = missingBits.toList.map { case (bits, addrs) =>
val widen = addrs.map(_.widen(~muxMask))
val matches = AddressSet
.unify(widen.distinct)
.map(_.contains(expanded))
.reduce(_ || _)
(matches, bits.U)
}
expanded | Mux1H(mux)
}
def dirReg[T <: Data](x: T, en: Bool = true.B): T = {
if (micro.dirReg) RegEnable(x, en) else x
}
def ccover(cond: Bool, label: String, desc: String)(implicit sourceInfo: SourceInfo) =
cover(cond, "CCACHE_L" + cache.level + "_" + label, "MemorySystem;;" + desc)
}
object MetaData
{
val stateBits = 2
def INVALID: UInt = 0.U(stateBits.W) // way is empty
def BRANCH: UInt = 1.U(stateBits.W) // outer slave cache is trunk
def TRUNK: UInt = 2.U(stateBits.W) // unique inner master cache is trunk
def TIP: UInt = 3.U(stateBits.W) // we are trunk, inner masters are branch
// Does a request need trunk?
def needT(opcode: UInt, param: UInt): Bool = {
!opcode(2) ||
(opcode === TLMessages.Hint && param === TLHints.PREFETCH_WRITE) ||
((opcode === TLMessages.AcquireBlock || opcode === TLMessages.AcquirePerm) && param =/= TLPermissions.NtoB)
}
// Does a request prove the client need not be probed?
def skipProbeN(opcode: UInt, hintsSkipProbe: Boolean): Bool = {
// Acquire(toB) and Get => is N, so no probe
// Acquire(*toT) => is N or B, but need T, so no probe
// Hint => could be anything, so probe IS needed, if hintsSkipProbe is enabled, skip probe the same client
// Put* => is N or B, so probe IS needed
opcode === TLMessages.AcquireBlock || opcode === TLMessages.AcquirePerm || opcode === TLMessages.Get || (opcode === TLMessages.Hint && hintsSkipProbe.B)
}
def isToN(param: UInt): Bool = {
param === TLPermissions.TtoN || param === TLPermissions.BtoN || param === TLPermissions.NtoN
}
def isToB(param: UInt): Bool = {
param === TLPermissions.TtoB || param === TLPermissions.BtoB
}
}
object InclusiveCacheParameters
{
val lfsrBits = 10
val L2ControlAddress = 0x2010000
val L2ControlSize = 0x1000
def out_mshrs(cache: CacheParameters, micro: InclusiveCacheMicroParameters): Int = {
// We need 2-3 normal MSHRs to cover the Directory latency
// To fully exploit memory bandwidth-delay-product, we need memCyles/blockBeats MSHRs
max(if (micro.dirReg) 3 else 2, (micro.memCycles + cache.blockBeats - 1) / cache.blockBeats)
}
def all_mshrs(cache: CacheParameters, micro: InclusiveCacheMicroParameters): Int =
// We need a dedicated MSHR for B+C each
2 + out_mshrs(cache, micro)
}
class InclusiveCacheBundle(params: InclusiveCacheParameters) extends Bundle
| module MSHR_55( // @[MSHR.scala:84:7]
input clock, // @[MSHR.scala:84:7]
input reset, // @[MSHR.scala:84:7]
input io_allocate_valid, // @[MSHR.scala:86:14]
input io_allocate_bits_prio_0, // @[MSHR.scala:86:14]
input io_allocate_bits_prio_1, // @[MSHR.scala:86:14]
input io_allocate_bits_prio_2, // @[MSHR.scala:86:14]
input io_allocate_bits_control, // @[MSHR.scala:86:14]
input [2:0] io_allocate_bits_opcode, // @[MSHR.scala:86:14]
input [2:0] io_allocate_bits_param, // @[MSHR.scala:86:14]
input [2:0] io_allocate_bits_size, // @[MSHR.scala:86:14]
input [5:0] io_allocate_bits_source, // @[MSHR.scala:86:14]
input [8:0] io_allocate_bits_tag, // @[MSHR.scala:86:14]
input [5:0] io_allocate_bits_offset, // @[MSHR.scala:86:14]
input [5:0] io_allocate_bits_put, // @[MSHR.scala:86:14]
input [10:0] io_allocate_bits_set, // @[MSHR.scala:86:14]
input io_allocate_bits_repeat, // @[MSHR.scala:86:14]
input io_directory_valid, // @[MSHR.scala:86:14]
input io_directory_bits_dirty, // @[MSHR.scala:86:14]
input [1:0] io_directory_bits_state, // @[MSHR.scala:86:14]
input io_directory_bits_clients, // @[MSHR.scala:86:14]
input [8:0] io_directory_bits_tag, // @[MSHR.scala:86:14]
input io_directory_bits_hit, // @[MSHR.scala:86:14]
input [3:0] io_directory_bits_way, // @[MSHR.scala:86:14]
output io_status_valid, // @[MSHR.scala:86:14]
output [10:0] io_status_bits_set, // @[MSHR.scala:86:14]
output [8:0] io_status_bits_tag, // @[MSHR.scala:86:14]
output [3:0] io_status_bits_way, // @[MSHR.scala:86:14]
output io_status_bits_blockB, // @[MSHR.scala:86:14]
output io_status_bits_nestB, // @[MSHR.scala:86:14]
output io_status_bits_blockC, // @[MSHR.scala:86:14]
output io_status_bits_nestC, // @[MSHR.scala:86:14]
input io_schedule_ready, // @[MSHR.scala:86:14]
output io_schedule_valid, // @[MSHR.scala:86:14]
output io_schedule_bits_a_valid, // @[MSHR.scala:86:14]
output [8:0] io_schedule_bits_a_bits_tag, // @[MSHR.scala:86:14]
output [10:0] io_schedule_bits_a_bits_set, // @[MSHR.scala:86:14]
output [2:0] io_schedule_bits_a_bits_param, // @[MSHR.scala:86:14]
output io_schedule_bits_a_bits_block, // @[MSHR.scala:86:14]
output io_schedule_bits_b_valid, // @[MSHR.scala:86:14]
output [2:0] io_schedule_bits_b_bits_param, // @[MSHR.scala:86:14]
output [8:0] io_schedule_bits_b_bits_tag, // @[MSHR.scala:86:14]
output [10:0] io_schedule_bits_b_bits_set, // @[MSHR.scala:86:14]
output io_schedule_bits_b_bits_clients, // @[MSHR.scala:86:14]
output io_schedule_bits_c_valid, // @[MSHR.scala:86:14]
output [2:0] io_schedule_bits_c_bits_opcode, // @[MSHR.scala:86:14]
output [2:0] io_schedule_bits_c_bits_param, // @[MSHR.scala:86:14]
output [8:0] io_schedule_bits_c_bits_tag, // @[MSHR.scala:86:14]
output [10:0] io_schedule_bits_c_bits_set, // @[MSHR.scala:86:14]
output [3:0] io_schedule_bits_c_bits_way, // @[MSHR.scala:86:14]
output io_schedule_bits_c_bits_dirty, // @[MSHR.scala:86:14]
output io_schedule_bits_d_valid, // @[MSHR.scala:86:14]
output io_schedule_bits_d_bits_prio_0, // @[MSHR.scala:86:14]
output io_schedule_bits_d_bits_prio_1, // @[MSHR.scala:86:14]
output io_schedule_bits_d_bits_prio_2, // @[MSHR.scala:86:14]
output io_schedule_bits_d_bits_control, // @[MSHR.scala:86:14]
output [2:0] io_schedule_bits_d_bits_opcode, // @[MSHR.scala:86:14]
output [2:0] io_schedule_bits_d_bits_param, // @[MSHR.scala:86:14]
output [2:0] io_schedule_bits_d_bits_size, // @[MSHR.scala:86:14]
output [5:0] io_schedule_bits_d_bits_source, // @[MSHR.scala:86:14]
output [8:0] io_schedule_bits_d_bits_tag, // @[MSHR.scala:86:14]
output [5:0] io_schedule_bits_d_bits_offset, // @[MSHR.scala:86:14]
output [5:0] io_schedule_bits_d_bits_put, // @[MSHR.scala:86:14]
output [10:0] io_schedule_bits_d_bits_set, // @[MSHR.scala:86:14]
output [3:0] io_schedule_bits_d_bits_way, // @[MSHR.scala:86:14]
output io_schedule_bits_d_bits_bad, // @[MSHR.scala:86:14]
output io_schedule_bits_e_valid, // @[MSHR.scala:86:14]
output [2:0] io_schedule_bits_e_bits_sink, // @[MSHR.scala:86:14]
output io_schedule_bits_x_valid, // @[MSHR.scala:86:14]
output io_schedule_bits_dir_valid, // @[MSHR.scala:86:14]
output [10:0] io_schedule_bits_dir_bits_set, // @[MSHR.scala:86:14]
output [3:0] io_schedule_bits_dir_bits_way, // @[MSHR.scala:86:14]
output io_schedule_bits_dir_bits_data_dirty, // @[MSHR.scala:86:14]
output [1:0] io_schedule_bits_dir_bits_data_state, // @[MSHR.scala:86:14]
output io_schedule_bits_dir_bits_data_clients, // @[MSHR.scala:86:14]
output [8:0] io_schedule_bits_dir_bits_data_tag, // @[MSHR.scala:86:14]
output io_schedule_bits_reload, // @[MSHR.scala:86:14]
input io_sinkc_valid, // @[MSHR.scala:86:14]
input io_sinkc_bits_last, // @[MSHR.scala:86:14]
input [10:0] io_sinkc_bits_set, // @[MSHR.scala:86:14]
input [8:0] io_sinkc_bits_tag, // @[MSHR.scala:86:14]
input [5:0] io_sinkc_bits_source, // @[MSHR.scala:86:14]
input [2:0] io_sinkc_bits_param, // @[MSHR.scala:86:14]
input io_sinkc_bits_data, // @[MSHR.scala:86:14]
input io_sinkd_valid, // @[MSHR.scala:86:14]
input io_sinkd_bits_last, // @[MSHR.scala:86:14]
input [2:0] io_sinkd_bits_opcode, // @[MSHR.scala:86:14]
input [2:0] io_sinkd_bits_param, // @[MSHR.scala:86:14]
input [3:0] io_sinkd_bits_source, // @[MSHR.scala:86:14]
input [2:0] io_sinkd_bits_sink, // @[MSHR.scala:86:14]
input io_sinkd_bits_denied, // @[MSHR.scala:86:14]
input io_sinke_valid, // @[MSHR.scala:86:14]
input [3:0] io_sinke_bits_sink, // @[MSHR.scala:86:14]
input [10:0] io_nestedwb_set, // @[MSHR.scala:86:14]
input [8:0] io_nestedwb_tag, // @[MSHR.scala:86:14]
input io_nestedwb_b_toN, // @[MSHR.scala:86:14]
input io_nestedwb_b_toB, // @[MSHR.scala:86:14]
input io_nestedwb_b_clr_dirty, // @[MSHR.scala:86:14]
input io_nestedwb_c_set_dirty // @[MSHR.scala:86:14]
);
wire [8:0] final_meta_writeback_tag; // @[MSHR.scala:215:38]
wire final_meta_writeback_clients; // @[MSHR.scala:215:38]
wire [1:0] final_meta_writeback_state; // @[MSHR.scala:215:38]
wire final_meta_writeback_dirty; // @[MSHR.scala:215:38]
wire io_allocate_valid_0 = io_allocate_valid; // @[MSHR.scala:84:7]
wire io_allocate_bits_prio_0_0 = io_allocate_bits_prio_0; // @[MSHR.scala:84:7]
wire io_allocate_bits_prio_1_0 = io_allocate_bits_prio_1; // @[MSHR.scala:84:7]
wire io_allocate_bits_prio_2_0 = io_allocate_bits_prio_2; // @[MSHR.scala:84:7]
wire io_allocate_bits_control_0 = io_allocate_bits_control; // @[MSHR.scala:84:7]
wire [2:0] io_allocate_bits_opcode_0 = io_allocate_bits_opcode; // @[MSHR.scala:84:7]
wire [2:0] io_allocate_bits_param_0 = io_allocate_bits_param; // @[MSHR.scala:84:7]
wire [2:0] io_allocate_bits_size_0 = io_allocate_bits_size; // @[MSHR.scala:84:7]
wire [5:0] io_allocate_bits_source_0 = io_allocate_bits_source; // @[MSHR.scala:84:7]
wire [8:0] io_allocate_bits_tag_0 = io_allocate_bits_tag; // @[MSHR.scala:84:7]
wire [5:0] io_allocate_bits_offset_0 = io_allocate_bits_offset; // @[MSHR.scala:84:7]
wire [5:0] io_allocate_bits_put_0 = io_allocate_bits_put; // @[MSHR.scala:84:7]
wire [10:0] io_allocate_bits_set_0 = io_allocate_bits_set; // @[MSHR.scala:84:7]
wire io_allocate_bits_repeat_0 = io_allocate_bits_repeat; // @[MSHR.scala:84:7]
wire io_directory_valid_0 = io_directory_valid; // @[MSHR.scala:84:7]
wire io_directory_bits_dirty_0 = io_directory_bits_dirty; // @[MSHR.scala:84:7]
wire [1:0] io_directory_bits_state_0 = io_directory_bits_state; // @[MSHR.scala:84:7]
wire io_directory_bits_clients_0 = io_directory_bits_clients; // @[MSHR.scala:84:7]
wire [8:0] io_directory_bits_tag_0 = io_directory_bits_tag; // @[MSHR.scala:84:7]
wire io_directory_bits_hit_0 = io_directory_bits_hit; // @[MSHR.scala:84:7]
wire [3:0] io_directory_bits_way_0 = io_directory_bits_way; // @[MSHR.scala:84:7]
wire io_schedule_ready_0 = io_schedule_ready; // @[MSHR.scala:84:7]
wire io_sinkc_valid_0 = io_sinkc_valid; // @[MSHR.scala:84:7]
wire io_sinkc_bits_last_0 = io_sinkc_bits_last; // @[MSHR.scala:84:7]
wire [10:0] io_sinkc_bits_set_0 = io_sinkc_bits_set; // @[MSHR.scala:84:7]
wire [8:0] io_sinkc_bits_tag_0 = io_sinkc_bits_tag; // @[MSHR.scala:84:7]
wire [5:0] io_sinkc_bits_source_0 = io_sinkc_bits_source; // @[MSHR.scala:84:7]
wire [2:0] io_sinkc_bits_param_0 = io_sinkc_bits_param; // @[MSHR.scala:84:7]
wire io_sinkc_bits_data_0 = io_sinkc_bits_data; // @[MSHR.scala:84:7]
wire io_sinkd_valid_0 = io_sinkd_valid; // @[MSHR.scala:84:7]
wire io_sinkd_bits_last_0 = io_sinkd_bits_last; // @[MSHR.scala:84:7]
wire [2:0] io_sinkd_bits_opcode_0 = io_sinkd_bits_opcode; // @[MSHR.scala:84:7]
wire [2:0] io_sinkd_bits_param_0 = io_sinkd_bits_param; // @[MSHR.scala:84:7]
wire [3:0] io_sinkd_bits_source_0 = io_sinkd_bits_source; // @[MSHR.scala:84:7]
wire [2:0] io_sinkd_bits_sink_0 = io_sinkd_bits_sink; // @[MSHR.scala:84:7]
wire io_sinkd_bits_denied_0 = io_sinkd_bits_denied; // @[MSHR.scala:84:7]
wire io_sinke_valid_0 = io_sinke_valid; // @[MSHR.scala:84:7]
wire [3:0] io_sinke_bits_sink_0 = io_sinke_bits_sink; // @[MSHR.scala:84:7]
wire [10:0] io_nestedwb_set_0 = io_nestedwb_set; // @[MSHR.scala:84:7]
wire [8:0] io_nestedwb_tag_0 = io_nestedwb_tag; // @[MSHR.scala:84:7]
wire io_nestedwb_b_toN_0 = io_nestedwb_b_toN; // @[MSHR.scala:84:7]
wire io_nestedwb_b_toB_0 = io_nestedwb_b_toB; // @[MSHR.scala:84:7]
wire io_nestedwb_b_clr_dirty_0 = io_nestedwb_b_clr_dirty; // @[MSHR.scala:84:7]
wire io_nestedwb_c_set_dirty_0 = io_nestedwb_c_set_dirty; // @[MSHR.scala:84:7]
wire [3:0] io_schedule_bits_a_bits_source = 4'h0; // @[MSHR.scala:84:7]
wire [3:0] io_schedule_bits_c_bits_source = 4'h0; // @[MSHR.scala:84:7]
wire [3:0] io_schedule_bits_d_bits_sink = 4'h0; // @[MSHR.scala:84:7]
wire io_schedule_bits_x_bits_fail = 1'h0; // @[MSHR.scala:84:7]
wire _io_schedule_bits_c_valid_T_2 = 1'h0; // @[MSHR.scala:186:68]
wire _io_schedule_bits_c_valid_T_3 = 1'h0; // @[MSHR.scala:186:80]
wire invalid_dirty = 1'h0; // @[MSHR.scala:268:21]
wire invalid_clients = 1'h0; // @[MSHR.scala:268:21]
wire _excluded_client_T_7 = 1'h0; // @[Parameters.scala:279:137]
wire _after_T_4 = 1'h0; // @[MSHR.scala:323:11]
wire _new_skipProbe_T_6 = 1'h0; // @[Parameters.scala:279:137]
wire _prior_T_4 = 1'h0; // @[MSHR.scala:323:11]
wire [8:0] invalid_tag = 9'h0; // @[MSHR.scala:268:21]
wire [1:0] invalid_state = 2'h0; // @[MSHR.scala:268:21]
wire [1:0] _final_meta_writeback_state_T_11 = 2'h1; // @[MSHR.scala:240:70]
wire allocate_as_full_prio_0 = io_allocate_bits_prio_0_0; // @[MSHR.scala:84:7, :504:34]
wire allocate_as_full_prio_1 = io_allocate_bits_prio_1_0; // @[MSHR.scala:84:7, :504:34]
wire allocate_as_full_prio_2 = io_allocate_bits_prio_2_0; // @[MSHR.scala:84:7, :504:34]
wire allocate_as_full_control = io_allocate_bits_control_0; // @[MSHR.scala:84:7, :504:34]
wire [2:0] allocate_as_full_opcode = io_allocate_bits_opcode_0; // @[MSHR.scala:84:7, :504:34]
wire [2:0] allocate_as_full_param = io_allocate_bits_param_0; // @[MSHR.scala:84:7, :504:34]
wire [2:0] allocate_as_full_size = io_allocate_bits_size_0; // @[MSHR.scala:84:7, :504:34]
wire [5:0] allocate_as_full_source = io_allocate_bits_source_0; // @[MSHR.scala:84:7, :504:34]
wire [8:0] allocate_as_full_tag = io_allocate_bits_tag_0; // @[MSHR.scala:84:7, :504:34]
wire [5:0] allocate_as_full_offset = io_allocate_bits_offset_0; // @[MSHR.scala:84:7, :504:34]
wire [5:0] allocate_as_full_put = io_allocate_bits_put_0; // @[MSHR.scala:84:7, :504:34]
wire [10:0] allocate_as_full_set = io_allocate_bits_set_0; // @[MSHR.scala:84:7, :504:34]
wire _io_status_bits_blockB_T_8; // @[MSHR.scala:168:40]
wire _io_status_bits_nestB_T_4; // @[MSHR.scala:169:93]
wire _io_status_bits_blockC_T; // @[MSHR.scala:172:28]
wire _io_status_bits_nestC_T_5; // @[MSHR.scala:173:39]
wire _io_schedule_valid_T_5; // @[MSHR.scala:193:105]
wire _io_schedule_bits_a_valid_T_2; // @[MSHR.scala:184:55]
wire _io_schedule_bits_a_bits_block_T_5; // @[MSHR.scala:283:91]
wire _io_schedule_bits_b_valid_T_2; // @[MSHR.scala:185:41]
wire [2:0] _io_schedule_bits_b_bits_param_T_3; // @[MSHR.scala:286:41]
wire [8:0] _io_schedule_bits_b_bits_tag_T_1; // @[MSHR.scala:287:41]
wire _io_schedule_bits_b_bits_clients_T_1; // @[MSHR.scala:289:51]
wire _io_schedule_bits_c_valid_T_4; // @[MSHR.scala:186:64]
wire [2:0] _io_schedule_bits_c_bits_opcode_T; // @[MSHR.scala:290:41]
wire [2:0] _io_schedule_bits_c_bits_param_T_1; // @[MSHR.scala:291:41]
wire _io_schedule_bits_d_valid_T_2; // @[MSHR.scala:187:57]
wire [2:0] _io_schedule_bits_d_bits_param_T_9; // @[MSHR.scala:298:41]
wire _io_schedule_bits_e_valid_T_1; // @[MSHR.scala:188:43]
wire _io_schedule_bits_x_valid_T_1; // @[MSHR.scala:189:40]
wire _io_schedule_bits_dir_valid_T_4; // @[MSHR.scala:190:66]
wire _io_schedule_bits_dir_bits_data_T_1_dirty; // @[MSHR.scala:310:41]
wire [1:0] _io_schedule_bits_dir_bits_data_T_1_state; // @[MSHR.scala:310:41]
wire _io_schedule_bits_dir_bits_data_T_1_clients; // @[MSHR.scala:310:41]
wire [8:0] _io_schedule_bits_dir_bits_data_T_1_tag; // @[MSHR.scala:310:41]
wire no_wait; // @[MSHR.scala:183:83]
wire [10:0] io_status_bits_set_0; // @[MSHR.scala:84:7]
wire [8:0] io_status_bits_tag_0; // @[MSHR.scala:84:7]
wire [3:0] io_status_bits_way_0; // @[MSHR.scala:84:7]
wire io_status_bits_blockB_0; // @[MSHR.scala:84:7]
wire io_status_bits_nestB_0; // @[MSHR.scala:84:7]
wire io_status_bits_blockC_0; // @[MSHR.scala:84:7]
wire io_status_bits_nestC_0; // @[MSHR.scala:84:7]
wire io_status_valid_0; // @[MSHR.scala:84:7]
wire [8:0] io_schedule_bits_a_bits_tag_0; // @[MSHR.scala:84:7]
wire [10:0] io_schedule_bits_a_bits_set_0; // @[MSHR.scala:84:7]
wire [2:0] io_schedule_bits_a_bits_param_0; // @[MSHR.scala:84:7]
wire io_schedule_bits_a_bits_block_0; // @[MSHR.scala:84:7]
wire io_schedule_bits_a_valid_0; // @[MSHR.scala:84:7]
wire [2:0] io_schedule_bits_b_bits_param_0; // @[MSHR.scala:84:7]
wire [8:0] io_schedule_bits_b_bits_tag_0; // @[MSHR.scala:84:7]
wire [10:0] io_schedule_bits_b_bits_set_0; // @[MSHR.scala:84:7]
wire io_schedule_bits_b_bits_clients_0; // @[MSHR.scala:84:7]
wire io_schedule_bits_b_valid_0; // @[MSHR.scala:84:7]
wire [2:0] io_schedule_bits_c_bits_opcode_0; // @[MSHR.scala:84:7]
wire [2:0] io_schedule_bits_c_bits_param_0; // @[MSHR.scala:84:7]
wire [8:0] io_schedule_bits_c_bits_tag_0; // @[MSHR.scala:84:7]
wire [10:0] io_schedule_bits_c_bits_set_0; // @[MSHR.scala:84:7]
wire [3:0] io_schedule_bits_c_bits_way_0; // @[MSHR.scala:84:7]
wire io_schedule_bits_c_bits_dirty_0; // @[MSHR.scala:84:7]
wire io_schedule_bits_c_valid_0; // @[MSHR.scala:84:7]
wire io_schedule_bits_d_bits_prio_0_0; // @[MSHR.scala:84:7]
wire io_schedule_bits_d_bits_prio_1_0; // @[MSHR.scala:84:7]
wire io_schedule_bits_d_bits_prio_2_0; // @[MSHR.scala:84:7]
wire io_schedule_bits_d_bits_control_0; // @[MSHR.scala:84:7]
wire [2:0] io_schedule_bits_d_bits_opcode_0; // @[MSHR.scala:84:7]
wire [2:0] io_schedule_bits_d_bits_param_0; // @[MSHR.scala:84:7]
wire [2:0] io_schedule_bits_d_bits_size_0; // @[MSHR.scala:84:7]
wire [5:0] io_schedule_bits_d_bits_source_0; // @[MSHR.scala:84:7]
wire [8:0] io_schedule_bits_d_bits_tag_0; // @[MSHR.scala:84:7]
wire [5:0] io_schedule_bits_d_bits_offset_0; // @[MSHR.scala:84:7]
wire [5:0] io_schedule_bits_d_bits_put_0; // @[MSHR.scala:84:7]
wire [10:0] io_schedule_bits_d_bits_set_0; // @[MSHR.scala:84:7]
wire [3:0] io_schedule_bits_d_bits_way_0; // @[MSHR.scala:84:7]
wire io_schedule_bits_d_bits_bad_0; // @[MSHR.scala:84:7]
wire io_schedule_bits_d_valid_0; // @[MSHR.scala:84:7]
wire [2:0] io_schedule_bits_e_bits_sink_0; // @[MSHR.scala:84:7]
wire io_schedule_bits_e_valid_0; // @[MSHR.scala:84:7]
wire io_schedule_bits_x_valid_0; // @[MSHR.scala:84:7]
wire io_schedule_bits_dir_bits_data_dirty_0; // @[MSHR.scala:84:7]
wire [1:0] io_schedule_bits_dir_bits_data_state_0; // @[MSHR.scala:84:7]
wire io_schedule_bits_dir_bits_data_clients_0; // @[MSHR.scala:84:7]
wire [8:0] io_schedule_bits_dir_bits_data_tag_0; // @[MSHR.scala:84:7]
wire [10:0] io_schedule_bits_dir_bits_set_0; // @[MSHR.scala:84:7]
wire [3:0] io_schedule_bits_dir_bits_way_0; // @[MSHR.scala:84:7]
wire io_schedule_bits_dir_valid_0; // @[MSHR.scala:84:7]
wire io_schedule_bits_reload_0; // @[MSHR.scala:84:7]
wire io_schedule_valid_0; // @[MSHR.scala:84:7]
reg request_valid; // @[MSHR.scala:97:30]
assign io_status_valid_0 = request_valid; // @[MSHR.scala:84:7, :97:30]
reg request_prio_0; // @[MSHR.scala:98:20]
assign io_schedule_bits_d_bits_prio_0_0 = request_prio_0; // @[MSHR.scala:84:7, :98:20]
reg request_prio_1; // @[MSHR.scala:98:20]
assign io_schedule_bits_d_bits_prio_1_0 = request_prio_1; // @[MSHR.scala:84:7, :98:20]
reg request_prio_2; // @[MSHR.scala:98:20]
assign io_schedule_bits_d_bits_prio_2_0 = request_prio_2; // @[MSHR.scala:84:7, :98:20]
reg request_control; // @[MSHR.scala:98:20]
assign io_schedule_bits_d_bits_control_0 = request_control; // @[MSHR.scala:84:7, :98:20]
reg [2:0] request_opcode; // @[MSHR.scala:98:20]
assign io_schedule_bits_d_bits_opcode_0 = request_opcode; // @[MSHR.scala:84:7, :98:20]
reg [2:0] request_param; // @[MSHR.scala:98:20]
reg [2:0] request_size; // @[MSHR.scala:98:20]
assign io_schedule_bits_d_bits_size_0 = request_size; // @[MSHR.scala:84:7, :98:20]
reg [5:0] request_source; // @[MSHR.scala:98:20]
assign io_schedule_bits_d_bits_source_0 = request_source; // @[MSHR.scala:84:7, :98:20]
reg [8:0] request_tag; // @[MSHR.scala:98:20]
assign io_status_bits_tag_0 = request_tag; // @[MSHR.scala:84:7, :98:20]
assign io_schedule_bits_a_bits_tag_0 = request_tag; // @[MSHR.scala:84:7, :98:20]
assign io_schedule_bits_d_bits_tag_0 = request_tag; // @[MSHR.scala:84:7, :98:20]
reg [5:0] request_offset; // @[MSHR.scala:98:20]
assign io_schedule_bits_d_bits_offset_0 = request_offset; // @[MSHR.scala:84:7, :98:20]
reg [5:0] request_put; // @[MSHR.scala:98:20]
assign io_schedule_bits_d_bits_put_0 = request_put; // @[MSHR.scala:84:7, :98:20]
reg [10:0] request_set; // @[MSHR.scala:98:20]
assign io_status_bits_set_0 = request_set; // @[MSHR.scala:84:7, :98:20]
assign io_schedule_bits_a_bits_set_0 = request_set; // @[MSHR.scala:84:7, :98:20]
assign io_schedule_bits_b_bits_set_0 = request_set; // @[MSHR.scala:84:7, :98:20]
assign io_schedule_bits_c_bits_set_0 = request_set; // @[MSHR.scala:84:7, :98:20]
assign io_schedule_bits_d_bits_set_0 = request_set; // @[MSHR.scala:84:7, :98:20]
assign io_schedule_bits_dir_bits_set_0 = request_set; // @[MSHR.scala:84:7, :98:20]
reg meta_valid; // @[MSHR.scala:99:27]
reg meta_dirty; // @[MSHR.scala:100:17]
assign io_schedule_bits_c_bits_dirty_0 = meta_dirty; // @[MSHR.scala:84:7, :100:17]
reg [1:0] meta_state; // @[MSHR.scala:100:17]
reg meta_clients; // @[MSHR.scala:100:17]
wire _meta_no_clients_T = meta_clients; // @[MSHR.scala:100:17, :220:39]
wire evict_c = meta_clients; // @[MSHR.scala:100:17, :315:27]
wire before_c = meta_clients; // @[MSHR.scala:100:17, :315:27]
reg [8:0] meta_tag; // @[MSHR.scala:100:17]
assign io_schedule_bits_c_bits_tag_0 = meta_tag; // @[MSHR.scala:84:7, :100:17]
reg meta_hit; // @[MSHR.scala:100:17]
reg [3:0] meta_way; // @[MSHR.scala:100:17]
assign io_status_bits_way_0 = meta_way; // @[MSHR.scala:84:7, :100:17]
assign io_schedule_bits_c_bits_way_0 = meta_way; // @[MSHR.scala:84:7, :100:17]
assign io_schedule_bits_d_bits_way_0 = meta_way; // @[MSHR.scala:84:7, :100:17]
assign io_schedule_bits_dir_bits_way_0 = meta_way; // @[MSHR.scala:84:7, :100:17]
wire [3:0] final_meta_writeback_way = meta_way; // @[MSHR.scala:100:17, :215:38]
reg s_rprobe; // @[MSHR.scala:121:33]
reg w_rprobeackfirst; // @[MSHR.scala:122:33]
reg w_rprobeacklast; // @[MSHR.scala:123:33]
reg s_release; // @[MSHR.scala:124:33]
reg w_releaseack; // @[MSHR.scala:125:33]
reg s_pprobe; // @[MSHR.scala:126:33]
reg s_acquire; // @[MSHR.scala:127:33]
reg s_flush; // @[MSHR.scala:128:33]
reg w_grantfirst; // @[MSHR.scala:129:33]
reg w_grantlast; // @[MSHR.scala:130:33]
reg w_grant; // @[MSHR.scala:131:33]
reg w_pprobeackfirst; // @[MSHR.scala:132:33]
reg w_pprobeacklast; // @[MSHR.scala:133:33]
reg w_pprobeack; // @[MSHR.scala:134:33]
reg s_grantack; // @[MSHR.scala:136:33]
reg s_execute; // @[MSHR.scala:137:33]
reg w_grantack; // @[MSHR.scala:138:33]
reg s_writeback; // @[MSHR.scala:139:33]
reg [2:0] sink; // @[MSHR.scala:147:17]
assign io_schedule_bits_e_bits_sink_0 = sink; // @[MSHR.scala:84:7, :147:17]
reg gotT; // @[MSHR.scala:148:17]
reg bad_grant; // @[MSHR.scala:149:22]
assign io_schedule_bits_d_bits_bad_0 = bad_grant; // @[MSHR.scala:84:7, :149:22]
reg probes_done; // @[MSHR.scala:150:24]
reg probes_toN; // @[MSHR.scala:151:23]
reg probes_noT; // @[MSHR.scala:152:23]
wire _io_status_bits_blockB_T = ~meta_valid; // @[MSHR.scala:99:27, :168:28]
wire _io_status_bits_blockB_T_1 = ~w_releaseack; // @[MSHR.scala:125:33, :168:45]
wire _io_status_bits_blockB_T_2 = ~w_rprobeacklast; // @[MSHR.scala:123:33, :168:62]
wire _io_status_bits_blockB_T_3 = _io_status_bits_blockB_T_1 | _io_status_bits_blockB_T_2; // @[MSHR.scala:168:{45,59,62}]
wire _io_status_bits_blockB_T_4 = ~w_pprobeacklast; // @[MSHR.scala:133:33, :168:82]
wire _io_status_bits_blockB_T_5 = _io_status_bits_blockB_T_3 | _io_status_bits_blockB_T_4; // @[MSHR.scala:168:{59,79,82}]
wire _io_status_bits_blockB_T_6 = ~w_grantfirst; // @[MSHR.scala:129:33, :168:103]
wire _io_status_bits_blockB_T_7 = _io_status_bits_blockB_T_5 & _io_status_bits_blockB_T_6; // @[MSHR.scala:168:{79,100,103}]
assign _io_status_bits_blockB_T_8 = _io_status_bits_blockB_T | _io_status_bits_blockB_T_7; // @[MSHR.scala:168:{28,40,100}]
assign io_status_bits_blockB_0 = _io_status_bits_blockB_T_8; // @[MSHR.scala:84:7, :168:40]
wire _io_status_bits_nestB_T = meta_valid & w_releaseack; // @[MSHR.scala:99:27, :125:33, :169:39]
wire _io_status_bits_nestB_T_1 = _io_status_bits_nestB_T & w_rprobeacklast; // @[MSHR.scala:123:33, :169:{39,55}]
wire _io_status_bits_nestB_T_2 = _io_status_bits_nestB_T_1 & w_pprobeacklast; // @[MSHR.scala:133:33, :169:{55,74}]
wire _io_status_bits_nestB_T_3 = ~w_grantfirst; // @[MSHR.scala:129:33, :168:103, :169:96]
assign _io_status_bits_nestB_T_4 = _io_status_bits_nestB_T_2 & _io_status_bits_nestB_T_3; // @[MSHR.scala:169:{74,93,96}]
assign io_status_bits_nestB_0 = _io_status_bits_nestB_T_4; // @[MSHR.scala:84:7, :169:93]
assign _io_status_bits_blockC_T = ~meta_valid; // @[MSHR.scala:99:27, :168:28, :172:28]
assign io_status_bits_blockC_0 = _io_status_bits_blockC_T; // @[MSHR.scala:84:7, :172:28]
wire _io_status_bits_nestC_T = ~w_rprobeackfirst; // @[MSHR.scala:122:33, :173:43]
wire _io_status_bits_nestC_T_1 = ~w_pprobeackfirst; // @[MSHR.scala:132:33, :173:64]
wire _io_status_bits_nestC_T_2 = _io_status_bits_nestC_T | _io_status_bits_nestC_T_1; // @[MSHR.scala:173:{43,61,64}]
wire _io_status_bits_nestC_T_3 = ~w_grantfirst; // @[MSHR.scala:129:33, :168:103, :173:85]
wire _io_status_bits_nestC_T_4 = _io_status_bits_nestC_T_2 | _io_status_bits_nestC_T_3; // @[MSHR.scala:173:{61,82,85}]
assign _io_status_bits_nestC_T_5 = meta_valid & _io_status_bits_nestC_T_4; // @[MSHR.scala:99:27, :173:{39,82}]
assign io_status_bits_nestC_0 = _io_status_bits_nestC_T_5; // @[MSHR.scala:84:7, :173:39]
wire _no_wait_T = w_rprobeacklast & w_releaseack; // @[MSHR.scala:123:33, :125:33, :183:33]
wire _no_wait_T_1 = _no_wait_T & w_grantlast; // @[MSHR.scala:130:33, :183:{33,49}]
wire _no_wait_T_2 = _no_wait_T_1 & w_pprobeacklast; // @[MSHR.scala:133:33, :183:{49,64}]
assign no_wait = _no_wait_T_2 & w_grantack; // @[MSHR.scala:138:33, :183:{64,83}]
assign io_schedule_bits_reload_0 = no_wait; // @[MSHR.scala:84:7, :183:83]
wire _io_schedule_bits_a_valid_T = ~s_acquire; // @[MSHR.scala:127:33, :184:31]
wire _io_schedule_bits_a_valid_T_1 = _io_schedule_bits_a_valid_T & s_release; // @[MSHR.scala:124:33, :184:{31,42}]
assign _io_schedule_bits_a_valid_T_2 = _io_schedule_bits_a_valid_T_1 & s_pprobe; // @[MSHR.scala:126:33, :184:{42,55}]
assign io_schedule_bits_a_valid_0 = _io_schedule_bits_a_valid_T_2; // @[MSHR.scala:84:7, :184:55]
wire _io_schedule_bits_b_valid_T = ~s_rprobe; // @[MSHR.scala:121:33, :185:31]
wire _io_schedule_bits_b_valid_T_1 = ~s_pprobe; // @[MSHR.scala:126:33, :185:44]
assign _io_schedule_bits_b_valid_T_2 = _io_schedule_bits_b_valid_T | _io_schedule_bits_b_valid_T_1; // @[MSHR.scala:185:{31,41,44}]
assign io_schedule_bits_b_valid_0 = _io_schedule_bits_b_valid_T_2; // @[MSHR.scala:84:7, :185:41]
wire _io_schedule_bits_c_valid_T = ~s_release; // @[MSHR.scala:124:33, :186:32]
wire _io_schedule_bits_c_valid_T_1 = _io_schedule_bits_c_valid_T & w_rprobeackfirst; // @[MSHR.scala:122:33, :186:{32,43}]
assign _io_schedule_bits_c_valid_T_4 = _io_schedule_bits_c_valid_T_1; // @[MSHR.scala:186:{43,64}]
assign io_schedule_bits_c_valid_0 = _io_schedule_bits_c_valid_T_4; // @[MSHR.scala:84:7, :186:64]
wire _io_schedule_bits_d_valid_T = ~s_execute; // @[MSHR.scala:137:33, :187:31]
wire _io_schedule_bits_d_valid_T_1 = _io_schedule_bits_d_valid_T & w_pprobeack; // @[MSHR.scala:134:33, :187:{31,42}]
assign _io_schedule_bits_d_valid_T_2 = _io_schedule_bits_d_valid_T_1 & w_grant; // @[MSHR.scala:131:33, :187:{42,57}]
assign io_schedule_bits_d_valid_0 = _io_schedule_bits_d_valid_T_2; // @[MSHR.scala:84:7, :187:57]
wire _io_schedule_bits_e_valid_T = ~s_grantack; // @[MSHR.scala:136:33, :188:31]
assign _io_schedule_bits_e_valid_T_1 = _io_schedule_bits_e_valid_T & w_grantfirst; // @[MSHR.scala:129:33, :188:{31,43}]
assign io_schedule_bits_e_valid_0 = _io_schedule_bits_e_valid_T_1; // @[MSHR.scala:84:7, :188:43]
wire _io_schedule_bits_x_valid_T = ~s_flush; // @[MSHR.scala:128:33, :189:31]
assign _io_schedule_bits_x_valid_T_1 = _io_schedule_bits_x_valid_T & w_releaseack; // @[MSHR.scala:125:33, :189:{31,40}]
assign io_schedule_bits_x_valid_0 = _io_schedule_bits_x_valid_T_1; // @[MSHR.scala:84:7, :189:40]
wire _io_schedule_bits_dir_valid_T = ~s_release; // @[MSHR.scala:124:33, :186:32, :190:34]
wire _io_schedule_bits_dir_valid_T_1 = _io_schedule_bits_dir_valid_T & w_rprobeackfirst; // @[MSHR.scala:122:33, :190:{34,45}]
wire _io_schedule_bits_dir_valid_T_2 = ~s_writeback; // @[MSHR.scala:139:33, :190:70]
wire _io_schedule_bits_dir_valid_T_3 = _io_schedule_bits_dir_valid_T_2 & no_wait; // @[MSHR.scala:183:83, :190:{70,83}]
assign _io_schedule_bits_dir_valid_T_4 = _io_schedule_bits_dir_valid_T_1 | _io_schedule_bits_dir_valid_T_3; // @[MSHR.scala:190:{45,66,83}]
assign io_schedule_bits_dir_valid_0 = _io_schedule_bits_dir_valid_T_4; // @[MSHR.scala:84:7, :190:66]
wire _io_schedule_valid_T = io_schedule_bits_a_valid_0 | io_schedule_bits_b_valid_0; // @[MSHR.scala:84:7, :192:49]
wire _io_schedule_valid_T_1 = _io_schedule_valid_T | io_schedule_bits_c_valid_0; // @[MSHR.scala:84:7, :192:{49,77}]
wire _io_schedule_valid_T_2 = _io_schedule_valid_T_1 | io_schedule_bits_d_valid_0; // @[MSHR.scala:84:7, :192:{77,105}]
wire _io_schedule_valid_T_3 = _io_schedule_valid_T_2 | io_schedule_bits_e_valid_0; // @[MSHR.scala:84:7, :192:105, :193:49]
wire _io_schedule_valid_T_4 = _io_schedule_valid_T_3 | io_schedule_bits_x_valid_0; // @[MSHR.scala:84:7, :193:{49,77}]
assign _io_schedule_valid_T_5 = _io_schedule_valid_T_4 | io_schedule_bits_dir_valid_0; // @[MSHR.scala:84:7, :193:{77,105}]
assign io_schedule_valid_0 = _io_schedule_valid_T_5; // @[MSHR.scala:84:7, :193:105]
wire _io_schedule_bits_dir_bits_data_WIRE_dirty = final_meta_writeback_dirty; // @[MSHR.scala:215:38, :310:71]
wire [1:0] _io_schedule_bits_dir_bits_data_WIRE_state = final_meta_writeback_state; // @[MSHR.scala:215:38, :310:71]
wire _io_schedule_bits_dir_bits_data_WIRE_clients = final_meta_writeback_clients; // @[MSHR.scala:215:38, :310:71]
wire after_c = final_meta_writeback_clients; // @[MSHR.scala:215:38, :315:27]
wire prior_c = final_meta_writeback_clients; // @[MSHR.scala:215:38, :315:27]
wire [8:0] _io_schedule_bits_dir_bits_data_WIRE_tag = final_meta_writeback_tag; // @[MSHR.scala:215:38, :310:71]
wire final_meta_writeback_hit; // @[MSHR.scala:215:38]
wire req_clientBit = request_source == 6'h28; // @[Parameters.scala:46:9]
wire _req_needT_T = request_opcode[2]; // @[Parameters.scala:269:12]
wire _final_meta_writeback_dirty_T_3 = request_opcode[2]; // @[Parameters.scala:269:12]
wire _req_needT_T_1 = ~_req_needT_T; // @[Parameters.scala:269:{5,12}]
wire _GEN = request_opcode == 3'h5; // @[Parameters.scala:270:13]
wire _req_needT_T_2; // @[Parameters.scala:270:13]
assign _req_needT_T_2 = _GEN; // @[Parameters.scala:270:13]
wire _excluded_client_T_6; // @[Parameters.scala:279:117]
assign _excluded_client_T_6 = _GEN; // @[Parameters.scala:270:13, :279:117]
wire _GEN_0 = request_param == 3'h1; // @[Parameters.scala:270:42]
wire _req_needT_T_3; // @[Parameters.scala:270:42]
assign _req_needT_T_3 = _GEN_0; // @[Parameters.scala:270:42]
wire _final_meta_writeback_clients_T; // @[Parameters.scala:282:11]
assign _final_meta_writeback_clients_T = _GEN_0; // @[Parameters.scala:270:42, :282:11]
wire _io_schedule_bits_d_bits_param_T_7; // @[MSHR.scala:299:79]
assign _io_schedule_bits_d_bits_param_T_7 = _GEN_0; // @[Parameters.scala:270:42]
wire _req_needT_T_4 = _req_needT_T_2 & _req_needT_T_3; // @[Parameters.scala:270:{13,33,42}]
wire _req_needT_T_5 = _req_needT_T_1 | _req_needT_T_4; // @[Parameters.scala:269:{5,16}, :270:33]
wire _GEN_1 = request_opcode == 3'h6; // @[Parameters.scala:271:14]
wire _req_needT_T_6; // @[Parameters.scala:271:14]
assign _req_needT_T_6 = _GEN_1; // @[Parameters.scala:271:14]
wire _req_acquire_T; // @[MSHR.scala:219:36]
assign _req_acquire_T = _GEN_1; // @[Parameters.scala:271:14]
wire _excluded_client_T_1; // @[Parameters.scala:279:12]
assign _excluded_client_T_1 = _GEN_1; // @[Parameters.scala:271:14, :279:12]
wire _req_needT_T_7 = &request_opcode; // @[Parameters.scala:271:52]
wire _req_needT_T_8 = _req_needT_T_6 | _req_needT_T_7; // @[Parameters.scala:271:{14,42,52}]
wire _req_needT_T_9 = |request_param; // @[Parameters.scala:271:89]
wire _req_needT_T_10 = _req_needT_T_8 & _req_needT_T_9; // @[Parameters.scala:271:{42,80,89}]
wire req_needT = _req_needT_T_5 | _req_needT_T_10; // @[Parameters.scala:269:16, :270:70, :271:80]
wire _req_acquire_T_1 = &request_opcode; // @[Parameters.scala:271:52]
wire req_acquire = _req_acquire_T | _req_acquire_T_1; // @[MSHR.scala:219:{36,53,71}]
wire meta_no_clients = ~_meta_no_clients_T; // @[MSHR.scala:220:{25,39}]
wire _req_promoteT_T = &meta_state; // @[MSHR.scala:100:17, :221:81]
wire _req_promoteT_T_1 = meta_no_clients & _req_promoteT_T; // @[MSHR.scala:220:25, :221:{67,81}]
wire _req_promoteT_T_2 = meta_hit ? _req_promoteT_T_1 : gotT; // @[MSHR.scala:100:17, :148:17, :221:{40,67}]
wire req_promoteT = req_acquire & _req_promoteT_T_2; // @[MSHR.scala:219:53, :221:{34,40}]
wire _final_meta_writeback_dirty_T = request_opcode[0]; // @[MSHR.scala:98:20, :224:65]
wire _final_meta_writeback_dirty_T_1 = meta_dirty | _final_meta_writeback_dirty_T; // @[MSHR.scala:100:17, :224:{48,65}]
wire _final_meta_writeback_state_T = request_param != 3'h3; // @[MSHR.scala:98:20, :225:55]
wire _GEN_2 = meta_state == 2'h2; // @[MSHR.scala:100:17, :225:78]
wire _final_meta_writeback_state_T_1; // @[MSHR.scala:225:78]
assign _final_meta_writeback_state_T_1 = _GEN_2; // @[MSHR.scala:225:78]
wire _final_meta_writeback_state_T_12; // @[MSHR.scala:240:70]
assign _final_meta_writeback_state_T_12 = _GEN_2; // @[MSHR.scala:225:78, :240:70]
wire _evict_T_2; // @[MSHR.scala:317:26]
assign _evict_T_2 = _GEN_2; // @[MSHR.scala:225:78, :317:26]
wire _before_T_1; // @[MSHR.scala:317:26]
assign _before_T_1 = _GEN_2; // @[MSHR.scala:225:78, :317:26]
wire _final_meta_writeback_state_T_2 = _final_meta_writeback_state_T & _final_meta_writeback_state_T_1; // @[MSHR.scala:225:{55,64,78}]
wire [1:0] _final_meta_writeback_state_T_3 = _final_meta_writeback_state_T_2 ? 2'h3 : meta_state; // @[MSHR.scala:100:17, :225:{40,64}]
wire _GEN_3 = request_param == 3'h2; // @[Parameters.scala:282:43]
wire _final_meta_writeback_clients_T_1; // @[Parameters.scala:282:43]
assign _final_meta_writeback_clients_T_1 = _GEN_3; // @[Parameters.scala:282:43]
wire _io_schedule_bits_d_bits_param_T_5; // @[MSHR.scala:299:79]
assign _io_schedule_bits_d_bits_param_T_5 = _GEN_3; // @[Parameters.scala:282:43]
wire _final_meta_writeback_clients_T_2 = _final_meta_writeback_clients_T | _final_meta_writeback_clients_T_1; // @[Parameters.scala:282:{11,34,43}]
wire _final_meta_writeback_clients_T_3 = request_param == 3'h5; // @[Parameters.scala:282:75]
wire _final_meta_writeback_clients_T_4 = _final_meta_writeback_clients_T_2 | _final_meta_writeback_clients_T_3; // @[Parameters.scala:282:{34,66,75}]
wire _final_meta_writeback_clients_T_5 = _final_meta_writeback_clients_T_4 & req_clientBit; // @[Parameters.scala:46:9]
wire _final_meta_writeback_clients_T_6 = ~_final_meta_writeback_clients_T_5; // @[MSHR.scala:226:{52,56}]
wire _final_meta_writeback_clients_T_7 = meta_clients & _final_meta_writeback_clients_T_6; // @[MSHR.scala:100:17, :226:{50,52}]
wire _final_meta_writeback_clients_T_8 = ~probes_toN; // @[MSHR.scala:151:23, :232:54]
wire _final_meta_writeback_clients_T_9 = meta_clients & _final_meta_writeback_clients_T_8; // @[MSHR.scala:100:17, :232:{52,54}]
wire _final_meta_writeback_dirty_T_2 = meta_hit & meta_dirty; // @[MSHR.scala:100:17, :236:45]
wire _final_meta_writeback_dirty_T_4 = ~_final_meta_writeback_dirty_T_3; // @[MSHR.scala:236:{63,78}]
wire _final_meta_writeback_dirty_T_5 = _final_meta_writeback_dirty_T_2 | _final_meta_writeback_dirty_T_4; // @[MSHR.scala:236:{45,60,63}]
wire [1:0] _GEN_4 = {1'h1, ~req_acquire}; // @[MSHR.scala:219:53, :238:40]
wire [1:0] _final_meta_writeback_state_T_4; // @[MSHR.scala:238:40]
assign _final_meta_writeback_state_T_4 = _GEN_4; // @[MSHR.scala:238:40]
wire [1:0] _final_meta_writeback_state_T_6; // @[MSHR.scala:239:65]
assign _final_meta_writeback_state_T_6 = _GEN_4; // @[MSHR.scala:238:40, :239:65]
wire _final_meta_writeback_state_T_5 = ~meta_hit; // @[MSHR.scala:100:17, :239:41]
wire [1:0] _final_meta_writeback_state_T_7 = gotT ? _final_meta_writeback_state_T_6 : 2'h1; // @[MSHR.scala:148:17, :239:{55,65}]
wire _final_meta_writeback_state_T_8 = meta_no_clients & req_acquire; // @[MSHR.scala:219:53, :220:25, :244:72]
wire [1:0] _final_meta_writeback_state_T_9 = {1'h1, ~_final_meta_writeback_state_T_8}; // @[MSHR.scala:244:{55,72}]
wire _GEN_5 = meta_state == 2'h1; // @[MSHR.scala:100:17, :240:70]
wire _final_meta_writeback_state_T_10; // @[MSHR.scala:240:70]
assign _final_meta_writeback_state_T_10 = _GEN_5; // @[MSHR.scala:240:70]
wire _io_schedule_bits_c_bits_param_T; // @[MSHR.scala:291:53]
assign _io_schedule_bits_c_bits_param_T = _GEN_5; // @[MSHR.scala:240:70, :291:53]
wire _evict_T_1; // @[MSHR.scala:317:26]
assign _evict_T_1 = _GEN_5; // @[MSHR.scala:240:70, :317:26]
wire _before_T; // @[MSHR.scala:317:26]
assign _before_T = _GEN_5; // @[MSHR.scala:240:70, :317:26]
wire [1:0] _final_meta_writeback_state_T_13 = {_final_meta_writeback_state_T_12, 1'h1}; // @[MSHR.scala:240:70]
wire _final_meta_writeback_state_T_14 = &meta_state; // @[MSHR.scala:100:17, :221:81, :240:70]
wire [1:0] _final_meta_writeback_state_T_15 = _final_meta_writeback_state_T_14 ? _final_meta_writeback_state_T_9 : _final_meta_writeback_state_T_13; // @[MSHR.scala:240:70, :244:55]
wire [1:0] _final_meta_writeback_state_T_16 = _final_meta_writeback_state_T_5 ? _final_meta_writeback_state_T_7 : _final_meta_writeback_state_T_15; // @[MSHR.scala:239:{40,41,55}, :240:70]
wire [1:0] _final_meta_writeback_state_T_17 = req_needT ? _final_meta_writeback_state_T_4 : _final_meta_writeback_state_T_16; // @[Parameters.scala:270:70]
wire _final_meta_writeback_clients_T_10 = ~probes_toN; // @[MSHR.scala:151:23, :232:54, :245:66]
wire _final_meta_writeback_clients_T_11 = meta_clients & _final_meta_writeback_clients_T_10; // @[MSHR.scala:100:17, :245:{64,66}]
wire _final_meta_writeback_clients_T_12 = meta_hit & _final_meta_writeback_clients_T_11; // @[MSHR.scala:100:17, :245:{40,64}]
wire _final_meta_writeback_clients_T_13 = req_acquire & req_clientBit; // @[Parameters.scala:46:9]
wire _final_meta_writeback_clients_T_14 = _final_meta_writeback_clients_T_12 | _final_meta_writeback_clients_T_13; // @[MSHR.scala:245:{40,84}, :246:40]
assign final_meta_writeback_tag = request_prio_2 | request_control ? meta_tag : request_tag; // @[MSHR.scala:98:20, :100:17, :215:38, :223:52, :228:53, :247:30]
wire _final_meta_writeback_clients_T_15 = ~probes_toN; // @[MSHR.scala:151:23, :232:54, :258:54]
wire _final_meta_writeback_clients_T_16 = meta_clients & _final_meta_writeback_clients_T_15; // @[MSHR.scala:100:17, :258:{52,54}]
assign final_meta_writeback_hit = bad_grant ? meta_hit : request_prio_2 | ~request_control; // @[MSHR.scala:98:20, :100:17, :149:22, :215:38, :223:52, :227:34, :228:53, :234:30, :248:30, :251:20, :252:21]
assign final_meta_writeback_dirty = ~bad_grant & (request_prio_2 ? _final_meta_writeback_dirty_T_1 : request_control ? ~meta_hit & meta_dirty : _final_meta_writeback_dirty_T_5); // @[MSHR.scala:98:20, :100:17, :149:22, :215:38, :223:52, :224:{34,48}, :228:53, :229:21, :230:36, :236:{32,60}, :251:20, :252:21]
assign final_meta_writeback_state = bad_grant ? {1'h0, meta_hit} : request_prio_2 ? _final_meta_writeback_state_T_3 : request_control ? (meta_hit ? 2'h0 : meta_state) : _final_meta_writeback_state_T_17; // @[MSHR.scala:98:20, :100:17, :149:22, :215:38, :223:52, :225:{34,40}, :228:53, :229:21, :231:36, :237:{32,38}, :251:20, :252:21, :257:36, :263:36]
assign final_meta_writeback_clients = bad_grant ? meta_hit & _final_meta_writeback_clients_T_16 : request_prio_2 ? _final_meta_writeback_clients_T_7 : request_control ? (meta_hit ? _final_meta_writeback_clients_T_9 : meta_clients) : _final_meta_writeback_clients_T_14; // @[MSHR.scala:98:20, :100:17, :149:22, :215:38, :223:52, :226:{34,50}, :228:53, :229:21, :232:{36,52}, :245:{34,84}, :251:20, :252:21, :258:{36,52}, :264:36]
wire _honour_BtoT_T = meta_clients & req_clientBit; // @[Parameters.scala:46:9]
wire _honour_BtoT_T_1 = _honour_BtoT_T; // @[MSHR.scala:276:{47,64}]
wire honour_BtoT = meta_hit & _honour_BtoT_T_1; // @[MSHR.scala:100:17, :276:{30,64}]
wire _excluded_client_T = meta_hit & request_prio_0; // @[MSHR.scala:98:20, :100:17, :279:38]
wire _excluded_client_T_2 = &request_opcode; // @[Parameters.scala:271:52, :279:50]
wire _excluded_client_T_3 = _excluded_client_T_1 | _excluded_client_T_2; // @[Parameters.scala:279:{12,40,50}]
wire _excluded_client_T_4 = request_opcode == 3'h4; // @[Parameters.scala:279:87]
wire _excluded_client_T_5 = _excluded_client_T_3 | _excluded_client_T_4; // @[Parameters.scala:279:{40,77,87}]
wire _excluded_client_T_8 = _excluded_client_T_5; // @[Parameters.scala:279:{77,106}]
wire _excluded_client_T_9 = _excluded_client_T & _excluded_client_T_8; // @[Parameters.scala:279:106]
wire excluded_client = _excluded_client_T_9 & req_clientBit; // @[Parameters.scala:46:9]
wire [1:0] _io_schedule_bits_a_bits_param_T = meta_hit ? 2'h2 : 2'h1; // @[MSHR.scala:100:17, :282:56]
wire [1:0] _io_schedule_bits_a_bits_param_T_1 = req_needT ? _io_schedule_bits_a_bits_param_T : 2'h0; // @[Parameters.scala:270:70]
assign io_schedule_bits_a_bits_param_0 = {1'h0, _io_schedule_bits_a_bits_param_T_1}; // @[MSHR.scala:84:7, :282:{35,41}]
wire _io_schedule_bits_a_bits_block_T = request_size != 3'h6; // @[MSHR.scala:98:20, :283:51]
wire _io_schedule_bits_a_bits_block_T_1 = request_opcode == 3'h0; // @[MSHR.scala:98:20, :284:55]
wire _io_schedule_bits_a_bits_block_T_2 = &request_opcode; // @[Parameters.scala:271:52]
wire _io_schedule_bits_a_bits_block_T_3 = _io_schedule_bits_a_bits_block_T_1 | _io_schedule_bits_a_bits_block_T_2; // @[MSHR.scala:284:{55,71,89}]
wire _io_schedule_bits_a_bits_block_T_4 = ~_io_schedule_bits_a_bits_block_T_3; // @[MSHR.scala:284:{38,71}]
assign _io_schedule_bits_a_bits_block_T_5 = _io_schedule_bits_a_bits_block_T | _io_schedule_bits_a_bits_block_T_4; // @[MSHR.scala:283:{51,91}, :284:38]
assign io_schedule_bits_a_bits_block_0 = _io_schedule_bits_a_bits_block_T_5; // @[MSHR.scala:84:7, :283:91]
wire _io_schedule_bits_b_bits_param_T = ~s_rprobe; // @[MSHR.scala:121:33, :185:31, :286:42]
wire [1:0] _io_schedule_bits_b_bits_param_T_1 = req_needT ? 2'h2 : 2'h1; // @[Parameters.scala:270:70]
wire [2:0] _io_schedule_bits_b_bits_param_T_2 = request_prio_1 ? request_param : {1'h0, _io_schedule_bits_b_bits_param_T_1}; // @[MSHR.scala:98:20, :286:{61,97}]
assign _io_schedule_bits_b_bits_param_T_3 = _io_schedule_bits_b_bits_param_T ? 3'h2 : _io_schedule_bits_b_bits_param_T_2; // @[MSHR.scala:286:{41,42,61}]
assign io_schedule_bits_b_bits_param_0 = _io_schedule_bits_b_bits_param_T_3; // @[MSHR.scala:84:7, :286:41]
wire _io_schedule_bits_b_bits_tag_T = ~s_rprobe; // @[MSHR.scala:121:33, :185:31, :287:42]
assign _io_schedule_bits_b_bits_tag_T_1 = _io_schedule_bits_b_bits_tag_T ? meta_tag : request_tag; // @[MSHR.scala:98:20, :100:17, :287:{41,42}]
assign io_schedule_bits_b_bits_tag_0 = _io_schedule_bits_b_bits_tag_T_1; // @[MSHR.scala:84:7, :287:41]
wire _io_schedule_bits_b_bits_clients_T = ~excluded_client; // @[MSHR.scala:279:28, :289:53]
assign _io_schedule_bits_b_bits_clients_T_1 = meta_clients & _io_schedule_bits_b_bits_clients_T; // @[MSHR.scala:100:17, :289:{51,53}]
assign io_schedule_bits_b_bits_clients_0 = _io_schedule_bits_b_bits_clients_T_1; // @[MSHR.scala:84:7, :289:51]
assign _io_schedule_bits_c_bits_opcode_T = {2'h3, meta_dirty}; // @[MSHR.scala:100:17, :290:41]
assign io_schedule_bits_c_bits_opcode_0 = _io_schedule_bits_c_bits_opcode_T; // @[MSHR.scala:84:7, :290:41]
assign _io_schedule_bits_c_bits_param_T_1 = _io_schedule_bits_c_bits_param_T ? 3'h2 : 3'h1; // @[MSHR.scala:291:{41,53}]
assign io_schedule_bits_c_bits_param_0 = _io_schedule_bits_c_bits_param_T_1; // @[MSHR.scala:84:7, :291:41]
wire _io_schedule_bits_d_bits_param_T = ~req_acquire; // @[MSHR.scala:219:53, :298:42]
wire [1:0] _io_schedule_bits_d_bits_param_T_1 = {1'h0, req_promoteT}; // @[MSHR.scala:221:34, :300:53]
wire [1:0] _io_schedule_bits_d_bits_param_T_2 = honour_BtoT ? 2'h2 : 2'h1; // @[MSHR.scala:276:30, :301:53]
wire _io_schedule_bits_d_bits_param_T_3 = ~(|request_param); // @[Parameters.scala:271:89]
wire [2:0] _io_schedule_bits_d_bits_param_T_4 = _io_schedule_bits_d_bits_param_T_3 ? {1'h0, _io_schedule_bits_d_bits_param_T_1} : request_param; // @[MSHR.scala:98:20, :299:79, :300:53]
wire [2:0] _io_schedule_bits_d_bits_param_T_6 = _io_schedule_bits_d_bits_param_T_5 ? {1'h0, _io_schedule_bits_d_bits_param_T_2} : _io_schedule_bits_d_bits_param_T_4; // @[MSHR.scala:299:79, :301:53]
wire [2:0] _io_schedule_bits_d_bits_param_T_8 = _io_schedule_bits_d_bits_param_T_7 ? 3'h1 : _io_schedule_bits_d_bits_param_T_6; // @[MSHR.scala:299:79]
assign _io_schedule_bits_d_bits_param_T_9 = _io_schedule_bits_d_bits_param_T ? request_param : _io_schedule_bits_d_bits_param_T_8; // @[MSHR.scala:98:20, :298:{41,42}, :299:79]
assign io_schedule_bits_d_bits_param_0 = _io_schedule_bits_d_bits_param_T_9; // @[MSHR.scala:84:7, :298:41]
wire _io_schedule_bits_dir_bits_data_T = ~s_release; // @[MSHR.scala:124:33, :186:32, :310:42]
assign _io_schedule_bits_dir_bits_data_T_1_dirty = ~_io_schedule_bits_dir_bits_data_T & _io_schedule_bits_dir_bits_data_WIRE_dirty; // @[MSHR.scala:310:{41,42,71}]
assign _io_schedule_bits_dir_bits_data_T_1_state = _io_schedule_bits_dir_bits_data_T ? 2'h0 : _io_schedule_bits_dir_bits_data_WIRE_state; // @[MSHR.scala:310:{41,42,71}]
assign _io_schedule_bits_dir_bits_data_T_1_clients = ~_io_schedule_bits_dir_bits_data_T & _io_schedule_bits_dir_bits_data_WIRE_clients; // @[MSHR.scala:310:{41,42,71}]
assign _io_schedule_bits_dir_bits_data_T_1_tag = _io_schedule_bits_dir_bits_data_T ? 9'h0 : _io_schedule_bits_dir_bits_data_WIRE_tag; // @[MSHR.scala:310:{41,42,71}]
assign io_schedule_bits_dir_bits_data_dirty_0 = _io_schedule_bits_dir_bits_data_T_1_dirty; // @[MSHR.scala:84:7, :310:41]
assign io_schedule_bits_dir_bits_data_state_0 = _io_schedule_bits_dir_bits_data_T_1_state; // @[MSHR.scala:84:7, :310:41]
assign io_schedule_bits_dir_bits_data_clients_0 = _io_schedule_bits_dir_bits_data_T_1_clients; // @[MSHR.scala:84:7, :310:41]
assign io_schedule_bits_dir_bits_data_tag_0 = _io_schedule_bits_dir_bits_data_T_1_tag; // @[MSHR.scala:84:7, :310:41]
wire _evict_T = ~meta_hit; // @[MSHR.scala:100:17, :239:41, :338:32]
wire [3:0] evict; // @[MSHR.scala:314:26]
wire _evict_out_T = ~evict_c; // @[MSHR.scala:315:27, :318:32]
wire [1:0] _GEN_6 = {1'h1, ~meta_dirty}; // @[MSHR.scala:100:17, :319:32]
wire [1:0] _evict_out_T_1; // @[MSHR.scala:319:32]
assign _evict_out_T_1 = _GEN_6; // @[MSHR.scala:319:32]
wire [1:0] _before_out_T_1; // @[MSHR.scala:319:32]
assign _before_out_T_1 = _GEN_6; // @[MSHR.scala:319:32]
wire _evict_T_3 = &meta_state; // @[MSHR.scala:100:17, :221:81, :317:26]
wire [2:0] _GEN_7 = {2'h2, ~meta_dirty}; // @[MSHR.scala:100:17, :319:32, :320:39]
wire [2:0] _evict_out_T_2; // @[MSHR.scala:320:39]
assign _evict_out_T_2 = _GEN_7; // @[MSHR.scala:320:39]
wire [2:0] _before_out_T_2; // @[MSHR.scala:320:39]
assign _before_out_T_2 = _GEN_7; // @[MSHR.scala:320:39]
wire [2:0] _GEN_8 = {2'h3, ~meta_dirty}; // @[MSHR.scala:100:17, :319:32, :320:76]
wire [2:0] _evict_out_T_3; // @[MSHR.scala:320:76]
assign _evict_out_T_3 = _GEN_8; // @[MSHR.scala:320:76]
wire [2:0] _before_out_T_3; // @[MSHR.scala:320:76]
assign _before_out_T_3 = _GEN_8; // @[MSHR.scala:320:76]
wire [2:0] _evict_out_T_4 = evict_c ? _evict_out_T_2 : _evict_out_T_3; // @[MSHR.scala:315:27, :320:{32,39,76}]
wire _evict_T_4 = ~(|meta_state); // @[MSHR.scala:100:17, :104:22, :317:26]
wire _evict_T_5 = ~_evict_T; // @[MSHR.scala:323:11, :338:32]
assign evict = _evict_T_5 ? 4'h8 : _evict_T_1 ? {3'h0, _evict_out_T} : _evict_T_2 ? {2'h0, _evict_out_T_1} : _evict_T_3 ? {1'h0, _evict_out_T_4} : {_evict_T_4, 3'h0}; // @[MSHR.scala:314:26, :317:26, :318:{26,32}, :319:{26,32}, :320:{26,32}, :321:26, :323:{11,17,23}]
wire [3:0] before_0; // @[MSHR.scala:314:26]
wire _before_out_T = ~before_c; // @[MSHR.scala:315:27, :318:32]
wire _before_T_2 = &meta_state; // @[MSHR.scala:100:17, :221:81, :317:26]
wire [2:0] _before_out_T_4 = before_c ? _before_out_T_2 : _before_out_T_3; // @[MSHR.scala:315:27, :320:{32,39,76}]
wire _before_T_3 = ~(|meta_state); // @[MSHR.scala:100:17, :104:22, :317:26]
wire _before_T_4 = ~meta_hit; // @[MSHR.scala:100:17, :239:41, :323:11]
assign before_0 = _before_T_4 ? 4'h8 : _before_T ? {3'h0, _before_out_T} : _before_T_1 ? {2'h0, _before_out_T_1} : _before_T_2 ? {1'h0, _before_out_T_4} : {_before_T_3, 3'h0}; // @[MSHR.scala:314:26, :317:26, :318:{26,32}, :319:{26,32}, :320:{26,32}, :321:26, :323:{11,17,23}]
wire [3:0] after; // @[MSHR.scala:314:26]
wire _GEN_9 = final_meta_writeback_state == 2'h1; // @[MSHR.scala:215:38, :317:26]
wire _after_T; // @[MSHR.scala:317:26]
assign _after_T = _GEN_9; // @[MSHR.scala:317:26]
wire _prior_T; // @[MSHR.scala:317:26]
assign _prior_T = _GEN_9; // @[MSHR.scala:317:26]
wire _after_out_T = ~after_c; // @[MSHR.scala:315:27, :318:32]
wire _GEN_10 = final_meta_writeback_state == 2'h2; // @[MSHR.scala:215:38, :317:26]
wire _after_T_1; // @[MSHR.scala:317:26]
assign _after_T_1 = _GEN_10; // @[MSHR.scala:317:26]
wire _prior_T_1; // @[MSHR.scala:317:26]
assign _prior_T_1 = _GEN_10; // @[MSHR.scala:317:26]
wire [1:0] _GEN_11 = {1'h1, ~final_meta_writeback_dirty}; // @[MSHR.scala:215:38, :319:32]
wire [1:0] _after_out_T_1; // @[MSHR.scala:319:32]
assign _after_out_T_1 = _GEN_11; // @[MSHR.scala:319:32]
wire [1:0] _prior_out_T_1; // @[MSHR.scala:319:32]
assign _prior_out_T_1 = _GEN_11; // @[MSHR.scala:319:32]
wire _after_T_2 = &final_meta_writeback_state; // @[MSHR.scala:215:38, :317:26]
wire [2:0] _GEN_12 = {2'h2, ~final_meta_writeback_dirty}; // @[MSHR.scala:215:38, :319:32, :320:39]
wire [2:0] _after_out_T_2; // @[MSHR.scala:320:39]
assign _after_out_T_2 = _GEN_12; // @[MSHR.scala:320:39]
wire [2:0] _prior_out_T_2; // @[MSHR.scala:320:39]
assign _prior_out_T_2 = _GEN_12; // @[MSHR.scala:320:39]
wire [2:0] _GEN_13 = {2'h3, ~final_meta_writeback_dirty}; // @[MSHR.scala:215:38, :319:32, :320:76]
wire [2:0] _after_out_T_3; // @[MSHR.scala:320:76]
assign _after_out_T_3 = _GEN_13; // @[MSHR.scala:320:76]
wire [2:0] _prior_out_T_3; // @[MSHR.scala:320:76]
assign _prior_out_T_3 = _GEN_13; // @[MSHR.scala:320:76]
wire [2:0] _after_out_T_4 = after_c ? _after_out_T_2 : _after_out_T_3; // @[MSHR.scala:315:27, :320:{32,39,76}]
wire _GEN_14 = final_meta_writeback_state == 2'h0; // @[MSHR.scala:215:38, :317:26]
wire _after_T_3; // @[MSHR.scala:317:26]
assign _after_T_3 = _GEN_14; // @[MSHR.scala:317:26]
wire _prior_T_3; // @[MSHR.scala:317:26]
assign _prior_T_3 = _GEN_14; // @[MSHR.scala:317:26]
assign after = _after_T ? {3'h0, _after_out_T} : _after_T_1 ? {2'h0, _after_out_T_1} : _after_T_2 ? {1'h0, _after_out_T_4} : {_after_T_3, 3'h0}; // @[MSHR.scala:314:26, :317:26, :318:{26,32}, :319:{26,32}, :320:{26,32}, :321:26]
wire probe_bit = io_sinkc_bits_source_0 == 6'h28; // @[Parameters.scala:46:9]
wire _GEN_15 = probes_done | probe_bit; // @[Parameters.scala:46:9]
wire _last_probe_T; // @[MSHR.scala:459:33]
assign _last_probe_T = _GEN_15; // @[MSHR.scala:459:33]
wire _probes_done_T; // @[MSHR.scala:467:32]
assign _probes_done_T = _GEN_15; // @[MSHR.scala:459:33, :467:32]
wire _last_probe_T_1 = ~excluded_client; // @[MSHR.scala:279:28, :289:53, :459:66]
wire _last_probe_T_2 = meta_clients & _last_probe_T_1; // @[MSHR.scala:100:17, :459:{64,66}]
wire last_probe = _last_probe_T == _last_probe_T_2; // @[MSHR.scala:459:{33,46,64}]
wire _probe_toN_T = io_sinkc_bits_param_0 == 3'h1; // @[Parameters.scala:282:11]
wire _probe_toN_T_1 = io_sinkc_bits_param_0 == 3'h2; // @[Parameters.scala:282:43]
wire _probe_toN_T_2 = _probe_toN_T | _probe_toN_T_1; // @[Parameters.scala:282:{11,34,43}]
wire _probe_toN_T_3 = io_sinkc_bits_param_0 == 3'h5; // @[Parameters.scala:282:75]
wire probe_toN = _probe_toN_T_2 | _probe_toN_T_3; // @[Parameters.scala:282:{34,66,75}]
wire _probes_toN_T = probe_toN & probe_bit; // @[Parameters.scala:46:9]
wire _probes_toN_T_1 = probes_toN | _probes_toN_T; // @[MSHR.scala:151:23, :468:{30,35}]
wire _probes_noT_T = io_sinkc_bits_param_0 != 3'h3; // @[MSHR.scala:84:7, :469:53]
wire _probes_noT_T_1 = probes_noT | _probes_noT_T; // @[MSHR.scala:152:23, :469:{30,53}]
wire _w_rprobeackfirst_T = w_rprobeackfirst | last_probe; // @[MSHR.scala:122:33, :459:46, :470:42]
wire _GEN_16 = last_probe & io_sinkc_bits_last_0; // @[MSHR.scala:84:7, :459:46, :471:55]
wire _w_rprobeacklast_T; // @[MSHR.scala:471:55]
assign _w_rprobeacklast_T = _GEN_16; // @[MSHR.scala:471:55]
wire _w_pprobeacklast_T; // @[MSHR.scala:473:55]
assign _w_pprobeacklast_T = _GEN_16; // @[MSHR.scala:471:55, :473:55]
wire _w_rprobeacklast_T_1 = w_rprobeacklast | _w_rprobeacklast_T; // @[MSHR.scala:123:33, :471:{40,55}]
wire _w_pprobeackfirst_T = w_pprobeackfirst | last_probe; // @[MSHR.scala:132:33, :459:46, :472:42]
wire _w_pprobeacklast_T_1 = w_pprobeacklast | _w_pprobeacklast_T; // @[MSHR.scala:133:33, :473:{40,55}]
wire _set_pprobeack_T = ~(|request_offset); // @[MSHR.scala:98:20, :475:77]
wire _set_pprobeack_T_1 = io_sinkc_bits_last_0 | _set_pprobeack_T; // @[MSHR.scala:84:7, :475:{59,77}]
wire set_pprobeack = last_probe & _set_pprobeack_T_1; // @[MSHR.scala:459:46, :475:{36,59}]
wire _w_pprobeack_T = w_pprobeack | set_pprobeack; // @[MSHR.scala:134:33, :475:36, :476:32]
wire _w_grant_T = ~(|request_offset); // @[MSHR.scala:98:20, :475:77, :490:33]
wire _w_grant_T_1 = _w_grant_T | io_sinkd_bits_last_0; // @[MSHR.scala:84:7, :490:{33,41}]
wire _gotT_T = io_sinkd_bits_param_0 == 3'h0; // @[MSHR.scala:84:7, :493:35]
wire _new_meta_T = io_allocate_valid_0 & io_allocate_bits_repeat_0; // @[MSHR.scala:84:7, :505:40]
wire new_meta_dirty = _new_meta_T ? final_meta_writeback_dirty : io_directory_bits_dirty_0; // @[MSHR.scala:84:7, :215:38, :505:{21,40}]
wire [1:0] new_meta_state = _new_meta_T ? final_meta_writeback_state : io_directory_bits_state_0; // @[MSHR.scala:84:7, :215:38, :505:{21,40}]
wire new_meta_clients = _new_meta_T ? final_meta_writeback_clients : io_directory_bits_clients_0; // @[MSHR.scala:84:7, :215:38, :505:{21,40}]
wire [8:0] new_meta_tag = _new_meta_T ? final_meta_writeback_tag : io_directory_bits_tag_0; // @[MSHR.scala:84:7, :215:38, :505:{21,40}]
wire new_meta_hit = _new_meta_T ? final_meta_writeback_hit : io_directory_bits_hit_0; // @[MSHR.scala:84:7, :215:38, :505:{21,40}]
wire [3:0] new_meta_way = _new_meta_T ? final_meta_writeback_way : io_directory_bits_way_0; // @[MSHR.scala:84:7, :215:38, :505:{21,40}]
wire new_request_prio_0 = io_allocate_valid_0 ? allocate_as_full_prio_0 : request_prio_0; // @[MSHR.scala:84:7, :98:20, :504:34, :506:24]
wire new_request_prio_1 = io_allocate_valid_0 ? allocate_as_full_prio_1 : request_prio_1; // @[MSHR.scala:84:7, :98:20, :504:34, :506:24]
wire new_request_prio_2 = io_allocate_valid_0 ? allocate_as_full_prio_2 : request_prio_2; // @[MSHR.scala:84:7, :98:20, :504:34, :506:24]
wire new_request_control = io_allocate_valid_0 ? allocate_as_full_control : request_control; // @[MSHR.scala:84:7, :98:20, :504:34, :506:24]
wire [2:0] new_request_opcode = io_allocate_valid_0 ? allocate_as_full_opcode : request_opcode; // @[MSHR.scala:84:7, :98:20, :504:34, :506:24]
wire [2:0] new_request_param = io_allocate_valid_0 ? allocate_as_full_param : request_param; // @[MSHR.scala:84:7, :98:20, :504:34, :506:24]
wire [2:0] new_request_size = io_allocate_valid_0 ? allocate_as_full_size : request_size; // @[MSHR.scala:84:7, :98:20, :504:34, :506:24]
wire [5:0] new_request_source = io_allocate_valid_0 ? allocate_as_full_source : request_source; // @[MSHR.scala:84:7, :98:20, :504:34, :506:24]
wire [8:0] new_request_tag = io_allocate_valid_0 ? allocate_as_full_tag : request_tag; // @[MSHR.scala:84:7, :98:20, :504:34, :506:24]
wire [5:0] new_request_offset = io_allocate_valid_0 ? allocate_as_full_offset : request_offset; // @[MSHR.scala:84:7, :98:20, :504:34, :506:24]
wire [5:0] new_request_put = io_allocate_valid_0 ? allocate_as_full_put : request_put; // @[MSHR.scala:84:7, :98:20, :504:34, :506:24]
wire [10:0] new_request_set = io_allocate_valid_0 ? allocate_as_full_set : request_set; // @[MSHR.scala:84:7, :98:20, :504:34, :506:24]
wire _new_needT_T = new_request_opcode[2]; // @[Parameters.scala:269:12]
wire _new_needT_T_1 = ~_new_needT_T; // @[Parameters.scala:269:{5,12}]
wire _GEN_17 = new_request_opcode == 3'h5; // @[Parameters.scala:270:13]
wire _new_needT_T_2; // @[Parameters.scala:270:13]
assign _new_needT_T_2 = _GEN_17; // @[Parameters.scala:270:13]
wire _new_skipProbe_T_5; // @[Parameters.scala:279:117]
assign _new_skipProbe_T_5 = _GEN_17; // @[Parameters.scala:270:13, :279:117]
wire _new_needT_T_3 = new_request_param == 3'h1; // @[Parameters.scala:270:42]
wire _new_needT_T_4 = _new_needT_T_2 & _new_needT_T_3; // @[Parameters.scala:270:{13,33,42}]
wire _new_needT_T_5 = _new_needT_T_1 | _new_needT_T_4; // @[Parameters.scala:269:{5,16}, :270:33]
wire _T_615 = new_request_opcode == 3'h6; // @[Parameters.scala:271:14]
wire _new_needT_T_6; // @[Parameters.scala:271:14]
assign _new_needT_T_6 = _T_615; // @[Parameters.scala:271:14]
wire _new_skipProbe_T; // @[Parameters.scala:279:12]
assign _new_skipProbe_T = _T_615; // @[Parameters.scala:271:14, :279:12]
wire _new_needT_T_7 = &new_request_opcode; // @[Parameters.scala:271:52]
wire _new_needT_T_8 = _new_needT_T_6 | _new_needT_T_7; // @[Parameters.scala:271:{14,42,52}]
wire _new_needT_T_9 = |new_request_param; // @[Parameters.scala:271:89]
wire _new_needT_T_10 = _new_needT_T_8 & _new_needT_T_9; // @[Parameters.scala:271:{42,80,89}]
wire new_needT = _new_needT_T_5 | _new_needT_T_10; // @[Parameters.scala:269:16, :270:70, :271:80]
wire new_clientBit = new_request_source == 6'h28; // @[Parameters.scala:46:9]
wire _new_skipProbe_T_1 = &new_request_opcode; // @[Parameters.scala:271:52, :279:50]
wire _new_skipProbe_T_2 = _new_skipProbe_T | _new_skipProbe_T_1; // @[Parameters.scala:279:{12,40,50}]
wire _new_skipProbe_T_3 = new_request_opcode == 3'h4; // @[Parameters.scala:279:87]
wire _new_skipProbe_T_4 = _new_skipProbe_T_2 | _new_skipProbe_T_3; // @[Parameters.scala:279:{40,77,87}]
wire _new_skipProbe_T_7 = _new_skipProbe_T_4; // @[Parameters.scala:279:{77,106}]
wire new_skipProbe = _new_skipProbe_T_7 & new_clientBit; // @[Parameters.scala:46:9]
wire [3:0] prior; // @[MSHR.scala:314:26]
wire _prior_out_T = ~prior_c; // @[MSHR.scala:315:27, :318:32]
wire _prior_T_2 = &final_meta_writeback_state; // @[MSHR.scala:215:38, :317:26]
wire [2:0] _prior_out_T_4 = prior_c ? _prior_out_T_2 : _prior_out_T_3; // @[MSHR.scala:315:27, :320:{32,39,76}]
assign prior = _prior_T ? {3'h0, _prior_out_T} : _prior_T_1 ? {2'h0, _prior_out_T_1} : _prior_T_2 ? {1'h0, _prior_out_T_4} : {_prior_T_3, 3'h0}; // @[MSHR.scala:314:26, :317:26, :318:{26,32}, :319:{26,32}, :320:{26,32}, :321:26]
wire _T_574 = io_directory_valid_0 | _new_meta_T; // @[MSHR.scala:84:7, :505:40, :539:28] |
Generate the Verilog code corresponding to the following Chisel files.
File Nodes.scala:
// See LICENSE.SiFive for license details.
package freechips.rocketchip.tilelink
import chisel3._
import chisel3.experimental.SourceInfo
import org.chipsalliance.cde.config._
import org.chipsalliance.diplomacy._
import org.chipsalliance.diplomacy.nodes._
import freechips.rocketchip.util.{AsyncQueueParams,RationalDirection}
case object TLMonitorBuilder extends Field[TLMonitorArgs => TLMonitorBase](args => new TLMonitor(args))
object TLImp extends NodeImp[TLMasterPortParameters, TLSlavePortParameters, TLEdgeOut, TLEdgeIn, TLBundle]
{
def edgeO(pd: TLMasterPortParameters, pu: TLSlavePortParameters, p: Parameters, sourceInfo: SourceInfo) = new TLEdgeOut(pd, pu, p, sourceInfo)
def edgeI(pd: TLMasterPortParameters, pu: TLSlavePortParameters, p: Parameters, sourceInfo: SourceInfo) = new TLEdgeIn (pd, pu, p, sourceInfo)
def bundleO(eo: TLEdgeOut) = TLBundle(eo.bundle)
def bundleI(ei: TLEdgeIn) = TLBundle(ei.bundle)
def render(ei: TLEdgeIn) = RenderedEdge(colour = "#000000" /* black */, label = (ei.manager.beatBytes * 8).toString)
override def monitor(bundle: TLBundle, edge: TLEdgeIn): Unit = {
val monitor = Module(edge.params(TLMonitorBuilder)(TLMonitorArgs(edge)))
monitor.io.in := bundle
}
override def mixO(pd: TLMasterPortParameters, node: OutwardNode[TLMasterPortParameters, TLSlavePortParameters, TLBundle]): TLMasterPortParameters =
pd.v1copy(clients = pd.clients.map { c => c.v1copy (nodePath = node +: c.nodePath) })
override def mixI(pu: TLSlavePortParameters, node: InwardNode[TLMasterPortParameters, TLSlavePortParameters, TLBundle]): TLSlavePortParameters =
pu.v1copy(managers = pu.managers.map { m => m.v1copy (nodePath = node +: m.nodePath) })
}
trait TLFormatNode extends FormatNode[TLEdgeIn, TLEdgeOut]
case class TLClientNode(portParams: Seq[TLMasterPortParameters])(implicit valName: ValName) extends SourceNode(TLImp)(portParams) with TLFormatNode
case class TLManagerNode(portParams: Seq[TLSlavePortParameters])(implicit valName: ValName) extends SinkNode(TLImp)(portParams) with TLFormatNode
case class TLAdapterNode(
clientFn: TLMasterPortParameters => TLMasterPortParameters = { s => s },
managerFn: TLSlavePortParameters => TLSlavePortParameters = { s => s })(
implicit valName: ValName)
extends AdapterNode(TLImp)(clientFn, managerFn) with TLFormatNode
case class TLJunctionNode(
clientFn: Seq[TLMasterPortParameters] => Seq[TLMasterPortParameters],
managerFn: Seq[TLSlavePortParameters] => Seq[TLSlavePortParameters])(
implicit valName: ValName)
extends JunctionNode(TLImp)(clientFn, managerFn) with TLFormatNode
case class TLIdentityNode()(implicit valName: ValName) extends IdentityNode(TLImp)() with TLFormatNode
object TLNameNode {
def apply(name: ValName) = TLIdentityNode()(name)
def apply(name: Option[String]): TLIdentityNode = apply(ValName(name.getOrElse("with_no_name")))
def apply(name: String): TLIdentityNode = apply(Some(name))
}
case class TLEphemeralNode()(implicit valName: ValName) extends EphemeralNode(TLImp)()
object TLTempNode {
def apply(): TLEphemeralNode = TLEphemeralNode()(ValName("temp"))
}
case class TLNexusNode(
clientFn: Seq[TLMasterPortParameters] => TLMasterPortParameters,
managerFn: Seq[TLSlavePortParameters] => TLSlavePortParameters)(
implicit valName: ValName)
extends NexusNode(TLImp)(clientFn, managerFn) with TLFormatNode
abstract class TLCustomNode(implicit valName: ValName)
extends CustomNode(TLImp) with TLFormatNode
// Asynchronous crossings
trait TLAsyncFormatNode extends FormatNode[TLAsyncEdgeParameters, TLAsyncEdgeParameters]
object TLAsyncImp extends SimpleNodeImp[TLAsyncClientPortParameters, TLAsyncManagerPortParameters, TLAsyncEdgeParameters, TLAsyncBundle]
{
def edge(pd: TLAsyncClientPortParameters, pu: TLAsyncManagerPortParameters, p: Parameters, sourceInfo: SourceInfo) = TLAsyncEdgeParameters(pd, pu, p, sourceInfo)
def bundle(e: TLAsyncEdgeParameters) = new TLAsyncBundle(e.bundle)
def render(e: TLAsyncEdgeParameters) = RenderedEdge(colour = "#ff0000" /* red */, label = e.manager.async.depth.toString)
override def mixO(pd: TLAsyncClientPortParameters, node: OutwardNode[TLAsyncClientPortParameters, TLAsyncManagerPortParameters, TLAsyncBundle]): TLAsyncClientPortParameters =
pd.copy(base = pd.base.v1copy(clients = pd.base.clients.map { c => c.v1copy (nodePath = node +: c.nodePath) }))
override def mixI(pu: TLAsyncManagerPortParameters, node: InwardNode[TLAsyncClientPortParameters, TLAsyncManagerPortParameters, TLAsyncBundle]): TLAsyncManagerPortParameters =
pu.copy(base = pu.base.v1copy(managers = pu.base.managers.map { m => m.v1copy (nodePath = node +: m.nodePath) }))
}
case class TLAsyncAdapterNode(
clientFn: TLAsyncClientPortParameters => TLAsyncClientPortParameters = { s => s },
managerFn: TLAsyncManagerPortParameters => TLAsyncManagerPortParameters = { s => s })(
implicit valName: ValName)
extends AdapterNode(TLAsyncImp)(clientFn, managerFn) with TLAsyncFormatNode
case class TLAsyncIdentityNode()(implicit valName: ValName) extends IdentityNode(TLAsyncImp)() with TLAsyncFormatNode
object TLAsyncNameNode {
def apply(name: ValName) = TLAsyncIdentityNode()(name)
def apply(name: Option[String]): TLAsyncIdentityNode = apply(ValName(name.getOrElse("with_no_name")))
def apply(name: String): TLAsyncIdentityNode = apply(Some(name))
}
case class TLAsyncSourceNode(sync: Option[Int])(implicit valName: ValName)
extends MixedAdapterNode(TLImp, TLAsyncImp)(
dFn = { p => TLAsyncClientPortParameters(p) },
uFn = { p => p.base.v1copy(minLatency = p.base.minLatency + sync.getOrElse(p.async.sync)) }) with FormatNode[TLEdgeIn, TLAsyncEdgeParameters] // discard cycles in other clock domain
case class TLAsyncSinkNode(async: AsyncQueueParams)(implicit valName: ValName)
extends MixedAdapterNode(TLAsyncImp, TLImp)(
dFn = { p => p.base.v1copy(minLatency = p.base.minLatency + async.sync) },
uFn = { p => TLAsyncManagerPortParameters(async, p) }) with FormatNode[TLAsyncEdgeParameters, TLEdgeOut]
// Rationally related crossings
trait TLRationalFormatNode extends FormatNode[TLRationalEdgeParameters, TLRationalEdgeParameters]
object TLRationalImp extends SimpleNodeImp[TLRationalClientPortParameters, TLRationalManagerPortParameters, TLRationalEdgeParameters, TLRationalBundle]
{
def edge(pd: TLRationalClientPortParameters, pu: TLRationalManagerPortParameters, p: Parameters, sourceInfo: SourceInfo) = TLRationalEdgeParameters(pd, pu, p, sourceInfo)
def bundle(e: TLRationalEdgeParameters) = new TLRationalBundle(e.bundle)
def render(e: TLRationalEdgeParameters) = RenderedEdge(colour = "#00ff00" /* green */)
override def mixO(pd: TLRationalClientPortParameters, node: OutwardNode[TLRationalClientPortParameters, TLRationalManagerPortParameters, TLRationalBundle]): TLRationalClientPortParameters =
pd.copy(base = pd.base.v1copy(clients = pd.base.clients.map { c => c.v1copy (nodePath = node +: c.nodePath) }))
override def mixI(pu: TLRationalManagerPortParameters, node: InwardNode[TLRationalClientPortParameters, TLRationalManagerPortParameters, TLRationalBundle]): TLRationalManagerPortParameters =
pu.copy(base = pu.base.v1copy(managers = pu.base.managers.map { m => m.v1copy (nodePath = node +: m.nodePath) }))
}
case class TLRationalAdapterNode(
clientFn: TLRationalClientPortParameters => TLRationalClientPortParameters = { s => s },
managerFn: TLRationalManagerPortParameters => TLRationalManagerPortParameters = { s => s })(
implicit valName: ValName)
extends AdapterNode(TLRationalImp)(clientFn, managerFn) with TLRationalFormatNode
case class TLRationalIdentityNode()(implicit valName: ValName) extends IdentityNode(TLRationalImp)() with TLRationalFormatNode
object TLRationalNameNode {
def apply(name: ValName) = TLRationalIdentityNode()(name)
def apply(name: Option[String]): TLRationalIdentityNode = apply(ValName(name.getOrElse("with_no_name")))
def apply(name: String): TLRationalIdentityNode = apply(Some(name))
}
case class TLRationalSourceNode()(implicit valName: ValName)
extends MixedAdapterNode(TLImp, TLRationalImp)(
dFn = { p => TLRationalClientPortParameters(p) },
uFn = { p => p.base.v1copy(minLatency = 1) }) with FormatNode[TLEdgeIn, TLRationalEdgeParameters] // discard cycles from other clock domain
case class TLRationalSinkNode(direction: RationalDirection)(implicit valName: ValName)
extends MixedAdapterNode(TLRationalImp, TLImp)(
dFn = { p => p.base.v1copy(minLatency = 1) },
uFn = { p => TLRationalManagerPortParameters(direction, p) }) with FormatNode[TLRationalEdgeParameters, TLEdgeOut]
// Credited version of TileLink channels
trait TLCreditedFormatNode extends FormatNode[TLCreditedEdgeParameters, TLCreditedEdgeParameters]
object TLCreditedImp extends SimpleNodeImp[TLCreditedClientPortParameters, TLCreditedManagerPortParameters, TLCreditedEdgeParameters, TLCreditedBundle]
{
def edge(pd: TLCreditedClientPortParameters, pu: TLCreditedManagerPortParameters, p: Parameters, sourceInfo: SourceInfo) = TLCreditedEdgeParameters(pd, pu, p, sourceInfo)
def bundle(e: TLCreditedEdgeParameters) = new TLCreditedBundle(e.bundle)
def render(e: TLCreditedEdgeParameters) = RenderedEdge(colour = "#ffff00" /* yellow */, e.delay.toString)
override def mixO(pd: TLCreditedClientPortParameters, node: OutwardNode[TLCreditedClientPortParameters, TLCreditedManagerPortParameters, TLCreditedBundle]): TLCreditedClientPortParameters =
pd.copy(base = pd.base.v1copy(clients = pd.base.clients.map { c => c.v1copy (nodePath = node +: c.nodePath) }))
override def mixI(pu: TLCreditedManagerPortParameters, node: InwardNode[TLCreditedClientPortParameters, TLCreditedManagerPortParameters, TLCreditedBundle]): TLCreditedManagerPortParameters =
pu.copy(base = pu.base.v1copy(managers = pu.base.managers.map { m => m.v1copy (nodePath = node +: m.nodePath) }))
}
case class TLCreditedAdapterNode(
clientFn: TLCreditedClientPortParameters => TLCreditedClientPortParameters = { s => s },
managerFn: TLCreditedManagerPortParameters => TLCreditedManagerPortParameters = { s => s })(
implicit valName: ValName)
extends AdapterNode(TLCreditedImp)(clientFn, managerFn) with TLCreditedFormatNode
case class TLCreditedIdentityNode()(implicit valName: ValName) extends IdentityNode(TLCreditedImp)() with TLCreditedFormatNode
object TLCreditedNameNode {
def apply(name: ValName) = TLCreditedIdentityNode()(name)
def apply(name: Option[String]): TLCreditedIdentityNode = apply(ValName(name.getOrElse("with_no_name")))
def apply(name: String): TLCreditedIdentityNode = apply(Some(name))
}
case class TLCreditedSourceNode(delay: TLCreditedDelay)(implicit valName: ValName)
extends MixedAdapterNode(TLImp, TLCreditedImp)(
dFn = { p => TLCreditedClientPortParameters(delay, p) },
uFn = { p => p.base.v1copy(minLatency = 1) }) with FormatNode[TLEdgeIn, TLCreditedEdgeParameters] // discard cycles from other clock domain
case class TLCreditedSinkNode(delay: TLCreditedDelay)(implicit valName: ValName)
extends MixedAdapterNode(TLCreditedImp, TLImp)(
dFn = { p => p.base.v1copy(minLatency = 1) },
uFn = { p => TLCreditedManagerPortParameters(delay, p) }) with FormatNode[TLCreditedEdgeParameters, TLEdgeOut]
File RegisterRouter.scala:
// See LICENSE.SiFive for license details.
package freechips.rocketchip.tilelink
import chisel3._
import chisel3.util._
import org.chipsalliance.cde.config._
import org.chipsalliance.diplomacy._
import org.chipsalliance.diplomacy.nodes._
import freechips.rocketchip.diplomacy.{AddressSet, TransferSizes}
import freechips.rocketchip.resources.{Device, Resource, ResourceBindings}
import freechips.rocketchip.prci.{NoCrossing}
import freechips.rocketchip.regmapper.{RegField, RegMapper, RegMapperParams, RegMapperInput, RegisterRouter}
import freechips.rocketchip.util.{BundleField, ControlKey, ElaborationArtefacts, GenRegDescsAnno}
import scala.math.min
class TLRegisterRouterExtraBundle(val sourceBits: Int, val sizeBits: Int) extends Bundle {
val source = UInt((sourceBits max 1).W)
val size = UInt((sizeBits max 1).W)
}
case object TLRegisterRouterExtra extends ControlKey[TLRegisterRouterExtraBundle]("tlrr_extra")
case class TLRegisterRouterExtraField(sourceBits: Int, sizeBits: Int) extends BundleField[TLRegisterRouterExtraBundle](TLRegisterRouterExtra, Output(new TLRegisterRouterExtraBundle(sourceBits, sizeBits)), x => {
x.size := 0.U
x.source := 0.U
})
/** TLRegisterNode is a specialized TL SinkNode that encapsulates MMIO registers.
* It provides functionality for describing and outputting metdata about the registers in several formats.
* It also provides a concrete implementation of a regmap function that will be used
* to wire a map of internal registers associated with this node to the node's interconnect port.
*/
case class TLRegisterNode(
address: Seq[AddressSet],
device: Device,
deviceKey: String = "reg/control",
concurrency: Int = 0,
beatBytes: Int = 4,
undefZero: Boolean = true,
executable: Boolean = false)(
implicit valName: ValName)
extends SinkNode(TLImp)(Seq(TLSlavePortParameters.v1(
Seq(TLSlaveParameters.v1(
address = address,
resources = Seq(Resource(device, deviceKey)),
executable = executable,
supportsGet = TransferSizes(1, beatBytes),
supportsPutPartial = TransferSizes(1, beatBytes),
supportsPutFull = TransferSizes(1, beatBytes),
fifoId = Some(0))), // requests are handled in order
beatBytes = beatBytes,
minLatency = min(concurrency, 1)))) with TLFormatNode // the Queue adds at most one cycle
{
val size = 1 << log2Ceil(1 + address.map(_.max).max - address.map(_.base).min)
require (size >= beatBytes)
address.foreach { case a =>
require (a.widen(size-1).base == address.head.widen(size-1).base,
s"TLRegisterNode addresses (${address}) must be aligned to its size ${size}")
}
// Calling this method causes the matching TL2 bundle to be
// configured to route all requests to the listed RegFields.
def regmap(mapping: RegField.Map*) = {
val (bundleIn, edge) = this.in(0)
val a = bundleIn.a
val d = bundleIn.d
val fields = TLRegisterRouterExtraField(edge.bundle.sourceBits, edge.bundle.sizeBits) +: a.bits.params.echoFields
val params = RegMapperParams(log2Up(size/beatBytes), beatBytes, fields)
val in = Wire(Decoupled(new RegMapperInput(params)))
in.bits.read := a.bits.opcode === TLMessages.Get
in.bits.index := edge.addr_hi(a.bits)
in.bits.data := a.bits.data
in.bits.mask := a.bits.mask
Connectable.waiveUnmatched(in.bits.extra, a.bits.echo) match {
case (lhs, rhs) => lhs :<= rhs
}
val a_extra = in.bits.extra(TLRegisterRouterExtra)
a_extra.source := a.bits.source
a_extra.size := a.bits.size
// Invoke the register map builder
val out = RegMapper(beatBytes, concurrency, undefZero, in, mapping:_*)
// No flow control needed
in.valid := a.valid
a.ready := in.ready
d.valid := out.valid
out.ready := d.ready
// We must restore the size to enable width adapters to work
val d_extra = out.bits.extra(TLRegisterRouterExtra)
d.bits := edge.AccessAck(toSource = d_extra.source, lgSize = d_extra.size)
// avoid a Mux on the data bus by manually overriding two fields
d.bits.data := out.bits.data
Connectable.waiveUnmatched(d.bits.echo, out.bits.extra) match {
case (lhs, rhs) => lhs :<= rhs
}
d.bits.opcode := Mux(out.bits.read, TLMessages.AccessAckData, TLMessages.AccessAck)
// Tie off unused channels
bundleIn.b.valid := false.B
bundleIn.c.ready := true.B
bundleIn.e.ready := true.B
genRegDescsJson(mapping:_*)
}
def genRegDescsJson(mapping: RegField.Map*): Unit = {
// Dump out the register map for documentation purposes.
val base = address.head.base
val baseHex = s"0x${base.toInt.toHexString}"
val name = s"${device.describe(ResourceBindings()).name}.At${baseHex}"
val json = GenRegDescsAnno.serialize(base, name, mapping:_*)
var suffix = 0
while( ElaborationArtefacts.contains(s"${baseHex}.${suffix}.regmap.json")) {
suffix = suffix + 1
}
ElaborationArtefacts.add(s"${baseHex}.${suffix}.regmap.json", json)
val module = Module.currentModule.get.asInstanceOf[RawModule]
GenRegDescsAnno.anno(
module,
base,
mapping:_*)
}
}
/** Mix HasTLControlRegMap into any subclass of RegisterRouter to gain helper functions for attaching a device control register map to TileLink.
* - The intended use case is that controlNode will diplomatically publish a SW-visible device's memory-mapped control registers.
* - Use the clock crossing helper controlXing to externally connect controlNode to a TileLink interconnect.
* - Use the mapping helper function regmap to internally fill out the space of device control registers.
*/
trait HasTLControlRegMap { this: RegisterRouter =>
protected val controlNode = TLRegisterNode(
address = address,
device = device,
deviceKey = "reg/control",
concurrency = concurrency,
beatBytes = beatBytes,
undefZero = undefZero,
executable = executable)
// Externally, this helper should be used to connect the register control port to a bus
val controlXing: TLInwardClockCrossingHelper = this.crossIn(controlNode)
// Backwards-compatibility default node accessor with no clock crossing
lazy val node: TLInwardNode = controlXing(NoCrossing)
// Internally, this function should be used to populate the control port with registers
protected def regmap(mapping: RegField.Map*): Unit = { controlNode.regmap(mapping:_*) }
}
File TileResetSetter.scala:
package chipyard.clocking
import chisel3._
import chisel3.util._
import chisel3.experimental.Analog
import org.chipsalliance.cde.config._
import freechips.rocketchip.subsystem._
import freechips.rocketchip.diplomacy._
import freechips.rocketchip.prci._
import freechips.rocketchip.util._
import freechips.rocketchip.tilelink._
import freechips.rocketchip.devices.tilelink._
import freechips.rocketchip.regmapper._
import freechips.rocketchip.subsystem._
// Currently only works if all tiles are already driven by independent clock groups
// TODO: After https://github.com/chipsalliance/rocket-chip/pull/2842 is merged, we should
// always put all tiles on independent clock groups
class TileResetSetter(address: BigInt, beatBytes: Int, tileNames: Seq[String], initResetHarts: Seq[Int])(implicit p: Parameters)
extends LazyModule {
val device = new SimpleDevice("tile-reset-setter", Nil)
val tlNode = TLRegisterNode(Seq(AddressSet(address, 4096-1)), device, "reg/control", beatBytes=beatBytes)
val clockNode = ClockGroupIdentityNode()
lazy val module = new LazyModuleImp(this) {
val nTiles = p(TilesLocated(InSubsystem)).size
require (nTiles <= 4096 / 4)
val tile_async_resets = Wire(Vec(nTiles, Reset()))
val r_tile_resets = (0 until nTiles).map({ i =>
tile_async_resets(i) := true.B.asAsyncReset // Remove this line after https://github.com/chipsalliance/rocket-chip/pull/2842
withReset (tile_async_resets(i)) {
Module(new AsyncResetRegVec(w=1, init=(if (initResetHarts.contains(i)) 1 else 0)))
}
})
if (nTiles > 0)
tlNode.regmap((0 until nTiles).map({ i =>
i * 4 -> Seq(RegField.rwReg(1, r_tile_resets(i).io))
}): _*)
val tileMap = tileNames.zipWithIndex.map({ case (n, i) =>
n -> (tile_async_resets(i), r_tile_resets(i).io.q, address + i * 4)
})
(clockNode.out zip clockNode.in).map { case ((o, _), (i, _)) =>
(o.member.elements zip i.member.elements).foreach { case ((name, oD), (_, iD)) =>
oD.clock := iD.clock
oD.reset := iD.reset
for ((n, (rIn, rOut, addr)) <- tileMap) {
if (name.contains(n)) {
println(s"${addr.toString(16)}: Tile $name reset control")
// Async because the reset coming out of the AsyncResetRegVec is
// clocked to the bus this is attached to, not the clock in this
// clock bundle. We expect a ClockGroupResetSynchronizer downstream
// to synchronize the resets
// Also, this or enforces that the tiles come out of reset after the reset of the system
oD.reset := (rOut.asBool || iD.reset.asBool).asAsyncReset
rIn := iD.reset
}
}
}
}
}
}
File MuxLiteral.scala:
// See LICENSE.SiFive for license details.
package freechips.rocketchip.util
import chisel3._
import chisel3.util.log2Ceil
import scala.reflect.ClassTag
/* MuxLiteral creates a lookup table from a key to a list of values.
* Unlike MuxLookup, the table keys must be exclusive literals.
*/
object MuxLiteral
{
def apply[T <: Data:ClassTag](index: UInt, default: T, first: (UInt, T), rest: (UInt, T)*): T =
apply(index, default, first :: rest.toList)
def apply[T <: Data:ClassTag](index: UInt, default: T, cases: Seq[(UInt, T)]): T =
MuxTable(index, default, cases.map { case (k, v) => (k.litValue, v) })
}
object MuxSeq
{
def apply[T <: Data:ClassTag](index: UInt, default: T, first: T, rest: T*): T =
apply(index, default, first :: rest.toList)
def apply[T <: Data:ClassTag](index: UInt, default: T, cases: Seq[T]): T =
MuxTable(index, default, cases.zipWithIndex.map { case (v, i) => (BigInt(i), v) })
}
object MuxTable
{
def apply[T <: Data:ClassTag](index: UInt, default: T, first: (BigInt, T), rest: (BigInt, T)*): T =
apply(index, default, first :: rest.toList)
def apply[T <: Data:ClassTag](index: UInt, default: T, cases: Seq[(BigInt, T)]): T = {
/* All keys must be >= 0 and distinct */
cases.foreach { case (k, _) => require (k >= 0) }
require (cases.map(_._1).distinct.size == cases.size)
/* Filter out any cases identical to the default */
val simple = cases.filter { case (k, v) => !default.isLit || !v.isLit || v.litValue != default.litValue }
val maxKey = (BigInt(0) +: simple.map(_._1)).max
val endIndex = BigInt(1) << log2Ceil(maxKey+1)
if (simple.isEmpty) {
default
} else if (endIndex <= 2*simple.size) {
/* The dense encoding case uses a Vec */
val table = Array.fill(endIndex.toInt) { default }
simple.foreach { case (k, v) => table(k.toInt) = v }
Mux(index >= endIndex.U, default, VecInit(table)(index))
} else {
/* The sparse encoding case uses switch */
val out = WireDefault(default)
simple.foldLeft(new chisel3.util.SwitchContext(index, None, Set.empty)) { case (acc, (k, v)) =>
acc.is (k.U) { out := v }
}
out
}
}
}
File LazyModuleImp.scala:
package org.chipsalliance.diplomacy.lazymodule
import chisel3.{withClockAndReset, Module, RawModule, Reset, _}
import chisel3.experimental.{ChiselAnnotation, CloneModuleAsRecord, SourceInfo}
import firrtl.passes.InlineAnnotation
import org.chipsalliance.cde.config.Parameters
import org.chipsalliance.diplomacy.nodes.Dangle
import scala.collection.immutable.SortedMap
/** Trait describing the actual [[Module]] implementation wrapped by a [[LazyModule]].
*
* This is the actual Chisel module that is lazily-evaluated in the second phase of Diplomacy.
*/
sealed trait LazyModuleImpLike extends RawModule {
/** [[LazyModule]] that contains this instance. */
val wrapper: LazyModule
/** IOs that will be automatically "punched" for this instance. */
val auto: AutoBundle
/** The metadata that describes the [[HalfEdge]]s which generated [[auto]]. */
protected[diplomacy] val dangles: Seq[Dangle]
// [[wrapper.module]] had better not be accessed while LazyModules are still being built!
require(
LazyModule.scope.isEmpty,
s"${wrapper.name}.module was constructed before LazyModule() was run on ${LazyModule.scope.get.name}"
)
/** Set module name. Defaults to the containing LazyModule's desiredName. */
override def desiredName: String = wrapper.desiredName
suggestName(wrapper.suggestedName)
/** [[Parameters]] for chisel [[Module]]s. */
implicit val p: Parameters = wrapper.p
/** instantiate this [[LazyModule]], return [[AutoBundle]] and a unconnected [[Dangle]]s from this module and
* submodules.
*/
protected[diplomacy] def instantiate(): (AutoBundle, List[Dangle]) = {
// 1. It will recursively append [[wrapper.children]] into [[chisel3.internal.Builder]],
// 2. return [[Dangle]]s from each module.
val childDangles = wrapper.children.reverse.flatMap { c =>
implicit val sourceInfo: SourceInfo = c.info
c.cloneProto.map { cp =>
// If the child is a clone, then recursively set cloneProto of its children as well
def assignCloneProtos(bases: Seq[LazyModule], clones: Seq[LazyModule]): Unit = {
require(bases.size == clones.size)
(bases.zip(clones)).map { case (l, r) =>
require(l.getClass == r.getClass, s"Cloned children class mismatch ${l.name} != ${r.name}")
l.cloneProto = Some(r)
assignCloneProtos(l.children, r.children)
}
}
assignCloneProtos(c.children, cp.children)
// Clone the child module as a record, and get its [[AutoBundle]]
val clone = CloneModuleAsRecord(cp.module).suggestName(c.suggestedName)
val clonedAuto = clone("auto").asInstanceOf[AutoBundle]
// Get the empty [[Dangle]]'s of the cloned child
val rawDangles = c.cloneDangles()
require(rawDangles.size == clonedAuto.elements.size)
// Assign the [[AutoBundle]] fields of the cloned record to the empty [[Dangle]]'s
val dangles = (rawDangles.zip(clonedAuto.elements)).map { case (d, (_, io)) => d.copy(dataOpt = Some(io)) }
dangles
}.getOrElse {
// For non-clones, instantiate the child module
val mod = try {
Module(c.module)
} catch {
case e: ChiselException => {
println(s"Chisel exception caught when instantiating ${c.name} within ${this.name} at ${c.line}")
throw e
}
}
mod.dangles
}
}
// Ask each node in this [[LazyModule]] to call [[BaseNode.instantiate]].
// This will result in a sequence of [[Dangle]] from these [[BaseNode]]s.
val nodeDangles = wrapper.nodes.reverse.flatMap(_.instantiate())
// Accumulate all the [[Dangle]]s from this node and any accumulated from its [[wrapper.children]]
val allDangles = nodeDangles ++ childDangles
// Group [[allDangles]] by their [[source]].
val pairing = SortedMap(allDangles.groupBy(_.source).toSeq: _*)
// For each [[source]] set of [[Dangle]]s of size 2, ensure that these
// can be connected as a source-sink pair (have opposite flipped value).
// Make the connection and mark them as [[done]].
val done = Set() ++ pairing.values.filter(_.size == 2).map {
case Seq(a, b) =>
require(a.flipped != b.flipped)
// @todo <> in chisel3 makes directionless connection.
if (a.flipped) {
a.data <> b.data
} else {
b.data <> a.data
}
a.source
case _ => None
}
// Find all [[Dangle]]s which are still not connected. These will end up as [[AutoBundle]] [[IO]] ports on the module.
val forward = allDangles.filter(d => !done(d.source))
// Generate [[AutoBundle]] IO from [[forward]].
val auto = IO(new AutoBundle(forward.map { d => (d.name, d.data, d.flipped) }: _*))
// Pass the [[Dangle]]s which remained and were used to generate the [[AutoBundle]] I/O ports up to the [[parent]] [[LazyModule]]
val dangles = (forward.zip(auto.elements)).map { case (d, (_, io)) =>
if (d.flipped) {
d.data <> io
} else {
io <> d.data
}
d.copy(dataOpt = Some(io), name = wrapper.suggestedName + "_" + d.name)
}
// Push all [[LazyModule.inModuleBody]] to [[chisel3.internal.Builder]].
wrapper.inModuleBody.reverse.foreach {
_()
}
if (wrapper.shouldBeInlined) {
chisel3.experimental.annotate(new ChiselAnnotation {
def toFirrtl = InlineAnnotation(toNamed)
})
}
// Return [[IO]] and [[Dangle]] of this [[LazyModuleImp]].
(auto, dangles)
}
}
/** Actual description of a [[Module]] which can be instantiated by a call to [[LazyModule.module]].
*
* @param wrapper
* the [[LazyModule]] from which the `.module` call is being made.
*/
class LazyModuleImp(val wrapper: LazyModule) extends Module with LazyModuleImpLike {
/** Instantiate hardware of this `Module`. */
val (auto, dangles) = instantiate()
}
/** Actual description of a [[RawModule]] which can be instantiated by a call to [[LazyModule.module]].
*
* @param wrapper
* the [[LazyModule]] from which the `.module` call is being made.
*/
class LazyRawModuleImp(val wrapper: LazyModule) extends RawModule with LazyModuleImpLike {
// These wires are the default clock+reset for all LazyModule children.
// It is recommended to drive these even if you manually drive the [[clock]] and [[reset]] of all of the
// [[LazyRawModuleImp]] children.
// Otherwise, anonymous children ([[Monitor]]s for example) will not have their [[clock]] and/or [[reset]] driven properly.
/** drive clock explicitly. */
val childClock: Clock = Wire(Clock())
/** drive reset explicitly. */
val childReset: Reset = Wire(Reset())
// the default is that these are disabled
childClock := false.B.asClock
childReset := chisel3.DontCare
def provideImplicitClockToLazyChildren: Boolean = false
val (auto, dangles) =
if (provideImplicitClockToLazyChildren) {
withClockAndReset(childClock, childReset) { instantiate() }
} else {
instantiate()
}
}
File MixedNode.scala:
package org.chipsalliance.diplomacy.nodes
import chisel3.{Data, DontCare, Wire}
import chisel3.experimental.SourceInfo
import org.chipsalliance.cde.config.{Field, Parameters}
import org.chipsalliance.diplomacy.ValName
import org.chipsalliance.diplomacy.sourceLine
/** One side metadata of a [[Dangle]].
*
* Describes one side of an edge going into or out of a [[BaseNode]].
*
* @param serial
* the global [[BaseNode.serial]] number of the [[BaseNode]] that this [[HalfEdge]] connects to.
* @param index
* the `index` in the [[BaseNode]]'s input or output port list that this [[HalfEdge]] belongs to.
*/
case class HalfEdge(serial: Int, index: Int) extends Ordered[HalfEdge] {
import scala.math.Ordered.orderingToOrdered
def compare(that: HalfEdge): Int = HalfEdge.unapply(this).compare(HalfEdge.unapply(that))
}
/** [[Dangle]] captures the `IO` information of a [[LazyModule]] and which two [[BaseNode]]s the [[Edges]]/[[Bundle]]
* connects.
*
* [[Dangle]]s are generated by [[BaseNode.instantiate]] using [[MixedNode.danglesOut]] and [[MixedNode.danglesIn]] ,
* [[LazyModuleImp.instantiate]] connects those that go to internal or explicit IO connections in a [[LazyModule]].
*
* @param source
* the source [[HalfEdge]] of this [[Dangle]], which captures the source [[BaseNode]] and the port `index` within
* that [[BaseNode]].
* @param sink
* sink [[HalfEdge]] of this [[Dangle]], which captures the sink [[BaseNode]] and the port `index` within that
* [[BaseNode]].
* @param flipped
* flip or not in [[AutoBundle.makeElements]]. If true this corresponds to `danglesOut`, if false it corresponds to
* `danglesIn`.
* @param dataOpt
* actual [[Data]] for the hardware connection. Can be empty if this belongs to a cloned module
*/
case class Dangle(source: HalfEdge, sink: HalfEdge, flipped: Boolean, name: String, dataOpt: Option[Data]) {
def data = dataOpt.get
}
/** [[Edges]] is a collection of parameters describing the functionality and connection for an interface, which is often
* derived from the interconnection protocol and can inform the parameterization of the hardware bundles that actually
* implement the protocol.
*/
case class Edges[EI, EO](in: Seq[EI], out: Seq[EO])
/** A field available in [[Parameters]] used to determine whether [[InwardNodeImp.monitor]] will be called. */
case object MonitorsEnabled extends Field[Boolean](true)
/** When rendering the edge in a graphical format, flip the order in which the edges' source and sink are presented.
*
* For example, when rendering graphML, yEd by default tries to put the source node vertically above the sink node, but
* [[RenderFlipped]] inverts this relationship. When a particular [[LazyModule]] contains both source nodes and sink
* nodes, flipping the rendering of one node's edge will usual produce a more concise visual layout for the
* [[LazyModule]].
*/
case object RenderFlipped extends Field[Boolean](false)
/** The sealed node class in the package, all node are derived from it.
*
* @param inner
* Sink interface implementation.
* @param outer
* Source interface implementation.
* @param valName
* val name of this node.
* @tparam DI
* Downward-flowing parameters received on the inner side of the node. It is usually a brunch of parameters
* describing the protocol parameters from a source. For an [[InwardNode]], it is determined by the connected
* [[OutwardNode]]. Since it can be connected to multiple sources, this parameter is always a Seq of source port
* parameters.
* @tparam UI
* Upward-flowing parameters generated by the inner side of the node. It is usually a brunch of parameters describing
* the protocol parameters of a sink. For an [[InwardNode]], it is determined itself.
* @tparam EI
* Edge Parameters describing a connection on the inner side of the node. It is usually a brunch of transfers
* specified for a sink according to protocol.
* @tparam BI
* Bundle type used when connecting to the inner side of the node. It is a hardware interface of this sink interface.
* It should extends from [[chisel3.Data]], which represents the real hardware.
* @tparam DO
* Downward-flowing parameters generated on the outer side of the node. It is usually a brunch of parameters
* describing the protocol parameters of a source. For an [[OutwardNode]], it is determined itself.
* @tparam UO
* Upward-flowing parameters received by the outer side of the node. It is usually a brunch of parameters describing
* the protocol parameters from a sink. For an [[OutwardNode]], it is determined by the connected [[InwardNode]].
* Since it can be connected to multiple sinks, this parameter is always a Seq of sink port parameters.
* @tparam EO
* Edge Parameters describing a connection on the outer side of the node. It is usually a brunch of transfers
* specified for a source according to protocol.
* @tparam BO
* Bundle type used when connecting to the outer side of the node. It is a hardware interface of this source
* interface. It should extends from [[chisel3.Data]], which represents the real hardware.
*
* @note
* Call Graph of [[MixedNode]]
* - line `β`: source is process by a function and generate pass to others
* - Arrow `β`: target of arrow is generated by source
*
* {{{
* (from the other node)
* ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ[[InwardNode.uiParams]]ββββββββββββββ
* β β
* (binding node when elaboration) [[OutwardNode.uoParams]]ββββββββββββββββββββββββ[[MixedNode.mapParamsU]]ββββββββββββ β
* [[InwardNode.accPI]] β β β
* β β (based on protocol) β
* β β [[MixedNode.inner.edgeI]] β
* β β β β
* β β β β
* (immobilize after elaboration) (inward port from [[OutwardNode]]) β β β
* [[InwardNode.iBindings]]βββ [[MixedNode.iDirectPorts]]βββββββββββββββββββββ[[MixedNode.iPorts]] [[InwardNode.uiParams]] β
* β β β β β β
* β β β [[OutwardNode.doParams]] β β
* β β β (from the other node) β β
* β β β β β β
* β β β β β β
* β β β ββββββββββ¬βββββββββββββββ€ β
* β β β β β β
* β β β β (based on protocol) β
* β β β β [[MixedNode.inner.edgeI]] β
* β β β β β β
* β β (from the other node) β β β
* β ββββ[[OutwardNode.oPortMapping]] [[OutwardNode.oStar]] β [[MixedNode.edgesIn]]ββββ β
* β β β β β β β
* β β β β β [[MixedNode.in]] β
* β β β β β β β
* β (solve star connection) β β β [[MixedNode.bundleIn]]βββ β
* ββββ[[MixedNode.resolveStar]]βββΌββββββββββββββββββββββββββββββ€ ββββββββββββββββββββββββββββββββββββββ β
* β β β [[MixedNode.bundleOut]]ββ β β
* β β β β β β β
* β β β β [[MixedNode.out]] β β
* β β β β β β β
* β ββββββ[[InwardNode.iPortMapping]] [[InwardNode.iStar]] [[MixedNode.edgesOut]]βββ β β
* β β (from the other node) β β β
* β β β β β β
* β β β [[MixedNode.outer.edgeO]] β β
* β β β (based on protocol) β β
* β β β β β β
* β β β ββββββββββββββββββββββββββββββββββββββββββ€ β β
* β β β β β β β
* β β β β β β β
* β β β β β β β
* (immobilize after elaboration)β β β β β β
* [[OutwardNode.oBindings]]ββ [[MixedNode.oDirectPorts]]ββββ[[MixedNode.oPorts]] [[OutwardNode.doParams]] β β
* β (inward port from [[OutwardNode]]) β β β β
* β βββββββββββββββββββββββββββββββββββββββββββ€ β β β
* β β β β β β
* β β β β β β
* [[OutwardNode.accPO]] β β β β β
* (binding node when elaboration) β [[InwardNode.diParams]]ββββββ[[MixedNode.mapParamsD]]βββββββββββββββββββββββββββββ β β
* β β β β
* β ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ β
* ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
* }}}
*/
abstract class MixedNode[DI, UI, EI, BI <: Data, DO, UO, EO, BO <: Data](
val inner: InwardNodeImp[DI, UI, EI, BI],
val outer: OutwardNodeImp[DO, UO, EO, BO]
)(
implicit valName: ValName)
extends BaseNode
with NodeHandle[DI, UI, EI, BI, DO, UO, EO, BO]
with InwardNode[DI, UI, BI]
with OutwardNode[DO, UO, BO] {
// Generate a [[NodeHandle]] with inward and outward node are both this node.
val inward = this
val outward = this
/** Debug info of nodes binding. */
def bindingInfo: String = s"""$iBindingInfo
|$oBindingInfo
|""".stripMargin
/** Debug info of ports connecting. */
def connectedPortsInfo: String = s"""${oPorts.size} outward ports connected: [${oPorts.map(_._2.name).mkString(",")}]
|${iPorts.size} inward ports connected: [${iPorts.map(_._2.name).mkString(",")}]
|""".stripMargin
/** Debug info of parameters propagations. */
def parametersInfo: String = s"""${doParams.size} downstream outward parameters: [${doParams.mkString(",")}]
|${uoParams.size} upstream outward parameters: [${uoParams.mkString(",")}]
|${diParams.size} downstream inward parameters: [${diParams.mkString(",")}]
|${uiParams.size} upstream inward parameters: [${uiParams.mkString(",")}]
|""".stripMargin
/** For a given node, converts [[OutwardNode.accPO]] and [[InwardNode.accPI]] to [[MixedNode.oPortMapping]] and
* [[MixedNode.iPortMapping]].
*
* Given counts of known inward and outward binding and inward and outward star bindings, return the resolved inward
* stars and outward stars.
*
* This method will also validate the arguments and throw a runtime error if the values are unsuitable for this type
* of node.
*
* @param iKnown
* Number of known-size ([[BIND_ONCE]]) input bindings.
* @param oKnown
* Number of known-size ([[BIND_ONCE]]) output bindings.
* @param iStar
* Number of unknown size ([[BIND_STAR]]) input bindings.
* @param oStar
* Number of unknown size ([[BIND_STAR]]) output bindings.
* @return
* A Tuple of the resolved number of input and output connections.
*/
protected[diplomacy] def resolveStar(iKnown: Int, oKnown: Int, iStar: Int, oStar: Int): (Int, Int)
/** Function to generate downward-flowing outward params from the downward-flowing input params and the current output
* ports.
*
* @param n
* The size of the output sequence to generate.
* @param p
* Sequence of downward-flowing input parameters of this node.
* @return
* A `n`-sized sequence of downward-flowing output edge parameters.
*/
protected[diplomacy] def mapParamsD(n: Int, p: Seq[DI]): Seq[DO]
/** Function to generate upward-flowing input parameters from the upward-flowing output parameters [[uiParams]].
*
* @param n
* Size of the output sequence.
* @param p
* Upward-flowing output edge parameters.
* @return
* A n-sized sequence of upward-flowing input edge parameters.
*/
protected[diplomacy] def mapParamsU(n: Int, p: Seq[UO]): Seq[UI]
/** @return
* The sink cardinality of the node, the number of outputs bound with [[BIND_QUERY]] summed with inputs bound with
* [[BIND_STAR]].
*/
protected[diplomacy] lazy val sinkCard: Int = oBindings.count(_._3 == BIND_QUERY) + iBindings.count(_._3 == BIND_STAR)
/** @return
* The source cardinality of this node, the number of inputs bound with [[BIND_QUERY]] summed with the number of
* output bindings bound with [[BIND_STAR]].
*/
protected[diplomacy] lazy val sourceCard: Int =
iBindings.count(_._3 == BIND_QUERY) + oBindings.count(_._3 == BIND_STAR)
/** @return list of nodes involved in flex bindings with this node. */
protected[diplomacy] lazy val flexes: Seq[BaseNode] =
oBindings.filter(_._3 == BIND_FLEX).map(_._2) ++ iBindings.filter(_._3 == BIND_FLEX).map(_._2)
/** Resolves the flex to be either source or sink and returns the offset where the [[BIND_STAR]] operators begin
* greedily taking up the remaining connections.
*
* @return
* A value >= 0 if it is sink cardinality, a negative value for source cardinality. The magnitude of the return
* value is not relevant.
*/
protected[diplomacy] lazy val flexOffset: Int = {
/** Recursively performs a depth-first search of the [[flexes]], [[BaseNode]]s connected to this node with flex
* operators. The algorithm bottoms out when we either get to a node we have already visited or when we get to a
* connection that is not a flex and can set the direction for us. Otherwise, recurse by visiting the `flexes` of
* each node in the current set and decide whether they should be added to the set or not.
*
* @return
* the mapping of [[BaseNode]] indexed by their serial numbers.
*/
def DFS(v: BaseNode, visited: Map[Int, BaseNode]): Map[Int, BaseNode] = {
if (visited.contains(v.serial) || !v.flexibleArityDirection) {
visited
} else {
v.flexes.foldLeft(visited + (v.serial -> v))((sum, n) => DFS(n, sum))
}
}
/** Determine which [[BaseNode]] are involved in resolving the flex connections to/from this node.
*
* @example
* {{{
* a :*=* b :*=* c
* d :*=* b
* e :*=* f
* }}}
*
* `flexSet` for `a`, `b`, `c`, or `d` will be `Set(a, b, c, d)` `flexSet` for `e` or `f` will be `Set(e,f)`
*/
val flexSet = DFS(this, Map()).values
/** The total number of :*= operators where we're on the left. */
val allSink = flexSet.map(_.sinkCard).sum
/** The total number of :=* operators used when we're on the right. */
val allSource = flexSet.map(_.sourceCard).sum
require(
allSink == 0 || allSource == 0,
s"The nodes ${flexSet.map(_.name)} which are inter-connected by :*=* have ${allSink} :*= operators and ${allSource} :=* operators connected to them, making it impossible to determine cardinality inference direction."
)
allSink - allSource
}
/** @return A value >= 0 if it is sink cardinality, a negative value for source cardinality. */
protected[diplomacy] def edgeArityDirection(n: BaseNode): Int = {
if (flexibleArityDirection) flexOffset
else if (n.flexibleArityDirection) n.flexOffset
else 0
}
/** For a node which is connected between two nodes, select the one that will influence the direction of the flex
* resolution.
*/
protected[diplomacy] def edgeAritySelect(n: BaseNode, l: => Int, r: => Int): Int = {
val dir = edgeArityDirection(n)
if (dir < 0) l
else if (dir > 0) r
else 1
}
/** Ensure that the same node is not visited twice in resolving `:*=`, etc operators. */
private var starCycleGuard = false
/** Resolve all the star operators into concrete indicies. As connections are being made, some may be "star"
* connections which need to be resolved. In some way to determine how many actual edges they correspond to. We also
* need to build up the ranges of edges which correspond to each binding operator, so that We can apply the correct
* edge parameters and later build up correct bundle connections.
*
* [[oPortMapping]]: `Seq[(Int, Int)]` where each item is the range of edges corresponding to that oPort (binding
* operator). [[iPortMapping]]: `Seq[(Int, Int)]` where each item is the range of edges corresponding to that iPort
* (binding operator). [[oStar]]: `Int` the value to return for this node `N` for any `N :*= foo` or `N :*=* foo :*=
* bar` [[iStar]]: `Int` the value to return for this node `N` for any `foo :=* N` or `bar :=* foo :*=* N`
*/
protected[diplomacy] lazy val (
oPortMapping: Seq[(Int, Int)],
iPortMapping: Seq[(Int, Int)],
oStar: Int,
iStar: Int
) = {
try {
if (starCycleGuard) throw StarCycleException()
starCycleGuard = true
// For a given node N...
// Number of foo :=* N
// + Number of bar :=* foo :*=* N
val oStars = oBindings.count { case (_, n, b, _, _) =>
b == BIND_STAR || (b == BIND_FLEX && edgeArityDirection(n) < 0)
}
// Number of N :*= foo
// + Number of N :*=* foo :*= bar
val iStars = iBindings.count { case (_, n, b, _, _) =>
b == BIND_STAR || (b == BIND_FLEX && edgeArityDirection(n) > 0)
}
// 1 for foo := N
// + bar.iStar for bar :*= foo :*=* N
// + foo.iStar for foo :*= N
// + 0 for foo :=* N
val oKnown = oBindings.map { case (_, n, b, _, _) =>
b match {
case BIND_ONCE => 1
case BIND_FLEX => edgeAritySelect(n, 0, n.iStar)
case BIND_QUERY => n.iStar
case BIND_STAR => 0
}
}.sum
// 1 for N := foo
// + bar.oStar for N :*=* foo :=* bar
// + foo.oStar for N :=* foo
// + 0 for N :*= foo
val iKnown = iBindings.map { case (_, n, b, _, _) =>
b match {
case BIND_ONCE => 1
case BIND_FLEX => edgeAritySelect(n, n.oStar, 0)
case BIND_QUERY => n.oStar
case BIND_STAR => 0
}
}.sum
// Resolve star depends on the node subclass to implement the algorithm for this.
val (iStar, oStar) = resolveStar(iKnown, oKnown, iStars, oStars)
// Cumulative list of resolved outward binding range starting points
val oSum = oBindings.map { case (_, n, b, _, _) =>
b match {
case BIND_ONCE => 1
case BIND_FLEX => edgeAritySelect(n, oStar, n.iStar)
case BIND_QUERY => n.iStar
case BIND_STAR => oStar
}
}.scanLeft(0)(_ + _)
// Cumulative list of resolved inward binding range starting points
val iSum = iBindings.map { case (_, n, b, _, _) =>
b match {
case BIND_ONCE => 1
case BIND_FLEX => edgeAritySelect(n, n.oStar, iStar)
case BIND_QUERY => n.oStar
case BIND_STAR => iStar
}
}.scanLeft(0)(_ + _)
// Create ranges for each binding based on the running sums and return
// those along with resolved values for the star operations.
(oSum.init.zip(oSum.tail), iSum.init.zip(iSum.tail), oStar, iStar)
} catch {
case c: StarCycleException => throw c.copy(loop = context +: c.loop)
}
}
/** Sequence of inward ports.
*
* This should be called after all star bindings are resolved.
*
* Each element is: `j` Port index of this binding in the Node's [[oPortMapping]] on the other side of the binding.
* `n` Instance of inward node. `p` View of [[Parameters]] where this connection was made. `s` Source info where this
* connection was made in the source code.
*/
protected[diplomacy] lazy val oDirectPorts: Seq[(Int, InwardNode[DO, UO, BO], Parameters, SourceInfo)] =
oBindings.flatMap { case (i, n, _, p, s) =>
// for each binding operator in this node, look at what it connects to
val (start, end) = n.iPortMapping(i)
(start until end).map { j => (j, n, p, s) }
}
/** Sequence of outward ports.
*
* This should be called after all star bindings are resolved.
*
* `j` Port index of this binding in the Node's [[oPortMapping]] on the other side of the binding. `n` Instance of
* outward node. `p` View of [[Parameters]] where this connection was made. `s` [[SourceInfo]] where this connection
* was made in the source code.
*/
protected[diplomacy] lazy val iDirectPorts: Seq[(Int, OutwardNode[DI, UI, BI], Parameters, SourceInfo)] =
iBindings.flatMap { case (i, n, _, p, s) =>
// query this port index range of this node in the other side of node.
val (start, end) = n.oPortMapping(i)
(start until end).map { j => (j, n, p, s) }
}
// Ephemeral nodes ( which have non-None iForward/oForward) have in_degree = out_degree
// Thus, there must exist an Eulerian path and the below algorithms terminate
@scala.annotation.tailrec
private def oTrace(
tuple: (Int, InwardNode[DO, UO, BO], Parameters, SourceInfo)
): (Int, InwardNode[DO, UO, BO], Parameters, SourceInfo) = tuple match {
case (i, n, p, s) => n.iForward(i) match {
case None => (i, n, p, s)
case Some((j, m)) => oTrace((j, m, p, s))
}
}
@scala.annotation.tailrec
private def iTrace(
tuple: (Int, OutwardNode[DI, UI, BI], Parameters, SourceInfo)
): (Int, OutwardNode[DI, UI, BI], Parameters, SourceInfo) = tuple match {
case (i, n, p, s) => n.oForward(i) match {
case None => (i, n, p, s)
case Some((j, m)) => iTrace((j, m, p, s))
}
}
/** Final output ports after all stars and port forwarding (e.g. [[EphemeralNode]]s) have been resolved.
*
* Each Port is a tuple of:
* - Numeric index of this binding in the [[InwardNode]] on the other end.
* - [[InwardNode]] on the other end of this binding.
* - A view of [[Parameters]] where the binding occurred.
* - [[SourceInfo]] for source-level error reporting.
*/
lazy val oPorts: Seq[(Int, InwardNode[DO, UO, BO], Parameters, SourceInfo)] = oDirectPorts.map(oTrace)
/** Final input ports after all stars and port forwarding (e.g. [[EphemeralNode]]s) have been resolved.
*
* Each Port is a tuple of:
* - numeric index of this binding in [[OutwardNode]] on the other end.
* - [[OutwardNode]] on the other end of this binding.
* - a view of [[Parameters]] where the binding occurred.
* - [[SourceInfo]] for source-level error reporting.
*/
lazy val iPorts: Seq[(Int, OutwardNode[DI, UI, BI], Parameters, SourceInfo)] = iDirectPorts.map(iTrace)
private var oParamsCycleGuard = false
protected[diplomacy] lazy val diParams: Seq[DI] = iPorts.map { case (i, n, _, _) => n.doParams(i) }
protected[diplomacy] lazy val doParams: Seq[DO] = {
try {
if (oParamsCycleGuard) throw DownwardCycleException()
oParamsCycleGuard = true
val o = mapParamsD(oPorts.size, diParams)
require(
o.size == oPorts.size,
s"""Diplomacy has detected a problem with your graph:
|At the following node, the number of outward ports should equal the number of produced outward parameters.
|$context
|$connectedPortsInfo
|Downstreamed inward parameters: [${diParams.mkString(",")}]
|Produced outward parameters: [${o.mkString(",")}]
|""".stripMargin
)
o.map(outer.mixO(_, this))
} catch {
case c: DownwardCycleException => throw c.copy(loop = context +: c.loop)
}
}
private var iParamsCycleGuard = false
protected[diplomacy] lazy val uoParams: Seq[UO] = oPorts.map { case (o, n, _, _) => n.uiParams(o) }
protected[diplomacy] lazy val uiParams: Seq[UI] = {
try {
if (iParamsCycleGuard) throw UpwardCycleException()
iParamsCycleGuard = true
val i = mapParamsU(iPorts.size, uoParams)
require(
i.size == iPorts.size,
s"""Diplomacy has detected a problem with your graph:
|At the following node, the number of inward ports should equal the number of produced inward parameters.
|$context
|$connectedPortsInfo
|Upstreamed outward parameters: [${uoParams.mkString(",")}]
|Produced inward parameters: [${i.mkString(",")}]
|""".stripMargin
)
i.map(inner.mixI(_, this))
} catch {
case c: UpwardCycleException => throw c.copy(loop = context +: c.loop)
}
}
/** Outward edge parameters. */
protected[diplomacy] lazy val edgesOut: Seq[EO] =
(oPorts.zip(doParams)).map { case ((i, n, p, s), o) => outer.edgeO(o, n.uiParams(i), p, s) }
/** Inward edge parameters. */
protected[diplomacy] lazy val edgesIn: Seq[EI] =
(iPorts.zip(uiParams)).map { case ((o, n, p, s), i) => inner.edgeI(n.doParams(o), i, p, s) }
/** A tuple of the input edge parameters and output edge parameters for the edges bound to this node.
*
* If you need to access to the edges of a foreign Node, use this method (in/out create bundles).
*/
lazy val edges: Edges[EI, EO] = Edges(edgesIn, edgesOut)
/** Create actual Wires corresponding to the Bundles parameterized by the outward edges of this node. */
protected[diplomacy] lazy val bundleOut: Seq[BO] = edgesOut.map { e =>
val x = Wire(outer.bundleO(e)).suggestName(s"${valName.value}Out")
// TODO: Don't care unconnected forwarded diplomatic signals for compatibility issue,
// In the future, we should add an option to decide whether allowing unconnected in the LazyModule
x := DontCare
x
}
/** Create actual Wires corresponding to the Bundles parameterized by the inward edges of this node. */
protected[diplomacy] lazy val bundleIn: Seq[BI] = edgesIn.map { e =>
val x = Wire(inner.bundleI(e)).suggestName(s"${valName.value}In")
// TODO: Don't care unconnected forwarded diplomatic signals for compatibility issue,
// In the future, we should add an option to decide whether allowing unconnected in the LazyModule
x := DontCare
x
}
private def emptyDanglesOut: Seq[Dangle] = oPorts.zipWithIndex.map { case ((j, n, _, _), i) =>
Dangle(
source = HalfEdge(serial, i),
sink = HalfEdge(n.serial, j),
flipped = false,
name = wirePrefix + "out",
dataOpt = None
)
}
private def emptyDanglesIn: Seq[Dangle] = iPorts.zipWithIndex.map { case ((j, n, _, _), i) =>
Dangle(
source = HalfEdge(n.serial, j),
sink = HalfEdge(serial, i),
flipped = true,
name = wirePrefix + "in",
dataOpt = None
)
}
/** Create the [[Dangle]]s which describe the connections from this node output to other nodes inputs. */
protected[diplomacy] def danglesOut: Seq[Dangle] = emptyDanglesOut.zipWithIndex.map { case (d, i) =>
d.copy(dataOpt = Some(bundleOut(i)))
}
/** Create the [[Dangle]]s which describe the connections from this node input from other nodes outputs. */
protected[diplomacy] def danglesIn: Seq[Dangle] = emptyDanglesIn.zipWithIndex.map { case (d, i) =>
d.copy(dataOpt = Some(bundleIn(i)))
}
private[diplomacy] var instantiated = false
/** Gather Bundle and edge parameters of outward ports.
*
* Accessors to the result of negotiation to be used within [[LazyModuleImp]] Code. Should only be used within
* [[LazyModuleImp]] code or after its instantiation has completed.
*/
def out: Seq[(BO, EO)] = {
require(
instantiated,
s"$name.out should not be called until after instantiation of its parent LazyModule.module has begun"
)
bundleOut.zip(edgesOut)
}
/** Gather Bundle and edge parameters of inward ports.
*
* Accessors to the result of negotiation to be used within [[LazyModuleImp]] Code. Should only be used within
* [[LazyModuleImp]] code or after its instantiation has completed.
*/
def in: Seq[(BI, EI)] = {
require(
instantiated,
s"$name.in should not be called until after instantiation of its parent LazyModule.module has begun"
)
bundleIn.zip(edgesIn)
}
/** Actually instantiate this node during [[LazyModuleImp]] evaluation. Mark that it's safe to use the Bundle wires,
* instantiate monitors on all input ports if appropriate, and return all the dangles of this node.
*/
protected[diplomacy] def instantiate(): Seq[Dangle] = {
instantiated = true
if (!circuitIdentity) {
(iPorts.zip(in)).foreach { case ((_, _, p, _), (b, e)) => if (p(MonitorsEnabled)) inner.monitor(b, e) }
}
danglesOut ++ danglesIn
}
protected[diplomacy] def cloneDangles(): Seq[Dangle] = emptyDanglesOut ++ emptyDanglesIn
/** Connects the outward part of a node with the inward part of this node. */
protected[diplomacy] def bind(
h: OutwardNode[DI, UI, BI],
binding: NodeBinding
)(
implicit p: Parameters,
sourceInfo: SourceInfo
): Unit = {
val x = this // x := y
val y = h
sourceLine(sourceInfo, " at ", "")
val i = x.iPushed
val o = y.oPushed
y.oPush(
i,
x,
binding match {
case BIND_ONCE => BIND_ONCE
case BIND_FLEX => BIND_FLEX
case BIND_STAR => BIND_QUERY
case BIND_QUERY => BIND_STAR
}
)
x.iPush(o, y, binding)
}
/* Metadata for printing the node graph. */
def inputs: Seq[(OutwardNode[DI, UI, BI], RenderedEdge)] = (iPorts.zip(edgesIn)).map { case ((_, n, p, _), e) =>
val re = inner.render(e)
(n, re.copy(flipped = re.flipped != p(RenderFlipped)))
}
/** Metadata for printing the node graph */
def outputs: Seq[(InwardNode[DO, UO, BO], RenderedEdge)] = oPorts.map { case (i, n, _, _) => (n, n.inputs(i)._2) }
}
File Edges.scala:
// See LICENSE.SiFive for license details.
package freechips.rocketchip.tilelink
import chisel3._
import chisel3.util._
import chisel3.experimental.SourceInfo
import org.chipsalliance.cde.config.Parameters
import freechips.rocketchip.util._
class TLEdge(
client: TLClientPortParameters,
manager: TLManagerPortParameters,
params: Parameters,
sourceInfo: SourceInfo)
extends TLEdgeParameters(client, manager, params, sourceInfo)
{
def isAligned(address: UInt, lgSize: UInt): Bool = {
if (maxLgSize == 0) true.B else {
val mask = UIntToOH1(lgSize, maxLgSize)
(address & mask) === 0.U
}
}
def mask(address: UInt, lgSize: UInt): UInt =
MaskGen(address, lgSize, manager.beatBytes)
def staticHasData(bundle: TLChannel): Option[Boolean] = {
bundle match {
case _:TLBundleA => {
// Do there exist A messages with Data?
val aDataYes = manager.anySupportArithmetic || manager.anySupportLogical || manager.anySupportPutFull || manager.anySupportPutPartial
// Do there exist A messages without Data?
val aDataNo = manager.anySupportAcquireB || manager.anySupportGet || manager.anySupportHint
// Statically optimize the case where hasData is a constant
if (!aDataYes) Some(false) else if (!aDataNo) Some(true) else None
}
case _:TLBundleB => {
// Do there exist B messages with Data?
val bDataYes = client.anySupportArithmetic || client.anySupportLogical || client.anySupportPutFull || client.anySupportPutPartial
// Do there exist B messages without Data?
val bDataNo = client.anySupportProbe || client.anySupportGet || client.anySupportHint
// Statically optimize the case where hasData is a constant
if (!bDataYes) Some(false) else if (!bDataNo) Some(true) else None
}
case _:TLBundleC => {
// Do there eixst C messages with Data?
val cDataYes = client.anySupportGet || client.anySupportArithmetic || client.anySupportLogical || client.anySupportProbe
// Do there exist C messages without Data?
val cDataNo = client.anySupportPutFull || client.anySupportPutPartial || client.anySupportHint || client.anySupportProbe
if (!cDataYes) Some(false) else if (!cDataNo) Some(true) else None
}
case _:TLBundleD => {
// Do there eixst D messages with Data?
val dDataYes = manager.anySupportGet || manager.anySupportArithmetic || manager.anySupportLogical || manager.anySupportAcquireB
// Do there exist D messages without Data?
val dDataNo = manager.anySupportPutFull || manager.anySupportPutPartial || manager.anySupportHint || manager.anySupportAcquireT
if (!dDataYes) Some(false) else if (!dDataNo) Some(true) else None
}
case _:TLBundleE => Some(false)
}
}
def isRequest(x: TLChannel): Bool = {
x match {
case a: TLBundleA => true.B
case b: TLBundleB => true.B
case c: TLBundleC => c.opcode(2) && c.opcode(1)
// opcode === TLMessages.Release ||
// opcode === TLMessages.ReleaseData
case d: TLBundleD => d.opcode(2) && !d.opcode(1)
// opcode === TLMessages.Grant ||
// opcode === TLMessages.GrantData
case e: TLBundleE => false.B
}
}
def isResponse(x: TLChannel): Bool = {
x match {
case a: TLBundleA => false.B
case b: TLBundleB => false.B
case c: TLBundleC => !c.opcode(2) || !c.opcode(1)
// opcode =/= TLMessages.Release &&
// opcode =/= TLMessages.ReleaseData
case d: TLBundleD => true.B // Grant isResponse + isRequest
case e: TLBundleE => true.B
}
}
def hasData(x: TLChannel): Bool = {
val opdata = x match {
case a: TLBundleA => !a.opcode(2)
// opcode === TLMessages.PutFullData ||
// opcode === TLMessages.PutPartialData ||
// opcode === TLMessages.ArithmeticData ||
// opcode === TLMessages.LogicalData
case b: TLBundleB => !b.opcode(2)
// opcode === TLMessages.PutFullData ||
// opcode === TLMessages.PutPartialData ||
// opcode === TLMessages.ArithmeticData ||
// opcode === TLMessages.LogicalData
case c: TLBundleC => c.opcode(0)
// opcode === TLMessages.AccessAckData ||
// opcode === TLMessages.ProbeAckData ||
// opcode === TLMessages.ReleaseData
case d: TLBundleD => d.opcode(0)
// opcode === TLMessages.AccessAckData ||
// opcode === TLMessages.GrantData
case e: TLBundleE => false.B
}
staticHasData(x).map(_.B).getOrElse(opdata)
}
def opcode(x: TLDataChannel): UInt = {
x match {
case a: TLBundleA => a.opcode
case b: TLBundleB => b.opcode
case c: TLBundleC => c.opcode
case d: TLBundleD => d.opcode
}
}
def param(x: TLDataChannel): UInt = {
x match {
case a: TLBundleA => a.param
case b: TLBundleB => b.param
case c: TLBundleC => c.param
case d: TLBundleD => d.param
}
}
def size(x: TLDataChannel): UInt = {
x match {
case a: TLBundleA => a.size
case b: TLBundleB => b.size
case c: TLBundleC => c.size
case d: TLBundleD => d.size
}
}
def data(x: TLDataChannel): UInt = {
x match {
case a: TLBundleA => a.data
case b: TLBundleB => b.data
case c: TLBundleC => c.data
case d: TLBundleD => d.data
}
}
def corrupt(x: TLDataChannel): Bool = {
x match {
case a: TLBundleA => a.corrupt
case b: TLBundleB => b.corrupt
case c: TLBundleC => c.corrupt
case d: TLBundleD => d.corrupt
}
}
def mask(x: TLAddrChannel): UInt = {
x match {
case a: TLBundleA => a.mask
case b: TLBundleB => b.mask
case c: TLBundleC => mask(c.address, c.size)
}
}
def full_mask(x: TLAddrChannel): UInt = {
x match {
case a: TLBundleA => mask(a.address, a.size)
case b: TLBundleB => mask(b.address, b.size)
case c: TLBundleC => mask(c.address, c.size)
}
}
def address(x: TLAddrChannel): UInt = {
x match {
case a: TLBundleA => a.address
case b: TLBundleB => b.address
case c: TLBundleC => c.address
}
}
def source(x: TLDataChannel): UInt = {
x match {
case a: TLBundleA => a.source
case b: TLBundleB => b.source
case c: TLBundleC => c.source
case d: TLBundleD => d.source
}
}
def addr_hi(x: UInt): UInt = x >> log2Ceil(manager.beatBytes)
def addr_lo(x: UInt): UInt =
if (manager.beatBytes == 1) 0.U else x(log2Ceil(manager.beatBytes)-1, 0)
def addr_hi(x: TLAddrChannel): UInt = addr_hi(address(x))
def addr_lo(x: TLAddrChannel): UInt = addr_lo(address(x))
def numBeats(x: TLChannel): UInt = {
x match {
case _: TLBundleE => 1.U
case bundle: TLDataChannel => {
val hasData = this.hasData(bundle)
val size = this.size(bundle)
val cutoff = log2Ceil(manager.beatBytes)
val small = if (manager.maxTransfer <= manager.beatBytes) true.B else size <= (cutoff).U
val decode = UIntToOH(size, maxLgSize+1) >> cutoff
Mux(hasData, decode | small.asUInt, 1.U)
}
}
}
def numBeats1(x: TLChannel): UInt = {
x match {
case _: TLBundleE => 0.U
case bundle: TLDataChannel => {
if (maxLgSize == 0) {
0.U
} else {
val decode = UIntToOH1(size(bundle), maxLgSize) >> log2Ceil(manager.beatBytes)
Mux(hasData(bundle), decode, 0.U)
}
}
}
}
def firstlastHelper(bits: TLChannel, fire: Bool): (Bool, Bool, Bool, UInt) = {
val beats1 = numBeats1(bits)
val counter = RegInit(0.U(log2Up(maxTransfer / manager.beatBytes).W))
val counter1 = counter - 1.U
val first = counter === 0.U
val last = counter === 1.U || beats1 === 0.U
val done = last && fire
val count = (beats1 & ~counter1)
when (fire) {
counter := Mux(first, beats1, counter1)
}
(first, last, done, count)
}
def first(bits: TLChannel, fire: Bool): Bool = firstlastHelper(bits, fire)._1
def first(x: DecoupledIO[TLChannel]): Bool = first(x.bits, x.fire)
def first(x: ValidIO[TLChannel]): Bool = first(x.bits, x.valid)
def last(bits: TLChannel, fire: Bool): Bool = firstlastHelper(bits, fire)._2
def last(x: DecoupledIO[TLChannel]): Bool = last(x.bits, x.fire)
def last(x: ValidIO[TLChannel]): Bool = last(x.bits, x.valid)
def done(bits: TLChannel, fire: Bool): Bool = firstlastHelper(bits, fire)._3
def done(x: DecoupledIO[TLChannel]): Bool = done(x.bits, x.fire)
def done(x: ValidIO[TLChannel]): Bool = done(x.bits, x.valid)
def firstlast(bits: TLChannel, fire: Bool): (Bool, Bool, Bool) = {
val r = firstlastHelper(bits, fire)
(r._1, r._2, r._3)
}
def firstlast(x: DecoupledIO[TLChannel]): (Bool, Bool, Bool) = firstlast(x.bits, x.fire)
def firstlast(x: ValidIO[TLChannel]): (Bool, Bool, Bool) = firstlast(x.bits, x.valid)
def count(bits: TLChannel, fire: Bool): (Bool, Bool, Bool, UInt) = {
val r = firstlastHelper(bits, fire)
(r._1, r._2, r._3, r._4)
}
def count(x: DecoupledIO[TLChannel]): (Bool, Bool, Bool, UInt) = count(x.bits, x.fire)
def count(x: ValidIO[TLChannel]): (Bool, Bool, Bool, UInt) = count(x.bits, x.valid)
def addr_inc(bits: TLChannel, fire: Bool): (Bool, Bool, Bool, UInt) = {
val r = firstlastHelper(bits, fire)
(r._1, r._2, r._3, r._4 << log2Ceil(manager.beatBytes))
}
def addr_inc(x: DecoupledIO[TLChannel]): (Bool, Bool, Bool, UInt) = addr_inc(x.bits, x.fire)
def addr_inc(x: ValidIO[TLChannel]): (Bool, Bool, Bool, UInt) = addr_inc(x.bits, x.valid)
// Does the request need T permissions to be executed?
def needT(a: TLBundleA): Bool = {
val acq_needT = MuxLookup(a.param, WireDefault(Bool(), DontCare))(Array(
TLPermissions.NtoB -> false.B,
TLPermissions.NtoT -> true.B,
TLPermissions.BtoT -> true.B))
MuxLookup(a.opcode, WireDefault(Bool(), DontCare))(Array(
TLMessages.PutFullData -> true.B,
TLMessages.PutPartialData -> true.B,
TLMessages.ArithmeticData -> true.B,
TLMessages.LogicalData -> true.B,
TLMessages.Get -> false.B,
TLMessages.Hint -> MuxLookup(a.param, WireDefault(Bool(), DontCare))(Array(
TLHints.PREFETCH_READ -> false.B,
TLHints.PREFETCH_WRITE -> true.B)),
TLMessages.AcquireBlock -> acq_needT,
TLMessages.AcquirePerm -> acq_needT))
}
// This is a very expensive circuit; use only if you really mean it!
def inFlight(x: TLBundle): (UInt, UInt) = {
val flight = RegInit(0.U(log2Ceil(3*client.endSourceId+1).W))
val bce = manager.anySupportAcquireB && client.anySupportProbe
val (a_first, a_last, _) = firstlast(x.a)
val (b_first, b_last, _) = firstlast(x.b)
val (c_first, c_last, _) = firstlast(x.c)
val (d_first, d_last, _) = firstlast(x.d)
val (e_first, e_last, _) = firstlast(x.e)
val (a_request, a_response) = (isRequest(x.a.bits), isResponse(x.a.bits))
val (b_request, b_response) = (isRequest(x.b.bits), isResponse(x.b.bits))
val (c_request, c_response) = (isRequest(x.c.bits), isResponse(x.c.bits))
val (d_request, d_response) = (isRequest(x.d.bits), isResponse(x.d.bits))
val (e_request, e_response) = (isRequest(x.e.bits), isResponse(x.e.bits))
val a_inc = x.a.fire && a_first && a_request
val b_inc = x.b.fire && b_first && b_request
val c_inc = x.c.fire && c_first && c_request
val d_inc = x.d.fire && d_first && d_request
val e_inc = x.e.fire && e_first && e_request
val inc = Cat(Seq(a_inc, d_inc) ++ (if (bce) Seq(b_inc, c_inc, e_inc) else Nil))
val a_dec = x.a.fire && a_last && a_response
val b_dec = x.b.fire && b_last && b_response
val c_dec = x.c.fire && c_last && c_response
val d_dec = x.d.fire && d_last && d_response
val e_dec = x.e.fire && e_last && e_response
val dec = Cat(Seq(a_dec, d_dec) ++ (if (bce) Seq(b_dec, c_dec, e_dec) else Nil))
val next_flight = flight + PopCount(inc) - PopCount(dec)
flight := next_flight
(flight, next_flight)
}
def prettySourceMapping(context: String): String = {
s"TL-Source mapping for $context:\n${(new TLSourceIdMap(client)).pretty}\n"
}
}
class TLEdgeOut(
client: TLClientPortParameters,
manager: TLManagerPortParameters,
params: Parameters,
sourceInfo: SourceInfo)
extends TLEdge(client, manager, params, sourceInfo)
{
// Transfers
def AcquireBlock(fromSource: UInt, toAddress: UInt, lgSize: UInt, growPermissions: UInt) = {
require (manager.anySupportAcquireB, s"TileLink: No managers visible from this edge support Acquires, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsAcquireBFast(toAddress, lgSize)
val a = Wire(new TLBundleA(bundle))
a.opcode := TLMessages.AcquireBlock
a.param := growPermissions
a.size := lgSize
a.source := fromSource
a.address := toAddress
a.user := DontCare
a.echo := DontCare
a.mask := mask(toAddress, lgSize)
a.data := DontCare
a.corrupt := false.B
(legal, a)
}
def AcquirePerm(fromSource: UInt, toAddress: UInt, lgSize: UInt, growPermissions: UInt) = {
require (manager.anySupportAcquireB, s"TileLink: No managers visible from this edge support Acquires, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsAcquireBFast(toAddress, lgSize)
val a = Wire(new TLBundleA(bundle))
a.opcode := TLMessages.AcquirePerm
a.param := growPermissions
a.size := lgSize
a.source := fromSource
a.address := toAddress
a.user := DontCare
a.echo := DontCare
a.mask := mask(toAddress, lgSize)
a.data := DontCare
a.corrupt := false.B
(legal, a)
}
def Release(fromSource: UInt, toAddress: UInt, lgSize: UInt, shrinkPermissions: UInt): (Bool, TLBundleC) = {
require (manager.anySupportAcquireB, s"TileLink: No managers visible from this edge support Acquires, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsAcquireBFast(toAddress, lgSize)
val c = Wire(new TLBundleC(bundle))
c.opcode := TLMessages.Release
c.param := shrinkPermissions
c.size := lgSize
c.source := fromSource
c.address := toAddress
c.user := DontCare
c.echo := DontCare
c.data := DontCare
c.corrupt := false.B
(legal, c)
}
def Release(fromSource: UInt, toAddress: UInt, lgSize: UInt, shrinkPermissions: UInt, data: UInt, corrupt: Bool): (Bool, TLBundleC) = {
require (manager.anySupportAcquireB, s"TileLink: No managers visible from this edge support Acquires, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsAcquireBFast(toAddress, lgSize)
val c = Wire(new TLBundleC(bundle))
c.opcode := TLMessages.ReleaseData
c.param := shrinkPermissions
c.size := lgSize
c.source := fromSource
c.address := toAddress
c.user := DontCare
c.echo := DontCare
c.data := data
c.corrupt := corrupt
(legal, c)
}
def Release(fromSource: UInt, toAddress: UInt, lgSize: UInt, shrinkPermissions: UInt, data: UInt): (Bool, TLBundleC) =
Release(fromSource, toAddress, lgSize, shrinkPermissions, data, false.B)
def ProbeAck(b: TLBundleB, reportPermissions: UInt): TLBundleC =
ProbeAck(b.source, b.address, b.size, reportPermissions)
def ProbeAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, reportPermissions: UInt): TLBundleC = {
val c = Wire(new TLBundleC(bundle))
c.opcode := TLMessages.ProbeAck
c.param := reportPermissions
c.size := lgSize
c.source := fromSource
c.address := toAddress
c.user := DontCare
c.echo := DontCare
c.data := DontCare
c.corrupt := false.B
c
}
def ProbeAck(b: TLBundleB, reportPermissions: UInt, data: UInt): TLBundleC =
ProbeAck(b.source, b.address, b.size, reportPermissions, data)
def ProbeAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, reportPermissions: UInt, data: UInt, corrupt: Bool): TLBundleC = {
val c = Wire(new TLBundleC(bundle))
c.opcode := TLMessages.ProbeAckData
c.param := reportPermissions
c.size := lgSize
c.source := fromSource
c.address := toAddress
c.user := DontCare
c.echo := DontCare
c.data := data
c.corrupt := corrupt
c
}
def ProbeAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, reportPermissions: UInt, data: UInt): TLBundleC =
ProbeAck(fromSource, toAddress, lgSize, reportPermissions, data, false.B)
def GrantAck(d: TLBundleD): TLBundleE = GrantAck(d.sink)
def GrantAck(toSink: UInt): TLBundleE = {
val e = Wire(new TLBundleE(bundle))
e.sink := toSink
e
}
// Accesses
def Get(fromSource: UInt, toAddress: UInt, lgSize: UInt) = {
require (manager.anySupportGet, s"TileLink: No managers visible from this edge support Gets, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsGetFast(toAddress, lgSize)
val a = Wire(new TLBundleA(bundle))
a.opcode := TLMessages.Get
a.param := 0.U
a.size := lgSize
a.source := fromSource
a.address := toAddress
a.user := DontCare
a.echo := DontCare
a.mask := mask(toAddress, lgSize)
a.data := DontCare
a.corrupt := false.B
(legal, a)
}
def Put(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt): (Bool, TLBundleA) =
Put(fromSource, toAddress, lgSize, data, false.B)
def Put(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, corrupt: Bool): (Bool, TLBundleA) = {
require (manager.anySupportPutFull, s"TileLink: No managers visible from this edge support Puts, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsPutFullFast(toAddress, lgSize)
val a = Wire(new TLBundleA(bundle))
a.opcode := TLMessages.PutFullData
a.param := 0.U
a.size := lgSize
a.source := fromSource
a.address := toAddress
a.user := DontCare
a.echo := DontCare
a.mask := mask(toAddress, lgSize)
a.data := data
a.corrupt := corrupt
(legal, a)
}
def Put(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, mask: UInt): (Bool, TLBundleA) =
Put(fromSource, toAddress, lgSize, data, mask, false.B)
def Put(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, mask: UInt, corrupt: Bool): (Bool, TLBundleA) = {
require (manager.anySupportPutPartial, s"TileLink: No managers visible from this edge support masked Puts, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsPutPartialFast(toAddress, lgSize)
val a = Wire(new TLBundleA(bundle))
a.opcode := TLMessages.PutPartialData
a.param := 0.U
a.size := lgSize
a.source := fromSource
a.address := toAddress
a.user := DontCare
a.echo := DontCare
a.mask := mask
a.data := data
a.corrupt := corrupt
(legal, a)
}
def Arithmetic(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, atomic: UInt, corrupt: Bool = false.B): (Bool, TLBundleA) = {
require (manager.anySupportArithmetic, s"TileLink: No managers visible from this edge support arithmetic AMOs, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsArithmeticFast(toAddress, lgSize)
val a = Wire(new TLBundleA(bundle))
a.opcode := TLMessages.ArithmeticData
a.param := atomic
a.size := lgSize
a.source := fromSource
a.address := toAddress
a.user := DontCare
a.echo := DontCare
a.mask := mask(toAddress, lgSize)
a.data := data
a.corrupt := corrupt
(legal, a)
}
def Logical(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, atomic: UInt, corrupt: Bool = false.B) = {
require (manager.anySupportLogical, s"TileLink: No managers visible from this edge support logical AMOs, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsLogicalFast(toAddress, lgSize)
val a = Wire(new TLBundleA(bundle))
a.opcode := TLMessages.LogicalData
a.param := atomic
a.size := lgSize
a.source := fromSource
a.address := toAddress
a.user := DontCare
a.echo := DontCare
a.mask := mask(toAddress, lgSize)
a.data := data
a.corrupt := corrupt
(legal, a)
}
def Hint(fromSource: UInt, toAddress: UInt, lgSize: UInt, param: UInt) = {
require (manager.anySupportHint, s"TileLink: No managers visible from this edge support Hints, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsHintFast(toAddress, lgSize)
val a = Wire(new TLBundleA(bundle))
a.opcode := TLMessages.Hint
a.param := param
a.size := lgSize
a.source := fromSource
a.address := toAddress
a.user := DontCare
a.echo := DontCare
a.mask := mask(toAddress, lgSize)
a.data := DontCare
a.corrupt := false.B
(legal, a)
}
def AccessAck(b: TLBundleB): TLBundleC = AccessAck(b.source, address(b), b.size)
def AccessAck(fromSource: UInt, toAddress: UInt, lgSize: UInt) = {
val c = Wire(new TLBundleC(bundle))
c.opcode := TLMessages.AccessAck
c.param := 0.U
c.size := lgSize
c.source := fromSource
c.address := toAddress
c.user := DontCare
c.echo := DontCare
c.data := DontCare
c.corrupt := false.B
c
}
def AccessAck(b: TLBundleB, data: UInt): TLBundleC = AccessAck(b.source, address(b), b.size, data)
def AccessAck(b: TLBundleB, data: UInt, corrupt: Bool): TLBundleC = AccessAck(b.source, address(b), b.size, data, corrupt)
def AccessAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt): TLBundleC = AccessAck(fromSource, toAddress, lgSize, data, false.B)
def AccessAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, corrupt: Bool) = {
val c = Wire(new TLBundleC(bundle))
c.opcode := TLMessages.AccessAckData
c.param := 0.U
c.size := lgSize
c.source := fromSource
c.address := toAddress
c.user := DontCare
c.echo := DontCare
c.data := data
c.corrupt := corrupt
c
}
def HintAck(b: TLBundleB): TLBundleC = HintAck(b.source, address(b), b.size)
def HintAck(fromSource: UInt, toAddress: UInt, lgSize: UInt) = {
val c = Wire(new TLBundleC(bundle))
c.opcode := TLMessages.HintAck
c.param := 0.U
c.size := lgSize
c.source := fromSource
c.address := toAddress
c.user := DontCare
c.echo := DontCare
c.data := DontCare
c.corrupt := false.B
c
}
}
class TLEdgeIn(
client: TLClientPortParameters,
manager: TLManagerPortParameters,
params: Parameters,
sourceInfo: SourceInfo)
extends TLEdge(client, manager, params, sourceInfo)
{
private def myTranspose[T](x: Seq[Seq[T]]): Seq[Seq[T]] = {
val todo = x.filter(!_.isEmpty)
val heads = todo.map(_.head)
val tails = todo.map(_.tail)
if (todo.isEmpty) Nil else { heads +: myTranspose(tails) }
}
// Transfers
def Probe(fromAddress: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt) = {
require (client.anySupportProbe, s"TileLink: No clients visible from this edge support probes, but one of these managers tried to issue one: ${manager.managers}")
val legal = client.supportsProbe(toSource, lgSize)
val b = Wire(new TLBundleB(bundle))
b.opcode := TLMessages.Probe
b.param := capPermissions
b.size := lgSize
b.source := toSource
b.address := fromAddress
b.mask := mask(fromAddress, lgSize)
b.data := DontCare
b.corrupt := false.B
(legal, b)
}
def Grant(fromSink: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt): TLBundleD = Grant(fromSink, toSource, lgSize, capPermissions, false.B)
def Grant(fromSink: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt, denied: Bool) = {
val d = Wire(new TLBundleD(bundle))
d.opcode := TLMessages.Grant
d.param := capPermissions
d.size := lgSize
d.source := toSource
d.sink := fromSink
d.denied := denied
d.user := DontCare
d.echo := DontCare
d.data := DontCare
d.corrupt := false.B
d
}
def Grant(fromSink: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt, data: UInt): TLBundleD = Grant(fromSink, toSource, lgSize, capPermissions, data, false.B, false.B)
def Grant(fromSink: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt, data: UInt, denied: Bool, corrupt: Bool) = {
val d = Wire(new TLBundleD(bundle))
d.opcode := TLMessages.GrantData
d.param := capPermissions
d.size := lgSize
d.source := toSource
d.sink := fromSink
d.denied := denied
d.user := DontCare
d.echo := DontCare
d.data := data
d.corrupt := corrupt
d
}
def ReleaseAck(c: TLBundleC): TLBundleD = ReleaseAck(c.source, c.size, false.B)
def ReleaseAck(toSource: UInt, lgSize: UInt, denied: Bool): TLBundleD = {
val d = Wire(new TLBundleD(bundle))
d.opcode := TLMessages.ReleaseAck
d.param := 0.U
d.size := lgSize
d.source := toSource
d.sink := 0.U
d.denied := denied
d.user := DontCare
d.echo := DontCare
d.data := DontCare
d.corrupt := false.B
d
}
// Accesses
def Get(fromAddress: UInt, toSource: UInt, lgSize: UInt) = {
require (client.anySupportGet, s"TileLink: No clients visible from this edge support Gets, but one of these managers would try to issue one: ${manager.managers}")
val legal = client.supportsGet(toSource, lgSize)
val b = Wire(new TLBundleB(bundle))
b.opcode := TLMessages.Get
b.param := 0.U
b.size := lgSize
b.source := toSource
b.address := fromAddress
b.mask := mask(fromAddress, lgSize)
b.data := DontCare
b.corrupt := false.B
(legal, b)
}
def Put(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt): (Bool, TLBundleB) =
Put(fromAddress, toSource, lgSize, data, false.B)
def Put(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, corrupt: Bool): (Bool, TLBundleB) = {
require (client.anySupportPutFull, s"TileLink: No clients visible from this edge support Puts, but one of these managers would try to issue one: ${manager.managers}")
val legal = client.supportsPutFull(toSource, lgSize)
val b = Wire(new TLBundleB(bundle))
b.opcode := TLMessages.PutFullData
b.param := 0.U
b.size := lgSize
b.source := toSource
b.address := fromAddress
b.mask := mask(fromAddress, lgSize)
b.data := data
b.corrupt := corrupt
(legal, b)
}
def Put(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, mask: UInt): (Bool, TLBundleB) =
Put(fromAddress, toSource, lgSize, data, mask, false.B)
def Put(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, mask: UInt, corrupt: Bool): (Bool, TLBundleB) = {
require (client.anySupportPutPartial, s"TileLink: No clients visible from this edge support masked Puts, but one of these managers would try to request one: ${manager.managers}")
val legal = client.supportsPutPartial(toSource, lgSize)
val b = Wire(new TLBundleB(bundle))
b.opcode := TLMessages.PutPartialData
b.param := 0.U
b.size := lgSize
b.source := toSource
b.address := fromAddress
b.mask := mask
b.data := data
b.corrupt := corrupt
(legal, b)
}
def Arithmetic(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, atomic: UInt, corrupt: Bool = false.B) = {
require (client.anySupportArithmetic, s"TileLink: No clients visible from this edge support arithmetic AMOs, but one of these managers would try to request one: ${manager.managers}")
val legal = client.supportsArithmetic(toSource, lgSize)
val b = Wire(new TLBundleB(bundle))
b.opcode := TLMessages.ArithmeticData
b.param := atomic
b.size := lgSize
b.source := toSource
b.address := fromAddress
b.mask := mask(fromAddress, lgSize)
b.data := data
b.corrupt := corrupt
(legal, b)
}
def Logical(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, atomic: UInt, corrupt: Bool = false.B) = {
require (client.anySupportLogical, s"TileLink: No clients visible from this edge support logical AMOs, but one of these managers would try to request one: ${manager.managers}")
val legal = client.supportsLogical(toSource, lgSize)
val b = Wire(new TLBundleB(bundle))
b.opcode := TLMessages.LogicalData
b.param := atomic
b.size := lgSize
b.source := toSource
b.address := fromAddress
b.mask := mask(fromAddress, lgSize)
b.data := data
b.corrupt := corrupt
(legal, b)
}
def Hint(fromAddress: UInt, toSource: UInt, lgSize: UInt, param: UInt) = {
require (client.anySupportHint, s"TileLink: No clients visible from this edge support Hints, but one of these managers would try to request one: ${manager.managers}")
val legal = client.supportsHint(toSource, lgSize)
val b = Wire(new TLBundleB(bundle))
b.opcode := TLMessages.Hint
b.param := param
b.size := lgSize
b.source := toSource
b.address := fromAddress
b.mask := mask(fromAddress, lgSize)
b.data := DontCare
b.corrupt := false.B
(legal, b)
}
def AccessAck(a: TLBundleA): TLBundleD = AccessAck(a.source, a.size)
def AccessAck(a: TLBundleA, denied: Bool): TLBundleD = AccessAck(a.source, a.size, denied)
def AccessAck(toSource: UInt, lgSize: UInt): TLBundleD = AccessAck(toSource, lgSize, false.B)
def AccessAck(toSource: UInt, lgSize: UInt, denied: Bool) = {
val d = Wire(new TLBundleD(bundle))
d.opcode := TLMessages.AccessAck
d.param := 0.U
d.size := lgSize
d.source := toSource
d.sink := 0.U
d.denied := denied
d.user := DontCare
d.echo := DontCare
d.data := DontCare
d.corrupt := false.B
d
}
def AccessAck(a: TLBundleA, data: UInt): TLBundleD = AccessAck(a.source, a.size, data)
def AccessAck(a: TLBundleA, data: UInt, denied: Bool, corrupt: Bool): TLBundleD = AccessAck(a.source, a.size, data, denied, corrupt)
def AccessAck(toSource: UInt, lgSize: UInt, data: UInt): TLBundleD = AccessAck(toSource, lgSize, data, false.B, false.B)
def AccessAck(toSource: UInt, lgSize: UInt, data: UInt, denied: Bool, corrupt: Bool) = {
val d = Wire(new TLBundleD(bundle))
d.opcode := TLMessages.AccessAckData
d.param := 0.U
d.size := lgSize
d.source := toSource
d.sink := 0.U
d.denied := denied
d.user := DontCare
d.echo := DontCare
d.data := data
d.corrupt := corrupt
d
}
def HintAck(a: TLBundleA): TLBundleD = HintAck(a, false.B)
def HintAck(a: TLBundleA, denied: Bool): TLBundleD = HintAck(a.source, a.size, denied)
def HintAck(toSource: UInt, lgSize: UInt): TLBundleD = HintAck(toSource, lgSize, false.B)
def HintAck(toSource: UInt, lgSize: UInt, denied: Bool) = {
val d = Wire(new TLBundleD(bundle))
d.opcode := TLMessages.HintAck
d.param := 0.U
d.size := lgSize
d.source := toSource
d.sink := 0.U
d.denied := denied
d.user := DontCare
d.echo := DontCare
d.data := DontCare
d.corrupt := false.B
d
}
}
| module TileResetSetter( // @[TileResetSetter.scala:26:25]
input clock, // @[TileResetSetter.scala:26:25]
input reset, // @[TileResetSetter.scala:26:25]
input auto_clock_in_member_allClocks_uncore_clock, // @[LazyModuleImp.scala:107:25]
input auto_clock_in_member_allClocks_uncore_reset, // @[LazyModuleImp.scala:107:25]
output auto_clock_out_member_allClocks_uncore_clock, // @[LazyModuleImp.scala:107:25]
output auto_clock_out_member_allClocks_uncore_reset, // @[LazyModuleImp.scala:107:25]
output auto_tl_in_a_ready, // @[LazyModuleImp.scala:107:25]
input auto_tl_in_a_valid, // @[LazyModuleImp.scala:107:25]
input [2:0] auto_tl_in_a_bits_opcode, // @[LazyModuleImp.scala:107:25]
input [2:0] auto_tl_in_a_bits_param, // @[LazyModuleImp.scala:107:25]
input [1:0] auto_tl_in_a_bits_size, // @[LazyModuleImp.scala:107:25]
input [10:0] auto_tl_in_a_bits_source, // @[LazyModuleImp.scala:107:25]
input [20:0] auto_tl_in_a_bits_address, // @[LazyModuleImp.scala:107:25]
input [7:0] auto_tl_in_a_bits_mask, // @[LazyModuleImp.scala:107:25]
input [63:0] auto_tl_in_a_bits_data, // @[LazyModuleImp.scala:107:25]
input auto_tl_in_a_bits_corrupt, // @[LazyModuleImp.scala:107:25]
input auto_tl_in_d_ready, // @[LazyModuleImp.scala:107:25]
output auto_tl_in_d_valid, // @[LazyModuleImp.scala:107:25]
output [2:0] auto_tl_in_d_bits_opcode, // @[LazyModuleImp.scala:107:25]
output [1:0] auto_tl_in_d_bits_size, // @[LazyModuleImp.scala:107:25]
output [10:0] auto_tl_in_d_bits_source // @[LazyModuleImp.scala:107:25]
);
wire out_front_valid; // @[RegisterRouter.scala:87:24]
wire out_front_ready; // @[RegisterRouter.scala:87:24]
wire out_bits_read; // @[RegisterRouter.scala:87:24]
wire [10:0] out_bits_extra_tlrr_extra_source; // @[RegisterRouter.scala:87:24]
wire [8:0] in_bits_index; // @[RegisterRouter.scala:73:18]
wire in_bits_read; // @[RegisterRouter.scala:73:18]
wire auto_clock_in_member_allClocks_uncore_clock_0 = auto_clock_in_member_allClocks_uncore_clock; // @[TileResetSetter.scala:26:25]
wire auto_clock_in_member_allClocks_uncore_reset_0 = auto_clock_in_member_allClocks_uncore_reset; // @[TileResetSetter.scala:26:25]
wire auto_tl_in_a_valid_0 = auto_tl_in_a_valid; // @[TileResetSetter.scala:26:25]
wire [2:0] auto_tl_in_a_bits_opcode_0 = auto_tl_in_a_bits_opcode; // @[TileResetSetter.scala:26:25]
wire [2:0] auto_tl_in_a_bits_param_0 = auto_tl_in_a_bits_param; // @[TileResetSetter.scala:26:25]
wire [1:0] auto_tl_in_a_bits_size_0 = auto_tl_in_a_bits_size; // @[TileResetSetter.scala:26:25]
wire [10:0] auto_tl_in_a_bits_source_0 = auto_tl_in_a_bits_source; // @[TileResetSetter.scala:26:25]
wire [20:0] auto_tl_in_a_bits_address_0 = auto_tl_in_a_bits_address; // @[TileResetSetter.scala:26:25]
wire [7:0] auto_tl_in_a_bits_mask_0 = auto_tl_in_a_bits_mask; // @[TileResetSetter.scala:26:25]
wire [63:0] auto_tl_in_a_bits_data_0 = auto_tl_in_a_bits_data; // @[TileResetSetter.scala:26:25]
wire auto_tl_in_a_bits_corrupt_0 = auto_tl_in_a_bits_corrupt; // @[TileResetSetter.scala:26:25]
wire auto_tl_in_d_ready_0 = auto_tl_in_d_ready; // @[TileResetSetter.scala:26:25]
wire [1:0] _out_frontSel_T = 2'h1; // @[OneHot.scala:58:35]
wire [1:0] _out_backSel_T = 2'h1; // @[OneHot.scala:58:35]
wire [8:0] out_maskMatch = 9'h1FF; // @[RegisterRouter.scala:87:24]
wire tile_async_resets_0 = 1'h1; // @[TileResetSetter.scala:29:33]
wire _tile_async_resets_0_T = 1'h1; // @[TileResetSetter.scala:31:38]
wire out_frontSel_0 = 1'h1; // @[RegisterRouter.scala:87:24]
wire out_backSel_0 = 1'h1; // @[RegisterRouter.scala:87:24]
wire out_rifireMux_out = 1'h1; // @[RegisterRouter.scala:87:24]
wire _out_rifireMux_T_5 = 1'h1; // @[RegisterRouter.scala:87:24]
wire _out_rifireMux_WIRE_0 = 1'h1; // @[MuxLiteral.scala:49:48]
wire out_rifireMux = 1'h1; // @[MuxLiteral.scala:49:10]
wire out_wifireMux_out = 1'h1; // @[RegisterRouter.scala:87:24]
wire _out_wifireMux_T_6 = 1'h1; // @[RegisterRouter.scala:87:24]
wire _out_wifireMux_WIRE_0 = 1'h1; // @[MuxLiteral.scala:49:48]
wire out_wifireMux = 1'h1; // @[MuxLiteral.scala:49:10]
wire out_rofireMux_out = 1'h1; // @[RegisterRouter.scala:87:24]
wire _out_rofireMux_T_5 = 1'h1; // @[RegisterRouter.scala:87:24]
wire _out_rofireMux_WIRE_0 = 1'h1; // @[MuxLiteral.scala:49:48]
wire out_rofireMux = 1'h1; // @[MuxLiteral.scala:49:10]
wire out_wofireMux_out = 1'h1; // @[RegisterRouter.scala:87:24]
wire _out_wofireMux_T_6 = 1'h1; // @[RegisterRouter.scala:87:24]
wire _out_wofireMux_WIRE_0 = 1'h1; // @[MuxLiteral.scala:49:48]
wire out_wofireMux = 1'h1; // @[MuxLiteral.scala:49:10]
wire out_iready = 1'h1; // @[RegisterRouter.scala:87:24]
wire out_oready = 1'h1; // @[RegisterRouter.scala:87:24]
wire [2:0] tlNodeIn_d_bits_d_opcode = 3'h0; // @[Edges.scala:792:17]
wire [1:0] auto_tl_in_d_bits_param = 2'h0; // @[TileResetSetter.scala:26:25]
wire [1:0] tlNodeIn_d_bits_param = 2'h0; // @[MixedNode.scala:551:17]
wire [1:0] tlNodeIn_d_bits_d_param = 2'h0; // @[Edges.scala:792:17]
wire auto_tl_in_d_bits_sink = 1'h0; // @[TileResetSetter.scala:26:25]
wire auto_tl_in_d_bits_denied = 1'h0; // @[TileResetSetter.scala:26:25]
wire auto_tl_in_d_bits_corrupt = 1'h0; // @[TileResetSetter.scala:26:25]
wire tlNodeIn_d_bits_sink = 1'h0; // @[MixedNode.scala:551:17]
wire tlNodeIn_d_bits_denied = 1'h0; // @[MixedNode.scala:551:17]
wire tlNodeIn_d_bits_corrupt = 1'h0; // @[MixedNode.scala:551:17]
wire _out_T_7 = 1'h0; // @[RegisterRouter.scala:87:24]
wire _out_T_8 = 1'h0; // @[RegisterRouter.scala:87:24]
wire out_frontSel_1 = 1'h0; // @[RegisterRouter.scala:87:24]
wire out_backSel_1 = 1'h0; // @[RegisterRouter.scala:87:24]
wire _out_rifireMux_T_6 = 1'h0; // @[MuxLiteral.scala:49:17]
wire _out_wifireMux_T_7 = 1'h0; // @[MuxLiteral.scala:49:17]
wire _out_rofireMux_T_6 = 1'h0; // @[MuxLiteral.scala:49:17]
wire _out_wofireMux_T_7 = 1'h0; // @[MuxLiteral.scala:49:17]
wire _out_out_bits_data_T = 1'h0; // @[MuxLiteral.scala:49:17]
wire _out_out_bits_data_T_2 = 1'h0; // @[MuxLiteral.scala:49:17]
wire _out_out_bits_data_WIRE_1_0 = 1'h0; // @[MuxLiteral.scala:49:48]
wire _out_out_bits_data_T_3 = 1'h0; // @[MuxLiteral.scala:49:10]
wire _out_out_bits_data_T_4 = 1'h0; // @[RegisterRouter.scala:87:24]
wire tlNodeIn_d_bits_d_sink = 1'h0; // @[Edges.scala:792:17]
wire tlNodeIn_d_bits_d_denied = 1'h0; // @[Edges.scala:792:17]
wire tlNodeIn_d_bits_d_corrupt = 1'h0; // @[Edges.scala:792:17]
wire [63:0] auto_tl_in_d_bits_data = 64'h0; // @[TileResetSetter.scala:26:25]
wire [63:0] tlNodeIn_d_bits_data = 64'h0; // @[MixedNode.scala:551:17]
wire [63:0] out_bits_data = 64'h0; // @[RegisterRouter.scala:87:24]
wire [63:0] tlNodeIn_d_bits_d_data = 64'h0; // @[Edges.scala:792:17]
wire clockNodeIn_member_allClocks_uncore_clock = auto_clock_in_member_allClocks_uncore_clock_0; // @[MixedNode.scala:551:17]
wire clockNodeOut_member_allClocks_uncore_clock; // @[MixedNode.scala:542:17]
wire clockNodeIn_member_allClocks_uncore_reset = auto_clock_in_member_allClocks_uncore_reset_0; // @[MixedNode.scala:551:17]
wire clockNodeOut_member_allClocks_uncore_reset; // @[MixedNode.scala:542:17]
wire tlNodeIn_a_ready; // @[MixedNode.scala:551:17]
wire tlNodeIn_a_valid = auto_tl_in_a_valid_0; // @[MixedNode.scala:551:17]
wire [2:0] tlNodeIn_a_bits_opcode = auto_tl_in_a_bits_opcode_0; // @[MixedNode.scala:551:17]
wire [2:0] tlNodeIn_a_bits_param = auto_tl_in_a_bits_param_0; // @[MixedNode.scala:551:17]
wire [1:0] tlNodeIn_a_bits_size = auto_tl_in_a_bits_size_0; // @[MixedNode.scala:551:17]
wire [10:0] tlNodeIn_a_bits_source = auto_tl_in_a_bits_source_0; // @[MixedNode.scala:551:17]
wire [20:0] tlNodeIn_a_bits_address = auto_tl_in_a_bits_address_0; // @[MixedNode.scala:551:17]
wire [7:0] tlNodeIn_a_bits_mask = auto_tl_in_a_bits_mask_0; // @[MixedNode.scala:551:17]
wire [63:0] tlNodeIn_a_bits_data = auto_tl_in_a_bits_data_0; // @[MixedNode.scala:551:17]
wire tlNodeIn_a_bits_corrupt = auto_tl_in_a_bits_corrupt_0; // @[MixedNode.scala:551:17]
wire tlNodeIn_d_ready = auto_tl_in_d_ready_0; // @[MixedNode.scala:551:17]
wire tlNodeIn_d_valid; // @[MixedNode.scala:551:17]
wire [2:0] tlNodeIn_d_bits_opcode; // @[MixedNode.scala:551:17]
wire [1:0] tlNodeIn_d_bits_size; // @[MixedNode.scala:551:17]
wire [10:0] tlNodeIn_d_bits_source; // @[MixedNode.scala:551:17]
wire auto_clock_out_member_allClocks_uncore_clock_0; // @[TileResetSetter.scala:26:25]
wire auto_clock_out_member_allClocks_uncore_reset_0; // @[TileResetSetter.scala:26:25]
wire auto_tl_in_a_ready_0; // @[TileResetSetter.scala:26:25]
wire [2:0] auto_tl_in_d_bits_opcode_0; // @[TileResetSetter.scala:26:25]
wire [1:0] auto_tl_in_d_bits_size_0; // @[TileResetSetter.scala:26:25]
wire [10:0] auto_tl_in_d_bits_source_0; // @[TileResetSetter.scala:26:25]
wire auto_tl_in_d_valid_0; // @[TileResetSetter.scala:26:25]
wire in_ready; // @[RegisterRouter.scala:73:18]
assign auto_tl_in_a_ready_0 = tlNodeIn_a_ready; // @[MixedNode.scala:551:17]
wire in_valid = tlNodeIn_a_valid; // @[RegisterRouter.scala:73:18]
wire [1:0] in_bits_extra_tlrr_extra_size = tlNodeIn_a_bits_size; // @[RegisterRouter.scala:73:18]
wire [10:0] in_bits_extra_tlrr_extra_source = tlNodeIn_a_bits_source; // @[RegisterRouter.scala:73:18]
wire [7:0] in_bits_mask = tlNodeIn_a_bits_mask; // @[RegisterRouter.scala:73:18]
wire [63:0] in_bits_data = tlNodeIn_a_bits_data; // @[RegisterRouter.scala:73:18]
wire out_ready = tlNodeIn_d_ready; // @[RegisterRouter.scala:87:24]
wire out_valid; // @[RegisterRouter.scala:87:24]
assign auto_tl_in_d_valid_0 = tlNodeIn_d_valid; // @[MixedNode.scala:551:17]
assign auto_tl_in_d_bits_opcode_0 = tlNodeIn_d_bits_opcode; // @[MixedNode.scala:551:17]
wire [1:0] tlNodeIn_d_bits_d_size; // @[Edges.scala:792:17]
assign auto_tl_in_d_bits_size_0 = tlNodeIn_d_bits_size; // @[MixedNode.scala:551:17]
wire [10:0] tlNodeIn_d_bits_d_source; // @[Edges.scala:792:17]
assign auto_tl_in_d_bits_source_0 = tlNodeIn_d_bits_source; // @[MixedNode.scala:551:17]
assign auto_clock_out_member_allClocks_uncore_clock_0 = clockNodeOut_member_allClocks_uncore_clock; // @[MixedNode.scala:542:17]
assign auto_clock_out_member_allClocks_uncore_reset_0 = clockNodeOut_member_allClocks_uncore_reset; // @[MixedNode.scala:542:17]
assign clockNodeOut_member_allClocks_uncore_clock = clockNodeIn_member_allClocks_uncore_clock; // @[MixedNode.scala:542:17, :551:17]
assign clockNodeOut_member_allClocks_uncore_reset = clockNodeIn_member_allClocks_uncore_reset; // @[MixedNode.scala:542:17, :551:17]
wire _out_in_ready_T; // @[RegisterRouter.scala:87:24]
assign tlNodeIn_a_ready = in_ready; // @[RegisterRouter.scala:73:18]
wire _in_bits_read_T; // @[RegisterRouter.scala:74:36]
wire _out_front_valid_T = in_valid; // @[RegisterRouter.scala:73:18, :87:24]
wire out_front_bits_read = in_bits_read; // @[RegisterRouter.scala:73:18, :87:24]
wire [8:0] out_front_bits_index = in_bits_index; // @[RegisterRouter.scala:73:18, :87:24]
wire [63:0] out_front_bits_data = in_bits_data; // @[RegisterRouter.scala:73:18, :87:24]
wire [7:0] out_front_bits_mask = in_bits_mask; // @[RegisterRouter.scala:73:18, :87:24]
wire [10:0] out_front_bits_extra_tlrr_extra_source = in_bits_extra_tlrr_extra_source; // @[RegisterRouter.scala:73:18, :87:24]
wire [1:0] out_front_bits_extra_tlrr_extra_size = in_bits_extra_tlrr_extra_size; // @[RegisterRouter.scala:73:18, :87:24]
assign _in_bits_read_T = tlNodeIn_a_bits_opcode == 3'h4; // @[RegisterRouter.scala:74:36]
assign in_bits_read = _in_bits_read_T; // @[RegisterRouter.scala:73:18, :74:36]
wire [17:0] _in_bits_index_T = tlNodeIn_a_bits_address[20:3]; // @[Edges.scala:192:34]
assign in_bits_index = _in_bits_index_T[8:0]; // @[RegisterRouter.scala:73:18, :75:19]
wire _out_front_ready_T = out_ready; // @[RegisterRouter.scala:87:24]
wire _out_out_valid_T; // @[RegisterRouter.scala:87:24]
assign tlNodeIn_d_valid = out_valid; // @[RegisterRouter.scala:87:24]
wire _tlNodeIn_d_bits_opcode_T = out_bits_read; // @[RegisterRouter.scala:87:24, :105:25]
assign tlNodeIn_d_bits_d_source = out_bits_extra_tlrr_extra_source; // @[RegisterRouter.scala:87:24]
wire [1:0] out_bits_extra_tlrr_extra_size; // @[RegisterRouter.scala:87:24]
assign tlNodeIn_d_bits_d_size = out_bits_extra_tlrr_extra_size; // @[RegisterRouter.scala:87:24]
assign _out_in_ready_T = out_front_ready; // @[RegisterRouter.scala:87:24]
assign _out_out_valid_T = out_front_valid; // @[RegisterRouter.scala:87:24]
assign out_bits_read = out_front_bits_read; // @[RegisterRouter.scala:87:24]
wire [8:0] out_findex = out_front_bits_index; // @[RegisterRouter.scala:87:24]
wire [8:0] out_bindex = out_front_bits_index; // @[RegisterRouter.scala:87:24]
assign out_bits_extra_tlrr_extra_source = out_front_bits_extra_tlrr_extra_source; // @[RegisterRouter.scala:87:24]
assign out_bits_extra_tlrr_extra_size = out_front_bits_extra_tlrr_extra_size; // @[RegisterRouter.scala:87:24]
wire _out_T = out_findex == 9'h0; // @[RegisterRouter.scala:87:24]
wire _out_T_1 = out_bindex == 9'h0; // @[RegisterRouter.scala:87:24]
wire _out_rifireMux_T_3; // @[RegisterRouter.scala:87:24]
wire _out_out_bits_data_WIRE_0 = _out_T_1; // @[MuxLiteral.scala:49:48]
wire out_rivalid_0; // @[RegisterRouter.scala:87:24]
wire _out_wifireMux_T_4; // @[RegisterRouter.scala:87:24]
wire out_wivalid_0; // @[RegisterRouter.scala:87:24]
wire _out_rofireMux_T_3; // @[RegisterRouter.scala:87:24]
wire out_roready_0; // @[RegisterRouter.scala:87:24]
wire _out_wofireMux_T_4; // @[RegisterRouter.scala:87:24]
wire out_woready_0; // @[RegisterRouter.scala:87:24]
wire _out_frontMask_T = out_front_bits_mask[0]; // @[RegisterRouter.scala:87:24]
wire _out_backMask_T = out_front_bits_mask[0]; // @[RegisterRouter.scala:87:24]
wire _out_frontMask_T_1 = out_front_bits_mask[1]; // @[RegisterRouter.scala:87:24]
wire _out_backMask_T_1 = out_front_bits_mask[1]; // @[RegisterRouter.scala:87:24]
wire _out_frontMask_T_2 = out_front_bits_mask[2]; // @[RegisterRouter.scala:87:24]
wire _out_backMask_T_2 = out_front_bits_mask[2]; // @[RegisterRouter.scala:87:24]
wire _out_frontMask_T_3 = out_front_bits_mask[3]; // @[RegisterRouter.scala:87:24]
wire _out_backMask_T_3 = out_front_bits_mask[3]; // @[RegisterRouter.scala:87:24]
wire _out_frontMask_T_4 = out_front_bits_mask[4]; // @[RegisterRouter.scala:87:24]
wire _out_backMask_T_4 = out_front_bits_mask[4]; // @[RegisterRouter.scala:87:24]
wire _out_frontMask_T_5 = out_front_bits_mask[5]; // @[RegisterRouter.scala:87:24]
wire _out_backMask_T_5 = out_front_bits_mask[5]; // @[RegisterRouter.scala:87:24]
wire _out_frontMask_T_6 = out_front_bits_mask[6]; // @[RegisterRouter.scala:87:24]
wire _out_backMask_T_6 = out_front_bits_mask[6]; // @[RegisterRouter.scala:87:24]
wire _out_frontMask_T_7 = out_front_bits_mask[7]; // @[RegisterRouter.scala:87:24]
wire _out_backMask_T_7 = out_front_bits_mask[7]; // @[RegisterRouter.scala:87:24]
wire [7:0] _out_frontMask_T_8 = {8{_out_frontMask_T}}; // @[RegisterRouter.scala:87:24]
wire [7:0] _out_frontMask_T_9 = {8{_out_frontMask_T_1}}; // @[RegisterRouter.scala:87:24]
wire [7:0] _out_frontMask_T_10 = {8{_out_frontMask_T_2}}; // @[RegisterRouter.scala:87:24]
wire [7:0] _out_frontMask_T_11 = {8{_out_frontMask_T_3}}; // @[RegisterRouter.scala:87:24]
wire [7:0] _out_frontMask_T_12 = {8{_out_frontMask_T_4}}; // @[RegisterRouter.scala:87:24]
wire [7:0] _out_frontMask_T_13 = {8{_out_frontMask_T_5}}; // @[RegisterRouter.scala:87:24]
wire [7:0] _out_frontMask_T_14 = {8{_out_frontMask_T_6}}; // @[RegisterRouter.scala:87:24]
wire [7:0] _out_frontMask_T_15 = {8{_out_frontMask_T_7}}; // @[RegisterRouter.scala:87:24]
wire [15:0] out_frontMask_lo_lo = {_out_frontMask_T_9, _out_frontMask_T_8}; // @[RegisterRouter.scala:87:24]
wire [15:0] out_frontMask_lo_hi = {_out_frontMask_T_11, _out_frontMask_T_10}; // @[RegisterRouter.scala:87:24]
wire [31:0] out_frontMask_lo = {out_frontMask_lo_hi, out_frontMask_lo_lo}; // @[RegisterRouter.scala:87:24]
wire [15:0] out_frontMask_hi_lo = {_out_frontMask_T_13, _out_frontMask_T_12}; // @[RegisterRouter.scala:87:24]
wire [15:0] out_frontMask_hi_hi = {_out_frontMask_T_15, _out_frontMask_T_14}; // @[RegisterRouter.scala:87:24]
wire [31:0] out_frontMask_hi = {out_frontMask_hi_hi, out_frontMask_hi_lo}; // @[RegisterRouter.scala:87:24]
wire [63:0] out_frontMask = {out_frontMask_hi, out_frontMask_lo}; // @[RegisterRouter.scala:87:24]
wire [7:0] _out_backMask_T_8 = {8{_out_backMask_T}}; // @[RegisterRouter.scala:87:24]
wire [7:0] _out_backMask_T_9 = {8{_out_backMask_T_1}}; // @[RegisterRouter.scala:87:24]
wire [7:0] _out_backMask_T_10 = {8{_out_backMask_T_2}}; // @[RegisterRouter.scala:87:24]
wire [7:0] _out_backMask_T_11 = {8{_out_backMask_T_3}}; // @[RegisterRouter.scala:87:24]
wire [7:0] _out_backMask_T_12 = {8{_out_backMask_T_4}}; // @[RegisterRouter.scala:87:24]
wire [7:0] _out_backMask_T_13 = {8{_out_backMask_T_5}}; // @[RegisterRouter.scala:87:24]
wire [7:0] _out_backMask_T_14 = {8{_out_backMask_T_6}}; // @[RegisterRouter.scala:87:24]
wire [7:0] _out_backMask_T_15 = {8{_out_backMask_T_7}}; // @[RegisterRouter.scala:87:24]
wire [15:0] out_backMask_lo_lo = {_out_backMask_T_9, _out_backMask_T_8}; // @[RegisterRouter.scala:87:24]
wire [15:0] out_backMask_lo_hi = {_out_backMask_T_11, _out_backMask_T_10}; // @[RegisterRouter.scala:87:24]
wire [31:0] out_backMask_lo = {out_backMask_lo_hi, out_backMask_lo_lo}; // @[RegisterRouter.scala:87:24]
wire [15:0] out_backMask_hi_lo = {_out_backMask_T_13, _out_backMask_T_12}; // @[RegisterRouter.scala:87:24]
wire [15:0] out_backMask_hi_hi = {_out_backMask_T_15, _out_backMask_T_14}; // @[RegisterRouter.scala:87:24]
wire [31:0] out_backMask_hi = {out_backMask_hi_hi, out_backMask_hi_lo}; // @[RegisterRouter.scala:87:24]
wire [63:0] out_backMask = {out_backMask_hi, out_backMask_lo}; // @[RegisterRouter.scala:87:24]
wire _out_rimask_T = out_frontMask[0]; // @[RegisterRouter.scala:87:24]
wire _out_wimask_T = out_frontMask[0]; // @[RegisterRouter.scala:87:24]
wire out_rimask = _out_rimask_T; // @[RegisterRouter.scala:87:24]
wire out_wimask = _out_wimask_T; // @[RegisterRouter.scala:87:24]
wire _out_romask_T = out_backMask[0]; // @[RegisterRouter.scala:87:24]
wire _out_womask_T = out_backMask[0]; // @[RegisterRouter.scala:87:24]
wire out_romask = _out_romask_T; // @[RegisterRouter.scala:87:24]
wire out_womask = _out_womask_T; // @[RegisterRouter.scala:87:24]
wire out_f_rivalid = out_rivalid_0 & out_rimask; // @[RegisterRouter.scala:87:24]
wire out_f_roready = out_roready_0 & out_romask; // @[RegisterRouter.scala:87:24]
wire out_f_wivalid = out_wivalid_0 & out_wimask; // @[RegisterRouter.scala:87:24]
wire out_f_woready = out_woready_0 & out_womask; // @[RegisterRouter.scala:87:24]
wire _out_T_2 = out_front_bits_data[0]; // @[RegisterRouter.scala:87:24]
wire _out_T_3 = ~out_rimask; // @[RegisterRouter.scala:87:24]
wire _out_T_4 = ~out_wimask; // @[RegisterRouter.scala:87:24]
wire _out_T_5 = ~out_romask; // @[RegisterRouter.scala:87:24]
wire _out_T_6 = ~out_womask; // @[RegisterRouter.scala:87:24]
wire _GEN = in_valid & out_front_ready; // @[RegisterRouter.scala:73:18, :87:24]
wire _out_rifireMux_T; // @[RegisterRouter.scala:87:24]
assign _out_rifireMux_T = _GEN; // @[RegisterRouter.scala:87:24]
wire _out_wifireMux_T; // @[RegisterRouter.scala:87:24]
assign _out_wifireMux_T = _GEN; // @[RegisterRouter.scala:87:24]
wire _out_rifireMux_T_1 = _out_rifireMux_T & out_front_bits_read; // @[RegisterRouter.scala:87:24]
wire _out_rifireMux_T_2 = _out_rifireMux_T_1; // @[RegisterRouter.scala:87:24]
assign _out_rifireMux_T_3 = _out_rifireMux_T_2 & _out_T; // @[RegisterRouter.scala:87:24]
assign out_rivalid_0 = _out_rifireMux_T_3; // @[RegisterRouter.scala:87:24]
wire _out_rifireMux_T_4 = ~_out_T; // @[RegisterRouter.scala:87:24]
wire _out_wifireMux_T_1 = ~out_front_bits_read; // @[RegisterRouter.scala:87:24]
wire _out_wifireMux_T_2 = _out_wifireMux_T & _out_wifireMux_T_1; // @[RegisterRouter.scala:87:24]
wire _out_wifireMux_T_3 = _out_wifireMux_T_2; // @[RegisterRouter.scala:87:24]
assign _out_wifireMux_T_4 = _out_wifireMux_T_3 & _out_T; // @[RegisterRouter.scala:87:24]
assign out_wivalid_0 = _out_wifireMux_T_4; // @[RegisterRouter.scala:87:24]
wire _out_wifireMux_T_5 = ~_out_T; // @[RegisterRouter.scala:87:24]
wire _GEN_0 = out_front_valid & out_ready; // @[RegisterRouter.scala:87:24]
wire _out_rofireMux_T; // @[RegisterRouter.scala:87:24]
assign _out_rofireMux_T = _GEN_0; // @[RegisterRouter.scala:87:24]
wire _out_wofireMux_T; // @[RegisterRouter.scala:87:24]
assign _out_wofireMux_T = _GEN_0; // @[RegisterRouter.scala:87:24]
wire _out_rofireMux_T_1 = _out_rofireMux_T & out_front_bits_read; // @[RegisterRouter.scala:87:24]
wire _out_rofireMux_T_2 = _out_rofireMux_T_1; // @[RegisterRouter.scala:87:24]
assign _out_rofireMux_T_3 = _out_rofireMux_T_2 & _out_T_1; // @[RegisterRouter.scala:87:24]
assign out_roready_0 = _out_rofireMux_T_3; // @[RegisterRouter.scala:87:24]
wire _out_rofireMux_T_4 = ~_out_T_1; // @[RegisterRouter.scala:87:24]
wire _out_wofireMux_T_1 = ~out_front_bits_read; // @[RegisterRouter.scala:87:24]
wire _out_wofireMux_T_2 = _out_wofireMux_T & _out_wofireMux_T_1; // @[RegisterRouter.scala:87:24]
wire _out_wofireMux_T_3 = _out_wofireMux_T_2; // @[RegisterRouter.scala:87:24]
assign _out_wofireMux_T_4 = _out_wofireMux_T_3 & _out_T_1; // @[RegisterRouter.scala:87:24]
assign out_woready_0 = _out_wofireMux_T_4; // @[RegisterRouter.scala:87:24]
wire _out_wofireMux_T_5 = ~_out_T_1; // @[RegisterRouter.scala:87:24]
assign in_ready = _out_in_ready_T; // @[RegisterRouter.scala:73:18, :87:24]
assign out_front_valid = _out_front_valid_T; // @[RegisterRouter.scala:87:24]
assign out_front_ready = _out_front_ready_T; // @[RegisterRouter.scala:87:24]
assign out_valid = _out_out_valid_T; // @[RegisterRouter.scala:87:24]
wire _out_out_bits_data_T_1 = _out_out_bits_data_WIRE_0; // @[MuxLiteral.scala:49:{10,48}]
assign tlNodeIn_d_bits_size = tlNodeIn_d_bits_d_size; // @[Edges.scala:792:17]
assign tlNodeIn_d_bits_source = tlNodeIn_d_bits_d_source; // @[Edges.scala:792:17]
assign tlNodeIn_d_bits_opcode = {2'h0, _tlNodeIn_d_bits_opcode_T}; // @[RegisterRouter.scala:105:{19,25}]
TLMonitor_103 monitor ( // @[Nodes.scala:27:25]
.clock (clock),
.reset (reset),
.io_in_a_ready (tlNodeIn_a_ready), // @[MixedNode.scala:551:17]
.io_in_a_valid (tlNodeIn_a_valid), // @[MixedNode.scala:551:17]
.io_in_a_bits_opcode (tlNodeIn_a_bits_opcode), // @[MixedNode.scala:551:17]
.io_in_a_bits_param (tlNodeIn_a_bits_param), // @[MixedNode.scala:551:17]
.io_in_a_bits_size (tlNodeIn_a_bits_size), // @[MixedNode.scala:551:17]
.io_in_a_bits_source (tlNodeIn_a_bits_source), // @[MixedNode.scala:551:17]
.io_in_a_bits_address (tlNodeIn_a_bits_address), // @[MixedNode.scala:551:17]
.io_in_a_bits_mask (tlNodeIn_a_bits_mask), // @[MixedNode.scala:551:17]
.io_in_a_bits_data (tlNodeIn_a_bits_data), // @[MixedNode.scala:551:17]
.io_in_a_bits_corrupt (tlNodeIn_a_bits_corrupt), // @[MixedNode.scala:551:17]
.io_in_d_ready (tlNodeIn_d_ready), // @[MixedNode.scala:551:17]
.io_in_d_valid (tlNodeIn_d_valid), // @[MixedNode.scala:551:17]
.io_in_d_bits_opcode (tlNodeIn_d_bits_opcode), // @[MixedNode.scala:551:17]
.io_in_d_bits_size (tlNodeIn_d_bits_size), // @[MixedNode.scala:551:17]
.io_in_d_bits_source (tlNodeIn_d_bits_source) // @[MixedNode.scala:551:17]
); // @[Nodes.scala:27:25]
AsyncResetRegVec_w1_i0_6 r_tile_resets_0 ( // @[TileResetSetter.scala:33:15]
.clock (clock),
.io_d (_out_T_2), // @[RegisterRouter.scala:87:24]
.io_en (out_f_woready) // @[RegisterRouter.scala:87:24]
); // @[TileResetSetter.scala:33:15]
assign auto_clock_out_member_allClocks_uncore_clock = auto_clock_out_member_allClocks_uncore_clock_0; // @[TileResetSetter.scala:26:25]
assign auto_clock_out_member_allClocks_uncore_reset = auto_clock_out_member_allClocks_uncore_reset_0; // @[TileResetSetter.scala:26:25]
assign auto_tl_in_a_ready = auto_tl_in_a_ready_0; // @[TileResetSetter.scala:26:25]
assign auto_tl_in_d_valid = auto_tl_in_d_valid_0; // @[TileResetSetter.scala:26:25]
assign auto_tl_in_d_bits_opcode = auto_tl_in_d_bits_opcode_0; // @[TileResetSetter.scala:26:25]
assign auto_tl_in_d_bits_size = auto_tl_in_d_bits_size_0; // @[TileResetSetter.scala:26:25]
assign auto_tl_in_d_bits_source = auto_tl_in_d_bits_source_0; // @[TileResetSetter.scala:26:25]
endmodule |
Generate the Verilog code corresponding to the following Chisel files.
File package.scala:
// See LICENSE.SiFive for license details.
package freechips.rocketchip
import chisel3._
import chisel3.util._
import scala.math.min
import scala.collection.{immutable, mutable}
package object util {
implicit class UnzippableOption[S, T](val x: Option[(S, T)]) {
def unzip = (x.map(_._1), x.map(_._2))
}
implicit class UIntIsOneOf(private val x: UInt) extends AnyVal {
def isOneOf(s: Seq[UInt]): Bool = s.map(x === _).orR
def isOneOf(u1: UInt, u2: UInt*): Bool = isOneOf(u1 +: u2.toSeq)
}
implicit class VecToAugmentedVec[T <: Data](private val x: Vec[T]) extends AnyVal {
/** Like Vec.apply(idx), but tolerates indices of mismatched width */
def extract(idx: UInt): T = x((idx | 0.U(log2Ceil(x.size).W)).extract(log2Ceil(x.size) - 1, 0))
}
implicit class SeqToAugmentedSeq[T <: Data](private val x: Seq[T]) extends AnyVal {
def apply(idx: UInt): T = {
if (x.size <= 1) {
x.head
} else if (!isPow2(x.size)) {
// For non-power-of-2 seqs, reflect elements to simplify decoder
(x ++ x.takeRight(x.size & -x.size)).toSeq(idx)
} else {
// Ignore MSBs of idx
val truncIdx =
if (idx.isWidthKnown && idx.getWidth <= log2Ceil(x.size)) idx
else (idx | 0.U(log2Ceil(x.size).W))(log2Ceil(x.size)-1, 0)
x.zipWithIndex.tail.foldLeft(x.head) { case (prev, (cur, i)) => Mux(truncIdx === i.U, cur, prev) }
}
}
def extract(idx: UInt): T = VecInit(x).extract(idx)
def asUInt: UInt = Cat(x.map(_.asUInt).reverse)
def rotate(n: Int): Seq[T] = x.drop(n) ++ x.take(n)
def rotate(n: UInt): Seq[T] = {
if (x.size <= 1) {
x
} else {
require(isPow2(x.size))
val amt = n.padTo(log2Ceil(x.size))
(0 until log2Ceil(x.size)).foldLeft(x)((r, i) => (r.rotate(1 << i) zip r).map { case (s, a) => Mux(amt(i), s, a) })
}
}
def rotateRight(n: Int): Seq[T] = x.takeRight(n) ++ x.dropRight(n)
def rotateRight(n: UInt): Seq[T] = {
if (x.size <= 1) {
x
} else {
require(isPow2(x.size))
val amt = n.padTo(log2Ceil(x.size))
(0 until log2Ceil(x.size)).foldLeft(x)((r, i) => (r.rotateRight(1 << i) zip r).map { case (s, a) => Mux(amt(i), s, a) })
}
}
}
// allow bitwise ops on Seq[Bool] just like UInt
implicit class SeqBoolBitwiseOps(private val x: Seq[Bool]) extends AnyVal {
def & (y: Seq[Bool]): Seq[Bool] = (x zip y).map { case (a, b) => a && b }
def | (y: Seq[Bool]): Seq[Bool] = padZip(x, y).map { case (a, b) => a || b }
def ^ (y: Seq[Bool]): Seq[Bool] = padZip(x, y).map { case (a, b) => a ^ b }
def << (n: Int): Seq[Bool] = Seq.fill(n)(false.B) ++ x
def >> (n: Int): Seq[Bool] = x drop n
def unary_~ : Seq[Bool] = x.map(!_)
def andR: Bool = if (x.isEmpty) true.B else x.reduce(_&&_)
def orR: Bool = if (x.isEmpty) false.B else x.reduce(_||_)
def xorR: Bool = if (x.isEmpty) false.B else x.reduce(_^_)
private def padZip(y: Seq[Bool], z: Seq[Bool]): Seq[(Bool, Bool)] = y.padTo(z.size, false.B) zip z.padTo(y.size, false.B)
}
implicit class DataToAugmentedData[T <: Data](private val x: T) extends AnyVal {
def holdUnless(enable: Bool): T = Mux(enable, x, RegEnable(x, enable))
def getElements: Seq[Element] = x match {
case e: Element => Seq(e)
case a: Aggregate => a.getElements.flatMap(_.getElements)
}
}
/** Any Data subtype that has a Bool member named valid. */
type DataCanBeValid = Data { val valid: Bool }
implicit class SeqMemToAugmentedSeqMem[T <: Data](private val x: SyncReadMem[T]) extends AnyVal {
def readAndHold(addr: UInt, enable: Bool): T = x.read(addr, enable) holdUnless RegNext(enable)
}
implicit class StringToAugmentedString(private val x: String) extends AnyVal {
/** converts from camel case to to underscores, also removing all spaces */
def underscore: String = x.tail.foldLeft(x.headOption.map(_.toLower + "") getOrElse "") {
case (acc, c) if c.isUpper => acc + "_" + c.toLower
case (acc, c) if c == ' ' => acc
case (acc, c) => acc + c
}
/** converts spaces or underscores to hyphens, also lowering case */
def kebab: String = x.toLowerCase map {
case ' ' => '-'
case '_' => '-'
case c => c
}
def named(name: Option[String]): String = {
x + name.map("_named_" + _ ).getOrElse("_with_no_name")
}
def named(name: String): String = named(Some(name))
}
implicit def uintToBitPat(x: UInt): BitPat = BitPat(x)
implicit def wcToUInt(c: WideCounter): UInt = c.value
implicit class UIntToAugmentedUInt(private val x: UInt) extends AnyVal {
def sextTo(n: Int): UInt = {
require(x.getWidth <= n)
if (x.getWidth == n) x
else Cat(Fill(n - x.getWidth, x(x.getWidth-1)), x)
}
def padTo(n: Int): UInt = {
require(x.getWidth <= n)
if (x.getWidth == n) x
else Cat(0.U((n - x.getWidth).W), x)
}
// shifts left by n if n >= 0, or right by -n if n < 0
def << (n: SInt): UInt = {
val w = n.getWidth - 1
require(w <= 30)
val shifted = x << n(w-1, 0)
Mux(n(w), shifted >> (1 << w), shifted)
}
// shifts right by n if n >= 0, or left by -n if n < 0
def >> (n: SInt): UInt = {
val w = n.getWidth - 1
require(w <= 30)
val shifted = x << (1 << w) >> n(w-1, 0)
Mux(n(w), shifted, shifted >> (1 << w))
}
// Like UInt.apply(hi, lo), but returns 0.U for zero-width extracts
def extract(hi: Int, lo: Int): UInt = {
require(hi >= lo-1)
if (hi == lo-1) 0.U
else x(hi, lo)
}
// Like Some(UInt.apply(hi, lo)), but returns None for zero-width extracts
def extractOption(hi: Int, lo: Int): Option[UInt] = {
require(hi >= lo-1)
if (hi == lo-1) None
else Some(x(hi, lo))
}
// like x & ~y, but first truncate or zero-extend y to x's width
def andNot(y: UInt): UInt = x & ~(y | (x & 0.U))
def rotateRight(n: Int): UInt = if (n == 0) x else Cat(x(n-1, 0), x >> n)
def rotateRight(n: UInt): UInt = {
if (x.getWidth <= 1) {
x
} else {
val amt = n.padTo(log2Ceil(x.getWidth))
(0 until log2Ceil(x.getWidth)).foldLeft(x)((r, i) => Mux(amt(i), r.rotateRight(1 << i), r))
}
}
def rotateLeft(n: Int): UInt = if (n == 0) x else Cat(x(x.getWidth-1-n,0), x(x.getWidth-1,x.getWidth-n))
def rotateLeft(n: UInt): UInt = {
if (x.getWidth <= 1) {
x
} else {
val amt = n.padTo(log2Ceil(x.getWidth))
(0 until log2Ceil(x.getWidth)).foldLeft(x)((r, i) => Mux(amt(i), r.rotateLeft(1 << i), r))
}
}
// compute (this + y) % n, given (this < n) and (y < n)
def addWrap(y: UInt, n: Int): UInt = {
val z = x +& y
if (isPow2(n)) z(n.log2-1, 0) else Mux(z >= n.U, z - n.U, z)(log2Ceil(n)-1, 0)
}
// compute (this - y) % n, given (this < n) and (y < n)
def subWrap(y: UInt, n: Int): UInt = {
val z = x -& y
if (isPow2(n)) z(n.log2-1, 0) else Mux(z(z.getWidth-1), z + n.U, z)(log2Ceil(n)-1, 0)
}
def grouped(width: Int): Seq[UInt] =
(0 until x.getWidth by width).map(base => x(base + width - 1, base))
def inRange(base: UInt, bounds: UInt) = x >= base && x < bounds
def ## (y: Option[UInt]): UInt = y.map(x ## _).getOrElse(x)
// Like >=, but prevents x-prop for ('x >= 0)
def >== (y: UInt): Bool = x >= y || y === 0.U
}
implicit class OptionUIntToAugmentedOptionUInt(private val x: Option[UInt]) extends AnyVal {
def ## (y: UInt): UInt = x.map(_ ## y).getOrElse(y)
def ## (y: Option[UInt]): Option[UInt] = x.map(_ ## y)
}
implicit class BooleanToAugmentedBoolean(private val x: Boolean) extends AnyVal {
def toInt: Int = if (x) 1 else 0
// this one's snagged from scalaz
def option[T](z: => T): Option[T] = if (x) Some(z) else None
}
implicit class IntToAugmentedInt(private val x: Int) extends AnyVal {
// exact log2
def log2: Int = {
require(isPow2(x))
log2Ceil(x)
}
}
def OH1ToOH(x: UInt): UInt = (x << 1 | 1.U) & ~Cat(0.U(1.W), x)
def OH1ToUInt(x: UInt): UInt = OHToUInt(OH1ToOH(x))
def UIntToOH1(x: UInt, width: Int): UInt = ~((-1).S(width.W).asUInt << x)(width-1, 0)
def UIntToOH1(x: UInt): UInt = UIntToOH1(x, (1 << x.getWidth) - 1)
def trailingZeros(x: Int): Option[Int] = if (x > 0) Some(log2Ceil(x & -x)) else None
// Fill 1s from low bits to high bits
def leftOR(x: UInt): UInt = leftOR(x, x.getWidth, x.getWidth)
def leftOR(x: UInt, width: Integer, cap: Integer = 999999): UInt = {
val stop = min(width, cap)
def helper(s: Int, x: UInt): UInt =
if (s >= stop) x else helper(s+s, x | (x << s)(width-1,0))
helper(1, x)(width-1, 0)
}
// Fill 1s form high bits to low bits
def rightOR(x: UInt): UInt = rightOR(x, x.getWidth, x.getWidth)
def rightOR(x: UInt, width: Integer, cap: Integer = 999999): UInt = {
val stop = min(width, cap)
def helper(s: Int, x: UInt): UInt =
if (s >= stop) x else helper(s+s, x | (x >> s))
helper(1, x)(width-1, 0)
}
def OptimizationBarrier[T <: Data](in: T): T = {
val barrier = Module(new Module {
val io = IO(new Bundle {
val x = Input(chiselTypeOf(in))
val y = Output(chiselTypeOf(in))
})
io.y := io.x
override def desiredName = s"OptimizationBarrier_${in.typeName}"
})
barrier.io.x := in
barrier.io.y
}
/** Similar to Seq.groupBy except this returns a Seq instead of a Map
* Useful for deterministic code generation
*/
def groupByIntoSeq[A, K](xs: Seq[A])(f: A => K): immutable.Seq[(K, immutable.Seq[A])] = {
val map = mutable.LinkedHashMap.empty[K, mutable.ListBuffer[A]]
for (x <- xs) {
val key = f(x)
val l = map.getOrElseUpdate(key, mutable.ListBuffer.empty[A])
l += x
}
map.view.map({ case (k, vs) => k -> vs.toList }).toList
}
def heterogeneousOrGlobalSetting[T](in: Seq[T], n: Int): Seq[T] = in.size match {
case 1 => List.fill(n)(in.head)
case x if x == n => in
case _ => throw new Exception(s"must provide exactly 1 or $n of some field, but got:\n$in")
}
// HeterogeneousBag moved to standalond diplomacy
@deprecated("HeterogeneousBag has been absorbed into standalone diplomacy library", "rocketchip 2.0.0")
def HeterogeneousBag[T <: Data](elts: Seq[T]) = _root_.org.chipsalliance.diplomacy.nodes.HeterogeneousBag[T](elts)
@deprecated("HeterogeneousBag has been absorbed into standalone diplomacy library", "rocketchip 2.0.0")
val HeterogeneousBag = _root_.org.chipsalliance.diplomacy.nodes.HeterogeneousBag
}
| module OptimizationBarrier_TLBEntryData_104( // @[package.scala:267:30]
input clock, // @[package.scala:267:30]
input reset, // @[package.scala:267:30]
input [19:0] io_x_ppn, // @[package.scala:268:18]
input io_x_u, // @[package.scala:268:18]
input io_x_g, // @[package.scala:268:18]
input io_x_ae_ptw, // @[package.scala:268:18]
input io_x_ae_final, // @[package.scala:268:18]
input io_x_ae_stage2, // @[package.scala:268:18]
input io_x_pf, // @[package.scala:268:18]
input io_x_gf, // @[package.scala:268:18]
input io_x_sw, // @[package.scala:268:18]
input io_x_sx, // @[package.scala:268:18]
input io_x_sr, // @[package.scala:268:18]
input io_x_hw, // @[package.scala:268:18]
input io_x_hx, // @[package.scala:268:18]
input io_x_hr, // @[package.scala:268:18]
input io_x_pw, // @[package.scala:268:18]
input io_x_px, // @[package.scala:268:18]
input io_x_pr, // @[package.scala:268:18]
input io_x_ppp, // @[package.scala:268:18]
input io_x_pal, // @[package.scala:268:18]
input io_x_paa, // @[package.scala:268:18]
input io_x_eff, // @[package.scala:268:18]
input io_x_c, // @[package.scala:268:18]
input io_x_fragmented_superpage, // @[package.scala:268:18]
output [19:0] io_y_ppn, // @[package.scala:268:18]
output io_y_u, // @[package.scala:268:18]
output io_y_ae_ptw, // @[package.scala:268:18]
output io_y_ae_final, // @[package.scala:268:18]
output io_y_ae_stage2, // @[package.scala:268:18]
output io_y_pf, // @[package.scala:268:18]
output io_y_gf, // @[package.scala:268:18]
output io_y_sw, // @[package.scala:268:18]
output io_y_sx, // @[package.scala:268:18]
output io_y_sr, // @[package.scala:268:18]
output io_y_hw, // @[package.scala:268:18]
output io_y_hx, // @[package.scala:268:18]
output io_y_hr // @[package.scala:268:18]
);
wire [19:0] io_x_ppn_0 = io_x_ppn; // @[package.scala:267:30]
wire io_x_u_0 = io_x_u; // @[package.scala:267:30]
wire io_x_g_0 = io_x_g; // @[package.scala:267:30]
wire io_x_ae_ptw_0 = io_x_ae_ptw; // @[package.scala:267:30]
wire io_x_ae_final_0 = io_x_ae_final; // @[package.scala:267:30]
wire io_x_ae_stage2_0 = io_x_ae_stage2; // @[package.scala:267:30]
wire io_x_pf_0 = io_x_pf; // @[package.scala:267:30]
wire io_x_gf_0 = io_x_gf; // @[package.scala:267:30]
wire io_x_sw_0 = io_x_sw; // @[package.scala:267:30]
wire io_x_sx_0 = io_x_sx; // @[package.scala:267:30]
wire io_x_sr_0 = io_x_sr; // @[package.scala:267:30]
wire io_x_hw_0 = io_x_hw; // @[package.scala:267:30]
wire io_x_hx_0 = io_x_hx; // @[package.scala:267:30]
wire io_x_hr_0 = io_x_hr; // @[package.scala:267:30]
wire io_x_pw_0 = io_x_pw; // @[package.scala:267:30]
wire io_x_px_0 = io_x_px; // @[package.scala:267:30]
wire io_x_pr_0 = io_x_pr; // @[package.scala:267:30]
wire io_x_ppp_0 = io_x_ppp; // @[package.scala:267:30]
wire io_x_pal_0 = io_x_pal; // @[package.scala:267:30]
wire io_x_paa_0 = io_x_paa; // @[package.scala:267:30]
wire io_x_eff_0 = io_x_eff; // @[package.scala:267:30]
wire io_x_c_0 = io_x_c; // @[package.scala:267:30]
wire io_x_fragmented_superpage_0 = io_x_fragmented_superpage; // @[package.scala:267:30]
wire [19:0] io_y_ppn_0 = io_x_ppn_0; // @[package.scala:267:30]
wire io_y_u_0 = io_x_u_0; // @[package.scala:267:30]
wire io_y_g = io_x_g_0; // @[package.scala:267:30]
wire io_y_ae_ptw_0 = io_x_ae_ptw_0; // @[package.scala:267:30]
wire io_y_ae_final_0 = io_x_ae_final_0; // @[package.scala:267:30]
wire io_y_ae_stage2_0 = io_x_ae_stage2_0; // @[package.scala:267:30]
wire io_y_pf_0 = io_x_pf_0; // @[package.scala:267:30]
wire io_y_gf_0 = io_x_gf_0; // @[package.scala:267:30]
wire io_y_sw_0 = io_x_sw_0; // @[package.scala:267:30]
wire io_y_sx_0 = io_x_sx_0; // @[package.scala:267:30]
wire io_y_sr_0 = io_x_sr_0; // @[package.scala:267:30]
wire io_y_hw_0 = io_x_hw_0; // @[package.scala:267:30]
wire io_y_hx_0 = io_x_hx_0; // @[package.scala:267:30]
wire io_y_hr_0 = io_x_hr_0; // @[package.scala:267:30]
wire io_y_pw = io_x_pw_0; // @[package.scala:267:30]
wire io_y_px = io_x_px_0; // @[package.scala:267:30]
wire io_y_pr = io_x_pr_0; // @[package.scala:267:30]
wire io_y_ppp = io_x_ppp_0; // @[package.scala:267:30]
wire io_y_pal = io_x_pal_0; // @[package.scala:267:30]
wire io_y_paa = io_x_paa_0; // @[package.scala:267:30]
wire io_y_eff = io_x_eff_0; // @[package.scala:267:30]
wire io_y_c = io_x_c_0; // @[package.scala:267:30]
wire io_y_fragmented_superpage = io_x_fragmented_superpage_0; // @[package.scala:267:30]
assign io_y_ppn = io_y_ppn_0; // @[package.scala:267:30]
assign io_y_u = io_y_u_0; // @[package.scala:267:30]
assign io_y_ae_ptw = io_y_ae_ptw_0; // @[package.scala:267:30]
assign io_y_ae_final = io_y_ae_final_0; // @[package.scala:267:30]
assign io_y_ae_stage2 = io_y_ae_stage2_0; // @[package.scala:267:30]
assign io_y_pf = io_y_pf_0; // @[package.scala:267:30]
assign io_y_gf = io_y_gf_0; // @[package.scala:267:30]
assign io_y_sw = io_y_sw_0; // @[package.scala:267:30]
assign io_y_sx = io_y_sx_0; // @[package.scala:267:30]
assign io_y_sr = io_y_sr_0; // @[package.scala:267:30]
assign io_y_hw = io_y_hw_0; // @[package.scala:267:30]
assign io_y_hx = io_y_hx_0; // @[package.scala:267:30]
assign io_y_hr = io_y_hr_0; // @[package.scala:267:30]
endmodule |
Generate the Verilog code corresponding to the following Chisel files.
File Crossing.scala:
// See LICENSE.SiFive for license details.
package freechips.rocketchip.interrupts
import chisel3._
import chisel3.util._
import org.chipsalliance.cde.config._
import org.chipsalliance.diplomacy.lazymodule._
import freechips.rocketchip.util.{SynchronizerShiftReg, AsyncResetReg}
@deprecated("IntXing does not ensure interrupt source is glitch free. Use IntSyncSource and IntSyncSink", "rocket-chip 1.2")
class IntXing(sync: Int = 3)(implicit p: Parameters) extends LazyModule
{
val intnode = IntAdapterNode()
lazy val module = new Impl
class Impl extends LazyModuleImp(this) {
(intnode.in zip intnode.out) foreach { case ((in, _), (out, _)) =>
out := SynchronizerShiftReg(in, sync)
}
}
}
object IntSyncCrossingSource
{
def apply(alreadyRegistered: Boolean = false)(implicit p: Parameters) =
{
val intsource = LazyModule(new IntSyncCrossingSource(alreadyRegistered))
intsource.node
}
}
class IntSyncCrossingSource(alreadyRegistered: Boolean = false)(implicit p: Parameters) extends LazyModule
{
val node = IntSyncSourceNode(alreadyRegistered)
lazy val module = if (alreadyRegistered) (new ImplRegistered) else (new Impl)
class Impl extends LazyModuleImp(this) {
def outSize = node.out.headOption.map(_._1.sync.size).getOrElse(0)
override def desiredName = s"IntSyncCrossingSource_n${node.out.size}x${outSize}"
(node.in zip node.out) foreach { case ((in, edgeIn), (out, edgeOut)) =>
out.sync := AsyncResetReg(Cat(in.reverse)).asBools
}
}
class ImplRegistered extends LazyRawModuleImp(this) {
def outSize = node.out.headOption.map(_._1.sync.size).getOrElse(0)
override def desiredName = s"IntSyncCrossingSource_n${node.out.size}x${outSize}_Registered"
(node.in zip node.out) foreach { case ((in, edgeIn), (out, edgeOut)) =>
out.sync := in
}
}
}
object IntSyncCrossingSink
{
@deprecated("IntSyncCrossingSink which used the `sync` parameter to determine crossing type is deprecated. Use IntSyncAsyncCrossingSink, IntSyncRationalCrossingSink, or IntSyncSyncCrossingSink instead for > 1, 1, and 0 sync values respectively", "rocket-chip 1.2")
def apply(sync: Int = 3)(implicit p: Parameters) =
{
val intsink = LazyModule(new IntSyncAsyncCrossingSink(sync))
intsink.node
}
}
class IntSyncAsyncCrossingSink(sync: Int = 3)(implicit p: Parameters) extends LazyModule
{
val node = IntSyncSinkNode(sync)
lazy val module = new Impl
class Impl extends LazyModuleImp(this) {
override def desiredName = s"IntSyncAsyncCrossingSink_n${node.out.size}x${node.out.head._1.size}"
(node.in zip node.out) foreach { case ((in, edgeIn), (out, edgeOut)) =>
out := SynchronizerShiftReg(in.sync, sync)
}
}
}
object IntSyncAsyncCrossingSink
{
def apply(sync: Int = 3)(implicit p: Parameters) =
{
val intsink = LazyModule(new IntSyncAsyncCrossingSink(sync))
intsink.node
}
}
class IntSyncSyncCrossingSink()(implicit p: Parameters) extends LazyModule
{
val node = IntSyncSinkNode(0)
lazy val module = new Impl
class Impl extends LazyRawModuleImp(this) {
def outSize = node.out.headOption.map(_._1.size).getOrElse(0)
override def desiredName = s"IntSyncSyncCrossingSink_n${node.out.size}x${outSize}"
(node.in zip node.out) foreach { case ((in, edgeIn), (out, edgeOut)) =>
out := in.sync
}
}
}
object IntSyncSyncCrossingSink
{
def apply()(implicit p: Parameters) =
{
val intsink = LazyModule(new IntSyncSyncCrossingSink())
intsink.node
}
}
class IntSyncRationalCrossingSink()(implicit p: Parameters) extends LazyModule
{
val node = IntSyncSinkNode(1)
lazy val module = new Impl
class Impl extends LazyModuleImp(this) {
def outSize = node.out.headOption.map(_._1.size).getOrElse(0)
override def desiredName = s"IntSyncRationalCrossingSink_n${node.out.size}x${outSize}"
(node.in zip node.out) foreach { case ((in, edgeIn), (out, edgeOut)) =>
out := RegNext(in.sync)
}
}
}
object IntSyncRationalCrossingSink
{
def apply()(implicit p: Parameters) =
{
val intsink = LazyModule(new IntSyncRationalCrossingSink())
intsink.node
}
}
File LazyModuleImp.scala:
package org.chipsalliance.diplomacy.lazymodule
import chisel3.{withClockAndReset, Module, RawModule, Reset, _}
import chisel3.experimental.{ChiselAnnotation, CloneModuleAsRecord, SourceInfo}
import firrtl.passes.InlineAnnotation
import org.chipsalliance.cde.config.Parameters
import org.chipsalliance.diplomacy.nodes.Dangle
import scala.collection.immutable.SortedMap
/** Trait describing the actual [[Module]] implementation wrapped by a [[LazyModule]].
*
* This is the actual Chisel module that is lazily-evaluated in the second phase of Diplomacy.
*/
sealed trait LazyModuleImpLike extends RawModule {
/** [[LazyModule]] that contains this instance. */
val wrapper: LazyModule
/** IOs that will be automatically "punched" for this instance. */
val auto: AutoBundle
/** The metadata that describes the [[HalfEdge]]s which generated [[auto]]. */
protected[diplomacy] val dangles: Seq[Dangle]
// [[wrapper.module]] had better not be accessed while LazyModules are still being built!
require(
LazyModule.scope.isEmpty,
s"${wrapper.name}.module was constructed before LazyModule() was run on ${LazyModule.scope.get.name}"
)
/** Set module name. Defaults to the containing LazyModule's desiredName. */
override def desiredName: String = wrapper.desiredName
suggestName(wrapper.suggestedName)
/** [[Parameters]] for chisel [[Module]]s. */
implicit val p: Parameters = wrapper.p
/** instantiate this [[LazyModule]], return [[AutoBundle]] and a unconnected [[Dangle]]s from this module and
* submodules.
*/
protected[diplomacy] def instantiate(): (AutoBundle, List[Dangle]) = {
// 1. It will recursively append [[wrapper.children]] into [[chisel3.internal.Builder]],
// 2. return [[Dangle]]s from each module.
val childDangles = wrapper.children.reverse.flatMap { c =>
implicit val sourceInfo: SourceInfo = c.info
c.cloneProto.map { cp =>
// If the child is a clone, then recursively set cloneProto of its children as well
def assignCloneProtos(bases: Seq[LazyModule], clones: Seq[LazyModule]): Unit = {
require(bases.size == clones.size)
(bases.zip(clones)).map { case (l, r) =>
require(l.getClass == r.getClass, s"Cloned children class mismatch ${l.name} != ${r.name}")
l.cloneProto = Some(r)
assignCloneProtos(l.children, r.children)
}
}
assignCloneProtos(c.children, cp.children)
// Clone the child module as a record, and get its [[AutoBundle]]
val clone = CloneModuleAsRecord(cp.module).suggestName(c.suggestedName)
val clonedAuto = clone("auto").asInstanceOf[AutoBundle]
// Get the empty [[Dangle]]'s of the cloned child
val rawDangles = c.cloneDangles()
require(rawDangles.size == clonedAuto.elements.size)
// Assign the [[AutoBundle]] fields of the cloned record to the empty [[Dangle]]'s
val dangles = (rawDangles.zip(clonedAuto.elements)).map { case (d, (_, io)) => d.copy(dataOpt = Some(io)) }
dangles
}.getOrElse {
// For non-clones, instantiate the child module
val mod = try {
Module(c.module)
} catch {
case e: ChiselException => {
println(s"Chisel exception caught when instantiating ${c.name} within ${this.name} at ${c.line}")
throw e
}
}
mod.dangles
}
}
// Ask each node in this [[LazyModule]] to call [[BaseNode.instantiate]].
// This will result in a sequence of [[Dangle]] from these [[BaseNode]]s.
val nodeDangles = wrapper.nodes.reverse.flatMap(_.instantiate())
// Accumulate all the [[Dangle]]s from this node and any accumulated from its [[wrapper.children]]
val allDangles = nodeDangles ++ childDangles
// Group [[allDangles]] by their [[source]].
val pairing = SortedMap(allDangles.groupBy(_.source).toSeq: _*)
// For each [[source]] set of [[Dangle]]s of size 2, ensure that these
// can be connected as a source-sink pair (have opposite flipped value).
// Make the connection and mark them as [[done]].
val done = Set() ++ pairing.values.filter(_.size == 2).map {
case Seq(a, b) =>
require(a.flipped != b.flipped)
// @todo <> in chisel3 makes directionless connection.
if (a.flipped) {
a.data <> b.data
} else {
b.data <> a.data
}
a.source
case _ => None
}
// Find all [[Dangle]]s which are still not connected. These will end up as [[AutoBundle]] [[IO]] ports on the module.
val forward = allDangles.filter(d => !done(d.source))
// Generate [[AutoBundle]] IO from [[forward]].
val auto = IO(new AutoBundle(forward.map { d => (d.name, d.data, d.flipped) }: _*))
// Pass the [[Dangle]]s which remained and were used to generate the [[AutoBundle]] I/O ports up to the [[parent]] [[LazyModule]]
val dangles = (forward.zip(auto.elements)).map { case (d, (_, io)) =>
if (d.flipped) {
d.data <> io
} else {
io <> d.data
}
d.copy(dataOpt = Some(io), name = wrapper.suggestedName + "_" + d.name)
}
// Push all [[LazyModule.inModuleBody]] to [[chisel3.internal.Builder]].
wrapper.inModuleBody.reverse.foreach {
_()
}
if (wrapper.shouldBeInlined) {
chisel3.experimental.annotate(new ChiselAnnotation {
def toFirrtl = InlineAnnotation(toNamed)
})
}
// Return [[IO]] and [[Dangle]] of this [[LazyModuleImp]].
(auto, dangles)
}
}
/** Actual description of a [[Module]] which can be instantiated by a call to [[LazyModule.module]].
*
* @param wrapper
* the [[LazyModule]] from which the `.module` call is being made.
*/
class LazyModuleImp(val wrapper: LazyModule) extends Module with LazyModuleImpLike {
/** Instantiate hardware of this `Module`. */
val (auto, dangles) = instantiate()
}
/** Actual description of a [[RawModule]] which can be instantiated by a call to [[LazyModule.module]].
*
* @param wrapper
* the [[LazyModule]] from which the `.module` call is being made.
*/
class LazyRawModuleImp(val wrapper: LazyModule) extends RawModule with LazyModuleImpLike {
// These wires are the default clock+reset for all LazyModule children.
// It is recommended to drive these even if you manually drive the [[clock]] and [[reset]] of all of the
// [[LazyRawModuleImp]] children.
// Otherwise, anonymous children ([[Monitor]]s for example) will not have their [[clock]] and/or [[reset]] driven properly.
/** drive clock explicitly. */
val childClock: Clock = Wire(Clock())
/** drive reset explicitly. */
val childReset: Reset = Wire(Reset())
// the default is that these are disabled
childClock := false.B.asClock
childReset := chisel3.DontCare
def provideImplicitClockToLazyChildren: Boolean = false
val (auto, dangles) =
if (provideImplicitClockToLazyChildren) {
withClockAndReset(childClock, childReset) { instantiate() }
} else {
instantiate()
}
}
| module IntSyncSyncCrossingSink_n1x1( // @[Crossing.scala:96:9]
input auto_in_sync_0, // @[LazyModuleImp.scala:107:25]
output auto_out_0 // @[LazyModuleImp.scala:107:25]
);
assign auto_out_0 = auto_in_sync_0; // @[Crossing.scala:96:9]
endmodule |
Generate the Verilog code corresponding to the following Chisel files.
File RecFNToIN.scala:
/*============================================================================
This Chisel source file is part of a pre-release version of the HardFloat IEEE
Floating-Point Arithmetic Package, by John R. Hauser (with some contributions
from Yunsup Lee and Andrew Waterman, mainly concerning testing).
Copyright 2010, 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018 The Regents of
the University of California. All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
1. Redistributions of source code must retain the above copyright notice,
this list of conditions, and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice,
this list of conditions, and the following disclaimer in the documentation
and/or other materials provided with the distribution.
3. Neither the name of the University nor the names of its contributors may
be used to endorse or promote products derived from this software without
specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS "AS IS", AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ARE
DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
=============================================================================*/
package hardfloat
import chisel3._
import chisel3.util.log2Up
import scala.math._
import consts._
class RecFNToIN(expWidth: Int, sigWidth: Int, intWidth: Int) extends chisel3.Module
{
override def desiredName = s"RecFNToIN_e${expWidth}_s${sigWidth}_i${intWidth}"
val io = IO(new Bundle {
val in = Input(Bits((expWidth + sigWidth + 1).W))
val roundingMode = Input(UInt(3.W))
val signedOut = Input(Bool())
val out = Output(Bits(intWidth.W))
val intExceptionFlags = Output(Bits(3.W))
})
//------------------------------------------------------------------------
//------------------------------------------------------------------------
val rawIn = rawFloatFromRecFN(expWidth, sigWidth, io.in)
val magGeOne = rawIn.sExp(expWidth)
val posExp = rawIn.sExp(expWidth - 1, 0)
val magJustBelowOne = !magGeOne && posExp.andR
//------------------------------------------------------------------------
//------------------------------------------------------------------------
val roundingMode_near_even = (io.roundingMode === round_near_even)
val roundingMode_minMag = (io.roundingMode === round_minMag)
val roundingMode_min = (io.roundingMode === round_min)
val roundingMode_max = (io.roundingMode === round_max)
val roundingMode_near_maxMag = (io.roundingMode === round_near_maxMag)
val roundingMode_odd = (io.roundingMode === round_odd)
/*------------------------------------------------------------------------
| Assuming the input floating-point value is not a NaN, its magnitude is
| at least 1, and it is not obviously so large as to lead to overflow,
| convert its significand to fixed-point (i.e., with the binary point in a
| fixed location). For a non-NaN input with a magnitude less than 1, this
| expression contrives to ensure that the integer bits of 'alignedSig'
| will all be zeros.
*------------------------------------------------------------------------*/
val shiftedSig =
(magGeOne ## rawIn.sig(sigWidth - 2, 0))<<
Mux(magGeOne,
rawIn.sExp(min(expWidth - 2, log2Up(intWidth) - 1), 0),
0.U
)
val alignedSig =
(shiftedSig>>(sigWidth - 2)) ## shiftedSig(sigWidth - 3, 0).orR
val unroundedInt = 0.U(intWidth.W) | alignedSig>>2
val common_inexact = Mux(magGeOne, alignedSig(1, 0).orR, !rawIn.isZero)
val roundIncr_near_even =
(magGeOne && (alignedSig(2, 1).andR || alignedSig(1, 0).andR)) ||
(magJustBelowOne && alignedSig(1, 0).orR)
val roundIncr_near_maxMag = (magGeOne && alignedSig(1)) || magJustBelowOne
val roundIncr =
(roundingMode_near_even && roundIncr_near_even ) ||
(roundingMode_near_maxMag && roundIncr_near_maxMag) ||
((roundingMode_min || roundingMode_odd) &&
(rawIn.sign && common_inexact)) ||
(roundingMode_max && (!rawIn.sign && common_inexact))
val complUnroundedInt = Mux(rawIn.sign, ~unroundedInt, unroundedInt)
val roundedInt =
Mux(roundIncr ^ rawIn.sign,
complUnroundedInt + 1.U,
complUnroundedInt
) | (roundingMode_odd && common_inexact)
val magGeOne_atOverflowEdge = (posExp === (intWidth - 1).U)
//*** CHANGE TO TAKE BITS FROM THE ORIGINAL 'rawIn.sig' INSTEAD OF FROM
//*** 'unroundedInt'?:
val roundCarryBut2 = unroundedInt(intWidth - 3, 0).andR && roundIncr
val common_overflow =
Mux(magGeOne,
(posExp >= intWidth.U) ||
Mux(io.signedOut,
Mux(rawIn.sign,
magGeOne_atOverflowEdge &&
(unroundedInt(intWidth - 2, 0).orR || roundIncr),
magGeOne_atOverflowEdge ||
((posExp === (intWidth - 2).U) && roundCarryBut2)
),
rawIn.sign ||
(magGeOne_atOverflowEdge &&
unroundedInt(intWidth - 2) && roundCarryBut2)
),
!io.signedOut && rawIn.sign && roundIncr
)
//------------------------------------------------------------------------
//------------------------------------------------------------------------
val invalidExc = rawIn.isNaN || rawIn.isInf
val overflow = !invalidExc && common_overflow
val inexact = !invalidExc && !common_overflow && common_inexact
val excSign = !rawIn.isNaN && rawIn.sign
val excOut =
Mux((io.signedOut === excSign),
(BigInt(1)<<(intWidth - 1)).U,
0.U
) |
Mux(!excSign, ((BigInt(1)<<(intWidth - 1)) - 1).U, 0.U)
io.out := Mux(invalidExc || common_overflow, excOut, roundedInt)
io.intExceptionFlags := invalidExc ## overflow ## inexact
}
File rawFloatFromRecFN.scala:
/*============================================================================
This Chisel source file is part of a pre-release version of the HardFloat IEEE
Floating-Point Arithmetic Package, by John R. Hauser (with some contributions
from Yunsup Lee and Andrew Waterman, mainly concerning testing).
Copyright 2010, 2011, 2012, 2013, 2014, 2015, 2016 The Regents of the
University of California. All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
1. Redistributions of source code must retain the above copyright notice,
this list of conditions, and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice,
this list of conditions, and the following disclaimer in the documentation
and/or other materials provided with the distribution.
3. Neither the name of the University nor the names of its contributors may
be used to endorse or promote products derived from this software without
specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS "AS IS", AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ARE
DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
=============================================================================*/
package hardfloat
import chisel3._
import chisel3.util._
/*----------------------------------------------------------------------------
| In the result, no more than one of 'isNaN', 'isInf', and 'isZero' will be
| set.
*----------------------------------------------------------------------------*/
object rawFloatFromRecFN
{
def apply(expWidth: Int, sigWidth: Int, in: Bits): RawFloat =
{
val exp = in(expWidth + sigWidth - 1, sigWidth - 1)
val isZero = exp(expWidth, expWidth - 2) === 0.U
val isSpecial = exp(expWidth, expWidth - 1) === 3.U
val out = Wire(new RawFloat(expWidth, sigWidth))
out.isNaN := isSpecial && exp(expWidth - 2)
out.isInf := isSpecial && ! exp(expWidth - 2)
out.isZero := isZero
out.sign := in(expWidth + sigWidth)
out.sExp := exp.zext
out.sig := 0.U(1.W) ## ! isZero ## in(sigWidth - 2, 0)
out
}
}
| module RecFNToIN_e8_s24_i32_9( // @[RecFNToIN.scala:46:7]
input clock, // @[RecFNToIN.scala:46:7]
input reset, // @[RecFNToIN.scala:46:7]
input [32:0] io_in, // @[RecFNToIN.scala:49:16]
output [31:0] io_out, // @[RecFNToIN.scala:49:16]
output [2:0] io_intExceptionFlags // @[RecFNToIN.scala:49:16]
);
wire [32:0] io_in_0 = io_in; // @[RecFNToIN.scala:46:7]
wire roundingMode_minMag = 1'h0; // @[RecFNToIN.scala:68:53]
wire roundingMode_min = 1'h0; // @[RecFNToIN.scala:69:53]
wire roundingMode_max = 1'h0; // @[RecFNToIN.scala:70:53]
wire roundingMode_near_maxMag = 1'h0; // @[RecFNToIN.scala:71:53]
wire roundingMode_odd = 1'h0; // @[RecFNToIN.scala:72:53]
wire _roundIncr_T_1 = 1'h0; // @[RecFNToIN.scala:99:35]
wire _roundIncr_T_3 = 1'h0; // @[RecFNToIN.scala:100:28]
wire _roundIncr_T_5 = 1'h0; // @[RecFNToIN.scala:100:49]
wire _roundIncr_T_9 = 1'h0; // @[RecFNToIN.scala:102:27]
wire _roundedInt_T_4 = 1'h0; // @[RecFNToIN.scala:108:31]
wire _common_overflow_T_15 = 1'h0; // @[RecFNToIN.scala:128:13]
wire _common_overflow_T_16 = 1'h0; // @[RecFNToIN.scala:128:27]
wire _common_overflow_T_17 = 1'h0; // @[RecFNToIN.scala:128:41]
wire io_signedOut = 1'h1; // @[RecFNToIN.scala:46:7]
wire roundingMode_near_even = 1'h1; // @[RecFNToIN.scala:67:53]
wire [2:0] io_roundingMode = 3'h0; // @[RecFNToIN.scala:46:7]
wire [31:0] _io_out_T_1; // @[RecFNToIN.scala:145:18]
wire [2:0] _io_intExceptionFlags_T_1; // @[RecFNToIN.scala:146:52]
wire [31:0] io_out_0; // @[RecFNToIN.scala:46:7]
wire [2:0] io_intExceptionFlags_0; // @[RecFNToIN.scala:46:7]
wire [8:0] rawIn_exp = io_in_0[31:23]; // @[rawFloatFromRecFN.scala:51:21]
wire [2:0] _rawIn_isZero_T = rawIn_exp[8:6]; // @[rawFloatFromRecFN.scala:51:21, :52:28]
wire rawIn_isZero = _rawIn_isZero_T == 3'h0; // @[rawFloatFromRecFN.scala:52:{28,53}]
wire rawIn_isZero_0 = rawIn_isZero; // @[rawFloatFromRecFN.scala:52:53, :55:23]
wire [1:0] _rawIn_isSpecial_T = rawIn_exp[8:7]; // @[rawFloatFromRecFN.scala:51:21, :53:28]
wire rawIn_isSpecial = &_rawIn_isSpecial_T; // @[rawFloatFromRecFN.scala:53:{28,53}]
wire _rawIn_out_isNaN_T_1; // @[rawFloatFromRecFN.scala:56:33]
wire _rawIn_out_isInf_T_2; // @[rawFloatFromRecFN.scala:57:33]
wire _rawIn_out_sign_T; // @[rawFloatFromRecFN.scala:59:25]
wire [9:0] _rawIn_out_sExp_T; // @[rawFloatFromRecFN.scala:60:27]
wire [24:0] _rawIn_out_sig_T_3; // @[rawFloatFromRecFN.scala:61:44]
wire rawIn_isNaN; // @[rawFloatFromRecFN.scala:55:23]
wire rawIn_isInf; // @[rawFloatFromRecFN.scala:55:23]
wire rawIn_sign; // @[rawFloatFromRecFN.scala:55:23]
wire [9:0] rawIn_sExp; // @[rawFloatFromRecFN.scala:55:23]
wire [24:0] rawIn_sig; // @[rawFloatFromRecFN.scala:55:23]
wire _rawIn_out_isNaN_T = rawIn_exp[6]; // @[rawFloatFromRecFN.scala:51:21, :56:41]
wire _rawIn_out_isInf_T = rawIn_exp[6]; // @[rawFloatFromRecFN.scala:51:21, :56:41, :57:41]
assign _rawIn_out_isNaN_T_1 = rawIn_isSpecial & _rawIn_out_isNaN_T; // @[rawFloatFromRecFN.scala:53:53, :56:{33,41}]
assign rawIn_isNaN = _rawIn_out_isNaN_T_1; // @[rawFloatFromRecFN.scala:55:23, :56:33]
wire _rawIn_out_isInf_T_1 = ~_rawIn_out_isInf_T; // @[rawFloatFromRecFN.scala:57:{36,41}]
assign _rawIn_out_isInf_T_2 = rawIn_isSpecial & _rawIn_out_isInf_T_1; // @[rawFloatFromRecFN.scala:53:53, :57:{33,36}]
assign rawIn_isInf = _rawIn_out_isInf_T_2; // @[rawFloatFromRecFN.scala:55:23, :57:33]
assign _rawIn_out_sign_T = io_in_0[32]; // @[rawFloatFromRecFN.scala:59:25]
assign rawIn_sign = _rawIn_out_sign_T; // @[rawFloatFromRecFN.scala:55:23, :59:25]
assign _rawIn_out_sExp_T = {1'h0, rawIn_exp}; // @[rawFloatFromRecFN.scala:51:21, :60:27]
assign rawIn_sExp = _rawIn_out_sExp_T; // @[rawFloatFromRecFN.scala:55:23, :60:27]
wire _rawIn_out_sig_T = ~rawIn_isZero; // @[rawFloatFromRecFN.scala:52:53, :61:35]
wire [1:0] _rawIn_out_sig_T_1 = {1'h0, _rawIn_out_sig_T}; // @[rawFloatFromRecFN.scala:61:{32,35}]
wire [22:0] _rawIn_out_sig_T_2 = io_in_0[22:0]; // @[rawFloatFromRecFN.scala:61:49]
assign _rawIn_out_sig_T_3 = {_rawIn_out_sig_T_1, _rawIn_out_sig_T_2}; // @[rawFloatFromRecFN.scala:61:{32,44,49}]
assign rawIn_sig = _rawIn_out_sig_T_3; // @[rawFloatFromRecFN.scala:55:23, :61:44]
wire magGeOne = rawIn_sExp[8]; // @[rawFloatFromRecFN.scala:55:23]
wire [7:0] posExp = rawIn_sExp[7:0]; // @[rawFloatFromRecFN.scala:55:23]
wire _magJustBelowOne_T = ~magGeOne; // @[RecFNToIN.scala:61:30, :63:27]
wire _magJustBelowOne_T_1 = &posExp; // @[RecFNToIN.scala:62:28, :63:47]
wire magJustBelowOne = _magJustBelowOne_T & _magJustBelowOne_T_1; // @[RecFNToIN.scala:63:{27,37,47}]
wire [22:0] _shiftedSig_T = rawIn_sig[22:0]; // @[rawFloatFromRecFN.scala:55:23]
wire [23:0] _shiftedSig_T_1 = {magGeOne, _shiftedSig_T}; // @[RecFNToIN.scala:61:30, :83:{19,31}]
wire [4:0] _shiftedSig_T_2 = rawIn_sExp[4:0]; // @[rawFloatFromRecFN.scala:55:23]
wire [4:0] _shiftedSig_T_3 = magGeOne ? _shiftedSig_T_2 : 5'h0; // @[RecFNToIN.scala:61:30, :84:16, :85:27]
wire [54:0] shiftedSig = {31'h0, _shiftedSig_T_1} << _shiftedSig_T_3; // @[RecFNToIN.scala:83:{19,49}, :84:16]
wire [32:0] _alignedSig_T = shiftedSig[54:22]; // @[RecFNToIN.scala:83:49, :89:20]
wire [21:0] _alignedSig_T_1 = shiftedSig[21:0]; // @[RecFNToIN.scala:83:49, :89:51]
wire _alignedSig_T_2 = |_alignedSig_T_1; // @[RecFNToIN.scala:89:{51,69}]
wire [33:0] alignedSig = {_alignedSig_T, _alignedSig_T_2}; // @[RecFNToIN.scala:89:{20,38,69}]
wire [31:0] _unroundedInt_T = alignedSig[33:2]; // @[RecFNToIN.scala:89:38, :90:52]
wire [31:0] unroundedInt = _unroundedInt_T; // @[RecFNToIN.scala:90:{40,52}]
wire [1:0] _common_inexact_T = alignedSig[1:0]; // @[RecFNToIN.scala:89:38, :92:50]
wire [1:0] _roundIncr_near_even_T_2 = alignedSig[1:0]; // @[RecFNToIN.scala:89:38, :92:50, :94:64]
wire [1:0] _roundIncr_near_even_T_6 = alignedSig[1:0]; // @[RecFNToIN.scala:89:38, :92:50, :95:39]
wire _common_inexact_T_1 = |_common_inexact_T; // @[RecFNToIN.scala:92:{50,57}]
wire _common_inexact_T_2 = ~rawIn_isZero_0; // @[rawFloatFromRecFN.scala:55:23]
wire common_inexact = magGeOne ? _common_inexact_T_1 : _common_inexact_T_2; // @[RecFNToIN.scala:61:30, :92:{29,57,62}]
wire [1:0] _roundIncr_near_even_T = alignedSig[2:1]; // @[RecFNToIN.scala:89:38, :94:39]
wire _roundIncr_near_even_T_1 = &_roundIncr_near_even_T; // @[RecFNToIN.scala:94:{39,46}]
wire _roundIncr_near_even_T_3 = &_roundIncr_near_even_T_2; // @[RecFNToIN.scala:94:{64,71}]
wire _roundIncr_near_even_T_4 = _roundIncr_near_even_T_1 | _roundIncr_near_even_T_3; // @[RecFNToIN.scala:94:{46,51,71}]
wire _roundIncr_near_even_T_5 = magGeOne & _roundIncr_near_even_T_4; // @[RecFNToIN.scala:61:30, :94:{25,51}]
wire _roundIncr_near_even_T_7 = |_roundIncr_near_even_T_6; // @[RecFNToIN.scala:95:{39,46}]
wire _roundIncr_near_even_T_8 = magJustBelowOne & _roundIncr_near_even_T_7; // @[RecFNToIN.scala:63:37, :95:{26,46}]
wire roundIncr_near_even = _roundIncr_near_even_T_5 | _roundIncr_near_even_T_8; // @[RecFNToIN.scala:94:{25,78}, :95:26]
wire _roundIncr_T = roundIncr_near_even; // @[RecFNToIN.scala:94:78, :98:35]
wire _roundIncr_near_maxMag_T = alignedSig[1]; // @[RecFNToIN.scala:89:38, :96:56]
wire _roundIncr_near_maxMag_T_1 = magGeOne & _roundIncr_near_maxMag_T; // @[RecFNToIN.scala:61:30, :96:{43,56}]
wire roundIncr_near_maxMag = _roundIncr_near_maxMag_T_1 | magJustBelowOne; // @[RecFNToIN.scala:63:37, :96:{43,61}]
wire _roundIncr_T_2 = _roundIncr_T; // @[RecFNToIN.scala:98:{35,61}]
wire _roundIncr_T_6 = _roundIncr_T_2; // @[RecFNToIN.scala:98:61, :99:61]
wire _roundIncr_T_4 = rawIn_sign & common_inexact; // @[rawFloatFromRecFN.scala:55:23]
wire roundIncr = _roundIncr_T_6; // @[RecFNToIN.scala:99:61, :101:46]
wire _roundIncr_T_7 = ~rawIn_sign; // @[rawFloatFromRecFN.scala:55:23]
wire _roundIncr_T_8 = _roundIncr_T_7 & common_inexact; // @[RecFNToIN.scala:92:29, :102:{31,43}]
wire [31:0] _complUnroundedInt_T = ~unroundedInt; // @[RecFNToIN.scala:90:40, :103:45]
wire [31:0] complUnroundedInt = rawIn_sign ? _complUnroundedInt_T : unroundedInt; // @[rawFloatFromRecFN.scala:55:23]
wire _roundedInt_T = roundIncr ^ rawIn_sign; // @[rawFloatFromRecFN.scala:55:23]
wire [32:0] _roundedInt_T_1 = {1'h0, complUnroundedInt} + 33'h1; // @[RecFNToIN.scala:103:32, :106:31]
wire [31:0] _roundedInt_T_2 = _roundedInt_T_1[31:0]; // @[RecFNToIN.scala:106:31]
wire [31:0] _roundedInt_T_3 = _roundedInt_T ? _roundedInt_T_2 : complUnroundedInt; // @[RecFNToIN.scala:103:32, :105:{12,23}, :106:31]
wire [31:0] roundedInt = _roundedInt_T_3; // @[RecFNToIN.scala:105:12, :108:11]
wire magGeOne_atOverflowEdge = posExp == 8'h1F; // @[RecFNToIN.scala:62:28, :110:43]
wire [29:0] _roundCarryBut2_T = unroundedInt[29:0]; // @[RecFNToIN.scala:90:40, :113:38]
wire _roundCarryBut2_T_1 = &_roundCarryBut2_T; // @[RecFNToIN.scala:113:{38,56}]
wire roundCarryBut2 = _roundCarryBut2_T_1 & roundIncr; // @[RecFNToIN.scala:101:46, :113:{56,61}]
wire _common_overflow_T = |(posExp[7:5]); // @[RecFNToIN.scala:62:28, :116:21]
wire [30:0] _common_overflow_T_1 = unroundedInt[30:0]; // @[RecFNToIN.scala:90:40, :120:42]
wire _common_overflow_T_2 = |_common_overflow_T_1; // @[RecFNToIN.scala:120:{42,60}]
wire _common_overflow_T_3 = _common_overflow_T_2 | roundIncr; // @[RecFNToIN.scala:101:46, :120:{60,64}]
wire _common_overflow_T_4 = magGeOne_atOverflowEdge & _common_overflow_T_3; // @[RecFNToIN.scala:110:43, :119:49, :120:64]
wire _common_overflow_T_5 = posExp == 8'h1E; // @[RecFNToIN.scala:62:28, :122:38]
wire _common_overflow_T_6 = _common_overflow_T_5 & roundCarryBut2; // @[RecFNToIN.scala:113:61, :122:{38,60}]
wire _common_overflow_T_7 = magGeOne_atOverflowEdge | _common_overflow_T_6; // @[RecFNToIN.scala:110:43, :121:49, :122:60]
wire _common_overflow_T_8 = rawIn_sign ? _common_overflow_T_4 : _common_overflow_T_7; // @[rawFloatFromRecFN.scala:55:23]
wire _common_overflow_T_13 = _common_overflow_T_8; // @[RecFNToIN.scala:117:20, :118:24]
wire _common_overflow_T_9 = unroundedInt[30]; // @[RecFNToIN.scala:90:40, :126:42]
wire _common_overflow_T_10 = magGeOne_atOverflowEdge & _common_overflow_T_9; // @[RecFNToIN.scala:110:43, :125:50, :126:42]
wire _common_overflow_T_11 = _common_overflow_T_10 & roundCarryBut2; // @[RecFNToIN.scala:113:61, :125:50, :126:57]
wire _common_overflow_T_12 = rawIn_sign | _common_overflow_T_11; // @[rawFloatFromRecFN.scala:55:23]
wire _common_overflow_T_14 = _common_overflow_T | _common_overflow_T_13; // @[RecFNToIN.scala:116:{21,36}, :117:20]
wire common_overflow = magGeOne & _common_overflow_T_14; // @[RecFNToIN.scala:61:30, :115:12, :116:36]
wire invalidExc = rawIn_isNaN | rawIn_isInf; // @[rawFloatFromRecFN.scala:55:23]
wire _overflow_T = ~invalidExc; // @[RecFNToIN.scala:133:34, :134:20]
wire overflow = _overflow_T & common_overflow; // @[RecFNToIN.scala:115:12, :134:{20,32}]
wire _inexact_T = ~invalidExc; // @[RecFNToIN.scala:133:34, :134:20, :135:20]
wire _inexact_T_1 = ~common_overflow; // @[RecFNToIN.scala:115:12, :135:35]
wire _inexact_T_2 = _inexact_T & _inexact_T_1; // @[RecFNToIN.scala:135:{20,32,35}]
wire inexact = _inexact_T_2 & common_inexact; // @[RecFNToIN.scala:92:29, :135:{32,52}]
wire _excSign_T = ~rawIn_isNaN; // @[rawFloatFromRecFN.scala:55:23]
wire excSign = _excSign_T & rawIn_sign; // @[rawFloatFromRecFN.scala:55:23]
wire _excOut_T = excSign; // @[RecFNToIN.scala:137:32, :139:27]
wire [31:0] _excOut_T_1 = {_excOut_T, 31'h0}; // @[RecFNToIN.scala:139:{12,27}]
wire _excOut_T_2 = ~excSign; // @[RecFNToIN.scala:137:32, :143:13]
wire [30:0] _excOut_T_3 = {31{_excOut_T_2}}; // @[RecFNToIN.scala:143:{12,13}]
wire [31:0] excOut = {_excOut_T_1[31], _excOut_T_1[30:0] | _excOut_T_3}; // @[RecFNToIN.scala:139:12, :142:11, :143:12]
wire _io_out_T = invalidExc | common_overflow; // @[RecFNToIN.scala:115:12, :133:34, :145:30]
assign _io_out_T_1 = _io_out_T ? excOut : roundedInt; // @[RecFNToIN.scala:108:11, :142:11, :145:{18,30}]
assign io_out_0 = _io_out_T_1; // @[RecFNToIN.scala:46:7, :145:18]
wire [1:0] _io_intExceptionFlags_T = {invalidExc, overflow}; // @[RecFNToIN.scala:133:34, :134:32, :146:40]
assign _io_intExceptionFlags_T_1 = {_io_intExceptionFlags_T, inexact}; // @[RecFNToIN.scala:135:52, :146:{40,52}]
assign io_intExceptionFlags_0 = _io_intExceptionFlags_T_1; // @[RecFNToIN.scala:46:7, :146:52]
assign io_out = io_out_0; // @[RecFNToIN.scala:46:7]
assign io_intExceptionFlags = io_intExceptionFlags_0; // @[RecFNToIN.scala:46:7]
endmodule |
Generate the Verilog code corresponding to the following Chisel files.
File ShiftReg.scala:
// See LICENSE.SiFive for license details.
package freechips.rocketchip.util
import chisel3._
// Similar to the Chisel ShiftRegister but allows the user to suggest a
// name to the registers that get instantiated, and
// to provide a reset value.
object ShiftRegInit {
def apply[T <: Data](in: T, n: Int, init: T, name: Option[String] = None): T =
(0 until n).foldRight(in) {
case (i, next) => {
val r = RegNext(next, init)
name.foreach { na => r.suggestName(s"${na}_${i}") }
r
}
}
}
/** These wrap behavioral
* shift registers into specific modules to allow for
* backend flows to replace or constrain
* them properly when used for CDC synchronization,
* rather than buffering.
*
* The different types vary in their reset behavior:
* AsyncResetShiftReg -- Asynchronously reset register array
* A W(width) x D(depth) sized array is constructed from D instantiations of a
* W-wide register vector. Functionally identical to AsyncResetSyncrhonizerShiftReg,
* but only used for timing applications
*/
abstract class AbstractPipelineReg(w: Int = 1) extends Module {
val io = IO(new Bundle {
val d = Input(UInt(w.W))
val q = Output(UInt(w.W))
}
)
}
object AbstractPipelineReg {
def apply [T <: Data](gen: => AbstractPipelineReg, in: T, name: Option[String] = None): T = {
val chain = Module(gen)
name.foreach{ chain.suggestName(_) }
chain.io.d := in.asUInt
chain.io.q.asTypeOf(in)
}
}
class AsyncResetShiftReg(w: Int = 1, depth: Int = 1, init: Int = 0, name: String = "pipe") extends AbstractPipelineReg(w) {
require(depth > 0, "Depth must be greater than 0.")
override def desiredName = s"AsyncResetShiftReg_w${w}_d${depth}_i${init}"
val chain = List.tabulate(depth) { i =>
Module (new AsyncResetRegVec(w, init)).suggestName(s"${name}_${i}")
}
chain.last.io.d := io.d
chain.last.io.en := true.B
(chain.init zip chain.tail).foreach { case (sink, source) =>
sink.io.d := source.io.q
sink.io.en := true.B
}
io.q := chain.head.io.q
}
object AsyncResetShiftReg {
def apply [T <: Data](in: T, depth: Int, init: Int = 0, name: Option[String] = None): T =
AbstractPipelineReg(new AsyncResetShiftReg(in.getWidth, depth, init), in, name)
def apply [T <: Data](in: T, depth: Int, name: Option[String]): T =
apply(in, depth, 0, name)
def apply [T <: Data](in: T, depth: Int, init: T, name: Option[String]): T =
apply(in, depth, init.litValue.toInt, name)
def apply [T <: Data](in: T, depth: Int, init: T): T =
apply (in, depth, init.litValue.toInt, None)
}
File SynchronizerReg.scala:
// See LICENSE.SiFive for license details.
package freechips.rocketchip.util
import chisel3._
import chisel3.util.{RegEnable, Cat}
/** These wrap behavioral
* shift and next registers into specific modules to allow for
* backend flows to replace or constrain
* them properly when used for CDC synchronization,
* rather than buffering.
*
*
* These are built up of *ResetSynchronizerPrimitiveShiftReg,
* intended to be replaced by the integrator's metastable flops chains or replaced
* at this level if they have a multi-bit wide synchronizer primitive.
* The different types vary in their reset behavior:
* NonSyncResetSynchronizerShiftReg -- Register array which does not have a reset pin
* AsyncResetSynchronizerShiftReg -- Asynchronously reset register array, constructed from W instantiations of D deep
* 1-bit-wide shift registers.
* SyncResetSynchronizerShiftReg -- Synchronously reset register array, constructed similarly to AsyncResetSynchronizerShiftReg
*
* [Inferred]ResetSynchronizerShiftReg -- TBD reset type by chisel3 reset inference.
*
* ClockCrossingReg -- Not made up of SynchronizerPrimitiveShiftReg. This is for single-deep flops which cross
* Clock Domains.
*/
object SynchronizerResetType extends Enumeration {
val NonSync, Inferred, Sync, Async = Value
}
// Note: this should not be used directly.
// Use the companion object to generate this with the correct reset type mixin.
private class SynchronizerPrimitiveShiftReg(
sync: Int,
init: Boolean,
resetType: SynchronizerResetType.Value)
extends AbstractPipelineReg(1) {
val initInt = if (init) 1 else 0
val initPostfix = resetType match {
case SynchronizerResetType.NonSync => ""
case _ => s"_i${initInt}"
}
override def desiredName = s"${resetType.toString}ResetSynchronizerPrimitiveShiftReg_d${sync}${initPostfix}"
val chain = List.tabulate(sync) { i =>
val reg = if (resetType == SynchronizerResetType.NonSync) Reg(Bool()) else RegInit(init.B)
reg.suggestName(s"sync_$i")
}
chain.last := io.d.asBool
(chain.init zip chain.tail).foreach { case (sink, source) =>
sink := source
}
io.q := chain.head.asUInt
}
private object SynchronizerPrimitiveShiftReg {
def apply (in: Bool, sync: Int, init: Boolean, resetType: SynchronizerResetType.Value): Bool = {
val gen: () => SynchronizerPrimitiveShiftReg = resetType match {
case SynchronizerResetType.NonSync =>
() => new SynchronizerPrimitiveShiftReg(sync, init, resetType)
case SynchronizerResetType.Async =>
() => new SynchronizerPrimitiveShiftReg(sync, init, resetType) with RequireAsyncReset
case SynchronizerResetType.Sync =>
() => new SynchronizerPrimitiveShiftReg(sync, init, resetType) with RequireSyncReset
case SynchronizerResetType.Inferred =>
() => new SynchronizerPrimitiveShiftReg(sync, init, resetType)
}
AbstractPipelineReg(gen(), in)
}
}
// Note: This module may end up with a non-AsyncReset type reset.
// But the Primitives within will always have AsyncReset type.
class AsyncResetSynchronizerShiftReg(w: Int = 1, sync: Int, init: Int)
extends AbstractPipelineReg(w) {
require(sync > 1, s"Sync must be greater than 1, not ${sync}.")
override def desiredName = s"AsyncResetSynchronizerShiftReg_w${w}_d${sync}_i${init}"
val output = Seq.tabulate(w) { i =>
val initBit = ((init >> i) & 1) > 0
withReset(reset.asAsyncReset){
SynchronizerPrimitiveShiftReg(io.d(i), sync, initBit, SynchronizerResetType.Async)
}
}
io.q := Cat(output.reverse)
}
object AsyncResetSynchronizerShiftReg {
def apply [T <: Data](in: T, sync: Int, init: Int, name: Option[String] = None): T =
AbstractPipelineReg(new AsyncResetSynchronizerShiftReg(in.getWidth, sync, init), in, name)
def apply [T <: Data](in: T, sync: Int, name: Option[String]): T =
apply (in, sync, 0, name)
def apply [T <: Data](in: T, sync: Int): T =
apply (in, sync, 0, None)
def apply [T <: Data](in: T, sync: Int, init: T, name: Option[String]): T =
apply(in, sync, init.litValue.toInt, name)
def apply [T <: Data](in: T, sync: Int, init: T): T =
apply (in, sync, init.litValue.toInt, None)
}
// Note: This module may end up with a non-Bool type reset.
// But the Primitives within will always have Bool reset type.
@deprecated("SyncResetSynchronizerShiftReg is unecessary with Chisel3 inferred resets. Use ResetSynchronizerShiftReg which will use the inferred reset type.", "rocket-chip 1.2")
class SyncResetSynchronizerShiftReg(w: Int = 1, sync: Int, init: Int) extends AbstractPipelineReg(w) {
require(sync > 1, s"Sync must be greater than 1, not ${sync}.")
override def desiredName = s"SyncResetSynchronizerShiftReg_w${w}_d${sync}_i${init}"
val output = Seq.tabulate(w) { i =>
val initBit = ((init >> i) & 1) > 0
withReset(reset.asBool){
SynchronizerPrimitiveShiftReg(io.d(i), sync, initBit, SynchronizerResetType.Sync)
}
}
io.q := Cat(output.reverse)
}
object SyncResetSynchronizerShiftReg {
def apply [T <: Data](in: T, sync: Int, init: Int, name: Option[String] = None): T =
if (sync == 0) in else AbstractPipelineReg(new SyncResetSynchronizerShiftReg(in.getWidth, sync, init), in, name)
def apply [T <: Data](in: T, sync: Int, name: Option[String]): T =
apply (in, sync, 0, name)
def apply [T <: Data](in: T, sync: Int): T =
apply (in, sync, 0, None)
def apply [T <: Data](in: T, sync: Int, init: T, name: Option[String]): T =
apply(in, sync, init.litValue.toInt, name)
def apply [T <: Data](in: T, sync: Int, init: T): T =
apply (in, sync, init.litValue.toInt, None)
}
class ResetSynchronizerShiftReg(w: Int = 1, sync: Int, init: Int) extends AbstractPipelineReg(w) {
require(sync > 1, s"Sync must be greater than 1, not ${sync}.")
override def desiredName = s"ResetSynchronizerShiftReg_w${w}_d${sync}_i${init}"
val output = Seq.tabulate(w) { i =>
val initBit = ((init >> i) & 1) > 0
SynchronizerPrimitiveShiftReg(io.d(i), sync, initBit, SynchronizerResetType.Inferred)
}
io.q := Cat(output.reverse)
}
object ResetSynchronizerShiftReg {
def apply [T <: Data](in: T, sync: Int, init: Int, name: Option[String] = None): T =
AbstractPipelineReg(new ResetSynchronizerShiftReg(in.getWidth, sync, init), in, name)
def apply [T <: Data](in: T, sync: Int, name: Option[String]): T =
apply (in, sync, 0, name)
def apply [T <: Data](in: T, sync: Int): T =
apply (in, sync, 0, None)
def apply [T <: Data](in: T, sync: Int, init: T, name: Option[String]): T =
apply(in, sync, init.litValue.toInt, name)
def apply [T <: Data](in: T, sync: Int, init: T): T =
apply (in, sync, init.litValue.toInt, None)
}
class SynchronizerShiftReg(w: Int = 1, sync: Int = 3) extends AbstractPipelineReg(w) {
require(sync > 1, s"Sync must be greater than 1, not ${sync}.")
override def desiredName = s"SynchronizerShiftReg_w${w}_d${sync}"
val output = Seq.tabulate(w) { i =>
SynchronizerPrimitiveShiftReg(io.d(i), sync, false, SynchronizerResetType.NonSync)
}
io.q := Cat(output.reverse)
}
object SynchronizerShiftReg {
def apply [T <: Data](in: T, sync: Int, name: Option[String] = None): T =
if (sync == 0) in else AbstractPipelineReg(new SynchronizerShiftReg(in.getWidth, sync), in, name)
def apply [T <: Data](in: T, sync: Int): T =
apply (in, sync, None)
def apply [T <: Data](in: T): T =
apply (in, 3, None)
}
class ClockCrossingReg(w: Int = 1, doInit: Boolean) extends Module {
override def desiredName = s"ClockCrossingReg_w${w}"
val io = IO(new Bundle{
val d = Input(UInt(w.W))
val q = Output(UInt(w.W))
val en = Input(Bool())
})
val cdc_reg = if (doInit) RegEnable(io.d, 0.U(w.W), io.en) else RegEnable(io.d, io.en)
io.q := cdc_reg
}
object ClockCrossingReg {
def apply [T <: Data](in: T, en: Bool, doInit: Boolean, name: Option[String] = None): T = {
val cdc_reg = Module(new ClockCrossingReg(in.getWidth, doInit))
name.foreach{ cdc_reg.suggestName(_) }
cdc_reg.io.d := in.asUInt
cdc_reg.io.en := en
cdc_reg.io.q.asTypeOf(in)
}
}
| module AsyncResetSynchronizerShiftReg_w1_d3_i0_139( // @[SynchronizerReg.scala:80:7]
input clock, // @[SynchronizerReg.scala:80:7]
input reset, // @[SynchronizerReg.scala:80:7]
input io_d, // @[ShiftReg.scala:36:14]
output io_q // @[ShiftReg.scala:36:14]
);
wire io_d_0 = io_d; // @[SynchronizerReg.scala:80:7]
wire _output_T = reset; // @[SynchronizerReg.scala:86:21]
wire _output_T_1 = io_d_0; // @[SynchronizerReg.scala:80:7, :87:41]
wire output_0; // @[ShiftReg.scala:48:24]
wire io_q_0; // @[SynchronizerReg.scala:80:7]
assign io_q_0 = output_0; // @[SynchronizerReg.scala:80:7]
AsyncResetSynchronizerPrimitiveShiftReg_d3_i0_243 output_chain ( // @[ShiftReg.scala:45:23]
.clock (clock),
.reset (_output_T), // @[SynchronizerReg.scala:86:21]
.io_d (_output_T_1), // @[SynchronizerReg.scala:87:41]
.io_q (output_0)
); // @[ShiftReg.scala:45:23]
assign io_q = io_q_0; // @[SynchronizerReg.scala:80:7]
endmodule |
Generate the Verilog code corresponding to the following Chisel files.
File Repeater.scala:
// See LICENSE.SiFive for license details.
package freechips.rocketchip.util
import chisel3._
import chisel3.util.{Decoupled, DecoupledIO}
// A Repeater passes its input to its output, unless repeat is asserted.
// When repeat is asserted, the Repeater copies the input and repeats it next cycle.
class Repeater[T <: Data](gen: T) extends Module
{
override def desiredName = s"Repeater_${gen.typeName}"
val io = IO( new Bundle {
val repeat = Input(Bool())
val full = Output(Bool())
val enq = Flipped(Decoupled(gen.cloneType))
val deq = Decoupled(gen.cloneType)
} )
val full = RegInit(false.B)
val saved = Reg(gen.cloneType)
// When !full, a repeater is pass-through
io.deq.valid := io.enq.valid || full
io.enq.ready := io.deq.ready && !full
io.deq.bits := Mux(full, saved, io.enq.bits)
io.full := full
when (io.enq.fire && io.repeat) { full := true.B; saved := io.enq.bits }
when (io.deq.fire && !io.repeat) { full := false.B }
}
object Repeater
{
def apply[T <: Data](enq: DecoupledIO[T], repeat: Bool): DecoupledIO[T] = {
val repeater = Module(new Repeater(chiselTypeOf(enq.bits)))
repeater.io.repeat := repeat
repeater.io.enq <> enq
repeater.io.deq
}
}
| module Repeater_TLBundleD_a32d64s1k5z4u( // @[Repeater.scala:10:7]
input clock, // @[Repeater.scala:10:7]
input reset, // @[Repeater.scala:10:7]
input io_repeat, // @[Repeater.scala:13:14]
output io_enq_ready, // @[Repeater.scala:13:14]
input io_enq_valid, // @[Repeater.scala:13:14]
input [2:0] io_enq_bits_opcode, // @[Repeater.scala:13:14]
input [1:0] io_enq_bits_param, // @[Repeater.scala:13:14]
input [3:0] io_enq_bits_size, // @[Repeater.scala:13:14]
input [4:0] io_enq_bits_sink, // @[Repeater.scala:13:14]
input io_enq_bits_denied, // @[Repeater.scala:13:14]
input [63:0] io_enq_bits_data, // @[Repeater.scala:13:14]
input io_enq_bits_corrupt, // @[Repeater.scala:13:14]
input io_deq_ready, // @[Repeater.scala:13:14]
output io_deq_valid, // @[Repeater.scala:13:14]
output [2:0] io_deq_bits_opcode, // @[Repeater.scala:13:14]
output [1:0] io_deq_bits_param, // @[Repeater.scala:13:14]
output [3:0] io_deq_bits_size, // @[Repeater.scala:13:14]
output [4:0] io_deq_bits_sink, // @[Repeater.scala:13:14]
output io_deq_bits_denied, // @[Repeater.scala:13:14]
output [63:0] io_deq_bits_data, // @[Repeater.scala:13:14]
output io_deq_bits_corrupt // @[Repeater.scala:13:14]
);
wire io_repeat_0 = io_repeat; // @[Repeater.scala:10:7]
wire io_enq_valid_0 = io_enq_valid; // @[Repeater.scala:10:7]
wire [2:0] io_enq_bits_opcode_0 = io_enq_bits_opcode; // @[Repeater.scala:10:7]
wire [1:0] io_enq_bits_param_0 = io_enq_bits_param; // @[Repeater.scala:10:7]
wire [3:0] io_enq_bits_size_0 = io_enq_bits_size; // @[Repeater.scala:10:7]
wire [4:0] io_enq_bits_sink_0 = io_enq_bits_sink; // @[Repeater.scala:10:7]
wire io_enq_bits_denied_0 = io_enq_bits_denied; // @[Repeater.scala:10:7]
wire [63:0] io_enq_bits_data_0 = io_enq_bits_data; // @[Repeater.scala:10:7]
wire io_enq_bits_corrupt_0 = io_enq_bits_corrupt; // @[Repeater.scala:10:7]
wire io_deq_ready_0 = io_deq_ready; // @[Repeater.scala:10:7]
wire io_enq_bits_source = 1'h0; // @[Repeater.scala:10:7]
wire io_deq_bits_source = 1'h0; // @[Repeater.scala:10:7]
wire _io_deq_bits_T_source = 1'h0; // @[Repeater.scala:26:21]
wire _io_enq_ready_T_1; // @[Repeater.scala:25:32]
wire _io_deq_valid_T; // @[Repeater.scala:24:32]
wire [2:0] _io_deq_bits_T_opcode; // @[Repeater.scala:26:21]
wire [1:0] _io_deq_bits_T_param; // @[Repeater.scala:26:21]
wire [3:0] _io_deq_bits_T_size; // @[Repeater.scala:26:21]
wire [4:0] _io_deq_bits_T_sink; // @[Repeater.scala:26:21]
wire _io_deq_bits_T_denied; // @[Repeater.scala:26:21]
wire [63:0] _io_deq_bits_T_data; // @[Repeater.scala:26:21]
wire _io_deq_bits_T_corrupt; // @[Repeater.scala:26:21]
wire io_enq_ready_0; // @[Repeater.scala:10:7]
wire [2:0] io_deq_bits_opcode_0; // @[Repeater.scala:10:7]
wire [1:0] io_deq_bits_param_0; // @[Repeater.scala:10:7]
wire [3:0] io_deq_bits_size_0; // @[Repeater.scala:10:7]
wire [4:0] io_deq_bits_sink_0; // @[Repeater.scala:10:7]
wire io_deq_bits_denied_0; // @[Repeater.scala:10:7]
wire [63:0] io_deq_bits_data_0; // @[Repeater.scala:10:7]
wire io_deq_bits_corrupt_0; // @[Repeater.scala:10:7]
wire io_deq_valid_0; // @[Repeater.scala:10:7]
wire io_full; // @[Repeater.scala:10:7]
reg full; // @[Repeater.scala:20:21]
assign io_full = full; // @[Repeater.scala:10:7, :20:21]
reg [2:0] saved_opcode; // @[Repeater.scala:21:18]
reg [1:0] saved_param; // @[Repeater.scala:21:18]
reg [3:0] saved_size; // @[Repeater.scala:21:18]
reg [4:0] saved_sink; // @[Repeater.scala:21:18]
reg saved_denied; // @[Repeater.scala:21:18]
reg [63:0] saved_data; // @[Repeater.scala:21:18]
reg saved_corrupt; // @[Repeater.scala:21:18]
assign _io_deq_valid_T = io_enq_valid_0 | full; // @[Repeater.scala:10:7, :20:21, :24:32]
assign io_deq_valid_0 = _io_deq_valid_T; // @[Repeater.scala:10:7, :24:32]
wire _io_enq_ready_T = ~full; // @[Repeater.scala:20:21, :25:35]
assign _io_enq_ready_T_1 = io_deq_ready_0 & _io_enq_ready_T; // @[Repeater.scala:10:7, :25:{32,35}]
assign io_enq_ready_0 = _io_enq_ready_T_1; // @[Repeater.scala:10:7, :25:32]
assign _io_deq_bits_T_opcode = full ? saved_opcode : io_enq_bits_opcode_0; // @[Repeater.scala:10:7, :20:21, :21:18, :26:21]
assign _io_deq_bits_T_param = full ? saved_param : io_enq_bits_param_0; // @[Repeater.scala:10:7, :20:21, :21:18, :26:21]
assign _io_deq_bits_T_size = full ? saved_size : io_enq_bits_size_0; // @[Repeater.scala:10:7, :20:21, :21:18, :26:21]
assign _io_deq_bits_T_sink = full ? saved_sink : io_enq_bits_sink_0; // @[Repeater.scala:10:7, :20:21, :21:18, :26:21]
assign _io_deq_bits_T_denied = full ? saved_denied : io_enq_bits_denied_0; // @[Repeater.scala:10:7, :20:21, :21:18, :26:21]
assign _io_deq_bits_T_data = full ? saved_data : io_enq_bits_data_0; // @[Repeater.scala:10:7, :20:21, :21:18, :26:21]
assign _io_deq_bits_T_corrupt = full ? saved_corrupt : io_enq_bits_corrupt_0; // @[Repeater.scala:10:7, :20:21, :21:18, :26:21]
assign io_deq_bits_opcode_0 = _io_deq_bits_T_opcode; // @[Repeater.scala:10:7, :26:21]
assign io_deq_bits_param_0 = _io_deq_bits_T_param; // @[Repeater.scala:10:7, :26:21]
assign io_deq_bits_size_0 = _io_deq_bits_T_size; // @[Repeater.scala:10:7, :26:21]
assign io_deq_bits_sink_0 = _io_deq_bits_T_sink; // @[Repeater.scala:10:7, :26:21]
assign io_deq_bits_denied_0 = _io_deq_bits_T_denied; // @[Repeater.scala:10:7, :26:21]
assign io_deq_bits_data_0 = _io_deq_bits_T_data; // @[Repeater.scala:10:7, :26:21]
assign io_deq_bits_corrupt_0 = _io_deq_bits_T_corrupt; // @[Repeater.scala:10:7, :26:21]
wire _T_1 = io_enq_ready_0 & io_enq_valid_0 & io_repeat_0; // @[Decoupled.scala:51:35]
always @(posedge clock) begin // @[Repeater.scala:10:7]
if (reset) // @[Repeater.scala:10:7]
full <= 1'h0; // @[Repeater.scala:20:21]
else // @[Repeater.scala:10:7]
full <= ~(io_deq_ready_0 & io_deq_valid_0 & ~io_repeat_0) & (_T_1 | full); // @[Decoupled.scala:51:35]
if (_T_1) begin // @[Decoupled.scala:51:35]
saved_opcode <= io_enq_bits_opcode_0; // @[Repeater.scala:10:7, :21:18]
saved_param <= io_enq_bits_param_0; // @[Repeater.scala:10:7, :21:18]
saved_size <= io_enq_bits_size_0; // @[Repeater.scala:10:7, :21:18]
saved_sink <= io_enq_bits_sink_0; // @[Repeater.scala:10:7, :21:18]
saved_denied <= io_enq_bits_denied_0; // @[Repeater.scala:10:7, :21:18]
saved_data <= io_enq_bits_data_0; // @[Repeater.scala:10:7, :21:18]
saved_corrupt <= io_enq_bits_corrupt_0; // @[Repeater.scala:10:7, :21:18]
end
always @(posedge)
assign io_enq_ready = io_enq_ready_0; // @[Repeater.scala:10:7]
assign io_deq_valid = io_deq_valid_0; // @[Repeater.scala:10:7]
assign io_deq_bits_opcode = io_deq_bits_opcode_0; // @[Repeater.scala:10:7]
assign io_deq_bits_param = io_deq_bits_param_0; // @[Repeater.scala:10:7]
assign io_deq_bits_size = io_deq_bits_size_0; // @[Repeater.scala:10:7]
assign io_deq_bits_sink = io_deq_bits_sink_0; // @[Repeater.scala:10:7]
assign io_deq_bits_denied = io_deq_bits_denied_0; // @[Repeater.scala:10:7]
assign io_deq_bits_data = io_deq_bits_data_0; // @[Repeater.scala:10:7]
assign io_deq_bits_corrupt = io_deq_bits_corrupt_0; // @[Repeater.scala:10:7]
endmodule |
Generate the Verilog code corresponding to the following Chisel files.
File ShiftReg.scala:
// See LICENSE.SiFive for license details.
package freechips.rocketchip.util
import chisel3._
// Similar to the Chisel ShiftRegister but allows the user to suggest a
// name to the registers that get instantiated, and
// to provide a reset value.
object ShiftRegInit {
def apply[T <: Data](in: T, n: Int, init: T, name: Option[String] = None): T =
(0 until n).foldRight(in) {
case (i, next) => {
val r = RegNext(next, init)
name.foreach { na => r.suggestName(s"${na}_${i}") }
r
}
}
}
/** These wrap behavioral
* shift registers into specific modules to allow for
* backend flows to replace or constrain
* them properly when used for CDC synchronization,
* rather than buffering.
*
* The different types vary in their reset behavior:
* AsyncResetShiftReg -- Asynchronously reset register array
* A W(width) x D(depth) sized array is constructed from D instantiations of a
* W-wide register vector. Functionally identical to AsyncResetSyncrhonizerShiftReg,
* but only used for timing applications
*/
abstract class AbstractPipelineReg(w: Int = 1) extends Module {
val io = IO(new Bundle {
val d = Input(UInt(w.W))
val q = Output(UInt(w.W))
}
)
}
object AbstractPipelineReg {
def apply [T <: Data](gen: => AbstractPipelineReg, in: T, name: Option[String] = None): T = {
val chain = Module(gen)
name.foreach{ chain.suggestName(_) }
chain.io.d := in.asUInt
chain.io.q.asTypeOf(in)
}
}
class AsyncResetShiftReg(w: Int = 1, depth: Int = 1, init: Int = 0, name: String = "pipe") extends AbstractPipelineReg(w) {
require(depth > 0, "Depth must be greater than 0.")
override def desiredName = s"AsyncResetShiftReg_w${w}_d${depth}_i${init}"
val chain = List.tabulate(depth) { i =>
Module (new AsyncResetRegVec(w, init)).suggestName(s"${name}_${i}")
}
chain.last.io.d := io.d
chain.last.io.en := true.B
(chain.init zip chain.tail).foreach { case (sink, source) =>
sink.io.d := source.io.q
sink.io.en := true.B
}
io.q := chain.head.io.q
}
object AsyncResetShiftReg {
def apply [T <: Data](in: T, depth: Int, init: Int = 0, name: Option[String] = None): T =
AbstractPipelineReg(new AsyncResetShiftReg(in.getWidth, depth, init), in, name)
def apply [T <: Data](in: T, depth: Int, name: Option[String]): T =
apply(in, depth, 0, name)
def apply [T <: Data](in: T, depth: Int, init: T, name: Option[String]): T =
apply(in, depth, init.litValue.toInt, name)
def apply [T <: Data](in: T, depth: Int, init: T): T =
apply (in, depth, init.litValue.toInt, None)
}
File AsyncQueue.scala:
// See LICENSE.SiFive for license details.
package freechips.rocketchip.util
import chisel3._
import chisel3.util._
case class AsyncQueueParams(
depth: Int = 8,
sync: Int = 3,
safe: Boolean = true,
// If safe is true, then effort is made to resynchronize the crossing indices when either side is reset.
// This makes it safe/possible to reset one side of the crossing (but not the other) when the queue is empty.
narrow: Boolean = false)
// If narrow is true then the read mux is moved to the source side of the crossing.
// This reduces the number of level shifters in the case where the clock crossing is also a voltage crossing,
// at the expense of a combinational path from the sink to the source and back to the sink.
{
require (depth > 0 && isPow2(depth))
require (sync >= 2)
val bits = log2Ceil(depth)
val wires = if (narrow) 1 else depth
}
object AsyncQueueParams {
// When there is only one entry, we don't need narrow.
def singleton(sync: Int = 3, safe: Boolean = true) = AsyncQueueParams(1, sync, safe, false)
}
class AsyncBundleSafety extends Bundle {
val ridx_valid = Input (Bool())
val widx_valid = Output(Bool())
val source_reset_n = Output(Bool())
val sink_reset_n = Input (Bool())
}
class AsyncBundle[T <: Data](private val gen: T, val params: AsyncQueueParams = AsyncQueueParams()) extends Bundle {
// Data-path synchronization
val mem = Output(Vec(params.wires, gen))
val ridx = Input (UInt((params.bits+1).W))
val widx = Output(UInt((params.bits+1).W))
val index = params.narrow.option(Input(UInt(params.bits.W)))
// Signals used to self-stabilize a safe AsyncQueue
val safe = params.safe.option(new AsyncBundleSafety)
}
object GrayCounter {
def apply(bits: Int, increment: Bool = true.B, clear: Bool = false.B, name: String = "binary"): UInt = {
val incremented = Wire(UInt(bits.W))
val binary = RegNext(next=incremented, init=0.U).suggestName(name)
incremented := Mux(clear, 0.U, binary + increment.asUInt)
incremented ^ (incremented >> 1)
}
}
class AsyncValidSync(sync: Int, desc: String) extends RawModule {
val io = IO(new Bundle {
val in = Input(Bool())
val out = Output(Bool())
})
val clock = IO(Input(Clock()))
val reset = IO(Input(AsyncReset()))
withClockAndReset(clock, reset){
io.out := AsyncResetSynchronizerShiftReg(io.in, sync, Some(desc))
}
}
class AsyncQueueSource[T <: Data](gen: T, params: AsyncQueueParams = AsyncQueueParams()) extends Module {
override def desiredName = s"AsyncQueueSource_${gen.typeName}"
val io = IO(new Bundle {
// These come from the source domain
val enq = Flipped(Decoupled(gen))
// These cross to the sink clock domain
val async = new AsyncBundle(gen, params)
})
val bits = params.bits
val sink_ready = WireInit(true.B)
val mem = Reg(Vec(params.depth, gen)) // This does NOT need to be reset at all.
val widx = withReset(reset.asAsyncReset)(GrayCounter(bits+1, io.enq.fire, !sink_ready, "widx_bin"))
val ridx = AsyncResetSynchronizerShiftReg(io.async.ridx, params.sync, Some("ridx_gray"))
val ready = sink_ready && widx =/= (ridx ^ (params.depth | params.depth >> 1).U)
val index = if (bits == 0) 0.U else io.async.widx(bits-1, 0) ^ (io.async.widx(bits, bits) << (bits-1))
when (io.enq.fire) { mem(index) := io.enq.bits }
val ready_reg = withReset(reset.asAsyncReset)(RegNext(next=ready, init=false.B).suggestName("ready_reg"))
io.enq.ready := ready_reg && sink_ready
val widx_reg = withReset(reset.asAsyncReset)(RegNext(next=widx, init=0.U).suggestName("widx_gray"))
io.async.widx := widx_reg
io.async.index match {
case Some(index) => io.async.mem(0) := mem(index)
case None => io.async.mem := mem
}
io.async.safe.foreach { sio =>
val source_valid_0 = Module(new AsyncValidSync(params.sync, "source_valid_0"))
val source_valid_1 = Module(new AsyncValidSync(params.sync, "source_valid_1"))
val sink_extend = Module(new AsyncValidSync(params.sync, "sink_extend"))
val sink_valid = Module(new AsyncValidSync(params.sync, "sink_valid"))
source_valid_0.reset := (reset.asBool || !sio.sink_reset_n).asAsyncReset
source_valid_1.reset := (reset.asBool || !sio.sink_reset_n).asAsyncReset
sink_extend .reset := (reset.asBool || !sio.sink_reset_n).asAsyncReset
sink_valid .reset := reset.asAsyncReset
source_valid_0.clock := clock
source_valid_1.clock := clock
sink_extend .clock := clock
sink_valid .clock := clock
source_valid_0.io.in := true.B
source_valid_1.io.in := source_valid_0.io.out
sio.widx_valid := source_valid_1.io.out
sink_extend.io.in := sio.ridx_valid
sink_valid.io.in := sink_extend.io.out
sink_ready := sink_valid.io.out
sio.source_reset_n := !reset.asBool
// Assert that if there is stuff in the queue, then reset cannot happen
// Impossible to write because dequeue can occur on the receiving side,
// then reset allowed to happen, but write side cannot know that dequeue
// occurred.
// TODO: write some sort of sanity check assertion for users
// that denote don't reset when there is activity
// assert (!(reset || !sio.sink_reset_n) || !io.enq.valid, "Enqueue while sink is reset and AsyncQueueSource is unprotected")
// assert (!reset_rise || prev_idx_match.asBool, "Sink reset while AsyncQueueSource not empty")
}
}
class AsyncQueueSink[T <: Data](gen: T, params: AsyncQueueParams = AsyncQueueParams()) extends Module {
override def desiredName = s"AsyncQueueSink_${gen.typeName}"
val io = IO(new Bundle {
// These come from the sink domain
val deq = Decoupled(gen)
// These cross to the source clock domain
val async = Flipped(new AsyncBundle(gen, params))
})
val bits = params.bits
val source_ready = WireInit(true.B)
val ridx = withReset(reset.asAsyncReset)(GrayCounter(bits+1, io.deq.fire, !source_ready, "ridx_bin"))
val widx = AsyncResetSynchronizerShiftReg(io.async.widx, params.sync, Some("widx_gray"))
val valid = source_ready && ridx =/= widx
// The mux is safe because timing analysis ensures ridx has reached the register
// On an ASIC, changes to the unread location cannot affect the selected value
// On an FPGA, only one input changes at a time => mem updates don't cause glitches
// The register only latches when the selected valued is not being written
val index = if (bits == 0) 0.U else ridx(bits-1, 0) ^ (ridx(bits, bits) << (bits-1))
io.async.index.foreach { _ := index }
// This register does not NEED to be reset, as its contents will not
// be considered unless the asynchronously reset deq valid register is set.
// It is possible that bits latches when the source domain is reset / has power cut
// This is safe, because isolation gates brought mem low before the zeroed widx reached us
val deq_bits_nxt = io.async.mem(if (params.narrow) 0.U else index)
io.deq.bits := ClockCrossingReg(deq_bits_nxt, en = valid, doInit = false, name = Some("deq_bits_reg"))
val valid_reg = withReset(reset.asAsyncReset)(RegNext(next=valid, init=false.B).suggestName("valid_reg"))
io.deq.valid := valid_reg && source_ready
val ridx_reg = withReset(reset.asAsyncReset)(RegNext(next=ridx, init=0.U).suggestName("ridx_gray"))
io.async.ridx := ridx_reg
io.async.safe.foreach { sio =>
val sink_valid_0 = Module(new AsyncValidSync(params.sync, "sink_valid_0"))
val sink_valid_1 = Module(new AsyncValidSync(params.sync, "sink_valid_1"))
val source_extend = Module(new AsyncValidSync(params.sync, "source_extend"))
val source_valid = Module(new AsyncValidSync(params.sync, "source_valid"))
sink_valid_0 .reset := (reset.asBool || !sio.source_reset_n).asAsyncReset
sink_valid_1 .reset := (reset.asBool || !sio.source_reset_n).asAsyncReset
source_extend.reset := (reset.asBool || !sio.source_reset_n).asAsyncReset
source_valid .reset := reset.asAsyncReset
sink_valid_0 .clock := clock
sink_valid_1 .clock := clock
source_extend.clock := clock
source_valid .clock := clock
sink_valid_0.io.in := true.B
sink_valid_1.io.in := sink_valid_0.io.out
sio.ridx_valid := sink_valid_1.io.out
source_extend.io.in := sio.widx_valid
source_valid.io.in := source_extend.io.out
source_ready := source_valid.io.out
sio.sink_reset_n := !reset.asBool
// TODO: write some sort of sanity check assertion for users
// that denote don't reset when there is activity
//
// val reset_and_extend = !source_ready || !sio.source_reset_n || reset.asBool
// val reset_and_extend_prev = RegNext(reset_and_extend, true.B)
// val reset_rise = !reset_and_extend_prev && reset_and_extend
// val prev_idx_match = AsyncResetReg(updateData=(io.async.widx===io.async.ridx), resetData=0)
// assert (!reset_rise || prev_idx_match.asBool, "Source reset while AsyncQueueSink not empty")
}
}
object FromAsyncBundle
{
// Sometimes it makes sense for the sink to have different sync than the source
def apply[T <: Data](x: AsyncBundle[T]): DecoupledIO[T] = apply(x, x.params.sync)
def apply[T <: Data](x: AsyncBundle[T], sync: Int): DecoupledIO[T] = {
val sink = Module(new AsyncQueueSink(chiselTypeOf(x.mem(0)), x.params.copy(sync = sync)))
sink.io.async <> x
sink.io.deq
}
}
object ToAsyncBundle
{
def apply[T <: Data](x: ReadyValidIO[T], params: AsyncQueueParams = AsyncQueueParams()): AsyncBundle[T] = {
val source = Module(new AsyncQueueSource(chiselTypeOf(x.bits), params))
source.io.enq <> x
source.io.async
}
}
class AsyncQueue[T <: Data](gen: T, params: AsyncQueueParams = AsyncQueueParams()) extends Crossing[T] {
val io = IO(new CrossingIO(gen))
val source = withClockAndReset(io.enq_clock, io.enq_reset) { Module(new AsyncQueueSource(gen, params)) }
val sink = withClockAndReset(io.deq_clock, io.deq_reset) { Module(new AsyncQueueSink (gen, params)) }
source.io.enq <> io.enq
io.deq <> sink.io.deq
sink.io.async <> source.io.async
}
| module AsyncQueueSource_Phit_5( // @[AsyncQueue.scala:70:7]
input clock, // @[AsyncQueue.scala:70:7]
input reset, // @[AsyncQueue.scala:70:7]
output io_enq_ready, // @[AsyncQueue.scala:73:14]
input io_enq_valid, // @[AsyncQueue.scala:73:14]
input [31:0] io_enq_bits_phit, // @[AsyncQueue.scala:73:14]
output [31:0] io_async_mem_0_phit, // @[AsyncQueue.scala:73:14]
output [31:0] io_async_mem_1_phit, // @[AsyncQueue.scala:73:14]
output [31:0] io_async_mem_2_phit, // @[AsyncQueue.scala:73:14]
output [31:0] io_async_mem_3_phit, // @[AsyncQueue.scala:73:14]
output [31:0] io_async_mem_4_phit, // @[AsyncQueue.scala:73:14]
output [31:0] io_async_mem_5_phit, // @[AsyncQueue.scala:73:14]
output [31:0] io_async_mem_6_phit, // @[AsyncQueue.scala:73:14]
output [31:0] io_async_mem_7_phit, // @[AsyncQueue.scala:73:14]
input [3:0] io_async_ridx, // @[AsyncQueue.scala:73:14]
output [3:0] io_async_widx, // @[AsyncQueue.scala:73:14]
input io_async_safe_ridx_valid, // @[AsyncQueue.scala:73:14]
output io_async_safe_widx_valid, // @[AsyncQueue.scala:73:14]
output io_async_safe_source_reset_n, // @[AsyncQueue.scala:73:14]
input io_async_safe_sink_reset_n // @[AsyncQueue.scala:73:14]
);
wire _sink_extend_io_out; // @[AsyncQueue.scala:105:30]
wire _source_valid_0_io_out; // @[AsyncQueue.scala:102:32]
wire io_enq_valid_0 = io_enq_valid; // @[AsyncQueue.scala:70:7]
wire [31:0] io_enq_bits_phit_0 = io_enq_bits_phit; // @[AsyncQueue.scala:70:7]
wire [3:0] io_async_ridx_0 = io_async_ridx; // @[AsyncQueue.scala:70:7]
wire io_async_safe_ridx_valid_0 = io_async_safe_ridx_valid; // @[AsyncQueue.scala:70:7]
wire io_async_safe_sink_reset_n_0 = io_async_safe_sink_reset_n; // @[AsyncQueue.scala:70:7]
wire _widx_T = reset; // @[AsyncQueue.scala:83:30]
wire _ready_reg_T = reset; // @[AsyncQueue.scala:90:35]
wire _widx_reg_T = reset; // @[AsyncQueue.scala:93:34]
wire _source_valid_0_reset_T = reset; // @[AsyncQueue.scala:107:36]
wire _source_valid_1_reset_T = reset; // @[AsyncQueue.scala:108:36]
wire _sink_extend_reset_T = reset; // @[AsyncQueue.scala:109:36]
wire _sink_valid_reset_T = reset; // @[AsyncQueue.scala:110:35]
wire _io_async_safe_source_reset_n_T = reset; // @[AsyncQueue.scala:123:34]
wire _io_enq_ready_T; // @[AsyncQueue.scala:91:29]
wire _io_async_safe_source_reset_n_T_1; // @[AsyncQueue.scala:123:27]
wire io_enq_ready_0; // @[AsyncQueue.scala:70:7]
wire [31:0] io_async_mem_0_phit_0; // @[AsyncQueue.scala:70:7]
wire [31:0] io_async_mem_1_phit_0; // @[AsyncQueue.scala:70:7]
wire [31:0] io_async_mem_2_phit_0; // @[AsyncQueue.scala:70:7]
wire [31:0] io_async_mem_3_phit_0; // @[AsyncQueue.scala:70:7]
wire [31:0] io_async_mem_4_phit_0; // @[AsyncQueue.scala:70:7]
wire [31:0] io_async_mem_5_phit_0; // @[AsyncQueue.scala:70:7]
wire [31:0] io_async_mem_6_phit_0; // @[AsyncQueue.scala:70:7]
wire [31:0] io_async_mem_7_phit_0; // @[AsyncQueue.scala:70:7]
wire io_async_safe_widx_valid_0; // @[AsyncQueue.scala:70:7]
wire io_async_safe_source_reset_n_0; // @[AsyncQueue.scala:70:7]
wire [3:0] io_async_widx_0; // @[AsyncQueue.scala:70:7]
wire sink_ready; // @[AsyncQueue.scala:81:28]
reg [31:0] mem_0_phit; // @[AsyncQueue.scala:82:16]
assign io_async_mem_0_phit_0 = mem_0_phit; // @[AsyncQueue.scala:70:7, :82:16]
reg [31:0] mem_1_phit; // @[AsyncQueue.scala:82:16]
assign io_async_mem_1_phit_0 = mem_1_phit; // @[AsyncQueue.scala:70:7, :82:16]
reg [31:0] mem_2_phit; // @[AsyncQueue.scala:82:16]
assign io_async_mem_2_phit_0 = mem_2_phit; // @[AsyncQueue.scala:70:7, :82:16]
reg [31:0] mem_3_phit; // @[AsyncQueue.scala:82:16]
assign io_async_mem_3_phit_0 = mem_3_phit; // @[AsyncQueue.scala:70:7, :82:16]
reg [31:0] mem_4_phit; // @[AsyncQueue.scala:82:16]
assign io_async_mem_4_phit_0 = mem_4_phit; // @[AsyncQueue.scala:70:7, :82:16]
reg [31:0] mem_5_phit; // @[AsyncQueue.scala:82:16]
assign io_async_mem_5_phit_0 = mem_5_phit; // @[AsyncQueue.scala:70:7, :82:16]
reg [31:0] mem_6_phit; // @[AsyncQueue.scala:82:16]
assign io_async_mem_6_phit_0 = mem_6_phit; // @[AsyncQueue.scala:70:7, :82:16]
reg [31:0] mem_7_phit; // @[AsyncQueue.scala:82:16]
assign io_async_mem_7_phit_0 = mem_7_phit; // @[AsyncQueue.scala:70:7, :82:16]
wire _widx_T_1 = io_enq_ready_0 & io_enq_valid_0; // @[Decoupled.scala:51:35]
wire _widx_T_2 = ~sink_ready; // @[AsyncQueue.scala:81:28, :83:77]
wire [3:0] _widx_incremented_T_2; // @[AsyncQueue.scala:53:23]
wire [3:0] widx_incremented; // @[AsyncQueue.scala:51:27]
reg [3:0] widx_widx_bin; // @[AsyncQueue.scala:52:25]
wire [4:0] _widx_incremented_T = {1'h0, widx_widx_bin} + {4'h0, _widx_T_1}; // @[Decoupled.scala:51:35]
wire [3:0] _widx_incremented_T_1 = _widx_incremented_T[3:0]; // @[AsyncQueue.scala:53:43]
assign _widx_incremented_T_2 = _widx_T_2 ? 4'h0 : _widx_incremented_T_1; // @[AsyncQueue.scala:52:25, :53:{23,43}, :83:77]
assign widx_incremented = _widx_incremented_T_2; // @[AsyncQueue.scala:51:27, :53:23]
wire [2:0] _widx_T_3 = widx_incremented[3:1]; // @[AsyncQueue.scala:51:27, :54:32]
wire [3:0] widx = {widx_incremented[3], widx_incremented[2:0] ^ _widx_T_3}; // @[AsyncQueue.scala:51:27, :54:{17,32}]
wire [3:0] ridx; // @[ShiftReg.scala:48:24]
wire [3:0] _ready_T = ridx ^ 4'hC; // @[ShiftReg.scala:48:24]
wire _ready_T_1 = widx != _ready_T; // @[AsyncQueue.scala:54:17, :85:{34,44}]
wire ready = sink_ready & _ready_T_1; // @[AsyncQueue.scala:81:28, :85:{26,34}]
wire [2:0] _index_T = io_async_widx_0[2:0]; // @[AsyncQueue.scala:70:7, :87:52]
wire _index_T_1 = io_async_widx_0[3]; // @[AsyncQueue.scala:70:7, :87:80]
wire [2:0] _index_T_2 = {_index_T_1, 2'h0}; // @[AsyncQueue.scala:87:{80,93}]
wire [2:0] index = _index_T ^ _index_T_2; // @[AsyncQueue.scala:87:{52,64,93}]
reg ready_reg; // @[AsyncQueue.scala:90:56]
assign _io_enq_ready_T = ready_reg & sink_ready; // @[AsyncQueue.scala:81:28, :90:56, :91:29]
assign io_enq_ready_0 = _io_enq_ready_T; // @[AsyncQueue.scala:70:7, :91:29]
reg [3:0] widx_gray; // @[AsyncQueue.scala:93:55]
assign io_async_widx_0 = widx_gray; // @[AsyncQueue.scala:70:7, :93:55]
wire _source_valid_0_reset_T_1 = ~io_async_safe_sink_reset_n_0; // @[AsyncQueue.scala:70:7, :107:46]
wire _source_valid_0_reset_T_2 = _source_valid_0_reset_T | _source_valid_0_reset_T_1; // @[AsyncQueue.scala:107:{36,43,46}]
wire _source_valid_0_reset_T_3 = _source_valid_0_reset_T_2; // @[AsyncQueue.scala:107:{43,65}]
wire _source_valid_1_reset_T_1 = ~io_async_safe_sink_reset_n_0; // @[AsyncQueue.scala:70:7, :107:46, :108:46]
wire _source_valid_1_reset_T_2 = _source_valid_1_reset_T | _source_valid_1_reset_T_1; // @[AsyncQueue.scala:108:{36,43,46}]
wire _source_valid_1_reset_T_3 = _source_valid_1_reset_T_2; // @[AsyncQueue.scala:108:{43,65}]
wire _sink_extend_reset_T_1 = ~io_async_safe_sink_reset_n_0; // @[AsyncQueue.scala:70:7, :107:46, :109:46]
wire _sink_extend_reset_T_2 = _sink_extend_reset_T | _sink_extend_reset_T_1; // @[AsyncQueue.scala:109:{36,43,46}]
wire _sink_extend_reset_T_3 = _sink_extend_reset_T_2; // @[AsyncQueue.scala:109:{43,65}]
assign _io_async_safe_source_reset_n_T_1 = ~_io_async_safe_source_reset_n_T; // @[AsyncQueue.scala:123:{27,34}]
assign io_async_safe_source_reset_n_0 = _io_async_safe_source_reset_n_T_1; // @[AsyncQueue.scala:70:7, :123:27]
always @(posedge clock) begin // @[AsyncQueue.scala:70:7]
if (_widx_T_1 & index == 3'h0) // @[Decoupled.scala:51:35]
mem_0_phit <= io_enq_bits_phit_0; // @[AsyncQueue.scala:70:7, :82:16]
if (_widx_T_1 & index == 3'h1) // @[Decoupled.scala:51:35]
mem_1_phit <= io_enq_bits_phit_0; // @[AsyncQueue.scala:70:7, :82:16]
if (_widx_T_1 & index == 3'h2) // @[Decoupled.scala:51:35]
mem_2_phit <= io_enq_bits_phit_0; // @[AsyncQueue.scala:70:7, :82:16]
if (_widx_T_1 & index == 3'h3) // @[Decoupled.scala:51:35]
mem_3_phit <= io_enq_bits_phit_0; // @[AsyncQueue.scala:70:7, :82:16]
if (_widx_T_1 & index == 3'h4) // @[Decoupled.scala:51:35]
mem_4_phit <= io_enq_bits_phit_0; // @[AsyncQueue.scala:70:7, :82:16]
if (_widx_T_1 & index == 3'h5) // @[Decoupled.scala:51:35]
mem_5_phit <= io_enq_bits_phit_0; // @[AsyncQueue.scala:70:7, :82:16]
if (_widx_T_1 & index == 3'h6) // @[Decoupled.scala:51:35]
mem_6_phit <= io_enq_bits_phit_0; // @[AsyncQueue.scala:70:7, :82:16]
if (_widx_T_1 & (&index)) // @[Decoupled.scala:51:35]
mem_7_phit <= io_enq_bits_phit_0; // @[AsyncQueue.scala:70:7, :82:16]
always @(posedge)
always @(posedge clock or posedge _widx_T) begin // @[AsyncQueue.scala:70:7, :83:30]
if (_widx_T) // @[AsyncQueue.scala:70:7, :83:30]
widx_widx_bin <= 4'h0; // @[AsyncQueue.scala:52:25]
else // @[AsyncQueue.scala:70:7]
widx_widx_bin <= widx_incremented; // @[AsyncQueue.scala:51:27, :52:25]
always @(posedge, posedge)
always @(posedge clock or posedge _ready_reg_T) begin // @[AsyncQueue.scala:70:7, :90:35]
if (_ready_reg_T) // @[AsyncQueue.scala:70:7, :90:35]
ready_reg <= 1'h0; // @[AsyncQueue.scala:90:56]
else // @[AsyncQueue.scala:70:7]
ready_reg <= ready; // @[AsyncQueue.scala:85:26, :90:56]
always @(posedge, posedge)
always @(posedge clock or posedge _widx_reg_T) begin // @[AsyncQueue.scala:70:7, :93:34]
if (_widx_reg_T) // @[AsyncQueue.scala:70:7, :93:34]
widx_gray <= 4'h0; // @[AsyncQueue.scala:52:25, :93:55]
else // @[AsyncQueue.scala:70:7]
widx_gray <= widx; // @[AsyncQueue.scala:54:17, :93:55]
always @(posedge, posedge) |
Generate the Verilog code corresponding to the following Chisel files.
File Monitor.scala:
// See LICENSE.SiFive for license details.
package freechips.rocketchip.tilelink
import chisel3._
import chisel3.util._
import chisel3.experimental.SourceLine
import org.chipsalliance.cde.config._
import org.chipsalliance.diplomacy._
import freechips.rocketchip.diplomacy.EnableMonitors
import freechips.rocketchip.formal.{MonitorDirection, IfThen, Property, PropertyClass, TestplanTestType, TLMonitorStrictMode}
import freechips.rocketchip.util.PlusArg
case class TLMonitorArgs(edge: TLEdge)
abstract class TLMonitorBase(args: TLMonitorArgs) extends Module
{
val io = IO(new Bundle {
val in = Input(new TLBundle(args.edge.bundle))
})
def legalize(bundle: TLBundle, edge: TLEdge, reset: Reset): Unit
legalize(io.in, args.edge, reset)
}
object TLMonitor {
def apply(enable: Boolean, node: TLNode)(implicit p: Parameters): TLNode = {
if (enable) {
EnableMonitors { implicit p => node := TLEphemeralNode()(ValName("monitor")) }
} else { node }
}
}
class TLMonitor(args: TLMonitorArgs, monitorDir: MonitorDirection = MonitorDirection.Monitor) extends TLMonitorBase(args)
{
require (args.edge.params(TLMonitorStrictMode) || (! args.edge.params(TestplanTestType).formal))
val cover_prop_class = PropertyClass.Default
//Like assert but can flip to being an assumption for formal verification
def monAssert(cond: Bool, message: String): Unit =
if (monitorDir == MonitorDirection.Monitor) {
assert(cond, message)
} else {
Property(monitorDir, cond, message, PropertyClass.Default)
}
def assume(cond: Bool, message: String): Unit =
if (monitorDir == MonitorDirection.Monitor) {
assert(cond, message)
} else {
Property(monitorDir.flip, cond, message, PropertyClass.Default)
}
def extra = {
args.edge.sourceInfo match {
case SourceLine(filename, line, col) => s" (connected at $filename:$line:$col)"
case _ => ""
}
}
def visible(address: UInt, source: UInt, edge: TLEdge) =
edge.client.clients.map { c =>
!c.sourceId.contains(source) ||
c.visibility.map(_.contains(address)).reduce(_ || _)
}.reduce(_ && _)
def legalizeFormatA(bundle: TLBundleA, edge: TLEdge): Unit = {
//switch this flag to turn on diplomacy in error messages
def diplomacyInfo = if (true) "" else "\nThe diplomacy information for the edge is as follows:\n" + edge.formatEdge + "\n"
monAssert (TLMessages.isA(bundle.opcode), "'A' channel has invalid opcode" + extra)
// Reuse these subexpressions to save some firrtl lines
val source_ok = edge.client.contains(bundle.source)
val is_aligned = edge.isAligned(bundle.address, bundle.size)
val mask = edge.full_mask(bundle)
monAssert (visible(edge.address(bundle), bundle.source, edge), "'A' channel carries an address illegal for the specified bank visibility")
//The monitor doesnβt check for acquire T vs acquire B, it assumes that acquire B implies acquire T and only checks for acquire B
//TODO: check for acquireT?
when (bundle.opcode === TLMessages.AcquireBlock) {
monAssert (edge.master.emitsAcquireB(bundle.source, bundle.size) && edge.slave.supportsAcquireBSafe(edge.address(bundle), bundle.size), "'A' channel carries AcquireBlock type which is unexpected using diplomatic parameters" + diplomacyInfo + extra)
monAssert (edge.master.supportsProbe(edge.source(bundle), bundle.size) && edge.slave.emitsProbeSafe(edge.address(bundle), bundle.size), "'A' channel carries AcquireBlock from a client which does not support Probe" + diplomacyInfo + extra)
monAssert (source_ok, "'A' channel AcquireBlock carries invalid source ID" + diplomacyInfo + extra)
monAssert (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'A' channel AcquireBlock smaller than a beat" + extra)
monAssert (is_aligned, "'A' channel AcquireBlock address not aligned to size" + extra)
monAssert (TLPermissions.isGrow(bundle.param), "'A' channel AcquireBlock carries invalid grow param" + extra)
monAssert (~bundle.mask === 0.U, "'A' channel AcquireBlock contains invalid mask" + extra)
monAssert (!bundle.corrupt, "'A' channel AcquireBlock is corrupt" + extra)
}
when (bundle.opcode === TLMessages.AcquirePerm) {
monAssert (edge.master.emitsAcquireB(bundle.source, bundle.size) && edge.slave.supportsAcquireBSafe(edge.address(bundle), bundle.size), "'A' channel carries AcquirePerm type which is unexpected using diplomatic parameters" + diplomacyInfo + extra)
monAssert (edge.master.supportsProbe(edge.source(bundle), bundle.size) && edge.slave.emitsProbeSafe(edge.address(bundle), bundle.size), "'A' channel carries AcquirePerm from a client which does not support Probe" + diplomacyInfo + extra)
monAssert (source_ok, "'A' channel AcquirePerm carries invalid source ID" + diplomacyInfo + extra)
monAssert (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'A' channel AcquirePerm smaller than a beat" + extra)
monAssert (is_aligned, "'A' channel AcquirePerm address not aligned to size" + extra)
monAssert (TLPermissions.isGrow(bundle.param), "'A' channel AcquirePerm carries invalid grow param" + extra)
monAssert (bundle.param =/= TLPermissions.NtoB, "'A' channel AcquirePerm requests NtoB" + extra)
monAssert (~bundle.mask === 0.U, "'A' channel AcquirePerm contains invalid mask" + extra)
monAssert (!bundle.corrupt, "'A' channel AcquirePerm is corrupt" + extra)
}
when (bundle.opcode === TLMessages.Get) {
monAssert (edge.master.emitsGet(bundle.source, bundle.size), "'A' channel carries Get type which master claims it can't emit" + diplomacyInfo + extra)
monAssert (edge.slave.supportsGetSafe(edge.address(bundle), bundle.size, None), "'A' channel carries Get type which slave claims it can't support" + diplomacyInfo + extra)
monAssert (source_ok, "'A' channel Get carries invalid source ID" + diplomacyInfo + extra)
monAssert (is_aligned, "'A' channel Get address not aligned to size" + extra)
monAssert (bundle.param === 0.U, "'A' channel Get carries invalid param" + extra)
monAssert (bundle.mask === mask, "'A' channel Get contains invalid mask" + extra)
monAssert (!bundle.corrupt, "'A' channel Get is corrupt" + extra)
}
when (bundle.opcode === TLMessages.PutFullData) {
monAssert (edge.master.emitsPutFull(bundle.source, bundle.size) && edge.slave.supportsPutFullSafe(edge.address(bundle), bundle.size), "'A' channel carries PutFull type which is unexpected using diplomatic parameters" + diplomacyInfo + extra)
monAssert (source_ok, "'A' channel PutFull carries invalid source ID" + diplomacyInfo + extra)
monAssert (is_aligned, "'A' channel PutFull address not aligned to size" + extra)
monAssert (bundle.param === 0.U, "'A' channel PutFull carries invalid param" + extra)
monAssert (bundle.mask === mask, "'A' channel PutFull contains invalid mask" + extra)
}
when (bundle.opcode === TLMessages.PutPartialData) {
monAssert (edge.master.emitsPutPartial(bundle.source, bundle.size) && edge.slave.supportsPutPartialSafe(edge.address(bundle), bundle.size), "'A' channel carries PutPartial type which is unexpected using diplomatic parameters" + extra)
monAssert (source_ok, "'A' channel PutPartial carries invalid source ID" + diplomacyInfo + extra)
monAssert (is_aligned, "'A' channel PutPartial address not aligned to size" + extra)
monAssert (bundle.param === 0.U, "'A' channel PutPartial carries invalid param" + extra)
monAssert ((bundle.mask & ~mask) === 0.U, "'A' channel PutPartial contains invalid mask" + extra)
}
when (bundle.opcode === TLMessages.ArithmeticData) {
monAssert (edge.master.emitsArithmetic(bundle.source, bundle.size) && edge.slave.supportsArithmeticSafe(edge.address(bundle), bundle.size), "'A' channel carries Arithmetic type which is unexpected using diplomatic parameters" + extra)
monAssert (source_ok, "'A' channel Arithmetic carries invalid source ID" + diplomacyInfo + extra)
monAssert (is_aligned, "'A' channel Arithmetic address not aligned to size" + extra)
monAssert (TLAtomics.isArithmetic(bundle.param), "'A' channel Arithmetic carries invalid opcode param" + extra)
monAssert (bundle.mask === mask, "'A' channel Arithmetic contains invalid mask" + extra)
}
when (bundle.opcode === TLMessages.LogicalData) {
monAssert (edge.master.emitsLogical(bundle.source, bundle.size) && edge.slave.supportsLogicalSafe(edge.address(bundle), bundle.size), "'A' channel carries Logical type which is unexpected using diplomatic parameters" + extra)
monAssert (source_ok, "'A' channel Logical carries invalid source ID" + diplomacyInfo + extra)
monAssert (is_aligned, "'A' channel Logical address not aligned to size" + extra)
monAssert (TLAtomics.isLogical(bundle.param), "'A' channel Logical carries invalid opcode param" + extra)
monAssert (bundle.mask === mask, "'A' channel Logical contains invalid mask" + extra)
}
when (bundle.opcode === TLMessages.Hint) {
monAssert (edge.master.emitsHint(bundle.source, bundle.size) && edge.slave.supportsHintSafe(edge.address(bundle), bundle.size), "'A' channel carries Hint type which is unexpected using diplomatic parameters" + extra)
monAssert (source_ok, "'A' channel Hint carries invalid source ID" + diplomacyInfo + extra)
monAssert (is_aligned, "'A' channel Hint address not aligned to size" + extra)
monAssert (TLHints.isHints(bundle.param), "'A' channel Hint carries invalid opcode param" + extra)
monAssert (bundle.mask === mask, "'A' channel Hint contains invalid mask" + extra)
monAssert (!bundle.corrupt, "'A' channel Hint is corrupt" + extra)
}
}
def legalizeFormatB(bundle: TLBundleB, edge: TLEdge): Unit = {
monAssert (TLMessages.isB(bundle.opcode), "'B' channel has invalid opcode" + extra)
monAssert (visible(edge.address(bundle), bundle.source, edge), "'B' channel carries an address illegal for the specified bank visibility")
// Reuse these subexpressions to save some firrtl lines
val address_ok = edge.manager.containsSafe(edge.address(bundle))
val is_aligned = edge.isAligned(bundle.address, bundle.size)
val mask = edge.full_mask(bundle)
val legal_source = Mux1H(edge.client.find(bundle.source), edge.client.clients.map(c => c.sourceId.start.U)) === bundle.source
when (bundle.opcode === TLMessages.Probe) {
assume (edge.master.supportsProbe(edge.source(bundle), bundle.size) && edge.slave.emitsProbeSafe(edge.address(bundle), bundle.size), "'B' channel carries Probe type which is unexpected using diplomatic parameters" + extra)
assume (address_ok, "'B' channel Probe carries unmanaged address" + extra)
assume (legal_source, "'B' channel Probe carries source that is not first source" + extra)
assume (is_aligned, "'B' channel Probe address not aligned to size" + extra)
assume (TLPermissions.isCap(bundle.param), "'B' channel Probe carries invalid cap param" + extra)
assume (bundle.mask === mask, "'B' channel Probe contains invalid mask" + extra)
assume (!bundle.corrupt, "'B' channel Probe is corrupt" + extra)
}
when (bundle.opcode === TLMessages.Get) {
monAssert (edge.master.supportsGet(edge.source(bundle), bundle.size) && edge.slave.emitsGetSafe(edge.address(bundle), bundle.size), "'B' channel carries Get type which is unexpected using diplomatic parameters" + extra)
monAssert (address_ok, "'B' channel Get carries unmanaged address" + extra)
monAssert (legal_source, "'B' channel Get carries source that is not first source" + extra)
monAssert (is_aligned, "'B' channel Get address not aligned to size" + extra)
monAssert (bundle.param === 0.U, "'B' channel Get carries invalid param" + extra)
monAssert (bundle.mask === mask, "'B' channel Get contains invalid mask" + extra)
monAssert (!bundle.corrupt, "'B' channel Get is corrupt" + extra)
}
when (bundle.opcode === TLMessages.PutFullData) {
monAssert (edge.master.supportsPutFull(edge.source(bundle), bundle.size) && edge.slave.emitsPutFullSafe(edge.address(bundle), bundle.size), "'B' channel carries PutFull type which is unexpected using diplomatic parameters" + extra)
monAssert (address_ok, "'B' channel PutFull carries unmanaged address" + extra)
monAssert (legal_source, "'B' channel PutFull carries source that is not first source" + extra)
monAssert (is_aligned, "'B' channel PutFull address not aligned to size" + extra)
monAssert (bundle.param === 0.U, "'B' channel PutFull carries invalid param" + extra)
monAssert (bundle.mask === mask, "'B' channel PutFull contains invalid mask" + extra)
}
when (bundle.opcode === TLMessages.PutPartialData) {
monAssert (edge.master.supportsPutPartial(edge.source(bundle), bundle.size) && edge.slave.emitsPutPartialSafe(edge.address(bundle), bundle.size), "'B' channel carries PutPartial type which is unexpected using diplomatic parameters" + extra)
monAssert (address_ok, "'B' channel PutPartial carries unmanaged address" + extra)
monAssert (legal_source, "'B' channel PutPartial carries source that is not first source" + extra)
monAssert (is_aligned, "'B' channel PutPartial address not aligned to size" + extra)
monAssert (bundle.param === 0.U, "'B' channel PutPartial carries invalid param" + extra)
monAssert ((bundle.mask & ~mask) === 0.U, "'B' channel PutPartial contains invalid mask" + extra)
}
when (bundle.opcode === TLMessages.ArithmeticData) {
monAssert (edge.master.supportsArithmetic(edge.source(bundle), bundle.size) && edge.slave.emitsArithmeticSafe(edge.address(bundle), bundle.size), "'B' channel carries Arithmetic type unsupported by master" + extra)
monAssert (address_ok, "'B' channel Arithmetic carries unmanaged address" + extra)
monAssert (legal_source, "'B' channel Arithmetic carries source that is not first source" + extra)
monAssert (is_aligned, "'B' channel Arithmetic address not aligned to size" + extra)
monAssert (TLAtomics.isArithmetic(bundle.param), "'B' channel Arithmetic carries invalid opcode param" + extra)
monAssert (bundle.mask === mask, "'B' channel Arithmetic contains invalid mask" + extra)
}
when (bundle.opcode === TLMessages.LogicalData) {
monAssert (edge.master.supportsLogical(edge.source(bundle), bundle.size) && edge.slave.emitsLogicalSafe(edge.address(bundle), bundle.size), "'B' channel carries Logical type unsupported by client" + extra)
monAssert (address_ok, "'B' channel Logical carries unmanaged address" + extra)
monAssert (legal_source, "'B' channel Logical carries source that is not first source" + extra)
monAssert (is_aligned, "'B' channel Logical address not aligned to size" + extra)
monAssert (TLAtomics.isLogical(bundle.param), "'B' channel Logical carries invalid opcode param" + extra)
monAssert (bundle.mask === mask, "'B' channel Logical contains invalid mask" + extra)
}
when (bundle.opcode === TLMessages.Hint) {
monAssert (edge.master.supportsHint(edge.source(bundle), bundle.size) && edge.slave.emitsHintSafe(edge.address(bundle), bundle.size), "'B' channel carries Hint type unsupported by client" + extra)
monAssert (address_ok, "'B' channel Hint carries unmanaged address" + extra)
monAssert (legal_source, "'B' channel Hint carries source that is not first source" + extra)
monAssert (is_aligned, "'B' channel Hint address not aligned to size" + extra)
monAssert (bundle.mask === mask, "'B' channel Hint contains invalid mask" + extra)
monAssert (!bundle.corrupt, "'B' channel Hint is corrupt" + extra)
}
}
def legalizeFormatC(bundle: TLBundleC, edge: TLEdge): Unit = {
monAssert (TLMessages.isC(bundle.opcode), "'C' channel has invalid opcode" + extra)
val source_ok = edge.client.contains(bundle.source)
val is_aligned = edge.isAligned(bundle.address, bundle.size)
val address_ok = edge.manager.containsSafe(edge.address(bundle))
monAssert (visible(edge.address(bundle), bundle.source, edge), "'C' channel carries an address illegal for the specified bank visibility")
when (bundle.opcode === TLMessages.ProbeAck) {
monAssert (address_ok, "'C' channel ProbeAck carries unmanaged address" + extra)
monAssert (source_ok, "'C' channel ProbeAck carries invalid source ID" + extra)
monAssert (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'C' channel ProbeAck smaller than a beat" + extra)
monAssert (is_aligned, "'C' channel ProbeAck address not aligned to size" + extra)
monAssert (TLPermissions.isReport(bundle.param), "'C' channel ProbeAck carries invalid report param" + extra)
monAssert (!bundle.corrupt, "'C' channel ProbeAck is corrupt" + extra)
}
when (bundle.opcode === TLMessages.ProbeAckData) {
monAssert (address_ok, "'C' channel ProbeAckData carries unmanaged address" + extra)
monAssert (source_ok, "'C' channel ProbeAckData carries invalid source ID" + extra)
monAssert (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'C' channel ProbeAckData smaller than a beat" + extra)
monAssert (is_aligned, "'C' channel ProbeAckData address not aligned to size" + extra)
monAssert (TLPermissions.isReport(bundle.param), "'C' channel ProbeAckData carries invalid report param" + extra)
}
when (bundle.opcode === TLMessages.Release) {
monAssert (edge.master.emitsAcquireB(edge.source(bundle), bundle.size) && edge.slave.supportsAcquireBSafe(edge.address(bundle), bundle.size), "'C' channel carries Release type unsupported by manager" + extra)
monAssert (edge.master.supportsProbe(edge.source(bundle), bundle.size) && edge.slave.emitsProbeSafe(edge.address(bundle), bundle.size), "'C' channel carries Release from a client which does not support Probe" + extra)
monAssert (source_ok, "'C' channel Release carries invalid source ID" + extra)
monAssert (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'C' channel Release smaller than a beat" + extra)
monAssert (is_aligned, "'C' channel Release address not aligned to size" + extra)
monAssert (TLPermissions.isReport(bundle.param), "'C' channel Release carries invalid report param" + extra)
monAssert (!bundle.corrupt, "'C' channel Release is corrupt" + extra)
}
when (bundle.opcode === TLMessages.ReleaseData) {
monAssert (edge.master.emitsAcquireB(edge.source(bundle), bundle.size) && edge.slave.supportsAcquireBSafe(edge.address(bundle), bundle.size), "'C' channel carries ReleaseData type unsupported by manager" + extra)
monAssert (edge.master.supportsProbe(edge.source(bundle), bundle.size) && edge.slave.emitsProbeSafe(edge.address(bundle), bundle.size), "'C' channel carries Release from a client which does not support Probe" + extra)
monAssert (source_ok, "'C' channel ReleaseData carries invalid source ID" + extra)
monAssert (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'C' channel ReleaseData smaller than a beat" + extra)
monAssert (is_aligned, "'C' channel ReleaseData address not aligned to size" + extra)
monAssert (TLPermissions.isReport(bundle.param), "'C' channel ReleaseData carries invalid report param" + extra)
}
when (bundle.opcode === TLMessages.AccessAck) {
monAssert (address_ok, "'C' channel AccessAck carries unmanaged address" + extra)
monAssert (source_ok, "'C' channel AccessAck carries invalid source ID" + extra)
monAssert (is_aligned, "'C' channel AccessAck address not aligned to size" + extra)
monAssert (bundle.param === 0.U, "'C' channel AccessAck carries invalid param" + extra)
monAssert (!bundle.corrupt, "'C' channel AccessAck is corrupt" + extra)
}
when (bundle.opcode === TLMessages.AccessAckData) {
monAssert (address_ok, "'C' channel AccessAckData carries unmanaged address" + extra)
monAssert (source_ok, "'C' channel AccessAckData carries invalid source ID" + extra)
monAssert (is_aligned, "'C' channel AccessAckData address not aligned to size" + extra)
monAssert (bundle.param === 0.U, "'C' channel AccessAckData carries invalid param" + extra)
}
when (bundle.opcode === TLMessages.HintAck) {
monAssert (address_ok, "'C' channel HintAck carries unmanaged address" + extra)
monAssert (source_ok, "'C' channel HintAck carries invalid source ID" + extra)
monAssert (is_aligned, "'C' channel HintAck address not aligned to size" + extra)
monAssert (bundle.param === 0.U, "'C' channel HintAck carries invalid param" + extra)
monAssert (!bundle.corrupt, "'C' channel HintAck is corrupt" + extra)
}
}
def legalizeFormatD(bundle: TLBundleD, edge: TLEdge): Unit = {
assume (TLMessages.isD(bundle.opcode), "'D' channel has invalid opcode" + extra)
val source_ok = edge.client.contains(bundle.source)
val sink_ok = bundle.sink < edge.manager.endSinkId.U
val deny_put_ok = edge.manager.mayDenyPut.B
val deny_get_ok = edge.manager.mayDenyGet.B
when (bundle.opcode === TLMessages.ReleaseAck) {
assume (source_ok, "'D' channel ReleaseAck carries invalid source ID" + extra)
assume (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'D' channel ReleaseAck smaller than a beat" + extra)
assume (bundle.param === 0.U, "'D' channel ReleaseeAck carries invalid param" + extra)
assume (!bundle.corrupt, "'D' channel ReleaseAck is corrupt" + extra)
assume (!bundle.denied, "'D' channel ReleaseAck is denied" + extra)
}
when (bundle.opcode === TLMessages.Grant) {
assume (source_ok, "'D' channel Grant carries invalid source ID" + extra)
assume (sink_ok, "'D' channel Grant carries invalid sink ID" + extra)
assume (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'D' channel Grant smaller than a beat" + extra)
assume (TLPermissions.isCap(bundle.param), "'D' channel Grant carries invalid cap param" + extra)
assume (bundle.param =/= TLPermissions.toN, "'D' channel Grant carries toN param" + extra)
assume (!bundle.corrupt, "'D' channel Grant is corrupt" + extra)
assume (deny_put_ok || !bundle.denied, "'D' channel Grant is denied" + extra)
}
when (bundle.opcode === TLMessages.GrantData) {
assume (source_ok, "'D' channel GrantData carries invalid source ID" + extra)
assume (sink_ok, "'D' channel GrantData carries invalid sink ID" + extra)
assume (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'D' channel GrantData smaller than a beat" + extra)
assume (TLPermissions.isCap(bundle.param), "'D' channel GrantData carries invalid cap param" + extra)
assume (bundle.param =/= TLPermissions.toN, "'D' channel GrantData carries toN param" + extra)
assume (!bundle.denied || bundle.corrupt, "'D' channel GrantData is denied but not corrupt" + extra)
assume (deny_get_ok || !bundle.denied, "'D' channel GrantData is denied" + extra)
}
when (bundle.opcode === TLMessages.AccessAck) {
assume (source_ok, "'D' channel AccessAck carries invalid source ID" + extra)
// size is ignored
assume (bundle.param === 0.U, "'D' channel AccessAck carries invalid param" + extra)
assume (!bundle.corrupt, "'D' channel AccessAck is corrupt" + extra)
assume (deny_put_ok || !bundle.denied, "'D' channel AccessAck is denied" + extra)
}
when (bundle.opcode === TLMessages.AccessAckData) {
assume (source_ok, "'D' channel AccessAckData carries invalid source ID" + extra)
// size is ignored
assume (bundle.param === 0.U, "'D' channel AccessAckData carries invalid param" + extra)
assume (!bundle.denied || bundle.corrupt, "'D' channel AccessAckData is denied but not corrupt" + extra)
assume (deny_get_ok || !bundle.denied, "'D' channel AccessAckData is denied" + extra)
}
when (bundle.opcode === TLMessages.HintAck) {
assume (source_ok, "'D' channel HintAck carries invalid source ID" + extra)
// size is ignored
assume (bundle.param === 0.U, "'D' channel HintAck carries invalid param" + extra)
assume (!bundle.corrupt, "'D' channel HintAck is corrupt" + extra)
assume (deny_put_ok || !bundle.denied, "'D' channel HintAck is denied" + extra)
}
}
def legalizeFormatE(bundle: TLBundleE, edge: TLEdge): Unit = {
val sink_ok = bundle.sink < edge.manager.endSinkId.U
monAssert (sink_ok, "'E' channels carries invalid sink ID" + extra)
}
def legalizeFormat(bundle: TLBundle, edge: TLEdge) = {
when (bundle.a.valid) { legalizeFormatA(bundle.a.bits, edge) }
when (bundle.d.valid) { legalizeFormatD(bundle.d.bits, edge) }
if (edge.client.anySupportProbe && edge.manager.anySupportAcquireB) {
when (bundle.b.valid) { legalizeFormatB(bundle.b.bits, edge) }
when (bundle.c.valid) { legalizeFormatC(bundle.c.bits, edge) }
when (bundle.e.valid) { legalizeFormatE(bundle.e.bits, edge) }
} else {
monAssert (!bundle.b.valid, "'B' channel valid and not TL-C" + extra)
monAssert (!bundle.c.valid, "'C' channel valid and not TL-C" + extra)
monAssert (!bundle.e.valid, "'E' channel valid and not TL-C" + extra)
}
}
def legalizeMultibeatA(a: DecoupledIO[TLBundleA], edge: TLEdge): Unit = {
val a_first = edge.first(a.bits, a.fire)
val opcode = Reg(UInt())
val param = Reg(UInt())
val size = Reg(UInt())
val source = Reg(UInt())
val address = Reg(UInt())
when (a.valid && !a_first) {
monAssert (a.bits.opcode === opcode, "'A' channel opcode changed within multibeat operation" + extra)
monAssert (a.bits.param === param, "'A' channel param changed within multibeat operation" + extra)
monAssert (a.bits.size === size, "'A' channel size changed within multibeat operation" + extra)
monAssert (a.bits.source === source, "'A' channel source changed within multibeat operation" + extra)
monAssert (a.bits.address=== address,"'A' channel address changed with multibeat operation" + extra)
}
when (a.fire && a_first) {
opcode := a.bits.opcode
param := a.bits.param
size := a.bits.size
source := a.bits.source
address := a.bits.address
}
}
def legalizeMultibeatB(b: DecoupledIO[TLBundleB], edge: TLEdge): Unit = {
val b_first = edge.first(b.bits, b.fire)
val opcode = Reg(UInt())
val param = Reg(UInt())
val size = Reg(UInt())
val source = Reg(UInt())
val address = Reg(UInt())
when (b.valid && !b_first) {
monAssert (b.bits.opcode === opcode, "'B' channel opcode changed within multibeat operation" + extra)
monAssert (b.bits.param === param, "'B' channel param changed within multibeat operation" + extra)
monAssert (b.bits.size === size, "'B' channel size changed within multibeat operation" + extra)
monAssert (b.bits.source === source, "'B' channel source changed within multibeat operation" + extra)
monAssert (b.bits.address=== address,"'B' channel addresss changed with multibeat operation" + extra)
}
when (b.fire && b_first) {
opcode := b.bits.opcode
param := b.bits.param
size := b.bits.size
source := b.bits.source
address := b.bits.address
}
}
def legalizeADSourceFormal(bundle: TLBundle, edge: TLEdge): Unit = {
// Symbolic variable
val sym_source = Wire(UInt(edge.client.endSourceId.W))
// TODO: Connect sym_source to a fixed value for simulation and to a
// free wire in formal
sym_source := 0.U
// Type casting Int to UInt
val maxSourceId = Wire(UInt(edge.client.endSourceId.W))
maxSourceId := edge.client.endSourceId.U
// Delayed verison of sym_source
val sym_source_d = Reg(UInt(edge.client.endSourceId.W))
sym_source_d := sym_source
// These will be constraints for FV setup
Property(
MonitorDirection.Monitor,
(sym_source === sym_source_d),
"sym_source should remain stable",
PropertyClass.Default)
Property(
MonitorDirection.Monitor,
(sym_source <= maxSourceId),
"sym_source should take legal value",
PropertyClass.Default)
val my_resp_pend = RegInit(false.B)
val my_opcode = Reg(UInt())
val my_size = Reg(UInt())
val a_first = bundle.a.valid && edge.first(bundle.a.bits, bundle.a.fire)
val d_first = bundle.d.valid && edge.first(bundle.d.bits, bundle.d.fire)
val my_a_first_beat = a_first && (bundle.a.bits.source === sym_source)
val my_d_first_beat = d_first && (bundle.d.bits.source === sym_source)
val my_clr_resp_pend = (bundle.d.fire && my_d_first_beat)
val my_set_resp_pend = (bundle.a.fire && my_a_first_beat && !my_clr_resp_pend)
when (my_set_resp_pend) {
my_resp_pend := true.B
} .elsewhen (my_clr_resp_pend) {
my_resp_pend := false.B
}
when (my_a_first_beat) {
my_opcode := bundle.a.bits.opcode
my_size := bundle.a.bits.size
}
val my_resp_size = Mux(my_a_first_beat, bundle.a.bits.size, my_size)
val my_resp_opcode = Mux(my_a_first_beat, bundle.a.bits.opcode, my_opcode)
val my_resp_opcode_legal = Wire(Bool())
when ((my_resp_opcode === TLMessages.Get) || (my_resp_opcode === TLMessages.ArithmeticData) ||
(my_resp_opcode === TLMessages.LogicalData)) {
my_resp_opcode_legal := (bundle.d.bits.opcode === TLMessages.AccessAckData)
} .elsewhen ((my_resp_opcode === TLMessages.PutFullData) || (my_resp_opcode === TLMessages.PutPartialData)) {
my_resp_opcode_legal := (bundle.d.bits.opcode === TLMessages.AccessAck)
} .otherwise {
my_resp_opcode_legal := (bundle.d.bits.opcode === TLMessages.HintAck)
}
monAssert (IfThen(my_resp_pend, !my_a_first_beat),
"Request message should not be sent with a source ID, for which a response message" +
"is already pending (not received until current cycle) for a prior request message" +
"with the same source ID" + extra)
assume (IfThen(my_clr_resp_pend, (my_set_resp_pend || my_resp_pend)),
"Response message should be accepted with a source ID only if a request message with the" +
"same source ID has been accepted or is being accepted in the current cycle" + extra)
assume (IfThen(my_d_first_beat, (my_a_first_beat || my_resp_pend)),
"Response message should be sent with a source ID only if a request message with the" +
"same source ID has been accepted or is being sent in the current cycle" + extra)
assume (IfThen(my_d_first_beat, (bundle.d.bits.size === my_resp_size)),
"If d_valid is 1, then d_size should be same as a_size of the corresponding request" +
"message" + extra)
assume (IfThen(my_d_first_beat, my_resp_opcode_legal),
"If d_valid is 1, then d_opcode should correspond with a_opcode of the corresponding" +
"request message" + extra)
}
def legalizeMultibeatC(c: DecoupledIO[TLBundleC], edge: TLEdge): Unit = {
val c_first = edge.first(c.bits, c.fire)
val opcode = Reg(UInt())
val param = Reg(UInt())
val size = Reg(UInt())
val source = Reg(UInt())
val address = Reg(UInt())
when (c.valid && !c_first) {
monAssert (c.bits.opcode === opcode, "'C' channel opcode changed within multibeat operation" + extra)
monAssert (c.bits.param === param, "'C' channel param changed within multibeat operation" + extra)
monAssert (c.bits.size === size, "'C' channel size changed within multibeat operation" + extra)
monAssert (c.bits.source === source, "'C' channel source changed within multibeat operation" + extra)
monAssert (c.bits.address=== address,"'C' channel address changed with multibeat operation" + extra)
}
when (c.fire && c_first) {
opcode := c.bits.opcode
param := c.bits.param
size := c.bits.size
source := c.bits.source
address := c.bits.address
}
}
def legalizeMultibeatD(d: DecoupledIO[TLBundleD], edge: TLEdge): Unit = {
val d_first = edge.first(d.bits, d.fire)
val opcode = Reg(UInt())
val param = Reg(UInt())
val size = Reg(UInt())
val source = Reg(UInt())
val sink = Reg(UInt())
val denied = Reg(Bool())
when (d.valid && !d_first) {
assume (d.bits.opcode === opcode, "'D' channel opcode changed within multibeat operation" + extra)
assume (d.bits.param === param, "'D' channel param changed within multibeat operation" + extra)
assume (d.bits.size === size, "'D' channel size changed within multibeat operation" + extra)
assume (d.bits.source === source, "'D' channel source changed within multibeat operation" + extra)
assume (d.bits.sink === sink, "'D' channel sink changed with multibeat operation" + extra)
assume (d.bits.denied === denied, "'D' channel denied changed with multibeat operation" + extra)
}
when (d.fire && d_first) {
opcode := d.bits.opcode
param := d.bits.param
size := d.bits.size
source := d.bits.source
sink := d.bits.sink
denied := d.bits.denied
}
}
def legalizeMultibeat(bundle: TLBundle, edge: TLEdge): Unit = {
legalizeMultibeatA(bundle.a, edge)
legalizeMultibeatD(bundle.d, edge)
if (edge.client.anySupportProbe && edge.manager.anySupportAcquireB) {
legalizeMultibeatB(bundle.b, edge)
legalizeMultibeatC(bundle.c, edge)
}
}
//This is left in for almond which doesn't adhere to the tilelink protocol
@deprecated("Use legalizeADSource instead if possible","")
def legalizeADSourceOld(bundle: TLBundle, edge: TLEdge): Unit = {
val inflight = RegInit(0.U(edge.client.endSourceId.W))
val a_first = edge.first(bundle.a.bits, bundle.a.fire)
val d_first = edge.first(bundle.d.bits, bundle.d.fire)
val a_set = WireInit(0.U(edge.client.endSourceId.W))
when (bundle.a.fire && a_first && edge.isRequest(bundle.a.bits)) {
a_set := UIntToOH(bundle.a.bits.source)
assert(!inflight(bundle.a.bits.source), "'A' channel re-used a source ID" + extra)
}
val d_clr = WireInit(0.U(edge.client.endSourceId.W))
val d_release_ack = bundle.d.bits.opcode === TLMessages.ReleaseAck
when (bundle.d.fire && d_first && edge.isResponse(bundle.d.bits) && !d_release_ack) {
d_clr := UIntToOH(bundle.d.bits.source)
assume((a_set | inflight)(bundle.d.bits.source), "'D' channel acknowledged for nothing inflight" + extra)
}
if (edge.manager.minLatency > 0) {
assume(a_set =/= d_clr || !a_set.orR, s"'A' and 'D' concurrent, despite minlatency > 0" + extra)
}
inflight := (inflight | a_set) & ~d_clr
val watchdog = RegInit(0.U(32.W))
val limit = PlusArg("tilelink_timeout",
docstring="Kill emulation after INT waiting TileLink cycles. Off if 0.")
assert (!inflight.orR || limit === 0.U || watchdog < limit, "TileLink timeout expired" + extra)
watchdog := watchdog + 1.U
when (bundle.a.fire || bundle.d.fire) { watchdog := 0.U }
}
def legalizeADSource(bundle: TLBundle, edge: TLEdge): Unit = {
val a_size_bus_size = edge.bundle.sizeBits + 1 //add one so that 0 is not mapped to anything (size 0 -> size 1 in map, size 0 in map means unset)
val a_opcode_bus_size = 3 + 1 //opcode size is 3, but add so that 0 is not mapped to anything
val log_a_opcode_bus_size = log2Ceil(a_opcode_bus_size)
val log_a_size_bus_size = log2Ceil(a_size_bus_size)
def size_to_numfullbits(x: UInt): UInt = (1.U << x) - 1.U //convert a number to that many full bits
val inflight = RegInit(0.U((2 max edge.client.endSourceId).W)) // size up to avoid width error
inflight.suggestName("inflight")
val inflight_opcodes = RegInit(0.U((edge.client.endSourceId << log_a_opcode_bus_size).W))
inflight_opcodes.suggestName("inflight_opcodes")
val inflight_sizes = RegInit(0.U((edge.client.endSourceId << log_a_size_bus_size).W))
inflight_sizes.suggestName("inflight_sizes")
val a_first = edge.first(bundle.a.bits, bundle.a.fire)
a_first.suggestName("a_first")
val d_first = edge.first(bundle.d.bits, bundle.d.fire)
d_first.suggestName("d_first")
val a_set = WireInit(0.U(edge.client.endSourceId.W))
val a_set_wo_ready = WireInit(0.U(edge.client.endSourceId.W))
a_set.suggestName("a_set")
a_set_wo_ready.suggestName("a_set_wo_ready")
val a_opcodes_set = WireInit(0.U((edge.client.endSourceId << log_a_opcode_bus_size).W))
a_opcodes_set.suggestName("a_opcodes_set")
val a_sizes_set = WireInit(0.U((edge.client.endSourceId << log_a_size_bus_size).W))
a_sizes_set.suggestName("a_sizes_set")
val a_opcode_lookup = WireInit(0.U((a_opcode_bus_size - 1).W))
a_opcode_lookup.suggestName("a_opcode_lookup")
a_opcode_lookup := ((inflight_opcodes) >> (bundle.d.bits.source << log_a_opcode_bus_size.U) & size_to_numfullbits(1.U << log_a_opcode_bus_size.U)) >> 1.U
val a_size_lookup = WireInit(0.U((1 << log_a_size_bus_size).W))
a_size_lookup.suggestName("a_size_lookup")
a_size_lookup := ((inflight_sizes) >> (bundle.d.bits.source << log_a_size_bus_size.U) & size_to_numfullbits(1.U << log_a_size_bus_size.U)) >> 1.U
val responseMap = VecInit(Seq(TLMessages.AccessAck, TLMessages.AccessAck, TLMessages.AccessAckData, TLMessages.AccessAckData, TLMessages.AccessAckData, TLMessages.HintAck, TLMessages.Grant, TLMessages.Grant))
val responseMapSecondOption = VecInit(Seq(TLMessages.AccessAck, TLMessages.AccessAck, TLMessages.AccessAckData, TLMessages.AccessAckData, TLMessages.AccessAckData, TLMessages.HintAck, TLMessages.GrantData, TLMessages.Grant))
val a_opcodes_set_interm = WireInit(0.U(a_opcode_bus_size.W))
a_opcodes_set_interm.suggestName("a_opcodes_set_interm")
val a_sizes_set_interm = WireInit(0.U(a_size_bus_size.W))
a_sizes_set_interm.suggestName("a_sizes_set_interm")
when (bundle.a.valid && a_first && edge.isRequest(bundle.a.bits)) {
a_set_wo_ready := UIntToOH(bundle.a.bits.source)
}
when (bundle.a.fire && a_first && edge.isRequest(bundle.a.bits)) {
a_set := UIntToOH(bundle.a.bits.source)
a_opcodes_set_interm := (bundle.a.bits.opcode << 1.U) | 1.U
a_sizes_set_interm := (bundle.a.bits.size << 1.U) | 1.U
a_opcodes_set := (a_opcodes_set_interm) << (bundle.a.bits.source << log_a_opcode_bus_size.U)
a_sizes_set := (a_sizes_set_interm) << (bundle.a.bits.source << log_a_size_bus_size.U)
monAssert(!inflight(bundle.a.bits.source), "'A' channel re-used a source ID" + extra)
}
val d_clr = WireInit(0.U(edge.client.endSourceId.W))
val d_clr_wo_ready = WireInit(0.U(edge.client.endSourceId.W))
d_clr.suggestName("d_clr")
d_clr_wo_ready.suggestName("d_clr_wo_ready")
val d_opcodes_clr = WireInit(0.U((edge.client.endSourceId << log_a_opcode_bus_size).W))
d_opcodes_clr.suggestName("d_opcodes_clr")
val d_sizes_clr = WireInit(0.U((edge.client.endSourceId << log_a_size_bus_size).W))
d_sizes_clr.suggestName("d_sizes_clr")
val d_release_ack = bundle.d.bits.opcode === TLMessages.ReleaseAck
when (bundle.d.valid && d_first && edge.isResponse(bundle.d.bits) && !d_release_ack) {
d_clr_wo_ready := UIntToOH(bundle.d.bits.source)
}
when (bundle.d.fire && d_first && edge.isResponse(bundle.d.bits) && !d_release_ack) {
d_clr := UIntToOH(bundle.d.bits.source)
d_opcodes_clr := size_to_numfullbits(1.U << log_a_opcode_bus_size.U) << (bundle.d.bits.source << log_a_opcode_bus_size.U)
d_sizes_clr := size_to_numfullbits(1.U << log_a_size_bus_size.U) << (bundle.d.bits.source << log_a_size_bus_size.U)
}
when (bundle.d.valid && d_first && edge.isResponse(bundle.d.bits) && !d_release_ack) {
val same_cycle_resp = bundle.a.valid && a_first && edge.isRequest(bundle.a.bits) && (bundle.a.bits.source === bundle.d.bits.source)
assume(((inflight)(bundle.d.bits.source)) || same_cycle_resp, "'D' channel acknowledged for nothing inflight" + extra)
when (same_cycle_resp) {
assume((bundle.d.bits.opcode === responseMap(bundle.a.bits.opcode)) ||
(bundle.d.bits.opcode === responseMapSecondOption(bundle.a.bits.opcode)), "'D' channel contains improper opcode response" + extra)
assume((bundle.a.bits.size === bundle.d.bits.size), "'D' channel contains improper response size" + extra)
} .otherwise {
assume((bundle.d.bits.opcode === responseMap(a_opcode_lookup)) ||
(bundle.d.bits.opcode === responseMapSecondOption(a_opcode_lookup)), "'D' channel contains improper opcode response" + extra)
assume((bundle.d.bits.size === a_size_lookup), "'D' channel contains improper response size" + extra)
}
}
when(bundle.d.valid && d_first && a_first && bundle.a.valid && (bundle.a.bits.source === bundle.d.bits.source) && !d_release_ack) {
assume((!bundle.d.ready) || bundle.a.ready, "ready check")
}
if (edge.manager.minLatency > 0) {
assume(a_set_wo_ready =/= d_clr_wo_ready || !a_set_wo_ready.orR, s"'A' and 'D' concurrent, despite minlatency > 0" + extra)
}
inflight := (inflight | a_set) & ~d_clr
inflight_opcodes := (inflight_opcodes | a_opcodes_set) & ~d_opcodes_clr
inflight_sizes := (inflight_sizes | a_sizes_set) & ~d_sizes_clr
val watchdog = RegInit(0.U(32.W))
val limit = PlusArg("tilelink_timeout",
docstring="Kill emulation after INT waiting TileLink cycles. Off if 0.")
monAssert (!inflight.orR || limit === 0.U || watchdog < limit, "TileLink timeout expired" + extra)
watchdog := watchdog + 1.U
when (bundle.a.fire || bundle.d.fire) { watchdog := 0.U }
}
def legalizeCDSource(bundle: TLBundle, edge: TLEdge): Unit = {
val c_size_bus_size = edge.bundle.sizeBits + 1 //add one so that 0 is not mapped to anything (size 0 -> size 1 in map, size 0 in map means unset)
val c_opcode_bus_size = 3 + 1 //opcode size is 3, but add so that 0 is not mapped to anything
val log_c_opcode_bus_size = log2Ceil(c_opcode_bus_size)
val log_c_size_bus_size = log2Ceil(c_size_bus_size)
def size_to_numfullbits(x: UInt): UInt = (1.U << x) - 1.U //convert a number to that many full bits
val inflight = RegInit(0.U((2 max edge.client.endSourceId).W))
val inflight_opcodes = RegInit(0.U((edge.client.endSourceId << log_c_opcode_bus_size).W))
val inflight_sizes = RegInit(0.U((edge.client.endSourceId << log_c_size_bus_size).W))
inflight.suggestName("inflight")
inflight_opcodes.suggestName("inflight_opcodes")
inflight_sizes.suggestName("inflight_sizes")
val c_first = edge.first(bundle.c.bits, bundle.c.fire)
val d_first = edge.first(bundle.d.bits, bundle.d.fire)
c_first.suggestName("c_first")
d_first.suggestName("d_first")
val c_set = WireInit(0.U(edge.client.endSourceId.W))
val c_set_wo_ready = WireInit(0.U(edge.client.endSourceId.W))
val c_opcodes_set = WireInit(0.U((edge.client.endSourceId << log_c_opcode_bus_size).W))
val c_sizes_set = WireInit(0.U((edge.client.endSourceId << log_c_size_bus_size).W))
c_set.suggestName("c_set")
c_set_wo_ready.suggestName("c_set_wo_ready")
c_opcodes_set.suggestName("c_opcodes_set")
c_sizes_set.suggestName("c_sizes_set")
val c_opcode_lookup = WireInit(0.U((1 << log_c_opcode_bus_size).W))
val c_size_lookup = WireInit(0.U((1 << log_c_size_bus_size).W))
c_opcode_lookup := ((inflight_opcodes) >> (bundle.d.bits.source << log_c_opcode_bus_size.U) & size_to_numfullbits(1.U << log_c_opcode_bus_size.U)) >> 1.U
c_size_lookup := ((inflight_sizes) >> (bundle.d.bits.source << log_c_size_bus_size.U) & size_to_numfullbits(1.U << log_c_size_bus_size.U)) >> 1.U
c_opcode_lookup.suggestName("c_opcode_lookup")
c_size_lookup.suggestName("c_size_lookup")
val c_opcodes_set_interm = WireInit(0.U(c_opcode_bus_size.W))
val c_sizes_set_interm = WireInit(0.U(c_size_bus_size.W))
c_opcodes_set_interm.suggestName("c_opcodes_set_interm")
c_sizes_set_interm.suggestName("c_sizes_set_interm")
when (bundle.c.valid && c_first && edge.isRequest(bundle.c.bits)) {
c_set_wo_ready := UIntToOH(bundle.c.bits.source)
}
when (bundle.c.fire && c_first && edge.isRequest(bundle.c.bits)) {
c_set := UIntToOH(bundle.c.bits.source)
c_opcodes_set_interm := (bundle.c.bits.opcode << 1.U) | 1.U
c_sizes_set_interm := (bundle.c.bits.size << 1.U) | 1.U
c_opcodes_set := (c_opcodes_set_interm) << (bundle.c.bits.source << log_c_opcode_bus_size.U)
c_sizes_set := (c_sizes_set_interm) << (bundle.c.bits.source << log_c_size_bus_size.U)
monAssert(!inflight(bundle.c.bits.source), "'C' channel re-used a source ID" + extra)
}
val c_probe_ack = bundle.c.bits.opcode === TLMessages.ProbeAck || bundle.c.bits.opcode === TLMessages.ProbeAckData
val d_clr = WireInit(0.U(edge.client.endSourceId.W))
val d_clr_wo_ready = WireInit(0.U(edge.client.endSourceId.W))
val d_opcodes_clr = WireInit(0.U((edge.client.endSourceId << log_c_opcode_bus_size).W))
val d_sizes_clr = WireInit(0.U((edge.client.endSourceId << log_c_size_bus_size).W))
d_clr.suggestName("d_clr")
d_clr_wo_ready.suggestName("d_clr_wo_ready")
d_opcodes_clr.suggestName("d_opcodes_clr")
d_sizes_clr.suggestName("d_sizes_clr")
val d_release_ack = bundle.d.bits.opcode === TLMessages.ReleaseAck
when (bundle.d.valid && d_first && edge.isResponse(bundle.d.bits) && d_release_ack) {
d_clr_wo_ready := UIntToOH(bundle.d.bits.source)
}
when (bundle.d.fire && d_first && edge.isResponse(bundle.d.bits) && d_release_ack) {
d_clr := UIntToOH(bundle.d.bits.source)
d_opcodes_clr := size_to_numfullbits(1.U << log_c_opcode_bus_size.U) << (bundle.d.bits.source << log_c_opcode_bus_size.U)
d_sizes_clr := size_to_numfullbits(1.U << log_c_size_bus_size.U) << (bundle.d.bits.source << log_c_size_bus_size.U)
}
when (bundle.d.valid && d_first && edge.isResponse(bundle.d.bits) && d_release_ack) {
val same_cycle_resp = bundle.c.valid && c_first && edge.isRequest(bundle.c.bits) && (bundle.c.bits.source === bundle.d.bits.source)
assume(((inflight)(bundle.d.bits.source)) || same_cycle_resp, "'D' channel acknowledged for nothing inflight" + extra)
when (same_cycle_resp) {
assume((bundle.d.bits.size === bundle.c.bits.size), "'D' channel contains improper response size" + extra)
} .otherwise {
assume((bundle.d.bits.size === c_size_lookup), "'D' channel contains improper response size" + extra)
}
}
when(bundle.d.valid && d_first && c_first && bundle.c.valid && (bundle.c.bits.source === bundle.d.bits.source) && d_release_ack && !c_probe_ack) {
assume((!bundle.d.ready) || bundle.c.ready, "ready check")
}
if (edge.manager.minLatency > 0) {
when (c_set_wo_ready.orR) {
assume(c_set_wo_ready =/= d_clr_wo_ready, s"'C' and 'D' concurrent, despite minlatency > 0" + extra)
}
}
inflight := (inflight | c_set) & ~d_clr
inflight_opcodes := (inflight_opcodes | c_opcodes_set) & ~d_opcodes_clr
inflight_sizes := (inflight_sizes | c_sizes_set) & ~d_sizes_clr
val watchdog = RegInit(0.U(32.W))
val limit = PlusArg("tilelink_timeout",
docstring="Kill emulation after INT waiting TileLink cycles. Off if 0.")
monAssert (!inflight.orR || limit === 0.U || watchdog < limit, "TileLink timeout expired" + extra)
watchdog := watchdog + 1.U
when (bundle.c.fire || bundle.d.fire) { watchdog := 0.U }
}
def legalizeDESink(bundle: TLBundle, edge: TLEdge): Unit = {
val inflight = RegInit(0.U(edge.manager.endSinkId.W))
val d_first = edge.first(bundle.d.bits, bundle.d.fire)
val e_first = true.B
val d_set = WireInit(0.U(edge.manager.endSinkId.W))
when (bundle.d.fire && d_first && edge.isRequest(bundle.d.bits)) {
d_set := UIntToOH(bundle.d.bits.sink)
assume(!inflight(bundle.d.bits.sink), "'D' channel re-used a sink ID" + extra)
}
val e_clr = WireInit(0.U(edge.manager.endSinkId.W))
when (bundle.e.fire && e_first && edge.isResponse(bundle.e.bits)) {
e_clr := UIntToOH(bundle.e.bits.sink)
monAssert((d_set | inflight)(bundle.e.bits.sink), "'E' channel acknowledged for nothing inflight" + extra)
}
// edge.client.minLatency applies to BC, not DE
inflight := (inflight | d_set) & ~e_clr
}
def legalizeUnique(bundle: TLBundle, edge: TLEdge): Unit = {
val sourceBits = log2Ceil(edge.client.endSourceId)
val tooBig = 14 // >16kB worth of flight information gets to be too much
if (sourceBits > tooBig) {
println(s"WARNING: TLMonitor instantiated on a bus with source bits (${sourceBits}) > ${tooBig}; A=>D transaction flight will not be checked")
} else {
if (args.edge.params(TestplanTestType).simulation) {
if (args.edge.params(TLMonitorStrictMode)) {
legalizeADSource(bundle, edge)
legalizeCDSource(bundle, edge)
} else {
legalizeADSourceOld(bundle, edge)
}
}
if (args.edge.params(TestplanTestType).formal) {
legalizeADSourceFormal(bundle, edge)
}
}
if (edge.client.anySupportProbe && edge.manager.anySupportAcquireB) {
// legalizeBCSourceAddress(bundle, edge) // too much state needed to synthesize...
val sinkBits = log2Ceil(edge.manager.endSinkId)
if (sinkBits > tooBig) {
println(s"WARNING: TLMonitor instantiated on a bus with sink bits (${sinkBits}) > ${tooBig}; D=>E transaction flight will not be checked")
} else {
legalizeDESink(bundle, edge)
}
}
}
def legalize(bundle: TLBundle, edge: TLEdge, reset: Reset): Unit = {
legalizeFormat (bundle, edge)
legalizeMultibeat (bundle, edge)
legalizeUnique (bundle, edge)
}
}
File Misc.scala:
// See LICENSE.Berkeley for license details.
// See LICENSE.SiFive for license details.
package freechips.rocketchip.util
import chisel3._
import chisel3.util._
import chisel3.util.random.LFSR
import org.chipsalliance.cde.config.Parameters
import scala.math._
class ParameterizedBundle(implicit p: Parameters) extends Bundle
trait Clocked extends Bundle {
val clock = Clock()
val reset = Bool()
}
object DecoupledHelper {
def apply(rvs: Bool*) = new DecoupledHelper(rvs)
}
class DecoupledHelper(val rvs: Seq[Bool]) {
def fire(exclude: Bool, includes: Bool*) = {
require(rvs.contains(exclude), "Excluded Bool not present in DecoupledHelper! Note that DecoupledHelper uses referential equality for exclusion! If you don't want to exclude anything, use fire()!")
(rvs.filter(_ ne exclude) ++ includes).reduce(_ && _)
}
def fire() = {
rvs.reduce(_ && _)
}
}
object MuxT {
def apply[T <: Data, U <: Data](cond: Bool, con: (T, U), alt: (T, U)): (T, U) =
(Mux(cond, con._1, alt._1), Mux(cond, con._2, alt._2))
def apply[T <: Data, U <: Data, W <: Data](cond: Bool, con: (T, U, W), alt: (T, U, W)): (T, U, W) =
(Mux(cond, con._1, alt._1), Mux(cond, con._2, alt._2), Mux(cond, con._3, alt._3))
def apply[T <: Data, U <: Data, W <: Data, X <: Data](cond: Bool, con: (T, U, W, X), alt: (T, U, W, X)): (T, U, W, X) =
(Mux(cond, con._1, alt._1), Mux(cond, con._2, alt._2), Mux(cond, con._3, alt._3), Mux(cond, con._4, alt._4))
}
/** Creates a cascade of n MuxTs to search for a key value. */
object MuxTLookup {
def apply[S <: UInt, T <: Data, U <: Data](key: S, default: (T, U), mapping: Seq[(S, (T, U))]): (T, U) = {
var res = default
for ((k, v) <- mapping.reverse)
res = MuxT(k === key, v, res)
res
}
def apply[S <: UInt, T <: Data, U <: Data, W <: Data](key: S, default: (T, U, W), mapping: Seq[(S, (T, U, W))]): (T, U, W) = {
var res = default
for ((k, v) <- mapping.reverse)
res = MuxT(k === key, v, res)
res
}
}
object ValidMux {
def apply[T <: Data](v1: ValidIO[T], v2: ValidIO[T]*): ValidIO[T] = {
apply(v1 +: v2.toSeq)
}
def apply[T <: Data](valids: Seq[ValidIO[T]]): ValidIO[T] = {
val out = Wire(Valid(valids.head.bits.cloneType))
out.valid := valids.map(_.valid).reduce(_ || _)
out.bits := MuxCase(valids.head.bits,
valids.map(v => (v.valid -> v.bits)))
out
}
}
object Str
{
def apply(s: String): UInt = {
var i = BigInt(0)
require(s.forall(validChar _))
for (c <- s)
i = (i << 8) | c
i.U((s.length*8).W)
}
def apply(x: Char): UInt = {
require(validChar(x))
x.U(8.W)
}
def apply(x: UInt): UInt = apply(x, 10)
def apply(x: UInt, radix: Int): UInt = {
val rad = radix.U
val w = x.getWidth
require(w > 0)
var q = x
var s = digit(q % rad)
for (i <- 1 until ceil(log(2)/log(radix)*w).toInt) {
q = q / rad
s = Cat(Mux((radix == 10).B && q === 0.U, Str(' '), digit(q % rad)), s)
}
s
}
def apply(x: SInt): UInt = apply(x, 10)
def apply(x: SInt, radix: Int): UInt = {
val neg = x < 0.S
val abs = x.abs.asUInt
if (radix != 10) {
Cat(Mux(neg, Str('-'), Str(' ')), Str(abs, radix))
} else {
val rad = radix.U
val w = abs.getWidth
require(w > 0)
var q = abs
var s = digit(q % rad)
var needSign = neg
for (i <- 1 until ceil(log(2)/log(radix)*w).toInt) {
q = q / rad
val placeSpace = q === 0.U
val space = Mux(needSign, Str('-'), Str(' '))
needSign = needSign && !placeSpace
s = Cat(Mux(placeSpace, space, digit(q % rad)), s)
}
Cat(Mux(needSign, Str('-'), Str(' ')), s)
}
}
private def digit(d: UInt): UInt = Mux(d < 10.U, Str('0')+d, Str(('a'-10).toChar)+d)(7,0)
private def validChar(x: Char) = x == (x & 0xFF)
}
object Split
{
def apply(x: UInt, n0: Int) = {
val w = x.getWidth
(x.extract(w-1,n0), x.extract(n0-1,0))
}
def apply(x: UInt, n1: Int, n0: Int) = {
val w = x.getWidth
(x.extract(w-1,n1), x.extract(n1-1,n0), x.extract(n0-1,0))
}
def apply(x: UInt, n2: Int, n1: Int, n0: Int) = {
val w = x.getWidth
(x.extract(w-1,n2), x.extract(n2-1,n1), x.extract(n1-1,n0), x.extract(n0-1,0))
}
}
object Random
{
def apply(mod: Int, random: UInt): UInt = {
if (isPow2(mod)) random.extract(log2Ceil(mod)-1,0)
else PriorityEncoder(partition(apply(1 << log2Up(mod*8), random), mod))
}
def apply(mod: Int): UInt = apply(mod, randomizer)
def oneHot(mod: Int, random: UInt): UInt = {
if (isPow2(mod)) UIntToOH(random(log2Up(mod)-1,0))
else PriorityEncoderOH(partition(apply(1 << log2Up(mod*8), random), mod)).asUInt
}
def oneHot(mod: Int): UInt = oneHot(mod, randomizer)
private def randomizer = LFSR(16)
private def partition(value: UInt, slices: Int) =
Seq.tabulate(slices)(i => value < (((i + 1) << value.getWidth) / slices).U)
}
object Majority {
def apply(in: Set[Bool]): Bool = {
val n = (in.size >> 1) + 1
val clauses = in.subsets(n).map(_.reduce(_ && _))
clauses.reduce(_ || _)
}
def apply(in: Seq[Bool]): Bool = apply(in.toSet)
def apply(in: UInt): Bool = apply(in.asBools.toSet)
}
object PopCountAtLeast {
private def two(x: UInt): (Bool, Bool) = x.getWidth match {
case 1 => (x.asBool, false.B)
case n =>
val half = x.getWidth / 2
val (leftOne, leftTwo) = two(x(half - 1, 0))
val (rightOne, rightTwo) = two(x(x.getWidth - 1, half))
(leftOne || rightOne, leftTwo || rightTwo || (leftOne && rightOne))
}
def apply(x: UInt, n: Int): Bool = n match {
case 0 => true.B
case 1 => x.orR
case 2 => two(x)._2
case 3 => PopCount(x) >= n.U
}
}
// This gets used everywhere, so make the smallest circuit possible ...
// Given an address and size, create a mask of beatBytes size
// eg: (0x3, 0, 4) => 0001, (0x3, 1, 4) => 0011, (0x3, 2, 4) => 1111
// groupBy applies an interleaved OR reduction; groupBy=2 take 0010 => 01
object MaskGen {
def apply(addr_lo: UInt, lgSize: UInt, beatBytes: Int, groupBy: Int = 1): UInt = {
require (groupBy >= 1 && beatBytes >= groupBy)
require (isPow2(beatBytes) && isPow2(groupBy))
val lgBytes = log2Ceil(beatBytes)
val sizeOH = UIntToOH(lgSize | 0.U(log2Up(beatBytes).W), log2Up(beatBytes)) | (groupBy*2 - 1).U
def helper(i: Int): Seq[(Bool, Bool)] = {
if (i == 0) {
Seq((lgSize >= lgBytes.asUInt, true.B))
} else {
val sub = helper(i-1)
val size = sizeOH(lgBytes - i)
val bit = addr_lo(lgBytes - i)
val nbit = !bit
Seq.tabulate (1 << i) { j =>
val (sub_acc, sub_eq) = sub(j/2)
val eq = sub_eq && (if (j % 2 == 1) bit else nbit)
val acc = sub_acc || (size && eq)
(acc, eq)
}
}
}
if (groupBy == beatBytes) 1.U else
Cat(helper(lgBytes-log2Ceil(groupBy)).map(_._1).reverse)
}
}
File PlusArg.scala:
// See LICENSE.SiFive for license details.
package freechips.rocketchip.util
import chisel3._
import chisel3.experimental._
import chisel3.util.HasBlackBoxResource
@deprecated("This will be removed in Rocket Chip 2020.08", "Rocket Chip 2020.05")
case class PlusArgInfo(default: BigInt, docstring: String)
/** Case class for PlusArg information
*
* @tparam A scala type of the PlusArg value
* @param default optional default value
* @param docstring text to include in the help
* @param doctype description of the Verilog type of the PlusArg value (e.g. STRING, INT)
*/
private case class PlusArgContainer[A](default: Option[A], docstring: String, doctype: String)
/** Typeclass for converting a type to a doctype string
* @tparam A some type
*/
trait Doctypeable[A] {
/** Return the doctype string for some option */
def toDoctype(a: Option[A]): String
}
/** Object containing implementations of the Doctypeable typeclass */
object Doctypes {
/** Converts an Int => "INT" */
implicit val intToDoctype = new Doctypeable[Int] { def toDoctype(a: Option[Int]) = "INT" }
/** Converts a BigInt => "INT" */
implicit val bigIntToDoctype = new Doctypeable[BigInt] { def toDoctype(a: Option[BigInt]) = "INT" }
/** Converts a String => "STRING" */
implicit val stringToDoctype = new Doctypeable[String] { def toDoctype(a: Option[String]) = "STRING" }
}
class plusarg_reader(val format: String, val default: BigInt, val docstring: String, val width: Int) extends BlackBox(Map(
"FORMAT" -> StringParam(format),
"DEFAULT" -> IntParam(default),
"WIDTH" -> IntParam(width)
)) with HasBlackBoxResource {
val io = IO(new Bundle {
val out = Output(UInt(width.W))
})
addResource("/vsrc/plusarg_reader.v")
}
/* This wrapper class has no outputs, making it clear it is a simulation-only construct */
class PlusArgTimeout(val format: String, val default: BigInt, val docstring: String, val width: Int) extends Module {
val io = IO(new Bundle {
val count = Input(UInt(width.W))
})
val max = Module(new plusarg_reader(format, default, docstring, width)).io.out
when (max > 0.U) {
assert (io.count < max, s"Timeout exceeded: $docstring")
}
}
import Doctypes._
object PlusArg
{
/** PlusArg("foo") will return 42.U if the simulation is run with +foo=42
* Do not use this as an initial register value. The value is set in an
* initial block and thus accessing it from another initial is racey.
* Add a docstring to document the arg, which can be dumped in an elaboration
* pass.
*/
def apply(name: String, default: BigInt = 0, docstring: String = "", width: Int = 32): UInt = {
PlusArgArtefacts.append(name, Some(default), docstring)
Module(new plusarg_reader(name + "=%d", default, docstring, width)).io.out
}
/** PlusArg.timeout(name, default, docstring)(count) will use chisel.assert
* to kill the simulation when count exceeds the specified integer argument.
* Default 0 will never assert.
*/
def timeout(name: String, default: BigInt = 0, docstring: String = "", width: Int = 32)(count: UInt): Unit = {
PlusArgArtefacts.append(name, Some(default), docstring)
Module(new PlusArgTimeout(name + "=%d", default, docstring, width)).io.count := count
}
}
object PlusArgArtefacts {
private var artefacts: Map[String, PlusArgContainer[_]] = Map.empty
/* Add a new PlusArg */
@deprecated(
"Use `Some(BigInt)` to specify a `default` value. This will be removed in Rocket Chip 2020.08",
"Rocket Chip 2020.05"
)
def append(name: String, default: BigInt, docstring: String): Unit = append(name, Some(default), docstring)
/** Add a new PlusArg
*
* @tparam A scala type of the PlusArg value
* @param name name for the PlusArg
* @param default optional default value
* @param docstring text to include in the help
*/
def append[A : Doctypeable](name: String, default: Option[A], docstring: String): Unit =
artefacts = artefacts ++
Map(name -> PlusArgContainer(default, docstring, implicitly[Doctypeable[A]].toDoctype(default)))
/* From plus args, generate help text */
private def serializeHelp_cHeader(tab: String = ""): String = artefacts
.map{ case(arg, info) =>
s"""|$tab+$arg=${info.doctype}\\n\\
|$tab${" "*20}${info.docstring}\\n\\
|""".stripMargin ++ info.default.map{ case default =>
s"$tab${" "*22}(default=${default})\\n\\\n"}.getOrElse("")
}.toSeq.mkString("\\n\\\n") ++ "\""
/* From plus args, generate a char array of their names */
private def serializeArray_cHeader(tab: String = ""): String = {
val prettyTab = tab + " " * 44 // Length of 'static const ...'
s"${tab}static const char * verilog_plusargs [] = {\\\n" ++
artefacts
.map{ case(arg, _) => s"""$prettyTab"$arg",\\\n""" }
.mkString("")++
s"${prettyTab}0};"
}
/* Generate C code to be included in emulator.cc that helps with
* argument parsing based on available Verilog PlusArgs */
def serialize_cHeader(): String =
s"""|#define PLUSARG_USAGE_OPTIONS \"EMULATOR VERILOG PLUSARGS\\n\\
|${serializeHelp_cHeader(" "*7)}
|${serializeArray_cHeader()}
|""".stripMargin
}
File package.scala:
// See LICENSE.SiFive for license details.
package freechips.rocketchip
import chisel3._
import chisel3.util._
import scala.math.min
import scala.collection.{immutable, mutable}
package object util {
implicit class UnzippableOption[S, T](val x: Option[(S, T)]) {
def unzip = (x.map(_._1), x.map(_._2))
}
implicit class UIntIsOneOf(private val x: UInt) extends AnyVal {
def isOneOf(s: Seq[UInt]): Bool = s.map(x === _).orR
def isOneOf(u1: UInt, u2: UInt*): Bool = isOneOf(u1 +: u2.toSeq)
}
implicit class VecToAugmentedVec[T <: Data](private val x: Vec[T]) extends AnyVal {
/** Like Vec.apply(idx), but tolerates indices of mismatched width */
def extract(idx: UInt): T = x((idx | 0.U(log2Ceil(x.size).W)).extract(log2Ceil(x.size) - 1, 0))
}
implicit class SeqToAugmentedSeq[T <: Data](private val x: Seq[T]) extends AnyVal {
def apply(idx: UInt): T = {
if (x.size <= 1) {
x.head
} else if (!isPow2(x.size)) {
// For non-power-of-2 seqs, reflect elements to simplify decoder
(x ++ x.takeRight(x.size & -x.size)).toSeq(idx)
} else {
// Ignore MSBs of idx
val truncIdx =
if (idx.isWidthKnown && idx.getWidth <= log2Ceil(x.size)) idx
else (idx | 0.U(log2Ceil(x.size).W))(log2Ceil(x.size)-1, 0)
x.zipWithIndex.tail.foldLeft(x.head) { case (prev, (cur, i)) => Mux(truncIdx === i.U, cur, prev) }
}
}
def extract(idx: UInt): T = VecInit(x).extract(idx)
def asUInt: UInt = Cat(x.map(_.asUInt).reverse)
def rotate(n: Int): Seq[T] = x.drop(n) ++ x.take(n)
def rotate(n: UInt): Seq[T] = {
if (x.size <= 1) {
x
} else {
require(isPow2(x.size))
val amt = n.padTo(log2Ceil(x.size))
(0 until log2Ceil(x.size)).foldLeft(x)((r, i) => (r.rotate(1 << i) zip r).map { case (s, a) => Mux(amt(i), s, a) })
}
}
def rotateRight(n: Int): Seq[T] = x.takeRight(n) ++ x.dropRight(n)
def rotateRight(n: UInt): Seq[T] = {
if (x.size <= 1) {
x
} else {
require(isPow2(x.size))
val amt = n.padTo(log2Ceil(x.size))
(0 until log2Ceil(x.size)).foldLeft(x)((r, i) => (r.rotateRight(1 << i) zip r).map { case (s, a) => Mux(amt(i), s, a) })
}
}
}
// allow bitwise ops on Seq[Bool] just like UInt
implicit class SeqBoolBitwiseOps(private val x: Seq[Bool]) extends AnyVal {
def & (y: Seq[Bool]): Seq[Bool] = (x zip y).map { case (a, b) => a && b }
def | (y: Seq[Bool]): Seq[Bool] = padZip(x, y).map { case (a, b) => a || b }
def ^ (y: Seq[Bool]): Seq[Bool] = padZip(x, y).map { case (a, b) => a ^ b }
def << (n: Int): Seq[Bool] = Seq.fill(n)(false.B) ++ x
def >> (n: Int): Seq[Bool] = x drop n
def unary_~ : Seq[Bool] = x.map(!_)
def andR: Bool = if (x.isEmpty) true.B else x.reduce(_&&_)
def orR: Bool = if (x.isEmpty) false.B else x.reduce(_||_)
def xorR: Bool = if (x.isEmpty) false.B else x.reduce(_^_)
private def padZip(y: Seq[Bool], z: Seq[Bool]): Seq[(Bool, Bool)] = y.padTo(z.size, false.B) zip z.padTo(y.size, false.B)
}
implicit class DataToAugmentedData[T <: Data](private val x: T) extends AnyVal {
def holdUnless(enable: Bool): T = Mux(enable, x, RegEnable(x, enable))
def getElements: Seq[Element] = x match {
case e: Element => Seq(e)
case a: Aggregate => a.getElements.flatMap(_.getElements)
}
}
/** Any Data subtype that has a Bool member named valid. */
type DataCanBeValid = Data { val valid: Bool }
implicit class SeqMemToAugmentedSeqMem[T <: Data](private val x: SyncReadMem[T]) extends AnyVal {
def readAndHold(addr: UInt, enable: Bool): T = x.read(addr, enable) holdUnless RegNext(enable)
}
implicit class StringToAugmentedString(private val x: String) extends AnyVal {
/** converts from camel case to to underscores, also removing all spaces */
def underscore: String = x.tail.foldLeft(x.headOption.map(_.toLower + "") getOrElse "") {
case (acc, c) if c.isUpper => acc + "_" + c.toLower
case (acc, c) if c == ' ' => acc
case (acc, c) => acc + c
}
/** converts spaces or underscores to hyphens, also lowering case */
def kebab: String = x.toLowerCase map {
case ' ' => '-'
case '_' => '-'
case c => c
}
def named(name: Option[String]): String = {
x + name.map("_named_" + _ ).getOrElse("_with_no_name")
}
def named(name: String): String = named(Some(name))
}
implicit def uintToBitPat(x: UInt): BitPat = BitPat(x)
implicit def wcToUInt(c: WideCounter): UInt = c.value
implicit class UIntToAugmentedUInt(private val x: UInt) extends AnyVal {
def sextTo(n: Int): UInt = {
require(x.getWidth <= n)
if (x.getWidth == n) x
else Cat(Fill(n - x.getWidth, x(x.getWidth-1)), x)
}
def padTo(n: Int): UInt = {
require(x.getWidth <= n)
if (x.getWidth == n) x
else Cat(0.U((n - x.getWidth).W), x)
}
// shifts left by n if n >= 0, or right by -n if n < 0
def << (n: SInt): UInt = {
val w = n.getWidth - 1
require(w <= 30)
val shifted = x << n(w-1, 0)
Mux(n(w), shifted >> (1 << w), shifted)
}
// shifts right by n if n >= 0, or left by -n if n < 0
def >> (n: SInt): UInt = {
val w = n.getWidth - 1
require(w <= 30)
val shifted = x << (1 << w) >> n(w-1, 0)
Mux(n(w), shifted, shifted >> (1 << w))
}
// Like UInt.apply(hi, lo), but returns 0.U for zero-width extracts
def extract(hi: Int, lo: Int): UInt = {
require(hi >= lo-1)
if (hi == lo-1) 0.U
else x(hi, lo)
}
// Like Some(UInt.apply(hi, lo)), but returns None for zero-width extracts
def extractOption(hi: Int, lo: Int): Option[UInt] = {
require(hi >= lo-1)
if (hi == lo-1) None
else Some(x(hi, lo))
}
// like x & ~y, but first truncate or zero-extend y to x's width
def andNot(y: UInt): UInt = x & ~(y | (x & 0.U))
def rotateRight(n: Int): UInt = if (n == 0) x else Cat(x(n-1, 0), x >> n)
def rotateRight(n: UInt): UInt = {
if (x.getWidth <= 1) {
x
} else {
val amt = n.padTo(log2Ceil(x.getWidth))
(0 until log2Ceil(x.getWidth)).foldLeft(x)((r, i) => Mux(amt(i), r.rotateRight(1 << i), r))
}
}
def rotateLeft(n: Int): UInt = if (n == 0) x else Cat(x(x.getWidth-1-n,0), x(x.getWidth-1,x.getWidth-n))
def rotateLeft(n: UInt): UInt = {
if (x.getWidth <= 1) {
x
} else {
val amt = n.padTo(log2Ceil(x.getWidth))
(0 until log2Ceil(x.getWidth)).foldLeft(x)((r, i) => Mux(amt(i), r.rotateLeft(1 << i), r))
}
}
// compute (this + y) % n, given (this < n) and (y < n)
def addWrap(y: UInt, n: Int): UInt = {
val z = x +& y
if (isPow2(n)) z(n.log2-1, 0) else Mux(z >= n.U, z - n.U, z)(log2Ceil(n)-1, 0)
}
// compute (this - y) % n, given (this < n) and (y < n)
def subWrap(y: UInt, n: Int): UInt = {
val z = x -& y
if (isPow2(n)) z(n.log2-1, 0) else Mux(z(z.getWidth-1), z + n.U, z)(log2Ceil(n)-1, 0)
}
def grouped(width: Int): Seq[UInt] =
(0 until x.getWidth by width).map(base => x(base + width - 1, base))
def inRange(base: UInt, bounds: UInt) = x >= base && x < bounds
def ## (y: Option[UInt]): UInt = y.map(x ## _).getOrElse(x)
// Like >=, but prevents x-prop for ('x >= 0)
def >== (y: UInt): Bool = x >= y || y === 0.U
}
implicit class OptionUIntToAugmentedOptionUInt(private val x: Option[UInt]) extends AnyVal {
def ## (y: UInt): UInt = x.map(_ ## y).getOrElse(y)
def ## (y: Option[UInt]): Option[UInt] = x.map(_ ## y)
}
implicit class BooleanToAugmentedBoolean(private val x: Boolean) extends AnyVal {
def toInt: Int = if (x) 1 else 0
// this one's snagged from scalaz
def option[T](z: => T): Option[T] = if (x) Some(z) else None
}
implicit class IntToAugmentedInt(private val x: Int) extends AnyVal {
// exact log2
def log2: Int = {
require(isPow2(x))
log2Ceil(x)
}
}
def OH1ToOH(x: UInt): UInt = (x << 1 | 1.U) & ~Cat(0.U(1.W), x)
def OH1ToUInt(x: UInt): UInt = OHToUInt(OH1ToOH(x))
def UIntToOH1(x: UInt, width: Int): UInt = ~((-1).S(width.W).asUInt << x)(width-1, 0)
def UIntToOH1(x: UInt): UInt = UIntToOH1(x, (1 << x.getWidth) - 1)
def trailingZeros(x: Int): Option[Int] = if (x > 0) Some(log2Ceil(x & -x)) else None
// Fill 1s from low bits to high bits
def leftOR(x: UInt): UInt = leftOR(x, x.getWidth, x.getWidth)
def leftOR(x: UInt, width: Integer, cap: Integer = 999999): UInt = {
val stop = min(width, cap)
def helper(s: Int, x: UInt): UInt =
if (s >= stop) x else helper(s+s, x | (x << s)(width-1,0))
helper(1, x)(width-1, 0)
}
// Fill 1s form high bits to low bits
def rightOR(x: UInt): UInt = rightOR(x, x.getWidth, x.getWidth)
def rightOR(x: UInt, width: Integer, cap: Integer = 999999): UInt = {
val stop = min(width, cap)
def helper(s: Int, x: UInt): UInt =
if (s >= stop) x else helper(s+s, x | (x >> s))
helper(1, x)(width-1, 0)
}
def OptimizationBarrier[T <: Data](in: T): T = {
val barrier = Module(new Module {
val io = IO(new Bundle {
val x = Input(chiselTypeOf(in))
val y = Output(chiselTypeOf(in))
})
io.y := io.x
override def desiredName = s"OptimizationBarrier_${in.typeName}"
})
barrier.io.x := in
barrier.io.y
}
/** Similar to Seq.groupBy except this returns a Seq instead of a Map
* Useful for deterministic code generation
*/
def groupByIntoSeq[A, K](xs: Seq[A])(f: A => K): immutable.Seq[(K, immutable.Seq[A])] = {
val map = mutable.LinkedHashMap.empty[K, mutable.ListBuffer[A]]
for (x <- xs) {
val key = f(x)
val l = map.getOrElseUpdate(key, mutable.ListBuffer.empty[A])
l += x
}
map.view.map({ case (k, vs) => k -> vs.toList }).toList
}
def heterogeneousOrGlobalSetting[T](in: Seq[T], n: Int): Seq[T] = in.size match {
case 1 => List.fill(n)(in.head)
case x if x == n => in
case _ => throw new Exception(s"must provide exactly 1 or $n of some field, but got:\n$in")
}
// HeterogeneousBag moved to standalond diplomacy
@deprecated("HeterogeneousBag has been absorbed into standalone diplomacy library", "rocketchip 2.0.0")
def HeterogeneousBag[T <: Data](elts: Seq[T]) = _root_.org.chipsalliance.diplomacy.nodes.HeterogeneousBag[T](elts)
@deprecated("HeterogeneousBag has been absorbed into standalone diplomacy library", "rocketchip 2.0.0")
val HeterogeneousBag = _root_.org.chipsalliance.diplomacy.nodes.HeterogeneousBag
}
File Parameters.scala:
// See LICENSE.SiFive for license details.
package freechips.rocketchip.diplomacy
import chisel3._
import chisel3.util.{DecoupledIO, Queue, ReadyValidIO, isPow2, log2Ceil, log2Floor}
import freechips.rocketchip.util.ShiftQueue
/** Options for describing the attributes of memory regions */
object RegionType {
// Define the 'more relaxed than' ordering
val cases = Seq(CACHED, TRACKED, UNCACHED, IDEMPOTENT, VOLATILE, PUT_EFFECTS, GET_EFFECTS)
sealed trait T extends Ordered[T] {
def compare(that: T): Int = cases.indexOf(that) compare cases.indexOf(this)
}
case object CACHED extends T // an intermediate agent may have cached a copy of the region for you
case object TRACKED extends T // the region may have been cached by another master, but coherence is being provided
case object UNCACHED extends T // the region has not been cached yet, but should be cached when possible
case object IDEMPOTENT extends T // gets return most recently put content, but content should not be cached
case object VOLATILE extends T // content may change without a put, but puts and gets have no side effects
case object PUT_EFFECTS extends T // puts produce side effects and so must not be combined/delayed
case object GET_EFFECTS extends T // gets produce side effects and so must not be issued speculatively
}
// A non-empty half-open range; [start, end)
case class IdRange(start: Int, end: Int) extends Ordered[IdRange]
{
require (start >= 0, s"Ids cannot be negative, but got: $start.")
require (start <= end, "Id ranges cannot be negative.")
def compare(x: IdRange) = {
val primary = (this.start - x.start).signum
val secondary = (x.end - this.end).signum
if (primary != 0) primary else secondary
}
def overlaps(x: IdRange) = start < x.end && x.start < end
def contains(x: IdRange) = start <= x.start && x.end <= end
def contains(x: Int) = start <= x && x < end
def contains(x: UInt) =
if (size == 0) {
false.B
} else if (size == 1) { // simple comparison
x === start.U
} else {
// find index of largest different bit
val largestDeltaBit = log2Floor(start ^ (end-1))
val smallestCommonBit = largestDeltaBit + 1 // may not exist in x
val uncommonMask = (1 << smallestCommonBit) - 1
val uncommonBits = (x | 0.U(smallestCommonBit.W))(largestDeltaBit, 0)
// the prefix must match exactly (note: may shift ALL bits away)
(x >> smallestCommonBit) === (start >> smallestCommonBit).U &&
// firrtl constant prop range analysis can eliminate these two:
(start & uncommonMask).U <= uncommonBits &&
uncommonBits <= ((end-1) & uncommonMask).U
}
def shift(x: Int) = IdRange(start+x, end+x)
def size = end - start
def isEmpty = end == start
def range = start until end
}
object IdRange
{
def overlaps(s: Seq[IdRange]) = if (s.isEmpty) None else {
val ranges = s.sorted
(ranges.tail zip ranges.init) find { case (a, b) => a overlaps b }
}
}
// An potentially empty inclusive range of 2-powers [min, max] (in bytes)
case class TransferSizes(min: Int, max: Int)
{
def this(x: Int) = this(x, x)
require (min <= max, s"Min transfer $min > max transfer $max")
require (min >= 0 && max >= 0, s"TransferSizes must be positive, got: ($min, $max)")
require (max == 0 || isPow2(max), s"TransferSizes must be a power of 2, got: $max")
require (min == 0 || isPow2(min), s"TransferSizes must be a power of 2, got: $min")
require (max == 0 || min != 0, s"TransferSize 0 is forbidden unless (0,0), got: ($min, $max)")
def none = min == 0
def contains(x: Int) = isPow2(x) && min <= x && x <= max
def containsLg(x: Int) = contains(1 << x)
def containsLg(x: UInt) =
if (none) false.B
else if (min == max) { log2Ceil(min).U === x }
else { log2Ceil(min).U <= x && x <= log2Ceil(max).U }
def contains(x: TransferSizes) = x.none || (min <= x.min && x.max <= max)
def intersect(x: TransferSizes) =
if (x.max < min || max < x.min) TransferSizes.none
else TransferSizes(scala.math.max(min, x.min), scala.math.min(max, x.max))
// Not a union, because the result may contain sizes contained by neither term
// NOT TO BE CONFUSED WITH COVERPOINTS
def mincover(x: TransferSizes) = {
if (none) {
x
} else if (x.none) {
this
} else {
TransferSizes(scala.math.min(min, x.min), scala.math.max(max, x.max))
}
}
override def toString() = "TransferSizes[%d, %d]".format(min, max)
}
object TransferSizes {
def apply(x: Int) = new TransferSizes(x)
val none = new TransferSizes(0)
def mincover(seq: Seq[TransferSizes]) = seq.foldLeft(none)(_ mincover _)
def intersect(seq: Seq[TransferSizes]) = seq.reduce(_ intersect _)
implicit def asBool(x: TransferSizes) = !x.none
}
// AddressSets specify the address space managed by the manager
// Base is the base address, and mask are the bits consumed by the manager
// e.g: base=0x200, mask=0xff describes a device managing 0x200-0x2ff
// e.g: base=0x1000, mask=0xf0f decribes a device managing 0x1000-0x100f, 0x1100-0x110f, ...
case class AddressSet(base: BigInt, mask: BigInt) extends Ordered[AddressSet]
{
// Forbid misaligned base address (and empty sets)
require ((base & mask) == 0, s"Mis-aligned AddressSets are forbidden, got: ${this.toString}")
require (base >= 0, s"AddressSet negative base is ambiguous: $base") // TL2 address widths are not fixed => negative is ambiguous
// We do allow negative mask (=> ignore all high bits)
def contains(x: BigInt) = ((x ^ base) & ~mask) == 0
def contains(x: UInt) = ((x ^ base.U).zext & (~mask).S) === 0.S
// turn x into an address contained in this set
def legalize(x: UInt): UInt = base.U | (mask.U & x)
// overlap iff bitwise: both care (~mask0 & ~mask1) => both equal (base0=base1)
def overlaps(x: AddressSet) = (~(mask | x.mask) & (base ^ x.base)) == 0
// contains iff bitwise: x.mask => mask && contains(x.base)
def contains(x: AddressSet) = ((x.mask | (base ^ x.base)) & ~mask) == 0
// The number of bytes to which the manager must be aligned
def alignment = ((mask + 1) & ~mask)
// Is this a contiguous memory range
def contiguous = alignment == mask+1
def finite = mask >= 0
def max = { require (finite, "Max cannot be calculated on infinite mask"); base | mask }
// Widen the match function to ignore all bits in imask
def widen(imask: BigInt) = AddressSet(base & ~imask, mask | imask)
// Return an AddressSet that only contains the addresses both sets contain
def intersect(x: AddressSet): Option[AddressSet] = {
if (!overlaps(x)) {
None
} else {
val r_mask = mask & x.mask
val r_base = base | x.base
Some(AddressSet(r_base, r_mask))
}
}
def subtract(x: AddressSet): Seq[AddressSet] = {
intersect(x) match {
case None => Seq(this)
case Some(remove) => AddressSet.enumerateBits(mask & ~remove.mask).map { bit =>
val nmask = (mask & (bit-1)) | remove.mask
val nbase = (remove.base ^ bit) & ~nmask
AddressSet(nbase, nmask)
}
}
}
// AddressSets have one natural Ordering (the containment order, if contiguous)
def compare(x: AddressSet) = {
val primary = (this.base - x.base).signum // smallest address first
val secondary = (x.mask - this.mask).signum // largest mask first
if (primary != 0) primary else secondary
}
// We always want to see things in hex
override def toString() = {
if (mask >= 0) {
"AddressSet(0x%x, 0x%x)".format(base, mask)
} else {
"AddressSet(0x%x, ~0x%x)".format(base, ~mask)
}
}
def toRanges = {
require (finite, "Ranges cannot be calculated on infinite mask")
val size = alignment
val fragments = mask & ~(size-1)
val bits = bitIndexes(fragments)
(BigInt(0) until (BigInt(1) << bits.size)).map { i =>
val off = bitIndexes(i).foldLeft(base) { case (a, b) => a.setBit(bits(b)) }
AddressRange(off, size)
}
}
}
object AddressSet
{
val everything = AddressSet(0, -1)
def misaligned(base: BigInt, size: BigInt, tail: Seq[AddressSet] = Seq()): Seq[AddressSet] = {
if (size == 0) tail.reverse else {
val maxBaseAlignment = base & (-base) // 0 for infinite (LSB)
val maxSizeAlignment = BigInt(1) << log2Floor(size) // MSB of size
val step =
if (maxBaseAlignment == 0 || maxBaseAlignment > maxSizeAlignment)
maxSizeAlignment else maxBaseAlignment
misaligned(base+step, size-step, AddressSet(base, step-1) +: tail)
}
}
def unify(seq: Seq[AddressSet], bit: BigInt): Seq[AddressSet] = {
// Pair terms up by ignoring 'bit'
seq.distinct.groupBy(x => x.copy(base = x.base & ~bit)).map { case (key, seq) =>
if (seq.size == 1) {
seq.head // singleton -> unaffected
} else {
key.copy(mask = key.mask | bit) // pair - widen mask by bit
}
}.toList
}
def unify(seq: Seq[AddressSet]): Seq[AddressSet] = {
val bits = seq.map(_.base).foldLeft(BigInt(0))(_ | _)
AddressSet.enumerateBits(bits).foldLeft(seq) { case (acc, bit) => unify(acc, bit) }.sorted
}
def enumerateMask(mask: BigInt): Seq[BigInt] = {
def helper(id: BigInt, tail: Seq[BigInt]): Seq[BigInt] =
if (id == mask) (id +: tail).reverse else helper(((~mask | id) + 1) & mask, id +: tail)
helper(0, Nil)
}
def enumerateBits(mask: BigInt): Seq[BigInt] = {
def helper(x: BigInt): Seq[BigInt] = {
if (x == 0) {
Nil
} else {
val bit = x & (-x)
bit +: helper(x & ~bit)
}
}
helper(mask)
}
}
case class BufferParams(depth: Int, flow: Boolean, pipe: Boolean)
{
require (depth >= 0, "Buffer depth must be >= 0")
def isDefined = depth > 0
def latency = if (isDefined && !flow) 1 else 0
def apply[T <: Data](x: DecoupledIO[T]) =
if (isDefined) Queue(x, depth, flow=flow, pipe=pipe)
else x
def irrevocable[T <: Data](x: ReadyValidIO[T]) =
if (isDefined) Queue.irrevocable(x, depth, flow=flow, pipe=pipe)
else x
def sq[T <: Data](x: DecoupledIO[T]) =
if (!isDefined) x else {
val sq = Module(new ShiftQueue(x.bits, depth, flow=flow, pipe=pipe))
sq.io.enq <> x
sq.io.deq
}
override def toString() = "BufferParams:%d%s%s".format(depth, if (flow) "F" else "", if (pipe) "P" else "")
}
object BufferParams
{
implicit def apply(depth: Int): BufferParams = BufferParams(depth, false, false)
val default = BufferParams(2)
val none = BufferParams(0)
val flow = BufferParams(1, true, false)
val pipe = BufferParams(1, false, true)
}
case class TriStateValue(value: Boolean, set: Boolean)
{
def update(orig: Boolean) = if (set) value else orig
}
object TriStateValue
{
implicit def apply(value: Boolean): TriStateValue = TriStateValue(value, true)
def unset = TriStateValue(false, false)
}
trait DirectedBuffers[T] {
def copyIn(x: BufferParams): T
def copyOut(x: BufferParams): T
def copyInOut(x: BufferParams): T
}
trait IdMapEntry {
def name: String
def from: IdRange
def to: IdRange
def isCache: Boolean
def requestFifo: Boolean
def maxTransactionsInFlight: Option[Int]
def pretty(fmt: String) =
if (from ne to) { // if the subclass uses the same reference for both from and to, assume its format string has an arity of 5
fmt.format(to.start, to.end, from.start, from.end, s""""$name"""", if (isCache) " [CACHE]" else "", if (requestFifo) " [FIFO]" else "")
} else {
fmt.format(from.start, from.end, s""""$name"""", if (isCache) " [CACHE]" else "", if (requestFifo) " [FIFO]" else "")
}
}
abstract class IdMap[T <: IdMapEntry] {
protected val fmt: String
val mapping: Seq[T]
def pretty: String = mapping.map(_.pretty(fmt)).mkString(",\n")
}
File Edges.scala:
// See LICENSE.SiFive for license details.
package freechips.rocketchip.tilelink
import chisel3._
import chisel3.util._
import chisel3.experimental.SourceInfo
import org.chipsalliance.cde.config.Parameters
import freechips.rocketchip.util._
class TLEdge(
client: TLClientPortParameters,
manager: TLManagerPortParameters,
params: Parameters,
sourceInfo: SourceInfo)
extends TLEdgeParameters(client, manager, params, sourceInfo)
{
def isAligned(address: UInt, lgSize: UInt): Bool = {
if (maxLgSize == 0) true.B else {
val mask = UIntToOH1(lgSize, maxLgSize)
(address & mask) === 0.U
}
}
def mask(address: UInt, lgSize: UInt): UInt =
MaskGen(address, lgSize, manager.beatBytes)
def staticHasData(bundle: TLChannel): Option[Boolean] = {
bundle match {
case _:TLBundleA => {
// Do there exist A messages with Data?
val aDataYes = manager.anySupportArithmetic || manager.anySupportLogical || manager.anySupportPutFull || manager.anySupportPutPartial
// Do there exist A messages without Data?
val aDataNo = manager.anySupportAcquireB || manager.anySupportGet || manager.anySupportHint
// Statically optimize the case where hasData is a constant
if (!aDataYes) Some(false) else if (!aDataNo) Some(true) else None
}
case _:TLBundleB => {
// Do there exist B messages with Data?
val bDataYes = client.anySupportArithmetic || client.anySupportLogical || client.anySupportPutFull || client.anySupportPutPartial
// Do there exist B messages without Data?
val bDataNo = client.anySupportProbe || client.anySupportGet || client.anySupportHint
// Statically optimize the case where hasData is a constant
if (!bDataYes) Some(false) else if (!bDataNo) Some(true) else None
}
case _:TLBundleC => {
// Do there eixst C messages with Data?
val cDataYes = client.anySupportGet || client.anySupportArithmetic || client.anySupportLogical || client.anySupportProbe
// Do there exist C messages without Data?
val cDataNo = client.anySupportPutFull || client.anySupportPutPartial || client.anySupportHint || client.anySupportProbe
if (!cDataYes) Some(false) else if (!cDataNo) Some(true) else None
}
case _:TLBundleD => {
// Do there eixst D messages with Data?
val dDataYes = manager.anySupportGet || manager.anySupportArithmetic || manager.anySupportLogical || manager.anySupportAcquireB
// Do there exist D messages without Data?
val dDataNo = manager.anySupportPutFull || manager.anySupportPutPartial || manager.anySupportHint || manager.anySupportAcquireT
if (!dDataYes) Some(false) else if (!dDataNo) Some(true) else None
}
case _:TLBundleE => Some(false)
}
}
def isRequest(x: TLChannel): Bool = {
x match {
case a: TLBundleA => true.B
case b: TLBundleB => true.B
case c: TLBundleC => c.opcode(2) && c.opcode(1)
// opcode === TLMessages.Release ||
// opcode === TLMessages.ReleaseData
case d: TLBundleD => d.opcode(2) && !d.opcode(1)
// opcode === TLMessages.Grant ||
// opcode === TLMessages.GrantData
case e: TLBundleE => false.B
}
}
def isResponse(x: TLChannel): Bool = {
x match {
case a: TLBundleA => false.B
case b: TLBundleB => false.B
case c: TLBundleC => !c.opcode(2) || !c.opcode(1)
// opcode =/= TLMessages.Release &&
// opcode =/= TLMessages.ReleaseData
case d: TLBundleD => true.B // Grant isResponse + isRequest
case e: TLBundleE => true.B
}
}
def hasData(x: TLChannel): Bool = {
val opdata = x match {
case a: TLBundleA => !a.opcode(2)
// opcode === TLMessages.PutFullData ||
// opcode === TLMessages.PutPartialData ||
// opcode === TLMessages.ArithmeticData ||
// opcode === TLMessages.LogicalData
case b: TLBundleB => !b.opcode(2)
// opcode === TLMessages.PutFullData ||
// opcode === TLMessages.PutPartialData ||
// opcode === TLMessages.ArithmeticData ||
// opcode === TLMessages.LogicalData
case c: TLBundleC => c.opcode(0)
// opcode === TLMessages.AccessAckData ||
// opcode === TLMessages.ProbeAckData ||
// opcode === TLMessages.ReleaseData
case d: TLBundleD => d.opcode(0)
// opcode === TLMessages.AccessAckData ||
// opcode === TLMessages.GrantData
case e: TLBundleE => false.B
}
staticHasData(x).map(_.B).getOrElse(opdata)
}
def opcode(x: TLDataChannel): UInt = {
x match {
case a: TLBundleA => a.opcode
case b: TLBundleB => b.opcode
case c: TLBundleC => c.opcode
case d: TLBundleD => d.opcode
}
}
def param(x: TLDataChannel): UInt = {
x match {
case a: TLBundleA => a.param
case b: TLBundleB => b.param
case c: TLBundleC => c.param
case d: TLBundleD => d.param
}
}
def size(x: TLDataChannel): UInt = {
x match {
case a: TLBundleA => a.size
case b: TLBundleB => b.size
case c: TLBundleC => c.size
case d: TLBundleD => d.size
}
}
def data(x: TLDataChannel): UInt = {
x match {
case a: TLBundleA => a.data
case b: TLBundleB => b.data
case c: TLBundleC => c.data
case d: TLBundleD => d.data
}
}
def corrupt(x: TLDataChannel): Bool = {
x match {
case a: TLBundleA => a.corrupt
case b: TLBundleB => b.corrupt
case c: TLBundleC => c.corrupt
case d: TLBundleD => d.corrupt
}
}
def mask(x: TLAddrChannel): UInt = {
x match {
case a: TLBundleA => a.mask
case b: TLBundleB => b.mask
case c: TLBundleC => mask(c.address, c.size)
}
}
def full_mask(x: TLAddrChannel): UInt = {
x match {
case a: TLBundleA => mask(a.address, a.size)
case b: TLBundleB => mask(b.address, b.size)
case c: TLBundleC => mask(c.address, c.size)
}
}
def address(x: TLAddrChannel): UInt = {
x match {
case a: TLBundleA => a.address
case b: TLBundleB => b.address
case c: TLBundleC => c.address
}
}
def source(x: TLDataChannel): UInt = {
x match {
case a: TLBundleA => a.source
case b: TLBundleB => b.source
case c: TLBundleC => c.source
case d: TLBundleD => d.source
}
}
def addr_hi(x: UInt): UInt = x >> log2Ceil(manager.beatBytes)
def addr_lo(x: UInt): UInt =
if (manager.beatBytes == 1) 0.U else x(log2Ceil(manager.beatBytes)-1, 0)
def addr_hi(x: TLAddrChannel): UInt = addr_hi(address(x))
def addr_lo(x: TLAddrChannel): UInt = addr_lo(address(x))
def numBeats(x: TLChannel): UInt = {
x match {
case _: TLBundleE => 1.U
case bundle: TLDataChannel => {
val hasData = this.hasData(bundle)
val size = this.size(bundle)
val cutoff = log2Ceil(manager.beatBytes)
val small = if (manager.maxTransfer <= manager.beatBytes) true.B else size <= (cutoff).U
val decode = UIntToOH(size, maxLgSize+1) >> cutoff
Mux(hasData, decode | small.asUInt, 1.U)
}
}
}
def numBeats1(x: TLChannel): UInt = {
x match {
case _: TLBundleE => 0.U
case bundle: TLDataChannel => {
if (maxLgSize == 0) {
0.U
} else {
val decode = UIntToOH1(size(bundle), maxLgSize) >> log2Ceil(manager.beatBytes)
Mux(hasData(bundle), decode, 0.U)
}
}
}
}
def firstlastHelper(bits: TLChannel, fire: Bool): (Bool, Bool, Bool, UInt) = {
val beats1 = numBeats1(bits)
val counter = RegInit(0.U(log2Up(maxTransfer / manager.beatBytes).W))
val counter1 = counter - 1.U
val first = counter === 0.U
val last = counter === 1.U || beats1 === 0.U
val done = last && fire
val count = (beats1 & ~counter1)
when (fire) {
counter := Mux(first, beats1, counter1)
}
(first, last, done, count)
}
def first(bits: TLChannel, fire: Bool): Bool = firstlastHelper(bits, fire)._1
def first(x: DecoupledIO[TLChannel]): Bool = first(x.bits, x.fire)
def first(x: ValidIO[TLChannel]): Bool = first(x.bits, x.valid)
def last(bits: TLChannel, fire: Bool): Bool = firstlastHelper(bits, fire)._2
def last(x: DecoupledIO[TLChannel]): Bool = last(x.bits, x.fire)
def last(x: ValidIO[TLChannel]): Bool = last(x.bits, x.valid)
def done(bits: TLChannel, fire: Bool): Bool = firstlastHelper(bits, fire)._3
def done(x: DecoupledIO[TLChannel]): Bool = done(x.bits, x.fire)
def done(x: ValidIO[TLChannel]): Bool = done(x.bits, x.valid)
def firstlast(bits: TLChannel, fire: Bool): (Bool, Bool, Bool) = {
val r = firstlastHelper(bits, fire)
(r._1, r._2, r._3)
}
def firstlast(x: DecoupledIO[TLChannel]): (Bool, Bool, Bool) = firstlast(x.bits, x.fire)
def firstlast(x: ValidIO[TLChannel]): (Bool, Bool, Bool) = firstlast(x.bits, x.valid)
def count(bits: TLChannel, fire: Bool): (Bool, Bool, Bool, UInt) = {
val r = firstlastHelper(bits, fire)
(r._1, r._2, r._3, r._4)
}
def count(x: DecoupledIO[TLChannel]): (Bool, Bool, Bool, UInt) = count(x.bits, x.fire)
def count(x: ValidIO[TLChannel]): (Bool, Bool, Bool, UInt) = count(x.bits, x.valid)
def addr_inc(bits: TLChannel, fire: Bool): (Bool, Bool, Bool, UInt) = {
val r = firstlastHelper(bits, fire)
(r._1, r._2, r._3, r._4 << log2Ceil(manager.beatBytes))
}
def addr_inc(x: DecoupledIO[TLChannel]): (Bool, Bool, Bool, UInt) = addr_inc(x.bits, x.fire)
def addr_inc(x: ValidIO[TLChannel]): (Bool, Bool, Bool, UInt) = addr_inc(x.bits, x.valid)
// Does the request need T permissions to be executed?
def needT(a: TLBundleA): Bool = {
val acq_needT = MuxLookup(a.param, WireDefault(Bool(), DontCare))(Array(
TLPermissions.NtoB -> false.B,
TLPermissions.NtoT -> true.B,
TLPermissions.BtoT -> true.B))
MuxLookup(a.opcode, WireDefault(Bool(), DontCare))(Array(
TLMessages.PutFullData -> true.B,
TLMessages.PutPartialData -> true.B,
TLMessages.ArithmeticData -> true.B,
TLMessages.LogicalData -> true.B,
TLMessages.Get -> false.B,
TLMessages.Hint -> MuxLookup(a.param, WireDefault(Bool(), DontCare))(Array(
TLHints.PREFETCH_READ -> false.B,
TLHints.PREFETCH_WRITE -> true.B)),
TLMessages.AcquireBlock -> acq_needT,
TLMessages.AcquirePerm -> acq_needT))
}
// This is a very expensive circuit; use only if you really mean it!
def inFlight(x: TLBundle): (UInt, UInt) = {
val flight = RegInit(0.U(log2Ceil(3*client.endSourceId+1).W))
val bce = manager.anySupportAcquireB && client.anySupportProbe
val (a_first, a_last, _) = firstlast(x.a)
val (b_first, b_last, _) = firstlast(x.b)
val (c_first, c_last, _) = firstlast(x.c)
val (d_first, d_last, _) = firstlast(x.d)
val (e_first, e_last, _) = firstlast(x.e)
val (a_request, a_response) = (isRequest(x.a.bits), isResponse(x.a.bits))
val (b_request, b_response) = (isRequest(x.b.bits), isResponse(x.b.bits))
val (c_request, c_response) = (isRequest(x.c.bits), isResponse(x.c.bits))
val (d_request, d_response) = (isRequest(x.d.bits), isResponse(x.d.bits))
val (e_request, e_response) = (isRequest(x.e.bits), isResponse(x.e.bits))
val a_inc = x.a.fire && a_first && a_request
val b_inc = x.b.fire && b_first && b_request
val c_inc = x.c.fire && c_first && c_request
val d_inc = x.d.fire && d_first && d_request
val e_inc = x.e.fire && e_first && e_request
val inc = Cat(Seq(a_inc, d_inc) ++ (if (bce) Seq(b_inc, c_inc, e_inc) else Nil))
val a_dec = x.a.fire && a_last && a_response
val b_dec = x.b.fire && b_last && b_response
val c_dec = x.c.fire && c_last && c_response
val d_dec = x.d.fire && d_last && d_response
val e_dec = x.e.fire && e_last && e_response
val dec = Cat(Seq(a_dec, d_dec) ++ (if (bce) Seq(b_dec, c_dec, e_dec) else Nil))
val next_flight = flight + PopCount(inc) - PopCount(dec)
flight := next_flight
(flight, next_flight)
}
def prettySourceMapping(context: String): String = {
s"TL-Source mapping for $context:\n${(new TLSourceIdMap(client)).pretty}\n"
}
}
class TLEdgeOut(
client: TLClientPortParameters,
manager: TLManagerPortParameters,
params: Parameters,
sourceInfo: SourceInfo)
extends TLEdge(client, manager, params, sourceInfo)
{
// Transfers
def AcquireBlock(fromSource: UInt, toAddress: UInt, lgSize: UInt, growPermissions: UInt) = {
require (manager.anySupportAcquireB, s"TileLink: No managers visible from this edge support Acquires, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsAcquireBFast(toAddress, lgSize)
val a = Wire(new TLBundleA(bundle))
a.opcode := TLMessages.AcquireBlock
a.param := growPermissions
a.size := lgSize
a.source := fromSource
a.address := toAddress
a.user := DontCare
a.echo := DontCare
a.mask := mask(toAddress, lgSize)
a.data := DontCare
a.corrupt := false.B
(legal, a)
}
def AcquirePerm(fromSource: UInt, toAddress: UInt, lgSize: UInt, growPermissions: UInt) = {
require (manager.anySupportAcquireB, s"TileLink: No managers visible from this edge support Acquires, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsAcquireBFast(toAddress, lgSize)
val a = Wire(new TLBundleA(bundle))
a.opcode := TLMessages.AcquirePerm
a.param := growPermissions
a.size := lgSize
a.source := fromSource
a.address := toAddress
a.user := DontCare
a.echo := DontCare
a.mask := mask(toAddress, lgSize)
a.data := DontCare
a.corrupt := false.B
(legal, a)
}
def Release(fromSource: UInt, toAddress: UInt, lgSize: UInt, shrinkPermissions: UInt): (Bool, TLBundleC) = {
require (manager.anySupportAcquireB, s"TileLink: No managers visible from this edge support Acquires, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsAcquireBFast(toAddress, lgSize)
val c = Wire(new TLBundleC(bundle))
c.opcode := TLMessages.Release
c.param := shrinkPermissions
c.size := lgSize
c.source := fromSource
c.address := toAddress
c.user := DontCare
c.echo := DontCare
c.data := DontCare
c.corrupt := false.B
(legal, c)
}
def Release(fromSource: UInt, toAddress: UInt, lgSize: UInt, shrinkPermissions: UInt, data: UInt, corrupt: Bool): (Bool, TLBundleC) = {
require (manager.anySupportAcquireB, s"TileLink: No managers visible from this edge support Acquires, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsAcquireBFast(toAddress, lgSize)
val c = Wire(new TLBundleC(bundle))
c.opcode := TLMessages.ReleaseData
c.param := shrinkPermissions
c.size := lgSize
c.source := fromSource
c.address := toAddress
c.user := DontCare
c.echo := DontCare
c.data := data
c.corrupt := corrupt
(legal, c)
}
def Release(fromSource: UInt, toAddress: UInt, lgSize: UInt, shrinkPermissions: UInt, data: UInt): (Bool, TLBundleC) =
Release(fromSource, toAddress, lgSize, shrinkPermissions, data, false.B)
def ProbeAck(b: TLBundleB, reportPermissions: UInt): TLBundleC =
ProbeAck(b.source, b.address, b.size, reportPermissions)
def ProbeAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, reportPermissions: UInt): TLBundleC = {
val c = Wire(new TLBundleC(bundle))
c.opcode := TLMessages.ProbeAck
c.param := reportPermissions
c.size := lgSize
c.source := fromSource
c.address := toAddress
c.user := DontCare
c.echo := DontCare
c.data := DontCare
c.corrupt := false.B
c
}
def ProbeAck(b: TLBundleB, reportPermissions: UInt, data: UInt): TLBundleC =
ProbeAck(b.source, b.address, b.size, reportPermissions, data)
def ProbeAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, reportPermissions: UInt, data: UInt, corrupt: Bool): TLBundleC = {
val c = Wire(new TLBundleC(bundle))
c.opcode := TLMessages.ProbeAckData
c.param := reportPermissions
c.size := lgSize
c.source := fromSource
c.address := toAddress
c.user := DontCare
c.echo := DontCare
c.data := data
c.corrupt := corrupt
c
}
def ProbeAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, reportPermissions: UInt, data: UInt): TLBundleC =
ProbeAck(fromSource, toAddress, lgSize, reportPermissions, data, false.B)
def GrantAck(d: TLBundleD): TLBundleE = GrantAck(d.sink)
def GrantAck(toSink: UInt): TLBundleE = {
val e = Wire(new TLBundleE(bundle))
e.sink := toSink
e
}
// Accesses
def Get(fromSource: UInt, toAddress: UInt, lgSize: UInt) = {
require (manager.anySupportGet, s"TileLink: No managers visible from this edge support Gets, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsGetFast(toAddress, lgSize)
val a = Wire(new TLBundleA(bundle))
a.opcode := TLMessages.Get
a.param := 0.U
a.size := lgSize
a.source := fromSource
a.address := toAddress
a.user := DontCare
a.echo := DontCare
a.mask := mask(toAddress, lgSize)
a.data := DontCare
a.corrupt := false.B
(legal, a)
}
def Put(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt): (Bool, TLBundleA) =
Put(fromSource, toAddress, lgSize, data, false.B)
def Put(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, corrupt: Bool): (Bool, TLBundleA) = {
require (manager.anySupportPutFull, s"TileLink: No managers visible from this edge support Puts, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsPutFullFast(toAddress, lgSize)
val a = Wire(new TLBundleA(bundle))
a.opcode := TLMessages.PutFullData
a.param := 0.U
a.size := lgSize
a.source := fromSource
a.address := toAddress
a.user := DontCare
a.echo := DontCare
a.mask := mask(toAddress, lgSize)
a.data := data
a.corrupt := corrupt
(legal, a)
}
def Put(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, mask: UInt): (Bool, TLBundleA) =
Put(fromSource, toAddress, lgSize, data, mask, false.B)
def Put(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, mask: UInt, corrupt: Bool): (Bool, TLBundleA) = {
require (manager.anySupportPutPartial, s"TileLink: No managers visible from this edge support masked Puts, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsPutPartialFast(toAddress, lgSize)
val a = Wire(new TLBundleA(bundle))
a.opcode := TLMessages.PutPartialData
a.param := 0.U
a.size := lgSize
a.source := fromSource
a.address := toAddress
a.user := DontCare
a.echo := DontCare
a.mask := mask
a.data := data
a.corrupt := corrupt
(legal, a)
}
def Arithmetic(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, atomic: UInt, corrupt: Bool = false.B): (Bool, TLBundleA) = {
require (manager.anySupportArithmetic, s"TileLink: No managers visible from this edge support arithmetic AMOs, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsArithmeticFast(toAddress, lgSize)
val a = Wire(new TLBundleA(bundle))
a.opcode := TLMessages.ArithmeticData
a.param := atomic
a.size := lgSize
a.source := fromSource
a.address := toAddress
a.user := DontCare
a.echo := DontCare
a.mask := mask(toAddress, lgSize)
a.data := data
a.corrupt := corrupt
(legal, a)
}
def Logical(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, atomic: UInt, corrupt: Bool = false.B) = {
require (manager.anySupportLogical, s"TileLink: No managers visible from this edge support logical AMOs, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsLogicalFast(toAddress, lgSize)
val a = Wire(new TLBundleA(bundle))
a.opcode := TLMessages.LogicalData
a.param := atomic
a.size := lgSize
a.source := fromSource
a.address := toAddress
a.user := DontCare
a.echo := DontCare
a.mask := mask(toAddress, lgSize)
a.data := data
a.corrupt := corrupt
(legal, a)
}
def Hint(fromSource: UInt, toAddress: UInt, lgSize: UInt, param: UInt) = {
require (manager.anySupportHint, s"TileLink: No managers visible from this edge support Hints, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsHintFast(toAddress, lgSize)
val a = Wire(new TLBundleA(bundle))
a.opcode := TLMessages.Hint
a.param := param
a.size := lgSize
a.source := fromSource
a.address := toAddress
a.user := DontCare
a.echo := DontCare
a.mask := mask(toAddress, lgSize)
a.data := DontCare
a.corrupt := false.B
(legal, a)
}
def AccessAck(b: TLBundleB): TLBundleC = AccessAck(b.source, address(b), b.size)
def AccessAck(fromSource: UInt, toAddress: UInt, lgSize: UInt) = {
val c = Wire(new TLBundleC(bundle))
c.opcode := TLMessages.AccessAck
c.param := 0.U
c.size := lgSize
c.source := fromSource
c.address := toAddress
c.user := DontCare
c.echo := DontCare
c.data := DontCare
c.corrupt := false.B
c
}
def AccessAck(b: TLBundleB, data: UInt): TLBundleC = AccessAck(b.source, address(b), b.size, data)
def AccessAck(b: TLBundleB, data: UInt, corrupt: Bool): TLBundleC = AccessAck(b.source, address(b), b.size, data, corrupt)
def AccessAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt): TLBundleC = AccessAck(fromSource, toAddress, lgSize, data, false.B)
def AccessAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, corrupt: Bool) = {
val c = Wire(new TLBundleC(bundle))
c.opcode := TLMessages.AccessAckData
c.param := 0.U
c.size := lgSize
c.source := fromSource
c.address := toAddress
c.user := DontCare
c.echo := DontCare
c.data := data
c.corrupt := corrupt
c
}
def HintAck(b: TLBundleB): TLBundleC = HintAck(b.source, address(b), b.size)
def HintAck(fromSource: UInt, toAddress: UInt, lgSize: UInt) = {
val c = Wire(new TLBundleC(bundle))
c.opcode := TLMessages.HintAck
c.param := 0.U
c.size := lgSize
c.source := fromSource
c.address := toAddress
c.user := DontCare
c.echo := DontCare
c.data := DontCare
c.corrupt := false.B
c
}
}
class TLEdgeIn(
client: TLClientPortParameters,
manager: TLManagerPortParameters,
params: Parameters,
sourceInfo: SourceInfo)
extends TLEdge(client, manager, params, sourceInfo)
{
private def myTranspose[T](x: Seq[Seq[T]]): Seq[Seq[T]] = {
val todo = x.filter(!_.isEmpty)
val heads = todo.map(_.head)
val tails = todo.map(_.tail)
if (todo.isEmpty) Nil else { heads +: myTranspose(tails) }
}
// Transfers
def Probe(fromAddress: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt) = {
require (client.anySupportProbe, s"TileLink: No clients visible from this edge support probes, but one of these managers tried to issue one: ${manager.managers}")
val legal = client.supportsProbe(toSource, lgSize)
val b = Wire(new TLBundleB(bundle))
b.opcode := TLMessages.Probe
b.param := capPermissions
b.size := lgSize
b.source := toSource
b.address := fromAddress
b.mask := mask(fromAddress, lgSize)
b.data := DontCare
b.corrupt := false.B
(legal, b)
}
def Grant(fromSink: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt): TLBundleD = Grant(fromSink, toSource, lgSize, capPermissions, false.B)
def Grant(fromSink: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt, denied: Bool) = {
val d = Wire(new TLBundleD(bundle))
d.opcode := TLMessages.Grant
d.param := capPermissions
d.size := lgSize
d.source := toSource
d.sink := fromSink
d.denied := denied
d.user := DontCare
d.echo := DontCare
d.data := DontCare
d.corrupt := false.B
d
}
def Grant(fromSink: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt, data: UInt): TLBundleD = Grant(fromSink, toSource, lgSize, capPermissions, data, false.B, false.B)
def Grant(fromSink: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt, data: UInt, denied: Bool, corrupt: Bool) = {
val d = Wire(new TLBundleD(bundle))
d.opcode := TLMessages.GrantData
d.param := capPermissions
d.size := lgSize
d.source := toSource
d.sink := fromSink
d.denied := denied
d.user := DontCare
d.echo := DontCare
d.data := data
d.corrupt := corrupt
d
}
def ReleaseAck(c: TLBundleC): TLBundleD = ReleaseAck(c.source, c.size, false.B)
def ReleaseAck(toSource: UInt, lgSize: UInt, denied: Bool): TLBundleD = {
val d = Wire(new TLBundleD(bundle))
d.opcode := TLMessages.ReleaseAck
d.param := 0.U
d.size := lgSize
d.source := toSource
d.sink := 0.U
d.denied := denied
d.user := DontCare
d.echo := DontCare
d.data := DontCare
d.corrupt := false.B
d
}
// Accesses
def Get(fromAddress: UInt, toSource: UInt, lgSize: UInt) = {
require (client.anySupportGet, s"TileLink: No clients visible from this edge support Gets, but one of these managers would try to issue one: ${manager.managers}")
val legal = client.supportsGet(toSource, lgSize)
val b = Wire(new TLBundleB(bundle))
b.opcode := TLMessages.Get
b.param := 0.U
b.size := lgSize
b.source := toSource
b.address := fromAddress
b.mask := mask(fromAddress, lgSize)
b.data := DontCare
b.corrupt := false.B
(legal, b)
}
def Put(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt): (Bool, TLBundleB) =
Put(fromAddress, toSource, lgSize, data, false.B)
def Put(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, corrupt: Bool): (Bool, TLBundleB) = {
require (client.anySupportPutFull, s"TileLink: No clients visible from this edge support Puts, but one of these managers would try to issue one: ${manager.managers}")
val legal = client.supportsPutFull(toSource, lgSize)
val b = Wire(new TLBundleB(bundle))
b.opcode := TLMessages.PutFullData
b.param := 0.U
b.size := lgSize
b.source := toSource
b.address := fromAddress
b.mask := mask(fromAddress, lgSize)
b.data := data
b.corrupt := corrupt
(legal, b)
}
def Put(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, mask: UInt): (Bool, TLBundleB) =
Put(fromAddress, toSource, lgSize, data, mask, false.B)
def Put(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, mask: UInt, corrupt: Bool): (Bool, TLBundleB) = {
require (client.anySupportPutPartial, s"TileLink: No clients visible from this edge support masked Puts, but one of these managers would try to request one: ${manager.managers}")
val legal = client.supportsPutPartial(toSource, lgSize)
val b = Wire(new TLBundleB(bundle))
b.opcode := TLMessages.PutPartialData
b.param := 0.U
b.size := lgSize
b.source := toSource
b.address := fromAddress
b.mask := mask
b.data := data
b.corrupt := corrupt
(legal, b)
}
def Arithmetic(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, atomic: UInt, corrupt: Bool = false.B) = {
require (client.anySupportArithmetic, s"TileLink: No clients visible from this edge support arithmetic AMOs, but one of these managers would try to request one: ${manager.managers}")
val legal = client.supportsArithmetic(toSource, lgSize)
val b = Wire(new TLBundleB(bundle))
b.opcode := TLMessages.ArithmeticData
b.param := atomic
b.size := lgSize
b.source := toSource
b.address := fromAddress
b.mask := mask(fromAddress, lgSize)
b.data := data
b.corrupt := corrupt
(legal, b)
}
def Logical(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, atomic: UInt, corrupt: Bool = false.B) = {
require (client.anySupportLogical, s"TileLink: No clients visible from this edge support logical AMOs, but one of these managers would try to request one: ${manager.managers}")
val legal = client.supportsLogical(toSource, lgSize)
val b = Wire(new TLBundleB(bundle))
b.opcode := TLMessages.LogicalData
b.param := atomic
b.size := lgSize
b.source := toSource
b.address := fromAddress
b.mask := mask(fromAddress, lgSize)
b.data := data
b.corrupt := corrupt
(legal, b)
}
def Hint(fromAddress: UInt, toSource: UInt, lgSize: UInt, param: UInt) = {
require (client.anySupportHint, s"TileLink: No clients visible from this edge support Hints, but one of these managers would try to request one: ${manager.managers}")
val legal = client.supportsHint(toSource, lgSize)
val b = Wire(new TLBundleB(bundle))
b.opcode := TLMessages.Hint
b.param := param
b.size := lgSize
b.source := toSource
b.address := fromAddress
b.mask := mask(fromAddress, lgSize)
b.data := DontCare
b.corrupt := false.B
(legal, b)
}
def AccessAck(a: TLBundleA): TLBundleD = AccessAck(a.source, a.size)
def AccessAck(a: TLBundleA, denied: Bool): TLBundleD = AccessAck(a.source, a.size, denied)
def AccessAck(toSource: UInt, lgSize: UInt): TLBundleD = AccessAck(toSource, lgSize, false.B)
def AccessAck(toSource: UInt, lgSize: UInt, denied: Bool) = {
val d = Wire(new TLBundleD(bundle))
d.opcode := TLMessages.AccessAck
d.param := 0.U
d.size := lgSize
d.source := toSource
d.sink := 0.U
d.denied := denied
d.user := DontCare
d.echo := DontCare
d.data := DontCare
d.corrupt := false.B
d
}
def AccessAck(a: TLBundleA, data: UInt): TLBundleD = AccessAck(a.source, a.size, data)
def AccessAck(a: TLBundleA, data: UInt, denied: Bool, corrupt: Bool): TLBundleD = AccessAck(a.source, a.size, data, denied, corrupt)
def AccessAck(toSource: UInt, lgSize: UInt, data: UInt): TLBundleD = AccessAck(toSource, lgSize, data, false.B, false.B)
def AccessAck(toSource: UInt, lgSize: UInt, data: UInt, denied: Bool, corrupt: Bool) = {
val d = Wire(new TLBundleD(bundle))
d.opcode := TLMessages.AccessAckData
d.param := 0.U
d.size := lgSize
d.source := toSource
d.sink := 0.U
d.denied := denied
d.user := DontCare
d.echo := DontCare
d.data := data
d.corrupt := corrupt
d
}
def HintAck(a: TLBundleA): TLBundleD = HintAck(a, false.B)
def HintAck(a: TLBundleA, denied: Bool): TLBundleD = HintAck(a.source, a.size, denied)
def HintAck(toSource: UInt, lgSize: UInt): TLBundleD = HintAck(toSource, lgSize, false.B)
def HintAck(toSource: UInt, lgSize: UInt, denied: Bool) = {
val d = Wire(new TLBundleD(bundle))
d.opcode := TLMessages.HintAck
d.param := 0.U
d.size := lgSize
d.source := toSource
d.sink := 0.U
d.denied := denied
d.user := DontCare
d.echo := DontCare
d.data := DontCare
d.corrupt := false.B
d
}
}
| module TLMonitor_3( // @[Monitor.scala:36:7]
input clock, // @[Monitor.scala:36:7]
input reset, // @[Monitor.scala:36:7]
input io_in_a_ready, // @[Monitor.scala:20:14]
input io_in_a_valid, // @[Monitor.scala:20:14]
input [2:0] io_in_a_bits_opcode, // @[Monitor.scala:20:14]
input [2:0] io_in_a_bits_param, // @[Monitor.scala:20:14]
input [2:0] io_in_a_bits_size, // @[Monitor.scala:20:14]
input [7:0] io_in_a_bits_source, // @[Monitor.scala:20:14]
input [28:0] io_in_a_bits_address, // @[Monitor.scala:20:14]
input [7:0] io_in_a_bits_mask, // @[Monitor.scala:20:14]
input io_in_a_bits_corrupt, // @[Monitor.scala:20:14]
input io_in_d_ready, // @[Monitor.scala:20:14]
input io_in_d_valid, // @[Monitor.scala:20:14]
input [2:0] io_in_d_bits_opcode, // @[Monitor.scala:20:14]
input [1:0] io_in_d_bits_param, // @[Monitor.scala:20:14]
input [2:0] io_in_d_bits_size, // @[Monitor.scala:20:14]
input [7:0] io_in_d_bits_source, // @[Monitor.scala:20:14]
input io_in_d_bits_sink, // @[Monitor.scala:20:14]
input io_in_d_bits_denied, // @[Monitor.scala:20:14]
input io_in_d_bits_corrupt // @[Monitor.scala:20:14]
);
wire [31:0] _plusarg_reader_1_out; // @[PlusArg.scala:80:11]
wire [31:0] _plusarg_reader_out; // @[PlusArg.scala:80:11]
wire [12:0] _GEN = {10'h0, io_in_a_bits_size}; // @[package.scala:243:71]
wire _a_first_T_1 = io_in_a_ready & io_in_a_valid; // @[Decoupled.scala:51:35]
reg [2:0] a_first_counter; // @[Edges.scala:229:27]
reg [2:0] opcode; // @[Monitor.scala:387:22]
reg [2:0] param; // @[Monitor.scala:388:22]
reg [2:0] size; // @[Monitor.scala:389:22]
reg [7:0] source; // @[Monitor.scala:390:22]
reg [28:0] address; // @[Monitor.scala:391:22]
reg [2:0] d_first_counter; // @[Edges.scala:229:27]
reg [2:0] opcode_1; // @[Monitor.scala:538:22]
reg [1:0] param_1; // @[Monitor.scala:539:22]
reg [2:0] size_1; // @[Monitor.scala:540:22]
reg [7:0] source_1; // @[Monitor.scala:541:22]
reg sink; // @[Monitor.scala:542:22]
reg denied; // @[Monitor.scala:543:22]
reg [128:0] inflight; // @[Monitor.scala:614:27]
reg [515:0] inflight_opcodes; // @[Monitor.scala:616:35]
reg [515:0] inflight_sizes; // @[Monitor.scala:618:33]
reg [2:0] a_first_counter_1; // @[Edges.scala:229:27]
wire a_first_1 = a_first_counter_1 == 3'h0; // @[Edges.scala:229:27, :231:25]
reg [2:0] d_first_counter_1; // @[Edges.scala:229:27]
wire d_first_1 = d_first_counter_1 == 3'h0; // @[Edges.scala:229:27, :231:25]
wire [255:0] _GEN_0 = {248'h0, io_in_a_bits_source}; // @[OneHot.scala:58:35]
wire _GEN_1 = _a_first_T_1 & a_first_1; // @[Decoupled.scala:51:35]
wire d_release_ack = io_in_d_bits_opcode == 3'h6; // @[Monitor.scala:673:46]
wire _GEN_2 = io_in_d_bits_opcode != 3'h6; // @[Monitor.scala:673:46, :674:74]
wire [255:0] _GEN_3 = {248'h0, io_in_d_bits_source}; // @[OneHot.scala:58:35]
reg [31:0] watchdog; // @[Monitor.scala:709:27]
reg [128:0] inflight_1; // @[Monitor.scala:726:35]
reg [515:0] inflight_sizes_1; // @[Monitor.scala:728:35]
reg [2:0] d_first_counter_2; // @[Edges.scala:229:27]
wire d_first_2 = d_first_counter_2 == 3'h0; // @[Edges.scala:229:27, :231:25]
reg [31:0] watchdog_1; // @[Monitor.scala:818:27] |
Generate the Verilog code corresponding to the following Chisel files.
File PE.scala:
// See README.md for license details.
package gemmini
import chisel3._
import chisel3.util._
class PEControl[T <: Data : Arithmetic](accType: T) extends Bundle {
val dataflow = UInt(1.W) // TODO make this an Enum
val propagate = UInt(1.W) // Which register should be propagated (and which should be accumulated)?
val shift = UInt(log2Up(accType.getWidth).W) // TODO this isn't correct for Floats
}
class MacUnit[T <: Data](inputType: T, cType: T, dType: T) (implicit ev: Arithmetic[T]) extends Module {
import ev._
val io = IO(new Bundle {
val in_a = Input(inputType)
val in_b = Input(inputType)
val in_c = Input(cType)
val out_d = Output(dType)
})
io.out_d := io.in_c.mac(io.in_a, io.in_b)
}
// TODO update documentation
/**
* A PE implementing a MAC operation. Configured as fully combinational when integrated into a Mesh.
* @param width Data width of operands
*/
class PE[T <: Data](inputType: T, outputType: T, accType: T, df: Dataflow.Value, max_simultaneous_matmuls: Int)
(implicit ev: Arithmetic[T]) extends Module { // Debugging variables
import ev._
val io = IO(new Bundle {
val in_a = Input(inputType)
val in_b = Input(outputType)
val in_d = Input(outputType)
val out_a = Output(inputType)
val out_b = Output(outputType)
val out_c = Output(outputType)
val in_control = Input(new PEControl(accType))
val out_control = Output(new PEControl(accType))
val in_id = Input(UInt(log2Up(max_simultaneous_matmuls).W))
val out_id = Output(UInt(log2Up(max_simultaneous_matmuls).W))
val in_last = Input(Bool())
val out_last = Output(Bool())
val in_valid = Input(Bool())
val out_valid = Output(Bool())
val bad_dataflow = Output(Bool())
})
val cType = if (df == Dataflow.WS) inputType else accType
// When creating PEs that support multiple dataflows, the
// elaboration/synthesis tools often fail to consolidate and de-duplicate
// MAC units. To force mac circuitry to be re-used, we create a "mac_unit"
// module here which just performs a single MAC operation
val mac_unit = Module(new MacUnit(inputType,
if (df == Dataflow.WS) outputType else accType, outputType))
val a = io.in_a
val b = io.in_b
val d = io.in_d
val c1 = Reg(cType)
val c2 = Reg(cType)
val dataflow = io.in_control.dataflow
val prop = io.in_control.propagate
val shift = io.in_control.shift
val id = io.in_id
val last = io.in_last
val valid = io.in_valid
io.out_a := a
io.out_control.dataflow := dataflow
io.out_control.propagate := prop
io.out_control.shift := shift
io.out_id := id
io.out_last := last
io.out_valid := valid
mac_unit.io.in_a := a
val last_s = RegEnable(prop, valid)
val flip = last_s =/= prop
val shift_offset = Mux(flip, shift, 0.U)
// Which dataflow are we using?
val OUTPUT_STATIONARY = Dataflow.OS.id.U(1.W)
val WEIGHT_STATIONARY = Dataflow.WS.id.U(1.W)
// Is c1 being computed on, or propagated forward (in the output-stationary dataflow)?
val COMPUTE = 0.U(1.W)
val PROPAGATE = 1.U(1.W)
io.bad_dataflow := false.B
when ((df == Dataflow.OS).B || ((df == Dataflow.BOTH).B && dataflow === OUTPUT_STATIONARY)) {
when(prop === PROPAGATE) {
io.out_c := (c1 >> shift_offset).clippedToWidthOf(outputType)
io.out_b := b
mac_unit.io.in_b := b.asTypeOf(inputType)
mac_unit.io.in_c := c2
c2 := mac_unit.io.out_d
c1 := d.withWidthOf(cType)
}.otherwise {
io.out_c := (c2 >> shift_offset).clippedToWidthOf(outputType)
io.out_b := b
mac_unit.io.in_b := b.asTypeOf(inputType)
mac_unit.io.in_c := c1
c1 := mac_unit.io.out_d
c2 := d.withWidthOf(cType)
}
}.elsewhen ((df == Dataflow.WS).B || ((df == Dataflow.BOTH).B && dataflow === WEIGHT_STATIONARY)) {
when(prop === PROPAGATE) {
io.out_c := c1
mac_unit.io.in_b := c2.asTypeOf(inputType)
mac_unit.io.in_c := b
io.out_b := mac_unit.io.out_d
c1 := d
}.otherwise {
io.out_c := c2
mac_unit.io.in_b := c1.asTypeOf(inputType)
mac_unit.io.in_c := b
io.out_b := mac_unit.io.out_d
c2 := d
}
}.otherwise {
io.bad_dataflow := true.B
//assert(false.B, "unknown dataflow")
io.out_c := DontCare
io.out_b := DontCare
mac_unit.io.in_b := b.asTypeOf(inputType)
mac_unit.io.in_c := c2
}
when (!valid) {
c1 := c1
c2 := c2
mac_unit.io.in_b := DontCare
mac_unit.io.in_c := DontCare
}
}
File Arithmetic.scala:
// A simple type class for Chisel datatypes that can add and multiply. To add your own type, simply create your own:
// implicit MyTypeArithmetic extends Arithmetic[MyType] { ... }
package gemmini
import chisel3._
import chisel3.util._
import hardfloat._
// Bundles that represent the raw bits of custom datatypes
case class Float(expWidth: Int, sigWidth: Int) extends Bundle {
val bits = UInt((expWidth + sigWidth).W)
val bias: Int = (1 << (expWidth-1)) - 1
}
case class DummySInt(w: Int) extends Bundle {
val bits = UInt(w.W)
def dontCare: DummySInt = {
val o = Wire(new DummySInt(w))
o.bits := 0.U
o
}
}
// The Arithmetic typeclass which implements various arithmetic operations on custom datatypes
abstract class Arithmetic[T <: Data] {
implicit def cast(t: T): ArithmeticOps[T]
}
abstract class ArithmeticOps[T <: Data](self: T) {
def *(t: T): T
def mac(m1: T, m2: T): T // Returns (m1 * m2 + self)
def +(t: T): T
def -(t: T): T
def >>(u: UInt): T // This is a rounding shift! Rounds away from 0
def >(t: T): Bool
def identity: T
def withWidthOf(t: T): T
def clippedToWidthOf(t: T): T // Like "withWidthOf", except that it saturates
def relu: T
def zero: T
def minimum: T
// Optional parameters, which only need to be defined if you want to enable various optimizations for transformers
def divider(denom_t: UInt, options: Int = 0): Option[(DecoupledIO[UInt], DecoupledIO[T])] = None
def sqrt: Option[(DecoupledIO[UInt], DecoupledIO[T])] = None
def reciprocal[U <: Data](u: U, options: Int = 0): Option[(DecoupledIO[UInt], DecoupledIO[U])] = None
def mult_with_reciprocal[U <: Data](reciprocal: U) = self
}
object Arithmetic {
implicit object UIntArithmetic extends Arithmetic[UInt] {
override implicit def cast(self: UInt) = new ArithmeticOps(self) {
override def *(t: UInt) = self * t
override def mac(m1: UInt, m2: UInt) = m1 * m2 + self
override def +(t: UInt) = self + t
override def -(t: UInt) = self - t
override def >>(u: UInt) = {
// The equation we use can be found here: https://riscv.github.io/documents/riscv-v-spec/#_vector_fixed_point_rounding_mode_register_vxrm
// TODO Do we need to explicitly handle the cases where "u" is a small number (like 0)? What is the default behavior here?
val point_five = Mux(u === 0.U, 0.U, self(u - 1.U))
val zeros = Mux(u <= 1.U, 0.U, self.asUInt & ((1.U << (u - 1.U)).asUInt - 1.U)) =/= 0.U
val ones_digit = self(u)
val r = point_five & (zeros | ones_digit)
(self >> u).asUInt + r
}
override def >(t: UInt): Bool = self > t
override def withWidthOf(t: UInt) = self.asTypeOf(t)
override def clippedToWidthOf(t: UInt) = {
val sat = ((1 << (t.getWidth-1))-1).U
Mux(self > sat, sat, self)(t.getWidth-1, 0)
}
override def relu: UInt = self
override def zero: UInt = 0.U
override def identity: UInt = 1.U
override def minimum: UInt = 0.U
}
}
implicit object SIntArithmetic extends Arithmetic[SInt] {
override implicit def cast(self: SInt) = new ArithmeticOps(self) {
override def *(t: SInt) = self * t
override def mac(m1: SInt, m2: SInt) = m1 * m2 + self
override def +(t: SInt) = self + t
override def -(t: SInt) = self - t
override def >>(u: UInt) = {
// The equation we use can be found here: https://riscv.github.io/documents/riscv-v-spec/#_vector_fixed_point_rounding_mode_register_vxrm
// TODO Do we need to explicitly handle the cases where "u" is a small number (like 0)? What is the default behavior here?
val point_five = Mux(u === 0.U, 0.U, self(u - 1.U))
val zeros = Mux(u <= 1.U, 0.U, self.asUInt & ((1.U << (u - 1.U)).asUInt - 1.U)) =/= 0.U
val ones_digit = self(u)
val r = (point_five & (zeros | ones_digit)).asBool
(self >> u).asSInt + Mux(r, 1.S, 0.S)
}
override def >(t: SInt): Bool = self > t
override def withWidthOf(t: SInt) = {
if (self.getWidth >= t.getWidth)
self(t.getWidth-1, 0).asSInt
else {
val sign_bits = t.getWidth - self.getWidth
val sign = self(self.getWidth-1)
Cat(Cat(Seq.fill(sign_bits)(sign)), self).asTypeOf(t)
}
}
override def clippedToWidthOf(t: SInt): SInt = {
val maxsat = ((1 << (t.getWidth-1))-1).S
val minsat = (-(1 << (t.getWidth-1))).S
MuxCase(self, Seq((self > maxsat) -> maxsat, (self < minsat) -> minsat))(t.getWidth-1, 0).asSInt
}
override def relu: SInt = Mux(self >= 0.S, self, 0.S)
override def zero: SInt = 0.S
override def identity: SInt = 1.S
override def minimum: SInt = (-(1 << (self.getWidth-1))).S
override def divider(denom_t: UInt, options: Int = 0): Option[(DecoupledIO[UInt], DecoupledIO[SInt])] = {
// TODO this uses a floating point divider, but we should use an integer divider instead
val input = Wire(Decoupled(denom_t.cloneType))
val output = Wire(Decoupled(self.cloneType))
// We translate our integer to floating-point form so that we can use the hardfloat divider
val expWidth = log2Up(self.getWidth) + 1
val sigWidth = self.getWidth
def sin_to_float(x: SInt) = {
val in_to_rec_fn = Module(new INToRecFN(intWidth = self.getWidth, expWidth, sigWidth))
in_to_rec_fn.io.signedIn := true.B
in_to_rec_fn.io.in := x.asUInt
in_to_rec_fn.io.roundingMode := consts.round_minMag // consts.round_near_maxMag
in_to_rec_fn.io.detectTininess := consts.tininess_afterRounding
in_to_rec_fn.io.out
}
def uin_to_float(x: UInt) = {
val in_to_rec_fn = Module(new INToRecFN(intWidth = self.getWidth, expWidth, sigWidth))
in_to_rec_fn.io.signedIn := false.B
in_to_rec_fn.io.in := x
in_to_rec_fn.io.roundingMode := consts.round_minMag // consts.round_near_maxMag
in_to_rec_fn.io.detectTininess := consts.tininess_afterRounding
in_to_rec_fn.io.out
}
def float_to_in(x: UInt) = {
val rec_fn_to_in = Module(new RecFNToIN(expWidth = expWidth, sigWidth, self.getWidth))
rec_fn_to_in.io.signedOut := true.B
rec_fn_to_in.io.in := x
rec_fn_to_in.io.roundingMode := consts.round_minMag // consts.round_near_maxMag
rec_fn_to_in.io.out.asSInt
}
val self_rec = sin_to_float(self)
val denom_rec = uin_to_float(input.bits)
// Instantiate the hardloat divider
val divider = Module(new DivSqrtRecFN_small(expWidth, sigWidth, options))
input.ready := divider.io.inReady
divider.io.inValid := input.valid
divider.io.sqrtOp := false.B
divider.io.a := self_rec
divider.io.b := denom_rec
divider.io.roundingMode := consts.round_minMag
divider.io.detectTininess := consts.tininess_afterRounding
output.valid := divider.io.outValid_div
output.bits := float_to_in(divider.io.out)
assert(!output.valid || output.ready)
Some((input, output))
}
override def sqrt: Option[(DecoupledIO[UInt], DecoupledIO[SInt])] = {
// TODO this uses a floating point divider, but we should use an integer divider instead
val input = Wire(Decoupled(UInt(0.W)))
val output = Wire(Decoupled(self.cloneType))
input.bits := DontCare
// We translate our integer to floating-point form so that we can use the hardfloat divider
val expWidth = log2Up(self.getWidth) + 1
val sigWidth = self.getWidth
def in_to_float(x: SInt) = {
val in_to_rec_fn = Module(new INToRecFN(intWidth = self.getWidth, expWidth, sigWidth))
in_to_rec_fn.io.signedIn := true.B
in_to_rec_fn.io.in := x.asUInt
in_to_rec_fn.io.roundingMode := consts.round_minMag // consts.round_near_maxMag
in_to_rec_fn.io.detectTininess := consts.tininess_afterRounding
in_to_rec_fn.io.out
}
def float_to_in(x: UInt) = {
val rec_fn_to_in = Module(new RecFNToIN(expWidth = expWidth, sigWidth, self.getWidth))
rec_fn_to_in.io.signedOut := true.B
rec_fn_to_in.io.in := x
rec_fn_to_in.io.roundingMode := consts.round_minMag // consts.round_near_maxMag
rec_fn_to_in.io.out.asSInt
}
val self_rec = in_to_float(self)
// Instantiate the hardloat sqrt
val sqrter = Module(new DivSqrtRecFN_small(expWidth, sigWidth, 0))
input.ready := sqrter.io.inReady
sqrter.io.inValid := input.valid
sqrter.io.sqrtOp := true.B
sqrter.io.a := self_rec
sqrter.io.b := DontCare
sqrter.io.roundingMode := consts.round_minMag
sqrter.io.detectTininess := consts.tininess_afterRounding
output.valid := sqrter.io.outValid_sqrt
output.bits := float_to_in(sqrter.io.out)
assert(!output.valid || output.ready)
Some((input, output))
}
override def reciprocal[U <: Data](u: U, options: Int = 0): Option[(DecoupledIO[UInt], DecoupledIO[U])] = u match {
case Float(expWidth, sigWidth) =>
val input = Wire(Decoupled(UInt(0.W)))
val output = Wire(Decoupled(u.cloneType))
input.bits := DontCare
// We translate our integer to floating-point form so that we can use the hardfloat divider
def in_to_float(x: SInt) = {
val in_to_rec_fn = Module(new INToRecFN(intWidth = self.getWidth, expWidth, sigWidth))
in_to_rec_fn.io.signedIn := true.B
in_to_rec_fn.io.in := x.asUInt
in_to_rec_fn.io.roundingMode := consts.round_near_even // consts.round_near_maxMag
in_to_rec_fn.io.detectTininess := consts.tininess_afterRounding
in_to_rec_fn.io.out
}
val self_rec = in_to_float(self)
val one_rec = in_to_float(1.S)
// Instantiate the hardloat divider
val divider = Module(new DivSqrtRecFN_small(expWidth, sigWidth, options))
input.ready := divider.io.inReady
divider.io.inValid := input.valid
divider.io.sqrtOp := false.B
divider.io.a := one_rec
divider.io.b := self_rec
divider.io.roundingMode := consts.round_near_even
divider.io.detectTininess := consts.tininess_afterRounding
output.valid := divider.io.outValid_div
output.bits := fNFromRecFN(expWidth, sigWidth, divider.io.out).asTypeOf(u)
assert(!output.valid || output.ready)
Some((input, output))
case _ => None
}
override def mult_with_reciprocal[U <: Data](reciprocal: U): SInt = reciprocal match {
case recip @ Float(expWidth, sigWidth) =>
def in_to_float(x: SInt) = {
val in_to_rec_fn = Module(new INToRecFN(intWidth = self.getWidth, expWidth, sigWidth))
in_to_rec_fn.io.signedIn := true.B
in_to_rec_fn.io.in := x.asUInt
in_to_rec_fn.io.roundingMode := consts.round_near_even // consts.round_near_maxMag
in_to_rec_fn.io.detectTininess := consts.tininess_afterRounding
in_to_rec_fn.io.out
}
def float_to_in(x: UInt) = {
val rec_fn_to_in = Module(new RecFNToIN(expWidth = expWidth, sigWidth, self.getWidth))
rec_fn_to_in.io.signedOut := true.B
rec_fn_to_in.io.in := x
rec_fn_to_in.io.roundingMode := consts.round_minMag
rec_fn_to_in.io.out.asSInt
}
val self_rec = in_to_float(self)
val reciprocal_rec = recFNFromFN(expWidth, sigWidth, recip.bits)
// Instantiate the hardloat divider
val muladder = Module(new MulRecFN(expWidth, sigWidth))
muladder.io.roundingMode := consts.round_near_even
muladder.io.detectTininess := consts.tininess_afterRounding
muladder.io.a := self_rec
muladder.io.b := reciprocal_rec
float_to_in(muladder.io.out)
case _ => self
}
}
}
implicit object FloatArithmetic extends Arithmetic[Float] {
// TODO Floating point arithmetic currently switches between recoded and standard formats for every operation. However, it should stay in the recoded format as it travels through the systolic array
override implicit def cast(self: Float): ArithmeticOps[Float] = new ArithmeticOps(self) {
override def *(t: Float): Float = {
val t_rec = recFNFromFN(t.expWidth, t.sigWidth, t.bits)
val self_rec = recFNFromFN(self.expWidth, self.sigWidth, self.bits)
val t_resizer = Module(new RecFNToRecFN(t.expWidth, t.sigWidth, self.expWidth, self.sigWidth))
t_resizer.io.in := t_rec
t_resizer.io.roundingMode := consts.round_near_even // consts.round_near_maxMag
t_resizer.io.detectTininess := consts.tininess_afterRounding
val t_rec_resized = t_resizer.io.out
val muladder = Module(new MulRecFN(self.expWidth, self.sigWidth))
muladder.io.roundingMode := consts.round_near_even // consts.round_near_maxMag
muladder.io.detectTininess := consts.tininess_afterRounding
muladder.io.a := self_rec
muladder.io.b := t_rec_resized
val out = Wire(Float(self.expWidth, self.sigWidth))
out.bits := fNFromRecFN(self.expWidth, self.sigWidth, muladder.io.out)
out
}
override def mac(m1: Float, m2: Float): Float = {
// Recode all operands
val m1_rec = recFNFromFN(m1.expWidth, m1.sigWidth, m1.bits)
val m2_rec = recFNFromFN(m2.expWidth, m2.sigWidth, m2.bits)
val self_rec = recFNFromFN(self.expWidth, self.sigWidth, self.bits)
// Resize m1 to self's width
val m1_resizer = Module(new RecFNToRecFN(m1.expWidth, m1.sigWidth, self.expWidth, self.sigWidth))
m1_resizer.io.in := m1_rec
m1_resizer.io.roundingMode := consts.round_near_even // consts.round_near_maxMag
m1_resizer.io.detectTininess := consts.tininess_afterRounding
val m1_rec_resized = m1_resizer.io.out
// Resize m2 to self's width
val m2_resizer = Module(new RecFNToRecFN(m2.expWidth, m2.sigWidth, self.expWidth, self.sigWidth))
m2_resizer.io.in := m2_rec
m2_resizer.io.roundingMode := consts.round_near_even // consts.round_near_maxMag
m2_resizer.io.detectTininess := consts.tininess_afterRounding
val m2_rec_resized = m2_resizer.io.out
// Perform multiply-add
val muladder = Module(new MulAddRecFN(self.expWidth, self.sigWidth))
muladder.io.op := 0.U
muladder.io.roundingMode := consts.round_near_even // consts.round_near_maxMag
muladder.io.detectTininess := consts.tininess_afterRounding
muladder.io.a := m1_rec_resized
muladder.io.b := m2_rec_resized
muladder.io.c := self_rec
// Convert result to standard format // TODO remove these intermediate recodings
val out = Wire(Float(self.expWidth, self.sigWidth))
out.bits := fNFromRecFN(self.expWidth, self.sigWidth, muladder.io.out)
out
}
override def +(t: Float): Float = {
require(self.getWidth >= t.getWidth) // This just makes it easier to write the resizing code
// Recode all operands
val t_rec = recFNFromFN(t.expWidth, t.sigWidth, t.bits)
val self_rec = recFNFromFN(self.expWidth, self.sigWidth, self.bits)
// Generate 1 as a float
val in_to_rec_fn = Module(new INToRecFN(1, self.expWidth, self.sigWidth))
in_to_rec_fn.io.signedIn := false.B
in_to_rec_fn.io.in := 1.U
in_to_rec_fn.io.roundingMode := consts.round_near_even // consts.round_near_maxMag
in_to_rec_fn.io.detectTininess := consts.tininess_afterRounding
val one_rec = in_to_rec_fn.io.out
// Resize t
val t_resizer = Module(new RecFNToRecFN(t.expWidth, t.sigWidth, self.expWidth, self.sigWidth))
t_resizer.io.in := t_rec
t_resizer.io.roundingMode := consts.round_near_even // consts.round_near_maxMag
t_resizer.io.detectTininess := consts.tininess_afterRounding
val t_rec_resized = t_resizer.io.out
// Perform addition
val muladder = Module(new MulAddRecFN(self.expWidth, self.sigWidth))
muladder.io.op := 0.U
muladder.io.roundingMode := consts.round_near_even // consts.round_near_maxMag
muladder.io.detectTininess := consts.tininess_afterRounding
muladder.io.a := t_rec_resized
muladder.io.b := one_rec
muladder.io.c := self_rec
val result = Wire(Float(self.expWidth, self.sigWidth))
result.bits := fNFromRecFN(self.expWidth, self.sigWidth, muladder.io.out)
result
}
override def -(t: Float): Float = {
val t_sgn = t.bits(t.getWidth-1)
val neg_t = Cat(~t_sgn, t.bits(t.getWidth-2,0)).asTypeOf(t)
self + neg_t
}
override def >>(u: UInt): Float = {
// Recode self
val self_rec = recFNFromFN(self.expWidth, self.sigWidth, self.bits)
// Get 2^(-u) as a recoded float
val shift_exp = Wire(UInt(self.expWidth.W))
shift_exp := self.bias.U - u
val shift_fn = Cat(0.U(1.W), shift_exp, 0.U((self.sigWidth-1).W))
val shift_rec = recFNFromFN(self.expWidth, self.sigWidth, shift_fn)
assert(shift_exp =/= 0.U, "scaling by denormalized numbers is not currently supported")
// Multiply self and 2^(-u)
val muladder = Module(new MulRecFN(self.expWidth, self.sigWidth))
muladder.io.roundingMode := consts.round_near_even // consts.round_near_maxMag
muladder.io.detectTininess := consts.tininess_afterRounding
muladder.io.a := self_rec
muladder.io.b := shift_rec
val result = Wire(Float(self.expWidth, self.sigWidth))
result.bits := fNFromRecFN(self.expWidth, self.sigWidth, muladder.io.out)
result
}
override def >(t: Float): Bool = {
// Recode all operands
val t_rec = recFNFromFN(t.expWidth, t.sigWidth, t.bits)
val self_rec = recFNFromFN(self.expWidth, self.sigWidth, self.bits)
// Resize t to self's width
val t_resizer = Module(new RecFNToRecFN(t.expWidth, t.sigWidth, self.expWidth, self.sigWidth))
t_resizer.io.in := t_rec
t_resizer.io.roundingMode := consts.round_near_even
t_resizer.io.detectTininess := consts.tininess_afterRounding
val t_rec_resized = t_resizer.io.out
val comparator = Module(new CompareRecFN(self.expWidth, self.sigWidth))
comparator.io.a := self_rec
comparator.io.b := t_rec_resized
comparator.io.signaling := false.B
comparator.io.gt
}
override def withWidthOf(t: Float): Float = {
val self_rec = recFNFromFN(self.expWidth, self.sigWidth, self.bits)
val resizer = Module(new RecFNToRecFN(self.expWidth, self.sigWidth, t.expWidth, t.sigWidth))
resizer.io.in := self_rec
resizer.io.roundingMode := consts.round_near_even // consts.round_near_maxMag
resizer.io.detectTininess := consts.tininess_afterRounding
val result = Wire(Float(t.expWidth, t.sigWidth))
result.bits := fNFromRecFN(t.expWidth, t.sigWidth, resizer.io.out)
result
}
override def clippedToWidthOf(t: Float): Float = {
// TODO check for overflow. Right now, we just assume that overflow doesn't happen
val self_rec = recFNFromFN(self.expWidth, self.sigWidth, self.bits)
val resizer = Module(new RecFNToRecFN(self.expWidth, self.sigWidth, t.expWidth, t.sigWidth))
resizer.io.in := self_rec
resizer.io.roundingMode := consts.round_near_even // consts.round_near_maxMag
resizer.io.detectTininess := consts.tininess_afterRounding
val result = Wire(Float(t.expWidth, t.sigWidth))
result.bits := fNFromRecFN(t.expWidth, t.sigWidth, resizer.io.out)
result
}
override def relu: Float = {
val raw = rawFloatFromFN(self.expWidth, self.sigWidth, self.bits)
val result = Wire(Float(self.expWidth, self.sigWidth))
result.bits := Mux(!raw.isZero && raw.sign, 0.U, self.bits)
result
}
override def zero: Float = 0.U.asTypeOf(self)
override def identity: Float = Cat(0.U(2.W), ~(0.U((self.expWidth-1).W)), 0.U((self.sigWidth-1).W)).asTypeOf(self)
override def minimum: Float = Cat(1.U, ~(0.U(self.expWidth.W)), 0.U((self.sigWidth-1).W)).asTypeOf(self)
}
}
implicit object DummySIntArithmetic extends Arithmetic[DummySInt] {
override implicit def cast(self: DummySInt) = new ArithmeticOps(self) {
override def *(t: DummySInt) = self.dontCare
override def mac(m1: DummySInt, m2: DummySInt) = self.dontCare
override def +(t: DummySInt) = self.dontCare
override def -(t: DummySInt) = self.dontCare
override def >>(t: UInt) = self.dontCare
override def >(t: DummySInt): Bool = false.B
override def identity = self.dontCare
override def withWidthOf(t: DummySInt) = self.dontCare
override def clippedToWidthOf(t: DummySInt) = self.dontCare
override def relu = self.dontCare
override def zero = self.dontCare
override def minimum: DummySInt = self.dontCare
}
}
}
| module MacUnit_153( // @[PE.scala:14:7]
input clock, // @[PE.scala:14:7]
input reset, // @[PE.scala:14:7]
input [7:0] io_in_a, // @[PE.scala:16:14]
input [7:0] io_in_b, // @[PE.scala:16:14]
input [19:0] io_in_c, // @[PE.scala:16:14]
output [19:0] io_out_d // @[PE.scala:16:14]
);
wire [7:0] io_in_a_0 = io_in_a; // @[PE.scala:14:7]
wire [7:0] io_in_b_0 = io_in_b; // @[PE.scala:14:7]
wire [19:0] io_in_c_0 = io_in_c; // @[PE.scala:14:7]
wire [19:0] _io_out_d_T_3; // @[Arithmetic.scala:93:54]
wire [19:0] io_out_d_0; // @[PE.scala:14:7]
wire [15:0] _io_out_d_T = {{8{io_in_a_0[7]}}, io_in_a_0} * {{8{io_in_b_0[7]}}, io_in_b_0}; // @[PE.scala:14:7]
wire [20:0] _io_out_d_T_1 = {{5{_io_out_d_T[15]}}, _io_out_d_T} + {io_in_c_0[19], io_in_c_0}; // @[PE.scala:14:7]
wire [19:0] _io_out_d_T_2 = _io_out_d_T_1[19:0]; // @[Arithmetic.scala:93:54]
assign _io_out_d_T_3 = _io_out_d_T_2; // @[Arithmetic.scala:93:54]
assign io_out_d_0 = _io_out_d_T_3; // @[PE.scala:14:7]
assign io_out_d = io_out_d_0; // @[PE.scala:14:7]
endmodule |
Generate the Verilog code corresponding to the following Chisel files.
File PermuteUnit.scala:
package saturn.exu
import chisel3._
import chisel3.util._
import org.chipsalliance.cde.config._
import freechips.rocketchip.rocket._
import freechips.rocketchip.util._
import freechips.rocketchip.tile._
import saturn.common._
import saturn.insns._
case object PermuteUnitFactory extends FunctionalUnitFactory {
def insns = Seq(
SLIDEUP.VI, SLIDEUP.VX, SLIDEDOWN.VI, SLIDEDOWN.VX,
SLIDE1UP.VX, SLIDE1DOWN.VX, FSLIDE1UP.VF, FSLIDE1DOWN.VF,
RGATHER_VV, RGATHER_VI, RGATHER_VX,
RGATHEREI16, COMPRESS.VV,
MVNRR
)
def generate(implicit p: Parameters) = new PermuteUnit()(p)
}
class PermuteUnit(implicit p: Parameters) extends PipelinedFunctionalUnit(1)(p) {
val supported_insns = PermuteUnitFactory.insns
io.iss.ready := new VectorDecoder(io.iss.op.funct3, io.iss.op.funct6, io.iss.op.rs1, io.iss.op.rs2,
supported_insns, Nil).matched
val wvd_reg = Reg(UInt(5.W))
val result_reg = Reg(UInt(64.W))
val mvnrr = io.pipe(0).bits.funct3 === OPIVV && io.pipe(0).bits.opif6 === OPIFunct6.mvnrr
val compress = io.pipe(0).bits.opmf6 === OPMFunct6.compress
val rgatherei16 = io.pipe(0).bits.funct3 === OPIVV && io.pipe(0).bits.opif6 === OPIFunct6.rgatherei16
val rgather = io.pipe(0).bits.opif6 === OPIFunct6.rgather || rgatherei16
val index_eew = Mux(rgatherei16, 1.U, io.pipe(0).bits.rvs2_eew)
val elem_eidx = Mux(rgather, io.pipe(0).bits.rvs1_data, io.pipe(0).bits.eidx)
val elem = VecInit.tabulate(4)({sew => if (sew == 3 && dLenB == 8) {
io.pipe(0).bits.rvs2_data
} else {
io.pipe(0).bits.rvs2_data.asTypeOf(Vec(dLenB >> sew, UInt((8 << sew).W)))(elem_eidx)
}})(io.pipe(0).bits.rvs2_eew)
val rgather_elem = Mux(io.pipe(0).bits.head || io.pipe(0).bits.funct3 === OPIVV, elem, result_reg)
val splat = dLenSplat(Mux(compress, elem, rgather_elem), io.pipe(0).bits.rvs2_eew)
val compress_wvd = Mux(io.pipe(0).bits.head, io.pipe(0).bits.wvd_eg >> log2Ceil(egsPerVReg), wvd_reg)
val compress_bit = (io.pipe(0).bits.rvs1_data >> io.pipe(0).bits.eidx(log2Ceil(dLen)-1,0))(0)
val compress_eidx = Mux(io.pipe(0).bits.head, 0.U, result_reg)(log2Ceil(maxVLMax),0)
when (io.pipe(0).valid && io.pipe(0).bits.head && rgather) {
result_reg := elem
}
when (io.pipe(0).valid && io.pipe(0).bits.head) {
wvd_reg := io.pipe(0).bits.wvd_eg >> log2Ceil(egsPerVReg)
}
when (io.pipe(0).valid && compress) {
result_reg := (compress_eidx + compress_bit)(log2Ceil(maxVLMax),0)
}
val shifted_mask_eidx = Mux(compress, compress_eidx, io.pipe(0).bits.vl - 1.U)
val shifted_mask = VecInit.tabulate(4)({sew => if (sew == 3 && dLenB == 8) { ~(0.U(8.W)) } else {
FillInterleaved(1 << sew, UIntToOH(shifted_mask_eidx(dLenOffBits-sew-1,0)))
}})(io.pipe(0).bits.rvs2_eew)
val slide_up = !io.pipe(0).bits.funct6(0)
val slide1 = !io.pipe(0).bits.isOpi
val slide1up_mask = eewByteMask(io.pipe(0).bits.rvs2_eew)
val slide1_mask = Mux(slide_up,
Mux(io.pipe(0).bits.head, slide1up_mask, 0.U),
Mux(io.pipe(0).bits.tail, shifted_mask, 0.U))
val use_rvs1_mask = FillInterleaved(8, Mux(slide1, slide1_mask, 0.U).pad(dLenB))
val wmask = Mux(mvnrr, ~(0.U(dLenB.W)),
Mux(compress, Mux(compress_bit, shifted_mask, 0.U), io.pipe(0).bits.wmask))
io.scalar_write.valid := false.B
io.scalar_write.bits := DontCare
io.set_vxsat := false.B
io.set_fflags.valid := false.B
io.set_fflags.bits := DontCare
io.pipe0_stall := false.B
io.write.valid := io.pipe(0).valid && (!compress || compress_bit)
io.write.bits.eg := Mux(compress,
getEgId(compress_wvd, compress_eidx, io.pipe(0).bits.rvs2_eew, false.B),
io.pipe(0).bits.wvd_eg)
io.write.bits.mask := FillInterleaved(8, wmask)
io.write.bits.data := Mux(rgather || compress,
splat,
(io.pipe(0).bits.rvs2_data & ~use_rvs1_mask) | (io.pipe(0).bits.rvs1_data & use_rvs1_mask))
}
File package.scala:
// See LICENSE.SiFive for license details.
package freechips.rocketchip
import chisel3._
import chisel3.util._
import scala.math.min
import scala.collection.{immutable, mutable}
package object util {
implicit class UnzippableOption[S, T](val x: Option[(S, T)]) {
def unzip = (x.map(_._1), x.map(_._2))
}
implicit class UIntIsOneOf(private val x: UInt) extends AnyVal {
def isOneOf(s: Seq[UInt]): Bool = s.map(x === _).orR
def isOneOf(u1: UInt, u2: UInt*): Bool = isOneOf(u1 +: u2.toSeq)
}
implicit class VecToAugmentedVec[T <: Data](private val x: Vec[T]) extends AnyVal {
/** Like Vec.apply(idx), but tolerates indices of mismatched width */
def extract(idx: UInt): T = x((idx | 0.U(log2Ceil(x.size).W)).extract(log2Ceil(x.size) - 1, 0))
}
implicit class SeqToAugmentedSeq[T <: Data](private val x: Seq[T]) extends AnyVal {
def apply(idx: UInt): T = {
if (x.size <= 1) {
x.head
} else if (!isPow2(x.size)) {
// For non-power-of-2 seqs, reflect elements to simplify decoder
(x ++ x.takeRight(x.size & -x.size)).toSeq(idx)
} else {
// Ignore MSBs of idx
val truncIdx =
if (idx.isWidthKnown && idx.getWidth <= log2Ceil(x.size)) idx
else (idx | 0.U(log2Ceil(x.size).W))(log2Ceil(x.size)-1, 0)
x.zipWithIndex.tail.foldLeft(x.head) { case (prev, (cur, i)) => Mux(truncIdx === i.U, cur, prev) }
}
}
def extract(idx: UInt): T = VecInit(x).extract(idx)
def asUInt: UInt = Cat(x.map(_.asUInt).reverse)
def rotate(n: Int): Seq[T] = x.drop(n) ++ x.take(n)
def rotate(n: UInt): Seq[T] = {
if (x.size <= 1) {
x
} else {
require(isPow2(x.size))
val amt = n.padTo(log2Ceil(x.size))
(0 until log2Ceil(x.size)).foldLeft(x)((r, i) => (r.rotate(1 << i) zip r).map { case (s, a) => Mux(amt(i), s, a) })
}
}
def rotateRight(n: Int): Seq[T] = x.takeRight(n) ++ x.dropRight(n)
def rotateRight(n: UInt): Seq[T] = {
if (x.size <= 1) {
x
} else {
require(isPow2(x.size))
val amt = n.padTo(log2Ceil(x.size))
(0 until log2Ceil(x.size)).foldLeft(x)((r, i) => (r.rotateRight(1 << i) zip r).map { case (s, a) => Mux(amt(i), s, a) })
}
}
}
// allow bitwise ops on Seq[Bool] just like UInt
implicit class SeqBoolBitwiseOps(private val x: Seq[Bool]) extends AnyVal {
def & (y: Seq[Bool]): Seq[Bool] = (x zip y).map { case (a, b) => a && b }
def | (y: Seq[Bool]): Seq[Bool] = padZip(x, y).map { case (a, b) => a || b }
def ^ (y: Seq[Bool]): Seq[Bool] = padZip(x, y).map { case (a, b) => a ^ b }
def << (n: Int): Seq[Bool] = Seq.fill(n)(false.B) ++ x
def >> (n: Int): Seq[Bool] = x drop n
def unary_~ : Seq[Bool] = x.map(!_)
def andR: Bool = if (x.isEmpty) true.B else x.reduce(_&&_)
def orR: Bool = if (x.isEmpty) false.B else x.reduce(_||_)
def xorR: Bool = if (x.isEmpty) false.B else x.reduce(_^_)
private def padZip(y: Seq[Bool], z: Seq[Bool]): Seq[(Bool, Bool)] = y.padTo(z.size, false.B) zip z.padTo(y.size, false.B)
}
implicit class DataToAugmentedData[T <: Data](private val x: T) extends AnyVal {
def holdUnless(enable: Bool): T = Mux(enable, x, RegEnable(x, enable))
def getElements: Seq[Element] = x match {
case e: Element => Seq(e)
case a: Aggregate => a.getElements.flatMap(_.getElements)
}
}
/** Any Data subtype that has a Bool member named valid. */
type DataCanBeValid = Data { val valid: Bool }
implicit class SeqMemToAugmentedSeqMem[T <: Data](private val x: SyncReadMem[T]) extends AnyVal {
def readAndHold(addr: UInt, enable: Bool): T = x.read(addr, enable) holdUnless RegNext(enable)
}
implicit class StringToAugmentedString(private val x: String) extends AnyVal {
/** converts from camel case to to underscores, also removing all spaces */
def underscore: String = x.tail.foldLeft(x.headOption.map(_.toLower + "") getOrElse "") {
case (acc, c) if c.isUpper => acc + "_" + c.toLower
case (acc, c) if c == ' ' => acc
case (acc, c) => acc + c
}
/** converts spaces or underscores to hyphens, also lowering case */
def kebab: String = x.toLowerCase map {
case ' ' => '-'
case '_' => '-'
case c => c
}
def named(name: Option[String]): String = {
x + name.map("_named_" + _ ).getOrElse("_with_no_name")
}
def named(name: String): String = named(Some(name))
}
implicit def uintToBitPat(x: UInt): BitPat = BitPat(x)
implicit def wcToUInt(c: WideCounter): UInt = c.value
implicit class UIntToAugmentedUInt(private val x: UInt) extends AnyVal {
def sextTo(n: Int): UInt = {
require(x.getWidth <= n)
if (x.getWidth == n) x
else Cat(Fill(n - x.getWidth, x(x.getWidth-1)), x)
}
def padTo(n: Int): UInt = {
require(x.getWidth <= n)
if (x.getWidth == n) x
else Cat(0.U((n - x.getWidth).W), x)
}
// shifts left by n if n >= 0, or right by -n if n < 0
def << (n: SInt): UInt = {
val w = n.getWidth - 1
require(w <= 30)
val shifted = x << n(w-1, 0)
Mux(n(w), shifted >> (1 << w), shifted)
}
// shifts right by n if n >= 0, or left by -n if n < 0
def >> (n: SInt): UInt = {
val w = n.getWidth - 1
require(w <= 30)
val shifted = x << (1 << w) >> n(w-1, 0)
Mux(n(w), shifted, shifted >> (1 << w))
}
// Like UInt.apply(hi, lo), but returns 0.U for zero-width extracts
def extract(hi: Int, lo: Int): UInt = {
require(hi >= lo-1)
if (hi == lo-1) 0.U
else x(hi, lo)
}
// Like Some(UInt.apply(hi, lo)), but returns None for zero-width extracts
def extractOption(hi: Int, lo: Int): Option[UInt] = {
require(hi >= lo-1)
if (hi == lo-1) None
else Some(x(hi, lo))
}
// like x & ~y, but first truncate or zero-extend y to x's width
def andNot(y: UInt): UInt = x & ~(y | (x & 0.U))
def rotateRight(n: Int): UInt = if (n == 0) x else Cat(x(n-1, 0), x >> n)
def rotateRight(n: UInt): UInt = {
if (x.getWidth <= 1) {
x
} else {
val amt = n.padTo(log2Ceil(x.getWidth))
(0 until log2Ceil(x.getWidth)).foldLeft(x)((r, i) => Mux(amt(i), r.rotateRight(1 << i), r))
}
}
def rotateLeft(n: Int): UInt = if (n == 0) x else Cat(x(x.getWidth-1-n,0), x(x.getWidth-1,x.getWidth-n))
def rotateLeft(n: UInt): UInt = {
if (x.getWidth <= 1) {
x
} else {
val amt = n.padTo(log2Ceil(x.getWidth))
(0 until log2Ceil(x.getWidth)).foldLeft(x)((r, i) => Mux(amt(i), r.rotateLeft(1 << i), r))
}
}
// compute (this + y) % n, given (this < n) and (y < n)
def addWrap(y: UInt, n: Int): UInt = {
val z = x +& y
if (isPow2(n)) z(n.log2-1, 0) else Mux(z >= n.U, z - n.U, z)(log2Ceil(n)-1, 0)
}
// compute (this - y) % n, given (this < n) and (y < n)
def subWrap(y: UInt, n: Int): UInt = {
val z = x -& y
if (isPow2(n)) z(n.log2-1, 0) else Mux(z(z.getWidth-1), z + n.U, z)(log2Ceil(n)-1, 0)
}
def grouped(width: Int): Seq[UInt] =
(0 until x.getWidth by width).map(base => x(base + width - 1, base))
def inRange(base: UInt, bounds: UInt) = x >= base && x < bounds
def ## (y: Option[UInt]): UInt = y.map(x ## _).getOrElse(x)
// Like >=, but prevents x-prop for ('x >= 0)
def >== (y: UInt): Bool = x >= y || y === 0.U
}
implicit class OptionUIntToAugmentedOptionUInt(private val x: Option[UInt]) extends AnyVal {
def ## (y: UInt): UInt = x.map(_ ## y).getOrElse(y)
def ## (y: Option[UInt]): Option[UInt] = x.map(_ ## y)
}
implicit class BooleanToAugmentedBoolean(private val x: Boolean) extends AnyVal {
def toInt: Int = if (x) 1 else 0
// this one's snagged from scalaz
def option[T](z: => T): Option[T] = if (x) Some(z) else None
}
implicit class IntToAugmentedInt(private val x: Int) extends AnyVal {
// exact log2
def log2: Int = {
require(isPow2(x))
log2Ceil(x)
}
}
def OH1ToOH(x: UInt): UInt = (x << 1 | 1.U) & ~Cat(0.U(1.W), x)
def OH1ToUInt(x: UInt): UInt = OHToUInt(OH1ToOH(x))
def UIntToOH1(x: UInt, width: Int): UInt = ~((-1).S(width.W).asUInt << x)(width-1, 0)
def UIntToOH1(x: UInt): UInt = UIntToOH1(x, (1 << x.getWidth) - 1)
def trailingZeros(x: Int): Option[Int] = if (x > 0) Some(log2Ceil(x & -x)) else None
// Fill 1s from low bits to high bits
def leftOR(x: UInt): UInt = leftOR(x, x.getWidth, x.getWidth)
def leftOR(x: UInt, width: Integer, cap: Integer = 999999): UInt = {
val stop = min(width, cap)
def helper(s: Int, x: UInt): UInt =
if (s >= stop) x else helper(s+s, x | (x << s)(width-1,0))
helper(1, x)(width-1, 0)
}
// Fill 1s form high bits to low bits
def rightOR(x: UInt): UInt = rightOR(x, x.getWidth, x.getWidth)
def rightOR(x: UInt, width: Integer, cap: Integer = 999999): UInt = {
val stop = min(width, cap)
def helper(s: Int, x: UInt): UInt =
if (s >= stop) x else helper(s+s, x | (x >> s))
helper(1, x)(width-1, 0)
}
def OptimizationBarrier[T <: Data](in: T): T = {
val barrier = Module(new Module {
val io = IO(new Bundle {
val x = Input(chiselTypeOf(in))
val y = Output(chiselTypeOf(in))
})
io.y := io.x
override def desiredName = s"OptimizationBarrier_${in.typeName}"
})
barrier.io.x := in
barrier.io.y
}
/** Similar to Seq.groupBy except this returns a Seq instead of a Map
* Useful for deterministic code generation
*/
def groupByIntoSeq[A, K](xs: Seq[A])(f: A => K): immutable.Seq[(K, immutable.Seq[A])] = {
val map = mutable.LinkedHashMap.empty[K, mutable.ListBuffer[A]]
for (x <- xs) {
val key = f(x)
val l = map.getOrElseUpdate(key, mutable.ListBuffer.empty[A])
l += x
}
map.view.map({ case (k, vs) => k -> vs.toList }).toList
}
def heterogeneousOrGlobalSetting[T](in: Seq[T], n: Int): Seq[T] = in.size match {
case 1 => List.fill(n)(in.head)
case x if x == n => in
case _ => throw new Exception(s"must provide exactly 1 or $n of some field, but got:\n$in")
}
// HeterogeneousBag moved to standalond diplomacy
@deprecated("HeterogeneousBag has been absorbed into standalone diplomacy library", "rocketchip 2.0.0")
def HeterogeneousBag[T <: Data](elts: Seq[T]) = _root_.org.chipsalliance.diplomacy.nodes.HeterogeneousBag[T](elts)
@deprecated("HeterogeneousBag has been absorbed into standalone diplomacy library", "rocketchip 2.0.0")
val HeterogeneousBag = _root_.org.chipsalliance.diplomacy.nodes.HeterogeneousBag
}
File FunctionalUnit.scala:
package saturn.exu
import chisel3._
import chisel3.util._
import org.chipsalliance.cde.config._
import freechips.rocketchip.rocket._
import freechips.rocketchip.util._
import freechips.rocketchip.tile._
import saturn.common._
import saturn.insns.{VectorInstruction}
abstract class FunctionalUnitIO(implicit p: Parameters) extends CoreBundle()(p) with HasVectorParams {
val iss = new Bundle {
val valid = Input(Bool())
val op = Input(new ExecuteMicroOp)
val ready = Output(Bool())
}
val scalar_write = Decoupled(new ScalarWrite)
val set_vxsat = Output(Bool())
val set_fflags = Output(Valid(UInt(5.W)))
}
class PipelinedFunctionalUnitIO(depth: Int)(implicit p: Parameters) extends FunctionalUnitIO {
val write = Valid(new VectorWrite(dLen))
val pipe = Input(Vec(depth, Valid(new ExecuteMicroOp)))
val pipe0_stall = Output(Bool())
}
class IterativeFunctionalUnitIO(implicit p: Parameters) extends FunctionalUnitIO {
val write = Decoupled(new VectorWrite(dLen))
val hazard = Output(Valid(new PipeHazard(10)))
val acc = Output(Bool())
val tail = Output(Bool())
val busy = Output(Bool())
}
trait FunctionalUnitFactory {
def insns: Seq[VectorInstruction]
def generate(implicit p: Parameters): FunctionalUnit
}
abstract class FunctionalUnit(implicit p: Parameters) extends CoreModule()(p) with HasVectorParams {
val io: FunctionalUnitIO
}
abstract class PipelinedFunctionalUnit(val depth: Int)(implicit p: Parameters) extends FunctionalUnit()(p) {
val io = IO(new PipelinedFunctionalUnitIO(depth))
require (depth > 0)
def narrow2_expand(bits: Seq[UInt], eew: UInt, upper: Bool, sext: Bool): Vec[UInt] = {
val narrow_eew = (0 until 3).map { eew => Wire(Vec(dLenB >> (eew + 1), UInt((16 << eew).W))) }
for (eew <- 0 until 3) {
val in_vec = bits.grouped(1 << eew).map(g => VecInit(g).asUInt).toSeq
for (i <- 0 until dLenB >> (eew + 1)) {
val lo = Mux(upper, in_vec(i + (dLenB >> (eew + 1))), in_vec(i))
val hi = Fill(16 << eew, lo((8 << eew)-1) && sext)
narrow_eew(eew)(i) := Cat(hi, lo)
}
}
VecInit(narrow_eew.map(_.asUInt))(eew).asTypeOf(Vec(dLenB, UInt(8.W)))
}
}
abstract class IterativeFunctionalUnit(implicit p: Parameters) extends FunctionalUnit()(p) {
val io = IO(new IterativeFunctionalUnitIO)
val valid = RegInit(false.B)
val op = Reg(new ExecuteMicroOp)
val last = Wire(Bool())
io.busy := valid
io.hazard.bits.latency := DontCare
when (io.iss.valid && io.iss.ready) {
valid := true.B
op := io.iss.op
} .elsewhen (last) {
valid := false.B
}
}
File Bundles.scala:
package saturn.common
import chisel3._
import chisel3.util._
import org.chipsalliance.cde.config._
import freechips.rocketchip.rocket._
import freechips.rocketchip.util._
import freechips.rocketchip.tile._
class VectorMemMacroOp(implicit p: Parameters) extends CoreBundle()(p) with HasVectorParams {
val debug_id = UInt(debugIdSz.W)
val base_offset = UInt(pgIdxBits.W)
val page = UInt((paddrBits - pgIdxBits).W)
val stride = UInt(pgIdxBits.W)
val segstart = UInt(3.W)
val segend = UInt(3.W)
val vstart = UInt(log2Ceil(maxVLMax).W)
val vl = UInt((1+log2Ceil(maxVLMax)).W)
val mop = UInt(2.W)
val vm = Bool()
val nf = UInt(3.W)
val idx_size = UInt(2.W)
val elem_size = UInt(2.W)
val whole_reg = Bool()
val store = Bool()
val fast_sg = Bool()
def indexed = !mop.isOneOf(mopUnit, mopStrided)
def seg_nf = Mux(whole_reg, 0.U, nf)
def wr_nf = Mux(whole_reg, nf, 0.U)
}
class VectorIssueInst(implicit p: Parameters) extends CoreBundle()(p) with HasVectorParams {
val pc = UInt(vaddrBitsExtended.W)
val bits = UInt(32.W)
val vconfig = new VConfig
val vstart = UInt(log2Ceil(maxVLMax).W)
val segstart = UInt(3.W)
val segend = UInt(3.W)
val rs1_data = UInt(xLen.W)
val rs2_data = UInt(xLen.W)
val page = UInt((paddrBits - pgIdxBits).W)
val vat = UInt(vParams.vatSz.W)
val rm = UInt(3.W)
val emul = UInt(2.W)
val fast_sg = Bool()
val debug_id = UInt(debugIdSz.W)
val mop = UInt(2.W) // stored separately from bits since dispatch may need to set this
def opcode = bits(6,0)
def store = opcode(5)
def mem_idx_size = bits(13,12)
def mem_elem_size = Mux(mop(0), vconfig.vtype.vsew, bits(13,12))
def vm = bits(25)
def orig_mop = bits(27,26)
def umop = bits(24,20)
def nf = bits(31,29)
def wr = orig_mop === mopUnit && umop === lumopWhole
def seg_nf = Mux(wr, 0.U, nf)
def wr_nf = Mux(wr, nf, 0.U)
def vmu = opcode.isOneOf(opcLoad, opcStore)
def rs1 = bits(19,15)
def rs2 = bits(24,20)
def rd = bits(11,7)
def may_write_v0 = rd === 0.U && opcode =/= opcStore
def funct3 = bits(14,12)
def imm5 = bits(19,15)
def imm5_sext = Cat(Fill(59, imm5(4)), imm5)
def funct6 = bits(31,26)
def writes_xrf = !vmu && ((funct3 === OPMVV && opmf6 === OPMFunct6.wrxunary0) || (funct3 === OPFVV && opff6 === OPFFunct6.wrfunary0))
def writes_frf = !vmu && (funct3 === OPFVV)
def isOpi = funct3.isOneOf(OPIVV, OPIVI, OPIVX)
def isOpm = funct3.isOneOf(OPMVV, OPMVX)
def isOpf = funct3.isOneOf(OPFVV, OPFVF)
def opmf6 = Mux(isOpm, OPMFunct6(funct6), OPMFunct6.illegal)
def opif6 = Mux(isOpi, OPIFunct6(funct6), OPIFunct6.illegal)
def opff6 = Mux(isOpf, OPFFunct6(funct6), OPFFunct6.illegal)
}
class BackendIssueInst(implicit p: Parameters) extends VectorIssueInst()(p) {
val reduction = Bool() // accumulates into vd[0]
val scalar_to_vd0 = Bool() // mv scalar to vd[0]
val wide_vd = Bool() // vd reads/writes at 2xSEW
val wide_vs2 = Bool() // vs2 reads at 2xSEW
val writes_mask = Bool() // writes dest as a mask
val reads_vs1_mask = Bool() // vs1 read as mask
val reads_vs2_mask = Bool() // vs2 read as mask
val rs1_is_rs2 = Bool()
val nf_log2 = UInt(2.W)
val renv1 = Bool()
val renv2 = Bool()
val renvd = Bool()
val renvm = Bool()
val wvd = Bool()
}
class IssueQueueInst(nSeqs: Int)(implicit p: Parameters) extends BackendIssueInst()(p) {
val seq = UInt(nSeqs.W)
}
class VectorWrite(writeBits: Int)(implicit p: Parameters) extends CoreBundle()(p) with HasVectorParams {
val eg = UInt(log2Ceil(32 * vLen / writeBits).W)
def bankId = if (vrfBankBits == 0) 0.U else eg(vrfBankBits-1,0)
val data = UInt(writeBits.W)
val mask = UInt(writeBits.W)
}
class ScalarWrite extends Bundle {
val data = UInt(64.W)
val fp = Bool()
val size = UInt(2.W)
val rd = UInt(5.W)
}
class VectorReadReq(implicit p: Parameters) extends CoreBundle()(p) with HasVectorParams {
val eg = UInt(log2Ceil(egsTotal).W)
val oldest = Bool()
}
class VectorReadIO(implicit p: Parameters) extends CoreBundle()(p) with HasVectorParams {
val req = Decoupled(new VectorReadReq)
val resp = Input(UInt(dLen.W))
}
class VectorIndexAccessIO(implicit p: Parameters) extends CoreBundle()(p) with HasVectorParams {
val ready = Output(Bool())
val valid = Input(Bool())
val vrs = Input(UInt(5.W))
val eidx = Input(UInt((1+log2Ceil(maxVLMax)).W))
val eew = Input(UInt(2.W))
val idx = Output(UInt(64.W))
}
class VectorMaskAccessIO(implicit p: Parameters) extends CoreBundle()(p) with HasVectorParams {
val ready = Output(Bool())
val valid = Input(Bool())
val eidx = Input(UInt((1+log2Ceil(maxVLMax)).W))
val mask = Output(Bool())
}
class MaskedByte(implicit p: Parameters) extends CoreBundle()(p) with HasVectorParams {
val debug_id = UInt(debugIdSz.W)
val data = UInt(8.W)
val mask = Bool()
}
class ExecuteMicroOp(implicit p: Parameters) extends CoreBundle()(p) with HasVectorParams {
val eidx = UInt(log2Ceil(maxVLMax).W)
val vl = UInt((1+log2Ceil(maxVLMax)).W)
val rvs1_data = UInt(dLen.W)
val rvs2_data = UInt(dLen.W)
val rvd_data = UInt(dLen.W)
val rvm_data = UInt(dLen.W)
val rvs1_elem = UInt(64.W)
val rvs2_elem = UInt(64.W)
val rvd_elem = UInt(64.W)
val rvs1_eew = UInt(2.W)
val rvs2_eew = UInt(2.W)
val rvd_eew = UInt(2.W)
val vd_eew = UInt(2.W)
val rmask = UInt(dLenB.W)
val wmask = UInt(dLenB.W)
val full_tail_mask = UInt(dLen.W)
val wvd_eg = UInt(log2Ceil(egsTotal).W)
val funct3 = UInt(3.W)
def isOpi = funct3.isOneOf(OPIVV, OPIVI, OPIVX)
def isOpm = funct3.isOneOf(OPMVV, OPMVX)
def isOpf = funct3.isOneOf(OPFVV, OPFVF)
def opmf6 = Mux(isOpm, OPMFunct6(funct6), OPMFunct6.illegal)
def opif6 = Mux(isOpi, OPIFunct6(funct6), OPIFunct6.illegal)
def opff6 = Mux(isOpf, OPFFunct6(funct6), OPFFunct6.illegal)
def vd_eew8 = vd_eew === 0.U
def vd_eew16 = vd_eew === 1.U
def vd_eew32 = vd_eew === 2.U
def vd_eew64 = vd_eew === 3.U
val funct6 = UInt(6.W)
val rs1 = UInt(5.W)
val rs2 = UInt(5.W)
val rd = UInt(5.W)
val vm = Bool()
val head = Bool()
val tail = Bool()
val vat = UInt(vParams.vatSz.W)
val acc = Bool()
val rm = UInt(3.W)
def vxrm = rm(1,0)
def frm = rm
}
class StoreDataMicroOp(implicit p: Parameters) extends CoreBundle()(p) with HasVectorParams {
val stdata = UInt(dLen.W)
val stmask = UInt(dLenB.W)
val debug_id = UInt(debugIdSz.W)
val tail = Bool()
val vat = UInt(vParams.vatSz.W)
def asMaskedBytes = {
val bytes = Wire(Vec(dLenB, new MaskedByte))
for (i <- 0 until dLenB) {
bytes(i).data := stdata(((i+1)*8)-1,i*8)
bytes(i).mask := stmask(i)
bytes(i).debug_id := debug_id
}
bytes
}
}
class LoadRespMicroOp(implicit p: Parameters) extends CoreBundle()(p) with HasVectorParams {
val wvd_eg = UInt(log2Ceil(egsTotal).W)
val wmask = UInt(dLenB.W)
val tail = Bool()
val debug_id = UInt(debugIdSz.W)
val vat = UInt(vParams.vatSz.W)
}
class PermuteMicroOp(implicit p: Parameters) extends CoreBundle()(p) with HasVectorParams {
val renv2 = Bool()
val renvm = Bool()
val rvs2_data = UInt(dLen.W)
val eidx = UInt(log2Ceil(maxVLMax).W)
val rvs2_eew = UInt(2.W)
val rvm_data = UInt(dLen.W)
val vmu = Bool()
val vl = UInt((1+log2Ceil(maxVLMax)).W)
val tail = Bool()
}
class PipeHazard(pipe_depth: Int)(implicit p: Parameters) extends CoreBundle()(p) with HasVectorParams {
val latency = UInt(log2Ceil(pipe_depth).W)
val eg = UInt(log2Ceil(egsTotal).W)
def eg_oh = UIntToOH(eg)
}
class SequencerHazard(implicit p: Parameters) extends CoreBundle()(p) with HasVectorParams {
val vat = UInt(vParams.vatSz.W)
val rintent = UInt(egsTotal.W)
val wintent = UInt(egsTotal.W)
}
class InstructionHazard(implicit p: Parameters) extends CoreBundle()(p) with HasVectorParams {
val vat = UInt(vParams.vatSz.W)
val rintent = UInt(32.W)
val wintent = UInt(32.W)
}
| module PermuteUnit( // @[PermuteUnit.scala:24:7]
input clock, // @[PermuteUnit.scala:24:7]
input [2:0] io_iss_op_funct3, // @[FunctionalUnit.scala:49:14]
input [5:0] io_iss_op_funct6, // @[FunctionalUnit.scala:49:14]
input [4:0] io_iss_op_rs1, // @[FunctionalUnit.scala:49:14]
input [4:0] io_iss_op_rs2, // @[FunctionalUnit.scala:49:14]
output io_iss_ready, // @[FunctionalUnit.scala:49:14]
output io_write_valid, // @[FunctionalUnit.scala:49:14]
output [4:0] io_write_bits_eg, // @[FunctionalUnit.scala:49:14]
output [127:0] io_write_bits_data, // @[FunctionalUnit.scala:49:14]
output [127:0] io_write_bits_mask, // @[FunctionalUnit.scala:49:14]
input io_pipe_0_valid, // @[FunctionalUnit.scala:49:14]
input [6:0] io_pipe_0_bits_eidx, // @[FunctionalUnit.scala:49:14]
input [7:0] io_pipe_0_bits_vl, // @[FunctionalUnit.scala:49:14]
input [127:0] io_pipe_0_bits_rvs1_data, // @[FunctionalUnit.scala:49:14]
input [127:0] io_pipe_0_bits_rvs2_data, // @[FunctionalUnit.scala:49:14]
input [1:0] io_pipe_0_bits_rvs2_eew, // @[FunctionalUnit.scala:49:14]
input [15:0] io_pipe_0_bits_wmask, // @[FunctionalUnit.scala:49:14]
input [4:0] io_pipe_0_bits_wvd_eg, // @[FunctionalUnit.scala:49:14]
input [2:0] io_pipe_0_bits_funct3, // @[FunctionalUnit.scala:49:14]
input [5:0] io_pipe_0_bits_funct6, // @[FunctionalUnit.scala:49:14]
input io_pipe_0_bits_head, // @[FunctionalUnit.scala:49:14]
input io_pipe_0_bits_tail // @[FunctionalUnit.scala:49:14]
);
wire [8:0] io_iss_ready_decode_invInputs = ~{io_iss_op_funct3, io_iss_op_funct6}; // @[pla.scala:78:21]
reg [4:0] wvd_reg; // @[PermuteUnit.scala:30:20]
reg [63:0] result_reg; // @[PermuteUnit.scala:31:23]
wire _slide1_T = io_pipe_0_bits_funct3 == 3'h0; // @[PermuteUnit.scala:33:38]
wire _slide1_T_1 = io_pipe_0_bits_funct3 == 3'h3; // @[package.scala:16:47]
wire _slide1_T_2 = io_pipe_0_bits_funct3 == 3'h4; // @[package.scala:16:47]
wire [6:0] _mvnrr_WIRE = {1'h0, io_pipe_0_bits_funct6}; // @[Bundles.scala:187:35]
wire [6:0] _compress_T_3 = io_pipe_0_bits_funct3 == 3'h2 | io_pipe_0_bits_funct3 == 3'h6 ? _mvnrr_WIRE : 7'h40; // @[Bundles.scala:186:18, :187:35]
wire compress = _compress_T_3 == 7'h17; // @[PermuteUnit.scala:34:40]
wire rgather = (_slide1_T | _slide1_T_1 | _slide1_T_2 ? _mvnrr_WIRE : 7'h40) == 7'hC | _slide1_T & (_slide1_T | _slide1_T_1 | _slide1_T_2 ? _mvnrr_WIRE : 7'h40) == 7'hE; // @[PermuteUnit.scala:33:38, :35:{54,79}, :36:{39,61}]
wire [3:0] elem_eidx = rgather ? io_pipe_0_bits_rvs1_data[3:0] : io_pipe_0_bits_eidx[3:0]; // @[PermuteUnit.scala:36:61, :40:22]
wire [15:0][7:0] _GEN = {{io_pipe_0_bits_rvs2_data[127:120]}, {io_pipe_0_bits_rvs2_data[119:112]}, {io_pipe_0_bits_rvs2_data[111:104]}, {io_pipe_0_bits_rvs2_data[103:96]}, {io_pipe_0_bits_rvs2_data[95:88]}, {io_pipe_0_bits_rvs2_data[87:80]}, {io_pipe_0_bits_rvs2_data[79:72]}, {io_pipe_0_bits_rvs2_data[71:64]}, {io_pipe_0_bits_rvs2_data[63:56]}, {io_pipe_0_bits_rvs2_data[55:48]}, {io_pipe_0_bits_rvs2_data[47:40]}, {io_pipe_0_bits_rvs2_data[39:32]}, {io_pipe_0_bits_rvs2_data[31:24]}, {io_pipe_0_bits_rvs2_data[23:16]}, {io_pipe_0_bits_rvs2_data[15:8]}, {io_pipe_0_bits_rvs2_data[7:0]}}; // @[PermuteUnit.scala:41:33, :44:39]
wire [7:0][15:0] _GEN_0 = {{io_pipe_0_bits_rvs2_data[127:112]}, {io_pipe_0_bits_rvs2_data[111:96]}, {io_pipe_0_bits_rvs2_data[95:80]}, {io_pipe_0_bits_rvs2_data[79:64]}, {io_pipe_0_bits_rvs2_data[63:48]}, {io_pipe_0_bits_rvs2_data[47:32]}, {io_pipe_0_bits_rvs2_data[31:16]}, {io_pipe_0_bits_rvs2_data[15:0]}}; // @[PermuteUnit.scala:41:33, :44:39]
wire [3:0][31:0] _GEN_1 = {{io_pipe_0_bits_rvs2_data[127:96]}, {io_pipe_0_bits_rvs2_data[95:64]}, {io_pipe_0_bits_rvs2_data[63:32]}, {io_pipe_0_bits_rvs2_data[31:0]}}; // @[PermuteUnit.scala:41:33, :44:39]
wire [3:0][63:0] _GEN_2 = {{elem_eidx[0] ? io_pipe_0_bits_rvs2_data[127:64] : io_pipe_0_bits_rvs2_data[63:0]}, {{32'h0, _GEN_1[elem_eidx[1:0]]}}, {{48'h0, _GEN_0[elem_eidx[2:0]]}}, {{56'h0, _GEN[elem_eidx]}}}; // @[PermuteUnit.scala:40:22, :41:33, :44:39, :46:25]
wire [63:0] splat_v = compress | io_pipe_0_bits_head | _slide1_T ? _GEN_2[io_pipe_0_bits_rvs2_eew] : result_reg; // @[PermuteUnit.scala:31:23, :33:38, :34:40, :46:{25,47}, :47:28]
wire [127:0] _compress_bit_T_1 = io_pipe_0_bits_rvs1_data >> io_pipe_0_bits_eidx; // @[PermuteUnit.scala:50:49]
wire [7:0] _compress_eidx_T = io_pipe_0_bits_head ? 8'h0 : result_reg[7:0]; // @[PermuteUnit.scala:31:23, :51:26]
wire [3:0] shifted_mask_eidx = compress ? _compress_eidx_T[3:0] : io_pipe_0_bits_vl[3:0] - 4'h1; // @[PermuteUnit.scala:34:40, :51:26, :63:{30,75}]
wire [3:0][15:0] _GEN_3 = {{{{8{shifted_mask_eidx[0]}}, {8{~(shifted_mask_eidx[0])}}}}, {{{4{&(shifted_mask_eidx[1:0])}}, {4{shifted_mask_eidx[1:0] == 2'h2}}, {4{shifted_mask_eidx[1:0] == 2'h1}}, {4{shifted_mask_eidx[1:0] == 2'h0}}}}, {{{2{&(shifted_mask_eidx[2:0])}}, {2{shifted_mask_eidx[2:0] == 3'h6}}, {2{shifted_mask_eidx[2:0] == 3'h5}}, {2{shifted_mask_eidx[2:0] == 3'h4}}, {2{shifted_mask_eidx[2:0] == 3'h3}}, {2{shifted_mask_eidx[2:0] == 3'h2}}, {2{shifted_mask_eidx[2:0] == 3'h1}}, {2{shifted_mask_eidx[2:0] == 3'h0}}}}, {16'h1 << shifted_mask_eidx}}; // @[OneHot.scala:58:35]
wire [15:0] _use_rvs1_mask_T = _slide1_T | _slide1_T_1 | _slide1_T_2 ? 16'h0 : io_pipe_0_bits_funct6[0] ? (io_pipe_0_bits_tail ? _GEN_3[io_pipe_0_bits_rvs2_eew] : 16'h0) : {8'h0, io_pipe_0_bits_head ? {4'h0, {2'h0, {1'h0, io_pipe_0_bits_rvs2_eew == 2'h0} | {2{io_pipe_0_bits_rvs2_eew == 2'h1}}} | {4{io_pipe_0_bits_rvs2_eew == 2'h2}}} | {8{&io_pipe_0_bits_rvs2_eew}} : 8'h0}; // @[PermuteUnit.scala:24:7, :33:38, :69:41, :72:24, :73:8, :74:8, :75:45]
wire [127:0] use_rvs1_mask = {{8{_use_rvs1_mask_T[15]}}, {8{_use_rvs1_mask_T[14]}}, {8{_use_rvs1_mask_T[13]}}, {8{_use_rvs1_mask_T[12]}}, {8{_use_rvs1_mask_T[11]}}, {8{_use_rvs1_mask_T[10]}}, {8{_use_rvs1_mask_T[9]}}, {8{_use_rvs1_mask_T[8]}}, {8{_use_rvs1_mask_T[7]}}, {8{_use_rvs1_mask_T[6]}}, {8{_use_rvs1_mask_T[5]}}, {8{_use_rvs1_mask_T[4]}}, {8{_use_rvs1_mask_T[3]}}, {8{_use_rvs1_mask_T[2]}}, {8{_use_rvs1_mask_T[1]}}, {8{_use_rvs1_mask_T[0]}}}; // @[PermuteUnit.scala:75:{38,45}]
wire [15:0] wmask = _slide1_T & (_slide1_T | _slide1_T_1 | _slide1_T_2 ? _mvnrr_WIRE : 7'h40) == 7'h27 ? 16'hFFFF : compress ? (_compress_bit_T_1[0] ? _GEN_3[io_pipe_0_bits_rvs2_eew] : 16'h0) : io_pipe_0_bits_wmask; // @[PermuteUnit.scala:33:{38,48,73}, :34:40, :50:{49,93}, :74:8, :77:18, :78:{8,22}]
wire [7:0] io_write_bits_eg_off = _compress_eidx_T >> 3'h4 - {1'h0, io_pipe_0_bits_rvs2_eew}; // @[OneHot.scala:58:35]
wire _GEN_4 = io_pipe_0_valid & io_pipe_0_bits_head; // @[PermuteUnit.scala:53:26]
always @(posedge clock) begin // @[PermuteUnit.scala:24:7]
if (_GEN_4) // @[PermuteUnit.scala:53:26]
wvd_reg <= io_pipe_0_bits_wvd_eg; // @[PermuteUnit.scala:30:20]
if (io_pipe_0_valid & compress) // @[PermuteUnit.scala:34:40, :59:26]
result_reg <= {56'h0, _compress_eidx_T + {7'h0, _compress_bit_T_1[0]}}; // @[PermuteUnit.scala:31:23, :41:33, :50:{49,93}, :51:26, :60:{16,34}]
else if (_GEN_4 & rgather) // @[PermuteUnit.scala:36:61, :53:{26,50}]
result_reg <= _GEN_2[io_pipe_0_bits_rvs2_eew]; // @[PermuteUnit.scala:31:23, :46:25]
always @(posedge) |
Generate the Verilog code corresponding to the following Chisel files.
File ShiftReg.scala:
// See LICENSE.SiFive for license details.
package freechips.rocketchip.util
import chisel3._
// Similar to the Chisel ShiftRegister but allows the user to suggest a
// name to the registers that get instantiated, and
// to provide a reset value.
object ShiftRegInit {
def apply[T <: Data](in: T, n: Int, init: T, name: Option[String] = None): T =
(0 until n).foldRight(in) {
case (i, next) => {
val r = RegNext(next, init)
name.foreach { na => r.suggestName(s"${na}_${i}") }
r
}
}
}
/** These wrap behavioral
* shift registers into specific modules to allow for
* backend flows to replace or constrain
* them properly when used for CDC synchronization,
* rather than buffering.
*
* The different types vary in their reset behavior:
* AsyncResetShiftReg -- Asynchronously reset register array
* A W(width) x D(depth) sized array is constructed from D instantiations of a
* W-wide register vector. Functionally identical to AsyncResetSyncrhonizerShiftReg,
* but only used for timing applications
*/
abstract class AbstractPipelineReg(w: Int = 1) extends Module {
val io = IO(new Bundle {
val d = Input(UInt(w.W))
val q = Output(UInt(w.W))
}
)
}
object AbstractPipelineReg {
def apply [T <: Data](gen: => AbstractPipelineReg, in: T, name: Option[String] = None): T = {
val chain = Module(gen)
name.foreach{ chain.suggestName(_) }
chain.io.d := in.asUInt
chain.io.q.asTypeOf(in)
}
}
class AsyncResetShiftReg(w: Int = 1, depth: Int = 1, init: Int = 0, name: String = "pipe") extends AbstractPipelineReg(w) {
require(depth > 0, "Depth must be greater than 0.")
override def desiredName = s"AsyncResetShiftReg_w${w}_d${depth}_i${init}"
val chain = List.tabulate(depth) { i =>
Module (new AsyncResetRegVec(w, init)).suggestName(s"${name}_${i}")
}
chain.last.io.d := io.d
chain.last.io.en := true.B
(chain.init zip chain.tail).foreach { case (sink, source) =>
sink.io.d := source.io.q
sink.io.en := true.B
}
io.q := chain.head.io.q
}
object AsyncResetShiftReg {
def apply [T <: Data](in: T, depth: Int, init: Int = 0, name: Option[String] = None): T =
AbstractPipelineReg(new AsyncResetShiftReg(in.getWidth, depth, init), in, name)
def apply [T <: Data](in: T, depth: Int, name: Option[String]): T =
apply(in, depth, 0, name)
def apply [T <: Data](in: T, depth: Int, init: T, name: Option[String]): T =
apply(in, depth, init.litValue.toInt, name)
def apply [T <: Data](in: T, depth: Int, init: T): T =
apply (in, depth, init.litValue.toInt, None)
}
File SynchronizerReg.scala:
// See LICENSE.SiFive for license details.
package freechips.rocketchip.util
import chisel3._
import chisel3.util.{RegEnable, Cat}
/** These wrap behavioral
* shift and next registers into specific modules to allow for
* backend flows to replace or constrain
* them properly when used for CDC synchronization,
* rather than buffering.
*
*
* These are built up of *ResetSynchronizerPrimitiveShiftReg,
* intended to be replaced by the integrator's metastable flops chains or replaced
* at this level if they have a multi-bit wide synchronizer primitive.
* The different types vary in their reset behavior:
* NonSyncResetSynchronizerShiftReg -- Register array which does not have a reset pin
* AsyncResetSynchronizerShiftReg -- Asynchronously reset register array, constructed from W instantiations of D deep
* 1-bit-wide shift registers.
* SyncResetSynchronizerShiftReg -- Synchronously reset register array, constructed similarly to AsyncResetSynchronizerShiftReg
*
* [Inferred]ResetSynchronizerShiftReg -- TBD reset type by chisel3 reset inference.
*
* ClockCrossingReg -- Not made up of SynchronizerPrimitiveShiftReg. This is for single-deep flops which cross
* Clock Domains.
*/
object SynchronizerResetType extends Enumeration {
val NonSync, Inferred, Sync, Async = Value
}
// Note: this should not be used directly.
// Use the companion object to generate this with the correct reset type mixin.
private class SynchronizerPrimitiveShiftReg(
sync: Int,
init: Boolean,
resetType: SynchronizerResetType.Value)
extends AbstractPipelineReg(1) {
val initInt = if (init) 1 else 0
val initPostfix = resetType match {
case SynchronizerResetType.NonSync => ""
case _ => s"_i${initInt}"
}
override def desiredName = s"${resetType.toString}ResetSynchronizerPrimitiveShiftReg_d${sync}${initPostfix}"
val chain = List.tabulate(sync) { i =>
val reg = if (resetType == SynchronizerResetType.NonSync) Reg(Bool()) else RegInit(init.B)
reg.suggestName(s"sync_$i")
}
chain.last := io.d.asBool
(chain.init zip chain.tail).foreach { case (sink, source) =>
sink := source
}
io.q := chain.head.asUInt
}
private object SynchronizerPrimitiveShiftReg {
def apply (in: Bool, sync: Int, init: Boolean, resetType: SynchronizerResetType.Value): Bool = {
val gen: () => SynchronizerPrimitiveShiftReg = resetType match {
case SynchronizerResetType.NonSync =>
() => new SynchronizerPrimitiveShiftReg(sync, init, resetType)
case SynchronizerResetType.Async =>
() => new SynchronizerPrimitiveShiftReg(sync, init, resetType) with RequireAsyncReset
case SynchronizerResetType.Sync =>
() => new SynchronizerPrimitiveShiftReg(sync, init, resetType) with RequireSyncReset
case SynchronizerResetType.Inferred =>
() => new SynchronizerPrimitiveShiftReg(sync, init, resetType)
}
AbstractPipelineReg(gen(), in)
}
}
// Note: This module may end up with a non-AsyncReset type reset.
// But the Primitives within will always have AsyncReset type.
class AsyncResetSynchronizerShiftReg(w: Int = 1, sync: Int, init: Int)
extends AbstractPipelineReg(w) {
require(sync > 1, s"Sync must be greater than 1, not ${sync}.")
override def desiredName = s"AsyncResetSynchronizerShiftReg_w${w}_d${sync}_i${init}"
val output = Seq.tabulate(w) { i =>
val initBit = ((init >> i) & 1) > 0
withReset(reset.asAsyncReset){
SynchronizerPrimitiveShiftReg(io.d(i), sync, initBit, SynchronizerResetType.Async)
}
}
io.q := Cat(output.reverse)
}
object AsyncResetSynchronizerShiftReg {
def apply [T <: Data](in: T, sync: Int, init: Int, name: Option[String] = None): T =
AbstractPipelineReg(new AsyncResetSynchronizerShiftReg(in.getWidth, sync, init), in, name)
def apply [T <: Data](in: T, sync: Int, name: Option[String]): T =
apply (in, sync, 0, name)
def apply [T <: Data](in: T, sync: Int): T =
apply (in, sync, 0, None)
def apply [T <: Data](in: T, sync: Int, init: T, name: Option[String]): T =
apply(in, sync, init.litValue.toInt, name)
def apply [T <: Data](in: T, sync: Int, init: T): T =
apply (in, sync, init.litValue.toInt, None)
}
// Note: This module may end up with a non-Bool type reset.
// But the Primitives within will always have Bool reset type.
@deprecated("SyncResetSynchronizerShiftReg is unecessary with Chisel3 inferred resets. Use ResetSynchronizerShiftReg which will use the inferred reset type.", "rocket-chip 1.2")
class SyncResetSynchronizerShiftReg(w: Int = 1, sync: Int, init: Int) extends AbstractPipelineReg(w) {
require(sync > 1, s"Sync must be greater than 1, not ${sync}.")
override def desiredName = s"SyncResetSynchronizerShiftReg_w${w}_d${sync}_i${init}"
val output = Seq.tabulate(w) { i =>
val initBit = ((init >> i) & 1) > 0
withReset(reset.asBool){
SynchronizerPrimitiveShiftReg(io.d(i), sync, initBit, SynchronizerResetType.Sync)
}
}
io.q := Cat(output.reverse)
}
object SyncResetSynchronizerShiftReg {
def apply [T <: Data](in: T, sync: Int, init: Int, name: Option[String] = None): T =
if (sync == 0) in else AbstractPipelineReg(new SyncResetSynchronizerShiftReg(in.getWidth, sync, init), in, name)
def apply [T <: Data](in: T, sync: Int, name: Option[String]): T =
apply (in, sync, 0, name)
def apply [T <: Data](in: T, sync: Int): T =
apply (in, sync, 0, None)
def apply [T <: Data](in: T, sync: Int, init: T, name: Option[String]): T =
apply(in, sync, init.litValue.toInt, name)
def apply [T <: Data](in: T, sync: Int, init: T): T =
apply (in, sync, init.litValue.toInt, None)
}
class ResetSynchronizerShiftReg(w: Int = 1, sync: Int, init: Int) extends AbstractPipelineReg(w) {
require(sync > 1, s"Sync must be greater than 1, not ${sync}.")
override def desiredName = s"ResetSynchronizerShiftReg_w${w}_d${sync}_i${init}"
val output = Seq.tabulate(w) { i =>
val initBit = ((init >> i) & 1) > 0
SynchronizerPrimitiveShiftReg(io.d(i), sync, initBit, SynchronizerResetType.Inferred)
}
io.q := Cat(output.reverse)
}
object ResetSynchronizerShiftReg {
def apply [T <: Data](in: T, sync: Int, init: Int, name: Option[String] = None): T =
AbstractPipelineReg(new ResetSynchronizerShiftReg(in.getWidth, sync, init), in, name)
def apply [T <: Data](in: T, sync: Int, name: Option[String]): T =
apply (in, sync, 0, name)
def apply [T <: Data](in: T, sync: Int): T =
apply (in, sync, 0, None)
def apply [T <: Data](in: T, sync: Int, init: T, name: Option[String]): T =
apply(in, sync, init.litValue.toInt, name)
def apply [T <: Data](in: T, sync: Int, init: T): T =
apply (in, sync, init.litValue.toInt, None)
}
class SynchronizerShiftReg(w: Int = 1, sync: Int = 3) extends AbstractPipelineReg(w) {
require(sync > 1, s"Sync must be greater than 1, not ${sync}.")
override def desiredName = s"SynchronizerShiftReg_w${w}_d${sync}"
val output = Seq.tabulate(w) { i =>
SynchronizerPrimitiveShiftReg(io.d(i), sync, false, SynchronizerResetType.NonSync)
}
io.q := Cat(output.reverse)
}
object SynchronizerShiftReg {
def apply [T <: Data](in: T, sync: Int, name: Option[String] = None): T =
if (sync == 0) in else AbstractPipelineReg(new SynchronizerShiftReg(in.getWidth, sync), in, name)
def apply [T <: Data](in: T, sync: Int): T =
apply (in, sync, None)
def apply [T <: Data](in: T): T =
apply (in, 3, None)
}
class ClockCrossingReg(w: Int = 1, doInit: Boolean) extends Module {
override def desiredName = s"ClockCrossingReg_w${w}"
val io = IO(new Bundle{
val d = Input(UInt(w.W))
val q = Output(UInt(w.W))
val en = Input(Bool())
})
val cdc_reg = if (doInit) RegEnable(io.d, 0.U(w.W), io.en) else RegEnable(io.d, io.en)
io.q := cdc_reg
}
object ClockCrossingReg {
def apply [T <: Data](in: T, en: Bool, doInit: Boolean, name: Option[String] = None): T = {
val cdc_reg = Module(new ClockCrossingReg(in.getWidth, doInit))
name.foreach{ cdc_reg.suggestName(_) }
cdc_reg.io.d := in.asUInt
cdc_reg.io.en := en
cdc_reg.io.q.asTypeOf(in)
}
}
| module AsyncResetSynchronizerShiftReg_w1_d3_i0_179( // @[SynchronizerReg.scala:80:7]
input clock, // @[SynchronizerReg.scala:80:7]
input reset, // @[SynchronizerReg.scala:80:7]
output io_q // @[ShiftReg.scala:36:14]
);
wire _output_T = reset; // @[SynchronizerReg.scala:86:21]
wire io_d = 1'h1; // @[SynchronizerReg.scala:80:7, :87:41]
wire _output_T_1 = 1'h1; // @[SynchronizerReg.scala:80:7, :87:41]
wire output_0; // @[ShiftReg.scala:48:24]
wire io_q_0; // @[SynchronizerReg.scala:80:7]
assign io_q_0 = output_0; // @[SynchronizerReg.scala:80:7]
AsyncResetSynchronizerPrimitiveShiftReg_d3_i0_323 output_chain ( // @[ShiftReg.scala:45:23]
.clock (clock),
.reset (_output_T), // @[SynchronizerReg.scala:86:21]
.io_q (output_0)
); // @[ShiftReg.scala:45:23]
assign io_q = io_q_0; // @[SynchronizerReg.scala:80:7]
endmodule |
Generate the Verilog code corresponding to the following Chisel files.
File PMP.scala:
// See LICENSE.SiFive for license details.
package freechips.rocketchip.rocket
import chisel3._
import chisel3.util.{Cat, log2Ceil}
import org.chipsalliance.cde.config._
import freechips.rocketchip.tile._
import freechips.rocketchip.util._
class PMPConfig extends Bundle {
val l = Bool()
val res = UInt(2.W)
val a = UInt(2.W)
val x = Bool()
val w = Bool()
val r = Bool()
}
object PMP {
def lgAlign = 2
def apply(reg: PMPReg): PMP = {
val pmp = Wire(new PMP()(reg.p))
pmp.cfg := reg.cfg
pmp.addr := reg.addr
pmp.mask := pmp.computeMask
pmp
}
}
class PMPReg(implicit p: Parameters) extends CoreBundle()(p) {
val cfg = new PMPConfig
val addr = UInt((paddrBits - PMP.lgAlign).W)
def reset(): Unit = {
cfg.a := 0.U
cfg.l := 0.U
}
def readAddr = if (pmpGranularity.log2 == PMP.lgAlign) addr else {
val mask = ((BigInt(1) << (pmpGranularity.log2 - PMP.lgAlign)) - 1).U
Mux(napot, addr | (mask >> 1), ~(~addr | mask))
}
def napot = cfg.a(1)
def torNotNAPOT = cfg.a(0)
def tor = !napot && torNotNAPOT
def cfgLocked = cfg.l
def addrLocked(next: PMPReg) = cfgLocked || next.cfgLocked && next.tor
}
class PMP(implicit p: Parameters) extends PMPReg {
val mask = UInt(paddrBits.W)
import PMP._
def computeMask = {
val base = Cat(addr, cfg.a(0)) | ((pmpGranularity - 1).U >> lgAlign)
Cat(base & ~(base + 1.U), ((1 << lgAlign) - 1).U)
}
private def comparand = ~(~(addr << lgAlign) | (pmpGranularity - 1).U)
private def pow2Match(x: UInt, lgSize: UInt, lgMaxSize: Int) = {
def eval(a: UInt, b: UInt, m: UInt) = ((a ^ b) & ~m) === 0.U
if (lgMaxSize <= pmpGranularity.log2) {
eval(x, comparand, mask)
} else {
// break up the circuit; the MSB part will be CSE'd
val lsbMask = mask | UIntToOH1(lgSize, lgMaxSize)
val msbMatch = eval(x >> lgMaxSize, comparand >> lgMaxSize, mask >> lgMaxSize)
val lsbMatch = eval(x(lgMaxSize-1, 0), comparand(lgMaxSize-1, 0), lsbMask(lgMaxSize-1, 0))
msbMatch && lsbMatch
}
}
private def boundMatch(x: UInt, lsbMask: UInt, lgMaxSize: Int) = {
if (lgMaxSize <= pmpGranularity.log2) {
x < comparand
} else {
// break up the circuit; the MSB part will be CSE'd
val msbsLess = (x >> lgMaxSize) < (comparand >> lgMaxSize)
val msbsEqual = ((x >> lgMaxSize) ^ (comparand >> lgMaxSize)) === 0.U
val lsbsLess = (x(lgMaxSize-1, 0) | lsbMask) < comparand(lgMaxSize-1, 0)
msbsLess || (msbsEqual && lsbsLess)
}
}
private def lowerBoundMatch(x: UInt, lgSize: UInt, lgMaxSize: Int) =
!boundMatch(x, UIntToOH1(lgSize, lgMaxSize), lgMaxSize)
private def upperBoundMatch(x: UInt, lgMaxSize: Int) =
boundMatch(x, 0.U, lgMaxSize)
private def rangeMatch(x: UInt, lgSize: UInt, lgMaxSize: Int, prev: PMP) =
prev.lowerBoundMatch(x, lgSize, lgMaxSize) && upperBoundMatch(x, lgMaxSize)
private def pow2Homogeneous(x: UInt, pgLevel: UInt) = {
val maskHomogeneous = pgLevelMap { idxBits => if (idxBits > paddrBits) false.B else mask(idxBits - 1) } (pgLevel)
maskHomogeneous || (pgLevelMap { idxBits => ((x ^ comparand) >> idxBits) =/= 0.U } (pgLevel))
}
private def pgLevelMap[T](f: Int => T) = (0 until pgLevels).map { i =>
f(pgIdxBits + (pgLevels - 1 - i) * pgLevelBits)
}
private def rangeHomogeneous(x: UInt, pgLevel: UInt, prev: PMP) = {
val beginsAfterLower = !(x < prev.comparand)
val beginsAfterUpper = !(x < comparand)
val pgMask = pgLevelMap { idxBits => (((BigInt(1) << paddrBits) - (BigInt(1) << idxBits)) max 0).U } (pgLevel)
val endsBeforeLower = (x & pgMask) < (prev.comparand & pgMask)
val endsBeforeUpper = (x & pgMask) < (comparand & pgMask)
endsBeforeLower || beginsAfterUpper || (beginsAfterLower && endsBeforeUpper)
}
// returns whether this PMP completely contains, or contains none of, a page
def homogeneous(x: UInt, pgLevel: UInt, prev: PMP): Bool =
Mux(napot, pow2Homogeneous(x, pgLevel), !torNotNAPOT || rangeHomogeneous(x, pgLevel, prev))
// returns whether this matching PMP fully contains the access
def aligned(x: UInt, lgSize: UInt, lgMaxSize: Int, prev: PMP): Bool = if (lgMaxSize <= pmpGranularity.log2) true.B else {
val lsbMask = UIntToOH1(lgSize, lgMaxSize)
val straddlesLowerBound = ((x >> lgMaxSize) ^ (prev.comparand >> lgMaxSize)) === 0.U && (prev.comparand(lgMaxSize-1, 0) & ~x(lgMaxSize-1, 0)) =/= 0.U
val straddlesUpperBound = ((x >> lgMaxSize) ^ (comparand >> lgMaxSize)) === 0.U && (comparand(lgMaxSize-1, 0) & (x(lgMaxSize-1, 0) | lsbMask)) =/= 0.U
val rangeAligned = !(straddlesLowerBound || straddlesUpperBound)
val pow2Aligned = (lsbMask & ~mask(lgMaxSize-1, 0)) === 0.U
Mux(napot, pow2Aligned, rangeAligned)
}
// returns whether this PMP matches at least one byte of the access
def hit(x: UInt, lgSize: UInt, lgMaxSize: Int, prev: PMP): Bool =
Mux(napot, pow2Match(x, lgSize, lgMaxSize), torNotNAPOT && rangeMatch(x, lgSize, lgMaxSize, prev))
}
class PMPHomogeneityChecker(pmps: Seq[PMP])(implicit p: Parameters) {
def apply(addr: UInt, pgLevel: UInt): Bool = {
pmps.foldLeft((true.B, 0.U.asTypeOf(new PMP))) { case ((h, prev), pmp) =>
(h && pmp.homogeneous(addr, pgLevel, prev), pmp)
}._1
}
}
class PMPChecker(lgMaxSize: Int)(implicit val p: Parameters) extends Module
with HasCoreParameters {
override def desiredName = s"PMPChecker_s${lgMaxSize}"
val io = IO(new Bundle {
val prv = Input(UInt(PRV.SZ.W))
val pmp = Input(Vec(nPMPs, new PMP))
val addr = Input(UInt(paddrBits.W))
val size = Input(UInt(log2Ceil(lgMaxSize + 1).W))
val r = Output(Bool())
val w = Output(Bool())
val x = Output(Bool())
})
val default = if (io.pmp.isEmpty) true.B else io.prv > PRV.S.U
val pmp0 = WireInit(0.U.asTypeOf(new PMP))
pmp0.cfg.r := default
pmp0.cfg.w := default
pmp0.cfg.x := default
val res = (io.pmp zip (pmp0 +: io.pmp)).reverse.foldLeft(pmp0) { case (prev, (pmp, prevPMP)) =>
val hit = pmp.hit(io.addr, io.size, lgMaxSize, prevPMP)
val ignore = default && !pmp.cfg.l
val aligned = pmp.aligned(io.addr, io.size, lgMaxSize, prevPMP)
for ((name, idx) <- Seq("no", "TOR", if (pmpGranularity <= 4) "NA4" else "", "NAPOT").zipWithIndex; if name.nonEmpty)
property.cover(pmp.cfg.a === idx.U, s"The cfg access is set to ${name} access ", "Cover PMP access mode setting")
property.cover(pmp.cfg.l === 0x1.U, s"The cfg lock is set to high ", "Cover PMP lock mode setting")
// Not including Write and no Read permission as the combination is reserved
for ((name, idx) <- Seq("no", "RO", "", "RW", "X", "RX", "", "RWX").zipWithIndex; if name.nonEmpty)
property.cover((Cat(pmp.cfg.x, pmp.cfg.w, pmp.cfg.r) === idx.U), s"The permission is set to ${name} access ", "Cover PMP access permission setting")
for ((name, idx) <- Seq("", "TOR", if (pmpGranularity <= 4) "NA4" else "", "NAPOT").zipWithIndex; if name.nonEmpty) {
property.cover(!ignore && hit && aligned && pmp.cfg.a === idx.U, s"The access matches ${name} mode ", "Cover PMP access")
property.cover(pmp.cfg.l && hit && aligned && pmp.cfg.a === idx.U, s"The access matches ${name} mode with lock bit high", "Cover PMP access with lock bit")
}
val cur = WireInit(pmp)
cur.cfg.r := aligned && (pmp.cfg.r || ignore)
cur.cfg.w := aligned && (pmp.cfg.w || ignore)
cur.cfg.x := aligned && (pmp.cfg.x || ignore)
Mux(hit, cur, prev)
}
io.r := res.cfg.r
io.w := res.cfg.w
io.x := res.cfg.x
}
| module PMPChecker_s3_9( // @[PMP.scala:143:7]
input clock, // @[PMP.scala:143:7]
input reset, // @[PMP.scala:143:7]
input [31:0] io_addr, // @[PMP.scala:146:14]
input [1:0] io_size // @[PMP.scala:146:14]
);
wire [31:0] io_addr_0 = io_addr; // @[PMP.scala:143:7]
wire [1:0] io_size_0 = io_size; // @[PMP.scala:143:7]
wire _pmp0_WIRE_cfg_l = 1'h0; // @[PMP.scala:157:35]
wire _pmp0_WIRE_cfg_x = 1'h0; // @[PMP.scala:157:35]
wire _pmp0_WIRE_cfg_w = 1'h0; // @[PMP.scala:157:35]
wire _pmp0_WIRE_cfg_r = 1'h0; // @[PMP.scala:157:35]
wire pmp0_cfg_l = 1'h0; // @[PMP.scala:157:22]
wire [1:0] _pmp0_WIRE_cfg_res = 2'h0; // @[PMP.scala:157:35]
wire [1:0] _pmp0_WIRE_cfg_a = 2'h0; // @[PMP.scala:157:35]
wire [1:0] pmp0_cfg_res = 2'h0; // @[PMP.scala:157:22]
wire [1:0] pmp0_cfg_a = 2'h0; // @[PMP.scala:157:22]
wire [29:0] _pmp0_WIRE_addr = 30'h0; // @[PMP.scala:157:35]
wire [29:0] pmp0_addr = 30'h0; // @[PMP.scala:157:22]
wire [31:0] _pmp0_WIRE_mask = 32'h0; // @[PMP.scala:157:35]
wire [31:0] pmp0_mask = 32'h0; // @[PMP.scala:157:22]
wire io_r = 1'h1; // @[PMP.scala:143:7]
wire io_w = 1'h1; // @[PMP.scala:143:7]
wire io_x = 1'h1; // @[PMP.scala:143:7]
wire pmp0_cfg_x = 1'h1; // @[PMP.scala:157:22]
wire pmp0_cfg_w = 1'h1; // @[PMP.scala:157:22]
wire pmp0_cfg_r = 1'h1; // @[PMP.scala:157:22]
wire [1:0] io_prv = 2'h1; // @[PMP.scala:143:7, :146:14]
endmodule |
Generate the Verilog code corresponding to the following Chisel files.
File Serdes.scala:
package testchipip.serdes
import chisel3._
import chisel3.util._
import freechips.rocketchip.diplomacy._
import org.chipsalliance.cde.config._
class GenericSerializer[T <: Data](t: T, flitWidth: Int) extends Module {
override def desiredName = s"GenericSerializer_${t.typeName}w${t.getWidth}_f${flitWidth}"
val io = IO(new Bundle {
val in = Flipped(Decoupled(t))
val out = Decoupled(new Flit(flitWidth))
val busy = Output(Bool())
})
val dataBits = t.getWidth.max(flitWidth)
val dataBeats = (dataBits - 1) / flitWidth + 1
require(dataBeats >= 1)
val data = Reg(Vec(dataBeats, UInt(flitWidth.W)))
val beat = RegInit(0.U(log2Ceil(dataBeats).W))
io.in.ready := io.out.ready && beat === 0.U
io.out.valid := io.in.valid || beat =/= 0.U
io.out.bits.flit := Mux(beat === 0.U, io.in.bits.asUInt, data(beat))
when (io.out.fire) {
beat := Mux(beat === (dataBeats-1).U, 0.U, beat + 1.U)
when (beat === 0.U) {
data := io.in.bits.asTypeOf(Vec(dataBeats, UInt(flitWidth.W)))
data(0) := DontCare // unused, DCE this
}
}
io.busy := io.out.valid
}
class GenericDeserializer[T <: Data](t: T, flitWidth: Int) extends Module {
override def desiredName = s"GenericDeserializer_${t.typeName}w${t.getWidth}_f${flitWidth}"
val io = IO(new Bundle {
val in = Flipped(Decoupled(new Flit(flitWidth)))
val out = Decoupled(t)
val busy = Output(Bool())
})
val dataBits = t.getWidth.max(flitWidth)
val dataBeats = (dataBits - 1) / flitWidth + 1
require(dataBeats >= 1)
val data = Reg(Vec(dataBeats-1, UInt(flitWidth.W)))
val beat = RegInit(0.U(log2Ceil(dataBeats).W))
io.in.ready := io.out.ready || beat =/= (dataBeats-1).U
io.out.valid := io.in.valid && beat === (dataBeats-1).U
io.out.bits := (if (dataBeats == 1) {
io.in.bits.flit.asTypeOf(t)
} else {
Cat(io.in.bits.flit, data.asUInt).asTypeOf(t)
})
when (io.in.fire) {
beat := Mux(beat === (dataBeats-1).U, 0.U, beat + 1.U)
if (dataBeats > 1) {
when (beat =/= (dataBeats-1).U) {
data(beat(log2Ceil(dataBeats-1)-1,0)) := io.in.bits.flit
}
}
}
io.busy := beat =/= 0.U
}
class FlitToPhit(flitWidth: Int, phitWidth: Int) extends Module {
override def desiredName = s"FlitToPhit_f${flitWidth}_p${phitWidth}"
val io = IO(new Bundle {
val in = Flipped(Decoupled(new Flit(flitWidth)))
val out = Decoupled(new Phit(phitWidth))
})
require(flitWidth >= phitWidth)
val dataBeats = (flitWidth - 1) / phitWidth + 1
val data = Reg(Vec(dataBeats-1, UInt(phitWidth.W)))
val beat = RegInit(0.U(log2Ceil(dataBeats).W))
io.in.ready := io.out.ready && beat === 0.U
io.out.valid := io.in.valid || beat =/= 0.U
io.out.bits.phit := (if (dataBeats == 1) io.in.bits.flit else Mux(beat === 0.U, io.in.bits.flit, data(beat-1.U)))
when (io.out.fire) {
beat := Mux(beat === (dataBeats-1).U, 0.U, beat + 1.U)
when (beat === 0.U) {
data := io.in.bits.asTypeOf(Vec(dataBeats, UInt(phitWidth.W))).tail
}
}
}
object FlitToPhit {
def apply(flit: DecoupledIO[Flit], phitWidth: Int): DecoupledIO[Phit] = {
val flit2phit = Module(new FlitToPhit(flit.bits.flitWidth, phitWidth))
flit2phit.io.in <> flit
flit2phit.io.out
}
}
class PhitToFlit(flitWidth: Int, phitWidth: Int) extends Module {
override def desiredName = s"PhitToFlit_p${phitWidth}_f${flitWidth}"
val io = IO(new Bundle {
val in = Flipped(Decoupled(new Phit(phitWidth)))
val out = Decoupled(new Flit(flitWidth))
})
require(flitWidth >= phitWidth)
val dataBeats = (flitWidth - 1) / phitWidth + 1
val data = Reg(Vec(dataBeats-1, UInt(phitWidth.W)))
val beat = RegInit(0.U(log2Ceil(dataBeats).W))
io.in.ready := io.out.ready || beat =/= (dataBeats-1).U
io.out.valid := io.in.valid && beat === (dataBeats-1).U
io.out.bits.flit := (if (dataBeats == 1) io.in.bits.phit else Cat(io.in.bits.phit, data.asUInt))
when (io.in.fire) {
beat := Mux(beat === (dataBeats-1).U, 0.U, beat + 1.U)
if (dataBeats > 1) {
when (beat =/= (dataBeats-1).U) {
data(beat) := io.in.bits.phit
}
}
}
}
object PhitToFlit {
def apply(phit: DecoupledIO[Phit], flitWidth: Int): DecoupledIO[Flit] = {
val phit2flit = Module(new PhitToFlit(flitWidth, phit.bits.phitWidth))
phit2flit.io.in <> phit
phit2flit.io.out
}
def apply(phit: ValidIO[Phit], flitWidth: Int): ValidIO[Flit] = {
val phit2flit = Module(new PhitToFlit(flitWidth, phit.bits.phitWidth))
phit2flit.io.in.valid := phit.valid
phit2flit.io.in.bits := phit.bits
when (phit.valid) { assert(phit2flit.io.in.ready) }
val out = Wire(Valid(new Flit(flitWidth)))
out.valid := phit2flit.io.out.valid
out.bits := phit2flit.io.out.bits
phit2flit.io.out.ready := true.B
out
}
}
class PhitArbiter(phitWidth: Int, flitWidth: Int, channels: Int) extends Module {
override def desiredName = s"PhitArbiter_p${phitWidth}_f${flitWidth}_n${channels}"
val io = IO(new Bundle {
val in = Flipped(Vec(channels, Decoupled(new Phit(phitWidth))))
val out = Decoupled(new Phit(phitWidth))
})
if (channels == 1) {
io.out <> io.in(0)
} else {
val headerWidth = log2Ceil(channels)
val headerBeats = (headerWidth - 1) / phitWidth + 1
val flitBeats = (flitWidth - 1) / phitWidth + 1
val beats = headerBeats + flitBeats
val beat = RegInit(0.U(log2Ceil(beats).W))
val chosen_reg = Reg(UInt(headerWidth.W))
val chosen_prio = PriorityEncoder(io.in.map(_.valid))
val chosen = Mux(beat === 0.U, chosen_prio, chosen_reg)
val header_idx = if (headerBeats == 1) 0.U else beat(log2Ceil(headerBeats)-1,0)
io.out.valid := VecInit(io.in.map(_.valid))(chosen)
io.out.bits.phit := Mux(beat < headerBeats.U,
chosen.asTypeOf(Vec(headerBeats, UInt(phitWidth.W)))(header_idx),
VecInit(io.in.map(_.bits.phit))(chosen))
for (i <- 0 until channels) {
io.in(i).ready := io.out.ready && beat >= headerBeats.U && chosen_reg === i.U
}
when (io.out.fire) {
beat := Mux(beat === (beats-1).U, 0.U, beat + 1.U)
when (beat === 0.U) { chosen_reg := chosen_prio }
}
}
}
class PhitDemux(phitWidth: Int, flitWidth: Int, channels: Int) extends Module {
override def desiredName = s"PhitDemux_p${phitWidth}_f${flitWidth}_n${channels}"
val io = IO(new Bundle {
val in = Flipped(Decoupled(new Phit(phitWidth)))
val out = Vec(channels, Decoupled(new Phit(phitWidth)))
})
if (channels == 1) {
io.out(0) <> io.in
} else {
val headerWidth = log2Ceil(channels)
val headerBeats = (headerWidth - 1) / phitWidth + 1
val flitBeats = (flitWidth - 1) / phitWidth + 1
val beats = headerBeats + flitBeats
val beat = RegInit(0.U(log2Ceil(beats).W))
val channel_vec = Reg(Vec(headerBeats, UInt(phitWidth.W)))
val channel = channel_vec.asUInt(log2Ceil(channels)-1,0)
val header_idx = if (headerBeats == 1) 0.U else beat(log2Ceil(headerBeats)-1,0)
io.in.ready := beat < headerBeats.U || VecInit(io.out.map(_.ready))(channel)
for (c <- 0 until channels) {
io.out(c).valid := io.in.valid && beat >= headerBeats.U && channel === c.U
io.out(c).bits.phit := io.in.bits.phit
}
when (io.in.fire) {
beat := Mux(beat === (beats-1).U, 0.U, beat + 1.U)
when (beat < headerBeats.U) {
channel_vec(header_idx) := io.in.bits.phit
}
}
}
}
class DecoupledFlitToCreditedFlit(flitWidth: Int, bufferSz: Int) extends Module {
override def desiredName = s"DecoupledFlitToCreditedFlit_f${flitWidth}_b${bufferSz}"
val io = IO(new Bundle {
val in = Flipped(Decoupled(new Flit(flitWidth)))
val out = Decoupled(new Flit(flitWidth))
val credit = Flipped(Decoupled(new Flit(flitWidth)))
})
val creditWidth = log2Ceil(bufferSz)
require(creditWidth <= flitWidth)
val credits = RegInit(0.U((creditWidth+1).W))
val credit_incr = io.out.fire
val credit_decr = io.credit.fire
when (credit_incr || credit_decr) {
credits := credits + credit_incr - Mux(io.credit.valid, io.credit.bits.flit +& 1.U, 0.U)
}
io.out.valid := io.in.valid && credits < bufferSz.U
io.out.bits.flit := io.in.bits.flit
io.in.ready := io.out.ready && credits < bufferSz.U
io.credit.ready := true.B
}
class CreditedFlitToDecoupledFlit(flitWidth: Int, bufferSz: Int) extends Module {
override def desiredName = s"CreditedFlitToDecoupledFlit_f${flitWidth}_b${bufferSz}"
val io = IO(new Bundle {
val in = Flipped(Decoupled(new Flit(flitWidth)))
val out = Decoupled(new Flit(flitWidth))
val credit = Decoupled(new Flit(flitWidth))
})
val creditWidth = log2Ceil(bufferSz)
require(creditWidth <= flitWidth)
val buffer = Module(new Queue(new Flit(flitWidth), bufferSz))
val credits = RegInit(0.U((creditWidth+1).W))
val credit_incr = buffer.io.deq.fire
val credit_decr = io.credit.fire
when (credit_incr || credit_decr) {
credits := credit_incr + Mux(credit_decr, 0.U, credits)
}
buffer.io.enq.valid := io.in.valid
buffer.io.enq.bits := io.in.bits
io.in.ready := true.B
when (io.in.valid) { assert(buffer.io.enq.ready) }
io.out <> buffer.io.deq
io.credit.valid := credits =/= 0.U
io.credit.bits.flit := credits - 1.U
}
| module FlitToPhit_f32_p32( // @[Serdes.scala:71:7]
output io_in_ready, // @[Serdes.scala:73:14]
input io_in_valid, // @[Serdes.scala:73:14]
input [31:0] io_in_bits_flit, // @[Serdes.scala:73:14]
input io_out_ready, // @[Serdes.scala:73:14]
output io_out_valid, // @[Serdes.scala:73:14]
output [31:0] io_out_bits_phit // @[Serdes.scala:73:14]
);
assign io_in_ready = io_out_ready; // @[Serdes.scala:71:7]
assign io_out_valid = io_in_valid; // @[Serdes.scala:71:7]
assign io_out_bits_phit = io_in_bits_flit; // @[Serdes.scala:71:7]
endmodule |
Generate the Verilog code corresponding to the following Chisel files.
File IngressUnit.scala:
package constellation.router
import chisel3._
import chisel3.util._
import org.chipsalliance.cde.config.{Field, Parameters}
import freechips.rocketchip.util._
import constellation.channel._
class IngressUnit(
ingressNodeId: Int,
cParam: IngressChannelParams,
outParams: Seq[ChannelParams],
egressParams: Seq[EgressChannelParams],
combineRCVA: Boolean,
combineSAST: Boolean,
)
(implicit p: Parameters) extends AbstractInputUnit(cParam, outParams, egressParams)(p) {
class IngressUnitIO extends AbstractInputUnitIO(cParam, outParams, egressParams) {
val in = Flipped(Decoupled(new IngressFlit(cParam.payloadBits)))
}
val io = IO(new IngressUnitIO)
val route_buffer = Module(new Queue(new Flit(cParam.payloadBits), 2))
val route_q = Module(new Queue(new RouteComputerResp(outParams, egressParams), 2,
flow=combineRCVA))
assert(!(io.in.valid && !cParam.possibleFlows.toSeq.map(_.egressId.U === io.in.bits.egress_id).orR))
route_buffer.io.enq.bits.head := io.in.bits.head
route_buffer.io.enq.bits.tail := io.in.bits.tail
val flows = cParam.possibleFlows.toSeq
if (flows.size == 0) {
route_buffer.io.enq.bits.flow := DontCare
} else {
route_buffer.io.enq.bits.flow.ingress_node := cParam.destId.U
route_buffer.io.enq.bits.flow.ingress_node_id := ingressNodeId.U
route_buffer.io.enq.bits.flow.vnet_id := cParam.vNetId.U
route_buffer.io.enq.bits.flow.egress_node := Mux1H(
flows.map(_.egressId.U === io.in.bits.egress_id),
flows.map(_.egressNode.U)
)
route_buffer.io.enq.bits.flow.egress_node_id := Mux1H(
flows.map(_.egressId.U === io.in.bits.egress_id),
flows.map(_.egressNodeId.U)
)
}
route_buffer.io.enq.bits.payload := io.in.bits.payload
route_buffer.io.enq.bits.virt_channel_id := DontCare
io.router_req.bits.src_virt_id := 0.U
io.router_req.bits.flow := route_buffer.io.enq.bits.flow
val at_dest = route_buffer.io.enq.bits.flow.egress_node === nodeId.U
route_buffer.io.enq.valid := io.in.valid && (
io.router_req.ready || !io.in.bits.head || at_dest)
io.router_req.valid := io.in.valid && route_buffer.io.enq.ready && io.in.bits.head && !at_dest
io.in.ready := route_buffer.io.enq.ready && (
io.router_req.ready || !io.in.bits.head || at_dest)
route_q.io.enq.valid := io.router_req.fire
route_q.io.enq.bits := io.router_resp
when (io.in.fire && io.in.bits.head && at_dest) {
route_q.io.enq.valid := true.B
route_q.io.enq.bits.vc_sel.foreach(_.foreach(_ := false.B))
for (o <- 0 until nEgress) {
when (egressParams(o).egressId.U === io.in.bits.egress_id) {
route_q.io.enq.bits.vc_sel(o+nOutputs)(0) := true.B
}
}
}
assert(!(route_q.io.enq.valid && !route_q.io.enq.ready))
val vcalloc_buffer = Module(new Queue(new Flit(cParam.payloadBits), 2))
val vcalloc_q = Module(new Queue(new VCAllocResp(outParams, egressParams),
1, pipe=true))
vcalloc_buffer.io.enq.bits := route_buffer.io.deq.bits
io.vcalloc_req.bits.vc_sel := route_q.io.deq.bits.vc_sel
io.vcalloc_req.bits.flow := route_buffer.io.deq.bits.flow
io.vcalloc_req.bits.in_vc := 0.U
val head = route_buffer.io.deq.bits.head
val tail = route_buffer.io.deq.bits.tail
vcalloc_buffer.io.enq.valid := (route_buffer.io.deq.valid &&
(route_q.io.deq.valid || !head) &&
(io.vcalloc_req.ready || !head)
)
io.vcalloc_req.valid := (route_buffer.io.deq.valid && route_q.io.deq.valid &&
head && vcalloc_buffer.io.enq.ready && vcalloc_q.io.enq.ready)
route_buffer.io.deq.ready := (vcalloc_buffer.io.enq.ready &&
(route_q.io.deq.valid || !head) &&
(io.vcalloc_req.ready || !head) &&
(vcalloc_q.io.enq.ready || !head))
route_q.io.deq.ready := (route_buffer.io.deq.fire && tail)
vcalloc_q.io.enq.valid := io.vcalloc_req.fire
vcalloc_q.io.enq.bits := io.vcalloc_resp
assert(!(vcalloc_q.io.enq.valid && !vcalloc_q.io.enq.ready))
io.salloc_req(0).bits.vc_sel := vcalloc_q.io.deq.bits.vc_sel
io.salloc_req(0).bits.tail := vcalloc_buffer.io.deq.bits.tail
val c = (vcalloc_q.io.deq.bits.vc_sel.asUInt & io.out_credit_available.asUInt) =/= 0.U
val vcalloc_tail = vcalloc_buffer.io.deq.bits.tail
io.salloc_req(0).valid := vcalloc_buffer.io.deq.valid && vcalloc_q.io.deq.valid && c && !io.block
vcalloc_buffer.io.deq.ready := io.salloc_req(0).ready && vcalloc_q.io.deq.valid && c && !io.block
vcalloc_q.io.deq.ready := vcalloc_tail && vcalloc_buffer.io.deq.fire
val out_bundle = if (combineSAST) {
Wire(Valid(new SwitchBundle(outParams, egressParams)))
} else {
Reg(Valid(new SwitchBundle(outParams, egressParams)))
}
io.out(0) := out_bundle
out_bundle.valid := vcalloc_buffer.io.deq.fire
out_bundle.bits.flit := vcalloc_buffer.io.deq.bits
out_bundle.bits.flit.virt_channel_id := 0.U
val out_channel_oh = vcalloc_q.io.deq.bits.vc_sel.map(_.reduce(_||_)).toSeq
out_bundle.bits.out_virt_channel := Mux1H(out_channel_oh,
vcalloc_q.io.deq.bits.vc_sel.map(v => OHToUInt(v)).toSeq)
io.debug.va_stall := io.vcalloc_req.valid && !io.vcalloc_req.ready
io.debug.sa_stall := io.salloc_req(0).valid && !io.salloc_req(0).ready
// TODO: We should not generate input/ingress/output/egress units for untraversable channels
if (!cParam.traversable) {
io.in.ready := false.B
io.router_req.valid := false.B
io.router_req.bits := DontCare
io.vcalloc_req.valid := false.B
io.vcalloc_req.bits := DontCare
io.salloc_req.foreach(_.valid := false.B)
io.salloc_req.foreach(_.bits := DontCare)
io.out.foreach(_.valid := false.B)
io.out.foreach(_.bits := DontCare)
}
}
| module IngressUnit_44( // @[IngressUnit.scala:11:7]
input clock, // @[IngressUnit.scala:11:7]
input reset, // @[IngressUnit.scala:11:7]
input io_vcalloc_req_ready, // @[IngressUnit.scala:24:14]
output io_vcalloc_req_valid, // @[IngressUnit.scala:24:14]
output io_vcalloc_req_bits_vc_sel_3_0, // @[IngressUnit.scala:24:14]
output io_vcalloc_req_bits_vc_sel_2_0, // @[IngressUnit.scala:24:14]
output io_vcalloc_req_bits_vc_sel_2_1, // @[IngressUnit.scala:24:14]
output io_vcalloc_req_bits_vc_sel_1_0, // @[IngressUnit.scala:24:14]
output io_vcalloc_req_bits_vc_sel_1_1, // @[IngressUnit.scala:24:14]
output io_vcalloc_req_bits_vc_sel_0_0, // @[IngressUnit.scala:24:14]
output io_vcalloc_req_bits_vc_sel_0_1, // @[IngressUnit.scala:24:14]
input io_vcalloc_resp_vc_sel_3_0, // @[IngressUnit.scala:24:14]
input io_vcalloc_resp_vc_sel_2_0, // @[IngressUnit.scala:24:14]
input io_vcalloc_resp_vc_sel_2_1, // @[IngressUnit.scala:24:14]
input io_vcalloc_resp_vc_sel_1_0, // @[IngressUnit.scala:24:14]
input io_vcalloc_resp_vc_sel_1_1, // @[IngressUnit.scala:24:14]
input io_vcalloc_resp_vc_sel_0_0, // @[IngressUnit.scala:24:14]
input io_vcalloc_resp_vc_sel_0_1, // @[IngressUnit.scala:24:14]
input io_out_credit_available_3_0, // @[IngressUnit.scala:24:14]
input io_out_credit_available_2_1, // @[IngressUnit.scala:24:14]
input io_out_credit_available_1_0, // @[IngressUnit.scala:24:14]
input io_out_credit_available_0_1, // @[IngressUnit.scala:24:14]
input io_salloc_req_0_ready, // @[IngressUnit.scala:24:14]
output io_salloc_req_0_valid, // @[IngressUnit.scala:24:14]
output io_salloc_req_0_bits_vc_sel_3_0, // @[IngressUnit.scala:24:14]
output io_salloc_req_0_bits_vc_sel_2_0, // @[IngressUnit.scala:24:14]
output io_salloc_req_0_bits_vc_sel_2_1, // @[IngressUnit.scala:24:14]
output io_salloc_req_0_bits_vc_sel_1_0, // @[IngressUnit.scala:24:14]
output io_salloc_req_0_bits_vc_sel_1_1, // @[IngressUnit.scala:24:14]
output io_salloc_req_0_bits_vc_sel_0_0, // @[IngressUnit.scala:24:14]
output io_salloc_req_0_bits_vc_sel_0_1, // @[IngressUnit.scala:24:14]
output io_salloc_req_0_bits_tail, // @[IngressUnit.scala:24:14]
output io_out_0_valid, // @[IngressUnit.scala:24:14]
output io_out_0_bits_flit_head, // @[IngressUnit.scala:24:14]
output io_out_0_bits_flit_tail, // @[IngressUnit.scala:24:14]
output [36:0] io_out_0_bits_flit_payload, // @[IngressUnit.scala:24:14]
output io_out_0_bits_flit_flow_vnet_id, // @[IngressUnit.scala:24:14]
output [3:0] io_out_0_bits_flit_flow_ingress_node, // @[IngressUnit.scala:24:14]
output [1:0] io_out_0_bits_flit_flow_ingress_node_id, // @[IngressUnit.scala:24:14]
output [3:0] io_out_0_bits_flit_flow_egress_node, // @[IngressUnit.scala:24:14]
output [1:0] io_out_0_bits_flit_flow_egress_node_id, // @[IngressUnit.scala:24:14]
output io_out_0_bits_out_virt_channel, // @[IngressUnit.scala:24:14]
output io_in_ready, // @[IngressUnit.scala:24:14]
input io_in_valid, // @[IngressUnit.scala:24:14]
input io_in_bits_head, // @[IngressUnit.scala:24:14]
input io_in_bits_tail, // @[IngressUnit.scala:24:14]
input [36:0] io_in_bits_payload, // @[IngressUnit.scala:24:14]
input [4:0] io_in_bits_egress_id // @[IngressUnit.scala:24:14]
);
wire _vcalloc_q_io_enq_ready; // @[IngressUnit.scala:76:25]
wire _vcalloc_q_io_deq_valid; // @[IngressUnit.scala:76:25]
wire _vcalloc_q_io_deq_bits_vc_sel_3_0; // @[IngressUnit.scala:76:25]
wire _vcalloc_q_io_deq_bits_vc_sel_2_0; // @[IngressUnit.scala:76:25]
wire _vcalloc_q_io_deq_bits_vc_sel_2_1; // @[IngressUnit.scala:76:25]
wire _vcalloc_q_io_deq_bits_vc_sel_1_0; // @[IngressUnit.scala:76:25]
wire _vcalloc_q_io_deq_bits_vc_sel_1_1; // @[IngressUnit.scala:76:25]
wire _vcalloc_q_io_deq_bits_vc_sel_0_0; // @[IngressUnit.scala:76:25]
wire _vcalloc_q_io_deq_bits_vc_sel_0_1; // @[IngressUnit.scala:76:25]
wire _vcalloc_buffer_io_enq_ready; // @[IngressUnit.scala:75:30]
wire _vcalloc_buffer_io_deq_valid; // @[IngressUnit.scala:75:30]
wire _vcalloc_buffer_io_deq_bits_tail; // @[IngressUnit.scala:75:30]
wire _route_q_io_enq_ready; // @[IngressUnit.scala:27:23]
wire _route_q_io_deq_valid; // @[IngressUnit.scala:27:23]
wire _route_buffer_io_enq_ready; // @[IngressUnit.scala:26:28]
wire _route_buffer_io_deq_valid; // @[IngressUnit.scala:26:28]
wire _route_buffer_io_deq_bits_head; // @[IngressUnit.scala:26:28]
wire _route_buffer_io_deq_bits_tail; // @[IngressUnit.scala:26:28]
wire [36:0] _route_buffer_io_deq_bits_payload; // @[IngressUnit.scala:26:28]
wire _route_buffer_io_deq_bits_flow_vnet_id; // @[IngressUnit.scala:26:28]
wire [3:0] _route_buffer_io_deq_bits_flow_ingress_node; // @[IngressUnit.scala:26:28]
wire [1:0] _route_buffer_io_deq_bits_flow_ingress_node_id; // @[IngressUnit.scala:26:28]
wire [3:0] _route_buffer_io_deq_bits_flow_egress_node; // @[IngressUnit.scala:26:28]
wire [1:0] _route_buffer_io_deq_bits_flow_egress_node_id; // @[IngressUnit.scala:26:28]
wire _route_buffer_io_deq_bits_virt_channel_id; // @[IngressUnit.scala:26:28]
wire _route_buffer_io_enq_bits_flow_egress_node_id_T = io_in_bits_egress_id == 5'hE; // @[IngressUnit.scala:30:72]
wire _route_buffer_io_enq_bits_flow_egress_node_id_T_1 = io_in_bits_egress_id == 5'hF; // @[IngressUnit.scala:30:72]
wire _route_buffer_io_enq_bits_flow_egress_node_id_T_2 = io_in_bits_egress_id == 5'h10; // @[IngressUnit.scala:30:72]
wire _route_buffer_io_enq_bits_flow_egress_node_id_T_3 = io_in_bits_egress_id == 5'h11; // @[IngressUnit.scala:30:72]
wire [3:0] _route_buffer_io_enq_bits_flow_egress_node_T_10 = {1'h0, (_route_buffer_io_enq_bits_flow_egress_node_id_T ? 3'h5 : 3'h0) | (_route_buffer_io_enq_bits_flow_egress_node_id_T_1 ? 3'h6 : 3'h0)} | (_route_buffer_io_enq_bits_flow_egress_node_id_T_2 ? 4'h9 : 4'h0) | (_route_buffer_io_enq_bits_flow_egress_node_id_T_3 ? 4'hA : 4'h0); // @[Mux.scala:30:73]
wire _GEN = _route_buffer_io_enq_ready & io_in_valid & io_in_bits_head & _route_buffer_io_enq_bits_flow_egress_node_T_10 == 4'hB; // @[Mux.scala:30:73]
wire route_q_io_enq_valid = _GEN | io_in_valid & _route_buffer_io_enq_ready & io_in_bits_head & _route_buffer_io_enq_bits_flow_egress_node_T_10 != 4'hB; // @[Mux.scala:30:73]
wire io_vcalloc_req_valid_0 = _route_buffer_io_deq_valid & _route_q_io_deq_valid & _route_buffer_io_deq_bits_head & _vcalloc_buffer_io_enq_ready & _vcalloc_q_io_enq_ready; // @[IngressUnit.scala:26:28, :27:23, :75:30, :76:25, :91:{54,78}, :92:{10,41}]
wire route_buffer_io_deq_ready = _vcalloc_buffer_io_enq_ready & (_route_q_io_deq_valid | ~_route_buffer_io_deq_bits_head) & (io_vcalloc_req_ready | ~_route_buffer_io_deq_bits_head) & (_vcalloc_q_io_enq_ready | ~_route_buffer_io_deq_bits_head); // @[IngressUnit.scala:26:28, :27:23, :75:30, :76:25, :88:30, :93:61, :94:{27,37}, :95:{27,37}, :96:29]
wire vcalloc_q_io_enq_valid = io_vcalloc_req_ready & io_vcalloc_req_valid_0; // @[Decoupled.scala:51:35] |
Generate the Verilog code corresponding to the following Chisel files.
File ShiftReg.scala:
// See LICENSE.SiFive for license details.
package freechips.rocketchip.util
import chisel3._
// Similar to the Chisel ShiftRegister but allows the user to suggest a
// name to the registers that get instantiated, and
// to provide a reset value.
object ShiftRegInit {
def apply[T <: Data](in: T, n: Int, init: T, name: Option[String] = None): T =
(0 until n).foldRight(in) {
case (i, next) => {
val r = RegNext(next, init)
name.foreach { na => r.suggestName(s"${na}_${i}") }
r
}
}
}
/** These wrap behavioral
* shift registers into specific modules to allow for
* backend flows to replace or constrain
* them properly when used for CDC synchronization,
* rather than buffering.
*
* The different types vary in their reset behavior:
* AsyncResetShiftReg -- Asynchronously reset register array
* A W(width) x D(depth) sized array is constructed from D instantiations of a
* W-wide register vector. Functionally identical to AsyncResetSyncrhonizerShiftReg,
* but only used for timing applications
*/
abstract class AbstractPipelineReg(w: Int = 1) extends Module {
val io = IO(new Bundle {
val d = Input(UInt(w.W))
val q = Output(UInt(w.W))
}
)
}
object AbstractPipelineReg {
def apply [T <: Data](gen: => AbstractPipelineReg, in: T, name: Option[String] = None): T = {
val chain = Module(gen)
name.foreach{ chain.suggestName(_) }
chain.io.d := in.asUInt
chain.io.q.asTypeOf(in)
}
}
class AsyncResetShiftReg(w: Int = 1, depth: Int = 1, init: Int = 0, name: String = "pipe") extends AbstractPipelineReg(w) {
require(depth > 0, "Depth must be greater than 0.")
override def desiredName = s"AsyncResetShiftReg_w${w}_d${depth}_i${init}"
val chain = List.tabulate(depth) { i =>
Module (new AsyncResetRegVec(w, init)).suggestName(s"${name}_${i}")
}
chain.last.io.d := io.d
chain.last.io.en := true.B
(chain.init zip chain.tail).foreach { case (sink, source) =>
sink.io.d := source.io.q
sink.io.en := true.B
}
io.q := chain.head.io.q
}
object AsyncResetShiftReg {
def apply [T <: Data](in: T, depth: Int, init: Int = 0, name: Option[String] = None): T =
AbstractPipelineReg(new AsyncResetShiftReg(in.getWidth, depth, init), in, name)
def apply [T <: Data](in: T, depth: Int, name: Option[String]): T =
apply(in, depth, 0, name)
def apply [T <: Data](in: T, depth: Int, init: T, name: Option[String]): T =
apply(in, depth, init.litValue.toInt, name)
def apply [T <: Data](in: T, depth: Int, init: T): T =
apply (in, depth, init.litValue.toInt, None)
}
File SynchronizerReg.scala:
// See LICENSE.SiFive for license details.
package freechips.rocketchip.util
import chisel3._
import chisel3.util.{RegEnable, Cat}
/** These wrap behavioral
* shift and next registers into specific modules to allow for
* backend flows to replace or constrain
* them properly when used for CDC synchronization,
* rather than buffering.
*
*
* These are built up of *ResetSynchronizerPrimitiveShiftReg,
* intended to be replaced by the integrator's metastable flops chains or replaced
* at this level if they have a multi-bit wide synchronizer primitive.
* The different types vary in their reset behavior:
* NonSyncResetSynchronizerShiftReg -- Register array which does not have a reset pin
* AsyncResetSynchronizerShiftReg -- Asynchronously reset register array, constructed from W instantiations of D deep
* 1-bit-wide shift registers.
* SyncResetSynchronizerShiftReg -- Synchronously reset register array, constructed similarly to AsyncResetSynchronizerShiftReg
*
* [Inferred]ResetSynchronizerShiftReg -- TBD reset type by chisel3 reset inference.
*
* ClockCrossingReg -- Not made up of SynchronizerPrimitiveShiftReg. This is for single-deep flops which cross
* Clock Domains.
*/
object SynchronizerResetType extends Enumeration {
val NonSync, Inferred, Sync, Async = Value
}
// Note: this should not be used directly.
// Use the companion object to generate this with the correct reset type mixin.
private class SynchronizerPrimitiveShiftReg(
sync: Int,
init: Boolean,
resetType: SynchronizerResetType.Value)
extends AbstractPipelineReg(1) {
val initInt = if (init) 1 else 0
val initPostfix = resetType match {
case SynchronizerResetType.NonSync => ""
case _ => s"_i${initInt}"
}
override def desiredName = s"${resetType.toString}ResetSynchronizerPrimitiveShiftReg_d${sync}${initPostfix}"
val chain = List.tabulate(sync) { i =>
val reg = if (resetType == SynchronizerResetType.NonSync) Reg(Bool()) else RegInit(init.B)
reg.suggestName(s"sync_$i")
}
chain.last := io.d.asBool
(chain.init zip chain.tail).foreach { case (sink, source) =>
sink := source
}
io.q := chain.head.asUInt
}
private object SynchronizerPrimitiveShiftReg {
def apply (in: Bool, sync: Int, init: Boolean, resetType: SynchronizerResetType.Value): Bool = {
val gen: () => SynchronizerPrimitiveShiftReg = resetType match {
case SynchronizerResetType.NonSync =>
() => new SynchronizerPrimitiveShiftReg(sync, init, resetType)
case SynchronizerResetType.Async =>
() => new SynchronizerPrimitiveShiftReg(sync, init, resetType) with RequireAsyncReset
case SynchronizerResetType.Sync =>
() => new SynchronizerPrimitiveShiftReg(sync, init, resetType) with RequireSyncReset
case SynchronizerResetType.Inferred =>
() => new SynchronizerPrimitiveShiftReg(sync, init, resetType)
}
AbstractPipelineReg(gen(), in)
}
}
// Note: This module may end up with a non-AsyncReset type reset.
// But the Primitives within will always have AsyncReset type.
class AsyncResetSynchronizerShiftReg(w: Int = 1, sync: Int, init: Int)
extends AbstractPipelineReg(w) {
require(sync > 1, s"Sync must be greater than 1, not ${sync}.")
override def desiredName = s"AsyncResetSynchronizerShiftReg_w${w}_d${sync}_i${init}"
val output = Seq.tabulate(w) { i =>
val initBit = ((init >> i) & 1) > 0
withReset(reset.asAsyncReset){
SynchronizerPrimitiveShiftReg(io.d(i), sync, initBit, SynchronizerResetType.Async)
}
}
io.q := Cat(output.reverse)
}
object AsyncResetSynchronizerShiftReg {
def apply [T <: Data](in: T, sync: Int, init: Int, name: Option[String] = None): T =
AbstractPipelineReg(new AsyncResetSynchronizerShiftReg(in.getWidth, sync, init), in, name)
def apply [T <: Data](in: T, sync: Int, name: Option[String]): T =
apply (in, sync, 0, name)
def apply [T <: Data](in: T, sync: Int): T =
apply (in, sync, 0, None)
def apply [T <: Data](in: T, sync: Int, init: T, name: Option[String]): T =
apply(in, sync, init.litValue.toInt, name)
def apply [T <: Data](in: T, sync: Int, init: T): T =
apply (in, sync, init.litValue.toInt, None)
}
// Note: This module may end up with a non-Bool type reset.
// But the Primitives within will always have Bool reset type.
@deprecated("SyncResetSynchronizerShiftReg is unecessary with Chisel3 inferred resets. Use ResetSynchronizerShiftReg which will use the inferred reset type.", "rocket-chip 1.2")
class SyncResetSynchronizerShiftReg(w: Int = 1, sync: Int, init: Int) extends AbstractPipelineReg(w) {
require(sync > 1, s"Sync must be greater than 1, not ${sync}.")
override def desiredName = s"SyncResetSynchronizerShiftReg_w${w}_d${sync}_i${init}"
val output = Seq.tabulate(w) { i =>
val initBit = ((init >> i) & 1) > 0
withReset(reset.asBool){
SynchronizerPrimitiveShiftReg(io.d(i), sync, initBit, SynchronizerResetType.Sync)
}
}
io.q := Cat(output.reverse)
}
object SyncResetSynchronizerShiftReg {
def apply [T <: Data](in: T, sync: Int, init: Int, name: Option[String] = None): T =
if (sync == 0) in else AbstractPipelineReg(new SyncResetSynchronizerShiftReg(in.getWidth, sync, init), in, name)
def apply [T <: Data](in: T, sync: Int, name: Option[String]): T =
apply (in, sync, 0, name)
def apply [T <: Data](in: T, sync: Int): T =
apply (in, sync, 0, None)
def apply [T <: Data](in: T, sync: Int, init: T, name: Option[String]): T =
apply(in, sync, init.litValue.toInt, name)
def apply [T <: Data](in: T, sync: Int, init: T): T =
apply (in, sync, init.litValue.toInt, None)
}
class ResetSynchronizerShiftReg(w: Int = 1, sync: Int, init: Int) extends AbstractPipelineReg(w) {
require(sync > 1, s"Sync must be greater than 1, not ${sync}.")
override def desiredName = s"ResetSynchronizerShiftReg_w${w}_d${sync}_i${init}"
val output = Seq.tabulate(w) { i =>
val initBit = ((init >> i) & 1) > 0
SynchronizerPrimitiveShiftReg(io.d(i), sync, initBit, SynchronizerResetType.Inferred)
}
io.q := Cat(output.reverse)
}
object ResetSynchronizerShiftReg {
def apply [T <: Data](in: T, sync: Int, init: Int, name: Option[String] = None): T =
AbstractPipelineReg(new ResetSynchronizerShiftReg(in.getWidth, sync, init), in, name)
def apply [T <: Data](in: T, sync: Int, name: Option[String]): T =
apply (in, sync, 0, name)
def apply [T <: Data](in: T, sync: Int): T =
apply (in, sync, 0, None)
def apply [T <: Data](in: T, sync: Int, init: T, name: Option[String]): T =
apply(in, sync, init.litValue.toInt, name)
def apply [T <: Data](in: T, sync: Int, init: T): T =
apply (in, sync, init.litValue.toInt, None)
}
class SynchronizerShiftReg(w: Int = 1, sync: Int = 3) extends AbstractPipelineReg(w) {
require(sync > 1, s"Sync must be greater than 1, not ${sync}.")
override def desiredName = s"SynchronizerShiftReg_w${w}_d${sync}"
val output = Seq.tabulate(w) { i =>
SynchronizerPrimitiveShiftReg(io.d(i), sync, false, SynchronizerResetType.NonSync)
}
io.q := Cat(output.reverse)
}
object SynchronizerShiftReg {
def apply [T <: Data](in: T, sync: Int, name: Option[String] = None): T =
if (sync == 0) in else AbstractPipelineReg(new SynchronizerShiftReg(in.getWidth, sync), in, name)
def apply [T <: Data](in: T, sync: Int): T =
apply (in, sync, None)
def apply [T <: Data](in: T): T =
apply (in, 3, None)
}
class ClockCrossingReg(w: Int = 1, doInit: Boolean) extends Module {
override def desiredName = s"ClockCrossingReg_w${w}"
val io = IO(new Bundle{
val d = Input(UInt(w.W))
val q = Output(UInt(w.W))
val en = Input(Bool())
})
val cdc_reg = if (doInit) RegEnable(io.d, 0.U(w.W), io.en) else RegEnable(io.d, io.en)
io.q := cdc_reg
}
object ClockCrossingReg {
def apply [T <: Data](in: T, en: Bool, doInit: Boolean, name: Option[String] = None): T = {
val cdc_reg = Module(new ClockCrossingReg(in.getWidth, doInit))
name.foreach{ cdc_reg.suggestName(_) }
cdc_reg.io.d := in.asUInt
cdc_reg.io.en := en
cdc_reg.io.q.asTypeOf(in)
}
}
| module AsyncResetSynchronizerShiftReg_w1_d3_i0_147( // @[SynchronizerReg.scala:80:7]
input clock, // @[SynchronizerReg.scala:80:7]
input reset, // @[SynchronizerReg.scala:80:7]
output io_q // @[ShiftReg.scala:36:14]
);
wire _output_T = reset; // @[SynchronizerReg.scala:86:21]
wire io_d = 1'h1; // @[SynchronizerReg.scala:80:7, :87:41]
wire _output_T_1 = 1'h1; // @[SynchronizerReg.scala:80:7, :87:41]
wire output_0; // @[ShiftReg.scala:48:24]
wire io_q_0; // @[SynchronizerReg.scala:80:7]
assign io_q_0 = output_0; // @[SynchronizerReg.scala:80:7]
AsyncResetSynchronizerPrimitiveShiftReg_d3_i0_259 output_chain ( // @[ShiftReg.scala:45:23]
.clock (clock),
.reset (_output_T), // @[SynchronizerReg.scala:86:21]
.io_q (output_0)
); // @[ShiftReg.scala:45:23]
assign io_q = io_q_0; // @[SynchronizerReg.scala:80:7]
endmodule |
Generate the Verilog code corresponding to the following Chisel files.
File Monitor.scala:
package constellation.channel
import chisel3._
import chisel3.util._
import freechips.rocketchip.diplomacy._
import org.chipsalliance.cde.config.{Parameters}
import freechips.rocketchip.util._
import constellation.noc.{HasNoCParams}
class NoCMonitor(val cParam: ChannelParams)(implicit val p: Parameters) extends Module with HasNoCParams {
val io = IO(new Bundle {
val in = Input(new Channel(cParam))
})
val in_flight = RegInit(VecInit(Seq.fill(cParam.nVirtualChannels) { false.B }))
for (i <- 0 until cParam.srcSpeedup) {
val flit = io.in.flit(i)
when (flit.valid) {
when (flit.bits.head) {
in_flight(flit.bits.virt_channel_id) := true.B
assert (!in_flight(flit.bits.virt_channel_id), "Flit head/tail sequencing is broken")
}
when (flit.bits.tail) {
in_flight(flit.bits.virt_channel_id) := false.B
}
}
val possibleFlows = cParam.possibleFlows
when (flit.valid && flit.bits.head) {
cParam match {
case n: ChannelParams => n.virtualChannelParams.zipWithIndex.foreach { case (v,i) =>
assert(flit.bits.virt_channel_id =/= i.U || v.possibleFlows.toSeq.map(_.isFlow(flit.bits.flow)).orR)
}
case _ => assert(cParam.possibleFlows.toSeq.map(_.isFlow(flit.bits.flow)).orR)
}
}
}
}
File Types.scala:
package constellation.routing
import chisel3._
import chisel3.util._
import org.chipsalliance.cde.config.{Parameters}
import constellation.noc.{HasNoCParams}
import constellation.channel.{Flit}
/** A representation for 1 specific virtual channel in wormhole routing
*
* @param src the source node
* @param vc ID for the virtual channel
* @param dst the destination node
* @param n_vc the number of virtual channels
*/
// BEGIN: ChannelRoutingInfo
case class ChannelRoutingInfo(
src: Int,
dst: Int,
vc: Int,
n_vc: Int
) {
// END: ChannelRoutingInfo
require (src >= -1 && dst >= -1 && vc >= 0, s"Illegal $this")
require (!(src == -1 && dst == -1), s"Illegal $this")
require (vc < n_vc, s"Illegal $this")
val isIngress = src == -1
val isEgress = dst == -1
}
/** Represents the properties of a packet that are relevant for routing
* ingressId and egressId uniquely identify a flow, but vnet and dst are used here
* to simplify the implementation of routingrelations
*
* @param ingressId packet's source ingress point
* @param egressId packet's destination egress point
* @param vNet virtual subnetwork identifier
* @param dst packet's destination node ID
*/
// BEGIN: FlowRoutingInfo
case class FlowRoutingInfo(
ingressId: Int,
egressId: Int,
vNetId: Int,
ingressNode: Int,
ingressNodeId: Int,
egressNode: Int,
egressNodeId: Int,
fifo: Boolean
) {
// END: FlowRoutingInfo
def isFlow(f: FlowRoutingBundle): Bool = {
(f.ingress_node === ingressNode.U &&
f.egress_node === egressNode.U &&
f.ingress_node_id === ingressNodeId.U &&
f.egress_node_id === egressNodeId.U)
}
def asLiteral(b: FlowRoutingBundle): BigInt = {
Seq(
(vNetId , b.vnet_id),
(ingressNode , b.ingress_node),
(ingressNodeId , b.ingress_node_id),
(egressNode , b.egress_node),
(egressNodeId , b.egress_node_id)
).foldLeft(0)((l, t) => {
(l << t._2.getWidth) | t._1
})
}
}
class FlowRoutingBundle(implicit val p: Parameters) extends Bundle with HasNoCParams {
// Instead of tracking ingress/egress ID, track the physical destination id and the offset at the destination
// This simplifies the routing tables
val vnet_id = UInt(log2Ceil(nVirtualNetworks).W)
val ingress_node = UInt(log2Ceil(nNodes).W)
val ingress_node_id = UInt(log2Ceil(maxIngressesAtNode).W)
val egress_node = UInt(log2Ceil(nNodes).W)
val egress_node_id = UInt(log2Ceil(maxEgressesAtNode).W)
}
| module NoCMonitor_36( // @[Monitor.scala:11:7]
input clock, // @[Monitor.scala:11:7]
input reset, // @[Monitor.scala:11:7]
input io_in_flit_0_valid, // @[Monitor.scala:12:14]
input io_in_flit_0_bits_head, // @[Monitor.scala:12:14]
input io_in_flit_0_bits_tail, // @[Monitor.scala:12:14]
input [4:0] io_in_flit_0_bits_flow_ingress_node, // @[Monitor.scala:12:14]
input [1:0] io_in_flit_0_bits_flow_ingress_node_id, // @[Monitor.scala:12:14]
input [4:0] io_in_flit_0_bits_flow_egress_node, // @[Monitor.scala:12:14]
input [1:0] io_in_flit_0_bits_flow_egress_node_id, // @[Monitor.scala:12:14]
input [2:0] io_in_flit_0_bits_virt_channel_id // @[Monitor.scala:12:14]
);
reg in_flight_0; // @[Monitor.scala:16:26]
reg in_flight_1; // @[Monitor.scala:16:26]
reg in_flight_2; // @[Monitor.scala:16:26]
reg in_flight_3; // @[Monitor.scala:16:26]
reg in_flight_4; // @[Monitor.scala:16:26]
reg in_flight_5; // @[Monitor.scala:16:26]
reg in_flight_6; // @[Monitor.scala:16:26]
reg in_flight_7; // @[Monitor.scala:16:26] |
Generate the Verilog code corresponding to the following Chisel files.
File Crossing.scala:
// See LICENSE.SiFive for license details.
package freechips.rocketchip.interrupts
import chisel3._
import chisel3.util._
import org.chipsalliance.cde.config._
import org.chipsalliance.diplomacy.lazymodule._
import freechips.rocketchip.util.{SynchronizerShiftReg, AsyncResetReg}
@deprecated("IntXing does not ensure interrupt source is glitch free. Use IntSyncSource and IntSyncSink", "rocket-chip 1.2")
class IntXing(sync: Int = 3)(implicit p: Parameters) extends LazyModule
{
val intnode = IntAdapterNode()
lazy val module = new Impl
class Impl extends LazyModuleImp(this) {
(intnode.in zip intnode.out) foreach { case ((in, _), (out, _)) =>
out := SynchronizerShiftReg(in, sync)
}
}
}
object IntSyncCrossingSource
{
def apply(alreadyRegistered: Boolean = false)(implicit p: Parameters) =
{
val intsource = LazyModule(new IntSyncCrossingSource(alreadyRegistered))
intsource.node
}
}
class IntSyncCrossingSource(alreadyRegistered: Boolean = false)(implicit p: Parameters) extends LazyModule
{
val node = IntSyncSourceNode(alreadyRegistered)
lazy val module = if (alreadyRegistered) (new ImplRegistered) else (new Impl)
class Impl extends LazyModuleImp(this) {
def outSize = node.out.headOption.map(_._1.sync.size).getOrElse(0)
override def desiredName = s"IntSyncCrossingSource_n${node.out.size}x${outSize}"
(node.in zip node.out) foreach { case ((in, edgeIn), (out, edgeOut)) =>
out.sync := AsyncResetReg(Cat(in.reverse)).asBools
}
}
class ImplRegistered extends LazyRawModuleImp(this) {
def outSize = node.out.headOption.map(_._1.sync.size).getOrElse(0)
override def desiredName = s"IntSyncCrossingSource_n${node.out.size}x${outSize}_Registered"
(node.in zip node.out) foreach { case ((in, edgeIn), (out, edgeOut)) =>
out.sync := in
}
}
}
object IntSyncCrossingSink
{
@deprecated("IntSyncCrossingSink which used the `sync` parameter to determine crossing type is deprecated. Use IntSyncAsyncCrossingSink, IntSyncRationalCrossingSink, or IntSyncSyncCrossingSink instead for > 1, 1, and 0 sync values respectively", "rocket-chip 1.2")
def apply(sync: Int = 3)(implicit p: Parameters) =
{
val intsink = LazyModule(new IntSyncAsyncCrossingSink(sync))
intsink.node
}
}
class IntSyncAsyncCrossingSink(sync: Int = 3)(implicit p: Parameters) extends LazyModule
{
val node = IntSyncSinkNode(sync)
lazy val module = new Impl
class Impl extends LazyModuleImp(this) {
override def desiredName = s"IntSyncAsyncCrossingSink_n${node.out.size}x${node.out.head._1.size}"
(node.in zip node.out) foreach { case ((in, edgeIn), (out, edgeOut)) =>
out := SynchronizerShiftReg(in.sync, sync)
}
}
}
object IntSyncAsyncCrossingSink
{
def apply(sync: Int = 3)(implicit p: Parameters) =
{
val intsink = LazyModule(new IntSyncAsyncCrossingSink(sync))
intsink.node
}
}
class IntSyncSyncCrossingSink()(implicit p: Parameters) extends LazyModule
{
val node = IntSyncSinkNode(0)
lazy val module = new Impl
class Impl extends LazyRawModuleImp(this) {
def outSize = node.out.headOption.map(_._1.size).getOrElse(0)
override def desiredName = s"IntSyncSyncCrossingSink_n${node.out.size}x${outSize}"
(node.in zip node.out) foreach { case ((in, edgeIn), (out, edgeOut)) =>
out := in.sync
}
}
}
object IntSyncSyncCrossingSink
{
def apply()(implicit p: Parameters) =
{
val intsink = LazyModule(new IntSyncSyncCrossingSink())
intsink.node
}
}
class IntSyncRationalCrossingSink()(implicit p: Parameters) extends LazyModule
{
val node = IntSyncSinkNode(1)
lazy val module = new Impl
class Impl extends LazyModuleImp(this) {
def outSize = node.out.headOption.map(_._1.size).getOrElse(0)
override def desiredName = s"IntSyncRationalCrossingSink_n${node.out.size}x${outSize}"
(node.in zip node.out) foreach { case ((in, edgeIn), (out, edgeOut)) =>
out := RegNext(in.sync)
}
}
}
object IntSyncRationalCrossingSink
{
def apply()(implicit p: Parameters) =
{
val intsink = LazyModule(new IntSyncRationalCrossingSink())
intsink.node
}
}
File ClockDomain.scala:
package freechips.rocketchip.prci
import chisel3._
import org.chipsalliance.cde.config._
import org.chipsalliance.diplomacy.lazymodule._
abstract class Domain(implicit p: Parameters) extends LazyModule with HasDomainCrossing
{
def clockBundle: ClockBundle
lazy val module = new Impl
class Impl extends LazyRawModuleImp(this) {
childClock := clockBundle.clock
childReset := clockBundle.reset
override def provideImplicitClockToLazyChildren = true
// these are just for backwards compatibility with external devices
// that were manually wiring themselves to the domain's clock/reset input:
val clock = IO(Output(chiselTypeOf(clockBundle.clock)))
val reset = IO(Output(chiselTypeOf(clockBundle.reset)))
clock := clockBundle.clock
reset := clockBundle.reset
}
}
abstract class ClockDomain(implicit p: Parameters) extends Domain with HasClockDomainCrossing
class ClockSinkDomain(val clockSinkParams: ClockSinkParameters)(implicit p: Parameters) extends ClockDomain
{
def this(take: Option[ClockParameters] = None, name: Option[String] = None)(implicit p: Parameters) = this(ClockSinkParameters(take = take, name = name))
val clockNode = ClockSinkNode(Seq(clockSinkParams))
def clockBundle = clockNode.in.head._1
override lazy val desiredName = (clockSinkParams.name.toSeq :+ "ClockSinkDomain").mkString
}
class ClockSourceDomain(val clockSourceParams: ClockSourceParameters)(implicit p: Parameters) extends ClockDomain
{
def this(give: Option[ClockParameters] = None, name: Option[String] = None)(implicit p: Parameters) = this(ClockSourceParameters(give = give, name = name))
val clockNode = ClockSourceNode(Seq(clockSourceParams))
def clockBundle = clockNode.out.head._1
override lazy val desiredName = (clockSourceParams.name.toSeq :+ "ClockSourceDomain").mkString
}
abstract class ResetDomain(implicit p: Parameters) extends Domain with HasResetDomainCrossing
File LazyModuleImp.scala:
package org.chipsalliance.diplomacy.lazymodule
import chisel3.{withClockAndReset, Module, RawModule, Reset, _}
import chisel3.experimental.{ChiselAnnotation, CloneModuleAsRecord, SourceInfo}
import firrtl.passes.InlineAnnotation
import org.chipsalliance.cde.config.Parameters
import org.chipsalliance.diplomacy.nodes.Dangle
import scala.collection.immutable.SortedMap
/** Trait describing the actual [[Module]] implementation wrapped by a [[LazyModule]].
*
* This is the actual Chisel module that is lazily-evaluated in the second phase of Diplomacy.
*/
sealed trait LazyModuleImpLike extends RawModule {
/** [[LazyModule]] that contains this instance. */
val wrapper: LazyModule
/** IOs that will be automatically "punched" for this instance. */
val auto: AutoBundle
/** The metadata that describes the [[HalfEdge]]s which generated [[auto]]. */
protected[diplomacy] val dangles: Seq[Dangle]
// [[wrapper.module]] had better not be accessed while LazyModules are still being built!
require(
LazyModule.scope.isEmpty,
s"${wrapper.name}.module was constructed before LazyModule() was run on ${LazyModule.scope.get.name}"
)
/** Set module name. Defaults to the containing LazyModule's desiredName. */
override def desiredName: String = wrapper.desiredName
suggestName(wrapper.suggestedName)
/** [[Parameters]] for chisel [[Module]]s. */
implicit val p: Parameters = wrapper.p
/** instantiate this [[LazyModule]], return [[AutoBundle]] and a unconnected [[Dangle]]s from this module and
* submodules.
*/
protected[diplomacy] def instantiate(): (AutoBundle, List[Dangle]) = {
// 1. It will recursively append [[wrapper.children]] into [[chisel3.internal.Builder]],
// 2. return [[Dangle]]s from each module.
val childDangles = wrapper.children.reverse.flatMap { c =>
implicit val sourceInfo: SourceInfo = c.info
c.cloneProto.map { cp =>
// If the child is a clone, then recursively set cloneProto of its children as well
def assignCloneProtos(bases: Seq[LazyModule], clones: Seq[LazyModule]): Unit = {
require(bases.size == clones.size)
(bases.zip(clones)).map { case (l, r) =>
require(l.getClass == r.getClass, s"Cloned children class mismatch ${l.name} != ${r.name}")
l.cloneProto = Some(r)
assignCloneProtos(l.children, r.children)
}
}
assignCloneProtos(c.children, cp.children)
// Clone the child module as a record, and get its [[AutoBundle]]
val clone = CloneModuleAsRecord(cp.module).suggestName(c.suggestedName)
val clonedAuto = clone("auto").asInstanceOf[AutoBundle]
// Get the empty [[Dangle]]'s of the cloned child
val rawDangles = c.cloneDangles()
require(rawDangles.size == clonedAuto.elements.size)
// Assign the [[AutoBundle]] fields of the cloned record to the empty [[Dangle]]'s
val dangles = (rawDangles.zip(clonedAuto.elements)).map { case (d, (_, io)) => d.copy(dataOpt = Some(io)) }
dangles
}.getOrElse {
// For non-clones, instantiate the child module
val mod = try {
Module(c.module)
} catch {
case e: ChiselException => {
println(s"Chisel exception caught when instantiating ${c.name} within ${this.name} at ${c.line}")
throw e
}
}
mod.dangles
}
}
// Ask each node in this [[LazyModule]] to call [[BaseNode.instantiate]].
// This will result in a sequence of [[Dangle]] from these [[BaseNode]]s.
val nodeDangles = wrapper.nodes.reverse.flatMap(_.instantiate())
// Accumulate all the [[Dangle]]s from this node and any accumulated from its [[wrapper.children]]
val allDangles = nodeDangles ++ childDangles
// Group [[allDangles]] by their [[source]].
val pairing = SortedMap(allDangles.groupBy(_.source).toSeq: _*)
// For each [[source]] set of [[Dangle]]s of size 2, ensure that these
// can be connected as a source-sink pair (have opposite flipped value).
// Make the connection and mark them as [[done]].
val done = Set() ++ pairing.values.filter(_.size == 2).map {
case Seq(a, b) =>
require(a.flipped != b.flipped)
// @todo <> in chisel3 makes directionless connection.
if (a.flipped) {
a.data <> b.data
} else {
b.data <> a.data
}
a.source
case _ => None
}
// Find all [[Dangle]]s which are still not connected. These will end up as [[AutoBundle]] [[IO]] ports on the module.
val forward = allDangles.filter(d => !done(d.source))
// Generate [[AutoBundle]] IO from [[forward]].
val auto = IO(new AutoBundle(forward.map { d => (d.name, d.data, d.flipped) }: _*))
// Pass the [[Dangle]]s which remained and were used to generate the [[AutoBundle]] I/O ports up to the [[parent]] [[LazyModule]]
val dangles = (forward.zip(auto.elements)).map { case (d, (_, io)) =>
if (d.flipped) {
d.data <> io
} else {
io <> d.data
}
d.copy(dataOpt = Some(io), name = wrapper.suggestedName + "_" + d.name)
}
// Push all [[LazyModule.inModuleBody]] to [[chisel3.internal.Builder]].
wrapper.inModuleBody.reverse.foreach {
_()
}
if (wrapper.shouldBeInlined) {
chisel3.experimental.annotate(new ChiselAnnotation {
def toFirrtl = InlineAnnotation(toNamed)
})
}
// Return [[IO]] and [[Dangle]] of this [[LazyModuleImp]].
(auto, dangles)
}
}
/** Actual description of a [[Module]] which can be instantiated by a call to [[LazyModule.module]].
*
* @param wrapper
* the [[LazyModule]] from which the `.module` call is being made.
*/
class LazyModuleImp(val wrapper: LazyModule) extends Module with LazyModuleImpLike {
/** Instantiate hardware of this `Module`. */
val (auto, dangles) = instantiate()
}
/** Actual description of a [[RawModule]] which can be instantiated by a call to [[LazyModule.module]].
*
* @param wrapper
* the [[LazyModule]] from which the `.module` call is being made.
*/
class LazyRawModuleImp(val wrapper: LazyModule) extends RawModule with LazyModuleImpLike {
// These wires are the default clock+reset for all LazyModule children.
// It is recommended to drive these even if you manually drive the [[clock]] and [[reset]] of all of the
// [[LazyRawModuleImp]] children.
// Otherwise, anonymous children ([[Monitor]]s for example) will not have their [[clock]] and/or [[reset]] driven properly.
/** drive clock explicitly. */
val childClock: Clock = Wire(Clock())
/** drive reset explicitly. */
val childReset: Reset = Wire(Reset())
// the default is that these are disabled
childClock := false.B.asClock
childReset := chisel3.DontCare
def provideImplicitClockToLazyChildren: Boolean = false
val (auto, dangles) =
if (provideImplicitClockToLazyChildren) {
withClockAndReset(childClock, childReset) { instantiate() }
} else {
instantiate()
}
}
File CLINT.scala:
// See LICENSE.SiFive for license details.
package freechips.rocketchip.devices.tilelink
import chisel3._
import chisel3.util._
import org.chipsalliance.cde.config._
import org.chipsalliance.diplomacy.lazymodule._
import freechips.rocketchip.diplomacy.{AddressSet}
import freechips.rocketchip.resources.{Resource, SimpleDevice}
import freechips.rocketchip.interrupts.{IntNexusNode, IntSinkParameters, IntSinkPortParameters, IntSourceParameters, IntSourcePortParameters}
import freechips.rocketchip.regmapper.{RegField, RegFieldDesc, RegFieldGroup}
import freechips.rocketchip.subsystem.{BaseSubsystem, CBUS, TLBusWrapperLocation}
import freechips.rocketchip.tilelink.{TLFragmenter, TLRegisterNode}
import freechips.rocketchip.util.Annotated
object CLINTConsts
{
def msipOffset(hart: Int) = hart * msipBytes
def timecmpOffset(hart: Int) = 0x4000 + hart * timecmpBytes
def timeOffset = 0xbff8
def msipBytes = 4
def timecmpBytes = 8
def size = 0x10000
def timeWidth = 64
def ipiWidth = 32
def ints = 2
}
case class CLINTParams(baseAddress: BigInt = 0x02000000, intStages: Int = 0)
{
def address = AddressSet(baseAddress, CLINTConsts.size-1)
}
case object CLINTKey extends Field[Option[CLINTParams]](None)
case class CLINTAttachParams(
slaveWhere: TLBusWrapperLocation = CBUS
)
case object CLINTAttachKey extends Field(CLINTAttachParams())
class CLINT(params: CLINTParams, beatBytes: Int)(implicit p: Parameters) extends LazyModule
{
import CLINTConsts._
// clint0 => at most 4095 devices
val device = new SimpleDevice("clint", Seq("riscv,clint0")) {
override val alwaysExtended = true
}
val node: TLRegisterNode = TLRegisterNode(
address = Seq(params.address),
device = device,
beatBytes = beatBytes)
val intnode : IntNexusNode = IntNexusNode(
sourceFn = { _ => IntSourcePortParameters(Seq(IntSourceParameters(ints, Seq(Resource(device, "int"))))) },
sinkFn = { _ => IntSinkPortParameters(Seq(IntSinkParameters())) },
outputRequiresInput = false)
lazy val module = new Impl
class Impl extends LazyModuleImp(this) {
Annotated.params(this, params)
require (intnode.edges.in.size == 0, "CLINT only produces interrupts; it does not accept them")
val io = IO(new Bundle {
val rtcTick = Input(Bool())
})
val time = RegInit(0.U(timeWidth.W))
when (io.rtcTick) { time := time + 1.U }
val nTiles = intnode.out.size
val timecmp = Seq.fill(nTiles) { Reg(UInt(timeWidth.W)) }
val ipi = Seq.fill(nTiles) { RegInit(0.U(1.W)) }
val (intnode_out, _) = intnode.out.unzip
intnode_out.zipWithIndex.foreach { case (int, i) =>
int(0) := ShiftRegister(ipi(i)(0), params.intStages) // msip
int(1) := ShiftRegister(time.asUInt >= timecmp(i).asUInt, params.intStages) // mtip
}
/* 0000 msip hart 0
* 0004 msip hart 1
* 4000 mtimecmp hart 0 lo
* 4004 mtimecmp hart 0 hi
* 4008 mtimecmp hart 1 lo
* 400c mtimecmp hart 1 hi
* bff8 mtime lo
* bffc mtime hi
*/
node.regmap(
0 -> RegFieldGroup ("msip", Some("MSIP Bits"), ipi.zipWithIndex.flatMap{ case (r, i) =>
RegField(1, r, RegFieldDesc(s"msip_$i", s"MSIP bit for Hart $i", reset=Some(0))) :: RegField(ipiWidth - 1) :: Nil }),
timecmpOffset(0) -> timecmp.zipWithIndex.flatMap{ case (t, i) => RegFieldGroup(s"mtimecmp_$i", Some(s"MTIMECMP for hart $i"),
RegField.bytes(t, Some(RegFieldDesc(s"mtimecmp_$i", "", reset=None))))},
timeOffset -> RegFieldGroup("mtime", Some("Timer Register"),
RegField.bytes(time, Some(RegFieldDesc("mtime", "", reset=Some(0), volatile=true))))
)
}
}
/** Trait that will connect a CLINT to a subsystem */
trait CanHavePeripheryCLINT { this: BaseSubsystem =>
val (clintOpt, clintDomainOpt, clintTickOpt) = p(CLINTKey).map { params =>
val tlbus = locateTLBusWrapper(p(CLINTAttachKey).slaveWhere)
val clintDomainWrapper = tlbus.generateSynchronousDomain("CLINT").suggestName("clint_domain")
val clint = clintDomainWrapper { LazyModule(new CLINT(params, tlbus.beatBytes)) }
clintDomainWrapper { clint.node := tlbus.coupleTo("clint") { TLFragmenter(tlbus, Some("CLINT")) := _ } }
val clintTick = clintDomainWrapper { InModuleBody {
val tick = IO(Input(Bool()))
clint.module.io.rtcTick := tick
tick
}}
(clint, clintDomainWrapper, clintTick)
}.unzip3
}
| module CLINTClockSinkDomain( // @[ClockDomain.scala:14:9]
output auto_clint_in_a_ready, // @[LazyModuleImp.scala:107:25]
input auto_clint_in_a_valid, // @[LazyModuleImp.scala:107:25]
input [2:0] auto_clint_in_a_bits_opcode, // @[LazyModuleImp.scala:107:25]
input [2:0] auto_clint_in_a_bits_param, // @[LazyModuleImp.scala:107:25]
input [1:0] auto_clint_in_a_bits_size, // @[LazyModuleImp.scala:107:25]
input [10:0] auto_clint_in_a_bits_source, // @[LazyModuleImp.scala:107:25]
input [25:0] auto_clint_in_a_bits_address, // @[LazyModuleImp.scala:107:25]
input [7:0] auto_clint_in_a_bits_mask, // @[LazyModuleImp.scala:107:25]
input [63:0] auto_clint_in_a_bits_data, // @[LazyModuleImp.scala:107:25]
input auto_clint_in_a_bits_corrupt, // @[LazyModuleImp.scala:107:25]
input auto_clint_in_d_ready, // @[LazyModuleImp.scala:107:25]
output auto_clint_in_d_valid, // @[LazyModuleImp.scala:107:25]
output [2:0] auto_clint_in_d_bits_opcode, // @[LazyModuleImp.scala:107:25]
output [1:0] auto_clint_in_d_bits_size, // @[LazyModuleImp.scala:107:25]
output [10:0] auto_clint_in_d_bits_source, // @[LazyModuleImp.scala:107:25]
output [63:0] auto_clint_in_d_bits_data, // @[LazyModuleImp.scala:107:25]
output auto_int_in_clock_xing_out_sync_0, // @[LazyModuleImp.scala:107:25]
output auto_int_in_clock_xing_out_sync_1, // @[LazyModuleImp.scala:107:25]
input auto_clock_in_clock, // @[LazyModuleImp.scala:107:25]
input auto_clock_in_reset, // @[LazyModuleImp.scala:107:25]
input tick, // @[CLINT.scala:115:20]
output clock, // @[ClockDomain.scala:21:19]
output reset // @[ClockDomain.scala:22:19]
);
wire _clint_auto_int_out_0; // @[CLINT.scala:112:48]
wire _clint_auto_int_out_1; // @[CLINT.scala:112:48]
CLINT clint ( // @[CLINT.scala:112:48]
.clock (auto_clock_in_clock),
.reset (auto_clock_in_reset),
.auto_int_out_0 (_clint_auto_int_out_0),
.auto_int_out_1 (_clint_auto_int_out_1),
.auto_in_a_ready (auto_clint_in_a_ready),
.auto_in_a_valid (auto_clint_in_a_valid),
.auto_in_a_bits_opcode (auto_clint_in_a_bits_opcode),
.auto_in_a_bits_param (auto_clint_in_a_bits_param),
.auto_in_a_bits_size (auto_clint_in_a_bits_size),
.auto_in_a_bits_source (auto_clint_in_a_bits_source),
.auto_in_a_bits_address (auto_clint_in_a_bits_address),
.auto_in_a_bits_mask (auto_clint_in_a_bits_mask),
.auto_in_a_bits_data (auto_clint_in_a_bits_data),
.auto_in_a_bits_corrupt (auto_clint_in_a_bits_corrupt),
.auto_in_d_ready (auto_clint_in_d_ready),
.auto_in_d_valid (auto_clint_in_d_valid),
.auto_in_d_bits_opcode (auto_clint_in_d_bits_opcode),
.auto_in_d_bits_size (auto_clint_in_d_bits_size),
.auto_in_d_bits_source (auto_clint_in_d_bits_source),
.auto_in_d_bits_data (auto_clint_in_d_bits_data),
.io_rtcTick (tick)
); // @[CLINT.scala:112:48]
IntSyncCrossingSource_n1x2 intsource ( // @[Crossing.scala:29:31]
.clock (auto_clock_in_clock),
.reset (auto_clock_in_reset),
.auto_in_0 (_clint_auto_int_out_0), // @[CLINT.scala:112:48]
.auto_in_1 (_clint_auto_int_out_1), // @[CLINT.scala:112:48]
.auto_out_sync_0 (auto_int_in_clock_xing_out_sync_0),
.auto_out_sync_1 (auto_int_in_clock_xing_out_sync_1)
); // @[Crossing.scala:29:31]
assign clock = auto_clock_in_clock; // @[ClockDomain.scala:14:9]
assign reset = auto_clock_in_reset; // @[ClockDomain.scala:14:9]
endmodule |
Generate the Verilog code corresponding to the following Chisel files.
File FIFOFixer.scala:
// See LICENSE.SiFive for license details.
package freechips.rocketchip.tilelink
import chisel3._
import chisel3.util._
import org.chipsalliance.cde.config.Parameters
import org.chipsalliance.diplomacy.lazymodule._
import org.chipsalliance.diplomacy.nodes._
import freechips.rocketchip.diplomacy.RegionType
import freechips.rocketchip.util.property
class TLFIFOFixer(policy: TLFIFOFixer.Policy = TLFIFOFixer.all)(implicit p: Parameters) extends LazyModule
{
private def fifoMap(seq: Seq[TLSlaveParameters]) = {
val (flatManagers, keepManagers) = seq.partition(policy)
// We need to be careful if one flatManager and one keepManager share an existing domain
// Erring on the side of caution, we will also flatten the keepManager in this case
val flatDomains = Set(flatManagers.flatMap(_.fifoId):_*) // => ID 0
val keepDomains = Set(keepManagers.flatMap(_.fifoId):_*) -- flatDomains // => IDs compacted
// Calculate what the FIFO domains look like after the fixer is applied
val flatMap = flatDomains.map { x => (x, 0) }.toMap
val keepMap = keepDomains.scanLeft((-1,0)) { case ((_,s),x) => (x, s+1) }.toMap
val map = flatMap ++ keepMap
val fixMap = seq.map { m => m.fifoId match {
case None => if (policy(m)) Some(0) else None
case Some(id) => Some(map(id)) // also flattens some who did not ask
} }
// Compress the FIFO domain space of those we are combining
val reMap = flatDomains.scanLeft((-1,-1)) { case ((_,s),x) => (x, s+1) }.toMap
val splatMap = seq.map { m => m.fifoId match {
case None => None
case Some(id) => reMap.lift(id)
} }
(fixMap, splatMap)
}
val node = new AdapterNode(TLImp)(
{ cp => cp },
{ mp =>
val (fixMap, _) = fifoMap(mp.managers)
mp.v1copy(managers = (fixMap zip mp.managers) map { case (id, m) => m.v1copy(fifoId = id) })
}) with TLFormatNode {
override def circuitIdentity = edges.in.map(_.client.clients.filter(c => c.requestFifo && c.sourceId.size > 1).size).sum == 0
}
lazy val module = new Impl
class Impl extends LazyModuleImp(this) {
(node.in zip node.out) foreach { case ((in, edgeIn), (out, edgeOut)) =>
val (fixMap, splatMap) = fifoMap(edgeOut.manager.managers)
// Do we need to serialize the request to this manager?
val a_notFIFO = edgeIn.manager.fastProperty(in.a.bits.address, _.fifoId != Some(0), (b:Boolean) => b.B)
// Compact the IDs of the cases we serialize
val compacted = ((fixMap zip splatMap) zip edgeOut.manager.managers) flatMap {
case ((f, s), m) => if (f == Some(0)) Some(m.v1copy(fifoId = s)) else None
}
val sinks = if (compacted.exists(_.supportsAcquireB)) edgeOut.manager.endSinkId else 0
val a_id = if (compacted.isEmpty) 0.U else
edgeOut.manager.v1copy(managers = compacted, endSinkId = sinks).findFifoIdFast(in.a.bits.address)
val a_noDomain = a_id === 0.U
if (false) {
println(s"FIFOFixer for: ${edgeIn.client.clients.map(_.name).mkString(", ")}")
println(s"make FIFO: ${edgeIn.manager.managers.filter(_.fifoId==Some(0)).map(_.name).mkString(", ")}")
println(s"not FIFO: ${edgeIn.manager.managers.filter(_.fifoId!=Some(0)).map(_.name).mkString(", ")}")
println(s"domains: ${compacted.groupBy(_.name).mapValues(_.map(_.fifoId))}")
println("")
}
// Count beats
val a_first = edgeIn.first(in.a)
val d_first = edgeOut.first(out.d) && out.d.bits.opcode =/= TLMessages.ReleaseAck
// Keep one bit for each source recording if there is an outstanding request that must be made FIFO
// Sources unused in the stall signal calculation should be pruned by DCE
val flight = RegInit(VecInit(Seq.fill(edgeIn.client.endSourceId) { false.B }))
when (a_first && in.a.fire) { flight(in.a.bits.source) := !a_notFIFO }
when (d_first && in.d.fire) { flight(in.d.bits.source) := false.B }
val stalls = edgeIn.client.clients.filter(c => c.requestFifo && c.sourceId.size > 1).map { c =>
val a_sel = c.sourceId.contains(in.a.bits.source)
val id = RegEnable(a_id, in.a.fire && a_sel && !a_notFIFO)
val track = flight.slice(c.sourceId.start, c.sourceId.end)
a_sel && a_first && track.reduce(_ || _) && (a_noDomain || id =/= a_id)
}
val stall = stalls.foldLeft(false.B)(_||_)
out.a <> in.a
in.d <> out.d
out.a.valid := in.a.valid && (a_notFIFO || !stall)
in.a.ready := out.a.ready && (a_notFIFO || !stall)
if (edgeOut.manager.anySupportAcquireB && edgeOut.client.anySupportProbe) {
in .b <> out.b
out.c <> in .c
out.e <> in .e
} else {
in.b.valid := false.B
in.c.ready := true.B
in.e.ready := true.B
out.b.ready := true.B
out.c.valid := false.B
out.e.valid := false.B
}
//Functional cover properties
property.cover(in.a.valid && stall, "COVER FIFOFIXER STALL", "Cover: Stall occured for a valid transaction")
val SourceIdFIFOed = RegInit(0.U(edgeIn.client.endSourceId.W))
val SourceIdSet = WireDefault(0.U(edgeIn.client.endSourceId.W))
val SourceIdClear = WireDefault(0.U(edgeIn.client.endSourceId.W))
when (a_first && in.a.fire && !a_notFIFO) {
SourceIdSet := UIntToOH(in.a.bits.source)
}
when (d_first && in.d.fire) {
SourceIdClear := UIntToOH(in.d.bits.source)
}
SourceIdFIFOed := SourceIdFIFOed | SourceIdSet
val allIDs_FIFOed = SourceIdFIFOed===Fill(SourceIdFIFOed.getWidth, 1.U)
property.cover(allIDs_FIFOed, "COVER all sources", "Cover: FIFOFIXER covers all Source IDs")
//property.cover(flight.reduce(_ && _), "COVER full", "Cover: FIFO is full with all Source IDs")
property.cover(!(flight.reduce(_ || _)), "COVER empty", "Cover: FIFO is empty")
property.cover(SourceIdSet > 0.U, "COVER at least one push", "Cover: At least one Source ID is pushed")
property.cover(SourceIdClear > 0.U, "COVER at least one pop", "Cover: At least one Source ID is popped")
}
}
}
object TLFIFOFixer
{
// Which slaves should have their FIFOness combined?
// NOTE: this transformation is still only applied for masters with requestFifo
type Policy = TLSlaveParameters => Boolean
import RegionType._
val all: Policy = m => true
val allFIFO: Policy = m => m.fifoId.isDefined
val allVolatile: Policy = m => m.regionType <= VOLATILE
def apply(policy: Policy = all)(implicit p: Parameters): TLNode =
{
val fixer = LazyModule(new TLFIFOFixer(policy))
fixer.node
}
}
File Buffer.scala:
// See LICENSE.SiFive for license details.
package freechips.rocketchip.tilelink
import chisel3._
import org.chipsalliance.cde.config._
import org.chipsalliance.diplomacy._
import org.chipsalliance.diplomacy.lazymodule._
import freechips.rocketchip.diplomacy.BufferParams
class TLBufferNode (
a: BufferParams,
b: BufferParams,
c: BufferParams,
d: BufferParams,
e: BufferParams)(implicit valName: ValName) extends TLAdapterNode(
clientFn = { p => p.v1copy(minLatency = p.minLatency + b.latency + c.latency) },
managerFn = { p => p.v1copy(minLatency = p.minLatency + a.latency + d.latency) }
) {
override lazy val nodedebugstring = s"a:${a.toString}, b:${b.toString}, c:${c.toString}, d:${d.toString}, e:${e.toString}"
override def circuitIdentity = List(a,b,c,d,e).forall(_ == BufferParams.none)
}
class TLBuffer(
a: BufferParams,
b: BufferParams,
c: BufferParams,
d: BufferParams,
e: BufferParams)(implicit p: Parameters) extends LazyModule
{
def this(ace: BufferParams, bd: BufferParams)(implicit p: Parameters) = this(ace, bd, ace, bd, ace)
def this(abcde: BufferParams)(implicit p: Parameters) = this(abcde, abcde)
def this()(implicit p: Parameters) = this(BufferParams.default)
val node = new TLBufferNode(a, b, c, d, e)
lazy val module = new Impl
class Impl extends LazyModuleImp(this) {
def headBundle = node.out.head._2.bundle
override def desiredName = (Seq("TLBuffer") ++ node.out.headOption.map(_._2.bundle.shortName)).mkString("_")
(node.in zip node.out) foreach { case ((in, edgeIn), (out, edgeOut)) =>
out.a <> a(in .a)
in .d <> d(out.d)
if (edgeOut.manager.anySupportAcquireB && edgeOut.client.anySupportProbe) {
in .b <> b(out.b)
out.c <> c(in .c)
out.e <> e(in .e)
} else {
in.b.valid := false.B
in.c.ready := true.B
in.e.ready := true.B
out.b.ready := true.B
out.c.valid := false.B
out.e.valid := false.B
}
}
}
}
object TLBuffer
{
def apply() (implicit p: Parameters): TLNode = apply(BufferParams.default)
def apply(abcde: BufferParams) (implicit p: Parameters): TLNode = apply(abcde, abcde)
def apply(ace: BufferParams, bd: BufferParams)(implicit p: Parameters): TLNode = apply(ace, bd, ace, bd, ace)
def apply(
a: BufferParams,
b: BufferParams,
c: BufferParams,
d: BufferParams,
e: BufferParams)(implicit p: Parameters): TLNode =
{
val buffer = LazyModule(new TLBuffer(a, b, c, d, e))
buffer.node
}
def chain(depth: Int, name: Option[String] = None)(implicit p: Parameters): Seq[TLNode] = {
val buffers = Seq.fill(depth) { LazyModule(new TLBuffer()) }
name.foreach { n => buffers.zipWithIndex.foreach { case (b, i) => b.suggestName(s"${n}_${i}") } }
buffers.map(_.node)
}
def chainNode(depth: Int, name: Option[String] = None)(implicit p: Parameters): TLNode = {
chain(depth, name)
.reduceLeftOption(_ :*=* _)
.getOrElse(TLNameNode("no_buffer"))
}
}
File Misc.scala:
// See LICENSE.Berkeley for license details.
// See LICENSE.SiFive for license details.
package freechips.rocketchip.util
import chisel3._
import chisel3.util._
import chisel3.util.random.LFSR
import org.chipsalliance.cde.config.Parameters
import scala.math._
class ParameterizedBundle(implicit p: Parameters) extends Bundle
trait Clocked extends Bundle {
val clock = Clock()
val reset = Bool()
}
object DecoupledHelper {
def apply(rvs: Bool*) = new DecoupledHelper(rvs)
}
class DecoupledHelper(val rvs: Seq[Bool]) {
def fire(exclude: Bool, includes: Bool*) = {
require(rvs.contains(exclude), "Excluded Bool not present in DecoupledHelper! Note that DecoupledHelper uses referential equality for exclusion! If you don't want to exclude anything, use fire()!")
(rvs.filter(_ ne exclude) ++ includes).reduce(_ && _)
}
def fire() = {
rvs.reduce(_ && _)
}
}
object MuxT {
def apply[T <: Data, U <: Data](cond: Bool, con: (T, U), alt: (T, U)): (T, U) =
(Mux(cond, con._1, alt._1), Mux(cond, con._2, alt._2))
def apply[T <: Data, U <: Data, W <: Data](cond: Bool, con: (T, U, W), alt: (T, U, W)): (T, U, W) =
(Mux(cond, con._1, alt._1), Mux(cond, con._2, alt._2), Mux(cond, con._3, alt._3))
def apply[T <: Data, U <: Data, W <: Data, X <: Data](cond: Bool, con: (T, U, W, X), alt: (T, U, W, X)): (T, U, W, X) =
(Mux(cond, con._1, alt._1), Mux(cond, con._2, alt._2), Mux(cond, con._3, alt._3), Mux(cond, con._4, alt._4))
}
/** Creates a cascade of n MuxTs to search for a key value. */
object MuxTLookup {
def apply[S <: UInt, T <: Data, U <: Data](key: S, default: (T, U), mapping: Seq[(S, (T, U))]): (T, U) = {
var res = default
for ((k, v) <- mapping.reverse)
res = MuxT(k === key, v, res)
res
}
def apply[S <: UInt, T <: Data, U <: Data, W <: Data](key: S, default: (T, U, W), mapping: Seq[(S, (T, U, W))]): (T, U, W) = {
var res = default
for ((k, v) <- mapping.reverse)
res = MuxT(k === key, v, res)
res
}
}
object ValidMux {
def apply[T <: Data](v1: ValidIO[T], v2: ValidIO[T]*): ValidIO[T] = {
apply(v1 +: v2.toSeq)
}
def apply[T <: Data](valids: Seq[ValidIO[T]]): ValidIO[T] = {
val out = Wire(Valid(valids.head.bits.cloneType))
out.valid := valids.map(_.valid).reduce(_ || _)
out.bits := MuxCase(valids.head.bits,
valids.map(v => (v.valid -> v.bits)))
out
}
}
object Str
{
def apply(s: String): UInt = {
var i = BigInt(0)
require(s.forall(validChar _))
for (c <- s)
i = (i << 8) | c
i.U((s.length*8).W)
}
def apply(x: Char): UInt = {
require(validChar(x))
x.U(8.W)
}
def apply(x: UInt): UInt = apply(x, 10)
def apply(x: UInt, radix: Int): UInt = {
val rad = radix.U
val w = x.getWidth
require(w > 0)
var q = x
var s = digit(q % rad)
for (i <- 1 until ceil(log(2)/log(radix)*w).toInt) {
q = q / rad
s = Cat(Mux((radix == 10).B && q === 0.U, Str(' '), digit(q % rad)), s)
}
s
}
def apply(x: SInt): UInt = apply(x, 10)
def apply(x: SInt, radix: Int): UInt = {
val neg = x < 0.S
val abs = x.abs.asUInt
if (radix != 10) {
Cat(Mux(neg, Str('-'), Str(' ')), Str(abs, radix))
} else {
val rad = radix.U
val w = abs.getWidth
require(w > 0)
var q = abs
var s = digit(q % rad)
var needSign = neg
for (i <- 1 until ceil(log(2)/log(radix)*w).toInt) {
q = q / rad
val placeSpace = q === 0.U
val space = Mux(needSign, Str('-'), Str(' '))
needSign = needSign && !placeSpace
s = Cat(Mux(placeSpace, space, digit(q % rad)), s)
}
Cat(Mux(needSign, Str('-'), Str(' ')), s)
}
}
private def digit(d: UInt): UInt = Mux(d < 10.U, Str('0')+d, Str(('a'-10).toChar)+d)(7,0)
private def validChar(x: Char) = x == (x & 0xFF)
}
object Split
{
def apply(x: UInt, n0: Int) = {
val w = x.getWidth
(x.extract(w-1,n0), x.extract(n0-1,0))
}
def apply(x: UInt, n1: Int, n0: Int) = {
val w = x.getWidth
(x.extract(w-1,n1), x.extract(n1-1,n0), x.extract(n0-1,0))
}
def apply(x: UInt, n2: Int, n1: Int, n0: Int) = {
val w = x.getWidth
(x.extract(w-1,n2), x.extract(n2-1,n1), x.extract(n1-1,n0), x.extract(n0-1,0))
}
}
object Random
{
def apply(mod: Int, random: UInt): UInt = {
if (isPow2(mod)) random.extract(log2Ceil(mod)-1,0)
else PriorityEncoder(partition(apply(1 << log2Up(mod*8), random), mod))
}
def apply(mod: Int): UInt = apply(mod, randomizer)
def oneHot(mod: Int, random: UInt): UInt = {
if (isPow2(mod)) UIntToOH(random(log2Up(mod)-1,0))
else PriorityEncoderOH(partition(apply(1 << log2Up(mod*8), random), mod)).asUInt
}
def oneHot(mod: Int): UInt = oneHot(mod, randomizer)
private def randomizer = LFSR(16)
private def partition(value: UInt, slices: Int) =
Seq.tabulate(slices)(i => value < (((i + 1) << value.getWidth) / slices).U)
}
object Majority {
def apply(in: Set[Bool]): Bool = {
val n = (in.size >> 1) + 1
val clauses = in.subsets(n).map(_.reduce(_ && _))
clauses.reduce(_ || _)
}
def apply(in: Seq[Bool]): Bool = apply(in.toSet)
def apply(in: UInt): Bool = apply(in.asBools.toSet)
}
object PopCountAtLeast {
private def two(x: UInt): (Bool, Bool) = x.getWidth match {
case 1 => (x.asBool, false.B)
case n =>
val half = x.getWidth / 2
val (leftOne, leftTwo) = two(x(half - 1, 0))
val (rightOne, rightTwo) = two(x(x.getWidth - 1, half))
(leftOne || rightOne, leftTwo || rightTwo || (leftOne && rightOne))
}
def apply(x: UInt, n: Int): Bool = n match {
case 0 => true.B
case 1 => x.orR
case 2 => two(x)._2
case 3 => PopCount(x) >= n.U
}
}
// This gets used everywhere, so make the smallest circuit possible ...
// Given an address and size, create a mask of beatBytes size
// eg: (0x3, 0, 4) => 0001, (0x3, 1, 4) => 0011, (0x3, 2, 4) => 1111
// groupBy applies an interleaved OR reduction; groupBy=2 take 0010 => 01
object MaskGen {
def apply(addr_lo: UInt, lgSize: UInt, beatBytes: Int, groupBy: Int = 1): UInt = {
require (groupBy >= 1 && beatBytes >= groupBy)
require (isPow2(beatBytes) && isPow2(groupBy))
val lgBytes = log2Ceil(beatBytes)
val sizeOH = UIntToOH(lgSize | 0.U(log2Up(beatBytes).W), log2Up(beatBytes)) | (groupBy*2 - 1).U
def helper(i: Int): Seq[(Bool, Bool)] = {
if (i == 0) {
Seq((lgSize >= lgBytes.asUInt, true.B))
} else {
val sub = helper(i-1)
val size = sizeOH(lgBytes - i)
val bit = addr_lo(lgBytes - i)
val nbit = !bit
Seq.tabulate (1 << i) { j =>
val (sub_acc, sub_eq) = sub(j/2)
val eq = sub_eq && (if (j % 2 == 1) bit else nbit)
val acc = sub_acc || (size && eq)
(acc, eq)
}
}
}
if (groupBy == beatBytes) 1.U else
Cat(helper(lgBytes-log2Ceil(groupBy)).map(_._1).reverse)
}
}
File AtomicAutomata.scala:
// See LICENSE.SiFive for license details.
package freechips.rocketchip.tilelink
import chisel3._
import chisel3.util._
import org.chipsalliance.cde.config._
import org.chipsalliance.diplomacy.lazymodule._
import freechips.rocketchip.diplomacy.{AddressSet, TransferSizes}
import freechips.rocketchip.util.leftOR
import scala.math.{min,max}
// Ensures that all downstream RW managers support Atomic operations.
// If !passthrough, intercept all Atomics. Otherwise, only intercept those unsupported downstream.
class TLAtomicAutomata(logical: Boolean = true, arithmetic: Boolean = true, concurrency: Int = 1, passthrough: Boolean = true)(implicit p: Parameters) extends LazyModule
{
require (concurrency >= 1)
val node = TLAdapterNode(
managerFn = { case mp => mp.v1copy(managers = mp.managers.map { m =>
val ourSupport = TransferSizes(1, mp.beatBytes)
def widen(x: TransferSizes) = if (passthrough && x.min <= 2*mp.beatBytes) TransferSizes(1, max(mp.beatBytes, x.max)) else ourSupport
val canDoit = m.supportsPutFull.contains(ourSupport) && m.supportsGet.contains(ourSupport)
// Blow up if there are devices to which we cannot add Atomics, because their R|W are too inflexible
require (!m.supportsPutFull || !m.supportsGet || canDoit, s"${m.name} has $ourSupport, needed PutFull(${m.supportsPutFull}) or Get(${m.supportsGet})")
m.v1copy(
supportsArithmetic = if (!arithmetic || !canDoit) m.supportsArithmetic else widen(m.supportsArithmetic),
supportsLogical = if (!logical || !canDoit) m.supportsLogical else widen(m.supportsLogical),
mayDenyGet = m.mayDenyGet || m.mayDenyPut)
})})
lazy val module = new Impl
class Impl extends LazyModuleImp(this) {
(node.in zip node.out) foreach { case ((in, edgeIn), (out, edgeOut)) =>
val managers = edgeOut.manager.managers
val beatBytes = edgeOut.manager.beatBytes
// To which managers are we adding atomic support?
val ourSupport = TransferSizes(1, beatBytes)
val managersNeedingHelp = managers.filter { m =>
m.supportsPutFull.contains(ourSupport) &&
m.supportsGet.contains(ourSupport) &&
((logical && !m.supportsLogical .contains(ourSupport)) ||
(arithmetic && !m.supportsArithmetic.contains(ourSupport)) ||
!passthrough) // we will do atomics for everyone we can
}
// Managers that need help with atomics must necessarily have this node as the root of a tree in the node graph.
// (But they must also ensure no sideband operations can get between the read and write.)
val violations = managersNeedingHelp.flatMap(_.findTreeViolation()).map { node => (node.name, node.inputs.map(_._1.name)) }
require(violations.isEmpty,
s"AtomicAutomata can only help nodes for which it is at the root of a diplomatic node tree," +
"but the following violations were found:\n" +
violations.map(v => s"(${v._1} has parents ${v._2})").mkString("\n"))
// We cannot add atomics to a non-FIFO manager
managersNeedingHelp foreach { m => require (m.fifoId.isDefined) }
// We need to preserve FIFO semantics across FIFO domains, not managers
// Suppose you have Put(42) Atomic(+1) both inflight; valid results: 42 or 43
// If we allow Put(42) Get() Put(+1) concurrent; valid results: 42 43 OR undef
// Making non-FIFO work requires waiting for all Acks to come back (=> use FIFOFixer)
val domainsNeedingHelp = managersNeedingHelp.map(_.fifoId.get).distinct
// Don't overprovision the CAM
val camSize = min(domainsNeedingHelp.size, concurrency)
// Compact the fifoIds to only those we care about
def camFifoId(m: TLSlaveParameters) = m.fifoId.map(id => max(0, domainsNeedingHelp.indexOf(id))).getOrElse(0)
// CAM entry state machine
val FREE = 0.U // unused waiting on Atomic from A
val GET = 3.U // Get sent down A waiting on AccessDataAck from D
val AMO = 2.U // AccessDataAck sent up D waiting for A availability
val ACK = 1.U // Put sent down A waiting for PutAck from D
val params = TLAtomicAutomata.CAMParams(out.a.bits.params, domainsNeedingHelp.size)
// Do we need to do anything at all?
if (camSize > 0) {
val initval = Wire(new TLAtomicAutomata.CAM_S(params))
initval.state := FREE
val cam_s = RegInit(VecInit.fill(camSize)(initval))
val cam_a = Reg(Vec(camSize, new TLAtomicAutomata.CAM_A(params)))
val cam_d = Reg(Vec(camSize, new TLAtomicAutomata.CAM_D(params)))
val cam_free = cam_s.map(_.state === FREE)
val cam_amo = cam_s.map(_.state === AMO)
val cam_abusy = cam_s.map(e => e.state === GET || e.state === AMO) // A is blocked
val cam_dmatch = cam_s.map(e => e.state =/= FREE) // D should inspect these entries
// Can the manager already handle this message?
val a_address = edgeIn.address(in.a.bits)
val a_size = edgeIn.size(in.a.bits)
val a_canLogical = passthrough.B && edgeOut.manager.supportsLogicalFast (a_address, a_size)
val a_canArithmetic = passthrough.B && edgeOut.manager.supportsArithmeticFast(a_address, a_size)
val a_isLogical = in.a.bits.opcode === TLMessages.LogicalData
val a_isArithmetic = in.a.bits.opcode === TLMessages.ArithmeticData
val a_isSupported = Mux(a_isLogical, a_canLogical, Mux(a_isArithmetic, a_canArithmetic, true.B))
// Must we do a Put?
val a_cam_any_put = cam_amo.reduce(_ || _)
val a_cam_por_put = cam_amo.scanLeft(false.B)(_||_).init
val a_cam_sel_put = (cam_amo zip a_cam_por_put) map { case (a, b) => a && !b }
val a_cam_a = PriorityMux(cam_amo, cam_a)
val a_cam_d = PriorityMux(cam_amo, cam_d)
val a_a = a_cam_a.bits.data
val a_d = a_cam_d.data
// Does the A request conflict with an inflight AMO?
val a_fifoId = edgeOut.manager.fastProperty(a_address, camFifoId _, (i:Int) => i.U)
val a_cam_busy = (cam_abusy zip cam_a.map(_.fifoId === a_fifoId)) map { case (a,b) => a&&b } reduce (_||_)
// (Where) are we are allocating in the CAM?
val a_cam_any_free = cam_free.reduce(_ || _)
val a_cam_por_free = cam_free.scanLeft(false.B)(_||_).init
val a_cam_sel_free = (cam_free zip a_cam_por_free) map { case (a,b) => a && !b }
// Logical AMO
val indexes = Seq.tabulate(beatBytes*8) { i => Cat(a_a(i,i), a_d(i,i)) }
val logic_out = Cat(indexes.map(x => a_cam_a.lut(x).asUInt).reverse)
// Arithmetic AMO
val unsigned = a_cam_a.bits.param(1)
val take_max = a_cam_a.bits.param(0)
val adder = a_cam_a.bits.param(2)
val mask = a_cam_a.bits.mask
val signSel = ~(~mask | (mask >> 1))
val signbits_a = Cat(Seq.tabulate(beatBytes) { i => a_a(8*i+7,8*i+7) } .reverse)
val signbits_d = Cat(Seq.tabulate(beatBytes) { i => a_d(8*i+7,8*i+7) } .reverse)
// Move the selected sign bit into the first byte position it will extend
val signbit_a = ((signbits_a & signSel) << 1)(beatBytes-1, 0)
val signbit_d = ((signbits_d & signSel) << 1)(beatBytes-1, 0)
val signext_a = FillInterleaved(8, leftOR(signbit_a))
val signext_d = FillInterleaved(8, leftOR(signbit_d))
// NOTE: sign-extension does not change the relative ordering in EITHER unsigned or signed arithmetic
val wide_mask = FillInterleaved(8, mask)
val a_a_ext = (a_a & wide_mask) | signext_a
val a_d_ext = (a_d & wide_mask) | signext_d
val a_d_inv = Mux(adder, a_d_ext, ~a_d_ext)
val adder_out = a_a_ext + a_d_inv
val h = 8*beatBytes-1 // now sign-extended; use biggest bit
val a_bigger_uneq = unsigned === a_a_ext(h) // result if high bits are unequal
val a_bigger = Mux(a_a_ext(h) === a_d_ext(h), !adder_out(h), a_bigger_uneq)
val pick_a = take_max === a_bigger
val arith_out = Mux(adder, adder_out, Mux(pick_a, a_a, a_d))
// AMO result data
val amo_data =
if (!logical) arith_out else
if (!arithmetic) logic_out else
Mux(a_cam_a.bits.opcode(0), logic_out, arith_out)
// Potentially mutate the message from inner
val source_i = Wire(chiselTypeOf(in.a))
val a_allow = !a_cam_busy && (a_isSupported || a_cam_any_free)
in.a.ready := source_i.ready && a_allow
source_i.valid := in.a.valid && a_allow
source_i.bits := in.a.bits
when (!a_isSupported) { // minimal mux difference
source_i.bits.opcode := TLMessages.Get
source_i.bits.param := 0.U
}
// Potentially take the message from the CAM
val source_c = Wire(chiselTypeOf(in.a))
source_c.valid := a_cam_any_put
source_c.bits := edgeOut.Put(
fromSource = a_cam_a.bits.source,
toAddress = edgeIn.address(a_cam_a.bits),
lgSize = a_cam_a.bits.size,
data = amo_data,
corrupt = a_cam_a.bits.corrupt || a_cam_d.corrupt)._2
source_c.bits.user :<= a_cam_a.bits.user
source_c.bits.echo :<= a_cam_a.bits.echo
// Finishing an AMO from the CAM has highest priority
TLArbiter(TLArbiter.lowestIndexFirst)(out.a, (0.U, source_c), (edgeOut.numBeats1(in.a.bits), source_i))
// Capture the A state into the CAM
when (source_i.fire && !a_isSupported) {
(a_cam_sel_free zip cam_a) foreach { case (en, r) =>
when (en) {
r.fifoId := a_fifoId
r.bits := in.a.bits
r.lut := MuxLookup(in.a.bits.param(1, 0), 0.U(4.W))(Array(
TLAtomics.AND -> 0x8.U,
TLAtomics.OR -> 0xe.U,
TLAtomics.XOR -> 0x6.U,
TLAtomics.SWAP -> 0xc.U))
}
}
(a_cam_sel_free zip cam_s) foreach { case (en, r) =>
when (en) {
r.state := GET
}
}
}
// Advance the put state
when (source_c.fire) {
(a_cam_sel_put zip cam_s) foreach { case (en, r) =>
when (en) {
r.state := ACK
}
}
}
// We need to deal with a potential D response in the same cycle as the A request
val d_first = edgeOut.first(out.d)
val d_cam_sel_raw = cam_a.map(_.bits.source === in.d.bits.source)
val d_cam_sel_match = (d_cam_sel_raw zip cam_dmatch) map { case (a,b) => a&&b }
val d_cam_data = Mux1H(d_cam_sel_match, cam_d.map(_.data))
val d_cam_denied = Mux1H(d_cam_sel_match, cam_d.map(_.denied))
val d_cam_corrupt = Mux1H(d_cam_sel_match, cam_d.map(_.corrupt))
val d_cam_sel_bypass = if (edgeOut.manager.minLatency > 0) false.B else
out.d.bits.source === in.a.bits.source && in.a.valid && !a_isSupported
val d_cam_sel = (a_cam_sel_free zip d_cam_sel_match) map { case (a,d) => Mux(d_cam_sel_bypass, a, d) }
val d_cam_sel_any = d_cam_sel_bypass || d_cam_sel_match.reduce(_ || _)
val d_ackd = out.d.bits.opcode === TLMessages.AccessAckData
val d_ack = out.d.bits.opcode === TLMessages.AccessAck
when (out.d.fire && d_first) {
(d_cam_sel zip cam_d) foreach { case (en, r) =>
when (en && d_ackd) {
r.data := out.d.bits.data
r.denied := out.d.bits.denied
r.corrupt := out.d.bits.corrupt
}
}
(d_cam_sel zip cam_s) foreach { case (en, r) =>
when (en) {
// Note: it is important that this comes AFTER the := GET, so we can go FREE=>GET=>AMO in one cycle
r.state := Mux(d_ackd, AMO, FREE)
}
}
}
val d_drop = d_first && d_ackd && d_cam_sel_any
val d_replace = d_first && d_ack && d_cam_sel_match.reduce(_ || _)
in.d.valid := out.d.valid && !d_drop
out.d.ready := in.d.ready || d_drop
in.d.bits := out.d.bits
when (d_replace) { // minimal muxes
in.d.bits.opcode := TLMessages.AccessAckData
in.d.bits.data := d_cam_data
in.d.bits.corrupt := d_cam_corrupt || out.d.bits.denied
in.d.bits.denied := d_cam_denied || out.d.bits.denied
}
} else {
out.a.valid := in.a.valid
in.a.ready := out.a.ready
out.a.bits := in.a.bits
in.d.valid := out.d.valid
out.d.ready := in.d.ready
in.d.bits := out.d.bits
}
if (edgeOut.manager.anySupportAcquireB && edgeIn.client.anySupportProbe) {
in.b.valid := out.b.valid
out.b.ready := in.b.ready
in.b.bits := out.b.bits
out.c.valid := in.c.valid
in.c.ready := out.c.ready
out.c.bits := in.c.bits
out.e.valid := in.e.valid
in.e.ready := out.e.ready
out.e.bits := in.e.bits
} else {
in.b.valid := false.B
in.c.ready := true.B
in.e.ready := true.B
out.b.ready := true.B
out.c.valid := false.B
out.e.valid := false.B
}
}
}
}
object TLAtomicAutomata
{
def apply(logical: Boolean = true, arithmetic: Boolean = true, concurrency: Int = 1, passthrough: Boolean = true, nameSuffix: Option[String] = None)(implicit p: Parameters): TLNode =
{
val atomics = LazyModule(new TLAtomicAutomata(logical, arithmetic, concurrency, passthrough) {
override lazy val desiredName = (Seq("TLAtomicAutomata") ++ nameSuffix).mkString("_")
})
atomics.node
}
case class CAMParams(a: TLBundleParameters, domainsNeedingHelp: Int)
class CAM_S(val params: CAMParams) extends Bundle {
val state = UInt(2.W)
}
class CAM_A(val params: CAMParams) extends Bundle {
val bits = new TLBundleA(params.a)
val fifoId = UInt(log2Up(params.domainsNeedingHelp).W)
val lut = UInt(4.W)
}
class CAM_D(val params: CAMParams) extends Bundle {
val data = UInt(params.a.dataBits.W)
val denied = Bool()
val corrupt = Bool()
}
}
// Synthesizable unit tests
import freechips.rocketchip.unittest._
class TLRAMAtomicAutomata(txns: Int)(implicit p: Parameters) extends LazyModule {
val fuzz = LazyModule(new TLFuzzer(txns))
val model = LazyModule(new TLRAMModel("AtomicAutomata"))
val ram = LazyModule(new TLRAM(AddressSet(0x0, 0x3ff)))
// Confirm that the AtomicAutomata combines read + write errors
import TLMessages._
val test = new RequestPattern({a: TLBundleA =>
val doesA = a.opcode === ArithmeticData || a.opcode === LogicalData
val doesR = a.opcode === Get || doesA
val doesW = a.opcode === PutFullData || a.opcode === PutPartialData || doesA
(doesR && RequestPattern.overlaps(Seq(AddressSet(0x08, ~0x08)))(a)) ||
(doesW && RequestPattern.overlaps(Seq(AddressSet(0x10, ~0x10)))(a))
})
(ram.node
:= TLErrorEvaluator(test)
:= TLFragmenter(4, 256)
:= TLDelayer(0.1)
:= TLAtomicAutomata()
:= TLDelayer(0.1)
:= TLErrorEvaluator(test, testOn=true, testOff=true)
:= model.node
:= fuzz.node)
lazy val module = new Impl
class Impl extends LazyModuleImp(this) with UnitTestModule {
io.finished := fuzz.module.io.finished
}
}
class TLRAMAtomicAutomataTest(txns: Int = 5000, timeout: Int = 500000)(implicit p: Parameters) extends UnitTest(timeout) {
val dut = Module(LazyModule(new TLRAMAtomicAutomata(txns)).module)
io.finished := dut.io.finished
dut.io.start := io.start
}
File ClockDomain.scala:
package freechips.rocketchip.prci
import chisel3._
import org.chipsalliance.cde.config._
import org.chipsalliance.diplomacy.lazymodule._
abstract class Domain(implicit p: Parameters) extends LazyModule with HasDomainCrossing
{
def clockBundle: ClockBundle
lazy val module = new Impl
class Impl extends LazyRawModuleImp(this) {
childClock := clockBundle.clock
childReset := clockBundle.reset
override def provideImplicitClockToLazyChildren = true
// these are just for backwards compatibility with external devices
// that were manually wiring themselves to the domain's clock/reset input:
val clock = IO(Output(chiselTypeOf(clockBundle.clock)))
val reset = IO(Output(chiselTypeOf(clockBundle.reset)))
clock := clockBundle.clock
reset := clockBundle.reset
}
}
abstract class ClockDomain(implicit p: Parameters) extends Domain with HasClockDomainCrossing
class ClockSinkDomain(val clockSinkParams: ClockSinkParameters)(implicit p: Parameters) extends ClockDomain
{
def this(take: Option[ClockParameters] = None, name: Option[String] = None)(implicit p: Parameters) = this(ClockSinkParameters(take = take, name = name))
val clockNode = ClockSinkNode(Seq(clockSinkParams))
def clockBundle = clockNode.in.head._1
override lazy val desiredName = (clockSinkParams.name.toSeq :+ "ClockSinkDomain").mkString
}
class ClockSourceDomain(val clockSourceParams: ClockSourceParameters)(implicit p: Parameters) extends ClockDomain
{
def this(give: Option[ClockParameters] = None, name: Option[String] = None)(implicit p: Parameters) = this(ClockSourceParameters(give = give, name = name))
val clockNode = ClockSourceNode(Seq(clockSourceParams))
def clockBundle = clockNode.out.head._1
override lazy val desiredName = (clockSourceParams.name.toSeq :+ "ClockSourceDomain").mkString
}
abstract class ResetDomain(implicit p: Parameters) extends Domain with HasResetDomainCrossing
File PeripheryBus.scala:
// See LICENSE.SiFive for license details.
package freechips.rocketchip.subsystem
import org.chipsalliance.cde.config._
import org.chipsalliance.diplomacy.lazymodule._
import freechips.rocketchip.devices.tilelink.{BuiltInZeroDeviceParams, BuiltInErrorDeviceParams, HasBuiltInDeviceParams, BuiltInDevices}
import freechips.rocketchip.diplomacy.BufferParams
import freechips.rocketchip.tilelink.{
RegionReplicator, ReplicatedRegion, HasTLBusParams, HasRegionReplicatorParams, TLBusWrapper,
TLBusWrapperInstantiationLike, TLFIFOFixer, TLNode, TLXbar, TLInwardNode, TLOutwardNode,
TLBuffer, TLWidthWidget, TLAtomicAutomata, TLEdge
}
import freechips.rocketchip.util.Location
case class BusAtomics(
arithmetic: Boolean = true,
buffer: BufferParams = BufferParams.default,
widenBytes: Option[Int] = None
)
case class PeripheryBusParams(
beatBytes: Int,
blockBytes: Int,
atomics: Option[BusAtomics] = Some(BusAtomics()),
dtsFrequency: Option[BigInt] = None,
zeroDevice: Option[BuiltInZeroDeviceParams] = None,
errorDevice: Option[BuiltInErrorDeviceParams] = None,
replication: Option[ReplicatedRegion] = None)
extends HasTLBusParams
with HasBuiltInDeviceParams
with HasRegionReplicatorParams
with TLBusWrapperInstantiationLike
{
def instantiate(context: HasTileLinkLocations, loc: Location[TLBusWrapper])(implicit p: Parameters): PeripheryBus = {
val pbus = LazyModule(new PeripheryBus(this, loc.name))
pbus.suggestName(loc.name)
context.tlBusWrapperLocationMap += (loc -> pbus)
pbus
}
}
class PeripheryBus(params: PeripheryBusParams, name: String)(implicit p: Parameters)
extends TLBusWrapper(params, name)
{
override lazy val desiredName = s"PeripheryBus_$name"
private val replicator = params.replication.map(r => LazyModule(new RegionReplicator(r)))
val prefixNode = replicator.map { r =>
r.prefix := addressPrefixNexusNode
addressPrefixNexusNode
}
private val fixer = LazyModule(new TLFIFOFixer(TLFIFOFixer.all))
private val node: TLNode = params.atomics.map { pa =>
val in_xbar = LazyModule(new TLXbar(nameSuffix = Some(s"${name}_in")))
val out_xbar = LazyModule(new TLXbar(nameSuffix = Some(s"${name}_out")))
val fixer_node = replicator.map(fixer.node :*= _.node).getOrElse(fixer.node)
(out_xbar.node
:*= fixer_node
:*= TLBuffer(pa.buffer)
:*= (pa.widenBytes.filter(_ > beatBytes).map { w =>
TLWidthWidget(w) :*= TLAtomicAutomata(arithmetic = pa.arithmetic, nameSuffix = Some(name))
} .getOrElse { TLAtomicAutomata(arithmetic = pa.arithmetic, nameSuffix = Some(name)) })
:*= in_xbar.node)
} .getOrElse { TLXbar() :*= fixer.node }
def inwardNode: TLInwardNode = node
def outwardNode: TLOutwardNode = node
def busView: TLEdge = fixer.node.edges.in.head
val builtInDevices: BuiltInDevices = BuiltInDevices.attach(params, outwardNode)
}
File ClockGroup.scala:
// See LICENSE.SiFive for license details.
package freechips.rocketchip.prci
import org.chipsalliance.cde.config._
import org.chipsalliance.diplomacy._
import org.chipsalliance.diplomacy.lazymodule._
import org.chipsalliance.diplomacy.nodes._
import freechips.rocketchip.resources.FixedClockResource
case class ClockGroupingNode(groupName: String)(implicit valName: ValName)
extends MixedNexusNode(ClockGroupImp, ClockImp)(
dFn = { _ => ClockSourceParameters() },
uFn = { seq => ClockGroupSinkParameters(name = groupName, members = seq) })
{
override def circuitIdentity = outputs.size == 1
}
class ClockGroup(groupName: String)(implicit p: Parameters) extends LazyModule
{
val node = ClockGroupingNode(groupName)
lazy val module = new Impl
class Impl extends LazyRawModuleImp(this) {
val (in, _) = node.in(0)
val (out, _) = node.out.unzip
require (node.in.size == 1)
require (in.member.size == out.size)
(in.member.data zip out) foreach { case (i, o) => o := i }
}
}
object ClockGroup
{
def apply()(implicit p: Parameters, valName: ValName) = LazyModule(new ClockGroup(valName.name)).node
}
case class ClockGroupAggregateNode(groupName: String)(implicit valName: ValName)
extends NexusNode(ClockGroupImp)(
dFn = { _ => ClockGroupSourceParameters() },
uFn = { seq => ClockGroupSinkParameters(name = groupName, members = seq.flatMap(_.members))})
{
override def circuitIdentity = outputs.size == 1
}
class ClockGroupAggregator(groupName: String)(implicit p: Parameters) extends LazyModule
{
val node = ClockGroupAggregateNode(groupName)
override lazy val desiredName = s"ClockGroupAggregator_$groupName"
lazy val module = new Impl
class Impl extends LazyRawModuleImp(this) {
val (in, _) = node.in.unzip
val (out, _) = node.out.unzip
val outputs = out.flatMap(_.member.data)
require (node.in.size == 1, s"Aggregator for groupName: ${groupName} had ${node.in.size} inward edges instead of 1")
require (in.head.member.size == outputs.size)
in.head.member.data.zip(outputs).foreach { case (i, o) => o := i }
}
}
object ClockGroupAggregator
{
def apply()(implicit p: Parameters, valName: ValName) = LazyModule(new ClockGroupAggregator(valName.name)).node
}
class SimpleClockGroupSource(numSources: Int = 1)(implicit p: Parameters) extends LazyModule
{
val node = ClockGroupSourceNode(List.fill(numSources) { ClockGroupSourceParameters() })
lazy val module = new Impl
class Impl extends LazyModuleImp(this) {
val (out, _) = node.out.unzip
out.map { out: ClockGroupBundle =>
out.member.data.foreach { o =>
o.clock := clock; o.reset := reset }
}
}
}
object SimpleClockGroupSource
{
def apply(num: Int = 1)(implicit p: Parameters, valName: ValName) = LazyModule(new SimpleClockGroupSource(num)).node
}
case class FixedClockBroadcastNode(fixedClockOpt: Option[ClockParameters])(implicit valName: ValName)
extends NexusNode(ClockImp)(
dFn = { seq => fixedClockOpt.map(_ => ClockSourceParameters(give = fixedClockOpt)).orElse(seq.headOption).getOrElse(ClockSourceParameters()) },
uFn = { seq => fixedClockOpt.map(_ => ClockSinkParameters(take = fixedClockOpt)).orElse(seq.headOption).getOrElse(ClockSinkParameters()) },
inputRequiresOutput = false) {
def fixedClockResources(name: String, prefix: String = "soc/"): Seq[Option[FixedClockResource]] = Seq(fixedClockOpt.map(t => new FixedClockResource(name, t.freqMHz, prefix)))
}
class FixedClockBroadcast(fixedClockOpt: Option[ClockParameters])(implicit p: Parameters) extends LazyModule
{
val node = new FixedClockBroadcastNode(fixedClockOpt) {
override def circuitIdentity = outputs.size == 1
}
lazy val module = new Impl
class Impl extends LazyRawModuleImp(this) {
val (in, _) = node.in(0)
val (out, _) = node.out.unzip
override def desiredName = s"FixedClockBroadcast_${out.size}"
require (node.in.size == 1, "FixedClockBroadcast can only broadcast a single clock")
out.foreach { _ := in }
}
}
object FixedClockBroadcast
{
def apply(fixedClockOpt: Option[ClockParameters] = None)(implicit p: Parameters, valName: ValName) = LazyModule(new FixedClockBroadcast(fixedClockOpt)).node
}
case class PRCIClockGroupNode()(implicit valName: ValName)
extends NexusNode(ClockGroupImp)(
dFn = { _ => ClockGroupSourceParameters() },
uFn = { _ => ClockGroupSinkParameters("prci", Nil) },
outputRequiresInput = false)
File WidthWidget.scala:
// See LICENSE.SiFive for license details.
package freechips.rocketchip.tilelink
import chisel3._
import chisel3.util._
import org.chipsalliance.cde.config._
import org.chipsalliance.diplomacy.lazymodule._
import freechips.rocketchip.diplomacy.AddressSet
import freechips.rocketchip.util.{Repeater, UIntToOH1}
// innBeatBytes => the new client-facing bus width
class TLWidthWidget(innerBeatBytes: Int)(implicit p: Parameters) extends LazyModule
{
private def noChangeRequired(manager: TLManagerPortParameters) = manager.beatBytes == innerBeatBytes
val node = new TLAdapterNode(
clientFn = { case c => c },
managerFn = { case m => m.v1copy(beatBytes = innerBeatBytes) }){
override def circuitIdentity = edges.out.map(_.manager).forall(noChangeRequired)
}
override lazy val desiredName = s"TLWidthWidget$innerBeatBytes"
lazy val module = new Impl
class Impl extends LazyModuleImp(this) {
def merge[T <: TLDataChannel](edgeIn: TLEdge, in: DecoupledIO[T], edgeOut: TLEdge, out: DecoupledIO[T]) = {
val inBytes = edgeIn.manager.beatBytes
val outBytes = edgeOut.manager.beatBytes
val ratio = outBytes / inBytes
val keepBits = log2Ceil(outBytes)
val dropBits = log2Ceil(inBytes)
val countBits = log2Ceil(ratio)
val size = edgeIn.size(in.bits)
val hasData = edgeIn.hasData(in.bits)
val limit = UIntToOH1(size, keepBits) >> dropBits
val count = RegInit(0.U(countBits.W))
val first = count === 0.U
val last = count === limit || !hasData
val enable = Seq.tabulate(ratio) { i => !((count ^ i.U) & limit).orR }
val corrupt_reg = RegInit(false.B)
val corrupt_in = edgeIn.corrupt(in.bits)
val corrupt_out = corrupt_in || corrupt_reg
when (in.fire) {
count := count + 1.U
corrupt_reg := corrupt_out
when (last) {
count := 0.U
corrupt_reg := false.B
}
}
def helper(idata: UInt): UInt = {
// rdata is X until the first time a multi-beat write occurs.
// Prevent the X from leaking outside by jamming the mux control until
// the first time rdata is written (and hence no longer X).
val rdata_written_once = RegInit(false.B)
val masked_enable = enable.map(_ || !rdata_written_once)
val odata = Seq.fill(ratio) { WireInit(idata) }
val rdata = Reg(Vec(ratio-1, chiselTypeOf(idata)))
val pdata = rdata :+ idata
val mdata = (masked_enable zip (odata zip pdata)) map { case (e, (o, p)) => Mux(e, o, p) }
when (in.fire && !last) {
rdata_written_once := true.B
(rdata zip mdata) foreach { case (r, m) => r := m }
}
Cat(mdata.reverse)
}
in.ready := out.ready || !last
out.valid := in.valid && last
out.bits := in.bits
// Don't put down hardware if we never carry data
edgeOut.data(out.bits) := (if (edgeIn.staticHasData(in.bits) == Some(false)) 0.U else helper(edgeIn.data(in.bits)))
edgeOut.corrupt(out.bits) := corrupt_out
(out.bits, in.bits) match {
case (o: TLBundleA, i: TLBundleA) => o.mask := edgeOut.mask(o.address, o.size) & Mux(hasData, helper(i.mask), ~0.U(outBytes.W))
case (o: TLBundleB, i: TLBundleB) => o.mask := edgeOut.mask(o.address, o.size) & Mux(hasData, helper(i.mask), ~0.U(outBytes.W))
case (o: TLBundleC, i: TLBundleC) => ()
case (o: TLBundleD, i: TLBundleD) => ()
case _ => require(false, "Impossible bundle combination in WidthWidget")
}
}
def split[T <: TLDataChannel](edgeIn: TLEdge, in: DecoupledIO[T], edgeOut: TLEdge, out: DecoupledIO[T], sourceMap: UInt => UInt) = {
val inBytes = edgeIn.manager.beatBytes
val outBytes = edgeOut.manager.beatBytes
val ratio = inBytes / outBytes
val keepBits = log2Ceil(inBytes)
val dropBits = log2Ceil(outBytes)
val countBits = log2Ceil(ratio)
val size = edgeIn.size(in.bits)
val hasData = edgeIn.hasData(in.bits)
val limit = UIntToOH1(size, keepBits) >> dropBits
val count = RegInit(0.U(countBits.W))
val first = count === 0.U
val last = count === limit || !hasData
when (out.fire) {
count := count + 1.U
when (last) { count := 0.U }
}
// For sub-beat transfer, extract which part matters
val sel = in.bits match {
case a: TLBundleA => a.address(keepBits-1, dropBits)
case b: TLBundleB => b.address(keepBits-1, dropBits)
case c: TLBundleC => c.address(keepBits-1, dropBits)
case d: TLBundleD => {
val sel = sourceMap(d.source)
val hold = Mux(first, sel, RegEnable(sel, first)) // a_first is not for whole xfer
hold & ~limit // if more than one a_first/xfer, the address must be aligned anyway
}
}
val index = sel | count
def helper(idata: UInt, width: Int): UInt = {
val mux = VecInit.tabulate(ratio) { i => idata((i+1)*outBytes*width-1, i*outBytes*width) }
mux(index)
}
out.bits := in.bits
out.valid := in.valid
in.ready := out.ready
// Don't put down hardware if we never carry data
edgeOut.data(out.bits) := (if (edgeIn.staticHasData(in.bits) == Some(false)) 0.U else helper(edgeIn.data(in.bits), 8))
(out.bits, in.bits) match {
case (o: TLBundleA, i: TLBundleA) => o.mask := helper(i.mask, 1)
case (o: TLBundleB, i: TLBundleB) => o.mask := helper(i.mask, 1)
case (o: TLBundleC, i: TLBundleC) => () // replicating corrupt to all beats is ok
case (o: TLBundleD, i: TLBundleD) => ()
case _ => require(false, "Impossbile bundle combination in WidthWidget")
}
// Repeat the input if we're not last
!last
}
def splice[T <: TLDataChannel](edgeIn: TLEdge, in: DecoupledIO[T], edgeOut: TLEdge, out: DecoupledIO[T], sourceMap: UInt => UInt) = {
if (edgeIn.manager.beatBytes == edgeOut.manager.beatBytes) {
// nothing to do; pass it through
out.bits := in.bits
out.valid := in.valid
in.ready := out.ready
} else if (edgeIn.manager.beatBytes > edgeOut.manager.beatBytes) {
// split input to output
val repeat = Wire(Bool())
val repeated = Repeater(in, repeat)
val cated = Wire(chiselTypeOf(repeated))
cated <> repeated
edgeIn.data(cated.bits) := Cat(
edgeIn.data(repeated.bits)(edgeIn.manager.beatBytes*8-1, edgeOut.manager.beatBytes*8),
edgeIn.data(in.bits)(edgeOut.manager.beatBytes*8-1, 0))
repeat := split(edgeIn, cated, edgeOut, out, sourceMap)
} else {
// merge input to output
merge(edgeIn, in, edgeOut, out)
}
}
(node.in zip node.out) foreach { case ((in, edgeIn), (out, edgeOut)) =>
// If the master is narrower than the slave, the D channel must be narrowed.
// This is tricky, because the D channel has no address data.
// Thus, you don't know which part of a sub-beat transfer to extract.
// To fix this, we record the relevant address bits for all sources.
// The assumption is that this sort of situation happens only where
// you connect a narrow master to the system bus, so there are few sources.
def sourceMap(source_bits: UInt) = {
val source = if (edgeIn.client.endSourceId == 1) 0.U(0.W) else source_bits
require (edgeOut.manager.beatBytes > edgeIn.manager.beatBytes)
val keepBits = log2Ceil(edgeOut.manager.beatBytes)
val dropBits = log2Ceil(edgeIn.manager.beatBytes)
val sources = Reg(Vec(edgeIn.client.endSourceId, UInt((keepBits-dropBits).W)))
val a_sel = in.a.bits.address(keepBits-1, dropBits)
when (in.a.fire) {
if (edgeIn.client.endSourceId == 1) { // avoid extraction-index-width warning
sources(0) := a_sel
} else {
sources(in.a.bits.source) := a_sel
}
}
// depopulate unused source registers:
edgeIn.client.unusedSources.foreach { id => sources(id) := 0.U }
val bypass = in.a.valid && in.a.bits.source === source
if (edgeIn.manager.minLatency > 0) sources(source)
else Mux(bypass, a_sel, sources(source))
}
splice(edgeIn, in.a, edgeOut, out.a, sourceMap)
splice(edgeOut, out.d, edgeIn, in.d, sourceMap)
if (edgeOut.manager.anySupportAcquireB && edgeIn.client.anySupportProbe) {
splice(edgeOut, out.b, edgeIn, in.b, sourceMap)
splice(edgeIn, in.c, edgeOut, out.c, sourceMap)
out.e.valid := in.e.valid
out.e.bits := in.e.bits
in.e.ready := out.e.ready
} else {
in.b.valid := false.B
in.c.ready := true.B
in.e.ready := true.B
out.b.ready := true.B
out.c.valid := false.B
out.e.valid := false.B
}
}
}
}
object TLWidthWidget
{
def apply(innerBeatBytes: Int)(implicit p: Parameters): TLNode =
{
val widget = LazyModule(new TLWidthWidget(innerBeatBytes))
widget.node
}
def apply(wrapper: TLBusWrapper)(implicit p: Parameters): TLNode = apply(wrapper.beatBytes)
}
// Synthesizable unit tests
import freechips.rocketchip.unittest._
class TLRAMWidthWidget(first: Int, second: Int, txns: Int)(implicit p: Parameters) extends LazyModule {
val fuzz = LazyModule(new TLFuzzer(txns))
val model = LazyModule(new TLRAMModel("WidthWidget"))
val ram = LazyModule(new TLRAM(AddressSet(0x0, 0x3ff)))
(ram.node
:= TLDelayer(0.1)
:= TLFragmenter(4, 256)
:= TLWidthWidget(second)
:= TLWidthWidget(first)
:= TLDelayer(0.1)
:= model.node
:= fuzz.node)
lazy val module = new Impl
class Impl extends LazyModuleImp(this) with UnitTestModule {
io.finished := fuzz.module.io.finished
}
}
class TLRAMWidthWidgetTest(little: Int, big: Int, txns: Int = 5000, timeout: Int = 500000)(implicit p: Parameters) extends UnitTest(timeout) {
val dut = Module(LazyModule(new TLRAMWidthWidget(little,big,txns)).module)
dut.io.start := DontCare
io.finished := dut.io.finished
}
File LazyModuleImp.scala:
package org.chipsalliance.diplomacy.lazymodule
import chisel3.{withClockAndReset, Module, RawModule, Reset, _}
import chisel3.experimental.{ChiselAnnotation, CloneModuleAsRecord, SourceInfo}
import firrtl.passes.InlineAnnotation
import org.chipsalliance.cde.config.Parameters
import org.chipsalliance.diplomacy.nodes.Dangle
import scala.collection.immutable.SortedMap
/** Trait describing the actual [[Module]] implementation wrapped by a [[LazyModule]].
*
* This is the actual Chisel module that is lazily-evaluated in the second phase of Diplomacy.
*/
sealed trait LazyModuleImpLike extends RawModule {
/** [[LazyModule]] that contains this instance. */
val wrapper: LazyModule
/** IOs that will be automatically "punched" for this instance. */
val auto: AutoBundle
/** The metadata that describes the [[HalfEdge]]s which generated [[auto]]. */
protected[diplomacy] val dangles: Seq[Dangle]
// [[wrapper.module]] had better not be accessed while LazyModules are still being built!
require(
LazyModule.scope.isEmpty,
s"${wrapper.name}.module was constructed before LazyModule() was run on ${LazyModule.scope.get.name}"
)
/** Set module name. Defaults to the containing LazyModule's desiredName. */
override def desiredName: String = wrapper.desiredName
suggestName(wrapper.suggestedName)
/** [[Parameters]] for chisel [[Module]]s. */
implicit val p: Parameters = wrapper.p
/** instantiate this [[LazyModule]], return [[AutoBundle]] and a unconnected [[Dangle]]s from this module and
* submodules.
*/
protected[diplomacy] def instantiate(): (AutoBundle, List[Dangle]) = {
// 1. It will recursively append [[wrapper.children]] into [[chisel3.internal.Builder]],
// 2. return [[Dangle]]s from each module.
val childDangles = wrapper.children.reverse.flatMap { c =>
implicit val sourceInfo: SourceInfo = c.info
c.cloneProto.map { cp =>
// If the child is a clone, then recursively set cloneProto of its children as well
def assignCloneProtos(bases: Seq[LazyModule], clones: Seq[LazyModule]): Unit = {
require(bases.size == clones.size)
(bases.zip(clones)).map { case (l, r) =>
require(l.getClass == r.getClass, s"Cloned children class mismatch ${l.name} != ${r.name}")
l.cloneProto = Some(r)
assignCloneProtos(l.children, r.children)
}
}
assignCloneProtos(c.children, cp.children)
// Clone the child module as a record, and get its [[AutoBundle]]
val clone = CloneModuleAsRecord(cp.module).suggestName(c.suggestedName)
val clonedAuto = clone("auto").asInstanceOf[AutoBundle]
// Get the empty [[Dangle]]'s of the cloned child
val rawDangles = c.cloneDangles()
require(rawDangles.size == clonedAuto.elements.size)
// Assign the [[AutoBundle]] fields of the cloned record to the empty [[Dangle]]'s
val dangles = (rawDangles.zip(clonedAuto.elements)).map { case (d, (_, io)) => d.copy(dataOpt = Some(io)) }
dangles
}.getOrElse {
// For non-clones, instantiate the child module
val mod = try {
Module(c.module)
} catch {
case e: ChiselException => {
println(s"Chisel exception caught when instantiating ${c.name} within ${this.name} at ${c.line}")
throw e
}
}
mod.dangles
}
}
// Ask each node in this [[LazyModule]] to call [[BaseNode.instantiate]].
// This will result in a sequence of [[Dangle]] from these [[BaseNode]]s.
val nodeDangles = wrapper.nodes.reverse.flatMap(_.instantiate())
// Accumulate all the [[Dangle]]s from this node and any accumulated from its [[wrapper.children]]
val allDangles = nodeDangles ++ childDangles
// Group [[allDangles]] by their [[source]].
val pairing = SortedMap(allDangles.groupBy(_.source).toSeq: _*)
// For each [[source]] set of [[Dangle]]s of size 2, ensure that these
// can be connected as a source-sink pair (have opposite flipped value).
// Make the connection and mark them as [[done]].
val done = Set() ++ pairing.values.filter(_.size == 2).map {
case Seq(a, b) =>
require(a.flipped != b.flipped)
// @todo <> in chisel3 makes directionless connection.
if (a.flipped) {
a.data <> b.data
} else {
b.data <> a.data
}
a.source
case _ => None
}
// Find all [[Dangle]]s which are still not connected. These will end up as [[AutoBundle]] [[IO]] ports on the module.
val forward = allDangles.filter(d => !done(d.source))
// Generate [[AutoBundle]] IO from [[forward]].
val auto = IO(new AutoBundle(forward.map { d => (d.name, d.data, d.flipped) }: _*))
// Pass the [[Dangle]]s which remained and were used to generate the [[AutoBundle]] I/O ports up to the [[parent]] [[LazyModule]]
val dangles = (forward.zip(auto.elements)).map { case (d, (_, io)) =>
if (d.flipped) {
d.data <> io
} else {
io <> d.data
}
d.copy(dataOpt = Some(io), name = wrapper.suggestedName + "_" + d.name)
}
// Push all [[LazyModule.inModuleBody]] to [[chisel3.internal.Builder]].
wrapper.inModuleBody.reverse.foreach {
_()
}
if (wrapper.shouldBeInlined) {
chisel3.experimental.annotate(new ChiselAnnotation {
def toFirrtl = InlineAnnotation(toNamed)
})
}
// Return [[IO]] and [[Dangle]] of this [[LazyModuleImp]].
(auto, dangles)
}
}
/** Actual description of a [[Module]] which can be instantiated by a call to [[LazyModule.module]].
*
* @param wrapper
* the [[LazyModule]] from which the `.module` call is being made.
*/
class LazyModuleImp(val wrapper: LazyModule) extends Module with LazyModuleImpLike {
/** Instantiate hardware of this `Module`. */
val (auto, dangles) = instantiate()
}
/** Actual description of a [[RawModule]] which can be instantiated by a call to [[LazyModule.module]].
*
* @param wrapper
* the [[LazyModule]] from which the `.module` call is being made.
*/
class LazyRawModuleImp(val wrapper: LazyModule) extends RawModule with LazyModuleImpLike {
// These wires are the default clock+reset for all LazyModule children.
// It is recommended to drive these even if you manually drive the [[clock]] and [[reset]] of all of the
// [[LazyRawModuleImp]] children.
// Otherwise, anonymous children ([[Monitor]]s for example) will not have their [[clock]] and/or [[reset]] driven properly.
/** drive clock explicitly. */
val childClock: Clock = Wire(Clock())
/** drive reset explicitly. */
val childReset: Reset = Wire(Reset())
// the default is that these are disabled
childClock := false.B.asClock
childReset := chisel3.DontCare
def provideImplicitClockToLazyChildren: Boolean = false
val (auto, dangles) =
if (provideImplicitClockToLazyChildren) {
withClockAndReset(childClock, childReset) { instantiate() }
} else {
instantiate()
}
}
File Parameters.scala:
// See LICENSE.SiFive for license details.
package freechips.rocketchip.tilelink
import chisel3._
import chisel3.util._
import chisel3.experimental.SourceInfo
import org.chipsalliance.cde.config._
import org.chipsalliance.diplomacy.nodes._
import freechips.rocketchip.diplomacy.{
AddressDecoder, AddressSet, BufferParams, DirectedBuffers, IdMap, IdMapEntry,
IdRange, RegionType, TransferSizes
}
import freechips.rocketchip.resources.{Resource, ResourceAddress, ResourcePermissions}
import freechips.rocketchip.util.{
AsyncQueueParams, BundleField, BundleFieldBase, BundleKeyBase,
CreditedDelay, groupByIntoSeq, RationalDirection, SimpleProduct
}
import scala.math.max
//These transfer sizes describe requests issued from masters on the A channel that will be responded by slaves on the D channel
case class TLMasterToSlaveTransferSizes(
// Supports both Acquire+Release of the following two sizes:
acquireT: TransferSizes = TransferSizes.none,
acquireB: TransferSizes = TransferSizes.none,
arithmetic: TransferSizes = TransferSizes.none,
logical: TransferSizes = TransferSizes.none,
get: TransferSizes = TransferSizes.none,
putFull: TransferSizes = TransferSizes.none,
putPartial: TransferSizes = TransferSizes.none,
hint: TransferSizes = TransferSizes.none)
extends TLCommonTransferSizes {
def intersect(rhs: TLMasterToSlaveTransferSizes) = TLMasterToSlaveTransferSizes(
acquireT = acquireT .intersect(rhs.acquireT),
acquireB = acquireB .intersect(rhs.acquireB),
arithmetic = arithmetic.intersect(rhs.arithmetic),
logical = logical .intersect(rhs.logical),
get = get .intersect(rhs.get),
putFull = putFull .intersect(rhs.putFull),
putPartial = putPartial.intersect(rhs.putPartial),
hint = hint .intersect(rhs.hint))
def mincover(rhs: TLMasterToSlaveTransferSizes) = TLMasterToSlaveTransferSizes(
acquireT = acquireT .mincover(rhs.acquireT),
acquireB = acquireB .mincover(rhs.acquireB),
arithmetic = arithmetic.mincover(rhs.arithmetic),
logical = logical .mincover(rhs.logical),
get = get .mincover(rhs.get),
putFull = putFull .mincover(rhs.putFull),
putPartial = putPartial.mincover(rhs.putPartial),
hint = hint .mincover(rhs.hint))
// Reduce rendering to a simple yes/no per field
override def toString = {
def str(x: TransferSizes, flag: String) = if (x.none) "" else flag
def flags = Vector(
str(acquireT, "T"),
str(acquireB, "B"),
str(arithmetic, "A"),
str(logical, "L"),
str(get, "G"),
str(putFull, "F"),
str(putPartial, "P"),
str(hint, "H"))
flags.mkString
}
// Prints out the actual information in a user readable way
def infoString = {
s"""acquireT = ${acquireT}
|acquireB = ${acquireB}
|arithmetic = ${arithmetic}
|logical = ${logical}
|get = ${get}
|putFull = ${putFull}
|putPartial = ${putPartial}
|hint = ${hint}
|
|""".stripMargin
}
}
object TLMasterToSlaveTransferSizes {
def unknownEmits = TLMasterToSlaveTransferSizes(
acquireT = TransferSizes(1, 4096),
acquireB = TransferSizes(1, 4096),
arithmetic = TransferSizes(1, 4096),
logical = TransferSizes(1, 4096),
get = TransferSizes(1, 4096),
putFull = TransferSizes(1, 4096),
putPartial = TransferSizes(1, 4096),
hint = TransferSizes(1, 4096))
def unknownSupports = TLMasterToSlaveTransferSizes()
}
//These transfer sizes describe requests issued from slaves on the B channel that will be responded by masters on the C channel
case class TLSlaveToMasterTransferSizes(
probe: TransferSizes = TransferSizes.none,
arithmetic: TransferSizes = TransferSizes.none,
logical: TransferSizes = TransferSizes.none,
get: TransferSizes = TransferSizes.none,
putFull: TransferSizes = TransferSizes.none,
putPartial: TransferSizes = TransferSizes.none,
hint: TransferSizes = TransferSizes.none
) extends TLCommonTransferSizes {
def intersect(rhs: TLSlaveToMasterTransferSizes) = TLSlaveToMasterTransferSizes(
probe = probe .intersect(rhs.probe),
arithmetic = arithmetic.intersect(rhs.arithmetic),
logical = logical .intersect(rhs.logical),
get = get .intersect(rhs.get),
putFull = putFull .intersect(rhs.putFull),
putPartial = putPartial.intersect(rhs.putPartial),
hint = hint .intersect(rhs.hint)
)
def mincover(rhs: TLSlaveToMasterTransferSizes) = TLSlaveToMasterTransferSizes(
probe = probe .mincover(rhs.probe),
arithmetic = arithmetic.mincover(rhs.arithmetic),
logical = logical .mincover(rhs.logical),
get = get .mincover(rhs.get),
putFull = putFull .mincover(rhs.putFull),
putPartial = putPartial.mincover(rhs.putPartial),
hint = hint .mincover(rhs.hint)
)
// Reduce rendering to a simple yes/no per field
override def toString = {
def str(x: TransferSizes, flag: String) = if (x.none) "" else flag
def flags = Vector(
str(probe, "P"),
str(arithmetic, "A"),
str(logical, "L"),
str(get, "G"),
str(putFull, "F"),
str(putPartial, "P"),
str(hint, "H"))
flags.mkString
}
// Prints out the actual information in a user readable way
def infoString = {
s"""probe = ${probe}
|arithmetic = ${arithmetic}
|logical = ${logical}
|get = ${get}
|putFull = ${putFull}
|putPartial = ${putPartial}
|hint = ${hint}
|
|""".stripMargin
}
}
object TLSlaveToMasterTransferSizes {
def unknownEmits = TLSlaveToMasterTransferSizes(
arithmetic = TransferSizes(1, 4096),
logical = TransferSizes(1, 4096),
get = TransferSizes(1, 4096),
putFull = TransferSizes(1, 4096),
putPartial = TransferSizes(1, 4096),
hint = TransferSizes(1, 4096),
probe = TransferSizes(1, 4096))
def unknownSupports = TLSlaveToMasterTransferSizes()
}
trait TLCommonTransferSizes {
def arithmetic: TransferSizes
def logical: TransferSizes
def get: TransferSizes
def putFull: TransferSizes
def putPartial: TransferSizes
def hint: TransferSizes
}
class TLSlaveParameters private(
val nodePath: Seq[BaseNode],
val resources: Seq[Resource],
setName: Option[String],
val address: Seq[AddressSet],
val regionType: RegionType.T,
val executable: Boolean,
val fifoId: Option[Int],
val supports: TLMasterToSlaveTransferSizes,
val emits: TLSlaveToMasterTransferSizes,
// By default, slaves are forbidden from issuing 'denied' responses (it prevents Fragmentation)
val alwaysGrantsT: Boolean, // typically only true for CacheCork'd read-write devices; dual: neverReleaseData
// If fifoId=Some, all accesses sent to the same fifoId are executed and ACK'd in FIFO order
// Note: you can only rely on this FIFO behaviour if your TLMasterParameters include requestFifo
val mayDenyGet: Boolean, // applies to: AccessAckData, GrantData
val mayDenyPut: Boolean) // applies to: AccessAck, Grant, HintAck
// ReleaseAck may NEVER be denied
extends SimpleProduct
{
def sortedAddress = address.sorted
override def canEqual(that: Any): Boolean = that.isInstanceOf[TLSlaveParameters]
override def productPrefix = "TLSlaveParameters"
// We intentionally omit nodePath for equality testing / formatting
def productArity: Int = 11
def productElement(n: Int): Any = n match {
case 0 => name
case 1 => address
case 2 => resources
case 3 => regionType
case 4 => executable
case 5 => fifoId
case 6 => supports
case 7 => emits
case 8 => alwaysGrantsT
case 9 => mayDenyGet
case 10 => mayDenyPut
case _ => throw new IndexOutOfBoundsException(n.toString)
}
def supportsAcquireT: TransferSizes = supports.acquireT
def supportsAcquireB: TransferSizes = supports.acquireB
def supportsArithmetic: TransferSizes = supports.arithmetic
def supportsLogical: TransferSizes = supports.logical
def supportsGet: TransferSizes = supports.get
def supportsPutFull: TransferSizes = supports.putFull
def supportsPutPartial: TransferSizes = supports.putPartial
def supportsHint: TransferSizes = supports.hint
require (!address.isEmpty, "Address cannot be empty")
address.foreach { a => require (a.finite, "Address must be finite") }
address.combinations(2).foreach { case Seq(x,y) => require (!x.overlaps(y), s"$x and $y overlap.") }
require (supportsPutFull.contains(supportsPutPartial), s"PutFull($supportsPutFull) < PutPartial($supportsPutPartial)")
require (supportsPutFull.contains(supportsArithmetic), s"PutFull($supportsPutFull) < Arithmetic($supportsArithmetic)")
require (supportsPutFull.contains(supportsLogical), s"PutFull($supportsPutFull) < Logical($supportsLogical)")
require (supportsGet.contains(supportsArithmetic), s"Get($supportsGet) < Arithmetic($supportsArithmetic)")
require (supportsGet.contains(supportsLogical), s"Get($supportsGet) < Logical($supportsLogical)")
require (supportsAcquireB.contains(supportsAcquireT), s"AcquireB($supportsAcquireB) < AcquireT($supportsAcquireT)")
require (!alwaysGrantsT || supportsAcquireT, s"Must supportAcquireT if promising to always grantT")
// Make sure that the regionType agrees with the capabilities
require (!supportsAcquireB || regionType >= RegionType.UNCACHED) // acquire -> uncached, tracked, cached
require (regionType <= RegionType.UNCACHED || supportsAcquireB) // tracked, cached -> acquire
require (regionType != RegionType.UNCACHED || supportsGet) // uncached -> supportsGet
val name = setName.orElse(nodePath.lastOption.map(_.lazyModule.name)).getOrElse("disconnected")
val maxTransfer = List( // Largest supported transfer of all types
supportsAcquireT.max,
supportsAcquireB.max,
supportsArithmetic.max,
supportsLogical.max,
supportsGet.max,
supportsPutFull.max,
supportsPutPartial.max).max
val maxAddress = address.map(_.max).max
val minAlignment = address.map(_.alignment).min
// The device had better not support a transfer larger than its alignment
require (minAlignment >= maxTransfer, s"Bad $address: minAlignment ($minAlignment) must be >= maxTransfer ($maxTransfer)")
def toResource: ResourceAddress = {
ResourceAddress(address, ResourcePermissions(
r = supportsAcquireB || supportsGet,
w = supportsAcquireT || supportsPutFull,
x = executable,
c = supportsAcquireB,
a = supportsArithmetic && supportsLogical))
}
def findTreeViolation() = nodePath.find {
case _: MixedAdapterNode[_, _, _, _, _, _, _, _] => false
case _: SinkNode[_, _, _, _, _] => false
case node => node.inputs.size != 1
}
def isTree = findTreeViolation() == None
def infoString = {
s"""Slave Name = ${name}
|Slave Address = ${address}
|supports = ${supports.infoString}
|
|""".stripMargin
}
def v1copy(
address: Seq[AddressSet] = address,
resources: Seq[Resource] = resources,
regionType: RegionType.T = regionType,
executable: Boolean = executable,
nodePath: Seq[BaseNode] = nodePath,
supportsAcquireT: TransferSizes = supports.acquireT,
supportsAcquireB: TransferSizes = supports.acquireB,
supportsArithmetic: TransferSizes = supports.arithmetic,
supportsLogical: TransferSizes = supports.logical,
supportsGet: TransferSizes = supports.get,
supportsPutFull: TransferSizes = supports.putFull,
supportsPutPartial: TransferSizes = supports.putPartial,
supportsHint: TransferSizes = supports.hint,
mayDenyGet: Boolean = mayDenyGet,
mayDenyPut: Boolean = mayDenyPut,
alwaysGrantsT: Boolean = alwaysGrantsT,
fifoId: Option[Int] = fifoId) =
{
new TLSlaveParameters(
setName = setName,
address = address,
resources = resources,
regionType = regionType,
executable = executable,
nodePath = nodePath,
supports = TLMasterToSlaveTransferSizes(
acquireT = supportsAcquireT,
acquireB = supportsAcquireB,
arithmetic = supportsArithmetic,
logical = supportsLogical,
get = supportsGet,
putFull = supportsPutFull,
putPartial = supportsPutPartial,
hint = supportsHint),
emits = emits,
mayDenyGet = mayDenyGet,
mayDenyPut = mayDenyPut,
alwaysGrantsT = alwaysGrantsT,
fifoId = fifoId)
}
def v2copy(
nodePath: Seq[BaseNode] = nodePath,
resources: Seq[Resource] = resources,
name: Option[String] = setName,
address: Seq[AddressSet] = address,
regionType: RegionType.T = regionType,
executable: Boolean = executable,
fifoId: Option[Int] = fifoId,
supports: TLMasterToSlaveTransferSizes = supports,
emits: TLSlaveToMasterTransferSizes = emits,
alwaysGrantsT: Boolean = alwaysGrantsT,
mayDenyGet: Boolean = mayDenyGet,
mayDenyPut: Boolean = mayDenyPut) =
{
new TLSlaveParameters(
nodePath = nodePath,
resources = resources,
setName = name,
address = address,
regionType = regionType,
executable = executable,
fifoId = fifoId,
supports = supports,
emits = emits,
alwaysGrantsT = alwaysGrantsT,
mayDenyGet = mayDenyGet,
mayDenyPut = mayDenyPut)
}
@deprecated("Use v1copy instead of copy","")
def copy(
address: Seq[AddressSet] = address,
resources: Seq[Resource] = resources,
regionType: RegionType.T = regionType,
executable: Boolean = executable,
nodePath: Seq[BaseNode] = nodePath,
supportsAcquireT: TransferSizes = supports.acquireT,
supportsAcquireB: TransferSizes = supports.acquireB,
supportsArithmetic: TransferSizes = supports.arithmetic,
supportsLogical: TransferSizes = supports.logical,
supportsGet: TransferSizes = supports.get,
supportsPutFull: TransferSizes = supports.putFull,
supportsPutPartial: TransferSizes = supports.putPartial,
supportsHint: TransferSizes = supports.hint,
mayDenyGet: Boolean = mayDenyGet,
mayDenyPut: Boolean = mayDenyPut,
alwaysGrantsT: Boolean = alwaysGrantsT,
fifoId: Option[Int] = fifoId) =
{
v1copy(
address = address,
resources = resources,
regionType = regionType,
executable = executable,
nodePath = nodePath,
supportsAcquireT = supportsAcquireT,
supportsAcquireB = supportsAcquireB,
supportsArithmetic = supportsArithmetic,
supportsLogical = supportsLogical,
supportsGet = supportsGet,
supportsPutFull = supportsPutFull,
supportsPutPartial = supportsPutPartial,
supportsHint = supportsHint,
mayDenyGet = mayDenyGet,
mayDenyPut = mayDenyPut,
alwaysGrantsT = alwaysGrantsT,
fifoId = fifoId)
}
}
object TLSlaveParameters {
def v1(
address: Seq[AddressSet],
resources: Seq[Resource] = Seq(),
regionType: RegionType.T = RegionType.GET_EFFECTS,
executable: Boolean = false,
nodePath: Seq[BaseNode] = Seq(),
supportsAcquireT: TransferSizes = TransferSizes.none,
supportsAcquireB: TransferSizes = TransferSizes.none,
supportsArithmetic: TransferSizes = TransferSizes.none,
supportsLogical: TransferSizes = TransferSizes.none,
supportsGet: TransferSizes = TransferSizes.none,
supportsPutFull: TransferSizes = TransferSizes.none,
supportsPutPartial: TransferSizes = TransferSizes.none,
supportsHint: TransferSizes = TransferSizes.none,
mayDenyGet: Boolean = false,
mayDenyPut: Boolean = false,
alwaysGrantsT: Boolean = false,
fifoId: Option[Int] = None) =
{
new TLSlaveParameters(
setName = None,
address = address,
resources = resources,
regionType = regionType,
executable = executable,
nodePath = nodePath,
supports = TLMasterToSlaveTransferSizes(
acquireT = supportsAcquireT,
acquireB = supportsAcquireB,
arithmetic = supportsArithmetic,
logical = supportsLogical,
get = supportsGet,
putFull = supportsPutFull,
putPartial = supportsPutPartial,
hint = supportsHint),
emits = TLSlaveToMasterTransferSizes.unknownEmits,
mayDenyGet = mayDenyGet,
mayDenyPut = mayDenyPut,
alwaysGrantsT = alwaysGrantsT,
fifoId = fifoId)
}
def v2(
address: Seq[AddressSet],
nodePath: Seq[BaseNode] = Seq(),
resources: Seq[Resource] = Seq(),
name: Option[String] = None,
regionType: RegionType.T = RegionType.GET_EFFECTS,
executable: Boolean = false,
fifoId: Option[Int] = None,
supports: TLMasterToSlaveTransferSizes = TLMasterToSlaveTransferSizes.unknownSupports,
emits: TLSlaveToMasterTransferSizes = TLSlaveToMasterTransferSizes.unknownEmits,
alwaysGrantsT: Boolean = false,
mayDenyGet: Boolean = false,
mayDenyPut: Boolean = false) =
{
new TLSlaveParameters(
nodePath = nodePath,
resources = resources,
setName = name,
address = address,
regionType = regionType,
executable = executable,
fifoId = fifoId,
supports = supports,
emits = emits,
alwaysGrantsT = alwaysGrantsT,
mayDenyGet = mayDenyGet,
mayDenyPut = mayDenyPut)
}
}
object TLManagerParameters {
@deprecated("Use TLSlaveParameters.v1 instead of TLManagerParameters","")
def apply(
address: Seq[AddressSet],
resources: Seq[Resource] = Seq(),
regionType: RegionType.T = RegionType.GET_EFFECTS,
executable: Boolean = false,
nodePath: Seq[BaseNode] = Seq(),
supportsAcquireT: TransferSizes = TransferSizes.none,
supportsAcquireB: TransferSizes = TransferSizes.none,
supportsArithmetic: TransferSizes = TransferSizes.none,
supportsLogical: TransferSizes = TransferSizes.none,
supportsGet: TransferSizes = TransferSizes.none,
supportsPutFull: TransferSizes = TransferSizes.none,
supportsPutPartial: TransferSizes = TransferSizes.none,
supportsHint: TransferSizes = TransferSizes.none,
mayDenyGet: Boolean = false,
mayDenyPut: Boolean = false,
alwaysGrantsT: Boolean = false,
fifoId: Option[Int] = None) =
TLSlaveParameters.v1(
address,
resources,
regionType,
executable,
nodePath,
supportsAcquireT,
supportsAcquireB,
supportsArithmetic,
supportsLogical,
supportsGet,
supportsPutFull,
supportsPutPartial,
supportsHint,
mayDenyGet,
mayDenyPut,
alwaysGrantsT,
fifoId,
)
}
case class TLChannelBeatBytes(a: Option[Int], b: Option[Int], c: Option[Int], d: Option[Int])
{
def members = Seq(a, b, c, d)
members.collect { case Some(beatBytes) =>
require (isPow2(beatBytes), "Data channel width must be a power of 2")
}
}
object TLChannelBeatBytes{
def apply(beatBytes: Int): TLChannelBeatBytes = TLChannelBeatBytes(
Some(beatBytes),
Some(beatBytes),
Some(beatBytes),
Some(beatBytes))
def apply(): TLChannelBeatBytes = TLChannelBeatBytes(
None,
None,
None,
None)
}
class TLSlavePortParameters private(
val slaves: Seq[TLSlaveParameters],
val channelBytes: TLChannelBeatBytes,
val endSinkId: Int,
val minLatency: Int,
val responseFields: Seq[BundleFieldBase],
val requestKeys: Seq[BundleKeyBase]) extends SimpleProduct
{
def sortedSlaves = slaves.sortBy(_.sortedAddress.head)
override def canEqual(that: Any): Boolean = that.isInstanceOf[TLSlavePortParameters]
override def productPrefix = "TLSlavePortParameters"
def productArity: Int = 6
def productElement(n: Int): Any = n match {
case 0 => slaves
case 1 => channelBytes
case 2 => endSinkId
case 3 => minLatency
case 4 => responseFields
case 5 => requestKeys
case _ => throw new IndexOutOfBoundsException(n.toString)
}
require (!slaves.isEmpty, "Slave ports must have slaves")
require (endSinkId >= 0, "Sink ids cannot be negative")
require (minLatency >= 0, "Minimum required latency cannot be negative")
// Using this API implies you cannot handle mixed-width busses
def beatBytes = {
channelBytes.members.foreach { width =>
require (width.isDefined && width == channelBytes.a)
}
channelBytes.a.get
}
// TODO this should be deprecated
def managers = slaves
def requireFifo(policy: TLFIFOFixer.Policy = TLFIFOFixer.allFIFO) = {
val relevant = slaves.filter(m => policy(m))
relevant.foreach { m =>
require(m.fifoId == relevant.head.fifoId, s"${m.name} had fifoId ${m.fifoId}, which was not homogeneous (${slaves.map(s => (s.name, s.fifoId))}) ")
}
}
// Bounds on required sizes
def maxAddress = slaves.map(_.maxAddress).max
def maxTransfer = slaves.map(_.maxTransfer).max
def mayDenyGet = slaves.exists(_.mayDenyGet)
def mayDenyPut = slaves.exists(_.mayDenyPut)
// Diplomatically determined operation sizes emitted by all outward Slaves
// as opposed to emits* which generate circuitry to check which specific addresses
val allEmitClaims = slaves.map(_.emits).reduce( _ intersect _)
// Operation Emitted by at least one outward Slaves
// as opposed to emits* which generate circuitry to check which specific addresses
val anyEmitClaims = slaves.map(_.emits).reduce(_ mincover _)
// Diplomatically determined operation sizes supported by all outward Slaves
// as opposed to supports* which generate circuitry to check which specific addresses
val allSupportClaims = slaves.map(_.supports).reduce( _ intersect _)
val allSupportAcquireT = allSupportClaims.acquireT
val allSupportAcquireB = allSupportClaims.acquireB
val allSupportArithmetic = allSupportClaims.arithmetic
val allSupportLogical = allSupportClaims.logical
val allSupportGet = allSupportClaims.get
val allSupportPutFull = allSupportClaims.putFull
val allSupportPutPartial = allSupportClaims.putPartial
val allSupportHint = allSupportClaims.hint
// Operation supported by at least one outward Slaves
// as opposed to supports* which generate circuitry to check which specific addresses
val anySupportClaims = slaves.map(_.supports).reduce(_ mincover _)
val anySupportAcquireT = !anySupportClaims.acquireT.none
val anySupportAcquireB = !anySupportClaims.acquireB.none
val anySupportArithmetic = !anySupportClaims.arithmetic.none
val anySupportLogical = !anySupportClaims.logical.none
val anySupportGet = !anySupportClaims.get.none
val anySupportPutFull = !anySupportClaims.putFull.none
val anySupportPutPartial = !anySupportClaims.putPartial.none
val anySupportHint = !anySupportClaims.hint.none
// Supporting Acquire means being routable for GrantAck
require ((endSinkId == 0) == !anySupportAcquireB)
// These return Option[TLSlaveParameters] for your convenience
def find(address: BigInt) = slaves.find(_.address.exists(_.contains(address)))
// The safe version will check the entire address
def findSafe(address: UInt) = VecInit(sortedSlaves.map(_.address.map(_.contains(address)).reduce(_ || _)))
// The fast version assumes the address is valid (you probably want fastProperty instead of this function)
def findFast(address: UInt) = {
val routingMask = AddressDecoder(slaves.map(_.address))
VecInit(sortedSlaves.map(_.address.map(_.widen(~routingMask)).distinct.map(_.contains(address)).reduce(_ || _)))
}
// Compute the simplest AddressSets that decide a key
def fastPropertyGroup[K](p: TLSlaveParameters => K): Seq[(K, Seq[AddressSet])] = {
val groups = groupByIntoSeq(sortedSlaves.map(m => (p(m), m.address)))( _._1).map { case (k, vs) =>
k -> vs.flatMap(_._2)
}
val reductionMask = AddressDecoder(groups.map(_._2))
groups.map { case (k, seq) => k -> AddressSet.unify(seq.map(_.widen(~reductionMask)).distinct) }
}
// Select a property
def fastProperty[K, D <: Data](address: UInt, p: TLSlaveParameters => K, d: K => D): D =
Mux1H(fastPropertyGroup(p).map { case (v, a) => (a.map(_.contains(address)).reduce(_||_), d(v)) })
// Note: returns the actual fifoId + 1 or 0 if None
def findFifoIdFast(address: UInt) = fastProperty(address, _.fifoId.map(_+1).getOrElse(0), (i:Int) => i.U)
def hasFifoIdFast(address: UInt) = fastProperty(address, _.fifoId.isDefined, (b:Boolean) => b.B)
// Does this Port manage this ID/address?
def containsSafe(address: UInt) = findSafe(address).reduce(_ || _)
private def addressHelper(
// setting safe to false indicates that all addresses are expected to be legal, which might reduce circuit complexity
safe: Boolean,
// member filters out the sizes being checked based on the opcode being emitted or supported
member: TLSlaveParameters => TransferSizes,
address: UInt,
lgSize: UInt,
// range provides a limit on the sizes that are expected to be evaluated, which might reduce circuit complexity
range: Option[TransferSizes]): Bool = {
// trim reduces circuit complexity by intersecting checked sizes with the range argument
def trim(x: TransferSizes) = range.map(_.intersect(x)).getOrElse(x)
// groupBy returns an unordered map, convert back to Seq and sort the result for determinism
// groupByIntoSeq is turning slaves into trimmed membership sizes
// We are grouping all the slaves by their transfer size where
// if they support the trimmed size then
// member is the type of transfer that you are looking for (What you are trying to filter on)
// When you consider membership, you are trimming the sizes to only the ones that you care about
// you are filtering the slaves based on both whether they support a particular opcode and the size
// Grouping the slaves based on the actual transfer size range they support
// intersecting the range and checking their membership
// FOR SUPPORTCASES instead of returning the list of slaves,
// you are returning a map from transfer size to the set of
// address sets that are supported for that transfer size
// find all the slaves that support a certain type of operation and then group their addresses by the supported size
// for every size there could be multiple address ranges
// safety is a trade off between checking between all possible addresses vs only the addresses
// that are known to have supported sizes
// the trade off is 'checking all addresses is a more expensive circuit but will always give you
// the right answer even if you give it an illegal address'
// the not safe version is a cheaper circuit but if you give it an illegal address then it might produce the wrong answer
// fast presumes address legality
// This groupByIntoSeq deterministically groups all address sets for which a given `member` transfer size applies.
// In the resulting Map of cases, the keys are transfer sizes and the values are all address sets which emit or support that size.
val supportCases = groupByIntoSeq(slaves)(m => trim(member(m))).map { case (k: TransferSizes, vs: Seq[TLSlaveParameters]) =>
k -> vs.flatMap(_.address)
}
// safe produces a circuit that compares against all possible addresses,
// whereas fast presumes that the address is legal but uses an efficient address decoder
val mask = if (safe) ~BigInt(0) else AddressDecoder(supportCases.map(_._2))
// Simplified creates the most concise possible representation of each cases' address sets based on the mask.
val simplified = supportCases.map { case (k, seq) => k -> AddressSet.unify(seq.map(_.widen(~mask)).distinct) }
simplified.map { case (s, a) =>
// s is a size, you are checking for this size either the size of the operation is in s
// We return an or-reduction of all the cases, checking whether any contains both the dynamic size and dynamic address on the wire.
((Some(s) == range).B || s.containsLg(lgSize)) &&
a.map(_.contains(address)).reduce(_||_)
}.foldLeft(false.B)(_||_)
}
def supportsAcquireTSafe (address: UInt, lgSize: UInt, range: Option[TransferSizes] = None) = addressHelper(true, _.supports.acquireT, address, lgSize, range)
def supportsAcquireBSafe (address: UInt, lgSize: UInt, range: Option[TransferSizes] = None) = addressHelper(true, _.supports.acquireB, address, lgSize, range)
def supportsArithmeticSafe (address: UInt, lgSize: UInt, range: Option[TransferSizes] = None) = addressHelper(true, _.supports.arithmetic, address, lgSize, range)
def supportsLogicalSafe (address: UInt, lgSize: UInt, range: Option[TransferSizes] = None) = addressHelper(true, _.supports.logical, address, lgSize, range)
def supportsGetSafe (address: UInt, lgSize: UInt, range: Option[TransferSizes] = None) = addressHelper(true, _.supports.get, address, lgSize, range)
def supportsPutFullSafe (address: UInt, lgSize: UInt, range: Option[TransferSizes] = None) = addressHelper(true, _.supports.putFull, address, lgSize, range)
def supportsPutPartialSafe (address: UInt, lgSize: UInt, range: Option[TransferSizes] = None) = addressHelper(true, _.supports.putPartial, address, lgSize, range)
def supportsHintSafe (address: UInt, lgSize: UInt, range: Option[TransferSizes] = None) = addressHelper(true, _.supports.hint, address, lgSize, range)
def supportsAcquireTFast (address: UInt, lgSize: UInt, range: Option[TransferSizes] = None) = addressHelper(false, _.supports.acquireT, address, lgSize, range)
def supportsAcquireBFast (address: UInt, lgSize: UInt, range: Option[TransferSizes] = None) = addressHelper(false, _.supports.acquireB, address, lgSize, range)
def supportsArithmeticFast (address: UInt, lgSize: UInt, range: Option[TransferSizes] = None) = addressHelper(false, _.supports.arithmetic, address, lgSize, range)
def supportsLogicalFast (address: UInt, lgSize: UInt, range: Option[TransferSizes] = None) = addressHelper(false, _.supports.logical, address, lgSize, range)
def supportsGetFast (address: UInt, lgSize: UInt, range: Option[TransferSizes] = None) = addressHelper(false, _.supports.get, address, lgSize, range)
def supportsPutFullFast (address: UInt, lgSize: UInt, range: Option[TransferSizes] = None) = addressHelper(false, _.supports.putFull, address, lgSize, range)
def supportsPutPartialFast (address: UInt, lgSize: UInt, range: Option[TransferSizes] = None) = addressHelper(false, _.supports.putPartial, address, lgSize, range)
def supportsHintFast (address: UInt, lgSize: UInt, range: Option[TransferSizes] = None) = addressHelper(false, _.supports.hint, address, lgSize, range)
def emitsProbeSafe (address: UInt, lgSize: UInt, range: Option[TransferSizes] = None) = addressHelper(true, _.emits.probe, address, lgSize, range)
def emitsArithmeticSafe (address: UInt, lgSize: UInt, range: Option[TransferSizes] = None) = addressHelper(true, _.emits.arithmetic, address, lgSize, range)
def emitsLogicalSafe (address: UInt, lgSize: UInt, range: Option[TransferSizes] = None) = addressHelper(true, _.emits.logical, address, lgSize, range)
def emitsGetSafe (address: UInt, lgSize: UInt, range: Option[TransferSizes] = None) = addressHelper(true, _.emits.get, address, lgSize, range)
def emitsPutFullSafe (address: UInt, lgSize: UInt, range: Option[TransferSizes] = None) = addressHelper(true, _.emits.putFull, address, lgSize, range)
def emitsPutPartialSafe (address: UInt, lgSize: UInt, range: Option[TransferSizes] = None) = addressHelper(true, _.emits.putPartial, address, lgSize, range)
def emitsHintSafe (address: UInt, lgSize: UInt, range: Option[TransferSizes] = None) = addressHelper(true, _.emits.hint, address, lgSize, range)
def findTreeViolation() = slaves.flatMap(_.findTreeViolation()).headOption
def isTree = !slaves.exists(!_.isTree)
def infoString = "Slave Port Beatbytes = " + beatBytes + "\n" + "Slave Port MinLatency = " + minLatency + "\n\n" + slaves.map(_.infoString).mkString
def v1copy(
managers: Seq[TLSlaveParameters] = slaves,
beatBytes: Int = -1,
endSinkId: Int = endSinkId,
minLatency: Int = minLatency,
responseFields: Seq[BundleFieldBase] = responseFields,
requestKeys: Seq[BundleKeyBase] = requestKeys) =
{
new TLSlavePortParameters(
slaves = managers,
channelBytes = if (beatBytes != -1) TLChannelBeatBytes(beatBytes) else channelBytes,
endSinkId = endSinkId,
minLatency = minLatency,
responseFields = responseFields,
requestKeys = requestKeys)
}
def v2copy(
slaves: Seq[TLSlaveParameters] = slaves,
channelBytes: TLChannelBeatBytes = channelBytes,
endSinkId: Int = endSinkId,
minLatency: Int = minLatency,
responseFields: Seq[BundleFieldBase] = responseFields,
requestKeys: Seq[BundleKeyBase] = requestKeys) =
{
new TLSlavePortParameters(
slaves = slaves,
channelBytes = channelBytes,
endSinkId = endSinkId,
minLatency = minLatency,
responseFields = responseFields,
requestKeys = requestKeys)
}
@deprecated("Use v1copy instead of copy","")
def copy(
managers: Seq[TLSlaveParameters] = slaves,
beatBytes: Int = -1,
endSinkId: Int = endSinkId,
minLatency: Int = minLatency,
responseFields: Seq[BundleFieldBase] = responseFields,
requestKeys: Seq[BundleKeyBase] = requestKeys) =
{
v1copy(
managers,
beatBytes,
endSinkId,
minLatency,
responseFields,
requestKeys)
}
}
object TLSlavePortParameters {
def v1(
managers: Seq[TLSlaveParameters],
beatBytes: Int,
endSinkId: Int = 0,
minLatency: Int = 0,
responseFields: Seq[BundleFieldBase] = Nil,
requestKeys: Seq[BundleKeyBase] = Nil) =
{
new TLSlavePortParameters(
slaves = managers,
channelBytes = TLChannelBeatBytes(beatBytes),
endSinkId = endSinkId,
minLatency = minLatency,
responseFields = responseFields,
requestKeys = requestKeys)
}
}
object TLManagerPortParameters {
@deprecated("Use TLSlavePortParameters.v1 instead of TLManagerPortParameters","")
def apply(
managers: Seq[TLSlaveParameters],
beatBytes: Int,
endSinkId: Int = 0,
minLatency: Int = 0,
responseFields: Seq[BundleFieldBase] = Nil,
requestKeys: Seq[BundleKeyBase] = Nil) =
{
TLSlavePortParameters.v1(
managers,
beatBytes,
endSinkId,
minLatency,
responseFields,
requestKeys)
}
}
class TLMasterParameters private(
val nodePath: Seq[BaseNode],
val resources: Seq[Resource],
val name: String,
val visibility: Seq[AddressSet],
val unusedRegionTypes: Set[RegionType.T],
val executesOnly: Boolean,
val requestFifo: Boolean, // only a request, not a requirement. applies to A, not C.
val supports: TLSlaveToMasterTransferSizes,
val emits: TLMasterToSlaveTransferSizes,
val neverReleasesData: Boolean,
val sourceId: IdRange) extends SimpleProduct
{
override def canEqual(that: Any): Boolean = that.isInstanceOf[TLMasterParameters]
override def productPrefix = "TLMasterParameters"
// We intentionally omit nodePath for equality testing / formatting
def productArity: Int = 10
def productElement(n: Int): Any = n match {
case 0 => name
case 1 => sourceId
case 2 => resources
case 3 => visibility
case 4 => unusedRegionTypes
case 5 => executesOnly
case 6 => requestFifo
case 7 => supports
case 8 => emits
case 9 => neverReleasesData
case _ => throw new IndexOutOfBoundsException(n.toString)
}
require (!sourceId.isEmpty)
require (!visibility.isEmpty)
require (supports.putFull.contains(supports.putPartial))
// We only support these operations if we support Probe (ie: we're a cache)
require (supports.probe.contains(supports.arithmetic))
require (supports.probe.contains(supports.logical))
require (supports.probe.contains(supports.get))
require (supports.probe.contains(supports.putFull))
require (supports.probe.contains(supports.putPartial))
require (supports.probe.contains(supports.hint))
visibility.combinations(2).foreach { case Seq(x,y) => require (!x.overlaps(y), s"$x and $y overlap.") }
val maxTransfer = List(
supports.probe.max,
supports.arithmetic.max,
supports.logical.max,
supports.get.max,
supports.putFull.max,
supports.putPartial.max).max
def infoString = {
s"""Master Name = ${name}
|visibility = ${visibility}
|emits = ${emits.infoString}
|sourceId = ${sourceId}
|
|""".stripMargin
}
def v1copy(
name: String = name,
sourceId: IdRange = sourceId,
nodePath: Seq[BaseNode] = nodePath,
requestFifo: Boolean = requestFifo,
visibility: Seq[AddressSet] = visibility,
supportsProbe: TransferSizes = supports.probe,
supportsArithmetic: TransferSizes = supports.arithmetic,
supportsLogical: TransferSizes = supports.logical,
supportsGet: TransferSizes = supports.get,
supportsPutFull: TransferSizes = supports.putFull,
supportsPutPartial: TransferSizes = supports.putPartial,
supportsHint: TransferSizes = supports.hint) =
{
new TLMasterParameters(
nodePath = nodePath,
resources = this.resources,
name = name,
visibility = visibility,
unusedRegionTypes = this.unusedRegionTypes,
executesOnly = this.executesOnly,
requestFifo = requestFifo,
supports = TLSlaveToMasterTransferSizes(
probe = supportsProbe,
arithmetic = supportsArithmetic,
logical = supportsLogical,
get = supportsGet,
putFull = supportsPutFull,
putPartial = supportsPutPartial,
hint = supportsHint),
emits = this.emits,
neverReleasesData = this.neverReleasesData,
sourceId = sourceId)
}
def v2copy(
nodePath: Seq[BaseNode] = nodePath,
resources: Seq[Resource] = resources,
name: String = name,
visibility: Seq[AddressSet] = visibility,
unusedRegionTypes: Set[RegionType.T] = unusedRegionTypes,
executesOnly: Boolean = executesOnly,
requestFifo: Boolean = requestFifo,
supports: TLSlaveToMasterTransferSizes = supports,
emits: TLMasterToSlaveTransferSizes = emits,
neverReleasesData: Boolean = neverReleasesData,
sourceId: IdRange = sourceId) =
{
new TLMasterParameters(
nodePath = nodePath,
resources = resources,
name = name,
visibility = visibility,
unusedRegionTypes = unusedRegionTypes,
executesOnly = executesOnly,
requestFifo = requestFifo,
supports = supports,
emits = emits,
neverReleasesData = neverReleasesData,
sourceId = sourceId)
}
@deprecated("Use v1copy instead of copy","")
def copy(
name: String = name,
sourceId: IdRange = sourceId,
nodePath: Seq[BaseNode] = nodePath,
requestFifo: Boolean = requestFifo,
visibility: Seq[AddressSet] = visibility,
supportsProbe: TransferSizes = supports.probe,
supportsArithmetic: TransferSizes = supports.arithmetic,
supportsLogical: TransferSizes = supports.logical,
supportsGet: TransferSizes = supports.get,
supportsPutFull: TransferSizes = supports.putFull,
supportsPutPartial: TransferSizes = supports.putPartial,
supportsHint: TransferSizes = supports.hint) =
{
v1copy(
name = name,
sourceId = sourceId,
nodePath = nodePath,
requestFifo = requestFifo,
visibility = visibility,
supportsProbe = supportsProbe,
supportsArithmetic = supportsArithmetic,
supportsLogical = supportsLogical,
supportsGet = supportsGet,
supportsPutFull = supportsPutFull,
supportsPutPartial = supportsPutPartial,
supportsHint = supportsHint)
}
}
object TLMasterParameters {
def v1(
name: String,
sourceId: IdRange = IdRange(0,1),
nodePath: Seq[BaseNode] = Seq(),
requestFifo: Boolean = false,
visibility: Seq[AddressSet] = Seq(AddressSet(0, ~0)),
supportsProbe: TransferSizes = TransferSizes.none,
supportsArithmetic: TransferSizes = TransferSizes.none,
supportsLogical: TransferSizes = TransferSizes.none,
supportsGet: TransferSizes = TransferSizes.none,
supportsPutFull: TransferSizes = TransferSizes.none,
supportsPutPartial: TransferSizes = TransferSizes.none,
supportsHint: TransferSizes = TransferSizes.none) =
{
new TLMasterParameters(
nodePath = nodePath,
resources = Nil,
name = name,
visibility = visibility,
unusedRegionTypes = Set(),
executesOnly = false,
requestFifo = requestFifo,
supports = TLSlaveToMasterTransferSizes(
probe = supportsProbe,
arithmetic = supportsArithmetic,
logical = supportsLogical,
get = supportsGet,
putFull = supportsPutFull,
putPartial = supportsPutPartial,
hint = supportsHint),
emits = TLMasterToSlaveTransferSizes.unknownEmits,
neverReleasesData = false,
sourceId = sourceId)
}
def v2(
nodePath: Seq[BaseNode] = Seq(),
resources: Seq[Resource] = Nil,
name: String,
visibility: Seq[AddressSet] = Seq(AddressSet(0, ~0)),
unusedRegionTypes: Set[RegionType.T] = Set(),
executesOnly: Boolean = false,
requestFifo: Boolean = false,
supports: TLSlaveToMasterTransferSizes = TLSlaveToMasterTransferSizes.unknownSupports,
emits: TLMasterToSlaveTransferSizes = TLMasterToSlaveTransferSizes.unknownEmits,
neverReleasesData: Boolean = false,
sourceId: IdRange = IdRange(0,1)) =
{
new TLMasterParameters(
nodePath = nodePath,
resources = resources,
name = name,
visibility = visibility,
unusedRegionTypes = unusedRegionTypes,
executesOnly = executesOnly,
requestFifo = requestFifo,
supports = supports,
emits = emits,
neverReleasesData = neverReleasesData,
sourceId = sourceId)
}
}
object TLClientParameters {
@deprecated("Use TLMasterParameters.v1 instead of TLClientParameters","")
def apply(
name: String,
sourceId: IdRange = IdRange(0,1),
nodePath: Seq[BaseNode] = Seq(),
requestFifo: Boolean = false,
visibility: Seq[AddressSet] = Seq(AddressSet.everything),
supportsProbe: TransferSizes = TransferSizes.none,
supportsArithmetic: TransferSizes = TransferSizes.none,
supportsLogical: TransferSizes = TransferSizes.none,
supportsGet: TransferSizes = TransferSizes.none,
supportsPutFull: TransferSizes = TransferSizes.none,
supportsPutPartial: TransferSizes = TransferSizes.none,
supportsHint: TransferSizes = TransferSizes.none) =
{
TLMasterParameters.v1(
name = name,
sourceId = sourceId,
nodePath = nodePath,
requestFifo = requestFifo,
visibility = visibility,
supportsProbe = supportsProbe,
supportsArithmetic = supportsArithmetic,
supportsLogical = supportsLogical,
supportsGet = supportsGet,
supportsPutFull = supportsPutFull,
supportsPutPartial = supportsPutPartial,
supportsHint = supportsHint)
}
}
class TLMasterPortParameters private(
val masters: Seq[TLMasterParameters],
val channelBytes: TLChannelBeatBytes,
val minLatency: Int,
val echoFields: Seq[BundleFieldBase],
val requestFields: Seq[BundleFieldBase],
val responseKeys: Seq[BundleKeyBase]) extends SimpleProduct
{
override def canEqual(that: Any): Boolean = that.isInstanceOf[TLMasterPortParameters]
override def productPrefix = "TLMasterPortParameters"
def productArity: Int = 6
def productElement(n: Int): Any = n match {
case 0 => masters
case 1 => channelBytes
case 2 => minLatency
case 3 => echoFields
case 4 => requestFields
case 5 => responseKeys
case _ => throw new IndexOutOfBoundsException(n.toString)
}
require (!masters.isEmpty)
require (minLatency >= 0)
def clients = masters
// Require disjoint ranges for Ids
IdRange.overlaps(masters.map(_.sourceId)).foreach { case (x, y) =>
require (!x.overlaps(y), s"TLClientParameters.sourceId ${x} overlaps ${y}")
}
// Bounds on required sizes
def endSourceId = masters.map(_.sourceId.end).max
def maxTransfer = masters.map(_.maxTransfer).max
// The unused sources < endSourceId
def unusedSources: Seq[Int] = {
val usedSources = masters.map(_.sourceId).sortBy(_.start)
((Seq(0) ++ usedSources.map(_.end)) zip usedSources.map(_.start)) flatMap { case (end, start) =>
end until start
}
}
// Diplomatically determined operation sizes emitted by all inward Masters
// as opposed to emits* which generate circuitry to check which specific addresses
val allEmitClaims = masters.map(_.emits).reduce( _ intersect _)
// Diplomatically determined operation sizes Emitted by at least one inward Masters
// as opposed to emits* which generate circuitry to check which specific addresses
val anyEmitClaims = masters.map(_.emits).reduce(_ mincover _)
// Diplomatically determined operation sizes supported by all inward Masters
// as opposed to supports* which generate circuitry to check which specific addresses
val allSupportProbe = masters.map(_.supports.probe) .reduce(_ intersect _)
val allSupportArithmetic = masters.map(_.supports.arithmetic).reduce(_ intersect _)
val allSupportLogical = masters.map(_.supports.logical) .reduce(_ intersect _)
val allSupportGet = masters.map(_.supports.get) .reduce(_ intersect _)
val allSupportPutFull = masters.map(_.supports.putFull) .reduce(_ intersect _)
val allSupportPutPartial = masters.map(_.supports.putPartial).reduce(_ intersect _)
val allSupportHint = masters.map(_.supports.hint) .reduce(_ intersect _)
// Diplomatically determined operation sizes supported by at least one master
// as opposed to supports* which generate circuitry to check which specific addresses
val anySupportProbe = masters.map(!_.supports.probe.none) .reduce(_ || _)
val anySupportArithmetic = masters.map(!_.supports.arithmetic.none).reduce(_ || _)
val anySupportLogical = masters.map(!_.supports.logical.none) .reduce(_ || _)
val anySupportGet = masters.map(!_.supports.get.none) .reduce(_ || _)
val anySupportPutFull = masters.map(!_.supports.putFull.none) .reduce(_ || _)
val anySupportPutPartial = masters.map(!_.supports.putPartial.none).reduce(_ || _)
val anySupportHint = masters.map(!_.supports.hint.none) .reduce(_ || _)
// These return Option[TLMasterParameters] for your convenience
def find(id: Int) = masters.find(_.sourceId.contains(id))
// Synthesizable lookup methods
def find(id: UInt) = VecInit(masters.map(_.sourceId.contains(id)))
def contains(id: UInt) = find(id).reduce(_ || _)
def requestFifo(id: UInt) = Mux1H(find(id), masters.map(c => c.requestFifo.B))
// Available during RTL runtime, checks to see if (id, size) is supported by the master's (client's) diplomatic parameters
private def sourceIdHelper(member: TLMasterParameters => TransferSizes)(id: UInt, lgSize: UInt) = {
val allSame = masters.map(member(_) == member(masters(0))).reduce(_ && _)
// this if statement is a coarse generalization of the groupBy in the sourceIdHelper2 version;
// the case where there is only one group.
if (allSame) member(masters(0)).containsLg(lgSize) else {
// Find the master associated with ID and returns whether that particular master is able to receive transaction of lgSize
Mux1H(find(id), masters.map(member(_).containsLg(lgSize)))
}
}
// Check for support of a given operation at a specific id
val supportsProbe = sourceIdHelper(_.supports.probe) _
val supportsArithmetic = sourceIdHelper(_.supports.arithmetic) _
val supportsLogical = sourceIdHelper(_.supports.logical) _
val supportsGet = sourceIdHelper(_.supports.get) _
val supportsPutFull = sourceIdHelper(_.supports.putFull) _
val supportsPutPartial = sourceIdHelper(_.supports.putPartial) _
val supportsHint = sourceIdHelper(_.supports.hint) _
// TODO: Merge sourceIdHelper2 with sourceIdHelper
private def sourceIdHelper2(
member: TLMasterParameters => TransferSizes,
sourceId: UInt,
lgSize: UInt): Bool = {
// Because sourceIds are uniquely owned by each master, we use them to group the
// cases that have to be checked.
val emitCases = groupByIntoSeq(masters)(m => member(m)).map { case (k, vs) =>
k -> vs.map(_.sourceId)
}
emitCases.map { case (s, a) =>
(s.containsLg(lgSize)) &&
a.map(_.contains(sourceId)).reduce(_||_)
}.foldLeft(false.B)(_||_)
}
// Check for emit of a given operation at a specific id
def emitsAcquireT (sourceId: UInt, lgSize: UInt) = sourceIdHelper2(_.emits.acquireT, sourceId, lgSize)
def emitsAcquireB (sourceId: UInt, lgSize: UInt) = sourceIdHelper2(_.emits.acquireB, sourceId, lgSize)
def emitsArithmetic(sourceId: UInt, lgSize: UInt) = sourceIdHelper2(_.emits.arithmetic, sourceId, lgSize)
def emitsLogical (sourceId: UInt, lgSize: UInt) = sourceIdHelper2(_.emits.logical, sourceId, lgSize)
def emitsGet (sourceId: UInt, lgSize: UInt) = sourceIdHelper2(_.emits.get, sourceId, lgSize)
def emitsPutFull (sourceId: UInt, lgSize: UInt) = sourceIdHelper2(_.emits.putFull, sourceId, lgSize)
def emitsPutPartial(sourceId: UInt, lgSize: UInt) = sourceIdHelper2(_.emits.putPartial, sourceId, lgSize)
def emitsHint (sourceId: UInt, lgSize: UInt) = sourceIdHelper2(_.emits.hint, sourceId, lgSize)
def infoString = masters.map(_.infoString).mkString
def v1copy(
clients: Seq[TLMasterParameters] = masters,
minLatency: Int = minLatency,
echoFields: Seq[BundleFieldBase] = echoFields,
requestFields: Seq[BundleFieldBase] = requestFields,
responseKeys: Seq[BundleKeyBase] = responseKeys) =
{
new TLMasterPortParameters(
masters = clients,
channelBytes = channelBytes,
minLatency = minLatency,
echoFields = echoFields,
requestFields = requestFields,
responseKeys = responseKeys)
}
def v2copy(
masters: Seq[TLMasterParameters] = masters,
channelBytes: TLChannelBeatBytes = channelBytes,
minLatency: Int = minLatency,
echoFields: Seq[BundleFieldBase] = echoFields,
requestFields: Seq[BundleFieldBase] = requestFields,
responseKeys: Seq[BundleKeyBase] = responseKeys) =
{
new TLMasterPortParameters(
masters = masters,
channelBytes = channelBytes,
minLatency = minLatency,
echoFields = echoFields,
requestFields = requestFields,
responseKeys = responseKeys)
}
@deprecated("Use v1copy instead of copy","")
def copy(
clients: Seq[TLMasterParameters] = masters,
minLatency: Int = minLatency,
echoFields: Seq[BundleFieldBase] = echoFields,
requestFields: Seq[BundleFieldBase] = requestFields,
responseKeys: Seq[BundleKeyBase] = responseKeys) =
{
v1copy(
clients,
minLatency,
echoFields,
requestFields,
responseKeys)
}
}
object TLClientPortParameters {
@deprecated("Use TLMasterPortParameters.v1 instead of TLClientPortParameters","")
def apply(
clients: Seq[TLMasterParameters],
minLatency: Int = 0,
echoFields: Seq[BundleFieldBase] = Nil,
requestFields: Seq[BundleFieldBase] = Nil,
responseKeys: Seq[BundleKeyBase] = Nil) =
{
TLMasterPortParameters.v1(
clients,
minLatency,
echoFields,
requestFields,
responseKeys)
}
}
object TLMasterPortParameters {
def v1(
clients: Seq[TLMasterParameters],
minLatency: Int = 0,
echoFields: Seq[BundleFieldBase] = Nil,
requestFields: Seq[BundleFieldBase] = Nil,
responseKeys: Seq[BundleKeyBase] = Nil) =
{
new TLMasterPortParameters(
masters = clients,
channelBytes = TLChannelBeatBytes(),
minLatency = minLatency,
echoFields = echoFields,
requestFields = requestFields,
responseKeys = responseKeys)
}
def v2(
masters: Seq[TLMasterParameters],
channelBytes: TLChannelBeatBytes = TLChannelBeatBytes(),
minLatency: Int = 0,
echoFields: Seq[BundleFieldBase] = Nil,
requestFields: Seq[BundleFieldBase] = Nil,
responseKeys: Seq[BundleKeyBase] = Nil) =
{
new TLMasterPortParameters(
masters = masters,
channelBytes = channelBytes,
minLatency = minLatency,
echoFields = echoFields,
requestFields = requestFields,
responseKeys = responseKeys)
}
}
case class TLBundleParameters(
addressBits: Int,
dataBits: Int,
sourceBits: Int,
sinkBits: Int,
sizeBits: Int,
echoFields: Seq[BundleFieldBase],
requestFields: Seq[BundleFieldBase],
responseFields: Seq[BundleFieldBase],
hasBCE: Boolean)
{
// Chisel has issues with 0-width wires
require (addressBits >= 1)
require (dataBits >= 8)
require (sourceBits >= 1)
require (sinkBits >= 1)
require (sizeBits >= 1)
require (isPow2(dataBits))
echoFields.foreach { f => require (f.key.isControl, s"${f} is not a legal echo field") }
val addrLoBits = log2Up(dataBits/8)
// Used to uniquify bus IP names
def shortName = s"a${addressBits}d${dataBits}s${sourceBits}k${sinkBits}z${sizeBits}" + (if (hasBCE) "c" else "u")
def union(x: TLBundleParameters) =
TLBundleParameters(
max(addressBits, x.addressBits),
max(dataBits, x.dataBits),
max(sourceBits, x.sourceBits),
max(sinkBits, x.sinkBits),
max(sizeBits, x.sizeBits),
echoFields = BundleField.union(echoFields ++ x.echoFields),
requestFields = BundleField.union(requestFields ++ x.requestFields),
responseFields = BundleField.union(responseFields ++ x.responseFields),
hasBCE || x.hasBCE)
}
object TLBundleParameters
{
val emptyBundleParams = TLBundleParameters(
addressBits = 1,
dataBits = 8,
sourceBits = 1,
sinkBits = 1,
sizeBits = 1,
echoFields = Nil,
requestFields = Nil,
responseFields = Nil,
hasBCE = false)
def union(x: Seq[TLBundleParameters]) = x.foldLeft(emptyBundleParams)((x,y) => x.union(y))
def apply(master: TLMasterPortParameters, slave: TLSlavePortParameters) =
new TLBundleParameters(
addressBits = log2Up(slave.maxAddress + 1),
dataBits = slave.beatBytes * 8,
sourceBits = log2Up(master.endSourceId),
sinkBits = log2Up(slave.endSinkId),
sizeBits = log2Up(log2Ceil(max(master.maxTransfer, slave.maxTransfer))+1),
echoFields = master.echoFields,
requestFields = BundleField.accept(master.requestFields, slave.requestKeys),
responseFields = BundleField.accept(slave.responseFields, master.responseKeys),
hasBCE = master.anySupportProbe && slave.anySupportAcquireB)
}
case class TLEdgeParameters(
master: TLMasterPortParameters,
slave: TLSlavePortParameters,
params: Parameters,
sourceInfo: SourceInfo) extends FormatEdge
{
// legacy names:
def manager = slave
def client = master
val maxTransfer = max(master.maxTransfer, slave.maxTransfer)
val maxLgSize = log2Ceil(maxTransfer)
// Sanity check the link...
require (maxTransfer >= slave.beatBytes, s"Link's max transfer (${maxTransfer}) < ${slave.slaves.map(_.name)}'s beatBytes (${slave.beatBytes})")
def diplomaticClaimsMasterToSlave = master.anyEmitClaims.intersect(slave.anySupportClaims)
val bundle = TLBundleParameters(master, slave)
def formatEdge = master.infoString + "\n" + slave.infoString
}
case class TLCreditedDelay(
a: CreditedDelay,
b: CreditedDelay,
c: CreditedDelay,
d: CreditedDelay,
e: CreditedDelay)
{
def + (that: TLCreditedDelay): TLCreditedDelay = TLCreditedDelay(
a = a + that.a,
b = b + that.b,
c = c + that.c,
d = d + that.d,
e = e + that.e)
override def toString = s"(${a}, ${b}, ${c}, ${d}, ${e})"
}
object TLCreditedDelay {
def apply(delay: CreditedDelay): TLCreditedDelay = apply(delay, delay.flip, delay, delay.flip, delay)
}
case class TLCreditedManagerPortParameters(delay: TLCreditedDelay, base: TLSlavePortParameters) {def infoString = base.infoString}
case class TLCreditedClientPortParameters(delay: TLCreditedDelay, base: TLMasterPortParameters) {def infoString = base.infoString}
case class TLCreditedEdgeParameters(client: TLCreditedClientPortParameters, manager: TLCreditedManagerPortParameters, params: Parameters, sourceInfo: SourceInfo) extends FormatEdge
{
val delay = client.delay + manager.delay
val bundle = TLBundleParameters(client.base, manager.base)
def formatEdge = client.infoString + "\n" + manager.infoString
}
case class TLAsyncManagerPortParameters(async: AsyncQueueParams, base: TLSlavePortParameters) {def infoString = base.infoString}
case class TLAsyncClientPortParameters(base: TLMasterPortParameters) {def infoString = base.infoString}
case class TLAsyncBundleParameters(async: AsyncQueueParams, base: TLBundleParameters)
case class TLAsyncEdgeParameters(client: TLAsyncClientPortParameters, manager: TLAsyncManagerPortParameters, params: Parameters, sourceInfo: SourceInfo) extends FormatEdge
{
val bundle = TLAsyncBundleParameters(manager.async, TLBundleParameters(client.base, manager.base))
def formatEdge = client.infoString + "\n" + manager.infoString
}
case class TLRationalManagerPortParameters(direction: RationalDirection, base: TLSlavePortParameters) {def infoString = base.infoString}
case class TLRationalClientPortParameters(base: TLMasterPortParameters) {def infoString = base.infoString}
case class TLRationalEdgeParameters(client: TLRationalClientPortParameters, manager: TLRationalManagerPortParameters, params: Parameters, sourceInfo: SourceInfo) extends FormatEdge
{
val bundle = TLBundleParameters(client.base, manager.base)
def formatEdge = client.infoString + "\n" + manager.infoString
}
// To be unified, devices must agree on all of these terms
case class ManagerUnificationKey(
resources: Seq[Resource],
regionType: RegionType.T,
executable: Boolean,
supportsAcquireT: TransferSizes,
supportsAcquireB: TransferSizes,
supportsArithmetic: TransferSizes,
supportsLogical: TransferSizes,
supportsGet: TransferSizes,
supportsPutFull: TransferSizes,
supportsPutPartial: TransferSizes,
supportsHint: TransferSizes)
object ManagerUnificationKey
{
def apply(x: TLSlaveParameters): ManagerUnificationKey = ManagerUnificationKey(
resources = x.resources,
regionType = x.regionType,
executable = x.executable,
supportsAcquireT = x.supportsAcquireT,
supportsAcquireB = x.supportsAcquireB,
supportsArithmetic = x.supportsArithmetic,
supportsLogical = x.supportsLogical,
supportsGet = x.supportsGet,
supportsPutFull = x.supportsPutFull,
supportsPutPartial = x.supportsPutPartial,
supportsHint = x.supportsHint)
}
object ManagerUnification
{
def apply(slaves: Seq[TLSlaveParameters]): List[TLSlaveParameters] = {
slaves.groupBy(ManagerUnificationKey.apply).values.map { seq =>
val agree = seq.forall(_.fifoId == seq.head.fifoId)
seq(0).v1copy(
address = AddressSet.unify(seq.flatMap(_.address)),
fifoId = if (agree) seq(0).fifoId else None)
}.toList
}
}
case class TLBufferParams(
a: BufferParams = BufferParams.none,
b: BufferParams = BufferParams.none,
c: BufferParams = BufferParams.none,
d: BufferParams = BufferParams.none,
e: BufferParams = BufferParams.none
) extends DirectedBuffers[TLBufferParams] {
def copyIn(x: BufferParams) = this.copy(b = x, d = x)
def copyOut(x: BufferParams) = this.copy(a = x, c = x, e = x)
def copyInOut(x: BufferParams) = this.copyIn(x).copyOut(x)
}
/** Pretty printing of TL source id maps */
class TLSourceIdMap(tl: TLMasterPortParameters) extends IdMap[TLSourceIdMapEntry] {
private val tlDigits = String.valueOf(tl.endSourceId-1).length()
protected val fmt = s"\t[%${tlDigits}d, %${tlDigits}d) %s%s%s"
private val sorted = tl.masters.sortBy(_.sourceId)
val mapping: Seq[TLSourceIdMapEntry] = sorted.map { case c =>
TLSourceIdMapEntry(c.sourceId, c.name, c.supports.probe, c.requestFifo)
}
}
case class TLSourceIdMapEntry(tlId: IdRange, name: String, isCache: Boolean, requestFifo: Boolean)
extends IdMapEntry
{
val from = tlId
val to = tlId
val maxTransactionsInFlight = Some(tlId.size)
}
File MixedNode.scala:
package org.chipsalliance.diplomacy.nodes
import chisel3.{Data, DontCare, Wire}
import chisel3.experimental.SourceInfo
import org.chipsalliance.cde.config.{Field, Parameters}
import org.chipsalliance.diplomacy.ValName
import org.chipsalliance.diplomacy.sourceLine
/** One side metadata of a [[Dangle]].
*
* Describes one side of an edge going into or out of a [[BaseNode]].
*
* @param serial
* the global [[BaseNode.serial]] number of the [[BaseNode]] that this [[HalfEdge]] connects to.
* @param index
* the `index` in the [[BaseNode]]'s input or output port list that this [[HalfEdge]] belongs to.
*/
case class HalfEdge(serial: Int, index: Int) extends Ordered[HalfEdge] {
import scala.math.Ordered.orderingToOrdered
def compare(that: HalfEdge): Int = HalfEdge.unapply(this).compare(HalfEdge.unapply(that))
}
/** [[Dangle]] captures the `IO` information of a [[LazyModule]] and which two [[BaseNode]]s the [[Edges]]/[[Bundle]]
* connects.
*
* [[Dangle]]s are generated by [[BaseNode.instantiate]] using [[MixedNode.danglesOut]] and [[MixedNode.danglesIn]] ,
* [[LazyModuleImp.instantiate]] connects those that go to internal or explicit IO connections in a [[LazyModule]].
*
* @param source
* the source [[HalfEdge]] of this [[Dangle]], which captures the source [[BaseNode]] and the port `index` within
* that [[BaseNode]].
* @param sink
* sink [[HalfEdge]] of this [[Dangle]], which captures the sink [[BaseNode]] and the port `index` within that
* [[BaseNode]].
* @param flipped
* flip or not in [[AutoBundle.makeElements]]. If true this corresponds to `danglesOut`, if false it corresponds to
* `danglesIn`.
* @param dataOpt
* actual [[Data]] for the hardware connection. Can be empty if this belongs to a cloned module
*/
case class Dangle(source: HalfEdge, sink: HalfEdge, flipped: Boolean, name: String, dataOpt: Option[Data]) {
def data = dataOpt.get
}
/** [[Edges]] is a collection of parameters describing the functionality and connection for an interface, which is often
* derived from the interconnection protocol and can inform the parameterization of the hardware bundles that actually
* implement the protocol.
*/
case class Edges[EI, EO](in: Seq[EI], out: Seq[EO])
/** A field available in [[Parameters]] used to determine whether [[InwardNodeImp.monitor]] will be called. */
case object MonitorsEnabled extends Field[Boolean](true)
/** When rendering the edge in a graphical format, flip the order in which the edges' source and sink are presented.
*
* For example, when rendering graphML, yEd by default tries to put the source node vertically above the sink node, but
* [[RenderFlipped]] inverts this relationship. When a particular [[LazyModule]] contains both source nodes and sink
* nodes, flipping the rendering of one node's edge will usual produce a more concise visual layout for the
* [[LazyModule]].
*/
case object RenderFlipped extends Field[Boolean](false)
/** The sealed node class in the package, all node are derived from it.
*
* @param inner
* Sink interface implementation.
* @param outer
* Source interface implementation.
* @param valName
* val name of this node.
* @tparam DI
* Downward-flowing parameters received on the inner side of the node. It is usually a brunch of parameters
* describing the protocol parameters from a source. For an [[InwardNode]], it is determined by the connected
* [[OutwardNode]]. Since it can be connected to multiple sources, this parameter is always a Seq of source port
* parameters.
* @tparam UI
* Upward-flowing parameters generated by the inner side of the node. It is usually a brunch of parameters describing
* the protocol parameters of a sink. For an [[InwardNode]], it is determined itself.
* @tparam EI
* Edge Parameters describing a connection on the inner side of the node. It is usually a brunch of transfers
* specified for a sink according to protocol.
* @tparam BI
* Bundle type used when connecting to the inner side of the node. It is a hardware interface of this sink interface.
* It should extends from [[chisel3.Data]], which represents the real hardware.
* @tparam DO
* Downward-flowing parameters generated on the outer side of the node. It is usually a brunch of parameters
* describing the protocol parameters of a source. For an [[OutwardNode]], it is determined itself.
* @tparam UO
* Upward-flowing parameters received by the outer side of the node. It is usually a brunch of parameters describing
* the protocol parameters from a sink. For an [[OutwardNode]], it is determined by the connected [[InwardNode]].
* Since it can be connected to multiple sinks, this parameter is always a Seq of sink port parameters.
* @tparam EO
* Edge Parameters describing a connection on the outer side of the node. It is usually a brunch of transfers
* specified for a source according to protocol.
* @tparam BO
* Bundle type used when connecting to the outer side of the node. It is a hardware interface of this source
* interface. It should extends from [[chisel3.Data]], which represents the real hardware.
*
* @note
* Call Graph of [[MixedNode]]
* - line `β`: source is process by a function and generate pass to others
* - Arrow `β`: target of arrow is generated by source
*
* {{{
* (from the other node)
* ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ[[InwardNode.uiParams]]ββββββββββββββ
* β β
* (binding node when elaboration) [[OutwardNode.uoParams]]ββββββββββββββββββββββββ[[MixedNode.mapParamsU]]ββββββββββββ β
* [[InwardNode.accPI]] β β β
* β β (based on protocol) β
* β β [[MixedNode.inner.edgeI]] β
* β β β β
* β β β β
* (immobilize after elaboration) (inward port from [[OutwardNode]]) β β β
* [[InwardNode.iBindings]]βββ [[MixedNode.iDirectPorts]]βββββββββββββββββββββ[[MixedNode.iPorts]] [[InwardNode.uiParams]] β
* β β β β β β
* β β β [[OutwardNode.doParams]] β β
* β β β (from the other node) β β
* β β β β β β
* β β β β β β
* β β β ββββββββββ¬βββββββββββββββ€ β
* β β β β β β
* β β β β (based on protocol) β
* β β β β [[MixedNode.inner.edgeI]] β
* β β β β β β
* β β (from the other node) β β β
* β ββββ[[OutwardNode.oPortMapping]] [[OutwardNode.oStar]] β [[MixedNode.edgesIn]]ββββ β
* β β β β β β β
* β β β β β [[MixedNode.in]] β
* β β β β β β β
* β (solve star connection) β β β [[MixedNode.bundleIn]]βββ β
* ββββ[[MixedNode.resolveStar]]βββΌββββββββββββββββββββββββββββββ€ ββββββββββββββββββββββββββββββββββββββ β
* β β β [[MixedNode.bundleOut]]ββ β β
* β β β β β β β
* β β β β [[MixedNode.out]] β β
* β β β β β β β
* β ββββββ[[InwardNode.iPortMapping]] [[InwardNode.iStar]] [[MixedNode.edgesOut]]βββ β β
* β β (from the other node) β β β
* β β β β β β
* β β β [[MixedNode.outer.edgeO]] β β
* β β β (based on protocol) β β
* β β β β β β
* β β β ββββββββββββββββββββββββββββββββββββββββββ€ β β
* β β β β β β β
* β β β β β β β
* β β β β β β β
* (immobilize after elaboration)β β β β β β
* [[OutwardNode.oBindings]]ββ [[MixedNode.oDirectPorts]]ββββ[[MixedNode.oPorts]] [[OutwardNode.doParams]] β β
* β (inward port from [[OutwardNode]]) β β β β
* β βββββββββββββββββββββββββββββββββββββββββββ€ β β β
* β β β β β β
* β β β β β β
* [[OutwardNode.accPO]] β β β β β
* (binding node when elaboration) β [[InwardNode.diParams]]ββββββ[[MixedNode.mapParamsD]]βββββββββββββββββββββββββββββ β β
* β β β β
* β ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ β
* ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
* }}}
*/
abstract class MixedNode[DI, UI, EI, BI <: Data, DO, UO, EO, BO <: Data](
val inner: InwardNodeImp[DI, UI, EI, BI],
val outer: OutwardNodeImp[DO, UO, EO, BO]
)(
implicit valName: ValName)
extends BaseNode
with NodeHandle[DI, UI, EI, BI, DO, UO, EO, BO]
with InwardNode[DI, UI, BI]
with OutwardNode[DO, UO, BO] {
// Generate a [[NodeHandle]] with inward and outward node are both this node.
val inward = this
val outward = this
/** Debug info of nodes binding. */
def bindingInfo: String = s"""$iBindingInfo
|$oBindingInfo
|""".stripMargin
/** Debug info of ports connecting. */
def connectedPortsInfo: String = s"""${oPorts.size} outward ports connected: [${oPorts.map(_._2.name).mkString(",")}]
|${iPorts.size} inward ports connected: [${iPorts.map(_._2.name).mkString(",")}]
|""".stripMargin
/** Debug info of parameters propagations. */
def parametersInfo: String = s"""${doParams.size} downstream outward parameters: [${doParams.mkString(",")}]
|${uoParams.size} upstream outward parameters: [${uoParams.mkString(",")}]
|${diParams.size} downstream inward parameters: [${diParams.mkString(",")}]
|${uiParams.size} upstream inward parameters: [${uiParams.mkString(",")}]
|""".stripMargin
/** For a given node, converts [[OutwardNode.accPO]] and [[InwardNode.accPI]] to [[MixedNode.oPortMapping]] and
* [[MixedNode.iPortMapping]].
*
* Given counts of known inward and outward binding and inward and outward star bindings, return the resolved inward
* stars and outward stars.
*
* This method will also validate the arguments and throw a runtime error if the values are unsuitable for this type
* of node.
*
* @param iKnown
* Number of known-size ([[BIND_ONCE]]) input bindings.
* @param oKnown
* Number of known-size ([[BIND_ONCE]]) output bindings.
* @param iStar
* Number of unknown size ([[BIND_STAR]]) input bindings.
* @param oStar
* Number of unknown size ([[BIND_STAR]]) output bindings.
* @return
* A Tuple of the resolved number of input and output connections.
*/
protected[diplomacy] def resolveStar(iKnown: Int, oKnown: Int, iStar: Int, oStar: Int): (Int, Int)
/** Function to generate downward-flowing outward params from the downward-flowing input params and the current output
* ports.
*
* @param n
* The size of the output sequence to generate.
* @param p
* Sequence of downward-flowing input parameters of this node.
* @return
* A `n`-sized sequence of downward-flowing output edge parameters.
*/
protected[diplomacy] def mapParamsD(n: Int, p: Seq[DI]): Seq[DO]
/** Function to generate upward-flowing input parameters from the upward-flowing output parameters [[uiParams]].
*
* @param n
* Size of the output sequence.
* @param p
* Upward-flowing output edge parameters.
* @return
* A n-sized sequence of upward-flowing input edge parameters.
*/
protected[diplomacy] def mapParamsU(n: Int, p: Seq[UO]): Seq[UI]
/** @return
* The sink cardinality of the node, the number of outputs bound with [[BIND_QUERY]] summed with inputs bound with
* [[BIND_STAR]].
*/
protected[diplomacy] lazy val sinkCard: Int = oBindings.count(_._3 == BIND_QUERY) + iBindings.count(_._3 == BIND_STAR)
/** @return
* The source cardinality of this node, the number of inputs bound with [[BIND_QUERY]] summed with the number of
* output bindings bound with [[BIND_STAR]].
*/
protected[diplomacy] lazy val sourceCard: Int =
iBindings.count(_._3 == BIND_QUERY) + oBindings.count(_._3 == BIND_STAR)
/** @return list of nodes involved in flex bindings with this node. */
protected[diplomacy] lazy val flexes: Seq[BaseNode] =
oBindings.filter(_._3 == BIND_FLEX).map(_._2) ++ iBindings.filter(_._3 == BIND_FLEX).map(_._2)
/** Resolves the flex to be either source or sink and returns the offset where the [[BIND_STAR]] operators begin
* greedily taking up the remaining connections.
*
* @return
* A value >= 0 if it is sink cardinality, a negative value for source cardinality. The magnitude of the return
* value is not relevant.
*/
protected[diplomacy] lazy val flexOffset: Int = {
/** Recursively performs a depth-first search of the [[flexes]], [[BaseNode]]s connected to this node with flex
* operators. The algorithm bottoms out when we either get to a node we have already visited or when we get to a
* connection that is not a flex and can set the direction for us. Otherwise, recurse by visiting the `flexes` of
* each node in the current set and decide whether they should be added to the set or not.
*
* @return
* the mapping of [[BaseNode]] indexed by their serial numbers.
*/
def DFS(v: BaseNode, visited: Map[Int, BaseNode]): Map[Int, BaseNode] = {
if (visited.contains(v.serial) || !v.flexibleArityDirection) {
visited
} else {
v.flexes.foldLeft(visited + (v.serial -> v))((sum, n) => DFS(n, sum))
}
}
/** Determine which [[BaseNode]] are involved in resolving the flex connections to/from this node.
*
* @example
* {{{
* a :*=* b :*=* c
* d :*=* b
* e :*=* f
* }}}
*
* `flexSet` for `a`, `b`, `c`, or `d` will be `Set(a, b, c, d)` `flexSet` for `e` or `f` will be `Set(e,f)`
*/
val flexSet = DFS(this, Map()).values
/** The total number of :*= operators where we're on the left. */
val allSink = flexSet.map(_.sinkCard).sum
/** The total number of :=* operators used when we're on the right. */
val allSource = flexSet.map(_.sourceCard).sum
require(
allSink == 0 || allSource == 0,
s"The nodes ${flexSet.map(_.name)} which are inter-connected by :*=* have ${allSink} :*= operators and ${allSource} :=* operators connected to them, making it impossible to determine cardinality inference direction."
)
allSink - allSource
}
/** @return A value >= 0 if it is sink cardinality, a negative value for source cardinality. */
protected[diplomacy] def edgeArityDirection(n: BaseNode): Int = {
if (flexibleArityDirection) flexOffset
else if (n.flexibleArityDirection) n.flexOffset
else 0
}
/** For a node which is connected between two nodes, select the one that will influence the direction of the flex
* resolution.
*/
protected[diplomacy] def edgeAritySelect(n: BaseNode, l: => Int, r: => Int): Int = {
val dir = edgeArityDirection(n)
if (dir < 0) l
else if (dir > 0) r
else 1
}
/** Ensure that the same node is not visited twice in resolving `:*=`, etc operators. */
private var starCycleGuard = false
/** Resolve all the star operators into concrete indicies. As connections are being made, some may be "star"
* connections which need to be resolved. In some way to determine how many actual edges they correspond to. We also
* need to build up the ranges of edges which correspond to each binding operator, so that We can apply the correct
* edge parameters and later build up correct bundle connections.
*
* [[oPortMapping]]: `Seq[(Int, Int)]` where each item is the range of edges corresponding to that oPort (binding
* operator). [[iPortMapping]]: `Seq[(Int, Int)]` where each item is the range of edges corresponding to that iPort
* (binding operator). [[oStar]]: `Int` the value to return for this node `N` for any `N :*= foo` or `N :*=* foo :*=
* bar` [[iStar]]: `Int` the value to return for this node `N` for any `foo :=* N` or `bar :=* foo :*=* N`
*/
protected[diplomacy] lazy val (
oPortMapping: Seq[(Int, Int)],
iPortMapping: Seq[(Int, Int)],
oStar: Int,
iStar: Int
) = {
try {
if (starCycleGuard) throw StarCycleException()
starCycleGuard = true
// For a given node N...
// Number of foo :=* N
// + Number of bar :=* foo :*=* N
val oStars = oBindings.count { case (_, n, b, _, _) =>
b == BIND_STAR || (b == BIND_FLEX && edgeArityDirection(n) < 0)
}
// Number of N :*= foo
// + Number of N :*=* foo :*= bar
val iStars = iBindings.count { case (_, n, b, _, _) =>
b == BIND_STAR || (b == BIND_FLEX && edgeArityDirection(n) > 0)
}
// 1 for foo := N
// + bar.iStar for bar :*= foo :*=* N
// + foo.iStar for foo :*= N
// + 0 for foo :=* N
val oKnown = oBindings.map { case (_, n, b, _, _) =>
b match {
case BIND_ONCE => 1
case BIND_FLEX => edgeAritySelect(n, 0, n.iStar)
case BIND_QUERY => n.iStar
case BIND_STAR => 0
}
}.sum
// 1 for N := foo
// + bar.oStar for N :*=* foo :=* bar
// + foo.oStar for N :=* foo
// + 0 for N :*= foo
val iKnown = iBindings.map { case (_, n, b, _, _) =>
b match {
case BIND_ONCE => 1
case BIND_FLEX => edgeAritySelect(n, n.oStar, 0)
case BIND_QUERY => n.oStar
case BIND_STAR => 0
}
}.sum
// Resolve star depends on the node subclass to implement the algorithm for this.
val (iStar, oStar) = resolveStar(iKnown, oKnown, iStars, oStars)
// Cumulative list of resolved outward binding range starting points
val oSum = oBindings.map { case (_, n, b, _, _) =>
b match {
case BIND_ONCE => 1
case BIND_FLEX => edgeAritySelect(n, oStar, n.iStar)
case BIND_QUERY => n.iStar
case BIND_STAR => oStar
}
}.scanLeft(0)(_ + _)
// Cumulative list of resolved inward binding range starting points
val iSum = iBindings.map { case (_, n, b, _, _) =>
b match {
case BIND_ONCE => 1
case BIND_FLEX => edgeAritySelect(n, n.oStar, iStar)
case BIND_QUERY => n.oStar
case BIND_STAR => iStar
}
}.scanLeft(0)(_ + _)
// Create ranges for each binding based on the running sums and return
// those along with resolved values for the star operations.
(oSum.init.zip(oSum.tail), iSum.init.zip(iSum.tail), oStar, iStar)
} catch {
case c: StarCycleException => throw c.copy(loop = context +: c.loop)
}
}
/** Sequence of inward ports.
*
* This should be called after all star bindings are resolved.
*
* Each element is: `j` Port index of this binding in the Node's [[oPortMapping]] on the other side of the binding.
* `n` Instance of inward node. `p` View of [[Parameters]] where this connection was made. `s` Source info where this
* connection was made in the source code.
*/
protected[diplomacy] lazy val oDirectPorts: Seq[(Int, InwardNode[DO, UO, BO], Parameters, SourceInfo)] =
oBindings.flatMap { case (i, n, _, p, s) =>
// for each binding operator in this node, look at what it connects to
val (start, end) = n.iPortMapping(i)
(start until end).map { j => (j, n, p, s) }
}
/** Sequence of outward ports.
*
* This should be called after all star bindings are resolved.
*
* `j` Port index of this binding in the Node's [[oPortMapping]] on the other side of the binding. `n` Instance of
* outward node. `p` View of [[Parameters]] where this connection was made. `s` [[SourceInfo]] where this connection
* was made in the source code.
*/
protected[diplomacy] lazy val iDirectPorts: Seq[(Int, OutwardNode[DI, UI, BI], Parameters, SourceInfo)] =
iBindings.flatMap { case (i, n, _, p, s) =>
// query this port index range of this node in the other side of node.
val (start, end) = n.oPortMapping(i)
(start until end).map { j => (j, n, p, s) }
}
// Ephemeral nodes ( which have non-None iForward/oForward) have in_degree = out_degree
// Thus, there must exist an Eulerian path and the below algorithms terminate
@scala.annotation.tailrec
private def oTrace(
tuple: (Int, InwardNode[DO, UO, BO], Parameters, SourceInfo)
): (Int, InwardNode[DO, UO, BO], Parameters, SourceInfo) = tuple match {
case (i, n, p, s) => n.iForward(i) match {
case None => (i, n, p, s)
case Some((j, m)) => oTrace((j, m, p, s))
}
}
@scala.annotation.tailrec
private def iTrace(
tuple: (Int, OutwardNode[DI, UI, BI], Parameters, SourceInfo)
): (Int, OutwardNode[DI, UI, BI], Parameters, SourceInfo) = tuple match {
case (i, n, p, s) => n.oForward(i) match {
case None => (i, n, p, s)
case Some((j, m)) => iTrace((j, m, p, s))
}
}
/** Final output ports after all stars and port forwarding (e.g. [[EphemeralNode]]s) have been resolved.
*
* Each Port is a tuple of:
* - Numeric index of this binding in the [[InwardNode]] on the other end.
* - [[InwardNode]] on the other end of this binding.
* - A view of [[Parameters]] where the binding occurred.
* - [[SourceInfo]] for source-level error reporting.
*/
lazy val oPorts: Seq[(Int, InwardNode[DO, UO, BO], Parameters, SourceInfo)] = oDirectPorts.map(oTrace)
/** Final input ports after all stars and port forwarding (e.g. [[EphemeralNode]]s) have been resolved.
*
* Each Port is a tuple of:
* - numeric index of this binding in [[OutwardNode]] on the other end.
* - [[OutwardNode]] on the other end of this binding.
* - a view of [[Parameters]] where the binding occurred.
* - [[SourceInfo]] for source-level error reporting.
*/
lazy val iPorts: Seq[(Int, OutwardNode[DI, UI, BI], Parameters, SourceInfo)] = iDirectPorts.map(iTrace)
private var oParamsCycleGuard = false
protected[diplomacy] lazy val diParams: Seq[DI] = iPorts.map { case (i, n, _, _) => n.doParams(i) }
protected[diplomacy] lazy val doParams: Seq[DO] = {
try {
if (oParamsCycleGuard) throw DownwardCycleException()
oParamsCycleGuard = true
val o = mapParamsD(oPorts.size, diParams)
require(
o.size == oPorts.size,
s"""Diplomacy has detected a problem with your graph:
|At the following node, the number of outward ports should equal the number of produced outward parameters.
|$context
|$connectedPortsInfo
|Downstreamed inward parameters: [${diParams.mkString(",")}]
|Produced outward parameters: [${o.mkString(",")}]
|""".stripMargin
)
o.map(outer.mixO(_, this))
} catch {
case c: DownwardCycleException => throw c.copy(loop = context +: c.loop)
}
}
private var iParamsCycleGuard = false
protected[diplomacy] lazy val uoParams: Seq[UO] = oPorts.map { case (o, n, _, _) => n.uiParams(o) }
protected[diplomacy] lazy val uiParams: Seq[UI] = {
try {
if (iParamsCycleGuard) throw UpwardCycleException()
iParamsCycleGuard = true
val i = mapParamsU(iPorts.size, uoParams)
require(
i.size == iPorts.size,
s"""Diplomacy has detected a problem with your graph:
|At the following node, the number of inward ports should equal the number of produced inward parameters.
|$context
|$connectedPortsInfo
|Upstreamed outward parameters: [${uoParams.mkString(",")}]
|Produced inward parameters: [${i.mkString(",")}]
|""".stripMargin
)
i.map(inner.mixI(_, this))
} catch {
case c: UpwardCycleException => throw c.copy(loop = context +: c.loop)
}
}
/** Outward edge parameters. */
protected[diplomacy] lazy val edgesOut: Seq[EO] =
(oPorts.zip(doParams)).map { case ((i, n, p, s), o) => outer.edgeO(o, n.uiParams(i), p, s) }
/** Inward edge parameters. */
protected[diplomacy] lazy val edgesIn: Seq[EI] =
(iPorts.zip(uiParams)).map { case ((o, n, p, s), i) => inner.edgeI(n.doParams(o), i, p, s) }
/** A tuple of the input edge parameters and output edge parameters for the edges bound to this node.
*
* If you need to access to the edges of a foreign Node, use this method (in/out create bundles).
*/
lazy val edges: Edges[EI, EO] = Edges(edgesIn, edgesOut)
/** Create actual Wires corresponding to the Bundles parameterized by the outward edges of this node. */
protected[diplomacy] lazy val bundleOut: Seq[BO] = edgesOut.map { e =>
val x = Wire(outer.bundleO(e)).suggestName(s"${valName.value}Out")
// TODO: Don't care unconnected forwarded diplomatic signals for compatibility issue,
// In the future, we should add an option to decide whether allowing unconnected in the LazyModule
x := DontCare
x
}
/** Create actual Wires corresponding to the Bundles parameterized by the inward edges of this node. */
protected[diplomacy] lazy val bundleIn: Seq[BI] = edgesIn.map { e =>
val x = Wire(inner.bundleI(e)).suggestName(s"${valName.value}In")
// TODO: Don't care unconnected forwarded diplomatic signals for compatibility issue,
// In the future, we should add an option to decide whether allowing unconnected in the LazyModule
x := DontCare
x
}
private def emptyDanglesOut: Seq[Dangle] = oPorts.zipWithIndex.map { case ((j, n, _, _), i) =>
Dangle(
source = HalfEdge(serial, i),
sink = HalfEdge(n.serial, j),
flipped = false,
name = wirePrefix + "out",
dataOpt = None
)
}
private def emptyDanglesIn: Seq[Dangle] = iPorts.zipWithIndex.map { case ((j, n, _, _), i) =>
Dangle(
source = HalfEdge(n.serial, j),
sink = HalfEdge(serial, i),
flipped = true,
name = wirePrefix + "in",
dataOpt = None
)
}
/** Create the [[Dangle]]s which describe the connections from this node output to other nodes inputs. */
protected[diplomacy] def danglesOut: Seq[Dangle] = emptyDanglesOut.zipWithIndex.map { case (d, i) =>
d.copy(dataOpt = Some(bundleOut(i)))
}
/** Create the [[Dangle]]s which describe the connections from this node input from other nodes outputs. */
protected[diplomacy] def danglesIn: Seq[Dangle] = emptyDanglesIn.zipWithIndex.map { case (d, i) =>
d.copy(dataOpt = Some(bundleIn(i)))
}
private[diplomacy] var instantiated = false
/** Gather Bundle and edge parameters of outward ports.
*
* Accessors to the result of negotiation to be used within [[LazyModuleImp]] Code. Should only be used within
* [[LazyModuleImp]] code or after its instantiation has completed.
*/
def out: Seq[(BO, EO)] = {
require(
instantiated,
s"$name.out should not be called until after instantiation of its parent LazyModule.module has begun"
)
bundleOut.zip(edgesOut)
}
/** Gather Bundle and edge parameters of inward ports.
*
* Accessors to the result of negotiation to be used within [[LazyModuleImp]] Code. Should only be used within
* [[LazyModuleImp]] code or after its instantiation has completed.
*/
def in: Seq[(BI, EI)] = {
require(
instantiated,
s"$name.in should not be called until after instantiation of its parent LazyModule.module has begun"
)
bundleIn.zip(edgesIn)
}
/** Actually instantiate this node during [[LazyModuleImp]] evaluation. Mark that it's safe to use the Bundle wires,
* instantiate monitors on all input ports if appropriate, and return all the dangles of this node.
*/
protected[diplomacy] def instantiate(): Seq[Dangle] = {
instantiated = true
if (!circuitIdentity) {
(iPorts.zip(in)).foreach { case ((_, _, p, _), (b, e)) => if (p(MonitorsEnabled)) inner.monitor(b, e) }
}
danglesOut ++ danglesIn
}
protected[diplomacy] def cloneDangles(): Seq[Dangle] = emptyDanglesOut ++ emptyDanglesIn
/** Connects the outward part of a node with the inward part of this node. */
protected[diplomacy] def bind(
h: OutwardNode[DI, UI, BI],
binding: NodeBinding
)(
implicit p: Parameters,
sourceInfo: SourceInfo
): Unit = {
val x = this // x := y
val y = h
sourceLine(sourceInfo, " at ", "")
val i = x.iPushed
val o = y.oPushed
y.oPush(
i,
x,
binding match {
case BIND_ONCE => BIND_ONCE
case BIND_FLEX => BIND_FLEX
case BIND_STAR => BIND_QUERY
case BIND_QUERY => BIND_STAR
}
)
x.iPush(o, y, binding)
}
/* Metadata for printing the node graph. */
def inputs: Seq[(OutwardNode[DI, UI, BI], RenderedEdge)] = (iPorts.zip(edgesIn)).map { case ((_, n, p, _), e) =>
val re = inner.render(e)
(n, re.copy(flipped = re.flipped != p(RenderFlipped)))
}
/** Metadata for printing the node graph */
def outputs: Seq[(InwardNode[DO, UO, BO], RenderedEdge)] = oPorts.map { case (i, n, _, _) => (n, n.inputs(i)._2) }
}
File CustomBootPin.scala:
package testchipip.boot
import chisel3._
import chisel3.util._
import org.chipsalliance.cde.config._
import freechips.rocketchip.diplomacy._
import freechips.rocketchip.tilelink._
import freechips.rocketchip.devices.tilelink._
import freechips.rocketchip.regmapper._
import freechips.rocketchip.subsystem._
case class CustomBootPinParams(
customBootAddress: BigInt = 0x80000000L, // Default is DRAM_BASE
masterWhere: TLBusWrapperLocation = CBUS // This needs to write to clint and bootaddrreg, which are on CBUS/PBUS
)
case object CustomBootPinKey extends Field[Option[CustomBootPinParams]](None)
trait CanHavePeripheryCustomBootPin { this: BaseSubsystem =>
val custom_boot_pin = p(CustomBootPinKey).map { params =>
require(p(BootAddrRegKey).isDefined, "CustomBootPin relies on existence of BootAddrReg")
val tlbus = locateTLBusWrapper(params.masterWhere)
val clientParams = TLMasterPortParameters.v1(
clients = Seq(TLMasterParameters.v1(
name = "custom-boot",
sourceId = IdRange(0, 1),
)),
minLatency = 1
)
val inner_io = tlbus {
val node = TLClientNode(Seq(clientParams))
tlbus.coupleFrom(s"port_named_custom_boot_pin") ({ _ := node })
InModuleBody {
val custom_boot = IO(Input(Bool())).suggestName("custom_boot")
val (tl, edge) = node.out(0)
val inactive :: waiting_bootaddr_reg_a :: waiting_bootaddr_reg_d :: waiting_msip_a :: waiting_msip_d :: dead :: Nil = Enum(6)
val state = RegInit(inactive)
tl.a.valid := false.B
tl.a.bits := DontCare
tl.d.ready := true.B
switch (state) {
is (inactive) { when (custom_boot) { state := waiting_bootaddr_reg_a } }
is (waiting_bootaddr_reg_a) {
tl.a.valid := true.B
tl.a.bits := edge.Put(
toAddress = p(BootAddrRegKey).get.bootRegAddress.U,
fromSource = 0.U,
lgSize = 2.U,
data = params.customBootAddress.U
)._2
when (tl.a.fire) { state := waiting_bootaddr_reg_d }
}
is (waiting_bootaddr_reg_d) { when (tl.d.fire) { state := waiting_msip_a } }
is (waiting_msip_a) {
tl.a.valid := true.B
tl.a.bits := edge.Put(
toAddress = (p(CLINTKey).get.baseAddress + CLINTConsts.msipOffset(0)).U, // msip for hart0
fromSource = 0.U,
lgSize = log2Ceil(CLINTConsts.msipBytes).U,
data = 1.U
)._2
when (tl.a.fire) { state := waiting_msip_d }
}
is (waiting_msip_d) { when (tl.d.fire) { state := dead } }
is (dead) { when (!custom_boot) { state := inactive } }
}
custom_boot
}
}
val outer_io = InModuleBody {
val custom_boot = IO(Input(Bool())).suggestName("custom_boot")
inner_io := custom_boot
custom_boot
}
outer_io
}
}
File Edges.scala:
// See LICENSE.SiFive for license details.
package freechips.rocketchip.tilelink
import chisel3._
import chisel3.util._
import chisel3.experimental.SourceInfo
import org.chipsalliance.cde.config.Parameters
import freechips.rocketchip.util._
class TLEdge(
client: TLClientPortParameters,
manager: TLManagerPortParameters,
params: Parameters,
sourceInfo: SourceInfo)
extends TLEdgeParameters(client, manager, params, sourceInfo)
{
def isAligned(address: UInt, lgSize: UInt): Bool = {
if (maxLgSize == 0) true.B else {
val mask = UIntToOH1(lgSize, maxLgSize)
(address & mask) === 0.U
}
}
def mask(address: UInt, lgSize: UInt): UInt =
MaskGen(address, lgSize, manager.beatBytes)
def staticHasData(bundle: TLChannel): Option[Boolean] = {
bundle match {
case _:TLBundleA => {
// Do there exist A messages with Data?
val aDataYes = manager.anySupportArithmetic || manager.anySupportLogical || manager.anySupportPutFull || manager.anySupportPutPartial
// Do there exist A messages without Data?
val aDataNo = manager.anySupportAcquireB || manager.anySupportGet || manager.anySupportHint
// Statically optimize the case where hasData is a constant
if (!aDataYes) Some(false) else if (!aDataNo) Some(true) else None
}
case _:TLBundleB => {
// Do there exist B messages with Data?
val bDataYes = client.anySupportArithmetic || client.anySupportLogical || client.anySupportPutFull || client.anySupportPutPartial
// Do there exist B messages without Data?
val bDataNo = client.anySupportProbe || client.anySupportGet || client.anySupportHint
// Statically optimize the case where hasData is a constant
if (!bDataYes) Some(false) else if (!bDataNo) Some(true) else None
}
case _:TLBundleC => {
// Do there eixst C messages with Data?
val cDataYes = client.anySupportGet || client.anySupportArithmetic || client.anySupportLogical || client.anySupportProbe
// Do there exist C messages without Data?
val cDataNo = client.anySupportPutFull || client.anySupportPutPartial || client.anySupportHint || client.anySupportProbe
if (!cDataYes) Some(false) else if (!cDataNo) Some(true) else None
}
case _:TLBundleD => {
// Do there eixst D messages with Data?
val dDataYes = manager.anySupportGet || manager.anySupportArithmetic || manager.anySupportLogical || manager.anySupportAcquireB
// Do there exist D messages without Data?
val dDataNo = manager.anySupportPutFull || manager.anySupportPutPartial || manager.anySupportHint || manager.anySupportAcquireT
if (!dDataYes) Some(false) else if (!dDataNo) Some(true) else None
}
case _:TLBundleE => Some(false)
}
}
def isRequest(x: TLChannel): Bool = {
x match {
case a: TLBundleA => true.B
case b: TLBundleB => true.B
case c: TLBundleC => c.opcode(2) && c.opcode(1)
// opcode === TLMessages.Release ||
// opcode === TLMessages.ReleaseData
case d: TLBundleD => d.opcode(2) && !d.opcode(1)
// opcode === TLMessages.Grant ||
// opcode === TLMessages.GrantData
case e: TLBundleE => false.B
}
}
def isResponse(x: TLChannel): Bool = {
x match {
case a: TLBundleA => false.B
case b: TLBundleB => false.B
case c: TLBundleC => !c.opcode(2) || !c.opcode(1)
// opcode =/= TLMessages.Release &&
// opcode =/= TLMessages.ReleaseData
case d: TLBundleD => true.B // Grant isResponse + isRequest
case e: TLBundleE => true.B
}
}
def hasData(x: TLChannel): Bool = {
val opdata = x match {
case a: TLBundleA => !a.opcode(2)
// opcode === TLMessages.PutFullData ||
// opcode === TLMessages.PutPartialData ||
// opcode === TLMessages.ArithmeticData ||
// opcode === TLMessages.LogicalData
case b: TLBundleB => !b.opcode(2)
// opcode === TLMessages.PutFullData ||
// opcode === TLMessages.PutPartialData ||
// opcode === TLMessages.ArithmeticData ||
// opcode === TLMessages.LogicalData
case c: TLBundleC => c.opcode(0)
// opcode === TLMessages.AccessAckData ||
// opcode === TLMessages.ProbeAckData ||
// opcode === TLMessages.ReleaseData
case d: TLBundleD => d.opcode(0)
// opcode === TLMessages.AccessAckData ||
// opcode === TLMessages.GrantData
case e: TLBundleE => false.B
}
staticHasData(x).map(_.B).getOrElse(opdata)
}
def opcode(x: TLDataChannel): UInt = {
x match {
case a: TLBundleA => a.opcode
case b: TLBundleB => b.opcode
case c: TLBundleC => c.opcode
case d: TLBundleD => d.opcode
}
}
def param(x: TLDataChannel): UInt = {
x match {
case a: TLBundleA => a.param
case b: TLBundleB => b.param
case c: TLBundleC => c.param
case d: TLBundleD => d.param
}
}
def size(x: TLDataChannel): UInt = {
x match {
case a: TLBundleA => a.size
case b: TLBundleB => b.size
case c: TLBundleC => c.size
case d: TLBundleD => d.size
}
}
def data(x: TLDataChannel): UInt = {
x match {
case a: TLBundleA => a.data
case b: TLBundleB => b.data
case c: TLBundleC => c.data
case d: TLBundleD => d.data
}
}
def corrupt(x: TLDataChannel): Bool = {
x match {
case a: TLBundleA => a.corrupt
case b: TLBundleB => b.corrupt
case c: TLBundleC => c.corrupt
case d: TLBundleD => d.corrupt
}
}
def mask(x: TLAddrChannel): UInt = {
x match {
case a: TLBundleA => a.mask
case b: TLBundleB => b.mask
case c: TLBundleC => mask(c.address, c.size)
}
}
def full_mask(x: TLAddrChannel): UInt = {
x match {
case a: TLBundleA => mask(a.address, a.size)
case b: TLBundleB => mask(b.address, b.size)
case c: TLBundleC => mask(c.address, c.size)
}
}
def address(x: TLAddrChannel): UInt = {
x match {
case a: TLBundleA => a.address
case b: TLBundleB => b.address
case c: TLBundleC => c.address
}
}
def source(x: TLDataChannel): UInt = {
x match {
case a: TLBundleA => a.source
case b: TLBundleB => b.source
case c: TLBundleC => c.source
case d: TLBundleD => d.source
}
}
def addr_hi(x: UInt): UInt = x >> log2Ceil(manager.beatBytes)
def addr_lo(x: UInt): UInt =
if (manager.beatBytes == 1) 0.U else x(log2Ceil(manager.beatBytes)-1, 0)
def addr_hi(x: TLAddrChannel): UInt = addr_hi(address(x))
def addr_lo(x: TLAddrChannel): UInt = addr_lo(address(x))
def numBeats(x: TLChannel): UInt = {
x match {
case _: TLBundleE => 1.U
case bundle: TLDataChannel => {
val hasData = this.hasData(bundle)
val size = this.size(bundle)
val cutoff = log2Ceil(manager.beatBytes)
val small = if (manager.maxTransfer <= manager.beatBytes) true.B else size <= (cutoff).U
val decode = UIntToOH(size, maxLgSize+1) >> cutoff
Mux(hasData, decode | small.asUInt, 1.U)
}
}
}
def numBeats1(x: TLChannel): UInt = {
x match {
case _: TLBundleE => 0.U
case bundle: TLDataChannel => {
if (maxLgSize == 0) {
0.U
} else {
val decode = UIntToOH1(size(bundle), maxLgSize) >> log2Ceil(manager.beatBytes)
Mux(hasData(bundle), decode, 0.U)
}
}
}
}
def firstlastHelper(bits: TLChannel, fire: Bool): (Bool, Bool, Bool, UInt) = {
val beats1 = numBeats1(bits)
val counter = RegInit(0.U(log2Up(maxTransfer / manager.beatBytes).W))
val counter1 = counter - 1.U
val first = counter === 0.U
val last = counter === 1.U || beats1 === 0.U
val done = last && fire
val count = (beats1 & ~counter1)
when (fire) {
counter := Mux(first, beats1, counter1)
}
(first, last, done, count)
}
def first(bits: TLChannel, fire: Bool): Bool = firstlastHelper(bits, fire)._1
def first(x: DecoupledIO[TLChannel]): Bool = first(x.bits, x.fire)
def first(x: ValidIO[TLChannel]): Bool = first(x.bits, x.valid)
def last(bits: TLChannel, fire: Bool): Bool = firstlastHelper(bits, fire)._2
def last(x: DecoupledIO[TLChannel]): Bool = last(x.bits, x.fire)
def last(x: ValidIO[TLChannel]): Bool = last(x.bits, x.valid)
def done(bits: TLChannel, fire: Bool): Bool = firstlastHelper(bits, fire)._3
def done(x: DecoupledIO[TLChannel]): Bool = done(x.bits, x.fire)
def done(x: ValidIO[TLChannel]): Bool = done(x.bits, x.valid)
def firstlast(bits: TLChannel, fire: Bool): (Bool, Bool, Bool) = {
val r = firstlastHelper(bits, fire)
(r._1, r._2, r._3)
}
def firstlast(x: DecoupledIO[TLChannel]): (Bool, Bool, Bool) = firstlast(x.bits, x.fire)
def firstlast(x: ValidIO[TLChannel]): (Bool, Bool, Bool) = firstlast(x.bits, x.valid)
def count(bits: TLChannel, fire: Bool): (Bool, Bool, Bool, UInt) = {
val r = firstlastHelper(bits, fire)
(r._1, r._2, r._3, r._4)
}
def count(x: DecoupledIO[TLChannel]): (Bool, Bool, Bool, UInt) = count(x.bits, x.fire)
def count(x: ValidIO[TLChannel]): (Bool, Bool, Bool, UInt) = count(x.bits, x.valid)
def addr_inc(bits: TLChannel, fire: Bool): (Bool, Bool, Bool, UInt) = {
val r = firstlastHelper(bits, fire)
(r._1, r._2, r._3, r._4 << log2Ceil(manager.beatBytes))
}
def addr_inc(x: DecoupledIO[TLChannel]): (Bool, Bool, Bool, UInt) = addr_inc(x.bits, x.fire)
def addr_inc(x: ValidIO[TLChannel]): (Bool, Bool, Bool, UInt) = addr_inc(x.bits, x.valid)
// Does the request need T permissions to be executed?
def needT(a: TLBundleA): Bool = {
val acq_needT = MuxLookup(a.param, WireDefault(Bool(), DontCare))(Array(
TLPermissions.NtoB -> false.B,
TLPermissions.NtoT -> true.B,
TLPermissions.BtoT -> true.B))
MuxLookup(a.opcode, WireDefault(Bool(), DontCare))(Array(
TLMessages.PutFullData -> true.B,
TLMessages.PutPartialData -> true.B,
TLMessages.ArithmeticData -> true.B,
TLMessages.LogicalData -> true.B,
TLMessages.Get -> false.B,
TLMessages.Hint -> MuxLookup(a.param, WireDefault(Bool(), DontCare))(Array(
TLHints.PREFETCH_READ -> false.B,
TLHints.PREFETCH_WRITE -> true.B)),
TLMessages.AcquireBlock -> acq_needT,
TLMessages.AcquirePerm -> acq_needT))
}
// This is a very expensive circuit; use only if you really mean it!
def inFlight(x: TLBundle): (UInt, UInt) = {
val flight = RegInit(0.U(log2Ceil(3*client.endSourceId+1).W))
val bce = manager.anySupportAcquireB && client.anySupportProbe
val (a_first, a_last, _) = firstlast(x.a)
val (b_first, b_last, _) = firstlast(x.b)
val (c_first, c_last, _) = firstlast(x.c)
val (d_first, d_last, _) = firstlast(x.d)
val (e_first, e_last, _) = firstlast(x.e)
val (a_request, a_response) = (isRequest(x.a.bits), isResponse(x.a.bits))
val (b_request, b_response) = (isRequest(x.b.bits), isResponse(x.b.bits))
val (c_request, c_response) = (isRequest(x.c.bits), isResponse(x.c.bits))
val (d_request, d_response) = (isRequest(x.d.bits), isResponse(x.d.bits))
val (e_request, e_response) = (isRequest(x.e.bits), isResponse(x.e.bits))
val a_inc = x.a.fire && a_first && a_request
val b_inc = x.b.fire && b_first && b_request
val c_inc = x.c.fire && c_first && c_request
val d_inc = x.d.fire && d_first && d_request
val e_inc = x.e.fire && e_first && e_request
val inc = Cat(Seq(a_inc, d_inc) ++ (if (bce) Seq(b_inc, c_inc, e_inc) else Nil))
val a_dec = x.a.fire && a_last && a_response
val b_dec = x.b.fire && b_last && b_response
val c_dec = x.c.fire && c_last && c_response
val d_dec = x.d.fire && d_last && d_response
val e_dec = x.e.fire && e_last && e_response
val dec = Cat(Seq(a_dec, d_dec) ++ (if (bce) Seq(b_dec, c_dec, e_dec) else Nil))
val next_flight = flight + PopCount(inc) - PopCount(dec)
flight := next_flight
(flight, next_flight)
}
def prettySourceMapping(context: String): String = {
s"TL-Source mapping for $context:\n${(new TLSourceIdMap(client)).pretty}\n"
}
}
class TLEdgeOut(
client: TLClientPortParameters,
manager: TLManagerPortParameters,
params: Parameters,
sourceInfo: SourceInfo)
extends TLEdge(client, manager, params, sourceInfo)
{
// Transfers
def AcquireBlock(fromSource: UInt, toAddress: UInt, lgSize: UInt, growPermissions: UInt) = {
require (manager.anySupportAcquireB, s"TileLink: No managers visible from this edge support Acquires, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsAcquireBFast(toAddress, lgSize)
val a = Wire(new TLBundleA(bundle))
a.opcode := TLMessages.AcquireBlock
a.param := growPermissions
a.size := lgSize
a.source := fromSource
a.address := toAddress
a.user := DontCare
a.echo := DontCare
a.mask := mask(toAddress, lgSize)
a.data := DontCare
a.corrupt := false.B
(legal, a)
}
def AcquirePerm(fromSource: UInt, toAddress: UInt, lgSize: UInt, growPermissions: UInt) = {
require (manager.anySupportAcquireB, s"TileLink: No managers visible from this edge support Acquires, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsAcquireBFast(toAddress, lgSize)
val a = Wire(new TLBundleA(bundle))
a.opcode := TLMessages.AcquirePerm
a.param := growPermissions
a.size := lgSize
a.source := fromSource
a.address := toAddress
a.user := DontCare
a.echo := DontCare
a.mask := mask(toAddress, lgSize)
a.data := DontCare
a.corrupt := false.B
(legal, a)
}
def Release(fromSource: UInt, toAddress: UInt, lgSize: UInt, shrinkPermissions: UInt): (Bool, TLBundleC) = {
require (manager.anySupportAcquireB, s"TileLink: No managers visible from this edge support Acquires, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsAcquireBFast(toAddress, lgSize)
val c = Wire(new TLBundleC(bundle))
c.opcode := TLMessages.Release
c.param := shrinkPermissions
c.size := lgSize
c.source := fromSource
c.address := toAddress
c.user := DontCare
c.echo := DontCare
c.data := DontCare
c.corrupt := false.B
(legal, c)
}
def Release(fromSource: UInt, toAddress: UInt, lgSize: UInt, shrinkPermissions: UInt, data: UInt, corrupt: Bool): (Bool, TLBundleC) = {
require (manager.anySupportAcquireB, s"TileLink: No managers visible from this edge support Acquires, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsAcquireBFast(toAddress, lgSize)
val c = Wire(new TLBundleC(bundle))
c.opcode := TLMessages.ReleaseData
c.param := shrinkPermissions
c.size := lgSize
c.source := fromSource
c.address := toAddress
c.user := DontCare
c.echo := DontCare
c.data := data
c.corrupt := corrupt
(legal, c)
}
def Release(fromSource: UInt, toAddress: UInt, lgSize: UInt, shrinkPermissions: UInt, data: UInt): (Bool, TLBundleC) =
Release(fromSource, toAddress, lgSize, shrinkPermissions, data, false.B)
def ProbeAck(b: TLBundleB, reportPermissions: UInt): TLBundleC =
ProbeAck(b.source, b.address, b.size, reportPermissions)
def ProbeAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, reportPermissions: UInt): TLBundleC = {
val c = Wire(new TLBundleC(bundle))
c.opcode := TLMessages.ProbeAck
c.param := reportPermissions
c.size := lgSize
c.source := fromSource
c.address := toAddress
c.user := DontCare
c.echo := DontCare
c.data := DontCare
c.corrupt := false.B
c
}
def ProbeAck(b: TLBundleB, reportPermissions: UInt, data: UInt): TLBundleC =
ProbeAck(b.source, b.address, b.size, reportPermissions, data)
def ProbeAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, reportPermissions: UInt, data: UInt, corrupt: Bool): TLBundleC = {
val c = Wire(new TLBundleC(bundle))
c.opcode := TLMessages.ProbeAckData
c.param := reportPermissions
c.size := lgSize
c.source := fromSource
c.address := toAddress
c.user := DontCare
c.echo := DontCare
c.data := data
c.corrupt := corrupt
c
}
def ProbeAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, reportPermissions: UInt, data: UInt): TLBundleC =
ProbeAck(fromSource, toAddress, lgSize, reportPermissions, data, false.B)
def GrantAck(d: TLBundleD): TLBundleE = GrantAck(d.sink)
def GrantAck(toSink: UInt): TLBundleE = {
val e = Wire(new TLBundleE(bundle))
e.sink := toSink
e
}
// Accesses
def Get(fromSource: UInt, toAddress: UInt, lgSize: UInt) = {
require (manager.anySupportGet, s"TileLink: No managers visible from this edge support Gets, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsGetFast(toAddress, lgSize)
val a = Wire(new TLBundleA(bundle))
a.opcode := TLMessages.Get
a.param := 0.U
a.size := lgSize
a.source := fromSource
a.address := toAddress
a.user := DontCare
a.echo := DontCare
a.mask := mask(toAddress, lgSize)
a.data := DontCare
a.corrupt := false.B
(legal, a)
}
def Put(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt): (Bool, TLBundleA) =
Put(fromSource, toAddress, lgSize, data, false.B)
def Put(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, corrupt: Bool): (Bool, TLBundleA) = {
require (manager.anySupportPutFull, s"TileLink: No managers visible from this edge support Puts, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsPutFullFast(toAddress, lgSize)
val a = Wire(new TLBundleA(bundle))
a.opcode := TLMessages.PutFullData
a.param := 0.U
a.size := lgSize
a.source := fromSource
a.address := toAddress
a.user := DontCare
a.echo := DontCare
a.mask := mask(toAddress, lgSize)
a.data := data
a.corrupt := corrupt
(legal, a)
}
def Put(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, mask: UInt): (Bool, TLBundleA) =
Put(fromSource, toAddress, lgSize, data, mask, false.B)
def Put(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, mask: UInt, corrupt: Bool): (Bool, TLBundleA) = {
require (manager.anySupportPutPartial, s"TileLink: No managers visible from this edge support masked Puts, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsPutPartialFast(toAddress, lgSize)
val a = Wire(new TLBundleA(bundle))
a.opcode := TLMessages.PutPartialData
a.param := 0.U
a.size := lgSize
a.source := fromSource
a.address := toAddress
a.user := DontCare
a.echo := DontCare
a.mask := mask
a.data := data
a.corrupt := corrupt
(legal, a)
}
def Arithmetic(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, atomic: UInt, corrupt: Bool = false.B): (Bool, TLBundleA) = {
require (manager.anySupportArithmetic, s"TileLink: No managers visible from this edge support arithmetic AMOs, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsArithmeticFast(toAddress, lgSize)
val a = Wire(new TLBundleA(bundle))
a.opcode := TLMessages.ArithmeticData
a.param := atomic
a.size := lgSize
a.source := fromSource
a.address := toAddress
a.user := DontCare
a.echo := DontCare
a.mask := mask(toAddress, lgSize)
a.data := data
a.corrupt := corrupt
(legal, a)
}
def Logical(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, atomic: UInt, corrupt: Bool = false.B) = {
require (manager.anySupportLogical, s"TileLink: No managers visible from this edge support logical AMOs, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsLogicalFast(toAddress, lgSize)
val a = Wire(new TLBundleA(bundle))
a.opcode := TLMessages.LogicalData
a.param := atomic
a.size := lgSize
a.source := fromSource
a.address := toAddress
a.user := DontCare
a.echo := DontCare
a.mask := mask(toAddress, lgSize)
a.data := data
a.corrupt := corrupt
(legal, a)
}
def Hint(fromSource: UInt, toAddress: UInt, lgSize: UInt, param: UInt) = {
require (manager.anySupportHint, s"TileLink: No managers visible from this edge support Hints, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsHintFast(toAddress, lgSize)
val a = Wire(new TLBundleA(bundle))
a.opcode := TLMessages.Hint
a.param := param
a.size := lgSize
a.source := fromSource
a.address := toAddress
a.user := DontCare
a.echo := DontCare
a.mask := mask(toAddress, lgSize)
a.data := DontCare
a.corrupt := false.B
(legal, a)
}
def AccessAck(b: TLBundleB): TLBundleC = AccessAck(b.source, address(b), b.size)
def AccessAck(fromSource: UInt, toAddress: UInt, lgSize: UInt) = {
val c = Wire(new TLBundleC(bundle))
c.opcode := TLMessages.AccessAck
c.param := 0.U
c.size := lgSize
c.source := fromSource
c.address := toAddress
c.user := DontCare
c.echo := DontCare
c.data := DontCare
c.corrupt := false.B
c
}
def AccessAck(b: TLBundleB, data: UInt): TLBundleC = AccessAck(b.source, address(b), b.size, data)
def AccessAck(b: TLBundleB, data: UInt, corrupt: Bool): TLBundleC = AccessAck(b.source, address(b), b.size, data, corrupt)
def AccessAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt): TLBundleC = AccessAck(fromSource, toAddress, lgSize, data, false.B)
def AccessAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, corrupt: Bool) = {
val c = Wire(new TLBundleC(bundle))
c.opcode := TLMessages.AccessAckData
c.param := 0.U
c.size := lgSize
c.source := fromSource
c.address := toAddress
c.user := DontCare
c.echo := DontCare
c.data := data
c.corrupt := corrupt
c
}
def HintAck(b: TLBundleB): TLBundleC = HintAck(b.source, address(b), b.size)
def HintAck(fromSource: UInt, toAddress: UInt, lgSize: UInt) = {
val c = Wire(new TLBundleC(bundle))
c.opcode := TLMessages.HintAck
c.param := 0.U
c.size := lgSize
c.source := fromSource
c.address := toAddress
c.user := DontCare
c.echo := DontCare
c.data := DontCare
c.corrupt := false.B
c
}
}
class TLEdgeIn(
client: TLClientPortParameters,
manager: TLManagerPortParameters,
params: Parameters,
sourceInfo: SourceInfo)
extends TLEdge(client, manager, params, sourceInfo)
{
private def myTranspose[T](x: Seq[Seq[T]]): Seq[Seq[T]] = {
val todo = x.filter(!_.isEmpty)
val heads = todo.map(_.head)
val tails = todo.map(_.tail)
if (todo.isEmpty) Nil else { heads +: myTranspose(tails) }
}
// Transfers
def Probe(fromAddress: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt) = {
require (client.anySupportProbe, s"TileLink: No clients visible from this edge support probes, but one of these managers tried to issue one: ${manager.managers}")
val legal = client.supportsProbe(toSource, lgSize)
val b = Wire(new TLBundleB(bundle))
b.opcode := TLMessages.Probe
b.param := capPermissions
b.size := lgSize
b.source := toSource
b.address := fromAddress
b.mask := mask(fromAddress, lgSize)
b.data := DontCare
b.corrupt := false.B
(legal, b)
}
def Grant(fromSink: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt): TLBundleD = Grant(fromSink, toSource, lgSize, capPermissions, false.B)
def Grant(fromSink: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt, denied: Bool) = {
val d = Wire(new TLBundleD(bundle))
d.opcode := TLMessages.Grant
d.param := capPermissions
d.size := lgSize
d.source := toSource
d.sink := fromSink
d.denied := denied
d.user := DontCare
d.echo := DontCare
d.data := DontCare
d.corrupt := false.B
d
}
def Grant(fromSink: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt, data: UInt): TLBundleD = Grant(fromSink, toSource, lgSize, capPermissions, data, false.B, false.B)
def Grant(fromSink: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt, data: UInt, denied: Bool, corrupt: Bool) = {
val d = Wire(new TLBundleD(bundle))
d.opcode := TLMessages.GrantData
d.param := capPermissions
d.size := lgSize
d.source := toSource
d.sink := fromSink
d.denied := denied
d.user := DontCare
d.echo := DontCare
d.data := data
d.corrupt := corrupt
d
}
def ReleaseAck(c: TLBundleC): TLBundleD = ReleaseAck(c.source, c.size, false.B)
def ReleaseAck(toSource: UInt, lgSize: UInt, denied: Bool): TLBundleD = {
val d = Wire(new TLBundleD(bundle))
d.opcode := TLMessages.ReleaseAck
d.param := 0.U
d.size := lgSize
d.source := toSource
d.sink := 0.U
d.denied := denied
d.user := DontCare
d.echo := DontCare
d.data := DontCare
d.corrupt := false.B
d
}
// Accesses
def Get(fromAddress: UInt, toSource: UInt, lgSize: UInt) = {
require (client.anySupportGet, s"TileLink: No clients visible from this edge support Gets, but one of these managers would try to issue one: ${manager.managers}")
val legal = client.supportsGet(toSource, lgSize)
val b = Wire(new TLBundleB(bundle))
b.opcode := TLMessages.Get
b.param := 0.U
b.size := lgSize
b.source := toSource
b.address := fromAddress
b.mask := mask(fromAddress, lgSize)
b.data := DontCare
b.corrupt := false.B
(legal, b)
}
def Put(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt): (Bool, TLBundleB) =
Put(fromAddress, toSource, lgSize, data, false.B)
def Put(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, corrupt: Bool): (Bool, TLBundleB) = {
require (client.anySupportPutFull, s"TileLink: No clients visible from this edge support Puts, but one of these managers would try to issue one: ${manager.managers}")
val legal = client.supportsPutFull(toSource, lgSize)
val b = Wire(new TLBundleB(bundle))
b.opcode := TLMessages.PutFullData
b.param := 0.U
b.size := lgSize
b.source := toSource
b.address := fromAddress
b.mask := mask(fromAddress, lgSize)
b.data := data
b.corrupt := corrupt
(legal, b)
}
def Put(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, mask: UInt): (Bool, TLBundleB) =
Put(fromAddress, toSource, lgSize, data, mask, false.B)
def Put(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, mask: UInt, corrupt: Bool): (Bool, TLBundleB) = {
require (client.anySupportPutPartial, s"TileLink: No clients visible from this edge support masked Puts, but one of these managers would try to request one: ${manager.managers}")
val legal = client.supportsPutPartial(toSource, lgSize)
val b = Wire(new TLBundleB(bundle))
b.opcode := TLMessages.PutPartialData
b.param := 0.U
b.size := lgSize
b.source := toSource
b.address := fromAddress
b.mask := mask
b.data := data
b.corrupt := corrupt
(legal, b)
}
def Arithmetic(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, atomic: UInt, corrupt: Bool = false.B) = {
require (client.anySupportArithmetic, s"TileLink: No clients visible from this edge support arithmetic AMOs, but one of these managers would try to request one: ${manager.managers}")
val legal = client.supportsArithmetic(toSource, lgSize)
val b = Wire(new TLBundleB(bundle))
b.opcode := TLMessages.ArithmeticData
b.param := atomic
b.size := lgSize
b.source := toSource
b.address := fromAddress
b.mask := mask(fromAddress, lgSize)
b.data := data
b.corrupt := corrupt
(legal, b)
}
def Logical(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, atomic: UInt, corrupt: Bool = false.B) = {
require (client.anySupportLogical, s"TileLink: No clients visible from this edge support logical AMOs, but one of these managers would try to request one: ${manager.managers}")
val legal = client.supportsLogical(toSource, lgSize)
val b = Wire(new TLBundleB(bundle))
b.opcode := TLMessages.LogicalData
b.param := atomic
b.size := lgSize
b.source := toSource
b.address := fromAddress
b.mask := mask(fromAddress, lgSize)
b.data := data
b.corrupt := corrupt
(legal, b)
}
def Hint(fromAddress: UInt, toSource: UInt, lgSize: UInt, param: UInt) = {
require (client.anySupportHint, s"TileLink: No clients visible from this edge support Hints, but one of these managers would try to request one: ${manager.managers}")
val legal = client.supportsHint(toSource, lgSize)
val b = Wire(new TLBundleB(bundle))
b.opcode := TLMessages.Hint
b.param := param
b.size := lgSize
b.source := toSource
b.address := fromAddress
b.mask := mask(fromAddress, lgSize)
b.data := DontCare
b.corrupt := false.B
(legal, b)
}
def AccessAck(a: TLBundleA): TLBundleD = AccessAck(a.source, a.size)
def AccessAck(a: TLBundleA, denied: Bool): TLBundleD = AccessAck(a.source, a.size, denied)
def AccessAck(toSource: UInt, lgSize: UInt): TLBundleD = AccessAck(toSource, lgSize, false.B)
def AccessAck(toSource: UInt, lgSize: UInt, denied: Bool) = {
val d = Wire(new TLBundleD(bundle))
d.opcode := TLMessages.AccessAck
d.param := 0.U
d.size := lgSize
d.source := toSource
d.sink := 0.U
d.denied := denied
d.user := DontCare
d.echo := DontCare
d.data := DontCare
d.corrupt := false.B
d
}
def AccessAck(a: TLBundleA, data: UInt): TLBundleD = AccessAck(a.source, a.size, data)
def AccessAck(a: TLBundleA, data: UInt, denied: Bool, corrupt: Bool): TLBundleD = AccessAck(a.source, a.size, data, denied, corrupt)
def AccessAck(toSource: UInt, lgSize: UInt, data: UInt): TLBundleD = AccessAck(toSource, lgSize, data, false.B, false.B)
def AccessAck(toSource: UInt, lgSize: UInt, data: UInt, denied: Bool, corrupt: Bool) = {
val d = Wire(new TLBundleD(bundle))
d.opcode := TLMessages.AccessAckData
d.param := 0.U
d.size := lgSize
d.source := toSource
d.sink := 0.U
d.denied := denied
d.user := DontCare
d.echo := DontCare
d.data := data
d.corrupt := corrupt
d
}
def HintAck(a: TLBundleA): TLBundleD = HintAck(a, false.B)
def HintAck(a: TLBundleA, denied: Bool): TLBundleD = HintAck(a.source, a.size, denied)
def HintAck(toSource: UInt, lgSize: UInt): TLBundleD = HintAck(toSource, lgSize, false.B)
def HintAck(toSource: UInt, lgSize: UInt, denied: Bool) = {
val d = Wire(new TLBundleD(bundle))
d.opcode := TLMessages.HintAck
d.param := 0.U
d.size := lgSize
d.source := toSource
d.sink := 0.U
d.denied := denied
d.user := DontCare
d.echo := DontCare
d.data := DontCare
d.corrupt := false.B
d
}
}
File LazyScope.scala:
package org.chipsalliance.diplomacy.lazymodule
import org.chipsalliance.cde.config.Parameters
import org.chipsalliance.diplomacy.ValName
/** Allows dynamic creation of [[Module]] hierarchy and "shoving" logic into a [[LazyModule]]. */
trait LazyScope {
this: LazyModule =>
override def toString: String = s"LazyScope named $name"
/** Evaluate `body` in the current [[LazyModule.scope]] */
def apply[T](body: => T): T = {
// Preserve the previous value of the [[LazyModule.scope]], because when calling [[apply]] function,
// [[LazyModule.scope]] will be altered.
val saved = LazyModule.scope
// [[LazyModule.scope]] stack push.
LazyModule.scope = Some(this)
// Evaluate [[body]] in the current `scope`, saving the result to [[out]].
val out = body
// Check that the `scope` after evaluating `body` is the same as when we started.
require(LazyModule.scope.isDefined, s"LazyScope $name tried to exit, but scope was empty!")
require(
LazyModule.scope.get eq this,
s"LazyScope $name exited before LazyModule ${LazyModule.scope.get.name} was closed"
)
// [[LazyModule.scope]] stack pop.
LazyModule.scope = saved
out
}
}
/** Used to automatically create a level of module hierarchy (a [[SimpleLazyModule]]) within which [[LazyModule]]s can
* be instantiated and connected.
*
* It will instantiate a [[SimpleLazyModule]] to manage evaluation of `body` and evaluate `body` code snippets in this
* scope.
*/
object LazyScope {
/** Create a [[LazyScope]] with an implicit instance name.
*
* @param body
* code executed within the generated [[SimpleLazyModule]].
* @param valName
* instance name of generated [[SimpleLazyModule]].
* @param p
* [[Parameters]] propagated to [[SimpleLazyModule]].
*/
def apply[T](
body: => T
)(
implicit valName: ValName,
p: Parameters
): T = {
apply(valName.value, "SimpleLazyModule", None)(body)(p)
}
/** Create a [[LazyScope]] with an explicitly defined instance name.
*
* @param name
* instance name of generated [[SimpleLazyModule]].
* @param body
* code executed within the generated `SimpleLazyModule`
* @param p
* [[Parameters]] propagated to [[SimpleLazyModule]].
*/
def apply[T](
name: String
)(body: => T
)(
implicit p: Parameters
): T = {
apply(name, "SimpleLazyModule", None)(body)(p)
}
/** Create a [[LazyScope]] with an explicit instance and class name, and control inlining.
*
* @param name
* instance name of generated [[SimpleLazyModule]].
* @param desiredModuleName
* class name of generated [[SimpleLazyModule]].
* @param overrideInlining
* tell FIRRTL that this [[SimpleLazyModule]]'s module should be inlined.
* @param body
* code executed within the generated `SimpleLazyModule`
* @param p
* [[Parameters]] propagated to [[SimpleLazyModule]].
*/
def apply[T](
name: String,
desiredModuleName: String,
overrideInlining: Option[Boolean] = None
)(body: => T
)(
implicit p: Parameters
): T = {
val scope = LazyModule(new SimpleLazyModule with LazyScope {
override lazy val desiredName = desiredModuleName
override def shouldBeInlined = overrideInlining.getOrElse(super.shouldBeInlined)
}).suggestName(name)
scope {
body
}
}
/** Create a [[LazyScope]] to temporarily group children for some reason, but tell Firrtl to inline it.
*
* For example, we might want to control a set of children's clocks but then not keep the parent wrapper.
*
* @param body
* code executed within the generated `SimpleLazyModule`
* @param p
* [[Parameters]] propagated to [[SimpleLazyModule]].
*/
def inline[T](
body: => T
)(
implicit p: Parameters
): T = {
apply("noname", "ShouldBeInlined", Some(false))(body)(p)
}
}
| module PeripheryBus_cbus( // @[ClockDomain.scala:14:9]
input auto_coupler_to_prci_ctrl_fixer_anon_out_a_ready, // @[LazyModuleImp.scala:107:25]
output auto_coupler_to_prci_ctrl_fixer_anon_out_a_valid, // @[LazyModuleImp.scala:107:25]
output [2:0] auto_coupler_to_prci_ctrl_fixer_anon_out_a_bits_opcode, // @[LazyModuleImp.scala:107:25]
output [2:0] auto_coupler_to_prci_ctrl_fixer_anon_out_a_bits_param, // @[LazyModuleImp.scala:107:25]
output [2:0] auto_coupler_to_prci_ctrl_fixer_anon_out_a_bits_size, // @[LazyModuleImp.scala:107:25]
output [6:0] auto_coupler_to_prci_ctrl_fixer_anon_out_a_bits_source, // @[LazyModuleImp.scala:107:25]
output [20:0] auto_coupler_to_prci_ctrl_fixer_anon_out_a_bits_address, // @[LazyModuleImp.scala:107:25]
output [7:0] auto_coupler_to_prci_ctrl_fixer_anon_out_a_bits_mask, // @[LazyModuleImp.scala:107:25]
output [63:0] auto_coupler_to_prci_ctrl_fixer_anon_out_a_bits_data, // @[LazyModuleImp.scala:107:25]
output auto_coupler_to_prci_ctrl_fixer_anon_out_a_bits_corrupt, // @[LazyModuleImp.scala:107:25]
output auto_coupler_to_prci_ctrl_fixer_anon_out_d_ready, // @[LazyModuleImp.scala:107:25]
input auto_coupler_to_prci_ctrl_fixer_anon_out_d_valid, // @[LazyModuleImp.scala:107:25]
input [2:0] auto_coupler_to_prci_ctrl_fixer_anon_out_d_bits_opcode, // @[LazyModuleImp.scala:107:25]
input [2:0] auto_coupler_to_prci_ctrl_fixer_anon_out_d_bits_size, // @[LazyModuleImp.scala:107:25]
input [6:0] auto_coupler_to_prci_ctrl_fixer_anon_out_d_bits_source, // @[LazyModuleImp.scala:107:25]
input [63:0] auto_coupler_to_prci_ctrl_fixer_anon_out_d_bits_data, // @[LazyModuleImp.scala:107:25]
input auto_coupler_to_bootrom_fragmenter_anon_out_a_ready, // @[LazyModuleImp.scala:107:25]
output auto_coupler_to_bootrom_fragmenter_anon_out_a_valid, // @[LazyModuleImp.scala:107:25]
output [2:0] auto_coupler_to_bootrom_fragmenter_anon_out_a_bits_opcode, // @[LazyModuleImp.scala:107:25]
output [2:0] auto_coupler_to_bootrom_fragmenter_anon_out_a_bits_param, // @[LazyModuleImp.scala:107:25]
output [1:0] auto_coupler_to_bootrom_fragmenter_anon_out_a_bits_size, // @[LazyModuleImp.scala:107:25]
output [10:0] auto_coupler_to_bootrom_fragmenter_anon_out_a_bits_source, // @[LazyModuleImp.scala:107:25]
output [16:0] auto_coupler_to_bootrom_fragmenter_anon_out_a_bits_address, // @[LazyModuleImp.scala:107:25]
output [7:0] auto_coupler_to_bootrom_fragmenter_anon_out_a_bits_mask, // @[LazyModuleImp.scala:107:25]
output [63:0] auto_coupler_to_bootrom_fragmenter_anon_out_a_bits_data, // @[LazyModuleImp.scala:107:25]
output auto_coupler_to_bootrom_fragmenter_anon_out_a_bits_corrupt, // @[LazyModuleImp.scala:107:25]
output auto_coupler_to_bootrom_fragmenter_anon_out_d_ready, // @[LazyModuleImp.scala:107:25]
input auto_coupler_to_bootrom_fragmenter_anon_out_d_valid, // @[LazyModuleImp.scala:107:25]
input [1:0] auto_coupler_to_bootrom_fragmenter_anon_out_d_bits_size, // @[LazyModuleImp.scala:107:25]
input [10:0] auto_coupler_to_bootrom_fragmenter_anon_out_d_bits_source, // @[LazyModuleImp.scala:107:25]
input [63:0] auto_coupler_to_bootrom_fragmenter_anon_out_d_bits_data, // @[LazyModuleImp.scala:107:25]
input auto_coupler_to_rockettile_tl_slave_clock_xing_out_a_ready, // @[LazyModuleImp.scala:107:25]
output auto_coupler_to_rockettile_tl_slave_clock_xing_out_a_valid, // @[LazyModuleImp.scala:107:25]
output [2:0] auto_coupler_to_rockettile_tl_slave_clock_xing_out_a_bits_opcode, // @[LazyModuleImp.scala:107:25]
output [2:0] auto_coupler_to_rockettile_tl_slave_clock_xing_out_a_bits_param, // @[LazyModuleImp.scala:107:25]
output [2:0] auto_coupler_to_rockettile_tl_slave_clock_xing_out_a_bits_size, // @[LazyModuleImp.scala:107:25]
output [6:0] auto_coupler_to_rockettile_tl_slave_clock_xing_out_a_bits_source, // @[LazyModuleImp.scala:107:25]
output [31:0] auto_coupler_to_rockettile_tl_slave_clock_xing_out_a_bits_address, // @[LazyModuleImp.scala:107:25]
output [3:0] auto_coupler_to_rockettile_tl_slave_clock_xing_out_a_bits_mask, // @[LazyModuleImp.scala:107:25]
output [31:0] auto_coupler_to_rockettile_tl_slave_clock_xing_out_a_bits_data, // @[LazyModuleImp.scala:107:25]
output auto_coupler_to_rockettile_tl_slave_clock_xing_out_a_bits_corrupt, // @[LazyModuleImp.scala:107:25]
output auto_coupler_to_rockettile_tl_slave_clock_xing_out_d_ready, // @[LazyModuleImp.scala:107:25]
input auto_coupler_to_rockettile_tl_slave_clock_xing_out_d_valid, // @[LazyModuleImp.scala:107:25]
input [2:0] auto_coupler_to_rockettile_tl_slave_clock_xing_out_d_bits_opcode, // @[LazyModuleImp.scala:107:25]
input [1:0] auto_coupler_to_rockettile_tl_slave_clock_xing_out_d_bits_param, // @[LazyModuleImp.scala:107:25]
input [2:0] auto_coupler_to_rockettile_tl_slave_clock_xing_out_d_bits_size, // @[LazyModuleImp.scala:107:25]
input [6:0] auto_coupler_to_rockettile_tl_slave_clock_xing_out_d_bits_source, // @[LazyModuleImp.scala:107:25]
input auto_coupler_to_rockettile_tl_slave_clock_xing_out_d_bits_sink, // @[LazyModuleImp.scala:107:25]
input auto_coupler_to_rockettile_tl_slave_clock_xing_out_d_bits_denied, // @[LazyModuleImp.scala:107:25]
input [31:0] auto_coupler_to_rockettile_tl_slave_clock_xing_out_d_bits_data, // @[LazyModuleImp.scala:107:25]
input auto_coupler_to_rockettile_tl_slave_clock_xing_out_d_bits_corrupt, // @[LazyModuleImp.scala:107:25]
input auto_coupler_to_debug_fragmenter_anon_out_a_ready, // @[LazyModuleImp.scala:107:25]
output auto_coupler_to_debug_fragmenter_anon_out_a_valid, // @[LazyModuleImp.scala:107:25]
output [2:0] auto_coupler_to_debug_fragmenter_anon_out_a_bits_opcode, // @[LazyModuleImp.scala:107:25]
output [2:0] auto_coupler_to_debug_fragmenter_anon_out_a_bits_param, // @[LazyModuleImp.scala:107:25]
output [1:0] auto_coupler_to_debug_fragmenter_anon_out_a_bits_size, // @[LazyModuleImp.scala:107:25]
output [10:0] auto_coupler_to_debug_fragmenter_anon_out_a_bits_source, // @[LazyModuleImp.scala:107:25]
output [11:0] auto_coupler_to_debug_fragmenter_anon_out_a_bits_address, // @[LazyModuleImp.scala:107:25]
output [7:0] auto_coupler_to_debug_fragmenter_anon_out_a_bits_mask, // @[LazyModuleImp.scala:107:25]
output [63:0] auto_coupler_to_debug_fragmenter_anon_out_a_bits_data, // @[LazyModuleImp.scala:107:25]
output auto_coupler_to_debug_fragmenter_anon_out_a_bits_corrupt, // @[LazyModuleImp.scala:107:25]
output auto_coupler_to_debug_fragmenter_anon_out_d_ready, // @[LazyModuleImp.scala:107:25]
input auto_coupler_to_debug_fragmenter_anon_out_d_valid, // @[LazyModuleImp.scala:107:25]
input [2:0] auto_coupler_to_debug_fragmenter_anon_out_d_bits_opcode, // @[LazyModuleImp.scala:107:25]
input [1:0] auto_coupler_to_debug_fragmenter_anon_out_d_bits_size, // @[LazyModuleImp.scala:107:25]
input [10:0] auto_coupler_to_debug_fragmenter_anon_out_d_bits_source, // @[LazyModuleImp.scala:107:25]
input [63:0] auto_coupler_to_debug_fragmenter_anon_out_d_bits_data, // @[LazyModuleImp.scala:107:25]
input auto_coupler_to_plic_fragmenter_anon_out_a_ready, // @[LazyModuleImp.scala:107:25]
output auto_coupler_to_plic_fragmenter_anon_out_a_valid, // @[LazyModuleImp.scala:107:25]
output [2:0] auto_coupler_to_plic_fragmenter_anon_out_a_bits_opcode, // @[LazyModuleImp.scala:107:25]
output [2:0] auto_coupler_to_plic_fragmenter_anon_out_a_bits_param, // @[LazyModuleImp.scala:107:25]
output [1:0] auto_coupler_to_plic_fragmenter_anon_out_a_bits_size, // @[LazyModuleImp.scala:107:25]
output [10:0] auto_coupler_to_plic_fragmenter_anon_out_a_bits_source, // @[LazyModuleImp.scala:107:25]
output [27:0] auto_coupler_to_plic_fragmenter_anon_out_a_bits_address, // @[LazyModuleImp.scala:107:25]
output [7:0] auto_coupler_to_plic_fragmenter_anon_out_a_bits_mask, // @[LazyModuleImp.scala:107:25]
output [63:0] auto_coupler_to_plic_fragmenter_anon_out_a_bits_data, // @[LazyModuleImp.scala:107:25]
output auto_coupler_to_plic_fragmenter_anon_out_a_bits_corrupt, // @[LazyModuleImp.scala:107:25]
output auto_coupler_to_plic_fragmenter_anon_out_d_ready, // @[LazyModuleImp.scala:107:25]
input auto_coupler_to_plic_fragmenter_anon_out_d_valid, // @[LazyModuleImp.scala:107:25]
input [2:0] auto_coupler_to_plic_fragmenter_anon_out_d_bits_opcode, // @[LazyModuleImp.scala:107:25]
input [1:0] auto_coupler_to_plic_fragmenter_anon_out_d_bits_size, // @[LazyModuleImp.scala:107:25]
input [10:0] auto_coupler_to_plic_fragmenter_anon_out_d_bits_source, // @[LazyModuleImp.scala:107:25]
input [63:0] auto_coupler_to_plic_fragmenter_anon_out_d_bits_data, // @[LazyModuleImp.scala:107:25]
input auto_coupler_to_clint_fragmenter_anon_out_a_ready, // @[LazyModuleImp.scala:107:25]
output auto_coupler_to_clint_fragmenter_anon_out_a_valid, // @[LazyModuleImp.scala:107:25]
output [2:0] auto_coupler_to_clint_fragmenter_anon_out_a_bits_opcode, // @[LazyModuleImp.scala:107:25]
output [2:0] auto_coupler_to_clint_fragmenter_anon_out_a_bits_param, // @[LazyModuleImp.scala:107:25]
output [1:0] auto_coupler_to_clint_fragmenter_anon_out_a_bits_size, // @[LazyModuleImp.scala:107:25]
output [10:0] auto_coupler_to_clint_fragmenter_anon_out_a_bits_source, // @[LazyModuleImp.scala:107:25]
output [25:0] auto_coupler_to_clint_fragmenter_anon_out_a_bits_address, // @[LazyModuleImp.scala:107:25]
output [7:0] auto_coupler_to_clint_fragmenter_anon_out_a_bits_mask, // @[LazyModuleImp.scala:107:25]
output [63:0] auto_coupler_to_clint_fragmenter_anon_out_a_bits_data, // @[LazyModuleImp.scala:107:25]
output auto_coupler_to_clint_fragmenter_anon_out_a_bits_corrupt, // @[LazyModuleImp.scala:107:25]
output auto_coupler_to_clint_fragmenter_anon_out_d_ready, // @[LazyModuleImp.scala:107:25]
input auto_coupler_to_clint_fragmenter_anon_out_d_valid, // @[LazyModuleImp.scala:107:25]
input [2:0] auto_coupler_to_clint_fragmenter_anon_out_d_bits_opcode, // @[LazyModuleImp.scala:107:25]
input [1:0] auto_coupler_to_clint_fragmenter_anon_out_d_bits_size, // @[LazyModuleImp.scala:107:25]
input [10:0] auto_coupler_to_clint_fragmenter_anon_out_d_bits_source, // @[LazyModuleImp.scala:107:25]
input [63:0] auto_coupler_to_clint_fragmenter_anon_out_d_bits_data, // @[LazyModuleImp.scala:107:25]
input auto_coupler_to_bus_named_pbus_bus_xing_out_a_ready, // @[LazyModuleImp.scala:107:25]
output auto_coupler_to_bus_named_pbus_bus_xing_out_a_valid, // @[LazyModuleImp.scala:107:25]
output [2:0] auto_coupler_to_bus_named_pbus_bus_xing_out_a_bits_opcode, // @[LazyModuleImp.scala:107:25]
output [2:0] auto_coupler_to_bus_named_pbus_bus_xing_out_a_bits_param, // @[LazyModuleImp.scala:107:25]
output [2:0] auto_coupler_to_bus_named_pbus_bus_xing_out_a_bits_size, // @[LazyModuleImp.scala:107:25]
output [6:0] auto_coupler_to_bus_named_pbus_bus_xing_out_a_bits_source, // @[LazyModuleImp.scala:107:25]
output [28:0] auto_coupler_to_bus_named_pbus_bus_xing_out_a_bits_address, // @[LazyModuleImp.scala:107:25]
output [7:0] auto_coupler_to_bus_named_pbus_bus_xing_out_a_bits_mask, // @[LazyModuleImp.scala:107:25]
output [63:0] auto_coupler_to_bus_named_pbus_bus_xing_out_a_bits_data, // @[LazyModuleImp.scala:107:25]
output auto_coupler_to_bus_named_pbus_bus_xing_out_a_bits_corrupt, // @[LazyModuleImp.scala:107:25]
output auto_coupler_to_bus_named_pbus_bus_xing_out_d_ready, // @[LazyModuleImp.scala:107:25]
input auto_coupler_to_bus_named_pbus_bus_xing_out_d_valid, // @[LazyModuleImp.scala:107:25]
input [2:0] auto_coupler_to_bus_named_pbus_bus_xing_out_d_bits_opcode, // @[LazyModuleImp.scala:107:25]
input [1:0] auto_coupler_to_bus_named_pbus_bus_xing_out_d_bits_param, // @[LazyModuleImp.scala:107:25]
input [2:0] auto_coupler_to_bus_named_pbus_bus_xing_out_d_bits_size, // @[LazyModuleImp.scala:107:25]
input [6:0] auto_coupler_to_bus_named_pbus_bus_xing_out_d_bits_source, // @[LazyModuleImp.scala:107:25]
input auto_coupler_to_bus_named_pbus_bus_xing_out_d_bits_sink, // @[LazyModuleImp.scala:107:25]
input auto_coupler_to_bus_named_pbus_bus_xing_out_d_bits_denied, // @[LazyModuleImp.scala:107:25]
input [63:0] auto_coupler_to_bus_named_pbus_bus_xing_out_d_bits_data, // @[LazyModuleImp.scala:107:25]
input auto_coupler_to_bus_named_pbus_bus_xing_out_d_bits_corrupt, // @[LazyModuleImp.scala:107:25]
output auto_fixedClockNode_anon_out_5_clock, // @[LazyModuleImp.scala:107:25]
output auto_fixedClockNode_anon_out_5_reset, // @[LazyModuleImp.scala:107:25]
output auto_fixedClockNode_anon_out_4_clock, // @[LazyModuleImp.scala:107:25]
output auto_fixedClockNode_anon_out_4_reset, // @[LazyModuleImp.scala:107:25]
output auto_fixedClockNode_anon_out_3_clock, // @[LazyModuleImp.scala:107:25]
output auto_fixedClockNode_anon_out_3_reset, // @[LazyModuleImp.scala:107:25]
output auto_fixedClockNode_anon_out_2_clock, // @[LazyModuleImp.scala:107:25]
output auto_fixedClockNode_anon_out_2_reset, // @[LazyModuleImp.scala:107:25]
output auto_fixedClockNode_anon_out_1_clock, // @[LazyModuleImp.scala:107:25]
output auto_fixedClockNode_anon_out_1_reset, // @[LazyModuleImp.scala:107:25]
output auto_fixedClockNode_anon_out_0_clock, // @[LazyModuleImp.scala:107:25]
output auto_fixedClockNode_anon_out_0_reset, // @[LazyModuleImp.scala:107:25]
input auto_cbus_clock_groups_in_member_cbus_0_clock, // @[LazyModuleImp.scala:107:25]
input auto_cbus_clock_groups_in_member_cbus_0_reset, // @[LazyModuleImp.scala:107:25]
output auto_bus_xing_in_a_ready, // @[LazyModuleImp.scala:107:25]
input auto_bus_xing_in_a_valid, // @[LazyModuleImp.scala:107:25]
input [2:0] auto_bus_xing_in_a_bits_opcode, // @[LazyModuleImp.scala:107:25]
input [2:0] auto_bus_xing_in_a_bits_param, // @[LazyModuleImp.scala:107:25]
input [3:0] auto_bus_xing_in_a_bits_size, // @[LazyModuleImp.scala:107:25]
input [5:0] auto_bus_xing_in_a_bits_source, // @[LazyModuleImp.scala:107:25]
input [31:0] auto_bus_xing_in_a_bits_address, // @[LazyModuleImp.scala:107:25]
input [7:0] auto_bus_xing_in_a_bits_mask, // @[LazyModuleImp.scala:107:25]
input [63:0] auto_bus_xing_in_a_bits_data, // @[LazyModuleImp.scala:107:25]
input auto_bus_xing_in_a_bits_corrupt, // @[LazyModuleImp.scala:107:25]
input auto_bus_xing_in_d_ready, // @[LazyModuleImp.scala:107:25]
output auto_bus_xing_in_d_valid, // @[LazyModuleImp.scala:107:25]
output [2:0] auto_bus_xing_in_d_bits_opcode, // @[LazyModuleImp.scala:107:25]
output [1:0] auto_bus_xing_in_d_bits_param, // @[LazyModuleImp.scala:107:25]
output [3:0] auto_bus_xing_in_d_bits_size, // @[LazyModuleImp.scala:107:25]
output [5:0] auto_bus_xing_in_d_bits_source, // @[LazyModuleImp.scala:107:25]
output auto_bus_xing_in_d_bits_sink, // @[LazyModuleImp.scala:107:25]
output auto_bus_xing_in_d_bits_denied, // @[LazyModuleImp.scala:107:25]
output [63:0] auto_bus_xing_in_d_bits_data, // @[LazyModuleImp.scala:107:25]
output auto_bus_xing_in_d_bits_corrupt, // @[LazyModuleImp.scala:107:25]
input custom_boot // @[CustomBootPin.scala:36:29]
);
wire coupler_from_port_named_custom_boot_pin_auto_tl_out_d_valid; // @[LazyModuleImp.scala:138:7]
wire coupler_from_port_named_custom_boot_pin_auto_tl_out_d_bits_corrupt; // @[LazyModuleImp.scala:138:7]
wire [63:0] coupler_from_port_named_custom_boot_pin_auto_tl_out_d_bits_data; // @[LazyModuleImp.scala:138:7]
wire coupler_from_port_named_custom_boot_pin_auto_tl_out_d_bits_denied; // @[LazyModuleImp.scala:138:7]
wire coupler_from_port_named_custom_boot_pin_auto_tl_out_d_bits_sink; // @[LazyModuleImp.scala:138:7]
wire [3:0] coupler_from_port_named_custom_boot_pin_auto_tl_out_d_bits_size; // @[LazyModuleImp.scala:138:7]
wire [1:0] coupler_from_port_named_custom_boot_pin_auto_tl_out_d_bits_param; // @[LazyModuleImp.scala:138:7]
wire [2:0] coupler_from_port_named_custom_boot_pin_auto_tl_out_d_bits_opcode; // @[LazyModuleImp.scala:138:7]
wire coupler_from_port_named_custom_boot_pin_auto_tl_out_a_ready; // @[LazyModuleImp.scala:138:7]
wire coupler_from_port_named_custom_boot_pin_auto_tl_in_d_valid; // @[LazyModuleImp.scala:138:7]
wire coupler_from_port_named_custom_boot_pin_auto_tl_in_d_bits_corrupt; // @[LazyModuleImp.scala:138:7]
wire [63:0] coupler_from_port_named_custom_boot_pin_auto_tl_in_d_bits_data; // @[LazyModuleImp.scala:138:7]
wire coupler_from_port_named_custom_boot_pin_auto_tl_in_d_bits_denied; // @[LazyModuleImp.scala:138:7]
wire coupler_from_port_named_custom_boot_pin_auto_tl_in_d_bits_sink; // @[LazyModuleImp.scala:138:7]
wire [3:0] coupler_from_port_named_custom_boot_pin_auto_tl_in_d_bits_size; // @[LazyModuleImp.scala:138:7]
wire [1:0] coupler_from_port_named_custom_boot_pin_auto_tl_in_d_bits_param; // @[LazyModuleImp.scala:138:7]
wire [2:0] coupler_from_port_named_custom_boot_pin_auto_tl_in_d_bits_opcode; // @[LazyModuleImp.scala:138:7]
wire coupler_from_port_named_custom_boot_pin_auto_tl_in_a_valid; // @[LazyModuleImp.scala:138:7]
wire coupler_from_port_named_custom_boot_pin_auto_tl_in_a_ready; // @[LazyModuleImp.scala:138:7]
wire [63:0] coupler_from_port_named_custom_boot_pin_auto_tl_in_a_bits_data; // @[LazyModuleImp.scala:138:7]
wire [31:0] coupler_from_port_named_custom_boot_pin_auto_tl_in_a_bits_address; // @[LazyModuleImp.scala:138:7]
wire coupler_to_bus_named_pbus_widget_auto_anon_out_d_valid; // @[WidthWidget.scala:27:9]
wire coupler_to_bus_named_pbus_widget_auto_anon_out_d_ready; // @[WidthWidget.scala:27:9]
wire coupler_to_bus_named_pbus_widget_auto_anon_out_d_bits_corrupt; // @[WidthWidget.scala:27:9]
wire [63:0] coupler_to_bus_named_pbus_widget_auto_anon_out_d_bits_data; // @[WidthWidget.scala:27:9]
wire coupler_to_bus_named_pbus_widget_auto_anon_out_d_bits_denied; // @[WidthWidget.scala:27:9]
wire coupler_to_bus_named_pbus_widget_auto_anon_out_d_bits_sink; // @[WidthWidget.scala:27:9]
wire [6:0] coupler_to_bus_named_pbus_widget_auto_anon_out_d_bits_source; // @[WidthWidget.scala:27:9]
wire [2:0] coupler_to_bus_named_pbus_widget_auto_anon_out_d_bits_size; // @[WidthWidget.scala:27:9]
wire [1:0] coupler_to_bus_named_pbus_widget_auto_anon_out_d_bits_param; // @[WidthWidget.scala:27:9]
wire [2:0] coupler_to_bus_named_pbus_widget_auto_anon_out_d_bits_opcode; // @[WidthWidget.scala:27:9]
wire coupler_to_bus_named_pbus_widget_auto_anon_out_a_valid; // @[WidthWidget.scala:27:9]
wire coupler_to_bus_named_pbus_widget_auto_anon_out_a_ready; // @[WidthWidget.scala:27:9]
wire coupler_to_bus_named_pbus_widget_auto_anon_out_a_bits_corrupt; // @[WidthWidget.scala:27:9]
wire [63:0] coupler_to_bus_named_pbus_widget_auto_anon_out_a_bits_data; // @[WidthWidget.scala:27:9]
wire [7:0] coupler_to_bus_named_pbus_widget_auto_anon_out_a_bits_mask; // @[WidthWidget.scala:27:9]
wire [28:0] coupler_to_bus_named_pbus_widget_auto_anon_out_a_bits_address; // @[WidthWidget.scala:27:9]
wire [6:0] coupler_to_bus_named_pbus_widget_auto_anon_out_a_bits_source; // @[WidthWidget.scala:27:9]
wire [2:0] coupler_to_bus_named_pbus_widget_auto_anon_out_a_bits_size; // @[WidthWidget.scala:27:9]
wire [2:0] coupler_to_bus_named_pbus_widget_auto_anon_out_a_bits_param; // @[WidthWidget.scala:27:9]
wire [2:0] coupler_to_bus_named_pbus_widget_auto_anon_out_a_bits_opcode; // @[WidthWidget.scala:27:9]
wire coupler_to_bus_named_pbus_auto_widget_anon_in_d_ready; // @[LazyModuleImp.scala:138:7]
wire coupler_to_bus_named_pbus_auto_widget_anon_in_a_valid; // @[LazyModuleImp.scala:138:7]
wire coupler_to_bus_named_pbus_auto_widget_anon_in_a_bits_corrupt; // @[LazyModuleImp.scala:138:7]
wire [63:0] coupler_to_bus_named_pbus_auto_widget_anon_in_a_bits_data; // @[LazyModuleImp.scala:138:7]
wire [7:0] coupler_to_bus_named_pbus_auto_widget_anon_in_a_bits_mask; // @[LazyModuleImp.scala:138:7]
wire [28:0] coupler_to_bus_named_pbus_auto_widget_anon_in_a_bits_address; // @[LazyModuleImp.scala:138:7]
wire [6:0] coupler_to_bus_named_pbus_auto_widget_anon_in_a_bits_source; // @[LazyModuleImp.scala:138:7]
wire [2:0] coupler_to_bus_named_pbus_auto_widget_anon_in_a_bits_size; // @[LazyModuleImp.scala:138:7]
wire [2:0] coupler_to_bus_named_pbus_auto_widget_anon_in_a_bits_param; // @[LazyModuleImp.scala:138:7]
wire [2:0] coupler_to_bus_named_pbus_auto_widget_anon_in_a_bits_opcode; // @[LazyModuleImp.scala:138:7]
wire buffer_1_auto_out_d_valid; // @[Buffer.scala:40:9]
wire buffer_1_auto_out_d_bits_corrupt; // @[Buffer.scala:40:9]
wire [63:0] buffer_1_auto_out_d_bits_data; // @[Buffer.scala:40:9]
wire buffer_1_auto_out_d_bits_denied; // @[Buffer.scala:40:9]
wire buffer_1_auto_out_d_bits_sink; // @[Buffer.scala:40:9]
wire [5:0] buffer_1_auto_out_d_bits_source; // @[Buffer.scala:40:9]
wire [3:0] buffer_1_auto_out_d_bits_size; // @[Buffer.scala:40:9]
wire [1:0] buffer_1_auto_out_d_bits_param; // @[Buffer.scala:40:9]
wire [2:0] buffer_1_auto_out_d_bits_opcode; // @[Buffer.scala:40:9]
wire buffer_1_auto_out_a_ready; // @[Buffer.scala:40:9]
wire buffer_1_auto_in_d_valid; // @[Buffer.scala:40:9]
wire buffer_1_auto_in_d_ready; // @[Buffer.scala:40:9]
wire buffer_1_auto_in_d_bits_corrupt; // @[Buffer.scala:40:9]
wire [63:0] buffer_1_auto_in_d_bits_data; // @[Buffer.scala:40:9]
wire buffer_1_auto_in_d_bits_denied; // @[Buffer.scala:40:9]
wire buffer_1_auto_in_d_bits_sink; // @[Buffer.scala:40:9]
wire [5:0] buffer_1_auto_in_d_bits_source; // @[Buffer.scala:40:9]
wire [3:0] buffer_1_auto_in_d_bits_size; // @[Buffer.scala:40:9]
wire [1:0] buffer_1_auto_in_d_bits_param; // @[Buffer.scala:40:9]
wire [2:0] buffer_1_auto_in_d_bits_opcode; // @[Buffer.scala:40:9]
wire buffer_1_auto_in_a_valid; // @[Buffer.scala:40:9]
wire buffer_1_auto_in_a_ready; // @[Buffer.scala:40:9]
wire buffer_1_auto_in_a_bits_corrupt; // @[Buffer.scala:40:9]
wire [63:0] buffer_1_auto_in_a_bits_data; // @[Buffer.scala:40:9]
wire [7:0] buffer_1_auto_in_a_bits_mask; // @[Buffer.scala:40:9]
wire [31:0] buffer_1_auto_in_a_bits_address; // @[Buffer.scala:40:9]
wire [5:0] buffer_1_auto_in_a_bits_source; // @[Buffer.scala:40:9]
wire [3:0] buffer_1_auto_in_a_bits_size; // @[Buffer.scala:40:9]
wire [2:0] buffer_1_auto_in_a_bits_param; // @[Buffer.scala:40:9]
wire [2:0] buffer_1_auto_in_a_bits_opcode; // @[Buffer.scala:40:9]
wire fixer_auto_anon_out_d_valid; // @[FIFOFixer.scala:50:9]
wire fixer_auto_anon_out_d_bits_corrupt; // @[FIFOFixer.scala:50:9]
wire [63:0] fixer_auto_anon_out_d_bits_data; // @[FIFOFixer.scala:50:9]
wire fixer_auto_anon_out_d_bits_denied; // @[FIFOFixer.scala:50:9]
wire fixer_auto_anon_out_d_bits_sink; // @[FIFOFixer.scala:50:9]
wire [6:0] fixer_auto_anon_out_d_bits_source; // @[FIFOFixer.scala:50:9]
wire [3:0] fixer_auto_anon_out_d_bits_size; // @[FIFOFixer.scala:50:9]
wire [1:0] fixer_auto_anon_out_d_bits_param; // @[FIFOFixer.scala:50:9]
wire [2:0] fixer_auto_anon_out_d_bits_opcode; // @[FIFOFixer.scala:50:9]
wire fixer_auto_anon_out_a_ready; // @[FIFOFixer.scala:50:9]
wire fixer_auto_anon_in_d_ready; // @[FIFOFixer.scala:50:9]
wire fixer_auto_anon_in_a_valid; // @[FIFOFixer.scala:50:9]
wire fixer_auto_anon_in_a_bits_corrupt; // @[FIFOFixer.scala:50:9]
wire [63:0] fixer_auto_anon_in_a_bits_data; // @[FIFOFixer.scala:50:9]
wire [7:0] fixer_auto_anon_in_a_bits_mask; // @[FIFOFixer.scala:50:9]
wire [31:0] fixer_auto_anon_in_a_bits_address; // @[FIFOFixer.scala:50:9]
wire [6:0] fixer_auto_anon_in_a_bits_source; // @[FIFOFixer.scala:50:9]
wire [3:0] fixer_auto_anon_in_a_bits_size; // @[FIFOFixer.scala:50:9]
wire [2:0] fixer_auto_anon_in_a_bits_param; // @[FIFOFixer.scala:50:9]
wire [2:0] fixer_auto_anon_in_a_bits_opcode; // @[FIFOFixer.scala:50:9]
wire cbus_clock_groups_auto_out_member_cbus_0_reset; // @[ClockGroup.scala:53:9]
wire cbus_clock_groups_auto_out_member_cbus_0_clock; // @[ClockGroup.scala:53:9]
wire _coupler_to_prci_ctrl_auto_tl_in_a_ready; // @[LazyScope.scala:98:27]
wire _coupler_to_prci_ctrl_auto_tl_in_d_valid; // @[LazyScope.scala:98:27]
wire [2:0] _coupler_to_prci_ctrl_auto_tl_in_d_bits_opcode; // @[LazyScope.scala:98:27]
wire [1:0] _coupler_to_prci_ctrl_auto_tl_in_d_bits_param; // @[LazyScope.scala:98:27]
wire [2:0] _coupler_to_prci_ctrl_auto_tl_in_d_bits_size; // @[LazyScope.scala:98:27]
wire [6:0] _coupler_to_prci_ctrl_auto_tl_in_d_bits_source; // @[LazyScope.scala:98:27]
wire _coupler_to_prci_ctrl_auto_tl_in_d_bits_sink; // @[LazyScope.scala:98:27]
wire _coupler_to_prci_ctrl_auto_tl_in_d_bits_denied; // @[LazyScope.scala:98:27]
wire [63:0] _coupler_to_prci_ctrl_auto_tl_in_d_bits_data; // @[LazyScope.scala:98:27]
wire _coupler_to_prci_ctrl_auto_tl_in_d_bits_corrupt; // @[LazyScope.scala:98:27]
wire _coupler_to_bootrom_auto_tl_in_a_ready; // @[LazyScope.scala:98:27]
wire _coupler_to_bootrom_auto_tl_in_d_valid; // @[LazyScope.scala:98:27]
wire [2:0] _coupler_to_bootrom_auto_tl_in_d_bits_size; // @[LazyScope.scala:98:27]
wire [6:0] _coupler_to_bootrom_auto_tl_in_d_bits_source; // @[LazyScope.scala:98:27]
wire [63:0] _coupler_to_bootrom_auto_tl_in_d_bits_data; // @[LazyScope.scala:98:27]
wire _coupler_to_rockettile_auto_tl_in_a_ready; // @[LazyScope.scala:98:27]
wire _coupler_to_rockettile_auto_tl_in_d_valid; // @[LazyScope.scala:98:27]
wire [2:0] _coupler_to_rockettile_auto_tl_in_d_bits_opcode; // @[LazyScope.scala:98:27]
wire [1:0] _coupler_to_rockettile_auto_tl_in_d_bits_param; // @[LazyScope.scala:98:27]
wire [2:0] _coupler_to_rockettile_auto_tl_in_d_bits_size; // @[LazyScope.scala:98:27]
wire [6:0] _coupler_to_rockettile_auto_tl_in_d_bits_source; // @[LazyScope.scala:98:27]
wire _coupler_to_rockettile_auto_tl_in_d_bits_sink; // @[LazyScope.scala:98:27]
wire _coupler_to_rockettile_auto_tl_in_d_bits_denied; // @[LazyScope.scala:98:27]
wire [63:0] _coupler_to_rockettile_auto_tl_in_d_bits_data; // @[LazyScope.scala:98:27]
wire _coupler_to_rockettile_auto_tl_in_d_bits_corrupt; // @[LazyScope.scala:98:27]
wire _coupler_to_debug_auto_tl_in_a_ready; // @[LazyScope.scala:98:27]
wire _coupler_to_debug_auto_tl_in_d_valid; // @[LazyScope.scala:98:27]
wire [2:0] _coupler_to_debug_auto_tl_in_d_bits_opcode; // @[LazyScope.scala:98:27]
wire [2:0] _coupler_to_debug_auto_tl_in_d_bits_size; // @[LazyScope.scala:98:27]
wire [6:0] _coupler_to_debug_auto_tl_in_d_bits_source; // @[LazyScope.scala:98:27]
wire [63:0] _coupler_to_debug_auto_tl_in_d_bits_data; // @[LazyScope.scala:98:27]
wire _coupler_to_plic_auto_tl_in_a_ready; // @[LazyScope.scala:98:27]
wire _coupler_to_plic_auto_tl_in_d_valid; // @[LazyScope.scala:98:27]
wire [2:0] _coupler_to_plic_auto_tl_in_d_bits_opcode; // @[LazyScope.scala:98:27]
wire [2:0] _coupler_to_plic_auto_tl_in_d_bits_size; // @[LazyScope.scala:98:27]
wire [6:0] _coupler_to_plic_auto_tl_in_d_bits_source; // @[LazyScope.scala:98:27]
wire [63:0] _coupler_to_plic_auto_tl_in_d_bits_data; // @[LazyScope.scala:98:27]
wire _coupler_to_clint_auto_tl_in_a_ready; // @[LazyScope.scala:98:27]
wire _coupler_to_clint_auto_tl_in_d_valid; // @[LazyScope.scala:98:27]
wire [2:0] _coupler_to_clint_auto_tl_in_d_bits_opcode; // @[LazyScope.scala:98:27]
wire [2:0] _coupler_to_clint_auto_tl_in_d_bits_size; // @[LazyScope.scala:98:27]
wire [6:0] _coupler_to_clint_auto_tl_in_d_bits_source; // @[LazyScope.scala:98:27]
wire [63:0] _coupler_to_clint_auto_tl_in_d_bits_data; // @[LazyScope.scala:98:27]
wire _wrapped_error_device_auto_buffer_in_a_ready; // @[LazyScope.scala:98:27]
wire _wrapped_error_device_auto_buffer_in_d_valid; // @[LazyScope.scala:98:27]
wire [2:0] _wrapped_error_device_auto_buffer_in_d_bits_opcode; // @[LazyScope.scala:98:27]
wire [1:0] _wrapped_error_device_auto_buffer_in_d_bits_param; // @[LazyScope.scala:98:27]
wire [3:0] _wrapped_error_device_auto_buffer_in_d_bits_size; // @[LazyScope.scala:98:27]
wire [6:0] _wrapped_error_device_auto_buffer_in_d_bits_source; // @[LazyScope.scala:98:27]
wire _wrapped_error_device_auto_buffer_in_d_bits_sink; // @[LazyScope.scala:98:27]
wire _wrapped_error_device_auto_buffer_in_d_bits_denied; // @[LazyScope.scala:98:27]
wire [63:0] _wrapped_error_device_auto_buffer_in_d_bits_data; // @[LazyScope.scala:98:27]
wire _wrapped_error_device_auto_buffer_in_d_bits_corrupt; // @[LazyScope.scala:98:27]
wire _atomics_auto_in_a_ready; // @[AtomicAutomata.scala:289:29]
wire _atomics_auto_in_d_valid; // @[AtomicAutomata.scala:289:29]
wire [2:0] _atomics_auto_in_d_bits_opcode; // @[AtomicAutomata.scala:289:29]
wire [1:0] _atomics_auto_in_d_bits_param; // @[AtomicAutomata.scala:289:29]
wire [3:0] _atomics_auto_in_d_bits_size; // @[AtomicAutomata.scala:289:29]
wire [6:0] _atomics_auto_in_d_bits_source; // @[AtomicAutomata.scala:289:29]
wire _atomics_auto_in_d_bits_sink; // @[AtomicAutomata.scala:289:29]
wire _atomics_auto_in_d_bits_denied; // @[AtomicAutomata.scala:289:29]
wire [63:0] _atomics_auto_in_d_bits_data; // @[AtomicAutomata.scala:289:29]
wire _atomics_auto_in_d_bits_corrupt; // @[AtomicAutomata.scala:289:29]
wire _atomics_auto_out_a_valid; // @[AtomicAutomata.scala:289:29]
wire [2:0] _atomics_auto_out_a_bits_opcode; // @[AtomicAutomata.scala:289:29]
wire [2:0] _atomics_auto_out_a_bits_param; // @[AtomicAutomata.scala:289:29]
wire [3:0] _atomics_auto_out_a_bits_size; // @[AtomicAutomata.scala:289:29]
wire [6:0] _atomics_auto_out_a_bits_source; // @[AtomicAutomata.scala:289:29]
wire [31:0] _atomics_auto_out_a_bits_address; // @[AtomicAutomata.scala:289:29]
wire [7:0] _atomics_auto_out_a_bits_mask; // @[AtomicAutomata.scala:289:29]
wire [63:0] _atomics_auto_out_a_bits_data; // @[AtomicAutomata.scala:289:29]
wire _atomics_auto_out_a_bits_corrupt; // @[AtomicAutomata.scala:289:29]
wire _atomics_auto_out_d_ready; // @[AtomicAutomata.scala:289:29]
wire _buffer_auto_in_a_ready; // @[Buffer.scala:75:28]
wire _buffer_auto_in_d_valid; // @[Buffer.scala:75:28]
wire [2:0] _buffer_auto_in_d_bits_opcode; // @[Buffer.scala:75:28]
wire [1:0] _buffer_auto_in_d_bits_param; // @[Buffer.scala:75:28]
wire [3:0] _buffer_auto_in_d_bits_size; // @[Buffer.scala:75:28]
wire [6:0] _buffer_auto_in_d_bits_source; // @[Buffer.scala:75:28]
wire _buffer_auto_in_d_bits_sink; // @[Buffer.scala:75:28]
wire _buffer_auto_in_d_bits_denied; // @[Buffer.scala:75:28]
wire [63:0] _buffer_auto_in_d_bits_data; // @[Buffer.scala:75:28]
wire _buffer_auto_in_d_bits_corrupt; // @[Buffer.scala:75:28]
wire _out_xbar_auto_anon_out_7_a_valid; // @[PeripheryBus.scala:57:30]
wire [2:0] _out_xbar_auto_anon_out_7_a_bits_opcode; // @[PeripheryBus.scala:57:30]
wire [2:0] _out_xbar_auto_anon_out_7_a_bits_param; // @[PeripheryBus.scala:57:30]
wire [2:0] _out_xbar_auto_anon_out_7_a_bits_size; // @[PeripheryBus.scala:57:30]
wire [6:0] _out_xbar_auto_anon_out_7_a_bits_source; // @[PeripheryBus.scala:57:30]
wire [20:0] _out_xbar_auto_anon_out_7_a_bits_address; // @[PeripheryBus.scala:57:30]
wire [7:0] _out_xbar_auto_anon_out_7_a_bits_mask; // @[PeripheryBus.scala:57:30]
wire [63:0] _out_xbar_auto_anon_out_7_a_bits_data; // @[PeripheryBus.scala:57:30]
wire _out_xbar_auto_anon_out_7_a_bits_corrupt; // @[PeripheryBus.scala:57:30]
wire _out_xbar_auto_anon_out_7_d_ready; // @[PeripheryBus.scala:57:30]
wire _out_xbar_auto_anon_out_6_a_valid; // @[PeripheryBus.scala:57:30]
wire [2:0] _out_xbar_auto_anon_out_6_a_bits_opcode; // @[PeripheryBus.scala:57:30]
wire [2:0] _out_xbar_auto_anon_out_6_a_bits_param; // @[PeripheryBus.scala:57:30]
wire [2:0] _out_xbar_auto_anon_out_6_a_bits_size; // @[PeripheryBus.scala:57:30]
wire [6:0] _out_xbar_auto_anon_out_6_a_bits_source; // @[PeripheryBus.scala:57:30]
wire [16:0] _out_xbar_auto_anon_out_6_a_bits_address; // @[PeripheryBus.scala:57:30]
wire [7:0] _out_xbar_auto_anon_out_6_a_bits_mask; // @[PeripheryBus.scala:57:30]
wire [63:0] _out_xbar_auto_anon_out_6_a_bits_data; // @[PeripheryBus.scala:57:30]
wire _out_xbar_auto_anon_out_6_a_bits_corrupt; // @[PeripheryBus.scala:57:30]
wire _out_xbar_auto_anon_out_6_d_ready; // @[PeripheryBus.scala:57:30]
wire _out_xbar_auto_anon_out_5_a_valid; // @[PeripheryBus.scala:57:30]
wire [2:0] _out_xbar_auto_anon_out_5_a_bits_opcode; // @[PeripheryBus.scala:57:30]
wire [2:0] _out_xbar_auto_anon_out_5_a_bits_param; // @[PeripheryBus.scala:57:30]
wire [2:0] _out_xbar_auto_anon_out_5_a_bits_size; // @[PeripheryBus.scala:57:30]
wire [6:0] _out_xbar_auto_anon_out_5_a_bits_source; // @[PeripheryBus.scala:57:30]
wire [31:0] _out_xbar_auto_anon_out_5_a_bits_address; // @[PeripheryBus.scala:57:30]
wire [7:0] _out_xbar_auto_anon_out_5_a_bits_mask; // @[PeripheryBus.scala:57:30]
wire [63:0] _out_xbar_auto_anon_out_5_a_bits_data; // @[PeripheryBus.scala:57:30]
wire _out_xbar_auto_anon_out_5_a_bits_corrupt; // @[PeripheryBus.scala:57:30]
wire _out_xbar_auto_anon_out_5_d_ready; // @[PeripheryBus.scala:57:30]
wire _out_xbar_auto_anon_out_4_a_valid; // @[PeripheryBus.scala:57:30]
wire [2:0] _out_xbar_auto_anon_out_4_a_bits_opcode; // @[PeripheryBus.scala:57:30]
wire [2:0] _out_xbar_auto_anon_out_4_a_bits_param; // @[PeripheryBus.scala:57:30]
wire [2:0] _out_xbar_auto_anon_out_4_a_bits_size; // @[PeripheryBus.scala:57:30]
wire [6:0] _out_xbar_auto_anon_out_4_a_bits_source; // @[PeripheryBus.scala:57:30]
wire [11:0] _out_xbar_auto_anon_out_4_a_bits_address; // @[PeripheryBus.scala:57:30]
wire [7:0] _out_xbar_auto_anon_out_4_a_bits_mask; // @[PeripheryBus.scala:57:30]
wire [63:0] _out_xbar_auto_anon_out_4_a_bits_data; // @[PeripheryBus.scala:57:30]
wire _out_xbar_auto_anon_out_4_a_bits_corrupt; // @[PeripheryBus.scala:57:30]
wire _out_xbar_auto_anon_out_4_d_ready; // @[PeripheryBus.scala:57:30]
wire _out_xbar_auto_anon_out_3_a_valid; // @[PeripheryBus.scala:57:30]
wire [2:0] _out_xbar_auto_anon_out_3_a_bits_opcode; // @[PeripheryBus.scala:57:30]
wire [2:0] _out_xbar_auto_anon_out_3_a_bits_param; // @[PeripheryBus.scala:57:30]
wire [2:0] _out_xbar_auto_anon_out_3_a_bits_size; // @[PeripheryBus.scala:57:30]
wire [6:0] _out_xbar_auto_anon_out_3_a_bits_source; // @[PeripheryBus.scala:57:30]
wire [27:0] _out_xbar_auto_anon_out_3_a_bits_address; // @[PeripheryBus.scala:57:30]
wire [7:0] _out_xbar_auto_anon_out_3_a_bits_mask; // @[PeripheryBus.scala:57:30]
wire [63:0] _out_xbar_auto_anon_out_3_a_bits_data; // @[PeripheryBus.scala:57:30]
wire _out_xbar_auto_anon_out_3_a_bits_corrupt; // @[PeripheryBus.scala:57:30]
wire _out_xbar_auto_anon_out_3_d_ready; // @[PeripheryBus.scala:57:30]
wire _out_xbar_auto_anon_out_2_a_valid; // @[PeripheryBus.scala:57:30]
wire [2:0] _out_xbar_auto_anon_out_2_a_bits_opcode; // @[PeripheryBus.scala:57:30]
wire [2:0] _out_xbar_auto_anon_out_2_a_bits_param; // @[PeripheryBus.scala:57:30]
wire [2:0] _out_xbar_auto_anon_out_2_a_bits_size; // @[PeripheryBus.scala:57:30]
wire [6:0] _out_xbar_auto_anon_out_2_a_bits_source; // @[PeripheryBus.scala:57:30]
wire [25:0] _out_xbar_auto_anon_out_2_a_bits_address; // @[PeripheryBus.scala:57:30]
wire [7:0] _out_xbar_auto_anon_out_2_a_bits_mask; // @[PeripheryBus.scala:57:30]
wire [63:0] _out_xbar_auto_anon_out_2_a_bits_data; // @[PeripheryBus.scala:57:30]
wire _out_xbar_auto_anon_out_2_a_bits_corrupt; // @[PeripheryBus.scala:57:30]
wire _out_xbar_auto_anon_out_2_d_ready; // @[PeripheryBus.scala:57:30]
wire _out_xbar_auto_anon_out_0_a_valid; // @[PeripheryBus.scala:57:30]
wire [2:0] _out_xbar_auto_anon_out_0_a_bits_opcode; // @[PeripheryBus.scala:57:30]
wire [2:0] _out_xbar_auto_anon_out_0_a_bits_param; // @[PeripheryBus.scala:57:30]
wire [3:0] _out_xbar_auto_anon_out_0_a_bits_size; // @[PeripheryBus.scala:57:30]
wire [6:0] _out_xbar_auto_anon_out_0_a_bits_source; // @[PeripheryBus.scala:57:30]
wire [13:0] _out_xbar_auto_anon_out_0_a_bits_address; // @[PeripheryBus.scala:57:30]
wire [7:0] _out_xbar_auto_anon_out_0_a_bits_mask; // @[PeripheryBus.scala:57:30]
wire [63:0] _out_xbar_auto_anon_out_0_a_bits_data; // @[PeripheryBus.scala:57:30]
wire _out_xbar_auto_anon_out_0_a_bits_corrupt; // @[PeripheryBus.scala:57:30]
wire _out_xbar_auto_anon_out_0_d_ready; // @[PeripheryBus.scala:57:30]
wire _in_xbar_auto_anon_out_a_valid; // @[PeripheryBus.scala:56:29]
wire [2:0] _in_xbar_auto_anon_out_a_bits_opcode; // @[PeripheryBus.scala:56:29]
wire [2:0] _in_xbar_auto_anon_out_a_bits_param; // @[PeripheryBus.scala:56:29]
wire [3:0] _in_xbar_auto_anon_out_a_bits_size; // @[PeripheryBus.scala:56:29]
wire [6:0] _in_xbar_auto_anon_out_a_bits_source; // @[PeripheryBus.scala:56:29]
wire [31:0] _in_xbar_auto_anon_out_a_bits_address; // @[PeripheryBus.scala:56:29]
wire [7:0] _in_xbar_auto_anon_out_a_bits_mask; // @[PeripheryBus.scala:56:29]
wire [63:0] _in_xbar_auto_anon_out_a_bits_data; // @[PeripheryBus.scala:56:29]
wire _in_xbar_auto_anon_out_a_bits_corrupt; // @[PeripheryBus.scala:56:29]
wire _in_xbar_auto_anon_out_d_ready; // @[PeripheryBus.scala:56:29]
wire auto_coupler_to_prci_ctrl_fixer_anon_out_a_ready_0 = auto_coupler_to_prci_ctrl_fixer_anon_out_a_ready; // @[ClockDomain.scala:14:9]
wire auto_coupler_to_prci_ctrl_fixer_anon_out_d_valid_0 = auto_coupler_to_prci_ctrl_fixer_anon_out_d_valid; // @[ClockDomain.scala:14:9]
wire [2:0] auto_coupler_to_prci_ctrl_fixer_anon_out_d_bits_opcode_0 = auto_coupler_to_prci_ctrl_fixer_anon_out_d_bits_opcode; // @[ClockDomain.scala:14:9]
wire [2:0] auto_coupler_to_prci_ctrl_fixer_anon_out_d_bits_size_0 = auto_coupler_to_prci_ctrl_fixer_anon_out_d_bits_size; // @[ClockDomain.scala:14:9]
wire [6:0] auto_coupler_to_prci_ctrl_fixer_anon_out_d_bits_source_0 = auto_coupler_to_prci_ctrl_fixer_anon_out_d_bits_source; // @[ClockDomain.scala:14:9]
wire [63:0] auto_coupler_to_prci_ctrl_fixer_anon_out_d_bits_data_0 = auto_coupler_to_prci_ctrl_fixer_anon_out_d_bits_data; // @[ClockDomain.scala:14:9]
wire auto_coupler_to_bootrom_fragmenter_anon_out_a_ready_0 = auto_coupler_to_bootrom_fragmenter_anon_out_a_ready; // @[ClockDomain.scala:14:9]
wire auto_coupler_to_bootrom_fragmenter_anon_out_d_valid_0 = auto_coupler_to_bootrom_fragmenter_anon_out_d_valid; // @[ClockDomain.scala:14:9]
wire [1:0] auto_coupler_to_bootrom_fragmenter_anon_out_d_bits_size_0 = auto_coupler_to_bootrom_fragmenter_anon_out_d_bits_size; // @[ClockDomain.scala:14:9]
wire [10:0] auto_coupler_to_bootrom_fragmenter_anon_out_d_bits_source_0 = auto_coupler_to_bootrom_fragmenter_anon_out_d_bits_source; // @[ClockDomain.scala:14:9]
wire [63:0] auto_coupler_to_bootrom_fragmenter_anon_out_d_bits_data_0 = auto_coupler_to_bootrom_fragmenter_anon_out_d_bits_data; // @[ClockDomain.scala:14:9]
wire auto_coupler_to_rockettile_tl_slave_clock_xing_out_a_ready_0 = auto_coupler_to_rockettile_tl_slave_clock_xing_out_a_ready; // @[ClockDomain.scala:14:9]
wire auto_coupler_to_rockettile_tl_slave_clock_xing_out_d_valid_0 = auto_coupler_to_rockettile_tl_slave_clock_xing_out_d_valid; // @[ClockDomain.scala:14:9]
wire [2:0] auto_coupler_to_rockettile_tl_slave_clock_xing_out_d_bits_opcode_0 = auto_coupler_to_rockettile_tl_slave_clock_xing_out_d_bits_opcode; // @[ClockDomain.scala:14:9]
wire [1:0] auto_coupler_to_rockettile_tl_slave_clock_xing_out_d_bits_param_0 = auto_coupler_to_rockettile_tl_slave_clock_xing_out_d_bits_param; // @[ClockDomain.scala:14:9]
wire [2:0] auto_coupler_to_rockettile_tl_slave_clock_xing_out_d_bits_size_0 = auto_coupler_to_rockettile_tl_slave_clock_xing_out_d_bits_size; // @[ClockDomain.scala:14:9]
wire [6:0] auto_coupler_to_rockettile_tl_slave_clock_xing_out_d_bits_source_0 = auto_coupler_to_rockettile_tl_slave_clock_xing_out_d_bits_source; // @[ClockDomain.scala:14:9]
wire auto_coupler_to_rockettile_tl_slave_clock_xing_out_d_bits_sink_0 = auto_coupler_to_rockettile_tl_slave_clock_xing_out_d_bits_sink; // @[ClockDomain.scala:14:9]
wire auto_coupler_to_rockettile_tl_slave_clock_xing_out_d_bits_denied_0 = auto_coupler_to_rockettile_tl_slave_clock_xing_out_d_bits_denied; // @[ClockDomain.scala:14:9]
wire [31:0] auto_coupler_to_rockettile_tl_slave_clock_xing_out_d_bits_data_0 = auto_coupler_to_rockettile_tl_slave_clock_xing_out_d_bits_data; // @[ClockDomain.scala:14:9]
wire auto_coupler_to_rockettile_tl_slave_clock_xing_out_d_bits_corrupt_0 = auto_coupler_to_rockettile_tl_slave_clock_xing_out_d_bits_corrupt; // @[ClockDomain.scala:14:9]
wire auto_coupler_to_debug_fragmenter_anon_out_a_ready_0 = auto_coupler_to_debug_fragmenter_anon_out_a_ready; // @[ClockDomain.scala:14:9]
wire auto_coupler_to_debug_fragmenter_anon_out_d_valid_0 = auto_coupler_to_debug_fragmenter_anon_out_d_valid; // @[ClockDomain.scala:14:9]
wire [2:0] auto_coupler_to_debug_fragmenter_anon_out_d_bits_opcode_0 = auto_coupler_to_debug_fragmenter_anon_out_d_bits_opcode; // @[ClockDomain.scala:14:9]
wire [1:0] auto_coupler_to_debug_fragmenter_anon_out_d_bits_size_0 = auto_coupler_to_debug_fragmenter_anon_out_d_bits_size; // @[ClockDomain.scala:14:9]
wire [10:0] auto_coupler_to_debug_fragmenter_anon_out_d_bits_source_0 = auto_coupler_to_debug_fragmenter_anon_out_d_bits_source; // @[ClockDomain.scala:14:9]
wire [63:0] auto_coupler_to_debug_fragmenter_anon_out_d_bits_data_0 = auto_coupler_to_debug_fragmenter_anon_out_d_bits_data; // @[ClockDomain.scala:14:9]
wire auto_coupler_to_plic_fragmenter_anon_out_a_ready_0 = auto_coupler_to_plic_fragmenter_anon_out_a_ready; // @[ClockDomain.scala:14:9]
wire auto_coupler_to_plic_fragmenter_anon_out_d_valid_0 = auto_coupler_to_plic_fragmenter_anon_out_d_valid; // @[ClockDomain.scala:14:9]
wire [2:0] auto_coupler_to_plic_fragmenter_anon_out_d_bits_opcode_0 = auto_coupler_to_plic_fragmenter_anon_out_d_bits_opcode; // @[ClockDomain.scala:14:9]
wire [1:0] auto_coupler_to_plic_fragmenter_anon_out_d_bits_size_0 = auto_coupler_to_plic_fragmenter_anon_out_d_bits_size; // @[ClockDomain.scala:14:9]
wire [10:0] auto_coupler_to_plic_fragmenter_anon_out_d_bits_source_0 = auto_coupler_to_plic_fragmenter_anon_out_d_bits_source; // @[ClockDomain.scala:14:9]
wire [63:0] auto_coupler_to_plic_fragmenter_anon_out_d_bits_data_0 = auto_coupler_to_plic_fragmenter_anon_out_d_bits_data; // @[ClockDomain.scala:14:9]
wire auto_coupler_to_clint_fragmenter_anon_out_a_ready_0 = auto_coupler_to_clint_fragmenter_anon_out_a_ready; // @[ClockDomain.scala:14:9]
wire auto_coupler_to_clint_fragmenter_anon_out_d_valid_0 = auto_coupler_to_clint_fragmenter_anon_out_d_valid; // @[ClockDomain.scala:14:9]
wire [2:0] auto_coupler_to_clint_fragmenter_anon_out_d_bits_opcode_0 = auto_coupler_to_clint_fragmenter_anon_out_d_bits_opcode; // @[ClockDomain.scala:14:9]
wire [1:0] auto_coupler_to_clint_fragmenter_anon_out_d_bits_size_0 = auto_coupler_to_clint_fragmenter_anon_out_d_bits_size; // @[ClockDomain.scala:14:9]
wire [10:0] auto_coupler_to_clint_fragmenter_anon_out_d_bits_source_0 = auto_coupler_to_clint_fragmenter_anon_out_d_bits_source; // @[ClockDomain.scala:14:9]
wire [63:0] auto_coupler_to_clint_fragmenter_anon_out_d_bits_data_0 = auto_coupler_to_clint_fragmenter_anon_out_d_bits_data; // @[ClockDomain.scala:14:9]
wire auto_coupler_to_bus_named_pbus_bus_xing_out_a_ready_0 = auto_coupler_to_bus_named_pbus_bus_xing_out_a_ready; // @[ClockDomain.scala:14:9]
wire auto_coupler_to_bus_named_pbus_bus_xing_out_d_valid_0 = auto_coupler_to_bus_named_pbus_bus_xing_out_d_valid; // @[ClockDomain.scala:14:9]
wire [2:0] auto_coupler_to_bus_named_pbus_bus_xing_out_d_bits_opcode_0 = auto_coupler_to_bus_named_pbus_bus_xing_out_d_bits_opcode; // @[ClockDomain.scala:14:9]
wire [1:0] auto_coupler_to_bus_named_pbus_bus_xing_out_d_bits_param_0 = auto_coupler_to_bus_named_pbus_bus_xing_out_d_bits_param; // @[ClockDomain.scala:14:9]
wire [2:0] auto_coupler_to_bus_named_pbus_bus_xing_out_d_bits_size_0 = auto_coupler_to_bus_named_pbus_bus_xing_out_d_bits_size; // @[ClockDomain.scala:14:9]
wire [6:0] auto_coupler_to_bus_named_pbus_bus_xing_out_d_bits_source_0 = auto_coupler_to_bus_named_pbus_bus_xing_out_d_bits_source; // @[ClockDomain.scala:14:9]
wire auto_coupler_to_bus_named_pbus_bus_xing_out_d_bits_sink_0 = auto_coupler_to_bus_named_pbus_bus_xing_out_d_bits_sink; // @[ClockDomain.scala:14:9]
wire auto_coupler_to_bus_named_pbus_bus_xing_out_d_bits_denied_0 = auto_coupler_to_bus_named_pbus_bus_xing_out_d_bits_denied; // @[ClockDomain.scala:14:9]
wire [63:0] auto_coupler_to_bus_named_pbus_bus_xing_out_d_bits_data_0 = auto_coupler_to_bus_named_pbus_bus_xing_out_d_bits_data; // @[ClockDomain.scala:14:9]
wire auto_coupler_to_bus_named_pbus_bus_xing_out_d_bits_corrupt_0 = auto_coupler_to_bus_named_pbus_bus_xing_out_d_bits_corrupt; // @[ClockDomain.scala:14:9]
wire auto_cbus_clock_groups_in_member_cbus_0_clock_0 = auto_cbus_clock_groups_in_member_cbus_0_clock; // @[ClockDomain.scala:14:9]
wire auto_cbus_clock_groups_in_member_cbus_0_reset_0 = auto_cbus_clock_groups_in_member_cbus_0_reset; // @[ClockDomain.scala:14:9]
wire auto_bus_xing_in_a_valid_0 = auto_bus_xing_in_a_valid; // @[ClockDomain.scala:14:9]
wire [2:0] auto_bus_xing_in_a_bits_opcode_0 = auto_bus_xing_in_a_bits_opcode; // @[ClockDomain.scala:14:9]
wire [2:0] auto_bus_xing_in_a_bits_param_0 = auto_bus_xing_in_a_bits_param; // @[ClockDomain.scala:14:9]
wire [3:0] auto_bus_xing_in_a_bits_size_0 = auto_bus_xing_in_a_bits_size; // @[ClockDomain.scala:14:9]
wire [5:0] auto_bus_xing_in_a_bits_source_0 = auto_bus_xing_in_a_bits_source; // @[ClockDomain.scala:14:9]
wire [31:0] auto_bus_xing_in_a_bits_address_0 = auto_bus_xing_in_a_bits_address; // @[ClockDomain.scala:14:9]
wire [7:0] auto_bus_xing_in_a_bits_mask_0 = auto_bus_xing_in_a_bits_mask; // @[ClockDomain.scala:14:9]
wire [63:0] auto_bus_xing_in_a_bits_data_0 = auto_bus_xing_in_a_bits_data; // @[ClockDomain.scala:14:9]
wire auto_bus_xing_in_a_bits_corrupt_0 = auto_bus_xing_in_a_bits_corrupt; // @[ClockDomain.scala:14:9]
wire auto_bus_xing_in_d_ready_0 = auto_bus_xing_in_d_ready; // @[ClockDomain.scala:14:9]
wire [1:0] auto_coupler_to_prci_ctrl_fixer_anon_out_d_bits_param = 2'h0; // @[ClockDomain.scala:14:9]
wire [1:0] auto_coupler_to_bootrom_fragmenter_anon_out_d_bits_param = 2'h0; // @[ClockDomain.scala:14:9]
wire [1:0] auto_coupler_to_debug_fragmenter_anon_out_d_bits_param = 2'h0; // @[ClockDomain.scala:14:9]
wire [1:0] auto_coupler_to_plic_fragmenter_anon_out_d_bits_param = 2'h0; // @[ClockDomain.scala:14:9]
wire [1:0] auto_coupler_to_clint_fragmenter_anon_out_d_bits_param = 2'h0; // @[ClockDomain.scala:14:9]
wire [1:0] nodeOut_a_bits_a_mask_hi_lo = 2'h0; // @[Misc.scala:222:10]
wire [1:0] nodeOut_a_bits_a_mask_hi_hi = 2'h0; // @[Misc.scala:222:10]
wire [1:0] nodeOut_a_bits_a_mask_hi_lo_1 = 2'h0; // @[Misc.scala:222:10]
wire [1:0] nodeOut_a_bits_a_mask_hi_hi_1 = 2'h0; // @[Misc.scala:222:10]
wire auto_coupler_to_prci_ctrl_fixer_anon_out_d_bits_sink = 1'h0; // @[ClockDomain.scala:14:9]
wire auto_coupler_to_prci_ctrl_fixer_anon_out_d_bits_denied = 1'h0; // @[ClockDomain.scala:14:9]
wire auto_coupler_to_prci_ctrl_fixer_anon_out_d_bits_corrupt = 1'h0; // @[ClockDomain.scala:14:9]
wire auto_coupler_to_bootrom_fragmenter_anon_out_d_bits_sink = 1'h0; // @[ClockDomain.scala:14:9]
wire auto_coupler_to_bootrom_fragmenter_anon_out_d_bits_denied = 1'h0; // @[ClockDomain.scala:14:9]
wire auto_coupler_to_bootrom_fragmenter_anon_out_d_bits_corrupt = 1'h0; // @[ClockDomain.scala:14:9]
wire auto_coupler_to_debug_fragmenter_anon_out_d_bits_sink = 1'h0; // @[ClockDomain.scala:14:9]
wire auto_coupler_to_debug_fragmenter_anon_out_d_bits_denied = 1'h0; // @[ClockDomain.scala:14:9]
wire auto_coupler_to_debug_fragmenter_anon_out_d_bits_corrupt = 1'h0; // @[ClockDomain.scala:14:9]
wire auto_coupler_to_plic_fragmenter_anon_out_d_bits_sink = 1'h0; // @[ClockDomain.scala:14:9]
wire auto_coupler_to_plic_fragmenter_anon_out_d_bits_denied = 1'h0; // @[ClockDomain.scala:14:9]
wire auto_coupler_to_plic_fragmenter_anon_out_d_bits_corrupt = 1'h0; // @[ClockDomain.scala:14:9]
wire auto_coupler_to_clint_fragmenter_anon_out_d_bits_sink = 1'h0; // @[ClockDomain.scala:14:9]
wire auto_coupler_to_clint_fragmenter_anon_out_d_bits_denied = 1'h0; // @[ClockDomain.scala:14:9]
wire auto_coupler_to_clint_fragmenter_anon_out_d_bits_corrupt = 1'h0; // @[ClockDomain.scala:14:9]
wire _childClock_T = 1'h0; // @[LazyModuleImp.scala:160:25]
wire cbus_clock_groups_childClock = 1'h0; // @[LazyModuleImp.scala:155:31]
wire cbus_clock_groups_childReset = 1'h0; // @[LazyModuleImp.scala:158:31]
wire cbus_clock_groups__childClock_T = 1'h0; // @[LazyModuleImp.scala:160:25]
wire clockGroup_childClock = 1'h0; // @[LazyModuleImp.scala:155:31]
wire clockGroup_childReset = 1'h0; // @[LazyModuleImp.scala:158:31]
wire clockGroup__childClock_T = 1'h0; // @[LazyModuleImp.scala:160:25]
wire broadcast_childClock = 1'h0; // @[LazyModuleImp.scala:155:31]
wire broadcast_childReset = 1'h0; // @[LazyModuleImp.scala:158:31]
wire broadcast__childClock_T = 1'h0; // @[LazyModuleImp.scala:160:25]
wire fixer__flight_WIRE_0 = 1'h0; // @[FIFOFixer.scala:79:35]
wire fixer__flight_WIRE_1 = 1'h0; // @[FIFOFixer.scala:79:35]
wire fixer__flight_WIRE_2 = 1'h0; // @[FIFOFixer.scala:79:35]
wire fixer__flight_WIRE_3 = 1'h0; // @[FIFOFixer.scala:79:35]
wire fixer__flight_WIRE_4 = 1'h0; // @[FIFOFixer.scala:79:35]
wire fixer__flight_WIRE_5 = 1'h0; // @[FIFOFixer.scala:79:35]
wire fixer__flight_WIRE_6 = 1'h0; // @[FIFOFixer.scala:79:35]
wire fixer__flight_WIRE_7 = 1'h0; // @[FIFOFixer.scala:79:35]
wire fixer__flight_WIRE_8 = 1'h0; // @[FIFOFixer.scala:79:35]
wire fixer__flight_WIRE_9 = 1'h0; // @[FIFOFixer.scala:79:35]
wire fixer__flight_WIRE_10 = 1'h0; // @[FIFOFixer.scala:79:35]
wire fixer__flight_WIRE_11 = 1'h0; // @[FIFOFixer.scala:79:35]
wire fixer__flight_WIRE_12 = 1'h0; // @[FIFOFixer.scala:79:35]
wire fixer__flight_WIRE_13 = 1'h0; // @[FIFOFixer.scala:79:35]
wire fixer__flight_WIRE_14 = 1'h0; // @[FIFOFixer.scala:79:35]
wire fixer__flight_WIRE_15 = 1'h0; // @[FIFOFixer.scala:79:35]
wire fixer__flight_WIRE_16 = 1'h0; // @[FIFOFixer.scala:79:35]
wire fixer__flight_WIRE_17 = 1'h0; // @[FIFOFixer.scala:79:35]
wire fixer__flight_WIRE_18 = 1'h0; // @[FIFOFixer.scala:79:35]
wire fixer__flight_WIRE_19 = 1'h0; // @[FIFOFixer.scala:79:35]
wire fixer__flight_WIRE_20 = 1'h0; // @[FIFOFixer.scala:79:35]
wire fixer__flight_WIRE_21 = 1'h0; // @[FIFOFixer.scala:79:35]
wire fixer__flight_WIRE_22 = 1'h0; // @[FIFOFixer.scala:79:35]
wire fixer__flight_WIRE_23 = 1'h0; // @[FIFOFixer.scala:79:35]
wire fixer__flight_WIRE_24 = 1'h0; // @[FIFOFixer.scala:79:35]
wire fixer__flight_WIRE_25 = 1'h0; // @[FIFOFixer.scala:79:35]
wire fixer__flight_WIRE_26 = 1'h0; // @[FIFOFixer.scala:79:35]
wire fixer__flight_WIRE_27 = 1'h0; // @[FIFOFixer.scala:79:35]
wire fixer__flight_WIRE_28 = 1'h0; // @[FIFOFixer.scala:79:35]
wire fixer__flight_WIRE_29 = 1'h0; // @[FIFOFixer.scala:79:35]
wire fixer__flight_WIRE_30 = 1'h0; // @[FIFOFixer.scala:79:35]
wire fixer__flight_WIRE_31 = 1'h0; // @[FIFOFixer.scala:79:35]
wire fixer__flight_WIRE_32 = 1'h0; // @[FIFOFixer.scala:79:35]
wire fixer__flight_WIRE_33 = 1'h0; // @[FIFOFixer.scala:79:35]
wire fixer__flight_WIRE_34 = 1'h0; // @[FIFOFixer.scala:79:35]
wire fixer__flight_WIRE_35 = 1'h0; // @[FIFOFixer.scala:79:35]
wire fixer__flight_WIRE_36 = 1'h0; // @[FIFOFixer.scala:79:35]
wire fixer__flight_WIRE_37 = 1'h0; // @[FIFOFixer.scala:79:35]
wire fixer__flight_WIRE_38 = 1'h0; // @[FIFOFixer.scala:79:35]
wire fixer__flight_WIRE_39 = 1'h0; // @[FIFOFixer.scala:79:35]
wire fixer__flight_WIRE_40 = 1'h0; // @[FIFOFixer.scala:79:35]
wire fixer__flight_WIRE_41 = 1'h0; // @[FIFOFixer.scala:79:35]
wire fixer__flight_WIRE_42 = 1'h0; // @[FIFOFixer.scala:79:35]
wire fixer__flight_WIRE_43 = 1'h0; // @[FIFOFixer.scala:79:35]
wire fixer__flight_WIRE_44 = 1'h0; // @[FIFOFixer.scala:79:35]
wire fixer__flight_WIRE_45 = 1'h0; // @[FIFOFixer.scala:79:35]
wire fixer__flight_WIRE_46 = 1'h0; // @[FIFOFixer.scala:79:35]
wire fixer__flight_WIRE_47 = 1'h0; // @[FIFOFixer.scala:79:35]
wire fixer__flight_WIRE_48 = 1'h0; // @[FIFOFixer.scala:79:35]
wire fixer__flight_WIRE_49 = 1'h0; // @[FIFOFixer.scala:79:35]
wire fixer__flight_WIRE_50 = 1'h0; // @[FIFOFixer.scala:79:35]
wire fixer__flight_WIRE_51 = 1'h0; // @[FIFOFixer.scala:79:35]
wire fixer__flight_WIRE_52 = 1'h0; // @[FIFOFixer.scala:79:35]
wire fixer__flight_WIRE_53 = 1'h0; // @[FIFOFixer.scala:79:35]
wire fixer__flight_WIRE_54 = 1'h0; // @[FIFOFixer.scala:79:35]
wire fixer__flight_WIRE_55 = 1'h0; // @[FIFOFixer.scala:79:35]
wire fixer__flight_WIRE_56 = 1'h0; // @[FIFOFixer.scala:79:35]
wire fixer__flight_WIRE_57 = 1'h0; // @[FIFOFixer.scala:79:35]
wire fixer__flight_WIRE_58 = 1'h0; // @[FIFOFixer.scala:79:35]
wire fixer__flight_WIRE_59 = 1'h0; // @[FIFOFixer.scala:79:35]
wire fixer__flight_WIRE_60 = 1'h0; // @[FIFOFixer.scala:79:35]
wire fixer__flight_WIRE_61 = 1'h0; // @[FIFOFixer.scala:79:35]
wire fixer__flight_WIRE_62 = 1'h0; // @[FIFOFixer.scala:79:35]
wire fixer__flight_WIRE_63 = 1'h0; // @[FIFOFixer.scala:79:35]
wire fixer__flight_WIRE_64 = 1'h0; // @[FIFOFixer.scala:79:35]
wire coupler_from_port_named_custom_boot_pin_auto_tl_in_a_bits_source = 1'h0; // @[LazyModuleImp.scala:138:7]
wire coupler_from_port_named_custom_boot_pin_auto_tl_in_a_bits_corrupt = 1'h0; // @[LazyModuleImp.scala:138:7]
wire coupler_from_port_named_custom_boot_pin_auto_tl_in_d_bits_source = 1'h0; // @[LazyModuleImp.scala:138:7]
wire coupler_from_port_named_custom_boot_pin_auto_tl_out_a_bits_source = 1'h0; // @[LazyModuleImp.scala:138:7]
wire coupler_from_port_named_custom_boot_pin_auto_tl_out_a_bits_corrupt = 1'h0; // @[LazyModuleImp.scala:138:7]
wire coupler_from_port_named_custom_boot_pin_auto_tl_out_d_bits_source = 1'h0; // @[LazyModuleImp.scala:138:7]
wire coupler_from_port_named_custom_boot_pin_tlOut_a_bits_source = 1'h0; // @[MixedNode.scala:542:17]
wire coupler_from_port_named_custom_boot_pin_tlOut_a_bits_corrupt = 1'h0; // @[MixedNode.scala:542:17]
wire coupler_from_port_named_custom_boot_pin_tlOut_d_bits_source = 1'h0; // @[MixedNode.scala:542:17]
wire coupler_from_port_named_custom_boot_pin_tlIn_a_bits_source = 1'h0; // @[MixedNode.scala:551:17]
wire coupler_from_port_named_custom_boot_pin_tlIn_a_bits_corrupt = 1'h0; // @[MixedNode.scala:551:17]
wire coupler_from_port_named_custom_boot_pin_tlIn_d_bits_source = 1'h0; // @[MixedNode.scala:551:17]
wire nodeOut_a_bits_source = 1'h0; // @[MixedNode.scala:542:17]
wire nodeOut_a_bits_corrupt = 1'h0; // @[MixedNode.scala:542:17]
wire nodeOut_d_bits_source = 1'h0; // @[MixedNode.scala:542:17]
wire _nodeOut_a_bits_legal_T_8 = 1'h0; // @[Parameters.scala:137:59]
wire _nodeOut_a_bits_legal_T_9 = 1'h0; // @[Parameters.scala:684:54]
wire _nodeOut_a_bits_legal_T_23 = 1'h0; // @[Parameters.scala:137:59]
wire _nodeOut_a_bits_legal_T_28 = 1'h0; // @[Parameters.scala:137:59]
wire _nodeOut_a_bits_legal_T_33 = 1'h0; // @[Parameters.scala:137:59]
wire _nodeOut_a_bits_legal_T_38 = 1'h0; // @[Parameters.scala:137:59]
wire _nodeOut_a_bits_legal_T_44 = 1'h0; // @[Parameters.scala:684:29]
wire _nodeOut_a_bits_legal_T_49 = 1'h0; // @[Parameters.scala:137:59]
wire _nodeOut_a_bits_legal_T_50 = 1'h0; // @[Parameters.scala:684:54]
wire _nodeOut_a_bits_legal_T_51 = 1'h0; // @[Parameters.scala:686:26]
wire nodeOut_a_bits_a_source = 1'h0; // @[Edges.scala:480:17]
wire nodeOut_a_bits_a_corrupt = 1'h0; // @[Edges.scala:480:17]
wire nodeOut_a_bits_a_mask_sub_sub_sub_0_1 = 1'h0; // @[Misc.scala:206:21]
wire nodeOut_a_bits_a_mask_sub_sub_1_2 = 1'h0; // @[Misc.scala:214:27]
wire _nodeOut_a_bits_a_mask_sub_sub_acc_T_1 = 1'h0; // @[Misc.scala:215:38]
wire nodeOut_a_bits_a_mask_sub_sub_1_1 = 1'h0; // @[Misc.scala:215:29]
wire nodeOut_a_bits_a_mask_sub_size = 1'h0; // @[Misc.scala:209:26]
wire _nodeOut_a_bits_a_mask_sub_acc_T = 1'h0; // @[Misc.scala:215:38]
wire nodeOut_a_bits_a_mask_sub_1_2 = 1'h0; // @[Misc.scala:214:27]
wire _nodeOut_a_bits_a_mask_sub_acc_T_1 = 1'h0; // @[Misc.scala:215:38]
wire nodeOut_a_bits_a_mask_sub_2_2 = 1'h0; // @[Misc.scala:214:27]
wire _nodeOut_a_bits_a_mask_sub_acc_T_2 = 1'h0; // @[Misc.scala:215:38]
wire nodeOut_a_bits_a_mask_sub_2_1 = 1'h0; // @[Misc.scala:215:29]
wire nodeOut_a_bits_a_mask_sub_3_2 = 1'h0; // @[Misc.scala:214:27]
wire _nodeOut_a_bits_a_mask_sub_acc_T_3 = 1'h0; // @[Misc.scala:215:38]
wire nodeOut_a_bits_a_mask_sub_3_1 = 1'h0; // @[Misc.scala:215:29]
wire nodeOut_a_bits_a_mask_eq_1 = 1'h0; // @[Misc.scala:214:27]
wire _nodeOut_a_bits_a_mask_acc_T_1 = 1'h0; // @[Misc.scala:215:38]
wire nodeOut_a_bits_a_mask_eq_2 = 1'h0; // @[Misc.scala:214:27]
wire _nodeOut_a_bits_a_mask_acc_T_2 = 1'h0; // @[Misc.scala:215:38]
wire nodeOut_a_bits_a_mask_eq_3 = 1'h0; // @[Misc.scala:214:27]
wire _nodeOut_a_bits_a_mask_acc_T_3 = 1'h0; // @[Misc.scala:215:38]
wire nodeOut_a_bits_a_mask_eq_4 = 1'h0; // @[Misc.scala:214:27]
wire _nodeOut_a_bits_a_mask_acc_T_4 = 1'h0; // @[Misc.scala:215:38]
wire nodeOut_a_bits_a_mask_acc_4 = 1'h0; // @[Misc.scala:215:29]
wire nodeOut_a_bits_a_mask_eq_5 = 1'h0; // @[Misc.scala:214:27]
wire _nodeOut_a_bits_a_mask_acc_T_5 = 1'h0; // @[Misc.scala:215:38]
wire nodeOut_a_bits_a_mask_acc_5 = 1'h0; // @[Misc.scala:215:29]
wire nodeOut_a_bits_a_mask_eq_6 = 1'h0; // @[Misc.scala:214:27]
wire _nodeOut_a_bits_a_mask_acc_T_6 = 1'h0; // @[Misc.scala:215:38]
wire nodeOut_a_bits_a_mask_acc_6 = 1'h0; // @[Misc.scala:215:29]
wire nodeOut_a_bits_a_mask_eq_7 = 1'h0; // @[Misc.scala:214:27]
wire _nodeOut_a_bits_a_mask_acc_T_7 = 1'h0; // @[Misc.scala:215:38]
wire nodeOut_a_bits_a_mask_acc_7 = 1'h0; // @[Misc.scala:215:29]
wire _nodeOut_a_bits_legal_T_61 = 1'h0; // @[Parameters.scala:137:59]
wire _nodeOut_a_bits_legal_T_62 = 1'h0; // @[Parameters.scala:684:54]
wire _nodeOut_a_bits_legal_T_71 = 1'h0; // @[Parameters.scala:137:59]
wire _nodeOut_a_bits_legal_T_76 = 1'h0; // @[Parameters.scala:137:59]
wire _nodeOut_a_bits_legal_T_86 = 1'h0; // @[Parameters.scala:137:59]
wire _nodeOut_a_bits_legal_T_91 = 1'h0; // @[Parameters.scala:137:59]
wire _nodeOut_a_bits_legal_T_92 = 1'h0; // @[Parameters.scala:685:42]
wire _nodeOut_a_bits_legal_T_97 = 1'h0; // @[Parameters.scala:684:29]
wire _nodeOut_a_bits_legal_T_102 = 1'h0; // @[Parameters.scala:137:59]
wire _nodeOut_a_bits_legal_T_103 = 1'h0; // @[Parameters.scala:684:54]
wire _nodeOut_a_bits_legal_T_104 = 1'h0; // @[Parameters.scala:686:26]
wire nodeOut_a_bits_a_1_source = 1'h0; // @[Edges.scala:480:17]
wire nodeOut_a_bits_a_1_corrupt = 1'h0; // @[Edges.scala:480:17]
wire nodeOut_a_bits_a_mask_sub_sub_sub_0_1_1 = 1'h0; // @[Misc.scala:206:21]
wire nodeOut_a_bits_a_mask_sub_sub_1_2_1 = 1'h0; // @[Misc.scala:214:27]
wire _nodeOut_a_bits_a_mask_sub_sub_acc_T_3 = 1'h0; // @[Misc.scala:215:38]
wire nodeOut_a_bits_a_mask_sub_sub_1_1_1 = 1'h0; // @[Misc.scala:215:29]
wire nodeOut_a_bits_a_mask_sub_size_1 = 1'h0; // @[Misc.scala:209:26]
wire _nodeOut_a_bits_a_mask_sub_acc_T_4 = 1'h0; // @[Misc.scala:215:38]
wire nodeOut_a_bits_a_mask_sub_1_2_1 = 1'h0; // @[Misc.scala:214:27]
wire _nodeOut_a_bits_a_mask_sub_acc_T_5 = 1'h0; // @[Misc.scala:215:38]
wire nodeOut_a_bits_a_mask_sub_2_2_1 = 1'h0; // @[Misc.scala:214:27]
wire _nodeOut_a_bits_a_mask_sub_acc_T_6 = 1'h0; // @[Misc.scala:215:38]
wire nodeOut_a_bits_a_mask_sub_2_1_1 = 1'h0; // @[Misc.scala:215:29]
wire nodeOut_a_bits_a_mask_sub_3_2_1 = 1'h0; // @[Misc.scala:214:27]
wire _nodeOut_a_bits_a_mask_sub_acc_T_7 = 1'h0; // @[Misc.scala:215:38]
wire nodeOut_a_bits_a_mask_sub_3_1_1 = 1'h0; // @[Misc.scala:215:29]
wire nodeOut_a_bits_a_mask_eq_9 = 1'h0; // @[Misc.scala:214:27]
wire _nodeOut_a_bits_a_mask_acc_T_9 = 1'h0; // @[Misc.scala:215:38]
wire nodeOut_a_bits_a_mask_eq_10 = 1'h0; // @[Misc.scala:214:27]
wire _nodeOut_a_bits_a_mask_acc_T_10 = 1'h0; // @[Misc.scala:215:38]
wire nodeOut_a_bits_a_mask_eq_11 = 1'h0; // @[Misc.scala:214:27]
wire _nodeOut_a_bits_a_mask_acc_T_11 = 1'h0; // @[Misc.scala:215:38]
wire nodeOut_a_bits_a_mask_eq_12 = 1'h0; // @[Misc.scala:214:27]
wire _nodeOut_a_bits_a_mask_acc_T_12 = 1'h0; // @[Misc.scala:215:38]
wire nodeOut_a_bits_a_mask_acc_12 = 1'h0; // @[Misc.scala:215:29]
wire nodeOut_a_bits_a_mask_eq_13 = 1'h0; // @[Misc.scala:214:27]
wire _nodeOut_a_bits_a_mask_acc_T_13 = 1'h0; // @[Misc.scala:215:38]
wire nodeOut_a_bits_a_mask_acc_13 = 1'h0; // @[Misc.scala:215:29]
wire nodeOut_a_bits_a_mask_eq_14 = 1'h0; // @[Misc.scala:214:27]
wire _nodeOut_a_bits_a_mask_acc_T_14 = 1'h0; // @[Misc.scala:215:38]
wire nodeOut_a_bits_a_mask_acc_14 = 1'h0; // @[Misc.scala:215:29]
wire nodeOut_a_bits_a_mask_eq_15 = 1'h0; // @[Misc.scala:214:27]
wire _nodeOut_a_bits_a_mask_acc_T_15 = 1'h0; // @[Misc.scala:215:38]
wire nodeOut_a_bits_a_mask_acc_15 = 1'h0; // @[Misc.scala:215:29]
wire [2:0] auto_coupler_to_bootrom_fragmenter_anon_out_d_bits_opcode = 3'h1; // @[ClockDomain.scala:14:9]
wire [7:0] coupler_from_port_named_custom_boot_pin_auto_tl_in_a_bits_mask = 8'hF; // @[LazyModuleImp.scala:138:7]
wire [7:0] coupler_from_port_named_custom_boot_pin_auto_tl_out_a_bits_mask = 8'hF; // @[LazyModuleImp.scala:138:7]
wire [7:0] coupler_from_port_named_custom_boot_pin_tlOut_a_bits_mask = 8'hF; // @[MixedNode.scala:542:17]
wire [7:0] coupler_from_port_named_custom_boot_pin_tlIn_a_bits_mask = 8'hF; // @[MixedNode.scala:551:17]
wire [7:0] nodeOut_a_bits_mask = 8'hF; // @[MixedNode.scala:542:17]
wire [7:0] nodeOut_a_bits_a_mask = 8'hF; // @[Edges.scala:480:17]
wire [7:0] _nodeOut_a_bits_a_mask_T = 8'hF; // @[Misc.scala:222:10]
wire [7:0] nodeOut_a_bits_a_1_mask = 8'hF; // @[Edges.scala:480:17]
wire [7:0] _nodeOut_a_bits_a_mask_T_1 = 8'hF; // @[Misc.scala:222:10]
wire [3:0] coupler_from_port_named_custom_boot_pin_auto_tl_in_a_bits_size = 4'h2; // @[LazyModuleImp.scala:138:7]
wire [3:0] coupler_from_port_named_custom_boot_pin_auto_tl_out_a_bits_size = 4'h2; // @[LazyModuleImp.scala:138:7]
wire [3:0] coupler_from_port_named_custom_boot_pin_tlOut_a_bits_size = 4'h2; // @[MixedNode.scala:542:17]
wire [3:0] coupler_from_port_named_custom_boot_pin_tlIn_a_bits_size = 4'h2; // @[MixedNode.scala:551:17]
wire [3:0] nodeOut_a_bits_size = 4'h2; // @[MixedNode.scala:542:17]
wire [3:0] nodeOut_a_bits_a_size = 4'h2; // @[Edges.scala:480:17]
wire [3:0] nodeOut_a_bits_a_1_size = 4'h2; // @[Edges.scala:480:17]
wire [2:0] coupler_from_port_named_custom_boot_pin_auto_tl_in_a_bits_opcode = 3'h0; // @[LazyModuleImp.scala:138:7]
wire [2:0] coupler_from_port_named_custom_boot_pin_auto_tl_in_a_bits_param = 3'h0; // @[LazyModuleImp.scala:138:7]
wire [2:0] coupler_from_port_named_custom_boot_pin_auto_tl_out_a_bits_opcode = 3'h0; // @[LazyModuleImp.scala:138:7]
wire [2:0] coupler_from_port_named_custom_boot_pin_auto_tl_out_a_bits_param = 3'h0; // @[LazyModuleImp.scala:138:7]
wire [2:0] coupler_from_port_named_custom_boot_pin_tlOut_a_bits_opcode = 3'h0; // @[MixedNode.scala:542:17]
wire [2:0] coupler_from_port_named_custom_boot_pin_tlOut_a_bits_param = 3'h0; // @[MixedNode.scala:542:17]
wire [2:0] coupler_from_port_named_custom_boot_pin_tlIn_a_bits_opcode = 3'h0; // @[MixedNode.scala:551:17]
wire [2:0] coupler_from_port_named_custom_boot_pin_tlIn_a_bits_param = 3'h0; // @[MixedNode.scala:551:17]
wire [2:0] nodeOut_a_bits_opcode = 3'h0; // @[MixedNode.scala:542:17]
wire [2:0] nodeOut_a_bits_param = 3'h0; // @[MixedNode.scala:542:17]
wire [2:0] nodeOut_a_bits_a_opcode = 3'h0; // @[Edges.scala:480:17]
wire [2:0] nodeOut_a_bits_a_param = 3'h0; // @[Edges.scala:480:17]
wire [2:0] nodeOut_a_bits_a_1_opcode = 3'h0; // @[Edges.scala:480:17]
wire [2:0] nodeOut_a_bits_a_1_param = 3'h0; // @[Edges.scala:480:17]
wire [3:0] nodeOut_a_bits_a_mask_hi = 4'h0; // @[Misc.scala:222:10]
wire [3:0] nodeOut_a_bits_a_mask_hi_1 = 4'h0; // @[Misc.scala:222:10]
wire [3:0] nodeOut_a_bits_a_mask_lo = 4'hF; // @[Misc.scala:222:10]
wire [3:0] nodeOut_a_bits_a_mask_lo_1 = 4'hF; // @[Misc.scala:222:10]
wire [1:0] nodeOut_a_bits_a_mask_lo_lo = 2'h3; // @[Misc.scala:222:10]
wire [1:0] nodeOut_a_bits_a_mask_lo_hi = 2'h3; // @[Misc.scala:222:10]
wire [1:0] nodeOut_a_bits_a_mask_lo_lo_1 = 2'h3; // @[Misc.scala:222:10]
wire [1:0] nodeOut_a_bits_a_mask_lo_hi_1 = 2'h3; // @[Misc.scala:222:10]
wire fixer__a_notFIFO_T_4 = 1'h1; // @[Parameters.scala:137:59]
wire fixer__flight_T = 1'h1; // @[FIFOFixer.scala:80:65]
wire fixer__anonOut_a_valid_T = 1'h1; // @[FIFOFixer.scala:95:50]
wire fixer__anonOut_a_valid_T_1 = 1'h1; // @[FIFOFixer.scala:95:47]
wire fixer__anonIn_a_ready_T = 1'h1; // @[FIFOFixer.scala:96:50]
wire fixer__anonIn_a_ready_T_1 = 1'h1; // @[FIFOFixer.scala:96:47]
wire coupler_from_port_named_custom_boot_pin_auto_tl_in_d_ready = 1'h1; // @[LazyModuleImp.scala:138:7]
wire coupler_from_port_named_custom_boot_pin_auto_tl_out_d_ready = 1'h1; // @[LazyModuleImp.scala:138:7]
wire coupler_from_port_named_custom_boot_pin_tlOut_d_ready = 1'h1; // @[MixedNode.scala:542:17]
wire coupler_from_port_named_custom_boot_pin_tlIn_d_ready = 1'h1; // @[MixedNode.scala:551:17]
wire nodeOut_d_ready = 1'h1; // @[MixedNode.scala:542:17]
wire _nodeOut_a_bits_legal_T = 1'h1; // @[Parameters.scala:92:28]
wire _nodeOut_a_bits_legal_T_1 = 1'h1; // @[Parameters.scala:92:38]
wire _nodeOut_a_bits_legal_T_2 = 1'h1; // @[Parameters.scala:92:33]
wire _nodeOut_a_bits_legal_T_3 = 1'h1; // @[Parameters.scala:684:29]
wire _nodeOut_a_bits_legal_T_10 = 1'h1; // @[Parameters.scala:92:28]
wire _nodeOut_a_bits_legal_T_11 = 1'h1; // @[Parameters.scala:92:38]
wire _nodeOut_a_bits_legal_T_12 = 1'h1; // @[Parameters.scala:92:33]
wire _nodeOut_a_bits_legal_T_13 = 1'h1; // @[Parameters.scala:684:29]
wire _nodeOut_a_bits_legal_T_18 = 1'h1; // @[Parameters.scala:137:59]
wire _nodeOut_a_bits_legal_T_39 = 1'h1; // @[Parameters.scala:685:42]
wire _nodeOut_a_bits_legal_T_40 = 1'h1; // @[Parameters.scala:685:42]
wire _nodeOut_a_bits_legal_T_41 = 1'h1; // @[Parameters.scala:685:42]
wire _nodeOut_a_bits_legal_T_42 = 1'h1; // @[Parameters.scala:685:42]
wire _nodeOut_a_bits_legal_T_43 = 1'h1; // @[Parameters.scala:684:54]
wire _nodeOut_a_bits_legal_T_52 = 1'h1; // @[Parameters.scala:686:26]
wire nodeOut_a_bits_legal = 1'h1; // @[Parameters.scala:686:26]
wire nodeOut_a_bits_a_mask_sub_sub_size = 1'h1; // @[Misc.scala:209:26]
wire nodeOut_a_bits_a_mask_sub_sub_nbit = 1'h1; // @[Misc.scala:211:20]
wire nodeOut_a_bits_a_mask_sub_sub_0_2 = 1'h1; // @[Misc.scala:214:27]
wire _nodeOut_a_bits_a_mask_sub_sub_acc_T = 1'h1; // @[Misc.scala:215:38]
wire nodeOut_a_bits_a_mask_sub_sub_0_1 = 1'h1; // @[Misc.scala:215:29]
wire nodeOut_a_bits_a_mask_sub_nbit = 1'h1; // @[Misc.scala:211:20]
wire nodeOut_a_bits_a_mask_sub_0_2 = 1'h1; // @[Misc.scala:214:27]
wire nodeOut_a_bits_a_mask_sub_0_1 = 1'h1; // @[Misc.scala:215:29]
wire nodeOut_a_bits_a_mask_sub_1_1 = 1'h1; // @[Misc.scala:215:29]
wire nodeOut_a_bits_a_mask_size = 1'h1; // @[Misc.scala:209:26]
wire nodeOut_a_bits_a_mask_nbit = 1'h1; // @[Misc.scala:211:20]
wire nodeOut_a_bits_a_mask_eq = 1'h1; // @[Misc.scala:214:27]
wire _nodeOut_a_bits_a_mask_acc_T = 1'h1; // @[Misc.scala:215:38]
wire nodeOut_a_bits_a_mask_acc = 1'h1; // @[Misc.scala:215:29]
wire nodeOut_a_bits_a_mask_acc_1 = 1'h1; // @[Misc.scala:215:29]
wire nodeOut_a_bits_a_mask_acc_2 = 1'h1; // @[Misc.scala:215:29]
wire nodeOut_a_bits_a_mask_acc_3 = 1'h1; // @[Misc.scala:215:29]
wire _nodeOut_a_bits_legal_T_53 = 1'h1; // @[Parameters.scala:92:28]
wire _nodeOut_a_bits_legal_T_54 = 1'h1; // @[Parameters.scala:92:38]
wire _nodeOut_a_bits_legal_T_55 = 1'h1; // @[Parameters.scala:92:33]
wire _nodeOut_a_bits_legal_T_56 = 1'h1; // @[Parameters.scala:684:29]
wire _nodeOut_a_bits_legal_T_63 = 1'h1; // @[Parameters.scala:92:28]
wire _nodeOut_a_bits_legal_T_64 = 1'h1; // @[Parameters.scala:92:38]
wire _nodeOut_a_bits_legal_T_65 = 1'h1; // @[Parameters.scala:92:33]
wire _nodeOut_a_bits_legal_T_66 = 1'h1; // @[Parameters.scala:684:29]
wire _nodeOut_a_bits_legal_T_81 = 1'h1; // @[Parameters.scala:137:59]
wire _nodeOut_a_bits_legal_T_93 = 1'h1; // @[Parameters.scala:685:42]
wire _nodeOut_a_bits_legal_T_94 = 1'h1; // @[Parameters.scala:685:42]
wire _nodeOut_a_bits_legal_T_95 = 1'h1; // @[Parameters.scala:685:42]
wire _nodeOut_a_bits_legal_T_96 = 1'h1; // @[Parameters.scala:684:54]
wire _nodeOut_a_bits_legal_T_105 = 1'h1; // @[Parameters.scala:686:26]
wire nodeOut_a_bits_legal_1 = 1'h1; // @[Parameters.scala:686:26]
wire nodeOut_a_bits_a_mask_sub_sub_size_1 = 1'h1; // @[Misc.scala:209:26]
wire nodeOut_a_bits_a_mask_sub_sub_nbit_1 = 1'h1; // @[Misc.scala:211:20]
wire nodeOut_a_bits_a_mask_sub_sub_0_2_1 = 1'h1; // @[Misc.scala:214:27]
wire _nodeOut_a_bits_a_mask_sub_sub_acc_T_2 = 1'h1; // @[Misc.scala:215:38]
wire nodeOut_a_bits_a_mask_sub_sub_0_1_1 = 1'h1; // @[Misc.scala:215:29]
wire nodeOut_a_bits_a_mask_sub_nbit_1 = 1'h1; // @[Misc.scala:211:20]
wire nodeOut_a_bits_a_mask_sub_0_2_1 = 1'h1; // @[Misc.scala:214:27]
wire nodeOut_a_bits_a_mask_sub_0_1_1 = 1'h1; // @[Misc.scala:215:29]
wire nodeOut_a_bits_a_mask_sub_1_1_1 = 1'h1; // @[Misc.scala:215:29]
wire nodeOut_a_bits_a_mask_size_1 = 1'h1; // @[Misc.scala:209:26]
wire nodeOut_a_bits_a_mask_nbit_1 = 1'h1; // @[Misc.scala:211:20]
wire nodeOut_a_bits_a_mask_eq_8 = 1'h1; // @[Misc.scala:214:27]
wire _nodeOut_a_bits_a_mask_acc_T_8 = 1'h1; // @[Misc.scala:215:38]
wire nodeOut_a_bits_a_mask_acc_8 = 1'h1; // @[Misc.scala:215:29]
wire nodeOut_a_bits_a_mask_acc_9 = 1'h1; // @[Misc.scala:215:29]
wire nodeOut_a_bits_a_mask_acc_10 = 1'h1; // @[Misc.scala:215:29]
wire nodeOut_a_bits_a_mask_acc_11 = 1'h1; // @[Misc.scala:215:29]
wire [2:0] nodeOut_a_bits_a_mask_sizeOH = 3'h5; // @[Misc.scala:202:81]
wire [2:0] nodeOut_a_bits_a_mask_sizeOH_1 = 3'h5; // @[Misc.scala:202:81]
wire [2:0] _nodeOut_a_bits_a_mask_sizeOH_T_2 = 3'h4; // @[OneHot.scala:65:27]
wire [2:0] _nodeOut_a_bits_a_mask_sizeOH_T_5 = 3'h4; // @[OneHot.scala:65:27]
wire [3:0] _nodeOut_a_bits_a_mask_sizeOH_T_1 = 4'h4; // @[OneHot.scala:65:12]
wire [3:0] _nodeOut_a_bits_a_mask_sizeOH_T_4 = 4'h4; // @[OneHot.scala:65:12]
wire [1:0] nodeOut_a_bits_a_mask_sizeOH_shiftAmount = 2'h2; // @[OneHot.scala:64:49]
wire [1:0] nodeOut_a_bits_a_mask_sizeOH_shiftAmount_1 = 2'h2; // @[OneHot.scala:64:49]
wire [63:0] nodeOut_a_bits_a_1_data = 64'h1; // @[Edges.scala:480:17]
wire [31:0] nodeOut_a_bits_a_1_address = 32'h2000000; // @[Edges.scala:480:17]
wire [32:0] _nodeOut_a_bits_legal_T_100 = 33'h2010000; // @[Parameters.scala:137:46]
wire [32:0] _nodeOut_a_bits_legal_T_101 = 33'h2010000; // @[Parameters.scala:137:46]
wire [26:0] _nodeOut_a_bits_legal_T_99 = 27'h2010000; // @[Parameters.scala:137:41]
wire [32:0] _nodeOut_a_bits_legal_T_88 = 33'h82000000; // @[Parameters.scala:137:41]
wire [32:0] _nodeOut_a_bits_legal_T_89 = 33'h82000000; // @[Parameters.scala:137:46]
wire [32:0] _nodeOut_a_bits_legal_T_90 = 33'h82000000; // @[Parameters.scala:137:46]
wire [32:0] _nodeOut_a_bits_legal_T_31 = 33'h8000000; // @[Parameters.scala:137:46]
wire [32:0] _nodeOut_a_bits_legal_T_32 = 33'h8000000; // @[Parameters.scala:137:46]
wire [32:0] _nodeOut_a_bits_legal_T_84 = 33'h8000000; // @[Parameters.scala:137:46]
wire [32:0] _nodeOut_a_bits_legal_T_85 = 33'h8000000; // @[Parameters.scala:137:46]
wire [28:0] _nodeOut_a_bits_legal_T_83 = 29'hA000000; // @[Parameters.scala:137:41]
wire [32:0] fixer__a_notFIFO_T_2 = 33'h0; // @[Parameters.scala:137:46]
wire [32:0] fixer__a_notFIFO_T_3 = 33'h0; // @[Parameters.scala:137:46]
wire [32:0] _nodeOut_a_bits_legal_T_16 = 33'h0; // @[Parameters.scala:137:46]
wire [32:0] _nodeOut_a_bits_legal_T_17 = 33'h0; // @[Parameters.scala:137:46]
wire [32:0] _nodeOut_a_bits_legal_T_79 = 33'h0; // @[Parameters.scala:137:46]
wire [32:0] _nodeOut_a_bits_legal_T_80 = 33'h0; // @[Parameters.scala:137:46]
wire [26:0] _nodeOut_a_bits_legal_T_78 = 27'h0; // @[Parameters.scala:137:41]
wire [32:0] _nodeOut_a_bits_legal_T_74 = 33'h2100000; // @[Parameters.scala:137:46]
wire [32:0] _nodeOut_a_bits_legal_T_75 = 33'h2100000; // @[Parameters.scala:137:46]
wire [26:0] _nodeOut_a_bits_legal_T_73 = 27'h2100000; // @[Parameters.scala:137:41]
wire [32:0] _nodeOut_a_bits_legal_T_26 = 33'h2000000; // @[Parameters.scala:137:46]
wire [32:0] _nodeOut_a_bits_legal_T_27 = 33'h2000000; // @[Parameters.scala:137:46]
wire [32:0] _nodeOut_a_bits_legal_T_69 = 33'h2000000; // @[Parameters.scala:137:46]
wire [32:0] _nodeOut_a_bits_legal_T_70 = 33'h2000000; // @[Parameters.scala:137:46]
wire [26:0] _nodeOut_a_bits_legal_T_68 = 27'h2000000; // @[Parameters.scala:137:41]
wire [32:0] _nodeOut_a_bits_legal_T_59 = 33'h2003000; // @[Parameters.scala:137:46]
wire [32:0] _nodeOut_a_bits_legal_T_60 = 33'h2003000; // @[Parameters.scala:137:46]
wire [26:0] _nodeOut_a_bits_legal_T_58 = 27'h2003000; // @[Parameters.scala:137:41]
wire [63:0] nodeOut_a_bits_a_data = 64'h80000000; // @[Edges.scala:480:17]
wire [31:0] nodeOut_a_bits_a_address = 32'h1000; // @[Edges.scala:480:17]
wire [32:0] _nodeOut_a_bits_legal_T_47 = 33'h10000; // @[Parameters.scala:137:46]
wire [32:0] _nodeOut_a_bits_legal_T_48 = 33'h10000; // @[Parameters.scala:137:46]
wire [17:0] _nodeOut_a_bits_legal_T_46 = 18'h11000; // @[Parameters.scala:137:41]
wire [32:0] _nodeOut_a_bits_legal_T_36 = 33'h80000000; // @[Parameters.scala:137:46]
wire [32:0] _nodeOut_a_bits_legal_T_37 = 33'h80000000; // @[Parameters.scala:137:46]
wire [32:0] _nodeOut_a_bits_legal_T_35 = 33'h80001000; // @[Parameters.scala:137:41]
wire [28:0] _nodeOut_a_bits_legal_T_30 = 29'h8001000; // @[Parameters.scala:137:41]
wire [26:0] _nodeOut_a_bits_legal_T_25 = 27'h2001000; // @[Parameters.scala:137:41]
wire [32:0] _nodeOut_a_bits_legal_T_21 = 33'h101000; // @[Parameters.scala:137:46]
wire [32:0] _nodeOut_a_bits_legal_T_22 = 33'h101000; // @[Parameters.scala:137:46]
wire [21:0] _nodeOut_a_bits_legal_T_20 = 22'h101000; // @[Parameters.scala:137:41]
wire [13:0] _nodeOut_a_bits_legal_T_15 = 14'h1000; // @[Parameters.scala:137:41]
wire [32:0] _nodeOut_a_bits_legal_T_6 = 33'h2000; // @[Parameters.scala:137:46]
wire [32:0] _nodeOut_a_bits_legal_T_7 = 33'h2000; // @[Parameters.scala:137:46]
wire [14:0] _nodeOut_a_bits_legal_T_5 = 15'h2000; // @[Parameters.scala:137:41]
wire [64:0] fixer__allIDs_FIFOed_T = 65'h1FFFFFFFFFFFFFFFF; // @[FIFOFixer.scala:127:48]
wire [25:0] _nodeOut_a_bits_legal_T_98 = 26'h2010000; // @[Parameters.scala:137:31]
wire [31:0] _nodeOut_a_bits_legal_T_87 = 32'h82000000; // @[Parameters.scala:137:31]
wire [27:0] _nodeOut_a_bits_legal_T_82 = 28'hA000000; // @[Parameters.scala:137:31]
wire [25:0] _nodeOut_a_bits_legal_T_77 = 26'h0; // @[Parameters.scala:137:31]
wire [25:0] _nodeOut_a_bits_legal_T_72 = 26'h2100000; // @[Parameters.scala:137:31]
wire [25:0] _nodeOut_a_bits_legal_T_57 = 26'h2003000; // @[Parameters.scala:137:31]
wire [16:0] _nodeOut_a_bits_legal_T_45 = 17'h11000; // @[Parameters.scala:137:31]
wire [31:0] _nodeOut_a_bits_legal_T_34 = 32'h80001000; // @[Parameters.scala:137:31]
wire [27:0] _nodeOut_a_bits_legal_T_29 = 28'h8001000; // @[Parameters.scala:137:31]
wire [25:0] _nodeOut_a_bits_legal_T_24 = 26'h2001000; // @[Parameters.scala:137:31]
wire [20:0] _nodeOut_a_bits_legal_T_19 = 21'h101000; // @[Parameters.scala:137:31]
wire [13:0] _nodeOut_a_bits_legal_T_4 = 14'h2000; // @[Parameters.scala:137:31]
wire [2:0] _nodeOut_a_bits_a_mask_sizeOH_T = 3'h2; // @[Misc.scala:202:34]
wire [2:0] _nodeOut_a_bits_a_mask_sizeOH_T_3 = 3'h2; // @[Misc.scala:202:34]
wire [25:0] _nodeOut_a_bits_legal_T_67 = 26'h2000000; // @[Parameters.scala:137:31]
wire [12:0] _nodeOut_a_bits_legal_T_14 = 13'h1000; // @[Parameters.scala:137:31]
wire coupler_to_bus_named_pbus_auto_bus_xing_out_a_ready = auto_coupler_to_bus_named_pbus_bus_xing_out_a_ready_0; // @[ClockDomain.scala:14:9]
wire coupler_to_bus_named_pbus_auto_bus_xing_out_a_valid; // @[LazyModuleImp.scala:138:7]
wire [2:0] coupler_to_bus_named_pbus_auto_bus_xing_out_a_bits_opcode; // @[LazyModuleImp.scala:138:7]
wire [2:0] coupler_to_bus_named_pbus_auto_bus_xing_out_a_bits_param; // @[LazyModuleImp.scala:138:7]
wire [2:0] coupler_to_bus_named_pbus_auto_bus_xing_out_a_bits_size; // @[LazyModuleImp.scala:138:7]
wire [6:0] coupler_to_bus_named_pbus_auto_bus_xing_out_a_bits_source; // @[LazyModuleImp.scala:138:7]
wire [28:0] coupler_to_bus_named_pbus_auto_bus_xing_out_a_bits_address; // @[LazyModuleImp.scala:138:7]
wire [7:0] coupler_to_bus_named_pbus_auto_bus_xing_out_a_bits_mask; // @[LazyModuleImp.scala:138:7]
wire [63:0] coupler_to_bus_named_pbus_auto_bus_xing_out_a_bits_data; // @[LazyModuleImp.scala:138:7]
wire coupler_to_bus_named_pbus_auto_bus_xing_out_a_bits_corrupt; // @[LazyModuleImp.scala:138:7]
wire coupler_to_bus_named_pbus_auto_bus_xing_out_d_ready; // @[LazyModuleImp.scala:138:7]
wire coupler_to_bus_named_pbus_auto_bus_xing_out_d_valid = auto_coupler_to_bus_named_pbus_bus_xing_out_d_valid_0; // @[ClockDomain.scala:14:9]
wire [2:0] coupler_to_bus_named_pbus_auto_bus_xing_out_d_bits_opcode = auto_coupler_to_bus_named_pbus_bus_xing_out_d_bits_opcode_0; // @[ClockDomain.scala:14:9]
wire [1:0] coupler_to_bus_named_pbus_auto_bus_xing_out_d_bits_param = auto_coupler_to_bus_named_pbus_bus_xing_out_d_bits_param_0; // @[ClockDomain.scala:14:9]
wire [2:0] coupler_to_bus_named_pbus_auto_bus_xing_out_d_bits_size = auto_coupler_to_bus_named_pbus_bus_xing_out_d_bits_size_0; // @[ClockDomain.scala:14:9]
wire [6:0] coupler_to_bus_named_pbus_auto_bus_xing_out_d_bits_source = auto_coupler_to_bus_named_pbus_bus_xing_out_d_bits_source_0; // @[ClockDomain.scala:14:9]
wire coupler_to_bus_named_pbus_auto_bus_xing_out_d_bits_sink = auto_coupler_to_bus_named_pbus_bus_xing_out_d_bits_sink_0; // @[ClockDomain.scala:14:9]
wire coupler_to_bus_named_pbus_auto_bus_xing_out_d_bits_denied = auto_coupler_to_bus_named_pbus_bus_xing_out_d_bits_denied_0; // @[ClockDomain.scala:14:9]
wire [63:0] coupler_to_bus_named_pbus_auto_bus_xing_out_d_bits_data = auto_coupler_to_bus_named_pbus_bus_xing_out_d_bits_data_0; // @[ClockDomain.scala:14:9]
wire coupler_to_bus_named_pbus_auto_bus_xing_out_d_bits_corrupt = auto_coupler_to_bus_named_pbus_bus_xing_out_d_bits_corrupt_0; // @[ClockDomain.scala:14:9]
wire cbus_clock_groups_auto_in_member_cbus_0_clock = auto_cbus_clock_groups_in_member_cbus_0_clock_0; // @[ClockGroup.scala:53:9]
wire cbus_clock_groups_auto_in_member_cbus_0_reset = auto_cbus_clock_groups_in_member_cbus_0_reset_0; // @[ClockGroup.scala:53:9]
wire bus_xingIn_a_ready; // @[MixedNode.scala:551:17]
wire bus_xingIn_a_valid = auto_bus_xing_in_a_valid_0; // @[ClockDomain.scala:14:9]
wire [2:0] bus_xingIn_a_bits_opcode = auto_bus_xing_in_a_bits_opcode_0; // @[ClockDomain.scala:14:9]
wire [2:0] bus_xingIn_a_bits_param = auto_bus_xing_in_a_bits_param_0; // @[ClockDomain.scala:14:9]
wire [3:0] bus_xingIn_a_bits_size = auto_bus_xing_in_a_bits_size_0; // @[ClockDomain.scala:14:9]
wire [5:0] bus_xingIn_a_bits_source = auto_bus_xing_in_a_bits_source_0; // @[ClockDomain.scala:14:9]
wire [31:0] bus_xingIn_a_bits_address = auto_bus_xing_in_a_bits_address_0; // @[ClockDomain.scala:14:9]
wire [7:0] bus_xingIn_a_bits_mask = auto_bus_xing_in_a_bits_mask_0; // @[ClockDomain.scala:14:9]
wire [63:0] bus_xingIn_a_bits_data = auto_bus_xing_in_a_bits_data_0; // @[ClockDomain.scala:14:9]
wire bus_xingIn_a_bits_corrupt = auto_bus_xing_in_a_bits_corrupt_0; // @[ClockDomain.scala:14:9]
wire bus_xingIn_d_ready = auto_bus_xing_in_d_ready_0; // @[ClockDomain.scala:14:9]
wire bus_xingIn_d_valid; // @[MixedNode.scala:551:17]
wire [2:0] bus_xingIn_d_bits_opcode; // @[MixedNode.scala:551:17]
wire [1:0] bus_xingIn_d_bits_param; // @[MixedNode.scala:551:17]
wire [3:0] bus_xingIn_d_bits_size; // @[MixedNode.scala:551:17]
wire [5:0] bus_xingIn_d_bits_source; // @[MixedNode.scala:551:17]
wire bus_xingIn_d_bits_sink; // @[MixedNode.scala:551:17]
wire bus_xingIn_d_bits_denied; // @[MixedNode.scala:551:17]
wire [63:0] bus_xingIn_d_bits_data; // @[MixedNode.scala:551:17]
wire bus_xingIn_d_bits_corrupt; // @[MixedNode.scala:551:17]
wire [2:0] auto_coupler_to_prci_ctrl_fixer_anon_out_a_bits_opcode_0; // @[ClockDomain.scala:14:9]
wire [2:0] auto_coupler_to_prci_ctrl_fixer_anon_out_a_bits_param_0; // @[ClockDomain.scala:14:9]
wire [2:0] auto_coupler_to_prci_ctrl_fixer_anon_out_a_bits_size_0; // @[ClockDomain.scala:14:9]
wire [6:0] auto_coupler_to_prci_ctrl_fixer_anon_out_a_bits_source_0; // @[ClockDomain.scala:14:9]
wire [20:0] auto_coupler_to_prci_ctrl_fixer_anon_out_a_bits_address_0; // @[ClockDomain.scala:14:9]
wire [7:0] auto_coupler_to_prci_ctrl_fixer_anon_out_a_bits_mask_0; // @[ClockDomain.scala:14:9]
wire [63:0] auto_coupler_to_prci_ctrl_fixer_anon_out_a_bits_data_0; // @[ClockDomain.scala:14:9]
wire auto_coupler_to_prci_ctrl_fixer_anon_out_a_bits_corrupt_0; // @[ClockDomain.scala:14:9]
wire auto_coupler_to_prci_ctrl_fixer_anon_out_a_valid_0; // @[ClockDomain.scala:14:9]
wire auto_coupler_to_prci_ctrl_fixer_anon_out_d_ready_0; // @[ClockDomain.scala:14:9]
wire [2:0] auto_coupler_to_bootrom_fragmenter_anon_out_a_bits_opcode_0; // @[ClockDomain.scala:14:9]
wire [2:0] auto_coupler_to_bootrom_fragmenter_anon_out_a_bits_param_0; // @[ClockDomain.scala:14:9]
wire [1:0] auto_coupler_to_bootrom_fragmenter_anon_out_a_bits_size_0; // @[ClockDomain.scala:14:9]
wire [10:0] auto_coupler_to_bootrom_fragmenter_anon_out_a_bits_source_0; // @[ClockDomain.scala:14:9]
wire [16:0] auto_coupler_to_bootrom_fragmenter_anon_out_a_bits_address_0; // @[ClockDomain.scala:14:9]
wire [7:0] auto_coupler_to_bootrom_fragmenter_anon_out_a_bits_mask_0; // @[ClockDomain.scala:14:9]
wire [63:0] auto_coupler_to_bootrom_fragmenter_anon_out_a_bits_data_0; // @[ClockDomain.scala:14:9]
wire auto_coupler_to_bootrom_fragmenter_anon_out_a_bits_corrupt_0; // @[ClockDomain.scala:14:9]
wire auto_coupler_to_bootrom_fragmenter_anon_out_a_valid_0; // @[ClockDomain.scala:14:9]
wire auto_coupler_to_bootrom_fragmenter_anon_out_d_ready_0; // @[ClockDomain.scala:14:9]
wire [2:0] auto_coupler_to_rockettile_tl_slave_clock_xing_out_a_bits_opcode_0; // @[ClockDomain.scala:14:9]
wire [2:0] auto_coupler_to_rockettile_tl_slave_clock_xing_out_a_bits_param_0; // @[ClockDomain.scala:14:9]
wire [2:0] auto_coupler_to_rockettile_tl_slave_clock_xing_out_a_bits_size_0; // @[ClockDomain.scala:14:9]
wire [6:0] auto_coupler_to_rockettile_tl_slave_clock_xing_out_a_bits_source_0; // @[ClockDomain.scala:14:9]
wire [31:0] auto_coupler_to_rockettile_tl_slave_clock_xing_out_a_bits_address_0; // @[ClockDomain.scala:14:9]
wire [3:0] auto_coupler_to_rockettile_tl_slave_clock_xing_out_a_bits_mask_0; // @[ClockDomain.scala:14:9]
wire [31:0] auto_coupler_to_rockettile_tl_slave_clock_xing_out_a_bits_data_0; // @[ClockDomain.scala:14:9]
wire auto_coupler_to_rockettile_tl_slave_clock_xing_out_a_bits_corrupt_0; // @[ClockDomain.scala:14:9]
wire auto_coupler_to_rockettile_tl_slave_clock_xing_out_a_valid_0; // @[ClockDomain.scala:14:9]
wire auto_coupler_to_rockettile_tl_slave_clock_xing_out_d_ready_0; // @[ClockDomain.scala:14:9]
wire [2:0] auto_coupler_to_debug_fragmenter_anon_out_a_bits_opcode_0; // @[ClockDomain.scala:14:9]
wire [2:0] auto_coupler_to_debug_fragmenter_anon_out_a_bits_param_0; // @[ClockDomain.scala:14:9]
wire [1:0] auto_coupler_to_debug_fragmenter_anon_out_a_bits_size_0; // @[ClockDomain.scala:14:9]
wire [10:0] auto_coupler_to_debug_fragmenter_anon_out_a_bits_source_0; // @[ClockDomain.scala:14:9]
wire [11:0] auto_coupler_to_debug_fragmenter_anon_out_a_bits_address_0; // @[ClockDomain.scala:14:9]
wire [7:0] auto_coupler_to_debug_fragmenter_anon_out_a_bits_mask_0; // @[ClockDomain.scala:14:9]
wire [63:0] auto_coupler_to_debug_fragmenter_anon_out_a_bits_data_0; // @[ClockDomain.scala:14:9]
wire auto_coupler_to_debug_fragmenter_anon_out_a_bits_corrupt_0; // @[ClockDomain.scala:14:9]
wire auto_coupler_to_debug_fragmenter_anon_out_a_valid_0; // @[ClockDomain.scala:14:9]
wire auto_coupler_to_debug_fragmenter_anon_out_d_ready_0; // @[ClockDomain.scala:14:9]
wire [2:0] auto_coupler_to_plic_fragmenter_anon_out_a_bits_opcode_0; // @[ClockDomain.scala:14:9]
wire [2:0] auto_coupler_to_plic_fragmenter_anon_out_a_bits_param_0; // @[ClockDomain.scala:14:9]
wire [1:0] auto_coupler_to_plic_fragmenter_anon_out_a_bits_size_0; // @[ClockDomain.scala:14:9]
wire [10:0] auto_coupler_to_plic_fragmenter_anon_out_a_bits_source_0; // @[ClockDomain.scala:14:9]
wire [27:0] auto_coupler_to_plic_fragmenter_anon_out_a_bits_address_0; // @[ClockDomain.scala:14:9]
wire [7:0] auto_coupler_to_plic_fragmenter_anon_out_a_bits_mask_0; // @[ClockDomain.scala:14:9]
wire [63:0] auto_coupler_to_plic_fragmenter_anon_out_a_bits_data_0; // @[ClockDomain.scala:14:9]
wire auto_coupler_to_plic_fragmenter_anon_out_a_bits_corrupt_0; // @[ClockDomain.scala:14:9]
wire auto_coupler_to_plic_fragmenter_anon_out_a_valid_0; // @[ClockDomain.scala:14:9]
wire auto_coupler_to_plic_fragmenter_anon_out_d_ready_0; // @[ClockDomain.scala:14:9]
wire [2:0] auto_coupler_to_clint_fragmenter_anon_out_a_bits_opcode_0; // @[ClockDomain.scala:14:9]
wire [2:0] auto_coupler_to_clint_fragmenter_anon_out_a_bits_param_0; // @[ClockDomain.scala:14:9]
wire [1:0] auto_coupler_to_clint_fragmenter_anon_out_a_bits_size_0; // @[ClockDomain.scala:14:9]
wire [10:0] auto_coupler_to_clint_fragmenter_anon_out_a_bits_source_0; // @[ClockDomain.scala:14:9]
wire [25:0] auto_coupler_to_clint_fragmenter_anon_out_a_bits_address_0; // @[ClockDomain.scala:14:9]
wire [7:0] auto_coupler_to_clint_fragmenter_anon_out_a_bits_mask_0; // @[ClockDomain.scala:14:9]
wire [63:0] auto_coupler_to_clint_fragmenter_anon_out_a_bits_data_0; // @[ClockDomain.scala:14:9]
wire auto_coupler_to_clint_fragmenter_anon_out_a_bits_corrupt_0; // @[ClockDomain.scala:14:9]
wire auto_coupler_to_clint_fragmenter_anon_out_a_valid_0; // @[ClockDomain.scala:14:9]
wire auto_coupler_to_clint_fragmenter_anon_out_d_ready_0; // @[ClockDomain.scala:14:9]
wire [2:0] auto_coupler_to_bus_named_pbus_bus_xing_out_a_bits_opcode_0; // @[ClockDomain.scala:14:9]
wire [2:0] auto_coupler_to_bus_named_pbus_bus_xing_out_a_bits_param_0; // @[ClockDomain.scala:14:9]
wire [2:0] auto_coupler_to_bus_named_pbus_bus_xing_out_a_bits_size_0; // @[ClockDomain.scala:14:9]
wire [6:0] auto_coupler_to_bus_named_pbus_bus_xing_out_a_bits_source_0; // @[ClockDomain.scala:14:9]
wire [28:0] auto_coupler_to_bus_named_pbus_bus_xing_out_a_bits_address_0; // @[ClockDomain.scala:14:9]
wire [7:0] auto_coupler_to_bus_named_pbus_bus_xing_out_a_bits_mask_0; // @[ClockDomain.scala:14:9]
wire [63:0] auto_coupler_to_bus_named_pbus_bus_xing_out_a_bits_data_0; // @[ClockDomain.scala:14:9]
wire auto_coupler_to_bus_named_pbus_bus_xing_out_a_bits_corrupt_0; // @[ClockDomain.scala:14:9]
wire auto_coupler_to_bus_named_pbus_bus_xing_out_a_valid_0; // @[ClockDomain.scala:14:9]
wire auto_coupler_to_bus_named_pbus_bus_xing_out_d_ready_0; // @[ClockDomain.scala:14:9]
wire auto_fixedClockNode_anon_out_5_clock_0; // @[ClockDomain.scala:14:9]
wire auto_fixedClockNode_anon_out_5_reset_0; // @[ClockDomain.scala:14:9]
wire auto_fixedClockNode_anon_out_4_clock_0; // @[ClockDomain.scala:14:9]
wire auto_fixedClockNode_anon_out_4_reset_0; // @[ClockDomain.scala:14:9]
wire auto_fixedClockNode_anon_out_3_clock_0; // @[ClockDomain.scala:14:9]
wire auto_fixedClockNode_anon_out_3_reset_0; // @[ClockDomain.scala:14:9]
wire auto_fixedClockNode_anon_out_2_clock_0; // @[ClockDomain.scala:14:9]
wire auto_fixedClockNode_anon_out_2_reset_0; // @[ClockDomain.scala:14:9]
wire auto_fixedClockNode_anon_out_1_clock_0; // @[ClockDomain.scala:14:9]
wire auto_fixedClockNode_anon_out_1_reset_0; // @[ClockDomain.scala:14:9]
wire auto_fixedClockNode_anon_out_0_clock_0; // @[ClockDomain.scala:14:9]
wire auto_fixedClockNode_anon_out_0_reset_0; // @[ClockDomain.scala:14:9]
wire auto_bus_xing_in_a_ready_0; // @[ClockDomain.scala:14:9]
wire [2:0] auto_bus_xing_in_d_bits_opcode_0; // @[ClockDomain.scala:14:9]
wire [1:0] auto_bus_xing_in_d_bits_param_0; // @[ClockDomain.scala:14:9]
wire [3:0] auto_bus_xing_in_d_bits_size_0; // @[ClockDomain.scala:14:9]
wire [5:0] auto_bus_xing_in_d_bits_source_0; // @[ClockDomain.scala:14:9]
wire auto_bus_xing_in_d_bits_sink_0; // @[ClockDomain.scala:14:9]
wire auto_bus_xing_in_d_bits_denied_0; // @[ClockDomain.scala:14:9]
wire [63:0] auto_bus_xing_in_d_bits_data_0; // @[ClockDomain.scala:14:9]
wire auto_bus_xing_in_d_bits_corrupt_0; // @[ClockDomain.scala:14:9]
wire auto_bus_xing_in_d_valid_0; // @[ClockDomain.scala:14:9]
wire clockSinkNodeIn_clock; // @[MixedNode.scala:551:17]
wire clockSinkNodeIn_reset; // @[MixedNode.scala:551:17]
wire childClock; // @[LazyModuleImp.scala:155:31]
wire childReset; // @[LazyModuleImp.scala:158:31]
wire cbus_clock_groups_nodeIn_member_cbus_0_clock = cbus_clock_groups_auto_in_member_cbus_0_clock; // @[ClockGroup.scala:53:9]
wire cbus_clock_groups_nodeOut_member_cbus_0_clock; // @[MixedNode.scala:542:17]
wire cbus_clock_groups_nodeIn_member_cbus_0_reset = cbus_clock_groups_auto_in_member_cbus_0_reset; // @[ClockGroup.scala:53:9]
wire cbus_clock_groups_nodeOut_member_cbus_0_reset; // @[MixedNode.scala:542:17]
wire clockGroup_auto_in_member_cbus_0_clock = cbus_clock_groups_auto_out_member_cbus_0_clock; // @[ClockGroup.scala:24:9, :53:9]
wire clockGroup_auto_in_member_cbus_0_reset = cbus_clock_groups_auto_out_member_cbus_0_reset; // @[ClockGroup.scala:24:9, :53:9]
assign cbus_clock_groups_auto_out_member_cbus_0_clock = cbus_clock_groups_nodeOut_member_cbus_0_clock; // @[ClockGroup.scala:53:9]
assign cbus_clock_groups_auto_out_member_cbus_0_reset = cbus_clock_groups_nodeOut_member_cbus_0_reset; // @[ClockGroup.scala:53:9]
assign cbus_clock_groups_nodeOut_member_cbus_0_clock = cbus_clock_groups_nodeIn_member_cbus_0_clock; // @[MixedNode.scala:542:17, :551:17]
assign cbus_clock_groups_nodeOut_member_cbus_0_reset = cbus_clock_groups_nodeIn_member_cbus_0_reset; // @[MixedNode.scala:542:17, :551:17]
wire clockGroup_nodeIn_member_cbus_0_clock = clockGroup_auto_in_member_cbus_0_clock; // @[ClockGroup.scala:24:9]
wire clockGroup_nodeOut_clock; // @[MixedNode.scala:542:17]
wire clockGroup_nodeIn_member_cbus_0_reset = clockGroup_auto_in_member_cbus_0_reset; // @[ClockGroup.scala:24:9]
wire clockGroup_nodeOut_reset; // @[MixedNode.scala:542:17]
wire clockGroup_auto_out_clock; // @[ClockGroup.scala:24:9]
wire clockGroup_auto_out_reset; // @[ClockGroup.scala:24:9]
assign clockGroup_auto_out_clock = clockGroup_nodeOut_clock; // @[ClockGroup.scala:24:9]
assign clockGroup_auto_out_reset = clockGroup_nodeOut_reset; // @[ClockGroup.scala:24:9]
assign clockGroup_nodeOut_clock = clockGroup_nodeIn_member_cbus_0_clock; // @[MixedNode.scala:542:17, :551:17]
assign clockGroup_nodeOut_reset = clockGroup_nodeIn_member_cbus_0_reset; // @[MixedNode.scala:542:17, :551:17]
wire fixer_anonIn_a_ready; // @[MixedNode.scala:551:17]
wire fixer_anonIn_a_valid = fixer_auto_anon_in_a_valid; // @[FIFOFixer.scala:50:9]
wire [2:0] fixer_anonIn_a_bits_opcode = fixer_auto_anon_in_a_bits_opcode; // @[FIFOFixer.scala:50:9]
wire [2:0] fixer_anonIn_a_bits_param = fixer_auto_anon_in_a_bits_param; // @[FIFOFixer.scala:50:9]
wire [3:0] fixer_anonIn_a_bits_size = fixer_auto_anon_in_a_bits_size; // @[FIFOFixer.scala:50:9]
wire [6:0] fixer_anonIn_a_bits_source = fixer_auto_anon_in_a_bits_source; // @[FIFOFixer.scala:50:9]
wire [31:0] fixer_anonIn_a_bits_address = fixer_auto_anon_in_a_bits_address; // @[FIFOFixer.scala:50:9]
wire [7:0] fixer_anonIn_a_bits_mask = fixer_auto_anon_in_a_bits_mask; // @[FIFOFixer.scala:50:9]
wire [63:0] fixer_anonIn_a_bits_data = fixer_auto_anon_in_a_bits_data; // @[FIFOFixer.scala:50:9]
wire fixer_anonIn_a_bits_corrupt = fixer_auto_anon_in_a_bits_corrupt; // @[FIFOFixer.scala:50:9]
wire fixer_anonIn_d_ready = fixer_auto_anon_in_d_ready; // @[FIFOFixer.scala:50:9]
wire fixer_anonIn_d_valid; // @[MixedNode.scala:551:17]
wire [2:0] fixer_anonIn_d_bits_opcode; // @[MixedNode.scala:551:17]
wire [1:0] fixer_anonIn_d_bits_param; // @[MixedNode.scala:551:17]
wire [3:0] fixer_anonIn_d_bits_size; // @[MixedNode.scala:551:17]
wire [6:0] fixer_anonIn_d_bits_source; // @[MixedNode.scala:551:17]
wire fixer_anonIn_d_bits_sink; // @[MixedNode.scala:551:17]
wire fixer_anonIn_d_bits_denied; // @[MixedNode.scala:551:17]
wire [63:0] fixer_anonIn_d_bits_data; // @[MixedNode.scala:551:17]
wire fixer_anonIn_d_bits_corrupt; // @[MixedNode.scala:551:17]
wire fixer_anonOut_a_ready = fixer_auto_anon_out_a_ready; // @[FIFOFixer.scala:50:9]
wire fixer_anonOut_a_valid; // @[MixedNode.scala:542:17]
wire [2:0] fixer_anonOut_a_bits_opcode; // @[MixedNode.scala:542:17]
wire [2:0] fixer_anonOut_a_bits_param; // @[MixedNode.scala:542:17]
wire [3:0] fixer_anonOut_a_bits_size; // @[MixedNode.scala:542:17]
wire [6:0] fixer_anonOut_a_bits_source; // @[MixedNode.scala:542:17]
wire [31:0] fixer_anonOut_a_bits_address; // @[MixedNode.scala:542:17]
wire [7:0] fixer_anonOut_a_bits_mask; // @[MixedNode.scala:542:17]
wire [63:0] fixer_anonOut_a_bits_data; // @[MixedNode.scala:542:17]
wire fixer_anonOut_a_bits_corrupt; // @[MixedNode.scala:542:17]
wire fixer_anonOut_d_ready; // @[MixedNode.scala:542:17]
wire fixer_anonOut_d_valid = fixer_auto_anon_out_d_valid; // @[FIFOFixer.scala:50:9]
wire [2:0] fixer_anonOut_d_bits_opcode = fixer_auto_anon_out_d_bits_opcode; // @[FIFOFixer.scala:50:9]
wire [1:0] fixer_anonOut_d_bits_param = fixer_auto_anon_out_d_bits_param; // @[FIFOFixer.scala:50:9]
wire [3:0] fixer_anonOut_d_bits_size = fixer_auto_anon_out_d_bits_size; // @[FIFOFixer.scala:50:9]
wire [6:0] fixer_anonOut_d_bits_source = fixer_auto_anon_out_d_bits_source; // @[FIFOFixer.scala:50:9]
wire fixer_anonOut_d_bits_sink = fixer_auto_anon_out_d_bits_sink; // @[FIFOFixer.scala:50:9]
wire fixer_anonOut_d_bits_denied = fixer_auto_anon_out_d_bits_denied; // @[FIFOFixer.scala:50:9]
wire [63:0] fixer_anonOut_d_bits_data = fixer_auto_anon_out_d_bits_data; // @[FIFOFixer.scala:50:9]
wire fixer_anonOut_d_bits_corrupt = fixer_auto_anon_out_d_bits_corrupt; // @[FIFOFixer.scala:50:9]
wire fixer_auto_anon_in_a_ready; // @[FIFOFixer.scala:50:9]
wire [2:0] fixer_auto_anon_in_d_bits_opcode; // @[FIFOFixer.scala:50:9]
wire [1:0] fixer_auto_anon_in_d_bits_param; // @[FIFOFixer.scala:50:9]
wire [3:0] fixer_auto_anon_in_d_bits_size; // @[FIFOFixer.scala:50:9]
wire [6:0] fixer_auto_anon_in_d_bits_source; // @[FIFOFixer.scala:50:9]
wire fixer_auto_anon_in_d_bits_sink; // @[FIFOFixer.scala:50:9]
wire fixer_auto_anon_in_d_bits_denied; // @[FIFOFixer.scala:50:9]
wire [63:0] fixer_auto_anon_in_d_bits_data; // @[FIFOFixer.scala:50:9]
wire fixer_auto_anon_in_d_bits_corrupt; // @[FIFOFixer.scala:50:9]
wire fixer_auto_anon_in_d_valid; // @[FIFOFixer.scala:50:9]
wire [2:0] fixer_auto_anon_out_a_bits_opcode; // @[FIFOFixer.scala:50:9]
wire [2:0] fixer_auto_anon_out_a_bits_param; // @[FIFOFixer.scala:50:9]
wire [3:0] fixer_auto_anon_out_a_bits_size; // @[FIFOFixer.scala:50:9]
wire [6:0] fixer_auto_anon_out_a_bits_source; // @[FIFOFixer.scala:50:9]
wire [31:0] fixer_auto_anon_out_a_bits_address; // @[FIFOFixer.scala:50:9]
wire [7:0] fixer_auto_anon_out_a_bits_mask; // @[FIFOFixer.scala:50:9]
wire [63:0] fixer_auto_anon_out_a_bits_data; // @[FIFOFixer.scala:50:9]
wire fixer_auto_anon_out_a_bits_corrupt; // @[FIFOFixer.scala:50:9]
wire fixer_auto_anon_out_a_valid; // @[FIFOFixer.scala:50:9]
wire fixer_auto_anon_out_d_ready; // @[FIFOFixer.scala:50:9]
wire fixer__anonOut_a_valid_T_2; // @[FIFOFixer.scala:95:33]
wire fixer__anonIn_a_ready_T_2 = fixer_anonOut_a_ready; // @[FIFOFixer.scala:96:33]
assign fixer_auto_anon_out_a_valid = fixer_anonOut_a_valid; // @[FIFOFixer.scala:50:9]
assign fixer_auto_anon_out_a_bits_opcode = fixer_anonOut_a_bits_opcode; // @[FIFOFixer.scala:50:9]
assign fixer_auto_anon_out_a_bits_param = fixer_anonOut_a_bits_param; // @[FIFOFixer.scala:50:9]
assign fixer_auto_anon_out_a_bits_size = fixer_anonOut_a_bits_size; // @[FIFOFixer.scala:50:9]
assign fixer_auto_anon_out_a_bits_source = fixer_anonOut_a_bits_source; // @[FIFOFixer.scala:50:9]
assign fixer_auto_anon_out_a_bits_address = fixer_anonOut_a_bits_address; // @[FIFOFixer.scala:50:9]
assign fixer_auto_anon_out_a_bits_mask = fixer_anonOut_a_bits_mask; // @[FIFOFixer.scala:50:9]
assign fixer_auto_anon_out_a_bits_data = fixer_anonOut_a_bits_data; // @[FIFOFixer.scala:50:9]
assign fixer_auto_anon_out_a_bits_corrupt = fixer_anonOut_a_bits_corrupt; // @[FIFOFixer.scala:50:9]
assign fixer_auto_anon_out_d_ready = fixer_anonOut_d_ready; // @[FIFOFixer.scala:50:9]
assign fixer_anonIn_d_valid = fixer_anonOut_d_valid; // @[MixedNode.scala:542:17, :551:17]
assign fixer_anonIn_d_bits_opcode = fixer_anonOut_d_bits_opcode; // @[MixedNode.scala:542:17, :551:17]
assign fixer_anonIn_d_bits_param = fixer_anonOut_d_bits_param; // @[MixedNode.scala:542:17, :551:17]
assign fixer_anonIn_d_bits_size = fixer_anonOut_d_bits_size; // @[MixedNode.scala:542:17, :551:17]
assign fixer_anonIn_d_bits_source = fixer_anonOut_d_bits_source; // @[MixedNode.scala:542:17, :551:17]
assign fixer_anonIn_d_bits_sink = fixer_anonOut_d_bits_sink; // @[MixedNode.scala:542:17, :551:17]
assign fixer_anonIn_d_bits_denied = fixer_anonOut_d_bits_denied; // @[MixedNode.scala:542:17, :551:17]
assign fixer_anonIn_d_bits_data = fixer_anonOut_d_bits_data; // @[MixedNode.scala:542:17, :551:17]
assign fixer_anonIn_d_bits_corrupt = fixer_anonOut_d_bits_corrupt; // @[MixedNode.scala:542:17, :551:17]
assign fixer_auto_anon_in_a_ready = fixer_anonIn_a_ready; // @[FIFOFixer.scala:50:9]
assign fixer__anonOut_a_valid_T_2 = fixer_anonIn_a_valid; // @[FIFOFixer.scala:95:33]
assign fixer_anonOut_a_bits_opcode = fixer_anonIn_a_bits_opcode; // @[MixedNode.scala:542:17, :551:17]
assign fixer_anonOut_a_bits_param = fixer_anonIn_a_bits_param; // @[MixedNode.scala:542:17, :551:17]
assign fixer_anonOut_a_bits_size = fixer_anonIn_a_bits_size; // @[MixedNode.scala:542:17, :551:17]
assign fixer_anonOut_a_bits_source = fixer_anonIn_a_bits_source; // @[MixedNode.scala:542:17, :551:17]
assign fixer_anonOut_a_bits_address = fixer_anonIn_a_bits_address; // @[MixedNode.scala:542:17, :551:17]
wire [31:0] fixer__a_notFIFO_T = fixer_anonIn_a_bits_address; // @[Parameters.scala:137:31]
wire [31:0] fixer__a_id_T = fixer_anonIn_a_bits_address; // @[Parameters.scala:137:31]
assign fixer_anonOut_a_bits_mask = fixer_anonIn_a_bits_mask; // @[MixedNode.scala:542:17, :551:17]
assign fixer_anonOut_a_bits_data = fixer_anonIn_a_bits_data; // @[MixedNode.scala:542:17, :551:17]
assign fixer_anonOut_a_bits_corrupt = fixer_anonIn_a_bits_corrupt; // @[MixedNode.scala:542:17, :551:17]
assign fixer_anonOut_d_ready = fixer_anonIn_d_ready; // @[MixedNode.scala:542:17, :551:17]
assign fixer_auto_anon_in_d_valid = fixer_anonIn_d_valid; // @[FIFOFixer.scala:50:9]
assign fixer_auto_anon_in_d_bits_opcode = fixer_anonIn_d_bits_opcode; // @[FIFOFixer.scala:50:9]
assign fixer_auto_anon_in_d_bits_param = fixer_anonIn_d_bits_param; // @[FIFOFixer.scala:50:9]
assign fixer_auto_anon_in_d_bits_size = fixer_anonIn_d_bits_size; // @[FIFOFixer.scala:50:9]
assign fixer_auto_anon_in_d_bits_source = fixer_anonIn_d_bits_source; // @[FIFOFixer.scala:50:9]
assign fixer_auto_anon_in_d_bits_sink = fixer_anonIn_d_bits_sink; // @[FIFOFixer.scala:50:9]
assign fixer_auto_anon_in_d_bits_denied = fixer_anonIn_d_bits_denied; // @[FIFOFixer.scala:50:9]
assign fixer_auto_anon_in_d_bits_data = fixer_anonIn_d_bits_data; // @[FIFOFixer.scala:50:9]
assign fixer_auto_anon_in_d_bits_corrupt = fixer_anonIn_d_bits_corrupt; // @[FIFOFixer.scala:50:9]
wire [32:0] fixer__a_notFIFO_T_1 = {1'h0, fixer__a_notFIFO_T}; // @[Parameters.scala:137:{31,41}]
wire [32:0] fixer__a_id_T_1 = {1'h0, fixer__a_id_T}; // @[Parameters.scala:137:{31,41}]
wire [32:0] fixer__a_id_T_2 = fixer__a_id_T_1 & 33'h9A113000; // @[Parameters.scala:137:{41,46}]
wire [32:0] fixer__a_id_T_3 = fixer__a_id_T_2; // @[Parameters.scala:137:46]
wire fixer__a_id_T_4 = fixer__a_id_T_3 == 33'h0; // @[Parameters.scala:137:{46,59}]
wire [31:0] fixer__a_id_T_5 = {fixer_anonIn_a_bits_address[31:13], fixer_anonIn_a_bits_address[12:0] ^ 13'h1000}; // @[Parameters.scala:137:31]
wire [32:0] fixer__a_id_T_6 = {1'h0, fixer__a_id_T_5}; // @[Parameters.scala:137:{31,41}]
wire [32:0] fixer__a_id_T_7 = fixer__a_id_T_6 & 33'h9A113000; // @[Parameters.scala:137:{41,46}]
wire [32:0] fixer__a_id_T_8 = fixer__a_id_T_7; // @[Parameters.scala:137:46]
wire fixer__a_id_T_9 = fixer__a_id_T_8 == 33'h0; // @[Parameters.scala:137:{46,59}]
wire [31:0] fixer__a_id_T_10 = {fixer_anonIn_a_bits_address[31:29], fixer_anonIn_a_bits_address[28:0] ^ 29'h10000000}; // @[Parameters.scala:137:31]
wire [32:0] fixer__a_id_T_11 = {1'h0, fixer__a_id_T_10}; // @[Parameters.scala:137:{31,41}]
wire [32:0] fixer__a_id_T_12 = fixer__a_id_T_11 & 33'h9A113000; // @[Parameters.scala:137:{41,46}]
wire [32:0] fixer__a_id_T_13 = fixer__a_id_T_12; // @[Parameters.scala:137:46]
wire fixer__a_id_T_14 = fixer__a_id_T_13 == 33'h0; // @[Parameters.scala:137:{46,59}]
wire fixer__a_id_T_15 = fixer__a_id_T_9 | fixer__a_id_T_14; // @[Parameters.scala:629:89]
wire [31:0] fixer__a_id_T_16 = {fixer_anonIn_a_bits_address[31:14], fixer_anonIn_a_bits_address[13:0] ^ 14'h3000}; // @[Parameters.scala:137:31]
wire [32:0] fixer__a_id_T_17 = {1'h0, fixer__a_id_T_16}; // @[Parameters.scala:137:{31,41}]
wire [32:0] fixer__a_id_T_18 = fixer__a_id_T_17 & 33'h9A113000; // @[Parameters.scala:137:{41,46}]
wire [32:0] fixer__a_id_T_19 = fixer__a_id_T_18; // @[Parameters.scala:137:46]
wire fixer__a_id_T_20 = fixer__a_id_T_19 == 33'h0; // @[Parameters.scala:137:{46,59}]
wire fixer__a_id_T_48 = fixer__a_id_T_20; // @[Mux.scala:30:73]
wire [31:0] fixer__a_id_T_21 = {fixer_anonIn_a_bits_address[31:17], fixer_anonIn_a_bits_address[16:0] ^ 17'h10000}; // @[Parameters.scala:137:31]
wire [32:0] fixer__a_id_T_22 = {1'h0, fixer__a_id_T_21}; // @[Parameters.scala:137:{31,41}]
wire [32:0] fixer__a_id_T_23 = fixer__a_id_T_22 & 33'h9A110000; // @[Parameters.scala:137:{41,46}]
wire [32:0] fixer__a_id_T_24 = fixer__a_id_T_23; // @[Parameters.scala:137:46]
wire fixer__a_id_T_25 = fixer__a_id_T_24 == 33'h0; // @[Parameters.scala:137:{46,59}]
wire [31:0] fixer__a_id_T_26 = {fixer_anonIn_a_bits_address[31:21], fixer_anonIn_a_bits_address[20:0] ^ 21'h100000}; // @[Parameters.scala:137:31]
wire [32:0] fixer__a_id_T_27 = {1'h0, fixer__a_id_T_26}; // @[Parameters.scala:137:{31,41}]
wire [32:0] fixer__a_id_T_28 = fixer__a_id_T_27 & 33'h9A103000; // @[Parameters.scala:137:{41,46}]
wire [32:0] fixer__a_id_T_29 = fixer__a_id_T_28; // @[Parameters.scala:137:46]
wire fixer__a_id_T_30 = fixer__a_id_T_29 == 33'h0; // @[Parameters.scala:137:{46,59}]
wire [31:0] fixer__a_id_T_31 = {fixer_anonIn_a_bits_address[31:26], fixer_anonIn_a_bits_address[25:0] ^ 26'h2000000}; // @[Parameters.scala:137:31]
wire [32:0] fixer__a_id_T_32 = {1'h0, fixer__a_id_T_31}; // @[Parameters.scala:137:{31,41}]
wire [32:0] fixer__a_id_T_33 = fixer__a_id_T_32 & 33'h9A110000; // @[Parameters.scala:137:{41,46}]
wire [32:0] fixer__a_id_T_34 = fixer__a_id_T_33; // @[Parameters.scala:137:46]
wire fixer__a_id_T_35 = fixer__a_id_T_34 == 33'h0; // @[Parameters.scala:137:{46,59}]
wire [31:0] fixer__a_id_T_36 = {fixer_anonIn_a_bits_address[31:28], fixer_anonIn_a_bits_address[27:0] ^ 28'h8000000}; // @[Parameters.scala:137:31]
wire [32:0] fixer__a_id_T_37 = {1'h0, fixer__a_id_T_36}; // @[Parameters.scala:137:{31,41}]
wire [32:0] fixer__a_id_T_38 = fixer__a_id_T_37 & 33'h98000000; // @[Parameters.scala:137:{41,46}]
wire [32:0] fixer__a_id_T_39 = fixer__a_id_T_38; // @[Parameters.scala:137:46]
wire fixer__a_id_T_40 = fixer__a_id_T_39 == 33'h0; // @[Parameters.scala:137:{46,59}]
wire [31:0] fixer__a_id_T_41 = fixer_anonIn_a_bits_address ^ 32'h80000000; // @[Parameters.scala:137:31]
wire [32:0] fixer__a_id_T_42 = {1'h0, fixer__a_id_T_41}; // @[Parameters.scala:137:{31,41}]
wire [32:0] fixer__a_id_T_43 = fixer__a_id_T_42 & 33'h9A110000; // @[Parameters.scala:137:{41,46}]
wire [32:0] fixer__a_id_T_44 = fixer__a_id_T_43; // @[Parameters.scala:137:46]
wire fixer__a_id_T_45 = fixer__a_id_T_44 == 33'h0; // @[Parameters.scala:137:{46,59}]
wire [3:0] fixer__a_id_T_46 = {fixer__a_id_T_4, 3'h0}; // @[Mux.scala:30:73]
wire [1:0] fixer__a_id_T_47 = {2{fixer__a_id_T_15}}; // @[Mux.scala:30:73]
wire [2:0] fixer__a_id_T_49 = {fixer__a_id_T_25, 2'h0}; // @[Mux.scala:30:73]
wire [2:0] fixer__a_id_T_50 = fixer__a_id_T_30 ? 3'h6 : 3'h0; // @[Mux.scala:30:73]
wire [2:0] fixer__a_id_T_51 = fixer__a_id_T_35 ? 3'h5 : 3'h0; // @[Mux.scala:30:73]
wire [2:0] fixer__a_id_T_52 = {3{fixer__a_id_T_40}}; // @[Mux.scala:30:73]
wire [1:0] fixer__a_id_T_53 = {fixer__a_id_T_45, 1'h0}; // @[Mux.scala:30:73]
wire [3:0] fixer__a_id_T_54 = {fixer__a_id_T_46[3:2], fixer__a_id_T_46[1:0] | fixer__a_id_T_47}; // @[Mux.scala:30:73]
wire [3:0] fixer__a_id_T_55 = {fixer__a_id_T_54[3:1], fixer__a_id_T_54[0] | fixer__a_id_T_48}; // @[Mux.scala:30:73]
wire [3:0] fixer__a_id_T_56 = {fixer__a_id_T_55[3], fixer__a_id_T_55[2:0] | fixer__a_id_T_49}; // @[Mux.scala:30:73]
wire [3:0] fixer__a_id_T_57 = {fixer__a_id_T_56[3], fixer__a_id_T_56[2:0] | fixer__a_id_T_50}; // @[Mux.scala:30:73]
wire [3:0] fixer__a_id_T_58 = {fixer__a_id_T_57[3], fixer__a_id_T_57[2:0] | fixer__a_id_T_51}; // @[Mux.scala:30:73]
wire [3:0] fixer__a_id_T_59 = {fixer__a_id_T_58[3], fixer__a_id_T_58[2:0] | fixer__a_id_T_52}; // @[Mux.scala:30:73]
wire [3:0] fixer__a_id_T_60 = {fixer__a_id_T_59[3:2], fixer__a_id_T_59[1:0] | fixer__a_id_T_53}; // @[Mux.scala:30:73]
wire [3:0] fixer_a_id = fixer__a_id_T_60; // @[Mux.scala:30:73]
wire fixer_a_noDomain = fixer_a_id == 4'h0; // @[Mux.scala:30:73]
wire fixer__a_first_T = fixer_anonIn_a_ready & fixer_anonIn_a_valid; // @[Decoupled.scala:51:35]
wire [26:0] fixer__a_first_beats1_decode_T = 27'hFFF << fixer_anonIn_a_bits_size; // @[package.scala:243:71]
wire [11:0] fixer__a_first_beats1_decode_T_1 = fixer__a_first_beats1_decode_T[11:0]; // @[package.scala:243:{71,76}]
wire [11:0] fixer__a_first_beats1_decode_T_2 = ~fixer__a_first_beats1_decode_T_1; // @[package.scala:243:{46,76}]
wire [8:0] fixer_a_first_beats1_decode = fixer__a_first_beats1_decode_T_2[11:3]; // @[package.scala:243:46]
wire fixer__a_first_beats1_opdata_T = fixer_anonIn_a_bits_opcode[2]; // @[Edges.scala:92:37]
wire fixer_a_first_beats1_opdata = ~fixer__a_first_beats1_opdata_T; // @[Edges.scala:92:{28,37}]
wire [8:0] fixer_a_first_beats1 = fixer_a_first_beats1_opdata ? fixer_a_first_beats1_decode : 9'h0; // @[Edges.scala:92:28, :220:59, :221:14]
reg [8:0] fixer_a_first_counter; // @[Edges.scala:229:27]
wire [9:0] fixer__a_first_counter1_T = {1'h0, fixer_a_first_counter} - 10'h1; // @[Edges.scala:229:27, :230:28]
wire [8:0] fixer_a_first_counter1 = fixer__a_first_counter1_T[8:0]; // @[Edges.scala:230:28]
wire fixer_a_first = fixer_a_first_counter == 9'h0; // @[Edges.scala:229:27, :231:25]
wire fixer__a_first_last_T = fixer_a_first_counter == 9'h1; // @[Edges.scala:229:27, :232:25]
wire fixer__a_first_last_T_1 = fixer_a_first_beats1 == 9'h0; // @[Edges.scala:221:14, :232:43]
wire fixer_a_first_last = fixer__a_first_last_T | fixer__a_first_last_T_1; // @[Edges.scala:232:{25,33,43}]
wire fixer_a_first_done = fixer_a_first_last & fixer__a_first_T; // @[Decoupled.scala:51:35]
wire [8:0] fixer__a_first_count_T = ~fixer_a_first_counter1; // @[Edges.scala:230:28, :234:27]
wire [8:0] fixer_a_first_count = fixer_a_first_beats1 & fixer__a_first_count_T; // @[Edges.scala:221:14, :234:{25,27}]
wire [8:0] fixer__a_first_counter_T = fixer_a_first ? fixer_a_first_beats1 : fixer_a_first_counter1; // @[Edges.scala:221:14, :230:28, :231:25, :236:21]
wire fixer__d_first_T = fixer_anonOut_d_ready & fixer_anonOut_d_valid; // @[Decoupled.scala:51:35]
wire [26:0] fixer__d_first_beats1_decode_T = 27'hFFF << fixer_anonOut_d_bits_size; // @[package.scala:243:71]
wire [11:0] fixer__d_first_beats1_decode_T_1 = fixer__d_first_beats1_decode_T[11:0]; // @[package.scala:243:{71,76}]
wire [11:0] fixer__d_first_beats1_decode_T_2 = ~fixer__d_first_beats1_decode_T_1; // @[package.scala:243:{46,76}]
wire [8:0] fixer_d_first_beats1_decode = fixer__d_first_beats1_decode_T_2[11:3]; // @[package.scala:243:46]
wire fixer_d_first_beats1_opdata = fixer_anonOut_d_bits_opcode[0]; // @[Edges.scala:106:36]
wire [8:0] fixer_d_first_beats1 = fixer_d_first_beats1_opdata ? fixer_d_first_beats1_decode : 9'h0; // @[Edges.scala:106:36, :220:59, :221:14]
reg [8:0] fixer_d_first_counter; // @[Edges.scala:229:27]
wire [9:0] fixer__d_first_counter1_T = {1'h0, fixer_d_first_counter} - 10'h1; // @[Edges.scala:229:27, :230:28]
wire [8:0] fixer_d_first_counter1 = fixer__d_first_counter1_T[8:0]; // @[Edges.scala:230:28]
wire fixer_d_first_first = fixer_d_first_counter == 9'h0; // @[Edges.scala:229:27, :231:25]
wire fixer__d_first_last_T = fixer_d_first_counter == 9'h1; // @[Edges.scala:229:27, :232:25]
wire fixer__d_first_last_T_1 = fixer_d_first_beats1 == 9'h0; // @[Edges.scala:221:14, :232:43]
wire fixer_d_first_last = fixer__d_first_last_T | fixer__d_first_last_T_1; // @[Edges.scala:232:{25,33,43}]
wire fixer_d_first_done = fixer_d_first_last & fixer__d_first_T; // @[Decoupled.scala:51:35]
wire [8:0] fixer__d_first_count_T = ~fixer_d_first_counter1; // @[Edges.scala:230:28, :234:27]
wire [8:0] fixer_d_first_count = fixer_d_first_beats1 & fixer__d_first_count_T; // @[Edges.scala:221:14, :234:{25,27}]
wire [8:0] fixer__d_first_counter_T = fixer_d_first_first ? fixer_d_first_beats1 : fixer_d_first_counter1; // @[Edges.scala:221:14, :230:28, :231:25, :236:21]
wire fixer__d_first_T_1 = fixer_anonOut_d_bits_opcode != 3'h6; // @[FIFOFixer.scala:75:63]
wire fixer_d_first = fixer_d_first_first & fixer__d_first_T_1; // @[FIFOFixer.scala:75:{42,63}]
reg fixer_flight_0; // @[FIFOFixer.scala:79:27]
reg fixer_flight_1; // @[FIFOFixer.scala:79:27]
reg fixer_flight_2; // @[FIFOFixer.scala:79:27]
reg fixer_flight_3; // @[FIFOFixer.scala:79:27]
reg fixer_flight_4; // @[FIFOFixer.scala:79:27]
reg fixer_flight_5; // @[FIFOFixer.scala:79:27]
reg fixer_flight_6; // @[FIFOFixer.scala:79:27]
reg fixer_flight_7; // @[FIFOFixer.scala:79:27]
reg fixer_flight_8; // @[FIFOFixer.scala:79:27]
reg fixer_flight_9; // @[FIFOFixer.scala:79:27]
reg fixer_flight_10; // @[FIFOFixer.scala:79:27]
reg fixer_flight_11; // @[FIFOFixer.scala:79:27]
reg fixer_flight_12; // @[FIFOFixer.scala:79:27]
reg fixer_flight_13; // @[FIFOFixer.scala:79:27]
reg fixer_flight_14; // @[FIFOFixer.scala:79:27]
reg fixer_flight_15; // @[FIFOFixer.scala:79:27]
reg fixer_flight_16; // @[FIFOFixer.scala:79:27]
reg fixer_flight_17; // @[FIFOFixer.scala:79:27]
reg fixer_flight_18; // @[FIFOFixer.scala:79:27]
reg fixer_flight_19; // @[FIFOFixer.scala:79:27]
reg fixer_flight_20; // @[FIFOFixer.scala:79:27]
reg fixer_flight_21; // @[FIFOFixer.scala:79:27]
reg fixer_flight_22; // @[FIFOFixer.scala:79:27]
reg fixer_flight_23; // @[FIFOFixer.scala:79:27]
reg fixer_flight_24; // @[FIFOFixer.scala:79:27]
reg fixer_flight_25; // @[FIFOFixer.scala:79:27]
reg fixer_flight_26; // @[FIFOFixer.scala:79:27]
reg fixer_flight_27; // @[FIFOFixer.scala:79:27]
reg fixer_flight_28; // @[FIFOFixer.scala:79:27]
reg fixer_flight_29; // @[FIFOFixer.scala:79:27]
reg fixer_flight_30; // @[FIFOFixer.scala:79:27]
reg fixer_flight_31; // @[FIFOFixer.scala:79:27]
reg fixer_flight_32; // @[FIFOFixer.scala:79:27]
reg fixer_flight_33; // @[FIFOFixer.scala:79:27]
reg fixer_flight_34; // @[FIFOFixer.scala:79:27]
reg fixer_flight_35; // @[FIFOFixer.scala:79:27]
reg fixer_flight_36; // @[FIFOFixer.scala:79:27]
reg fixer_flight_37; // @[FIFOFixer.scala:79:27]
reg fixer_flight_38; // @[FIFOFixer.scala:79:27]
reg fixer_flight_39; // @[FIFOFixer.scala:79:27]
reg fixer_flight_40; // @[FIFOFixer.scala:79:27]
reg fixer_flight_41; // @[FIFOFixer.scala:79:27]
reg fixer_flight_42; // @[FIFOFixer.scala:79:27]
reg fixer_flight_43; // @[FIFOFixer.scala:79:27]
reg fixer_flight_44; // @[FIFOFixer.scala:79:27]
reg fixer_flight_45; // @[FIFOFixer.scala:79:27]
reg fixer_flight_46; // @[FIFOFixer.scala:79:27]
reg fixer_flight_47; // @[FIFOFixer.scala:79:27]
reg fixer_flight_48; // @[FIFOFixer.scala:79:27]
reg fixer_flight_49; // @[FIFOFixer.scala:79:27]
reg fixer_flight_50; // @[FIFOFixer.scala:79:27]
reg fixer_flight_51; // @[FIFOFixer.scala:79:27]
reg fixer_flight_52; // @[FIFOFixer.scala:79:27]
reg fixer_flight_53; // @[FIFOFixer.scala:79:27]
reg fixer_flight_54; // @[FIFOFixer.scala:79:27]
reg fixer_flight_55; // @[FIFOFixer.scala:79:27]
reg fixer_flight_56; // @[FIFOFixer.scala:79:27]
reg fixer_flight_57; // @[FIFOFixer.scala:79:27]
reg fixer_flight_58; // @[FIFOFixer.scala:79:27]
reg fixer_flight_59; // @[FIFOFixer.scala:79:27]
reg fixer_flight_60; // @[FIFOFixer.scala:79:27]
reg fixer_flight_61; // @[FIFOFixer.scala:79:27]
reg fixer_flight_62; // @[FIFOFixer.scala:79:27]
reg fixer_flight_63; // @[FIFOFixer.scala:79:27]
reg fixer_flight_64; // @[FIFOFixer.scala:79:27]
wire fixer__T_2 = fixer_anonIn_d_ready & fixer_anonIn_d_valid; // @[Decoupled.scala:51:35]
assign fixer_anonOut_a_valid = fixer__anonOut_a_valid_T_2; // @[FIFOFixer.scala:95:33]
assign fixer_anonIn_a_ready = fixer__anonIn_a_ready_T_2; // @[FIFOFixer.scala:96:33]
reg [64:0] fixer_SourceIdFIFOed; // @[FIFOFixer.scala:115:35]
wire [64:0] fixer_SourceIdSet; // @[FIFOFixer.scala:116:36]
wire [64:0] fixer_SourceIdClear; // @[FIFOFixer.scala:117:38]
wire [127:0] fixer__SourceIdSet_T = 128'h1 << fixer_anonIn_a_bits_source; // @[OneHot.scala:58:35]
assign fixer_SourceIdSet = fixer_a_first & fixer__a_first_T ? fixer__SourceIdSet_T[64:0] : 65'h0; // @[OneHot.scala:58:35]
wire [127:0] fixer__SourceIdClear_T = 128'h1 << fixer_anonIn_d_bits_source; // @[OneHot.scala:58:35]
assign fixer_SourceIdClear = fixer_d_first & fixer__T_2 ? fixer__SourceIdClear_T[64:0] : 65'h0; // @[OneHot.scala:58:35]
wire [64:0] fixer__SourceIdFIFOed_T = fixer_SourceIdFIFOed | fixer_SourceIdSet; // @[FIFOFixer.scala:115:35, :116:36, :126:40]
wire fixer_allIDs_FIFOed = &fixer_SourceIdFIFOed; // @[FIFOFixer.scala:115:35, :127:41]
wire buffer_1_nodeIn_a_ready; // @[MixedNode.scala:551:17]
wire bus_xingOut_a_ready = buffer_1_auto_in_a_ready; // @[Buffer.scala:40:9]
wire bus_xingOut_a_valid; // @[MixedNode.scala:542:17]
wire buffer_1_nodeIn_a_valid = buffer_1_auto_in_a_valid; // @[Buffer.scala:40:9]
wire [2:0] bus_xingOut_a_bits_opcode; // @[MixedNode.scala:542:17]
wire [2:0] buffer_1_nodeIn_a_bits_opcode = buffer_1_auto_in_a_bits_opcode; // @[Buffer.scala:40:9]
wire [2:0] bus_xingOut_a_bits_param; // @[MixedNode.scala:542:17]
wire [2:0] buffer_1_nodeIn_a_bits_param = buffer_1_auto_in_a_bits_param; // @[Buffer.scala:40:9]
wire [3:0] bus_xingOut_a_bits_size; // @[MixedNode.scala:542:17]
wire [3:0] buffer_1_nodeIn_a_bits_size = buffer_1_auto_in_a_bits_size; // @[Buffer.scala:40:9]
wire [5:0] bus_xingOut_a_bits_source; // @[MixedNode.scala:542:17]
wire [5:0] buffer_1_nodeIn_a_bits_source = buffer_1_auto_in_a_bits_source; // @[Buffer.scala:40:9]
wire [31:0] bus_xingOut_a_bits_address; // @[MixedNode.scala:542:17]
wire [31:0] buffer_1_nodeIn_a_bits_address = buffer_1_auto_in_a_bits_address; // @[Buffer.scala:40:9]
wire [7:0] bus_xingOut_a_bits_mask; // @[MixedNode.scala:542:17]
wire [7:0] buffer_1_nodeIn_a_bits_mask = buffer_1_auto_in_a_bits_mask; // @[Buffer.scala:40:9]
wire [63:0] bus_xingOut_a_bits_data; // @[MixedNode.scala:542:17]
wire [63:0] buffer_1_nodeIn_a_bits_data = buffer_1_auto_in_a_bits_data; // @[Buffer.scala:40:9]
wire bus_xingOut_a_bits_corrupt; // @[MixedNode.scala:542:17]
wire buffer_1_nodeIn_a_bits_corrupt = buffer_1_auto_in_a_bits_corrupt; // @[Buffer.scala:40:9]
wire bus_xingOut_d_ready; // @[MixedNode.scala:542:17]
wire buffer_1_nodeIn_d_ready = buffer_1_auto_in_d_ready; // @[Buffer.scala:40:9]
wire buffer_1_nodeIn_d_valid; // @[MixedNode.scala:551:17]
wire [2:0] buffer_1_nodeIn_d_bits_opcode; // @[MixedNode.scala:551:17]
wire bus_xingOut_d_valid = buffer_1_auto_in_d_valid; // @[Buffer.scala:40:9]
wire [1:0] buffer_1_nodeIn_d_bits_param; // @[MixedNode.scala:551:17]
wire [2:0] bus_xingOut_d_bits_opcode = buffer_1_auto_in_d_bits_opcode; // @[Buffer.scala:40:9]
wire [3:0] buffer_1_nodeIn_d_bits_size; // @[MixedNode.scala:551:17]
wire [1:0] bus_xingOut_d_bits_param = buffer_1_auto_in_d_bits_param; // @[Buffer.scala:40:9]
wire [5:0] buffer_1_nodeIn_d_bits_source; // @[MixedNode.scala:551:17]
wire [3:0] bus_xingOut_d_bits_size = buffer_1_auto_in_d_bits_size; // @[Buffer.scala:40:9]
wire buffer_1_nodeIn_d_bits_sink; // @[MixedNode.scala:551:17]
wire [5:0] bus_xingOut_d_bits_source = buffer_1_auto_in_d_bits_source; // @[Buffer.scala:40:9]
wire buffer_1_nodeIn_d_bits_denied; // @[MixedNode.scala:551:17]
wire bus_xingOut_d_bits_sink = buffer_1_auto_in_d_bits_sink; // @[Buffer.scala:40:9]
wire [63:0] buffer_1_nodeIn_d_bits_data; // @[MixedNode.scala:551:17]
wire bus_xingOut_d_bits_denied = buffer_1_auto_in_d_bits_denied; // @[Buffer.scala:40:9]
wire buffer_1_nodeIn_d_bits_corrupt; // @[MixedNode.scala:551:17]
wire [63:0] bus_xingOut_d_bits_data = buffer_1_auto_in_d_bits_data; // @[Buffer.scala:40:9]
wire bus_xingOut_d_bits_corrupt = buffer_1_auto_in_d_bits_corrupt; // @[Buffer.scala:40:9]
wire buffer_1_nodeOut_a_ready = buffer_1_auto_out_a_ready; // @[Buffer.scala:40:9]
wire buffer_1_nodeOut_a_valid; // @[MixedNode.scala:542:17]
wire [2:0] buffer_1_nodeOut_a_bits_opcode; // @[MixedNode.scala:542:17]
wire [2:0] buffer_1_nodeOut_a_bits_param; // @[MixedNode.scala:542:17]
wire [3:0] buffer_1_nodeOut_a_bits_size; // @[MixedNode.scala:542:17]
wire [5:0] buffer_1_nodeOut_a_bits_source; // @[MixedNode.scala:542:17]
wire [31:0] buffer_1_nodeOut_a_bits_address; // @[MixedNode.scala:542:17]
wire [7:0] buffer_1_nodeOut_a_bits_mask; // @[MixedNode.scala:542:17]
wire [63:0] buffer_1_nodeOut_a_bits_data; // @[MixedNode.scala:542:17]
wire buffer_1_nodeOut_a_bits_corrupt; // @[MixedNode.scala:542:17]
wire buffer_1_nodeOut_d_ready; // @[MixedNode.scala:542:17]
wire buffer_1_nodeOut_d_valid = buffer_1_auto_out_d_valid; // @[Buffer.scala:40:9]
wire [2:0] buffer_1_nodeOut_d_bits_opcode = buffer_1_auto_out_d_bits_opcode; // @[Buffer.scala:40:9]
wire [1:0] buffer_1_nodeOut_d_bits_param = buffer_1_auto_out_d_bits_param; // @[Buffer.scala:40:9]
wire [3:0] buffer_1_nodeOut_d_bits_size = buffer_1_auto_out_d_bits_size; // @[Buffer.scala:40:9]
wire [5:0] buffer_1_nodeOut_d_bits_source = buffer_1_auto_out_d_bits_source; // @[Buffer.scala:40:9]
wire buffer_1_nodeOut_d_bits_sink = buffer_1_auto_out_d_bits_sink; // @[Buffer.scala:40:9]
wire buffer_1_nodeOut_d_bits_denied = buffer_1_auto_out_d_bits_denied; // @[Buffer.scala:40:9]
wire [63:0] buffer_1_nodeOut_d_bits_data = buffer_1_auto_out_d_bits_data; // @[Buffer.scala:40:9]
wire buffer_1_nodeOut_d_bits_corrupt = buffer_1_auto_out_d_bits_corrupt; // @[Buffer.scala:40:9]
wire [2:0] buffer_1_auto_out_a_bits_opcode; // @[Buffer.scala:40:9]
wire [2:0] buffer_1_auto_out_a_bits_param; // @[Buffer.scala:40:9]
wire [3:0] buffer_1_auto_out_a_bits_size; // @[Buffer.scala:40:9]
wire [5:0] buffer_1_auto_out_a_bits_source; // @[Buffer.scala:40:9]
wire [31:0] buffer_1_auto_out_a_bits_address; // @[Buffer.scala:40:9]
wire [7:0] buffer_1_auto_out_a_bits_mask; // @[Buffer.scala:40:9]
wire [63:0] buffer_1_auto_out_a_bits_data; // @[Buffer.scala:40:9]
wire buffer_1_auto_out_a_bits_corrupt; // @[Buffer.scala:40:9]
wire buffer_1_auto_out_a_valid; // @[Buffer.scala:40:9]
wire buffer_1_auto_out_d_ready; // @[Buffer.scala:40:9]
assign buffer_1_nodeIn_a_ready = buffer_1_nodeOut_a_ready; // @[MixedNode.scala:542:17, :551:17]
assign buffer_1_auto_out_a_valid = buffer_1_nodeOut_a_valid; // @[Buffer.scala:40:9]
assign buffer_1_auto_out_a_bits_opcode = buffer_1_nodeOut_a_bits_opcode; // @[Buffer.scala:40:9]
assign buffer_1_auto_out_a_bits_param = buffer_1_nodeOut_a_bits_param; // @[Buffer.scala:40:9]
assign buffer_1_auto_out_a_bits_size = buffer_1_nodeOut_a_bits_size; // @[Buffer.scala:40:9]
assign buffer_1_auto_out_a_bits_source = buffer_1_nodeOut_a_bits_source; // @[Buffer.scala:40:9]
assign buffer_1_auto_out_a_bits_address = buffer_1_nodeOut_a_bits_address; // @[Buffer.scala:40:9]
assign buffer_1_auto_out_a_bits_mask = buffer_1_nodeOut_a_bits_mask; // @[Buffer.scala:40:9]
assign buffer_1_auto_out_a_bits_data = buffer_1_nodeOut_a_bits_data; // @[Buffer.scala:40:9]
assign buffer_1_auto_out_a_bits_corrupt = buffer_1_nodeOut_a_bits_corrupt; // @[Buffer.scala:40:9]
assign buffer_1_auto_out_d_ready = buffer_1_nodeOut_d_ready; // @[Buffer.scala:40:9]
assign buffer_1_nodeIn_d_valid = buffer_1_nodeOut_d_valid; // @[MixedNode.scala:542:17, :551:17]
assign buffer_1_nodeIn_d_bits_opcode = buffer_1_nodeOut_d_bits_opcode; // @[MixedNode.scala:542:17, :551:17]
assign buffer_1_nodeIn_d_bits_param = buffer_1_nodeOut_d_bits_param; // @[MixedNode.scala:542:17, :551:17]
assign buffer_1_nodeIn_d_bits_size = buffer_1_nodeOut_d_bits_size; // @[MixedNode.scala:542:17, :551:17]
assign buffer_1_nodeIn_d_bits_source = buffer_1_nodeOut_d_bits_source; // @[MixedNode.scala:542:17, :551:17]
assign buffer_1_nodeIn_d_bits_sink = buffer_1_nodeOut_d_bits_sink; // @[MixedNode.scala:542:17, :551:17]
assign buffer_1_nodeIn_d_bits_denied = buffer_1_nodeOut_d_bits_denied; // @[MixedNode.scala:542:17, :551:17]
assign buffer_1_nodeIn_d_bits_data = buffer_1_nodeOut_d_bits_data; // @[MixedNode.scala:542:17, :551:17]
assign buffer_1_nodeIn_d_bits_corrupt = buffer_1_nodeOut_d_bits_corrupt; // @[MixedNode.scala:542:17, :551:17]
assign buffer_1_auto_in_a_ready = buffer_1_nodeIn_a_ready; // @[Buffer.scala:40:9]
assign buffer_1_nodeOut_a_valid = buffer_1_nodeIn_a_valid; // @[MixedNode.scala:542:17, :551:17]
assign buffer_1_nodeOut_a_bits_opcode = buffer_1_nodeIn_a_bits_opcode; // @[MixedNode.scala:542:17, :551:17]
assign buffer_1_nodeOut_a_bits_param = buffer_1_nodeIn_a_bits_param; // @[MixedNode.scala:542:17, :551:17]
assign buffer_1_nodeOut_a_bits_size = buffer_1_nodeIn_a_bits_size; // @[MixedNode.scala:542:17, :551:17]
assign buffer_1_nodeOut_a_bits_source = buffer_1_nodeIn_a_bits_source; // @[MixedNode.scala:542:17, :551:17]
assign buffer_1_nodeOut_a_bits_address = buffer_1_nodeIn_a_bits_address; // @[MixedNode.scala:542:17, :551:17]
assign buffer_1_nodeOut_a_bits_mask = buffer_1_nodeIn_a_bits_mask; // @[MixedNode.scala:542:17, :551:17]
assign buffer_1_nodeOut_a_bits_data = buffer_1_nodeIn_a_bits_data; // @[MixedNode.scala:542:17, :551:17]
assign buffer_1_nodeOut_a_bits_corrupt = buffer_1_nodeIn_a_bits_corrupt; // @[MixedNode.scala:542:17, :551:17]
assign buffer_1_nodeOut_d_ready = buffer_1_nodeIn_d_ready; // @[MixedNode.scala:542:17, :551:17]
assign buffer_1_auto_in_d_valid = buffer_1_nodeIn_d_valid; // @[Buffer.scala:40:9]
assign buffer_1_auto_in_d_bits_opcode = buffer_1_nodeIn_d_bits_opcode; // @[Buffer.scala:40:9]
assign buffer_1_auto_in_d_bits_param = buffer_1_nodeIn_d_bits_param; // @[Buffer.scala:40:9]
assign buffer_1_auto_in_d_bits_size = buffer_1_nodeIn_d_bits_size; // @[Buffer.scala:40:9]
assign buffer_1_auto_in_d_bits_source = buffer_1_nodeIn_d_bits_source; // @[Buffer.scala:40:9]
assign buffer_1_auto_in_d_bits_sink = buffer_1_nodeIn_d_bits_sink; // @[Buffer.scala:40:9]
assign buffer_1_auto_in_d_bits_denied = buffer_1_nodeIn_d_bits_denied; // @[Buffer.scala:40:9]
assign buffer_1_auto_in_d_bits_data = buffer_1_nodeIn_d_bits_data; // @[Buffer.scala:40:9]
assign buffer_1_auto_in_d_bits_corrupt = buffer_1_nodeIn_d_bits_corrupt; // @[Buffer.scala:40:9]
wire coupler_to_bus_named_pbus_widget_auto_anon_in_a_ready; // @[WidthWidget.scala:27:9]
wire coupler_to_bus_named_pbus_widget_auto_anon_in_a_valid = coupler_to_bus_named_pbus_auto_widget_anon_in_a_valid; // @[WidthWidget.scala:27:9]
wire [2:0] coupler_to_bus_named_pbus_widget_auto_anon_in_a_bits_opcode = coupler_to_bus_named_pbus_auto_widget_anon_in_a_bits_opcode; // @[WidthWidget.scala:27:9]
wire [2:0] coupler_to_bus_named_pbus_widget_auto_anon_in_a_bits_param = coupler_to_bus_named_pbus_auto_widget_anon_in_a_bits_param; // @[WidthWidget.scala:27:9]
wire [2:0] coupler_to_bus_named_pbus_widget_auto_anon_in_a_bits_size = coupler_to_bus_named_pbus_auto_widget_anon_in_a_bits_size; // @[WidthWidget.scala:27:9]
wire [6:0] coupler_to_bus_named_pbus_widget_auto_anon_in_a_bits_source = coupler_to_bus_named_pbus_auto_widget_anon_in_a_bits_source; // @[WidthWidget.scala:27:9]
wire [28:0] coupler_to_bus_named_pbus_widget_auto_anon_in_a_bits_address = coupler_to_bus_named_pbus_auto_widget_anon_in_a_bits_address; // @[WidthWidget.scala:27:9]
wire [7:0] coupler_to_bus_named_pbus_widget_auto_anon_in_a_bits_mask = coupler_to_bus_named_pbus_auto_widget_anon_in_a_bits_mask; // @[WidthWidget.scala:27:9]
wire [63:0] coupler_to_bus_named_pbus_widget_auto_anon_in_a_bits_data = coupler_to_bus_named_pbus_auto_widget_anon_in_a_bits_data; // @[WidthWidget.scala:27:9]
wire coupler_to_bus_named_pbus_widget_auto_anon_in_a_bits_corrupt = coupler_to_bus_named_pbus_auto_widget_anon_in_a_bits_corrupt; // @[WidthWidget.scala:27:9]
wire coupler_to_bus_named_pbus_widget_auto_anon_in_d_ready = coupler_to_bus_named_pbus_auto_widget_anon_in_d_ready; // @[WidthWidget.scala:27:9]
wire coupler_to_bus_named_pbus_widget_auto_anon_in_d_valid; // @[WidthWidget.scala:27:9]
wire [2:0] coupler_to_bus_named_pbus_widget_auto_anon_in_d_bits_opcode; // @[WidthWidget.scala:27:9]
wire [1:0] coupler_to_bus_named_pbus_widget_auto_anon_in_d_bits_param; // @[WidthWidget.scala:27:9]
wire [2:0] coupler_to_bus_named_pbus_widget_auto_anon_in_d_bits_size; // @[WidthWidget.scala:27:9]
wire [6:0] coupler_to_bus_named_pbus_widget_auto_anon_in_d_bits_source; // @[WidthWidget.scala:27:9]
wire coupler_to_bus_named_pbus_widget_auto_anon_in_d_bits_sink; // @[WidthWidget.scala:27:9]
wire coupler_to_bus_named_pbus_widget_auto_anon_in_d_bits_denied; // @[WidthWidget.scala:27:9]
wire [63:0] coupler_to_bus_named_pbus_widget_auto_anon_in_d_bits_data; // @[WidthWidget.scala:27:9]
wire coupler_to_bus_named_pbus_widget_auto_anon_in_d_bits_corrupt; // @[WidthWidget.scala:27:9]
wire coupler_to_bus_named_pbus_bus_xingOut_a_ready = coupler_to_bus_named_pbus_auto_bus_xing_out_a_ready; // @[MixedNode.scala:542:17]
wire coupler_to_bus_named_pbus_bus_xingOut_a_valid; // @[MixedNode.scala:542:17]
assign auto_coupler_to_bus_named_pbus_bus_xing_out_a_valid_0 = coupler_to_bus_named_pbus_auto_bus_xing_out_a_valid; // @[ClockDomain.scala:14:9]
wire [2:0] coupler_to_bus_named_pbus_bus_xingOut_a_bits_opcode; // @[MixedNode.scala:542:17]
assign auto_coupler_to_bus_named_pbus_bus_xing_out_a_bits_opcode_0 = coupler_to_bus_named_pbus_auto_bus_xing_out_a_bits_opcode; // @[ClockDomain.scala:14:9]
wire [2:0] coupler_to_bus_named_pbus_bus_xingOut_a_bits_param; // @[MixedNode.scala:542:17]
assign auto_coupler_to_bus_named_pbus_bus_xing_out_a_bits_param_0 = coupler_to_bus_named_pbus_auto_bus_xing_out_a_bits_param; // @[ClockDomain.scala:14:9]
wire [2:0] coupler_to_bus_named_pbus_bus_xingOut_a_bits_size; // @[MixedNode.scala:542:17]
assign auto_coupler_to_bus_named_pbus_bus_xing_out_a_bits_size_0 = coupler_to_bus_named_pbus_auto_bus_xing_out_a_bits_size; // @[ClockDomain.scala:14:9]
wire [6:0] coupler_to_bus_named_pbus_bus_xingOut_a_bits_source; // @[MixedNode.scala:542:17]
assign auto_coupler_to_bus_named_pbus_bus_xing_out_a_bits_source_0 = coupler_to_bus_named_pbus_auto_bus_xing_out_a_bits_source; // @[ClockDomain.scala:14:9]
wire [28:0] coupler_to_bus_named_pbus_bus_xingOut_a_bits_address; // @[MixedNode.scala:542:17]
assign auto_coupler_to_bus_named_pbus_bus_xing_out_a_bits_address_0 = coupler_to_bus_named_pbus_auto_bus_xing_out_a_bits_address; // @[ClockDomain.scala:14:9]
wire [7:0] coupler_to_bus_named_pbus_bus_xingOut_a_bits_mask; // @[MixedNode.scala:542:17]
assign auto_coupler_to_bus_named_pbus_bus_xing_out_a_bits_mask_0 = coupler_to_bus_named_pbus_auto_bus_xing_out_a_bits_mask; // @[ClockDomain.scala:14:9]
wire [63:0] coupler_to_bus_named_pbus_bus_xingOut_a_bits_data; // @[MixedNode.scala:542:17]
assign auto_coupler_to_bus_named_pbus_bus_xing_out_a_bits_data_0 = coupler_to_bus_named_pbus_auto_bus_xing_out_a_bits_data; // @[ClockDomain.scala:14:9]
wire coupler_to_bus_named_pbus_bus_xingOut_a_bits_corrupt; // @[MixedNode.scala:542:17]
assign auto_coupler_to_bus_named_pbus_bus_xing_out_a_bits_corrupt_0 = coupler_to_bus_named_pbus_auto_bus_xing_out_a_bits_corrupt; // @[ClockDomain.scala:14:9]
wire coupler_to_bus_named_pbus_bus_xingOut_d_ready; // @[MixedNode.scala:542:17]
assign auto_coupler_to_bus_named_pbus_bus_xing_out_d_ready_0 = coupler_to_bus_named_pbus_auto_bus_xing_out_d_ready; // @[ClockDomain.scala:14:9]
wire coupler_to_bus_named_pbus_bus_xingOut_d_valid = coupler_to_bus_named_pbus_auto_bus_xing_out_d_valid; // @[MixedNode.scala:542:17]
wire [2:0] coupler_to_bus_named_pbus_bus_xingOut_d_bits_opcode = coupler_to_bus_named_pbus_auto_bus_xing_out_d_bits_opcode; // @[MixedNode.scala:542:17]
wire [1:0] coupler_to_bus_named_pbus_bus_xingOut_d_bits_param = coupler_to_bus_named_pbus_auto_bus_xing_out_d_bits_param; // @[MixedNode.scala:542:17]
wire [2:0] coupler_to_bus_named_pbus_bus_xingOut_d_bits_size = coupler_to_bus_named_pbus_auto_bus_xing_out_d_bits_size; // @[MixedNode.scala:542:17]
wire [6:0] coupler_to_bus_named_pbus_bus_xingOut_d_bits_source = coupler_to_bus_named_pbus_auto_bus_xing_out_d_bits_source; // @[MixedNode.scala:542:17]
wire coupler_to_bus_named_pbus_bus_xingOut_d_bits_sink = coupler_to_bus_named_pbus_auto_bus_xing_out_d_bits_sink; // @[MixedNode.scala:542:17]
wire coupler_to_bus_named_pbus_bus_xingOut_d_bits_denied = coupler_to_bus_named_pbus_auto_bus_xing_out_d_bits_denied; // @[MixedNode.scala:542:17]
wire [63:0] coupler_to_bus_named_pbus_bus_xingOut_d_bits_data = coupler_to_bus_named_pbus_auto_bus_xing_out_d_bits_data; // @[MixedNode.scala:542:17]
wire coupler_to_bus_named_pbus_bus_xingOut_d_bits_corrupt = coupler_to_bus_named_pbus_auto_bus_xing_out_d_bits_corrupt; // @[MixedNode.scala:542:17]
wire coupler_to_bus_named_pbus_auto_widget_anon_in_a_ready; // @[LazyModuleImp.scala:138:7]
wire [2:0] coupler_to_bus_named_pbus_auto_widget_anon_in_d_bits_opcode; // @[LazyModuleImp.scala:138:7]
wire [1:0] coupler_to_bus_named_pbus_auto_widget_anon_in_d_bits_param; // @[LazyModuleImp.scala:138:7]
wire [2:0] coupler_to_bus_named_pbus_auto_widget_anon_in_d_bits_size; // @[LazyModuleImp.scala:138:7]
wire [6:0] coupler_to_bus_named_pbus_auto_widget_anon_in_d_bits_source; // @[LazyModuleImp.scala:138:7]
wire coupler_to_bus_named_pbus_auto_widget_anon_in_d_bits_sink; // @[LazyModuleImp.scala:138:7]
wire coupler_to_bus_named_pbus_auto_widget_anon_in_d_bits_denied; // @[LazyModuleImp.scala:138:7]
wire [63:0] coupler_to_bus_named_pbus_auto_widget_anon_in_d_bits_data; // @[LazyModuleImp.scala:138:7]
wire coupler_to_bus_named_pbus_auto_widget_anon_in_d_bits_corrupt; // @[LazyModuleImp.scala:138:7]
wire coupler_to_bus_named_pbus_auto_widget_anon_in_d_valid; // @[LazyModuleImp.scala:138:7]
wire coupler_to_bus_named_pbus_widget_anonIn_a_ready; // @[MixedNode.scala:551:17]
assign coupler_to_bus_named_pbus_auto_widget_anon_in_a_ready = coupler_to_bus_named_pbus_widget_auto_anon_in_a_ready; // @[WidthWidget.scala:27:9]
wire coupler_to_bus_named_pbus_widget_anonIn_a_valid = coupler_to_bus_named_pbus_widget_auto_anon_in_a_valid; // @[WidthWidget.scala:27:9]
wire [2:0] coupler_to_bus_named_pbus_widget_anonIn_a_bits_opcode = coupler_to_bus_named_pbus_widget_auto_anon_in_a_bits_opcode; // @[WidthWidget.scala:27:9]
wire [2:0] coupler_to_bus_named_pbus_widget_anonIn_a_bits_param = coupler_to_bus_named_pbus_widget_auto_anon_in_a_bits_param; // @[WidthWidget.scala:27:9]
wire [2:0] coupler_to_bus_named_pbus_widget_anonIn_a_bits_size = coupler_to_bus_named_pbus_widget_auto_anon_in_a_bits_size; // @[WidthWidget.scala:27:9]
wire [6:0] coupler_to_bus_named_pbus_widget_anonIn_a_bits_source = coupler_to_bus_named_pbus_widget_auto_anon_in_a_bits_source; // @[WidthWidget.scala:27:9]
wire [28:0] coupler_to_bus_named_pbus_widget_anonIn_a_bits_address = coupler_to_bus_named_pbus_widget_auto_anon_in_a_bits_address; // @[WidthWidget.scala:27:9]
wire [7:0] coupler_to_bus_named_pbus_widget_anonIn_a_bits_mask = coupler_to_bus_named_pbus_widget_auto_anon_in_a_bits_mask; // @[WidthWidget.scala:27:9]
wire [63:0] coupler_to_bus_named_pbus_widget_anonIn_a_bits_data = coupler_to_bus_named_pbus_widget_auto_anon_in_a_bits_data; // @[WidthWidget.scala:27:9]
wire coupler_to_bus_named_pbus_widget_anonIn_a_bits_corrupt = coupler_to_bus_named_pbus_widget_auto_anon_in_a_bits_corrupt; // @[WidthWidget.scala:27:9]
wire coupler_to_bus_named_pbus_widget_anonIn_d_ready = coupler_to_bus_named_pbus_widget_auto_anon_in_d_ready; // @[WidthWidget.scala:27:9]
wire coupler_to_bus_named_pbus_widget_anonIn_d_valid; // @[MixedNode.scala:551:17]
assign coupler_to_bus_named_pbus_auto_widget_anon_in_d_valid = coupler_to_bus_named_pbus_widget_auto_anon_in_d_valid; // @[WidthWidget.scala:27:9]
wire [2:0] coupler_to_bus_named_pbus_widget_anonIn_d_bits_opcode; // @[MixedNode.scala:551:17]
assign coupler_to_bus_named_pbus_auto_widget_anon_in_d_bits_opcode = coupler_to_bus_named_pbus_widget_auto_anon_in_d_bits_opcode; // @[WidthWidget.scala:27:9]
wire [1:0] coupler_to_bus_named_pbus_widget_anonIn_d_bits_param; // @[MixedNode.scala:551:17]
assign coupler_to_bus_named_pbus_auto_widget_anon_in_d_bits_param = coupler_to_bus_named_pbus_widget_auto_anon_in_d_bits_param; // @[WidthWidget.scala:27:9]
wire [2:0] coupler_to_bus_named_pbus_widget_anonIn_d_bits_size; // @[MixedNode.scala:551:17]
assign coupler_to_bus_named_pbus_auto_widget_anon_in_d_bits_size = coupler_to_bus_named_pbus_widget_auto_anon_in_d_bits_size; // @[WidthWidget.scala:27:9]
wire [6:0] coupler_to_bus_named_pbus_widget_anonIn_d_bits_source; // @[MixedNode.scala:551:17]
assign coupler_to_bus_named_pbus_auto_widget_anon_in_d_bits_source = coupler_to_bus_named_pbus_widget_auto_anon_in_d_bits_source; // @[WidthWidget.scala:27:9]
wire coupler_to_bus_named_pbus_widget_anonIn_d_bits_sink; // @[MixedNode.scala:551:17]
assign coupler_to_bus_named_pbus_auto_widget_anon_in_d_bits_sink = coupler_to_bus_named_pbus_widget_auto_anon_in_d_bits_sink; // @[WidthWidget.scala:27:9]
wire coupler_to_bus_named_pbus_widget_anonIn_d_bits_denied; // @[MixedNode.scala:551:17]
assign coupler_to_bus_named_pbus_auto_widget_anon_in_d_bits_denied = coupler_to_bus_named_pbus_widget_auto_anon_in_d_bits_denied; // @[WidthWidget.scala:27:9]
wire [63:0] coupler_to_bus_named_pbus_widget_anonIn_d_bits_data; // @[MixedNode.scala:551:17]
assign coupler_to_bus_named_pbus_auto_widget_anon_in_d_bits_data = coupler_to_bus_named_pbus_widget_auto_anon_in_d_bits_data; // @[WidthWidget.scala:27:9]
wire coupler_to_bus_named_pbus_widget_anonIn_d_bits_corrupt; // @[MixedNode.scala:551:17]
assign coupler_to_bus_named_pbus_auto_widget_anon_in_d_bits_corrupt = coupler_to_bus_named_pbus_widget_auto_anon_in_d_bits_corrupt; // @[WidthWidget.scala:27:9]
wire coupler_to_bus_named_pbus_bus_xingIn_a_ready; // @[MixedNode.scala:551:17]
wire coupler_to_bus_named_pbus_widget_anonOut_a_ready = coupler_to_bus_named_pbus_widget_auto_anon_out_a_ready; // @[WidthWidget.scala:27:9]
wire coupler_to_bus_named_pbus_widget_anonOut_a_valid; // @[MixedNode.scala:542:17]
wire [2:0] coupler_to_bus_named_pbus_widget_anonOut_a_bits_opcode; // @[MixedNode.scala:542:17]
wire coupler_to_bus_named_pbus_bus_xingIn_a_valid = coupler_to_bus_named_pbus_widget_auto_anon_out_a_valid; // @[WidthWidget.scala:27:9]
wire [2:0] coupler_to_bus_named_pbus_widget_anonOut_a_bits_param; // @[MixedNode.scala:542:17]
wire [2:0] coupler_to_bus_named_pbus_bus_xingIn_a_bits_opcode = coupler_to_bus_named_pbus_widget_auto_anon_out_a_bits_opcode; // @[WidthWidget.scala:27:9]
wire [2:0] coupler_to_bus_named_pbus_widget_anonOut_a_bits_size; // @[MixedNode.scala:542:17]
wire [2:0] coupler_to_bus_named_pbus_bus_xingIn_a_bits_param = coupler_to_bus_named_pbus_widget_auto_anon_out_a_bits_param; // @[WidthWidget.scala:27:9]
wire [6:0] coupler_to_bus_named_pbus_widget_anonOut_a_bits_source; // @[MixedNode.scala:542:17]
wire [2:0] coupler_to_bus_named_pbus_bus_xingIn_a_bits_size = coupler_to_bus_named_pbus_widget_auto_anon_out_a_bits_size; // @[WidthWidget.scala:27:9]
wire [28:0] coupler_to_bus_named_pbus_widget_anonOut_a_bits_address; // @[MixedNode.scala:542:17]
wire [6:0] coupler_to_bus_named_pbus_bus_xingIn_a_bits_source = coupler_to_bus_named_pbus_widget_auto_anon_out_a_bits_source; // @[WidthWidget.scala:27:9]
wire [7:0] coupler_to_bus_named_pbus_widget_anonOut_a_bits_mask; // @[MixedNode.scala:542:17]
wire [28:0] coupler_to_bus_named_pbus_bus_xingIn_a_bits_address = coupler_to_bus_named_pbus_widget_auto_anon_out_a_bits_address; // @[WidthWidget.scala:27:9]
wire [63:0] coupler_to_bus_named_pbus_widget_anonOut_a_bits_data; // @[MixedNode.scala:542:17]
wire [7:0] coupler_to_bus_named_pbus_bus_xingIn_a_bits_mask = coupler_to_bus_named_pbus_widget_auto_anon_out_a_bits_mask; // @[WidthWidget.scala:27:9]
wire coupler_to_bus_named_pbus_widget_anonOut_a_bits_corrupt; // @[MixedNode.scala:542:17]
wire [63:0] coupler_to_bus_named_pbus_bus_xingIn_a_bits_data = coupler_to_bus_named_pbus_widget_auto_anon_out_a_bits_data; // @[WidthWidget.scala:27:9]
wire coupler_to_bus_named_pbus_widget_anonOut_d_ready; // @[MixedNode.scala:542:17]
wire coupler_to_bus_named_pbus_bus_xingIn_a_bits_corrupt = coupler_to_bus_named_pbus_widget_auto_anon_out_a_bits_corrupt; // @[WidthWidget.scala:27:9]
wire coupler_to_bus_named_pbus_bus_xingIn_d_ready = coupler_to_bus_named_pbus_widget_auto_anon_out_d_ready; // @[WidthWidget.scala:27:9]
wire coupler_to_bus_named_pbus_bus_xingIn_d_valid; // @[MixedNode.scala:551:17]
wire coupler_to_bus_named_pbus_widget_anonOut_d_valid = coupler_to_bus_named_pbus_widget_auto_anon_out_d_valid; // @[WidthWidget.scala:27:9]
wire [2:0] coupler_to_bus_named_pbus_bus_xingIn_d_bits_opcode; // @[MixedNode.scala:551:17]
wire [2:0] coupler_to_bus_named_pbus_widget_anonOut_d_bits_opcode = coupler_to_bus_named_pbus_widget_auto_anon_out_d_bits_opcode; // @[WidthWidget.scala:27:9]
wire [1:0] coupler_to_bus_named_pbus_bus_xingIn_d_bits_param; // @[MixedNode.scala:551:17]
wire [1:0] coupler_to_bus_named_pbus_widget_anonOut_d_bits_param = coupler_to_bus_named_pbus_widget_auto_anon_out_d_bits_param; // @[WidthWidget.scala:27:9]
wire [2:0] coupler_to_bus_named_pbus_bus_xingIn_d_bits_size; // @[MixedNode.scala:551:17]
wire [2:0] coupler_to_bus_named_pbus_widget_anonOut_d_bits_size = coupler_to_bus_named_pbus_widget_auto_anon_out_d_bits_size; // @[WidthWidget.scala:27:9]
wire [6:0] coupler_to_bus_named_pbus_bus_xingIn_d_bits_source; // @[MixedNode.scala:551:17]
wire [6:0] coupler_to_bus_named_pbus_widget_anonOut_d_bits_source = coupler_to_bus_named_pbus_widget_auto_anon_out_d_bits_source; // @[WidthWidget.scala:27:9]
wire coupler_to_bus_named_pbus_bus_xingIn_d_bits_sink; // @[MixedNode.scala:551:17]
wire coupler_to_bus_named_pbus_widget_anonOut_d_bits_sink = coupler_to_bus_named_pbus_widget_auto_anon_out_d_bits_sink; // @[WidthWidget.scala:27:9]
wire coupler_to_bus_named_pbus_bus_xingIn_d_bits_denied; // @[MixedNode.scala:551:17]
wire coupler_to_bus_named_pbus_widget_anonOut_d_bits_denied = coupler_to_bus_named_pbus_widget_auto_anon_out_d_bits_denied; // @[WidthWidget.scala:27:9]
wire [63:0] coupler_to_bus_named_pbus_bus_xingIn_d_bits_data; // @[MixedNode.scala:551:17]
wire [63:0] coupler_to_bus_named_pbus_widget_anonOut_d_bits_data = coupler_to_bus_named_pbus_widget_auto_anon_out_d_bits_data; // @[WidthWidget.scala:27:9]
wire coupler_to_bus_named_pbus_bus_xingIn_d_bits_corrupt; // @[MixedNode.scala:551:17]
wire coupler_to_bus_named_pbus_widget_anonOut_d_bits_corrupt = coupler_to_bus_named_pbus_widget_auto_anon_out_d_bits_corrupt; // @[WidthWidget.scala:27:9]
assign coupler_to_bus_named_pbus_widget_anonIn_a_ready = coupler_to_bus_named_pbus_widget_anonOut_a_ready; // @[MixedNode.scala:542:17, :551:17]
assign coupler_to_bus_named_pbus_widget_auto_anon_out_a_valid = coupler_to_bus_named_pbus_widget_anonOut_a_valid; // @[WidthWidget.scala:27:9]
assign coupler_to_bus_named_pbus_widget_auto_anon_out_a_bits_opcode = coupler_to_bus_named_pbus_widget_anonOut_a_bits_opcode; // @[WidthWidget.scala:27:9]
assign coupler_to_bus_named_pbus_widget_auto_anon_out_a_bits_param = coupler_to_bus_named_pbus_widget_anonOut_a_bits_param; // @[WidthWidget.scala:27:9]
assign coupler_to_bus_named_pbus_widget_auto_anon_out_a_bits_size = coupler_to_bus_named_pbus_widget_anonOut_a_bits_size; // @[WidthWidget.scala:27:9]
assign coupler_to_bus_named_pbus_widget_auto_anon_out_a_bits_source = coupler_to_bus_named_pbus_widget_anonOut_a_bits_source; // @[WidthWidget.scala:27:9]
assign coupler_to_bus_named_pbus_widget_auto_anon_out_a_bits_address = coupler_to_bus_named_pbus_widget_anonOut_a_bits_address; // @[WidthWidget.scala:27:9]
assign coupler_to_bus_named_pbus_widget_auto_anon_out_a_bits_mask = coupler_to_bus_named_pbus_widget_anonOut_a_bits_mask; // @[WidthWidget.scala:27:9]
assign coupler_to_bus_named_pbus_widget_auto_anon_out_a_bits_data = coupler_to_bus_named_pbus_widget_anonOut_a_bits_data; // @[WidthWidget.scala:27:9]
assign coupler_to_bus_named_pbus_widget_auto_anon_out_a_bits_corrupt = coupler_to_bus_named_pbus_widget_anonOut_a_bits_corrupt; // @[WidthWidget.scala:27:9]
assign coupler_to_bus_named_pbus_widget_auto_anon_out_d_ready = coupler_to_bus_named_pbus_widget_anonOut_d_ready; // @[WidthWidget.scala:27:9]
assign coupler_to_bus_named_pbus_widget_anonIn_d_valid = coupler_to_bus_named_pbus_widget_anonOut_d_valid; // @[MixedNode.scala:542:17, :551:17]
assign coupler_to_bus_named_pbus_widget_anonIn_d_bits_opcode = coupler_to_bus_named_pbus_widget_anonOut_d_bits_opcode; // @[MixedNode.scala:542:17, :551:17]
assign coupler_to_bus_named_pbus_widget_anonIn_d_bits_param = coupler_to_bus_named_pbus_widget_anonOut_d_bits_param; // @[MixedNode.scala:542:17, :551:17]
assign coupler_to_bus_named_pbus_widget_anonIn_d_bits_size = coupler_to_bus_named_pbus_widget_anonOut_d_bits_size; // @[MixedNode.scala:542:17, :551:17]
assign coupler_to_bus_named_pbus_widget_anonIn_d_bits_source = coupler_to_bus_named_pbus_widget_anonOut_d_bits_source; // @[MixedNode.scala:542:17, :551:17]
assign coupler_to_bus_named_pbus_widget_anonIn_d_bits_sink = coupler_to_bus_named_pbus_widget_anonOut_d_bits_sink; // @[MixedNode.scala:542:17, :551:17]
assign coupler_to_bus_named_pbus_widget_anonIn_d_bits_denied = coupler_to_bus_named_pbus_widget_anonOut_d_bits_denied; // @[MixedNode.scala:542:17, :551:17]
assign coupler_to_bus_named_pbus_widget_anonIn_d_bits_data = coupler_to_bus_named_pbus_widget_anonOut_d_bits_data; // @[MixedNode.scala:542:17, :551:17]
assign coupler_to_bus_named_pbus_widget_anonIn_d_bits_corrupt = coupler_to_bus_named_pbus_widget_anonOut_d_bits_corrupt; // @[MixedNode.scala:542:17, :551:17]
assign coupler_to_bus_named_pbus_widget_auto_anon_in_a_ready = coupler_to_bus_named_pbus_widget_anonIn_a_ready; // @[WidthWidget.scala:27:9]
assign coupler_to_bus_named_pbus_widget_anonOut_a_valid = coupler_to_bus_named_pbus_widget_anonIn_a_valid; // @[MixedNode.scala:542:17, :551:17]
assign coupler_to_bus_named_pbus_widget_anonOut_a_bits_opcode = coupler_to_bus_named_pbus_widget_anonIn_a_bits_opcode; // @[MixedNode.scala:542:17, :551:17]
assign coupler_to_bus_named_pbus_widget_anonOut_a_bits_param = coupler_to_bus_named_pbus_widget_anonIn_a_bits_param; // @[MixedNode.scala:542:17, :551:17]
assign coupler_to_bus_named_pbus_widget_anonOut_a_bits_size = coupler_to_bus_named_pbus_widget_anonIn_a_bits_size; // @[MixedNode.scala:542:17, :551:17]
assign coupler_to_bus_named_pbus_widget_anonOut_a_bits_source = coupler_to_bus_named_pbus_widget_anonIn_a_bits_source; // @[MixedNode.scala:542:17, :551:17]
assign coupler_to_bus_named_pbus_widget_anonOut_a_bits_address = coupler_to_bus_named_pbus_widget_anonIn_a_bits_address; // @[MixedNode.scala:542:17, :551:17]
assign coupler_to_bus_named_pbus_widget_anonOut_a_bits_mask = coupler_to_bus_named_pbus_widget_anonIn_a_bits_mask; // @[MixedNode.scala:542:17, :551:17]
assign coupler_to_bus_named_pbus_widget_anonOut_a_bits_data = coupler_to_bus_named_pbus_widget_anonIn_a_bits_data; // @[MixedNode.scala:542:17, :551:17]
assign coupler_to_bus_named_pbus_widget_anonOut_a_bits_corrupt = coupler_to_bus_named_pbus_widget_anonIn_a_bits_corrupt; // @[MixedNode.scala:542:17, :551:17]
assign coupler_to_bus_named_pbus_widget_anonOut_d_ready = coupler_to_bus_named_pbus_widget_anonIn_d_ready; // @[MixedNode.scala:542:17, :551:17]
assign coupler_to_bus_named_pbus_widget_auto_anon_in_d_valid = coupler_to_bus_named_pbus_widget_anonIn_d_valid; // @[WidthWidget.scala:27:9]
assign coupler_to_bus_named_pbus_widget_auto_anon_in_d_bits_opcode = coupler_to_bus_named_pbus_widget_anonIn_d_bits_opcode; // @[WidthWidget.scala:27:9]
assign coupler_to_bus_named_pbus_widget_auto_anon_in_d_bits_param = coupler_to_bus_named_pbus_widget_anonIn_d_bits_param; // @[WidthWidget.scala:27:9]
assign coupler_to_bus_named_pbus_widget_auto_anon_in_d_bits_size = coupler_to_bus_named_pbus_widget_anonIn_d_bits_size; // @[WidthWidget.scala:27:9]
assign coupler_to_bus_named_pbus_widget_auto_anon_in_d_bits_source = coupler_to_bus_named_pbus_widget_anonIn_d_bits_source; // @[WidthWidget.scala:27:9]
assign coupler_to_bus_named_pbus_widget_auto_anon_in_d_bits_sink = coupler_to_bus_named_pbus_widget_anonIn_d_bits_sink; // @[WidthWidget.scala:27:9]
assign coupler_to_bus_named_pbus_widget_auto_anon_in_d_bits_denied = coupler_to_bus_named_pbus_widget_anonIn_d_bits_denied; // @[WidthWidget.scala:27:9]
assign coupler_to_bus_named_pbus_widget_auto_anon_in_d_bits_data = coupler_to_bus_named_pbus_widget_anonIn_d_bits_data; // @[WidthWidget.scala:27:9]
assign coupler_to_bus_named_pbus_widget_auto_anon_in_d_bits_corrupt = coupler_to_bus_named_pbus_widget_anonIn_d_bits_corrupt; // @[WidthWidget.scala:27:9]
assign coupler_to_bus_named_pbus_bus_xingIn_a_ready = coupler_to_bus_named_pbus_bus_xingOut_a_ready; // @[MixedNode.scala:542:17, :551:17]
assign coupler_to_bus_named_pbus_auto_bus_xing_out_a_valid = coupler_to_bus_named_pbus_bus_xingOut_a_valid; // @[MixedNode.scala:542:17]
assign coupler_to_bus_named_pbus_auto_bus_xing_out_a_bits_opcode = coupler_to_bus_named_pbus_bus_xingOut_a_bits_opcode; // @[MixedNode.scala:542:17]
assign coupler_to_bus_named_pbus_auto_bus_xing_out_a_bits_param = coupler_to_bus_named_pbus_bus_xingOut_a_bits_param; // @[MixedNode.scala:542:17]
assign coupler_to_bus_named_pbus_auto_bus_xing_out_a_bits_size = coupler_to_bus_named_pbus_bus_xingOut_a_bits_size; // @[MixedNode.scala:542:17]
assign coupler_to_bus_named_pbus_auto_bus_xing_out_a_bits_source = coupler_to_bus_named_pbus_bus_xingOut_a_bits_source; // @[MixedNode.scala:542:17]
assign coupler_to_bus_named_pbus_auto_bus_xing_out_a_bits_address = coupler_to_bus_named_pbus_bus_xingOut_a_bits_address; // @[MixedNode.scala:542:17]
assign coupler_to_bus_named_pbus_auto_bus_xing_out_a_bits_mask = coupler_to_bus_named_pbus_bus_xingOut_a_bits_mask; // @[MixedNode.scala:542:17]
assign coupler_to_bus_named_pbus_auto_bus_xing_out_a_bits_data = coupler_to_bus_named_pbus_bus_xingOut_a_bits_data; // @[MixedNode.scala:542:17]
assign coupler_to_bus_named_pbus_auto_bus_xing_out_a_bits_corrupt = coupler_to_bus_named_pbus_bus_xingOut_a_bits_corrupt; // @[MixedNode.scala:542:17]
assign coupler_to_bus_named_pbus_auto_bus_xing_out_d_ready = coupler_to_bus_named_pbus_bus_xingOut_d_ready; // @[MixedNode.scala:542:17]
assign coupler_to_bus_named_pbus_bus_xingIn_d_valid = coupler_to_bus_named_pbus_bus_xingOut_d_valid; // @[MixedNode.scala:542:17, :551:17]
assign coupler_to_bus_named_pbus_bus_xingIn_d_bits_opcode = coupler_to_bus_named_pbus_bus_xingOut_d_bits_opcode; // @[MixedNode.scala:542:17, :551:17]
assign coupler_to_bus_named_pbus_bus_xingIn_d_bits_param = coupler_to_bus_named_pbus_bus_xingOut_d_bits_param; // @[MixedNode.scala:542:17, :551:17]
assign coupler_to_bus_named_pbus_bus_xingIn_d_bits_size = coupler_to_bus_named_pbus_bus_xingOut_d_bits_size; // @[MixedNode.scala:542:17, :551:17]
assign coupler_to_bus_named_pbus_bus_xingIn_d_bits_source = coupler_to_bus_named_pbus_bus_xingOut_d_bits_source; // @[MixedNode.scala:542:17, :551:17]
assign coupler_to_bus_named_pbus_bus_xingIn_d_bits_sink = coupler_to_bus_named_pbus_bus_xingOut_d_bits_sink; // @[MixedNode.scala:542:17, :551:17]
assign coupler_to_bus_named_pbus_bus_xingIn_d_bits_denied = coupler_to_bus_named_pbus_bus_xingOut_d_bits_denied; // @[MixedNode.scala:542:17, :551:17]
assign coupler_to_bus_named_pbus_bus_xingIn_d_bits_data = coupler_to_bus_named_pbus_bus_xingOut_d_bits_data; // @[MixedNode.scala:542:17, :551:17]
assign coupler_to_bus_named_pbus_bus_xingIn_d_bits_corrupt = coupler_to_bus_named_pbus_bus_xingOut_d_bits_corrupt; // @[MixedNode.scala:542:17, :551:17]
assign coupler_to_bus_named_pbus_widget_auto_anon_out_a_ready = coupler_to_bus_named_pbus_bus_xingIn_a_ready; // @[WidthWidget.scala:27:9]
assign coupler_to_bus_named_pbus_bus_xingOut_a_valid = coupler_to_bus_named_pbus_bus_xingIn_a_valid; // @[MixedNode.scala:542:17, :551:17]
assign coupler_to_bus_named_pbus_bus_xingOut_a_bits_opcode = coupler_to_bus_named_pbus_bus_xingIn_a_bits_opcode; // @[MixedNode.scala:542:17, :551:17]
assign coupler_to_bus_named_pbus_bus_xingOut_a_bits_param = coupler_to_bus_named_pbus_bus_xingIn_a_bits_param; // @[MixedNode.scala:542:17, :551:17]
assign coupler_to_bus_named_pbus_bus_xingOut_a_bits_size = coupler_to_bus_named_pbus_bus_xingIn_a_bits_size; // @[MixedNode.scala:542:17, :551:17]
assign coupler_to_bus_named_pbus_bus_xingOut_a_bits_source = coupler_to_bus_named_pbus_bus_xingIn_a_bits_source; // @[MixedNode.scala:542:17, :551:17]
assign coupler_to_bus_named_pbus_bus_xingOut_a_bits_address = coupler_to_bus_named_pbus_bus_xingIn_a_bits_address; // @[MixedNode.scala:542:17, :551:17]
assign coupler_to_bus_named_pbus_bus_xingOut_a_bits_mask = coupler_to_bus_named_pbus_bus_xingIn_a_bits_mask; // @[MixedNode.scala:542:17, :551:17]
assign coupler_to_bus_named_pbus_bus_xingOut_a_bits_data = coupler_to_bus_named_pbus_bus_xingIn_a_bits_data; // @[MixedNode.scala:542:17, :551:17]
assign coupler_to_bus_named_pbus_bus_xingOut_a_bits_corrupt = coupler_to_bus_named_pbus_bus_xingIn_a_bits_corrupt; // @[MixedNode.scala:542:17, :551:17]
assign coupler_to_bus_named_pbus_bus_xingOut_d_ready = coupler_to_bus_named_pbus_bus_xingIn_d_ready; // @[MixedNode.scala:542:17, :551:17]
assign coupler_to_bus_named_pbus_widget_auto_anon_out_d_valid = coupler_to_bus_named_pbus_bus_xingIn_d_valid; // @[WidthWidget.scala:27:9]
assign coupler_to_bus_named_pbus_widget_auto_anon_out_d_bits_opcode = coupler_to_bus_named_pbus_bus_xingIn_d_bits_opcode; // @[WidthWidget.scala:27:9]
assign coupler_to_bus_named_pbus_widget_auto_anon_out_d_bits_param = coupler_to_bus_named_pbus_bus_xingIn_d_bits_param; // @[WidthWidget.scala:27:9]
assign coupler_to_bus_named_pbus_widget_auto_anon_out_d_bits_size = coupler_to_bus_named_pbus_bus_xingIn_d_bits_size; // @[WidthWidget.scala:27:9]
assign coupler_to_bus_named_pbus_widget_auto_anon_out_d_bits_source = coupler_to_bus_named_pbus_bus_xingIn_d_bits_source; // @[WidthWidget.scala:27:9]
assign coupler_to_bus_named_pbus_widget_auto_anon_out_d_bits_sink = coupler_to_bus_named_pbus_bus_xingIn_d_bits_sink; // @[WidthWidget.scala:27:9]
assign coupler_to_bus_named_pbus_widget_auto_anon_out_d_bits_denied = coupler_to_bus_named_pbus_bus_xingIn_d_bits_denied; // @[WidthWidget.scala:27:9]
assign coupler_to_bus_named_pbus_widget_auto_anon_out_d_bits_data = coupler_to_bus_named_pbus_bus_xingIn_d_bits_data; // @[WidthWidget.scala:27:9]
assign coupler_to_bus_named_pbus_widget_auto_anon_out_d_bits_corrupt = coupler_to_bus_named_pbus_bus_xingIn_d_bits_corrupt; // @[WidthWidget.scala:27:9]
wire coupler_from_port_named_custom_boot_pin_tlIn_a_ready; // @[MixedNode.scala:551:17]
wire nodeOut_a_ready = coupler_from_port_named_custom_boot_pin_auto_tl_in_a_ready; // @[MixedNode.scala:542:17]
wire nodeOut_a_valid; // @[MixedNode.scala:542:17]
wire coupler_from_port_named_custom_boot_pin_tlIn_a_valid = coupler_from_port_named_custom_boot_pin_auto_tl_in_a_valid; // @[MixedNode.scala:551:17]
wire [31:0] nodeOut_a_bits_address; // @[MixedNode.scala:542:17]
wire [31:0] coupler_from_port_named_custom_boot_pin_tlIn_a_bits_address = coupler_from_port_named_custom_boot_pin_auto_tl_in_a_bits_address; // @[MixedNode.scala:551:17]
wire [63:0] nodeOut_a_bits_data; // @[MixedNode.scala:542:17]
wire [63:0] coupler_from_port_named_custom_boot_pin_tlIn_a_bits_data = coupler_from_port_named_custom_boot_pin_auto_tl_in_a_bits_data; // @[MixedNode.scala:551:17]
wire coupler_from_port_named_custom_boot_pin_tlIn_d_valid; // @[MixedNode.scala:551:17]
wire [2:0] coupler_from_port_named_custom_boot_pin_tlIn_d_bits_opcode; // @[MixedNode.scala:551:17]
wire nodeOut_d_valid = coupler_from_port_named_custom_boot_pin_auto_tl_in_d_valid; // @[MixedNode.scala:542:17]
wire [1:0] coupler_from_port_named_custom_boot_pin_tlIn_d_bits_param; // @[MixedNode.scala:551:17]
wire [2:0] nodeOut_d_bits_opcode = coupler_from_port_named_custom_boot_pin_auto_tl_in_d_bits_opcode; // @[MixedNode.scala:542:17]
wire [3:0] coupler_from_port_named_custom_boot_pin_tlIn_d_bits_size; // @[MixedNode.scala:551:17]
wire [1:0] nodeOut_d_bits_param = coupler_from_port_named_custom_boot_pin_auto_tl_in_d_bits_param; // @[MixedNode.scala:542:17]
wire [3:0] nodeOut_d_bits_size = coupler_from_port_named_custom_boot_pin_auto_tl_in_d_bits_size; // @[MixedNode.scala:542:17]
wire coupler_from_port_named_custom_boot_pin_tlIn_d_bits_sink; // @[MixedNode.scala:551:17]
wire coupler_from_port_named_custom_boot_pin_tlIn_d_bits_denied; // @[MixedNode.scala:551:17]
wire nodeOut_d_bits_sink = coupler_from_port_named_custom_boot_pin_auto_tl_in_d_bits_sink; // @[MixedNode.scala:542:17]
wire [63:0] coupler_from_port_named_custom_boot_pin_tlIn_d_bits_data; // @[MixedNode.scala:551:17]
wire nodeOut_d_bits_denied = coupler_from_port_named_custom_boot_pin_auto_tl_in_d_bits_denied; // @[MixedNode.scala:542:17]
wire coupler_from_port_named_custom_boot_pin_tlIn_d_bits_corrupt; // @[MixedNode.scala:551:17]
wire [63:0] nodeOut_d_bits_data = coupler_from_port_named_custom_boot_pin_auto_tl_in_d_bits_data; // @[MixedNode.scala:542:17]
wire nodeOut_d_bits_corrupt = coupler_from_port_named_custom_boot_pin_auto_tl_in_d_bits_corrupt; // @[MixedNode.scala:542:17]
wire coupler_from_port_named_custom_boot_pin_tlOut_a_ready = coupler_from_port_named_custom_boot_pin_auto_tl_out_a_ready; // @[MixedNode.scala:542:17]
wire coupler_from_port_named_custom_boot_pin_tlOut_a_valid; // @[MixedNode.scala:542:17]
wire [31:0] coupler_from_port_named_custom_boot_pin_tlOut_a_bits_address; // @[MixedNode.scala:542:17]
wire [63:0] coupler_from_port_named_custom_boot_pin_tlOut_a_bits_data; // @[MixedNode.scala:542:17]
wire coupler_from_port_named_custom_boot_pin_tlOut_d_valid = coupler_from_port_named_custom_boot_pin_auto_tl_out_d_valid; // @[MixedNode.scala:542:17]
wire [2:0] coupler_from_port_named_custom_boot_pin_tlOut_d_bits_opcode = coupler_from_port_named_custom_boot_pin_auto_tl_out_d_bits_opcode; // @[MixedNode.scala:542:17]
wire [1:0] coupler_from_port_named_custom_boot_pin_tlOut_d_bits_param = coupler_from_port_named_custom_boot_pin_auto_tl_out_d_bits_param; // @[MixedNode.scala:542:17]
wire [3:0] coupler_from_port_named_custom_boot_pin_tlOut_d_bits_size = coupler_from_port_named_custom_boot_pin_auto_tl_out_d_bits_size; // @[MixedNode.scala:542:17]
wire coupler_from_port_named_custom_boot_pin_tlOut_d_bits_sink = coupler_from_port_named_custom_boot_pin_auto_tl_out_d_bits_sink; // @[MixedNode.scala:542:17]
wire coupler_from_port_named_custom_boot_pin_tlOut_d_bits_denied = coupler_from_port_named_custom_boot_pin_auto_tl_out_d_bits_denied; // @[MixedNode.scala:542:17]
wire [63:0] coupler_from_port_named_custom_boot_pin_tlOut_d_bits_data = coupler_from_port_named_custom_boot_pin_auto_tl_out_d_bits_data; // @[MixedNode.scala:542:17]
wire coupler_from_port_named_custom_boot_pin_tlOut_d_bits_corrupt = coupler_from_port_named_custom_boot_pin_auto_tl_out_d_bits_corrupt; // @[MixedNode.scala:542:17]
wire [31:0] coupler_from_port_named_custom_boot_pin_auto_tl_out_a_bits_address; // @[LazyModuleImp.scala:138:7]
wire [63:0] coupler_from_port_named_custom_boot_pin_auto_tl_out_a_bits_data; // @[LazyModuleImp.scala:138:7]
wire coupler_from_port_named_custom_boot_pin_auto_tl_out_a_valid; // @[LazyModuleImp.scala:138:7]
assign coupler_from_port_named_custom_boot_pin_tlIn_a_ready = coupler_from_port_named_custom_boot_pin_tlOut_a_ready; // @[MixedNode.scala:542:17, :551:17]
assign coupler_from_port_named_custom_boot_pin_auto_tl_out_a_valid = coupler_from_port_named_custom_boot_pin_tlOut_a_valid; // @[MixedNode.scala:542:17]
assign coupler_from_port_named_custom_boot_pin_auto_tl_out_a_bits_address = coupler_from_port_named_custom_boot_pin_tlOut_a_bits_address; // @[MixedNode.scala:542:17]
assign coupler_from_port_named_custom_boot_pin_auto_tl_out_a_bits_data = coupler_from_port_named_custom_boot_pin_tlOut_a_bits_data; // @[MixedNode.scala:542:17]
assign coupler_from_port_named_custom_boot_pin_tlIn_d_valid = coupler_from_port_named_custom_boot_pin_tlOut_d_valid; // @[MixedNode.scala:542:17, :551:17]
assign coupler_from_port_named_custom_boot_pin_tlIn_d_bits_opcode = coupler_from_port_named_custom_boot_pin_tlOut_d_bits_opcode; // @[MixedNode.scala:542:17, :551:17]
assign coupler_from_port_named_custom_boot_pin_tlIn_d_bits_param = coupler_from_port_named_custom_boot_pin_tlOut_d_bits_param; // @[MixedNode.scala:542:17, :551:17]
assign coupler_from_port_named_custom_boot_pin_tlIn_d_bits_size = coupler_from_port_named_custom_boot_pin_tlOut_d_bits_size; // @[MixedNode.scala:542:17, :551:17]
assign coupler_from_port_named_custom_boot_pin_tlIn_d_bits_sink = coupler_from_port_named_custom_boot_pin_tlOut_d_bits_sink; // @[MixedNode.scala:542:17, :551:17]
assign coupler_from_port_named_custom_boot_pin_tlIn_d_bits_denied = coupler_from_port_named_custom_boot_pin_tlOut_d_bits_denied; // @[MixedNode.scala:542:17, :551:17]
assign coupler_from_port_named_custom_boot_pin_tlIn_d_bits_data = coupler_from_port_named_custom_boot_pin_tlOut_d_bits_data; // @[MixedNode.scala:542:17, :551:17]
assign coupler_from_port_named_custom_boot_pin_tlIn_d_bits_corrupt = coupler_from_port_named_custom_boot_pin_tlOut_d_bits_corrupt; // @[MixedNode.scala:542:17, :551:17]
assign coupler_from_port_named_custom_boot_pin_auto_tl_in_a_ready = coupler_from_port_named_custom_boot_pin_tlIn_a_ready; // @[MixedNode.scala:551:17]
assign coupler_from_port_named_custom_boot_pin_tlOut_a_valid = coupler_from_port_named_custom_boot_pin_tlIn_a_valid; // @[MixedNode.scala:542:17, :551:17]
assign coupler_from_port_named_custom_boot_pin_tlOut_a_bits_address = coupler_from_port_named_custom_boot_pin_tlIn_a_bits_address; // @[MixedNode.scala:542:17, :551:17]
assign coupler_from_port_named_custom_boot_pin_tlOut_a_bits_data = coupler_from_port_named_custom_boot_pin_tlIn_a_bits_data; // @[MixedNode.scala:542:17, :551:17]
assign coupler_from_port_named_custom_boot_pin_auto_tl_in_d_valid = coupler_from_port_named_custom_boot_pin_tlIn_d_valid; // @[MixedNode.scala:551:17]
assign coupler_from_port_named_custom_boot_pin_auto_tl_in_d_bits_opcode = coupler_from_port_named_custom_boot_pin_tlIn_d_bits_opcode; // @[MixedNode.scala:551:17]
assign coupler_from_port_named_custom_boot_pin_auto_tl_in_d_bits_param = coupler_from_port_named_custom_boot_pin_tlIn_d_bits_param; // @[MixedNode.scala:551:17]
assign coupler_from_port_named_custom_boot_pin_auto_tl_in_d_bits_size = coupler_from_port_named_custom_boot_pin_tlIn_d_bits_size; // @[MixedNode.scala:551:17]
assign coupler_from_port_named_custom_boot_pin_auto_tl_in_d_bits_sink = coupler_from_port_named_custom_boot_pin_tlIn_d_bits_sink; // @[MixedNode.scala:551:17]
assign coupler_from_port_named_custom_boot_pin_auto_tl_in_d_bits_denied = coupler_from_port_named_custom_boot_pin_tlIn_d_bits_denied; // @[MixedNode.scala:551:17]
assign coupler_from_port_named_custom_boot_pin_auto_tl_in_d_bits_data = coupler_from_port_named_custom_boot_pin_tlIn_d_bits_data; // @[MixedNode.scala:551:17]
assign coupler_from_port_named_custom_boot_pin_auto_tl_in_d_bits_corrupt = coupler_from_port_named_custom_boot_pin_tlIn_d_bits_corrupt; // @[MixedNode.scala:551:17]
assign childClock = clockSinkNodeIn_clock; // @[MixedNode.scala:551:17]
assign childReset = clockSinkNodeIn_reset; // @[MixedNode.scala:551:17]
assign bus_xingIn_a_ready = bus_xingOut_a_ready; // @[MixedNode.scala:542:17, :551:17]
assign buffer_1_auto_in_a_valid = bus_xingOut_a_valid; // @[Buffer.scala:40:9]
assign buffer_1_auto_in_a_bits_opcode = bus_xingOut_a_bits_opcode; // @[Buffer.scala:40:9]
assign buffer_1_auto_in_a_bits_param = bus_xingOut_a_bits_param; // @[Buffer.scala:40:9]
assign buffer_1_auto_in_a_bits_size = bus_xingOut_a_bits_size; // @[Buffer.scala:40:9]
assign buffer_1_auto_in_a_bits_source = bus_xingOut_a_bits_source; // @[Buffer.scala:40:9]
assign buffer_1_auto_in_a_bits_address = bus_xingOut_a_bits_address; // @[Buffer.scala:40:9]
assign buffer_1_auto_in_a_bits_mask = bus_xingOut_a_bits_mask; // @[Buffer.scala:40:9]
assign buffer_1_auto_in_a_bits_data = bus_xingOut_a_bits_data; // @[Buffer.scala:40:9]
assign buffer_1_auto_in_a_bits_corrupt = bus_xingOut_a_bits_corrupt; // @[Buffer.scala:40:9]
assign buffer_1_auto_in_d_ready = bus_xingOut_d_ready; // @[Buffer.scala:40:9]
assign bus_xingIn_d_valid = bus_xingOut_d_valid; // @[MixedNode.scala:542:17, :551:17]
assign bus_xingIn_d_bits_opcode = bus_xingOut_d_bits_opcode; // @[MixedNode.scala:542:17, :551:17]
assign bus_xingIn_d_bits_param = bus_xingOut_d_bits_param; // @[MixedNode.scala:542:17, :551:17]
assign bus_xingIn_d_bits_size = bus_xingOut_d_bits_size; // @[MixedNode.scala:542:17, :551:17]
assign bus_xingIn_d_bits_source = bus_xingOut_d_bits_source; // @[MixedNode.scala:542:17, :551:17]
assign bus_xingIn_d_bits_sink = bus_xingOut_d_bits_sink; // @[MixedNode.scala:542:17, :551:17]
assign bus_xingIn_d_bits_denied = bus_xingOut_d_bits_denied; // @[MixedNode.scala:542:17, :551:17]
assign bus_xingIn_d_bits_data = bus_xingOut_d_bits_data; // @[MixedNode.scala:542:17, :551:17]
assign bus_xingIn_d_bits_corrupt = bus_xingOut_d_bits_corrupt; // @[MixedNode.scala:542:17, :551:17]
assign auto_bus_xing_in_a_ready_0 = bus_xingIn_a_ready; // @[ClockDomain.scala:14:9]
assign bus_xingOut_a_valid = bus_xingIn_a_valid; // @[MixedNode.scala:542:17, :551:17]
assign bus_xingOut_a_bits_opcode = bus_xingIn_a_bits_opcode; // @[MixedNode.scala:542:17, :551:17]
assign bus_xingOut_a_bits_param = bus_xingIn_a_bits_param; // @[MixedNode.scala:542:17, :551:17]
assign bus_xingOut_a_bits_size = bus_xingIn_a_bits_size; // @[MixedNode.scala:542:17, :551:17]
assign bus_xingOut_a_bits_source = bus_xingIn_a_bits_source; // @[MixedNode.scala:542:17, :551:17]
assign bus_xingOut_a_bits_address = bus_xingIn_a_bits_address; // @[MixedNode.scala:542:17, :551:17]
assign bus_xingOut_a_bits_mask = bus_xingIn_a_bits_mask; // @[MixedNode.scala:542:17, :551:17]
assign bus_xingOut_a_bits_data = bus_xingIn_a_bits_data; // @[MixedNode.scala:542:17, :551:17]
assign bus_xingOut_a_bits_corrupt = bus_xingIn_a_bits_corrupt; // @[MixedNode.scala:542:17, :551:17]
assign bus_xingOut_d_ready = bus_xingIn_d_ready; // @[MixedNode.scala:542:17, :551:17]
assign auto_bus_xing_in_d_valid_0 = bus_xingIn_d_valid; // @[ClockDomain.scala:14:9]
assign auto_bus_xing_in_d_bits_opcode_0 = bus_xingIn_d_bits_opcode; // @[ClockDomain.scala:14:9]
assign auto_bus_xing_in_d_bits_param_0 = bus_xingIn_d_bits_param; // @[ClockDomain.scala:14:9]
assign auto_bus_xing_in_d_bits_size_0 = bus_xingIn_d_bits_size; // @[ClockDomain.scala:14:9]
assign auto_bus_xing_in_d_bits_source_0 = bus_xingIn_d_bits_source; // @[ClockDomain.scala:14:9]
assign auto_bus_xing_in_d_bits_sink_0 = bus_xingIn_d_bits_sink; // @[ClockDomain.scala:14:9]
assign auto_bus_xing_in_d_bits_denied_0 = bus_xingIn_d_bits_denied; // @[ClockDomain.scala:14:9]
assign auto_bus_xing_in_d_bits_data_0 = bus_xingIn_d_bits_data; // @[ClockDomain.scala:14:9]
assign auto_bus_xing_in_d_bits_corrupt_0 = bus_xingIn_d_bits_corrupt; // @[ClockDomain.scala:14:9]
assign coupler_from_port_named_custom_boot_pin_auto_tl_in_a_valid = nodeOut_a_valid; // @[MixedNode.scala:542:17]
assign coupler_from_port_named_custom_boot_pin_auto_tl_in_a_bits_address = nodeOut_a_bits_address; // @[MixedNode.scala:542:17]
assign coupler_from_port_named_custom_boot_pin_auto_tl_in_a_bits_data = nodeOut_a_bits_data; // @[MixedNode.scala:542:17]
reg [2:0] state; // @[CustomBootPin.scala:39:28]
wire _T_1 = state == 3'h1; // @[CustomBootPin.scala:39:28, :43:24]
assign nodeOut_a_valid = (|state) & (_T_1 | state != 3'h2 & state == 3'h3); // @[CustomBootPin.scala:39:28, :40:20, :43:24, :46:24]
assign nodeOut_a_bits_address = _T_1 ? 32'h1000 : 32'h2000000; // @[CustomBootPin.scala:43:24, :47:23]
assign nodeOut_a_bits_data = _T_1 ? 64'h80000000 : 64'h1; // @[CustomBootPin.scala:43:24, :47:23]
wire fixer__T_1 = fixer_a_first & fixer__a_first_T; // @[Decoupled.scala:51:35]
wire fixer__T_3 = fixer_d_first & fixer__T_2; // @[Decoupled.scala:51:35]
wire [2:0] _GEN = state == 3'h5 & ~custom_boot ? 3'h0 : state; // @[CustomBootPin.scala:39:28, :43:24, :67:{29,43,51}]
wire [7:0][2:0] _GEN_0 = {{_GEN}, {_GEN}, {_GEN}, {nodeOut_d_valid ? 3'h5 : state}, {nodeOut_a_ready & nodeOut_a_valid ? 3'h4 : state}, {nodeOut_d_valid ? 3'h3 : state}, {nodeOut_a_ready & nodeOut_a_valid ? 3'h2 : state}, {custom_boot ? 3'h1 : state}}; // @[Decoupled.scala:51:35]
always @(posedge childClock) begin // @[LazyModuleImp.scala:155:31]
if (childReset) begin // @[LazyModuleImp.scala:155:31, :158:31]
fixer_a_first_counter <= 9'h0; // @[Edges.scala:229:27]
fixer_d_first_counter <= 9'h0; // @[Edges.scala:229:27]
fixer_flight_0 <= 1'h0; // @[FIFOFixer.scala:79:27]
fixer_flight_1 <= 1'h0; // @[FIFOFixer.scala:79:27]
fixer_flight_2 <= 1'h0; // @[FIFOFixer.scala:79:27]
fixer_flight_3 <= 1'h0; // @[FIFOFixer.scala:79:27]
fixer_flight_4 <= 1'h0; // @[FIFOFixer.scala:79:27]
fixer_flight_5 <= 1'h0; // @[FIFOFixer.scala:79:27]
fixer_flight_6 <= 1'h0; // @[FIFOFixer.scala:79:27]
fixer_flight_7 <= 1'h0; // @[FIFOFixer.scala:79:27]
fixer_flight_8 <= 1'h0; // @[FIFOFixer.scala:79:27]
fixer_flight_9 <= 1'h0; // @[FIFOFixer.scala:79:27]
fixer_flight_10 <= 1'h0; // @[FIFOFixer.scala:79:27]
fixer_flight_11 <= 1'h0; // @[FIFOFixer.scala:79:27]
fixer_flight_12 <= 1'h0; // @[FIFOFixer.scala:79:27]
fixer_flight_13 <= 1'h0; // @[FIFOFixer.scala:79:27]
fixer_flight_14 <= 1'h0; // @[FIFOFixer.scala:79:27]
fixer_flight_15 <= 1'h0; // @[FIFOFixer.scala:79:27]
fixer_flight_16 <= 1'h0; // @[FIFOFixer.scala:79:27]
fixer_flight_17 <= 1'h0; // @[FIFOFixer.scala:79:27]
fixer_flight_18 <= 1'h0; // @[FIFOFixer.scala:79:27]
fixer_flight_19 <= 1'h0; // @[FIFOFixer.scala:79:27]
fixer_flight_20 <= 1'h0; // @[FIFOFixer.scala:79:27]
fixer_flight_21 <= 1'h0; // @[FIFOFixer.scala:79:27]
fixer_flight_22 <= 1'h0; // @[FIFOFixer.scala:79:27]
fixer_flight_23 <= 1'h0; // @[FIFOFixer.scala:79:27]
fixer_flight_24 <= 1'h0; // @[FIFOFixer.scala:79:27]
fixer_flight_25 <= 1'h0; // @[FIFOFixer.scala:79:27]
fixer_flight_26 <= 1'h0; // @[FIFOFixer.scala:79:27]
fixer_flight_27 <= 1'h0; // @[FIFOFixer.scala:79:27]
fixer_flight_28 <= 1'h0; // @[FIFOFixer.scala:79:27]
fixer_flight_29 <= 1'h0; // @[FIFOFixer.scala:79:27]
fixer_flight_30 <= 1'h0; // @[FIFOFixer.scala:79:27]
fixer_flight_31 <= 1'h0; // @[FIFOFixer.scala:79:27]
fixer_flight_32 <= 1'h0; // @[FIFOFixer.scala:79:27]
fixer_flight_33 <= 1'h0; // @[FIFOFixer.scala:79:27]
fixer_flight_34 <= 1'h0; // @[FIFOFixer.scala:79:27]
fixer_flight_35 <= 1'h0; // @[FIFOFixer.scala:79:27]
fixer_flight_36 <= 1'h0; // @[FIFOFixer.scala:79:27]
fixer_flight_37 <= 1'h0; // @[FIFOFixer.scala:79:27]
fixer_flight_38 <= 1'h0; // @[FIFOFixer.scala:79:27]
fixer_flight_39 <= 1'h0; // @[FIFOFixer.scala:79:27]
fixer_flight_40 <= 1'h0; // @[FIFOFixer.scala:79:27]
fixer_flight_41 <= 1'h0; // @[FIFOFixer.scala:79:27]
fixer_flight_42 <= 1'h0; // @[FIFOFixer.scala:79:27]
fixer_flight_43 <= 1'h0; // @[FIFOFixer.scala:79:27]
fixer_flight_44 <= 1'h0; // @[FIFOFixer.scala:79:27]
fixer_flight_45 <= 1'h0; // @[FIFOFixer.scala:79:27]
fixer_flight_46 <= 1'h0; // @[FIFOFixer.scala:79:27]
fixer_flight_47 <= 1'h0; // @[FIFOFixer.scala:79:27]
fixer_flight_48 <= 1'h0; // @[FIFOFixer.scala:79:27]
fixer_flight_49 <= 1'h0; // @[FIFOFixer.scala:79:27]
fixer_flight_50 <= 1'h0; // @[FIFOFixer.scala:79:27]
fixer_flight_51 <= 1'h0; // @[FIFOFixer.scala:79:27]
fixer_flight_52 <= 1'h0; // @[FIFOFixer.scala:79:27]
fixer_flight_53 <= 1'h0; // @[FIFOFixer.scala:79:27]
fixer_flight_54 <= 1'h0; // @[FIFOFixer.scala:79:27]
fixer_flight_55 <= 1'h0; // @[FIFOFixer.scala:79:27]
fixer_flight_56 <= 1'h0; // @[FIFOFixer.scala:79:27]
fixer_flight_57 <= 1'h0; // @[FIFOFixer.scala:79:27]
fixer_flight_58 <= 1'h0; // @[FIFOFixer.scala:79:27]
fixer_flight_59 <= 1'h0; // @[FIFOFixer.scala:79:27]
fixer_flight_60 <= 1'h0; // @[FIFOFixer.scala:79:27]
fixer_flight_61 <= 1'h0; // @[FIFOFixer.scala:79:27]
fixer_flight_62 <= 1'h0; // @[FIFOFixer.scala:79:27]
fixer_flight_63 <= 1'h0; // @[FIFOFixer.scala:79:27]
fixer_flight_64 <= 1'h0; // @[FIFOFixer.scala:79:27]
fixer_SourceIdFIFOed <= 65'h0; // @[FIFOFixer.scala:115:35]
state <= 3'h0; // @[CustomBootPin.scala:39:28]
end
else begin // @[LazyModuleImp.scala:155:31]
if (fixer__a_first_T) // @[Decoupled.scala:51:35]
fixer_a_first_counter <= fixer__a_first_counter_T; // @[Edges.scala:229:27, :236:21]
if (fixer__d_first_T) // @[Decoupled.scala:51:35]
fixer_d_first_counter <= fixer__d_first_counter_T; // @[Edges.scala:229:27, :236:21]
fixer_flight_0 <= ~(fixer__T_3 & fixer_anonIn_d_bits_source == 7'h0) & (fixer__T_1 & fixer_anonIn_a_bits_source == 7'h0 | fixer_flight_0); // @[FIFOFixer.scala:79:27, :80:{21,35,62}, :81:{21,35,62}]
fixer_flight_1 <= ~(fixer__T_3 & fixer_anonIn_d_bits_source == 7'h1) & (fixer__T_1 & fixer_anonIn_a_bits_source == 7'h1 | fixer_flight_1); // @[FIFOFixer.scala:79:27, :80:{21,35,62}, :81:{21,35,62}]
fixer_flight_2 <= ~(fixer__T_3 & fixer_anonIn_d_bits_source == 7'h2) & (fixer__T_1 & fixer_anonIn_a_bits_source == 7'h2 | fixer_flight_2); // @[FIFOFixer.scala:79:27, :80:{21,35,62}, :81:{21,35,62}]
fixer_flight_3 <= ~(fixer__T_3 & fixer_anonIn_d_bits_source == 7'h3) & (fixer__T_1 & fixer_anonIn_a_bits_source == 7'h3 | fixer_flight_3); // @[FIFOFixer.scala:79:27, :80:{21,35,62}, :81:{21,35,62}]
fixer_flight_4 <= ~(fixer__T_3 & fixer_anonIn_d_bits_source == 7'h4) & (fixer__T_1 & fixer_anonIn_a_bits_source == 7'h4 | fixer_flight_4); // @[FIFOFixer.scala:79:27, :80:{21,35,62}, :81:{21,35,62}]
fixer_flight_5 <= ~(fixer__T_3 & fixer_anonIn_d_bits_source == 7'h5) & (fixer__T_1 & fixer_anonIn_a_bits_source == 7'h5 | fixer_flight_5); // @[FIFOFixer.scala:79:27, :80:{21,35,62}, :81:{21,35,62}]
fixer_flight_6 <= ~(fixer__T_3 & fixer_anonIn_d_bits_source == 7'h6) & (fixer__T_1 & fixer_anonIn_a_bits_source == 7'h6 | fixer_flight_6); // @[FIFOFixer.scala:79:27, :80:{21,35,62}, :81:{21,35,62}]
fixer_flight_7 <= ~(fixer__T_3 & fixer_anonIn_d_bits_source == 7'h7) & (fixer__T_1 & fixer_anonIn_a_bits_source == 7'h7 | fixer_flight_7); // @[FIFOFixer.scala:79:27, :80:{21,35,62}, :81:{21,35,62}]
fixer_flight_8 <= ~(fixer__T_3 & fixer_anonIn_d_bits_source == 7'h8) & (fixer__T_1 & fixer_anonIn_a_bits_source == 7'h8 | fixer_flight_8); // @[FIFOFixer.scala:79:27, :80:{21,35,62}, :81:{21,35,62}]
fixer_flight_9 <= ~(fixer__T_3 & fixer_anonIn_d_bits_source == 7'h9) & (fixer__T_1 & fixer_anonIn_a_bits_source == 7'h9 | fixer_flight_9); // @[FIFOFixer.scala:79:27, :80:{21,35,62}, :81:{21,35,62}]
fixer_flight_10 <= ~(fixer__T_3 & fixer_anonIn_d_bits_source == 7'hA) & (fixer__T_1 & fixer_anonIn_a_bits_source == 7'hA | fixer_flight_10); // @[FIFOFixer.scala:79:27, :80:{21,35,62}, :81:{21,35,62}]
fixer_flight_11 <= ~(fixer__T_3 & fixer_anonIn_d_bits_source == 7'hB) & (fixer__T_1 & fixer_anonIn_a_bits_source == 7'hB | fixer_flight_11); // @[FIFOFixer.scala:79:27, :80:{21,35,62}, :81:{21,35,62}]
fixer_flight_12 <= ~(fixer__T_3 & fixer_anonIn_d_bits_source == 7'hC) & (fixer__T_1 & fixer_anonIn_a_bits_source == 7'hC | fixer_flight_12); // @[FIFOFixer.scala:79:27, :80:{21,35,62}, :81:{21,35,62}]
fixer_flight_13 <= ~(fixer__T_3 & fixer_anonIn_d_bits_source == 7'hD) & (fixer__T_1 & fixer_anonIn_a_bits_source == 7'hD | fixer_flight_13); // @[FIFOFixer.scala:79:27, :80:{21,35,62}, :81:{21,35,62}]
fixer_flight_14 <= ~(fixer__T_3 & fixer_anonIn_d_bits_source == 7'hE) & (fixer__T_1 & fixer_anonIn_a_bits_source == 7'hE | fixer_flight_14); // @[FIFOFixer.scala:79:27, :80:{21,35,62}, :81:{21,35,62}]
fixer_flight_15 <= ~(fixer__T_3 & fixer_anonIn_d_bits_source == 7'hF) & (fixer__T_1 & fixer_anonIn_a_bits_source == 7'hF | fixer_flight_15); // @[FIFOFixer.scala:79:27, :80:{21,35,62}, :81:{21,35,62}]
fixer_flight_16 <= ~(fixer__T_3 & fixer_anonIn_d_bits_source == 7'h10) & (fixer__T_1 & fixer_anonIn_a_bits_source == 7'h10 | fixer_flight_16); // @[FIFOFixer.scala:79:27, :80:{21,35,62}, :81:{21,35,62}]
fixer_flight_17 <= ~(fixer__T_3 & fixer_anonIn_d_bits_source == 7'h11) & (fixer__T_1 & fixer_anonIn_a_bits_source == 7'h11 | fixer_flight_17); // @[FIFOFixer.scala:79:27, :80:{21,35,62}, :81:{21,35,62}]
fixer_flight_18 <= ~(fixer__T_3 & fixer_anonIn_d_bits_source == 7'h12) & (fixer__T_1 & fixer_anonIn_a_bits_source == 7'h12 | fixer_flight_18); // @[FIFOFixer.scala:79:27, :80:{21,35,62}, :81:{21,35,62}]
fixer_flight_19 <= ~(fixer__T_3 & fixer_anonIn_d_bits_source == 7'h13) & (fixer__T_1 & fixer_anonIn_a_bits_source == 7'h13 | fixer_flight_19); // @[FIFOFixer.scala:79:27, :80:{21,35,62}, :81:{21,35,62}]
fixer_flight_20 <= ~(fixer__T_3 & fixer_anonIn_d_bits_source == 7'h14) & (fixer__T_1 & fixer_anonIn_a_bits_source == 7'h14 | fixer_flight_20); // @[FIFOFixer.scala:79:27, :80:{21,35,62}, :81:{21,35,62}]
fixer_flight_21 <= ~(fixer__T_3 & fixer_anonIn_d_bits_source == 7'h15) & (fixer__T_1 & fixer_anonIn_a_bits_source == 7'h15 | fixer_flight_21); // @[FIFOFixer.scala:79:27, :80:{21,35,62}, :81:{21,35,62}]
fixer_flight_22 <= ~(fixer__T_3 & fixer_anonIn_d_bits_source == 7'h16) & (fixer__T_1 & fixer_anonIn_a_bits_source == 7'h16 | fixer_flight_22); // @[FIFOFixer.scala:79:27, :80:{21,35,62}, :81:{21,35,62}]
fixer_flight_23 <= ~(fixer__T_3 & fixer_anonIn_d_bits_source == 7'h17) & (fixer__T_1 & fixer_anonIn_a_bits_source == 7'h17 | fixer_flight_23); // @[FIFOFixer.scala:79:27, :80:{21,35,62}, :81:{21,35,62}]
fixer_flight_24 <= ~(fixer__T_3 & fixer_anonIn_d_bits_source == 7'h18) & (fixer__T_1 & fixer_anonIn_a_bits_source == 7'h18 | fixer_flight_24); // @[FIFOFixer.scala:79:27, :80:{21,35,62}, :81:{21,35,62}]
fixer_flight_25 <= ~(fixer__T_3 & fixer_anonIn_d_bits_source == 7'h19) & (fixer__T_1 & fixer_anonIn_a_bits_source == 7'h19 | fixer_flight_25); // @[FIFOFixer.scala:79:27, :80:{21,35,62}, :81:{21,35,62}]
fixer_flight_26 <= ~(fixer__T_3 & fixer_anonIn_d_bits_source == 7'h1A) & (fixer__T_1 & fixer_anonIn_a_bits_source == 7'h1A | fixer_flight_26); // @[FIFOFixer.scala:79:27, :80:{21,35,62}, :81:{21,35,62}]
fixer_flight_27 <= ~(fixer__T_3 & fixer_anonIn_d_bits_source == 7'h1B) & (fixer__T_1 & fixer_anonIn_a_bits_source == 7'h1B | fixer_flight_27); // @[FIFOFixer.scala:79:27, :80:{21,35,62}, :81:{21,35,62}]
fixer_flight_28 <= ~(fixer__T_3 & fixer_anonIn_d_bits_source == 7'h1C) & (fixer__T_1 & fixer_anonIn_a_bits_source == 7'h1C | fixer_flight_28); // @[FIFOFixer.scala:79:27, :80:{21,35,62}, :81:{21,35,62}]
fixer_flight_29 <= ~(fixer__T_3 & fixer_anonIn_d_bits_source == 7'h1D) & (fixer__T_1 & fixer_anonIn_a_bits_source == 7'h1D | fixer_flight_29); // @[FIFOFixer.scala:79:27, :80:{21,35,62}, :81:{21,35,62}]
fixer_flight_30 <= ~(fixer__T_3 & fixer_anonIn_d_bits_source == 7'h1E) & (fixer__T_1 & fixer_anonIn_a_bits_source == 7'h1E | fixer_flight_30); // @[FIFOFixer.scala:79:27, :80:{21,35,62}, :81:{21,35,62}]
fixer_flight_31 <= ~(fixer__T_3 & fixer_anonIn_d_bits_source == 7'h1F) & (fixer__T_1 & fixer_anonIn_a_bits_source == 7'h1F | fixer_flight_31); // @[FIFOFixer.scala:79:27, :80:{21,35,62}, :81:{21,35,62}]
fixer_flight_32 <= ~(fixer__T_3 & fixer_anonIn_d_bits_source == 7'h20) & (fixer__T_1 & fixer_anonIn_a_bits_source == 7'h20 | fixer_flight_32); // @[FIFOFixer.scala:79:27, :80:{21,35,62}, :81:{21,35,62}]
fixer_flight_33 <= ~(fixer__T_3 & fixer_anonIn_d_bits_source == 7'h21) & (fixer__T_1 & fixer_anonIn_a_bits_source == 7'h21 | fixer_flight_33); // @[FIFOFixer.scala:79:27, :80:{21,35,62}, :81:{21,35,62}]
fixer_flight_34 <= ~(fixer__T_3 & fixer_anonIn_d_bits_source == 7'h22) & (fixer__T_1 & fixer_anonIn_a_bits_source == 7'h22 | fixer_flight_34); // @[FIFOFixer.scala:79:27, :80:{21,35,62}, :81:{21,35,62}]
fixer_flight_35 <= ~(fixer__T_3 & fixer_anonIn_d_bits_source == 7'h23) & (fixer__T_1 & fixer_anonIn_a_bits_source == 7'h23 | fixer_flight_35); // @[FIFOFixer.scala:79:27, :80:{21,35,62}, :81:{21,35,62}]
fixer_flight_36 <= ~(fixer__T_3 & fixer_anonIn_d_bits_source == 7'h24) & (fixer__T_1 & fixer_anonIn_a_bits_source == 7'h24 | fixer_flight_36); // @[FIFOFixer.scala:79:27, :80:{21,35,62}, :81:{21,35,62}]
fixer_flight_37 <= ~(fixer__T_3 & fixer_anonIn_d_bits_source == 7'h25) & (fixer__T_1 & fixer_anonIn_a_bits_source == 7'h25 | fixer_flight_37); // @[FIFOFixer.scala:79:27, :80:{21,35,62}, :81:{21,35,62}]
fixer_flight_38 <= ~(fixer__T_3 & fixer_anonIn_d_bits_source == 7'h26) & (fixer__T_1 & fixer_anonIn_a_bits_source == 7'h26 | fixer_flight_38); // @[FIFOFixer.scala:79:27, :80:{21,35,62}, :81:{21,35,62}]
fixer_flight_39 <= ~(fixer__T_3 & fixer_anonIn_d_bits_source == 7'h27) & (fixer__T_1 & fixer_anonIn_a_bits_source == 7'h27 | fixer_flight_39); // @[FIFOFixer.scala:79:27, :80:{21,35,62}, :81:{21,35,62}]
fixer_flight_40 <= ~(fixer__T_3 & fixer_anonIn_d_bits_source == 7'h28) & (fixer__T_1 & fixer_anonIn_a_bits_source == 7'h28 | fixer_flight_40); // @[FIFOFixer.scala:79:27, :80:{21,35,62}, :81:{21,35,62}]
fixer_flight_41 <= ~(fixer__T_3 & fixer_anonIn_d_bits_source == 7'h29) & (fixer__T_1 & fixer_anonIn_a_bits_source == 7'h29 | fixer_flight_41); // @[FIFOFixer.scala:79:27, :80:{21,35,62}, :81:{21,35,62}]
fixer_flight_42 <= ~(fixer__T_3 & fixer_anonIn_d_bits_source == 7'h2A) & (fixer__T_1 & fixer_anonIn_a_bits_source == 7'h2A | fixer_flight_42); // @[FIFOFixer.scala:79:27, :80:{21,35,62}, :81:{21,35,62}]
fixer_flight_43 <= ~(fixer__T_3 & fixer_anonIn_d_bits_source == 7'h2B) & (fixer__T_1 & fixer_anonIn_a_bits_source == 7'h2B | fixer_flight_43); // @[FIFOFixer.scala:79:27, :80:{21,35,62}, :81:{21,35,62}]
fixer_flight_44 <= ~(fixer__T_3 & fixer_anonIn_d_bits_source == 7'h2C) & (fixer__T_1 & fixer_anonIn_a_bits_source == 7'h2C | fixer_flight_44); // @[FIFOFixer.scala:79:27, :80:{21,35,62}, :81:{21,35,62}]
fixer_flight_45 <= ~(fixer__T_3 & fixer_anonIn_d_bits_source == 7'h2D) & (fixer__T_1 & fixer_anonIn_a_bits_source == 7'h2D | fixer_flight_45); // @[FIFOFixer.scala:79:27, :80:{21,35,62}, :81:{21,35,62}]
fixer_flight_46 <= ~(fixer__T_3 & fixer_anonIn_d_bits_source == 7'h2E) & (fixer__T_1 & fixer_anonIn_a_bits_source == 7'h2E | fixer_flight_46); // @[FIFOFixer.scala:79:27, :80:{21,35,62}, :81:{21,35,62}]
fixer_flight_47 <= ~(fixer__T_3 & fixer_anonIn_d_bits_source == 7'h2F) & (fixer__T_1 & fixer_anonIn_a_bits_source == 7'h2F | fixer_flight_47); // @[FIFOFixer.scala:79:27, :80:{21,35,62}, :81:{21,35,62}]
fixer_flight_48 <= ~(fixer__T_3 & fixer_anonIn_d_bits_source == 7'h30) & (fixer__T_1 & fixer_anonIn_a_bits_source == 7'h30 | fixer_flight_48); // @[FIFOFixer.scala:79:27, :80:{21,35,62}, :81:{21,35,62}]
fixer_flight_49 <= ~(fixer__T_3 & fixer_anonIn_d_bits_source == 7'h31) & (fixer__T_1 & fixer_anonIn_a_bits_source == 7'h31 | fixer_flight_49); // @[FIFOFixer.scala:79:27, :80:{21,35,62}, :81:{21,35,62}]
fixer_flight_50 <= ~(fixer__T_3 & fixer_anonIn_d_bits_source == 7'h32) & (fixer__T_1 & fixer_anonIn_a_bits_source == 7'h32 | fixer_flight_50); // @[FIFOFixer.scala:79:27, :80:{21,35,62}, :81:{21,35,62}]
fixer_flight_51 <= ~(fixer__T_3 & fixer_anonIn_d_bits_source == 7'h33) & (fixer__T_1 & fixer_anonIn_a_bits_source == 7'h33 | fixer_flight_51); // @[FIFOFixer.scala:79:27, :80:{21,35,62}, :81:{21,35,62}]
fixer_flight_52 <= ~(fixer__T_3 & fixer_anonIn_d_bits_source == 7'h34) & (fixer__T_1 & fixer_anonIn_a_bits_source == 7'h34 | fixer_flight_52); // @[FIFOFixer.scala:79:27, :80:{21,35,62}, :81:{21,35,62}]
fixer_flight_53 <= ~(fixer__T_3 & fixer_anonIn_d_bits_source == 7'h35) & (fixer__T_1 & fixer_anonIn_a_bits_source == 7'h35 | fixer_flight_53); // @[FIFOFixer.scala:79:27, :80:{21,35,62}, :81:{21,35,62}]
fixer_flight_54 <= ~(fixer__T_3 & fixer_anonIn_d_bits_source == 7'h36) & (fixer__T_1 & fixer_anonIn_a_bits_source == 7'h36 | fixer_flight_54); // @[FIFOFixer.scala:79:27, :80:{21,35,62}, :81:{21,35,62}]
fixer_flight_55 <= ~(fixer__T_3 & fixer_anonIn_d_bits_source == 7'h37) & (fixer__T_1 & fixer_anonIn_a_bits_source == 7'h37 | fixer_flight_55); // @[FIFOFixer.scala:79:27, :80:{21,35,62}, :81:{21,35,62}]
fixer_flight_56 <= ~(fixer__T_3 & fixer_anonIn_d_bits_source == 7'h38) & (fixer__T_1 & fixer_anonIn_a_bits_source == 7'h38 | fixer_flight_56); // @[FIFOFixer.scala:79:27, :80:{21,35,62}, :81:{21,35,62}]
fixer_flight_57 <= ~(fixer__T_3 & fixer_anonIn_d_bits_source == 7'h39) & (fixer__T_1 & fixer_anonIn_a_bits_source == 7'h39 | fixer_flight_57); // @[FIFOFixer.scala:79:27, :80:{21,35,62}, :81:{21,35,62}]
fixer_flight_58 <= ~(fixer__T_3 & fixer_anonIn_d_bits_source == 7'h3A) & (fixer__T_1 & fixer_anonIn_a_bits_source == 7'h3A | fixer_flight_58); // @[FIFOFixer.scala:79:27, :80:{21,35,62}, :81:{21,35,62}]
fixer_flight_59 <= ~(fixer__T_3 & fixer_anonIn_d_bits_source == 7'h3B) & (fixer__T_1 & fixer_anonIn_a_bits_source == 7'h3B | fixer_flight_59); // @[FIFOFixer.scala:79:27, :80:{21,35,62}, :81:{21,35,62}]
fixer_flight_60 <= ~(fixer__T_3 & fixer_anonIn_d_bits_source == 7'h3C) & (fixer__T_1 & fixer_anonIn_a_bits_source == 7'h3C | fixer_flight_60); // @[FIFOFixer.scala:79:27, :80:{21,35,62}, :81:{21,35,62}]
fixer_flight_61 <= ~(fixer__T_3 & fixer_anonIn_d_bits_source == 7'h3D) & (fixer__T_1 & fixer_anonIn_a_bits_source == 7'h3D | fixer_flight_61); // @[FIFOFixer.scala:79:27, :80:{21,35,62}, :81:{21,35,62}]
fixer_flight_62 <= ~(fixer__T_3 & fixer_anonIn_d_bits_source == 7'h3E) & (fixer__T_1 & fixer_anonIn_a_bits_source == 7'h3E | fixer_flight_62); // @[FIFOFixer.scala:79:27, :80:{21,35,62}, :81:{21,35,62}]
fixer_flight_63 <= ~(fixer__T_3 & fixer_anonIn_d_bits_source == 7'h3F) & (fixer__T_1 & fixer_anonIn_a_bits_source == 7'h3F | fixer_flight_63); // @[FIFOFixer.scala:79:27, :80:{21,35,62}, :81:{21,35,62}]
fixer_flight_64 <= ~(fixer__T_3 & fixer_anonIn_d_bits_source == 7'h40) & (fixer__T_1 & fixer_anonIn_a_bits_source == 7'h40 | fixer_flight_64); // @[FIFOFixer.scala:79:27, :80:{21,35,62}, :81:{21,35,62}]
fixer_SourceIdFIFOed <= fixer__SourceIdFIFOed_T; // @[FIFOFixer.scala:115:35, :126:40]
state <= _GEN_0[state]; // @[CustomBootPin.scala:39:28, :43:24, :44:46, :53:30, :55:58, :64:30, :66:50]
end
always @(posedge)
FixedClockBroadcast_7 fixedClockNode ( // @[ClockGroup.scala:115:114]
.auto_anon_in_clock (clockGroup_auto_out_clock), // @[ClockGroup.scala:24:9]
.auto_anon_in_reset (clockGroup_auto_out_reset), // @[ClockGroup.scala:24:9]
.auto_anon_out_6_clock (auto_fixedClockNode_anon_out_5_clock_0),
.auto_anon_out_6_reset (auto_fixedClockNode_anon_out_5_reset_0),
.auto_anon_out_5_clock (auto_fixedClockNode_anon_out_4_clock_0),
.auto_anon_out_5_reset (auto_fixedClockNode_anon_out_4_reset_0),
.auto_anon_out_4_clock (auto_fixedClockNode_anon_out_3_clock_0),
.auto_anon_out_4_reset (auto_fixedClockNode_anon_out_3_reset_0),
.auto_anon_out_3_clock (auto_fixedClockNode_anon_out_2_clock_0),
.auto_anon_out_3_reset (auto_fixedClockNode_anon_out_2_reset_0),
.auto_anon_out_2_clock (auto_fixedClockNode_anon_out_1_clock_0),
.auto_anon_out_2_reset (auto_fixedClockNode_anon_out_1_reset_0),
.auto_anon_out_1_clock (auto_fixedClockNode_anon_out_0_clock_0),
.auto_anon_out_1_reset (auto_fixedClockNode_anon_out_0_reset_0),
.auto_anon_out_0_clock (clockSinkNodeIn_clock),
.auto_anon_out_0_reset (clockSinkNodeIn_reset)
); // @[ClockGroup.scala:115:114]
TLXbar_cbus_in_i2_o1_a32d64s7k1z4u in_xbar ( // @[PeripheryBus.scala:56:29]
.clock (childClock), // @[LazyModuleImp.scala:155:31]
.reset (childReset), // @[LazyModuleImp.scala:158:31]
.auto_anon_in_1_a_ready (coupler_from_port_named_custom_boot_pin_auto_tl_out_a_ready),
.auto_anon_in_1_a_valid (coupler_from_port_named_custom_boot_pin_auto_tl_out_a_valid), // @[LazyModuleImp.scala:138:7]
.auto_anon_in_1_a_bits_address (coupler_from_port_named_custom_boot_pin_auto_tl_out_a_bits_address), // @[LazyModuleImp.scala:138:7]
.auto_anon_in_1_a_bits_data (coupler_from_port_named_custom_boot_pin_auto_tl_out_a_bits_data), // @[LazyModuleImp.scala:138:7]
.auto_anon_in_1_d_valid (coupler_from_port_named_custom_boot_pin_auto_tl_out_d_valid),
.auto_anon_in_1_d_bits_opcode (coupler_from_port_named_custom_boot_pin_auto_tl_out_d_bits_opcode),
.auto_anon_in_1_d_bits_param (coupler_from_port_named_custom_boot_pin_auto_tl_out_d_bits_param),
.auto_anon_in_1_d_bits_size (coupler_from_port_named_custom_boot_pin_auto_tl_out_d_bits_size),
.auto_anon_in_1_d_bits_sink (coupler_from_port_named_custom_boot_pin_auto_tl_out_d_bits_sink),
.auto_anon_in_1_d_bits_denied (coupler_from_port_named_custom_boot_pin_auto_tl_out_d_bits_denied),
.auto_anon_in_1_d_bits_data (coupler_from_port_named_custom_boot_pin_auto_tl_out_d_bits_data),
.auto_anon_in_1_d_bits_corrupt (coupler_from_port_named_custom_boot_pin_auto_tl_out_d_bits_corrupt),
.auto_anon_in_0_a_ready (buffer_1_auto_out_a_ready),
.auto_anon_in_0_a_valid (buffer_1_auto_out_a_valid), // @[Buffer.scala:40:9]
.auto_anon_in_0_a_bits_opcode (buffer_1_auto_out_a_bits_opcode), // @[Buffer.scala:40:9]
.auto_anon_in_0_a_bits_param (buffer_1_auto_out_a_bits_param), // @[Buffer.scala:40:9]
.auto_anon_in_0_a_bits_size (buffer_1_auto_out_a_bits_size), // @[Buffer.scala:40:9]
.auto_anon_in_0_a_bits_source (buffer_1_auto_out_a_bits_source), // @[Buffer.scala:40:9]
.auto_anon_in_0_a_bits_address (buffer_1_auto_out_a_bits_address), // @[Buffer.scala:40:9]
.auto_anon_in_0_a_bits_mask (buffer_1_auto_out_a_bits_mask), // @[Buffer.scala:40:9]
.auto_anon_in_0_a_bits_data (buffer_1_auto_out_a_bits_data), // @[Buffer.scala:40:9]
.auto_anon_in_0_a_bits_corrupt (buffer_1_auto_out_a_bits_corrupt), // @[Buffer.scala:40:9]
.auto_anon_in_0_d_ready (buffer_1_auto_out_d_ready), // @[Buffer.scala:40:9]
.auto_anon_in_0_d_valid (buffer_1_auto_out_d_valid),
.auto_anon_in_0_d_bits_opcode (buffer_1_auto_out_d_bits_opcode),
.auto_anon_in_0_d_bits_param (buffer_1_auto_out_d_bits_param),
.auto_anon_in_0_d_bits_size (buffer_1_auto_out_d_bits_size),
.auto_anon_in_0_d_bits_source (buffer_1_auto_out_d_bits_source),
.auto_anon_in_0_d_bits_sink (buffer_1_auto_out_d_bits_sink),
.auto_anon_in_0_d_bits_denied (buffer_1_auto_out_d_bits_denied),
.auto_anon_in_0_d_bits_data (buffer_1_auto_out_d_bits_data),
.auto_anon_in_0_d_bits_corrupt (buffer_1_auto_out_d_bits_corrupt),
.auto_anon_out_a_ready (_atomics_auto_in_a_ready), // @[AtomicAutomata.scala:289:29]
.auto_anon_out_a_valid (_in_xbar_auto_anon_out_a_valid),
.auto_anon_out_a_bits_opcode (_in_xbar_auto_anon_out_a_bits_opcode),
.auto_anon_out_a_bits_param (_in_xbar_auto_anon_out_a_bits_param),
.auto_anon_out_a_bits_size (_in_xbar_auto_anon_out_a_bits_size),
.auto_anon_out_a_bits_source (_in_xbar_auto_anon_out_a_bits_source),
.auto_anon_out_a_bits_address (_in_xbar_auto_anon_out_a_bits_address),
.auto_anon_out_a_bits_mask (_in_xbar_auto_anon_out_a_bits_mask),
.auto_anon_out_a_bits_data (_in_xbar_auto_anon_out_a_bits_data),
.auto_anon_out_a_bits_corrupt (_in_xbar_auto_anon_out_a_bits_corrupt),
.auto_anon_out_d_ready (_in_xbar_auto_anon_out_d_ready),
.auto_anon_out_d_valid (_atomics_auto_in_d_valid), // @[AtomicAutomata.scala:289:29]
.auto_anon_out_d_bits_opcode (_atomics_auto_in_d_bits_opcode), // @[AtomicAutomata.scala:289:29]
.auto_anon_out_d_bits_param (_atomics_auto_in_d_bits_param), // @[AtomicAutomata.scala:289:29]
.auto_anon_out_d_bits_size (_atomics_auto_in_d_bits_size), // @[AtomicAutomata.scala:289:29]
.auto_anon_out_d_bits_source (_atomics_auto_in_d_bits_source), // @[AtomicAutomata.scala:289:29]
.auto_anon_out_d_bits_sink (_atomics_auto_in_d_bits_sink), // @[AtomicAutomata.scala:289:29]
.auto_anon_out_d_bits_denied (_atomics_auto_in_d_bits_denied), // @[AtomicAutomata.scala:289:29]
.auto_anon_out_d_bits_data (_atomics_auto_in_d_bits_data), // @[AtomicAutomata.scala:289:29]
.auto_anon_out_d_bits_corrupt (_atomics_auto_in_d_bits_corrupt) // @[AtomicAutomata.scala:289:29]
); // @[PeripheryBus.scala:56:29]
TLXbar_cbus_out_i1_o8_a32d64s7k1z4u out_xbar ( // @[PeripheryBus.scala:57:30]
.clock (childClock), // @[LazyModuleImp.scala:155:31]
.reset (childReset), // @[LazyModuleImp.scala:158:31]
.auto_anon_in_a_ready (fixer_auto_anon_out_a_ready),
.auto_anon_in_a_valid (fixer_auto_anon_out_a_valid), // @[FIFOFixer.scala:50:9]
.auto_anon_in_a_bits_opcode (fixer_auto_anon_out_a_bits_opcode), // @[FIFOFixer.scala:50:9]
.auto_anon_in_a_bits_param (fixer_auto_anon_out_a_bits_param), // @[FIFOFixer.scala:50:9]
.auto_anon_in_a_bits_size (fixer_auto_anon_out_a_bits_size), // @[FIFOFixer.scala:50:9]
.auto_anon_in_a_bits_source (fixer_auto_anon_out_a_bits_source), // @[FIFOFixer.scala:50:9]
.auto_anon_in_a_bits_address (fixer_auto_anon_out_a_bits_address), // @[FIFOFixer.scala:50:9]
.auto_anon_in_a_bits_mask (fixer_auto_anon_out_a_bits_mask), // @[FIFOFixer.scala:50:9]
.auto_anon_in_a_bits_data (fixer_auto_anon_out_a_bits_data), // @[FIFOFixer.scala:50:9]
.auto_anon_in_a_bits_corrupt (fixer_auto_anon_out_a_bits_corrupt), // @[FIFOFixer.scala:50:9]
.auto_anon_in_d_ready (fixer_auto_anon_out_d_ready), // @[FIFOFixer.scala:50:9]
.auto_anon_in_d_valid (fixer_auto_anon_out_d_valid),
.auto_anon_in_d_bits_opcode (fixer_auto_anon_out_d_bits_opcode),
.auto_anon_in_d_bits_param (fixer_auto_anon_out_d_bits_param),
.auto_anon_in_d_bits_size (fixer_auto_anon_out_d_bits_size),
.auto_anon_in_d_bits_source (fixer_auto_anon_out_d_bits_source),
.auto_anon_in_d_bits_sink (fixer_auto_anon_out_d_bits_sink),
.auto_anon_in_d_bits_denied (fixer_auto_anon_out_d_bits_denied),
.auto_anon_in_d_bits_data (fixer_auto_anon_out_d_bits_data),
.auto_anon_in_d_bits_corrupt (fixer_auto_anon_out_d_bits_corrupt),
.auto_anon_out_7_a_ready (_coupler_to_prci_ctrl_auto_tl_in_a_ready), // @[LazyScope.scala:98:27]
.auto_anon_out_7_a_valid (_out_xbar_auto_anon_out_7_a_valid),
.auto_anon_out_7_a_bits_opcode (_out_xbar_auto_anon_out_7_a_bits_opcode),
.auto_anon_out_7_a_bits_param (_out_xbar_auto_anon_out_7_a_bits_param),
.auto_anon_out_7_a_bits_size (_out_xbar_auto_anon_out_7_a_bits_size),
.auto_anon_out_7_a_bits_source (_out_xbar_auto_anon_out_7_a_bits_source),
.auto_anon_out_7_a_bits_address (_out_xbar_auto_anon_out_7_a_bits_address),
.auto_anon_out_7_a_bits_mask (_out_xbar_auto_anon_out_7_a_bits_mask),
.auto_anon_out_7_a_bits_data (_out_xbar_auto_anon_out_7_a_bits_data),
.auto_anon_out_7_a_bits_corrupt (_out_xbar_auto_anon_out_7_a_bits_corrupt),
.auto_anon_out_7_d_ready (_out_xbar_auto_anon_out_7_d_ready),
.auto_anon_out_7_d_valid (_coupler_to_prci_ctrl_auto_tl_in_d_valid), // @[LazyScope.scala:98:27]
.auto_anon_out_7_d_bits_opcode (_coupler_to_prci_ctrl_auto_tl_in_d_bits_opcode), // @[LazyScope.scala:98:27]
.auto_anon_out_7_d_bits_param (_coupler_to_prci_ctrl_auto_tl_in_d_bits_param), // @[LazyScope.scala:98:27]
.auto_anon_out_7_d_bits_size (_coupler_to_prci_ctrl_auto_tl_in_d_bits_size), // @[LazyScope.scala:98:27]
.auto_anon_out_7_d_bits_source (_coupler_to_prci_ctrl_auto_tl_in_d_bits_source), // @[LazyScope.scala:98:27]
.auto_anon_out_7_d_bits_sink (_coupler_to_prci_ctrl_auto_tl_in_d_bits_sink), // @[LazyScope.scala:98:27]
.auto_anon_out_7_d_bits_denied (_coupler_to_prci_ctrl_auto_tl_in_d_bits_denied), // @[LazyScope.scala:98:27]
.auto_anon_out_7_d_bits_data (_coupler_to_prci_ctrl_auto_tl_in_d_bits_data), // @[LazyScope.scala:98:27]
.auto_anon_out_7_d_bits_corrupt (_coupler_to_prci_ctrl_auto_tl_in_d_bits_corrupt), // @[LazyScope.scala:98:27]
.auto_anon_out_6_a_ready (_coupler_to_bootrom_auto_tl_in_a_ready), // @[LazyScope.scala:98:27]
.auto_anon_out_6_a_valid (_out_xbar_auto_anon_out_6_a_valid),
.auto_anon_out_6_a_bits_opcode (_out_xbar_auto_anon_out_6_a_bits_opcode),
.auto_anon_out_6_a_bits_param (_out_xbar_auto_anon_out_6_a_bits_param),
.auto_anon_out_6_a_bits_size (_out_xbar_auto_anon_out_6_a_bits_size),
.auto_anon_out_6_a_bits_source (_out_xbar_auto_anon_out_6_a_bits_source),
.auto_anon_out_6_a_bits_address (_out_xbar_auto_anon_out_6_a_bits_address),
.auto_anon_out_6_a_bits_mask (_out_xbar_auto_anon_out_6_a_bits_mask),
.auto_anon_out_6_a_bits_data (_out_xbar_auto_anon_out_6_a_bits_data),
.auto_anon_out_6_a_bits_corrupt (_out_xbar_auto_anon_out_6_a_bits_corrupt),
.auto_anon_out_6_d_ready (_out_xbar_auto_anon_out_6_d_ready),
.auto_anon_out_6_d_valid (_coupler_to_bootrom_auto_tl_in_d_valid), // @[LazyScope.scala:98:27]
.auto_anon_out_6_d_bits_size (_coupler_to_bootrom_auto_tl_in_d_bits_size), // @[LazyScope.scala:98:27]
.auto_anon_out_6_d_bits_source (_coupler_to_bootrom_auto_tl_in_d_bits_source), // @[LazyScope.scala:98:27]
.auto_anon_out_6_d_bits_data (_coupler_to_bootrom_auto_tl_in_d_bits_data), // @[LazyScope.scala:98:27]
.auto_anon_out_5_a_ready (_coupler_to_rockettile_auto_tl_in_a_ready), // @[LazyScope.scala:98:27]
.auto_anon_out_5_a_valid (_out_xbar_auto_anon_out_5_a_valid),
.auto_anon_out_5_a_bits_opcode (_out_xbar_auto_anon_out_5_a_bits_opcode),
.auto_anon_out_5_a_bits_param (_out_xbar_auto_anon_out_5_a_bits_param),
.auto_anon_out_5_a_bits_size (_out_xbar_auto_anon_out_5_a_bits_size),
.auto_anon_out_5_a_bits_source (_out_xbar_auto_anon_out_5_a_bits_source),
.auto_anon_out_5_a_bits_address (_out_xbar_auto_anon_out_5_a_bits_address),
.auto_anon_out_5_a_bits_mask (_out_xbar_auto_anon_out_5_a_bits_mask),
.auto_anon_out_5_a_bits_data (_out_xbar_auto_anon_out_5_a_bits_data),
.auto_anon_out_5_a_bits_corrupt (_out_xbar_auto_anon_out_5_a_bits_corrupt),
.auto_anon_out_5_d_ready (_out_xbar_auto_anon_out_5_d_ready),
.auto_anon_out_5_d_valid (_coupler_to_rockettile_auto_tl_in_d_valid), // @[LazyScope.scala:98:27]
.auto_anon_out_5_d_bits_opcode (_coupler_to_rockettile_auto_tl_in_d_bits_opcode), // @[LazyScope.scala:98:27]
.auto_anon_out_5_d_bits_param (_coupler_to_rockettile_auto_tl_in_d_bits_param), // @[LazyScope.scala:98:27]
.auto_anon_out_5_d_bits_size (_coupler_to_rockettile_auto_tl_in_d_bits_size), // @[LazyScope.scala:98:27]
.auto_anon_out_5_d_bits_source (_coupler_to_rockettile_auto_tl_in_d_bits_source), // @[LazyScope.scala:98:27]
.auto_anon_out_5_d_bits_sink (_coupler_to_rockettile_auto_tl_in_d_bits_sink), // @[LazyScope.scala:98:27]
.auto_anon_out_5_d_bits_denied (_coupler_to_rockettile_auto_tl_in_d_bits_denied), // @[LazyScope.scala:98:27]
.auto_anon_out_5_d_bits_data (_coupler_to_rockettile_auto_tl_in_d_bits_data), // @[LazyScope.scala:98:27]
.auto_anon_out_5_d_bits_corrupt (_coupler_to_rockettile_auto_tl_in_d_bits_corrupt), // @[LazyScope.scala:98:27]
.auto_anon_out_4_a_ready (_coupler_to_debug_auto_tl_in_a_ready), // @[LazyScope.scala:98:27]
.auto_anon_out_4_a_valid (_out_xbar_auto_anon_out_4_a_valid),
.auto_anon_out_4_a_bits_opcode (_out_xbar_auto_anon_out_4_a_bits_opcode),
.auto_anon_out_4_a_bits_param (_out_xbar_auto_anon_out_4_a_bits_param),
.auto_anon_out_4_a_bits_size (_out_xbar_auto_anon_out_4_a_bits_size),
.auto_anon_out_4_a_bits_source (_out_xbar_auto_anon_out_4_a_bits_source),
.auto_anon_out_4_a_bits_address (_out_xbar_auto_anon_out_4_a_bits_address),
.auto_anon_out_4_a_bits_mask (_out_xbar_auto_anon_out_4_a_bits_mask),
.auto_anon_out_4_a_bits_data (_out_xbar_auto_anon_out_4_a_bits_data),
.auto_anon_out_4_a_bits_corrupt (_out_xbar_auto_anon_out_4_a_bits_corrupt),
.auto_anon_out_4_d_ready (_out_xbar_auto_anon_out_4_d_ready),
.auto_anon_out_4_d_valid (_coupler_to_debug_auto_tl_in_d_valid), // @[LazyScope.scala:98:27]
.auto_anon_out_4_d_bits_opcode (_coupler_to_debug_auto_tl_in_d_bits_opcode), // @[LazyScope.scala:98:27]
.auto_anon_out_4_d_bits_size (_coupler_to_debug_auto_tl_in_d_bits_size), // @[LazyScope.scala:98:27]
.auto_anon_out_4_d_bits_source (_coupler_to_debug_auto_tl_in_d_bits_source), // @[LazyScope.scala:98:27]
.auto_anon_out_4_d_bits_data (_coupler_to_debug_auto_tl_in_d_bits_data), // @[LazyScope.scala:98:27]
.auto_anon_out_3_a_ready (_coupler_to_plic_auto_tl_in_a_ready), // @[LazyScope.scala:98:27]
.auto_anon_out_3_a_valid (_out_xbar_auto_anon_out_3_a_valid),
.auto_anon_out_3_a_bits_opcode (_out_xbar_auto_anon_out_3_a_bits_opcode),
.auto_anon_out_3_a_bits_param (_out_xbar_auto_anon_out_3_a_bits_param),
.auto_anon_out_3_a_bits_size (_out_xbar_auto_anon_out_3_a_bits_size),
.auto_anon_out_3_a_bits_source (_out_xbar_auto_anon_out_3_a_bits_source),
.auto_anon_out_3_a_bits_address (_out_xbar_auto_anon_out_3_a_bits_address),
.auto_anon_out_3_a_bits_mask (_out_xbar_auto_anon_out_3_a_bits_mask),
.auto_anon_out_3_a_bits_data (_out_xbar_auto_anon_out_3_a_bits_data),
.auto_anon_out_3_a_bits_corrupt (_out_xbar_auto_anon_out_3_a_bits_corrupt),
.auto_anon_out_3_d_ready (_out_xbar_auto_anon_out_3_d_ready),
.auto_anon_out_3_d_valid (_coupler_to_plic_auto_tl_in_d_valid), // @[LazyScope.scala:98:27]
.auto_anon_out_3_d_bits_opcode (_coupler_to_plic_auto_tl_in_d_bits_opcode), // @[LazyScope.scala:98:27]
.auto_anon_out_3_d_bits_size (_coupler_to_plic_auto_tl_in_d_bits_size), // @[LazyScope.scala:98:27]
.auto_anon_out_3_d_bits_source (_coupler_to_plic_auto_tl_in_d_bits_source), // @[LazyScope.scala:98:27]
.auto_anon_out_3_d_bits_data (_coupler_to_plic_auto_tl_in_d_bits_data), // @[LazyScope.scala:98:27]
.auto_anon_out_2_a_ready (_coupler_to_clint_auto_tl_in_a_ready), // @[LazyScope.scala:98:27]
.auto_anon_out_2_a_valid (_out_xbar_auto_anon_out_2_a_valid),
.auto_anon_out_2_a_bits_opcode (_out_xbar_auto_anon_out_2_a_bits_opcode),
.auto_anon_out_2_a_bits_param (_out_xbar_auto_anon_out_2_a_bits_param),
.auto_anon_out_2_a_bits_size (_out_xbar_auto_anon_out_2_a_bits_size),
.auto_anon_out_2_a_bits_source (_out_xbar_auto_anon_out_2_a_bits_source),
.auto_anon_out_2_a_bits_address (_out_xbar_auto_anon_out_2_a_bits_address),
.auto_anon_out_2_a_bits_mask (_out_xbar_auto_anon_out_2_a_bits_mask),
.auto_anon_out_2_a_bits_data (_out_xbar_auto_anon_out_2_a_bits_data),
.auto_anon_out_2_a_bits_corrupt (_out_xbar_auto_anon_out_2_a_bits_corrupt),
.auto_anon_out_2_d_ready (_out_xbar_auto_anon_out_2_d_ready),
.auto_anon_out_2_d_valid (_coupler_to_clint_auto_tl_in_d_valid), // @[LazyScope.scala:98:27]
.auto_anon_out_2_d_bits_opcode (_coupler_to_clint_auto_tl_in_d_bits_opcode), // @[LazyScope.scala:98:27]
.auto_anon_out_2_d_bits_size (_coupler_to_clint_auto_tl_in_d_bits_size), // @[LazyScope.scala:98:27]
.auto_anon_out_2_d_bits_source (_coupler_to_clint_auto_tl_in_d_bits_source), // @[LazyScope.scala:98:27]
.auto_anon_out_2_d_bits_data (_coupler_to_clint_auto_tl_in_d_bits_data), // @[LazyScope.scala:98:27]
.auto_anon_out_1_a_ready (coupler_to_bus_named_pbus_auto_widget_anon_in_a_ready), // @[LazyModuleImp.scala:138:7]
.auto_anon_out_1_a_valid (coupler_to_bus_named_pbus_auto_widget_anon_in_a_valid),
.auto_anon_out_1_a_bits_opcode (coupler_to_bus_named_pbus_auto_widget_anon_in_a_bits_opcode),
.auto_anon_out_1_a_bits_param (coupler_to_bus_named_pbus_auto_widget_anon_in_a_bits_param),
.auto_anon_out_1_a_bits_size (coupler_to_bus_named_pbus_auto_widget_anon_in_a_bits_size),
.auto_anon_out_1_a_bits_source (coupler_to_bus_named_pbus_auto_widget_anon_in_a_bits_source),
.auto_anon_out_1_a_bits_address (coupler_to_bus_named_pbus_auto_widget_anon_in_a_bits_address),
.auto_anon_out_1_a_bits_mask (coupler_to_bus_named_pbus_auto_widget_anon_in_a_bits_mask),
.auto_anon_out_1_a_bits_data (coupler_to_bus_named_pbus_auto_widget_anon_in_a_bits_data),
.auto_anon_out_1_a_bits_corrupt (coupler_to_bus_named_pbus_auto_widget_anon_in_a_bits_corrupt),
.auto_anon_out_1_d_ready (coupler_to_bus_named_pbus_auto_widget_anon_in_d_ready),
.auto_anon_out_1_d_valid (coupler_to_bus_named_pbus_auto_widget_anon_in_d_valid), // @[LazyModuleImp.scala:138:7]
.auto_anon_out_1_d_bits_opcode (coupler_to_bus_named_pbus_auto_widget_anon_in_d_bits_opcode), // @[LazyModuleImp.scala:138:7]
.auto_anon_out_1_d_bits_param (coupler_to_bus_named_pbus_auto_widget_anon_in_d_bits_param), // @[LazyModuleImp.scala:138:7]
.auto_anon_out_1_d_bits_size (coupler_to_bus_named_pbus_auto_widget_anon_in_d_bits_size), // @[LazyModuleImp.scala:138:7]
.auto_anon_out_1_d_bits_source (coupler_to_bus_named_pbus_auto_widget_anon_in_d_bits_source), // @[LazyModuleImp.scala:138:7]
.auto_anon_out_1_d_bits_sink (coupler_to_bus_named_pbus_auto_widget_anon_in_d_bits_sink), // @[LazyModuleImp.scala:138:7]
.auto_anon_out_1_d_bits_denied (coupler_to_bus_named_pbus_auto_widget_anon_in_d_bits_denied), // @[LazyModuleImp.scala:138:7]
.auto_anon_out_1_d_bits_data (coupler_to_bus_named_pbus_auto_widget_anon_in_d_bits_data), // @[LazyModuleImp.scala:138:7]
.auto_anon_out_1_d_bits_corrupt (coupler_to_bus_named_pbus_auto_widget_anon_in_d_bits_corrupt), // @[LazyModuleImp.scala:138:7]
.auto_anon_out_0_a_ready (_wrapped_error_device_auto_buffer_in_a_ready), // @[LazyScope.scala:98:27]
.auto_anon_out_0_a_valid (_out_xbar_auto_anon_out_0_a_valid),
.auto_anon_out_0_a_bits_opcode (_out_xbar_auto_anon_out_0_a_bits_opcode),
.auto_anon_out_0_a_bits_param (_out_xbar_auto_anon_out_0_a_bits_param),
.auto_anon_out_0_a_bits_size (_out_xbar_auto_anon_out_0_a_bits_size),
.auto_anon_out_0_a_bits_source (_out_xbar_auto_anon_out_0_a_bits_source),
.auto_anon_out_0_a_bits_address (_out_xbar_auto_anon_out_0_a_bits_address),
.auto_anon_out_0_a_bits_mask (_out_xbar_auto_anon_out_0_a_bits_mask),
.auto_anon_out_0_a_bits_data (_out_xbar_auto_anon_out_0_a_bits_data),
.auto_anon_out_0_a_bits_corrupt (_out_xbar_auto_anon_out_0_a_bits_corrupt),
.auto_anon_out_0_d_ready (_out_xbar_auto_anon_out_0_d_ready),
.auto_anon_out_0_d_valid (_wrapped_error_device_auto_buffer_in_d_valid), // @[LazyScope.scala:98:27]
.auto_anon_out_0_d_bits_opcode (_wrapped_error_device_auto_buffer_in_d_bits_opcode), // @[LazyScope.scala:98:27]
.auto_anon_out_0_d_bits_param (_wrapped_error_device_auto_buffer_in_d_bits_param), // @[LazyScope.scala:98:27]
.auto_anon_out_0_d_bits_size (_wrapped_error_device_auto_buffer_in_d_bits_size), // @[LazyScope.scala:98:27]
.auto_anon_out_0_d_bits_source (_wrapped_error_device_auto_buffer_in_d_bits_source), // @[LazyScope.scala:98:27]
.auto_anon_out_0_d_bits_sink (_wrapped_error_device_auto_buffer_in_d_bits_sink), // @[LazyScope.scala:98:27]
.auto_anon_out_0_d_bits_denied (_wrapped_error_device_auto_buffer_in_d_bits_denied), // @[LazyScope.scala:98:27]
.auto_anon_out_0_d_bits_data (_wrapped_error_device_auto_buffer_in_d_bits_data), // @[LazyScope.scala:98:27]
.auto_anon_out_0_d_bits_corrupt (_wrapped_error_device_auto_buffer_in_d_bits_corrupt) // @[LazyScope.scala:98:27]
); // @[PeripheryBus.scala:57:30]
TLBuffer_a32d64s7k1z4u buffer ( // @[Buffer.scala:75:28]
.clock (childClock), // @[LazyModuleImp.scala:155:31]
.reset (childReset), // @[LazyModuleImp.scala:158:31]
.auto_in_a_ready (_buffer_auto_in_a_ready),
.auto_in_a_valid (_atomics_auto_out_a_valid), // @[AtomicAutomata.scala:289:29]
.auto_in_a_bits_opcode (_atomics_auto_out_a_bits_opcode), // @[AtomicAutomata.scala:289:29]
.auto_in_a_bits_param (_atomics_auto_out_a_bits_param), // @[AtomicAutomata.scala:289:29]
.auto_in_a_bits_size (_atomics_auto_out_a_bits_size), // @[AtomicAutomata.scala:289:29]
.auto_in_a_bits_source (_atomics_auto_out_a_bits_source), // @[AtomicAutomata.scala:289:29]
.auto_in_a_bits_address (_atomics_auto_out_a_bits_address), // @[AtomicAutomata.scala:289:29]
.auto_in_a_bits_mask (_atomics_auto_out_a_bits_mask), // @[AtomicAutomata.scala:289:29]
.auto_in_a_bits_data (_atomics_auto_out_a_bits_data), // @[AtomicAutomata.scala:289:29]
.auto_in_a_bits_corrupt (_atomics_auto_out_a_bits_corrupt), // @[AtomicAutomata.scala:289:29]
.auto_in_d_ready (_atomics_auto_out_d_ready), // @[AtomicAutomata.scala:289:29]
.auto_in_d_valid (_buffer_auto_in_d_valid),
.auto_in_d_bits_opcode (_buffer_auto_in_d_bits_opcode),
.auto_in_d_bits_param (_buffer_auto_in_d_bits_param),
.auto_in_d_bits_size (_buffer_auto_in_d_bits_size),
.auto_in_d_bits_source (_buffer_auto_in_d_bits_source),
.auto_in_d_bits_sink (_buffer_auto_in_d_bits_sink),
.auto_in_d_bits_denied (_buffer_auto_in_d_bits_denied),
.auto_in_d_bits_data (_buffer_auto_in_d_bits_data),
.auto_in_d_bits_corrupt (_buffer_auto_in_d_bits_corrupt),
.auto_out_a_ready (fixer_auto_anon_in_a_ready), // @[FIFOFixer.scala:50:9]
.auto_out_a_valid (fixer_auto_anon_in_a_valid),
.auto_out_a_bits_opcode (fixer_auto_anon_in_a_bits_opcode),
.auto_out_a_bits_param (fixer_auto_anon_in_a_bits_param),
.auto_out_a_bits_size (fixer_auto_anon_in_a_bits_size),
.auto_out_a_bits_source (fixer_auto_anon_in_a_bits_source),
.auto_out_a_bits_address (fixer_auto_anon_in_a_bits_address),
.auto_out_a_bits_mask (fixer_auto_anon_in_a_bits_mask),
.auto_out_a_bits_data (fixer_auto_anon_in_a_bits_data),
.auto_out_a_bits_corrupt (fixer_auto_anon_in_a_bits_corrupt),
.auto_out_d_ready (fixer_auto_anon_in_d_ready),
.auto_out_d_valid (fixer_auto_anon_in_d_valid), // @[FIFOFixer.scala:50:9]
.auto_out_d_bits_opcode (fixer_auto_anon_in_d_bits_opcode), // @[FIFOFixer.scala:50:9]
.auto_out_d_bits_param (fixer_auto_anon_in_d_bits_param), // @[FIFOFixer.scala:50:9]
.auto_out_d_bits_size (fixer_auto_anon_in_d_bits_size), // @[FIFOFixer.scala:50:9]
.auto_out_d_bits_source (fixer_auto_anon_in_d_bits_source), // @[FIFOFixer.scala:50:9]
.auto_out_d_bits_sink (fixer_auto_anon_in_d_bits_sink), // @[FIFOFixer.scala:50:9]
.auto_out_d_bits_denied (fixer_auto_anon_in_d_bits_denied), // @[FIFOFixer.scala:50:9]
.auto_out_d_bits_data (fixer_auto_anon_in_d_bits_data), // @[FIFOFixer.scala:50:9]
.auto_out_d_bits_corrupt (fixer_auto_anon_in_d_bits_corrupt) // @[FIFOFixer.scala:50:9]
); // @[Buffer.scala:75:28]
TLAtomicAutomata_cbus atomics ( // @[AtomicAutomata.scala:289:29]
.clock (childClock), // @[LazyModuleImp.scala:155:31]
.reset (childReset), // @[LazyModuleImp.scala:158:31]
.auto_in_a_ready (_atomics_auto_in_a_ready),
.auto_in_a_valid (_in_xbar_auto_anon_out_a_valid), // @[PeripheryBus.scala:56:29]
.auto_in_a_bits_opcode (_in_xbar_auto_anon_out_a_bits_opcode), // @[PeripheryBus.scala:56:29]
.auto_in_a_bits_param (_in_xbar_auto_anon_out_a_bits_param), // @[PeripheryBus.scala:56:29]
.auto_in_a_bits_size (_in_xbar_auto_anon_out_a_bits_size), // @[PeripheryBus.scala:56:29]
.auto_in_a_bits_source (_in_xbar_auto_anon_out_a_bits_source), // @[PeripheryBus.scala:56:29]
.auto_in_a_bits_address (_in_xbar_auto_anon_out_a_bits_address), // @[PeripheryBus.scala:56:29]
.auto_in_a_bits_mask (_in_xbar_auto_anon_out_a_bits_mask), // @[PeripheryBus.scala:56:29]
.auto_in_a_bits_data (_in_xbar_auto_anon_out_a_bits_data), // @[PeripheryBus.scala:56:29]
.auto_in_a_bits_corrupt (_in_xbar_auto_anon_out_a_bits_corrupt), // @[PeripheryBus.scala:56:29]
.auto_in_d_ready (_in_xbar_auto_anon_out_d_ready), // @[PeripheryBus.scala:56:29]
.auto_in_d_valid (_atomics_auto_in_d_valid),
.auto_in_d_bits_opcode (_atomics_auto_in_d_bits_opcode),
.auto_in_d_bits_param (_atomics_auto_in_d_bits_param),
.auto_in_d_bits_size (_atomics_auto_in_d_bits_size),
.auto_in_d_bits_source (_atomics_auto_in_d_bits_source),
.auto_in_d_bits_sink (_atomics_auto_in_d_bits_sink),
.auto_in_d_bits_denied (_atomics_auto_in_d_bits_denied),
.auto_in_d_bits_data (_atomics_auto_in_d_bits_data),
.auto_in_d_bits_corrupt (_atomics_auto_in_d_bits_corrupt),
.auto_out_a_ready (_buffer_auto_in_a_ready), // @[Buffer.scala:75:28]
.auto_out_a_valid (_atomics_auto_out_a_valid),
.auto_out_a_bits_opcode (_atomics_auto_out_a_bits_opcode),
.auto_out_a_bits_param (_atomics_auto_out_a_bits_param),
.auto_out_a_bits_size (_atomics_auto_out_a_bits_size),
.auto_out_a_bits_source (_atomics_auto_out_a_bits_source),
.auto_out_a_bits_address (_atomics_auto_out_a_bits_address),
.auto_out_a_bits_mask (_atomics_auto_out_a_bits_mask),
.auto_out_a_bits_data (_atomics_auto_out_a_bits_data),
.auto_out_a_bits_corrupt (_atomics_auto_out_a_bits_corrupt),
.auto_out_d_ready (_atomics_auto_out_d_ready),
.auto_out_d_valid (_buffer_auto_in_d_valid), // @[Buffer.scala:75:28]
.auto_out_d_bits_opcode (_buffer_auto_in_d_bits_opcode), // @[Buffer.scala:75:28]
.auto_out_d_bits_param (_buffer_auto_in_d_bits_param), // @[Buffer.scala:75:28]
.auto_out_d_bits_size (_buffer_auto_in_d_bits_size), // @[Buffer.scala:75:28]
.auto_out_d_bits_source (_buffer_auto_in_d_bits_source), // @[Buffer.scala:75:28]
.auto_out_d_bits_sink (_buffer_auto_in_d_bits_sink), // @[Buffer.scala:75:28]
.auto_out_d_bits_denied (_buffer_auto_in_d_bits_denied), // @[Buffer.scala:75:28]
.auto_out_d_bits_data (_buffer_auto_in_d_bits_data), // @[Buffer.scala:75:28]
.auto_out_d_bits_corrupt (_buffer_auto_in_d_bits_corrupt) // @[Buffer.scala:75:28]
); // @[AtomicAutomata.scala:289:29]
ErrorDeviceWrapper wrapped_error_device ( // @[LazyScope.scala:98:27]
.clock (childClock), // @[LazyModuleImp.scala:155:31]
.reset (childReset), // @[LazyModuleImp.scala:158:31]
.auto_buffer_in_a_ready (_wrapped_error_device_auto_buffer_in_a_ready),
.auto_buffer_in_a_valid (_out_xbar_auto_anon_out_0_a_valid), // @[PeripheryBus.scala:57:30]
.auto_buffer_in_a_bits_opcode (_out_xbar_auto_anon_out_0_a_bits_opcode), // @[PeripheryBus.scala:57:30]
.auto_buffer_in_a_bits_param (_out_xbar_auto_anon_out_0_a_bits_param), // @[PeripheryBus.scala:57:30]
.auto_buffer_in_a_bits_size (_out_xbar_auto_anon_out_0_a_bits_size), // @[PeripheryBus.scala:57:30]
.auto_buffer_in_a_bits_source (_out_xbar_auto_anon_out_0_a_bits_source), // @[PeripheryBus.scala:57:30]
.auto_buffer_in_a_bits_address (_out_xbar_auto_anon_out_0_a_bits_address), // @[PeripheryBus.scala:57:30]
.auto_buffer_in_a_bits_mask (_out_xbar_auto_anon_out_0_a_bits_mask), // @[PeripheryBus.scala:57:30]
.auto_buffer_in_a_bits_data (_out_xbar_auto_anon_out_0_a_bits_data), // @[PeripheryBus.scala:57:30]
.auto_buffer_in_a_bits_corrupt (_out_xbar_auto_anon_out_0_a_bits_corrupt), // @[PeripheryBus.scala:57:30]
.auto_buffer_in_d_ready (_out_xbar_auto_anon_out_0_d_ready), // @[PeripheryBus.scala:57:30]
.auto_buffer_in_d_valid (_wrapped_error_device_auto_buffer_in_d_valid),
.auto_buffer_in_d_bits_opcode (_wrapped_error_device_auto_buffer_in_d_bits_opcode),
.auto_buffer_in_d_bits_param (_wrapped_error_device_auto_buffer_in_d_bits_param),
.auto_buffer_in_d_bits_size (_wrapped_error_device_auto_buffer_in_d_bits_size),
.auto_buffer_in_d_bits_source (_wrapped_error_device_auto_buffer_in_d_bits_source),
.auto_buffer_in_d_bits_sink (_wrapped_error_device_auto_buffer_in_d_bits_sink),
.auto_buffer_in_d_bits_denied (_wrapped_error_device_auto_buffer_in_d_bits_denied),
.auto_buffer_in_d_bits_data (_wrapped_error_device_auto_buffer_in_d_bits_data),
.auto_buffer_in_d_bits_corrupt (_wrapped_error_device_auto_buffer_in_d_bits_corrupt)
); // @[LazyScope.scala:98:27]
TLInterconnectCoupler_cbus_to_clint coupler_to_clint ( // @[LazyScope.scala:98:27]
.clock (childClock), // @[LazyModuleImp.scala:155:31]
.reset (childReset), // @[LazyModuleImp.scala:158:31]
.auto_fragmenter_anon_out_a_ready (auto_coupler_to_clint_fragmenter_anon_out_a_ready_0), // @[ClockDomain.scala:14:9]
.auto_fragmenter_anon_out_a_valid (auto_coupler_to_clint_fragmenter_anon_out_a_valid_0),
.auto_fragmenter_anon_out_a_bits_opcode (auto_coupler_to_clint_fragmenter_anon_out_a_bits_opcode_0),
.auto_fragmenter_anon_out_a_bits_param (auto_coupler_to_clint_fragmenter_anon_out_a_bits_param_0),
.auto_fragmenter_anon_out_a_bits_size (auto_coupler_to_clint_fragmenter_anon_out_a_bits_size_0),
.auto_fragmenter_anon_out_a_bits_source (auto_coupler_to_clint_fragmenter_anon_out_a_bits_source_0),
.auto_fragmenter_anon_out_a_bits_address (auto_coupler_to_clint_fragmenter_anon_out_a_bits_address_0),
.auto_fragmenter_anon_out_a_bits_mask (auto_coupler_to_clint_fragmenter_anon_out_a_bits_mask_0),
.auto_fragmenter_anon_out_a_bits_data (auto_coupler_to_clint_fragmenter_anon_out_a_bits_data_0),
.auto_fragmenter_anon_out_a_bits_corrupt (auto_coupler_to_clint_fragmenter_anon_out_a_bits_corrupt_0),
.auto_fragmenter_anon_out_d_ready (auto_coupler_to_clint_fragmenter_anon_out_d_ready_0),
.auto_fragmenter_anon_out_d_valid (auto_coupler_to_clint_fragmenter_anon_out_d_valid_0), // @[ClockDomain.scala:14:9]
.auto_fragmenter_anon_out_d_bits_opcode (auto_coupler_to_clint_fragmenter_anon_out_d_bits_opcode_0), // @[ClockDomain.scala:14:9]
.auto_fragmenter_anon_out_d_bits_size (auto_coupler_to_clint_fragmenter_anon_out_d_bits_size_0), // @[ClockDomain.scala:14:9]
.auto_fragmenter_anon_out_d_bits_source (auto_coupler_to_clint_fragmenter_anon_out_d_bits_source_0), // @[ClockDomain.scala:14:9]
.auto_fragmenter_anon_out_d_bits_data (auto_coupler_to_clint_fragmenter_anon_out_d_bits_data_0), // @[ClockDomain.scala:14:9]
.auto_tl_in_a_ready (_coupler_to_clint_auto_tl_in_a_ready),
.auto_tl_in_a_valid (_out_xbar_auto_anon_out_2_a_valid), // @[PeripheryBus.scala:57:30]
.auto_tl_in_a_bits_opcode (_out_xbar_auto_anon_out_2_a_bits_opcode), // @[PeripheryBus.scala:57:30]
.auto_tl_in_a_bits_param (_out_xbar_auto_anon_out_2_a_bits_param), // @[PeripheryBus.scala:57:30]
.auto_tl_in_a_bits_size (_out_xbar_auto_anon_out_2_a_bits_size), // @[PeripheryBus.scala:57:30]
.auto_tl_in_a_bits_source (_out_xbar_auto_anon_out_2_a_bits_source), // @[PeripheryBus.scala:57:30]
.auto_tl_in_a_bits_address (_out_xbar_auto_anon_out_2_a_bits_address), // @[PeripheryBus.scala:57:30]
.auto_tl_in_a_bits_mask (_out_xbar_auto_anon_out_2_a_bits_mask), // @[PeripheryBus.scala:57:30]
.auto_tl_in_a_bits_data (_out_xbar_auto_anon_out_2_a_bits_data), // @[PeripheryBus.scala:57:30]
.auto_tl_in_a_bits_corrupt (_out_xbar_auto_anon_out_2_a_bits_corrupt), // @[PeripheryBus.scala:57:30]
.auto_tl_in_d_ready (_out_xbar_auto_anon_out_2_d_ready), // @[PeripheryBus.scala:57:30]
.auto_tl_in_d_valid (_coupler_to_clint_auto_tl_in_d_valid),
.auto_tl_in_d_bits_opcode (_coupler_to_clint_auto_tl_in_d_bits_opcode),
.auto_tl_in_d_bits_size (_coupler_to_clint_auto_tl_in_d_bits_size),
.auto_tl_in_d_bits_source (_coupler_to_clint_auto_tl_in_d_bits_source),
.auto_tl_in_d_bits_data (_coupler_to_clint_auto_tl_in_d_bits_data)
); // @[LazyScope.scala:98:27]
TLInterconnectCoupler_cbus_to_plic coupler_to_plic ( // @[LazyScope.scala:98:27]
.clock (childClock), // @[LazyModuleImp.scala:155:31]
.reset (childReset), // @[LazyModuleImp.scala:158:31]
.auto_fragmenter_anon_out_a_ready (auto_coupler_to_plic_fragmenter_anon_out_a_ready_0), // @[ClockDomain.scala:14:9]
.auto_fragmenter_anon_out_a_valid (auto_coupler_to_plic_fragmenter_anon_out_a_valid_0),
.auto_fragmenter_anon_out_a_bits_opcode (auto_coupler_to_plic_fragmenter_anon_out_a_bits_opcode_0),
.auto_fragmenter_anon_out_a_bits_param (auto_coupler_to_plic_fragmenter_anon_out_a_bits_param_0),
.auto_fragmenter_anon_out_a_bits_size (auto_coupler_to_plic_fragmenter_anon_out_a_bits_size_0),
.auto_fragmenter_anon_out_a_bits_source (auto_coupler_to_plic_fragmenter_anon_out_a_bits_source_0),
.auto_fragmenter_anon_out_a_bits_address (auto_coupler_to_plic_fragmenter_anon_out_a_bits_address_0),
.auto_fragmenter_anon_out_a_bits_mask (auto_coupler_to_plic_fragmenter_anon_out_a_bits_mask_0),
.auto_fragmenter_anon_out_a_bits_data (auto_coupler_to_plic_fragmenter_anon_out_a_bits_data_0),
.auto_fragmenter_anon_out_a_bits_corrupt (auto_coupler_to_plic_fragmenter_anon_out_a_bits_corrupt_0),
.auto_fragmenter_anon_out_d_ready (auto_coupler_to_plic_fragmenter_anon_out_d_ready_0),
.auto_fragmenter_anon_out_d_valid (auto_coupler_to_plic_fragmenter_anon_out_d_valid_0), // @[ClockDomain.scala:14:9]
.auto_fragmenter_anon_out_d_bits_opcode (auto_coupler_to_plic_fragmenter_anon_out_d_bits_opcode_0), // @[ClockDomain.scala:14:9]
.auto_fragmenter_anon_out_d_bits_size (auto_coupler_to_plic_fragmenter_anon_out_d_bits_size_0), // @[ClockDomain.scala:14:9]
.auto_fragmenter_anon_out_d_bits_source (auto_coupler_to_plic_fragmenter_anon_out_d_bits_source_0), // @[ClockDomain.scala:14:9]
.auto_fragmenter_anon_out_d_bits_data (auto_coupler_to_plic_fragmenter_anon_out_d_bits_data_0), // @[ClockDomain.scala:14:9]
.auto_tl_in_a_ready (_coupler_to_plic_auto_tl_in_a_ready),
.auto_tl_in_a_valid (_out_xbar_auto_anon_out_3_a_valid), // @[PeripheryBus.scala:57:30]
.auto_tl_in_a_bits_opcode (_out_xbar_auto_anon_out_3_a_bits_opcode), // @[PeripheryBus.scala:57:30]
.auto_tl_in_a_bits_param (_out_xbar_auto_anon_out_3_a_bits_param), // @[PeripheryBus.scala:57:30]
.auto_tl_in_a_bits_size (_out_xbar_auto_anon_out_3_a_bits_size), // @[PeripheryBus.scala:57:30]
.auto_tl_in_a_bits_source (_out_xbar_auto_anon_out_3_a_bits_source), // @[PeripheryBus.scala:57:30]
.auto_tl_in_a_bits_address (_out_xbar_auto_anon_out_3_a_bits_address), // @[PeripheryBus.scala:57:30]
.auto_tl_in_a_bits_mask (_out_xbar_auto_anon_out_3_a_bits_mask), // @[PeripheryBus.scala:57:30]
.auto_tl_in_a_bits_data (_out_xbar_auto_anon_out_3_a_bits_data), // @[PeripheryBus.scala:57:30]
.auto_tl_in_a_bits_corrupt (_out_xbar_auto_anon_out_3_a_bits_corrupt), // @[PeripheryBus.scala:57:30]
.auto_tl_in_d_ready (_out_xbar_auto_anon_out_3_d_ready), // @[PeripheryBus.scala:57:30]
.auto_tl_in_d_valid (_coupler_to_plic_auto_tl_in_d_valid),
.auto_tl_in_d_bits_opcode (_coupler_to_plic_auto_tl_in_d_bits_opcode),
.auto_tl_in_d_bits_size (_coupler_to_plic_auto_tl_in_d_bits_size),
.auto_tl_in_d_bits_source (_coupler_to_plic_auto_tl_in_d_bits_source),
.auto_tl_in_d_bits_data (_coupler_to_plic_auto_tl_in_d_bits_data)
); // @[LazyScope.scala:98:27]
TLInterconnectCoupler_cbus_to_debug coupler_to_debug ( // @[LazyScope.scala:98:27]
.clock (childClock), // @[LazyModuleImp.scala:155:31]
.reset (childReset), // @[LazyModuleImp.scala:158:31]
.auto_fragmenter_anon_out_a_ready (auto_coupler_to_debug_fragmenter_anon_out_a_ready_0), // @[ClockDomain.scala:14:9]
.auto_fragmenter_anon_out_a_valid (auto_coupler_to_debug_fragmenter_anon_out_a_valid_0),
.auto_fragmenter_anon_out_a_bits_opcode (auto_coupler_to_debug_fragmenter_anon_out_a_bits_opcode_0),
.auto_fragmenter_anon_out_a_bits_param (auto_coupler_to_debug_fragmenter_anon_out_a_bits_param_0),
.auto_fragmenter_anon_out_a_bits_size (auto_coupler_to_debug_fragmenter_anon_out_a_bits_size_0),
.auto_fragmenter_anon_out_a_bits_source (auto_coupler_to_debug_fragmenter_anon_out_a_bits_source_0),
.auto_fragmenter_anon_out_a_bits_address (auto_coupler_to_debug_fragmenter_anon_out_a_bits_address_0),
.auto_fragmenter_anon_out_a_bits_mask (auto_coupler_to_debug_fragmenter_anon_out_a_bits_mask_0),
.auto_fragmenter_anon_out_a_bits_data (auto_coupler_to_debug_fragmenter_anon_out_a_bits_data_0),
.auto_fragmenter_anon_out_a_bits_corrupt (auto_coupler_to_debug_fragmenter_anon_out_a_bits_corrupt_0),
.auto_fragmenter_anon_out_d_ready (auto_coupler_to_debug_fragmenter_anon_out_d_ready_0),
.auto_fragmenter_anon_out_d_valid (auto_coupler_to_debug_fragmenter_anon_out_d_valid_0), // @[ClockDomain.scala:14:9]
.auto_fragmenter_anon_out_d_bits_opcode (auto_coupler_to_debug_fragmenter_anon_out_d_bits_opcode_0), // @[ClockDomain.scala:14:9]
.auto_fragmenter_anon_out_d_bits_size (auto_coupler_to_debug_fragmenter_anon_out_d_bits_size_0), // @[ClockDomain.scala:14:9]
.auto_fragmenter_anon_out_d_bits_source (auto_coupler_to_debug_fragmenter_anon_out_d_bits_source_0), // @[ClockDomain.scala:14:9]
.auto_fragmenter_anon_out_d_bits_data (auto_coupler_to_debug_fragmenter_anon_out_d_bits_data_0), // @[ClockDomain.scala:14:9]
.auto_tl_in_a_ready (_coupler_to_debug_auto_tl_in_a_ready),
.auto_tl_in_a_valid (_out_xbar_auto_anon_out_4_a_valid), // @[PeripheryBus.scala:57:30]
.auto_tl_in_a_bits_opcode (_out_xbar_auto_anon_out_4_a_bits_opcode), // @[PeripheryBus.scala:57:30]
.auto_tl_in_a_bits_param (_out_xbar_auto_anon_out_4_a_bits_param), // @[PeripheryBus.scala:57:30]
.auto_tl_in_a_bits_size (_out_xbar_auto_anon_out_4_a_bits_size), // @[PeripheryBus.scala:57:30]
.auto_tl_in_a_bits_source (_out_xbar_auto_anon_out_4_a_bits_source), // @[PeripheryBus.scala:57:30]
.auto_tl_in_a_bits_address (_out_xbar_auto_anon_out_4_a_bits_address), // @[PeripheryBus.scala:57:30]
.auto_tl_in_a_bits_mask (_out_xbar_auto_anon_out_4_a_bits_mask), // @[PeripheryBus.scala:57:30]
.auto_tl_in_a_bits_data (_out_xbar_auto_anon_out_4_a_bits_data), // @[PeripheryBus.scala:57:30]
.auto_tl_in_a_bits_corrupt (_out_xbar_auto_anon_out_4_a_bits_corrupt), // @[PeripheryBus.scala:57:30]
.auto_tl_in_d_ready (_out_xbar_auto_anon_out_4_d_ready), // @[PeripheryBus.scala:57:30]
.auto_tl_in_d_valid (_coupler_to_debug_auto_tl_in_d_valid),
.auto_tl_in_d_bits_opcode (_coupler_to_debug_auto_tl_in_d_bits_opcode),
.auto_tl_in_d_bits_size (_coupler_to_debug_auto_tl_in_d_bits_size),
.auto_tl_in_d_bits_source (_coupler_to_debug_auto_tl_in_d_bits_source),
.auto_tl_in_d_bits_data (_coupler_to_debug_auto_tl_in_d_bits_data)
); // @[LazyScope.scala:98:27]
TLInterconnectCoupler_cbus_to_rockettile coupler_to_rockettile ( // @[LazyScope.scala:98:27]
.clock (childClock), // @[LazyModuleImp.scala:155:31]
.reset (childReset), // @[LazyModuleImp.scala:158:31]
.auto_tl_slave_clock_xing_out_a_ready (auto_coupler_to_rockettile_tl_slave_clock_xing_out_a_ready_0), // @[ClockDomain.scala:14:9]
.auto_tl_slave_clock_xing_out_a_valid (auto_coupler_to_rockettile_tl_slave_clock_xing_out_a_valid_0),
.auto_tl_slave_clock_xing_out_a_bits_opcode (auto_coupler_to_rockettile_tl_slave_clock_xing_out_a_bits_opcode_0),
.auto_tl_slave_clock_xing_out_a_bits_param (auto_coupler_to_rockettile_tl_slave_clock_xing_out_a_bits_param_0),
.auto_tl_slave_clock_xing_out_a_bits_size (auto_coupler_to_rockettile_tl_slave_clock_xing_out_a_bits_size_0),
.auto_tl_slave_clock_xing_out_a_bits_source (auto_coupler_to_rockettile_tl_slave_clock_xing_out_a_bits_source_0),
.auto_tl_slave_clock_xing_out_a_bits_address (auto_coupler_to_rockettile_tl_slave_clock_xing_out_a_bits_address_0),
.auto_tl_slave_clock_xing_out_a_bits_mask (auto_coupler_to_rockettile_tl_slave_clock_xing_out_a_bits_mask_0),
.auto_tl_slave_clock_xing_out_a_bits_data (auto_coupler_to_rockettile_tl_slave_clock_xing_out_a_bits_data_0),
.auto_tl_slave_clock_xing_out_a_bits_corrupt (auto_coupler_to_rockettile_tl_slave_clock_xing_out_a_bits_corrupt_0),
.auto_tl_slave_clock_xing_out_d_ready (auto_coupler_to_rockettile_tl_slave_clock_xing_out_d_ready_0),
.auto_tl_slave_clock_xing_out_d_valid (auto_coupler_to_rockettile_tl_slave_clock_xing_out_d_valid_0), // @[ClockDomain.scala:14:9]
.auto_tl_slave_clock_xing_out_d_bits_opcode (auto_coupler_to_rockettile_tl_slave_clock_xing_out_d_bits_opcode_0), // @[ClockDomain.scala:14:9]
.auto_tl_slave_clock_xing_out_d_bits_param (auto_coupler_to_rockettile_tl_slave_clock_xing_out_d_bits_param_0), // @[ClockDomain.scala:14:9]
.auto_tl_slave_clock_xing_out_d_bits_size (auto_coupler_to_rockettile_tl_slave_clock_xing_out_d_bits_size_0), // @[ClockDomain.scala:14:9]
.auto_tl_slave_clock_xing_out_d_bits_source (auto_coupler_to_rockettile_tl_slave_clock_xing_out_d_bits_source_0), // @[ClockDomain.scala:14:9]
.auto_tl_slave_clock_xing_out_d_bits_sink (auto_coupler_to_rockettile_tl_slave_clock_xing_out_d_bits_sink_0), // @[ClockDomain.scala:14:9]
.auto_tl_slave_clock_xing_out_d_bits_denied (auto_coupler_to_rockettile_tl_slave_clock_xing_out_d_bits_denied_0), // @[ClockDomain.scala:14:9]
.auto_tl_slave_clock_xing_out_d_bits_data (auto_coupler_to_rockettile_tl_slave_clock_xing_out_d_bits_data_0), // @[ClockDomain.scala:14:9]
.auto_tl_slave_clock_xing_out_d_bits_corrupt (auto_coupler_to_rockettile_tl_slave_clock_xing_out_d_bits_corrupt_0), // @[ClockDomain.scala:14:9]
.auto_tl_in_a_ready (_coupler_to_rockettile_auto_tl_in_a_ready),
.auto_tl_in_a_valid (_out_xbar_auto_anon_out_5_a_valid), // @[PeripheryBus.scala:57:30]
.auto_tl_in_a_bits_opcode (_out_xbar_auto_anon_out_5_a_bits_opcode), // @[PeripheryBus.scala:57:30]
.auto_tl_in_a_bits_param (_out_xbar_auto_anon_out_5_a_bits_param), // @[PeripheryBus.scala:57:30]
.auto_tl_in_a_bits_size (_out_xbar_auto_anon_out_5_a_bits_size), // @[PeripheryBus.scala:57:30]
.auto_tl_in_a_bits_source (_out_xbar_auto_anon_out_5_a_bits_source), // @[PeripheryBus.scala:57:30]
.auto_tl_in_a_bits_address (_out_xbar_auto_anon_out_5_a_bits_address), // @[PeripheryBus.scala:57:30]
.auto_tl_in_a_bits_mask (_out_xbar_auto_anon_out_5_a_bits_mask), // @[PeripheryBus.scala:57:30]
.auto_tl_in_a_bits_data (_out_xbar_auto_anon_out_5_a_bits_data), // @[PeripheryBus.scala:57:30]
.auto_tl_in_a_bits_corrupt (_out_xbar_auto_anon_out_5_a_bits_corrupt), // @[PeripheryBus.scala:57:30]
.auto_tl_in_d_ready (_out_xbar_auto_anon_out_5_d_ready), // @[PeripheryBus.scala:57:30]
.auto_tl_in_d_valid (_coupler_to_rockettile_auto_tl_in_d_valid),
.auto_tl_in_d_bits_opcode (_coupler_to_rockettile_auto_tl_in_d_bits_opcode),
.auto_tl_in_d_bits_param (_coupler_to_rockettile_auto_tl_in_d_bits_param),
.auto_tl_in_d_bits_size (_coupler_to_rockettile_auto_tl_in_d_bits_size),
.auto_tl_in_d_bits_source (_coupler_to_rockettile_auto_tl_in_d_bits_source),
.auto_tl_in_d_bits_sink (_coupler_to_rockettile_auto_tl_in_d_bits_sink),
.auto_tl_in_d_bits_denied (_coupler_to_rockettile_auto_tl_in_d_bits_denied),
.auto_tl_in_d_bits_data (_coupler_to_rockettile_auto_tl_in_d_bits_data),
.auto_tl_in_d_bits_corrupt (_coupler_to_rockettile_auto_tl_in_d_bits_corrupt)
); // @[LazyScope.scala:98:27]
TLInterconnectCoupler_cbus_to_bootrom coupler_to_bootrom ( // @[LazyScope.scala:98:27]
.clock (childClock), // @[LazyModuleImp.scala:155:31]
.reset (childReset), // @[LazyModuleImp.scala:158:31]
.auto_fragmenter_anon_out_a_ready (auto_coupler_to_bootrom_fragmenter_anon_out_a_ready_0), // @[ClockDomain.scala:14:9]
.auto_fragmenter_anon_out_a_valid (auto_coupler_to_bootrom_fragmenter_anon_out_a_valid_0),
.auto_fragmenter_anon_out_a_bits_opcode (auto_coupler_to_bootrom_fragmenter_anon_out_a_bits_opcode_0),
.auto_fragmenter_anon_out_a_bits_param (auto_coupler_to_bootrom_fragmenter_anon_out_a_bits_param_0),
.auto_fragmenter_anon_out_a_bits_size (auto_coupler_to_bootrom_fragmenter_anon_out_a_bits_size_0),
.auto_fragmenter_anon_out_a_bits_source (auto_coupler_to_bootrom_fragmenter_anon_out_a_bits_source_0),
.auto_fragmenter_anon_out_a_bits_address (auto_coupler_to_bootrom_fragmenter_anon_out_a_bits_address_0),
.auto_fragmenter_anon_out_a_bits_mask (auto_coupler_to_bootrom_fragmenter_anon_out_a_bits_mask_0),
.auto_fragmenter_anon_out_a_bits_data (auto_coupler_to_bootrom_fragmenter_anon_out_a_bits_data_0),
.auto_fragmenter_anon_out_a_bits_corrupt (auto_coupler_to_bootrom_fragmenter_anon_out_a_bits_corrupt_0),
.auto_fragmenter_anon_out_d_ready (auto_coupler_to_bootrom_fragmenter_anon_out_d_ready_0),
.auto_fragmenter_anon_out_d_valid (auto_coupler_to_bootrom_fragmenter_anon_out_d_valid_0), // @[ClockDomain.scala:14:9]
.auto_fragmenter_anon_out_d_bits_size (auto_coupler_to_bootrom_fragmenter_anon_out_d_bits_size_0), // @[ClockDomain.scala:14:9]
.auto_fragmenter_anon_out_d_bits_source (auto_coupler_to_bootrom_fragmenter_anon_out_d_bits_source_0), // @[ClockDomain.scala:14:9]
.auto_fragmenter_anon_out_d_bits_data (auto_coupler_to_bootrom_fragmenter_anon_out_d_bits_data_0), // @[ClockDomain.scala:14:9]
.auto_tl_in_a_ready (_coupler_to_bootrom_auto_tl_in_a_ready),
.auto_tl_in_a_valid (_out_xbar_auto_anon_out_6_a_valid), // @[PeripheryBus.scala:57:30]
.auto_tl_in_a_bits_opcode (_out_xbar_auto_anon_out_6_a_bits_opcode), // @[PeripheryBus.scala:57:30]
.auto_tl_in_a_bits_param (_out_xbar_auto_anon_out_6_a_bits_param), // @[PeripheryBus.scala:57:30]
.auto_tl_in_a_bits_size (_out_xbar_auto_anon_out_6_a_bits_size), // @[PeripheryBus.scala:57:30]
.auto_tl_in_a_bits_source (_out_xbar_auto_anon_out_6_a_bits_source), // @[PeripheryBus.scala:57:30]
.auto_tl_in_a_bits_address (_out_xbar_auto_anon_out_6_a_bits_address), // @[PeripheryBus.scala:57:30]
.auto_tl_in_a_bits_mask (_out_xbar_auto_anon_out_6_a_bits_mask), // @[PeripheryBus.scala:57:30]
.auto_tl_in_a_bits_data (_out_xbar_auto_anon_out_6_a_bits_data), // @[PeripheryBus.scala:57:30]
.auto_tl_in_a_bits_corrupt (_out_xbar_auto_anon_out_6_a_bits_corrupt), // @[PeripheryBus.scala:57:30]
.auto_tl_in_d_ready (_out_xbar_auto_anon_out_6_d_ready), // @[PeripheryBus.scala:57:30]
.auto_tl_in_d_valid (_coupler_to_bootrom_auto_tl_in_d_valid),
.auto_tl_in_d_bits_size (_coupler_to_bootrom_auto_tl_in_d_bits_size),
.auto_tl_in_d_bits_source (_coupler_to_bootrom_auto_tl_in_d_bits_source),
.auto_tl_in_d_bits_data (_coupler_to_bootrom_auto_tl_in_d_bits_data)
); // @[LazyScope.scala:98:27]
TLInterconnectCoupler_cbus_to_prci_ctrl coupler_to_prci_ctrl ( // @[LazyScope.scala:98:27]
.clock (childClock), // @[LazyModuleImp.scala:155:31]
.reset (childReset), // @[LazyModuleImp.scala:158:31]
.auto_fixer_anon_out_a_ready (auto_coupler_to_prci_ctrl_fixer_anon_out_a_ready_0), // @[ClockDomain.scala:14:9]
.auto_fixer_anon_out_a_valid (auto_coupler_to_prci_ctrl_fixer_anon_out_a_valid_0),
.auto_fixer_anon_out_a_bits_opcode (auto_coupler_to_prci_ctrl_fixer_anon_out_a_bits_opcode_0),
.auto_fixer_anon_out_a_bits_param (auto_coupler_to_prci_ctrl_fixer_anon_out_a_bits_param_0),
.auto_fixer_anon_out_a_bits_size (auto_coupler_to_prci_ctrl_fixer_anon_out_a_bits_size_0),
.auto_fixer_anon_out_a_bits_source (auto_coupler_to_prci_ctrl_fixer_anon_out_a_bits_source_0),
.auto_fixer_anon_out_a_bits_address (auto_coupler_to_prci_ctrl_fixer_anon_out_a_bits_address_0),
.auto_fixer_anon_out_a_bits_mask (auto_coupler_to_prci_ctrl_fixer_anon_out_a_bits_mask_0),
.auto_fixer_anon_out_a_bits_data (auto_coupler_to_prci_ctrl_fixer_anon_out_a_bits_data_0),
.auto_fixer_anon_out_a_bits_corrupt (auto_coupler_to_prci_ctrl_fixer_anon_out_a_bits_corrupt_0),
.auto_fixer_anon_out_d_ready (auto_coupler_to_prci_ctrl_fixer_anon_out_d_ready_0),
.auto_fixer_anon_out_d_valid (auto_coupler_to_prci_ctrl_fixer_anon_out_d_valid_0), // @[ClockDomain.scala:14:9]
.auto_fixer_anon_out_d_bits_opcode (auto_coupler_to_prci_ctrl_fixer_anon_out_d_bits_opcode_0), // @[ClockDomain.scala:14:9]
.auto_fixer_anon_out_d_bits_size (auto_coupler_to_prci_ctrl_fixer_anon_out_d_bits_size_0), // @[ClockDomain.scala:14:9]
.auto_fixer_anon_out_d_bits_source (auto_coupler_to_prci_ctrl_fixer_anon_out_d_bits_source_0), // @[ClockDomain.scala:14:9]
.auto_fixer_anon_out_d_bits_data (auto_coupler_to_prci_ctrl_fixer_anon_out_d_bits_data_0), // @[ClockDomain.scala:14:9]
.auto_tl_in_a_ready (_coupler_to_prci_ctrl_auto_tl_in_a_ready),
.auto_tl_in_a_valid (_out_xbar_auto_anon_out_7_a_valid), // @[PeripheryBus.scala:57:30]
.auto_tl_in_a_bits_opcode (_out_xbar_auto_anon_out_7_a_bits_opcode), // @[PeripheryBus.scala:57:30]
.auto_tl_in_a_bits_param (_out_xbar_auto_anon_out_7_a_bits_param), // @[PeripheryBus.scala:57:30]
.auto_tl_in_a_bits_size (_out_xbar_auto_anon_out_7_a_bits_size), // @[PeripheryBus.scala:57:30]
.auto_tl_in_a_bits_source (_out_xbar_auto_anon_out_7_a_bits_source), // @[PeripheryBus.scala:57:30]
.auto_tl_in_a_bits_address (_out_xbar_auto_anon_out_7_a_bits_address), // @[PeripheryBus.scala:57:30]
.auto_tl_in_a_bits_mask (_out_xbar_auto_anon_out_7_a_bits_mask), // @[PeripheryBus.scala:57:30]
.auto_tl_in_a_bits_data (_out_xbar_auto_anon_out_7_a_bits_data), // @[PeripheryBus.scala:57:30]
.auto_tl_in_a_bits_corrupt (_out_xbar_auto_anon_out_7_a_bits_corrupt), // @[PeripheryBus.scala:57:30]
.auto_tl_in_d_ready (_out_xbar_auto_anon_out_7_d_ready), // @[PeripheryBus.scala:57:30]
.auto_tl_in_d_valid (_coupler_to_prci_ctrl_auto_tl_in_d_valid),
.auto_tl_in_d_bits_opcode (_coupler_to_prci_ctrl_auto_tl_in_d_bits_opcode),
.auto_tl_in_d_bits_param (_coupler_to_prci_ctrl_auto_tl_in_d_bits_param),
.auto_tl_in_d_bits_size (_coupler_to_prci_ctrl_auto_tl_in_d_bits_size),
.auto_tl_in_d_bits_source (_coupler_to_prci_ctrl_auto_tl_in_d_bits_source),
.auto_tl_in_d_bits_sink (_coupler_to_prci_ctrl_auto_tl_in_d_bits_sink),
.auto_tl_in_d_bits_denied (_coupler_to_prci_ctrl_auto_tl_in_d_bits_denied),
.auto_tl_in_d_bits_data (_coupler_to_prci_ctrl_auto_tl_in_d_bits_data),
.auto_tl_in_d_bits_corrupt (_coupler_to_prci_ctrl_auto_tl_in_d_bits_corrupt)
); // @[LazyScope.scala:98:27]
assign auto_coupler_to_prci_ctrl_fixer_anon_out_a_valid = auto_coupler_to_prci_ctrl_fixer_anon_out_a_valid_0; // @[ClockDomain.scala:14:9]
assign auto_coupler_to_prci_ctrl_fixer_anon_out_a_bits_opcode = auto_coupler_to_prci_ctrl_fixer_anon_out_a_bits_opcode_0; // @[ClockDomain.scala:14:9]
assign auto_coupler_to_prci_ctrl_fixer_anon_out_a_bits_param = auto_coupler_to_prci_ctrl_fixer_anon_out_a_bits_param_0; // @[ClockDomain.scala:14:9]
assign auto_coupler_to_prci_ctrl_fixer_anon_out_a_bits_size = auto_coupler_to_prci_ctrl_fixer_anon_out_a_bits_size_0; // @[ClockDomain.scala:14:9]
assign auto_coupler_to_prci_ctrl_fixer_anon_out_a_bits_source = auto_coupler_to_prci_ctrl_fixer_anon_out_a_bits_source_0; // @[ClockDomain.scala:14:9]
assign auto_coupler_to_prci_ctrl_fixer_anon_out_a_bits_address = auto_coupler_to_prci_ctrl_fixer_anon_out_a_bits_address_0; // @[ClockDomain.scala:14:9]
assign auto_coupler_to_prci_ctrl_fixer_anon_out_a_bits_mask = auto_coupler_to_prci_ctrl_fixer_anon_out_a_bits_mask_0; // @[ClockDomain.scala:14:9]
assign auto_coupler_to_prci_ctrl_fixer_anon_out_a_bits_data = auto_coupler_to_prci_ctrl_fixer_anon_out_a_bits_data_0; // @[ClockDomain.scala:14:9]
assign auto_coupler_to_prci_ctrl_fixer_anon_out_a_bits_corrupt = auto_coupler_to_prci_ctrl_fixer_anon_out_a_bits_corrupt_0; // @[ClockDomain.scala:14:9]
assign auto_coupler_to_prci_ctrl_fixer_anon_out_d_ready = auto_coupler_to_prci_ctrl_fixer_anon_out_d_ready_0; // @[ClockDomain.scala:14:9]
assign auto_coupler_to_bootrom_fragmenter_anon_out_a_valid = auto_coupler_to_bootrom_fragmenter_anon_out_a_valid_0; // @[ClockDomain.scala:14:9]
assign auto_coupler_to_bootrom_fragmenter_anon_out_a_bits_opcode = auto_coupler_to_bootrom_fragmenter_anon_out_a_bits_opcode_0; // @[ClockDomain.scala:14:9]
assign auto_coupler_to_bootrom_fragmenter_anon_out_a_bits_param = auto_coupler_to_bootrom_fragmenter_anon_out_a_bits_param_0; // @[ClockDomain.scala:14:9]
assign auto_coupler_to_bootrom_fragmenter_anon_out_a_bits_size = auto_coupler_to_bootrom_fragmenter_anon_out_a_bits_size_0; // @[ClockDomain.scala:14:9]
assign auto_coupler_to_bootrom_fragmenter_anon_out_a_bits_source = auto_coupler_to_bootrom_fragmenter_anon_out_a_bits_source_0; // @[ClockDomain.scala:14:9]
assign auto_coupler_to_bootrom_fragmenter_anon_out_a_bits_address = auto_coupler_to_bootrom_fragmenter_anon_out_a_bits_address_0; // @[ClockDomain.scala:14:9]
assign auto_coupler_to_bootrom_fragmenter_anon_out_a_bits_mask = auto_coupler_to_bootrom_fragmenter_anon_out_a_bits_mask_0; // @[ClockDomain.scala:14:9]
assign auto_coupler_to_bootrom_fragmenter_anon_out_a_bits_data = auto_coupler_to_bootrom_fragmenter_anon_out_a_bits_data_0; // @[ClockDomain.scala:14:9]
assign auto_coupler_to_bootrom_fragmenter_anon_out_a_bits_corrupt = auto_coupler_to_bootrom_fragmenter_anon_out_a_bits_corrupt_0; // @[ClockDomain.scala:14:9]
assign auto_coupler_to_bootrom_fragmenter_anon_out_d_ready = auto_coupler_to_bootrom_fragmenter_anon_out_d_ready_0; // @[ClockDomain.scala:14:9]
assign auto_coupler_to_rockettile_tl_slave_clock_xing_out_a_valid = auto_coupler_to_rockettile_tl_slave_clock_xing_out_a_valid_0; // @[ClockDomain.scala:14:9]
assign auto_coupler_to_rockettile_tl_slave_clock_xing_out_a_bits_opcode = auto_coupler_to_rockettile_tl_slave_clock_xing_out_a_bits_opcode_0; // @[ClockDomain.scala:14:9]
assign auto_coupler_to_rockettile_tl_slave_clock_xing_out_a_bits_param = auto_coupler_to_rockettile_tl_slave_clock_xing_out_a_bits_param_0; // @[ClockDomain.scala:14:9]
assign auto_coupler_to_rockettile_tl_slave_clock_xing_out_a_bits_size = auto_coupler_to_rockettile_tl_slave_clock_xing_out_a_bits_size_0; // @[ClockDomain.scala:14:9]
assign auto_coupler_to_rockettile_tl_slave_clock_xing_out_a_bits_source = auto_coupler_to_rockettile_tl_slave_clock_xing_out_a_bits_source_0; // @[ClockDomain.scala:14:9]
assign auto_coupler_to_rockettile_tl_slave_clock_xing_out_a_bits_address = auto_coupler_to_rockettile_tl_slave_clock_xing_out_a_bits_address_0; // @[ClockDomain.scala:14:9]
assign auto_coupler_to_rockettile_tl_slave_clock_xing_out_a_bits_mask = auto_coupler_to_rockettile_tl_slave_clock_xing_out_a_bits_mask_0; // @[ClockDomain.scala:14:9]
assign auto_coupler_to_rockettile_tl_slave_clock_xing_out_a_bits_data = auto_coupler_to_rockettile_tl_slave_clock_xing_out_a_bits_data_0; // @[ClockDomain.scala:14:9]
assign auto_coupler_to_rockettile_tl_slave_clock_xing_out_a_bits_corrupt = auto_coupler_to_rockettile_tl_slave_clock_xing_out_a_bits_corrupt_0; // @[ClockDomain.scala:14:9]
assign auto_coupler_to_rockettile_tl_slave_clock_xing_out_d_ready = auto_coupler_to_rockettile_tl_slave_clock_xing_out_d_ready_0; // @[ClockDomain.scala:14:9]
assign auto_coupler_to_debug_fragmenter_anon_out_a_valid = auto_coupler_to_debug_fragmenter_anon_out_a_valid_0; // @[ClockDomain.scala:14:9]
assign auto_coupler_to_debug_fragmenter_anon_out_a_bits_opcode = auto_coupler_to_debug_fragmenter_anon_out_a_bits_opcode_0; // @[ClockDomain.scala:14:9]
assign auto_coupler_to_debug_fragmenter_anon_out_a_bits_param = auto_coupler_to_debug_fragmenter_anon_out_a_bits_param_0; // @[ClockDomain.scala:14:9]
assign auto_coupler_to_debug_fragmenter_anon_out_a_bits_size = auto_coupler_to_debug_fragmenter_anon_out_a_bits_size_0; // @[ClockDomain.scala:14:9]
assign auto_coupler_to_debug_fragmenter_anon_out_a_bits_source = auto_coupler_to_debug_fragmenter_anon_out_a_bits_source_0; // @[ClockDomain.scala:14:9]
assign auto_coupler_to_debug_fragmenter_anon_out_a_bits_address = auto_coupler_to_debug_fragmenter_anon_out_a_bits_address_0; // @[ClockDomain.scala:14:9]
assign auto_coupler_to_debug_fragmenter_anon_out_a_bits_mask = auto_coupler_to_debug_fragmenter_anon_out_a_bits_mask_0; // @[ClockDomain.scala:14:9]
assign auto_coupler_to_debug_fragmenter_anon_out_a_bits_data = auto_coupler_to_debug_fragmenter_anon_out_a_bits_data_0; // @[ClockDomain.scala:14:9]
assign auto_coupler_to_debug_fragmenter_anon_out_a_bits_corrupt = auto_coupler_to_debug_fragmenter_anon_out_a_bits_corrupt_0; // @[ClockDomain.scala:14:9]
assign auto_coupler_to_debug_fragmenter_anon_out_d_ready = auto_coupler_to_debug_fragmenter_anon_out_d_ready_0; // @[ClockDomain.scala:14:9]
assign auto_coupler_to_plic_fragmenter_anon_out_a_valid = auto_coupler_to_plic_fragmenter_anon_out_a_valid_0; // @[ClockDomain.scala:14:9]
assign auto_coupler_to_plic_fragmenter_anon_out_a_bits_opcode = auto_coupler_to_plic_fragmenter_anon_out_a_bits_opcode_0; // @[ClockDomain.scala:14:9]
assign auto_coupler_to_plic_fragmenter_anon_out_a_bits_param = auto_coupler_to_plic_fragmenter_anon_out_a_bits_param_0; // @[ClockDomain.scala:14:9]
assign auto_coupler_to_plic_fragmenter_anon_out_a_bits_size = auto_coupler_to_plic_fragmenter_anon_out_a_bits_size_0; // @[ClockDomain.scala:14:9]
assign auto_coupler_to_plic_fragmenter_anon_out_a_bits_source = auto_coupler_to_plic_fragmenter_anon_out_a_bits_source_0; // @[ClockDomain.scala:14:9]
assign auto_coupler_to_plic_fragmenter_anon_out_a_bits_address = auto_coupler_to_plic_fragmenter_anon_out_a_bits_address_0; // @[ClockDomain.scala:14:9]
assign auto_coupler_to_plic_fragmenter_anon_out_a_bits_mask = auto_coupler_to_plic_fragmenter_anon_out_a_bits_mask_0; // @[ClockDomain.scala:14:9]
assign auto_coupler_to_plic_fragmenter_anon_out_a_bits_data = auto_coupler_to_plic_fragmenter_anon_out_a_bits_data_0; // @[ClockDomain.scala:14:9]
assign auto_coupler_to_plic_fragmenter_anon_out_a_bits_corrupt = auto_coupler_to_plic_fragmenter_anon_out_a_bits_corrupt_0; // @[ClockDomain.scala:14:9]
assign auto_coupler_to_plic_fragmenter_anon_out_d_ready = auto_coupler_to_plic_fragmenter_anon_out_d_ready_0; // @[ClockDomain.scala:14:9]
assign auto_coupler_to_clint_fragmenter_anon_out_a_valid = auto_coupler_to_clint_fragmenter_anon_out_a_valid_0; // @[ClockDomain.scala:14:9]
assign auto_coupler_to_clint_fragmenter_anon_out_a_bits_opcode = auto_coupler_to_clint_fragmenter_anon_out_a_bits_opcode_0; // @[ClockDomain.scala:14:9]
assign auto_coupler_to_clint_fragmenter_anon_out_a_bits_param = auto_coupler_to_clint_fragmenter_anon_out_a_bits_param_0; // @[ClockDomain.scala:14:9]
assign auto_coupler_to_clint_fragmenter_anon_out_a_bits_size = auto_coupler_to_clint_fragmenter_anon_out_a_bits_size_0; // @[ClockDomain.scala:14:9]
assign auto_coupler_to_clint_fragmenter_anon_out_a_bits_source = auto_coupler_to_clint_fragmenter_anon_out_a_bits_source_0; // @[ClockDomain.scala:14:9]
assign auto_coupler_to_clint_fragmenter_anon_out_a_bits_address = auto_coupler_to_clint_fragmenter_anon_out_a_bits_address_0; // @[ClockDomain.scala:14:9]
assign auto_coupler_to_clint_fragmenter_anon_out_a_bits_mask = auto_coupler_to_clint_fragmenter_anon_out_a_bits_mask_0; // @[ClockDomain.scala:14:9]
assign auto_coupler_to_clint_fragmenter_anon_out_a_bits_data = auto_coupler_to_clint_fragmenter_anon_out_a_bits_data_0; // @[ClockDomain.scala:14:9]
assign auto_coupler_to_clint_fragmenter_anon_out_a_bits_corrupt = auto_coupler_to_clint_fragmenter_anon_out_a_bits_corrupt_0; // @[ClockDomain.scala:14:9]
assign auto_coupler_to_clint_fragmenter_anon_out_d_ready = auto_coupler_to_clint_fragmenter_anon_out_d_ready_0; // @[ClockDomain.scala:14:9]
assign auto_coupler_to_bus_named_pbus_bus_xing_out_a_valid = auto_coupler_to_bus_named_pbus_bus_xing_out_a_valid_0; // @[ClockDomain.scala:14:9]
assign auto_coupler_to_bus_named_pbus_bus_xing_out_a_bits_opcode = auto_coupler_to_bus_named_pbus_bus_xing_out_a_bits_opcode_0; // @[ClockDomain.scala:14:9]
assign auto_coupler_to_bus_named_pbus_bus_xing_out_a_bits_param = auto_coupler_to_bus_named_pbus_bus_xing_out_a_bits_param_0; // @[ClockDomain.scala:14:9]
assign auto_coupler_to_bus_named_pbus_bus_xing_out_a_bits_size = auto_coupler_to_bus_named_pbus_bus_xing_out_a_bits_size_0; // @[ClockDomain.scala:14:9]
assign auto_coupler_to_bus_named_pbus_bus_xing_out_a_bits_source = auto_coupler_to_bus_named_pbus_bus_xing_out_a_bits_source_0; // @[ClockDomain.scala:14:9]
assign auto_coupler_to_bus_named_pbus_bus_xing_out_a_bits_address = auto_coupler_to_bus_named_pbus_bus_xing_out_a_bits_address_0; // @[ClockDomain.scala:14:9]
assign auto_coupler_to_bus_named_pbus_bus_xing_out_a_bits_mask = auto_coupler_to_bus_named_pbus_bus_xing_out_a_bits_mask_0; // @[ClockDomain.scala:14:9]
assign auto_coupler_to_bus_named_pbus_bus_xing_out_a_bits_data = auto_coupler_to_bus_named_pbus_bus_xing_out_a_bits_data_0; // @[ClockDomain.scala:14:9]
assign auto_coupler_to_bus_named_pbus_bus_xing_out_a_bits_corrupt = auto_coupler_to_bus_named_pbus_bus_xing_out_a_bits_corrupt_0; // @[ClockDomain.scala:14:9]
assign auto_coupler_to_bus_named_pbus_bus_xing_out_d_ready = auto_coupler_to_bus_named_pbus_bus_xing_out_d_ready_0; // @[ClockDomain.scala:14:9]
assign auto_fixedClockNode_anon_out_5_clock = auto_fixedClockNode_anon_out_5_clock_0; // @[ClockDomain.scala:14:9]
assign auto_fixedClockNode_anon_out_5_reset = auto_fixedClockNode_anon_out_5_reset_0; // @[ClockDomain.scala:14:9]
assign auto_fixedClockNode_anon_out_4_clock = auto_fixedClockNode_anon_out_4_clock_0; // @[ClockDomain.scala:14:9]
assign auto_fixedClockNode_anon_out_4_reset = auto_fixedClockNode_anon_out_4_reset_0; // @[ClockDomain.scala:14:9]
assign auto_fixedClockNode_anon_out_3_clock = auto_fixedClockNode_anon_out_3_clock_0; // @[ClockDomain.scala:14:9]
assign auto_fixedClockNode_anon_out_3_reset = auto_fixedClockNode_anon_out_3_reset_0; // @[ClockDomain.scala:14:9]
assign auto_fixedClockNode_anon_out_2_clock = auto_fixedClockNode_anon_out_2_clock_0; // @[ClockDomain.scala:14:9]
assign auto_fixedClockNode_anon_out_2_reset = auto_fixedClockNode_anon_out_2_reset_0; // @[ClockDomain.scala:14:9]
assign auto_fixedClockNode_anon_out_1_clock = auto_fixedClockNode_anon_out_1_clock_0; // @[ClockDomain.scala:14:9]
assign auto_fixedClockNode_anon_out_1_reset = auto_fixedClockNode_anon_out_1_reset_0; // @[ClockDomain.scala:14:9]
assign auto_fixedClockNode_anon_out_0_clock = auto_fixedClockNode_anon_out_0_clock_0; // @[ClockDomain.scala:14:9]
assign auto_fixedClockNode_anon_out_0_reset = auto_fixedClockNode_anon_out_0_reset_0; // @[ClockDomain.scala:14:9]
assign auto_bus_xing_in_a_ready = auto_bus_xing_in_a_ready_0; // @[ClockDomain.scala:14:9]
assign auto_bus_xing_in_d_valid = auto_bus_xing_in_d_valid_0; // @[ClockDomain.scala:14:9]
assign auto_bus_xing_in_d_bits_opcode = auto_bus_xing_in_d_bits_opcode_0; // @[ClockDomain.scala:14:9]
assign auto_bus_xing_in_d_bits_param = auto_bus_xing_in_d_bits_param_0; // @[ClockDomain.scala:14:9]
assign auto_bus_xing_in_d_bits_size = auto_bus_xing_in_d_bits_size_0; // @[ClockDomain.scala:14:9]
assign auto_bus_xing_in_d_bits_source = auto_bus_xing_in_d_bits_source_0; // @[ClockDomain.scala:14:9]
assign auto_bus_xing_in_d_bits_sink = auto_bus_xing_in_d_bits_sink_0; // @[ClockDomain.scala:14:9]
assign auto_bus_xing_in_d_bits_denied = auto_bus_xing_in_d_bits_denied_0; // @[ClockDomain.scala:14:9]
assign auto_bus_xing_in_d_bits_data = auto_bus_xing_in_d_bits_data_0; // @[ClockDomain.scala:14:9]
assign auto_bus_xing_in_d_bits_corrupt = auto_bus_xing_in_d_bits_corrupt_0; // @[ClockDomain.scala:14:9]
endmodule |
Generate the Verilog code corresponding to the following Chisel files.
File Tile.scala:
// See README.md for license details.
package gemmini
import chisel3._
import chisel3.util._
import Util._
/**
* A Tile is a purely combinational 2D array of passThrough PEs.
* a, b, s, and in_propag are broadcast across the entire array and are passed through to the Tile's outputs
* @param width The data width of each PE in bits
* @param rows Number of PEs on each row
* @param columns Number of PEs on each column
*/
class Tile[T <: Data](inputType: T, outputType: T, accType: T, df: Dataflow.Value, tree_reduction: Boolean, max_simultaneous_matmuls: Int, val rows: Int, val columns: Int)(implicit ev: Arithmetic[T]) extends Module {
val io = IO(new Bundle {
val in_a = Input(Vec(rows, inputType))
val in_b = Input(Vec(columns, outputType)) // This is the output of the tile next to it
val in_d = Input(Vec(columns, outputType))
val in_control = Input(Vec(columns, new PEControl(accType)))
val in_id = Input(Vec(columns, UInt(log2Up(max_simultaneous_matmuls).W)))
val in_last = Input(Vec(columns, Bool()))
val out_a = Output(Vec(rows, inputType))
val out_c = Output(Vec(columns, outputType))
val out_b = Output(Vec(columns, outputType))
val out_control = Output(Vec(columns, new PEControl(accType)))
val out_id = Output(Vec(columns, UInt(log2Up(max_simultaneous_matmuls).W)))
val out_last = Output(Vec(columns, Bool()))
val in_valid = Input(Vec(columns, Bool()))
val out_valid = Output(Vec(columns, Bool()))
val bad_dataflow = Output(Bool())
})
import ev._
val tile = Seq.fill(rows, columns)(Module(new PE(inputType, outputType, accType, df, max_simultaneous_matmuls)))
val tileT = tile.transpose
// TODO: abstract hori/vert broadcast, all these connections look the same
// Broadcast 'a' horizontally across the Tile
for (r <- 0 until rows) {
tile(r).foldLeft(io.in_a(r)) {
case (in_a, pe) =>
pe.io.in_a := in_a
pe.io.out_a
}
}
// Broadcast 'b' vertically across the Tile
for (c <- 0 until columns) {
tileT(c).foldLeft(io.in_b(c)) {
case (in_b, pe) =>
pe.io.in_b := (if (tree_reduction) in_b.zero else in_b)
pe.io.out_b
}
}
// Broadcast 'd' vertically across the Tile
for (c <- 0 until columns) {
tileT(c).foldLeft(io.in_d(c)) {
case (in_d, pe) =>
pe.io.in_d := in_d
pe.io.out_c
}
}
// Broadcast 'control' vertically across the Tile
for (c <- 0 until columns) {
tileT(c).foldLeft(io.in_control(c)) {
case (in_ctrl, pe) =>
pe.io.in_control := in_ctrl
pe.io.out_control
}
}
// Broadcast 'garbage' vertically across the Tile
for (c <- 0 until columns) {
tileT(c).foldLeft(io.in_valid(c)) {
case (v, pe) =>
pe.io.in_valid := v
pe.io.out_valid
}
}
// Broadcast 'id' vertically across the Tile
for (c <- 0 until columns) {
tileT(c).foldLeft(io.in_id(c)) {
case (id, pe) =>
pe.io.in_id := id
pe.io.out_id
}
}
// Broadcast 'last' vertically across the Tile
for (c <- 0 until columns) {
tileT(c).foldLeft(io.in_last(c)) {
case (last, pe) =>
pe.io.in_last := last
pe.io.out_last
}
}
// Drive the Tile's bottom IO
for (c <- 0 until columns) {
io.out_c(c) := tile(rows-1)(c).io.out_c
io.out_control(c) := tile(rows-1)(c).io.out_control
io.out_id(c) := tile(rows-1)(c).io.out_id
io.out_last(c) := tile(rows-1)(c).io.out_last
io.out_valid(c) := tile(rows-1)(c).io.out_valid
io.out_b(c) := {
if (tree_reduction) {
val prods = tileT(c).map(_.io.out_b)
accumulateTree(prods :+ io.in_b(c))
} else {
tile(rows - 1)(c).io.out_b
}
}
}
io.bad_dataflow := tile.map(_.map(_.io.bad_dataflow).reduce(_||_)).reduce(_||_)
// Drive the Tile's right IO
for (r <- 0 until rows) {
io.out_a(r) := tile(r)(columns-1).io.out_a
}
}
| module Tile_179( // @[Tile.scala:16:7]
input clock, // @[Tile.scala:16:7]
input reset, // @[Tile.scala:16:7]
input [7:0] io_in_a_0, // @[Tile.scala:17:14]
input [19:0] io_in_b_0, // @[Tile.scala:17:14]
input [19:0] io_in_d_0, // @[Tile.scala:17:14]
input io_in_control_0_dataflow, // @[Tile.scala:17:14]
input io_in_control_0_propagate, // @[Tile.scala:17:14]
input [4:0] io_in_control_0_shift, // @[Tile.scala:17:14]
input [2:0] io_in_id_0, // @[Tile.scala:17:14]
input io_in_last_0, // @[Tile.scala:17:14]
output [7:0] io_out_a_0, // @[Tile.scala:17:14]
output [19:0] io_out_c_0, // @[Tile.scala:17:14]
output [19:0] io_out_b_0, // @[Tile.scala:17:14]
output io_out_control_0_dataflow, // @[Tile.scala:17:14]
output io_out_control_0_propagate, // @[Tile.scala:17:14]
output [4:0] io_out_control_0_shift, // @[Tile.scala:17:14]
output [2:0] io_out_id_0, // @[Tile.scala:17:14]
output io_out_last_0, // @[Tile.scala:17:14]
input io_in_valid_0, // @[Tile.scala:17:14]
output io_out_valid_0 // @[Tile.scala:17:14]
);
wire [7:0] io_in_a_0_0 = io_in_a_0; // @[Tile.scala:16:7]
wire [19:0] io_in_b_0_0 = io_in_b_0; // @[Tile.scala:16:7]
wire [19:0] io_in_d_0_0 = io_in_d_0; // @[Tile.scala:16:7]
wire io_in_control_0_dataflow_0 = io_in_control_0_dataflow; // @[Tile.scala:16:7]
wire io_in_control_0_propagate_0 = io_in_control_0_propagate; // @[Tile.scala:16:7]
wire [4:0] io_in_control_0_shift_0 = io_in_control_0_shift; // @[Tile.scala:16:7]
wire [2:0] io_in_id_0_0 = io_in_id_0; // @[Tile.scala:16:7]
wire io_in_last_0_0 = io_in_last_0; // @[Tile.scala:16:7]
wire io_in_valid_0_0 = io_in_valid_0; // @[Tile.scala:16:7]
wire io_bad_dataflow = 1'h0; // @[Tile.scala:16:7, :17:14, :42:44]
wire [7:0] io_out_a_0_0; // @[Tile.scala:16:7]
wire [19:0] io_out_c_0_0; // @[Tile.scala:16:7]
wire [19:0] io_out_b_0_0; // @[Tile.scala:16:7]
wire io_out_control_0_dataflow_0; // @[Tile.scala:16:7]
wire io_out_control_0_propagate_0; // @[Tile.scala:16:7]
wire [4:0] io_out_control_0_shift_0; // @[Tile.scala:16:7]
wire [2:0] io_out_id_0_0; // @[Tile.scala:16:7]
wire io_out_last_0_0; // @[Tile.scala:16:7]
wire io_out_valid_0_0; // @[Tile.scala:16:7]
PE_435 tile_0_0 ( // @[Tile.scala:42:44]
.clock (clock),
.reset (reset),
.io_in_a (io_in_a_0_0), // @[Tile.scala:16:7]
.io_in_b (io_in_b_0_0), // @[Tile.scala:16:7]
.io_in_d (io_in_d_0_0), // @[Tile.scala:16:7]
.io_out_a (io_out_a_0_0),
.io_out_b (io_out_b_0_0),
.io_out_c (io_out_c_0_0),
.io_in_control_dataflow (io_in_control_0_dataflow_0), // @[Tile.scala:16:7]
.io_in_control_propagate (io_in_control_0_propagate_0), // @[Tile.scala:16:7]
.io_in_control_shift (io_in_control_0_shift_0), // @[Tile.scala:16:7]
.io_out_control_dataflow (io_out_control_0_dataflow_0),
.io_out_control_propagate (io_out_control_0_propagate_0),
.io_out_control_shift (io_out_control_0_shift_0),
.io_in_id (io_in_id_0_0), // @[Tile.scala:16:7]
.io_out_id (io_out_id_0_0),
.io_in_last (io_in_last_0_0), // @[Tile.scala:16:7]
.io_out_last (io_out_last_0_0),
.io_in_valid (io_in_valid_0_0), // @[Tile.scala:16:7]
.io_out_valid (io_out_valid_0_0)
); // @[Tile.scala:42:44]
assign io_out_a_0 = io_out_a_0_0; // @[Tile.scala:16:7]
assign io_out_c_0 = io_out_c_0_0; // @[Tile.scala:16:7]
assign io_out_b_0 = io_out_b_0_0; // @[Tile.scala:16:7]
assign io_out_control_0_dataflow = io_out_control_0_dataflow_0; // @[Tile.scala:16:7]
assign io_out_control_0_propagate = io_out_control_0_propagate_0; // @[Tile.scala:16:7]
assign io_out_control_0_shift = io_out_control_0_shift_0; // @[Tile.scala:16:7]
assign io_out_id_0 = io_out_id_0_0; // @[Tile.scala:16:7]
assign io_out_last_0 = io_out_last_0_0; // @[Tile.scala:16:7]
assign io_out_valid_0 = io_out_valid_0_0; // @[Tile.scala:16:7]
endmodule |
Generate the Verilog code corresponding to the following Chisel files.
File InputUnit.scala:
package constellation.router
import chisel3._
import chisel3.util._
import org.chipsalliance.cde.config.{Field, Parameters}
import freechips.rocketchip.util._
import constellation.channel._
import constellation.routing.{FlowRoutingBundle}
import constellation.noc.{HasNoCParams}
class AbstractInputUnitIO(
val cParam: BaseChannelParams,
val outParams: Seq[ChannelParams],
val egressParams: Seq[EgressChannelParams],
)(implicit val p: Parameters) extends Bundle with HasRouterOutputParams {
val nodeId = cParam.destId
val router_req = Decoupled(new RouteComputerReq)
val router_resp = Input(new RouteComputerResp(outParams, egressParams))
val vcalloc_req = Decoupled(new VCAllocReq(cParam, outParams, egressParams))
val vcalloc_resp = Input(new VCAllocResp(outParams, egressParams))
val out_credit_available = Input(MixedVec(allOutParams.map { u => Vec(u.nVirtualChannels, Bool()) }))
val salloc_req = Vec(cParam.destSpeedup, Decoupled(new SwitchAllocReq(outParams, egressParams)))
val out = Vec(cParam.destSpeedup, Valid(new SwitchBundle(outParams, egressParams)))
val debug = Output(new Bundle {
val va_stall = UInt(log2Ceil(cParam.nVirtualChannels).W)
val sa_stall = UInt(log2Ceil(cParam.nVirtualChannels).W)
})
val block = Input(Bool())
}
abstract class AbstractInputUnit(
val cParam: BaseChannelParams,
val outParams: Seq[ChannelParams],
val egressParams: Seq[EgressChannelParams]
)(implicit val p: Parameters) extends Module with HasRouterOutputParams with HasNoCParams {
val nodeId = cParam.destId
def io: AbstractInputUnitIO
}
class InputBuffer(cParam: ChannelParams)(implicit p: Parameters) extends Module {
val nVirtualChannels = cParam.nVirtualChannels
val io = IO(new Bundle {
val enq = Flipped(Vec(cParam.srcSpeedup, Valid(new Flit(cParam.payloadBits))))
val deq = Vec(cParam.nVirtualChannels, Decoupled(new BaseFlit(cParam.payloadBits)))
})
val useOutputQueues = cParam.useOutputQueues
val delims = if (useOutputQueues) {
cParam.virtualChannelParams.map(u => if (u.traversable) u.bufferSize else 0).scanLeft(0)(_+_)
} else {
// If no queuing, have to add an additional slot since head == tail implies empty
// TODO this should be fixed, should use all slots available
cParam.virtualChannelParams.map(u => if (u.traversable) u.bufferSize + 1 else 0).scanLeft(0)(_+_)
}
val starts = delims.dropRight(1).zipWithIndex.map { case (s,i) =>
if (cParam.virtualChannelParams(i).traversable) s else 0
}
val ends = delims.tail.zipWithIndex.map { case (s,i) =>
if (cParam.virtualChannelParams(i).traversable) s else 0
}
val fullSize = delims.last
// Ugly case. Use multiple queues
if ((cParam.srcSpeedup > 1 || cParam.destSpeedup > 1 || fullSize <= 1) || !cParam.unifiedBuffer) {
require(useOutputQueues)
val qs = cParam.virtualChannelParams.map(v => Module(new Queue(new BaseFlit(cParam.payloadBits), v.bufferSize)))
qs.zipWithIndex.foreach { case (q,i) =>
val sel = io.enq.map(f => f.valid && f.bits.virt_channel_id === i.U)
q.io.enq.valid := sel.orR
q.io.enq.bits.head := Mux1H(sel, io.enq.map(_.bits.head))
q.io.enq.bits.tail := Mux1H(sel, io.enq.map(_.bits.tail))
q.io.enq.bits.payload := Mux1H(sel, io.enq.map(_.bits.payload))
io.deq(i) <> q.io.deq
}
} else {
val mem = Mem(fullSize, new BaseFlit(cParam.payloadBits))
val heads = RegInit(VecInit(starts.map(_.U(log2Ceil(fullSize).W))))
val tails = RegInit(VecInit(starts.map(_.U(log2Ceil(fullSize).W))))
val empty = (heads zip tails).map(t => t._1 === t._2)
val qs = Seq.fill(nVirtualChannels) { Module(new Queue(new BaseFlit(cParam.payloadBits), 1, pipe=true)) }
qs.foreach(_.io.enq.valid := false.B)
qs.foreach(_.io.enq.bits := DontCare)
val vc_sel = UIntToOH(io.enq(0).bits.virt_channel_id)
val flit = Wire(new BaseFlit(cParam.payloadBits))
val direct_to_q = (Mux1H(vc_sel, qs.map(_.io.enq.ready)) && Mux1H(vc_sel, empty)) && useOutputQueues.B
flit.head := io.enq(0).bits.head
flit.tail := io.enq(0).bits.tail
flit.payload := io.enq(0).bits.payload
when (io.enq(0).valid && !direct_to_q) {
val tail = tails(io.enq(0).bits.virt_channel_id)
mem.write(tail, flit)
tails(io.enq(0).bits.virt_channel_id) := Mux(
tail === Mux1H(vc_sel, ends.map(_ - 1).map(_ max 0).map(_.U)),
Mux1H(vc_sel, starts.map(_.U)),
tail + 1.U)
} .elsewhen (io.enq(0).valid && direct_to_q) {
for (i <- 0 until nVirtualChannels) {
when (io.enq(0).bits.virt_channel_id === i.U) {
qs(i).io.enq.valid := true.B
qs(i).io.enq.bits := flit
}
}
}
if (useOutputQueues) {
val can_to_q = (0 until nVirtualChannels).map { i => !empty(i) && qs(i).io.enq.ready }
val to_q_oh = PriorityEncoderOH(can_to_q)
val to_q = OHToUInt(to_q_oh)
when (can_to_q.orR) {
val head = Mux1H(to_q_oh, heads)
heads(to_q) := Mux(
head === Mux1H(to_q_oh, ends.map(_ - 1).map(_ max 0).map(_.U)),
Mux1H(to_q_oh, starts.map(_.U)),
head + 1.U)
for (i <- 0 until nVirtualChannels) {
when (to_q_oh(i)) {
qs(i).io.enq.valid := true.B
qs(i).io.enq.bits := mem.read(head)
}
}
}
for (i <- 0 until nVirtualChannels) {
io.deq(i) <> qs(i).io.deq
}
} else {
qs.map(_.io.deq.ready := false.B)
val ready_sel = io.deq.map(_.ready)
val fire = io.deq.map(_.fire)
assert(PopCount(fire) <= 1.U)
val head = Mux1H(fire, heads)
when (fire.orR) {
val fire_idx = OHToUInt(fire)
heads(fire_idx) := Mux(
head === Mux1H(fire, ends.map(_ - 1).map(_ max 0).map(_.U)),
Mux1H(fire, starts.map(_.U)),
head + 1.U)
}
val read_flit = mem.read(head)
for (i <- 0 until nVirtualChannels) {
io.deq(i).valid := !empty(i)
io.deq(i).bits := read_flit
}
}
}
}
class InputUnit(cParam: ChannelParams, outParams: Seq[ChannelParams],
egressParams: Seq[EgressChannelParams],
combineRCVA: Boolean, combineSAST: Boolean
)
(implicit p: Parameters) extends AbstractInputUnit(cParam, outParams, egressParams)(p) {
val nVirtualChannels = cParam.nVirtualChannels
val virtualChannelParams = cParam.virtualChannelParams
class InputUnitIO extends AbstractInputUnitIO(cParam, outParams, egressParams) {
val in = Flipped(new Channel(cParam.asInstanceOf[ChannelParams]))
}
val io = IO(new InputUnitIO)
val g_i :: g_r :: g_v :: g_a :: g_c :: Nil = Enum(5)
class InputState extends Bundle {
val g = UInt(3.W)
val vc_sel = MixedVec(allOutParams.map { u => Vec(u.nVirtualChannels, Bool()) })
val flow = new FlowRoutingBundle
val fifo_deps = UInt(nVirtualChannels.W)
}
val input_buffer = Module(new InputBuffer(cParam))
for (i <- 0 until cParam.srcSpeedup) {
input_buffer.io.enq(i) := io.in.flit(i)
}
input_buffer.io.deq.foreach(_.ready := false.B)
val route_arbiter = Module(new Arbiter(
new RouteComputerReq, nVirtualChannels
))
io.router_req <> route_arbiter.io.out
val states = Reg(Vec(nVirtualChannels, new InputState))
val anyFifo = cParam.possibleFlows.map(_.fifo).reduce(_||_)
val allFifo = cParam.possibleFlows.map(_.fifo).reduce(_&&_)
if (anyFifo) {
val idle_mask = VecInit(states.map(_.g === g_i)).asUInt
for (s <- states)
for (i <- 0 until nVirtualChannels)
s.fifo_deps := s.fifo_deps & ~idle_mask
}
for (i <- 0 until cParam.srcSpeedup) {
when (io.in.flit(i).fire && io.in.flit(i).bits.head) {
val id = io.in.flit(i).bits.virt_channel_id
assert(id < nVirtualChannels.U)
assert(states(id).g === g_i)
val at_dest = io.in.flit(i).bits.flow.egress_node === nodeId.U
states(id).g := Mux(at_dest, g_v, g_r)
states(id).vc_sel.foreach(_.foreach(_ := false.B))
for (o <- 0 until nEgress) {
when (o.U === io.in.flit(i).bits.flow.egress_node_id) {
states(id).vc_sel(o+nOutputs)(0) := true.B
}
}
states(id).flow := io.in.flit(i).bits.flow
if (anyFifo) {
val fifo = cParam.possibleFlows.filter(_.fifo).map(_.isFlow(io.in.flit(i).bits.flow)).toSeq.orR
states(id).fifo_deps := VecInit(states.zipWithIndex.map { case (s, j) =>
s.g =/= g_i && s.flow.asUInt === io.in.flit(i).bits.flow.asUInt && j.U =/= id
}).asUInt
}
}
}
(route_arbiter.io.in zip states).zipWithIndex.map { case ((i,s),idx) =>
if (virtualChannelParams(idx).traversable) {
i.valid := s.g === g_r
i.bits.flow := s.flow
i.bits.src_virt_id := idx.U
when (i.fire) { s.g := g_v }
} else {
i.valid := false.B
i.bits := DontCare
}
}
when (io.router_req.fire) {
val id = io.router_req.bits.src_virt_id
assert(states(id).g === g_r)
states(id).g := g_v
for (i <- 0 until nVirtualChannels) {
when (i.U === id) {
states(i).vc_sel := io.router_resp.vc_sel
}
}
}
val mask = RegInit(0.U(nVirtualChannels.W))
val vcalloc_reqs = Wire(Vec(nVirtualChannels, new VCAllocReq(cParam, outParams, egressParams)))
val vcalloc_vals = Wire(Vec(nVirtualChannels, Bool()))
val vcalloc_filter = PriorityEncoderOH(Cat(vcalloc_vals.asUInt, vcalloc_vals.asUInt & ~mask))
val vcalloc_sel = vcalloc_filter(nVirtualChannels-1,0) | (vcalloc_filter >> nVirtualChannels)
// Prioritize incoming packetes
when (io.router_req.fire) {
mask := (1.U << io.router_req.bits.src_virt_id) - 1.U
} .elsewhen (vcalloc_vals.orR) {
mask := Mux1H(vcalloc_sel, (0 until nVirtualChannels).map { w => ~(0.U((w+1).W)) })
}
io.vcalloc_req.valid := vcalloc_vals.orR
io.vcalloc_req.bits := Mux1H(vcalloc_sel, vcalloc_reqs)
states.zipWithIndex.map { case (s,idx) =>
if (virtualChannelParams(idx).traversable) {
vcalloc_vals(idx) := s.g === g_v && s.fifo_deps === 0.U
vcalloc_reqs(idx).in_vc := idx.U
vcalloc_reqs(idx).vc_sel := s.vc_sel
vcalloc_reqs(idx).flow := s.flow
when (vcalloc_vals(idx) && vcalloc_sel(idx) && io.vcalloc_req.ready) { s.g := g_a }
if (combineRCVA) {
when (route_arbiter.io.in(idx).fire) {
vcalloc_vals(idx) := true.B
vcalloc_reqs(idx).vc_sel := io.router_resp.vc_sel
}
}
} else {
vcalloc_vals(idx) := false.B
vcalloc_reqs(idx) := DontCare
}
}
io.debug.va_stall := PopCount(vcalloc_vals) - io.vcalloc_req.ready
when (io.vcalloc_req.fire) {
for (i <- 0 until nVirtualChannels) {
when (vcalloc_sel(i)) {
states(i).vc_sel := io.vcalloc_resp.vc_sel
states(i).g := g_a
if (!combineRCVA) {
assert(states(i).g === g_v)
}
}
}
}
val salloc_arb = Module(new SwitchArbiter(
nVirtualChannels,
cParam.destSpeedup,
outParams, egressParams
))
(states zip salloc_arb.io.in).zipWithIndex.map { case ((s,r),i) =>
if (virtualChannelParams(i).traversable) {
val credit_available = (s.vc_sel.asUInt & io.out_credit_available.asUInt) =/= 0.U
r.valid := s.g === g_a && credit_available && input_buffer.io.deq(i).valid
r.bits.vc_sel := s.vc_sel
val deq_tail = input_buffer.io.deq(i).bits.tail
r.bits.tail := deq_tail
when (r.fire && deq_tail) {
s.g := g_i
}
input_buffer.io.deq(i).ready := r.ready
} else {
r.valid := false.B
r.bits := DontCare
}
}
io.debug.sa_stall := PopCount(salloc_arb.io.in.map(r => r.valid && !r.ready))
io.salloc_req <> salloc_arb.io.out
when (io.block) {
salloc_arb.io.out.foreach(_.ready := false.B)
io.salloc_req.foreach(_.valid := false.B)
}
class OutBundle extends Bundle {
val valid = Bool()
val vid = UInt(virtualChannelBits.W)
val out_vid = UInt(log2Up(allOutParams.map(_.nVirtualChannels).max).W)
val flit = new Flit(cParam.payloadBits)
}
val salloc_outs = if (combineSAST) {
Wire(Vec(cParam.destSpeedup, new OutBundle))
} else {
Reg(Vec(cParam.destSpeedup, new OutBundle))
}
io.in.credit_return := salloc_arb.io.out.zipWithIndex.map { case (o, i) =>
Mux(o.fire, salloc_arb.io.chosen_oh(i), 0.U)
}.reduce(_|_)
io.in.vc_free := salloc_arb.io.out.zipWithIndex.map { case (o, i) =>
Mux(o.fire && Mux1H(salloc_arb.io.chosen_oh(i), input_buffer.io.deq.map(_.bits.tail)),
salloc_arb.io.chosen_oh(i), 0.U)
}.reduce(_|_)
for (i <- 0 until cParam.destSpeedup) {
val salloc_out = salloc_outs(i)
salloc_out.valid := salloc_arb.io.out(i).fire
salloc_out.vid := OHToUInt(salloc_arb.io.chosen_oh(i))
val vc_sel = Mux1H(salloc_arb.io.chosen_oh(i), states.map(_.vc_sel))
val channel_oh = vc_sel.map(_.reduce(_||_)).toSeq
val virt_channel = Mux1H(channel_oh, vc_sel.map(v => OHToUInt(v)).toSeq)
when (salloc_arb.io.out(i).fire) {
salloc_out.out_vid := virt_channel
salloc_out.flit.payload := Mux1H(salloc_arb.io.chosen_oh(i), input_buffer.io.deq.map(_.bits.payload))
salloc_out.flit.head := Mux1H(salloc_arb.io.chosen_oh(i), input_buffer.io.deq.map(_.bits.head))
salloc_out.flit.tail := Mux1H(salloc_arb.io.chosen_oh(i), input_buffer.io.deq.map(_.bits.tail))
salloc_out.flit.flow := Mux1H(salloc_arb.io.chosen_oh(i), states.map(_.flow))
} .otherwise {
salloc_out.out_vid := DontCare
salloc_out.flit := DontCare
}
salloc_out.flit.virt_channel_id := DontCare // this gets set in the switch
io.out(i).valid := salloc_out.valid
io.out(i).bits.flit := salloc_out.flit
io.out(i).bits.out_virt_channel := salloc_out.out_vid
}
def filterVCSel(sel: MixedVec[Vec[Bool]], srcV: Int) = {
if (virtualChannelParams(srcV).traversable) {
outParams.zipWithIndex.map { case (oP, oI) =>
(0 until oP.nVirtualChannels).map { oV =>
var allow = false
virtualChannelParams(srcV).possibleFlows.foreach { pI =>
allow = allow || routingRelation(
cParam.channelRoutingInfos(srcV),
oP.channelRoutingInfos(oV),
pI
)
}
if (!allow)
sel(oI)(oV) := false.B
}
}
}
}
(0 until nVirtualChannels).map { i =>
if (!virtualChannelParams(i).traversable) states(i) := DontCare
filterVCSel(states(i).vc_sel, i)
}
when (reset.asBool) {
states.foreach(_.g := g_i)
}
}
| module InputUnit_53( // @[InputUnit.scala:158:7]
input clock, // @[InputUnit.scala:158:7]
input reset, // @[InputUnit.scala:158:7]
output [2:0] io_router_req_bits_src_virt_id, // @[InputUnit.scala:170:14]
output [2:0] io_router_req_bits_flow_vnet_id, // @[InputUnit.scala:170:14]
output [4:0] io_router_req_bits_flow_ingress_node, // @[InputUnit.scala:170:14]
output [1:0] io_router_req_bits_flow_ingress_node_id, // @[InputUnit.scala:170:14]
output [4:0] io_router_req_bits_flow_egress_node, // @[InputUnit.scala:170:14]
output [1:0] io_router_req_bits_flow_egress_node_id, // @[InputUnit.scala:170:14]
input io_router_resp_vc_sel_3_0, // @[InputUnit.scala:170:14]
input io_router_resp_vc_sel_3_1, // @[InputUnit.scala:170:14]
input io_router_resp_vc_sel_3_2, // @[InputUnit.scala:170:14]
input io_router_resp_vc_sel_3_3, // @[InputUnit.scala:170:14]
input io_router_resp_vc_sel_3_4, // @[InputUnit.scala:170:14]
input io_router_resp_vc_sel_3_5, // @[InputUnit.scala:170:14]
input io_router_resp_vc_sel_3_6, // @[InputUnit.scala:170:14]
input io_router_resp_vc_sel_3_7, // @[InputUnit.scala:170:14]
input io_router_resp_vc_sel_1_0, // @[InputUnit.scala:170:14]
input io_router_resp_vc_sel_1_1, // @[InputUnit.scala:170:14]
input io_router_resp_vc_sel_1_2, // @[InputUnit.scala:170:14]
input io_router_resp_vc_sel_1_3, // @[InputUnit.scala:170:14]
input io_router_resp_vc_sel_1_4, // @[InputUnit.scala:170:14]
input io_router_resp_vc_sel_1_5, // @[InputUnit.scala:170:14]
input io_router_resp_vc_sel_1_6, // @[InputUnit.scala:170:14]
input io_router_resp_vc_sel_1_7, // @[InputUnit.scala:170:14]
input io_router_resp_vc_sel_0_0, // @[InputUnit.scala:170:14]
input io_router_resp_vc_sel_0_1, // @[InputUnit.scala:170:14]
input io_router_resp_vc_sel_0_2, // @[InputUnit.scala:170:14]
input io_router_resp_vc_sel_0_3, // @[InputUnit.scala:170:14]
input io_router_resp_vc_sel_0_4, // @[InputUnit.scala:170:14]
input io_router_resp_vc_sel_0_5, // @[InputUnit.scala:170:14]
input io_router_resp_vc_sel_0_6, // @[InputUnit.scala:170:14]
input io_router_resp_vc_sel_0_7, // @[InputUnit.scala:170:14]
input io_vcalloc_req_ready, // @[InputUnit.scala:170:14]
output io_vcalloc_req_valid, // @[InputUnit.scala:170:14]
output io_vcalloc_req_bits_vc_sel_3_0, // @[InputUnit.scala:170:14]
output io_vcalloc_req_bits_vc_sel_3_1, // @[InputUnit.scala:170:14]
output io_vcalloc_req_bits_vc_sel_3_2, // @[InputUnit.scala:170:14]
output io_vcalloc_req_bits_vc_sel_3_3, // @[InputUnit.scala:170:14]
output io_vcalloc_req_bits_vc_sel_3_4, // @[InputUnit.scala:170:14]
output io_vcalloc_req_bits_vc_sel_3_5, // @[InputUnit.scala:170:14]
output io_vcalloc_req_bits_vc_sel_3_6, // @[InputUnit.scala:170:14]
output io_vcalloc_req_bits_vc_sel_3_7, // @[InputUnit.scala:170:14]
output io_vcalloc_req_bits_vc_sel_1_0, // @[InputUnit.scala:170:14]
output io_vcalloc_req_bits_vc_sel_1_1, // @[InputUnit.scala:170:14]
output io_vcalloc_req_bits_vc_sel_1_2, // @[InputUnit.scala:170:14]
output io_vcalloc_req_bits_vc_sel_1_3, // @[InputUnit.scala:170:14]
output io_vcalloc_req_bits_vc_sel_1_4, // @[InputUnit.scala:170:14]
output io_vcalloc_req_bits_vc_sel_1_5, // @[InputUnit.scala:170:14]
output io_vcalloc_req_bits_vc_sel_1_6, // @[InputUnit.scala:170:14]
output io_vcalloc_req_bits_vc_sel_1_7, // @[InputUnit.scala:170:14]
output io_vcalloc_req_bits_vc_sel_0_0, // @[InputUnit.scala:170:14]
output io_vcalloc_req_bits_vc_sel_0_1, // @[InputUnit.scala:170:14]
output io_vcalloc_req_bits_vc_sel_0_2, // @[InputUnit.scala:170:14]
output io_vcalloc_req_bits_vc_sel_0_3, // @[InputUnit.scala:170:14]
output io_vcalloc_req_bits_vc_sel_0_4, // @[InputUnit.scala:170:14]
output io_vcalloc_req_bits_vc_sel_0_5, // @[InputUnit.scala:170:14]
output io_vcalloc_req_bits_vc_sel_0_6, // @[InputUnit.scala:170:14]
output io_vcalloc_req_bits_vc_sel_0_7, // @[InputUnit.scala:170:14]
input io_vcalloc_resp_vc_sel_3_0, // @[InputUnit.scala:170:14]
input io_vcalloc_resp_vc_sel_3_1, // @[InputUnit.scala:170:14]
input io_vcalloc_resp_vc_sel_3_2, // @[InputUnit.scala:170:14]
input io_vcalloc_resp_vc_sel_3_3, // @[InputUnit.scala:170:14]
input io_vcalloc_resp_vc_sel_3_4, // @[InputUnit.scala:170:14]
input io_vcalloc_resp_vc_sel_3_5, // @[InputUnit.scala:170:14]
input io_vcalloc_resp_vc_sel_3_6, // @[InputUnit.scala:170:14]
input io_vcalloc_resp_vc_sel_3_7, // @[InputUnit.scala:170:14]
input io_vcalloc_resp_vc_sel_1_0, // @[InputUnit.scala:170:14]
input io_vcalloc_resp_vc_sel_1_1, // @[InputUnit.scala:170:14]
input io_vcalloc_resp_vc_sel_1_2, // @[InputUnit.scala:170:14]
input io_vcalloc_resp_vc_sel_1_3, // @[InputUnit.scala:170:14]
input io_vcalloc_resp_vc_sel_1_4, // @[InputUnit.scala:170:14]
input io_vcalloc_resp_vc_sel_1_5, // @[InputUnit.scala:170:14]
input io_vcalloc_resp_vc_sel_1_6, // @[InputUnit.scala:170:14]
input io_vcalloc_resp_vc_sel_1_7, // @[InputUnit.scala:170:14]
input io_vcalloc_resp_vc_sel_0_0, // @[InputUnit.scala:170:14]
input io_vcalloc_resp_vc_sel_0_1, // @[InputUnit.scala:170:14]
input io_vcalloc_resp_vc_sel_0_2, // @[InputUnit.scala:170:14]
input io_vcalloc_resp_vc_sel_0_3, // @[InputUnit.scala:170:14]
input io_vcalloc_resp_vc_sel_0_4, // @[InputUnit.scala:170:14]
input io_vcalloc_resp_vc_sel_0_5, // @[InputUnit.scala:170:14]
input io_vcalloc_resp_vc_sel_0_6, // @[InputUnit.scala:170:14]
input io_vcalloc_resp_vc_sel_0_7, // @[InputUnit.scala:170:14]
input io_out_credit_available_4_1, // @[InputUnit.scala:170:14]
input io_out_credit_available_4_2, // @[InputUnit.scala:170:14]
input io_out_credit_available_4_3, // @[InputUnit.scala:170:14]
input io_out_credit_available_4_4, // @[InputUnit.scala:170:14]
input io_out_credit_available_4_5, // @[InputUnit.scala:170:14]
input io_out_credit_available_4_6, // @[InputUnit.scala:170:14]
input io_out_credit_available_4_7, // @[InputUnit.scala:170:14]
input io_out_credit_available_3_0, // @[InputUnit.scala:170:14]
input io_out_credit_available_3_1, // @[InputUnit.scala:170:14]
input io_out_credit_available_3_2, // @[InputUnit.scala:170:14]
input io_out_credit_available_3_3, // @[InputUnit.scala:170:14]
input io_out_credit_available_3_4, // @[InputUnit.scala:170:14]
input io_out_credit_available_3_5, // @[InputUnit.scala:170:14]
input io_out_credit_available_3_6, // @[InputUnit.scala:170:14]
input io_out_credit_available_3_7, // @[InputUnit.scala:170:14]
input io_out_credit_available_2_1, // @[InputUnit.scala:170:14]
input io_out_credit_available_2_2, // @[InputUnit.scala:170:14]
input io_out_credit_available_2_3, // @[InputUnit.scala:170:14]
input io_out_credit_available_2_4, // @[InputUnit.scala:170:14]
input io_out_credit_available_2_5, // @[InputUnit.scala:170:14]
input io_out_credit_available_2_6, // @[InputUnit.scala:170:14]
input io_out_credit_available_2_7, // @[InputUnit.scala:170:14]
input io_out_credit_available_1_0, // @[InputUnit.scala:170:14]
input io_out_credit_available_1_1, // @[InputUnit.scala:170:14]
input io_out_credit_available_1_2, // @[InputUnit.scala:170:14]
input io_out_credit_available_1_3, // @[InputUnit.scala:170:14]
input io_out_credit_available_1_4, // @[InputUnit.scala:170:14]
input io_out_credit_available_1_5, // @[InputUnit.scala:170:14]
input io_out_credit_available_1_6, // @[InputUnit.scala:170:14]
input io_out_credit_available_1_7, // @[InputUnit.scala:170:14]
input io_out_credit_available_0_0, // @[InputUnit.scala:170:14]
input io_out_credit_available_0_1, // @[InputUnit.scala:170:14]
input io_out_credit_available_0_2, // @[InputUnit.scala:170:14]
input io_out_credit_available_0_3, // @[InputUnit.scala:170:14]
input io_out_credit_available_0_4, // @[InputUnit.scala:170:14]
input io_out_credit_available_0_5, // @[InputUnit.scala:170:14]
input io_out_credit_available_0_6, // @[InputUnit.scala:170:14]
input io_out_credit_available_0_7, // @[InputUnit.scala:170:14]
input io_salloc_req_0_ready, // @[InputUnit.scala:170:14]
output io_salloc_req_0_valid, // @[InputUnit.scala:170:14]
output io_salloc_req_0_bits_vc_sel_4_0, // @[InputUnit.scala:170:14]
output io_salloc_req_0_bits_vc_sel_4_1, // @[InputUnit.scala:170:14]
output io_salloc_req_0_bits_vc_sel_4_2, // @[InputUnit.scala:170:14]
output io_salloc_req_0_bits_vc_sel_4_3, // @[InputUnit.scala:170:14]
output io_salloc_req_0_bits_vc_sel_4_4, // @[InputUnit.scala:170:14]
output io_salloc_req_0_bits_vc_sel_4_5, // @[InputUnit.scala:170:14]
output io_salloc_req_0_bits_vc_sel_4_6, // @[InputUnit.scala:170:14]
output io_salloc_req_0_bits_vc_sel_4_7, // @[InputUnit.scala:170:14]
output io_salloc_req_0_bits_vc_sel_3_0, // @[InputUnit.scala:170:14]
output io_salloc_req_0_bits_vc_sel_3_1, // @[InputUnit.scala:170:14]
output io_salloc_req_0_bits_vc_sel_3_2, // @[InputUnit.scala:170:14]
output io_salloc_req_0_bits_vc_sel_3_3, // @[InputUnit.scala:170:14]
output io_salloc_req_0_bits_vc_sel_3_4, // @[InputUnit.scala:170:14]
output io_salloc_req_0_bits_vc_sel_3_5, // @[InputUnit.scala:170:14]
output io_salloc_req_0_bits_vc_sel_3_6, // @[InputUnit.scala:170:14]
output io_salloc_req_0_bits_vc_sel_3_7, // @[InputUnit.scala:170:14]
output io_salloc_req_0_bits_vc_sel_2_0, // @[InputUnit.scala:170:14]
output io_salloc_req_0_bits_vc_sel_2_1, // @[InputUnit.scala:170:14]
output io_salloc_req_0_bits_vc_sel_2_2, // @[InputUnit.scala:170:14]
output io_salloc_req_0_bits_vc_sel_2_3, // @[InputUnit.scala:170:14]
output io_salloc_req_0_bits_vc_sel_2_4, // @[InputUnit.scala:170:14]
output io_salloc_req_0_bits_vc_sel_2_5, // @[InputUnit.scala:170:14]
output io_salloc_req_0_bits_vc_sel_2_6, // @[InputUnit.scala:170:14]
output io_salloc_req_0_bits_vc_sel_2_7, // @[InputUnit.scala:170:14]
output io_salloc_req_0_bits_vc_sel_1_0, // @[InputUnit.scala:170:14]
output io_salloc_req_0_bits_vc_sel_1_1, // @[InputUnit.scala:170:14]
output io_salloc_req_0_bits_vc_sel_1_2, // @[InputUnit.scala:170:14]
output io_salloc_req_0_bits_vc_sel_1_3, // @[InputUnit.scala:170:14]
output io_salloc_req_0_bits_vc_sel_1_4, // @[InputUnit.scala:170:14]
output io_salloc_req_0_bits_vc_sel_1_5, // @[InputUnit.scala:170:14]
output io_salloc_req_0_bits_vc_sel_1_6, // @[InputUnit.scala:170:14]
output io_salloc_req_0_bits_vc_sel_1_7, // @[InputUnit.scala:170:14]
output io_salloc_req_0_bits_vc_sel_0_0, // @[InputUnit.scala:170:14]
output io_salloc_req_0_bits_vc_sel_0_1, // @[InputUnit.scala:170:14]
output io_salloc_req_0_bits_vc_sel_0_2, // @[InputUnit.scala:170:14]
output io_salloc_req_0_bits_vc_sel_0_3, // @[InputUnit.scala:170:14]
output io_salloc_req_0_bits_vc_sel_0_4, // @[InputUnit.scala:170:14]
output io_salloc_req_0_bits_vc_sel_0_5, // @[InputUnit.scala:170:14]
output io_salloc_req_0_bits_vc_sel_0_6, // @[InputUnit.scala:170:14]
output io_salloc_req_0_bits_vc_sel_0_7, // @[InputUnit.scala:170:14]
output io_salloc_req_0_bits_tail, // @[InputUnit.scala:170:14]
output io_out_0_valid, // @[InputUnit.scala:170:14]
output io_out_0_bits_flit_head, // @[InputUnit.scala:170:14]
output io_out_0_bits_flit_tail, // @[InputUnit.scala:170:14]
output [72:0] io_out_0_bits_flit_payload, // @[InputUnit.scala:170:14]
output [2:0] io_out_0_bits_flit_flow_vnet_id, // @[InputUnit.scala:170:14]
output [4:0] io_out_0_bits_flit_flow_ingress_node, // @[InputUnit.scala:170:14]
output [1:0] io_out_0_bits_flit_flow_ingress_node_id, // @[InputUnit.scala:170:14]
output [4:0] io_out_0_bits_flit_flow_egress_node, // @[InputUnit.scala:170:14]
output [1:0] io_out_0_bits_flit_flow_egress_node_id, // @[InputUnit.scala:170:14]
output [2:0] io_out_0_bits_out_virt_channel, // @[InputUnit.scala:170:14]
output [2:0] io_debug_va_stall, // @[InputUnit.scala:170:14]
output [2:0] io_debug_sa_stall, // @[InputUnit.scala:170:14]
input io_in_flit_0_valid, // @[InputUnit.scala:170:14]
input io_in_flit_0_bits_head, // @[InputUnit.scala:170:14]
input io_in_flit_0_bits_tail, // @[InputUnit.scala:170:14]
input [72:0] io_in_flit_0_bits_payload, // @[InputUnit.scala:170:14]
input [2:0] io_in_flit_0_bits_flow_vnet_id, // @[InputUnit.scala:170:14]
input [4:0] io_in_flit_0_bits_flow_ingress_node, // @[InputUnit.scala:170:14]
input [1:0] io_in_flit_0_bits_flow_ingress_node_id, // @[InputUnit.scala:170:14]
input [4:0] io_in_flit_0_bits_flow_egress_node, // @[InputUnit.scala:170:14]
input [1:0] io_in_flit_0_bits_flow_egress_node_id, // @[InputUnit.scala:170:14]
input [2:0] io_in_flit_0_bits_virt_channel_id, // @[InputUnit.scala:170:14]
output [7:0] io_in_credit_return, // @[InputUnit.scala:170:14]
output [7:0] io_in_vc_free // @[InputUnit.scala:170:14]
);
wire vcalloc_vals_7; // @[InputUnit.scala:266:32]
wire vcalloc_vals_6; // @[InputUnit.scala:266:32]
wire vcalloc_vals_5; // @[InputUnit.scala:266:32]
wire vcalloc_vals_4; // @[InputUnit.scala:266:32]
wire vcalloc_vals_3; // @[InputUnit.scala:266:32]
wire vcalloc_vals_2; // @[InputUnit.scala:266:32]
wire vcalloc_vals_1; // @[InputUnit.scala:266:32]
wire vcalloc_vals_0; // @[InputUnit.scala:266:32]
wire _salloc_arb_io_in_0_ready; // @[InputUnit.scala:296:26]
wire _salloc_arb_io_in_1_ready; // @[InputUnit.scala:296:26]
wire _salloc_arb_io_in_2_ready; // @[InputUnit.scala:296:26]
wire _salloc_arb_io_in_3_ready; // @[InputUnit.scala:296:26]
wire _salloc_arb_io_in_4_ready; // @[InputUnit.scala:296:26]
wire _salloc_arb_io_in_5_ready; // @[InputUnit.scala:296:26]
wire _salloc_arb_io_in_6_ready; // @[InputUnit.scala:296:26]
wire _salloc_arb_io_in_7_ready; // @[InputUnit.scala:296:26]
wire _salloc_arb_io_out_0_valid; // @[InputUnit.scala:296:26]
wire [7:0] _salloc_arb_io_chosen_oh_0; // @[InputUnit.scala:296:26]
wire _route_arbiter_io_in_1_ready; // @[InputUnit.scala:187:29]
wire _route_arbiter_io_in_2_ready; // @[InputUnit.scala:187:29]
wire _route_arbiter_io_in_3_ready; // @[InputUnit.scala:187:29]
wire _route_arbiter_io_in_4_ready; // @[InputUnit.scala:187:29]
wire _route_arbiter_io_in_5_ready; // @[InputUnit.scala:187:29]
wire _route_arbiter_io_in_6_ready; // @[InputUnit.scala:187:29]
wire _route_arbiter_io_in_7_ready; // @[InputUnit.scala:187:29]
wire _route_arbiter_io_out_valid; // @[InputUnit.scala:187:29]
wire [2:0] _route_arbiter_io_out_bits_src_virt_id; // @[InputUnit.scala:187:29]
wire _input_buffer_io_deq_0_valid; // @[InputUnit.scala:181:28]
wire _input_buffer_io_deq_0_bits_head; // @[InputUnit.scala:181:28]
wire _input_buffer_io_deq_0_bits_tail; // @[InputUnit.scala:181:28]
wire [72:0] _input_buffer_io_deq_0_bits_payload; // @[InputUnit.scala:181:28]
wire _input_buffer_io_deq_1_valid; // @[InputUnit.scala:181:28]
wire _input_buffer_io_deq_1_bits_head; // @[InputUnit.scala:181:28]
wire _input_buffer_io_deq_1_bits_tail; // @[InputUnit.scala:181:28]
wire [72:0] _input_buffer_io_deq_1_bits_payload; // @[InputUnit.scala:181:28]
wire _input_buffer_io_deq_2_valid; // @[InputUnit.scala:181:28]
wire _input_buffer_io_deq_2_bits_head; // @[InputUnit.scala:181:28]
wire _input_buffer_io_deq_2_bits_tail; // @[InputUnit.scala:181:28]
wire [72:0] _input_buffer_io_deq_2_bits_payload; // @[InputUnit.scala:181:28]
wire _input_buffer_io_deq_3_valid; // @[InputUnit.scala:181:28]
wire _input_buffer_io_deq_3_bits_head; // @[InputUnit.scala:181:28]
wire _input_buffer_io_deq_3_bits_tail; // @[InputUnit.scala:181:28]
wire [72:0] _input_buffer_io_deq_3_bits_payload; // @[InputUnit.scala:181:28]
wire _input_buffer_io_deq_4_valid; // @[InputUnit.scala:181:28]
wire _input_buffer_io_deq_4_bits_head; // @[InputUnit.scala:181:28]
wire _input_buffer_io_deq_4_bits_tail; // @[InputUnit.scala:181:28]
wire [72:0] _input_buffer_io_deq_4_bits_payload; // @[InputUnit.scala:181:28]
wire _input_buffer_io_deq_5_valid; // @[InputUnit.scala:181:28]
wire _input_buffer_io_deq_5_bits_head; // @[InputUnit.scala:181:28]
wire _input_buffer_io_deq_5_bits_tail; // @[InputUnit.scala:181:28]
wire [72:0] _input_buffer_io_deq_5_bits_payload; // @[InputUnit.scala:181:28]
wire _input_buffer_io_deq_6_valid; // @[InputUnit.scala:181:28]
wire _input_buffer_io_deq_6_bits_head; // @[InputUnit.scala:181:28]
wire _input_buffer_io_deq_6_bits_tail; // @[InputUnit.scala:181:28]
wire [72:0] _input_buffer_io_deq_6_bits_payload; // @[InputUnit.scala:181:28]
wire _input_buffer_io_deq_7_valid; // @[InputUnit.scala:181:28]
wire _input_buffer_io_deq_7_bits_head; // @[InputUnit.scala:181:28]
wire _input_buffer_io_deq_7_bits_tail; // @[InputUnit.scala:181:28]
wire [72:0] _input_buffer_io_deq_7_bits_payload; // @[InputUnit.scala:181:28]
reg [2:0] states_0_g; // @[InputUnit.scala:192:19]
reg states_0_vc_sel_1_0; // @[InputUnit.scala:192:19]
reg states_0_vc_sel_0_0; // @[InputUnit.scala:192:19]
reg states_0_vc_sel_0_1; // @[InputUnit.scala:192:19]
reg states_0_vc_sel_0_2; // @[InputUnit.scala:192:19]
reg states_0_vc_sel_0_3; // @[InputUnit.scala:192:19]
reg states_0_vc_sel_0_4; // @[InputUnit.scala:192:19]
reg states_0_vc_sel_0_5; // @[InputUnit.scala:192:19]
reg states_0_vc_sel_0_6; // @[InputUnit.scala:192:19]
reg states_0_vc_sel_0_7; // @[InputUnit.scala:192:19]
reg [2:0] states_0_flow_vnet_id; // @[InputUnit.scala:192:19]
reg [4:0] states_0_flow_ingress_node; // @[InputUnit.scala:192:19]
reg [1:0] states_0_flow_ingress_node_id; // @[InputUnit.scala:192:19]
reg [4:0] states_0_flow_egress_node; // @[InputUnit.scala:192:19]
reg [1:0] states_0_flow_egress_node_id; // @[InputUnit.scala:192:19]
reg [2:0] states_1_g; // @[InputUnit.scala:192:19]
reg states_1_vc_sel_3_0; // @[InputUnit.scala:192:19]
reg states_1_vc_sel_3_1; // @[InputUnit.scala:192:19]
reg states_1_vc_sel_3_2; // @[InputUnit.scala:192:19]
reg states_1_vc_sel_3_3; // @[InputUnit.scala:192:19]
reg states_1_vc_sel_3_4; // @[InputUnit.scala:192:19]
reg states_1_vc_sel_3_5; // @[InputUnit.scala:192:19]
reg states_1_vc_sel_3_6; // @[InputUnit.scala:192:19]
reg states_1_vc_sel_3_7; // @[InputUnit.scala:192:19]
reg states_1_vc_sel_1_0; // @[InputUnit.scala:192:19]
reg states_1_vc_sel_1_1; // @[InputUnit.scala:192:19]
reg states_1_vc_sel_1_2; // @[InputUnit.scala:192:19]
reg states_1_vc_sel_1_3; // @[InputUnit.scala:192:19]
reg states_1_vc_sel_1_4; // @[InputUnit.scala:192:19]
reg states_1_vc_sel_1_5; // @[InputUnit.scala:192:19]
reg states_1_vc_sel_1_6; // @[InputUnit.scala:192:19]
reg states_1_vc_sel_1_7; // @[InputUnit.scala:192:19]
reg states_1_vc_sel_0_0; // @[InputUnit.scala:192:19]
reg states_1_vc_sel_0_1; // @[InputUnit.scala:192:19]
reg states_1_vc_sel_0_2; // @[InputUnit.scala:192:19]
reg states_1_vc_sel_0_3; // @[InputUnit.scala:192:19]
reg states_1_vc_sel_0_4; // @[InputUnit.scala:192:19]
reg states_1_vc_sel_0_5; // @[InputUnit.scala:192:19]
reg states_1_vc_sel_0_6; // @[InputUnit.scala:192:19]
reg states_1_vc_sel_0_7; // @[InputUnit.scala:192:19]
reg [2:0] states_1_flow_vnet_id; // @[InputUnit.scala:192:19]
reg [4:0] states_1_flow_ingress_node; // @[InputUnit.scala:192:19]
reg [1:0] states_1_flow_ingress_node_id; // @[InputUnit.scala:192:19]
reg [4:0] states_1_flow_egress_node; // @[InputUnit.scala:192:19]
reg [1:0] states_1_flow_egress_node_id; // @[InputUnit.scala:192:19]
reg [2:0] states_2_g; // @[InputUnit.scala:192:19]
reg states_2_vc_sel_3_0; // @[InputUnit.scala:192:19]
reg states_2_vc_sel_3_1; // @[InputUnit.scala:192:19]
reg states_2_vc_sel_3_2; // @[InputUnit.scala:192:19]
reg states_2_vc_sel_3_3; // @[InputUnit.scala:192:19]
reg states_2_vc_sel_3_4; // @[InputUnit.scala:192:19]
reg states_2_vc_sel_3_5; // @[InputUnit.scala:192:19]
reg states_2_vc_sel_3_6; // @[InputUnit.scala:192:19]
reg states_2_vc_sel_3_7; // @[InputUnit.scala:192:19]
reg states_2_vc_sel_1_0; // @[InputUnit.scala:192:19]
reg states_2_vc_sel_1_1; // @[InputUnit.scala:192:19]
reg states_2_vc_sel_1_2; // @[InputUnit.scala:192:19]
reg states_2_vc_sel_1_3; // @[InputUnit.scala:192:19]
reg states_2_vc_sel_1_4; // @[InputUnit.scala:192:19]
reg states_2_vc_sel_1_5; // @[InputUnit.scala:192:19]
reg states_2_vc_sel_1_6; // @[InputUnit.scala:192:19]
reg states_2_vc_sel_1_7; // @[InputUnit.scala:192:19]
reg states_2_vc_sel_0_0; // @[InputUnit.scala:192:19]
reg states_2_vc_sel_0_1; // @[InputUnit.scala:192:19]
reg states_2_vc_sel_0_2; // @[InputUnit.scala:192:19]
reg states_2_vc_sel_0_3; // @[InputUnit.scala:192:19]
reg states_2_vc_sel_0_4; // @[InputUnit.scala:192:19]
reg states_2_vc_sel_0_5; // @[InputUnit.scala:192:19]
reg states_2_vc_sel_0_6; // @[InputUnit.scala:192:19]
reg states_2_vc_sel_0_7; // @[InputUnit.scala:192:19]
reg [2:0] states_2_flow_vnet_id; // @[InputUnit.scala:192:19]
reg [4:0] states_2_flow_ingress_node; // @[InputUnit.scala:192:19]
reg [1:0] states_2_flow_ingress_node_id; // @[InputUnit.scala:192:19]
reg [4:0] states_2_flow_egress_node; // @[InputUnit.scala:192:19]
reg [1:0] states_2_flow_egress_node_id; // @[InputUnit.scala:192:19]
reg [2:0] states_3_g; // @[InputUnit.scala:192:19]
reg states_3_vc_sel_3_0; // @[InputUnit.scala:192:19]
reg states_3_vc_sel_3_1; // @[InputUnit.scala:192:19]
reg states_3_vc_sel_3_2; // @[InputUnit.scala:192:19]
reg states_3_vc_sel_3_3; // @[InputUnit.scala:192:19]
reg states_3_vc_sel_3_4; // @[InputUnit.scala:192:19]
reg states_3_vc_sel_3_5; // @[InputUnit.scala:192:19]
reg states_3_vc_sel_3_6; // @[InputUnit.scala:192:19]
reg states_3_vc_sel_3_7; // @[InputUnit.scala:192:19]
reg states_3_vc_sel_1_0; // @[InputUnit.scala:192:19]
reg states_3_vc_sel_1_1; // @[InputUnit.scala:192:19]
reg states_3_vc_sel_1_2; // @[InputUnit.scala:192:19]
reg states_3_vc_sel_1_3; // @[InputUnit.scala:192:19]
reg states_3_vc_sel_1_4; // @[InputUnit.scala:192:19]
reg states_3_vc_sel_1_5; // @[InputUnit.scala:192:19]
reg states_3_vc_sel_1_6; // @[InputUnit.scala:192:19]
reg states_3_vc_sel_1_7; // @[InputUnit.scala:192:19]
reg states_3_vc_sel_0_0; // @[InputUnit.scala:192:19]
reg states_3_vc_sel_0_1; // @[InputUnit.scala:192:19]
reg states_3_vc_sel_0_2; // @[InputUnit.scala:192:19]
reg states_3_vc_sel_0_3; // @[InputUnit.scala:192:19]
reg states_3_vc_sel_0_4; // @[InputUnit.scala:192:19]
reg states_3_vc_sel_0_5; // @[InputUnit.scala:192:19]
reg states_3_vc_sel_0_6; // @[InputUnit.scala:192:19]
reg states_3_vc_sel_0_7; // @[InputUnit.scala:192:19]
reg [2:0] states_3_flow_vnet_id; // @[InputUnit.scala:192:19]
reg [4:0] states_3_flow_ingress_node; // @[InputUnit.scala:192:19]
reg [1:0] states_3_flow_ingress_node_id; // @[InputUnit.scala:192:19]
reg [4:0] states_3_flow_egress_node; // @[InputUnit.scala:192:19]
reg [1:0] states_3_flow_egress_node_id; // @[InputUnit.scala:192:19]
reg [2:0] states_4_g; // @[InputUnit.scala:192:19]
reg states_4_vc_sel_3_0; // @[InputUnit.scala:192:19]
reg states_4_vc_sel_3_1; // @[InputUnit.scala:192:19]
reg states_4_vc_sel_3_2; // @[InputUnit.scala:192:19]
reg states_4_vc_sel_3_3; // @[InputUnit.scala:192:19]
reg states_4_vc_sel_3_4; // @[InputUnit.scala:192:19]
reg states_4_vc_sel_3_5; // @[InputUnit.scala:192:19]
reg states_4_vc_sel_3_6; // @[InputUnit.scala:192:19]
reg states_4_vc_sel_3_7; // @[InputUnit.scala:192:19]
reg states_4_vc_sel_1_0; // @[InputUnit.scala:192:19]
reg states_4_vc_sel_1_1; // @[InputUnit.scala:192:19]
reg states_4_vc_sel_1_2; // @[InputUnit.scala:192:19]
reg states_4_vc_sel_1_3; // @[InputUnit.scala:192:19]
reg states_4_vc_sel_1_4; // @[InputUnit.scala:192:19]
reg states_4_vc_sel_1_5; // @[InputUnit.scala:192:19]
reg states_4_vc_sel_1_6; // @[InputUnit.scala:192:19]
reg states_4_vc_sel_1_7; // @[InputUnit.scala:192:19]
reg states_4_vc_sel_0_0; // @[InputUnit.scala:192:19]
reg states_4_vc_sel_0_1; // @[InputUnit.scala:192:19]
reg states_4_vc_sel_0_2; // @[InputUnit.scala:192:19]
reg states_4_vc_sel_0_3; // @[InputUnit.scala:192:19]
reg states_4_vc_sel_0_4; // @[InputUnit.scala:192:19]
reg states_4_vc_sel_0_5; // @[InputUnit.scala:192:19]
reg states_4_vc_sel_0_6; // @[InputUnit.scala:192:19]
reg states_4_vc_sel_0_7; // @[InputUnit.scala:192:19]
reg [2:0] states_4_flow_vnet_id; // @[InputUnit.scala:192:19]
reg [4:0] states_4_flow_ingress_node; // @[InputUnit.scala:192:19]
reg [1:0] states_4_flow_ingress_node_id; // @[InputUnit.scala:192:19]
reg [4:0] states_4_flow_egress_node; // @[InputUnit.scala:192:19]
reg [1:0] states_4_flow_egress_node_id; // @[InputUnit.scala:192:19]
reg [2:0] states_5_g; // @[InputUnit.scala:192:19]
reg states_5_vc_sel_3_0; // @[InputUnit.scala:192:19]
reg states_5_vc_sel_3_1; // @[InputUnit.scala:192:19]
reg states_5_vc_sel_3_2; // @[InputUnit.scala:192:19]
reg states_5_vc_sel_3_3; // @[InputUnit.scala:192:19]
reg states_5_vc_sel_3_4; // @[InputUnit.scala:192:19]
reg states_5_vc_sel_3_5; // @[InputUnit.scala:192:19]
reg states_5_vc_sel_3_6; // @[InputUnit.scala:192:19]
reg states_5_vc_sel_3_7; // @[InputUnit.scala:192:19]
reg states_5_vc_sel_1_0; // @[InputUnit.scala:192:19]
reg states_5_vc_sel_1_1; // @[InputUnit.scala:192:19]
reg states_5_vc_sel_1_2; // @[InputUnit.scala:192:19]
reg states_5_vc_sel_1_3; // @[InputUnit.scala:192:19]
reg states_5_vc_sel_1_4; // @[InputUnit.scala:192:19]
reg states_5_vc_sel_1_5; // @[InputUnit.scala:192:19]
reg states_5_vc_sel_1_6; // @[InputUnit.scala:192:19]
reg states_5_vc_sel_1_7; // @[InputUnit.scala:192:19]
reg states_5_vc_sel_0_0; // @[InputUnit.scala:192:19]
reg states_5_vc_sel_0_1; // @[InputUnit.scala:192:19]
reg states_5_vc_sel_0_2; // @[InputUnit.scala:192:19]
reg states_5_vc_sel_0_3; // @[InputUnit.scala:192:19]
reg states_5_vc_sel_0_4; // @[InputUnit.scala:192:19]
reg states_5_vc_sel_0_5; // @[InputUnit.scala:192:19]
reg states_5_vc_sel_0_6; // @[InputUnit.scala:192:19]
reg states_5_vc_sel_0_7; // @[InputUnit.scala:192:19]
reg [2:0] states_5_flow_vnet_id; // @[InputUnit.scala:192:19]
reg [4:0] states_5_flow_ingress_node; // @[InputUnit.scala:192:19]
reg [1:0] states_5_flow_ingress_node_id; // @[InputUnit.scala:192:19]
reg [4:0] states_5_flow_egress_node; // @[InputUnit.scala:192:19]
reg [1:0] states_5_flow_egress_node_id; // @[InputUnit.scala:192:19]
reg [2:0] states_6_g; // @[InputUnit.scala:192:19]
reg states_6_vc_sel_3_0; // @[InputUnit.scala:192:19]
reg states_6_vc_sel_3_1; // @[InputUnit.scala:192:19]
reg states_6_vc_sel_3_2; // @[InputUnit.scala:192:19]
reg states_6_vc_sel_3_3; // @[InputUnit.scala:192:19]
reg states_6_vc_sel_3_4; // @[InputUnit.scala:192:19]
reg states_6_vc_sel_3_5; // @[InputUnit.scala:192:19]
reg states_6_vc_sel_3_6; // @[InputUnit.scala:192:19]
reg states_6_vc_sel_3_7; // @[InputUnit.scala:192:19]
reg states_6_vc_sel_1_0; // @[InputUnit.scala:192:19]
reg states_6_vc_sel_1_1; // @[InputUnit.scala:192:19]
reg states_6_vc_sel_1_2; // @[InputUnit.scala:192:19]
reg states_6_vc_sel_1_3; // @[InputUnit.scala:192:19]
reg states_6_vc_sel_1_4; // @[InputUnit.scala:192:19]
reg states_6_vc_sel_1_5; // @[InputUnit.scala:192:19]
reg states_6_vc_sel_1_6; // @[InputUnit.scala:192:19]
reg states_6_vc_sel_1_7; // @[InputUnit.scala:192:19]
reg states_6_vc_sel_0_0; // @[InputUnit.scala:192:19]
reg states_6_vc_sel_0_1; // @[InputUnit.scala:192:19]
reg states_6_vc_sel_0_2; // @[InputUnit.scala:192:19]
reg states_6_vc_sel_0_3; // @[InputUnit.scala:192:19]
reg states_6_vc_sel_0_4; // @[InputUnit.scala:192:19]
reg states_6_vc_sel_0_5; // @[InputUnit.scala:192:19]
reg states_6_vc_sel_0_6; // @[InputUnit.scala:192:19]
reg states_6_vc_sel_0_7; // @[InputUnit.scala:192:19]
reg [2:0] states_6_flow_vnet_id; // @[InputUnit.scala:192:19]
reg [4:0] states_6_flow_ingress_node; // @[InputUnit.scala:192:19]
reg [1:0] states_6_flow_ingress_node_id; // @[InputUnit.scala:192:19]
reg [4:0] states_6_flow_egress_node; // @[InputUnit.scala:192:19]
reg [1:0] states_6_flow_egress_node_id; // @[InputUnit.scala:192:19]
reg [2:0] states_7_g; // @[InputUnit.scala:192:19]
reg states_7_vc_sel_3_0; // @[InputUnit.scala:192:19]
reg states_7_vc_sel_3_1; // @[InputUnit.scala:192:19]
reg states_7_vc_sel_3_2; // @[InputUnit.scala:192:19]
reg states_7_vc_sel_3_3; // @[InputUnit.scala:192:19]
reg states_7_vc_sel_3_4; // @[InputUnit.scala:192:19]
reg states_7_vc_sel_3_5; // @[InputUnit.scala:192:19]
reg states_7_vc_sel_3_6; // @[InputUnit.scala:192:19]
reg states_7_vc_sel_3_7; // @[InputUnit.scala:192:19]
reg states_7_vc_sel_1_0; // @[InputUnit.scala:192:19]
reg states_7_vc_sel_1_1; // @[InputUnit.scala:192:19]
reg states_7_vc_sel_1_2; // @[InputUnit.scala:192:19]
reg states_7_vc_sel_1_3; // @[InputUnit.scala:192:19]
reg states_7_vc_sel_1_4; // @[InputUnit.scala:192:19]
reg states_7_vc_sel_1_5; // @[InputUnit.scala:192:19]
reg states_7_vc_sel_1_6; // @[InputUnit.scala:192:19]
reg states_7_vc_sel_1_7; // @[InputUnit.scala:192:19]
reg states_7_vc_sel_0_0; // @[InputUnit.scala:192:19]
reg states_7_vc_sel_0_1; // @[InputUnit.scala:192:19]
reg states_7_vc_sel_0_2; // @[InputUnit.scala:192:19]
reg states_7_vc_sel_0_3; // @[InputUnit.scala:192:19]
reg states_7_vc_sel_0_4; // @[InputUnit.scala:192:19]
reg states_7_vc_sel_0_5; // @[InputUnit.scala:192:19]
reg states_7_vc_sel_0_6; // @[InputUnit.scala:192:19]
reg states_7_vc_sel_0_7; // @[InputUnit.scala:192:19]
reg [2:0] states_7_flow_vnet_id; // @[InputUnit.scala:192:19]
reg [4:0] states_7_flow_ingress_node; // @[InputUnit.scala:192:19]
reg [1:0] states_7_flow_ingress_node_id; // @[InputUnit.scala:192:19]
reg [4:0] states_7_flow_egress_node; // @[InputUnit.scala:192:19]
reg [1:0] states_7_flow_egress_node_id; // @[InputUnit.scala:192:19]
wire _GEN = io_in_flit_0_valid & io_in_flit_0_bits_head; // @[InputUnit.scala:205:30]
wire route_arbiter_io_in_0_valid = states_0_g == 3'h1; // @[InputUnit.scala:192:19, :229:22]
wire route_arbiter_io_in_1_valid = states_1_g == 3'h1; // @[InputUnit.scala:192:19, :229:22]
wire route_arbiter_io_in_2_valid = states_2_g == 3'h1; // @[InputUnit.scala:192:19, :229:22]
wire route_arbiter_io_in_3_valid = states_3_g == 3'h1; // @[InputUnit.scala:192:19, :229:22]
wire route_arbiter_io_in_4_valid = states_4_g == 3'h1; // @[InputUnit.scala:192:19, :229:22]
wire route_arbiter_io_in_5_valid = states_5_g == 3'h1; // @[InputUnit.scala:192:19, :229:22]
wire route_arbiter_io_in_6_valid = states_6_g == 3'h1; // @[InputUnit.scala:192:19, :229:22]
wire route_arbiter_io_in_7_valid = states_7_g == 3'h1; // @[InputUnit.scala:192:19, :229:22]
reg [7:0] mask; // @[InputUnit.scala:250:21]
wire [7:0] _vcalloc_filter_T_3 = {vcalloc_vals_7, vcalloc_vals_6, vcalloc_vals_5, vcalloc_vals_4, vcalloc_vals_3, vcalloc_vals_2, vcalloc_vals_1, vcalloc_vals_0} & ~mask; // @[InputUnit.scala:250:21, :253:{80,87,89}, :266:32]
wire [15:0] vcalloc_filter = _vcalloc_filter_T_3[0] ? 16'h1 : _vcalloc_filter_T_3[1] ? 16'h2 : _vcalloc_filter_T_3[2] ? 16'h4 : _vcalloc_filter_T_3[3] ? 16'h8 : _vcalloc_filter_T_3[4] ? 16'h10 : _vcalloc_filter_T_3[5] ? 16'h20 : _vcalloc_filter_T_3[6] ? 16'h40 : _vcalloc_filter_T_3[7] ? 16'h80 : vcalloc_vals_0 ? 16'h100 : vcalloc_vals_1 ? 16'h200 : vcalloc_vals_2 ? 16'h400 : vcalloc_vals_3 ? 16'h800 : vcalloc_vals_4 ? 16'h1000 : vcalloc_vals_5 ? 16'h2000 : vcalloc_vals_6 ? 16'h4000 : {vcalloc_vals_7, 15'h0}; // @[OneHot.scala:85:71]
wire [7:0] vcalloc_sel = vcalloc_filter[7:0] | vcalloc_filter[15:8]; // @[Mux.scala:50:70]
wire io_vcalloc_req_valid_0 = vcalloc_vals_0 | vcalloc_vals_1 | vcalloc_vals_2 | vcalloc_vals_3 | vcalloc_vals_4 | vcalloc_vals_5 | vcalloc_vals_6 | vcalloc_vals_7; // @[package.scala:81:59]
assign vcalloc_vals_0 = states_0_g == 3'h2; // @[InputUnit.scala:192:19, :266:32]
assign vcalloc_vals_1 = states_1_g == 3'h2; // @[InputUnit.scala:192:19, :266:32]
assign vcalloc_vals_2 = states_2_g == 3'h2; // @[InputUnit.scala:192:19, :266:32]
assign vcalloc_vals_3 = states_3_g == 3'h2; // @[InputUnit.scala:192:19, :266:32]
assign vcalloc_vals_4 = states_4_g == 3'h2; // @[InputUnit.scala:192:19, :266:32]
assign vcalloc_vals_5 = states_5_g == 3'h2; // @[InputUnit.scala:192:19, :266:32]
assign vcalloc_vals_6 = states_6_g == 3'h2; // @[InputUnit.scala:192:19, :266:32]
assign vcalloc_vals_7 = states_7_g == 3'h2; // @[InputUnit.scala:192:19, :266:32]
wire _GEN_0 = io_vcalloc_req_ready & io_vcalloc_req_valid_0; // @[Decoupled.scala:51:35]
wire _GEN_1 = _GEN_0 & vcalloc_sel[0]; // @[Mux.scala:32:36]
wire _GEN_2 = _GEN_0 & vcalloc_sel[1]; // @[Mux.scala:32:36]
wire _GEN_3 = _GEN_0 & vcalloc_sel[2]; // @[Mux.scala:32:36]
wire _GEN_4 = _GEN_0 & vcalloc_sel[3]; // @[Mux.scala:32:36]
wire _GEN_5 = _GEN_0 & vcalloc_sel[4]; // @[Mux.scala:32:36]
wire _GEN_6 = _GEN_0 & vcalloc_sel[5]; // @[Mux.scala:32:36]
wire _GEN_7 = _GEN_0 & vcalloc_sel[6]; // @[Mux.scala:32:36]
wire _GEN_8 = _GEN_0 & vcalloc_sel[7]; // @[Mux.scala:32:36] |
Generate the Verilog code corresponding to the following Chisel files.
File util.scala:
//******************************************************************************
// Copyright (c) 2015 - 2019, The Regents of the University of California (Regents).
// All Rights Reserved. See LICENSE and LICENSE.SiFive for license details.
//------------------------------------------------------------------------------
//------------------------------------------------------------------------------
//------------------------------------------------------------------------------
// Utility Functions
//------------------------------------------------------------------------------
//------------------------------------------------------------------------------
package boom.v3.util
import chisel3._
import chisel3.util._
import freechips.rocketchip.rocket.Instructions._
import freechips.rocketchip.rocket._
import freechips.rocketchip.util.{Str}
import org.chipsalliance.cde.config.{Parameters}
import freechips.rocketchip.tile.{TileKey}
import boom.v3.common.{MicroOp}
import boom.v3.exu.{BrUpdateInfo}
/**
* Object to XOR fold a input register of fullLength into a compressedLength.
*/
object Fold
{
def apply(input: UInt, compressedLength: Int, fullLength: Int): UInt = {
val clen = compressedLength
val hlen = fullLength
if (hlen <= clen) {
input
} else {
var res = 0.U(clen.W)
var remaining = input.asUInt
for (i <- 0 to hlen-1 by clen) {
val len = if (i + clen > hlen ) (hlen - i) else clen
require(len > 0)
res = res(clen-1,0) ^ remaining(len-1,0)
remaining = remaining >> len.U
}
res
}
}
}
/**
* Object to check if MicroOp was killed due to a branch mispredict.
* Uses "Fast" branch masks
*/
object IsKilledByBranch
{
def apply(brupdate: BrUpdateInfo, uop: MicroOp): Bool = {
return maskMatch(brupdate.b1.mispredict_mask, uop.br_mask)
}
def apply(brupdate: BrUpdateInfo, uop_mask: UInt): Bool = {
return maskMatch(brupdate.b1.mispredict_mask, uop_mask)
}
}
/**
* Object to return new MicroOp with a new BR mask given a MicroOp mask
* and old BR mask.
*/
object GetNewUopAndBrMask
{
def apply(uop: MicroOp, brupdate: BrUpdateInfo)
(implicit p: Parameters): MicroOp = {
val newuop = WireInit(uop)
newuop.br_mask := uop.br_mask & ~brupdate.b1.resolve_mask
newuop
}
}
/**
* Object to return a BR mask given a MicroOp mask and old BR mask.
*/
object GetNewBrMask
{
def apply(brupdate: BrUpdateInfo, uop: MicroOp): UInt = {
return uop.br_mask & ~brupdate.b1.resolve_mask
}
def apply(brupdate: BrUpdateInfo, br_mask: UInt): UInt = {
return br_mask & ~brupdate.b1.resolve_mask
}
}
object UpdateBrMask
{
def apply(brupdate: BrUpdateInfo, uop: MicroOp): MicroOp = {
val out = WireInit(uop)
out.br_mask := GetNewBrMask(brupdate, uop)
out
}
def apply[T <: boom.v3.common.HasBoomUOP](brupdate: BrUpdateInfo, bundle: T): T = {
val out = WireInit(bundle)
out.uop.br_mask := GetNewBrMask(brupdate, bundle.uop.br_mask)
out
}
def apply[T <: boom.v3.common.HasBoomUOP](brupdate: BrUpdateInfo, bundle: Valid[T]): Valid[T] = {
val out = WireInit(bundle)
out.bits.uop.br_mask := GetNewBrMask(brupdate, bundle.bits.uop.br_mask)
out.valid := bundle.valid && !IsKilledByBranch(brupdate, bundle.bits.uop.br_mask)
out
}
}
/**
* Object to check if at least 1 bit matches in two masks
*/
object maskMatch
{
def apply(msk1: UInt, msk2: UInt): Bool = (msk1 & msk2) =/= 0.U
}
/**
* Object to clear one bit in a mask given an index
*/
object clearMaskBit
{
def apply(msk: UInt, idx: UInt): UInt = (msk & ~(1.U << idx))(msk.getWidth-1, 0)
}
/**
* Object to shift a register over by one bit and concat a new one
*/
object PerformShiftRegister
{
def apply(reg_val: UInt, new_bit: Bool): UInt = {
reg_val := Cat(reg_val(reg_val.getWidth-1, 0).asUInt, new_bit.asUInt).asUInt
reg_val
}
}
/**
* Object to shift a register over by one bit, wrapping the top bit around to the bottom
* (XOR'ed with a new-bit), and evicting a bit at index HLEN.
* This is used to simulate a longer HLEN-width shift register that is folded
* down to a compressed CLEN.
*/
object PerformCircularShiftRegister
{
def apply(csr: UInt, new_bit: Bool, evict_bit: Bool, hlen: Int, clen: Int): UInt = {
val carry = csr(clen-1)
val newval = Cat(csr, new_bit ^ carry) ^ (evict_bit << (hlen % clen).U)
newval
}
}
/**
* Object to increment an input value, wrapping it if
* necessary.
*/
object WrapAdd
{
// "n" is the number of increments, so we wrap at n-1.
def apply(value: UInt, amt: UInt, n: Int): UInt = {
if (isPow2(n)) {
(value + amt)(log2Ceil(n)-1,0)
} else {
val sum = Cat(0.U(1.W), value) + Cat(0.U(1.W), amt)
Mux(sum >= n.U,
sum - n.U,
sum)
}
}
}
/**
* Object to decrement an input value, wrapping it if
* necessary.
*/
object WrapSub
{
// "n" is the number of increments, so we wrap to n-1.
def apply(value: UInt, amt: Int, n: Int): UInt = {
if (isPow2(n)) {
(value - amt.U)(log2Ceil(n)-1,0)
} else {
val v = Cat(0.U(1.W), value)
val b = Cat(0.U(1.W), amt.U)
Mux(value >= amt.U,
value - amt.U,
n.U - amt.U + value)
}
}
}
/**
* Object to increment an input value, wrapping it if
* necessary.
*/
object WrapInc
{
// "n" is the number of increments, so we wrap at n-1.
def apply(value: UInt, n: Int): UInt = {
if (isPow2(n)) {
(value + 1.U)(log2Ceil(n)-1,0)
} else {
val wrap = (value === (n-1).U)
Mux(wrap, 0.U, value + 1.U)
}
}
}
/**
* Object to decrement an input value, wrapping it if
* necessary.
*/
object WrapDec
{
// "n" is the number of increments, so we wrap at n-1.
def apply(value: UInt, n: Int): UInt = {
if (isPow2(n)) {
(value - 1.U)(log2Ceil(n)-1,0)
} else {
val wrap = (value === 0.U)
Mux(wrap, (n-1).U, value - 1.U)
}
}
}
/**
* Object to mask off lower bits of a PC to align to a "b"
* Byte boundary.
*/
object AlignPCToBoundary
{
def apply(pc: UInt, b: Int): UInt = {
// Invert for scenario where pc longer than b
// (which would clear all bits above size(b)).
~(~pc | (b-1).U)
}
}
/**
* Object to rotate a signal left by one
*/
object RotateL1
{
def apply(signal: UInt): UInt = {
val w = signal.getWidth
val out = Cat(signal(w-2,0), signal(w-1))
return out
}
}
/**
* Object to sext a value to a particular length.
*/
object Sext
{
def apply(x: UInt, length: Int): UInt = {
if (x.getWidth == length) return x
else return Cat(Fill(length-x.getWidth, x(x.getWidth-1)), x)
}
}
/**
* Object to translate from BOOM's special "packed immediate" to a 32b signed immediate
* Asking for U-type gives it shifted up 12 bits.
*/
object ImmGen
{
import boom.v3.common.{LONGEST_IMM_SZ, IS_B, IS_I, IS_J, IS_S, IS_U}
def apply(ip: UInt, isel: UInt): SInt = {
val sign = ip(LONGEST_IMM_SZ-1).asSInt
val i30_20 = Mux(isel === IS_U, ip(18,8).asSInt, sign)
val i19_12 = Mux(isel === IS_U || isel === IS_J, ip(7,0).asSInt, sign)
val i11 = Mux(isel === IS_U, 0.S,
Mux(isel === IS_J || isel === IS_B, ip(8).asSInt, sign))
val i10_5 = Mux(isel === IS_U, 0.S, ip(18,14).asSInt)
val i4_1 = Mux(isel === IS_U, 0.S, ip(13,9).asSInt)
val i0 = Mux(isel === IS_S || isel === IS_I, ip(8).asSInt, 0.S)
return Cat(sign, i30_20, i19_12, i11, i10_5, i4_1, i0).asSInt
}
}
/**
* Object to get the FP rounding mode out of a packed immediate.
*/
object ImmGenRm { def apply(ip: UInt): UInt = { return ip(2,0) } }
/**
* Object to get the FP function fype from a packed immediate.
* Note: only works if !(IS_B or IS_S)
*/
object ImmGenTyp { def apply(ip: UInt): UInt = { return ip(9,8) } }
/**
* Object to see if an instruction is a JALR.
*/
object DebugIsJALR
{
def apply(inst: UInt): Bool = {
// TODO Chisel not sure why this won't compile
// val is_jalr = rocket.DecodeLogic(inst, List(Bool(false)),
// Array(
// JALR -> Bool(true)))
inst(6,0) === "b1100111".U
}
}
/**
* Object to take an instruction and output its branch or jal target. Only used
* for a debug assert (no where else would we jump straight from instruction
* bits to a target).
*/
object DebugGetBJImm
{
def apply(inst: UInt): UInt = {
// TODO Chisel not sure why this won't compile
//val csignals =
//rocket.DecodeLogic(inst,
// List(Bool(false), Bool(false)),
// Array(
// BEQ -> List(Bool(true ), Bool(false)),
// BNE -> List(Bool(true ), Bool(false)),
// BGE -> List(Bool(true ), Bool(false)),
// BGEU -> List(Bool(true ), Bool(false)),
// BLT -> List(Bool(true ), Bool(false)),
// BLTU -> List(Bool(true ), Bool(false))
// ))
//val is_br :: nothing :: Nil = csignals
val is_br = (inst(6,0) === "b1100011".U)
val br_targ = Cat(Fill(12, inst(31)), Fill(8,inst(31)), inst(7), inst(30,25), inst(11,8), 0.U(1.W))
val jal_targ= Cat(Fill(12, inst(31)), inst(19,12), inst(20), inst(30,25), inst(24,21), 0.U(1.W))
Mux(is_br, br_targ, jal_targ)
}
}
/**
* Object to return the lowest bit position after the head.
*/
object AgePriorityEncoder
{
def apply(in: Seq[Bool], head: UInt): UInt = {
val n = in.size
val width = log2Ceil(in.size)
val n_padded = 1 << width
val temp_vec = (0 until n_padded).map(i => if (i < n) in(i) && i.U >= head else false.B) ++ in
val idx = PriorityEncoder(temp_vec)
idx(width-1, 0) //discard msb
}
}
/**
* Object to determine whether queue
* index i0 is older than index i1.
*/
object IsOlder
{
def apply(i0: UInt, i1: UInt, head: UInt) = ((i0 < i1) ^ (i0 < head) ^ (i1 < head))
}
/**
* Set all bits at or below the highest order '1'.
*/
object MaskLower
{
def apply(in: UInt) = {
val n = in.getWidth
(0 until n).map(i => in >> i.U).reduce(_|_)
}
}
/**
* Set all bits at or above the lowest order '1'.
*/
object MaskUpper
{
def apply(in: UInt) = {
val n = in.getWidth
(0 until n).map(i => (in << i.U)(n-1,0)).reduce(_|_)
}
}
/**
* Transpose a matrix of Chisel Vecs.
*/
object Transpose
{
def apply[T <: chisel3.Data](in: Vec[Vec[T]]) = {
val n = in(0).size
VecInit((0 until n).map(i => VecInit(in.map(row => row(i)))))
}
}
/**
* N-wide one-hot priority encoder.
*/
object SelectFirstN
{
def apply(in: UInt, n: Int) = {
val sels = Wire(Vec(n, UInt(in.getWidth.W)))
var mask = in
for (i <- 0 until n) {
sels(i) := PriorityEncoderOH(mask)
mask = mask & ~sels(i)
}
sels
}
}
/**
* Connect the first k of n valid input interfaces to k output interfaces.
*/
class Compactor[T <: chisel3.Data](n: Int, k: Int, gen: T) extends Module
{
require(n >= k)
val io = IO(new Bundle {
val in = Vec(n, Flipped(DecoupledIO(gen)))
val out = Vec(k, DecoupledIO(gen))
})
if (n == k) {
io.out <> io.in
} else {
val counts = io.in.map(_.valid).scanLeft(1.U(k.W)) ((c,e) => Mux(e, (c<<1)(k-1,0), c))
val sels = Transpose(VecInit(counts map (c => VecInit(c.asBools)))) map (col =>
(col zip io.in.map(_.valid)) map {case (c,v) => c && v})
val in_readys = counts map (row => (row.asBools zip io.out.map(_.ready)) map {case (c,r) => c && r} reduce (_||_))
val out_valids = sels map (col => col.reduce(_||_))
val out_data = sels map (s => Mux1H(s, io.in.map(_.bits)))
in_readys zip io.in foreach {case (r,i) => i.ready := r}
out_valids zip out_data zip io.out foreach {case ((v,d),o) => o.valid := v; o.bits := d}
}
}
/**
* Create a queue that can be killed with a branch kill signal.
* Assumption: enq.valid only high if not killed by branch (so don't check IsKilled on io.enq).
*/
class BranchKillableQueue[T <: boom.v3.common.HasBoomUOP](gen: T, entries: Int, flush_fn: boom.v3.common.MicroOp => Bool = u => true.B, flow: Boolean = true)
(implicit p: org.chipsalliance.cde.config.Parameters)
extends boom.v3.common.BoomModule()(p)
with boom.v3.common.HasBoomCoreParameters
{
val io = IO(new Bundle {
val enq = Flipped(Decoupled(gen))
val deq = Decoupled(gen)
val brupdate = Input(new BrUpdateInfo())
val flush = Input(Bool())
val empty = Output(Bool())
val count = Output(UInt(log2Ceil(entries).W))
})
val ram = Mem(entries, gen)
val valids = RegInit(VecInit(Seq.fill(entries) {false.B}))
val uops = Reg(Vec(entries, new MicroOp))
val enq_ptr = Counter(entries)
val deq_ptr = Counter(entries)
val maybe_full = RegInit(false.B)
val ptr_match = enq_ptr.value === deq_ptr.value
io.empty := ptr_match && !maybe_full
val full = ptr_match && maybe_full
val do_enq = WireInit(io.enq.fire)
val do_deq = WireInit((io.deq.ready || !valids(deq_ptr.value)) && !io.empty)
for (i <- 0 until entries) {
val mask = uops(i).br_mask
val uop = uops(i)
valids(i) := valids(i) && !IsKilledByBranch(io.brupdate, mask) && !(io.flush && flush_fn(uop))
when (valids(i)) {
uops(i).br_mask := GetNewBrMask(io.brupdate, mask)
}
}
when (do_enq) {
ram(enq_ptr.value) := io.enq.bits
valids(enq_ptr.value) := true.B //!IsKilledByBranch(io.brupdate, io.enq.bits.uop)
uops(enq_ptr.value) := io.enq.bits.uop
uops(enq_ptr.value).br_mask := GetNewBrMask(io.brupdate, io.enq.bits.uop)
enq_ptr.inc()
}
when (do_deq) {
valids(deq_ptr.value) := false.B
deq_ptr.inc()
}
when (do_enq =/= do_deq) {
maybe_full := do_enq
}
io.enq.ready := !full
val out = Wire(gen)
out := ram(deq_ptr.value)
out.uop := uops(deq_ptr.value)
io.deq.valid := !io.empty && valids(deq_ptr.value) && !IsKilledByBranch(io.brupdate, out.uop) && !(io.flush && flush_fn(out.uop))
io.deq.bits := out
io.deq.bits.uop.br_mask := GetNewBrMask(io.brupdate, out.uop)
// For flow queue behavior.
if (flow) {
when (io.empty) {
io.deq.valid := io.enq.valid //&& !IsKilledByBranch(io.brupdate, io.enq.bits.uop)
io.deq.bits := io.enq.bits
io.deq.bits.uop.br_mask := GetNewBrMask(io.brupdate, io.enq.bits.uop)
do_deq := false.B
when (io.deq.ready) { do_enq := false.B }
}
}
private val ptr_diff = enq_ptr.value - deq_ptr.value
if (isPow2(entries)) {
io.count := Cat(maybe_full && ptr_match, ptr_diff)
}
else {
io.count := Mux(ptr_match,
Mux(maybe_full,
entries.asUInt, 0.U),
Mux(deq_ptr.value > enq_ptr.value,
entries.asUInt + ptr_diff, ptr_diff))
}
}
// ------------------------------------------
// Printf helper functions
// ------------------------------------------
object BoolToChar
{
/**
* Take in a Chisel Bool and convert it into a Str
* based on the Chars given
*
* @param c_bool Chisel Bool
* @param trueChar Scala Char if bool is true
* @param falseChar Scala Char if bool is false
* @return UInt ASCII Char for "trueChar" or "falseChar"
*/
def apply(c_bool: Bool, trueChar: Char, falseChar: Char = '-'): UInt = {
Mux(c_bool, Str(trueChar), Str(falseChar))
}
}
object CfiTypeToChars
{
/**
* Get a Vec of Strs that can be used for printing
*
* @param cfi_type specific cfi type
* @return Vec of Strs (must be indexed to get specific char)
*/
def apply(cfi_type: UInt) = {
val strings = Seq("----", "BR ", "JAL ", "JALR")
val multiVec = VecInit(for(string <- strings) yield { VecInit(for (c <- string) yield { Str(c) }) })
multiVec(cfi_type)
}
}
object BpdTypeToChars
{
/**
* Get a Vec of Strs that can be used for printing
*
* @param bpd_type specific bpd type
* @return Vec of Strs (must be indexed to get specific char)
*/
def apply(bpd_type: UInt) = {
val strings = Seq("BR ", "JUMP", "----", "RET ", "----", "CALL", "----", "----")
val multiVec = VecInit(for(string <- strings) yield { VecInit(for (c <- string) yield { Str(c) }) })
multiVec(bpd_type)
}
}
object RobTypeToChars
{
/**
* Get a Vec of Strs that can be used for printing
*
* @param rob_type specific rob type
* @return Vec of Strs (must be indexed to get specific char)
*/
def apply(rob_type: UInt) = {
val strings = Seq("RST", "NML", "RBK", " WT")
val multiVec = VecInit(for(string <- strings) yield { VecInit(for (c <- string) yield { Str(c) }) })
multiVec(rob_type)
}
}
object XRegToChars
{
/**
* Get a Vec of Strs that can be used for printing
*
* @param xreg specific register number
* @return Vec of Strs (must be indexed to get specific char)
*/
def apply(xreg: UInt) = {
val strings = Seq(" x0", " ra", " sp", " gp",
" tp", " t0", " t1", " t2",
" s0", " s1", " a0", " a1",
" a2", " a3", " a4", " a5",
" a6", " a7", " s2", " s3",
" s4", " s5", " s6", " s7",
" s8", " s9", "s10", "s11",
" t3", " t4", " t5", " t6")
val multiVec = VecInit(for(string <- strings) yield { VecInit(for (c <- string) yield { Str(c) }) })
multiVec(xreg)
}
}
object FPRegToChars
{
/**
* Get a Vec of Strs that can be used for printing
*
* @param fpreg specific register number
* @return Vec of Strs (must be indexed to get specific char)
*/
def apply(fpreg: UInt) = {
val strings = Seq(" ft0", " ft1", " ft2", " ft3",
" ft4", " ft5", " ft6", " ft7",
" fs0", " fs1", " fa0", " fa1",
" fa2", " fa3", " fa4", " fa5",
" fa6", " fa7", " fs2", " fs3",
" fs4", " fs5", " fs6", " fs7",
" fs8", " fs9", "fs10", "fs11",
" ft8", " ft9", "ft10", "ft11")
val multiVec = VecInit(for(string <- strings) yield { VecInit(for (c <- string) yield { Str(c) }) })
multiVec(fpreg)
}
}
object BoomCoreStringPrefix
{
/**
* Add prefix to BOOM strings (currently only adds the hartId)
*
* @param strs list of strings
* @return String combining the list with the prefix per line
*/
def apply(strs: String*)(implicit p: Parameters) = {
val prefix = "[C" + s"${p(TileKey).tileId}" + "] "
strs.map(str => prefix + str + "\n").mkString("")
}
}
File consts.scala:
//******************************************************************************
// Copyright (c) 2011 - 2018, The Regents of the University of California (Regents).
// All Rights Reserved. See LICENSE and LICENSE.SiFive for license details.
//------------------------------------------------------------------------------
//------------------------------------------------------------------------------
//------------------------------------------------------------------------------
// RISCV Processor Constants
//------------------------------------------------------------------------------
//------------------------------------------------------------------------------
package boom.v3.common.constants
import chisel3._
import chisel3.util._
import org.chipsalliance.cde.config.Parameters
import freechips.rocketchip.util.Str
import freechips.rocketchip.rocket.RVCExpander
/**
* Mixin for issue queue types
*/
trait IQType
{
val IQT_SZ = 3
val IQT_INT = 1.U(IQT_SZ.W)
val IQT_MEM = 2.U(IQT_SZ.W)
val IQT_FP = 4.U(IQT_SZ.W)
val IQT_MFP = 6.U(IQT_SZ.W)
}
/**
* Mixin for scalar operation constants
*/
trait ScalarOpConstants
{
val X = BitPat("b?")
val Y = BitPat("b1")
val N = BitPat("b0")
//************************************
// Extra Constants
// Which branch predictor predicted us
val BSRC_SZ = 2
val BSRC_1 = 0.U(BSRC_SZ.W) // 1-cycle branch pred
val BSRC_2 = 1.U(BSRC_SZ.W) // 2-cycle branch pred
val BSRC_3 = 2.U(BSRC_SZ.W) // 3-cycle branch pred
val BSRC_C = 3.U(BSRC_SZ.W) // core branch resolution
//************************************
// Control Signals
// CFI types
val CFI_SZ = 3
val CFI_X = 0.U(CFI_SZ.W) // Not a CFI instruction
val CFI_BR = 1.U(CFI_SZ.W) // Branch
val CFI_JAL = 2.U(CFI_SZ.W) // JAL
val CFI_JALR = 3.U(CFI_SZ.W) // JALR
// PC Select Signal
val PC_PLUS4 = 0.U(2.W) // PC + 4
val PC_BRJMP = 1.U(2.W) // brjmp_target
val PC_JALR = 2.U(2.W) // jump_reg_target
// Branch Type
val BR_N = 0.U(4.W) // Next
val BR_NE = 1.U(4.W) // Branch on NotEqual
val BR_EQ = 2.U(4.W) // Branch on Equal
val BR_GE = 3.U(4.W) // Branch on Greater/Equal
val BR_GEU = 4.U(4.W) // Branch on Greater/Equal Unsigned
val BR_LT = 5.U(4.W) // Branch on Less Than
val BR_LTU = 6.U(4.W) // Branch on Less Than Unsigned
val BR_J = 7.U(4.W) // Jump
val BR_JR = 8.U(4.W) // Jump Register
// RS1 Operand Select Signal
val OP1_RS1 = 0.U(2.W) // Register Source #1
val OP1_ZERO= 1.U(2.W)
val OP1_PC = 2.U(2.W)
val OP1_X = BitPat("b??")
// RS2 Operand Select Signal
val OP2_RS2 = 0.U(3.W) // Register Source #2
val OP2_IMM = 1.U(3.W) // immediate
val OP2_ZERO= 2.U(3.W) // constant 0
val OP2_NEXT= 3.U(3.W) // constant 2/4 (for PC+2/4)
val OP2_IMMC= 4.U(3.W) // for CSR imm found in RS1
val OP2_X = BitPat("b???")
// Register File Write Enable Signal
val REN_0 = false.B
val REN_1 = true.B
// Is 32b Word or 64b Doubldword?
val SZ_DW = 1
val DW_X = true.B // Bool(xLen==64)
val DW_32 = false.B
val DW_64 = true.B
val DW_XPR = true.B // Bool(xLen==64)
// Memory Enable Signal
val MEN_0 = false.B
val MEN_1 = true.B
val MEN_X = false.B
// Immediate Extend Select
val IS_I = 0.U(3.W) // I-Type (LD,ALU)
val IS_S = 1.U(3.W) // S-Type (ST)
val IS_B = 2.U(3.W) // SB-Type (BR)
val IS_U = 3.U(3.W) // U-Type (LUI/AUIPC)
val IS_J = 4.U(3.W) // UJ-Type (J/JAL)
val IS_X = BitPat("b???")
// Decode Stage Control Signals
val RT_FIX = 0.U(2.W)
val RT_FLT = 1.U(2.W)
val RT_PAS = 3.U(2.W) // pass-through (prs1 := lrs1, etc)
val RT_X = 2.U(2.W) // not-a-register (but shouldn't get a busy-bit, etc.)
// TODO rename RT_NAR
// Micro-op opcodes
// TODO change micro-op opcodes into using enum
val UOPC_SZ = 7
val uopX = BitPat.dontCare(UOPC_SZ)
val uopNOP = 0.U(UOPC_SZ.W)
val uopLD = 1.U(UOPC_SZ.W)
val uopSTA = 2.U(UOPC_SZ.W) // store address generation
val uopSTD = 3.U(UOPC_SZ.W) // store data generation
val uopLUI = 4.U(UOPC_SZ.W)
val uopADDI = 5.U(UOPC_SZ.W)
val uopANDI = 6.U(UOPC_SZ.W)
val uopORI = 7.U(UOPC_SZ.W)
val uopXORI = 8.U(UOPC_SZ.W)
val uopSLTI = 9.U(UOPC_SZ.W)
val uopSLTIU= 10.U(UOPC_SZ.W)
val uopSLLI = 11.U(UOPC_SZ.W)
val uopSRAI = 12.U(UOPC_SZ.W)
val uopSRLI = 13.U(UOPC_SZ.W)
val uopSLL = 14.U(UOPC_SZ.W)
val uopADD = 15.U(UOPC_SZ.W)
val uopSUB = 16.U(UOPC_SZ.W)
val uopSLT = 17.U(UOPC_SZ.W)
val uopSLTU = 18.U(UOPC_SZ.W)
val uopAND = 19.U(UOPC_SZ.W)
val uopOR = 20.U(UOPC_SZ.W)
val uopXOR = 21.U(UOPC_SZ.W)
val uopSRA = 22.U(UOPC_SZ.W)
val uopSRL = 23.U(UOPC_SZ.W)
val uopBEQ = 24.U(UOPC_SZ.W)
val uopBNE = 25.U(UOPC_SZ.W)
val uopBGE = 26.U(UOPC_SZ.W)
val uopBGEU = 27.U(UOPC_SZ.W)
val uopBLT = 28.U(UOPC_SZ.W)
val uopBLTU = 29.U(UOPC_SZ.W)
val uopCSRRW= 30.U(UOPC_SZ.W)
val uopCSRRS= 31.U(UOPC_SZ.W)
val uopCSRRC= 32.U(UOPC_SZ.W)
val uopCSRRWI=33.U(UOPC_SZ.W)
val uopCSRRSI=34.U(UOPC_SZ.W)
val uopCSRRCI=35.U(UOPC_SZ.W)
val uopJ = 36.U(UOPC_SZ.W)
val uopJAL = 37.U(UOPC_SZ.W)
val uopJALR = 38.U(UOPC_SZ.W)
val uopAUIPC= 39.U(UOPC_SZ.W)
//val uopSRET = 40.U(UOPC_SZ.W)
val uopCFLSH= 41.U(UOPC_SZ.W)
val uopFENCE= 42.U(UOPC_SZ.W)
val uopADDIW= 43.U(UOPC_SZ.W)
val uopADDW = 44.U(UOPC_SZ.W)
val uopSUBW = 45.U(UOPC_SZ.W)
val uopSLLIW= 46.U(UOPC_SZ.W)
val uopSLLW = 47.U(UOPC_SZ.W)
val uopSRAIW= 48.U(UOPC_SZ.W)
val uopSRAW = 49.U(UOPC_SZ.W)
val uopSRLIW= 50.U(UOPC_SZ.W)
val uopSRLW = 51.U(UOPC_SZ.W)
val uopMUL = 52.U(UOPC_SZ.W)
val uopMULH = 53.U(UOPC_SZ.W)
val uopMULHU= 54.U(UOPC_SZ.W)
val uopMULHSU=55.U(UOPC_SZ.W)
val uopMULW = 56.U(UOPC_SZ.W)
val uopDIV = 57.U(UOPC_SZ.W)
val uopDIVU = 58.U(UOPC_SZ.W)
val uopREM = 59.U(UOPC_SZ.W)
val uopREMU = 60.U(UOPC_SZ.W)
val uopDIVW = 61.U(UOPC_SZ.W)
val uopDIVUW= 62.U(UOPC_SZ.W)
val uopREMW = 63.U(UOPC_SZ.W)
val uopREMUW= 64.U(UOPC_SZ.W)
val uopFENCEI = 65.U(UOPC_SZ.W)
// = 66.U(UOPC_SZ.W)
val uopAMO_AG = 67.U(UOPC_SZ.W) // AMO-address gen (use normal STD for datagen)
val uopFMV_W_X = 68.U(UOPC_SZ.W)
val uopFMV_D_X = 69.U(UOPC_SZ.W)
val uopFMV_X_W = 70.U(UOPC_SZ.W)
val uopFMV_X_D = 71.U(UOPC_SZ.W)
val uopFSGNJ_S = 72.U(UOPC_SZ.W)
val uopFSGNJ_D = 73.U(UOPC_SZ.W)
val uopFCVT_S_D = 74.U(UOPC_SZ.W)
val uopFCVT_D_S = 75.U(UOPC_SZ.W)
val uopFCVT_S_X = 76.U(UOPC_SZ.W)
val uopFCVT_D_X = 77.U(UOPC_SZ.W)
val uopFCVT_X_S = 78.U(UOPC_SZ.W)
val uopFCVT_X_D = 79.U(UOPC_SZ.W)
val uopCMPR_S = 80.U(UOPC_SZ.W)
val uopCMPR_D = 81.U(UOPC_SZ.W)
val uopFCLASS_S = 82.U(UOPC_SZ.W)
val uopFCLASS_D = 83.U(UOPC_SZ.W)
val uopFMINMAX_S = 84.U(UOPC_SZ.W)
val uopFMINMAX_D = 85.U(UOPC_SZ.W)
// = 86.U(UOPC_SZ.W)
val uopFADD_S = 87.U(UOPC_SZ.W)
val uopFSUB_S = 88.U(UOPC_SZ.W)
val uopFMUL_S = 89.U(UOPC_SZ.W)
val uopFADD_D = 90.U(UOPC_SZ.W)
val uopFSUB_D = 91.U(UOPC_SZ.W)
val uopFMUL_D = 92.U(UOPC_SZ.W)
val uopFMADD_S = 93.U(UOPC_SZ.W)
val uopFMSUB_S = 94.U(UOPC_SZ.W)
val uopFNMADD_S = 95.U(UOPC_SZ.W)
val uopFNMSUB_S = 96.U(UOPC_SZ.W)
val uopFMADD_D = 97.U(UOPC_SZ.W)
val uopFMSUB_D = 98.U(UOPC_SZ.W)
val uopFNMADD_D = 99.U(UOPC_SZ.W)
val uopFNMSUB_D = 100.U(UOPC_SZ.W)
val uopFDIV_S = 101.U(UOPC_SZ.W)
val uopFDIV_D = 102.U(UOPC_SZ.W)
val uopFSQRT_S = 103.U(UOPC_SZ.W)
val uopFSQRT_D = 104.U(UOPC_SZ.W)
val uopWFI = 105.U(UOPC_SZ.W) // pass uop down the CSR pipeline
val uopERET = 106.U(UOPC_SZ.W) // pass uop down the CSR pipeline, also is ERET
val uopSFENCE = 107.U(UOPC_SZ.W)
val uopROCC = 108.U(UOPC_SZ.W)
val uopMOV = 109.U(UOPC_SZ.W) // conditional mov decoded from "add rd, x0, rs2"
// The Bubble Instruction (Machine generated NOP)
// Insert (XOR x0,x0,x0) which is different from software compiler
// generated NOPs which are (ADDI x0, x0, 0).
// Reasoning for this is to let visualizers and stat-trackers differentiate
// between software NOPs and machine-generated Bubbles in the pipeline.
val BUBBLE = (0x4033).U(32.W)
def NullMicroOp()(implicit p: Parameters): boom.v3.common.MicroOp = {
val uop = Wire(new boom.v3.common.MicroOp)
uop := DontCare // Overridden in the following lines
uop.uopc := uopNOP // maybe not required, but helps on asserts that try to catch spurious behavior
uop.bypassable := false.B
uop.fp_val := false.B
uop.uses_stq := false.B
uop.uses_ldq := false.B
uop.pdst := 0.U
uop.dst_rtype := RT_X
val cs = Wire(new boom.v3.common.CtrlSignals())
cs := DontCare // Overridden in the following lines
cs.br_type := BR_N
cs.csr_cmd := freechips.rocketchip.rocket.CSR.N
cs.is_load := false.B
cs.is_sta := false.B
cs.is_std := false.B
uop.ctrl := cs
uop
}
}
/**
* Mixin for RISCV constants
*/
trait RISCVConstants
{
// abstract out instruction decode magic numbers
val RD_MSB = 11
val RD_LSB = 7
val RS1_MSB = 19
val RS1_LSB = 15
val RS2_MSB = 24
val RS2_LSB = 20
val RS3_MSB = 31
val RS3_LSB = 27
val CSR_ADDR_MSB = 31
val CSR_ADDR_LSB = 20
val CSR_ADDR_SZ = 12
// location of the fifth bit in the shamt (for checking for illegal ops for SRAIW,etc.)
val SHAMT_5_BIT = 25
val LONGEST_IMM_SZ = 20
val X0 = 0.U
val RA = 1.U // return address register
// memory consistency model
// The C/C++ atomics MCM requires that two loads to the same address maintain program order.
// The Cortex A9 does NOT enforce load/load ordering (which leads to buggy behavior).
val MCM_ORDER_DEPENDENT_LOADS = true
val jal_opc = (0x6f).U
val jalr_opc = (0x67).U
def GetUop(inst: UInt): UInt = inst(6,0)
def GetRd (inst: UInt): UInt = inst(RD_MSB,RD_LSB)
def GetRs1(inst: UInt): UInt = inst(RS1_MSB,RS1_LSB)
def ExpandRVC(inst: UInt)(implicit p: Parameters): UInt = {
val rvc_exp = Module(new RVCExpander)
rvc_exp.io.in := inst
Mux(rvc_exp.io.rvc, rvc_exp.io.out.bits, inst)
}
// Note: Accepts only EXPANDED rvc instructions
def ComputeBranchTarget(pc: UInt, inst: UInt, xlen: Int)(implicit p: Parameters): UInt = {
val b_imm32 = Cat(Fill(20,inst(31)), inst(7), inst(30,25), inst(11,8), 0.U(1.W))
((pc.asSInt + b_imm32.asSInt).asSInt & (-2).S).asUInt
}
// Note: Accepts only EXPANDED rvc instructions
def ComputeJALTarget(pc: UInt, inst: UInt, xlen: Int)(implicit p: Parameters): UInt = {
val j_imm32 = Cat(Fill(12,inst(31)), inst(19,12), inst(20), inst(30,25), inst(24,21), 0.U(1.W))
((pc.asSInt + j_imm32.asSInt).asSInt & (-2).S).asUInt
}
// Note: Accepts only EXPANDED rvc instructions
def GetCfiType(inst: UInt)(implicit p: Parameters): UInt = {
val bdecode = Module(new boom.v3.exu.BranchDecode)
bdecode.io.inst := inst
bdecode.io.pc := 0.U
bdecode.io.out.cfi_type
}
}
/**
* Mixin for exception cause constants
*/
trait ExcCauseConstants
{
// a memory disambigious misspeculation occurred
val MINI_EXCEPTION_MEM_ORDERING = 16.U
val MINI_EXCEPTION_CSR_REPLAY = 17.U
require (!freechips.rocketchip.rocket.Causes.all.contains(16))
require (!freechips.rocketchip.rocket.Causes.all.contains(17))
}
File issue-slot.scala:
//******************************************************************************
// Copyright (c) 2015 - 2018, The Regents of the University of California (Regents).
// All Rights Reserved. See LICENSE and LICENSE.SiFive for license details.
//------------------------------------------------------------------------------
//------------------------------------------------------------------------------
//------------------------------------------------------------------------------
// RISCV Processor Issue Slot Logic
//--------------------------------------------------------------------------
//------------------------------------------------------------------------------
//
// Note: stores (and AMOs) are "broken down" into 2 uops, but stored within a single issue-slot.
// TODO XXX make a separate issueSlot for MemoryIssueSlots, and only they break apart stores.
// TODO Disable ldspec for FP queue.
package boom.v3.exu
import chisel3._
import chisel3.util._
import org.chipsalliance.cde.config.Parameters
import boom.v3.common._
import boom.v3.util._
import FUConstants._
/**
* IO bundle to interact with Issue slot
*
* @param numWakeupPorts number of wakeup ports for the slot
*/
class IssueSlotIO(val numWakeupPorts: Int)(implicit p: Parameters) extends BoomBundle
{
val valid = Output(Bool())
val will_be_valid = Output(Bool()) // TODO code review, do we need this signal so explicitely?
val request = Output(Bool())
val request_hp = Output(Bool())
val grant = Input(Bool())
val brupdate = Input(new BrUpdateInfo())
val kill = Input(Bool()) // pipeline flush
val clear = Input(Bool()) // entry being moved elsewhere (not mutually exclusive with grant)
val ldspec_miss = Input(Bool()) // Previous cycle's speculative load wakeup was mispredicted.
val wakeup_ports = Flipped(Vec(numWakeupPorts, Valid(new IqWakeup(maxPregSz))))
val pred_wakeup_port = Flipped(Valid(UInt(log2Ceil(ftqSz).W)))
val spec_ld_wakeup = Flipped(Vec(memWidth, Valid(UInt(width=maxPregSz.W))))
val in_uop = Flipped(Valid(new MicroOp())) // if valid, this WILL overwrite an entry!
val out_uop = Output(new MicroOp()) // the updated slot uop; will be shifted upwards in a collasping queue.
val uop = Output(new MicroOp()) // the current Slot's uop. Sent down the pipeline when issued.
val debug = {
val result = new Bundle {
val p1 = Bool()
val p2 = Bool()
val p3 = Bool()
val ppred = Bool()
val state = UInt(width=2.W)
}
Output(result)
}
}
/**
* Single issue slot. Holds a uop within the issue queue
*
* @param numWakeupPorts number of wakeup ports
*/
class IssueSlot(val numWakeupPorts: Int)(implicit p: Parameters)
extends BoomModule
with IssueUnitConstants
{
val io = IO(new IssueSlotIO(numWakeupPorts))
// slot invalid?
// slot is valid, holding 1 uop
// slot is valid, holds 2 uops (like a store)
def is_invalid = state === s_invalid
def is_valid = state =/= s_invalid
val next_state = Wire(UInt()) // the next state of this slot (which might then get moved to a new slot)
val next_uopc = Wire(UInt()) // the next uopc of this slot (which might then get moved to a new slot)
val next_lrs1_rtype = Wire(UInt()) // the next reg type of this slot (which might then get moved to a new slot)
val next_lrs2_rtype = Wire(UInt()) // the next reg type of this slot (which might then get moved to a new slot)
val state = RegInit(s_invalid)
val p1 = RegInit(false.B)
val p2 = RegInit(false.B)
val p3 = RegInit(false.B)
val ppred = RegInit(false.B)
// Poison if woken up by speculative load.
// Poison lasts 1 cycle (as ldMiss will come on the next cycle).
// SO if poisoned is true, set it to false!
val p1_poisoned = RegInit(false.B)
val p2_poisoned = RegInit(false.B)
p1_poisoned := false.B
p2_poisoned := false.B
val next_p1_poisoned = Mux(io.in_uop.valid, io.in_uop.bits.iw_p1_poisoned, p1_poisoned)
val next_p2_poisoned = Mux(io.in_uop.valid, io.in_uop.bits.iw_p2_poisoned, p2_poisoned)
val slot_uop = RegInit(NullMicroOp)
val next_uop = Mux(io.in_uop.valid, io.in_uop.bits, slot_uop)
//-----------------------------------------------------------------------------
// next slot state computation
// compute the next state for THIS entry slot (in a collasping queue, the
// current uop may get moved elsewhere, and a new uop can enter
when (io.kill) {
state := s_invalid
} .elsewhen (io.in_uop.valid) {
state := io.in_uop.bits.iw_state
} .elsewhen (io.clear) {
state := s_invalid
} .otherwise {
state := next_state
}
//-----------------------------------------------------------------------------
// "update" state
// compute the next state for the micro-op in this slot. This micro-op may
// be moved elsewhere, so the "next_state" travels with it.
// defaults
next_state := state
next_uopc := slot_uop.uopc
next_lrs1_rtype := slot_uop.lrs1_rtype
next_lrs2_rtype := slot_uop.lrs2_rtype
when (io.kill) {
next_state := s_invalid
} .elsewhen ((io.grant && (state === s_valid_1)) ||
(io.grant && (state === s_valid_2) && p1 && p2 && ppred)) {
// try to issue this uop.
when (!(io.ldspec_miss && (p1_poisoned || p2_poisoned))) {
next_state := s_invalid
}
} .elsewhen (io.grant && (state === s_valid_2)) {
when (!(io.ldspec_miss && (p1_poisoned || p2_poisoned))) {
next_state := s_valid_1
when (p1) {
slot_uop.uopc := uopSTD
next_uopc := uopSTD
slot_uop.lrs1_rtype := RT_X
next_lrs1_rtype := RT_X
} .otherwise {
slot_uop.lrs2_rtype := RT_X
next_lrs2_rtype := RT_X
}
}
}
when (io.in_uop.valid) {
slot_uop := io.in_uop.bits
assert (is_invalid || io.clear || io.kill, "trying to overwrite a valid issue slot.")
}
// Wakeup Compare Logic
// these signals are the "next_p*" for the current slot's micro-op.
// they are important for shifting the current slot_uop up to an other entry.
val next_p1 = WireInit(p1)
val next_p2 = WireInit(p2)
val next_p3 = WireInit(p3)
val next_ppred = WireInit(ppred)
when (io.in_uop.valid) {
p1 := !(io.in_uop.bits.prs1_busy)
p2 := !(io.in_uop.bits.prs2_busy)
p3 := !(io.in_uop.bits.prs3_busy)
ppred := !(io.in_uop.bits.ppred_busy)
}
when (io.ldspec_miss && next_p1_poisoned) {
assert(next_uop.prs1 =/= 0.U, "Poison bit can't be set for prs1=x0!")
p1 := false.B
}
when (io.ldspec_miss && next_p2_poisoned) {
assert(next_uop.prs2 =/= 0.U, "Poison bit can't be set for prs2=x0!")
p2 := false.B
}
for (i <- 0 until numWakeupPorts) {
when (io.wakeup_ports(i).valid &&
(io.wakeup_ports(i).bits.pdst === next_uop.prs1)) {
p1 := true.B
}
when (io.wakeup_ports(i).valid &&
(io.wakeup_ports(i).bits.pdst === next_uop.prs2)) {
p2 := true.B
}
when (io.wakeup_ports(i).valid &&
(io.wakeup_ports(i).bits.pdst === next_uop.prs3)) {
p3 := true.B
}
}
when (io.pred_wakeup_port.valid && io.pred_wakeup_port.bits === next_uop.ppred) {
ppred := true.B
}
for (w <- 0 until memWidth) {
assert (!(io.spec_ld_wakeup(w).valid && io.spec_ld_wakeup(w).bits === 0.U),
"Loads to x0 should never speculatively wakeup other instructions")
}
// TODO disable if FP IQ.
for (w <- 0 until memWidth) {
when (io.spec_ld_wakeup(w).valid &&
io.spec_ld_wakeup(w).bits === next_uop.prs1 &&
next_uop.lrs1_rtype === RT_FIX) {
p1 := true.B
p1_poisoned := true.B
assert (!next_p1_poisoned)
}
when (io.spec_ld_wakeup(w).valid &&
io.spec_ld_wakeup(w).bits === next_uop.prs2 &&
next_uop.lrs2_rtype === RT_FIX) {
p2 := true.B
p2_poisoned := true.B
assert (!next_p2_poisoned)
}
}
// Handle branch misspeculations
val next_br_mask = GetNewBrMask(io.brupdate, slot_uop)
// was this micro-op killed by a branch? if yes, we can't let it be valid if
// we compact it into an other entry
when (IsKilledByBranch(io.brupdate, slot_uop)) {
next_state := s_invalid
}
when (!io.in_uop.valid) {
slot_uop.br_mask := next_br_mask
}
//-------------------------------------------------------------
// Request Logic
io.request := is_valid && p1 && p2 && p3 && ppred && !io.kill
val high_priority = slot_uop.is_br || slot_uop.is_jal || slot_uop.is_jalr
io.request_hp := io.request && high_priority
when (state === s_valid_1) {
io.request := p1 && p2 && p3 && ppred && !io.kill
} .elsewhen (state === s_valid_2) {
io.request := (p1 || p2) && ppred && !io.kill
} .otherwise {
io.request := false.B
}
//assign outputs
io.valid := is_valid
io.uop := slot_uop
io.uop.iw_p1_poisoned := p1_poisoned
io.uop.iw_p2_poisoned := p2_poisoned
// micro-op will vacate due to grant.
val may_vacate = io.grant && ((state === s_valid_1) || (state === s_valid_2) && p1 && p2 && ppred)
val squash_grant = io.ldspec_miss && (p1_poisoned || p2_poisoned)
io.will_be_valid := is_valid && !(may_vacate && !squash_grant)
io.out_uop := slot_uop
io.out_uop.iw_state := next_state
io.out_uop.uopc := next_uopc
io.out_uop.lrs1_rtype := next_lrs1_rtype
io.out_uop.lrs2_rtype := next_lrs2_rtype
io.out_uop.br_mask := next_br_mask
io.out_uop.prs1_busy := !p1
io.out_uop.prs2_busy := !p2
io.out_uop.prs3_busy := !p3
io.out_uop.ppred_busy := !ppred
io.out_uop.iw_p1_poisoned := p1_poisoned
io.out_uop.iw_p2_poisoned := p2_poisoned
when (state === s_valid_2) {
when (p1 && p2 && ppred) {
; // send out the entire instruction as one uop
} .elsewhen (p1 && ppred) {
io.uop.uopc := slot_uop.uopc
io.uop.lrs2_rtype := RT_X
} .elsewhen (p2 && ppred) {
io.uop.uopc := uopSTD
io.uop.lrs1_rtype := RT_X
}
}
// debug outputs
io.debug.p1 := p1
io.debug.p2 := p2
io.debug.p3 := p3
io.debug.ppred := ppred
io.debug.state := state
}
| module IssueSlot_43( // @[issue-slot.scala:69:7]
input clock, // @[issue-slot.scala:69:7]
input reset, // @[issue-slot.scala:69:7]
output io_valid, // @[issue-slot.scala:73:14]
output io_will_be_valid, // @[issue-slot.scala:73:14]
output io_request, // @[issue-slot.scala:73:14]
output io_request_hp, // @[issue-slot.scala:73:14]
input io_grant, // @[issue-slot.scala:73:14]
input [15:0] io_brupdate_b1_resolve_mask, // @[issue-slot.scala:73:14]
input [15:0] io_brupdate_b1_mispredict_mask, // @[issue-slot.scala:73:14]
input [6:0] io_brupdate_b2_uop_uopc, // @[issue-slot.scala:73:14]
input [31:0] io_brupdate_b2_uop_inst, // @[issue-slot.scala:73:14]
input [31:0] io_brupdate_b2_uop_debug_inst, // @[issue-slot.scala:73:14]
input io_brupdate_b2_uop_is_rvc, // @[issue-slot.scala:73:14]
input [39:0] io_brupdate_b2_uop_debug_pc, // @[issue-slot.scala:73:14]
input [2:0] io_brupdate_b2_uop_iq_type, // @[issue-slot.scala:73:14]
input [9:0] io_brupdate_b2_uop_fu_code, // @[issue-slot.scala:73:14]
input [3:0] io_brupdate_b2_uop_ctrl_br_type, // @[issue-slot.scala:73:14]
input [1:0] io_brupdate_b2_uop_ctrl_op1_sel, // @[issue-slot.scala:73:14]
input [2:0] io_brupdate_b2_uop_ctrl_op2_sel, // @[issue-slot.scala:73:14]
input [2:0] io_brupdate_b2_uop_ctrl_imm_sel, // @[issue-slot.scala:73:14]
input [4:0] io_brupdate_b2_uop_ctrl_op_fcn, // @[issue-slot.scala:73:14]
input io_brupdate_b2_uop_ctrl_fcn_dw, // @[issue-slot.scala:73:14]
input [2:0] io_brupdate_b2_uop_ctrl_csr_cmd, // @[issue-slot.scala:73:14]
input io_brupdate_b2_uop_ctrl_is_load, // @[issue-slot.scala:73:14]
input io_brupdate_b2_uop_ctrl_is_sta, // @[issue-slot.scala:73:14]
input io_brupdate_b2_uop_ctrl_is_std, // @[issue-slot.scala:73:14]
input [1:0] io_brupdate_b2_uop_iw_state, // @[issue-slot.scala:73:14]
input io_brupdate_b2_uop_iw_p1_poisoned, // @[issue-slot.scala:73:14]
input io_brupdate_b2_uop_iw_p2_poisoned, // @[issue-slot.scala:73:14]
input io_brupdate_b2_uop_is_br, // @[issue-slot.scala:73:14]
input io_brupdate_b2_uop_is_jalr, // @[issue-slot.scala:73:14]
input io_brupdate_b2_uop_is_jal, // @[issue-slot.scala:73:14]
input io_brupdate_b2_uop_is_sfb, // @[issue-slot.scala:73:14]
input [15:0] io_brupdate_b2_uop_br_mask, // @[issue-slot.scala:73:14]
input [3:0] io_brupdate_b2_uop_br_tag, // @[issue-slot.scala:73:14]
input [4:0] io_brupdate_b2_uop_ftq_idx, // @[issue-slot.scala:73:14]
input io_brupdate_b2_uop_edge_inst, // @[issue-slot.scala:73:14]
input [5:0] io_brupdate_b2_uop_pc_lob, // @[issue-slot.scala:73:14]
input io_brupdate_b2_uop_taken, // @[issue-slot.scala:73:14]
input [19:0] io_brupdate_b2_uop_imm_packed, // @[issue-slot.scala:73:14]
input [11:0] io_brupdate_b2_uop_csr_addr, // @[issue-slot.scala:73:14]
input [6:0] io_brupdate_b2_uop_rob_idx, // @[issue-slot.scala:73:14]
input [4:0] io_brupdate_b2_uop_ldq_idx, // @[issue-slot.scala:73:14]
input [4:0] io_brupdate_b2_uop_stq_idx, // @[issue-slot.scala:73:14]
input [1:0] io_brupdate_b2_uop_rxq_idx, // @[issue-slot.scala:73:14]
input [6:0] io_brupdate_b2_uop_pdst, // @[issue-slot.scala:73:14]
input [6:0] io_brupdate_b2_uop_prs1, // @[issue-slot.scala:73:14]
input [6:0] io_brupdate_b2_uop_prs2, // @[issue-slot.scala:73:14]
input [6:0] io_brupdate_b2_uop_prs3, // @[issue-slot.scala:73:14]
input [4:0] io_brupdate_b2_uop_ppred, // @[issue-slot.scala:73:14]
input io_brupdate_b2_uop_prs1_busy, // @[issue-slot.scala:73:14]
input io_brupdate_b2_uop_prs2_busy, // @[issue-slot.scala:73:14]
input io_brupdate_b2_uop_prs3_busy, // @[issue-slot.scala:73:14]
input io_brupdate_b2_uop_ppred_busy, // @[issue-slot.scala:73:14]
input [6:0] io_brupdate_b2_uop_stale_pdst, // @[issue-slot.scala:73:14]
input io_brupdate_b2_uop_exception, // @[issue-slot.scala:73:14]
input [63:0] io_brupdate_b2_uop_exc_cause, // @[issue-slot.scala:73:14]
input io_brupdate_b2_uop_bypassable, // @[issue-slot.scala:73:14]
input [4:0] io_brupdate_b2_uop_mem_cmd, // @[issue-slot.scala:73:14]
input [1:0] io_brupdate_b2_uop_mem_size, // @[issue-slot.scala:73:14]
input io_brupdate_b2_uop_mem_signed, // @[issue-slot.scala:73:14]
input io_brupdate_b2_uop_is_fence, // @[issue-slot.scala:73:14]
input io_brupdate_b2_uop_is_fencei, // @[issue-slot.scala:73:14]
input io_brupdate_b2_uop_is_amo, // @[issue-slot.scala:73:14]
input io_brupdate_b2_uop_uses_ldq, // @[issue-slot.scala:73:14]
input io_brupdate_b2_uop_uses_stq, // @[issue-slot.scala:73:14]
input io_brupdate_b2_uop_is_sys_pc2epc, // @[issue-slot.scala:73:14]
input io_brupdate_b2_uop_is_unique, // @[issue-slot.scala:73:14]
input io_brupdate_b2_uop_flush_on_commit, // @[issue-slot.scala:73:14]
input io_brupdate_b2_uop_ldst_is_rs1, // @[issue-slot.scala:73:14]
input [5:0] io_brupdate_b2_uop_ldst, // @[issue-slot.scala:73:14]
input [5:0] io_brupdate_b2_uop_lrs1, // @[issue-slot.scala:73:14]
input [5:0] io_brupdate_b2_uop_lrs2, // @[issue-slot.scala:73:14]
input [5:0] io_brupdate_b2_uop_lrs3, // @[issue-slot.scala:73:14]
input io_brupdate_b2_uop_ldst_val, // @[issue-slot.scala:73:14]
input [1:0] io_brupdate_b2_uop_dst_rtype, // @[issue-slot.scala:73:14]
input [1:0] io_brupdate_b2_uop_lrs1_rtype, // @[issue-slot.scala:73:14]
input [1:0] io_brupdate_b2_uop_lrs2_rtype, // @[issue-slot.scala:73:14]
input io_brupdate_b2_uop_frs3_en, // @[issue-slot.scala:73:14]
input io_brupdate_b2_uop_fp_val, // @[issue-slot.scala:73:14]
input io_brupdate_b2_uop_fp_single, // @[issue-slot.scala:73:14]
input io_brupdate_b2_uop_xcpt_pf_if, // @[issue-slot.scala:73:14]
input io_brupdate_b2_uop_xcpt_ae_if, // @[issue-slot.scala:73:14]
input io_brupdate_b2_uop_xcpt_ma_if, // @[issue-slot.scala:73:14]
input io_brupdate_b2_uop_bp_debug_if, // @[issue-slot.scala:73:14]
input io_brupdate_b2_uop_bp_xcpt_if, // @[issue-slot.scala:73:14]
input [1:0] io_brupdate_b2_uop_debug_fsrc, // @[issue-slot.scala:73:14]
input [1:0] io_brupdate_b2_uop_debug_tsrc, // @[issue-slot.scala:73:14]
input io_brupdate_b2_valid, // @[issue-slot.scala:73:14]
input io_brupdate_b2_mispredict, // @[issue-slot.scala:73:14]
input io_brupdate_b2_taken, // @[issue-slot.scala:73:14]
input [2:0] io_brupdate_b2_cfi_type, // @[issue-slot.scala:73:14]
input [1:0] io_brupdate_b2_pc_sel, // @[issue-slot.scala:73:14]
input [39:0] io_brupdate_b2_jalr_target, // @[issue-slot.scala:73:14]
input [20:0] io_brupdate_b2_target_offset, // @[issue-slot.scala:73:14]
input io_kill, // @[issue-slot.scala:73:14]
input io_clear, // @[issue-slot.scala:73:14]
input io_ldspec_miss, // @[issue-slot.scala:73:14]
input io_wakeup_ports_0_valid, // @[issue-slot.scala:73:14]
input [6:0] io_wakeup_ports_0_bits_pdst, // @[issue-slot.scala:73:14]
input io_wakeup_ports_0_bits_poisoned, // @[issue-slot.scala:73:14]
input io_wakeup_ports_1_valid, // @[issue-slot.scala:73:14]
input [6:0] io_wakeup_ports_1_bits_pdst, // @[issue-slot.scala:73:14]
input io_wakeup_ports_1_bits_poisoned, // @[issue-slot.scala:73:14]
input io_wakeup_ports_2_valid, // @[issue-slot.scala:73:14]
input [6:0] io_wakeup_ports_2_bits_pdst, // @[issue-slot.scala:73:14]
input io_wakeup_ports_2_bits_poisoned, // @[issue-slot.scala:73:14]
input io_wakeup_ports_3_valid, // @[issue-slot.scala:73:14]
input [6:0] io_wakeup_ports_3_bits_pdst, // @[issue-slot.scala:73:14]
input io_wakeup_ports_3_bits_poisoned, // @[issue-slot.scala:73:14]
input io_wakeup_ports_4_valid, // @[issue-slot.scala:73:14]
input [6:0] io_wakeup_ports_4_bits_pdst, // @[issue-slot.scala:73:14]
input io_wakeup_ports_4_bits_poisoned, // @[issue-slot.scala:73:14]
input io_wakeup_ports_5_valid, // @[issue-slot.scala:73:14]
input [6:0] io_wakeup_ports_5_bits_pdst, // @[issue-slot.scala:73:14]
input io_wakeup_ports_5_bits_poisoned, // @[issue-slot.scala:73:14]
input io_wakeup_ports_6_valid, // @[issue-slot.scala:73:14]
input [6:0] io_wakeup_ports_6_bits_pdst, // @[issue-slot.scala:73:14]
input io_wakeup_ports_6_bits_poisoned, // @[issue-slot.scala:73:14]
input io_spec_ld_wakeup_0_valid, // @[issue-slot.scala:73:14]
input [6:0] io_spec_ld_wakeup_0_bits, // @[issue-slot.scala:73:14]
input io_in_uop_valid, // @[issue-slot.scala:73:14]
input [6:0] io_in_uop_bits_uopc, // @[issue-slot.scala:73:14]
input [31:0] io_in_uop_bits_inst, // @[issue-slot.scala:73:14]
input [31:0] io_in_uop_bits_debug_inst, // @[issue-slot.scala:73:14]
input io_in_uop_bits_is_rvc, // @[issue-slot.scala:73:14]
input [39:0] io_in_uop_bits_debug_pc, // @[issue-slot.scala:73:14]
input [2:0] io_in_uop_bits_iq_type, // @[issue-slot.scala:73:14]
input [9:0] io_in_uop_bits_fu_code, // @[issue-slot.scala:73:14]
input [3:0] io_in_uop_bits_ctrl_br_type, // @[issue-slot.scala:73:14]
input [1:0] io_in_uop_bits_ctrl_op1_sel, // @[issue-slot.scala:73:14]
input [2:0] io_in_uop_bits_ctrl_op2_sel, // @[issue-slot.scala:73:14]
input [2:0] io_in_uop_bits_ctrl_imm_sel, // @[issue-slot.scala:73:14]
input [4:0] io_in_uop_bits_ctrl_op_fcn, // @[issue-slot.scala:73:14]
input io_in_uop_bits_ctrl_fcn_dw, // @[issue-slot.scala:73:14]
input [2:0] io_in_uop_bits_ctrl_csr_cmd, // @[issue-slot.scala:73:14]
input io_in_uop_bits_ctrl_is_load, // @[issue-slot.scala:73:14]
input io_in_uop_bits_ctrl_is_sta, // @[issue-slot.scala:73:14]
input io_in_uop_bits_ctrl_is_std, // @[issue-slot.scala:73:14]
input [1:0] io_in_uop_bits_iw_state, // @[issue-slot.scala:73:14]
input io_in_uop_bits_iw_p1_poisoned, // @[issue-slot.scala:73:14]
input io_in_uop_bits_iw_p2_poisoned, // @[issue-slot.scala:73:14]
input io_in_uop_bits_is_br, // @[issue-slot.scala:73:14]
input io_in_uop_bits_is_jalr, // @[issue-slot.scala:73:14]
input io_in_uop_bits_is_jal, // @[issue-slot.scala:73:14]
input io_in_uop_bits_is_sfb, // @[issue-slot.scala:73:14]
input [15:0] io_in_uop_bits_br_mask, // @[issue-slot.scala:73:14]
input [3:0] io_in_uop_bits_br_tag, // @[issue-slot.scala:73:14]
input [4:0] io_in_uop_bits_ftq_idx, // @[issue-slot.scala:73:14]
input io_in_uop_bits_edge_inst, // @[issue-slot.scala:73:14]
input [5:0] io_in_uop_bits_pc_lob, // @[issue-slot.scala:73:14]
input io_in_uop_bits_taken, // @[issue-slot.scala:73:14]
input [19:0] io_in_uop_bits_imm_packed, // @[issue-slot.scala:73:14]
input [11:0] io_in_uop_bits_csr_addr, // @[issue-slot.scala:73:14]
input [6:0] io_in_uop_bits_rob_idx, // @[issue-slot.scala:73:14]
input [4:0] io_in_uop_bits_ldq_idx, // @[issue-slot.scala:73:14]
input [4:0] io_in_uop_bits_stq_idx, // @[issue-slot.scala:73:14]
input [1:0] io_in_uop_bits_rxq_idx, // @[issue-slot.scala:73:14]
input [6:0] io_in_uop_bits_pdst, // @[issue-slot.scala:73:14]
input [6:0] io_in_uop_bits_prs1, // @[issue-slot.scala:73:14]
input [6:0] io_in_uop_bits_prs2, // @[issue-slot.scala:73:14]
input [6:0] io_in_uop_bits_prs3, // @[issue-slot.scala:73:14]
input [4:0] io_in_uop_bits_ppred, // @[issue-slot.scala:73:14]
input io_in_uop_bits_prs1_busy, // @[issue-slot.scala:73:14]
input io_in_uop_bits_prs2_busy, // @[issue-slot.scala:73:14]
input io_in_uop_bits_prs3_busy, // @[issue-slot.scala:73:14]
input io_in_uop_bits_ppred_busy, // @[issue-slot.scala:73:14]
input [6:0] io_in_uop_bits_stale_pdst, // @[issue-slot.scala:73:14]
input io_in_uop_bits_exception, // @[issue-slot.scala:73:14]
input [63:0] io_in_uop_bits_exc_cause, // @[issue-slot.scala:73:14]
input io_in_uop_bits_bypassable, // @[issue-slot.scala:73:14]
input [4:0] io_in_uop_bits_mem_cmd, // @[issue-slot.scala:73:14]
input [1:0] io_in_uop_bits_mem_size, // @[issue-slot.scala:73:14]
input io_in_uop_bits_mem_signed, // @[issue-slot.scala:73:14]
input io_in_uop_bits_is_fence, // @[issue-slot.scala:73:14]
input io_in_uop_bits_is_fencei, // @[issue-slot.scala:73:14]
input io_in_uop_bits_is_amo, // @[issue-slot.scala:73:14]
input io_in_uop_bits_uses_ldq, // @[issue-slot.scala:73:14]
input io_in_uop_bits_uses_stq, // @[issue-slot.scala:73:14]
input io_in_uop_bits_is_sys_pc2epc, // @[issue-slot.scala:73:14]
input io_in_uop_bits_is_unique, // @[issue-slot.scala:73:14]
input io_in_uop_bits_flush_on_commit, // @[issue-slot.scala:73:14]
input io_in_uop_bits_ldst_is_rs1, // @[issue-slot.scala:73:14]
input [5:0] io_in_uop_bits_ldst, // @[issue-slot.scala:73:14]
input [5:0] io_in_uop_bits_lrs1, // @[issue-slot.scala:73:14]
input [5:0] io_in_uop_bits_lrs2, // @[issue-slot.scala:73:14]
input [5:0] io_in_uop_bits_lrs3, // @[issue-slot.scala:73:14]
input io_in_uop_bits_ldst_val, // @[issue-slot.scala:73:14]
input [1:0] io_in_uop_bits_dst_rtype, // @[issue-slot.scala:73:14]
input [1:0] io_in_uop_bits_lrs1_rtype, // @[issue-slot.scala:73:14]
input [1:0] io_in_uop_bits_lrs2_rtype, // @[issue-slot.scala:73:14]
input io_in_uop_bits_frs3_en, // @[issue-slot.scala:73:14]
input io_in_uop_bits_fp_val, // @[issue-slot.scala:73:14]
input io_in_uop_bits_fp_single, // @[issue-slot.scala:73:14]
input io_in_uop_bits_xcpt_pf_if, // @[issue-slot.scala:73:14]
input io_in_uop_bits_xcpt_ae_if, // @[issue-slot.scala:73:14]
input io_in_uop_bits_xcpt_ma_if, // @[issue-slot.scala:73:14]
input io_in_uop_bits_bp_debug_if, // @[issue-slot.scala:73:14]
input io_in_uop_bits_bp_xcpt_if, // @[issue-slot.scala:73:14]
input [1:0] io_in_uop_bits_debug_fsrc, // @[issue-slot.scala:73:14]
input [1:0] io_in_uop_bits_debug_tsrc, // @[issue-slot.scala:73:14]
output [6:0] io_out_uop_uopc, // @[issue-slot.scala:73:14]
output [31:0] io_out_uop_inst, // @[issue-slot.scala:73:14]
output [31:0] io_out_uop_debug_inst, // @[issue-slot.scala:73:14]
output io_out_uop_is_rvc, // @[issue-slot.scala:73:14]
output [39:0] io_out_uop_debug_pc, // @[issue-slot.scala:73:14]
output [2:0] io_out_uop_iq_type, // @[issue-slot.scala:73:14]
output [9:0] io_out_uop_fu_code, // @[issue-slot.scala:73:14]
output [3:0] io_out_uop_ctrl_br_type, // @[issue-slot.scala:73:14]
output [1:0] io_out_uop_ctrl_op1_sel, // @[issue-slot.scala:73:14]
output [2:0] io_out_uop_ctrl_op2_sel, // @[issue-slot.scala:73:14]
output [2:0] io_out_uop_ctrl_imm_sel, // @[issue-slot.scala:73:14]
output [4:0] io_out_uop_ctrl_op_fcn, // @[issue-slot.scala:73:14]
output io_out_uop_ctrl_fcn_dw, // @[issue-slot.scala:73:14]
output [2:0] io_out_uop_ctrl_csr_cmd, // @[issue-slot.scala:73:14]
output io_out_uop_ctrl_is_load, // @[issue-slot.scala:73:14]
output io_out_uop_ctrl_is_sta, // @[issue-slot.scala:73:14]
output io_out_uop_ctrl_is_std, // @[issue-slot.scala:73:14]
output [1:0] io_out_uop_iw_state, // @[issue-slot.scala:73:14]
output io_out_uop_iw_p1_poisoned, // @[issue-slot.scala:73:14]
output io_out_uop_iw_p2_poisoned, // @[issue-slot.scala:73:14]
output io_out_uop_is_br, // @[issue-slot.scala:73:14]
output io_out_uop_is_jalr, // @[issue-slot.scala:73:14]
output io_out_uop_is_jal, // @[issue-slot.scala:73:14]
output io_out_uop_is_sfb, // @[issue-slot.scala:73:14]
output [15:0] io_out_uop_br_mask, // @[issue-slot.scala:73:14]
output [3:0] io_out_uop_br_tag, // @[issue-slot.scala:73:14]
output [4:0] io_out_uop_ftq_idx, // @[issue-slot.scala:73:14]
output io_out_uop_edge_inst, // @[issue-slot.scala:73:14]
output [5:0] io_out_uop_pc_lob, // @[issue-slot.scala:73:14]
output io_out_uop_taken, // @[issue-slot.scala:73:14]
output [19:0] io_out_uop_imm_packed, // @[issue-slot.scala:73:14]
output [11:0] io_out_uop_csr_addr, // @[issue-slot.scala:73:14]
output [6:0] io_out_uop_rob_idx, // @[issue-slot.scala:73:14]
output [4:0] io_out_uop_ldq_idx, // @[issue-slot.scala:73:14]
output [4:0] io_out_uop_stq_idx, // @[issue-slot.scala:73:14]
output [1:0] io_out_uop_rxq_idx, // @[issue-slot.scala:73:14]
output [6:0] io_out_uop_pdst, // @[issue-slot.scala:73:14]
output [6:0] io_out_uop_prs1, // @[issue-slot.scala:73:14]
output [6:0] io_out_uop_prs2, // @[issue-slot.scala:73:14]
output [6:0] io_out_uop_prs3, // @[issue-slot.scala:73:14]
output [4:0] io_out_uop_ppred, // @[issue-slot.scala:73:14]
output io_out_uop_prs1_busy, // @[issue-slot.scala:73:14]
output io_out_uop_prs2_busy, // @[issue-slot.scala:73:14]
output io_out_uop_prs3_busy, // @[issue-slot.scala:73:14]
output io_out_uop_ppred_busy, // @[issue-slot.scala:73:14]
output [6:0] io_out_uop_stale_pdst, // @[issue-slot.scala:73:14]
output io_out_uop_exception, // @[issue-slot.scala:73:14]
output [63:0] io_out_uop_exc_cause, // @[issue-slot.scala:73:14]
output io_out_uop_bypassable, // @[issue-slot.scala:73:14]
output [4:0] io_out_uop_mem_cmd, // @[issue-slot.scala:73:14]
output [1:0] io_out_uop_mem_size, // @[issue-slot.scala:73:14]
output io_out_uop_mem_signed, // @[issue-slot.scala:73:14]
output io_out_uop_is_fence, // @[issue-slot.scala:73:14]
output io_out_uop_is_fencei, // @[issue-slot.scala:73:14]
output io_out_uop_is_amo, // @[issue-slot.scala:73:14]
output io_out_uop_uses_ldq, // @[issue-slot.scala:73:14]
output io_out_uop_uses_stq, // @[issue-slot.scala:73:14]
output io_out_uop_is_sys_pc2epc, // @[issue-slot.scala:73:14]
output io_out_uop_is_unique, // @[issue-slot.scala:73:14]
output io_out_uop_flush_on_commit, // @[issue-slot.scala:73:14]
output io_out_uop_ldst_is_rs1, // @[issue-slot.scala:73:14]
output [5:0] io_out_uop_ldst, // @[issue-slot.scala:73:14]
output [5:0] io_out_uop_lrs1, // @[issue-slot.scala:73:14]
output [5:0] io_out_uop_lrs2, // @[issue-slot.scala:73:14]
output [5:0] io_out_uop_lrs3, // @[issue-slot.scala:73:14]
output io_out_uop_ldst_val, // @[issue-slot.scala:73:14]
output [1:0] io_out_uop_dst_rtype, // @[issue-slot.scala:73:14]
output [1:0] io_out_uop_lrs1_rtype, // @[issue-slot.scala:73:14]
output [1:0] io_out_uop_lrs2_rtype, // @[issue-slot.scala:73:14]
output io_out_uop_frs3_en, // @[issue-slot.scala:73:14]
output io_out_uop_fp_val, // @[issue-slot.scala:73:14]
output io_out_uop_fp_single, // @[issue-slot.scala:73:14]
output io_out_uop_xcpt_pf_if, // @[issue-slot.scala:73:14]
output io_out_uop_xcpt_ae_if, // @[issue-slot.scala:73:14]
output io_out_uop_xcpt_ma_if, // @[issue-slot.scala:73:14]
output io_out_uop_bp_debug_if, // @[issue-slot.scala:73:14]
output io_out_uop_bp_xcpt_if, // @[issue-slot.scala:73:14]
output [1:0] io_out_uop_debug_fsrc, // @[issue-slot.scala:73:14]
output [1:0] io_out_uop_debug_tsrc, // @[issue-slot.scala:73:14]
output [6:0] io_uop_uopc, // @[issue-slot.scala:73:14]
output [31:0] io_uop_inst, // @[issue-slot.scala:73:14]
output [31:0] io_uop_debug_inst, // @[issue-slot.scala:73:14]
output io_uop_is_rvc, // @[issue-slot.scala:73:14]
output [39:0] io_uop_debug_pc, // @[issue-slot.scala:73:14]
output [2:0] io_uop_iq_type, // @[issue-slot.scala:73:14]
output [9:0] io_uop_fu_code, // @[issue-slot.scala:73:14]
output [3:0] io_uop_ctrl_br_type, // @[issue-slot.scala:73:14]
output [1:0] io_uop_ctrl_op1_sel, // @[issue-slot.scala:73:14]
output [2:0] io_uop_ctrl_op2_sel, // @[issue-slot.scala:73:14]
output [2:0] io_uop_ctrl_imm_sel, // @[issue-slot.scala:73:14]
output [4:0] io_uop_ctrl_op_fcn, // @[issue-slot.scala:73:14]
output io_uop_ctrl_fcn_dw, // @[issue-slot.scala:73:14]
output [2:0] io_uop_ctrl_csr_cmd, // @[issue-slot.scala:73:14]
output io_uop_ctrl_is_load, // @[issue-slot.scala:73:14]
output io_uop_ctrl_is_sta, // @[issue-slot.scala:73:14]
output io_uop_ctrl_is_std, // @[issue-slot.scala:73:14]
output [1:0] io_uop_iw_state, // @[issue-slot.scala:73:14]
output io_uop_iw_p1_poisoned, // @[issue-slot.scala:73:14]
output io_uop_iw_p2_poisoned, // @[issue-slot.scala:73:14]
output io_uop_is_br, // @[issue-slot.scala:73:14]
output io_uop_is_jalr, // @[issue-slot.scala:73:14]
output io_uop_is_jal, // @[issue-slot.scala:73:14]
output io_uop_is_sfb, // @[issue-slot.scala:73:14]
output [15:0] io_uop_br_mask, // @[issue-slot.scala:73:14]
output [3:0] io_uop_br_tag, // @[issue-slot.scala:73:14]
output [4:0] io_uop_ftq_idx, // @[issue-slot.scala:73:14]
output io_uop_edge_inst, // @[issue-slot.scala:73:14]
output [5:0] io_uop_pc_lob, // @[issue-slot.scala:73:14]
output io_uop_taken, // @[issue-slot.scala:73:14]
output [19:0] io_uop_imm_packed, // @[issue-slot.scala:73:14]
output [11:0] io_uop_csr_addr, // @[issue-slot.scala:73:14]
output [6:0] io_uop_rob_idx, // @[issue-slot.scala:73:14]
output [4:0] io_uop_ldq_idx, // @[issue-slot.scala:73:14]
output [4:0] io_uop_stq_idx, // @[issue-slot.scala:73:14]
output [1:0] io_uop_rxq_idx, // @[issue-slot.scala:73:14]
output [6:0] io_uop_pdst, // @[issue-slot.scala:73:14]
output [6:0] io_uop_prs1, // @[issue-slot.scala:73:14]
output [6:0] io_uop_prs2, // @[issue-slot.scala:73:14]
output [6:0] io_uop_prs3, // @[issue-slot.scala:73:14]
output [4:0] io_uop_ppred, // @[issue-slot.scala:73:14]
output io_uop_prs1_busy, // @[issue-slot.scala:73:14]
output io_uop_prs2_busy, // @[issue-slot.scala:73:14]
output io_uop_prs3_busy, // @[issue-slot.scala:73:14]
output io_uop_ppred_busy, // @[issue-slot.scala:73:14]
output [6:0] io_uop_stale_pdst, // @[issue-slot.scala:73:14]
output io_uop_exception, // @[issue-slot.scala:73:14]
output [63:0] io_uop_exc_cause, // @[issue-slot.scala:73:14]
output io_uop_bypassable, // @[issue-slot.scala:73:14]
output [4:0] io_uop_mem_cmd, // @[issue-slot.scala:73:14]
output [1:0] io_uop_mem_size, // @[issue-slot.scala:73:14]
output io_uop_mem_signed, // @[issue-slot.scala:73:14]
output io_uop_is_fence, // @[issue-slot.scala:73:14]
output io_uop_is_fencei, // @[issue-slot.scala:73:14]
output io_uop_is_amo, // @[issue-slot.scala:73:14]
output io_uop_uses_ldq, // @[issue-slot.scala:73:14]
output io_uop_uses_stq, // @[issue-slot.scala:73:14]
output io_uop_is_sys_pc2epc, // @[issue-slot.scala:73:14]
output io_uop_is_unique, // @[issue-slot.scala:73:14]
output io_uop_flush_on_commit, // @[issue-slot.scala:73:14]
output io_uop_ldst_is_rs1, // @[issue-slot.scala:73:14]
output [5:0] io_uop_ldst, // @[issue-slot.scala:73:14]
output [5:0] io_uop_lrs1, // @[issue-slot.scala:73:14]
output [5:0] io_uop_lrs2, // @[issue-slot.scala:73:14]
output [5:0] io_uop_lrs3, // @[issue-slot.scala:73:14]
output io_uop_ldst_val, // @[issue-slot.scala:73:14]
output [1:0] io_uop_dst_rtype, // @[issue-slot.scala:73:14]
output [1:0] io_uop_lrs1_rtype, // @[issue-slot.scala:73:14]
output [1:0] io_uop_lrs2_rtype, // @[issue-slot.scala:73:14]
output io_uop_frs3_en, // @[issue-slot.scala:73:14]
output io_uop_fp_val, // @[issue-slot.scala:73:14]
output io_uop_fp_single, // @[issue-slot.scala:73:14]
output io_uop_xcpt_pf_if, // @[issue-slot.scala:73:14]
output io_uop_xcpt_ae_if, // @[issue-slot.scala:73:14]
output io_uop_xcpt_ma_if, // @[issue-slot.scala:73:14]
output io_uop_bp_debug_if, // @[issue-slot.scala:73:14]
output io_uop_bp_xcpt_if, // @[issue-slot.scala:73:14]
output [1:0] io_uop_debug_fsrc, // @[issue-slot.scala:73:14]
output [1:0] io_uop_debug_tsrc, // @[issue-slot.scala:73:14]
output io_debug_p1, // @[issue-slot.scala:73:14]
output io_debug_p2, // @[issue-slot.scala:73:14]
output io_debug_p3, // @[issue-slot.scala:73:14]
output io_debug_ppred, // @[issue-slot.scala:73:14]
output [1:0] io_debug_state // @[issue-slot.scala:73:14]
);
wire io_grant_0 = io_grant; // @[issue-slot.scala:69:7]
wire [15:0] io_brupdate_b1_resolve_mask_0 = io_brupdate_b1_resolve_mask; // @[issue-slot.scala:69:7]
wire [15:0] io_brupdate_b1_mispredict_mask_0 = io_brupdate_b1_mispredict_mask; // @[issue-slot.scala:69:7]
wire [6:0] io_brupdate_b2_uop_uopc_0 = io_brupdate_b2_uop_uopc; // @[issue-slot.scala:69:7]
wire [31:0] io_brupdate_b2_uop_inst_0 = io_brupdate_b2_uop_inst; // @[issue-slot.scala:69:7]
wire [31:0] io_brupdate_b2_uop_debug_inst_0 = io_brupdate_b2_uop_debug_inst; // @[issue-slot.scala:69:7]
wire io_brupdate_b2_uop_is_rvc_0 = io_brupdate_b2_uop_is_rvc; // @[issue-slot.scala:69:7]
wire [39:0] io_brupdate_b2_uop_debug_pc_0 = io_brupdate_b2_uop_debug_pc; // @[issue-slot.scala:69:7]
wire [2:0] io_brupdate_b2_uop_iq_type_0 = io_brupdate_b2_uop_iq_type; // @[issue-slot.scala:69:7]
wire [9:0] io_brupdate_b2_uop_fu_code_0 = io_brupdate_b2_uop_fu_code; // @[issue-slot.scala:69:7]
wire [3:0] io_brupdate_b2_uop_ctrl_br_type_0 = io_brupdate_b2_uop_ctrl_br_type; // @[issue-slot.scala:69:7]
wire [1:0] io_brupdate_b2_uop_ctrl_op1_sel_0 = io_brupdate_b2_uop_ctrl_op1_sel; // @[issue-slot.scala:69:7]
wire [2:0] io_brupdate_b2_uop_ctrl_op2_sel_0 = io_brupdate_b2_uop_ctrl_op2_sel; // @[issue-slot.scala:69:7]
wire [2:0] io_brupdate_b2_uop_ctrl_imm_sel_0 = io_brupdate_b2_uop_ctrl_imm_sel; // @[issue-slot.scala:69:7]
wire [4:0] io_brupdate_b2_uop_ctrl_op_fcn_0 = io_brupdate_b2_uop_ctrl_op_fcn; // @[issue-slot.scala:69:7]
wire io_brupdate_b2_uop_ctrl_fcn_dw_0 = io_brupdate_b2_uop_ctrl_fcn_dw; // @[issue-slot.scala:69:7]
wire [2:0] io_brupdate_b2_uop_ctrl_csr_cmd_0 = io_brupdate_b2_uop_ctrl_csr_cmd; // @[issue-slot.scala:69:7]
wire io_brupdate_b2_uop_ctrl_is_load_0 = io_brupdate_b2_uop_ctrl_is_load; // @[issue-slot.scala:69:7]
wire io_brupdate_b2_uop_ctrl_is_sta_0 = io_brupdate_b2_uop_ctrl_is_sta; // @[issue-slot.scala:69:7]
wire io_brupdate_b2_uop_ctrl_is_std_0 = io_brupdate_b2_uop_ctrl_is_std; // @[issue-slot.scala:69:7]
wire [1:0] io_brupdate_b2_uop_iw_state_0 = io_brupdate_b2_uop_iw_state; // @[issue-slot.scala:69:7]
wire io_brupdate_b2_uop_iw_p1_poisoned_0 = io_brupdate_b2_uop_iw_p1_poisoned; // @[issue-slot.scala:69:7]
wire io_brupdate_b2_uop_iw_p2_poisoned_0 = io_brupdate_b2_uop_iw_p2_poisoned; // @[issue-slot.scala:69:7]
wire io_brupdate_b2_uop_is_br_0 = io_brupdate_b2_uop_is_br; // @[issue-slot.scala:69:7]
wire io_brupdate_b2_uop_is_jalr_0 = io_brupdate_b2_uop_is_jalr; // @[issue-slot.scala:69:7]
wire io_brupdate_b2_uop_is_jal_0 = io_brupdate_b2_uop_is_jal; // @[issue-slot.scala:69:7]
wire io_brupdate_b2_uop_is_sfb_0 = io_brupdate_b2_uop_is_sfb; // @[issue-slot.scala:69:7]
wire [15:0] io_brupdate_b2_uop_br_mask_0 = io_brupdate_b2_uop_br_mask; // @[issue-slot.scala:69:7]
wire [3:0] io_brupdate_b2_uop_br_tag_0 = io_brupdate_b2_uop_br_tag; // @[issue-slot.scala:69:7]
wire [4:0] io_brupdate_b2_uop_ftq_idx_0 = io_brupdate_b2_uop_ftq_idx; // @[issue-slot.scala:69:7]
wire io_brupdate_b2_uop_edge_inst_0 = io_brupdate_b2_uop_edge_inst; // @[issue-slot.scala:69:7]
wire [5:0] io_brupdate_b2_uop_pc_lob_0 = io_brupdate_b2_uop_pc_lob; // @[issue-slot.scala:69:7]
wire io_brupdate_b2_uop_taken_0 = io_brupdate_b2_uop_taken; // @[issue-slot.scala:69:7]
wire [19:0] io_brupdate_b2_uop_imm_packed_0 = io_brupdate_b2_uop_imm_packed; // @[issue-slot.scala:69:7]
wire [11:0] io_brupdate_b2_uop_csr_addr_0 = io_brupdate_b2_uop_csr_addr; // @[issue-slot.scala:69:7]
wire [6:0] io_brupdate_b2_uop_rob_idx_0 = io_brupdate_b2_uop_rob_idx; // @[issue-slot.scala:69:7]
wire [4:0] io_brupdate_b2_uop_ldq_idx_0 = io_brupdate_b2_uop_ldq_idx; // @[issue-slot.scala:69:7]
wire [4:0] io_brupdate_b2_uop_stq_idx_0 = io_brupdate_b2_uop_stq_idx; // @[issue-slot.scala:69:7]
wire [1:0] io_brupdate_b2_uop_rxq_idx_0 = io_brupdate_b2_uop_rxq_idx; // @[issue-slot.scala:69:7]
wire [6:0] io_brupdate_b2_uop_pdst_0 = io_brupdate_b2_uop_pdst; // @[issue-slot.scala:69:7]
wire [6:0] io_brupdate_b2_uop_prs1_0 = io_brupdate_b2_uop_prs1; // @[issue-slot.scala:69:7]
wire [6:0] io_brupdate_b2_uop_prs2_0 = io_brupdate_b2_uop_prs2; // @[issue-slot.scala:69:7]
wire [6:0] io_brupdate_b2_uop_prs3_0 = io_brupdate_b2_uop_prs3; // @[issue-slot.scala:69:7]
wire [4:0] io_brupdate_b2_uop_ppred_0 = io_brupdate_b2_uop_ppred; // @[issue-slot.scala:69:7]
wire io_brupdate_b2_uop_prs1_busy_0 = io_brupdate_b2_uop_prs1_busy; // @[issue-slot.scala:69:7]
wire io_brupdate_b2_uop_prs2_busy_0 = io_brupdate_b2_uop_prs2_busy; // @[issue-slot.scala:69:7]
wire io_brupdate_b2_uop_prs3_busy_0 = io_brupdate_b2_uop_prs3_busy; // @[issue-slot.scala:69:7]
wire io_brupdate_b2_uop_ppred_busy_0 = io_brupdate_b2_uop_ppred_busy; // @[issue-slot.scala:69:7]
wire [6:0] io_brupdate_b2_uop_stale_pdst_0 = io_brupdate_b2_uop_stale_pdst; // @[issue-slot.scala:69:7]
wire io_brupdate_b2_uop_exception_0 = io_brupdate_b2_uop_exception; // @[issue-slot.scala:69:7]
wire [63:0] io_brupdate_b2_uop_exc_cause_0 = io_brupdate_b2_uop_exc_cause; // @[issue-slot.scala:69:7]
wire io_brupdate_b2_uop_bypassable_0 = io_brupdate_b2_uop_bypassable; // @[issue-slot.scala:69:7]
wire [4:0] io_brupdate_b2_uop_mem_cmd_0 = io_brupdate_b2_uop_mem_cmd; // @[issue-slot.scala:69:7]
wire [1:0] io_brupdate_b2_uop_mem_size_0 = io_brupdate_b2_uop_mem_size; // @[issue-slot.scala:69:7]
wire io_brupdate_b2_uop_mem_signed_0 = io_brupdate_b2_uop_mem_signed; // @[issue-slot.scala:69:7]
wire io_brupdate_b2_uop_is_fence_0 = io_brupdate_b2_uop_is_fence; // @[issue-slot.scala:69:7]
wire io_brupdate_b2_uop_is_fencei_0 = io_brupdate_b2_uop_is_fencei; // @[issue-slot.scala:69:7]
wire io_brupdate_b2_uop_is_amo_0 = io_brupdate_b2_uop_is_amo; // @[issue-slot.scala:69:7]
wire io_brupdate_b2_uop_uses_ldq_0 = io_brupdate_b2_uop_uses_ldq; // @[issue-slot.scala:69:7]
wire io_brupdate_b2_uop_uses_stq_0 = io_brupdate_b2_uop_uses_stq; // @[issue-slot.scala:69:7]
wire io_brupdate_b2_uop_is_sys_pc2epc_0 = io_brupdate_b2_uop_is_sys_pc2epc; // @[issue-slot.scala:69:7]
wire io_brupdate_b2_uop_is_unique_0 = io_brupdate_b2_uop_is_unique; // @[issue-slot.scala:69:7]
wire io_brupdate_b2_uop_flush_on_commit_0 = io_brupdate_b2_uop_flush_on_commit; // @[issue-slot.scala:69:7]
wire io_brupdate_b2_uop_ldst_is_rs1_0 = io_brupdate_b2_uop_ldst_is_rs1; // @[issue-slot.scala:69:7]
wire [5:0] io_brupdate_b2_uop_ldst_0 = io_brupdate_b2_uop_ldst; // @[issue-slot.scala:69:7]
wire [5:0] io_brupdate_b2_uop_lrs1_0 = io_brupdate_b2_uop_lrs1; // @[issue-slot.scala:69:7]
wire [5:0] io_brupdate_b2_uop_lrs2_0 = io_brupdate_b2_uop_lrs2; // @[issue-slot.scala:69:7]
wire [5:0] io_brupdate_b2_uop_lrs3_0 = io_brupdate_b2_uop_lrs3; // @[issue-slot.scala:69:7]
wire io_brupdate_b2_uop_ldst_val_0 = io_brupdate_b2_uop_ldst_val; // @[issue-slot.scala:69:7]
wire [1:0] io_brupdate_b2_uop_dst_rtype_0 = io_brupdate_b2_uop_dst_rtype; // @[issue-slot.scala:69:7]
wire [1:0] io_brupdate_b2_uop_lrs1_rtype_0 = io_brupdate_b2_uop_lrs1_rtype; // @[issue-slot.scala:69:7]
wire [1:0] io_brupdate_b2_uop_lrs2_rtype_0 = io_brupdate_b2_uop_lrs2_rtype; // @[issue-slot.scala:69:7]
wire io_brupdate_b2_uop_frs3_en_0 = io_brupdate_b2_uop_frs3_en; // @[issue-slot.scala:69:7]
wire io_brupdate_b2_uop_fp_val_0 = io_brupdate_b2_uop_fp_val; // @[issue-slot.scala:69:7]
wire io_brupdate_b2_uop_fp_single_0 = io_brupdate_b2_uop_fp_single; // @[issue-slot.scala:69:7]
wire io_brupdate_b2_uop_xcpt_pf_if_0 = io_brupdate_b2_uop_xcpt_pf_if; // @[issue-slot.scala:69:7]
wire io_brupdate_b2_uop_xcpt_ae_if_0 = io_brupdate_b2_uop_xcpt_ae_if; // @[issue-slot.scala:69:7]
wire io_brupdate_b2_uop_xcpt_ma_if_0 = io_brupdate_b2_uop_xcpt_ma_if; // @[issue-slot.scala:69:7]
wire io_brupdate_b2_uop_bp_debug_if_0 = io_brupdate_b2_uop_bp_debug_if; // @[issue-slot.scala:69:7]
wire io_brupdate_b2_uop_bp_xcpt_if_0 = io_brupdate_b2_uop_bp_xcpt_if; // @[issue-slot.scala:69:7]
wire [1:0] io_brupdate_b2_uop_debug_fsrc_0 = io_brupdate_b2_uop_debug_fsrc; // @[issue-slot.scala:69:7]
wire [1:0] io_brupdate_b2_uop_debug_tsrc_0 = io_brupdate_b2_uop_debug_tsrc; // @[issue-slot.scala:69:7]
wire io_brupdate_b2_valid_0 = io_brupdate_b2_valid; // @[issue-slot.scala:69:7]
wire io_brupdate_b2_mispredict_0 = io_brupdate_b2_mispredict; // @[issue-slot.scala:69:7]
wire io_brupdate_b2_taken_0 = io_brupdate_b2_taken; // @[issue-slot.scala:69:7]
wire [2:0] io_brupdate_b2_cfi_type_0 = io_brupdate_b2_cfi_type; // @[issue-slot.scala:69:7]
wire [1:0] io_brupdate_b2_pc_sel_0 = io_brupdate_b2_pc_sel; // @[issue-slot.scala:69:7]
wire [39:0] io_brupdate_b2_jalr_target_0 = io_brupdate_b2_jalr_target; // @[issue-slot.scala:69:7]
wire [20:0] io_brupdate_b2_target_offset_0 = io_brupdate_b2_target_offset; // @[issue-slot.scala:69:7]
wire io_kill_0 = io_kill; // @[issue-slot.scala:69:7]
wire io_clear_0 = io_clear; // @[issue-slot.scala:69:7]
wire io_ldspec_miss_0 = io_ldspec_miss; // @[issue-slot.scala:69:7]
wire io_wakeup_ports_0_valid_0 = io_wakeup_ports_0_valid; // @[issue-slot.scala:69:7]
wire [6:0] io_wakeup_ports_0_bits_pdst_0 = io_wakeup_ports_0_bits_pdst; // @[issue-slot.scala:69:7]
wire io_wakeup_ports_0_bits_poisoned_0 = io_wakeup_ports_0_bits_poisoned; // @[issue-slot.scala:69:7]
wire io_wakeup_ports_1_valid_0 = io_wakeup_ports_1_valid; // @[issue-slot.scala:69:7]
wire [6:0] io_wakeup_ports_1_bits_pdst_0 = io_wakeup_ports_1_bits_pdst; // @[issue-slot.scala:69:7]
wire io_wakeup_ports_1_bits_poisoned_0 = io_wakeup_ports_1_bits_poisoned; // @[issue-slot.scala:69:7]
wire io_wakeup_ports_2_valid_0 = io_wakeup_ports_2_valid; // @[issue-slot.scala:69:7]
wire [6:0] io_wakeup_ports_2_bits_pdst_0 = io_wakeup_ports_2_bits_pdst; // @[issue-slot.scala:69:7]
wire io_wakeup_ports_2_bits_poisoned_0 = io_wakeup_ports_2_bits_poisoned; // @[issue-slot.scala:69:7]
wire io_wakeup_ports_3_valid_0 = io_wakeup_ports_3_valid; // @[issue-slot.scala:69:7]
wire [6:0] io_wakeup_ports_3_bits_pdst_0 = io_wakeup_ports_3_bits_pdst; // @[issue-slot.scala:69:7]
wire io_wakeup_ports_3_bits_poisoned_0 = io_wakeup_ports_3_bits_poisoned; // @[issue-slot.scala:69:7]
wire io_wakeup_ports_4_valid_0 = io_wakeup_ports_4_valid; // @[issue-slot.scala:69:7]
wire [6:0] io_wakeup_ports_4_bits_pdst_0 = io_wakeup_ports_4_bits_pdst; // @[issue-slot.scala:69:7]
wire io_wakeup_ports_4_bits_poisoned_0 = io_wakeup_ports_4_bits_poisoned; // @[issue-slot.scala:69:7]
wire io_wakeup_ports_5_valid_0 = io_wakeup_ports_5_valid; // @[issue-slot.scala:69:7]
wire [6:0] io_wakeup_ports_5_bits_pdst_0 = io_wakeup_ports_5_bits_pdst; // @[issue-slot.scala:69:7]
wire io_wakeup_ports_5_bits_poisoned_0 = io_wakeup_ports_5_bits_poisoned; // @[issue-slot.scala:69:7]
wire io_wakeup_ports_6_valid_0 = io_wakeup_ports_6_valid; // @[issue-slot.scala:69:7]
wire [6:0] io_wakeup_ports_6_bits_pdst_0 = io_wakeup_ports_6_bits_pdst; // @[issue-slot.scala:69:7]
wire io_wakeup_ports_6_bits_poisoned_0 = io_wakeup_ports_6_bits_poisoned; // @[issue-slot.scala:69:7]
wire io_spec_ld_wakeup_0_valid_0 = io_spec_ld_wakeup_0_valid; // @[issue-slot.scala:69:7]
wire [6:0] io_spec_ld_wakeup_0_bits_0 = io_spec_ld_wakeup_0_bits; // @[issue-slot.scala:69:7]
wire io_in_uop_valid_0 = io_in_uop_valid; // @[issue-slot.scala:69:7]
wire [6:0] io_in_uop_bits_uopc_0 = io_in_uop_bits_uopc; // @[issue-slot.scala:69:7]
wire [31:0] io_in_uop_bits_inst_0 = io_in_uop_bits_inst; // @[issue-slot.scala:69:7]
wire [31:0] io_in_uop_bits_debug_inst_0 = io_in_uop_bits_debug_inst; // @[issue-slot.scala:69:7]
wire io_in_uop_bits_is_rvc_0 = io_in_uop_bits_is_rvc; // @[issue-slot.scala:69:7]
wire [39:0] io_in_uop_bits_debug_pc_0 = io_in_uop_bits_debug_pc; // @[issue-slot.scala:69:7]
wire [2:0] io_in_uop_bits_iq_type_0 = io_in_uop_bits_iq_type; // @[issue-slot.scala:69:7]
wire [9:0] io_in_uop_bits_fu_code_0 = io_in_uop_bits_fu_code; // @[issue-slot.scala:69:7]
wire [3:0] io_in_uop_bits_ctrl_br_type_0 = io_in_uop_bits_ctrl_br_type; // @[issue-slot.scala:69:7]
wire [1:0] io_in_uop_bits_ctrl_op1_sel_0 = io_in_uop_bits_ctrl_op1_sel; // @[issue-slot.scala:69:7]
wire [2:0] io_in_uop_bits_ctrl_op2_sel_0 = io_in_uop_bits_ctrl_op2_sel; // @[issue-slot.scala:69:7]
wire [2:0] io_in_uop_bits_ctrl_imm_sel_0 = io_in_uop_bits_ctrl_imm_sel; // @[issue-slot.scala:69:7]
wire [4:0] io_in_uop_bits_ctrl_op_fcn_0 = io_in_uop_bits_ctrl_op_fcn; // @[issue-slot.scala:69:7]
wire io_in_uop_bits_ctrl_fcn_dw_0 = io_in_uop_bits_ctrl_fcn_dw; // @[issue-slot.scala:69:7]
wire [2:0] io_in_uop_bits_ctrl_csr_cmd_0 = io_in_uop_bits_ctrl_csr_cmd; // @[issue-slot.scala:69:7]
wire io_in_uop_bits_ctrl_is_load_0 = io_in_uop_bits_ctrl_is_load; // @[issue-slot.scala:69:7]
wire io_in_uop_bits_ctrl_is_sta_0 = io_in_uop_bits_ctrl_is_sta; // @[issue-slot.scala:69:7]
wire io_in_uop_bits_ctrl_is_std_0 = io_in_uop_bits_ctrl_is_std; // @[issue-slot.scala:69:7]
wire [1:0] io_in_uop_bits_iw_state_0 = io_in_uop_bits_iw_state; // @[issue-slot.scala:69:7]
wire io_in_uop_bits_iw_p1_poisoned_0 = io_in_uop_bits_iw_p1_poisoned; // @[issue-slot.scala:69:7]
wire io_in_uop_bits_iw_p2_poisoned_0 = io_in_uop_bits_iw_p2_poisoned; // @[issue-slot.scala:69:7]
wire io_in_uop_bits_is_br_0 = io_in_uop_bits_is_br; // @[issue-slot.scala:69:7]
wire io_in_uop_bits_is_jalr_0 = io_in_uop_bits_is_jalr; // @[issue-slot.scala:69:7]
wire io_in_uop_bits_is_jal_0 = io_in_uop_bits_is_jal; // @[issue-slot.scala:69:7]
wire io_in_uop_bits_is_sfb_0 = io_in_uop_bits_is_sfb; // @[issue-slot.scala:69:7]
wire [15:0] io_in_uop_bits_br_mask_0 = io_in_uop_bits_br_mask; // @[issue-slot.scala:69:7]
wire [3:0] io_in_uop_bits_br_tag_0 = io_in_uop_bits_br_tag; // @[issue-slot.scala:69:7]
wire [4:0] io_in_uop_bits_ftq_idx_0 = io_in_uop_bits_ftq_idx; // @[issue-slot.scala:69:7]
wire io_in_uop_bits_edge_inst_0 = io_in_uop_bits_edge_inst; // @[issue-slot.scala:69:7]
wire [5:0] io_in_uop_bits_pc_lob_0 = io_in_uop_bits_pc_lob; // @[issue-slot.scala:69:7]
wire io_in_uop_bits_taken_0 = io_in_uop_bits_taken; // @[issue-slot.scala:69:7]
wire [19:0] io_in_uop_bits_imm_packed_0 = io_in_uop_bits_imm_packed; // @[issue-slot.scala:69:7]
wire [11:0] io_in_uop_bits_csr_addr_0 = io_in_uop_bits_csr_addr; // @[issue-slot.scala:69:7]
wire [6:0] io_in_uop_bits_rob_idx_0 = io_in_uop_bits_rob_idx; // @[issue-slot.scala:69:7]
wire [4:0] io_in_uop_bits_ldq_idx_0 = io_in_uop_bits_ldq_idx; // @[issue-slot.scala:69:7]
wire [4:0] io_in_uop_bits_stq_idx_0 = io_in_uop_bits_stq_idx; // @[issue-slot.scala:69:7]
wire [1:0] io_in_uop_bits_rxq_idx_0 = io_in_uop_bits_rxq_idx; // @[issue-slot.scala:69:7]
wire [6:0] io_in_uop_bits_pdst_0 = io_in_uop_bits_pdst; // @[issue-slot.scala:69:7]
wire [6:0] io_in_uop_bits_prs1_0 = io_in_uop_bits_prs1; // @[issue-slot.scala:69:7]
wire [6:0] io_in_uop_bits_prs2_0 = io_in_uop_bits_prs2; // @[issue-slot.scala:69:7]
wire [6:0] io_in_uop_bits_prs3_0 = io_in_uop_bits_prs3; // @[issue-slot.scala:69:7]
wire [4:0] io_in_uop_bits_ppred_0 = io_in_uop_bits_ppred; // @[issue-slot.scala:69:7]
wire io_in_uop_bits_prs1_busy_0 = io_in_uop_bits_prs1_busy; // @[issue-slot.scala:69:7]
wire io_in_uop_bits_prs2_busy_0 = io_in_uop_bits_prs2_busy; // @[issue-slot.scala:69:7]
wire io_in_uop_bits_prs3_busy_0 = io_in_uop_bits_prs3_busy; // @[issue-slot.scala:69:7]
wire io_in_uop_bits_ppred_busy_0 = io_in_uop_bits_ppred_busy; // @[issue-slot.scala:69:7]
wire [6:0] io_in_uop_bits_stale_pdst_0 = io_in_uop_bits_stale_pdst; // @[issue-slot.scala:69:7]
wire io_in_uop_bits_exception_0 = io_in_uop_bits_exception; // @[issue-slot.scala:69:7]
wire [63:0] io_in_uop_bits_exc_cause_0 = io_in_uop_bits_exc_cause; // @[issue-slot.scala:69:7]
wire io_in_uop_bits_bypassable_0 = io_in_uop_bits_bypassable; // @[issue-slot.scala:69:7]
wire [4:0] io_in_uop_bits_mem_cmd_0 = io_in_uop_bits_mem_cmd; // @[issue-slot.scala:69:7]
wire [1:0] io_in_uop_bits_mem_size_0 = io_in_uop_bits_mem_size; // @[issue-slot.scala:69:7]
wire io_in_uop_bits_mem_signed_0 = io_in_uop_bits_mem_signed; // @[issue-slot.scala:69:7]
wire io_in_uop_bits_is_fence_0 = io_in_uop_bits_is_fence; // @[issue-slot.scala:69:7]
wire io_in_uop_bits_is_fencei_0 = io_in_uop_bits_is_fencei; // @[issue-slot.scala:69:7]
wire io_in_uop_bits_is_amo_0 = io_in_uop_bits_is_amo; // @[issue-slot.scala:69:7]
wire io_in_uop_bits_uses_ldq_0 = io_in_uop_bits_uses_ldq; // @[issue-slot.scala:69:7]
wire io_in_uop_bits_uses_stq_0 = io_in_uop_bits_uses_stq; // @[issue-slot.scala:69:7]
wire io_in_uop_bits_is_sys_pc2epc_0 = io_in_uop_bits_is_sys_pc2epc; // @[issue-slot.scala:69:7]
wire io_in_uop_bits_is_unique_0 = io_in_uop_bits_is_unique; // @[issue-slot.scala:69:7]
wire io_in_uop_bits_flush_on_commit_0 = io_in_uop_bits_flush_on_commit; // @[issue-slot.scala:69:7]
wire io_in_uop_bits_ldst_is_rs1_0 = io_in_uop_bits_ldst_is_rs1; // @[issue-slot.scala:69:7]
wire [5:0] io_in_uop_bits_ldst_0 = io_in_uop_bits_ldst; // @[issue-slot.scala:69:7]
wire [5:0] io_in_uop_bits_lrs1_0 = io_in_uop_bits_lrs1; // @[issue-slot.scala:69:7]
wire [5:0] io_in_uop_bits_lrs2_0 = io_in_uop_bits_lrs2; // @[issue-slot.scala:69:7]
wire [5:0] io_in_uop_bits_lrs3_0 = io_in_uop_bits_lrs3; // @[issue-slot.scala:69:7]
wire io_in_uop_bits_ldst_val_0 = io_in_uop_bits_ldst_val; // @[issue-slot.scala:69:7]
wire [1:0] io_in_uop_bits_dst_rtype_0 = io_in_uop_bits_dst_rtype; // @[issue-slot.scala:69:7]
wire [1:0] io_in_uop_bits_lrs1_rtype_0 = io_in_uop_bits_lrs1_rtype; // @[issue-slot.scala:69:7]
wire [1:0] io_in_uop_bits_lrs2_rtype_0 = io_in_uop_bits_lrs2_rtype; // @[issue-slot.scala:69:7]
wire io_in_uop_bits_frs3_en_0 = io_in_uop_bits_frs3_en; // @[issue-slot.scala:69:7]
wire io_in_uop_bits_fp_val_0 = io_in_uop_bits_fp_val; // @[issue-slot.scala:69:7]
wire io_in_uop_bits_fp_single_0 = io_in_uop_bits_fp_single; // @[issue-slot.scala:69:7]
wire io_in_uop_bits_xcpt_pf_if_0 = io_in_uop_bits_xcpt_pf_if; // @[issue-slot.scala:69:7]
wire io_in_uop_bits_xcpt_ae_if_0 = io_in_uop_bits_xcpt_ae_if; // @[issue-slot.scala:69:7]
wire io_in_uop_bits_xcpt_ma_if_0 = io_in_uop_bits_xcpt_ma_if; // @[issue-slot.scala:69:7]
wire io_in_uop_bits_bp_debug_if_0 = io_in_uop_bits_bp_debug_if; // @[issue-slot.scala:69:7]
wire io_in_uop_bits_bp_xcpt_if_0 = io_in_uop_bits_bp_xcpt_if; // @[issue-slot.scala:69:7]
wire [1:0] io_in_uop_bits_debug_fsrc_0 = io_in_uop_bits_debug_fsrc; // @[issue-slot.scala:69:7]
wire [1:0] io_in_uop_bits_debug_tsrc_0 = io_in_uop_bits_debug_tsrc; // @[issue-slot.scala:69:7]
wire io_pred_wakeup_port_valid = 1'h0; // @[issue-slot.scala:69:7]
wire slot_uop_uop_is_rvc = 1'h0; // @[consts.scala:269:19]
wire slot_uop_uop_ctrl_fcn_dw = 1'h0; // @[consts.scala:269:19]
wire slot_uop_uop_ctrl_is_load = 1'h0; // @[consts.scala:269:19]
wire slot_uop_uop_ctrl_is_sta = 1'h0; // @[consts.scala:269:19]
wire slot_uop_uop_ctrl_is_std = 1'h0; // @[consts.scala:269:19]
wire slot_uop_uop_iw_p1_poisoned = 1'h0; // @[consts.scala:269:19]
wire slot_uop_uop_iw_p2_poisoned = 1'h0; // @[consts.scala:269:19]
wire slot_uop_uop_is_br = 1'h0; // @[consts.scala:269:19]
wire slot_uop_uop_is_jalr = 1'h0; // @[consts.scala:269:19]
wire slot_uop_uop_is_jal = 1'h0; // @[consts.scala:269:19]
wire slot_uop_uop_is_sfb = 1'h0; // @[consts.scala:269:19]
wire slot_uop_uop_edge_inst = 1'h0; // @[consts.scala:269:19]
wire slot_uop_uop_taken = 1'h0; // @[consts.scala:269:19]
wire slot_uop_uop_prs1_busy = 1'h0; // @[consts.scala:269:19]
wire slot_uop_uop_prs2_busy = 1'h0; // @[consts.scala:269:19]
wire slot_uop_uop_prs3_busy = 1'h0; // @[consts.scala:269:19]
wire slot_uop_uop_ppred_busy = 1'h0; // @[consts.scala:269:19]
wire slot_uop_uop_exception = 1'h0; // @[consts.scala:269:19]
wire slot_uop_uop_bypassable = 1'h0; // @[consts.scala:269:19]
wire slot_uop_uop_mem_signed = 1'h0; // @[consts.scala:269:19]
wire slot_uop_uop_is_fence = 1'h0; // @[consts.scala:269:19]
wire slot_uop_uop_is_fencei = 1'h0; // @[consts.scala:269:19]
wire slot_uop_uop_is_amo = 1'h0; // @[consts.scala:269:19]
wire slot_uop_uop_uses_ldq = 1'h0; // @[consts.scala:269:19]
wire slot_uop_uop_uses_stq = 1'h0; // @[consts.scala:269:19]
wire slot_uop_uop_is_sys_pc2epc = 1'h0; // @[consts.scala:269:19]
wire slot_uop_uop_is_unique = 1'h0; // @[consts.scala:269:19]
wire slot_uop_uop_flush_on_commit = 1'h0; // @[consts.scala:269:19]
wire slot_uop_uop_ldst_is_rs1 = 1'h0; // @[consts.scala:269:19]
wire slot_uop_uop_ldst_val = 1'h0; // @[consts.scala:269:19]
wire slot_uop_uop_frs3_en = 1'h0; // @[consts.scala:269:19]
wire slot_uop_uop_fp_val = 1'h0; // @[consts.scala:269:19]
wire slot_uop_uop_fp_single = 1'h0; // @[consts.scala:269:19]
wire slot_uop_uop_xcpt_pf_if = 1'h0; // @[consts.scala:269:19]
wire slot_uop_uop_xcpt_ae_if = 1'h0; // @[consts.scala:269:19]
wire slot_uop_uop_xcpt_ma_if = 1'h0; // @[consts.scala:269:19]
wire slot_uop_uop_bp_debug_if = 1'h0; // @[consts.scala:269:19]
wire slot_uop_uop_bp_xcpt_if = 1'h0; // @[consts.scala:269:19]
wire slot_uop_cs_fcn_dw = 1'h0; // @[consts.scala:279:18]
wire slot_uop_cs_is_load = 1'h0; // @[consts.scala:279:18]
wire slot_uop_cs_is_sta = 1'h0; // @[consts.scala:279:18]
wire slot_uop_cs_is_std = 1'h0; // @[consts.scala:279:18]
wire [4:0] io_pred_wakeup_port_bits = 5'h0; // @[issue-slot.scala:69:7]
wire [4:0] slot_uop_uop_ctrl_op_fcn = 5'h0; // @[consts.scala:269:19]
wire [4:0] slot_uop_uop_ftq_idx = 5'h0; // @[consts.scala:269:19]
wire [4:0] slot_uop_uop_ldq_idx = 5'h0; // @[consts.scala:269:19]
wire [4:0] slot_uop_uop_stq_idx = 5'h0; // @[consts.scala:269:19]
wire [4:0] slot_uop_uop_ppred = 5'h0; // @[consts.scala:269:19]
wire [4:0] slot_uop_uop_mem_cmd = 5'h0; // @[consts.scala:269:19]
wire [4:0] slot_uop_cs_op_fcn = 5'h0; // @[consts.scala:279:18]
wire [2:0] slot_uop_uop_iq_type = 3'h0; // @[consts.scala:269:19]
wire [2:0] slot_uop_uop_ctrl_op2_sel = 3'h0; // @[consts.scala:269:19]
wire [2:0] slot_uop_uop_ctrl_imm_sel = 3'h0; // @[consts.scala:269:19]
wire [2:0] slot_uop_uop_ctrl_csr_cmd = 3'h0; // @[consts.scala:269:19]
wire [2:0] slot_uop_cs_op2_sel = 3'h0; // @[consts.scala:279:18]
wire [2:0] slot_uop_cs_imm_sel = 3'h0; // @[consts.scala:279:18]
wire [2:0] slot_uop_cs_csr_cmd = 3'h0; // @[consts.scala:279:18]
wire [1:0] slot_uop_uop_ctrl_op1_sel = 2'h0; // @[consts.scala:269:19]
wire [1:0] slot_uop_uop_iw_state = 2'h0; // @[consts.scala:269:19]
wire [1:0] slot_uop_uop_rxq_idx = 2'h0; // @[consts.scala:269:19]
wire [1:0] slot_uop_uop_mem_size = 2'h0; // @[consts.scala:269:19]
wire [1:0] slot_uop_uop_lrs1_rtype = 2'h0; // @[consts.scala:269:19]
wire [1:0] slot_uop_uop_lrs2_rtype = 2'h0; // @[consts.scala:269:19]
wire [1:0] slot_uop_uop_debug_fsrc = 2'h0; // @[consts.scala:269:19]
wire [1:0] slot_uop_uop_debug_tsrc = 2'h0; // @[consts.scala:269:19]
wire [1:0] slot_uop_cs_op1_sel = 2'h0; // @[consts.scala:279:18]
wire [3:0] slot_uop_uop_ctrl_br_type = 4'h0; // @[consts.scala:269:19]
wire [3:0] slot_uop_uop_br_tag = 4'h0; // @[consts.scala:269:19]
wire [3:0] slot_uop_cs_br_type = 4'h0; // @[consts.scala:279:18]
wire [1:0] slot_uop_uop_dst_rtype = 2'h2; // @[consts.scala:269:19]
wire [5:0] slot_uop_uop_pc_lob = 6'h0; // @[consts.scala:269:19]
wire [5:0] slot_uop_uop_ldst = 6'h0; // @[consts.scala:269:19]
wire [5:0] slot_uop_uop_lrs1 = 6'h0; // @[consts.scala:269:19]
wire [5:0] slot_uop_uop_lrs2 = 6'h0; // @[consts.scala:269:19]
wire [5:0] slot_uop_uop_lrs3 = 6'h0; // @[consts.scala:269:19]
wire [63:0] slot_uop_uop_exc_cause = 64'h0; // @[consts.scala:269:19]
wire [6:0] slot_uop_uop_uopc = 7'h0; // @[consts.scala:269:19]
wire [6:0] slot_uop_uop_rob_idx = 7'h0; // @[consts.scala:269:19]
wire [6:0] slot_uop_uop_pdst = 7'h0; // @[consts.scala:269:19]
wire [6:0] slot_uop_uop_prs1 = 7'h0; // @[consts.scala:269:19]
wire [6:0] slot_uop_uop_prs2 = 7'h0; // @[consts.scala:269:19]
wire [6:0] slot_uop_uop_prs3 = 7'h0; // @[consts.scala:269:19]
wire [6:0] slot_uop_uop_stale_pdst = 7'h0; // @[consts.scala:269:19]
wire [11:0] slot_uop_uop_csr_addr = 12'h0; // @[consts.scala:269:19]
wire [19:0] slot_uop_uop_imm_packed = 20'h0; // @[consts.scala:269:19]
wire [15:0] slot_uop_uop_br_mask = 16'h0; // @[consts.scala:269:19]
wire [9:0] slot_uop_uop_fu_code = 10'h0; // @[consts.scala:269:19]
wire [39:0] slot_uop_uop_debug_pc = 40'h0; // @[consts.scala:269:19]
wire [31:0] slot_uop_uop_inst = 32'h0; // @[consts.scala:269:19]
wire [31:0] slot_uop_uop_debug_inst = 32'h0; // @[consts.scala:269:19]
wire _io_valid_T; // @[issue-slot.scala:79:24]
wire _io_will_be_valid_T_4; // @[issue-slot.scala:262:32]
wire _io_request_hp_T; // @[issue-slot.scala:243:31]
wire [6:0] next_uopc; // @[issue-slot.scala:82:29]
wire [1:0] next_state; // @[issue-slot.scala:81:29]
wire [15:0] next_br_mask; // @[util.scala:85:25]
wire _io_out_uop_prs1_busy_T; // @[issue-slot.scala:270:28]
wire _io_out_uop_prs2_busy_T; // @[issue-slot.scala:271:28]
wire _io_out_uop_prs3_busy_T; // @[issue-slot.scala:272:28]
wire _io_out_uop_ppred_busy_T; // @[issue-slot.scala:273:28]
wire [1:0] next_lrs1_rtype; // @[issue-slot.scala:83:29]
wire [1:0] next_lrs2_rtype; // @[issue-slot.scala:84:29]
wire [3:0] io_out_uop_ctrl_br_type_0; // @[issue-slot.scala:69:7]
wire [1:0] io_out_uop_ctrl_op1_sel_0; // @[issue-slot.scala:69:7]
wire [2:0] io_out_uop_ctrl_op2_sel_0; // @[issue-slot.scala:69:7]
wire [2:0] io_out_uop_ctrl_imm_sel_0; // @[issue-slot.scala:69:7]
wire [4:0] io_out_uop_ctrl_op_fcn_0; // @[issue-slot.scala:69:7]
wire io_out_uop_ctrl_fcn_dw_0; // @[issue-slot.scala:69:7]
wire [2:0] io_out_uop_ctrl_csr_cmd_0; // @[issue-slot.scala:69:7]
wire io_out_uop_ctrl_is_load_0; // @[issue-slot.scala:69:7]
wire io_out_uop_ctrl_is_sta_0; // @[issue-slot.scala:69:7]
wire io_out_uop_ctrl_is_std_0; // @[issue-slot.scala:69:7]
wire [6:0] io_out_uop_uopc_0; // @[issue-slot.scala:69:7]
wire [31:0] io_out_uop_inst_0; // @[issue-slot.scala:69:7]
wire [31:0] io_out_uop_debug_inst_0; // @[issue-slot.scala:69:7]
wire io_out_uop_is_rvc_0; // @[issue-slot.scala:69:7]
wire [39:0] io_out_uop_debug_pc_0; // @[issue-slot.scala:69:7]
wire [2:0] io_out_uop_iq_type_0; // @[issue-slot.scala:69:7]
wire [9:0] io_out_uop_fu_code_0; // @[issue-slot.scala:69:7]
wire [1:0] io_out_uop_iw_state_0; // @[issue-slot.scala:69:7]
wire io_out_uop_iw_p1_poisoned_0; // @[issue-slot.scala:69:7]
wire io_out_uop_iw_p2_poisoned_0; // @[issue-slot.scala:69:7]
wire io_out_uop_is_br_0; // @[issue-slot.scala:69:7]
wire io_out_uop_is_jalr_0; // @[issue-slot.scala:69:7]
wire io_out_uop_is_jal_0; // @[issue-slot.scala:69:7]
wire io_out_uop_is_sfb_0; // @[issue-slot.scala:69:7]
wire [15:0] io_out_uop_br_mask_0; // @[issue-slot.scala:69:7]
wire [3:0] io_out_uop_br_tag_0; // @[issue-slot.scala:69:7]
wire [4:0] io_out_uop_ftq_idx_0; // @[issue-slot.scala:69:7]
wire io_out_uop_edge_inst_0; // @[issue-slot.scala:69:7]
wire [5:0] io_out_uop_pc_lob_0; // @[issue-slot.scala:69:7]
wire io_out_uop_taken_0; // @[issue-slot.scala:69:7]
wire [19:0] io_out_uop_imm_packed_0; // @[issue-slot.scala:69:7]
wire [11:0] io_out_uop_csr_addr_0; // @[issue-slot.scala:69:7]
wire [6:0] io_out_uop_rob_idx_0; // @[issue-slot.scala:69:7]
wire [4:0] io_out_uop_ldq_idx_0; // @[issue-slot.scala:69:7]
wire [4:0] io_out_uop_stq_idx_0; // @[issue-slot.scala:69:7]
wire [1:0] io_out_uop_rxq_idx_0; // @[issue-slot.scala:69:7]
wire [6:0] io_out_uop_pdst_0; // @[issue-slot.scala:69:7]
wire [6:0] io_out_uop_prs1_0; // @[issue-slot.scala:69:7]
wire [6:0] io_out_uop_prs2_0; // @[issue-slot.scala:69:7]
wire [6:0] io_out_uop_prs3_0; // @[issue-slot.scala:69:7]
wire [4:0] io_out_uop_ppred_0; // @[issue-slot.scala:69:7]
wire io_out_uop_prs1_busy_0; // @[issue-slot.scala:69:7]
wire io_out_uop_prs2_busy_0; // @[issue-slot.scala:69:7]
wire io_out_uop_prs3_busy_0; // @[issue-slot.scala:69:7]
wire io_out_uop_ppred_busy_0; // @[issue-slot.scala:69:7]
wire [6:0] io_out_uop_stale_pdst_0; // @[issue-slot.scala:69:7]
wire io_out_uop_exception_0; // @[issue-slot.scala:69:7]
wire [63:0] io_out_uop_exc_cause_0; // @[issue-slot.scala:69:7]
wire io_out_uop_bypassable_0; // @[issue-slot.scala:69:7]
wire [4:0] io_out_uop_mem_cmd_0; // @[issue-slot.scala:69:7]
wire [1:0] io_out_uop_mem_size_0; // @[issue-slot.scala:69:7]
wire io_out_uop_mem_signed_0; // @[issue-slot.scala:69:7]
wire io_out_uop_is_fence_0; // @[issue-slot.scala:69:7]
wire io_out_uop_is_fencei_0; // @[issue-slot.scala:69:7]
wire io_out_uop_is_amo_0; // @[issue-slot.scala:69:7]
wire io_out_uop_uses_ldq_0; // @[issue-slot.scala:69:7]
wire io_out_uop_uses_stq_0; // @[issue-slot.scala:69:7]
wire io_out_uop_is_sys_pc2epc_0; // @[issue-slot.scala:69:7]
wire io_out_uop_is_unique_0; // @[issue-slot.scala:69:7]
wire io_out_uop_flush_on_commit_0; // @[issue-slot.scala:69:7]
wire io_out_uop_ldst_is_rs1_0; // @[issue-slot.scala:69:7]
wire [5:0] io_out_uop_ldst_0; // @[issue-slot.scala:69:7]
wire [5:0] io_out_uop_lrs1_0; // @[issue-slot.scala:69:7]
wire [5:0] io_out_uop_lrs2_0; // @[issue-slot.scala:69:7]
wire [5:0] io_out_uop_lrs3_0; // @[issue-slot.scala:69:7]
wire io_out_uop_ldst_val_0; // @[issue-slot.scala:69:7]
wire [1:0] io_out_uop_dst_rtype_0; // @[issue-slot.scala:69:7]
wire [1:0] io_out_uop_lrs1_rtype_0; // @[issue-slot.scala:69:7]
wire [1:0] io_out_uop_lrs2_rtype_0; // @[issue-slot.scala:69:7]
wire io_out_uop_frs3_en_0; // @[issue-slot.scala:69:7]
wire io_out_uop_fp_val_0; // @[issue-slot.scala:69:7]
wire io_out_uop_fp_single_0; // @[issue-slot.scala:69:7]
wire io_out_uop_xcpt_pf_if_0; // @[issue-slot.scala:69:7]
wire io_out_uop_xcpt_ae_if_0; // @[issue-slot.scala:69:7]
wire io_out_uop_xcpt_ma_if_0; // @[issue-slot.scala:69:7]
wire io_out_uop_bp_debug_if_0; // @[issue-slot.scala:69:7]
wire io_out_uop_bp_xcpt_if_0; // @[issue-slot.scala:69:7]
wire [1:0] io_out_uop_debug_fsrc_0; // @[issue-slot.scala:69:7]
wire [1:0] io_out_uop_debug_tsrc_0; // @[issue-slot.scala:69:7]
wire [3:0] io_uop_ctrl_br_type_0; // @[issue-slot.scala:69:7]
wire [1:0] io_uop_ctrl_op1_sel_0; // @[issue-slot.scala:69:7]
wire [2:0] io_uop_ctrl_op2_sel_0; // @[issue-slot.scala:69:7]
wire [2:0] io_uop_ctrl_imm_sel_0; // @[issue-slot.scala:69:7]
wire [4:0] io_uop_ctrl_op_fcn_0; // @[issue-slot.scala:69:7]
wire io_uop_ctrl_fcn_dw_0; // @[issue-slot.scala:69:7]
wire [2:0] io_uop_ctrl_csr_cmd_0; // @[issue-slot.scala:69:7]
wire io_uop_ctrl_is_load_0; // @[issue-slot.scala:69:7]
wire io_uop_ctrl_is_sta_0; // @[issue-slot.scala:69:7]
wire io_uop_ctrl_is_std_0; // @[issue-slot.scala:69:7]
wire [6:0] io_uop_uopc_0; // @[issue-slot.scala:69:7]
wire [31:0] io_uop_inst_0; // @[issue-slot.scala:69:7]
wire [31:0] io_uop_debug_inst_0; // @[issue-slot.scala:69:7]
wire io_uop_is_rvc_0; // @[issue-slot.scala:69:7]
wire [39:0] io_uop_debug_pc_0; // @[issue-slot.scala:69:7]
wire [2:0] io_uop_iq_type_0; // @[issue-slot.scala:69:7]
wire [9:0] io_uop_fu_code_0; // @[issue-slot.scala:69:7]
wire [1:0] io_uop_iw_state_0; // @[issue-slot.scala:69:7]
wire io_uop_iw_p1_poisoned_0; // @[issue-slot.scala:69:7]
wire io_uop_iw_p2_poisoned_0; // @[issue-slot.scala:69:7]
wire io_uop_is_br_0; // @[issue-slot.scala:69:7]
wire io_uop_is_jalr_0; // @[issue-slot.scala:69:7]
wire io_uop_is_jal_0; // @[issue-slot.scala:69:7]
wire io_uop_is_sfb_0; // @[issue-slot.scala:69:7]
wire [15:0] io_uop_br_mask_0; // @[issue-slot.scala:69:7]
wire [3:0] io_uop_br_tag_0; // @[issue-slot.scala:69:7]
wire [4:0] io_uop_ftq_idx_0; // @[issue-slot.scala:69:7]
wire io_uop_edge_inst_0; // @[issue-slot.scala:69:7]
wire [5:0] io_uop_pc_lob_0; // @[issue-slot.scala:69:7]
wire io_uop_taken_0; // @[issue-slot.scala:69:7]
wire [19:0] io_uop_imm_packed_0; // @[issue-slot.scala:69:7]
wire [11:0] io_uop_csr_addr_0; // @[issue-slot.scala:69:7]
wire [6:0] io_uop_rob_idx_0; // @[issue-slot.scala:69:7]
wire [4:0] io_uop_ldq_idx_0; // @[issue-slot.scala:69:7]
wire [4:0] io_uop_stq_idx_0; // @[issue-slot.scala:69:7]
wire [1:0] io_uop_rxq_idx_0; // @[issue-slot.scala:69:7]
wire [6:0] io_uop_pdst_0; // @[issue-slot.scala:69:7]
wire [6:0] io_uop_prs1_0; // @[issue-slot.scala:69:7]
wire [6:0] io_uop_prs2_0; // @[issue-slot.scala:69:7]
wire [6:0] io_uop_prs3_0; // @[issue-slot.scala:69:7]
wire [4:0] io_uop_ppred_0; // @[issue-slot.scala:69:7]
wire io_uop_prs1_busy_0; // @[issue-slot.scala:69:7]
wire io_uop_prs2_busy_0; // @[issue-slot.scala:69:7]
wire io_uop_prs3_busy_0; // @[issue-slot.scala:69:7]
wire io_uop_ppred_busy_0; // @[issue-slot.scala:69:7]
wire [6:0] io_uop_stale_pdst_0; // @[issue-slot.scala:69:7]
wire io_uop_exception_0; // @[issue-slot.scala:69:7]
wire [63:0] io_uop_exc_cause_0; // @[issue-slot.scala:69:7]
wire io_uop_bypassable_0; // @[issue-slot.scala:69:7]
wire [4:0] io_uop_mem_cmd_0; // @[issue-slot.scala:69:7]
wire [1:0] io_uop_mem_size_0; // @[issue-slot.scala:69:7]
wire io_uop_mem_signed_0; // @[issue-slot.scala:69:7]
wire io_uop_is_fence_0; // @[issue-slot.scala:69:7]
wire io_uop_is_fencei_0; // @[issue-slot.scala:69:7]
wire io_uop_is_amo_0; // @[issue-slot.scala:69:7]
wire io_uop_uses_ldq_0; // @[issue-slot.scala:69:7]
wire io_uop_uses_stq_0; // @[issue-slot.scala:69:7]
wire io_uop_is_sys_pc2epc_0; // @[issue-slot.scala:69:7]
wire io_uop_is_unique_0; // @[issue-slot.scala:69:7]
wire io_uop_flush_on_commit_0; // @[issue-slot.scala:69:7]
wire io_uop_ldst_is_rs1_0; // @[issue-slot.scala:69:7]
wire [5:0] io_uop_ldst_0; // @[issue-slot.scala:69:7]
wire [5:0] io_uop_lrs1_0; // @[issue-slot.scala:69:7]
wire [5:0] io_uop_lrs2_0; // @[issue-slot.scala:69:7]
wire [5:0] io_uop_lrs3_0; // @[issue-slot.scala:69:7]
wire io_uop_ldst_val_0; // @[issue-slot.scala:69:7]
wire [1:0] io_uop_dst_rtype_0; // @[issue-slot.scala:69:7]
wire [1:0] io_uop_lrs1_rtype_0; // @[issue-slot.scala:69:7]
wire [1:0] io_uop_lrs2_rtype_0; // @[issue-slot.scala:69:7]
wire io_uop_frs3_en_0; // @[issue-slot.scala:69:7]
wire io_uop_fp_val_0; // @[issue-slot.scala:69:7]
wire io_uop_fp_single_0; // @[issue-slot.scala:69:7]
wire io_uop_xcpt_pf_if_0; // @[issue-slot.scala:69:7]
wire io_uop_xcpt_ae_if_0; // @[issue-slot.scala:69:7]
wire io_uop_xcpt_ma_if_0; // @[issue-slot.scala:69:7]
wire io_uop_bp_debug_if_0; // @[issue-slot.scala:69:7]
wire io_uop_bp_xcpt_if_0; // @[issue-slot.scala:69:7]
wire [1:0] io_uop_debug_fsrc_0; // @[issue-slot.scala:69:7]
wire [1:0] io_uop_debug_tsrc_0; // @[issue-slot.scala:69:7]
wire io_debug_p1_0; // @[issue-slot.scala:69:7]
wire io_debug_p2_0; // @[issue-slot.scala:69:7]
wire io_debug_p3_0; // @[issue-slot.scala:69:7]
wire io_debug_ppred_0; // @[issue-slot.scala:69:7]
wire [1:0] io_debug_state_0; // @[issue-slot.scala:69:7]
wire io_valid_0; // @[issue-slot.scala:69:7]
wire io_will_be_valid_0; // @[issue-slot.scala:69:7]
wire io_request_0; // @[issue-slot.scala:69:7]
wire io_request_hp_0; // @[issue-slot.scala:69:7]
assign io_out_uop_iw_state_0 = next_state; // @[issue-slot.scala:69:7, :81:29]
assign io_out_uop_uopc_0 = next_uopc; // @[issue-slot.scala:69:7, :82:29]
assign io_out_uop_lrs1_rtype_0 = next_lrs1_rtype; // @[issue-slot.scala:69:7, :83:29]
assign io_out_uop_lrs2_rtype_0 = next_lrs2_rtype; // @[issue-slot.scala:69:7, :84:29]
reg [1:0] state; // @[issue-slot.scala:86:22]
assign io_debug_state_0 = state; // @[issue-slot.scala:69:7, :86:22]
reg p1; // @[issue-slot.scala:87:22]
assign io_debug_p1_0 = p1; // @[issue-slot.scala:69:7, :87:22]
wire next_p1 = p1; // @[issue-slot.scala:87:22, :163:25]
reg p2; // @[issue-slot.scala:88:22]
assign io_debug_p2_0 = p2; // @[issue-slot.scala:69:7, :88:22]
wire next_p2 = p2; // @[issue-slot.scala:88:22, :164:25]
reg p3; // @[issue-slot.scala:89:22]
assign io_debug_p3_0 = p3; // @[issue-slot.scala:69:7, :89:22]
wire next_p3 = p3; // @[issue-slot.scala:89:22, :165:25]
reg ppred; // @[issue-slot.scala:90:22]
assign io_debug_ppred_0 = ppred; // @[issue-slot.scala:69:7, :90:22]
wire next_ppred = ppred; // @[issue-slot.scala:90:22, :166:28]
reg p1_poisoned; // @[issue-slot.scala:95:28]
assign io_out_uop_iw_p1_poisoned_0 = p1_poisoned; // @[issue-slot.scala:69:7, :95:28]
assign io_uop_iw_p1_poisoned_0 = p1_poisoned; // @[issue-slot.scala:69:7, :95:28]
reg p2_poisoned; // @[issue-slot.scala:96:28]
assign io_out_uop_iw_p2_poisoned_0 = p2_poisoned; // @[issue-slot.scala:69:7, :96:28]
assign io_uop_iw_p2_poisoned_0 = p2_poisoned; // @[issue-slot.scala:69:7, :96:28]
wire next_p1_poisoned = io_in_uop_valid_0 ? io_in_uop_bits_iw_p1_poisoned_0 : p1_poisoned; // @[issue-slot.scala:69:7, :95:28, :99:29]
wire next_p2_poisoned = io_in_uop_valid_0 ? io_in_uop_bits_iw_p2_poisoned_0 : p2_poisoned; // @[issue-slot.scala:69:7, :96:28, :100:29]
reg [6:0] slot_uop_uopc; // @[issue-slot.scala:102:25]
reg [31:0] slot_uop_inst; // @[issue-slot.scala:102:25]
assign io_out_uop_inst_0 = slot_uop_inst; // @[issue-slot.scala:69:7, :102:25]
assign io_uop_inst_0 = slot_uop_inst; // @[issue-slot.scala:69:7, :102:25]
reg [31:0] slot_uop_debug_inst; // @[issue-slot.scala:102:25]
assign io_out_uop_debug_inst_0 = slot_uop_debug_inst; // @[issue-slot.scala:69:7, :102:25]
assign io_uop_debug_inst_0 = slot_uop_debug_inst; // @[issue-slot.scala:69:7, :102:25]
reg slot_uop_is_rvc; // @[issue-slot.scala:102:25]
assign io_out_uop_is_rvc_0 = slot_uop_is_rvc; // @[issue-slot.scala:69:7, :102:25]
assign io_uop_is_rvc_0 = slot_uop_is_rvc; // @[issue-slot.scala:69:7, :102:25]
reg [39:0] slot_uop_debug_pc; // @[issue-slot.scala:102:25]
assign io_out_uop_debug_pc_0 = slot_uop_debug_pc; // @[issue-slot.scala:69:7, :102:25]
assign io_uop_debug_pc_0 = slot_uop_debug_pc; // @[issue-slot.scala:69:7, :102:25]
reg [2:0] slot_uop_iq_type; // @[issue-slot.scala:102:25]
assign io_out_uop_iq_type_0 = slot_uop_iq_type; // @[issue-slot.scala:69:7, :102:25]
assign io_uop_iq_type_0 = slot_uop_iq_type; // @[issue-slot.scala:69:7, :102:25]
reg [9:0] slot_uop_fu_code; // @[issue-slot.scala:102:25]
assign io_out_uop_fu_code_0 = slot_uop_fu_code; // @[issue-slot.scala:69:7, :102:25]
assign io_uop_fu_code_0 = slot_uop_fu_code; // @[issue-slot.scala:69:7, :102:25]
reg [3:0] slot_uop_ctrl_br_type; // @[issue-slot.scala:102:25]
assign io_out_uop_ctrl_br_type_0 = slot_uop_ctrl_br_type; // @[issue-slot.scala:69:7, :102:25]
assign io_uop_ctrl_br_type_0 = slot_uop_ctrl_br_type; // @[issue-slot.scala:69:7, :102:25]
reg [1:0] slot_uop_ctrl_op1_sel; // @[issue-slot.scala:102:25]
assign io_out_uop_ctrl_op1_sel_0 = slot_uop_ctrl_op1_sel; // @[issue-slot.scala:69:7, :102:25]
assign io_uop_ctrl_op1_sel_0 = slot_uop_ctrl_op1_sel; // @[issue-slot.scala:69:7, :102:25]
reg [2:0] slot_uop_ctrl_op2_sel; // @[issue-slot.scala:102:25]
assign io_out_uop_ctrl_op2_sel_0 = slot_uop_ctrl_op2_sel; // @[issue-slot.scala:69:7, :102:25]
assign io_uop_ctrl_op2_sel_0 = slot_uop_ctrl_op2_sel; // @[issue-slot.scala:69:7, :102:25]
reg [2:0] slot_uop_ctrl_imm_sel; // @[issue-slot.scala:102:25]
assign io_out_uop_ctrl_imm_sel_0 = slot_uop_ctrl_imm_sel; // @[issue-slot.scala:69:7, :102:25]
assign io_uop_ctrl_imm_sel_0 = slot_uop_ctrl_imm_sel; // @[issue-slot.scala:69:7, :102:25]
reg [4:0] slot_uop_ctrl_op_fcn; // @[issue-slot.scala:102:25]
assign io_out_uop_ctrl_op_fcn_0 = slot_uop_ctrl_op_fcn; // @[issue-slot.scala:69:7, :102:25]
assign io_uop_ctrl_op_fcn_0 = slot_uop_ctrl_op_fcn; // @[issue-slot.scala:69:7, :102:25]
reg slot_uop_ctrl_fcn_dw; // @[issue-slot.scala:102:25]
assign io_out_uop_ctrl_fcn_dw_0 = slot_uop_ctrl_fcn_dw; // @[issue-slot.scala:69:7, :102:25]
assign io_uop_ctrl_fcn_dw_0 = slot_uop_ctrl_fcn_dw; // @[issue-slot.scala:69:7, :102:25]
reg [2:0] slot_uop_ctrl_csr_cmd; // @[issue-slot.scala:102:25]
assign io_out_uop_ctrl_csr_cmd_0 = slot_uop_ctrl_csr_cmd; // @[issue-slot.scala:69:7, :102:25]
assign io_uop_ctrl_csr_cmd_0 = slot_uop_ctrl_csr_cmd; // @[issue-slot.scala:69:7, :102:25]
reg slot_uop_ctrl_is_load; // @[issue-slot.scala:102:25]
assign io_out_uop_ctrl_is_load_0 = slot_uop_ctrl_is_load; // @[issue-slot.scala:69:7, :102:25]
assign io_uop_ctrl_is_load_0 = slot_uop_ctrl_is_load; // @[issue-slot.scala:69:7, :102:25]
reg slot_uop_ctrl_is_sta; // @[issue-slot.scala:102:25]
assign io_out_uop_ctrl_is_sta_0 = slot_uop_ctrl_is_sta; // @[issue-slot.scala:69:7, :102:25]
assign io_uop_ctrl_is_sta_0 = slot_uop_ctrl_is_sta; // @[issue-slot.scala:69:7, :102:25]
reg slot_uop_ctrl_is_std; // @[issue-slot.scala:102:25]
assign io_out_uop_ctrl_is_std_0 = slot_uop_ctrl_is_std; // @[issue-slot.scala:69:7, :102:25]
assign io_uop_ctrl_is_std_0 = slot_uop_ctrl_is_std; // @[issue-slot.scala:69:7, :102:25]
reg [1:0] slot_uop_iw_state; // @[issue-slot.scala:102:25]
assign io_uop_iw_state_0 = slot_uop_iw_state; // @[issue-slot.scala:69:7, :102:25]
reg slot_uop_iw_p1_poisoned; // @[issue-slot.scala:102:25]
reg slot_uop_iw_p2_poisoned; // @[issue-slot.scala:102:25]
reg slot_uop_is_br; // @[issue-slot.scala:102:25]
assign io_out_uop_is_br_0 = slot_uop_is_br; // @[issue-slot.scala:69:7, :102:25]
assign io_uop_is_br_0 = slot_uop_is_br; // @[issue-slot.scala:69:7, :102:25]
reg slot_uop_is_jalr; // @[issue-slot.scala:102:25]
assign io_out_uop_is_jalr_0 = slot_uop_is_jalr; // @[issue-slot.scala:69:7, :102:25]
assign io_uop_is_jalr_0 = slot_uop_is_jalr; // @[issue-slot.scala:69:7, :102:25]
reg slot_uop_is_jal; // @[issue-slot.scala:102:25]
assign io_out_uop_is_jal_0 = slot_uop_is_jal; // @[issue-slot.scala:69:7, :102:25]
assign io_uop_is_jal_0 = slot_uop_is_jal; // @[issue-slot.scala:69:7, :102:25]
reg slot_uop_is_sfb; // @[issue-slot.scala:102:25]
assign io_out_uop_is_sfb_0 = slot_uop_is_sfb; // @[issue-slot.scala:69:7, :102:25]
assign io_uop_is_sfb_0 = slot_uop_is_sfb; // @[issue-slot.scala:69:7, :102:25]
reg [15:0] slot_uop_br_mask; // @[issue-slot.scala:102:25]
assign io_uop_br_mask_0 = slot_uop_br_mask; // @[issue-slot.scala:69:7, :102:25]
reg [3:0] slot_uop_br_tag; // @[issue-slot.scala:102:25]
assign io_out_uop_br_tag_0 = slot_uop_br_tag; // @[issue-slot.scala:69:7, :102:25]
assign io_uop_br_tag_0 = slot_uop_br_tag; // @[issue-slot.scala:69:7, :102:25]
reg [4:0] slot_uop_ftq_idx; // @[issue-slot.scala:102:25]
assign io_out_uop_ftq_idx_0 = slot_uop_ftq_idx; // @[issue-slot.scala:69:7, :102:25]
assign io_uop_ftq_idx_0 = slot_uop_ftq_idx; // @[issue-slot.scala:69:7, :102:25]
reg slot_uop_edge_inst; // @[issue-slot.scala:102:25]
assign io_out_uop_edge_inst_0 = slot_uop_edge_inst; // @[issue-slot.scala:69:7, :102:25]
assign io_uop_edge_inst_0 = slot_uop_edge_inst; // @[issue-slot.scala:69:7, :102:25]
reg [5:0] slot_uop_pc_lob; // @[issue-slot.scala:102:25]
assign io_out_uop_pc_lob_0 = slot_uop_pc_lob; // @[issue-slot.scala:69:7, :102:25]
assign io_uop_pc_lob_0 = slot_uop_pc_lob; // @[issue-slot.scala:69:7, :102:25]
reg slot_uop_taken; // @[issue-slot.scala:102:25]
assign io_out_uop_taken_0 = slot_uop_taken; // @[issue-slot.scala:69:7, :102:25]
assign io_uop_taken_0 = slot_uop_taken; // @[issue-slot.scala:69:7, :102:25]
reg [19:0] slot_uop_imm_packed; // @[issue-slot.scala:102:25]
assign io_out_uop_imm_packed_0 = slot_uop_imm_packed; // @[issue-slot.scala:69:7, :102:25]
assign io_uop_imm_packed_0 = slot_uop_imm_packed; // @[issue-slot.scala:69:7, :102:25]
reg [11:0] slot_uop_csr_addr; // @[issue-slot.scala:102:25]
assign io_out_uop_csr_addr_0 = slot_uop_csr_addr; // @[issue-slot.scala:69:7, :102:25]
assign io_uop_csr_addr_0 = slot_uop_csr_addr; // @[issue-slot.scala:69:7, :102:25]
reg [6:0] slot_uop_rob_idx; // @[issue-slot.scala:102:25]
assign io_out_uop_rob_idx_0 = slot_uop_rob_idx; // @[issue-slot.scala:69:7, :102:25]
assign io_uop_rob_idx_0 = slot_uop_rob_idx; // @[issue-slot.scala:69:7, :102:25]
reg [4:0] slot_uop_ldq_idx; // @[issue-slot.scala:102:25]
assign io_out_uop_ldq_idx_0 = slot_uop_ldq_idx; // @[issue-slot.scala:69:7, :102:25]
assign io_uop_ldq_idx_0 = slot_uop_ldq_idx; // @[issue-slot.scala:69:7, :102:25]
reg [4:0] slot_uop_stq_idx; // @[issue-slot.scala:102:25]
assign io_out_uop_stq_idx_0 = slot_uop_stq_idx; // @[issue-slot.scala:69:7, :102:25]
assign io_uop_stq_idx_0 = slot_uop_stq_idx; // @[issue-slot.scala:69:7, :102:25]
reg [1:0] slot_uop_rxq_idx; // @[issue-slot.scala:102:25]
assign io_out_uop_rxq_idx_0 = slot_uop_rxq_idx; // @[issue-slot.scala:69:7, :102:25]
assign io_uop_rxq_idx_0 = slot_uop_rxq_idx; // @[issue-slot.scala:69:7, :102:25]
reg [6:0] slot_uop_pdst; // @[issue-slot.scala:102:25]
assign io_out_uop_pdst_0 = slot_uop_pdst; // @[issue-slot.scala:69:7, :102:25]
assign io_uop_pdst_0 = slot_uop_pdst; // @[issue-slot.scala:69:7, :102:25]
reg [6:0] slot_uop_prs1; // @[issue-slot.scala:102:25]
assign io_out_uop_prs1_0 = slot_uop_prs1; // @[issue-slot.scala:69:7, :102:25]
assign io_uop_prs1_0 = slot_uop_prs1; // @[issue-slot.scala:69:7, :102:25]
reg [6:0] slot_uop_prs2; // @[issue-slot.scala:102:25]
assign io_out_uop_prs2_0 = slot_uop_prs2; // @[issue-slot.scala:69:7, :102:25]
assign io_uop_prs2_0 = slot_uop_prs2; // @[issue-slot.scala:69:7, :102:25]
reg [6:0] slot_uop_prs3; // @[issue-slot.scala:102:25]
assign io_out_uop_prs3_0 = slot_uop_prs3; // @[issue-slot.scala:69:7, :102:25]
assign io_uop_prs3_0 = slot_uop_prs3; // @[issue-slot.scala:69:7, :102:25]
reg [4:0] slot_uop_ppred; // @[issue-slot.scala:102:25]
assign io_out_uop_ppred_0 = slot_uop_ppred; // @[issue-slot.scala:69:7, :102:25]
assign io_uop_ppred_0 = slot_uop_ppred; // @[issue-slot.scala:69:7, :102:25]
reg slot_uop_prs1_busy; // @[issue-slot.scala:102:25]
assign io_uop_prs1_busy_0 = slot_uop_prs1_busy; // @[issue-slot.scala:69:7, :102:25]
reg slot_uop_prs2_busy; // @[issue-slot.scala:102:25]
assign io_uop_prs2_busy_0 = slot_uop_prs2_busy; // @[issue-slot.scala:69:7, :102:25]
reg slot_uop_prs3_busy; // @[issue-slot.scala:102:25]
assign io_uop_prs3_busy_0 = slot_uop_prs3_busy; // @[issue-slot.scala:69:7, :102:25]
reg slot_uop_ppred_busy; // @[issue-slot.scala:102:25]
assign io_uop_ppred_busy_0 = slot_uop_ppred_busy; // @[issue-slot.scala:69:7, :102:25]
reg [6:0] slot_uop_stale_pdst; // @[issue-slot.scala:102:25]
assign io_out_uop_stale_pdst_0 = slot_uop_stale_pdst; // @[issue-slot.scala:69:7, :102:25]
assign io_uop_stale_pdst_0 = slot_uop_stale_pdst; // @[issue-slot.scala:69:7, :102:25]
reg slot_uop_exception; // @[issue-slot.scala:102:25]
assign io_out_uop_exception_0 = slot_uop_exception; // @[issue-slot.scala:69:7, :102:25]
assign io_uop_exception_0 = slot_uop_exception; // @[issue-slot.scala:69:7, :102:25]
reg [63:0] slot_uop_exc_cause; // @[issue-slot.scala:102:25]
assign io_out_uop_exc_cause_0 = slot_uop_exc_cause; // @[issue-slot.scala:69:7, :102:25]
assign io_uop_exc_cause_0 = slot_uop_exc_cause; // @[issue-slot.scala:69:7, :102:25]
reg slot_uop_bypassable; // @[issue-slot.scala:102:25]
assign io_out_uop_bypassable_0 = slot_uop_bypassable; // @[issue-slot.scala:69:7, :102:25]
assign io_uop_bypassable_0 = slot_uop_bypassable; // @[issue-slot.scala:69:7, :102:25]
reg [4:0] slot_uop_mem_cmd; // @[issue-slot.scala:102:25]
assign io_out_uop_mem_cmd_0 = slot_uop_mem_cmd; // @[issue-slot.scala:69:7, :102:25]
assign io_uop_mem_cmd_0 = slot_uop_mem_cmd; // @[issue-slot.scala:69:7, :102:25]
reg [1:0] slot_uop_mem_size; // @[issue-slot.scala:102:25]
assign io_out_uop_mem_size_0 = slot_uop_mem_size; // @[issue-slot.scala:69:7, :102:25]
assign io_uop_mem_size_0 = slot_uop_mem_size; // @[issue-slot.scala:69:7, :102:25]
reg slot_uop_mem_signed; // @[issue-slot.scala:102:25]
assign io_out_uop_mem_signed_0 = slot_uop_mem_signed; // @[issue-slot.scala:69:7, :102:25]
assign io_uop_mem_signed_0 = slot_uop_mem_signed; // @[issue-slot.scala:69:7, :102:25]
reg slot_uop_is_fence; // @[issue-slot.scala:102:25]
assign io_out_uop_is_fence_0 = slot_uop_is_fence; // @[issue-slot.scala:69:7, :102:25]
assign io_uop_is_fence_0 = slot_uop_is_fence; // @[issue-slot.scala:69:7, :102:25]
reg slot_uop_is_fencei; // @[issue-slot.scala:102:25]
assign io_out_uop_is_fencei_0 = slot_uop_is_fencei; // @[issue-slot.scala:69:7, :102:25]
assign io_uop_is_fencei_0 = slot_uop_is_fencei; // @[issue-slot.scala:69:7, :102:25]
reg slot_uop_is_amo; // @[issue-slot.scala:102:25]
assign io_out_uop_is_amo_0 = slot_uop_is_amo; // @[issue-slot.scala:69:7, :102:25]
assign io_uop_is_amo_0 = slot_uop_is_amo; // @[issue-slot.scala:69:7, :102:25]
reg slot_uop_uses_ldq; // @[issue-slot.scala:102:25]
assign io_out_uop_uses_ldq_0 = slot_uop_uses_ldq; // @[issue-slot.scala:69:7, :102:25]
assign io_uop_uses_ldq_0 = slot_uop_uses_ldq; // @[issue-slot.scala:69:7, :102:25]
reg slot_uop_uses_stq; // @[issue-slot.scala:102:25]
assign io_out_uop_uses_stq_0 = slot_uop_uses_stq; // @[issue-slot.scala:69:7, :102:25]
assign io_uop_uses_stq_0 = slot_uop_uses_stq; // @[issue-slot.scala:69:7, :102:25]
reg slot_uop_is_sys_pc2epc; // @[issue-slot.scala:102:25]
assign io_out_uop_is_sys_pc2epc_0 = slot_uop_is_sys_pc2epc; // @[issue-slot.scala:69:7, :102:25]
assign io_uop_is_sys_pc2epc_0 = slot_uop_is_sys_pc2epc; // @[issue-slot.scala:69:7, :102:25]
reg slot_uop_is_unique; // @[issue-slot.scala:102:25]
assign io_out_uop_is_unique_0 = slot_uop_is_unique; // @[issue-slot.scala:69:7, :102:25]
assign io_uop_is_unique_0 = slot_uop_is_unique; // @[issue-slot.scala:69:7, :102:25]
reg slot_uop_flush_on_commit; // @[issue-slot.scala:102:25]
assign io_out_uop_flush_on_commit_0 = slot_uop_flush_on_commit; // @[issue-slot.scala:69:7, :102:25]
assign io_uop_flush_on_commit_0 = slot_uop_flush_on_commit; // @[issue-slot.scala:69:7, :102:25]
reg slot_uop_ldst_is_rs1; // @[issue-slot.scala:102:25]
assign io_out_uop_ldst_is_rs1_0 = slot_uop_ldst_is_rs1; // @[issue-slot.scala:69:7, :102:25]
assign io_uop_ldst_is_rs1_0 = slot_uop_ldst_is_rs1; // @[issue-slot.scala:69:7, :102:25]
reg [5:0] slot_uop_ldst; // @[issue-slot.scala:102:25]
assign io_out_uop_ldst_0 = slot_uop_ldst; // @[issue-slot.scala:69:7, :102:25]
assign io_uop_ldst_0 = slot_uop_ldst; // @[issue-slot.scala:69:7, :102:25]
reg [5:0] slot_uop_lrs1; // @[issue-slot.scala:102:25]
assign io_out_uop_lrs1_0 = slot_uop_lrs1; // @[issue-slot.scala:69:7, :102:25]
assign io_uop_lrs1_0 = slot_uop_lrs1; // @[issue-slot.scala:69:7, :102:25]
reg [5:0] slot_uop_lrs2; // @[issue-slot.scala:102:25]
assign io_out_uop_lrs2_0 = slot_uop_lrs2; // @[issue-slot.scala:69:7, :102:25]
assign io_uop_lrs2_0 = slot_uop_lrs2; // @[issue-slot.scala:69:7, :102:25]
reg [5:0] slot_uop_lrs3; // @[issue-slot.scala:102:25]
assign io_out_uop_lrs3_0 = slot_uop_lrs3; // @[issue-slot.scala:69:7, :102:25]
assign io_uop_lrs3_0 = slot_uop_lrs3; // @[issue-slot.scala:69:7, :102:25]
reg slot_uop_ldst_val; // @[issue-slot.scala:102:25]
assign io_out_uop_ldst_val_0 = slot_uop_ldst_val; // @[issue-slot.scala:69:7, :102:25]
assign io_uop_ldst_val_0 = slot_uop_ldst_val; // @[issue-slot.scala:69:7, :102:25]
reg [1:0] slot_uop_dst_rtype; // @[issue-slot.scala:102:25]
assign io_out_uop_dst_rtype_0 = slot_uop_dst_rtype; // @[issue-slot.scala:69:7, :102:25]
assign io_uop_dst_rtype_0 = slot_uop_dst_rtype; // @[issue-slot.scala:69:7, :102:25]
reg [1:0] slot_uop_lrs1_rtype; // @[issue-slot.scala:102:25]
reg [1:0] slot_uop_lrs2_rtype; // @[issue-slot.scala:102:25]
reg slot_uop_frs3_en; // @[issue-slot.scala:102:25]
assign io_out_uop_frs3_en_0 = slot_uop_frs3_en; // @[issue-slot.scala:69:7, :102:25]
assign io_uop_frs3_en_0 = slot_uop_frs3_en; // @[issue-slot.scala:69:7, :102:25]
reg slot_uop_fp_val; // @[issue-slot.scala:102:25]
assign io_out_uop_fp_val_0 = slot_uop_fp_val; // @[issue-slot.scala:69:7, :102:25]
assign io_uop_fp_val_0 = slot_uop_fp_val; // @[issue-slot.scala:69:7, :102:25]
reg slot_uop_fp_single; // @[issue-slot.scala:102:25]
assign io_out_uop_fp_single_0 = slot_uop_fp_single; // @[issue-slot.scala:69:7, :102:25]
assign io_uop_fp_single_0 = slot_uop_fp_single; // @[issue-slot.scala:69:7, :102:25]
reg slot_uop_xcpt_pf_if; // @[issue-slot.scala:102:25]
assign io_out_uop_xcpt_pf_if_0 = slot_uop_xcpt_pf_if; // @[issue-slot.scala:69:7, :102:25]
assign io_uop_xcpt_pf_if_0 = slot_uop_xcpt_pf_if; // @[issue-slot.scala:69:7, :102:25]
reg slot_uop_xcpt_ae_if; // @[issue-slot.scala:102:25]
assign io_out_uop_xcpt_ae_if_0 = slot_uop_xcpt_ae_if; // @[issue-slot.scala:69:7, :102:25]
assign io_uop_xcpt_ae_if_0 = slot_uop_xcpt_ae_if; // @[issue-slot.scala:69:7, :102:25]
reg slot_uop_xcpt_ma_if; // @[issue-slot.scala:102:25]
assign io_out_uop_xcpt_ma_if_0 = slot_uop_xcpt_ma_if; // @[issue-slot.scala:69:7, :102:25]
assign io_uop_xcpt_ma_if_0 = slot_uop_xcpt_ma_if; // @[issue-slot.scala:69:7, :102:25]
reg slot_uop_bp_debug_if; // @[issue-slot.scala:102:25]
assign io_out_uop_bp_debug_if_0 = slot_uop_bp_debug_if; // @[issue-slot.scala:69:7, :102:25]
assign io_uop_bp_debug_if_0 = slot_uop_bp_debug_if; // @[issue-slot.scala:69:7, :102:25]
reg slot_uop_bp_xcpt_if; // @[issue-slot.scala:102:25]
assign io_out_uop_bp_xcpt_if_0 = slot_uop_bp_xcpt_if; // @[issue-slot.scala:69:7, :102:25]
assign io_uop_bp_xcpt_if_0 = slot_uop_bp_xcpt_if; // @[issue-slot.scala:69:7, :102:25]
reg [1:0] slot_uop_debug_fsrc; // @[issue-slot.scala:102:25]
assign io_out_uop_debug_fsrc_0 = slot_uop_debug_fsrc; // @[issue-slot.scala:69:7, :102:25]
assign io_uop_debug_fsrc_0 = slot_uop_debug_fsrc; // @[issue-slot.scala:69:7, :102:25]
reg [1:0] slot_uop_debug_tsrc; // @[issue-slot.scala:102:25]
assign io_out_uop_debug_tsrc_0 = slot_uop_debug_tsrc; // @[issue-slot.scala:69:7, :102:25]
assign io_uop_debug_tsrc_0 = slot_uop_debug_tsrc; // @[issue-slot.scala:69:7, :102:25]
wire [6:0] next_uop_uopc = io_in_uop_valid_0 ? io_in_uop_bits_uopc_0 : slot_uop_uopc; // @[issue-slot.scala:69:7, :102:25, :103:21]
wire [31:0] next_uop_inst = io_in_uop_valid_0 ? io_in_uop_bits_inst_0 : slot_uop_inst; // @[issue-slot.scala:69:7, :102:25, :103:21]
wire [31:0] next_uop_debug_inst = io_in_uop_valid_0 ? io_in_uop_bits_debug_inst_0 : slot_uop_debug_inst; // @[issue-slot.scala:69:7, :102:25, :103:21]
wire next_uop_is_rvc = io_in_uop_valid_0 ? io_in_uop_bits_is_rvc_0 : slot_uop_is_rvc; // @[issue-slot.scala:69:7, :102:25, :103:21]
wire [39:0] next_uop_debug_pc = io_in_uop_valid_0 ? io_in_uop_bits_debug_pc_0 : slot_uop_debug_pc; // @[issue-slot.scala:69:7, :102:25, :103:21]
wire [2:0] next_uop_iq_type = io_in_uop_valid_0 ? io_in_uop_bits_iq_type_0 : slot_uop_iq_type; // @[issue-slot.scala:69:7, :102:25, :103:21]
wire [9:0] next_uop_fu_code = io_in_uop_valid_0 ? io_in_uop_bits_fu_code_0 : slot_uop_fu_code; // @[issue-slot.scala:69:7, :102:25, :103:21]
wire [3:0] next_uop_ctrl_br_type = io_in_uop_valid_0 ? io_in_uop_bits_ctrl_br_type_0 : slot_uop_ctrl_br_type; // @[issue-slot.scala:69:7, :102:25, :103:21]
wire [1:0] next_uop_ctrl_op1_sel = io_in_uop_valid_0 ? io_in_uop_bits_ctrl_op1_sel_0 : slot_uop_ctrl_op1_sel; // @[issue-slot.scala:69:7, :102:25, :103:21]
wire [2:0] next_uop_ctrl_op2_sel = io_in_uop_valid_0 ? io_in_uop_bits_ctrl_op2_sel_0 : slot_uop_ctrl_op2_sel; // @[issue-slot.scala:69:7, :102:25, :103:21]
wire [2:0] next_uop_ctrl_imm_sel = io_in_uop_valid_0 ? io_in_uop_bits_ctrl_imm_sel_0 : slot_uop_ctrl_imm_sel; // @[issue-slot.scala:69:7, :102:25, :103:21]
wire [4:0] next_uop_ctrl_op_fcn = io_in_uop_valid_0 ? io_in_uop_bits_ctrl_op_fcn_0 : slot_uop_ctrl_op_fcn; // @[issue-slot.scala:69:7, :102:25, :103:21]
wire next_uop_ctrl_fcn_dw = io_in_uop_valid_0 ? io_in_uop_bits_ctrl_fcn_dw_0 : slot_uop_ctrl_fcn_dw; // @[issue-slot.scala:69:7, :102:25, :103:21]
wire [2:0] next_uop_ctrl_csr_cmd = io_in_uop_valid_0 ? io_in_uop_bits_ctrl_csr_cmd_0 : slot_uop_ctrl_csr_cmd; // @[issue-slot.scala:69:7, :102:25, :103:21]
wire next_uop_ctrl_is_load = io_in_uop_valid_0 ? io_in_uop_bits_ctrl_is_load_0 : slot_uop_ctrl_is_load; // @[issue-slot.scala:69:7, :102:25, :103:21]
wire next_uop_ctrl_is_sta = io_in_uop_valid_0 ? io_in_uop_bits_ctrl_is_sta_0 : slot_uop_ctrl_is_sta; // @[issue-slot.scala:69:7, :102:25, :103:21]
wire next_uop_ctrl_is_std = io_in_uop_valid_0 ? io_in_uop_bits_ctrl_is_std_0 : slot_uop_ctrl_is_std; // @[issue-slot.scala:69:7, :102:25, :103:21]
wire [1:0] next_uop_iw_state = io_in_uop_valid_0 ? io_in_uop_bits_iw_state_0 : slot_uop_iw_state; // @[issue-slot.scala:69:7, :102:25, :103:21]
wire next_uop_iw_p1_poisoned = io_in_uop_valid_0 ? io_in_uop_bits_iw_p1_poisoned_0 : slot_uop_iw_p1_poisoned; // @[issue-slot.scala:69:7, :102:25, :103:21]
wire next_uop_iw_p2_poisoned = io_in_uop_valid_0 ? io_in_uop_bits_iw_p2_poisoned_0 : slot_uop_iw_p2_poisoned; // @[issue-slot.scala:69:7, :102:25, :103:21]
wire next_uop_is_br = io_in_uop_valid_0 ? io_in_uop_bits_is_br_0 : slot_uop_is_br; // @[issue-slot.scala:69:7, :102:25, :103:21]
wire next_uop_is_jalr = io_in_uop_valid_0 ? io_in_uop_bits_is_jalr_0 : slot_uop_is_jalr; // @[issue-slot.scala:69:7, :102:25, :103:21]
wire next_uop_is_jal = io_in_uop_valid_0 ? io_in_uop_bits_is_jal_0 : slot_uop_is_jal; // @[issue-slot.scala:69:7, :102:25, :103:21]
wire next_uop_is_sfb = io_in_uop_valid_0 ? io_in_uop_bits_is_sfb_0 : slot_uop_is_sfb; // @[issue-slot.scala:69:7, :102:25, :103:21]
wire [15:0] next_uop_br_mask = io_in_uop_valid_0 ? io_in_uop_bits_br_mask_0 : slot_uop_br_mask; // @[issue-slot.scala:69:7, :102:25, :103:21]
wire [3:0] next_uop_br_tag = io_in_uop_valid_0 ? io_in_uop_bits_br_tag_0 : slot_uop_br_tag; // @[issue-slot.scala:69:7, :102:25, :103:21]
wire [4:0] next_uop_ftq_idx = io_in_uop_valid_0 ? io_in_uop_bits_ftq_idx_0 : slot_uop_ftq_idx; // @[issue-slot.scala:69:7, :102:25, :103:21]
wire next_uop_edge_inst = io_in_uop_valid_0 ? io_in_uop_bits_edge_inst_0 : slot_uop_edge_inst; // @[issue-slot.scala:69:7, :102:25, :103:21]
wire [5:0] next_uop_pc_lob = io_in_uop_valid_0 ? io_in_uop_bits_pc_lob_0 : slot_uop_pc_lob; // @[issue-slot.scala:69:7, :102:25, :103:21]
wire next_uop_taken = io_in_uop_valid_0 ? io_in_uop_bits_taken_0 : slot_uop_taken; // @[issue-slot.scala:69:7, :102:25, :103:21]
wire [19:0] next_uop_imm_packed = io_in_uop_valid_0 ? io_in_uop_bits_imm_packed_0 : slot_uop_imm_packed; // @[issue-slot.scala:69:7, :102:25, :103:21]
wire [11:0] next_uop_csr_addr = io_in_uop_valid_0 ? io_in_uop_bits_csr_addr_0 : slot_uop_csr_addr; // @[issue-slot.scala:69:7, :102:25, :103:21]
wire [6:0] next_uop_rob_idx = io_in_uop_valid_0 ? io_in_uop_bits_rob_idx_0 : slot_uop_rob_idx; // @[issue-slot.scala:69:7, :102:25, :103:21]
wire [4:0] next_uop_ldq_idx = io_in_uop_valid_0 ? io_in_uop_bits_ldq_idx_0 : slot_uop_ldq_idx; // @[issue-slot.scala:69:7, :102:25, :103:21]
wire [4:0] next_uop_stq_idx = io_in_uop_valid_0 ? io_in_uop_bits_stq_idx_0 : slot_uop_stq_idx; // @[issue-slot.scala:69:7, :102:25, :103:21]
wire [1:0] next_uop_rxq_idx = io_in_uop_valid_0 ? io_in_uop_bits_rxq_idx_0 : slot_uop_rxq_idx; // @[issue-slot.scala:69:7, :102:25, :103:21]
wire [6:0] next_uop_pdst = io_in_uop_valid_0 ? io_in_uop_bits_pdst_0 : slot_uop_pdst; // @[issue-slot.scala:69:7, :102:25, :103:21]
wire [6:0] next_uop_prs1 = io_in_uop_valid_0 ? io_in_uop_bits_prs1_0 : slot_uop_prs1; // @[issue-slot.scala:69:7, :102:25, :103:21]
wire [6:0] next_uop_prs2 = io_in_uop_valid_0 ? io_in_uop_bits_prs2_0 : slot_uop_prs2; // @[issue-slot.scala:69:7, :102:25, :103:21]
wire [6:0] next_uop_prs3 = io_in_uop_valid_0 ? io_in_uop_bits_prs3_0 : slot_uop_prs3; // @[issue-slot.scala:69:7, :102:25, :103:21]
wire [4:0] next_uop_ppred = io_in_uop_valid_0 ? io_in_uop_bits_ppred_0 : slot_uop_ppred; // @[issue-slot.scala:69:7, :102:25, :103:21]
wire next_uop_prs1_busy = io_in_uop_valid_0 ? io_in_uop_bits_prs1_busy_0 : slot_uop_prs1_busy; // @[issue-slot.scala:69:7, :102:25, :103:21]
wire next_uop_prs2_busy = io_in_uop_valid_0 ? io_in_uop_bits_prs2_busy_0 : slot_uop_prs2_busy; // @[issue-slot.scala:69:7, :102:25, :103:21]
wire next_uop_prs3_busy = io_in_uop_valid_0 ? io_in_uop_bits_prs3_busy_0 : slot_uop_prs3_busy; // @[issue-slot.scala:69:7, :102:25, :103:21]
wire next_uop_ppred_busy = io_in_uop_valid_0 ? io_in_uop_bits_ppred_busy_0 : slot_uop_ppred_busy; // @[issue-slot.scala:69:7, :102:25, :103:21]
wire [6:0] next_uop_stale_pdst = io_in_uop_valid_0 ? io_in_uop_bits_stale_pdst_0 : slot_uop_stale_pdst; // @[issue-slot.scala:69:7, :102:25, :103:21]
wire next_uop_exception = io_in_uop_valid_0 ? io_in_uop_bits_exception_0 : slot_uop_exception; // @[issue-slot.scala:69:7, :102:25, :103:21]
wire [63:0] next_uop_exc_cause = io_in_uop_valid_0 ? io_in_uop_bits_exc_cause_0 : slot_uop_exc_cause; // @[issue-slot.scala:69:7, :102:25, :103:21]
wire next_uop_bypassable = io_in_uop_valid_0 ? io_in_uop_bits_bypassable_0 : slot_uop_bypassable; // @[issue-slot.scala:69:7, :102:25, :103:21]
wire [4:0] next_uop_mem_cmd = io_in_uop_valid_0 ? io_in_uop_bits_mem_cmd_0 : slot_uop_mem_cmd; // @[issue-slot.scala:69:7, :102:25, :103:21]
wire [1:0] next_uop_mem_size = io_in_uop_valid_0 ? io_in_uop_bits_mem_size_0 : slot_uop_mem_size; // @[issue-slot.scala:69:7, :102:25, :103:21]
wire next_uop_mem_signed = io_in_uop_valid_0 ? io_in_uop_bits_mem_signed_0 : slot_uop_mem_signed; // @[issue-slot.scala:69:7, :102:25, :103:21]
wire next_uop_is_fence = io_in_uop_valid_0 ? io_in_uop_bits_is_fence_0 : slot_uop_is_fence; // @[issue-slot.scala:69:7, :102:25, :103:21]
wire next_uop_is_fencei = io_in_uop_valid_0 ? io_in_uop_bits_is_fencei_0 : slot_uop_is_fencei; // @[issue-slot.scala:69:7, :102:25, :103:21]
wire next_uop_is_amo = io_in_uop_valid_0 ? io_in_uop_bits_is_amo_0 : slot_uop_is_amo; // @[issue-slot.scala:69:7, :102:25, :103:21]
wire next_uop_uses_ldq = io_in_uop_valid_0 ? io_in_uop_bits_uses_ldq_0 : slot_uop_uses_ldq; // @[issue-slot.scala:69:7, :102:25, :103:21]
wire next_uop_uses_stq = io_in_uop_valid_0 ? io_in_uop_bits_uses_stq_0 : slot_uop_uses_stq; // @[issue-slot.scala:69:7, :102:25, :103:21]
wire next_uop_is_sys_pc2epc = io_in_uop_valid_0 ? io_in_uop_bits_is_sys_pc2epc_0 : slot_uop_is_sys_pc2epc; // @[issue-slot.scala:69:7, :102:25, :103:21]
wire next_uop_is_unique = io_in_uop_valid_0 ? io_in_uop_bits_is_unique_0 : slot_uop_is_unique; // @[issue-slot.scala:69:7, :102:25, :103:21]
wire next_uop_flush_on_commit = io_in_uop_valid_0 ? io_in_uop_bits_flush_on_commit_0 : slot_uop_flush_on_commit; // @[issue-slot.scala:69:7, :102:25, :103:21]
wire next_uop_ldst_is_rs1 = io_in_uop_valid_0 ? io_in_uop_bits_ldst_is_rs1_0 : slot_uop_ldst_is_rs1; // @[issue-slot.scala:69:7, :102:25, :103:21]
wire [5:0] next_uop_ldst = io_in_uop_valid_0 ? io_in_uop_bits_ldst_0 : slot_uop_ldst; // @[issue-slot.scala:69:7, :102:25, :103:21]
wire [5:0] next_uop_lrs1 = io_in_uop_valid_0 ? io_in_uop_bits_lrs1_0 : slot_uop_lrs1; // @[issue-slot.scala:69:7, :102:25, :103:21]
wire [5:0] next_uop_lrs2 = io_in_uop_valid_0 ? io_in_uop_bits_lrs2_0 : slot_uop_lrs2; // @[issue-slot.scala:69:7, :102:25, :103:21]
wire [5:0] next_uop_lrs3 = io_in_uop_valid_0 ? io_in_uop_bits_lrs3_0 : slot_uop_lrs3; // @[issue-slot.scala:69:7, :102:25, :103:21]
wire next_uop_ldst_val = io_in_uop_valid_0 ? io_in_uop_bits_ldst_val_0 : slot_uop_ldst_val; // @[issue-slot.scala:69:7, :102:25, :103:21]
wire [1:0] next_uop_dst_rtype = io_in_uop_valid_0 ? io_in_uop_bits_dst_rtype_0 : slot_uop_dst_rtype; // @[issue-slot.scala:69:7, :102:25, :103:21]
wire [1:0] next_uop_lrs1_rtype = io_in_uop_valid_0 ? io_in_uop_bits_lrs1_rtype_0 : slot_uop_lrs1_rtype; // @[issue-slot.scala:69:7, :102:25, :103:21]
wire [1:0] next_uop_lrs2_rtype = io_in_uop_valid_0 ? io_in_uop_bits_lrs2_rtype_0 : slot_uop_lrs2_rtype; // @[issue-slot.scala:69:7, :102:25, :103:21]
wire next_uop_frs3_en = io_in_uop_valid_0 ? io_in_uop_bits_frs3_en_0 : slot_uop_frs3_en; // @[issue-slot.scala:69:7, :102:25, :103:21]
wire next_uop_fp_val = io_in_uop_valid_0 ? io_in_uop_bits_fp_val_0 : slot_uop_fp_val; // @[issue-slot.scala:69:7, :102:25, :103:21]
wire next_uop_fp_single = io_in_uop_valid_0 ? io_in_uop_bits_fp_single_0 : slot_uop_fp_single; // @[issue-slot.scala:69:7, :102:25, :103:21]
wire next_uop_xcpt_pf_if = io_in_uop_valid_0 ? io_in_uop_bits_xcpt_pf_if_0 : slot_uop_xcpt_pf_if; // @[issue-slot.scala:69:7, :102:25, :103:21]
wire next_uop_xcpt_ae_if = io_in_uop_valid_0 ? io_in_uop_bits_xcpt_ae_if_0 : slot_uop_xcpt_ae_if; // @[issue-slot.scala:69:7, :102:25, :103:21]
wire next_uop_xcpt_ma_if = io_in_uop_valid_0 ? io_in_uop_bits_xcpt_ma_if_0 : slot_uop_xcpt_ma_if; // @[issue-slot.scala:69:7, :102:25, :103:21]
wire next_uop_bp_debug_if = io_in_uop_valid_0 ? io_in_uop_bits_bp_debug_if_0 : slot_uop_bp_debug_if; // @[issue-slot.scala:69:7, :102:25, :103:21]
wire next_uop_bp_xcpt_if = io_in_uop_valid_0 ? io_in_uop_bits_bp_xcpt_if_0 : slot_uop_bp_xcpt_if; // @[issue-slot.scala:69:7, :102:25, :103:21]
wire [1:0] next_uop_debug_fsrc = io_in_uop_valid_0 ? io_in_uop_bits_debug_fsrc_0 : slot_uop_debug_fsrc; // @[issue-slot.scala:69:7, :102:25, :103:21]
wire [1:0] next_uop_debug_tsrc = io_in_uop_valid_0 ? io_in_uop_bits_debug_tsrc_0 : slot_uop_debug_tsrc; // @[issue-slot.scala:69:7, :102:25, :103:21]
wire _T_11 = state == 2'h2; // @[issue-slot.scala:86:22, :134:25]
wire _T_7 = io_grant_0 & state == 2'h1 | io_grant_0 & _T_11 & p1 & p2 & ppred; // @[issue-slot.scala:69:7, :86:22, :87:22, :88:22, :90:22, :133:{26,36,52}, :134:{15,25,40,46,52}]
wire _T_12 = io_grant_0 & _T_11; // @[issue-slot.scala:69:7, :134:25, :139:25]
wire _T_14 = io_ldspec_miss_0 & (p1_poisoned | p2_poisoned); // @[issue-slot.scala:69:7, :95:28, :96:28, :140:{28,44}]
wire _GEN = _T_12 & ~_T_14; // @[issue-slot.scala:126:14, :139:{25,51}, :140:{11,28,62}, :141:18]
wire _GEN_0 = io_kill_0 | _T_7; // @[issue-slot.scala:69:7, :102:25, :131:18, :133:52, :134:63, :139:51]
wire _GEN_1 = _GEN_0 | ~(_T_12 & ~_T_14 & p1); // @[issue-slot.scala:87:22, :102:25, :131:18, :134:63, :139:{25,51}, :140:{11,28,62}, :142:17, :143:23]
assign next_uopc = _GEN_1 ? slot_uop_uopc : 7'h3; // @[issue-slot.scala:82:29, :102:25, :131:18, :134:63, :139:51]
assign next_lrs1_rtype = _GEN_1 ? slot_uop_lrs1_rtype : 2'h2; // @[issue-slot.scala:83:29, :102:25, :131:18, :134:63, :139:51]
wire _GEN_2 = _GEN_0 | ~_GEN | p1; // @[issue-slot.scala:87:22, :102:25, :126:14, :131:18, :134:63, :139:51, :140:62, :141:18, :142:17]
assign next_lrs2_rtype = _GEN_2 ? slot_uop_lrs2_rtype : 2'h2; // @[issue-slot.scala:84:29, :102:25, :131:18, :134:63, :139:51, :140:62, :142:17]
wire _p1_T = ~io_in_uop_bits_prs1_busy_0; // @[issue-slot.scala:69:7, :169:11]
wire _p2_T = ~io_in_uop_bits_prs2_busy_0; // @[issue-slot.scala:69:7, :170:11]
wire _p3_T = ~io_in_uop_bits_prs3_busy_0; // @[issue-slot.scala:69:7, :171:11]
wire _ppred_T = ~io_in_uop_bits_ppred_busy_0; // @[issue-slot.scala:69:7, :172:14]
wire _T_22 = io_ldspec_miss_0 & next_p1_poisoned; // @[issue-slot.scala:69:7, :99:29, :175:24]
wire _T_27 = io_ldspec_miss_0 & next_p2_poisoned; // @[issue-slot.scala:69:7, :100:29, :179:24]
wire _T_85 = io_spec_ld_wakeup_0_valid_0 & io_spec_ld_wakeup_0_bits_0 == next_uop_prs1 & next_uop_lrs1_rtype == 2'h0; // @[issue-slot.scala:69:7, :103:21, :209:38, :210:{33,51}, :211:27]
wire _T_93 = io_spec_ld_wakeup_0_valid_0 & io_spec_ld_wakeup_0_bits_0 == next_uop_prs2 & next_uop_lrs2_rtype == 2'h0; // @[issue-slot.scala:69:7, :103:21, :216:38, :217:{33,51}, :218:27] |
Generate the Verilog code corresponding to the following Chisel files.
File Misc.scala:
// See LICENSE.Berkeley for license details.
// See LICENSE.SiFive for license details.
package freechips.rocketchip.util
import chisel3._
import chisel3.util._
import chisel3.util.random.LFSR
import org.chipsalliance.cde.config.Parameters
import scala.math._
class ParameterizedBundle(implicit p: Parameters) extends Bundle
trait Clocked extends Bundle {
val clock = Clock()
val reset = Bool()
}
object DecoupledHelper {
def apply(rvs: Bool*) = new DecoupledHelper(rvs)
}
class DecoupledHelper(val rvs: Seq[Bool]) {
def fire(exclude: Bool, includes: Bool*) = {
require(rvs.contains(exclude), "Excluded Bool not present in DecoupledHelper! Note that DecoupledHelper uses referential equality for exclusion! If you don't want to exclude anything, use fire()!")
(rvs.filter(_ ne exclude) ++ includes).reduce(_ && _)
}
def fire() = {
rvs.reduce(_ && _)
}
}
object MuxT {
def apply[T <: Data, U <: Data](cond: Bool, con: (T, U), alt: (T, U)): (T, U) =
(Mux(cond, con._1, alt._1), Mux(cond, con._2, alt._2))
def apply[T <: Data, U <: Data, W <: Data](cond: Bool, con: (T, U, W), alt: (T, U, W)): (T, U, W) =
(Mux(cond, con._1, alt._1), Mux(cond, con._2, alt._2), Mux(cond, con._3, alt._3))
def apply[T <: Data, U <: Data, W <: Data, X <: Data](cond: Bool, con: (T, U, W, X), alt: (T, U, W, X)): (T, U, W, X) =
(Mux(cond, con._1, alt._1), Mux(cond, con._2, alt._2), Mux(cond, con._3, alt._3), Mux(cond, con._4, alt._4))
}
/** Creates a cascade of n MuxTs to search for a key value. */
object MuxTLookup {
def apply[S <: UInt, T <: Data, U <: Data](key: S, default: (T, U), mapping: Seq[(S, (T, U))]): (T, U) = {
var res = default
for ((k, v) <- mapping.reverse)
res = MuxT(k === key, v, res)
res
}
def apply[S <: UInt, T <: Data, U <: Data, W <: Data](key: S, default: (T, U, W), mapping: Seq[(S, (T, U, W))]): (T, U, W) = {
var res = default
for ((k, v) <- mapping.reverse)
res = MuxT(k === key, v, res)
res
}
}
object ValidMux {
def apply[T <: Data](v1: ValidIO[T], v2: ValidIO[T]*): ValidIO[T] = {
apply(v1 +: v2.toSeq)
}
def apply[T <: Data](valids: Seq[ValidIO[T]]): ValidIO[T] = {
val out = Wire(Valid(valids.head.bits.cloneType))
out.valid := valids.map(_.valid).reduce(_ || _)
out.bits := MuxCase(valids.head.bits,
valids.map(v => (v.valid -> v.bits)))
out
}
}
object Str
{
def apply(s: String): UInt = {
var i = BigInt(0)
require(s.forall(validChar _))
for (c <- s)
i = (i << 8) | c
i.U((s.length*8).W)
}
def apply(x: Char): UInt = {
require(validChar(x))
x.U(8.W)
}
def apply(x: UInt): UInt = apply(x, 10)
def apply(x: UInt, radix: Int): UInt = {
val rad = radix.U
val w = x.getWidth
require(w > 0)
var q = x
var s = digit(q % rad)
for (i <- 1 until ceil(log(2)/log(radix)*w).toInt) {
q = q / rad
s = Cat(Mux((radix == 10).B && q === 0.U, Str(' '), digit(q % rad)), s)
}
s
}
def apply(x: SInt): UInt = apply(x, 10)
def apply(x: SInt, radix: Int): UInt = {
val neg = x < 0.S
val abs = x.abs.asUInt
if (radix != 10) {
Cat(Mux(neg, Str('-'), Str(' ')), Str(abs, radix))
} else {
val rad = radix.U
val w = abs.getWidth
require(w > 0)
var q = abs
var s = digit(q % rad)
var needSign = neg
for (i <- 1 until ceil(log(2)/log(radix)*w).toInt) {
q = q / rad
val placeSpace = q === 0.U
val space = Mux(needSign, Str('-'), Str(' '))
needSign = needSign && !placeSpace
s = Cat(Mux(placeSpace, space, digit(q % rad)), s)
}
Cat(Mux(needSign, Str('-'), Str(' ')), s)
}
}
private def digit(d: UInt): UInt = Mux(d < 10.U, Str('0')+d, Str(('a'-10).toChar)+d)(7,0)
private def validChar(x: Char) = x == (x & 0xFF)
}
object Split
{
def apply(x: UInt, n0: Int) = {
val w = x.getWidth
(x.extract(w-1,n0), x.extract(n0-1,0))
}
def apply(x: UInt, n1: Int, n0: Int) = {
val w = x.getWidth
(x.extract(w-1,n1), x.extract(n1-1,n0), x.extract(n0-1,0))
}
def apply(x: UInt, n2: Int, n1: Int, n0: Int) = {
val w = x.getWidth
(x.extract(w-1,n2), x.extract(n2-1,n1), x.extract(n1-1,n0), x.extract(n0-1,0))
}
}
object Random
{
def apply(mod: Int, random: UInt): UInt = {
if (isPow2(mod)) random.extract(log2Ceil(mod)-1,0)
else PriorityEncoder(partition(apply(1 << log2Up(mod*8), random), mod))
}
def apply(mod: Int): UInt = apply(mod, randomizer)
def oneHot(mod: Int, random: UInt): UInt = {
if (isPow2(mod)) UIntToOH(random(log2Up(mod)-1,0))
else PriorityEncoderOH(partition(apply(1 << log2Up(mod*8), random), mod)).asUInt
}
def oneHot(mod: Int): UInt = oneHot(mod, randomizer)
private def randomizer = LFSR(16)
private def partition(value: UInt, slices: Int) =
Seq.tabulate(slices)(i => value < (((i + 1) << value.getWidth) / slices).U)
}
object Majority {
def apply(in: Set[Bool]): Bool = {
val n = (in.size >> 1) + 1
val clauses = in.subsets(n).map(_.reduce(_ && _))
clauses.reduce(_ || _)
}
def apply(in: Seq[Bool]): Bool = apply(in.toSet)
def apply(in: UInt): Bool = apply(in.asBools.toSet)
}
object PopCountAtLeast {
private def two(x: UInt): (Bool, Bool) = x.getWidth match {
case 1 => (x.asBool, false.B)
case n =>
val half = x.getWidth / 2
val (leftOne, leftTwo) = two(x(half - 1, 0))
val (rightOne, rightTwo) = two(x(x.getWidth - 1, half))
(leftOne || rightOne, leftTwo || rightTwo || (leftOne && rightOne))
}
def apply(x: UInt, n: Int): Bool = n match {
case 0 => true.B
case 1 => x.orR
case 2 => two(x)._2
case 3 => PopCount(x) >= n.U
}
}
// This gets used everywhere, so make the smallest circuit possible ...
// Given an address and size, create a mask of beatBytes size
// eg: (0x3, 0, 4) => 0001, (0x3, 1, 4) => 0011, (0x3, 2, 4) => 1111
// groupBy applies an interleaved OR reduction; groupBy=2 take 0010 => 01
object MaskGen {
def apply(addr_lo: UInt, lgSize: UInt, beatBytes: Int, groupBy: Int = 1): UInt = {
require (groupBy >= 1 && beatBytes >= groupBy)
require (isPow2(beatBytes) && isPow2(groupBy))
val lgBytes = log2Ceil(beatBytes)
val sizeOH = UIntToOH(lgSize | 0.U(log2Up(beatBytes).W), log2Up(beatBytes)) | (groupBy*2 - 1).U
def helper(i: Int): Seq[(Bool, Bool)] = {
if (i == 0) {
Seq((lgSize >= lgBytes.asUInt, true.B))
} else {
val sub = helper(i-1)
val size = sizeOH(lgBytes - i)
val bit = addr_lo(lgBytes - i)
val nbit = !bit
Seq.tabulate (1 << i) { j =>
val (sub_acc, sub_eq) = sub(j/2)
val eq = sub_eq && (if (j % 2 == 1) bit else nbit)
val acc = sub_acc || (size && eq)
(acc, eq)
}
}
}
if (groupBy == beatBytes) 1.U else
Cat(helper(lgBytes-log2Ceil(groupBy)).map(_._1).reverse)
}
}
File L2MemHelperLatencyInjection.scala:
package compressacc
import chisel3._
import chisel3.util._
import chisel3.{Printable}
import chisel3.reflect.DataMirror
import freechips.rocketchip.tile._
import org.chipsalliance.cde.config._
import freechips.rocketchip.diplomacy._
import freechips.rocketchip.rocket.{TLBConfig, TLBPTWIO, TLB, MStatus, PRV}
import freechips.rocketchip.util.DecoupledHelper
import freechips.rocketchip.rocket.constants.MemoryOpConstants
import freechips.rocketchip.rocket.{RAS}
import freechips.rocketchip.tilelink._
class L2MemHelperLatencyInjection(printInfo: String = "", numOutstandingReqs: Int = 32, queueRequests: Boolean = false, queueResponses: Boolean = false, printWriteBytes: Boolean = false)(implicit p: Parameters) extends LazyModule {
val numOutstandingRequestsAllowed = numOutstandingReqs
val tlTagBits = log2Ceil(numOutstandingRequestsAllowed)
lazy val module = new L2MemHelperLatencyInjectionModule(this, printInfo, queueRequests, queueResponses, printWriteBytes)
val masterNode = TLClientNode(Seq(TLClientPortParameters(
Seq(TLClientParameters(name = printInfo, sourceId = IdRange(0,
numOutstandingRequestsAllowed)))
)))
}
class L2MemHelperLatencyInjectionModule(outer: L2MemHelperLatencyInjection, printInfo: String = "", queueRequests: Boolean = false, queueResponses: Boolean = false, printWriteBytes: Boolean = false)(implicit p: Parameters) extends LazyModuleImp(outer)
with HasCoreParameters
with MemoryOpConstants {
val io = IO(new Bundle {
val userif = Flipped(new L2MemHelperBundle)
val latency_inject_cycles = Input(UInt(64.W))
val sfence = Input(Bool())
val ptw = new TLBPTWIO
val status = Flipped(Valid(new MStatus))
})
val (dmem, edge) = outer.masterNode.out.head
val request_input = Wire(Decoupled(new L2ReqInternal))
if (!queueRequests) {
request_input <> io.userif.req
} else {
val requestQueue = Module(new Queue(new L2ReqInternal, 4))
request_input <> requestQueue.io.deq
requestQueue.io.enq <> io.userif.req
}
val response_output = Wire(Decoupled(new L2RespInternal))
if (!queueResponses) {
io.userif.resp <> response_output
} else {
val responseQueue = Module(new Queue(new L2RespInternal, 4))
responseQueue.io.enq <> response_output
io.userif.resp <> responseQueue.io.deq
}
val status = Reg(new MStatus)
when (io.status.valid) {
CompressAccelLogger.logInfo(printInfo + " setting status.dprv to: %x compare %x\n", io.status.bits.dprv, PRV.M.U)
status := io.status.bits
}
val tlb = Module(new TLB(false, log2Ceil(coreDataBytes), p(CompressAccelTLB).get)(edge, p))
tlb.io.req.valid := request_input.valid
tlb.io.req.bits.vaddr := request_input.bits.addr
tlb.io.req.bits.size := request_input.bits.size
tlb.io.req.bits.cmd := request_input.bits.cmd
tlb.io.req.bits.passthrough := false.B
val tlb_ready = tlb.io.req.ready && !tlb.io.resp.miss
tlb.io.req.bits.prv := DontCare
tlb.io.req.bits.v := DontCare
tlb.io.sfence.bits.hv := DontCare
tlb.io.sfence.bits.hg := DontCare
io.ptw <> tlb.io.ptw
tlb.io.ptw.status := status
tlb.io.sfence.valid := io.sfence
tlb.io.sfence.bits.rs1 := false.B
tlb.io.sfence.bits.rs2 := false.B
tlb.io.sfence.bits.addr := 0.U
tlb.io.sfence.bits.asid := 0.U
tlb.io.kill := false.B
val outstanding_req_addr = Module(new Queue(new L2InternalTracking, outer.numOutstandingRequestsAllowed * 4))
val tags_for_issue_Q = Module(new Queue(UInt(outer.tlTagBits.W), outer.numOutstandingRequestsAllowed * 2))
tags_for_issue_Q.io.enq.valid := false.B
tags_for_issue_Q.io.enq.bits := DontCare
val tags_init_reg = RegInit(0.U((outer.tlTagBits+1).W))
when (tags_init_reg =/= (outer.numOutstandingRequestsAllowed).U) {
tags_for_issue_Q.io.enq.bits := tags_init_reg
tags_for_issue_Q.io.enq.valid := true.B
when (tags_for_issue_Q.io.enq.ready) {
CompressAccelLogger.logInfo(printInfo + " tags_for_issue_Q init with value %d\n", tags_for_issue_Q.io.enq.bits)
tags_init_reg := tags_init_reg + 1.U
}
}
val addr_mask_check = (1.U(64.W) << request_input.bits.size) - 1.U
val assertcheck = RegNext((!request_input.valid) || ((request_input.bits.addr & addr_mask_check) === 0.U))
when (!assertcheck) {
CompressAccelLogger.logInfo(printInfo + " L2IF: access addr must be aligned to write width\n")
}
assert(assertcheck,
printInfo + " L2IF: access addr must be aligned to write width\n")
val global_memop_accepted = RegInit(0.U(64.W))
when (io.userif.req.fire) {
global_memop_accepted := global_memop_accepted + 1.U
}
val global_memop_sent = RegInit(0.U(64.W))
val global_memop_ackd = RegInit(0.U(64.W))
val global_memop_resp_to_user = RegInit(0.U(64.W))
io.userif.no_memops_inflight := global_memop_accepted === global_memop_ackd
val free_outstanding_op_slots = (global_memop_sent - global_memop_ackd) < (1 << outer.tlTagBits).U
val assert_free_outstanding_op_slots = (global_memop_sent - global_memop_ackd) <= (1 << outer.tlTagBits).U
when (!assert_free_outstanding_op_slots) {
CompressAccelLogger.logInfo(printInfo + " L2IF: Too many outstanding requests for tag count.\n")
}
assert(assert_free_outstanding_op_slots,
printInfo + " L2IF: Too many outstanding requests for tag count.\n")
when (request_input.fire) {
global_memop_sent := global_memop_sent + 1.U
}
val sendtag = tags_for_issue_Q.io.deq.bits
val cur_cycle = RegInit(0.U(64.W))
cur_cycle := cur_cycle + 1.U
val release_cycle_q_depth = 2 * outer.numOutstandingRequestsAllowed
val request_latency_injection_q = Module(new LatencyInjectionQueue(DataMirror.internal.chiselTypeClone[TLBundleA](dmem.a.bits), release_cycle_q_depth))
// val req_release_cycle_q = Module(new Queue(UInt(64.W), release_cycle_q_depth, flow=true))
// val req_q = Module(new Queue(DataMirror.internal.chiselTypeClone[TLBundleA](dmem.a.bits), release_cycle_q_depth, flow=true))
// req_release_cycle_q.io.enq.bits := cur_cycle + io.latency_inject_cycles
request_latency_injection_q.io.latency_cycles := io.latency_inject_cycles
request_latency_injection_q.io.enq.bits := DontCare
when (request_input.bits.cmd === M_XRD) {
val (legal, bundle) = edge.Get(fromSource=sendtag,
toAddress=tlb.io.resp.paddr,
lgSize=request_input.bits.size)
request_latency_injection_q.io.enq.bits := bundle
// dmem.a.bits := bundle
} .elsewhen (request_input.bits.cmd === M_XWR) {
val (legal, bundle) = edge.Put(fromSource=sendtag,
toAddress=tlb.io.resp.paddr,
lgSize=request_input.bits.size,
data=request_input.bits.data << ((request_input.bits.addr(4, 0) << 3)))
request_latency_injection_q.io.enq.bits := bundle
// dmem.a.bits := bundle
} .elsewhen (request_input.valid) {
CompressAccelLogger.logInfo(printInfo + " ERR")
assert(false.B, "ERR")
}
val tl_resp_queues = Seq.fill(outer.numOutstandingRequestsAllowed)(
Module(new Queue(new L2RespInternal, 4, flow=true)).io)
// val current_request_tag_has_response_space = tl_resp_queues(tags_for_issue_Q.io.deq.bits).enq.ready
val current_request_tag_has_response_space = tl_resp_queues.zipWithIndex.map({ case (q, idx) =>
q.enq.ready && (idx.U === tags_for_issue_Q.io.deq.bits)
}).reduce(_ || _)
val fire_req = DecoupledHelper(
request_input.valid,
request_latency_injection_q.io.enq.ready,
tlb_ready,
outstanding_req_addr.io.enq.ready,
free_outstanding_op_slots,
tags_for_issue_Q.io.deq.valid,
current_request_tag_has_response_space
)
outstanding_req_addr.io.enq.bits.addrindex := request_input.bits.addr & 0x1F.U
outstanding_req_addr.io.enq.bits.tag := sendtag
request_latency_injection_q.io.enq.valid := fire_req.fire(request_latency_injection_q.io.enq.ready)
request_input.ready := fire_req.fire(request_input.valid)
outstanding_req_addr.io.enq.valid := fire_req.fire(outstanding_req_addr.io.enq.ready)
tags_for_issue_Q.io.deq.ready := fire_req.fire(tags_for_issue_Q.io.deq.valid)
dmem.a <> request_latency_injection_q.io.deq
when (dmem.a.fire) {
when (request_input.bits.cmd === M_XRD) {
CompressAccelLogger.logInfo(printInfo + " L2IF: req(read) vaddr: 0x%x, paddr: 0x%x, wid: 0x%x, opnum: %d, sendtag: %d\n",
request_input.bits.addr,
tlb.io.resp.paddr,
request_input.bits.size,
global_memop_sent,
sendtag)
}
}
when (fire_req.fire) {
when (request_input.bits.cmd === M_XWR) {
CompressAccelLogger.logCritical(printInfo + " L2IF: req(write) vaddr: 0x%x, paddr: 0x%x, wid: 0x%x, data: 0x%x, opnum: %d, sendtag: %d\n",
request_input.bits.addr,
tlb.io.resp.paddr,
request_input.bits.size,
request_input.bits.data,
global_memop_sent,
sendtag)
if (printWriteBytes) {
for (i <- 0 until 32) {
when (i.U < (1.U << request_input.bits.size)) {
CompressAccelLogger.logInfo("WRITE_BYTE ADDR: 0x%x BYTE: 0x%x " + printInfo + "\n", request_input.bits.addr + i.U, (request_input.bits.data >> (i*8).U)(7, 0))
}
}
}
}
}
val response_latency_injection_q = Module(new LatencyInjectionQueue(DataMirror.internal.chiselTypeClone[TLBundleD](dmem.d.bits), release_cycle_q_depth))
response_latency_injection_q.io.latency_cycles := io.latency_inject_cycles
response_latency_injection_q.io.enq <> dmem.d
// val selectQready = tl_resp_queues(response_latency_injection_q.io.deq.bits.source).enq.ready
val selectQready = tl_resp_queues.zipWithIndex.map({ case(q, idx) =>
q.enq.ready && (idx.U === response_latency_injection_q.io.deq.bits.source)
}).reduce(_ || _)
val fire_actual_mem_resp = DecoupledHelper(
selectQready,
response_latency_injection_q.io.deq.valid,
tags_for_issue_Q.io.enq.ready
)
when (fire_actual_mem_resp.fire(tags_for_issue_Q.io.enq.ready)) {
tags_for_issue_Q.io.enq.valid := true.B
tags_for_issue_Q.io.enq.bits := response_latency_injection_q.io.deq.bits.source
}
when (fire_actual_mem_resp.fire(tags_for_issue_Q.io.enq.ready) &&
tags_for_issue_Q.io.enq.valid) {
CompressAccelLogger.logInfo(printInfo + " tags_for_issue_Q add back tag %d\n", tags_for_issue_Q.io.enq.bits)
}
response_latency_injection_q.io.deq.ready := fire_actual_mem_resp.fire(response_latency_injection_q.io.deq.valid)
for (i <- 0 until outer.numOutstandingRequestsAllowed) {
tl_resp_queues(i).enq.valid := fire_actual_mem_resp.fire(selectQready) && (response_latency_injection_q.io.deq.bits.source === i.U)
tl_resp_queues(i).enq.bits.data := response_latency_injection_q.io.deq.bits.data
}
// val currentQueue = tl_resp_queues(outstanding_req_addr.io.deq.bits.tag)
// val queueValid = currentQueue.deq.valid
val queueValid = tl_resp_queues.zipWithIndex.map({ case(q, idx) =>
q.deq.valid && (idx.U === outstanding_req_addr.io.deq.bits.tag)
}).reduce(_ || _)
val fire_user_resp = DecoupledHelper(
queueValid,
response_output.ready,
outstanding_req_addr.io.deq.valid
)
// val resultdata = currentQueue.deq.bits.data >> (outstanding_req_addr.io.deq.bits.addrindex << 3)
val resultdata = tl_resp_queues.zipWithIndex.map({ case(q, idx) =>
val is_current_q = (idx.U === outstanding_req_addr.io.deq.bits.tag)
val data = Wire(q.deq.bits.data.cloneType)
when (is_current_q) {
data := q.deq.bits.data >> (outstanding_req_addr.io.deq.bits.addrindex << 3)
} .otherwise {
data := 0.U
}
data
}).reduce(_ | _)
response_output.bits.data := resultdata
response_output.valid := fire_user_resp.fire(response_output.ready)
outstanding_req_addr.io.deq.ready := fire_user_resp.fire(outstanding_req_addr.io.deq.valid)
for (i <- 0 until outer.numOutstandingRequestsAllowed) {
tl_resp_queues(i).deq.ready := fire_user_resp.fire(queueValid) && (outstanding_req_addr.io.deq.bits.tag === i.U)
}
when (dmem.d.fire) {
when (edge.hasData(dmem.d.bits)) {
CompressAccelLogger.logInfo(printInfo + " L2IF: resp(read) data: 0x%x, opnum: %d, gettag: %d\n",
dmem.d.bits.data,
global_memop_ackd,
dmem.d.bits.source)
} .otherwise {
CompressAccelLogger.logInfo(printInfo + " L2IF: resp(write) opnum: %d, gettag: %d\n",
global_memop_ackd,
dmem.d.bits.source)
}
}
when (response_output.fire) {
CompressAccelLogger.logInfo(printInfo + " L2IF: realresp() data: 0x%x, opnum: %d, gettag: %d\n",
resultdata,
global_memop_resp_to_user,
outstanding_req_addr.io.deq.bits.tag)
}
when (response_latency_injection_q.io.deq.fire) {
global_memop_ackd := global_memop_ackd + 1.U
}
when (response_output.fire) {
global_memop_resp_to_user := global_memop_resp_to_user + 1.U
}
}
File LazyModuleImp.scala:
package org.chipsalliance.diplomacy.lazymodule
import chisel3.{withClockAndReset, Module, RawModule, Reset, _}
import chisel3.experimental.{ChiselAnnotation, CloneModuleAsRecord, SourceInfo}
import firrtl.passes.InlineAnnotation
import org.chipsalliance.cde.config.Parameters
import org.chipsalliance.diplomacy.nodes.Dangle
import scala.collection.immutable.SortedMap
/** Trait describing the actual [[Module]] implementation wrapped by a [[LazyModule]].
*
* This is the actual Chisel module that is lazily-evaluated in the second phase of Diplomacy.
*/
sealed trait LazyModuleImpLike extends RawModule {
/** [[LazyModule]] that contains this instance. */
val wrapper: LazyModule
/** IOs that will be automatically "punched" for this instance. */
val auto: AutoBundle
/** The metadata that describes the [[HalfEdge]]s which generated [[auto]]. */
protected[diplomacy] val dangles: Seq[Dangle]
// [[wrapper.module]] had better not be accessed while LazyModules are still being built!
require(
LazyModule.scope.isEmpty,
s"${wrapper.name}.module was constructed before LazyModule() was run on ${LazyModule.scope.get.name}"
)
/** Set module name. Defaults to the containing LazyModule's desiredName. */
override def desiredName: String = wrapper.desiredName
suggestName(wrapper.suggestedName)
/** [[Parameters]] for chisel [[Module]]s. */
implicit val p: Parameters = wrapper.p
/** instantiate this [[LazyModule]], return [[AutoBundle]] and a unconnected [[Dangle]]s from this module and
* submodules.
*/
protected[diplomacy] def instantiate(): (AutoBundle, List[Dangle]) = {
// 1. It will recursively append [[wrapper.children]] into [[chisel3.internal.Builder]],
// 2. return [[Dangle]]s from each module.
val childDangles = wrapper.children.reverse.flatMap { c =>
implicit val sourceInfo: SourceInfo = c.info
c.cloneProto.map { cp =>
// If the child is a clone, then recursively set cloneProto of its children as well
def assignCloneProtos(bases: Seq[LazyModule], clones: Seq[LazyModule]): Unit = {
require(bases.size == clones.size)
(bases.zip(clones)).map { case (l, r) =>
require(l.getClass == r.getClass, s"Cloned children class mismatch ${l.name} != ${r.name}")
l.cloneProto = Some(r)
assignCloneProtos(l.children, r.children)
}
}
assignCloneProtos(c.children, cp.children)
// Clone the child module as a record, and get its [[AutoBundle]]
val clone = CloneModuleAsRecord(cp.module).suggestName(c.suggestedName)
val clonedAuto = clone("auto").asInstanceOf[AutoBundle]
// Get the empty [[Dangle]]'s of the cloned child
val rawDangles = c.cloneDangles()
require(rawDangles.size == clonedAuto.elements.size)
// Assign the [[AutoBundle]] fields of the cloned record to the empty [[Dangle]]'s
val dangles = (rawDangles.zip(clonedAuto.elements)).map { case (d, (_, io)) => d.copy(dataOpt = Some(io)) }
dangles
}.getOrElse {
// For non-clones, instantiate the child module
val mod = try {
Module(c.module)
} catch {
case e: ChiselException => {
println(s"Chisel exception caught when instantiating ${c.name} within ${this.name} at ${c.line}")
throw e
}
}
mod.dangles
}
}
// Ask each node in this [[LazyModule]] to call [[BaseNode.instantiate]].
// This will result in a sequence of [[Dangle]] from these [[BaseNode]]s.
val nodeDangles = wrapper.nodes.reverse.flatMap(_.instantiate())
// Accumulate all the [[Dangle]]s from this node and any accumulated from its [[wrapper.children]]
val allDangles = nodeDangles ++ childDangles
// Group [[allDangles]] by their [[source]].
val pairing = SortedMap(allDangles.groupBy(_.source).toSeq: _*)
// For each [[source]] set of [[Dangle]]s of size 2, ensure that these
// can be connected as a source-sink pair (have opposite flipped value).
// Make the connection and mark them as [[done]].
val done = Set() ++ pairing.values.filter(_.size == 2).map {
case Seq(a, b) =>
require(a.flipped != b.flipped)
// @todo <> in chisel3 makes directionless connection.
if (a.flipped) {
a.data <> b.data
} else {
b.data <> a.data
}
a.source
case _ => None
}
// Find all [[Dangle]]s which are still not connected. These will end up as [[AutoBundle]] [[IO]] ports on the module.
val forward = allDangles.filter(d => !done(d.source))
// Generate [[AutoBundle]] IO from [[forward]].
val auto = IO(new AutoBundle(forward.map { d => (d.name, d.data, d.flipped) }: _*))
// Pass the [[Dangle]]s which remained and were used to generate the [[AutoBundle]] I/O ports up to the [[parent]] [[LazyModule]]
val dangles = (forward.zip(auto.elements)).map { case (d, (_, io)) =>
if (d.flipped) {
d.data <> io
} else {
io <> d.data
}
d.copy(dataOpt = Some(io), name = wrapper.suggestedName + "_" + d.name)
}
// Push all [[LazyModule.inModuleBody]] to [[chisel3.internal.Builder]].
wrapper.inModuleBody.reverse.foreach {
_()
}
if (wrapper.shouldBeInlined) {
chisel3.experimental.annotate(new ChiselAnnotation {
def toFirrtl = InlineAnnotation(toNamed)
})
}
// Return [[IO]] and [[Dangle]] of this [[LazyModuleImp]].
(auto, dangles)
}
}
/** Actual description of a [[Module]] which can be instantiated by a call to [[LazyModule.module]].
*
* @param wrapper
* the [[LazyModule]] from which the `.module` call is being made.
*/
class LazyModuleImp(val wrapper: LazyModule) extends Module with LazyModuleImpLike {
/** Instantiate hardware of this `Module`. */
val (auto, dangles) = instantiate()
}
/** Actual description of a [[RawModule]] which can be instantiated by a call to [[LazyModule.module]].
*
* @param wrapper
* the [[LazyModule]] from which the `.module` call is being made.
*/
class LazyRawModuleImp(val wrapper: LazyModule) extends RawModule with LazyModuleImpLike {
// These wires are the default clock+reset for all LazyModule children.
// It is recommended to drive these even if you manually drive the [[clock]] and [[reset]] of all of the
// [[LazyRawModuleImp]] children.
// Otherwise, anonymous children ([[Monitor]]s for example) will not have their [[clock]] and/or [[reset]] driven properly.
/** drive clock explicitly. */
val childClock: Clock = Wire(Clock())
/** drive reset explicitly. */
val childReset: Reset = Wire(Reset())
// the default is that these are disabled
childClock := false.B.asClock
childReset := chisel3.DontCare
def provideImplicitClockToLazyChildren: Boolean = false
val (auto, dangles) =
if (provideImplicitClockToLazyChildren) {
withClockAndReset(childClock, childReset) { instantiate() }
} else {
instantiate()
}
}
File Util.scala:
package compressacc
import chisel3._
import chisel3.util._
import chisel3.{Printable}
import freechips.rocketchip.tile._
import org.chipsalliance.cde.config._
import freechips.rocketchip.diplomacy._
import freechips.rocketchip.rocket.{TLBConfig}
import freechips.rocketchip.util.DecoupledHelper
import freechips.rocketchip.rocket.constants.MemoryOpConstants
object CompressAccelLogger {
def logInfo(format: String, args: Bits*)(implicit p: Parameters) {
val loginfo_cycles = RegInit(0.U(64.W))
loginfo_cycles := loginfo_cycles + 1.U
printf("cy: %d, ", loginfo_cycles)
printf(Printable.pack(format, args:_*))
}
def logCritical(format: String, args: Bits*)(implicit p: Parameters) {
val loginfo_cycles = RegInit(0.U(64.W))
loginfo_cycles := loginfo_cycles + 1.U
if (p(CompressAccelPrintfEnable)) {
printf(midas.targetutils.SynthesizePrintf("cy: %d, ", loginfo_cycles))
printf(midas.targetutils.SynthesizePrintf(format, args:_*))
} else {
printf("cy: %d, ", loginfo_cycles)
printf(Printable.pack(format, args:_*))
}
}
def logWaveStyle(format: String, args: Bits*)(implicit p: Parameters) {
}
}
object CompressAccelParams {
}
File Parameters.scala:
// See LICENSE.SiFive for license details.
package freechips.rocketchip.diplomacy
import chisel3._
import chisel3.util.{DecoupledIO, Queue, ReadyValidIO, isPow2, log2Ceil, log2Floor}
import freechips.rocketchip.util.ShiftQueue
/** Options for describing the attributes of memory regions */
object RegionType {
// Define the 'more relaxed than' ordering
val cases = Seq(CACHED, TRACKED, UNCACHED, IDEMPOTENT, VOLATILE, PUT_EFFECTS, GET_EFFECTS)
sealed trait T extends Ordered[T] {
def compare(that: T): Int = cases.indexOf(that) compare cases.indexOf(this)
}
case object CACHED extends T // an intermediate agent may have cached a copy of the region for you
case object TRACKED extends T // the region may have been cached by another master, but coherence is being provided
case object UNCACHED extends T // the region has not been cached yet, but should be cached when possible
case object IDEMPOTENT extends T // gets return most recently put content, but content should not be cached
case object VOLATILE extends T // content may change without a put, but puts and gets have no side effects
case object PUT_EFFECTS extends T // puts produce side effects and so must not be combined/delayed
case object GET_EFFECTS extends T // gets produce side effects and so must not be issued speculatively
}
// A non-empty half-open range; [start, end)
case class IdRange(start: Int, end: Int) extends Ordered[IdRange]
{
require (start >= 0, s"Ids cannot be negative, but got: $start.")
require (start <= end, "Id ranges cannot be negative.")
def compare(x: IdRange) = {
val primary = (this.start - x.start).signum
val secondary = (x.end - this.end).signum
if (primary != 0) primary else secondary
}
def overlaps(x: IdRange) = start < x.end && x.start < end
def contains(x: IdRange) = start <= x.start && x.end <= end
def contains(x: Int) = start <= x && x < end
def contains(x: UInt) =
if (size == 0) {
false.B
} else if (size == 1) { // simple comparison
x === start.U
} else {
// find index of largest different bit
val largestDeltaBit = log2Floor(start ^ (end-1))
val smallestCommonBit = largestDeltaBit + 1 // may not exist in x
val uncommonMask = (1 << smallestCommonBit) - 1
val uncommonBits = (x | 0.U(smallestCommonBit.W))(largestDeltaBit, 0)
// the prefix must match exactly (note: may shift ALL bits away)
(x >> smallestCommonBit) === (start >> smallestCommonBit).U &&
// firrtl constant prop range analysis can eliminate these two:
(start & uncommonMask).U <= uncommonBits &&
uncommonBits <= ((end-1) & uncommonMask).U
}
def shift(x: Int) = IdRange(start+x, end+x)
def size = end - start
def isEmpty = end == start
def range = start until end
}
object IdRange
{
def overlaps(s: Seq[IdRange]) = if (s.isEmpty) None else {
val ranges = s.sorted
(ranges.tail zip ranges.init) find { case (a, b) => a overlaps b }
}
}
// An potentially empty inclusive range of 2-powers [min, max] (in bytes)
case class TransferSizes(min: Int, max: Int)
{
def this(x: Int) = this(x, x)
require (min <= max, s"Min transfer $min > max transfer $max")
require (min >= 0 && max >= 0, s"TransferSizes must be positive, got: ($min, $max)")
require (max == 0 || isPow2(max), s"TransferSizes must be a power of 2, got: $max")
require (min == 0 || isPow2(min), s"TransferSizes must be a power of 2, got: $min")
require (max == 0 || min != 0, s"TransferSize 0 is forbidden unless (0,0), got: ($min, $max)")
def none = min == 0
def contains(x: Int) = isPow2(x) && min <= x && x <= max
def containsLg(x: Int) = contains(1 << x)
def containsLg(x: UInt) =
if (none) false.B
else if (min == max) { log2Ceil(min).U === x }
else { log2Ceil(min).U <= x && x <= log2Ceil(max).U }
def contains(x: TransferSizes) = x.none || (min <= x.min && x.max <= max)
def intersect(x: TransferSizes) =
if (x.max < min || max < x.min) TransferSizes.none
else TransferSizes(scala.math.max(min, x.min), scala.math.min(max, x.max))
// Not a union, because the result may contain sizes contained by neither term
// NOT TO BE CONFUSED WITH COVERPOINTS
def mincover(x: TransferSizes) = {
if (none) {
x
} else if (x.none) {
this
} else {
TransferSizes(scala.math.min(min, x.min), scala.math.max(max, x.max))
}
}
override def toString() = "TransferSizes[%d, %d]".format(min, max)
}
object TransferSizes {
def apply(x: Int) = new TransferSizes(x)
val none = new TransferSizes(0)
def mincover(seq: Seq[TransferSizes]) = seq.foldLeft(none)(_ mincover _)
def intersect(seq: Seq[TransferSizes]) = seq.reduce(_ intersect _)
implicit def asBool(x: TransferSizes) = !x.none
}
// AddressSets specify the address space managed by the manager
// Base is the base address, and mask are the bits consumed by the manager
// e.g: base=0x200, mask=0xff describes a device managing 0x200-0x2ff
// e.g: base=0x1000, mask=0xf0f decribes a device managing 0x1000-0x100f, 0x1100-0x110f, ...
case class AddressSet(base: BigInt, mask: BigInt) extends Ordered[AddressSet]
{
// Forbid misaligned base address (and empty sets)
require ((base & mask) == 0, s"Mis-aligned AddressSets are forbidden, got: ${this.toString}")
require (base >= 0, s"AddressSet negative base is ambiguous: $base") // TL2 address widths are not fixed => negative is ambiguous
// We do allow negative mask (=> ignore all high bits)
def contains(x: BigInt) = ((x ^ base) & ~mask) == 0
def contains(x: UInt) = ((x ^ base.U).zext & (~mask).S) === 0.S
// turn x into an address contained in this set
def legalize(x: UInt): UInt = base.U | (mask.U & x)
// overlap iff bitwise: both care (~mask0 & ~mask1) => both equal (base0=base1)
def overlaps(x: AddressSet) = (~(mask | x.mask) & (base ^ x.base)) == 0
// contains iff bitwise: x.mask => mask && contains(x.base)
def contains(x: AddressSet) = ((x.mask | (base ^ x.base)) & ~mask) == 0
// The number of bytes to which the manager must be aligned
def alignment = ((mask + 1) & ~mask)
// Is this a contiguous memory range
def contiguous = alignment == mask+1
def finite = mask >= 0
def max = { require (finite, "Max cannot be calculated on infinite mask"); base | mask }
// Widen the match function to ignore all bits in imask
def widen(imask: BigInt) = AddressSet(base & ~imask, mask | imask)
// Return an AddressSet that only contains the addresses both sets contain
def intersect(x: AddressSet): Option[AddressSet] = {
if (!overlaps(x)) {
None
} else {
val r_mask = mask & x.mask
val r_base = base | x.base
Some(AddressSet(r_base, r_mask))
}
}
def subtract(x: AddressSet): Seq[AddressSet] = {
intersect(x) match {
case None => Seq(this)
case Some(remove) => AddressSet.enumerateBits(mask & ~remove.mask).map { bit =>
val nmask = (mask & (bit-1)) | remove.mask
val nbase = (remove.base ^ bit) & ~nmask
AddressSet(nbase, nmask)
}
}
}
// AddressSets have one natural Ordering (the containment order, if contiguous)
def compare(x: AddressSet) = {
val primary = (this.base - x.base).signum // smallest address first
val secondary = (x.mask - this.mask).signum // largest mask first
if (primary != 0) primary else secondary
}
// We always want to see things in hex
override def toString() = {
if (mask >= 0) {
"AddressSet(0x%x, 0x%x)".format(base, mask)
} else {
"AddressSet(0x%x, ~0x%x)".format(base, ~mask)
}
}
def toRanges = {
require (finite, "Ranges cannot be calculated on infinite mask")
val size = alignment
val fragments = mask & ~(size-1)
val bits = bitIndexes(fragments)
(BigInt(0) until (BigInt(1) << bits.size)).map { i =>
val off = bitIndexes(i).foldLeft(base) { case (a, b) => a.setBit(bits(b)) }
AddressRange(off, size)
}
}
}
object AddressSet
{
val everything = AddressSet(0, -1)
def misaligned(base: BigInt, size: BigInt, tail: Seq[AddressSet] = Seq()): Seq[AddressSet] = {
if (size == 0) tail.reverse else {
val maxBaseAlignment = base & (-base) // 0 for infinite (LSB)
val maxSizeAlignment = BigInt(1) << log2Floor(size) // MSB of size
val step =
if (maxBaseAlignment == 0 || maxBaseAlignment > maxSizeAlignment)
maxSizeAlignment else maxBaseAlignment
misaligned(base+step, size-step, AddressSet(base, step-1) +: tail)
}
}
def unify(seq: Seq[AddressSet], bit: BigInt): Seq[AddressSet] = {
// Pair terms up by ignoring 'bit'
seq.distinct.groupBy(x => x.copy(base = x.base & ~bit)).map { case (key, seq) =>
if (seq.size == 1) {
seq.head // singleton -> unaffected
} else {
key.copy(mask = key.mask | bit) // pair - widen mask by bit
}
}.toList
}
def unify(seq: Seq[AddressSet]): Seq[AddressSet] = {
val bits = seq.map(_.base).foldLeft(BigInt(0))(_ | _)
AddressSet.enumerateBits(bits).foldLeft(seq) { case (acc, bit) => unify(acc, bit) }.sorted
}
def enumerateMask(mask: BigInt): Seq[BigInt] = {
def helper(id: BigInt, tail: Seq[BigInt]): Seq[BigInt] =
if (id == mask) (id +: tail).reverse else helper(((~mask | id) + 1) & mask, id +: tail)
helper(0, Nil)
}
def enumerateBits(mask: BigInt): Seq[BigInt] = {
def helper(x: BigInt): Seq[BigInt] = {
if (x == 0) {
Nil
} else {
val bit = x & (-x)
bit +: helper(x & ~bit)
}
}
helper(mask)
}
}
case class BufferParams(depth: Int, flow: Boolean, pipe: Boolean)
{
require (depth >= 0, "Buffer depth must be >= 0")
def isDefined = depth > 0
def latency = if (isDefined && !flow) 1 else 0
def apply[T <: Data](x: DecoupledIO[T]) =
if (isDefined) Queue(x, depth, flow=flow, pipe=pipe)
else x
def irrevocable[T <: Data](x: ReadyValidIO[T]) =
if (isDefined) Queue.irrevocable(x, depth, flow=flow, pipe=pipe)
else x
def sq[T <: Data](x: DecoupledIO[T]) =
if (!isDefined) x else {
val sq = Module(new ShiftQueue(x.bits, depth, flow=flow, pipe=pipe))
sq.io.enq <> x
sq.io.deq
}
override def toString() = "BufferParams:%d%s%s".format(depth, if (flow) "F" else "", if (pipe) "P" else "")
}
object BufferParams
{
implicit def apply(depth: Int): BufferParams = BufferParams(depth, false, false)
val default = BufferParams(2)
val none = BufferParams(0)
val flow = BufferParams(1, true, false)
val pipe = BufferParams(1, false, true)
}
case class TriStateValue(value: Boolean, set: Boolean)
{
def update(orig: Boolean) = if (set) value else orig
}
object TriStateValue
{
implicit def apply(value: Boolean): TriStateValue = TriStateValue(value, true)
def unset = TriStateValue(false, false)
}
trait DirectedBuffers[T] {
def copyIn(x: BufferParams): T
def copyOut(x: BufferParams): T
def copyInOut(x: BufferParams): T
}
trait IdMapEntry {
def name: String
def from: IdRange
def to: IdRange
def isCache: Boolean
def requestFifo: Boolean
def maxTransactionsInFlight: Option[Int]
def pretty(fmt: String) =
if (from ne to) { // if the subclass uses the same reference for both from and to, assume its format string has an arity of 5
fmt.format(to.start, to.end, from.start, from.end, s""""$name"""", if (isCache) " [CACHE]" else "", if (requestFifo) " [FIFO]" else "")
} else {
fmt.format(from.start, from.end, s""""$name"""", if (isCache) " [CACHE]" else "", if (requestFifo) " [FIFO]" else "")
}
}
abstract class IdMap[T <: IdMapEntry] {
protected val fmt: String
val mapping: Seq[T]
def pretty: String = mapping.map(_.pretty(fmt)).mkString(",\n")
}
File annotations.scala:
// See LICENSE for license details.
package midas.targetutils
import chisel3.{
dontTouch,
fromBooleanToLiteral,
when,
Bits,
Bool,
Clock,
Data,
MemBase,
Module,
Printable,
RegNext,
Reset,
UInt,
Wire,
WireDefault,
}
import chisel3.printf.Printf
import chisel3.experimental.{annotate, requireIsHardware, BaseModule, ChiselAnnotation}
import firrtl.RenameMap
import firrtl.annotations.{
Annotation,
ComponentName,
HasSerializationHints,
InstanceTarget,
ModuleTarget,
ReferenceTarget,
SingleTargetAnnotation,
}
/** These are consumed by [[midas.passes.AutoILATransform]] to directly instantiate an ILA at the top of simulator's
* design hierarchy (the PlatformShim level).
*/
case class FpgaDebugAnnotation(target: Data) extends ChiselAnnotation {
def toFirrtl = FirrtlFpgaDebugAnnotation(target.toNamed)
}
case class FirrtlFpgaDebugAnnotation(target: ComponentName) extends SingleTargetAnnotation[ComponentName] {
def duplicate(n: ComponentName) = this.copy(target = n)
}
object FpgaDebug {
def apply(targets: Data*): Unit = {
targets.foreach { requireIsHardware(_, "Target passed to FpgaDebug:") }
targets.map({ t => annotate(FpgaDebugAnnotation(t)) })
}
}
private[midas] class ReferenceTargetRenamer(renames: RenameMap) {
// TODO: determine order for multiple renames, or just check of == 1 rename?
def exactRename(rt: ReferenceTarget): ReferenceTarget = {
val renameMatches = renames.get(rt).getOrElse(Seq(rt)).collect({ case rt: ReferenceTarget => rt })
assert(
renameMatches.length <= 1,
s"${rt} should be renamed exactly once (or not at all). Suggested renames: ${renameMatches}",
)
renameMatches.headOption.getOrElse(rt)
}
def apply(rt: ReferenceTarget): Seq[ReferenceTarget] = {
renames.get(rt).getOrElse(Seq(rt)).collect({ case rt: ReferenceTarget => rt })
}
}
private[midas] case class SynthPrintfAnnotation(
target: ReferenceTarget
) extends firrtl.annotations.SingleTargetAnnotation[ReferenceTarget] {
def duplicate(newTarget: ReferenceTarget) = this.copy(newTarget)
}
object SynthesizePrintf {
/** Annotates a chisel printf as a candidate for synthesis. The printf is only synthesized if Printf synthesis is
* enabled in Golden Gate.
*
* See: https://docs.fires.im/en/stable/search.html?q=Printf+Synthesis&check_keywords=yes&area=default
*
* @param printf
* The printf statement to be synthesized.
*
* @return
* The original input, so that this annotator may be applied inline if desired.
*/
def apply(printf: Printf): Printf = {
annotate(new ChiselAnnotation {
def toFirrtl = SynthPrintfAnnotation(printf.toTarget)
})
printf
}
private def generateAnnotations(format: String, args: Seq[Bits], name: Option[String]): Printable = {
Module.currentModule.getOrElse(throw new RuntimeException("Cannot annotate a printf outside of a Module"))
// To preserve the behavior of the printf parameter annotator, generate a
// secondary printf and annotate that, instead of the user's printf, which
// will be given an empty string. This will be removed with the apply methods in 1.15.
val printf = SynthesizePrintf(chisel3.printf(Printable.pack(format, args: _*)))
name.foreach { n => printf.suggestName(n) }
Printable.pack("")
}
/** Annotates* a printf by intercepting the parameters to a chisel printf, and returning a printable. As a side
* effect, this function generates a ChiselSynthPrintfAnnotation with the format string and references to each of the
* args.
*
* *Note: this isn't actually annotating the statement but instead the arguments. This is a vestige from earlier
* versions of chisel / firrtl in which print statements were unnamed, and thus not referenceable from annotations.
*
* @param format
* The format string for the printf
* @param args
* Hardware references to populate the format string.
*/
@deprecated("This method will be removed. Annotate the printf statement directly", "FireSim 1.14")
def apply(format: String, args: Bits*): Printable = generateAnnotations(format, args, None)
/** Like the other apply method, but provides an optional name which can be used by synthesized hardware / bridge.
* Generally, users deploy the nameless form.
*
* @param name
* A descriptive name for this printf instance.
* @param format
* The format string for the printf
* @param args
* Hardware references to populate the format string.
*/
@deprecated("This method will be removed. Annotate the printf statement directly", "FireSim 1.14")
def apply(name: String, format: String, args: Bits*): Printable =
generateAnnotations(format, args, Some(name))
}
/** A mixed-in ancestor trait for all FAME annotations, useful for type-casing.
*/
trait FAMEAnnotation {
this: Annotation =>
}
/** This labels an instance so that it is extracted as a separate FAME model.
*/
case class FAMEModelAnnotation(target: BaseModule) extends ChiselAnnotation {
def toFirrtl: FirrtlFAMEModelAnnotation = {
val parent = ModuleTarget(target.toNamed.circuit.name, target.parentModName)
FirrtlFAMEModelAnnotation(parent.instOf(target.instanceName, target.name))
}
}
case class FirrtlFAMEModelAnnotation(
target: InstanceTarget
) extends SingleTargetAnnotation[InstanceTarget]
with FAMEAnnotation {
def targets = Seq(target)
def duplicate(n: InstanceTarget) = this.copy(n)
}
/** This specifies that the module should be automatically multi-threaded (Chisel annotator).
*/
case class EnableModelMultiThreadingAnnotation(target: BaseModule) extends ChiselAnnotation {
def toFirrtl: FirrtlEnableModelMultiThreadingAnnotation = {
val parent = ModuleTarget(target.toNamed.circuit.name, target.parentModName)
FirrtlEnableModelMultiThreadingAnnotation(parent.instOf(target.instanceName, target.name))
}
}
/** This specifies that the module should be automatically multi-threaded (FIRRTL annotation).
*/
case class FirrtlEnableModelMultiThreadingAnnotation(
target: InstanceTarget
) extends SingleTargetAnnotation[InstanceTarget]
with FAMEAnnotation {
def targets = Seq(target)
def duplicate(n: InstanceTarget) = this.copy(n)
}
/** This labels a target Mem so that it is extracted and replaced with a separate model.
*/
case class MemModelAnnotation[T <: Data](target: MemBase[T]) extends ChiselAnnotation {
def toFirrtl = FirrtlMemModelAnnotation(target.toNamed.toTarget)
}
case class FirrtlMemModelAnnotation(target: ReferenceTarget) extends SingleTargetAnnotation[ReferenceTarget] {
def duplicate(rt: ReferenceTarget) = this.copy(target = rt)
}
case class ExcludeInstanceAssertsAnnotation(target: (String, String)) extends firrtl.annotations.NoTargetAnnotation {
def duplicate(n: (String, String)) = this.copy(target = n)
}
// TODO: Actually use a real target and not strings.
object ExcludeInstanceAsserts {
def apply(target: (String, String)): ChiselAnnotation =
new ChiselAnnotation {
def toFirrtl = ExcludeInstanceAssertsAnnotation(target)
}
}
sealed trait PerfCounterOpType
object PerfCounterOps {
/** Takes the annotated UInt and adds it to an accumulation register generated in the bridge
*/
case object Accumulate extends PerfCounterOpType
/** Takes the annotated UInt and exposes it directly to the driver NB: Fields longer than 64b are not supported, and
* must be divided into smaller segments that are sepearate annotated
*/
case object Identity extends PerfCounterOpType
}
/** AutoCounter annotations. Do not emit the FIRRTL annotations unless you are writing a target transformation, use the
* Chisel-side [[PerfCounter]] object instead.
*/
case class AutoCounterFirrtlAnnotation(
target: ReferenceTarget,
clock: ReferenceTarget,
reset: ReferenceTarget,
label: String,
description: String,
opType: PerfCounterOpType = PerfCounterOps.Accumulate,
coverGenerated: Boolean = false,
) extends firrtl.annotations.Annotation
with HasSerializationHints {
def update(renames: RenameMap): Seq[firrtl.annotations.Annotation] = {
val renamer = new ReferenceTargetRenamer(renames)
val renamedTarget = renamer.exactRename(target)
val renamedClock = renamer.exactRename(clock)
val renamedReset = renamer.exactRename(reset)
Seq(this.copy(target = renamedTarget, clock = renamedClock, reset = renamedReset))
}
// The AutoCounter tranform will reject this annotation if it's not enclosed
def shouldBeIncluded(modList: Seq[String]): Boolean = !coverGenerated || modList.contains(target.module)
def enclosingModule(): String = target.module
def enclosingModuleTarget(): ModuleTarget = ModuleTarget(target.circuit, enclosingModule())
def typeHints: Seq[Class[_]] = Seq(opType.getClass)
}
case class AutoCounterCoverModuleFirrtlAnnotation(target: ModuleTarget)
extends SingleTargetAnnotation[ModuleTarget]
with FAMEAnnotation {
def duplicate(n: ModuleTarget) = this.copy(target = n)
}
case class AutoCounterCoverModuleAnnotation(target: ModuleTarget) extends ChiselAnnotation {
def toFirrtl = AutoCounterCoverModuleFirrtlAnnotation(target)
}
object PerfCounter {
private def emitAnnotation(
target: UInt,
clock: Clock,
reset: Reset,
label: String,
description: String,
opType: PerfCounterOpType,
): Unit = {
requireIsHardware(target, "Target passed to PerfCounter:")
requireIsHardware(clock, "Clock passed to PerfCounter:")
requireIsHardware(reset, "Reset passed to PerfCounter:")
annotate(new ChiselAnnotation {
def toFirrtl =
AutoCounterFirrtlAnnotation(target.toTarget, clock.toTarget, reset.toTarget, label, description, opType)
})
}
/** Labels a signal as an event for which an host-side counter (an "AutoCounter") should be generated). Events can be
* multi-bit to encode multiple occurances in a cycle (e.g., the number of instructions retired in a superscalar
* processor). NB: Golden Gate will not generate the coutner unless AutoCounter is enabled in your the platform
* config. See the docs.fires.im for end-to-end usage information.
*
* @param target
* The number of occurances of the event (in the current cycle)
*
* @param clock
* The clock to which this event is sychronized.
*
* @param reset
* If the event is asserted while under the provide reset, it is not counted. TODO: This should be made optional.
*
* @param label
* A verilog-friendly identifier for the event signal
*
* @param description
* A human-friendly description of the event.
*
* @param opType
* Defines how the bridge should be aggregated into a performance counter.
*/
def apply(
target: UInt,
clock: Clock,
reset: Reset,
label: String,
description: String,
opType: PerfCounterOpType = PerfCounterOps.Accumulate,
): Unit =
emitAnnotation(target, clock, reset, label, description, opType)
/** A simplified variation of the full apply method above that uses the implicit clock and reset.
*/
def apply(target: UInt, label: String, description: String): Unit =
emitAnnotation(target, Module.clock, Module.reset, label, description, PerfCounterOps.Accumulate)
/** Passes the annotated UInt through to the driver without accumulation. Use cases:
* - Custom accumulation / counting logic not supported by the driver
* - Providing runtime metadata along side standard accumulation registers
*
* Note: Under reset, the passthrough value is set to 0. This keeps event handling uniform in the transform.
*/
def identity(target: UInt, label: String, description: String): Unit = {
require(
target.getWidth <= 64,
s"""|PerfCounter.identity can only accept fields <= 64b wide. Provided target for label:
| $label
|was ${target.getWidth}b.""".stripMargin,
)
emitAnnotation(target, Module.clock, Module.reset, label, description, opType = PerfCounterOps.Identity)
}
}
case class PlusArgFirrtlAnnotation(
target: InstanceTarget
) extends SingleTargetAnnotation[InstanceTarget]
with FAMEAnnotation {
def targets = Seq(target)
def duplicate(n: InstanceTarget) = this.copy(n)
}
object PlusArg {
private def emitAnnotation(
target: BaseModule
): Unit = {
annotate(new ChiselAnnotation {
def toFirrtl = {
val parent = ModuleTarget(target.toNamed.circuit.name, target.parentModName)
PlusArgFirrtlAnnotation(parent.instOf(target.instanceName, target.name))
}
})
}
/** Labels a Rocket Chip 'plusarg_reader' module to synthesize. Must be of the type found in
* https://github.com/chipsalliance/rocket-chip/blob/master/src/main/scala/util/PlusArg.scala
*
* @param target
* The 'plusarg_reader' module to synthesize
*/
def apply(target: BaseModule): Unit = {
emitAnnotation(target)
}
}
// Need serialization utils to be upstreamed to FIRRTL before i can use these.
//sealed trait TriggerSourceType
//case object Credit extends TriggerSourceType
//case object Debit extends TriggerSourceType
case class TriggerSourceAnnotation(
target: ReferenceTarget,
clock: ReferenceTarget,
reset: Option[ReferenceTarget],
sourceType: Boolean,
) extends Annotation
with FAMEAnnotation {
def update(renames: RenameMap): Seq[firrtl.annotations.Annotation] = {
val renamer = new ReferenceTargetRenamer(renames)
val renamedTarget = renamer.exactRename(target)
val renamedClock = renamer.exactRename(clock)
val renamedReset = reset.map(renamer.exactRename)
Seq(this.copy(target = renamedTarget, clock = renamedClock, reset = renamedReset))
}
def enclosingModuleTarget(): ModuleTarget = ModuleTarget(target.circuit, target.module)
def enclosingModule(): String = target.module
}
case class TriggerSinkAnnotation(
target: ReferenceTarget,
clock: ReferenceTarget,
) extends Annotation
with FAMEAnnotation {
def update(renames: RenameMap): Seq[firrtl.annotations.Annotation] = {
val renamer = new ReferenceTargetRenamer(renames)
val renamedTarget = renamer.exactRename(target)
val renamedClock = renamer.exactRename(clock)
Seq(this.copy(target = renamedTarget, clock = renamedClock))
}
def enclosingModuleTarget(): ModuleTarget = ModuleTarget(target.circuit, target.module)
}
object TriggerSource {
private def annotateTrigger(tpe: Boolean)(target: Bool, reset: Option[Bool]): Unit = {
// Hack: Create dummy nodes until chisel-side instance annotations have been improved
val clock = WireDefault(Module.clock)
reset.map(dontTouch.apply)
requireIsHardware(target, "Target passed to TriggerSource:")
reset.foreach { requireIsHardware(_, "Reset passed to TriggerSource:") }
annotate(new ChiselAnnotation {
def toFirrtl =
TriggerSourceAnnotation(target.toNamed.toTarget, clock.toNamed.toTarget, reset.map(_.toTarget), tpe)
})
}
def annotateCredit = annotateTrigger(true) _
def annotateDebit = annotateTrigger(false) _
/** Methods to annotate a Boolean as a trigger credit or debit. Credits and debits issued while the module's implicit
* reset is asserted are not counted.
*/
def credit(credit: Bool): Unit = annotateCredit(credit, Some(Module.reset.asBool))
def debit(debit: Bool): Unit = annotateDebit(debit, Some(Module.reset.asBool))
def apply(creditSig: Bool, debitSig: Bool): Unit = {
credit(creditSig)
debit(debitSig)
}
/** Variations of the above methods that count credits and debits provided while the implicit reset is asserted.
*/
def creditEvenUnderReset(credit: Bool): Unit = annotateCredit(credit, None)
def debitEvenUnderReset(debit: Bool): Unit = annotateDebit(debit, None)
def evenUnderReset(creditSig: Bool, debitSig: Bool): Unit = {
creditEvenUnderReset(creditSig)
debitEvenUnderReset(debitSig)
}
/** Level sensitive trigger sources. Implemented using [[credit]] and [[debit]]. Note: This generated hardware in your
* target design.
*
* @param src
* Enables the trigger when asserted. If no other credits have been issued since (e.g., a second level-sensitive
* enable was asserted), the trigger is disabled when src is desasserted.
*/
def levelSensitiveEnable(src: Bool): Unit = {
val srcLast = RegNext(src)
credit(src && !srcLast)
debit(!src && srcLast)
}
}
object TriggerSink {
/** Marks a bool as receiving the global trigger signal.
*
* @param target
* A Bool node that will be driven with the trigger
*
* @param noSourceDefault
* The value that the trigger signal should take on if no trigger soruces are found in the target. This is a
* temporary parameter required while this apply method generates a wire. Otherwise this can be punted to the
* target's RTL.
*/
def apply(target: Bool, noSourceDefault: => Bool = true.B): Unit = {
// Hack: Create dummy nodes until chisel-side instance annotations have been improved
val targetWire = WireDefault(noSourceDefault)
val clock = Module.clock
target := targetWire
// Both the provided node and the generated one need to be dontTouched to stop
// constProp from optimizing the down stream logic(?)
dontTouch(target)
annotate(new ChiselAnnotation {
def toFirrtl = TriggerSinkAnnotation(targetWire.toTarget, clock.toTarget)
})
}
/** Syntatic sugar for a when context that is predicated by a trigger sink. Example usage:
* {{{
* TriggerSink.whenEnabled {
* printf(<...>)
* }
* }}}
*
* @param noSourceDefault
* See [[TriggerSink.apply]].
*/
def whenEnabled(noSourceDefault: => Bool = true.B)(elaborator: => Unit): Unit = {
val sinkEnable = Wire(Bool())
apply(sinkEnable, noSourceDefault)
when(sinkEnable) { elaborator }
}
}
case class RoCCBusyFirrtlAnnotation(
target: ReferenceTarget,
ready: ReferenceTarget,
valid: ReferenceTarget,
) extends firrtl.annotations.Annotation
with FAMEAnnotation {
def update(renames: RenameMap): Seq[firrtl.annotations.Annotation] = {
val renamer = new ReferenceTargetRenamer(renames)
val renamedReady = renamer.exactRename(ready)
val renamedValid = renamer.exactRename(valid)
val renamedTarget = renamer.exactRename(target)
Seq(this.copy(target = renamedTarget, ready = renamedReady, valid = renamedValid))
}
def enclosingModuleTarget(): ModuleTarget = ModuleTarget(target.circuit, target.module)
def enclosingModule(): String = target.module
}
object MakeRoCCBusyLatencyInsensitive {
def apply(
target: Bool,
ready: Bool,
valid: Bool,
): Unit = {
requireIsHardware(target, "Target passed to ..:")
requireIsHardware(ready, "Ready passed to ..:")
requireIsHardware(valid, "Valid passed to ..:")
annotate(new ChiselAnnotation {
def toFirrtl = RoCCBusyFirrtlAnnotation(target.toNamed.toTarget, ready.toNamed.toTarget, valid.toNamed.toTarget)
})
}
}
case class FirrtlPartWrapperParentAnnotation(
target: InstanceTarget
) extends SingleTargetAnnotation[InstanceTarget]
with FAMEAnnotation {
def targets = Seq(target)
def duplicate(n: InstanceTarget) = this.copy(n)
}
case class FirrtlPortToNeighborRouterIdxAnno(
target: ReferenceTarget,
extractNeighborIdx: Int,
removeNeighborIdx: Int,
) extends firrtl.annotations.Annotation
with FAMEAnnotation {
def update(renames: RenameMap): Seq[firrtl.annotations.Annotation] = {
val renamer = new ReferenceTargetRenamer(renames)
val renameTarget = renamer.exactRename(target)
Seq(this.copy(target = renameTarget))
}
}
case class FirrtlCombLogicInsideModuleAnno(
target: ReferenceTarget
) extends firrtl.annotations.Annotation
with FAMEAnnotation {
def update(renames: RenameMap): Seq[firrtl.annotations.Annotation] = {
val renamer = new ReferenceTargetRenamer(renames)
val renameTarget = renamer.exactRename(target)
Seq(this.copy(target = renameTarget))
}
}
File MixedNode.scala:
package org.chipsalliance.diplomacy.nodes
import chisel3.{Data, DontCare, Wire}
import chisel3.experimental.SourceInfo
import org.chipsalliance.cde.config.{Field, Parameters}
import org.chipsalliance.diplomacy.ValName
import org.chipsalliance.diplomacy.sourceLine
/** One side metadata of a [[Dangle]].
*
* Describes one side of an edge going into or out of a [[BaseNode]].
*
* @param serial
* the global [[BaseNode.serial]] number of the [[BaseNode]] that this [[HalfEdge]] connects to.
* @param index
* the `index` in the [[BaseNode]]'s input or output port list that this [[HalfEdge]] belongs to.
*/
case class HalfEdge(serial: Int, index: Int) extends Ordered[HalfEdge] {
import scala.math.Ordered.orderingToOrdered
def compare(that: HalfEdge): Int = HalfEdge.unapply(this).compare(HalfEdge.unapply(that))
}
/** [[Dangle]] captures the `IO` information of a [[LazyModule]] and which two [[BaseNode]]s the [[Edges]]/[[Bundle]]
* connects.
*
* [[Dangle]]s are generated by [[BaseNode.instantiate]] using [[MixedNode.danglesOut]] and [[MixedNode.danglesIn]] ,
* [[LazyModuleImp.instantiate]] connects those that go to internal or explicit IO connections in a [[LazyModule]].
*
* @param source
* the source [[HalfEdge]] of this [[Dangle]], which captures the source [[BaseNode]] and the port `index` within
* that [[BaseNode]].
* @param sink
* sink [[HalfEdge]] of this [[Dangle]], which captures the sink [[BaseNode]] and the port `index` within that
* [[BaseNode]].
* @param flipped
* flip or not in [[AutoBundle.makeElements]]. If true this corresponds to `danglesOut`, if false it corresponds to
* `danglesIn`.
* @param dataOpt
* actual [[Data]] for the hardware connection. Can be empty if this belongs to a cloned module
*/
case class Dangle(source: HalfEdge, sink: HalfEdge, flipped: Boolean, name: String, dataOpt: Option[Data]) {
def data = dataOpt.get
}
/** [[Edges]] is a collection of parameters describing the functionality and connection for an interface, which is often
* derived from the interconnection protocol and can inform the parameterization of the hardware bundles that actually
* implement the protocol.
*/
case class Edges[EI, EO](in: Seq[EI], out: Seq[EO])
/** A field available in [[Parameters]] used to determine whether [[InwardNodeImp.monitor]] will be called. */
case object MonitorsEnabled extends Field[Boolean](true)
/** When rendering the edge in a graphical format, flip the order in which the edges' source and sink are presented.
*
* For example, when rendering graphML, yEd by default tries to put the source node vertically above the sink node, but
* [[RenderFlipped]] inverts this relationship. When a particular [[LazyModule]] contains both source nodes and sink
* nodes, flipping the rendering of one node's edge will usual produce a more concise visual layout for the
* [[LazyModule]].
*/
case object RenderFlipped extends Field[Boolean](false)
/** The sealed node class in the package, all node are derived from it.
*
* @param inner
* Sink interface implementation.
* @param outer
* Source interface implementation.
* @param valName
* val name of this node.
* @tparam DI
* Downward-flowing parameters received on the inner side of the node. It is usually a brunch of parameters
* describing the protocol parameters from a source. For an [[InwardNode]], it is determined by the connected
* [[OutwardNode]]. Since it can be connected to multiple sources, this parameter is always a Seq of source port
* parameters.
* @tparam UI
* Upward-flowing parameters generated by the inner side of the node. It is usually a brunch of parameters describing
* the protocol parameters of a sink. For an [[InwardNode]], it is determined itself.
* @tparam EI
* Edge Parameters describing a connection on the inner side of the node. It is usually a brunch of transfers
* specified for a sink according to protocol.
* @tparam BI
* Bundle type used when connecting to the inner side of the node. It is a hardware interface of this sink interface.
* It should extends from [[chisel3.Data]], which represents the real hardware.
* @tparam DO
* Downward-flowing parameters generated on the outer side of the node. It is usually a brunch of parameters
* describing the protocol parameters of a source. For an [[OutwardNode]], it is determined itself.
* @tparam UO
* Upward-flowing parameters received by the outer side of the node. It is usually a brunch of parameters describing
* the protocol parameters from a sink. For an [[OutwardNode]], it is determined by the connected [[InwardNode]].
* Since it can be connected to multiple sinks, this parameter is always a Seq of sink port parameters.
* @tparam EO
* Edge Parameters describing a connection on the outer side of the node. It is usually a brunch of transfers
* specified for a source according to protocol.
* @tparam BO
* Bundle type used when connecting to the outer side of the node. It is a hardware interface of this source
* interface. It should extends from [[chisel3.Data]], which represents the real hardware.
*
* @note
* Call Graph of [[MixedNode]]
* - line `β`: source is process by a function and generate pass to others
* - Arrow `β`: target of arrow is generated by source
*
* {{{
* (from the other node)
* ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ[[InwardNode.uiParams]]ββββββββββββββ
* β β
* (binding node when elaboration) [[OutwardNode.uoParams]]ββββββββββββββββββββββββ[[MixedNode.mapParamsU]]ββββββββββββ β
* [[InwardNode.accPI]] β β β
* β β (based on protocol) β
* β β [[MixedNode.inner.edgeI]] β
* β β β β
* β β β β
* (immobilize after elaboration) (inward port from [[OutwardNode]]) β β β
* [[InwardNode.iBindings]]βββ [[MixedNode.iDirectPorts]]βββββββββββββββββββββ[[MixedNode.iPorts]] [[InwardNode.uiParams]] β
* β β β β β β
* β β β [[OutwardNode.doParams]] β β
* β β β (from the other node) β β
* β β β β β β
* β β β β β β
* β β β ββββββββββ¬βββββββββββββββ€ β
* β β β β β β
* β β β β (based on protocol) β
* β β β β [[MixedNode.inner.edgeI]] β
* β β β β β β
* β β (from the other node) β β β
* β ββββ[[OutwardNode.oPortMapping]] [[OutwardNode.oStar]] β [[MixedNode.edgesIn]]ββββ β
* β β β β β β β
* β β β β β [[MixedNode.in]] β
* β β β β β β β
* β (solve star connection) β β β [[MixedNode.bundleIn]]βββ β
* ββββ[[MixedNode.resolveStar]]βββΌββββββββββββββββββββββββββββββ€ ββββββββββββββββββββββββββββββββββββββ β
* β β β [[MixedNode.bundleOut]]ββ β β
* β β β β β β β
* β β β β [[MixedNode.out]] β β
* β β β β β β β
* β ββββββ[[InwardNode.iPortMapping]] [[InwardNode.iStar]] [[MixedNode.edgesOut]]βββ β β
* β β (from the other node) β β β
* β β β β β β
* β β β [[MixedNode.outer.edgeO]] β β
* β β β (based on protocol) β β
* β β β β β β
* β β β ββββββββββββββββββββββββββββββββββββββββββ€ β β
* β β β β β β β
* β β β β β β β
* β β β β β β β
* (immobilize after elaboration)β β β β β β
* [[OutwardNode.oBindings]]ββ [[MixedNode.oDirectPorts]]ββββ[[MixedNode.oPorts]] [[OutwardNode.doParams]] β β
* β (inward port from [[OutwardNode]]) β β β β
* β βββββββββββββββββββββββββββββββββββββββββββ€ β β β
* β β β β β β
* β β β β β β
* [[OutwardNode.accPO]] β β β β β
* (binding node when elaboration) β [[InwardNode.diParams]]ββββββ[[MixedNode.mapParamsD]]βββββββββββββββββββββββββββββ β β
* β β β β
* β ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ β
* ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
* }}}
*/
abstract class MixedNode[DI, UI, EI, BI <: Data, DO, UO, EO, BO <: Data](
val inner: InwardNodeImp[DI, UI, EI, BI],
val outer: OutwardNodeImp[DO, UO, EO, BO]
)(
implicit valName: ValName)
extends BaseNode
with NodeHandle[DI, UI, EI, BI, DO, UO, EO, BO]
with InwardNode[DI, UI, BI]
with OutwardNode[DO, UO, BO] {
// Generate a [[NodeHandle]] with inward and outward node are both this node.
val inward = this
val outward = this
/** Debug info of nodes binding. */
def bindingInfo: String = s"""$iBindingInfo
|$oBindingInfo
|""".stripMargin
/** Debug info of ports connecting. */
def connectedPortsInfo: String = s"""${oPorts.size} outward ports connected: [${oPorts.map(_._2.name).mkString(",")}]
|${iPorts.size} inward ports connected: [${iPorts.map(_._2.name).mkString(",")}]
|""".stripMargin
/** Debug info of parameters propagations. */
def parametersInfo: String = s"""${doParams.size} downstream outward parameters: [${doParams.mkString(",")}]
|${uoParams.size} upstream outward parameters: [${uoParams.mkString(",")}]
|${diParams.size} downstream inward parameters: [${diParams.mkString(",")}]
|${uiParams.size} upstream inward parameters: [${uiParams.mkString(",")}]
|""".stripMargin
/** For a given node, converts [[OutwardNode.accPO]] and [[InwardNode.accPI]] to [[MixedNode.oPortMapping]] and
* [[MixedNode.iPortMapping]].
*
* Given counts of known inward and outward binding and inward and outward star bindings, return the resolved inward
* stars and outward stars.
*
* This method will also validate the arguments and throw a runtime error if the values are unsuitable for this type
* of node.
*
* @param iKnown
* Number of known-size ([[BIND_ONCE]]) input bindings.
* @param oKnown
* Number of known-size ([[BIND_ONCE]]) output bindings.
* @param iStar
* Number of unknown size ([[BIND_STAR]]) input bindings.
* @param oStar
* Number of unknown size ([[BIND_STAR]]) output bindings.
* @return
* A Tuple of the resolved number of input and output connections.
*/
protected[diplomacy] def resolveStar(iKnown: Int, oKnown: Int, iStar: Int, oStar: Int): (Int, Int)
/** Function to generate downward-flowing outward params from the downward-flowing input params and the current output
* ports.
*
* @param n
* The size of the output sequence to generate.
* @param p
* Sequence of downward-flowing input parameters of this node.
* @return
* A `n`-sized sequence of downward-flowing output edge parameters.
*/
protected[diplomacy] def mapParamsD(n: Int, p: Seq[DI]): Seq[DO]
/** Function to generate upward-flowing input parameters from the upward-flowing output parameters [[uiParams]].
*
* @param n
* Size of the output sequence.
* @param p
* Upward-flowing output edge parameters.
* @return
* A n-sized sequence of upward-flowing input edge parameters.
*/
protected[diplomacy] def mapParamsU(n: Int, p: Seq[UO]): Seq[UI]
/** @return
* The sink cardinality of the node, the number of outputs bound with [[BIND_QUERY]] summed with inputs bound with
* [[BIND_STAR]].
*/
protected[diplomacy] lazy val sinkCard: Int = oBindings.count(_._3 == BIND_QUERY) + iBindings.count(_._3 == BIND_STAR)
/** @return
* The source cardinality of this node, the number of inputs bound with [[BIND_QUERY]] summed with the number of
* output bindings bound with [[BIND_STAR]].
*/
protected[diplomacy] lazy val sourceCard: Int =
iBindings.count(_._3 == BIND_QUERY) + oBindings.count(_._3 == BIND_STAR)
/** @return list of nodes involved in flex bindings with this node. */
protected[diplomacy] lazy val flexes: Seq[BaseNode] =
oBindings.filter(_._3 == BIND_FLEX).map(_._2) ++ iBindings.filter(_._3 == BIND_FLEX).map(_._2)
/** Resolves the flex to be either source or sink and returns the offset where the [[BIND_STAR]] operators begin
* greedily taking up the remaining connections.
*
* @return
* A value >= 0 if it is sink cardinality, a negative value for source cardinality. The magnitude of the return
* value is not relevant.
*/
protected[diplomacy] lazy val flexOffset: Int = {
/** Recursively performs a depth-first search of the [[flexes]], [[BaseNode]]s connected to this node with flex
* operators. The algorithm bottoms out when we either get to a node we have already visited or when we get to a
* connection that is not a flex and can set the direction for us. Otherwise, recurse by visiting the `flexes` of
* each node in the current set and decide whether they should be added to the set or not.
*
* @return
* the mapping of [[BaseNode]] indexed by their serial numbers.
*/
def DFS(v: BaseNode, visited: Map[Int, BaseNode]): Map[Int, BaseNode] = {
if (visited.contains(v.serial) || !v.flexibleArityDirection) {
visited
} else {
v.flexes.foldLeft(visited + (v.serial -> v))((sum, n) => DFS(n, sum))
}
}
/** Determine which [[BaseNode]] are involved in resolving the flex connections to/from this node.
*
* @example
* {{{
* a :*=* b :*=* c
* d :*=* b
* e :*=* f
* }}}
*
* `flexSet` for `a`, `b`, `c`, or `d` will be `Set(a, b, c, d)` `flexSet` for `e` or `f` will be `Set(e,f)`
*/
val flexSet = DFS(this, Map()).values
/** The total number of :*= operators where we're on the left. */
val allSink = flexSet.map(_.sinkCard).sum
/** The total number of :=* operators used when we're on the right. */
val allSource = flexSet.map(_.sourceCard).sum
require(
allSink == 0 || allSource == 0,
s"The nodes ${flexSet.map(_.name)} which are inter-connected by :*=* have ${allSink} :*= operators and ${allSource} :=* operators connected to them, making it impossible to determine cardinality inference direction."
)
allSink - allSource
}
/** @return A value >= 0 if it is sink cardinality, a negative value for source cardinality. */
protected[diplomacy] def edgeArityDirection(n: BaseNode): Int = {
if (flexibleArityDirection) flexOffset
else if (n.flexibleArityDirection) n.flexOffset
else 0
}
/** For a node which is connected between two nodes, select the one that will influence the direction of the flex
* resolution.
*/
protected[diplomacy] def edgeAritySelect(n: BaseNode, l: => Int, r: => Int): Int = {
val dir = edgeArityDirection(n)
if (dir < 0) l
else if (dir > 0) r
else 1
}
/** Ensure that the same node is not visited twice in resolving `:*=`, etc operators. */
private var starCycleGuard = false
/** Resolve all the star operators into concrete indicies. As connections are being made, some may be "star"
* connections which need to be resolved. In some way to determine how many actual edges they correspond to. We also
* need to build up the ranges of edges which correspond to each binding operator, so that We can apply the correct
* edge parameters and later build up correct bundle connections.
*
* [[oPortMapping]]: `Seq[(Int, Int)]` where each item is the range of edges corresponding to that oPort (binding
* operator). [[iPortMapping]]: `Seq[(Int, Int)]` where each item is the range of edges corresponding to that iPort
* (binding operator). [[oStar]]: `Int` the value to return for this node `N` for any `N :*= foo` or `N :*=* foo :*=
* bar` [[iStar]]: `Int` the value to return for this node `N` for any `foo :=* N` or `bar :=* foo :*=* N`
*/
protected[diplomacy] lazy val (
oPortMapping: Seq[(Int, Int)],
iPortMapping: Seq[(Int, Int)],
oStar: Int,
iStar: Int
) = {
try {
if (starCycleGuard) throw StarCycleException()
starCycleGuard = true
// For a given node N...
// Number of foo :=* N
// + Number of bar :=* foo :*=* N
val oStars = oBindings.count { case (_, n, b, _, _) =>
b == BIND_STAR || (b == BIND_FLEX && edgeArityDirection(n) < 0)
}
// Number of N :*= foo
// + Number of N :*=* foo :*= bar
val iStars = iBindings.count { case (_, n, b, _, _) =>
b == BIND_STAR || (b == BIND_FLEX && edgeArityDirection(n) > 0)
}
// 1 for foo := N
// + bar.iStar for bar :*= foo :*=* N
// + foo.iStar for foo :*= N
// + 0 for foo :=* N
val oKnown = oBindings.map { case (_, n, b, _, _) =>
b match {
case BIND_ONCE => 1
case BIND_FLEX => edgeAritySelect(n, 0, n.iStar)
case BIND_QUERY => n.iStar
case BIND_STAR => 0
}
}.sum
// 1 for N := foo
// + bar.oStar for N :*=* foo :=* bar
// + foo.oStar for N :=* foo
// + 0 for N :*= foo
val iKnown = iBindings.map { case (_, n, b, _, _) =>
b match {
case BIND_ONCE => 1
case BIND_FLEX => edgeAritySelect(n, n.oStar, 0)
case BIND_QUERY => n.oStar
case BIND_STAR => 0
}
}.sum
// Resolve star depends on the node subclass to implement the algorithm for this.
val (iStar, oStar) = resolveStar(iKnown, oKnown, iStars, oStars)
// Cumulative list of resolved outward binding range starting points
val oSum = oBindings.map { case (_, n, b, _, _) =>
b match {
case BIND_ONCE => 1
case BIND_FLEX => edgeAritySelect(n, oStar, n.iStar)
case BIND_QUERY => n.iStar
case BIND_STAR => oStar
}
}.scanLeft(0)(_ + _)
// Cumulative list of resolved inward binding range starting points
val iSum = iBindings.map { case (_, n, b, _, _) =>
b match {
case BIND_ONCE => 1
case BIND_FLEX => edgeAritySelect(n, n.oStar, iStar)
case BIND_QUERY => n.oStar
case BIND_STAR => iStar
}
}.scanLeft(0)(_ + _)
// Create ranges for each binding based on the running sums and return
// those along with resolved values for the star operations.
(oSum.init.zip(oSum.tail), iSum.init.zip(iSum.tail), oStar, iStar)
} catch {
case c: StarCycleException => throw c.copy(loop = context +: c.loop)
}
}
/** Sequence of inward ports.
*
* This should be called after all star bindings are resolved.
*
* Each element is: `j` Port index of this binding in the Node's [[oPortMapping]] on the other side of the binding.
* `n` Instance of inward node. `p` View of [[Parameters]] where this connection was made. `s` Source info where this
* connection was made in the source code.
*/
protected[diplomacy] lazy val oDirectPorts: Seq[(Int, InwardNode[DO, UO, BO], Parameters, SourceInfo)] =
oBindings.flatMap { case (i, n, _, p, s) =>
// for each binding operator in this node, look at what it connects to
val (start, end) = n.iPortMapping(i)
(start until end).map { j => (j, n, p, s) }
}
/** Sequence of outward ports.
*
* This should be called after all star bindings are resolved.
*
* `j` Port index of this binding in the Node's [[oPortMapping]] on the other side of the binding. `n` Instance of
* outward node. `p` View of [[Parameters]] where this connection was made. `s` [[SourceInfo]] where this connection
* was made in the source code.
*/
protected[diplomacy] lazy val iDirectPorts: Seq[(Int, OutwardNode[DI, UI, BI], Parameters, SourceInfo)] =
iBindings.flatMap { case (i, n, _, p, s) =>
// query this port index range of this node in the other side of node.
val (start, end) = n.oPortMapping(i)
(start until end).map { j => (j, n, p, s) }
}
// Ephemeral nodes ( which have non-None iForward/oForward) have in_degree = out_degree
// Thus, there must exist an Eulerian path and the below algorithms terminate
@scala.annotation.tailrec
private def oTrace(
tuple: (Int, InwardNode[DO, UO, BO], Parameters, SourceInfo)
): (Int, InwardNode[DO, UO, BO], Parameters, SourceInfo) = tuple match {
case (i, n, p, s) => n.iForward(i) match {
case None => (i, n, p, s)
case Some((j, m)) => oTrace((j, m, p, s))
}
}
@scala.annotation.tailrec
private def iTrace(
tuple: (Int, OutwardNode[DI, UI, BI], Parameters, SourceInfo)
): (Int, OutwardNode[DI, UI, BI], Parameters, SourceInfo) = tuple match {
case (i, n, p, s) => n.oForward(i) match {
case None => (i, n, p, s)
case Some((j, m)) => iTrace((j, m, p, s))
}
}
/** Final output ports after all stars and port forwarding (e.g. [[EphemeralNode]]s) have been resolved.
*
* Each Port is a tuple of:
* - Numeric index of this binding in the [[InwardNode]] on the other end.
* - [[InwardNode]] on the other end of this binding.
* - A view of [[Parameters]] where the binding occurred.
* - [[SourceInfo]] for source-level error reporting.
*/
lazy val oPorts: Seq[(Int, InwardNode[DO, UO, BO], Parameters, SourceInfo)] = oDirectPorts.map(oTrace)
/** Final input ports after all stars and port forwarding (e.g. [[EphemeralNode]]s) have been resolved.
*
* Each Port is a tuple of:
* - numeric index of this binding in [[OutwardNode]] on the other end.
* - [[OutwardNode]] on the other end of this binding.
* - a view of [[Parameters]] where the binding occurred.
* - [[SourceInfo]] for source-level error reporting.
*/
lazy val iPorts: Seq[(Int, OutwardNode[DI, UI, BI], Parameters, SourceInfo)] = iDirectPorts.map(iTrace)
private var oParamsCycleGuard = false
protected[diplomacy] lazy val diParams: Seq[DI] = iPorts.map { case (i, n, _, _) => n.doParams(i) }
protected[diplomacy] lazy val doParams: Seq[DO] = {
try {
if (oParamsCycleGuard) throw DownwardCycleException()
oParamsCycleGuard = true
val o = mapParamsD(oPorts.size, diParams)
require(
o.size == oPorts.size,
s"""Diplomacy has detected a problem with your graph:
|At the following node, the number of outward ports should equal the number of produced outward parameters.
|$context
|$connectedPortsInfo
|Downstreamed inward parameters: [${diParams.mkString(",")}]
|Produced outward parameters: [${o.mkString(",")}]
|""".stripMargin
)
o.map(outer.mixO(_, this))
} catch {
case c: DownwardCycleException => throw c.copy(loop = context +: c.loop)
}
}
private var iParamsCycleGuard = false
protected[diplomacy] lazy val uoParams: Seq[UO] = oPorts.map { case (o, n, _, _) => n.uiParams(o) }
protected[diplomacy] lazy val uiParams: Seq[UI] = {
try {
if (iParamsCycleGuard) throw UpwardCycleException()
iParamsCycleGuard = true
val i = mapParamsU(iPorts.size, uoParams)
require(
i.size == iPorts.size,
s"""Diplomacy has detected a problem with your graph:
|At the following node, the number of inward ports should equal the number of produced inward parameters.
|$context
|$connectedPortsInfo
|Upstreamed outward parameters: [${uoParams.mkString(",")}]
|Produced inward parameters: [${i.mkString(",")}]
|""".stripMargin
)
i.map(inner.mixI(_, this))
} catch {
case c: UpwardCycleException => throw c.copy(loop = context +: c.loop)
}
}
/** Outward edge parameters. */
protected[diplomacy] lazy val edgesOut: Seq[EO] =
(oPorts.zip(doParams)).map { case ((i, n, p, s), o) => outer.edgeO(o, n.uiParams(i), p, s) }
/** Inward edge parameters. */
protected[diplomacy] lazy val edgesIn: Seq[EI] =
(iPorts.zip(uiParams)).map { case ((o, n, p, s), i) => inner.edgeI(n.doParams(o), i, p, s) }
/** A tuple of the input edge parameters and output edge parameters for the edges bound to this node.
*
* If you need to access to the edges of a foreign Node, use this method (in/out create bundles).
*/
lazy val edges: Edges[EI, EO] = Edges(edgesIn, edgesOut)
/** Create actual Wires corresponding to the Bundles parameterized by the outward edges of this node. */
protected[diplomacy] lazy val bundleOut: Seq[BO] = edgesOut.map { e =>
val x = Wire(outer.bundleO(e)).suggestName(s"${valName.value}Out")
// TODO: Don't care unconnected forwarded diplomatic signals for compatibility issue,
// In the future, we should add an option to decide whether allowing unconnected in the LazyModule
x := DontCare
x
}
/** Create actual Wires corresponding to the Bundles parameterized by the inward edges of this node. */
protected[diplomacy] lazy val bundleIn: Seq[BI] = edgesIn.map { e =>
val x = Wire(inner.bundleI(e)).suggestName(s"${valName.value}In")
// TODO: Don't care unconnected forwarded diplomatic signals for compatibility issue,
// In the future, we should add an option to decide whether allowing unconnected in the LazyModule
x := DontCare
x
}
private def emptyDanglesOut: Seq[Dangle] = oPorts.zipWithIndex.map { case ((j, n, _, _), i) =>
Dangle(
source = HalfEdge(serial, i),
sink = HalfEdge(n.serial, j),
flipped = false,
name = wirePrefix + "out",
dataOpt = None
)
}
private def emptyDanglesIn: Seq[Dangle] = iPorts.zipWithIndex.map { case ((j, n, _, _), i) =>
Dangle(
source = HalfEdge(n.serial, j),
sink = HalfEdge(serial, i),
flipped = true,
name = wirePrefix + "in",
dataOpt = None
)
}
/** Create the [[Dangle]]s which describe the connections from this node output to other nodes inputs. */
protected[diplomacy] def danglesOut: Seq[Dangle] = emptyDanglesOut.zipWithIndex.map { case (d, i) =>
d.copy(dataOpt = Some(bundleOut(i)))
}
/** Create the [[Dangle]]s which describe the connections from this node input from other nodes outputs. */
protected[diplomacy] def danglesIn: Seq[Dangle] = emptyDanglesIn.zipWithIndex.map { case (d, i) =>
d.copy(dataOpt = Some(bundleIn(i)))
}
private[diplomacy] var instantiated = false
/** Gather Bundle and edge parameters of outward ports.
*
* Accessors to the result of negotiation to be used within [[LazyModuleImp]] Code. Should only be used within
* [[LazyModuleImp]] code or after its instantiation has completed.
*/
def out: Seq[(BO, EO)] = {
require(
instantiated,
s"$name.out should not be called until after instantiation of its parent LazyModule.module has begun"
)
bundleOut.zip(edgesOut)
}
/** Gather Bundle and edge parameters of inward ports.
*
* Accessors to the result of negotiation to be used within [[LazyModuleImp]] Code. Should only be used within
* [[LazyModuleImp]] code or after its instantiation has completed.
*/
def in: Seq[(BI, EI)] = {
require(
instantiated,
s"$name.in should not be called until after instantiation of its parent LazyModule.module has begun"
)
bundleIn.zip(edgesIn)
}
/** Actually instantiate this node during [[LazyModuleImp]] evaluation. Mark that it's safe to use the Bundle wires,
* instantiate monitors on all input ports if appropriate, and return all the dangles of this node.
*/
protected[diplomacy] def instantiate(): Seq[Dangle] = {
instantiated = true
if (!circuitIdentity) {
(iPorts.zip(in)).foreach { case ((_, _, p, _), (b, e)) => if (p(MonitorsEnabled)) inner.monitor(b, e) }
}
danglesOut ++ danglesIn
}
protected[diplomacy] def cloneDangles(): Seq[Dangle] = emptyDanglesOut ++ emptyDanglesIn
/** Connects the outward part of a node with the inward part of this node. */
protected[diplomacy] def bind(
h: OutwardNode[DI, UI, BI],
binding: NodeBinding
)(
implicit p: Parameters,
sourceInfo: SourceInfo
): Unit = {
val x = this // x := y
val y = h
sourceLine(sourceInfo, " at ", "")
val i = x.iPushed
val o = y.oPushed
y.oPush(
i,
x,
binding match {
case BIND_ONCE => BIND_ONCE
case BIND_FLEX => BIND_FLEX
case BIND_STAR => BIND_QUERY
case BIND_QUERY => BIND_STAR
}
)
x.iPush(o, y, binding)
}
/* Metadata for printing the node graph. */
def inputs: Seq[(OutwardNode[DI, UI, BI], RenderedEdge)] = (iPorts.zip(edgesIn)).map { case ((_, n, p, _), e) =>
val re = inner.render(e)
(n, re.copy(flipped = re.flipped != p(RenderFlipped)))
}
/** Metadata for printing the node graph */
def outputs: Seq[(InwardNode[DO, UO, BO], RenderedEdge)] = oPorts.map { case (i, n, _, _) => (n, n.inputs(i)._2) }
}
File Edges.scala:
// See LICENSE.SiFive for license details.
package freechips.rocketchip.tilelink
import chisel3._
import chisel3.util._
import chisel3.experimental.SourceInfo
import org.chipsalliance.cde.config.Parameters
import freechips.rocketchip.util._
class TLEdge(
client: TLClientPortParameters,
manager: TLManagerPortParameters,
params: Parameters,
sourceInfo: SourceInfo)
extends TLEdgeParameters(client, manager, params, sourceInfo)
{
def isAligned(address: UInt, lgSize: UInt): Bool = {
if (maxLgSize == 0) true.B else {
val mask = UIntToOH1(lgSize, maxLgSize)
(address & mask) === 0.U
}
}
def mask(address: UInt, lgSize: UInt): UInt =
MaskGen(address, lgSize, manager.beatBytes)
def staticHasData(bundle: TLChannel): Option[Boolean] = {
bundle match {
case _:TLBundleA => {
// Do there exist A messages with Data?
val aDataYes = manager.anySupportArithmetic || manager.anySupportLogical || manager.anySupportPutFull || manager.anySupportPutPartial
// Do there exist A messages without Data?
val aDataNo = manager.anySupportAcquireB || manager.anySupportGet || manager.anySupportHint
// Statically optimize the case where hasData is a constant
if (!aDataYes) Some(false) else if (!aDataNo) Some(true) else None
}
case _:TLBundleB => {
// Do there exist B messages with Data?
val bDataYes = client.anySupportArithmetic || client.anySupportLogical || client.anySupportPutFull || client.anySupportPutPartial
// Do there exist B messages without Data?
val bDataNo = client.anySupportProbe || client.anySupportGet || client.anySupportHint
// Statically optimize the case where hasData is a constant
if (!bDataYes) Some(false) else if (!bDataNo) Some(true) else None
}
case _:TLBundleC => {
// Do there eixst C messages with Data?
val cDataYes = client.anySupportGet || client.anySupportArithmetic || client.anySupportLogical || client.anySupportProbe
// Do there exist C messages without Data?
val cDataNo = client.anySupportPutFull || client.anySupportPutPartial || client.anySupportHint || client.anySupportProbe
if (!cDataYes) Some(false) else if (!cDataNo) Some(true) else None
}
case _:TLBundleD => {
// Do there eixst D messages with Data?
val dDataYes = manager.anySupportGet || manager.anySupportArithmetic || manager.anySupportLogical || manager.anySupportAcquireB
// Do there exist D messages without Data?
val dDataNo = manager.anySupportPutFull || manager.anySupportPutPartial || manager.anySupportHint || manager.anySupportAcquireT
if (!dDataYes) Some(false) else if (!dDataNo) Some(true) else None
}
case _:TLBundleE => Some(false)
}
}
def isRequest(x: TLChannel): Bool = {
x match {
case a: TLBundleA => true.B
case b: TLBundleB => true.B
case c: TLBundleC => c.opcode(2) && c.opcode(1)
// opcode === TLMessages.Release ||
// opcode === TLMessages.ReleaseData
case d: TLBundleD => d.opcode(2) && !d.opcode(1)
// opcode === TLMessages.Grant ||
// opcode === TLMessages.GrantData
case e: TLBundleE => false.B
}
}
def isResponse(x: TLChannel): Bool = {
x match {
case a: TLBundleA => false.B
case b: TLBundleB => false.B
case c: TLBundleC => !c.opcode(2) || !c.opcode(1)
// opcode =/= TLMessages.Release &&
// opcode =/= TLMessages.ReleaseData
case d: TLBundleD => true.B // Grant isResponse + isRequest
case e: TLBundleE => true.B
}
}
def hasData(x: TLChannel): Bool = {
val opdata = x match {
case a: TLBundleA => !a.opcode(2)
// opcode === TLMessages.PutFullData ||
// opcode === TLMessages.PutPartialData ||
// opcode === TLMessages.ArithmeticData ||
// opcode === TLMessages.LogicalData
case b: TLBundleB => !b.opcode(2)
// opcode === TLMessages.PutFullData ||
// opcode === TLMessages.PutPartialData ||
// opcode === TLMessages.ArithmeticData ||
// opcode === TLMessages.LogicalData
case c: TLBundleC => c.opcode(0)
// opcode === TLMessages.AccessAckData ||
// opcode === TLMessages.ProbeAckData ||
// opcode === TLMessages.ReleaseData
case d: TLBundleD => d.opcode(0)
// opcode === TLMessages.AccessAckData ||
// opcode === TLMessages.GrantData
case e: TLBundleE => false.B
}
staticHasData(x).map(_.B).getOrElse(opdata)
}
def opcode(x: TLDataChannel): UInt = {
x match {
case a: TLBundleA => a.opcode
case b: TLBundleB => b.opcode
case c: TLBundleC => c.opcode
case d: TLBundleD => d.opcode
}
}
def param(x: TLDataChannel): UInt = {
x match {
case a: TLBundleA => a.param
case b: TLBundleB => b.param
case c: TLBundleC => c.param
case d: TLBundleD => d.param
}
}
def size(x: TLDataChannel): UInt = {
x match {
case a: TLBundleA => a.size
case b: TLBundleB => b.size
case c: TLBundleC => c.size
case d: TLBundleD => d.size
}
}
def data(x: TLDataChannel): UInt = {
x match {
case a: TLBundleA => a.data
case b: TLBundleB => b.data
case c: TLBundleC => c.data
case d: TLBundleD => d.data
}
}
def corrupt(x: TLDataChannel): Bool = {
x match {
case a: TLBundleA => a.corrupt
case b: TLBundleB => b.corrupt
case c: TLBundleC => c.corrupt
case d: TLBundleD => d.corrupt
}
}
def mask(x: TLAddrChannel): UInt = {
x match {
case a: TLBundleA => a.mask
case b: TLBundleB => b.mask
case c: TLBundleC => mask(c.address, c.size)
}
}
def full_mask(x: TLAddrChannel): UInt = {
x match {
case a: TLBundleA => mask(a.address, a.size)
case b: TLBundleB => mask(b.address, b.size)
case c: TLBundleC => mask(c.address, c.size)
}
}
def address(x: TLAddrChannel): UInt = {
x match {
case a: TLBundleA => a.address
case b: TLBundleB => b.address
case c: TLBundleC => c.address
}
}
def source(x: TLDataChannel): UInt = {
x match {
case a: TLBundleA => a.source
case b: TLBundleB => b.source
case c: TLBundleC => c.source
case d: TLBundleD => d.source
}
}
def addr_hi(x: UInt): UInt = x >> log2Ceil(manager.beatBytes)
def addr_lo(x: UInt): UInt =
if (manager.beatBytes == 1) 0.U else x(log2Ceil(manager.beatBytes)-1, 0)
def addr_hi(x: TLAddrChannel): UInt = addr_hi(address(x))
def addr_lo(x: TLAddrChannel): UInt = addr_lo(address(x))
def numBeats(x: TLChannel): UInt = {
x match {
case _: TLBundleE => 1.U
case bundle: TLDataChannel => {
val hasData = this.hasData(bundle)
val size = this.size(bundle)
val cutoff = log2Ceil(manager.beatBytes)
val small = if (manager.maxTransfer <= manager.beatBytes) true.B else size <= (cutoff).U
val decode = UIntToOH(size, maxLgSize+1) >> cutoff
Mux(hasData, decode | small.asUInt, 1.U)
}
}
}
def numBeats1(x: TLChannel): UInt = {
x match {
case _: TLBundleE => 0.U
case bundle: TLDataChannel => {
if (maxLgSize == 0) {
0.U
} else {
val decode = UIntToOH1(size(bundle), maxLgSize) >> log2Ceil(manager.beatBytes)
Mux(hasData(bundle), decode, 0.U)
}
}
}
}
def firstlastHelper(bits: TLChannel, fire: Bool): (Bool, Bool, Bool, UInt) = {
val beats1 = numBeats1(bits)
val counter = RegInit(0.U(log2Up(maxTransfer / manager.beatBytes).W))
val counter1 = counter - 1.U
val first = counter === 0.U
val last = counter === 1.U || beats1 === 0.U
val done = last && fire
val count = (beats1 & ~counter1)
when (fire) {
counter := Mux(first, beats1, counter1)
}
(first, last, done, count)
}
def first(bits: TLChannel, fire: Bool): Bool = firstlastHelper(bits, fire)._1
def first(x: DecoupledIO[TLChannel]): Bool = first(x.bits, x.fire)
def first(x: ValidIO[TLChannel]): Bool = first(x.bits, x.valid)
def last(bits: TLChannel, fire: Bool): Bool = firstlastHelper(bits, fire)._2
def last(x: DecoupledIO[TLChannel]): Bool = last(x.bits, x.fire)
def last(x: ValidIO[TLChannel]): Bool = last(x.bits, x.valid)
def done(bits: TLChannel, fire: Bool): Bool = firstlastHelper(bits, fire)._3
def done(x: DecoupledIO[TLChannel]): Bool = done(x.bits, x.fire)
def done(x: ValidIO[TLChannel]): Bool = done(x.bits, x.valid)
def firstlast(bits: TLChannel, fire: Bool): (Bool, Bool, Bool) = {
val r = firstlastHelper(bits, fire)
(r._1, r._2, r._3)
}
def firstlast(x: DecoupledIO[TLChannel]): (Bool, Bool, Bool) = firstlast(x.bits, x.fire)
def firstlast(x: ValidIO[TLChannel]): (Bool, Bool, Bool) = firstlast(x.bits, x.valid)
def count(bits: TLChannel, fire: Bool): (Bool, Bool, Bool, UInt) = {
val r = firstlastHelper(bits, fire)
(r._1, r._2, r._3, r._4)
}
def count(x: DecoupledIO[TLChannel]): (Bool, Bool, Bool, UInt) = count(x.bits, x.fire)
def count(x: ValidIO[TLChannel]): (Bool, Bool, Bool, UInt) = count(x.bits, x.valid)
def addr_inc(bits: TLChannel, fire: Bool): (Bool, Bool, Bool, UInt) = {
val r = firstlastHelper(bits, fire)
(r._1, r._2, r._3, r._4 << log2Ceil(manager.beatBytes))
}
def addr_inc(x: DecoupledIO[TLChannel]): (Bool, Bool, Bool, UInt) = addr_inc(x.bits, x.fire)
def addr_inc(x: ValidIO[TLChannel]): (Bool, Bool, Bool, UInt) = addr_inc(x.bits, x.valid)
// Does the request need T permissions to be executed?
def needT(a: TLBundleA): Bool = {
val acq_needT = MuxLookup(a.param, WireDefault(Bool(), DontCare))(Array(
TLPermissions.NtoB -> false.B,
TLPermissions.NtoT -> true.B,
TLPermissions.BtoT -> true.B))
MuxLookup(a.opcode, WireDefault(Bool(), DontCare))(Array(
TLMessages.PutFullData -> true.B,
TLMessages.PutPartialData -> true.B,
TLMessages.ArithmeticData -> true.B,
TLMessages.LogicalData -> true.B,
TLMessages.Get -> false.B,
TLMessages.Hint -> MuxLookup(a.param, WireDefault(Bool(), DontCare))(Array(
TLHints.PREFETCH_READ -> false.B,
TLHints.PREFETCH_WRITE -> true.B)),
TLMessages.AcquireBlock -> acq_needT,
TLMessages.AcquirePerm -> acq_needT))
}
// This is a very expensive circuit; use only if you really mean it!
def inFlight(x: TLBundle): (UInt, UInt) = {
val flight = RegInit(0.U(log2Ceil(3*client.endSourceId+1).W))
val bce = manager.anySupportAcquireB && client.anySupportProbe
val (a_first, a_last, _) = firstlast(x.a)
val (b_first, b_last, _) = firstlast(x.b)
val (c_first, c_last, _) = firstlast(x.c)
val (d_first, d_last, _) = firstlast(x.d)
val (e_first, e_last, _) = firstlast(x.e)
val (a_request, a_response) = (isRequest(x.a.bits), isResponse(x.a.bits))
val (b_request, b_response) = (isRequest(x.b.bits), isResponse(x.b.bits))
val (c_request, c_response) = (isRequest(x.c.bits), isResponse(x.c.bits))
val (d_request, d_response) = (isRequest(x.d.bits), isResponse(x.d.bits))
val (e_request, e_response) = (isRequest(x.e.bits), isResponse(x.e.bits))
val a_inc = x.a.fire && a_first && a_request
val b_inc = x.b.fire && b_first && b_request
val c_inc = x.c.fire && c_first && c_request
val d_inc = x.d.fire && d_first && d_request
val e_inc = x.e.fire && e_first && e_request
val inc = Cat(Seq(a_inc, d_inc) ++ (if (bce) Seq(b_inc, c_inc, e_inc) else Nil))
val a_dec = x.a.fire && a_last && a_response
val b_dec = x.b.fire && b_last && b_response
val c_dec = x.c.fire && c_last && c_response
val d_dec = x.d.fire && d_last && d_response
val e_dec = x.e.fire && e_last && e_response
val dec = Cat(Seq(a_dec, d_dec) ++ (if (bce) Seq(b_dec, c_dec, e_dec) else Nil))
val next_flight = flight + PopCount(inc) - PopCount(dec)
flight := next_flight
(flight, next_flight)
}
def prettySourceMapping(context: String): String = {
s"TL-Source mapping for $context:\n${(new TLSourceIdMap(client)).pretty}\n"
}
}
class TLEdgeOut(
client: TLClientPortParameters,
manager: TLManagerPortParameters,
params: Parameters,
sourceInfo: SourceInfo)
extends TLEdge(client, manager, params, sourceInfo)
{
// Transfers
def AcquireBlock(fromSource: UInt, toAddress: UInt, lgSize: UInt, growPermissions: UInt) = {
require (manager.anySupportAcquireB, s"TileLink: No managers visible from this edge support Acquires, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsAcquireBFast(toAddress, lgSize)
val a = Wire(new TLBundleA(bundle))
a.opcode := TLMessages.AcquireBlock
a.param := growPermissions
a.size := lgSize
a.source := fromSource
a.address := toAddress
a.user := DontCare
a.echo := DontCare
a.mask := mask(toAddress, lgSize)
a.data := DontCare
a.corrupt := false.B
(legal, a)
}
def AcquirePerm(fromSource: UInt, toAddress: UInt, lgSize: UInt, growPermissions: UInt) = {
require (manager.anySupportAcquireB, s"TileLink: No managers visible from this edge support Acquires, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsAcquireBFast(toAddress, lgSize)
val a = Wire(new TLBundleA(bundle))
a.opcode := TLMessages.AcquirePerm
a.param := growPermissions
a.size := lgSize
a.source := fromSource
a.address := toAddress
a.user := DontCare
a.echo := DontCare
a.mask := mask(toAddress, lgSize)
a.data := DontCare
a.corrupt := false.B
(legal, a)
}
def Release(fromSource: UInt, toAddress: UInt, lgSize: UInt, shrinkPermissions: UInt): (Bool, TLBundleC) = {
require (manager.anySupportAcquireB, s"TileLink: No managers visible from this edge support Acquires, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsAcquireBFast(toAddress, lgSize)
val c = Wire(new TLBundleC(bundle))
c.opcode := TLMessages.Release
c.param := shrinkPermissions
c.size := lgSize
c.source := fromSource
c.address := toAddress
c.user := DontCare
c.echo := DontCare
c.data := DontCare
c.corrupt := false.B
(legal, c)
}
def Release(fromSource: UInt, toAddress: UInt, lgSize: UInt, shrinkPermissions: UInt, data: UInt, corrupt: Bool): (Bool, TLBundleC) = {
require (manager.anySupportAcquireB, s"TileLink: No managers visible from this edge support Acquires, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsAcquireBFast(toAddress, lgSize)
val c = Wire(new TLBundleC(bundle))
c.opcode := TLMessages.ReleaseData
c.param := shrinkPermissions
c.size := lgSize
c.source := fromSource
c.address := toAddress
c.user := DontCare
c.echo := DontCare
c.data := data
c.corrupt := corrupt
(legal, c)
}
def Release(fromSource: UInt, toAddress: UInt, lgSize: UInt, shrinkPermissions: UInt, data: UInt): (Bool, TLBundleC) =
Release(fromSource, toAddress, lgSize, shrinkPermissions, data, false.B)
def ProbeAck(b: TLBundleB, reportPermissions: UInt): TLBundleC =
ProbeAck(b.source, b.address, b.size, reportPermissions)
def ProbeAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, reportPermissions: UInt): TLBundleC = {
val c = Wire(new TLBundleC(bundle))
c.opcode := TLMessages.ProbeAck
c.param := reportPermissions
c.size := lgSize
c.source := fromSource
c.address := toAddress
c.user := DontCare
c.echo := DontCare
c.data := DontCare
c.corrupt := false.B
c
}
def ProbeAck(b: TLBundleB, reportPermissions: UInt, data: UInt): TLBundleC =
ProbeAck(b.source, b.address, b.size, reportPermissions, data)
def ProbeAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, reportPermissions: UInt, data: UInt, corrupt: Bool): TLBundleC = {
val c = Wire(new TLBundleC(bundle))
c.opcode := TLMessages.ProbeAckData
c.param := reportPermissions
c.size := lgSize
c.source := fromSource
c.address := toAddress
c.user := DontCare
c.echo := DontCare
c.data := data
c.corrupt := corrupt
c
}
def ProbeAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, reportPermissions: UInt, data: UInt): TLBundleC =
ProbeAck(fromSource, toAddress, lgSize, reportPermissions, data, false.B)
def GrantAck(d: TLBundleD): TLBundleE = GrantAck(d.sink)
def GrantAck(toSink: UInt): TLBundleE = {
val e = Wire(new TLBundleE(bundle))
e.sink := toSink
e
}
// Accesses
def Get(fromSource: UInt, toAddress: UInt, lgSize: UInt) = {
require (manager.anySupportGet, s"TileLink: No managers visible from this edge support Gets, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsGetFast(toAddress, lgSize)
val a = Wire(new TLBundleA(bundle))
a.opcode := TLMessages.Get
a.param := 0.U
a.size := lgSize
a.source := fromSource
a.address := toAddress
a.user := DontCare
a.echo := DontCare
a.mask := mask(toAddress, lgSize)
a.data := DontCare
a.corrupt := false.B
(legal, a)
}
def Put(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt): (Bool, TLBundleA) =
Put(fromSource, toAddress, lgSize, data, false.B)
def Put(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, corrupt: Bool): (Bool, TLBundleA) = {
require (manager.anySupportPutFull, s"TileLink: No managers visible from this edge support Puts, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsPutFullFast(toAddress, lgSize)
val a = Wire(new TLBundleA(bundle))
a.opcode := TLMessages.PutFullData
a.param := 0.U
a.size := lgSize
a.source := fromSource
a.address := toAddress
a.user := DontCare
a.echo := DontCare
a.mask := mask(toAddress, lgSize)
a.data := data
a.corrupt := corrupt
(legal, a)
}
def Put(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, mask: UInt): (Bool, TLBundleA) =
Put(fromSource, toAddress, lgSize, data, mask, false.B)
def Put(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, mask: UInt, corrupt: Bool): (Bool, TLBundleA) = {
require (manager.anySupportPutPartial, s"TileLink: No managers visible from this edge support masked Puts, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsPutPartialFast(toAddress, lgSize)
val a = Wire(new TLBundleA(bundle))
a.opcode := TLMessages.PutPartialData
a.param := 0.U
a.size := lgSize
a.source := fromSource
a.address := toAddress
a.user := DontCare
a.echo := DontCare
a.mask := mask
a.data := data
a.corrupt := corrupt
(legal, a)
}
def Arithmetic(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, atomic: UInt, corrupt: Bool = false.B): (Bool, TLBundleA) = {
require (manager.anySupportArithmetic, s"TileLink: No managers visible from this edge support arithmetic AMOs, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsArithmeticFast(toAddress, lgSize)
val a = Wire(new TLBundleA(bundle))
a.opcode := TLMessages.ArithmeticData
a.param := atomic
a.size := lgSize
a.source := fromSource
a.address := toAddress
a.user := DontCare
a.echo := DontCare
a.mask := mask(toAddress, lgSize)
a.data := data
a.corrupt := corrupt
(legal, a)
}
def Logical(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, atomic: UInt, corrupt: Bool = false.B) = {
require (manager.anySupportLogical, s"TileLink: No managers visible from this edge support logical AMOs, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsLogicalFast(toAddress, lgSize)
val a = Wire(new TLBundleA(bundle))
a.opcode := TLMessages.LogicalData
a.param := atomic
a.size := lgSize
a.source := fromSource
a.address := toAddress
a.user := DontCare
a.echo := DontCare
a.mask := mask(toAddress, lgSize)
a.data := data
a.corrupt := corrupt
(legal, a)
}
def Hint(fromSource: UInt, toAddress: UInt, lgSize: UInt, param: UInt) = {
require (manager.anySupportHint, s"TileLink: No managers visible from this edge support Hints, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsHintFast(toAddress, lgSize)
val a = Wire(new TLBundleA(bundle))
a.opcode := TLMessages.Hint
a.param := param
a.size := lgSize
a.source := fromSource
a.address := toAddress
a.user := DontCare
a.echo := DontCare
a.mask := mask(toAddress, lgSize)
a.data := DontCare
a.corrupt := false.B
(legal, a)
}
def AccessAck(b: TLBundleB): TLBundleC = AccessAck(b.source, address(b), b.size)
def AccessAck(fromSource: UInt, toAddress: UInt, lgSize: UInt) = {
val c = Wire(new TLBundleC(bundle))
c.opcode := TLMessages.AccessAck
c.param := 0.U
c.size := lgSize
c.source := fromSource
c.address := toAddress
c.user := DontCare
c.echo := DontCare
c.data := DontCare
c.corrupt := false.B
c
}
def AccessAck(b: TLBundleB, data: UInt): TLBundleC = AccessAck(b.source, address(b), b.size, data)
def AccessAck(b: TLBundleB, data: UInt, corrupt: Bool): TLBundleC = AccessAck(b.source, address(b), b.size, data, corrupt)
def AccessAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt): TLBundleC = AccessAck(fromSource, toAddress, lgSize, data, false.B)
def AccessAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, corrupt: Bool) = {
val c = Wire(new TLBundleC(bundle))
c.opcode := TLMessages.AccessAckData
c.param := 0.U
c.size := lgSize
c.source := fromSource
c.address := toAddress
c.user := DontCare
c.echo := DontCare
c.data := data
c.corrupt := corrupt
c
}
def HintAck(b: TLBundleB): TLBundleC = HintAck(b.source, address(b), b.size)
def HintAck(fromSource: UInt, toAddress: UInt, lgSize: UInt) = {
val c = Wire(new TLBundleC(bundle))
c.opcode := TLMessages.HintAck
c.param := 0.U
c.size := lgSize
c.source := fromSource
c.address := toAddress
c.user := DontCare
c.echo := DontCare
c.data := DontCare
c.corrupt := false.B
c
}
}
class TLEdgeIn(
client: TLClientPortParameters,
manager: TLManagerPortParameters,
params: Parameters,
sourceInfo: SourceInfo)
extends TLEdge(client, manager, params, sourceInfo)
{
private def myTranspose[T](x: Seq[Seq[T]]): Seq[Seq[T]] = {
val todo = x.filter(!_.isEmpty)
val heads = todo.map(_.head)
val tails = todo.map(_.tail)
if (todo.isEmpty) Nil else { heads +: myTranspose(tails) }
}
// Transfers
def Probe(fromAddress: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt) = {
require (client.anySupportProbe, s"TileLink: No clients visible from this edge support probes, but one of these managers tried to issue one: ${manager.managers}")
val legal = client.supportsProbe(toSource, lgSize)
val b = Wire(new TLBundleB(bundle))
b.opcode := TLMessages.Probe
b.param := capPermissions
b.size := lgSize
b.source := toSource
b.address := fromAddress
b.mask := mask(fromAddress, lgSize)
b.data := DontCare
b.corrupt := false.B
(legal, b)
}
def Grant(fromSink: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt): TLBundleD = Grant(fromSink, toSource, lgSize, capPermissions, false.B)
def Grant(fromSink: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt, denied: Bool) = {
val d = Wire(new TLBundleD(bundle))
d.opcode := TLMessages.Grant
d.param := capPermissions
d.size := lgSize
d.source := toSource
d.sink := fromSink
d.denied := denied
d.user := DontCare
d.echo := DontCare
d.data := DontCare
d.corrupt := false.B
d
}
def Grant(fromSink: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt, data: UInt): TLBundleD = Grant(fromSink, toSource, lgSize, capPermissions, data, false.B, false.B)
def Grant(fromSink: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt, data: UInt, denied: Bool, corrupt: Bool) = {
val d = Wire(new TLBundleD(bundle))
d.opcode := TLMessages.GrantData
d.param := capPermissions
d.size := lgSize
d.source := toSource
d.sink := fromSink
d.denied := denied
d.user := DontCare
d.echo := DontCare
d.data := data
d.corrupt := corrupt
d
}
def ReleaseAck(c: TLBundleC): TLBundleD = ReleaseAck(c.source, c.size, false.B)
def ReleaseAck(toSource: UInt, lgSize: UInt, denied: Bool): TLBundleD = {
val d = Wire(new TLBundleD(bundle))
d.opcode := TLMessages.ReleaseAck
d.param := 0.U
d.size := lgSize
d.source := toSource
d.sink := 0.U
d.denied := denied
d.user := DontCare
d.echo := DontCare
d.data := DontCare
d.corrupt := false.B
d
}
// Accesses
def Get(fromAddress: UInt, toSource: UInt, lgSize: UInt) = {
require (client.anySupportGet, s"TileLink: No clients visible from this edge support Gets, but one of these managers would try to issue one: ${manager.managers}")
val legal = client.supportsGet(toSource, lgSize)
val b = Wire(new TLBundleB(bundle))
b.opcode := TLMessages.Get
b.param := 0.U
b.size := lgSize
b.source := toSource
b.address := fromAddress
b.mask := mask(fromAddress, lgSize)
b.data := DontCare
b.corrupt := false.B
(legal, b)
}
def Put(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt): (Bool, TLBundleB) =
Put(fromAddress, toSource, lgSize, data, false.B)
def Put(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, corrupt: Bool): (Bool, TLBundleB) = {
require (client.anySupportPutFull, s"TileLink: No clients visible from this edge support Puts, but one of these managers would try to issue one: ${manager.managers}")
val legal = client.supportsPutFull(toSource, lgSize)
val b = Wire(new TLBundleB(bundle))
b.opcode := TLMessages.PutFullData
b.param := 0.U
b.size := lgSize
b.source := toSource
b.address := fromAddress
b.mask := mask(fromAddress, lgSize)
b.data := data
b.corrupt := corrupt
(legal, b)
}
def Put(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, mask: UInt): (Bool, TLBundleB) =
Put(fromAddress, toSource, lgSize, data, mask, false.B)
def Put(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, mask: UInt, corrupt: Bool): (Bool, TLBundleB) = {
require (client.anySupportPutPartial, s"TileLink: No clients visible from this edge support masked Puts, but one of these managers would try to request one: ${manager.managers}")
val legal = client.supportsPutPartial(toSource, lgSize)
val b = Wire(new TLBundleB(bundle))
b.opcode := TLMessages.PutPartialData
b.param := 0.U
b.size := lgSize
b.source := toSource
b.address := fromAddress
b.mask := mask
b.data := data
b.corrupt := corrupt
(legal, b)
}
def Arithmetic(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, atomic: UInt, corrupt: Bool = false.B) = {
require (client.anySupportArithmetic, s"TileLink: No clients visible from this edge support arithmetic AMOs, but one of these managers would try to request one: ${manager.managers}")
val legal = client.supportsArithmetic(toSource, lgSize)
val b = Wire(new TLBundleB(bundle))
b.opcode := TLMessages.ArithmeticData
b.param := atomic
b.size := lgSize
b.source := toSource
b.address := fromAddress
b.mask := mask(fromAddress, lgSize)
b.data := data
b.corrupt := corrupt
(legal, b)
}
def Logical(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, atomic: UInt, corrupt: Bool = false.B) = {
require (client.anySupportLogical, s"TileLink: No clients visible from this edge support logical AMOs, but one of these managers would try to request one: ${manager.managers}")
val legal = client.supportsLogical(toSource, lgSize)
val b = Wire(new TLBundleB(bundle))
b.opcode := TLMessages.LogicalData
b.param := atomic
b.size := lgSize
b.source := toSource
b.address := fromAddress
b.mask := mask(fromAddress, lgSize)
b.data := data
b.corrupt := corrupt
(legal, b)
}
def Hint(fromAddress: UInt, toSource: UInt, lgSize: UInt, param: UInt) = {
require (client.anySupportHint, s"TileLink: No clients visible from this edge support Hints, but one of these managers would try to request one: ${manager.managers}")
val legal = client.supportsHint(toSource, lgSize)
val b = Wire(new TLBundleB(bundle))
b.opcode := TLMessages.Hint
b.param := param
b.size := lgSize
b.source := toSource
b.address := fromAddress
b.mask := mask(fromAddress, lgSize)
b.data := DontCare
b.corrupt := false.B
(legal, b)
}
def AccessAck(a: TLBundleA): TLBundleD = AccessAck(a.source, a.size)
def AccessAck(a: TLBundleA, denied: Bool): TLBundleD = AccessAck(a.source, a.size, denied)
def AccessAck(toSource: UInt, lgSize: UInt): TLBundleD = AccessAck(toSource, lgSize, false.B)
def AccessAck(toSource: UInt, lgSize: UInt, denied: Bool) = {
val d = Wire(new TLBundleD(bundle))
d.opcode := TLMessages.AccessAck
d.param := 0.U
d.size := lgSize
d.source := toSource
d.sink := 0.U
d.denied := denied
d.user := DontCare
d.echo := DontCare
d.data := DontCare
d.corrupt := false.B
d
}
def AccessAck(a: TLBundleA, data: UInt): TLBundleD = AccessAck(a.source, a.size, data)
def AccessAck(a: TLBundleA, data: UInt, denied: Bool, corrupt: Bool): TLBundleD = AccessAck(a.source, a.size, data, denied, corrupt)
def AccessAck(toSource: UInt, lgSize: UInt, data: UInt): TLBundleD = AccessAck(toSource, lgSize, data, false.B, false.B)
def AccessAck(toSource: UInt, lgSize: UInt, data: UInt, denied: Bool, corrupt: Bool) = {
val d = Wire(new TLBundleD(bundle))
d.opcode := TLMessages.AccessAckData
d.param := 0.U
d.size := lgSize
d.source := toSource
d.sink := 0.U
d.denied := denied
d.user := DontCare
d.echo := DontCare
d.data := data
d.corrupt := corrupt
d
}
def HintAck(a: TLBundleA): TLBundleD = HintAck(a, false.B)
def HintAck(a: TLBundleA, denied: Bool): TLBundleD = HintAck(a.source, a.size, denied)
def HintAck(toSource: UInt, lgSize: UInt): TLBundleD = HintAck(toSource, lgSize, false.B)
def HintAck(toSource: UInt, lgSize: UInt, denied: Bool) = {
val d = Wire(new TLBundleD(bundle))
d.opcode := TLMessages.HintAck
d.param := 0.U
d.size := lgSize
d.source := toSource
d.sink := 0.U
d.denied := denied
d.user := DontCare
d.echo := DontCare
d.data := DontCare
d.corrupt := false.B
d
}
}
| module L2MemHelperLatencyInjection_5( // @[L2MemHelperLatencyInjection.scala:29:7]
input clock, // @[L2MemHelperLatencyInjection.scala:29:7]
input reset, // @[L2MemHelperLatencyInjection.scala:29:7]
input auto_master_out_a_ready, // @[LazyModuleImp.scala:107:25]
output auto_master_out_a_valid, // @[LazyModuleImp.scala:107:25]
output [2:0] auto_master_out_a_bits_opcode, // @[LazyModuleImp.scala:107:25]
output [2:0] auto_master_out_a_bits_param, // @[LazyModuleImp.scala:107:25]
output [3:0] auto_master_out_a_bits_size, // @[LazyModuleImp.scala:107:25]
output [4:0] auto_master_out_a_bits_source, // @[LazyModuleImp.scala:107:25]
output [31:0] auto_master_out_a_bits_address, // @[LazyModuleImp.scala:107:25]
output [31:0] auto_master_out_a_bits_mask, // @[LazyModuleImp.scala:107:25]
output [255:0] auto_master_out_a_bits_data, // @[LazyModuleImp.scala:107:25]
output auto_master_out_a_bits_corrupt, // @[LazyModuleImp.scala:107:25]
output auto_master_out_d_ready, // @[LazyModuleImp.scala:107:25]
input auto_master_out_d_valid, // @[LazyModuleImp.scala:107:25]
input [2:0] auto_master_out_d_bits_opcode, // @[LazyModuleImp.scala:107:25]
input [1:0] auto_master_out_d_bits_param, // @[LazyModuleImp.scala:107:25]
input [3:0] auto_master_out_d_bits_size, // @[LazyModuleImp.scala:107:25]
input [4:0] auto_master_out_d_bits_source, // @[LazyModuleImp.scala:107:25]
input [2:0] auto_master_out_d_bits_sink, // @[LazyModuleImp.scala:107:25]
input auto_master_out_d_bits_denied, // @[LazyModuleImp.scala:107:25]
input [255:0] auto_master_out_d_bits_data, // @[LazyModuleImp.scala:107:25]
input auto_master_out_d_bits_corrupt, // @[LazyModuleImp.scala:107:25]
output io_userif_req_ready, // @[L2MemHelperLatencyInjection.scala:33:14]
input io_userif_req_valid, // @[L2MemHelperLatencyInjection.scala:33:14]
input [70:0] io_userif_req_bits_addr, // @[L2MemHelperLatencyInjection.scala:33:14]
input [2:0] io_userif_req_bits_size, // @[L2MemHelperLatencyInjection.scala:33:14]
input [255:0] io_userif_req_bits_data, // @[L2MemHelperLatencyInjection.scala:33:14]
input io_userif_req_bits_cmd, // @[L2MemHelperLatencyInjection.scala:33:14]
input io_userif_resp_ready, // @[L2MemHelperLatencyInjection.scala:33:14]
output io_userif_resp_valid, // @[L2MemHelperLatencyInjection.scala:33:14]
output [255:0] io_userif_resp_bits_data, // @[L2MemHelperLatencyInjection.scala:33:14]
output io_userif_no_memops_inflight, // @[L2MemHelperLatencyInjection.scala:33:14]
input [63:0] io_latency_inject_cycles, // @[L2MemHelperLatencyInjection.scala:33:14]
input io_sfence, // @[L2MemHelperLatencyInjection.scala:33:14]
input io_ptw_req_ready, // @[L2MemHelperLatencyInjection.scala:33:14]
output io_ptw_req_valid, // @[L2MemHelperLatencyInjection.scala:33:14]
output [26:0] io_ptw_req_bits_bits_addr, // @[L2MemHelperLatencyInjection.scala:33:14]
output io_ptw_req_bits_bits_need_gpa, // @[L2MemHelperLatencyInjection.scala:33:14]
input io_ptw_resp_valid, // @[L2MemHelperLatencyInjection.scala:33:14]
input io_ptw_resp_bits_ae_ptw, // @[L2MemHelperLatencyInjection.scala:33:14]
input io_ptw_resp_bits_ae_final, // @[L2MemHelperLatencyInjection.scala:33:14]
input io_ptw_resp_bits_pf, // @[L2MemHelperLatencyInjection.scala:33:14]
input io_ptw_resp_bits_gf, // @[L2MemHelperLatencyInjection.scala:33:14]
input io_ptw_resp_bits_hr, // @[L2MemHelperLatencyInjection.scala:33:14]
input io_ptw_resp_bits_hw, // @[L2MemHelperLatencyInjection.scala:33:14]
input io_ptw_resp_bits_hx, // @[L2MemHelperLatencyInjection.scala:33:14]
input [9:0] io_ptw_resp_bits_pte_reserved_for_future, // @[L2MemHelperLatencyInjection.scala:33:14]
input [43:0] io_ptw_resp_bits_pte_ppn, // @[L2MemHelperLatencyInjection.scala:33:14]
input [1:0] io_ptw_resp_bits_pte_reserved_for_software, // @[L2MemHelperLatencyInjection.scala:33:14]
input io_ptw_resp_bits_pte_d, // @[L2MemHelperLatencyInjection.scala:33:14]
input io_ptw_resp_bits_pte_a, // @[L2MemHelperLatencyInjection.scala:33:14]
input io_ptw_resp_bits_pte_g, // @[L2MemHelperLatencyInjection.scala:33:14]
input io_ptw_resp_bits_pte_u, // @[L2MemHelperLatencyInjection.scala:33:14]
input io_ptw_resp_bits_pte_x, // @[L2MemHelperLatencyInjection.scala:33:14]
input io_ptw_resp_bits_pte_w, // @[L2MemHelperLatencyInjection.scala:33:14]
input io_ptw_resp_bits_pte_r, // @[L2MemHelperLatencyInjection.scala:33:14]
input io_ptw_resp_bits_pte_v, // @[L2MemHelperLatencyInjection.scala:33:14]
input [1:0] io_ptw_resp_bits_level, // @[L2MemHelperLatencyInjection.scala:33:14]
input io_ptw_resp_bits_homogeneous, // @[L2MemHelperLatencyInjection.scala:33:14]
input io_ptw_resp_bits_gpa_valid, // @[L2MemHelperLatencyInjection.scala:33:14]
input [38:0] io_ptw_resp_bits_gpa_bits, // @[L2MemHelperLatencyInjection.scala:33:14]
input io_ptw_resp_bits_gpa_is_pte, // @[L2MemHelperLatencyInjection.scala:33:14]
input [3:0] io_ptw_ptbr_mode, // @[L2MemHelperLatencyInjection.scala:33:14]
input [43:0] io_ptw_ptbr_ppn, // @[L2MemHelperLatencyInjection.scala:33:14]
input io_ptw_status_debug, // @[L2MemHelperLatencyInjection.scala:33:14]
input io_ptw_status_cease, // @[L2MemHelperLatencyInjection.scala:33:14]
input io_ptw_status_wfi, // @[L2MemHelperLatencyInjection.scala:33:14]
input [31:0] io_ptw_status_isa, // @[L2MemHelperLatencyInjection.scala:33:14]
input [1:0] io_ptw_status_dprv, // @[L2MemHelperLatencyInjection.scala:33:14]
input io_ptw_status_dv, // @[L2MemHelperLatencyInjection.scala:33:14]
input [1:0] io_ptw_status_prv, // @[L2MemHelperLatencyInjection.scala:33:14]
input io_ptw_status_v, // @[L2MemHelperLatencyInjection.scala:33:14]
input io_ptw_status_mpv, // @[L2MemHelperLatencyInjection.scala:33:14]
input io_ptw_status_gva, // @[L2MemHelperLatencyInjection.scala:33:14]
input io_ptw_status_tsr, // @[L2MemHelperLatencyInjection.scala:33:14]
input io_ptw_status_tw, // @[L2MemHelperLatencyInjection.scala:33:14]
input io_ptw_status_tvm, // @[L2MemHelperLatencyInjection.scala:33:14]
input io_ptw_status_mxr, // @[L2MemHelperLatencyInjection.scala:33:14]
input io_ptw_status_sum, // @[L2MemHelperLatencyInjection.scala:33:14]
input io_ptw_status_mprv, // @[L2MemHelperLatencyInjection.scala:33:14]
input [1:0] io_ptw_status_fs, // @[L2MemHelperLatencyInjection.scala:33:14]
input [1:0] io_ptw_status_mpp, // @[L2MemHelperLatencyInjection.scala:33:14]
input io_ptw_status_spp, // @[L2MemHelperLatencyInjection.scala:33:14]
input io_ptw_status_mpie, // @[L2MemHelperLatencyInjection.scala:33:14]
input io_ptw_status_spie, // @[L2MemHelperLatencyInjection.scala:33:14]
input io_ptw_status_mie, // @[L2MemHelperLatencyInjection.scala:33:14]
input io_ptw_status_sie, // @[L2MemHelperLatencyInjection.scala:33:14]
input io_ptw_hstatus_spvp, // @[L2MemHelperLatencyInjection.scala:33:14]
input io_ptw_hstatus_spv, // @[L2MemHelperLatencyInjection.scala:33:14]
input io_ptw_hstatus_gva, // @[L2MemHelperLatencyInjection.scala:33:14]
input io_ptw_gstatus_debug, // @[L2MemHelperLatencyInjection.scala:33:14]
input io_ptw_gstatus_cease, // @[L2MemHelperLatencyInjection.scala:33:14]
input io_ptw_gstatus_wfi, // @[L2MemHelperLatencyInjection.scala:33:14]
input [31:0] io_ptw_gstatus_isa, // @[L2MemHelperLatencyInjection.scala:33:14]
input [1:0] io_ptw_gstatus_dprv, // @[L2MemHelperLatencyInjection.scala:33:14]
input io_ptw_gstatus_dv, // @[L2MemHelperLatencyInjection.scala:33:14]
input [1:0] io_ptw_gstatus_prv, // @[L2MemHelperLatencyInjection.scala:33:14]
input io_ptw_gstatus_v, // @[L2MemHelperLatencyInjection.scala:33:14]
input [22:0] io_ptw_gstatus_zero2, // @[L2MemHelperLatencyInjection.scala:33:14]
input io_ptw_gstatus_mpv, // @[L2MemHelperLatencyInjection.scala:33:14]
input io_ptw_gstatus_gva, // @[L2MemHelperLatencyInjection.scala:33:14]
input io_ptw_gstatus_mbe, // @[L2MemHelperLatencyInjection.scala:33:14]
input io_ptw_gstatus_sbe, // @[L2MemHelperLatencyInjection.scala:33:14]
input [1:0] io_ptw_gstatus_sxl, // @[L2MemHelperLatencyInjection.scala:33:14]
input [7:0] io_ptw_gstatus_zero1, // @[L2MemHelperLatencyInjection.scala:33:14]
input io_ptw_gstatus_tsr, // @[L2MemHelperLatencyInjection.scala:33:14]
input io_ptw_gstatus_tw, // @[L2MemHelperLatencyInjection.scala:33:14]
input io_ptw_gstatus_tvm, // @[L2MemHelperLatencyInjection.scala:33:14]
input io_ptw_gstatus_mxr, // @[L2MemHelperLatencyInjection.scala:33:14]
input io_ptw_gstatus_sum, // @[L2MemHelperLatencyInjection.scala:33:14]
input io_ptw_gstatus_mprv, // @[L2MemHelperLatencyInjection.scala:33:14]
input [1:0] io_ptw_gstatus_fs, // @[L2MemHelperLatencyInjection.scala:33:14]
input [1:0] io_ptw_gstatus_mpp, // @[L2MemHelperLatencyInjection.scala:33:14]
input [1:0] io_ptw_gstatus_vs, // @[L2MemHelperLatencyInjection.scala:33:14]
input io_ptw_gstatus_spp, // @[L2MemHelperLatencyInjection.scala:33:14]
input io_ptw_gstatus_mpie, // @[L2MemHelperLatencyInjection.scala:33:14]
input io_ptw_gstatus_ube, // @[L2MemHelperLatencyInjection.scala:33:14]
input io_ptw_gstatus_spie, // @[L2MemHelperLatencyInjection.scala:33:14]
input io_ptw_gstatus_upie, // @[L2MemHelperLatencyInjection.scala:33:14]
input io_ptw_gstatus_mie, // @[L2MemHelperLatencyInjection.scala:33:14]
input io_ptw_gstatus_hie, // @[L2MemHelperLatencyInjection.scala:33:14]
input io_ptw_gstatus_sie, // @[L2MemHelperLatencyInjection.scala:33:14]
input io_ptw_gstatus_uie, // @[L2MemHelperLatencyInjection.scala:33:14]
input io_ptw_pmp_0_cfg_l, // @[L2MemHelperLatencyInjection.scala:33:14]
input [1:0] io_ptw_pmp_0_cfg_a, // @[L2MemHelperLatencyInjection.scala:33:14]
input io_ptw_pmp_0_cfg_x, // @[L2MemHelperLatencyInjection.scala:33:14]
input io_ptw_pmp_0_cfg_w, // @[L2MemHelperLatencyInjection.scala:33:14]
input io_ptw_pmp_0_cfg_r, // @[L2MemHelperLatencyInjection.scala:33:14]
input [29:0] io_ptw_pmp_0_addr, // @[L2MemHelperLatencyInjection.scala:33:14]
input [31:0] io_ptw_pmp_0_mask, // @[L2MemHelperLatencyInjection.scala:33:14]
input io_ptw_pmp_1_cfg_l, // @[L2MemHelperLatencyInjection.scala:33:14]
input [1:0] io_ptw_pmp_1_cfg_a, // @[L2MemHelperLatencyInjection.scala:33:14]
input io_ptw_pmp_1_cfg_x, // @[L2MemHelperLatencyInjection.scala:33:14]
input io_ptw_pmp_1_cfg_w, // @[L2MemHelperLatencyInjection.scala:33:14]
input io_ptw_pmp_1_cfg_r, // @[L2MemHelperLatencyInjection.scala:33:14]
input [29:0] io_ptw_pmp_1_addr, // @[L2MemHelperLatencyInjection.scala:33:14]
input [31:0] io_ptw_pmp_1_mask, // @[L2MemHelperLatencyInjection.scala:33:14]
input io_ptw_pmp_2_cfg_l, // @[L2MemHelperLatencyInjection.scala:33:14]
input [1:0] io_ptw_pmp_2_cfg_a, // @[L2MemHelperLatencyInjection.scala:33:14]
input io_ptw_pmp_2_cfg_x, // @[L2MemHelperLatencyInjection.scala:33:14]
input io_ptw_pmp_2_cfg_w, // @[L2MemHelperLatencyInjection.scala:33:14]
input io_ptw_pmp_2_cfg_r, // @[L2MemHelperLatencyInjection.scala:33:14]
input [29:0] io_ptw_pmp_2_addr, // @[L2MemHelperLatencyInjection.scala:33:14]
input [31:0] io_ptw_pmp_2_mask, // @[L2MemHelperLatencyInjection.scala:33:14]
input io_ptw_pmp_3_cfg_l, // @[L2MemHelperLatencyInjection.scala:33:14]
input [1:0] io_ptw_pmp_3_cfg_a, // @[L2MemHelperLatencyInjection.scala:33:14]
input io_ptw_pmp_3_cfg_x, // @[L2MemHelperLatencyInjection.scala:33:14]
input io_ptw_pmp_3_cfg_w, // @[L2MemHelperLatencyInjection.scala:33:14]
input io_ptw_pmp_3_cfg_r, // @[L2MemHelperLatencyInjection.scala:33:14]
input [29:0] io_ptw_pmp_3_addr, // @[L2MemHelperLatencyInjection.scala:33:14]
input [31:0] io_ptw_pmp_3_mask, // @[L2MemHelperLatencyInjection.scala:33:14]
input io_ptw_pmp_4_cfg_l, // @[L2MemHelperLatencyInjection.scala:33:14]
input [1:0] io_ptw_pmp_4_cfg_a, // @[L2MemHelperLatencyInjection.scala:33:14]
input io_ptw_pmp_4_cfg_x, // @[L2MemHelperLatencyInjection.scala:33:14]
input io_ptw_pmp_4_cfg_w, // @[L2MemHelperLatencyInjection.scala:33:14]
input io_ptw_pmp_4_cfg_r, // @[L2MemHelperLatencyInjection.scala:33:14]
input [29:0] io_ptw_pmp_4_addr, // @[L2MemHelperLatencyInjection.scala:33:14]
input [31:0] io_ptw_pmp_4_mask, // @[L2MemHelperLatencyInjection.scala:33:14]
input io_ptw_pmp_5_cfg_l, // @[L2MemHelperLatencyInjection.scala:33:14]
input [1:0] io_ptw_pmp_5_cfg_a, // @[L2MemHelperLatencyInjection.scala:33:14]
input io_ptw_pmp_5_cfg_x, // @[L2MemHelperLatencyInjection.scala:33:14]
input io_ptw_pmp_5_cfg_w, // @[L2MemHelperLatencyInjection.scala:33:14]
input io_ptw_pmp_5_cfg_r, // @[L2MemHelperLatencyInjection.scala:33:14]
input [29:0] io_ptw_pmp_5_addr, // @[L2MemHelperLatencyInjection.scala:33:14]
input [31:0] io_ptw_pmp_5_mask, // @[L2MemHelperLatencyInjection.scala:33:14]
input io_ptw_pmp_6_cfg_l, // @[L2MemHelperLatencyInjection.scala:33:14]
input [1:0] io_ptw_pmp_6_cfg_a, // @[L2MemHelperLatencyInjection.scala:33:14]
input io_ptw_pmp_6_cfg_x, // @[L2MemHelperLatencyInjection.scala:33:14]
input io_ptw_pmp_6_cfg_w, // @[L2MemHelperLatencyInjection.scala:33:14]
input io_ptw_pmp_6_cfg_r, // @[L2MemHelperLatencyInjection.scala:33:14]
input [29:0] io_ptw_pmp_6_addr, // @[L2MemHelperLatencyInjection.scala:33:14]
input [31:0] io_ptw_pmp_6_mask, // @[L2MemHelperLatencyInjection.scala:33:14]
input io_ptw_pmp_7_cfg_l, // @[L2MemHelperLatencyInjection.scala:33:14]
input [1:0] io_ptw_pmp_7_cfg_a, // @[L2MemHelperLatencyInjection.scala:33:14]
input io_ptw_pmp_7_cfg_x, // @[L2MemHelperLatencyInjection.scala:33:14]
input io_ptw_pmp_7_cfg_w, // @[L2MemHelperLatencyInjection.scala:33:14]
input io_ptw_pmp_7_cfg_r, // @[L2MemHelperLatencyInjection.scala:33:14]
input [29:0] io_ptw_pmp_7_addr, // @[L2MemHelperLatencyInjection.scala:33:14]
input [31:0] io_ptw_pmp_7_mask, // @[L2MemHelperLatencyInjection.scala:33:14]
input io_ptw_customCSRs_csrs_0_ren, // @[L2MemHelperLatencyInjection.scala:33:14]
input io_ptw_customCSRs_csrs_0_wen, // @[L2MemHelperLatencyInjection.scala:33:14]
input [63:0] io_ptw_customCSRs_csrs_0_wdata, // @[L2MemHelperLatencyInjection.scala:33:14]
input [63:0] io_ptw_customCSRs_csrs_0_value, // @[L2MemHelperLatencyInjection.scala:33:14]
input io_ptw_customCSRs_csrs_1_ren, // @[L2MemHelperLatencyInjection.scala:33:14]
input io_ptw_customCSRs_csrs_1_wen, // @[L2MemHelperLatencyInjection.scala:33:14]
input [63:0] io_ptw_customCSRs_csrs_1_wdata, // @[L2MemHelperLatencyInjection.scala:33:14]
input [63:0] io_ptw_customCSRs_csrs_1_value, // @[L2MemHelperLatencyInjection.scala:33:14]
input io_ptw_customCSRs_csrs_2_ren, // @[L2MemHelperLatencyInjection.scala:33:14]
input io_ptw_customCSRs_csrs_2_wen, // @[L2MemHelperLatencyInjection.scala:33:14]
input [63:0] io_ptw_customCSRs_csrs_2_wdata, // @[L2MemHelperLatencyInjection.scala:33:14]
input [63:0] io_ptw_customCSRs_csrs_2_value, // @[L2MemHelperLatencyInjection.scala:33:14]
input io_ptw_customCSRs_csrs_3_ren, // @[L2MemHelperLatencyInjection.scala:33:14]
input io_ptw_customCSRs_csrs_3_wen, // @[L2MemHelperLatencyInjection.scala:33:14]
input [63:0] io_ptw_customCSRs_csrs_3_wdata, // @[L2MemHelperLatencyInjection.scala:33:14]
input [63:0] io_ptw_customCSRs_csrs_3_value, // @[L2MemHelperLatencyInjection.scala:33:14]
input io_status_valid, // @[L2MemHelperLatencyInjection.scala:33:14]
input io_status_bits_debug, // @[L2MemHelperLatencyInjection.scala:33:14]
input io_status_bits_cease, // @[L2MemHelperLatencyInjection.scala:33:14]
input io_status_bits_wfi, // @[L2MemHelperLatencyInjection.scala:33:14]
input [31:0] io_status_bits_isa, // @[L2MemHelperLatencyInjection.scala:33:14]
input [1:0] io_status_bits_dprv, // @[L2MemHelperLatencyInjection.scala:33:14]
input io_status_bits_dv, // @[L2MemHelperLatencyInjection.scala:33:14]
input [1:0] io_status_bits_prv, // @[L2MemHelperLatencyInjection.scala:33:14]
input io_status_bits_v, // @[L2MemHelperLatencyInjection.scala:33:14]
input io_status_bits_sd, // @[L2MemHelperLatencyInjection.scala:33:14]
input [22:0] io_status_bits_zero2, // @[L2MemHelperLatencyInjection.scala:33:14]
input io_status_bits_mpv, // @[L2MemHelperLatencyInjection.scala:33:14]
input io_status_bits_gva, // @[L2MemHelperLatencyInjection.scala:33:14]
input io_status_bits_mbe, // @[L2MemHelperLatencyInjection.scala:33:14]
input io_status_bits_sbe, // @[L2MemHelperLatencyInjection.scala:33:14]
input [1:0] io_status_bits_sxl, // @[L2MemHelperLatencyInjection.scala:33:14]
input [1:0] io_status_bits_uxl, // @[L2MemHelperLatencyInjection.scala:33:14]
input io_status_bits_sd_rv32, // @[L2MemHelperLatencyInjection.scala:33:14]
input [7:0] io_status_bits_zero1, // @[L2MemHelperLatencyInjection.scala:33:14]
input io_status_bits_tsr, // @[L2MemHelperLatencyInjection.scala:33:14]
input io_status_bits_tw, // @[L2MemHelperLatencyInjection.scala:33:14]
input io_status_bits_tvm, // @[L2MemHelperLatencyInjection.scala:33:14]
input io_status_bits_mxr, // @[L2MemHelperLatencyInjection.scala:33:14]
input io_status_bits_sum, // @[L2MemHelperLatencyInjection.scala:33:14]
input io_status_bits_mprv, // @[L2MemHelperLatencyInjection.scala:33:14]
input [1:0] io_status_bits_xs, // @[L2MemHelperLatencyInjection.scala:33:14]
input [1:0] io_status_bits_fs, // @[L2MemHelperLatencyInjection.scala:33:14]
input [1:0] io_status_bits_mpp, // @[L2MemHelperLatencyInjection.scala:33:14]
input [1:0] io_status_bits_vs, // @[L2MemHelperLatencyInjection.scala:33:14]
input io_status_bits_spp, // @[L2MemHelperLatencyInjection.scala:33:14]
input io_status_bits_mpie, // @[L2MemHelperLatencyInjection.scala:33:14]
input io_status_bits_ube, // @[L2MemHelperLatencyInjection.scala:33:14]
input io_status_bits_spie, // @[L2MemHelperLatencyInjection.scala:33:14]
input io_status_bits_upie, // @[L2MemHelperLatencyInjection.scala:33:14]
input io_status_bits_mie, // @[L2MemHelperLatencyInjection.scala:33:14]
input io_status_bits_hie, // @[L2MemHelperLatencyInjection.scala:33:14]
input io_status_bits_sie, // @[L2MemHelperLatencyInjection.scala:33:14]
input io_status_bits_uie // @[L2MemHelperLatencyInjection.scala:33:14]
);
wire _response_latency_injection_q_io_deq_valid; // @[L2MemHelperLatencyInjection.scala:245:44]
wire [4:0] _response_latency_injection_q_io_deq_bits_source; // @[L2MemHelperLatencyInjection.scala:245:44]
wire [255:0] _response_latency_injection_q_io_deq_bits_data; // @[L2MemHelperLatencyInjection.scala:245:44]
wire _Queue4_L2RespInternal_31_io_enq_ready; // @[L2MemHelperLatencyInjection.scala:182:11]
wire _Queue4_L2RespInternal_31_io_deq_valid; // @[L2MemHelperLatencyInjection.scala:182:11]
wire [255:0] _Queue4_L2RespInternal_31_io_deq_bits_data; // @[L2MemHelperLatencyInjection.scala:182:11]
wire _Queue4_L2RespInternal_30_io_enq_ready; // @[L2MemHelperLatencyInjection.scala:182:11]
wire _Queue4_L2RespInternal_30_io_deq_valid; // @[L2MemHelperLatencyInjection.scala:182:11]
wire [255:0] _Queue4_L2RespInternal_30_io_deq_bits_data; // @[L2MemHelperLatencyInjection.scala:182:11]
wire _Queue4_L2RespInternal_29_io_enq_ready; // @[L2MemHelperLatencyInjection.scala:182:11]
wire _Queue4_L2RespInternal_29_io_deq_valid; // @[L2MemHelperLatencyInjection.scala:182:11]
wire [255:0] _Queue4_L2RespInternal_29_io_deq_bits_data; // @[L2MemHelperLatencyInjection.scala:182:11]
wire _Queue4_L2RespInternal_28_io_enq_ready; // @[L2MemHelperLatencyInjection.scala:182:11]
wire _Queue4_L2RespInternal_28_io_deq_valid; // @[L2MemHelperLatencyInjection.scala:182:11]
wire [255:0] _Queue4_L2RespInternal_28_io_deq_bits_data; // @[L2MemHelperLatencyInjection.scala:182:11]
wire _Queue4_L2RespInternal_27_io_enq_ready; // @[L2MemHelperLatencyInjection.scala:182:11]
wire _Queue4_L2RespInternal_27_io_deq_valid; // @[L2MemHelperLatencyInjection.scala:182:11]
wire [255:0] _Queue4_L2RespInternal_27_io_deq_bits_data; // @[L2MemHelperLatencyInjection.scala:182:11]
wire _Queue4_L2RespInternal_26_io_enq_ready; // @[L2MemHelperLatencyInjection.scala:182:11]
wire _Queue4_L2RespInternal_26_io_deq_valid; // @[L2MemHelperLatencyInjection.scala:182:11]
wire [255:0] _Queue4_L2RespInternal_26_io_deq_bits_data; // @[L2MemHelperLatencyInjection.scala:182:11]
wire _Queue4_L2RespInternal_25_io_enq_ready; // @[L2MemHelperLatencyInjection.scala:182:11]
wire _Queue4_L2RespInternal_25_io_deq_valid; // @[L2MemHelperLatencyInjection.scala:182:11]
wire [255:0] _Queue4_L2RespInternal_25_io_deq_bits_data; // @[L2MemHelperLatencyInjection.scala:182:11]
wire _Queue4_L2RespInternal_24_io_enq_ready; // @[L2MemHelperLatencyInjection.scala:182:11]
wire _Queue4_L2RespInternal_24_io_deq_valid; // @[L2MemHelperLatencyInjection.scala:182:11]
wire [255:0] _Queue4_L2RespInternal_24_io_deq_bits_data; // @[L2MemHelperLatencyInjection.scala:182:11]
wire _Queue4_L2RespInternal_23_io_enq_ready; // @[L2MemHelperLatencyInjection.scala:182:11]
wire _Queue4_L2RespInternal_23_io_deq_valid; // @[L2MemHelperLatencyInjection.scala:182:11]
wire [255:0] _Queue4_L2RespInternal_23_io_deq_bits_data; // @[L2MemHelperLatencyInjection.scala:182:11]
wire _Queue4_L2RespInternal_22_io_enq_ready; // @[L2MemHelperLatencyInjection.scala:182:11]
wire _Queue4_L2RespInternal_22_io_deq_valid; // @[L2MemHelperLatencyInjection.scala:182:11]
wire [255:0] _Queue4_L2RespInternal_22_io_deq_bits_data; // @[L2MemHelperLatencyInjection.scala:182:11]
wire _Queue4_L2RespInternal_21_io_enq_ready; // @[L2MemHelperLatencyInjection.scala:182:11]
wire _Queue4_L2RespInternal_21_io_deq_valid; // @[L2MemHelperLatencyInjection.scala:182:11]
wire [255:0] _Queue4_L2RespInternal_21_io_deq_bits_data; // @[L2MemHelperLatencyInjection.scala:182:11]
wire _Queue4_L2RespInternal_20_io_enq_ready; // @[L2MemHelperLatencyInjection.scala:182:11]
wire _Queue4_L2RespInternal_20_io_deq_valid; // @[L2MemHelperLatencyInjection.scala:182:11]
wire [255:0] _Queue4_L2RespInternal_20_io_deq_bits_data; // @[L2MemHelperLatencyInjection.scala:182:11]
wire _Queue4_L2RespInternal_19_io_enq_ready; // @[L2MemHelperLatencyInjection.scala:182:11]
wire _Queue4_L2RespInternal_19_io_deq_valid; // @[L2MemHelperLatencyInjection.scala:182:11]
wire [255:0] _Queue4_L2RespInternal_19_io_deq_bits_data; // @[L2MemHelperLatencyInjection.scala:182:11]
wire _Queue4_L2RespInternal_18_io_enq_ready; // @[L2MemHelperLatencyInjection.scala:182:11]
wire _Queue4_L2RespInternal_18_io_deq_valid; // @[L2MemHelperLatencyInjection.scala:182:11]
wire [255:0] _Queue4_L2RespInternal_18_io_deq_bits_data; // @[L2MemHelperLatencyInjection.scala:182:11]
wire _Queue4_L2RespInternal_17_io_enq_ready; // @[L2MemHelperLatencyInjection.scala:182:11]
wire _Queue4_L2RespInternal_17_io_deq_valid; // @[L2MemHelperLatencyInjection.scala:182:11]
wire [255:0] _Queue4_L2RespInternal_17_io_deq_bits_data; // @[L2MemHelperLatencyInjection.scala:182:11]
wire _Queue4_L2RespInternal_16_io_enq_ready; // @[L2MemHelperLatencyInjection.scala:182:11]
wire _Queue4_L2RespInternal_16_io_deq_valid; // @[L2MemHelperLatencyInjection.scala:182:11]
wire [255:0] _Queue4_L2RespInternal_16_io_deq_bits_data; // @[L2MemHelperLatencyInjection.scala:182:11]
wire _Queue4_L2RespInternal_15_io_enq_ready; // @[L2MemHelperLatencyInjection.scala:182:11]
wire _Queue4_L2RespInternal_15_io_deq_valid; // @[L2MemHelperLatencyInjection.scala:182:11]
wire [255:0] _Queue4_L2RespInternal_15_io_deq_bits_data; // @[L2MemHelperLatencyInjection.scala:182:11]
wire _Queue4_L2RespInternal_14_io_enq_ready; // @[L2MemHelperLatencyInjection.scala:182:11]
wire _Queue4_L2RespInternal_14_io_deq_valid; // @[L2MemHelperLatencyInjection.scala:182:11]
wire [255:0] _Queue4_L2RespInternal_14_io_deq_bits_data; // @[L2MemHelperLatencyInjection.scala:182:11]
wire _Queue4_L2RespInternal_13_io_enq_ready; // @[L2MemHelperLatencyInjection.scala:182:11]
wire _Queue4_L2RespInternal_13_io_deq_valid; // @[L2MemHelperLatencyInjection.scala:182:11]
wire [255:0] _Queue4_L2RespInternal_13_io_deq_bits_data; // @[L2MemHelperLatencyInjection.scala:182:11]
wire _Queue4_L2RespInternal_12_io_enq_ready; // @[L2MemHelperLatencyInjection.scala:182:11]
wire _Queue4_L2RespInternal_12_io_deq_valid; // @[L2MemHelperLatencyInjection.scala:182:11]
wire [255:0] _Queue4_L2RespInternal_12_io_deq_bits_data; // @[L2MemHelperLatencyInjection.scala:182:11]
wire _Queue4_L2RespInternal_11_io_enq_ready; // @[L2MemHelperLatencyInjection.scala:182:11]
wire _Queue4_L2RespInternal_11_io_deq_valid; // @[L2MemHelperLatencyInjection.scala:182:11]
wire [255:0] _Queue4_L2RespInternal_11_io_deq_bits_data; // @[L2MemHelperLatencyInjection.scala:182:11]
wire _Queue4_L2RespInternal_10_io_enq_ready; // @[L2MemHelperLatencyInjection.scala:182:11]
wire _Queue4_L2RespInternal_10_io_deq_valid; // @[L2MemHelperLatencyInjection.scala:182:11]
wire [255:0] _Queue4_L2RespInternal_10_io_deq_bits_data; // @[L2MemHelperLatencyInjection.scala:182:11]
wire _Queue4_L2RespInternal_9_io_enq_ready; // @[L2MemHelperLatencyInjection.scala:182:11]
wire _Queue4_L2RespInternal_9_io_deq_valid; // @[L2MemHelperLatencyInjection.scala:182:11]
wire [255:0] _Queue4_L2RespInternal_9_io_deq_bits_data; // @[L2MemHelperLatencyInjection.scala:182:11]
wire _Queue4_L2RespInternal_8_io_enq_ready; // @[L2MemHelperLatencyInjection.scala:182:11]
wire _Queue4_L2RespInternal_8_io_deq_valid; // @[L2MemHelperLatencyInjection.scala:182:11]
wire [255:0] _Queue4_L2RespInternal_8_io_deq_bits_data; // @[L2MemHelperLatencyInjection.scala:182:11]
wire _Queue4_L2RespInternal_7_io_enq_ready; // @[L2MemHelperLatencyInjection.scala:182:11]
wire _Queue4_L2RespInternal_7_io_deq_valid; // @[L2MemHelperLatencyInjection.scala:182:11]
wire [255:0] _Queue4_L2RespInternal_7_io_deq_bits_data; // @[L2MemHelperLatencyInjection.scala:182:11]
wire _Queue4_L2RespInternal_6_io_enq_ready; // @[L2MemHelperLatencyInjection.scala:182:11]
wire _Queue4_L2RespInternal_6_io_deq_valid; // @[L2MemHelperLatencyInjection.scala:182:11]
wire [255:0] _Queue4_L2RespInternal_6_io_deq_bits_data; // @[L2MemHelperLatencyInjection.scala:182:11]
wire _Queue4_L2RespInternal_5_io_enq_ready; // @[L2MemHelperLatencyInjection.scala:182:11]
wire _Queue4_L2RespInternal_5_io_deq_valid; // @[L2MemHelperLatencyInjection.scala:182:11]
wire [255:0] _Queue4_L2RespInternal_5_io_deq_bits_data; // @[L2MemHelperLatencyInjection.scala:182:11]
wire _Queue4_L2RespInternal_4_io_enq_ready; // @[L2MemHelperLatencyInjection.scala:182:11]
wire _Queue4_L2RespInternal_4_io_deq_valid; // @[L2MemHelperLatencyInjection.scala:182:11]
wire [255:0] _Queue4_L2RespInternal_4_io_deq_bits_data; // @[L2MemHelperLatencyInjection.scala:182:11]
wire _Queue4_L2RespInternal_3_io_enq_ready; // @[L2MemHelperLatencyInjection.scala:182:11]
wire _Queue4_L2RespInternal_3_io_deq_valid; // @[L2MemHelperLatencyInjection.scala:182:11]
wire [255:0] _Queue4_L2RespInternal_3_io_deq_bits_data; // @[L2MemHelperLatencyInjection.scala:182:11]
wire _Queue4_L2RespInternal_2_io_enq_ready; // @[L2MemHelperLatencyInjection.scala:182:11]
wire _Queue4_L2RespInternal_2_io_deq_valid; // @[L2MemHelperLatencyInjection.scala:182:11]
wire [255:0] _Queue4_L2RespInternal_2_io_deq_bits_data; // @[L2MemHelperLatencyInjection.scala:182:11]
wire _Queue4_L2RespInternal_1_io_enq_ready; // @[L2MemHelperLatencyInjection.scala:182:11]
wire _Queue4_L2RespInternal_1_io_deq_valid; // @[L2MemHelperLatencyInjection.scala:182:11]
wire [255:0] _Queue4_L2RespInternal_1_io_deq_bits_data; // @[L2MemHelperLatencyInjection.scala:182:11]
wire _Queue4_L2RespInternal_io_enq_ready; // @[L2MemHelperLatencyInjection.scala:182:11]
wire _Queue4_L2RespInternal_io_deq_valid; // @[L2MemHelperLatencyInjection.scala:182:11]
wire [255:0] _Queue4_L2RespInternal_io_deq_bits_data; // @[L2MemHelperLatencyInjection.scala:182:11]
wire _request_latency_injection_q_io_enq_ready; // @[L2MemHelperLatencyInjection.scala:151:43]
wire _tags_for_issue_Q_io_enq_ready; // @[L2MemHelperLatencyInjection.scala:94:32]
wire _tags_for_issue_Q_io_deq_valid; // @[L2MemHelperLatencyInjection.scala:94:32]
wire [4:0] _tags_for_issue_Q_io_deq_bits; // @[L2MemHelperLatencyInjection.scala:94:32]
wire _outstanding_req_addr_io_enq_ready; // @[L2MemHelperLatencyInjection.scala:91:36]
wire _outstanding_req_addr_io_deq_valid; // @[L2MemHelperLatencyInjection.scala:91:36]
wire [4:0] _outstanding_req_addr_io_deq_bits_addrindex; // @[L2MemHelperLatencyInjection.scala:91:36]
wire [4:0] _outstanding_req_addr_io_deq_bits_tag; // @[L2MemHelperLatencyInjection.scala:91:36]
wire _tlb_io_req_ready; // @[L2MemHelperLatencyInjection.scala:68:19]
wire _tlb_io_resp_miss; // @[L2MemHelperLatencyInjection.scala:68:19]
wire [31:0] _tlb_io_resp_paddr; // @[L2MemHelperLatencyInjection.scala:68:19]
wire auto_master_out_a_ready_0 = auto_master_out_a_ready; // @[L2MemHelperLatencyInjection.scala:29:7]
wire auto_master_out_d_valid_0 = auto_master_out_d_valid; // @[L2MemHelperLatencyInjection.scala:29:7]
wire [2:0] auto_master_out_d_bits_opcode_0 = auto_master_out_d_bits_opcode; // @[L2MemHelperLatencyInjection.scala:29:7]
wire [1:0] auto_master_out_d_bits_param_0 = auto_master_out_d_bits_param; // @[L2MemHelperLatencyInjection.scala:29:7]
wire [3:0] auto_master_out_d_bits_size_0 = auto_master_out_d_bits_size; // @[L2MemHelperLatencyInjection.scala:29:7]
wire [4:0] auto_master_out_d_bits_source_0 = auto_master_out_d_bits_source; // @[L2MemHelperLatencyInjection.scala:29:7]
wire [2:0] auto_master_out_d_bits_sink_0 = auto_master_out_d_bits_sink; // @[L2MemHelperLatencyInjection.scala:29:7]
wire auto_master_out_d_bits_denied_0 = auto_master_out_d_bits_denied; // @[L2MemHelperLatencyInjection.scala:29:7]
wire [255:0] auto_master_out_d_bits_data_0 = auto_master_out_d_bits_data; // @[L2MemHelperLatencyInjection.scala:29:7]
wire auto_master_out_d_bits_corrupt_0 = auto_master_out_d_bits_corrupt; // @[L2MemHelperLatencyInjection.scala:29:7]
wire io_userif_req_valid_0 = io_userif_req_valid; // @[L2MemHelperLatencyInjection.scala:29:7]
wire [70:0] io_userif_req_bits_addr_0 = io_userif_req_bits_addr; // @[L2MemHelperLatencyInjection.scala:29:7]
wire [2:0] io_userif_req_bits_size_0 = io_userif_req_bits_size; // @[L2MemHelperLatencyInjection.scala:29:7]
wire [255:0] io_userif_req_bits_data_0 = io_userif_req_bits_data; // @[L2MemHelperLatencyInjection.scala:29:7]
wire io_userif_req_bits_cmd_0 = io_userif_req_bits_cmd; // @[L2MemHelperLatencyInjection.scala:29:7]
wire io_userif_resp_ready_0 = io_userif_resp_ready; // @[L2MemHelperLatencyInjection.scala:29:7]
wire [63:0] io_latency_inject_cycles_0 = io_latency_inject_cycles; // @[L2MemHelperLatencyInjection.scala:29:7]
wire io_sfence_0 = io_sfence; // @[L2MemHelperLatencyInjection.scala:29:7]
wire io_ptw_req_ready_0 = io_ptw_req_ready; // @[L2MemHelperLatencyInjection.scala:29:7]
wire io_ptw_resp_valid_0 = io_ptw_resp_valid; // @[L2MemHelperLatencyInjection.scala:29:7]
wire io_ptw_resp_bits_ae_ptw_0 = io_ptw_resp_bits_ae_ptw; // @[L2MemHelperLatencyInjection.scala:29:7]
wire io_ptw_resp_bits_ae_final_0 = io_ptw_resp_bits_ae_final; // @[L2MemHelperLatencyInjection.scala:29:7]
wire io_ptw_resp_bits_pf_0 = io_ptw_resp_bits_pf; // @[L2MemHelperLatencyInjection.scala:29:7]
wire io_ptw_resp_bits_gf_0 = io_ptw_resp_bits_gf; // @[L2MemHelperLatencyInjection.scala:29:7]
wire io_ptw_resp_bits_hr_0 = io_ptw_resp_bits_hr; // @[L2MemHelperLatencyInjection.scala:29:7]
wire io_ptw_resp_bits_hw_0 = io_ptw_resp_bits_hw; // @[L2MemHelperLatencyInjection.scala:29:7]
wire io_ptw_resp_bits_hx_0 = io_ptw_resp_bits_hx; // @[L2MemHelperLatencyInjection.scala:29:7]
wire [9:0] io_ptw_resp_bits_pte_reserved_for_future_0 = io_ptw_resp_bits_pte_reserved_for_future; // @[L2MemHelperLatencyInjection.scala:29:7]
wire [43:0] io_ptw_resp_bits_pte_ppn_0 = io_ptw_resp_bits_pte_ppn; // @[L2MemHelperLatencyInjection.scala:29:7]
wire [1:0] io_ptw_resp_bits_pte_reserved_for_software_0 = io_ptw_resp_bits_pte_reserved_for_software; // @[L2MemHelperLatencyInjection.scala:29:7]
wire io_ptw_resp_bits_pte_d_0 = io_ptw_resp_bits_pte_d; // @[L2MemHelperLatencyInjection.scala:29:7]
wire io_ptw_resp_bits_pte_a_0 = io_ptw_resp_bits_pte_a; // @[L2MemHelperLatencyInjection.scala:29:7]
wire io_ptw_resp_bits_pte_g_0 = io_ptw_resp_bits_pte_g; // @[L2MemHelperLatencyInjection.scala:29:7]
wire io_ptw_resp_bits_pte_u_0 = io_ptw_resp_bits_pte_u; // @[L2MemHelperLatencyInjection.scala:29:7]
wire io_ptw_resp_bits_pte_x_0 = io_ptw_resp_bits_pte_x; // @[L2MemHelperLatencyInjection.scala:29:7]
wire io_ptw_resp_bits_pte_w_0 = io_ptw_resp_bits_pte_w; // @[L2MemHelperLatencyInjection.scala:29:7]
wire io_ptw_resp_bits_pte_r_0 = io_ptw_resp_bits_pte_r; // @[L2MemHelperLatencyInjection.scala:29:7]
wire io_ptw_resp_bits_pte_v_0 = io_ptw_resp_bits_pte_v; // @[L2MemHelperLatencyInjection.scala:29:7]
wire [1:0] io_ptw_resp_bits_level_0 = io_ptw_resp_bits_level; // @[L2MemHelperLatencyInjection.scala:29:7]
wire io_ptw_resp_bits_homogeneous_0 = io_ptw_resp_bits_homogeneous; // @[L2MemHelperLatencyInjection.scala:29:7]
wire io_ptw_resp_bits_gpa_valid_0 = io_ptw_resp_bits_gpa_valid; // @[L2MemHelperLatencyInjection.scala:29:7]
wire [38:0] io_ptw_resp_bits_gpa_bits_0 = io_ptw_resp_bits_gpa_bits; // @[L2MemHelperLatencyInjection.scala:29:7]
wire io_ptw_resp_bits_gpa_is_pte_0 = io_ptw_resp_bits_gpa_is_pte; // @[L2MemHelperLatencyInjection.scala:29:7]
wire [3:0] io_ptw_ptbr_mode_0 = io_ptw_ptbr_mode; // @[L2MemHelperLatencyInjection.scala:29:7]
wire [43:0] io_ptw_ptbr_ppn_0 = io_ptw_ptbr_ppn; // @[L2MemHelperLatencyInjection.scala:29:7]
wire io_ptw_status_debug_0 = io_ptw_status_debug; // @[L2MemHelperLatencyInjection.scala:29:7]
wire io_ptw_status_cease_0 = io_ptw_status_cease; // @[L2MemHelperLatencyInjection.scala:29:7]
wire io_ptw_status_wfi_0 = io_ptw_status_wfi; // @[L2MemHelperLatencyInjection.scala:29:7]
wire [31:0] io_ptw_status_isa_0 = io_ptw_status_isa; // @[L2MemHelperLatencyInjection.scala:29:7]
wire [1:0] io_ptw_status_dprv_0 = io_ptw_status_dprv; // @[L2MemHelperLatencyInjection.scala:29:7]
wire io_ptw_status_dv_0 = io_ptw_status_dv; // @[L2MemHelperLatencyInjection.scala:29:7]
wire [1:0] io_ptw_status_prv_0 = io_ptw_status_prv; // @[L2MemHelperLatencyInjection.scala:29:7]
wire io_ptw_status_v_0 = io_ptw_status_v; // @[L2MemHelperLatencyInjection.scala:29:7]
wire io_ptw_status_mpv_0 = io_ptw_status_mpv; // @[L2MemHelperLatencyInjection.scala:29:7]
wire io_ptw_status_gva_0 = io_ptw_status_gva; // @[L2MemHelperLatencyInjection.scala:29:7]
wire io_ptw_status_tsr_0 = io_ptw_status_tsr; // @[L2MemHelperLatencyInjection.scala:29:7]
wire io_ptw_status_tw_0 = io_ptw_status_tw; // @[L2MemHelperLatencyInjection.scala:29:7]
wire io_ptw_status_tvm_0 = io_ptw_status_tvm; // @[L2MemHelperLatencyInjection.scala:29:7]
wire io_ptw_status_mxr_0 = io_ptw_status_mxr; // @[L2MemHelperLatencyInjection.scala:29:7]
wire io_ptw_status_sum_0 = io_ptw_status_sum; // @[L2MemHelperLatencyInjection.scala:29:7]
wire io_ptw_status_mprv_0 = io_ptw_status_mprv; // @[L2MemHelperLatencyInjection.scala:29:7]
wire [1:0] io_ptw_status_fs_0 = io_ptw_status_fs; // @[L2MemHelperLatencyInjection.scala:29:7]
wire [1:0] io_ptw_status_mpp_0 = io_ptw_status_mpp; // @[L2MemHelperLatencyInjection.scala:29:7]
wire io_ptw_status_spp_0 = io_ptw_status_spp; // @[L2MemHelperLatencyInjection.scala:29:7]
wire io_ptw_status_mpie_0 = io_ptw_status_mpie; // @[L2MemHelperLatencyInjection.scala:29:7]
wire io_ptw_status_spie_0 = io_ptw_status_spie; // @[L2MemHelperLatencyInjection.scala:29:7]
wire io_ptw_status_mie_0 = io_ptw_status_mie; // @[L2MemHelperLatencyInjection.scala:29:7]
wire io_ptw_status_sie_0 = io_ptw_status_sie; // @[L2MemHelperLatencyInjection.scala:29:7]
wire io_ptw_hstatus_spvp_0 = io_ptw_hstatus_spvp; // @[L2MemHelperLatencyInjection.scala:29:7]
wire io_ptw_hstatus_spv_0 = io_ptw_hstatus_spv; // @[L2MemHelperLatencyInjection.scala:29:7]
wire io_ptw_hstatus_gva_0 = io_ptw_hstatus_gva; // @[L2MemHelperLatencyInjection.scala:29:7]
wire io_ptw_gstatus_debug_0 = io_ptw_gstatus_debug; // @[L2MemHelperLatencyInjection.scala:29:7]
wire io_ptw_gstatus_cease_0 = io_ptw_gstatus_cease; // @[L2MemHelperLatencyInjection.scala:29:7]
wire io_ptw_gstatus_wfi_0 = io_ptw_gstatus_wfi; // @[L2MemHelperLatencyInjection.scala:29:7]
wire [31:0] io_ptw_gstatus_isa_0 = io_ptw_gstatus_isa; // @[L2MemHelperLatencyInjection.scala:29:7]
wire [1:0] io_ptw_gstatus_dprv_0 = io_ptw_gstatus_dprv; // @[L2MemHelperLatencyInjection.scala:29:7]
wire io_ptw_gstatus_dv_0 = io_ptw_gstatus_dv; // @[L2MemHelperLatencyInjection.scala:29:7]
wire [1:0] io_ptw_gstatus_prv_0 = io_ptw_gstatus_prv; // @[L2MemHelperLatencyInjection.scala:29:7]
wire io_ptw_gstatus_v_0 = io_ptw_gstatus_v; // @[L2MemHelperLatencyInjection.scala:29:7]
wire [22:0] io_ptw_gstatus_zero2_0 = io_ptw_gstatus_zero2; // @[L2MemHelperLatencyInjection.scala:29:7]
wire io_ptw_gstatus_mpv_0 = io_ptw_gstatus_mpv; // @[L2MemHelperLatencyInjection.scala:29:7]
wire io_ptw_gstatus_gva_0 = io_ptw_gstatus_gva; // @[L2MemHelperLatencyInjection.scala:29:7]
wire io_ptw_gstatus_mbe_0 = io_ptw_gstatus_mbe; // @[L2MemHelperLatencyInjection.scala:29:7]
wire io_ptw_gstatus_sbe_0 = io_ptw_gstatus_sbe; // @[L2MemHelperLatencyInjection.scala:29:7]
wire [1:0] io_ptw_gstatus_sxl_0 = io_ptw_gstatus_sxl; // @[L2MemHelperLatencyInjection.scala:29:7]
wire [7:0] io_ptw_gstatus_zero1_0 = io_ptw_gstatus_zero1; // @[L2MemHelperLatencyInjection.scala:29:7]
wire io_ptw_gstatus_tsr_0 = io_ptw_gstatus_tsr; // @[L2MemHelperLatencyInjection.scala:29:7]
wire io_ptw_gstatus_tw_0 = io_ptw_gstatus_tw; // @[L2MemHelperLatencyInjection.scala:29:7]
wire io_ptw_gstatus_tvm_0 = io_ptw_gstatus_tvm; // @[L2MemHelperLatencyInjection.scala:29:7]
wire io_ptw_gstatus_mxr_0 = io_ptw_gstatus_mxr; // @[L2MemHelperLatencyInjection.scala:29:7]
wire io_ptw_gstatus_sum_0 = io_ptw_gstatus_sum; // @[L2MemHelperLatencyInjection.scala:29:7]
wire io_ptw_gstatus_mprv_0 = io_ptw_gstatus_mprv; // @[L2MemHelperLatencyInjection.scala:29:7]
wire [1:0] io_ptw_gstatus_fs_0 = io_ptw_gstatus_fs; // @[L2MemHelperLatencyInjection.scala:29:7]
wire [1:0] io_ptw_gstatus_mpp_0 = io_ptw_gstatus_mpp; // @[L2MemHelperLatencyInjection.scala:29:7]
wire [1:0] io_ptw_gstatus_vs_0 = io_ptw_gstatus_vs; // @[L2MemHelperLatencyInjection.scala:29:7]
wire io_ptw_gstatus_spp_0 = io_ptw_gstatus_spp; // @[L2MemHelperLatencyInjection.scala:29:7]
wire io_ptw_gstatus_mpie_0 = io_ptw_gstatus_mpie; // @[L2MemHelperLatencyInjection.scala:29:7]
wire io_ptw_gstatus_ube_0 = io_ptw_gstatus_ube; // @[L2MemHelperLatencyInjection.scala:29:7]
wire io_ptw_gstatus_spie_0 = io_ptw_gstatus_spie; // @[L2MemHelperLatencyInjection.scala:29:7]
wire io_ptw_gstatus_upie_0 = io_ptw_gstatus_upie; // @[L2MemHelperLatencyInjection.scala:29:7]
wire io_ptw_gstatus_mie_0 = io_ptw_gstatus_mie; // @[L2MemHelperLatencyInjection.scala:29:7]
wire io_ptw_gstatus_hie_0 = io_ptw_gstatus_hie; // @[L2MemHelperLatencyInjection.scala:29:7]
wire io_ptw_gstatus_sie_0 = io_ptw_gstatus_sie; // @[L2MemHelperLatencyInjection.scala:29:7]
wire io_ptw_gstatus_uie_0 = io_ptw_gstatus_uie; // @[L2MemHelperLatencyInjection.scala:29:7]
wire io_ptw_pmp_0_cfg_l_0 = io_ptw_pmp_0_cfg_l; // @[L2MemHelperLatencyInjection.scala:29:7]
wire [1:0] io_ptw_pmp_0_cfg_a_0 = io_ptw_pmp_0_cfg_a; // @[L2MemHelperLatencyInjection.scala:29:7]
wire io_ptw_pmp_0_cfg_x_0 = io_ptw_pmp_0_cfg_x; // @[L2MemHelperLatencyInjection.scala:29:7]
wire io_ptw_pmp_0_cfg_w_0 = io_ptw_pmp_0_cfg_w; // @[L2MemHelperLatencyInjection.scala:29:7]
wire io_ptw_pmp_0_cfg_r_0 = io_ptw_pmp_0_cfg_r; // @[L2MemHelperLatencyInjection.scala:29:7]
wire [29:0] io_ptw_pmp_0_addr_0 = io_ptw_pmp_0_addr; // @[L2MemHelperLatencyInjection.scala:29:7]
wire [31:0] io_ptw_pmp_0_mask_0 = io_ptw_pmp_0_mask; // @[L2MemHelperLatencyInjection.scala:29:7]
wire io_ptw_pmp_1_cfg_l_0 = io_ptw_pmp_1_cfg_l; // @[L2MemHelperLatencyInjection.scala:29:7]
wire [1:0] io_ptw_pmp_1_cfg_a_0 = io_ptw_pmp_1_cfg_a; // @[L2MemHelperLatencyInjection.scala:29:7]
wire io_ptw_pmp_1_cfg_x_0 = io_ptw_pmp_1_cfg_x; // @[L2MemHelperLatencyInjection.scala:29:7]
wire io_ptw_pmp_1_cfg_w_0 = io_ptw_pmp_1_cfg_w; // @[L2MemHelperLatencyInjection.scala:29:7]
wire io_ptw_pmp_1_cfg_r_0 = io_ptw_pmp_1_cfg_r; // @[L2MemHelperLatencyInjection.scala:29:7]
wire [29:0] io_ptw_pmp_1_addr_0 = io_ptw_pmp_1_addr; // @[L2MemHelperLatencyInjection.scala:29:7]
wire [31:0] io_ptw_pmp_1_mask_0 = io_ptw_pmp_1_mask; // @[L2MemHelperLatencyInjection.scala:29:7]
wire io_ptw_pmp_2_cfg_l_0 = io_ptw_pmp_2_cfg_l; // @[L2MemHelperLatencyInjection.scala:29:7]
wire [1:0] io_ptw_pmp_2_cfg_a_0 = io_ptw_pmp_2_cfg_a; // @[L2MemHelperLatencyInjection.scala:29:7]
wire io_ptw_pmp_2_cfg_x_0 = io_ptw_pmp_2_cfg_x; // @[L2MemHelperLatencyInjection.scala:29:7]
wire io_ptw_pmp_2_cfg_w_0 = io_ptw_pmp_2_cfg_w; // @[L2MemHelperLatencyInjection.scala:29:7]
wire io_ptw_pmp_2_cfg_r_0 = io_ptw_pmp_2_cfg_r; // @[L2MemHelperLatencyInjection.scala:29:7]
wire [29:0] io_ptw_pmp_2_addr_0 = io_ptw_pmp_2_addr; // @[L2MemHelperLatencyInjection.scala:29:7]
wire [31:0] io_ptw_pmp_2_mask_0 = io_ptw_pmp_2_mask; // @[L2MemHelperLatencyInjection.scala:29:7]
wire io_ptw_pmp_3_cfg_l_0 = io_ptw_pmp_3_cfg_l; // @[L2MemHelperLatencyInjection.scala:29:7]
wire [1:0] io_ptw_pmp_3_cfg_a_0 = io_ptw_pmp_3_cfg_a; // @[L2MemHelperLatencyInjection.scala:29:7]
wire io_ptw_pmp_3_cfg_x_0 = io_ptw_pmp_3_cfg_x; // @[L2MemHelperLatencyInjection.scala:29:7]
wire io_ptw_pmp_3_cfg_w_0 = io_ptw_pmp_3_cfg_w; // @[L2MemHelperLatencyInjection.scala:29:7]
wire io_ptw_pmp_3_cfg_r_0 = io_ptw_pmp_3_cfg_r; // @[L2MemHelperLatencyInjection.scala:29:7]
wire [29:0] io_ptw_pmp_3_addr_0 = io_ptw_pmp_3_addr; // @[L2MemHelperLatencyInjection.scala:29:7]
wire [31:0] io_ptw_pmp_3_mask_0 = io_ptw_pmp_3_mask; // @[L2MemHelperLatencyInjection.scala:29:7]
wire io_ptw_pmp_4_cfg_l_0 = io_ptw_pmp_4_cfg_l; // @[L2MemHelperLatencyInjection.scala:29:7]
wire [1:0] io_ptw_pmp_4_cfg_a_0 = io_ptw_pmp_4_cfg_a; // @[L2MemHelperLatencyInjection.scala:29:7]
wire io_ptw_pmp_4_cfg_x_0 = io_ptw_pmp_4_cfg_x; // @[L2MemHelperLatencyInjection.scala:29:7]
wire io_ptw_pmp_4_cfg_w_0 = io_ptw_pmp_4_cfg_w; // @[L2MemHelperLatencyInjection.scala:29:7]
wire io_ptw_pmp_4_cfg_r_0 = io_ptw_pmp_4_cfg_r; // @[L2MemHelperLatencyInjection.scala:29:7]
wire [29:0] io_ptw_pmp_4_addr_0 = io_ptw_pmp_4_addr; // @[L2MemHelperLatencyInjection.scala:29:7]
wire [31:0] io_ptw_pmp_4_mask_0 = io_ptw_pmp_4_mask; // @[L2MemHelperLatencyInjection.scala:29:7]
wire io_ptw_pmp_5_cfg_l_0 = io_ptw_pmp_5_cfg_l; // @[L2MemHelperLatencyInjection.scala:29:7]
wire [1:0] io_ptw_pmp_5_cfg_a_0 = io_ptw_pmp_5_cfg_a; // @[L2MemHelperLatencyInjection.scala:29:7]
wire io_ptw_pmp_5_cfg_x_0 = io_ptw_pmp_5_cfg_x; // @[L2MemHelperLatencyInjection.scala:29:7]
wire io_ptw_pmp_5_cfg_w_0 = io_ptw_pmp_5_cfg_w; // @[L2MemHelperLatencyInjection.scala:29:7]
wire io_ptw_pmp_5_cfg_r_0 = io_ptw_pmp_5_cfg_r; // @[L2MemHelperLatencyInjection.scala:29:7]
wire [29:0] io_ptw_pmp_5_addr_0 = io_ptw_pmp_5_addr; // @[L2MemHelperLatencyInjection.scala:29:7]
wire [31:0] io_ptw_pmp_5_mask_0 = io_ptw_pmp_5_mask; // @[L2MemHelperLatencyInjection.scala:29:7]
wire io_ptw_pmp_6_cfg_l_0 = io_ptw_pmp_6_cfg_l; // @[L2MemHelperLatencyInjection.scala:29:7]
wire [1:0] io_ptw_pmp_6_cfg_a_0 = io_ptw_pmp_6_cfg_a; // @[L2MemHelperLatencyInjection.scala:29:7]
wire io_ptw_pmp_6_cfg_x_0 = io_ptw_pmp_6_cfg_x; // @[L2MemHelperLatencyInjection.scala:29:7]
wire io_ptw_pmp_6_cfg_w_0 = io_ptw_pmp_6_cfg_w; // @[L2MemHelperLatencyInjection.scala:29:7]
wire io_ptw_pmp_6_cfg_r_0 = io_ptw_pmp_6_cfg_r; // @[L2MemHelperLatencyInjection.scala:29:7]
wire [29:0] io_ptw_pmp_6_addr_0 = io_ptw_pmp_6_addr; // @[L2MemHelperLatencyInjection.scala:29:7]
wire [31:0] io_ptw_pmp_6_mask_0 = io_ptw_pmp_6_mask; // @[L2MemHelperLatencyInjection.scala:29:7]
wire io_ptw_pmp_7_cfg_l_0 = io_ptw_pmp_7_cfg_l; // @[L2MemHelperLatencyInjection.scala:29:7]
wire [1:0] io_ptw_pmp_7_cfg_a_0 = io_ptw_pmp_7_cfg_a; // @[L2MemHelperLatencyInjection.scala:29:7]
wire io_ptw_pmp_7_cfg_x_0 = io_ptw_pmp_7_cfg_x; // @[L2MemHelperLatencyInjection.scala:29:7]
wire io_ptw_pmp_7_cfg_w_0 = io_ptw_pmp_7_cfg_w; // @[L2MemHelperLatencyInjection.scala:29:7]
wire io_ptw_pmp_7_cfg_r_0 = io_ptw_pmp_7_cfg_r; // @[L2MemHelperLatencyInjection.scala:29:7]
wire [29:0] io_ptw_pmp_7_addr_0 = io_ptw_pmp_7_addr; // @[L2MemHelperLatencyInjection.scala:29:7]
wire [31:0] io_ptw_pmp_7_mask_0 = io_ptw_pmp_7_mask; // @[L2MemHelperLatencyInjection.scala:29:7]
wire io_ptw_customCSRs_csrs_0_ren_0 = io_ptw_customCSRs_csrs_0_ren; // @[L2MemHelperLatencyInjection.scala:29:7]
wire io_ptw_customCSRs_csrs_0_wen_0 = io_ptw_customCSRs_csrs_0_wen; // @[L2MemHelperLatencyInjection.scala:29:7]
wire [63:0] io_ptw_customCSRs_csrs_0_wdata_0 = io_ptw_customCSRs_csrs_0_wdata; // @[L2MemHelperLatencyInjection.scala:29:7]
wire [63:0] io_ptw_customCSRs_csrs_0_value_0 = io_ptw_customCSRs_csrs_0_value; // @[L2MemHelperLatencyInjection.scala:29:7]
wire io_ptw_customCSRs_csrs_1_ren_0 = io_ptw_customCSRs_csrs_1_ren; // @[L2MemHelperLatencyInjection.scala:29:7]
wire io_ptw_customCSRs_csrs_1_wen_0 = io_ptw_customCSRs_csrs_1_wen; // @[L2MemHelperLatencyInjection.scala:29:7]
wire [63:0] io_ptw_customCSRs_csrs_1_wdata_0 = io_ptw_customCSRs_csrs_1_wdata; // @[L2MemHelperLatencyInjection.scala:29:7]
wire [63:0] io_ptw_customCSRs_csrs_1_value_0 = io_ptw_customCSRs_csrs_1_value; // @[L2MemHelperLatencyInjection.scala:29:7]
wire io_ptw_customCSRs_csrs_2_ren_0 = io_ptw_customCSRs_csrs_2_ren; // @[L2MemHelperLatencyInjection.scala:29:7]
wire io_ptw_customCSRs_csrs_2_wen_0 = io_ptw_customCSRs_csrs_2_wen; // @[L2MemHelperLatencyInjection.scala:29:7]
wire [63:0] io_ptw_customCSRs_csrs_2_wdata_0 = io_ptw_customCSRs_csrs_2_wdata; // @[L2MemHelperLatencyInjection.scala:29:7]
wire [63:0] io_ptw_customCSRs_csrs_2_value_0 = io_ptw_customCSRs_csrs_2_value; // @[L2MemHelperLatencyInjection.scala:29:7]
wire io_ptw_customCSRs_csrs_3_ren_0 = io_ptw_customCSRs_csrs_3_ren; // @[L2MemHelperLatencyInjection.scala:29:7]
wire io_ptw_customCSRs_csrs_3_wen_0 = io_ptw_customCSRs_csrs_3_wen; // @[L2MemHelperLatencyInjection.scala:29:7]
wire [63:0] io_ptw_customCSRs_csrs_3_wdata_0 = io_ptw_customCSRs_csrs_3_wdata; // @[L2MemHelperLatencyInjection.scala:29:7]
wire [63:0] io_ptw_customCSRs_csrs_3_value_0 = io_ptw_customCSRs_csrs_3_value; // @[L2MemHelperLatencyInjection.scala:29:7]
wire io_status_valid_0 = io_status_valid; // @[L2MemHelperLatencyInjection.scala:29:7]
wire io_status_bits_debug_0 = io_status_bits_debug; // @[L2MemHelperLatencyInjection.scala:29:7]
wire io_status_bits_cease_0 = io_status_bits_cease; // @[L2MemHelperLatencyInjection.scala:29:7]
wire io_status_bits_wfi_0 = io_status_bits_wfi; // @[L2MemHelperLatencyInjection.scala:29:7]
wire [31:0] io_status_bits_isa_0 = io_status_bits_isa; // @[L2MemHelperLatencyInjection.scala:29:7]
wire [1:0] io_status_bits_dprv_0 = io_status_bits_dprv; // @[L2MemHelperLatencyInjection.scala:29:7]
wire io_status_bits_dv_0 = io_status_bits_dv; // @[L2MemHelperLatencyInjection.scala:29:7]
wire [1:0] io_status_bits_prv_0 = io_status_bits_prv; // @[L2MemHelperLatencyInjection.scala:29:7]
wire io_status_bits_v_0 = io_status_bits_v; // @[L2MemHelperLatencyInjection.scala:29:7]
wire io_status_bits_sd_0 = io_status_bits_sd; // @[L2MemHelperLatencyInjection.scala:29:7]
wire [22:0] io_status_bits_zero2_0 = io_status_bits_zero2; // @[L2MemHelperLatencyInjection.scala:29:7]
wire io_status_bits_mpv_0 = io_status_bits_mpv; // @[L2MemHelperLatencyInjection.scala:29:7]
wire io_status_bits_gva_0 = io_status_bits_gva; // @[L2MemHelperLatencyInjection.scala:29:7]
wire io_status_bits_mbe_0 = io_status_bits_mbe; // @[L2MemHelperLatencyInjection.scala:29:7]
wire io_status_bits_sbe_0 = io_status_bits_sbe; // @[L2MemHelperLatencyInjection.scala:29:7]
wire [1:0] io_status_bits_sxl_0 = io_status_bits_sxl; // @[L2MemHelperLatencyInjection.scala:29:7]
wire [1:0] io_status_bits_uxl_0 = io_status_bits_uxl; // @[L2MemHelperLatencyInjection.scala:29:7]
wire io_status_bits_sd_rv32_0 = io_status_bits_sd_rv32; // @[L2MemHelperLatencyInjection.scala:29:7]
wire [7:0] io_status_bits_zero1_0 = io_status_bits_zero1; // @[L2MemHelperLatencyInjection.scala:29:7]
wire io_status_bits_tsr_0 = io_status_bits_tsr; // @[L2MemHelperLatencyInjection.scala:29:7]
wire io_status_bits_tw_0 = io_status_bits_tw; // @[L2MemHelperLatencyInjection.scala:29:7]
wire io_status_bits_tvm_0 = io_status_bits_tvm; // @[L2MemHelperLatencyInjection.scala:29:7]
wire io_status_bits_mxr_0 = io_status_bits_mxr; // @[L2MemHelperLatencyInjection.scala:29:7]
wire io_status_bits_sum_0 = io_status_bits_sum; // @[L2MemHelperLatencyInjection.scala:29:7]
wire io_status_bits_mprv_0 = io_status_bits_mprv; // @[L2MemHelperLatencyInjection.scala:29:7]
wire [1:0] io_status_bits_xs_0 = io_status_bits_xs; // @[L2MemHelperLatencyInjection.scala:29:7]
wire [1:0] io_status_bits_fs_0 = io_status_bits_fs; // @[L2MemHelperLatencyInjection.scala:29:7]
wire [1:0] io_status_bits_mpp_0 = io_status_bits_mpp; // @[L2MemHelperLatencyInjection.scala:29:7]
wire [1:0] io_status_bits_vs_0 = io_status_bits_vs; // @[L2MemHelperLatencyInjection.scala:29:7]
wire io_status_bits_spp_0 = io_status_bits_spp; // @[L2MemHelperLatencyInjection.scala:29:7]
wire io_status_bits_mpie_0 = io_status_bits_mpie; // @[L2MemHelperLatencyInjection.scala:29:7]
wire io_status_bits_ube_0 = io_status_bits_ube; // @[L2MemHelperLatencyInjection.scala:29:7]
wire io_status_bits_spie_0 = io_status_bits_spie; // @[L2MemHelperLatencyInjection.scala:29:7]
wire io_status_bits_upie_0 = io_status_bits_upie; // @[L2MemHelperLatencyInjection.scala:29:7]
wire io_status_bits_mie_0 = io_status_bits_mie; // @[L2MemHelperLatencyInjection.scala:29:7]
wire io_status_bits_hie_0 = io_status_bits_hie; // @[L2MemHelperLatencyInjection.scala:29:7]
wire io_status_bits_sie_0 = io_status_bits_sie; // @[L2MemHelperLatencyInjection.scala:29:7]
wire io_status_bits_uie_0 = io_status_bits_uie; // @[L2MemHelperLatencyInjection.scala:29:7]
wire _printf_T = reset; // @[annotations.scala:102:49]
wire _printf_T_2 = reset; // @[annotations.scala:102:49]
wire io_ptw_req_bits_bits_vstage1 = 1'h0; // @[L2MemHelperLatencyInjection.scala:29:7]
wire io_ptw_req_bits_bits_stage2 = 1'h0; // @[L2MemHelperLatencyInjection.scala:29:7]
wire io_ptw_resp_bits_fragmented_superpage = 1'h0; // @[L2MemHelperLatencyInjection.scala:29:7]
wire io_ptw_status_mbe = 1'h0; // @[L2MemHelperLatencyInjection.scala:29:7]
wire io_ptw_status_sbe = 1'h0; // @[L2MemHelperLatencyInjection.scala:29:7]
wire io_ptw_status_sd_rv32 = 1'h0; // @[L2MemHelperLatencyInjection.scala:29:7]
wire io_ptw_status_ube = 1'h0; // @[L2MemHelperLatencyInjection.scala:29:7]
wire io_ptw_status_upie = 1'h0; // @[L2MemHelperLatencyInjection.scala:29:7]
wire io_ptw_status_hie = 1'h0; // @[L2MemHelperLatencyInjection.scala:29:7]
wire io_ptw_status_uie = 1'h0; // @[L2MemHelperLatencyInjection.scala:29:7]
wire io_ptw_hstatus_vtsr = 1'h0; // @[L2MemHelperLatencyInjection.scala:29:7]
wire io_ptw_hstatus_vtw = 1'h0; // @[L2MemHelperLatencyInjection.scala:29:7]
wire io_ptw_hstatus_vtvm = 1'h0; // @[L2MemHelperLatencyInjection.scala:29:7]
wire io_ptw_hstatus_hu = 1'h0; // @[L2MemHelperLatencyInjection.scala:29:7]
wire io_ptw_hstatus_vsbe = 1'h0; // @[L2MemHelperLatencyInjection.scala:29:7]
wire io_ptw_gstatus_sd_rv32 = 1'h0; // @[L2MemHelperLatencyInjection.scala:29:7]
wire io_ptw_customCSRs_csrs_0_stall = 1'h0; // @[L2MemHelperLatencyInjection.scala:29:7]
wire io_ptw_customCSRs_csrs_0_set = 1'h0; // @[L2MemHelperLatencyInjection.scala:29:7]
wire io_ptw_customCSRs_csrs_1_stall = 1'h0; // @[L2MemHelperLatencyInjection.scala:29:7]
wire io_ptw_customCSRs_csrs_1_set = 1'h0; // @[L2MemHelperLatencyInjection.scala:29:7]
wire io_ptw_customCSRs_csrs_2_stall = 1'h0; // @[L2MemHelperLatencyInjection.scala:29:7]
wire io_ptw_customCSRs_csrs_2_set = 1'h0; // @[L2MemHelperLatencyInjection.scala:29:7]
wire io_ptw_customCSRs_csrs_3_stall = 1'h0; // @[L2MemHelperLatencyInjection.scala:29:7]
wire io_ptw_customCSRs_csrs_3_set = 1'h0; // @[L2MemHelperLatencyInjection.scala:29:7]
wire bundle_corrupt = 1'h0; // @[Edges.scala:460:17]
wire _legal_T_125 = 1'h0; // @[Parameters.scala:684:29]
wire _legal_T_131 = 1'h0; // @[Parameters.scala:684:54]
wire bundle_1_corrupt = 1'h0; // @[Edges.scala:480:17]
wire [15:0] io_ptw_ptbr_asid = 16'h0; // @[L2MemHelperLatencyInjection.scala:29:7]
wire [15:0] io_ptw_hgatp_asid = 16'h0; // @[L2MemHelperLatencyInjection.scala:29:7]
wire [15:0] io_ptw_vsatp_asid = 16'h0; // @[L2MemHelperLatencyInjection.scala:29:7]
wire [3:0] io_ptw_hgatp_mode = 4'h0; // @[L2MemHelperLatencyInjection.scala:29:7]
wire [3:0] io_ptw_vsatp_mode = 4'h0; // @[L2MemHelperLatencyInjection.scala:29:7]
wire [43:0] io_ptw_hgatp_ppn = 44'h0; // @[L2MemHelperLatencyInjection.scala:29:7]
wire [43:0] io_ptw_vsatp_ppn = 44'h0; // @[L2MemHelperLatencyInjection.scala:29:7]
wire io_ptw_req_bits_valid = 1'h1; // @[L2MemHelperLatencyInjection.scala:29:7]
wire io_ptw_status_sd = 1'h1; // @[L2MemHelperLatencyInjection.scala:29:7]
wire io_ptw_gstatus_sd = 1'h1; // @[L2MemHelperLatencyInjection.scala:29:7]
wire _legal_T = 1'h1; // @[Parameters.scala:92:28]
wire _legal_T_1 = 1'h1; // @[Parameters.scala:92:38]
wire _legal_T_2 = 1'h1; // @[Parameters.scala:92:33]
wire _legal_T_3 = 1'h1; // @[Parameters.scala:684:29]
wire _legal_T_10 = 1'h1; // @[Parameters.scala:92:28]
wire _legal_T_63 = 1'h1; // @[Parameters.scala:92:28]
wire _legal_T_64 = 1'h1; // @[Parameters.scala:92:38]
wire _legal_T_65 = 1'h1; // @[Parameters.scala:92:33]
wire _legal_T_66 = 1'h1; // @[Parameters.scala:684:29]
wire _legal_T_73 = 1'h1; // @[Parameters.scala:92:28]
wire [22:0] io_ptw_status_zero2 = 23'h0; // @[L2MemHelperLatencyInjection.scala:29:7]
wire [7:0] io_ptw_status_zero1 = 8'h0; // @[L2MemHelperLatencyInjection.scala:29:7]
wire [1:0] io_ptw_status_xs = 2'h3; // @[L2MemHelperLatencyInjection.scala:29:7]
wire [1:0] io_ptw_gstatus_xs = 2'h3; // @[L2MemHelperLatencyInjection.scala:29:7]
wire [1:0] io_ptw_status_vs = 2'h0; // @[L2MemHelperLatencyInjection.scala:29:7]
wire [1:0] io_ptw_hstatus_zero3 = 2'h0; // @[L2MemHelperLatencyInjection.scala:29:7]
wire [1:0] io_ptw_hstatus_zero2 = 2'h0; // @[L2MemHelperLatencyInjection.scala:29:7]
wire [1:0] io_ptw_pmp_0_cfg_res = 2'h0; // @[L2MemHelperLatencyInjection.scala:29:7]
wire [1:0] io_ptw_pmp_1_cfg_res = 2'h0; // @[L2MemHelperLatencyInjection.scala:29:7]
wire [1:0] io_ptw_pmp_2_cfg_res = 2'h0; // @[L2MemHelperLatencyInjection.scala:29:7]
wire [1:0] io_ptw_pmp_3_cfg_res = 2'h0; // @[L2MemHelperLatencyInjection.scala:29:7]
wire [1:0] io_ptw_pmp_4_cfg_res = 2'h0; // @[L2MemHelperLatencyInjection.scala:29:7]
wire [1:0] io_ptw_pmp_5_cfg_res = 2'h0; // @[L2MemHelperLatencyInjection.scala:29:7]
wire [1:0] io_ptw_pmp_6_cfg_res = 2'h0; // @[L2MemHelperLatencyInjection.scala:29:7]
wire [1:0] io_ptw_pmp_7_cfg_res = 2'h0; // @[L2MemHelperLatencyInjection.scala:29:7]
wire [29:0] io_ptw_hstatus_zero6 = 30'h0; // @[L2MemHelperLatencyInjection.scala:29:7]
wire [8:0] io_ptw_hstatus_zero5 = 9'h0; // @[L2MemHelperLatencyInjection.scala:29:7]
wire [5:0] io_ptw_hstatus_vgein = 6'h0; // @[L2MemHelperLatencyInjection.scala:29:7]
wire [4:0] io_ptw_hstatus_zero1 = 5'h0; // @[L2MemHelperLatencyInjection.scala:29:7]
wire [1:0] io_ptw_status_sxl = 2'h2; // @[L2MemHelperLatencyInjection.scala:29:7]
wire [1:0] io_ptw_status_uxl = 2'h2; // @[L2MemHelperLatencyInjection.scala:29:7]
wire [1:0] io_ptw_hstatus_vsxl = 2'h2; // @[L2MemHelperLatencyInjection.scala:29:7]
wire [1:0] io_ptw_gstatus_uxl = 2'h2; // @[L2MemHelperLatencyInjection.scala:29:7]
wire [63:0] io_ptw_customCSRs_csrs_0_sdata = 64'h0; // @[L2MemHelperLatencyInjection.scala:29:7]
wire [63:0] io_ptw_customCSRs_csrs_1_sdata = 64'h0; // @[L2MemHelperLatencyInjection.scala:29:7]
wire [63:0] io_ptw_customCSRs_csrs_2_sdata = 64'h0; // @[L2MemHelperLatencyInjection.scala:29:7]
wire [63:0] io_ptw_customCSRs_csrs_3_sdata = 64'h0; // @[L2MemHelperLatencyInjection.scala:29:7]
wire [2:0] bundle_param = 3'h0; // @[Edges.scala:460:17]
wire [2:0] bundle_1_opcode = 3'h0; // @[Edges.scala:480:17]
wire [2:0] bundle_1_param = 3'h0; // @[Edges.scala:480:17]
wire [255:0] bundle_data = 256'h0; // @[Edges.scala:460:17]
wire [2:0] bundle_opcode = 3'h4; // @[Edges.scala:460:17]
wire masterNodeOut_a_ready = auto_master_out_a_ready_0; // @[MixedNode.scala:542:17]
wire masterNodeOut_a_valid; // @[MixedNode.scala:542:17]
wire [2:0] masterNodeOut_a_bits_opcode; // @[MixedNode.scala:542:17]
wire [2:0] masterNodeOut_a_bits_param; // @[MixedNode.scala:542:17]
wire [3:0] masterNodeOut_a_bits_size; // @[MixedNode.scala:542:17]
wire [4:0] masterNodeOut_a_bits_source; // @[MixedNode.scala:542:17]
wire [31:0] masterNodeOut_a_bits_address; // @[MixedNode.scala:542:17]
wire [31:0] masterNodeOut_a_bits_mask; // @[MixedNode.scala:542:17]
wire [255:0] masterNodeOut_a_bits_data; // @[MixedNode.scala:542:17]
wire masterNodeOut_a_bits_corrupt; // @[MixedNode.scala:542:17]
wire masterNodeOut_d_ready; // @[MixedNode.scala:542:17]
wire masterNodeOut_d_valid = auto_master_out_d_valid_0; // @[MixedNode.scala:542:17]
wire [2:0] masterNodeOut_d_bits_opcode = auto_master_out_d_bits_opcode_0; // @[MixedNode.scala:542:17]
wire [1:0] masterNodeOut_d_bits_param = auto_master_out_d_bits_param_0; // @[MixedNode.scala:542:17]
wire [3:0] masterNodeOut_d_bits_size = auto_master_out_d_bits_size_0; // @[MixedNode.scala:542:17]
wire [4:0] masterNodeOut_d_bits_source = auto_master_out_d_bits_source_0; // @[MixedNode.scala:542:17]
wire [2:0] masterNodeOut_d_bits_sink = auto_master_out_d_bits_sink_0; // @[MixedNode.scala:542:17]
wire masterNodeOut_d_bits_denied = auto_master_out_d_bits_denied_0; // @[MixedNode.scala:542:17]
wire [255:0] masterNodeOut_d_bits_data = auto_master_out_d_bits_data_0; // @[MixedNode.scala:542:17]
wire masterNodeOut_d_bits_corrupt = auto_master_out_d_bits_corrupt_0; // @[MixedNode.scala:542:17]
wire request_input_ready; // @[L2MemHelperLatencyInjection.scala:44:27]
wire request_input_valid = io_userif_req_valid_0; // @[L2MemHelperLatencyInjection.scala:29:7, :44:27]
wire [70:0] request_input_bits_addr = io_userif_req_bits_addr_0; // @[L2MemHelperLatencyInjection.scala:29:7, :44:27]
wire [2:0] request_input_bits_size = io_userif_req_bits_size_0; // @[L2MemHelperLatencyInjection.scala:29:7, :44:27]
wire [255:0] request_input_bits_data = io_userif_req_bits_data_0; // @[L2MemHelperLatencyInjection.scala:29:7, :44:27]
wire request_input_bits_cmd = io_userif_req_bits_cmd_0; // @[L2MemHelperLatencyInjection.scala:29:7, :44:27]
wire response_output_ready = io_userif_resp_ready_0; // @[L2MemHelperLatencyInjection.scala:29:7, :53:29]
wire response_output_valid; // @[L2MemHelperLatencyInjection.scala:53:29]
wire [255:0] response_output_bits_data; // @[L2MemHelperLatencyInjection.scala:53:29]
wire _io_userif_no_memops_inflight_T; // @[L2MemHelperLatencyInjection.scala:128:57]
wire [2:0] auto_master_out_a_bits_opcode_0; // @[L2MemHelperLatencyInjection.scala:29:7]
wire [2:0] auto_master_out_a_bits_param_0; // @[L2MemHelperLatencyInjection.scala:29:7]
wire [3:0] auto_master_out_a_bits_size_0; // @[L2MemHelperLatencyInjection.scala:29:7]
wire [4:0] auto_master_out_a_bits_source_0; // @[L2MemHelperLatencyInjection.scala:29:7]
wire [31:0] auto_master_out_a_bits_address_0; // @[L2MemHelperLatencyInjection.scala:29:7]
wire [31:0] auto_master_out_a_bits_mask_0; // @[L2MemHelperLatencyInjection.scala:29:7]
wire [255:0] auto_master_out_a_bits_data_0; // @[L2MemHelperLatencyInjection.scala:29:7]
wire auto_master_out_a_bits_corrupt_0; // @[L2MemHelperLatencyInjection.scala:29:7]
wire auto_master_out_a_valid_0; // @[L2MemHelperLatencyInjection.scala:29:7]
wire auto_master_out_d_ready_0; // @[L2MemHelperLatencyInjection.scala:29:7]
wire io_userif_req_ready_0; // @[L2MemHelperLatencyInjection.scala:29:7]
wire [255:0] io_userif_resp_bits_data_0; // @[L2MemHelperLatencyInjection.scala:29:7]
wire io_userif_resp_valid_0; // @[L2MemHelperLatencyInjection.scala:29:7]
wire io_userif_no_memops_inflight_0; // @[L2MemHelperLatencyInjection.scala:29:7]
wire [26:0] io_ptw_req_bits_bits_addr_0; // @[L2MemHelperLatencyInjection.scala:29:7]
wire io_ptw_req_bits_bits_need_gpa_0; // @[L2MemHelperLatencyInjection.scala:29:7]
wire io_ptw_req_valid_0; // @[L2MemHelperLatencyInjection.scala:29:7]
assign auto_master_out_a_valid_0 = masterNodeOut_a_valid; // @[MixedNode.scala:542:17]
assign auto_master_out_a_bits_opcode_0 = masterNodeOut_a_bits_opcode; // @[MixedNode.scala:542:17]
assign auto_master_out_a_bits_param_0 = masterNodeOut_a_bits_param; // @[MixedNode.scala:542:17]
assign auto_master_out_a_bits_size_0 = masterNodeOut_a_bits_size; // @[MixedNode.scala:542:17]
assign auto_master_out_a_bits_source_0 = masterNodeOut_a_bits_source; // @[MixedNode.scala:542:17]
assign auto_master_out_a_bits_address_0 = masterNodeOut_a_bits_address; // @[MixedNode.scala:542:17]
assign auto_master_out_a_bits_mask_0 = masterNodeOut_a_bits_mask; // @[MixedNode.scala:542:17]
assign auto_master_out_a_bits_data_0 = masterNodeOut_a_bits_data; // @[MixedNode.scala:542:17]
assign auto_master_out_a_bits_corrupt_0 = masterNodeOut_a_bits_corrupt; // @[MixedNode.scala:542:17]
assign auto_master_out_d_ready_0 = masterNodeOut_d_ready; // @[MixedNode.scala:542:17]
wire _request_input_ready_T_4; // @[Misc.scala:26:53]
assign io_userif_req_ready_0 = request_input_ready; // @[L2MemHelperLatencyInjection.scala:29:7, :44:27]
wire _response_output_valid_T; // @[Misc.scala:26:53]
assign io_userif_resp_valid_0 = response_output_valid; // @[L2MemHelperLatencyInjection.scala:29:7, :53:29]
wire [255:0] resultdata; // @[L2MemHelperLatencyInjection.scala:307:15]
assign io_userif_resp_bits_data_0 = response_output_bits_data; // @[L2MemHelperLatencyInjection.scala:29:7, :53:29]
reg status_debug; // @[L2MemHelperLatencyInjection.scala:62:19]
reg status_cease; // @[L2MemHelperLatencyInjection.scala:62:19]
reg status_wfi; // @[L2MemHelperLatencyInjection.scala:62:19]
reg [31:0] status_isa; // @[L2MemHelperLatencyInjection.scala:62:19]
reg [1:0] status_dprv; // @[L2MemHelperLatencyInjection.scala:62:19]
reg status_dv; // @[L2MemHelperLatencyInjection.scala:62:19]
reg [1:0] status_prv; // @[L2MemHelperLatencyInjection.scala:62:19]
reg status_v; // @[L2MemHelperLatencyInjection.scala:62:19]
reg status_sd; // @[L2MemHelperLatencyInjection.scala:62:19]
reg [22:0] status_zero2; // @[L2MemHelperLatencyInjection.scala:62:19]
reg status_mpv; // @[L2MemHelperLatencyInjection.scala:62:19]
reg status_gva; // @[L2MemHelperLatencyInjection.scala:62:19]
reg status_mbe; // @[L2MemHelperLatencyInjection.scala:62:19]
reg status_sbe; // @[L2MemHelperLatencyInjection.scala:62:19]
reg [1:0] status_sxl; // @[L2MemHelperLatencyInjection.scala:62:19]
reg [1:0] status_uxl; // @[L2MemHelperLatencyInjection.scala:62:19]
reg status_sd_rv32; // @[L2MemHelperLatencyInjection.scala:62:19]
reg [7:0] status_zero1; // @[L2MemHelperLatencyInjection.scala:62:19]
reg status_tsr; // @[L2MemHelperLatencyInjection.scala:62:19]
reg status_tw; // @[L2MemHelperLatencyInjection.scala:62:19]
reg status_tvm; // @[L2MemHelperLatencyInjection.scala:62:19]
reg status_mxr; // @[L2MemHelperLatencyInjection.scala:62:19]
reg status_sum; // @[L2MemHelperLatencyInjection.scala:62:19]
reg status_mprv; // @[L2MemHelperLatencyInjection.scala:62:19]
reg [1:0] status_xs; // @[L2MemHelperLatencyInjection.scala:62:19]
reg [1:0] status_fs; // @[L2MemHelperLatencyInjection.scala:62:19]
reg [1:0] status_mpp; // @[L2MemHelperLatencyInjection.scala:62:19]
reg [1:0] status_vs; // @[L2MemHelperLatencyInjection.scala:62:19]
reg status_spp; // @[L2MemHelperLatencyInjection.scala:62:19]
reg status_mpie; // @[L2MemHelperLatencyInjection.scala:62:19]
reg status_ube; // @[L2MemHelperLatencyInjection.scala:62:19]
reg status_spie; // @[L2MemHelperLatencyInjection.scala:62:19]
reg status_upie; // @[L2MemHelperLatencyInjection.scala:62:19]
reg status_mie; // @[L2MemHelperLatencyInjection.scala:62:19]
reg status_hie; // @[L2MemHelperLatencyInjection.scala:62:19]
reg status_sie; // @[L2MemHelperLatencyInjection.scala:62:19]
reg status_uie; // @[L2MemHelperLatencyInjection.scala:62:19]
reg [63:0] loginfo_cycles; // @[Util.scala:18:33]
wire [64:0] _loginfo_cycles_T = {1'h0, loginfo_cycles} + 65'h1; // @[Util.scala:18:33, :19:38]
wire [63:0] _loginfo_cycles_T_1 = _loginfo_cycles_T[63:0]; // @[Util.scala:19:38]
wire _tlb_ready_T = ~_tlb_io_resp_miss; // @[L2MemHelperLatencyInjection.scala:68:19, :74:39]
wire tlb_ready = _tlb_io_req_ready & _tlb_ready_T; // @[L2MemHelperLatencyInjection.scala:68:19, :74:{36,39}]
reg [5:0] tags_init_reg; // @[L2MemHelperLatencyInjection.scala:98:30]
wire _T_4 = tags_init_reg != 6'h20; // @[L2MemHelperLatencyInjection.scala:98:30, :99:23]
reg [63:0] loginfo_cycles_1; // @[Util.scala:18:33]
wire [64:0] _loginfo_cycles_T_2 = {1'h0, loginfo_cycles_1} + 65'h1; // @[Util.scala:18:33, :19:38]
wire [63:0] _loginfo_cycles_T_3 = _loginfo_cycles_T_2[63:0]; // @[Util.scala:19:38]
wire [6:0] _tags_init_reg_T = {1'h0, tags_init_reg} + 7'h1; // @[L2MemHelperLatencyInjection.scala:98:30, :104:38]
wire [5:0] _tags_init_reg_T_1 = _tags_init_reg_T[5:0]; // @[L2MemHelperLatencyInjection.scala:104:38]
wire [70:0] _addr_mask_check_T = 71'h1 << request_input_bits_size; // @[L2MemHelperLatencyInjection.scala:44:27, :108:36]
wire [71:0] _addr_mask_check_T_1 = {1'h0, _addr_mask_check_T} - 72'h1; // @[L2MemHelperLatencyInjection.scala:108:{36,64}]
wire [70:0] addr_mask_check = _addr_mask_check_T_1[70:0]; // @[L2MemHelperLatencyInjection.scala:108:64]
wire _assertcheck_T = ~request_input_valid; // @[L2MemHelperLatencyInjection.scala:44:27, :109:30]
wire [70:0] _assertcheck_T_1 = request_input_bits_addr & addr_mask_check; // @[L2MemHelperLatencyInjection.scala:44:27, :108:64, :109:81]
wire _assertcheck_T_2 = _assertcheck_T_1 == 71'h0; // @[L2MemHelperLatencyInjection.scala:108:64, :109:{81,100}]
wire _assertcheck_T_3 = _assertcheck_T | _assertcheck_T_2; // @[L2MemHelperLatencyInjection.scala:109:{30,52,100}]
reg assertcheck; // @[L2MemHelperLatencyInjection.scala:109:28]
reg [63:0] loginfo_cycles_2; // @[Util.scala:18:33]
wire [64:0] _loginfo_cycles_T_4 = {1'h0, loginfo_cycles_2} + 65'h1; // @[Util.scala:18:33, :19:38]
wire [63:0] _loginfo_cycles_T_5 = _loginfo_cycles_T_4[63:0]; // @[Util.scala:19:38]
reg [63:0] global_memop_accepted; // @[L2MemHelperLatencyInjection.scala:117:38]
wire [64:0] _global_memop_accepted_T = {1'h0, global_memop_accepted} + 65'h1; // @[L2MemHelperLatencyInjection.scala:117:38, :119:52]
wire [63:0] _global_memop_accepted_T_1 = _global_memop_accepted_T[63:0]; // @[L2MemHelperLatencyInjection.scala:119:52]
reg [63:0] global_memop_sent; // @[L2MemHelperLatencyInjection.scala:122:34]
reg [63:0] global_memop_ackd; // @[L2MemHelperLatencyInjection.scala:124:34]
reg [63:0] global_memop_resp_to_user; // @[L2MemHelperLatencyInjection.scala:126:42]
assign _io_userif_no_memops_inflight_T = global_memop_accepted == global_memop_ackd; // @[L2MemHelperLatencyInjection.scala:117:38, :124:34, :128:57]
assign io_userif_no_memops_inflight_0 = _io_userif_no_memops_inflight_T; // @[L2MemHelperLatencyInjection.scala:29:7, :128:57]
wire [64:0] _GEN = {1'h0, global_memop_sent}; // @[L2MemHelperLatencyInjection.scala:122:34, :130:54]
wire [64:0] _GEN_0 = {1'h0, global_memop_ackd}; // @[L2MemHelperLatencyInjection.scala:124:34, :130:54]
wire [64:0] _GEN_1 = _GEN - _GEN_0; // @[L2MemHelperLatencyInjection.scala:130:54]
wire [64:0] _free_outstanding_op_slots_T; // @[L2MemHelperLatencyInjection.scala:130:54]
assign _free_outstanding_op_slots_T = _GEN_1; // @[L2MemHelperLatencyInjection.scala:130:54]
wire [64:0] _assert_free_outstanding_op_slots_T; // @[L2MemHelperLatencyInjection.scala:131:61]
assign _assert_free_outstanding_op_slots_T = _GEN_1; // @[L2MemHelperLatencyInjection.scala:130:54, :131:61]
wire [63:0] _free_outstanding_op_slots_T_1 = _free_outstanding_op_slots_T[63:0]; // @[L2MemHelperLatencyInjection.scala:130:54]
wire free_outstanding_op_slots = _free_outstanding_op_slots_T_1 < 64'h20; // @[L2MemHelperLatencyInjection.scala:130:{54,75}]
wire [63:0] _assert_free_outstanding_op_slots_T_1 = _assert_free_outstanding_op_slots_T[63:0]; // @[L2MemHelperLatencyInjection.scala:131:61]
wire assert_free_outstanding_op_slots = _assert_free_outstanding_op_slots_T_1 < 64'h21; // @[L2MemHelperLatencyInjection.scala:131:{61,82}]
reg [63:0] loginfo_cycles_3; // @[Util.scala:18:33]
wire [64:0] _loginfo_cycles_T_6 = {1'h0, loginfo_cycles_3} + 65'h1; // @[Util.scala:18:33, :19:38]
wire [63:0] _loginfo_cycles_T_7 = _loginfo_cycles_T_6[63:0]; // @[Util.scala:19:38]
wire [64:0] _global_memop_sent_T = _GEN + 65'h1; // @[L2MemHelperLatencyInjection.scala:130:54, :140:44]
wire [63:0] _global_memop_sent_T_1 = _global_memop_sent_T[63:0]; // @[L2MemHelperLatencyInjection.scala:140:44]
reg [63:0] cur_cycle; // @[L2MemHelperLatencyInjection.scala:146:26]
wire [64:0] _cur_cycle_T = {1'h0, cur_cycle} + 65'h1; // @[L2MemHelperLatencyInjection.scala:146:26, :147:26]
wire [63:0] _cur_cycle_T_1 = _cur_cycle_T[63:0]; // @[L2MemHelperLatencyInjection.scala:147:26]
wire [31:0] _GEN_2 = {_tlb_io_resp_paddr[31:14], _tlb_io_resp_paddr[13:0] ^ 14'h3000}; // @[Parameters.scala:137:31]
wire [31:0] _legal_T_4; // @[Parameters.scala:137:31]
assign _legal_T_4 = _GEN_2; // @[Parameters.scala:137:31]
wire [31:0] _legal_T_67; // @[Parameters.scala:137:31]
assign _legal_T_67 = _GEN_2; // @[Parameters.scala:137:31]
wire [32:0] _legal_T_5 = {1'h0, _legal_T_4}; // @[Parameters.scala:137:{31,41}]
wire [32:0] _legal_T_6 = _legal_T_5 & 33'h9A013000; // @[Parameters.scala:137:{41,46}]
wire [32:0] _legal_T_7 = _legal_T_6; // @[Parameters.scala:137:46]
wire _legal_T_8 = _legal_T_7 == 33'h0; // @[Parameters.scala:137:{46,59}]
wire _legal_T_9 = _legal_T_8; // @[Parameters.scala:684:54]
wire _legal_T_62 = _legal_T_9; // @[Parameters.scala:684:54, :686:26]
wire _GEN_3 = request_input_bits_size != 3'h7; // @[Parameters.scala:92:38]
wire _legal_T_11; // @[Parameters.scala:92:38]
assign _legal_T_11 = _GEN_3; // @[Parameters.scala:92:38]
wire _legal_T_74; // @[Parameters.scala:92:38]
assign _legal_T_74 = _GEN_3; // @[Parameters.scala:92:38]
wire _legal_T_12 = _legal_T_11; // @[Parameters.scala:92:{33,38}]
wire _legal_T_13 = _legal_T_12; // @[Parameters.scala:684:29]
wire [31:0] _legal_T_14; // @[Parameters.scala:137:31]
wire [32:0] _legal_T_15 = {1'h0, _legal_T_14}; // @[Parameters.scala:137:{31,41}]
wire [32:0] _legal_T_16 = _legal_T_15 & 33'h9A012000; // @[Parameters.scala:137:{41,46}]
wire [32:0] _legal_T_17 = _legal_T_16; // @[Parameters.scala:137:46]
wire _legal_T_18 = _legal_T_17 == 33'h0; // @[Parameters.scala:137:{46,59}]
wire [31:0] _GEN_4 = {_tlb_io_resp_paddr[31:17], _tlb_io_resp_paddr[16:0] ^ 17'h10000}; // @[Parameters.scala:137:31]
wire [31:0] _legal_T_19; // @[Parameters.scala:137:31]
assign _legal_T_19 = _GEN_4; // @[Parameters.scala:137:31]
wire [31:0] _legal_T_24; // @[Parameters.scala:137:31]
assign _legal_T_24 = _GEN_4; // @[Parameters.scala:137:31]
wire [31:0] _legal_T_126; // @[Parameters.scala:137:31]
assign _legal_T_126 = _GEN_4; // @[Parameters.scala:137:31]
wire [32:0] _legal_T_20 = {1'h0, _legal_T_19}; // @[Parameters.scala:137:{31,41}]
wire [32:0] _legal_T_21 = _legal_T_20 & 33'h98013000; // @[Parameters.scala:137:{41,46}]
wire [32:0] _legal_T_22 = _legal_T_21; // @[Parameters.scala:137:46]
wire _legal_T_23 = _legal_T_22 == 33'h0; // @[Parameters.scala:137:{46,59}]
wire [32:0] _legal_T_25 = {1'h0, _legal_T_24}; // @[Parameters.scala:137:{31,41}]
wire [32:0] _legal_T_26 = _legal_T_25 & 33'h9A010000; // @[Parameters.scala:137:{41,46}]
wire [32:0] _legal_T_27 = _legal_T_26; // @[Parameters.scala:137:46]
wire _legal_T_28 = _legal_T_27 == 33'h0; // @[Parameters.scala:137:{46,59}]
wire [31:0] _GEN_5 = {_tlb_io_resp_paddr[31:26], _tlb_io_resp_paddr[25:0] ^ 26'h2000000}; // @[Parameters.scala:137:31]
wire [31:0] _legal_T_29; // @[Parameters.scala:137:31]
assign _legal_T_29 = _GEN_5; // @[Parameters.scala:137:31]
wire [31:0] _legal_T_87; // @[Parameters.scala:137:31]
assign _legal_T_87 = _GEN_5; // @[Parameters.scala:137:31]
wire [32:0] _legal_T_30 = {1'h0, _legal_T_29}; // @[Parameters.scala:137:{31,41}]
wire [32:0] _legal_T_31 = _legal_T_30 & 33'h9A010000; // @[Parameters.scala:137:{41,46}]
wire [32:0] _legal_T_32 = _legal_T_31; // @[Parameters.scala:137:46]
wire _legal_T_33 = _legal_T_32 == 33'h0; // @[Parameters.scala:137:{46,59}]
wire [31:0] _GEN_6 = {_tlb_io_resp_paddr[31:28], _tlb_io_resp_paddr[27:0] ^ 28'h8000000}; // @[Parameters.scala:137:31]
wire [31:0] _legal_T_34; // @[Parameters.scala:137:31]
assign _legal_T_34 = _GEN_6; // @[Parameters.scala:137:31]
wire [31:0] _legal_T_39; // @[Parameters.scala:137:31]
assign _legal_T_39 = _GEN_6; // @[Parameters.scala:137:31]
wire [31:0] _legal_T_97; // @[Parameters.scala:137:31]
assign _legal_T_97 = _GEN_6; // @[Parameters.scala:137:31]
wire [31:0] _legal_T_102; // @[Parameters.scala:137:31]
assign _legal_T_102 = _GEN_6; // @[Parameters.scala:137:31]
wire [32:0] _legal_T_35 = {1'h0, _legal_T_34}; // @[Parameters.scala:137:{31,41}]
wire [32:0] _legal_T_36 = _legal_T_35 & 33'h98000000; // @[Parameters.scala:137:{41,46}]
wire [32:0] _legal_T_37 = _legal_T_36; // @[Parameters.scala:137:46]
wire _legal_T_38 = _legal_T_37 == 33'h0; // @[Parameters.scala:137:{46,59}]
wire [32:0] _legal_T_40 = {1'h0, _legal_T_39}; // @[Parameters.scala:137:{31,41}]
wire [32:0] _legal_T_41 = _legal_T_40 & 33'h9A010000; // @[Parameters.scala:137:{41,46}]
wire [32:0] _legal_T_42 = _legal_T_41; // @[Parameters.scala:137:46]
wire _legal_T_43 = _legal_T_42 == 33'h0; // @[Parameters.scala:137:{46,59}]
wire [31:0] _GEN_7 = {_tlb_io_resp_paddr[31:29], _tlb_io_resp_paddr[28:0] ^ 29'h10000000}; // @[Parameters.scala:137:31]
wire [31:0] _legal_T_44; // @[Parameters.scala:137:31]
assign _legal_T_44 = _GEN_7; // @[Parameters.scala:137:31]
wire [31:0] _legal_T_107; // @[Parameters.scala:137:31]
assign _legal_T_107 = _GEN_7; // @[Parameters.scala:137:31]
wire [32:0] _legal_T_45 = {1'h0, _legal_T_44}; // @[Parameters.scala:137:{31,41}]
wire [32:0] _legal_T_46 = _legal_T_45 & 33'h9A013000; // @[Parameters.scala:137:{41,46}]
wire [32:0] _legal_T_47 = _legal_T_46; // @[Parameters.scala:137:46]
wire _legal_T_48 = _legal_T_47 == 33'h0; // @[Parameters.scala:137:{46,59}]
wire [31:0] _GEN_8 = _tlb_io_resp_paddr ^ 32'h80000000; // @[Parameters.scala:137:31]
wire [31:0] _legal_T_49; // @[Parameters.scala:137:31]
assign _legal_T_49 = _GEN_8; // @[Parameters.scala:137:31]
wire [31:0] _legal_T_112; // @[Parameters.scala:137:31]
assign _legal_T_112 = _GEN_8; // @[Parameters.scala:137:31]
wire [32:0] _legal_T_50 = {1'h0, _legal_T_49}; // @[Parameters.scala:137:{31,41}]
wire [32:0] _legal_T_51 = _legal_T_50 & 33'h90000000; // @[Parameters.scala:137:{41,46}]
wire [32:0] _legal_T_52 = _legal_T_51; // @[Parameters.scala:137:46]
wire _legal_T_53 = _legal_T_52 == 33'h0; // @[Parameters.scala:137:{46,59}]
wire _legal_T_54 = _legal_T_18 | _legal_T_23; // @[Parameters.scala:685:42]
wire _legal_T_55 = _legal_T_54 | _legal_T_28; // @[Parameters.scala:685:42]
wire _legal_T_56 = _legal_T_55 | _legal_T_33; // @[Parameters.scala:685:42]
wire _legal_T_57 = _legal_T_56 | _legal_T_38; // @[Parameters.scala:685:42]
wire _legal_T_58 = _legal_T_57 | _legal_T_43; // @[Parameters.scala:685:42]
wire _legal_T_59 = _legal_T_58 | _legal_T_48; // @[Parameters.scala:685:42]
wire _legal_T_60 = _legal_T_59 | _legal_T_53; // @[Parameters.scala:685:42]
wire _legal_T_61 = _legal_T_13 & _legal_T_60; // @[Parameters.scala:684:{29,54}, :685:42]
wire legal = _legal_T_62 | _legal_T_61; // @[Parameters.scala:684:54, :686:26]
wire [31:0] _a_mask_T; // @[Misc.scala:222:10]
wire [3:0] bundle_size; // @[Edges.scala:460:17]
wire [4:0] bundle_source; // @[Edges.scala:460:17]
wire [31:0] bundle_address; // @[Edges.scala:460:17]
wire [31:0] bundle_mask; // @[Edges.scala:460:17]
wire [3:0] _GEN_9 = {1'h0, request_input_bits_size}; // @[Edges.scala:463:15]
assign bundle_size = _GEN_9; // @[Edges.scala:460:17, :463:15]
wire [3:0] bundle_1_size; // @[Edges.scala:480:17]
assign bundle_1_size = _GEN_9; // @[Edges.scala:463:15, :480:17]
wire [4:0] _GEN_10 = {2'h0, request_input_bits_size}; // @[Misc.scala:202:34]
wire [4:0] _a_mask_sizeOH_T; // @[Misc.scala:202:34]
assign _a_mask_sizeOH_T = _GEN_10; // @[Misc.scala:202:34]
wire [4:0] _a_mask_sizeOH_T_3; // @[Misc.scala:202:34]
assign _a_mask_sizeOH_T_3 = _GEN_10; // @[Misc.scala:202:34]
wire [4:0] _a_mask_sizeOH_shiftAmount_T = _a_mask_sizeOH_T; // @[OneHot.scala:64:31]
wire [2:0] a_mask_sizeOH_shiftAmount = _a_mask_sizeOH_shiftAmount_T[2:0]; // @[OneHot.scala:64:{31,49}]
wire [7:0] _a_mask_sizeOH_T_1 = 8'h1 << a_mask_sizeOH_shiftAmount; // @[OneHot.scala:64:49, :65:12]
wire [4:0] _a_mask_sizeOH_T_2 = _a_mask_sizeOH_T_1[4:0]; // @[OneHot.scala:65:{12,27}]
wire [4:0] a_mask_sizeOH = {_a_mask_sizeOH_T_2[4:1], 1'h1}; // @[OneHot.scala:65:27]
wire _GEN_11 = request_input_bits_size > 3'h4; // @[Misc.scala:206:21]
wire a_mask_sub_sub_sub_sub_sub_0_1; // @[Misc.scala:206:21]
assign a_mask_sub_sub_sub_sub_sub_0_1 = _GEN_11; // @[Misc.scala:206:21]
wire a_mask_sub_sub_sub_sub_sub_0_1_1; // @[Misc.scala:206:21]
assign a_mask_sub_sub_sub_sub_sub_0_1_1 = _GEN_11; // @[Misc.scala:206:21]
wire a_mask_sub_sub_sub_sub_size = a_mask_sizeOH[4]; // @[Misc.scala:202:81, :209:26]
wire a_mask_sub_sub_sub_sub_bit = _tlb_io_resp_paddr[4]; // @[Misc.scala:210:26]
wire a_mask_sub_sub_sub_sub_bit_1 = _tlb_io_resp_paddr[4]; // @[Misc.scala:210:26]
wire a_mask_sub_sub_sub_sub_1_2 = a_mask_sub_sub_sub_sub_bit; // @[Misc.scala:210:26, :214:27]
wire a_mask_sub_sub_sub_sub_nbit = ~a_mask_sub_sub_sub_sub_bit; // @[Misc.scala:210:26, :211:20]
wire a_mask_sub_sub_sub_sub_0_2 = a_mask_sub_sub_sub_sub_nbit; // @[Misc.scala:211:20, :214:27]
wire _a_mask_sub_sub_sub_sub_acc_T = a_mask_sub_sub_sub_sub_size & a_mask_sub_sub_sub_sub_0_2; // @[Misc.scala:209:26, :214:27, :215:38]
wire a_mask_sub_sub_sub_sub_0_1 = a_mask_sub_sub_sub_sub_sub_0_1 | _a_mask_sub_sub_sub_sub_acc_T; // @[Misc.scala:206:21, :215:{29,38}]
wire _a_mask_sub_sub_sub_sub_acc_T_1 = a_mask_sub_sub_sub_sub_size & a_mask_sub_sub_sub_sub_1_2; // @[Misc.scala:209:26, :214:27, :215:38]
wire a_mask_sub_sub_sub_sub_1_1 = a_mask_sub_sub_sub_sub_sub_0_1 | _a_mask_sub_sub_sub_sub_acc_T_1; // @[Misc.scala:206:21, :215:{29,38}]
wire a_mask_sub_sub_sub_size = a_mask_sizeOH[3]; // @[Misc.scala:202:81, :209:26]
wire a_mask_sub_sub_sub_bit = _tlb_io_resp_paddr[3]; // @[Misc.scala:210:26]
wire a_mask_sub_sub_sub_bit_1 = _tlb_io_resp_paddr[3]; // @[Misc.scala:210:26]
wire a_mask_sub_sub_sub_nbit = ~a_mask_sub_sub_sub_bit; // @[Misc.scala:210:26, :211:20]
wire a_mask_sub_sub_sub_0_2 = a_mask_sub_sub_sub_sub_0_2 & a_mask_sub_sub_sub_nbit; // @[Misc.scala:211:20, :214:27]
wire _a_mask_sub_sub_sub_acc_T = a_mask_sub_sub_sub_size & a_mask_sub_sub_sub_0_2; // @[Misc.scala:209:26, :214:27, :215:38]
wire a_mask_sub_sub_sub_0_1 = a_mask_sub_sub_sub_sub_0_1 | _a_mask_sub_sub_sub_acc_T; // @[Misc.scala:215:{29,38}]
wire a_mask_sub_sub_sub_1_2 = a_mask_sub_sub_sub_sub_0_2 & a_mask_sub_sub_sub_bit; // @[Misc.scala:210:26, :214:27]
wire _a_mask_sub_sub_sub_acc_T_1 = a_mask_sub_sub_sub_size & a_mask_sub_sub_sub_1_2; // @[Misc.scala:209:26, :214:27, :215:38]
wire a_mask_sub_sub_sub_1_1 = a_mask_sub_sub_sub_sub_0_1 | _a_mask_sub_sub_sub_acc_T_1; // @[Misc.scala:215:{29,38}]
wire a_mask_sub_sub_sub_2_2 = a_mask_sub_sub_sub_sub_1_2 & a_mask_sub_sub_sub_nbit; // @[Misc.scala:211:20, :214:27]
wire _a_mask_sub_sub_sub_acc_T_2 = a_mask_sub_sub_sub_size & a_mask_sub_sub_sub_2_2; // @[Misc.scala:209:26, :214:27, :215:38]
wire a_mask_sub_sub_sub_2_1 = a_mask_sub_sub_sub_sub_1_1 | _a_mask_sub_sub_sub_acc_T_2; // @[Misc.scala:215:{29,38}]
wire a_mask_sub_sub_sub_3_2 = a_mask_sub_sub_sub_sub_1_2 & a_mask_sub_sub_sub_bit; // @[Misc.scala:210:26, :214:27]
wire _a_mask_sub_sub_sub_acc_T_3 = a_mask_sub_sub_sub_size & a_mask_sub_sub_sub_3_2; // @[Misc.scala:209:26, :214:27, :215:38]
wire a_mask_sub_sub_sub_3_1 = a_mask_sub_sub_sub_sub_1_1 | _a_mask_sub_sub_sub_acc_T_3; // @[Misc.scala:215:{29,38}]
wire a_mask_sub_sub_size = a_mask_sizeOH[2]; // @[Misc.scala:202:81, :209:26]
wire a_mask_sub_sub_bit = _tlb_io_resp_paddr[2]; // @[Misc.scala:210:26]
wire a_mask_sub_sub_bit_1 = _tlb_io_resp_paddr[2]; // @[Misc.scala:210:26]
wire a_mask_sub_sub_nbit = ~a_mask_sub_sub_bit; // @[Misc.scala:210:26, :211:20]
wire a_mask_sub_sub_0_2 = a_mask_sub_sub_sub_0_2 & a_mask_sub_sub_nbit; // @[Misc.scala:211:20, :214:27]
wire _a_mask_sub_sub_acc_T = a_mask_sub_sub_size & a_mask_sub_sub_0_2; // @[Misc.scala:209:26, :214:27, :215:38]
wire a_mask_sub_sub_0_1 = a_mask_sub_sub_sub_0_1 | _a_mask_sub_sub_acc_T; // @[Misc.scala:215:{29,38}]
wire a_mask_sub_sub_1_2 = a_mask_sub_sub_sub_0_2 & a_mask_sub_sub_bit; // @[Misc.scala:210:26, :214:27]
wire _a_mask_sub_sub_acc_T_1 = a_mask_sub_sub_size & a_mask_sub_sub_1_2; // @[Misc.scala:209:26, :214:27, :215:38]
wire a_mask_sub_sub_1_1 = a_mask_sub_sub_sub_0_1 | _a_mask_sub_sub_acc_T_1; // @[Misc.scala:215:{29,38}]
wire a_mask_sub_sub_2_2 = a_mask_sub_sub_sub_1_2 & a_mask_sub_sub_nbit; // @[Misc.scala:211:20, :214:27]
wire _a_mask_sub_sub_acc_T_2 = a_mask_sub_sub_size & a_mask_sub_sub_2_2; // @[Misc.scala:209:26, :214:27, :215:38]
wire a_mask_sub_sub_2_1 = a_mask_sub_sub_sub_1_1 | _a_mask_sub_sub_acc_T_2; // @[Misc.scala:215:{29,38}]
wire a_mask_sub_sub_3_2 = a_mask_sub_sub_sub_1_2 & a_mask_sub_sub_bit; // @[Misc.scala:210:26, :214:27]
wire _a_mask_sub_sub_acc_T_3 = a_mask_sub_sub_size & a_mask_sub_sub_3_2; // @[Misc.scala:209:26, :214:27, :215:38]
wire a_mask_sub_sub_3_1 = a_mask_sub_sub_sub_1_1 | _a_mask_sub_sub_acc_T_3; // @[Misc.scala:215:{29,38}]
wire a_mask_sub_sub_4_2 = a_mask_sub_sub_sub_2_2 & a_mask_sub_sub_nbit; // @[Misc.scala:211:20, :214:27]
wire _a_mask_sub_sub_acc_T_4 = a_mask_sub_sub_size & a_mask_sub_sub_4_2; // @[Misc.scala:209:26, :214:27, :215:38]
wire a_mask_sub_sub_4_1 = a_mask_sub_sub_sub_2_1 | _a_mask_sub_sub_acc_T_4; // @[Misc.scala:215:{29,38}]
wire a_mask_sub_sub_5_2 = a_mask_sub_sub_sub_2_2 & a_mask_sub_sub_bit; // @[Misc.scala:210:26, :214:27]
wire _a_mask_sub_sub_acc_T_5 = a_mask_sub_sub_size & a_mask_sub_sub_5_2; // @[Misc.scala:209:26, :214:27, :215:38]
wire a_mask_sub_sub_5_1 = a_mask_sub_sub_sub_2_1 | _a_mask_sub_sub_acc_T_5; // @[Misc.scala:215:{29,38}]
wire a_mask_sub_sub_6_2 = a_mask_sub_sub_sub_3_2 & a_mask_sub_sub_nbit; // @[Misc.scala:211:20, :214:27]
wire _a_mask_sub_sub_acc_T_6 = a_mask_sub_sub_size & a_mask_sub_sub_6_2; // @[Misc.scala:209:26, :214:27, :215:38]
wire a_mask_sub_sub_6_1 = a_mask_sub_sub_sub_3_1 | _a_mask_sub_sub_acc_T_6; // @[Misc.scala:215:{29,38}]
wire a_mask_sub_sub_7_2 = a_mask_sub_sub_sub_3_2 & a_mask_sub_sub_bit; // @[Misc.scala:210:26, :214:27]
wire _a_mask_sub_sub_acc_T_7 = a_mask_sub_sub_size & a_mask_sub_sub_7_2; // @[Misc.scala:209:26, :214:27, :215:38]
wire a_mask_sub_sub_7_1 = a_mask_sub_sub_sub_3_1 | _a_mask_sub_sub_acc_T_7; // @[Misc.scala:215:{29,38}]
wire a_mask_sub_size = a_mask_sizeOH[1]; // @[Misc.scala:202:81, :209:26]
wire a_mask_sub_bit = _tlb_io_resp_paddr[1]; // @[Misc.scala:210:26]
wire a_mask_sub_bit_1 = _tlb_io_resp_paddr[1]; // @[Misc.scala:210:26]
wire a_mask_sub_nbit = ~a_mask_sub_bit; // @[Misc.scala:210:26, :211:20]
wire a_mask_sub_0_2 = a_mask_sub_sub_0_2 & a_mask_sub_nbit; // @[Misc.scala:211:20, :214:27]
wire _a_mask_sub_acc_T = a_mask_sub_size & a_mask_sub_0_2; // @[Misc.scala:209:26, :214:27, :215:38]
wire a_mask_sub_0_1 = a_mask_sub_sub_0_1 | _a_mask_sub_acc_T; // @[Misc.scala:215:{29,38}]
wire a_mask_sub_1_2 = a_mask_sub_sub_0_2 & a_mask_sub_bit; // @[Misc.scala:210:26, :214:27]
wire _a_mask_sub_acc_T_1 = a_mask_sub_size & a_mask_sub_1_2; // @[Misc.scala:209:26, :214:27, :215:38]
wire a_mask_sub_1_1 = a_mask_sub_sub_0_1 | _a_mask_sub_acc_T_1; // @[Misc.scala:215:{29,38}]
wire a_mask_sub_2_2 = a_mask_sub_sub_1_2 & a_mask_sub_nbit; // @[Misc.scala:211:20, :214:27]
wire _a_mask_sub_acc_T_2 = a_mask_sub_size & a_mask_sub_2_2; // @[Misc.scala:209:26, :214:27, :215:38]
wire a_mask_sub_2_1 = a_mask_sub_sub_1_1 | _a_mask_sub_acc_T_2; // @[Misc.scala:215:{29,38}]
wire a_mask_sub_3_2 = a_mask_sub_sub_1_2 & a_mask_sub_bit; // @[Misc.scala:210:26, :214:27]
wire _a_mask_sub_acc_T_3 = a_mask_sub_size & a_mask_sub_3_2; // @[Misc.scala:209:26, :214:27, :215:38]
wire a_mask_sub_3_1 = a_mask_sub_sub_1_1 | _a_mask_sub_acc_T_3; // @[Misc.scala:215:{29,38}]
wire a_mask_sub_4_2 = a_mask_sub_sub_2_2 & a_mask_sub_nbit; // @[Misc.scala:211:20, :214:27]
wire _a_mask_sub_acc_T_4 = a_mask_sub_size & a_mask_sub_4_2; // @[Misc.scala:209:26, :214:27, :215:38]
wire a_mask_sub_4_1 = a_mask_sub_sub_2_1 | _a_mask_sub_acc_T_4; // @[Misc.scala:215:{29,38}]
wire a_mask_sub_5_2 = a_mask_sub_sub_2_2 & a_mask_sub_bit; // @[Misc.scala:210:26, :214:27]
wire _a_mask_sub_acc_T_5 = a_mask_sub_size & a_mask_sub_5_2; // @[Misc.scala:209:26, :214:27, :215:38]
wire a_mask_sub_5_1 = a_mask_sub_sub_2_1 | _a_mask_sub_acc_T_5; // @[Misc.scala:215:{29,38}]
wire a_mask_sub_6_2 = a_mask_sub_sub_3_2 & a_mask_sub_nbit; // @[Misc.scala:211:20, :214:27]
wire _a_mask_sub_acc_T_6 = a_mask_sub_size & a_mask_sub_6_2; // @[Misc.scala:209:26, :214:27, :215:38]
wire a_mask_sub_6_1 = a_mask_sub_sub_3_1 | _a_mask_sub_acc_T_6; // @[Misc.scala:215:{29,38}]
wire a_mask_sub_7_2 = a_mask_sub_sub_3_2 & a_mask_sub_bit; // @[Misc.scala:210:26, :214:27]
wire _a_mask_sub_acc_T_7 = a_mask_sub_size & a_mask_sub_7_2; // @[Misc.scala:209:26, :214:27, :215:38]
wire a_mask_sub_7_1 = a_mask_sub_sub_3_1 | _a_mask_sub_acc_T_7; // @[Misc.scala:215:{29,38}]
wire a_mask_sub_8_2 = a_mask_sub_sub_4_2 & a_mask_sub_nbit; // @[Misc.scala:211:20, :214:27]
wire _a_mask_sub_acc_T_8 = a_mask_sub_size & a_mask_sub_8_2; // @[Misc.scala:209:26, :214:27, :215:38]
wire a_mask_sub_8_1 = a_mask_sub_sub_4_1 | _a_mask_sub_acc_T_8; // @[Misc.scala:215:{29,38}]
wire a_mask_sub_9_2 = a_mask_sub_sub_4_2 & a_mask_sub_bit; // @[Misc.scala:210:26, :214:27]
wire _a_mask_sub_acc_T_9 = a_mask_sub_size & a_mask_sub_9_2; // @[Misc.scala:209:26, :214:27, :215:38]
wire a_mask_sub_9_1 = a_mask_sub_sub_4_1 | _a_mask_sub_acc_T_9; // @[Misc.scala:215:{29,38}]
wire a_mask_sub_10_2 = a_mask_sub_sub_5_2 & a_mask_sub_nbit; // @[Misc.scala:211:20, :214:27]
wire _a_mask_sub_acc_T_10 = a_mask_sub_size & a_mask_sub_10_2; // @[Misc.scala:209:26, :214:27, :215:38]
wire a_mask_sub_10_1 = a_mask_sub_sub_5_1 | _a_mask_sub_acc_T_10; // @[Misc.scala:215:{29,38}]
wire a_mask_sub_11_2 = a_mask_sub_sub_5_2 & a_mask_sub_bit; // @[Misc.scala:210:26, :214:27]
wire _a_mask_sub_acc_T_11 = a_mask_sub_size & a_mask_sub_11_2; // @[Misc.scala:209:26, :214:27, :215:38]
wire a_mask_sub_11_1 = a_mask_sub_sub_5_1 | _a_mask_sub_acc_T_11; // @[Misc.scala:215:{29,38}]
wire a_mask_sub_12_2 = a_mask_sub_sub_6_2 & a_mask_sub_nbit; // @[Misc.scala:211:20, :214:27]
wire _a_mask_sub_acc_T_12 = a_mask_sub_size & a_mask_sub_12_2; // @[Misc.scala:209:26, :214:27, :215:38]
wire a_mask_sub_12_1 = a_mask_sub_sub_6_1 | _a_mask_sub_acc_T_12; // @[Misc.scala:215:{29,38}]
wire a_mask_sub_13_2 = a_mask_sub_sub_6_2 & a_mask_sub_bit; // @[Misc.scala:210:26, :214:27]
wire _a_mask_sub_acc_T_13 = a_mask_sub_size & a_mask_sub_13_2; // @[Misc.scala:209:26, :214:27, :215:38]
wire a_mask_sub_13_1 = a_mask_sub_sub_6_1 | _a_mask_sub_acc_T_13; // @[Misc.scala:215:{29,38}]
wire a_mask_sub_14_2 = a_mask_sub_sub_7_2 & a_mask_sub_nbit; // @[Misc.scala:211:20, :214:27]
wire _a_mask_sub_acc_T_14 = a_mask_sub_size & a_mask_sub_14_2; // @[Misc.scala:209:26, :214:27, :215:38]
wire a_mask_sub_14_1 = a_mask_sub_sub_7_1 | _a_mask_sub_acc_T_14; // @[Misc.scala:215:{29,38}]
wire a_mask_sub_15_2 = a_mask_sub_sub_7_2 & a_mask_sub_bit; // @[Misc.scala:210:26, :214:27]
wire _a_mask_sub_acc_T_15 = a_mask_sub_size & a_mask_sub_15_2; // @[Misc.scala:209:26, :214:27, :215:38]
wire a_mask_sub_15_1 = a_mask_sub_sub_7_1 | _a_mask_sub_acc_T_15; // @[Misc.scala:215:{29,38}]
wire a_mask_size = a_mask_sizeOH[0]; // @[Misc.scala:202:81, :209:26]
wire a_mask_bit = _tlb_io_resp_paddr[0]; // @[Misc.scala:210:26]
wire a_mask_bit_1 = _tlb_io_resp_paddr[0]; // @[Misc.scala:210:26]
wire a_mask_nbit = ~a_mask_bit; // @[Misc.scala:210:26, :211:20]
wire a_mask_eq = a_mask_sub_0_2 & a_mask_nbit; // @[Misc.scala:211:20, :214:27]
wire _a_mask_acc_T = a_mask_size & a_mask_eq; // @[Misc.scala:209:26, :214:27, :215:38]
wire a_mask_acc = a_mask_sub_0_1 | _a_mask_acc_T; // @[Misc.scala:215:{29,38}]
wire a_mask_eq_1 = a_mask_sub_0_2 & a_mask_bit; // @[Misc.scala:210:26, :214:27]
wire _a_mask_acc_T_1 = a_mask_size & a_mask_eq_1; // @[Misc.scala:209:26, :214:27, :215:38]
wire a_mask_acc_1 = a_mask_sub_0_1 | _a_mask_acc_T_1; // @[Misc.scala:215:{29,38}]
wire a_mask_eq_2 = a_mask_sub_1_2 & a_mask_nbit; // @[Misc.scala:211:20, :214:27]
wire _a_mask_acc_T_2 = a_mask_size & a_mask_eq_2; // @[Misc.scala:209:26, :214:27, :215:38]
wire a_mask_acc_2 = a_mask_sub_1_1 | _a_mask_acc_T_2; // @[Misc.scala:215:{29,38}]
wire a_mask_eq_3 = a_mask_sub_1_2 & a_mask_bit; // @[Misc.scala:210:26, :214:27]
wire _a_mask_acc_T_3 = a_mask_size & a_mask_eq_3; // @[Misc.scala:209:26, :214:27, :215:38]
wire a_mask_acc_3 = a_mask_sub_1_1 | _a_mask_acc_T_3; // @[Misc.scala:215:{29,38}]
wire a_mask_eq_4 = a_mask_sub_2_2 & a_mask_nbit; // @[Misc.scala:211:20, :214:27]
wire _a_mask_acc_T_4 = a_mask_size & a_mask_eq_4; // @[Misc.scala:209:26, :214:27, :215:38]
wire a_mask_acc_4 = a_mask_sub_2_1 | _a_mask_acc_T_4; // @[Misc.scala:215:{29,38}]
wire a_mask_eq_5 = a_mask_sub_2_2 & a_mask_bit; // @[Misc.scala:210:26, :214:27]
wire _a_mask_acc_T_5 = a_mask_size & a_mask_eq_5; // @[Misc.scala:209:26, :214:27, :215:38]
wire a_mask_acc_5 = a_mask_sub_2_1 | _a_mask_acc_T_5; // @[Misc.scala:215:{29,38}]
wire a_mask_eq_6 = a_mask_sub_3_2 & a_mask_nbit; // @[Misc.scala:211:20, :214:27]
wire _a_mask_acc_T_6 = a_mask_size & a_mask_eq_6; // @[Misc.scala:209:26, :214:27, :215:38]
wire a_mask_acc_6 = a_mask_sub_3_1 | _a_mask_acc_T_6; // @[Misc.scala:215:{29,38}]
wire a_mask_eq_7 = a_mask_sub_3_2 & a_mask_bit; // @[Misc.scala:210:26, :214:27]
wire _a_mask_acc_T_7 = a_mask_size & a_mask_eq_7; // @[Misc.scala:209:26, :214:27, :215:38]
wire a_mask_acc_7 = a_mask_sub_3_1 | _a_mask_acc_T_7; // @[Misc.scala:215:{29,38}]
wire a_mask_eq_8 = a_mask_sub_4_2 & a_mask_nbit; // @[Misc.scala:211:20, :214:27]
wire _a_mask_acc_T_8 = a_mask_size & a_mask_eq_8; // @[Misc.scala:209:26, :214:27, :215:38]
wire a_mask_acc_8 = a_mask_sub_4_1 | _a_mask_acc_T_8; // @[Misc.scala:215:{29,38}]
wire a_mask_eq_9 = a_mask_sub_4_2 & a_mask_bit; // @[Misc.scala:210:26, :214:27]
wire _a_mask_acc_T_9 = a_mask_size & a_mask_eq_9; // @[Misc.scala:209:26, :214:27, :215:38]
wire a_mask_acc_9 = a_mask_sub_4_1 | _a_mask_acc_T_9; // @[Misc.scala:215:{29,38}]
wire a_mask_eq_10 = a_mask_sub_5_2 & a_mask_nbit; // @[Misc.scala:211:20, :214:27]
wire _a_mask_acc_T_10 = a_mask_size & a_mask_eq_10; // @[Misc.scala:209:26, :214:27, :215:38]
wire a_mask_acc_10 = a_mask_sub_5_1 | _a_mask_acc_T_10; // @[Misc.scala:215:{29,38}]
wire a_mask_eq_11 = a_mask_sub_5_2 & a_mask_bit; // @[Misc.scala:210:26, :214:27]
wire _a_mask_acc_T_11 = a_mask_size & a_mask_eq_11; // @[Misc.scala:209:26, :214:27, :215:38]
wire a_mask_acc_11 = a_mask_sub_5_1 | _a_mask_acc_T_11; // @[Misc.scala:215:{29,38}]
wire a_mask_eq_12 = a_mask_sub_6_2 & a_mask_nbit; // @[Misc.scala:211:20, :214:27]
wire _a_mask_acc_T_12 = a_mask_size & a_mask_eq_12; // @[Misc.scala:209:26, :214:27, :215:38]
wire a_mask_acc_12 = a_mask_sub_6_1 | _a_mask_acc_T_12; // @[Misc.scala:215:{29,38}]
wire a_mask_eq_13 = a_mask_sub_6_2 & a_mask_bit; // @[Misc.scala:210:26, :214:27]
wire _a_mask_acc_T_13 = a_mask_size & a_mask_eq_13; // @[Misc.scala:209:26, :214:27, :215:38]
wire a_mask_acc_13 = a_mask_sub_6_1 | _a_mask_acc_T_13; // @[Misc.scala:215:{29,38}]
wire a_mask_eq_14 = a_mask_sub_7_2 & a_mask_nbit; // @[Misc.scala:211:20, :214:27]
wire _a_mask_acc_T_14 = a_mask_size & a_mask_eq_14; // @[Misc.scala:209:26, :214:27, :215:38]
wire a_mask_acc_14 = a_mask_sub_7_1 | _a_mask_acc_T_14; // @[Misc.scala:215:{29,38}]
wire a_mask_eq_15 = a_mask_sub_7_2 & a_mask_bit; // @[Misc.scala:210:26, :214:27]
wire _a_mask_acc_T_15 = a_mask_size & a_mask_eq_15; // @[Misc.scala:209:26, :214:27, :215:38]
wire a_mask_acc_15 = a_mask_sub_7_1 | _a_mask_acc_T_15; // @[Misc.scala:215:{29,38}]
wire a_mask_eq_16 = a_mask_sub_8_2 & a_mask_nbit; // @[Misc.scala:211:20, :214:27]
wire _a_mask_acc_T_16 = a_mask_size & a_mask_eq_16; // @[Misc.scala:209:26, :214:27, :215:38]
wire a_mask_acc_16 = a_mask_sub_8_1 | _a_mask_acc_T_16; // @[Misc.scala:215:{29,38}]
wire a_mask_eq_17 = a_mask_sub_8_2 & a_mask_bit; // @[Misc.scala:210:26, :214:27]
wire _a_mask_acc_T_17 = a_mask_size & a_mask_eq_17; // @[Misc.scala:209:26, :214:27, :215:38]
wire a_mask_acc_17 = a_mask_sub_8_1 | _a_mask_acc_T_17; // @[Misc.scala:215:{29,38}]
wire a_mask_eq_18 = a_mask_sub_9_2 & a_mask_nbit; // @[Misc.scala:211:20, :214:27]
wire _a_mask_acc_T_18 = a_mask_size & a_mask_eq_18; // @[Misc.scala:209:26, :214:27, :215:38]
wire a_mask_acc_18 = a_mask_sub_9_1 | _a_mask_acc_T_18; // @[Misc.scala:215:{29,38}]
wire a_mask_eq_19 = a_mask_sub_9_2 & a_mask_bit; // @[Misc.scala:210:26, :214:27]
wire _a_mask_acc_T_19 = a_mask_size & a_mask_eq_19; // @[Misc.scala:209:26, :214:27, :215:38]
wire a_mask_acc_19 = a_mask_sub_9_1 | _a_mask_acc_T_19; // @[Misc.scala:215:{29,38}]
wire a_mask_eq_20 = a_mask_sub_10_2 & a_mask_nbit; // @[Misc.scala:211:20, :214:27]
wire _a_mask_acc_T_20 = a_mask_size & a_mask_eq_20; // @[Misc.scala:209:26, :214:27, :215:38]
wire a_mask_acc_20 = a_mask_sub_10_1 | _a_mask_acc_T_20; // @[Misc.scala:215:{29,38}]
wire a_mask_eq_21 = a_mask_sub_10_2 & a_mask_bit; // @[Misc.scala:210:26, :214:27]
wire _a_mask_acc_T_21 = a_mask_size & a_mask_eq_21; // @[Misc.scala:209:26, :214:27, :215:38]
wire a_mask_acc_21 = a_mask_sub_10_1 | _a_mask_acc_T_21; // @[Misc.scala:215:{29,38}]
wire a_mask_eq_22 = a_mask_sub_11_2 & a_mask_nbit; // @[Misc.scala:211:20, :214:27]
wire _a_mask_acc_T_22 = a_mask_size & a_mask_eq_22; // @[Misc.scala:209:26, :214:27, :215:38]
wire a_mask_acc_22 = a_mask_sub_11_1 | _a_mask_acc_T_22; // @[Misc.scala:215:{29,38}]
wire a_mask_eq_23 = a_mask_sub_11_2 & a_mask_bit; // @[Misc.scala:210:26, :214:27]
wire _a_mask_acc_T_23 = a_mask_size & a_mask_eq_23; // @[Misc.scala:209:26, :214:27, :215:38]
wire a_mask_acc_23 = a_mask_sub_11_1 | _a_mask_acc_T_23; // @[Misc.scala:215:{29,38}]
wire a_mask_eq_24 = a_mask_sub_12_2 & a_mask_nbit; // @[Misc.scala:211:20, :214:27]
wire _a_mask_acc_T_24 = a_mask_size & a_mask_eq_24; // @[Misc.scala:209:26, :214:27, :215:38]
wire a_mask_acc_24 = a_mask_sub_12_1 | _a_mask_acc_T_24; // @[Misc.scala:215:{29,38}]
wire a_mask_eq_25 = a_mask_sub_12_2 & a_mask_bit; // @[Misc.scala:210:26, :214:27]
wire _a_mask_acc_T_25 = a_mask_size & a_mask_eq_25; // @[Misc.scala:209:26, :214:27, :215:38]
wire a_mask_acc_25 = a_mask_sub_12_1 | _a_mask_acc_T_25; // @[Misc.scala:215:{29,38}]
wire a_mask_eq_26 = a_mask_sub_13_2 & a_mask_nbit; // @[Misc.scala:211:20, :214:27]
wire _a_mask_acc_T_26 = a_mask_size & a_mask_eq_26; // @[Misc.scala:209:26, :214:27, :215:38]
wire a_mask_acc_26 = a_mask_sub_13_1 | _a_mask_acc_T_26; // @[Misc.scala:215:{29,38}]
wire a_mask_eq_27 = a_mask_sub_13_2 & a_mask_bit; // @[Misc.scala:210:26, :214:27]
wire _a_mask_acc_T_27 = a_mask_size & a_mask_eq_27; // @[Misc.scala:209:26, :214:27, :215:38]
wire a_mask_acc_27 = a_mask_sub_13_1 | _a_mask_acc_T_27; // @[Misc.scala:215:{29,38}]
wire a_mask_eq_28 = a_mask_sub_14_2 & a_mask_nbit; // @[Misc.scala:211:20, :214:27]
wire _a_mask_acc_T_28 = a_mask_size & a_mask_eq_28; // @[Misc.scala:209:26, :214:27, :215:38]
wire a_mask_acc_28 = a_mask_sub_14_1 | _a_mask_acc_T_28; // @[Misc.scala:215:{29,38}]
wire a_mask_eq_29 = a_mask_sub_14_2 & a_mask_bit; // @[Misc.scala:210:26, :214:27]
wire _a_mask_acc_T_29 = a_mask_size & a_mask_eq_29; // @[Misc.scala:209:26, :214:27, :215:38]
wire a_mask_acc_29 = a_mask_sub_14_1 | _a_mask_acc_T_29; // @[Misc.scala:215:{29,38}]
wire a_mask_eq_30 = a_mask_sub_15_2 & a_mask_nbit; // @[Misc.scala:211:20, :214:27]
wire _a_mask_acc_T_30 = a_mask_size & a_mask_eq_30; // @[Misc.scala:209:26, :214:27, :215:38]
wire a_mask_acc_30 = a_mask_sub_15_1 | _a_mask_acc_T_30; // @[Misc.scala:215:{29,38}]
wire a_mask_eq_31 = a_mask_sub_15_2 & a_mask_bit; // @[Misc.scala:210:26, :214:27]
wire _a_mask_acc_T_31 = a_mask_size & a_mask_eq_31; // @[Misc.scala:209:26, :214:27, :215:38]
wire a_mask_acc_31 = a_mask_sub_15_1 | _a_mask_acc_T_31; // @[Misc.scala:215:{29,38}]
wire [1:0] a_mask_lo_lo_lo_lo = {a_mask_acc_1, a_mask_acc}; // @[Misc.scala:215:29, :222:10]
wire [1:0] a_mask_lo_lo_lo_hi = {a_mask_acc_3, a_mask_acc_2}; // @[Misc.scala:215:29, :222:10]
wire [3:0] a_mask_lo_lo_lo = {a_mask_lo_lo_lo_hi, a_mask_lo_lo_lo_lo}; // @[Misc.scala:222:10]
wire [1:0] a_mask_lo_lo_hi_lo = {a_mask_acc_5, a_mask_acc_4}; // @[Misc.scala:215:29, :222:10]
wire [1:0] a_mask_lo_lo_hi_hi = {a_mask_acc_7, a_mask_acc_6}; // @[Misc.scala:215:29, :222:10]
wire [3:0] a_mask_lo_lo_hi = {a_mask_lo_lo_hi_hi, a_mask_lo_lo_hi_lo}; // @[Misc.scala:222:10]
wire [7:0] a_mask_lo_lo = {a_mask_lo_lo_hi, a_mask_lo_lo_lo}; // @[Misc.scala:222:10]
wire [1:0] a_mask_lo_hi_lo_lo = {a_mask_acc_9, a_mask_acc_8}; // @[Misc.scala:215:29, :222:10]
wire [1:0] a_mask_lo_hi_lo_hi = {a_mask_acc_11, a_mask_acc_10}; // @[Misc.scala:215:29, :222:10]
wire [3:0] a_mask_lo_hi_lo = {a_mask_lo_hi_lo_hi, a_mask_lo_hi_lo_lo}; // @[Misc.scala:222:10]
wire [1:0] a_mask_lo_hi_hi_lo = {a_mask_acc_13, a_mask_acc_12}; // @[Misc.scala:215:29, :222:10]
wire [1:0] a_mask_lo_hi_hi_hi = {a_mask_acc_15, a_mask_acc_14}; // @[Misc.scala:215:29, :222:10]
wire [3:0] a_mask_lo_hi_hi = {a_mask_lo_hi_hi_hi, a_mask_lo_hi_hi_lo}; // @[Misc.scala:222:10]
wire [7:0] a_mask_lo_hi = {a_mask_lo_hi_hi, a_mask_lo_hi_lo}; // @[Misc.scala:222:10]
wire [15:0] a_mask_lo = {a_mask_lo_hi, a_mask_lo_lo}; // @[Misc.scala:222:10]
wire [1:0] a_mask_hi_lo_lo_lo = {a_mask_acc_17, a_mask_acc_16}; // @[Misc.scala:215:29, :222:10]
wire [1:0] a_mask_hi_lo_lo_hi = {a_mask_acc_19, a_mask_acc_18}; // @[Misc.scala:215:29, :222:10]
wire [3:0] a_mask_hi_lo_lo = {a_mask_hi_lo_lo_hi, a_mask_hi_lo_lo_lo}; // @[Misc.scala:222:10]
wire [1:0] a_mask_hi_lo_hi_lo = {a_mask_acc_21, a_mask_acc_20}; // @[Misc.scala:215:29, :222:10]
wire [1:0] a_mask_hi_lo_hi_hi = {a_mask_acc_23, a_mask_acc_22}; // @[Misc.scala:215:29, :222:10]
wire [3:0] a_mask_hi_lo_hi = {a_mask_hi_lo_hi_hi, a_mask_hi_lo_hi_lo}; // @[Misc.scala:222:10]
wire [7:0] a_mask_hi_lo = {a_mask_hi_lo_hi, a_mask_hi_lo_lo}; // @[Misc.scala:222:10]
wire [1:0] a_mask_hi_hi_lo_lo = {a_mask_acc_25, a_mask_acc_24}; // @[Misc.scala:215:29, :222:10]
wire [1:0] a_mask_hi_hi_lo_hi = {a_mask_acc_27, a_mask_acc_26}; // @[Misc.scala:215:29, :222:10]
wire [3:0] a_mask_hi_hi_lo = {a_mask_hi_hi_lo_hi, a_mask_hi_hi_lo_lo}; // @[Misc.scala:222:10]
wire [1:0] a_mask_hi_hi_hi_lo = {a_mask_acc_29, a_mask_acc_28}; // @[Misc.scala:215:29, :222:10]
wire [1:0] a_mask_hi_hi_hi_hi = {a_mask_acc_31, a_mask_acc_30}; // @[Misc.scala:215:29, :222:10]
wire [3:0] a_mask_hi_hi_hi = {a_mask_hi_hi_hi_hi, a_mask_hi_hi_hi_lo}; // @[Misc.scala:222:10]
wire [7:0] a_mask_hi_hi = {a_mask_hi_hi_hi, a_mask_hi_hi_lo}; // @[Misc.scala:222:10]
wire [15:0] a_mask_hi = {a_mask_hi_hi, a_mask_hi_lo}; // @[Misc.scala:222:10]
assign _a_mask_T = {a_mask_hi, a_mask_lo}; // @[Misc.scala:222:10]
assign bundle_mask = _a_mask_T; // @[Misc.scala:222:10]
wire [510:0] _T_31 = {255'h0, request_input_bits_data} << {503'h0, request_input_bits_addr[4:0], 3'h0}; // @[L2MemHelperLatencyInjection.scala:44:27, :172:{58,86}]
wire [32:0] _legal_T_68 = {1'h0, _legal_T_67}; // @[Parameters.scala:137:{31,41}]
wire [32:0] _legal_T_69 = _legal_T_68 & 33'h9A113000; // @[Parameters.scala:137:{41,46}]
wire [32:0] _legal_T_70 = _legal_T_69; // @[Parameters.scala:137:46]
wire _legal_T_71 = _legal_T_70 == 33'h0; // @[Parameters.scala:137:{46,59}]
wire _legal_T_72 = _legal_T_71; // @[Parameters.scala:684:54]
wire _legal_T_132 = _legal_T_72; // @[Parameters.scala:684:54, :686:26]
wire _legal_T_75 = _legal_T_74; // @[Parameters.scala:92:{33,38}]
wire _legal_T_76 = _legal_T_75; // @[Parameters.scala:684:29]
wire [31:0] _legal_T_77; // @[Parameters.scala:137:31]
wire [32:0] _legal_T_78 = {1'h0, _legal_T_77}; // @[Parameters.scala:137:{31,41}]
wire [32:0] _legal_T_79 = _legal_T_78 & 33'h9A112000; // @[Parameters.scala:137:{41,46}]
wire [32:0] _legal_T_80 = _legal_T_79; // @[Parameters.scala:137:46]
wire _legal_T_81 = _legal_T_80 == 33'h0; // @[Parameters.scala:137:{46,59}]
wire [31:0] _legal_T_82 = {_tlb_io_resp_paddr[31:21], _tlb_io_resp_paddr[20:0] ^ 21'h100000}; // @[Parameters.scala:137:31]
wire [32:0] _legal_T_83 = {1'h0, _legal_T_82}; // @[Parameters.scala:137:{31,41}]
wire [32:0] _legal_T_84 = _legal_T_83 & 33'h9A103000; // @[Parameters.scala:137:{41,46}]
wire [32:0] _legal_T_85 = _legal_T_84; // @[Parameters.scala:137:46]
wire _legal_T_86 = _legal_T_85 == 33'h0; // @[Parameters.scala:137:{46,59}]
wire [32:0] _legal_T_88 = {1'h0, _legal_T_87}; // @[Parameters.scala:137:{31,41}]
wire [32:0] _legal_T_89 = _legal_T_88 & 33'h9A110000; // @[Parameters.scala:137:{41,46}]
wire [32:0] _legal_T_90 = _legal_T_89; // @[Parameters.scala:137:46]
wire _legal_T_91 = _legal_T_90 == 33'h0; // @[Parameters.scala:137:{46,59}]
wire [31:0] _legal_T_92 = {_tlb_io_resp_paddr[31:26], _tlb_io_resp_paddr[25:0] ^ 26'h2010000}; // @[Parameters.scala:137:31]
wire [32:0] _legal_T_93 = {1'h0, _legal_T_92}; // @[Parameters.scala:137:{31,41}]
wire [32:0] _legal_T_94 = _legal_T_93 & 33'h9A113000; // @[Parameters.scala:137:{41,46}]
wire [32:0] _legal_T_95 = _legal_T_94; // @[Parameters.scala:137:46]
wire _legal_T_96 = _legal_T_95 == 33'h0; // @[Parameters.scala:137:{46,59}]
wire [32:0] _legal_T_98 = {1'h0, _legal_T_97}; // @[Parameters.scala:137:{31,41}]
wire [32:0] _legal_T_99 = _legal_T_98 & 33'h98000000; // @[Parameters.scala:137:{41,46}]
wire [32:0] _legal_T_100 = _legal_T_99; // @[Parameters.scala:137:46]
wire _legal_T_101 = _legal_T_100 == 33'h0; // @[Parameters.scala:137:{46,59}]
wire [32:0] _legal_T_103 = {1'h0, _legal_T_102}; // @[Parameters.scala:137:{31,41}]
wire [32:0] _legal_T_104 = _legal_T_103 & 33'h9A110000; // @[Parameters.scala:137:{41,46}]
wire [32:0] _legal_T_105 = _legal_T_104; // @[Parameters.scala:137:46]
wire _legal_T_106 = _legal_T_105 == 33'h0; // @[Parameters.scala:137:{46,59}]
wire [32:0] _legal_T_108 = {1'h0, _legal_T_107}; // @[Parameters.scala:137:{31,41}]
wire [32:0] _legal_T_109 = _legal_T_108 & 33'h9A113000; // @[Parameters.scala:137:{41,46}]
wire [32:0] _legal_T_110 = _legal_T_109; // @[Parameters.scala:137:46]
wire _legal_T_111 = _legal_T_110 == 33'h0; // @[Parameters.scala:137:{46,59}]
wire [32:0] _legal_T_113 = {1'h0, _legal_T_112}; // @[Parameters.scala:137:{31,41}]
wire [32:0] _legal_T_114 = _legal_T_113 & 33'h90000000; // @[Parameters.scala:137:{41,46}]
wire [32:0] _legal_T_115 = _legal_T_114; // @[Parameters.scala:137:46]
wire _legal_T_116 = _legal_T_115 == 33'h0; // @[Parameters.scala:137:{46,59}]
wire _legal_T_117 = _legal_T_81 | _legal_T_86; // @[Parameters.scala:685:42]
wire _legal_T_118 = _legal_T_117 | _legal_T_91; // @[Parameters.scala:685:42]
wire _legal_T_119 = _legal_T_118 | _legal_T_96; // @[Parameters.scala:685:42]
wire _legal_T_120 = _legal_T_119 | _legal_T_101; // @[Parameters.scala:685:42]
wire _legal_T_121 = _legal_T_120 | _legal_T_106; // @[Parameters.scala:685:42]
wire _legal_T_122 = _legal_T_121 | _legal_T_111; // @[Parameters.scala:685:42]
wire _legal_T_123 = _legal_T_122 | _legal_T_116; // @[Parameters.scala:685:42]
wire _legal_T_124 = _legal_T_76 & _legal_T_123; // @[Parameters.scala:684:{29,54}, :685:42]
wire [32:0] _legal_T_127 = {1'h0, _legal_T_126}; // @[Parameters.scala:137:{31,41}]
wire [32:0] _legal_T_128 = _legal_T_127 & 33'h9A110000; // @[Parameters.scala:137:{41,46}]
wire [32:0] _legal_T_129 = _legal_T_128; // @[Parameters.scala:137:46]
wire _legal_T_130 = _legal_T_129 == 33'h0; // @[Parameters.scala:137:{46,59}]
wire _legal_T_133 = _legal_T_132 | _legal_T_124; // @[Parameters.scala:684:54, :686:26]
wire legal_1 = _legal_T_133; // @[Parameters.scala:686:26]
wire [31:0] _a_mask_T_1; // @[Misc.scala:222:10]
wire [4:0] bundle_1_source; // @[Edges.scala:480:17]
wire [31:0] bundle_1_address; // @[Edges.scala:480:17]
wire [31:0] bundle_1_mask; // @[Edges.scala:480:17]
wire [255:0] bundle_1_data; // @[Edges.scala:480:17]
wire [4:0] _a_mask_sizeOH_shiftAmount_T_1 = _a_mask_sizeOH_T_3; // @[OneHot.scala:64:31]
wire [2:0] a_mask_sizeOH_shiftAmount_1 = _a_mask_sizeOH_shiftAmount_T_1[2:0]; // @[OneHot.scala:64:{31,49}]
wire [7:0] _a_mask_sizeOH_T_4 = 8'h1 << a_mask_sizeOH_shiftAmount_1; // @[OneHot.scala:64:49, :65:12]
wire [4:0] _a_mask_sizeOH_T_5 = _a_mask_sizeOH_T_4[4:0]; // @[OneHot.scala:65:{12,27}]
wire [4:0] a_mask_sizeOH_1 = {_a_mask_sizeOH_T_5[4:1], 1'h1}; // @[OneHot.scala:65:27]
wire a_mask_sub_sub_sub_sub_size_1 = a_mask_sizeOH_1[4]; // @[Misc.scala:202:81, :209:26]
wire a_mask_sub_sub_sub_sub_1_2_1 = a_mask_sub_sub_sub_sub_bit_1; // @[Misc.scala:210:26, :214:27]
wire a_mask_sub_sub_sub_sub_nbit_1 = ~a_mask_sub_sub_sub_sub_bit_1; // @[Misc.scala:210:26, :211:20]
wire a_mask_sub_sub_sub_sub_0_2_1 = a_mask_sub_sub_sub_sub_nbit_1; // @[Misc.scala:211:20, :214:27]
wire _a_mask_sub_sub_sub_sub_acc_T_2 = a_mask_sub_sub_sub_sub_size_1 & a_mask_sub_sub_sub_sub_0_2_1; // @[Misc.scala:209:26, :214:27, :215:38]
wire a_mask_sub_sub_sub_sub_0_1_1 = a_mask_sub_sub_sub_sub_sub_0_1_1 | _a_mask_sub_sub_sub_sub_acc_T_2; // @[Misc.scala:206:21, :215:{29,38}]
wire _a_mask_sub_sub_sub_sub_acc_T_3 = a_mask_sub_sub_sub_sub_size_1 & a_mask_sub_sub_sub_sub_1_2_1; // @[Misc.scala:209:26, :214:27, :215:38]
wire a_mask_sub_sub_sub_sub_1_1_1 = a_mask_sub_sub_sub_sub_sub_0_1_1 | _a_mask_sub_sub_sub_sub_acc_T_3; // @[Misc.scala:206:21, :215:{29,38}]
wire a_mask_sub_sub_sub_size_1 = a_mask_sizeOH_1[3]; // @[Misc.scala:202:81, :209:26]
wire a_mask_sub_sub_sub_nbit_1 = ~a_mask_sub_sub_sub_bit_1; // @[Misc.scala:210:26, :211:20]
wire a_mask_sub_sub_sub_0_2_1 = a_mask_sub_sub_sub_sub_0_2_1 & a_mask_sub_sub_sub_nbit_1; // @[Misc.scala:211:20, :214:27]
wire _a_mask_sub_sub_sub_acc_T_4 = a_mask_sub_sub_sub_size_1 & a_mask_sub_sub_sub_0_2_1; // @[Misc.scala:209:26, :214:27, :215:38]
wire a_mask_sub_sub_sub_0_1_1 = a_mask_sub_sub_sub_sub_0_1_1 | _a_mask_sub_sub_sub_acc_T_4; // @[Misc.scala:215:{29,38}]
wire a_mask_sub_sub_sub_1_2_1 = a_mask_sub_sub_sub_sub_0_2_1 & a_mask_sub_sub_sub_bit_1; // @[Misc.scala:210:26, :214:27]
wire _a_mask_sub_sub_sub_acc_T_5 = a_mask_sub_sub_sub_size_1 & a_mask_sub_sub_sub_1_2_1; // @[Misc.scala:209:26, :214:27, :215:38]
wire a_mask_sub_sub_sub_1_1_1 = a_mask_sub_sub_sub_sub_0_1_1 | _a_mask_sub_sub_sub_acc_T_5; // @[Misc.scala:215:{29,38}]
wire a_mask_sub_sub_sub_2_2_1 = a_mask_sub_sub_sub_sub_1_2_1 & a_mask_sub_sub_sub_nbit_1; // @[Misc.scala:211:20, :214:27]
wire _a_mask_sub_sub_sub_acc_T_6 = a_mask_sub_sub_sub_size_1 & a_mask_sub_sub_sub_2_2_1; // @[Misc.scala:209:26, :214:27, :215:38]
wire a_mask_sub_sub_sub_2_1_1 = a_mask_sub_sub_sub_sub_1_1_1 | _a_mask_sub_sub_sub_acc_T_6; // @[Misc.scala:215:{29,38}]
wire a_mask_sub_sub_sub_3_2_1 = a_mask_sub_sub_sub_sub_1_2_1 & a_mask_sub_sub_sub_bit_1; // @[Misc.scala:210:26, :214:27]
wire _a_mask_sub_sub_sub_acc_T_7 = a_mask_sub_sub_sub_size_1 & a_mask_sub_sub_sub_3_2_1; // @[Misc.scala:209:26, :214:27, :215:38]
wire a_mask_sub_sub_sub_3_1_1 = a_mask_sub_sub_sub_sub_1_1_1 | _a_mask_sub_sub_sub_acc_T_7; // @[Misc.scala:215:{29,38}]
wire a_mask_sub_sub_size_1 = a_mask_sizeOH_1[2]; // @[Misc.scala:202:81, :209:26]
wire a_mask_sub_sub_nbit_1 = ~a_mask_sub_sub_bit_1; // @[Misc.scala:210:26, :211:20]
wire a_mask_sub_sub_0_2_1 = a_mask_sub_sub_sub_0_2_1 & a_mask_sub_sub_nbit_1; // @[Misc.scala:211:20, :214:27]
wire _a_mask_sub_sub_acc_T_8 = a_mask_sub_sub_size_1 & a_mask_sub_sub_0_2_1; // @[Misc.scala:209:26, :214:27, :215:38]
wire a_mask_sub_sub_0_1_1 = a_mask_sub_sub_sub_0_1_1 | _a_mask_sub_sub_acc_T_8; // @[Misc.scala:215:{29,38}]
wire a_mask_sub_sub_1_2_1 = a_mask_sub_sub_sub_0_2_1 & a_mask_sub_sub_bit_1; // @[Misc.scala:210:26, :214:27]
wire _a_mask_sub_sub_acc_T_9 = a_mask_sub_sub_size_1 & a_mask_sub_sub_1_2_1; // @[Misc.scala:209:26, :214:27, :215:38]
wire a_mask_sub_sub_1_1_1 = a_mask_sub_sub_sub_0_1_1 | _a_mask_sub_sub_acc_T_9; // @[Misc.scala:215:{29,38}]
wire a_mask_sub_sub_2_2_1 = a_mask_sub_sub_sub_1_2_1 & a_mask_sub_sub_nbit_1; // @[Misc.scala:211:20, :214:27]
wire _a_mask_sub_sub_acc_T_10 = a_mask_sub_sub_size_1 & a_mask_sub_sub_2_2_1; // @[Misc.scala:209:26, :214:27, :215:38]
wire a_mask_sub_sub_2_1_1 = a_mask_sub_sub_sub_1_1_1 | _a_mask_sub_sub_acc_T_10; // @[Misc.scala:215:{29,38}]
wire a_mask_sub_sub_3_2_1 = a_mask_sub_sub_sub_1_2_1 & a_mask_sub_sub_bit_1; // @[Misc.scala:210:26, :214:27]
wire _a_mask_sub_sub_acc_T_11 = a_mask_sub_sub_size_1 & a_mask_sub_sub_3_2_1; // @[Misc.scala:209:26, :214:27, :215:38]
wire a_mask_sub_sub_3_1_1 = a_mask_sub_sub_sub_1_1_1 | _a_mask_sub_sub_acc_T_11; // @[Misc.scala:215:{29,38}]
wire a_mask_sub_sub_4_2_1 = a_mask_sub_sub_sub_2_2_1 & a_mask_sub_sub_nbit_1; // @[Misc.scala:211:20, :214:27]
wire _a_mask_sub_sub_acc_T_12 = a_mask_sub_sub_size_1 & a_mask_sub_sub_4_2_1; // @[Misc.scala:209:26, :214:27, :215:38]
wire a_mask_sub_sub_4_1_1 = a_mask_sub_sub_sub_2_1_1 | _a_mask_sub_sub_acc_T_12; // @[Misc.scala:215:{29,38}]
wire a_mask_sub_sub_5_2_1 = a_mask_sub_sub_sub_2_2_1 & a_mask_sub_sub_bit_1; // @[Misc.scala:210:26, :214:27]
wire _a_mask_sub_sub_acc_T_13 = a_mask_sub_sub_size_1 & a_mask_sub_sub_5_2_1; // @[Misc.scala:209:26, :214:27, :215:38]
wire a_mask_sub_sub_5_1_1 = a_mask_sub_sub_sub_2_1_1 | _a_mask_sub_sub_acc_T_13; // @[Misc.scala:215:{29,38}]
wire a_mask_sub_sub_6_2_1 = a_mask_sub_sub_sub_3_2_1 & a_mask_sub_sub_nbit_1; // @[Misc.scala:211:20, :214:27]
wire _a_mask_sub_sub_acc_T_14 = a_mask_sub_sub_size_1 & a_mask_sub_sub_6_2_1; // @[Misc.scala:209:26, :214:27, :215:38]
wire a_mask_sub_sub_6_1_1 = a_mask_sub_sub_sub_3_1_1 | _a_mask_sub_sub_acc_T_14; // @[Misc.scala:215:{29,38}]
wire a_mask_sub_sub_7_2_1 = a_mask_sub_sub_sub_3_2_1 & a_mask_sub_sub_bit_1; // @[Misc.scala:210:26, :214:27]
wire _a_mask_sub_sub_acc_T_15 = a_mask_sub_sub_size_1 & a_mask_sub_sub_7_2_1; // @[Misc.scala:209:26, :214:27, :215:38]
wire a_mask_sub_sub_7_1_1 = a_mask_sub_sub_sub_3_1_1 | _a_mask_sub_sub_acc_T_15; // @[Misc.scala:215:{29,38}]
wire a_mask_sub_size_1 = a_mask_sizeOH_1[1]; // @[Misc.scala:202:81, :209:26]
wire a_mask_sub_nbit_1 = ~a_mask_sub_bit_1; // @[Misc.scala:210:26, :211:20]
wire a_mask_sub_0_2_1 = a_mask_sub_sub_0_2_1 & a_mask_sub_nbit_1; // @[Misc.scala:211:20, :214:27]
wire _a_mask_sub_acc_T_16 = a_mask_sub_size_1 & a_mask_sub_0_2_1; // @[Misc.scala:209:26, :214:27, :215:38]
wire a_mask_sub_0_1_1 = a_mask_sub_sub_0_1_1 | _a_mask_sub_acc_T_16; // @[Misc.scala:215:{29,38}]
wire a_mask_sub_1_2_1 = a_mask_sub_sub_0_2_1 & a_mask_sub_bit_1; // @[Misc.scala:210:26, :214:27]
wire _a_mask_sub_acc_T_17 = a_mask_sub_size_1 & a_mask_sub_1_2_1; // @[Misc.scala:209:26, :214:27, :215:38]
wire a_mask_sub_1_1_1 = a_mask_sub_sub_0_1_1 | _a_mask_sub_acc_T_17; // @[Misc.scala:215:{29,38}]
wire a_mask_sub_2_2_1 = a_mask_sub_sub_1_2_1 & a_mask_sub_nbit_1; // @[Misc.scala:211:20, :214:27]
wire _a_mask_sub_acc_T_18 = a_mask_sub_size_1 & a_mask_sub_2_2_1; // @[Misc.scala:209:26, :214:27, :215:38]
wire a_mask_sub_2_1_1 = a_mask_sub_sub_1_1_1 | _a_mask_sub_acc_T_18; // @[Misc.scala:215:{29,38}]
wire a_mask_sub_3_2_1 = a_mask_sub_sub_1_2_1 & a_mask_sub_bit_1; // @[Misc.scala:210:26, :214:27]
wire _a_mask_sub_acc_T_19 = a_mask_sub_size_1 & a_mask_sub_3_2_1; // @[Misc.scala:209:26, :214:27, :215:38]
wire a_mask_sub_3_1_1 = a_mask_sub_sub_1_1_1 | _a_mask_sub_acc_T_19; // @[Misc.scala:215:{29,38}]
wire a_mask_sub_4_2_1 = a_mask_sub_sub_2_2_1 & a_mask_sub_nbit_1; // @[Misc.scala:211:20, :214:27]
wire _a_mask_sub_acc_T_20 = a_mask_sub_size_1 & a_mask_sub_4_2_1; // @[Misc.scala:209:26, :214:27, :215:38]
wire a_mask_sub_4_1_1 = a_mask_sub_sub_2_1_1 | _a_mask_sub_acc_T_20; // @[Misc.scala:215:{29,38}]
wire a_mask_sub_5_2_1 = a_mask_sub_sub_2_2_1 & a_mask_sub_bit_1; // @[Misc.scala:210:26, :214:27]
wire _a_mask_sub_acc_T_21 = a_mask_sub_size_1 & a_mask_sub_5_2_1; // @[Misc.scala:209:26, :214:27, :215:38]
wire a_mask_sub_5_1_1 = a_mask_sub_sub_2_1_1 | _a_mask_sub_acc_T_21; // @[Misc.scala:215:{29,38}]
wire a_mask_sub_6_2_1 = a_mask_sub_sub_3_2_1 & a_mask_sub_nbit_1; // @[Misc.scala:211:20, :214:27]
wire _a_mask_sub_acc_T_22 = a_mask_sub_size_1 & a_mask_sub_6_2_1; // @[Misc.scala:209:26, :214:27, :215:38]
wire a_mask_sub_6_1_1 = a_mask_sub_sub_3_1_1 | _a_mask_sub_acc_T_22; // @[Misc.scala:215:{29,38}]
wire a_mask_sub_7_2_1 = a_mask_sub_sub_3_2_1 & a_mask_sub_bit_1; // @[Misc.scala:210:26, :214:27]
wire _a_mask_sub_acc_T_23 = a_mask_sub_size_1 & a_mask_sub_7_2_1; // @[Misc.scala:209:26, :214:27, :215:38]
wire a_mask_sub_7_1_1 = a_mask_sub_sub_3_1_1 | _a_mask_sub_acc_T_23; // @[Misc.scala:215:{29,38}]
wire a_mask_sub_8_2_1 = a_mask_sub_sub_4_2_1 & a_mask_sub_nbit_1; // @[Misc.scala:211:20, :214:27]
wire _a_mask_sub_acc_T_24 = a_mask_sub_size_1 & a_mask_sub_8_2_1; // @[Misc.scala:209:26, :214:27, :215:38]
wire a_mask_sub_8_1_1 = a_mask_sub_sub_4_1_1 | _a_mask_sub_acc_T_24; // @[Misc.scala:215:{29,38}]
wire a_mask_sub_9_2_1 = a_mask_sub_sub_4_2_1 & a_mask_sub_bit_1; // @[Misc.scala:210:26, :214:27]
wire _a_mask_sub_acc_T_25 = a_mask_sub_size_1 & a_mask_sub_9_2_1; // @[Misc.scala:209:26, :214:27, :215:38]
wire a_mask_sub_9_1_1 = a_mask_sub_sub_4_1_1 | _a_mask_sub_acc_T_25; // @[Misc.scala:215:{29,38}]
wire a_mask_sub_10_2_1 = a_mask_sub_sub_5_2_1 & a_mask_sub_nbit_1; // @[Misc.scala:211:20, :214:27]
wire _a_mask_sub_acc_T_26 = a_mask_sub_size_1 & a_mask_sub_10_2_1; // @[Misc.scala:209:26, :214:27, :215:38]
wire a_mask_sub_10_1_1 = a_mask_sub_sub_5_1_1 | _a_mask_sub_acc_T_26; // @[Misc.scala:215:{29,38}]
wire a_mask_sub_11_2_1 = a_mask_sub_sub_5_2_1 & a_mask_sub_bit_1; // @[Misc.scala:210:26, :214:27]
wire _a_mask_sub_acc_T_27 = a_mask_sub_size_1 & a_mask_sub_11_2_1; // @[Misc.scala:209:26, :214:27, :215:38]
wire a_mask_sub_11_1_1 = a_mask_sub_sub_5_1_1 | _a_mask_sub_acc_T_27; // @[Misc.scala:215:{29,38}]
wire a_mask_sub_12_2_1 = a_mask_sub_sub_6_2_1 & a_mask_sub_nbit_1; // @[Misc.scala:211:20, :214:27]
wire _a_mask_sub_acc_T_28 = a_mask_sub_size_1 & a_mask_sub_12_2_1; // @[Misc.scala:209:26, :214:27, :215:38]
wire a_mask_sub_12_1_1 = a_mask_sub_sub_6_1_1 | _a_mask_sub_acc_T_28; // @[Misc.scala:215:{29,38}]
wire a_mask_sub_13_2_1 = a_mask_sub_sub_6_2_1 & a_mask_sub_bit_1; // @[Misc.scala:210:26, :214:27]
wire _a_mask_sub_acc_T_29 = a_mask_sub_size_1 & a_mask_sub_13_2_1; // @[Misc.scala:209:26, :214:27, :215:38]
wire a_mask_sub_13_1_1 = a_mask_sub_sub_6_1_1 | _a_mask_sub_acc_T_29; // @[Misc.scala:215:{29,38}]
wire a_mask_sub_14_2_1 = a_mask_sub_sub_7_2_1 & a_mask_sub_nbit_1; // @[Misc.scala:211:20, :214:27]
wire _a_mask_sub_acc_T_30 = a_mask_sub_size_1 & a_mask_sub_14_2_1; // @[Misc.scala:209:26, :214:27, :215:38]
wire a_mask_sub_14_1_1 = a_mask_sub_sub_7_1_1 | _a_mask_sub_acc_T_30; // @[Misc.scala:215:{29,38}]
wire a_mask_sub_15_2_1 = a_mask_sub_sub_7_2_1 & a_mask_sub_bit_1; // @[Misc.scala:210:26, :214:27]
wire _a_mask_sub_acc_T_31 = a_mask_sub_size_1 & a_mask_sub_15_2_1; // @[Misc.scala:209:26, :214:27, :215:38]
wire a_mask_sub_15_1_1 = a_mask_sub_sub_7_1_1 | _a_mask_sub_acc_T_31; // @[Misc.scala:215:{29,38}]
wire a_mask_size_1 = a_mask_sizeOH_1[0]; // @[Misc.scala:202:81, :209:26]
wire a_mask_nbit_1 = ~a_mask_bit_1; // @[Misc.scala:210:26, :211:20]
wire a_mask_eq_32 = a_mask_sub_0_2_1 & a_mask_nbit_1; // @[Misc.scala:211:20, :214:27]
wire _a_mask_acc_T_32 = a_mask_size_1 & a_mask_eq_32; // @[Misc.scala:209:26, :214:27, :215:38]
wire a_mask_acc_32 = a_mask_sub_0_1_1 | _a_mask_acc_T_32; // @[Misc.scala:215:{29,38}]
wire a_mask_eq_33 = a_mask_sub_0_2_1 & a_mask_bit_1; // @[Misc.scala:210:26, :214:27]
wire _a_mask_acc_T_33 = a_mask_size_1 & a_mask_eq_33; // @[Misc.scala:209:26, :214:27, :215:38]
wire a_mask_acc_33 = a_mask_sub_0_1_1 | _a_mask_acc_T_33; // @[Misc.scala:215:{29,38}]
wire a_mask_eq_34 = a_mask_sub_1_2_1 & a_mask_nbit_1; // @[Misc.scala:211:20, :214:27]
wire _a_mask_acc_T_34 = a_mask_size_1 & a_mask_eq_34; // @[Misc.scala:209:26, :214:27, :215:38]
wire a_mask_acc_34 = a_mask_sub_1_1_1 | _a_mask_acc_T_34; // @[Misc.scala:215:{29,38}]
wire a_mask_eq_35 = a_mask_sub_1_2_1 & a_mask_bit_1; // @[Misc.scala:210:26, :214:27]
wire _a_mask_acc_T_35 = a_mask_size_1 & a_mask_eq_35; // @[Misc.scala:209:26, :214:27, :215:38]
wire a_mask_acc_35 = a_mask_sub_1_1_1 | _a_mask_acc_T_35; // @[Misc.scala:215:{29,38}]
wire a_mask_eq_36 = a_mask_sub_2_2_1 & a_mask_nbit_1; // @[Misc.scala:211:20, :214:27]
wire _a_mask_acc_T_36 = a_mask_size_1 & a_mask_eq_36; // @[Misc.scala:209:26, :214:27, :215:38]
wire a_mask_acc_36 = a_mask_sub_2_1_1 | _a_mask_acc_T_36; // @[Misc.scala:215:{29,38}]
wire a_mask_eq_37 = a_mask_sub_2_2_1 & a_mask_bit_1; // @[Misc.scala:210:26, :214:27]
wire _a_mask_acc_T_37 = a_mask_size_1 & a_mask_eq_37; // @[Misc.scala:209:26, :214:27, :215:38]
wire a_mask_acc_37 = a_mask_sub_2_1_1 | _a_mask_acc_T_37; // @[Misc.scala:215:{29,38}]
wire a_mask_eq_38 = a_mask_sub_3_2_1 & a_mask_nbit_1; // @[Misc.scala:211:20, :214:27]
wire _a_mask_acc_T_38 = a_mask_size_1 & a_mask_eq_38; // @[Misc.scala:209:26, :214:27, :215:38]
wire a_mask_acc_38 = a_mask_sub_3_1_1 | _a_mask_acc_T_38; // @[Misc.scala:215:{29,38}]
wire a_mask_eq_39 = a_mask_sub_3_2_1 & a_mask_bit_1; // @[Misc.scala:210:26, :214:27]
wire _a_mask_acc_T_39 = a_mask_size_1 & a_mask_eq_39; // @[Misc.scala:209:26, :214:27, :215:38]
wire a_mask_acc_39 = a_mask_sub_3_1_1 | _a_mask_acc_T_39; // @[Misc.scala:215:{29,38}]
wire a_mask_eq_40 = a_mask_sub_4_2_1 & a_mask_nbit_1; // @[Misc.scala:211:20, :214:27]
wire _a_mask_acc_T_40 = a_mask_size_1 & a_mask_eq_40; // @[Misc.scala:209:26, :214:27, :215:38]
wire a_mask_acc_40 = a_mask_sub_4_1_1 | _a_mask_acc_T_40; // @[Misc.scala:215:{29,38}]
wire a_mask_eq_41 = a_mask_sub_4_2_1 & a_mask_bit_1; // @[Misc.scala:210:26, :214:27]
wire _a_mask_acc_T_41 = a_mask_size_1 & a_mask_eq_41; // @[Misc.scala:209:26, :214:27, :215:38]
wire a_mask_acc_41 = a_mask_sub_4_1_1 | _a_mask_acc_T_41; // @[Misc.scala:215:{29,38}]
wire a_mask_eq_42 = a_mask_sub_5_2_1 & a_mask_nbit_1; // @[Misc.scala:211:20, :214:27]
wire _a_mask_acc_T_42 = a_mask_size_1 & a_mask_eq_42; // @[Misc.scala:209:26, :214:27, :215:38]
wire a_mask_acc_42 = a_mask_sub_5_1_1 | _a_mask_acc_T_42; // @[Misc.scala:215:{29,38}]
wire a_mask_eq_43 = a_mask_sub_5_2_1 & a_mask_bit_1; // @[Misc.scala:210:26, :214:27]
wire _a_mask_acc_T_43 = a_mask_size_1 & a_mask_eq_43; // @[Misc.scala:209:26, :214:27, :215:38]
wire a_mask_acc_43 = a_mask_sub_5_1_1 | _a_mask_acc_T_43; // @[Misc.scala:215:{29,38}]
wire a_mask_eq_44 = a_mask_sub_6_2_1 & a_mask_nbit_1; // @[Misc.scala:211:20, :214:27]
wire _a_mask_acc_T_44 = a_mask_size_1 & a_mask_eq_44; // @[Misc.scala:209:26, :214:27, :215:38]
wire a_mask_acc_44 = a_mask_sub_6_1_1 | _a_mask_acc_T_44; // @[Misc.scala:215:{29,38}]
wire a_mask_eq_45 = a_mask_sub_6_2_1 & a_mask_bit_1; // @[Misc.scala:210:26, :214:27]
wire _a_mask_acc_T_45 = a_mask_size_1 & a_mask_eq_45; // @[Misc.scala:209:26, :214:27, :215:38]
wire a_mask_acc_45 = a_mask_sub_6_1_1 | _a_mask_acc_T_45; // @[Misc.scala:215:{29,38}]
wire a_mask_eq_46 = a_mask_sub_7_2_1 & a_mask_nbit_1; // @[Misc.scala:211:20, :214:27]
wire _a_mask_acc_T_46 = a_mask_size_1 & a_mask_eq_46; // @[Misc.scala:209:26, :214:27, :215:38]
wire a_mask_acc_46 = a_mask_sub_7_1_1 | _a_mask_acc_T_46; // @[Misc.scala:215:{29,38}]
wire a_mask_eq_47 = a_mask_sub_7_2_1 & a_mask_bit_1; // @[Misc.scala:210:26, :214:27]
wire _a_mask_acc_T_47 = a_mask_size_1 & a_mask_eq_47; // @[Misc.scala:209:26, :214:27, :215:38]
wire a_mask_acc_47 = a_mask_sub_7_1_1 | _a_mask_acc_T_47; // @[Misc.scala:215:{29,38}]
wire a_mask_eq_48 = a_mask_sub_8_2_1 & a_mask_nbit_1; // @[Misc.scala:211:20, :214:27]
wire _a_mask_acc_T_48 = a_mask_size_1 & a_mask_eq_48; // @[Misc.scala:209:26, :214:27, :215:38]
wire a_mask_acc_48 = a_mask_sub_8_1_1 | _a_mask_acc_T_48; // @[Misc.scala:215:{29,38}]
wire a_mask_eq_49 = a_mask_sub_8_2_1 & a_mask_bit_1; // @[Misc.scala:210:26, :214:27]
wire _a_mask_acc_T_49 = a_mask_size_1 & a_mask_eq_49; // @[Misc.scala:209:26, :214:27, :215:38]
wire a_mask_acc_49 = a_mask_sub_8_1_1 | _a_mask_acc_T_49; // @[Misc.scala:215:{29,38}]
wire a_mask_eq_50 = a_mask_sub_9_2_1 & a_mask_nbit_1; // @[Misc.scala:211:20, :214:27]
wire _a_mask_acc_T_50 = a_mask_size_1 & a_mask_eq_50; // @[Misc.scala:209:26, :214:27, :215:38]
wire a_mask_acc_50 = a_mask_sub_9_1_1 | _a_mask_acc_T_50; // @[Misc.scala:215:{29,38}]
wire a_mask_eq_51 = a_mask_sub_9_2_1 & a_mask_bit_1; // @[Misc.scala:210:26, :214:27]
wire _a_mask_acc_T_51 = a_mask_size_1 & a_mask_eq_51; // @[Misc.scala:209:26, :214:27, :215:38]
wire a_mask_acc_51 = a_mask_sub_9_1_1 | _a_mask_acc_T_51; // @[Misc.scala:215:{29,38}]
wire a_mask_eq_52 = a_mask_sub_10_2_1 & a_mask_nbit_1; // @[Misc.scala:211:20, :214:27]
wire _a_mask_acc_T_52 = a_mask_size_1 & a_mask_eq_52; // @[Misc.scala:209:26, :214:27, :215:38]
wire a_mask_acc_52 = a_mask_sub_10_1_1 | _a_mask_acc_T_52; // @[Misc.scala:215:{29,38}]
wire a_mask_eq_53 = a_mask_sub_10_2_1 & a_mask_bit_1; // @[Misc.scala:210:26, :214:27]
wire _a_mask_acc_T_53 = a_mask_size_1 & a_mask_eq_53; // @[Misc.scala:209:26, :214:27, :215:38]
wire a_mask_acc_53 = a_mask_sub_10_1_1 | _a_mask_acc_T_53; // @[Misc.scala:215:{29,38}]
wire a_mask_eq_54 = a_mask_sub_11_2_1 & a_mask_nbit_1; // @[Misc.scala:211:20, :214:27]
wire _a_mask_acc_T_54 = a_mask_size_1 & a_mask_eq_54; // @[Misc.scala:209:26, :214:27, :215:38]
wire a_mask_acc_54 = a_mask_sub_11_1_1 | _a_mask_acc_T_54; // @[Misc.scala:215:{29,38}]
wire a_mask_eq_55 = a_mask_sub_11_2_1 & a_mask_bit_1; // @[Misc.scala:210:26, :214:27]
wire _a_mask_acc_T_55 = a_mask_size_1 & a_mask_eq_55; // @[Misc.scala:209:26, :214:27, :215:38]
wire a_mask_acc_55 = a_mask_sub_11_1_1 | _a_mask_acc_T_55; // @[Misc.scala:215:{29,38}]
wire a_mask_eq_56 = a_mask_sub_12_2_1 & a_mask_nbit_1; // @[Misc.scala:211:20, :214:27]
wire _a_mask_acc_T_56 = a_mask_size_1 & a_mask_eq_56; // @[Misc.scala:209:26, :214:27, :215:38]
wire a_mask_acc_56 = a_mask_sub_12_1_1 | _a_mask_acc_T_56; // @[Misc.scala:215:{29,38}]
wire a_mask_eq_57 = a_mask_sub_12_2_1 & a_mask_bit_1; // @[Misc.scala:210:26, :214:27]
wire _a_mask_acc_T_57 = a_mask_size_1 & a_mask_eq_57; // @[Misc.scala:209:26, :214:27, :215:38]
wire a_mask_acc_57 = a_mask_sub_12_1_1 | _a_mask_acc_T_57; // @[Misc.scala:215:{29,38}]
wire a_mask_eq_58 = a_mask_sub_13_2_1 & a_mask_nbit_1; // @[Misc.scala:211:20, :214:27]
wire _a_mask_acc_T_58 = a_mask_size_1 & a_mask_eq_58; // @[Misc.scala:209:26, :214:27, :215:38]
wire a_mask_acc_58 = a_mask_sub_13_1_1 | _a_mask_acc_T_58; // @[Misc.scala:215:{29,38}]
wire a_mask_eq_59 = a_mask_sub_13_2_1 & a_mask_bit_1; // @[Misc.scala:210:26, :214:27]
wire _a_mask_acc_T_59 = a_mask_size_1 & a_mask_eq_59; // @[Misc.scala:209:26, :214:27, :215:38]
wire a_mask_acc_59 = a_mask_sub_13_1_1 | _a_mask_acc_T_59; // @[Misc.scala:215:{29,38}]
wire a_mask_eq_60 = a_mask_sub_14_2_1 & a_mask_nbit_1; // @[Misc.scala:211:20, :214:27]
wire _a_mask_acc_T_60 = a_mask_size_1 & a_mask_eq_60; // @[Misc.scala:209:26, :214:27, :215:38]
wire a_mask_acc_60 = a_mask_sub_14_1_1 | _a_mask_acc_T_60; // @[Misc.scala:215:{29,38}]
wire a_mask_eq_61 = a_mask_sub_14_2_1 & a_mask_bit_1; // @[Misc.scala:210:26, :214:27]
wire _a_mask_acc_T_61 = a_mask_size_1 & a_mask_eq_61; // @[Misc.scala:209:26, :214:27, :215:38]
wire a_mask_acc_61 = a_mask_sub_14_1_1 | _a_mask_acc_T_61; // @[Misc.scala:215:{29,38}]
wire a_mask_eq_62 = a_mask_sub_15_2_1 & a_mask_nbit_1; // @[Misc.scala:211:20, :214:27]
wire _a_mask_acc_T_62 = a_mask_size_1 & a_mask_eq_62; // @[Misc.scala:209:26, :214:27, :215:38]
wire a_mask_acc_62 = a_mask_sub_15_1_1 | _a_mask_acc_T_62; // @[Misc.scala:215:{29,38}]
wire a_mask_eq_63 = a_mask_sub_15_2_1 & a_mask_bit_1; // @[Misc.scala:210:26, :214:27]
wire _a_mask_acc_T_63 = a_mask_size_1 & a_mask_eq_63; // @[Misc.scala:209:26, :214:27, :215:38]
wire a_mask_acc_63 = a_mask_sub_15_1_1 | _a_mask_acc_T_63; // @[Misc.scala:215:{29,38}]
wire [1:0] a_mask_lo_lo_lo_lo_1 = {a_mask_acc_33, a_mask_acc_32}; // @[Misc.scala:215:29, :222:10]
wire [1:0] a_mask_lo_lo_lo_hi_1 = {a_mask_acc_35, a_mask_acc_34}; // @[Misc.scala:215:29, :222:10]
wire [3:0] a_mask_lo_lo_lo_1 = {a_mask_lo_lo_lo_hi_1, a_mask_lo_lo_lo_lo_1}; // @[Misc.scala:222:10]
wire [1:0] a_mask_lo_lo_hi_lo_1 = {a_mask_acc_37, a_mask_acc_36}; // @[Misc.scala:215:29, :222:10]
wire [1:0] a_mask_lo_lo_hi_hi_1 = {a_mask_acc_39, a_mask_acc_38}; // @[Misc.scala:215:29, :222:10]
wire [3:0] a_mask_lo_lo_hi_1 = {a_mask_lo_lo_hi_hi_1, a_mask_lo_lo_hi_lo_1}; // @[Misc.scala:222:10]
wire [7:0] a_mask_lo_lo_1 = {a_mask_lo_lo_hi_1, a_mask_lo_lo_lo_1}; // @[Misc.scala:222:10]
wire [1:0] a_mask_lo_hi_lo_lo_1 = {a_mask_acc_41, a_mask_acc_40}; // @[Misc.scala:215:29, :222:10]
wire [1:0] a_mask_lo_hi_lo_hi_1 = {a_mask_acc_43, a_mask_acc_42}; // @[Misc.scala:215:29, :222:10]
wire [3:0] a_mask_lo_hi_lo_1 = {a_mask_lo_hi_lo_hi_1, a_mask_lo_hi_lo_lo_1}; // @[Misc.scala:222:10]
wire [1:0] a_mask_lo_hi_hi_lo_1 = {a_mask_acc_45, a_mask_acc_44}; // @[Misc.scala:215:29, :222:10]
wire [1:0] a_mask_lo_hi_hi_hi_1 = {a_mask_acc_47, a_mask_acc_46}; // @[Misc.scala:215:29, :222:10]
wire [3:0] a_mask_lo_hi_hi_1 = {a_mask_lo_hi_hi_hi_1, a_mask_lo_hi_hi_lo_1}; // @[Misc.scala:222:10]
wire [7:0] a_mask_lo_hi_1 = {a_mask_lo_hi_hi_1, a_mask_lo_hi_lo_1}; // @[Misc.scala:222:10]
wire [15:0] a_mask_lo_1 = {a_mask_lo_hi_1, a_mask_lo_lo_1}; // @[Misc.scala:222:10]
wire [1:0] a_mask_hi_lo_lo_lo_1 = {a_mask_acc_49, a_mask_acc_48}; // @[Misc.scala:215:29, :222:10]
wire [1:0] a_mask_hi_lo_lo_hi_1 = {a_mask_acc_51, a_mask_acc_50}; // @[Misc.scala:215:29, :222:10]
wire [3:0] a_mask_hi_lo_lo_1 = {a_mask_hi_lo_lo_hi_1, a_mask_hi_lo_lo_lo_1}; // @[Misc.scala:222:10]
wire [1:0] a_mask_hi_lo_hi_lo_1 = {a_mask_acc_53, a_mask_acc_52}; // @[Misc.scala:215:29, :222:10]
wire [1:0] a_mask_hi_lo_hi_hi_1 = {a_mask_acc_55, a_mask_acc_54}; // @[Misc.scala:215:29, :222:10]
wire [3:0] a_mask_hi_lo_hi_1 = {a_mask_hi_lo_hi_hi_1, a_mask_hi_lo_hi_lo_1}; // @[Misc.scala:222:10]
wire [7:0] a_mask_hi_lo_1 = {a_mask_hi_lo_hi_1, a_mask_hi_lo_lo_1}; // @[Misc.scala:222:10]
wire [1:0] a_mask_hi_hi_lo_lo_1 = {a_mask_acc_57, a_mask_acc_56}; // @[Misc.scala:215:29, :222:10]
wire [1:0] a_mask_hi_hi_lo_hi_1 = {a_mask_acc_59, a_mask_acc_58}; // @[Misc.scala:215:29, :222:10]
wire [3:0] a_mask_hi_hi_lo_1 = {a_mask_hi_hi_lo_hi_1, a_mask_hi_hi_lo_lo_1}; // @[Misc.scala:222:10]
wire [1:0] a_mask_hi_hi_hi_lo_1 = {a_mask_acc_61, a_mask_acc_60}; // @[Misc.scala:215:29, :222:10]
wire [1:0] a_mask_hi_hi_hi_hi_1 = {a_mask_acc_63, a_mask_acc_62}; // @[Misc.scala:215:29, :222:10]
wire [3:0] a_mask_hi_hi_hi_1 = {a_mask_hi_hi_hi_hi_1, a_mask_hi_hi_hi_lo_1}; // @[Misc.scala:222:10]
wire [7:0] a_mask_hi_hi_1 = {a_mask_hi_hi_hi_1, a_mask_hi_hi_lo_1}; // @[Misc.scala:222:10]
wire [15:0] a_mask_hi_1 = {a_mask_hi_hi_1, a_mask_hi_lo_1}; // @[Misc.scala:222:10]
assign _a_mask_T_1 = {a_mask_hi_1, a_mask_lo_1}; // @[Misc.scala:222:10]
assign bundle_1_mask = _a_mask_T_1; // @[Misc.scala:222:10]
assign bundle_1_data = _T_31[255:0]; // @[Edges.scala:480:17, :489:15]
reg [63:0] loginfo_cycles_4; // @[Util.scala:18:33]
wire [64:0] _loginfo_cycles_T_8 = {1'h0, loginfo_cycles_4} + 65'h1; // @[Util.scala:18:33, :19:38]
wire [63:0] _loginfo_cycles_T_9 = _loginfo_cycles_T_8[63:0]; // @[Util.scala:19:38]
wire _current_request_tag_has_response_space_T = _tags_for_issue_Q_io_deq_bits == 5'h0; // @[L2MemHelperLatencyInjection.scala:94:32, :186:27]
wire _current_request_tag_has_response_space_T_1 = _Queue4_L2RespInternal_io_enq_ready & _current_request_tag_has_response_space_T; // @[L2MemHelperLatencyInjection.scala:182:11, :186:{17,27}]
wire _current_request_tag_has_response_space_T_2 = _tags_for_issue_Q_io_deq_bits == 5'h1; // @[L2MemHelperLatencyInjection.scala:94:32, :186:27]
wire _current_request_tag_has_response_space_T_3 = _Queue4_L2RespInternal_1_io_enq_ready & _current_request_tag_has_response_space_T_2; // @[L2MemHelperLatencyInjection.scala:182:11, :186:{17,27}]
wire _current_request_tag_has_response_space_T_4 = _tags_for_issue_Q_io_deq_bits == 5'h2; // @[L2MemHelperLatencyInjection.scala:94:32, :186:27]
wire _current_request_tag_has_response_space_T_5 = _Queue4_L2RespInternal_2_io_enq_ready & _current_request_tag_has_response_space_T_4; // @[L2MemHelperLatencyInjection.scala:182:11, :186:{17,27}]
wire _current_request_tag_has_response_space_T_6 = _tags_for_issue_Q_io_deq_bits == 5'h3; // @[L2MemHelperLatencyInjection.scala:94:32, :186:27]
wire _current_request_tag_has_response_space_T_7 = _Queue4_L2RespInternal_3_io_enq_ready & _current_request_tag_has_response_space_T_6; // @[L2MemHelperLatencyInjection.scala:182:11, :186:{17,27}]
wire _current_request_tag_has_response_space_T_8 = _tags_for_issue_Q_io_deq_bits == 5'h4; // @[L2MemHelperLatencyInjection.scala:94:32, :186:27]
wire _current_request_tag_has_response_space_T_9 = _Queue4_L2RespInternal_4_io_enq_ready & _current_request_tag_has_response_space_T_8; // @[L2MemHelperLatencyInjection.scala:182:11, :186:{17,27}]
wire _current_request_tag_has_response_space_T_10 = _tags_for_issue_Q_io_deq_bits == 5'h5; // @[L2MemHelperLatencyInjection.scala:94:32, :186:27]
wire _current_request_tag_has_response_space_T_11 = _Queue4_L2RespInternal_5_io_enq_ready & _current_request_tag_has_response_space_T_10; // @[L2MemHelperLatencyInjection.scala:182:11, :186:{17,27}]
wire _current_request_tag_has_response_space_T_12 = _tags_for_issue_Q_io_deq_bits == 5'h6; // @[L2MemHelperLatencyInjection.scala:94:32, :186:27]
wire _current_request_tag_has_response_space_T_13 = _Queue4_L2RespInternal_6_io_enq_ready & _current_request_tag_has_response_space_T_12; // @[L2MemHelperLatencyInjection.scala:182:11, :186:{17,27}]
wire _current_request_tag_has_response_space_T_14 = _tags_for_issue_Q_io_deq_bits == 5'h7; // @[L2MemHelperLatencyInjection.scala:94:32, :186:27]
wire _current_request_tag_has_response_space_T_15 = _Queue4_L2RespInternal_7_io_enq_ready & _current_request_tag_has_response_space_T_14; // @[L2MemHelperLatencyInjection.scala:182:11, :186:{17,27}]
wire _current_request_tag_has_response_space_T_16 = _tags_for_issue_Q_io_deq_bits == 5'h8; // @[L2MemHelperLatencyInjection.scala:94:32, :186:27]
wire _current_request_tag_has_response_space_T_17 = _Queue4_L2RespInternal_8_io_enq_ready & _current_request_tag_has_response_space_T_16; // @[L2MemHelperLatencyInjection.scala:182:11, :186:{17,27}]
wire _current_request_tag_has_response_space_T_18 = _tags_for_issue_Q_io_deq_bits == 5'h9; // @[L2MemHelperLatencyInjection.scala:94:32, :186:27]
wire _current_request_tag_has_response_space_T_19 = _Queue4_L2RespInternal_9_io_enq_ready & _current_request_tag_has_response_space_T_18; // @[L2MemHelperLatencyInjection.scala:182:11, :186:{17,27}]
wire _current_request_tag_has_response_space_T_20 = _tags_for_issue_Q_io_deq_bits == 5'hA; // @[L2MemHelperLatencyInjection.scala:94:32, :186:27]
wire _current_request_tag_has_response_space_T_21 = _Queue4_L2RespInternal_10_io_enq_ready & _current_request_tag_has_response_space_T_20; // @[L2MemHelperLatencyInjection.scala:182:11, :186:{17,27}]
wire _current_request_tag_has_response_space_T_22 = _tags_for_issue_Q_io_deq_bits == 5'hB; // @[L2MemHelperLatencyInjection.scala:94:32, :186:27]
wire _current_request_tag_has_response_space_T_23 = _Queue4_L2RespInternal_11_io_enq_ready & _current_request_tag_has_response_space_T_22; // @[L2MemHelperLatencyInjection.scala:182:11, :186:{17,27}]
wire _current_request_tag_has_response_space_T_24 = _tags_for_issue_Q_io_deq_bits == 5'hC; // @[L2MemHelperLatencyInjection.scala:94:32, :186:27]
wire _current_request_tag_has_response_space_T_25 = _Queue4_L2RespInternal_12_io_enq_ready & _current_request_tag_has_response_space_T_24; // @[L2MemHelperLatencyInjection.scala:182:11, :186:{17,27}]
wire _current_request_tag_has_response_space_T_26 = _tags_for_issue_Q_io_deq_bits == 5'hD; // @[L2MemHelperLatencyInjection.scala:94:32, :186:27]
wire _current_request_tag_has_response_space_T_27 = _Queue4_L2RespInternal_13_io_enq_ready & _current_request_tag_has_response_space_T_26; // @[L2MemHelperLatencyInjection.scala:182:11, :186:{17,27}]
wire _current_request_tag_has_response_space_T_28 = _tags_for_issue_Q_io_deq_bits == 5'hE; // @[L2MemHelperLatencyInjection.scala:94:32, :186:27]
wire _current_request_tag_has_response_space_T_29 = _Queue4_L2RespInternal_14_io_enq_ready & _current_request_tag_has_response_space_T_28; // @[L2MemHelperLatencyInjection.scala:182:11, :186:{17,27}]
wire _current_request_tag_has_response_space_T_30 = _tags_for_issue_Q_io_deq_bits == 5'hF; // @[L2MemHelperLatencyInjection.scala:94:32, :186:27]
wire _current_request_tag_has_response_space_T_31 = _Queue4_L2RespInternal_15_io_enq_ready & _current_request_tag_has_response_space_T_30; // @[L2MemHelperLatencyInjection.scala:182:11, :186:{17,27}]
wire _current_request_tag_has_response_space_T_32 = _tags_for_issue_Q_io_deq_bits == 5'h10; // @[L2MemHelperLatencyInjection.scala:94:32, :186:27]
wire _current_request_tag_has_response_space_T_33 = _Queue4_L2RespInternal_16_io_enq_ready & _current_request_tag_has_response_space_T_32; // @[L2MemHelperLatencyInjection.scala:182:11, :186:{17,27}]
wire _current_request_tag_has_response_space_T_34 = _tags_for_issue_Q_io_deq_bits == 5'h11; // @[L2MemHelperLatencyInjection.scala:94:32, :186:27]
wire _current_request_tag_has_response_space_T_35 = _Queue4_L2RespInternal_17_io_enq_ready & _current_request_tag_has_response_space_T_34; // @[L2MemHelperLatencyInjection.scala:182:11, :186:{17,27}]
wire _current_request_tag_has_response_space_T_36 = _tags_for_issue_Q_io_deq_bits == 5'h12; // @[L2MemHelperLatencyInjection.scala:94:32, :186:27]
wire _current_request_tag_has_response_space_T_37 = _Queue4_L2RespInternal_18_io_enq_ready & _current_request_tag_has_response_space_T_36; // @[L2MemHelperLatencyInjection.scala:182:11, :186:{17,27}]
wire _current_request_tag_has_response_space_T_38 = _tags_for_issue_Q_io_deq_bits == 5'h13; // @[L2MemHelperLatencyInjection.scala:94:32, :186:27]
wire _current_request_tag_has_response_space_T_39 = _Queue4_L2RespInternal_19_io_enq_ready & _current_request_tag_has_response_space_T_38; // @[L2MemHelperLatencyInjection.scala:182:11, :186:{17,27}]
wire _current_request_tag_has_response_space_T_40 = _tags_for_issue_Q_io_deq_bits == 5'h14; // @[L2MemHelperLatencyInjection.scala:94:32, :186:27]
wire _current_request_tag_has_response_space_T_41 = _Queue4_L2RespInternal_20_io_enq_ready & _current_request_tag_has_response_space_T_40; // @[L2MemHelperLatencyInjection.scala:182:11, :186:{17,27}]
wire _current_request_tag_has_response_space_T_42 = _tags_for_issue_Q_io_deq_bits == 5'h15; // @[L2MemHelperLatencyInjection.scala:94:32, :186:27]
wire _current_request_tag_has_response_space_T_43 = _Queue4_L2RespInternal_21_io_enq_ready & _current_request_tag_has_response_space_T_42; // @[L2MemHelperLatencyInjection.scala:182:11, :186:{17,27}]
wire _current_request_tag_has_response_space_T_44 = _tags_for_issue_Q_io_deq_bits == 5'h16; // @[L2MemHelperLatencyInjection.scala:94:32, :186:27]
wire _current_request_tag_has_response_space_T_45 = _Queue4_L2RespInternal_22_io_enq_ready & _current_request_tag_has_response_space_T_44; // @[L2MemHelperLatencyInjection.scala:182:11, :186:{17,27}]
wire _current_request_tag_has_response_space_T_46 = _tags_for_issue_Q_io_deq_bits == 5'h17; // @[L2MemHelperLatencyInjection.scala:94:32, :186:27]
wire _current_request_tag_has_response_space_T_47 = _Queue4_L2RespInternal_23_io_enq_ready & _current_request_tag_has_response_space_T_46; // @[L2MemHelperLatencyInjection.scala:182:11, :186:{17,27}]
wire _current_request_tag_has_response_space_T_48 = _tags_for_issue_Q_io_deq_bits == 5'h18; // @[L2MemHelperLatencyInjection.scala:94:32, :186:27]
wire _current_request_tag_has_response_space_T_49 = _Queue4_L2RespInternal_24_io_enq_ready & _current_request_tag_has_response_space_T_48; // @[L2MemHelperLatencyInjection.scala:182:11, :186:{17,27}]
wire _current_request_tag_has_response_space_T_50 = _tags_for_issue_Q_io_deq_bits == 5'h19; // @[L2MemHelperLatencyInjection.scala:94:32, :186:27]
wire _current_request_tag_has_response_space_T_51 = _Queue4_L2RespInternal_25_io_enq_ready & _current_request_tag_has_response_space_T_50; // @[L2MemHelperLatencyInjection.scala:182:11, :186:{17,27}]
wire _current_request_tag_has_response_space_T_52 = _tags_for_issue_Q_io_deq_bits == 5'h1A; // @[L2MemHelperLatencyInjection.scala:94:32, :186:27]
wire _current_request_tag_has_response_space_T_53 = _Queue4_L2RespInternal_26_io_enq_ready & _current_request_tag_has_response_space_T_52; // @[L2MemHelperLatencyInjection.scala:182:11, :186:{17,27}]
wire _current_request_tag_has_response_space_T_54 = _tags_for_issue_Q_io_deq_bits == 5'h1B; // @[L2MemHelperLatencyInjection.scala:94:32, :186:27]
wire _current_request_tag_has_response_space_T_55 = _Queue4_L2RespInternal_27_io_enq_ready & _current_request_tag_has_response_space_T_54; // @[L2MemHelperLatencyInjection.scala:182:11, :186:{17,27}]
wire _current_request_tag_has_response_space_T_56 = _tags_for_issue_Q_io_deq_bits == 5'h1C; // @[L2MemHelperLatencyInjection.scala:94:32, :186:27]
wire _current_request_tag_has_response_space_T_57 = _Queue4_L2RespInternal_28_io_enq_ready & _current_request_tag_has_response_space_T_56; // @[L2MemHelperLatencyInjection.scala:182:11, :186:{17,27}]
wire _current_request_tag_has_response_space_T_58 = _tags_for_issue_Q_io_deq_bits == 5'h1D; // @[L2MemHelperLatencyInjection.scala:94:32, :186:27]
wire _current_request_tag_has_response_space_T_59 = _Queue4_L2RespInternal_29_io_enq_ready & _current_request_tag_has_response_space_T_58; // @[L2MemHelperLatencyInjection.scala:182:11, :186:{17,27}]
wire _current_request_tag_has_response_space_T_60 = _tags_for_issue_Q_io_deq_bits == 5'h1E; // @[L2MemHelperLatencyInjection.scala:94:32, :186:27]
wire _current_request_tag_has_response_space_T_61 = _Queue4_L2RespInternal_30_io_enq_ready & _current_request_tag_has_response_space_T_60; // @[L2MemHelperLatencyInjection.scala:182:11, :186:{17,27}]
wire _current_request_tag_has_response_space_T_62 = &_tags_for_issue_Q_io_deq_bits; // @[L2MemHelperLatencyInjection.scala:94:32, :186:27]
wire _current_request_tag_has_response_space_T_63 = _Queue4_L2RespInternal_31_io_enq_ready & _current_request_tag_has_response_space_T_62; // @[L2MemHelperLatencyInjection.scala:182:11, :186:{17,27}]
wire _current_request_tag_has_response_space_T_64 = _current_request_tag_has_response_space_T_1 | _current_request_tag_has_response_space_T_3; // @[L2MemHelperLatencyInjection.scala:186:17, :187:15]
wire _current_request_tag_has_response_space_T_65 = _current_request_tag_has_response_space_T_64 | _current_request_tag_has_response_space_T_5; // @[L2MemHelperLatencyInjection.scala:186:17, :187:15]
wire _current_request_tag_has_response_space_T_66 = _current_request_tag_has_response_space_T_65 | _current_request_tag_has_response_space_T_7; // @[L2MemHelperLatencyInjection.scala:186:17, :187:15]
wire _current_request_tag_has_response_space_T_67 = _current_request_tag_has_response_space_T_66 | _current_request_tag_has_response_space_T_9; // @[L2MemHelperLatencyInjection.scala:186:17, :187:15]
wire _current_request_tag_has_response_space_T_68 = _current_request_tag_has_response_space_T_67 | _current_request_tag_has_response_space_T_11; // @[L2MemHelperLatencyInjection.scala:186:17, :187:15]
wire _current_request_tag_has_response_space_T_69 = _current_request_tag_has_response_space_T_68 | _current_request_tag_has_response_space_T_13; // @[L2MemHelperLatencyInjection.scala:186:17, :187:15]
wire _current_request_tag_has_response_space_T_70 = _current_request_tag_has_response_space_T_69 | _current_request_tag_has_response_space_T_15; // @[L2MemHelperLatencyInjection.scala:186:17, :187:15]
wire _current_request_tag_has_response_space_T_71 = _current_request_tag_has_response_space_T_70 | _current_request_tag_has_response_space_T_17; // @[L2MemHelperLatencyInjection.scala:186:17, :187:15]
wire _current_request_tag_has_response_space_T_72 = _current_request_tag_has_response_space_T_71 | _current_request_tag_has_response_space_T_19; // @[L2MemHelperLatencyInjection.scala:186:17, :187:15]
wire _current_request_tag_has_response_space_T_73 = _current_request_tag_has_response_space_T_72 | _current_request_tag_has_response_space_T_21; // @[L2MemHelperLatencyInjection.scala:186:17, :187:15]
wire _current_request_tag_has_response_space_T_74 = _current_request_tag_has_response_space_T_73 | _current_request_tag_has_response_space_T_23; // @[L2MemHelperLatencyInjection.scala:186:17, :187:15]
wire _current_request_tag_has_response_space_T_75 = _current_request_tag_has_response_space_T_74 | _current_request_tag_has_response_space_T_25; // @[L2MemHelperLatencyInjection.scala:186:17, :187:15]
wire _current_request_tag_has_response_space_T_76 = _current_request_tag_has_response_space_T_75 | _current_request_tag_has_response_space_T_27; // @[L2MemHelperLatencyInjection.scala:186:17, :187:15]
wire _current_request_tag_has_response_space_T_77 = _current_request_tag_has_response_space_T_76 | _current_request_tag_has_response_space_T_29; // @[L2MemHelperLatencyInjection.scala:186:17, :187:15]
wire _current_request_tag_has_response_space_T_78 = _current_request_tag_has_response_space_T_77 | _current_request_tag_has_response_space_T_31; // @[L2MemHelperLatencyInjection.scala:186:17, :187:15]
wire _current_request_tag_has_response_space_T_79 = _current_request_tag_has_response_space_T_78 | _current_request_tag_has_response_space_T_33; // @[L2MemHelperLatencyInjection.scala:186:17, :187:15]
wire _current_request_tag_has_response_space_T_80 = _current_request_tag_has_response_space_T_79 | _current_request_tag_has_response_space_T_35; // @[L2MemHelperLatencyInjection.scala:186:17, :187:15]
wire _current_request_tag_has_response_space_T_81 = _current_request_tag_has_response_space_T_80 | _current_request_tag_has_response_space_T_37; // @[L2MemHelperLatencyInjection.scala:186:17, :187:15]
wire _current_request_tag_has_response_space_T_82 = _current_request_tag_has_response_space_T_81 | _current_request_tag_has_response_space_T_39; // @[L2MemHelperLatencyInjection.scala:186:17, :187:15]
wire _current_request_tag_has_response_space_T_83 = _current_request_tag_has_response_space_T_82 | _current_request_tag_has_response_space_T_41; // @[L2MemHelperLatencyInjection.scala:186:17, :187:15]
wire _current_request_tag_has_response_space_T_84 = _current_request_tag_has_response_space_T_83 | _current_request_tag_has_response_space_T_43; // @[L2MemHelperLatencyInjection.scala:186:17, :187:15]
wire _current_request_tag_has_response_space_T_85 = _current_request_tag_has_response_space_T_84 | _current_request_tag_has_response_space_T_45; // @[L2MemHelperLatencyInjection.scala:186:17, :187:15]
wire _current_request_tag_has_response_space_T_86 = _current_request_tag_has_response_space_T_85 | _current_request_tag_has_response_space_T_47; // @[L2MemHelperLatencyInjection.scala:186:17, :187:15]
wire _current_request_tag_has_response_space_T_87 = _current_request_tag_has_response_space_T_86 | _current_request_tag_has_response_space_T_49; // @[L2MemHelperLatencyInjection.scala:186:17, :187:15]
wire _current_request_tag_has_response_space_T_88 = _current_request_tag_has_response_space_T_87 | _current_request_tag_has_response_space_T_51; // @[L2MemHelperLatencyInjection.scala:186:17, :187:15]
wire _current_request_tag_has_response_space_T_89 = _current_request_tag_has_response_space_T_88 | _current_request_tag_has_response_space_T_53; // @[L2MemHelperLatencyInjection.scala:186:17, :187:15]
wire _current_request_tag_has_response_space_T_90 = _current_request_tag_has_response_space_T_89 | _current_request_tag_has_response_space_T_55; // @[L2MemHelperLatencyInjection.scala:186:17, :187:15]
wire _current_request_tag_has_response_space_T_91 = _current_request_tag_has_response_space_T_90 | _current_request_tag_has_response_space_T_57; // @[L2MemHelperLatencyInjection.scala:186:17, :187:15]
wire _current_request_tag_has_response_space_T_92 = _current_request_tag_has_response_space_T_91 | _current_request_tag_has_response_space_T_59; // @[L2MemHelperLatencyInjection.scala:186:17, :187:15]
wire _current_request_tag_has_response_space_T_93 = _current_request_tag_has_response_space_T_92 | _current_request_tag_has_response_space_T_61; // @[L2MemHelperLatencyInjection.scala:186:17, :187:15]
wire current_request_tag_has_response_space = _current_request_tag_has_response_space_T_93 | _current_request_tag_has_response_space_T_63; // @[L2MemHelperLatencyInjection.scala:186:17, :187:15]
wire [70:0] _outstanding_req_addr_io_enq_bits_addrindex_T = {66'h0, request_input_bits_addr[4:0]}; // @[L2MemHelperLatencyInjection.scala:44:27, :200:73]
wire _request_latency_injection_q_io_enq_valid_T = request_input_valid & tlb_ready; // @[Misc.scala:26:53]
wire _request_latency_injection_q_io_enq_valid_T_1 = _request_latency_injection_q_io_enq_valid_T & _outstanding_req_addr_io_enq_ready; // @[Misc.scala:26:53]
wire _request_latency_injection_q_io_enq_valid_T_2 = _request_latency_injection_q_io_enq_valid_T_1 & free_outstanding_op_slots; // @[Misc.scala:26:53]
wire _request_latency_injection_q_io_enq_valid_T_3 = _request_latency_injection_q_io_enq_valid_T_2 & _tags_for_issue_Q_io_deq_valid; // @[Misc.scala:26:53]
wire _request_latency_injection_q_io_enq_valid_T_4 = _request_latency_injection_q_io_enq_valid_T_3 & current_request_tag_has_response_space; // @[Misc.scala:26:53]
wire _request_input_ready_T = _request_latency_injection_q_io_enq_ready & tlb_ready; // @[Misc.scala:26:53]
wire _request_input_ready_T_1 = _request_input_ready_T & _outstanding_req_addr_io_enq_ready; // @[Misc.scala:26:53]
wire _request_input_ready_T_2 = _request_input_ready_T_1 & free_outstanding_op_slots; // @[Misc.scala:26:53]
wire _request_input_ready_T_3 = _request_input_ready_T_2 & _tags_for_issue_Q_io_deq_valid; // @[Misc.scala:26:53]
assign _request_input_ready_T_4 = _request_input_ready_T_3 & current_request_tag_has_response_space; // @[Misc.scala:26:53]
assign request_input_ready = _request_input_ready_T_4; // @[Misc.scala:26:53]
wire _T_45 = request_input_valid & _request_latency_injection_q_io_enq_ready; // @[Misc.scala:26:53]
wire _outstanding_req_addr_io_enq_valid_T; // @[Misc.scala:26:53]
assign _outstanding_req_addr_io_enq_valid_T = _T_45; // @[Misc.scala:26:53]
wire _tags_for_issue_Q_io_deq_ready_T; // @[Misc.scala:26:53]
assign _tags_for_issue_Q_io_deq_ready_T = _T_45; // @[Misc.scala:26:53]
wire _outstanding_req_addr_io_enq_valid_T_1 = _outstanding_req_addr_io_enq_valid_T & tlb_ready; // @[Misc.scala:26:53]
wire _outstanding_req_addr_io_enq_valid_T_2 = _outstanding_req_addr_io_enq_valid_T_1 & free_outstanding_op_slots; // @[Misc.scala:26:53]
wire _outstanding_req_addr_io_enq_valid_T_3 = _outstanding_req_addr_io_enq_valid_T_2 & _tags_for_issue_Q_io_deq_valid; // @[Misc.scala:26:53]
wire _outstanding_req_addr_io_enq_valid_T_4 = _outstanding_req_addr_io_enq_valid_T_3 & current_request_tag_has_response_space; // @[Misc.scala:26:53]
wire _tags_for_issue_Q_io_deq_ready_T_1 = _tags_for_issue_Q_io_deq_ready_T & tlb_ready; // @[Misc.scala:26:53]
wire _tags_for_issue_Q_io_deq_ready_T_2 = _tags_for_issue_Q_io_deq_ready_T_1 & _outstanding_req_addr_io_enq_ready; // @[Misc.scala:26:53]
wire _tags_for_issue_Q_io_deq_ready_T_3 = _tags_for_issue_Q_io_deq_ready_T_2 & free_outstanding_op_slots; // @[Misc.scala:26:53]
wire _tags_for_issue_Q_io_deq_ready_T_4 = _tags_for_issue_Q_io_deq_ready_T_3 & current_request_tag_has_response_space; // @[Misc.scala:26:53]
reg [63:0] loginfo_cycles_5; // @[Util.scala:18:33]
wire [64:0] _loginfo_cycles_T_10 = {1'h0, loginfo_cycles_5} + 65'h1; // @[Util.scala:18:33, :19:38]
wire [63:0] _loginfo_cycles_T_11 = _loginfo_cycles_T_10[63:0]; // @[Util.scala:19:38]
reg [63:0] loginfo_cycles_6; // @[Util.scala:26:33]
wire [64:0] _loginfo_cycles_T_12 = {1'h0, loginfo_cycles_6} + 65'h1; // @[Util.scala:26:33, :27:38]
wire [63:0] _loginfo_cycles_T_13 = _loginfo_cycles_T_12[63:0]; // @[Util.scala:27:38]
wire _printf_T_1 = ~_printf_T; // @[annotations.scala:102:49]
wire _printf_T_3 = ~_printf_T_2; // @[annotations.scala:102:49]
wire _selectQready_T = _response_latency_injection_q_io_deq_bits_source == 5'h0; // @[L2MemHelperLatencyInjection.scala:245:44, :253:27]
wire _selectQready_T_1 = _Queue4_L2RespInternal_io_enq_ready & _selectQready_T; // @[L2MemHelperLatencyInjection.scala:182:11, :253:{17,27}]
wire _selectQready_T_2 = _response_latency_injection_q_io_deq_bits_source == 5'h1; // @[L2MemHelperLatencyInjection.scala:245:44, :253:27]
wire _selectQready_T_3 = _Queue4_L2RespInternal_1_io_enq_ready & _selectQready_T_2; // @[L2MemHelperLatencyInjection.scala:182:11, :253:{17,27}]
wire _selectQready_T_4 = _response_latency_injection_q_io_deq_bits_source == 5'h2; // @[L2MemHelperLatencyInjection.scala:245:44, :253:27]
wire _selectQready_T_5 = _Queue4_L2RespInternal_2_io_enq_ready & _selectQready_T_4; // @[L2MemHelperLatencyInjection.scala:182:11, :253:{17,27}]
wire _selectQready_T_6 = _response_latency_injection_q_io_deq_bits_source == 5'h3; // @[L2MemHelperLatencyInjection.scala:245:44, :253:27]
wire _selectQready_T_7 = _Queue4_L2RespInternal_3_io_enq_ready & _selectQready_T_6; // @[L2MemHelperLatencyInjection.scala:182:11, :253:{17,27}]
wire _selectQready_T_8 = _response_latency_injection_q_io_deq_bits_source == 5'h4; // @[L2MemHelperLatencyInjection.scala:245:44, :253:27]
wire _selectQready_T_9 = _Queue4_L2RespInternal_4_io_enq_ready & _selectQready_T_8; // @[L2MemHelperLatencyInjection.scala:182:11, :253:{17,27}]
wire _selectQready_T_10 = _response_latency_injection_q_io_deq_bits_source == 5'h5; // @[L2MemHelperLatencyInjection.scala:245:44, :253:27]
wire _selectQready_T_11 = _Queue4_L2RespInternal_5_io_enq_ready & _selectQready_T_10; // @[L2MemHelperLatencyInjection.scala:182:11, :253:{17,27}]
wire _selectQready_T_12 = _response_latency_injection_q_io_deq_bits_source == 5'h6; // @[L2MemHelperLatencyInjection.scala:245:44, :253:27]
wire _selectQready_T_13 = _Queue4_L2RespInternal_6_io_enq_ready & _selectQready_T_12; // @[L2MemHelperLatencyInjection.scala:182:11, :253:{17,27}]
wire _selectQready_T_14 = _response_latency_injection_q_io_deq_bits_source == 5'h7; // @[L2MemHelperLatencyInjection.scala:245:44, :253:27]
wire _selectQready_T_15 = _Queue4_L2RespInternal_7_io_enq_ready & _selectQready_T_14; // @[L2MemHelperLatencyInjection.scala:182:11, :253:{17,27}]
wire _selectQready_T_16 = _response_latency_injection_q_io_deq_bits_source == 5'h8; // @[L2MemHelperLatencyInjection.scala:245:44, :253:27]
wire _selectQready_T_17 = _Queue4_L2RespInternal_8_io_enq_ready & _selectQready_T_16; // @[L2MemHelperLatencyInjection.scala:182:11, :253:{17,27}]
wire _selectQready_T_18 = _response_latency_injection_q_io_deq_bits_source == 5'h9; // @[L2MemHelperLatencyInjection.scala:245:44, :253:27]
wire _selectQready_T_19 = _Queue4_L2RespInternal_9_io_enq_ready & _selectQready_T_18; // @[L2MemHelperLatencyInjection.scala:182:11, :253:{17,27}]
wire _selectQready_T_20 = _response_latency_injection_q_io_deq_bits_source == 5'hA; // @[L2MemHelperLatencyInjection.scala:245:44, :253:27]
wire _selectQready_T_21 = _Queue4_L2RespInternal_10_io_enq_ready & _selectQready_T_20; // @[L2MemHelperLatencyInjection.scala:182:11, :253:{17,27}]
wire _selectQready_T_22 = _response_latency_injection_q_io_deq_bits_source == 5'hB; // @[L2MemHelperLatencyInjection.scala:245:44, :253:27]
wire _selectQready_T_23 = _Queue4_L2RespInternal_11_io_enq_ready & _selectQready_T_22; // @[L2MemHelperLatencyInjection.scala:182:11, :253:{17,27}]
wire _selectQready_T_24 = _response_latency_injection_q_io_deq_bits_source == 5'hC; // @[L2MemHelperLatencyInjection.scala:245:44, :253:27]
wire _selectQready_T_25 = _Queue4_L2RespInternal_12_io_enq_ready & _selectQready_T_24; // @[L2MemHelperLatencyInjection.scala:182:11, :253:{17,27}]
wire _selectQready_T_26 = _response_latency_injection_q_io_deq_bits_source == 5'hD; // @[L2MemHelperLatencyInjection.scala:245:44, :253:27]
wire _selectQready_T_27 = _Queue4_L2RespInternal_13_io_enq_ready & _selectQready_T_26; // @[L2MemHelperLatencyInjection.scala:182:11, :253:{17,27}]
wire _selectQready_T_28 = _response_latency_injection_q_io_deq_bits_source == 5'hE; // @[L2MemHelperLatencyInjection.scala:245:44, :253:27]
wire _selectQready_T_29 = _Queue4_L2RespInternal_14_io_enq_ready & _selectQready_T_28; // @[L2MemHelperLatencyInjection.scala:182:11, :253:{17,27}]
wire _selectQready_T_30 = _response_latency_injection_q_io_deq_bits_source == 5'hF; // @[L2MemHelperLatencyInjection.scala:245:44, :253:27]
wire _selectQready_T_31 = _Queue4_L2RespInternal_15_io_enq_ready & _selectQready_T_30; // @[L2MemHelperLatencyInjection.scala:182:11, :253:{17,27}]
wire _selectQready_T_32 = _response_latency_injection_q_io_deq_bits_source == 5'h10; // @[L2MemHelperLatencyInjection.scala:245:44, :253:27]
wire _selectQready_T_33 = _Queue4_L2RespInternal_16_io_enq_ready & _selectQready_T_32; // @[L2MemHelperLatencyInjection.scala:182:11, :253:{17,27}]
wire _selectQready_T_34 = _response_latency_injection_q_io_deq_bits_source == 5'h11; // @[L2MemHelperLatencyInjection.scala:245:44, :253:27]
wire _selectQready_T_35 = _Queue4_L2RespInternal_17_io_enq_ready & _selectQready_T_34; // @[L2MemHelperLatencyInjection.scala:182:11, :253:{17,27}]
wire _selectQready_T_36 = _response_latency_injection_q_io_deq_bits_source == 5'h12; // @[L2MemHelperLatencyInjection.scala:245:44, :253:27]
wire _selectQready_T_37 = _Queue4_L2RespInternal_18_io_enq_ready & _selectQready_T_36; // @[L2MemHelperLatencyInjection.scala:182:11, :253:{17,27}]
wire _selectQready_T_38 = _response_latency_injection_q_io_deq_bits_source == 5'h13; // @[L2MemHelperLatencyInjection.scala:245:44, :253:27]
wire _selectQready_T_39 = _Queue4_L2RespInternal_19_io_enq_ready & _selectQready_T_38; // @[L2MemHelperLatencyInjection.scala:182:11, :253:{17,27}]
wire _selectQready_T_40 = _response_latency_injection_q_io_deq_bits_source == 5'h14; // @[L2MemHelperLatencyInjection.scala:245:44, :253:27]
wire _selectQready_T_41 = _Queue4_L2RespInternal_20_io_enq_ready & _selectQready_T_40; // @[L2MemHelperLatencyInjection.scala:182:11, :253:{17,27}]
wire _selectQready_T_42 = _response_latency_injection_q_io_deq_bits_source == 5'h15; // @[L2MemHelperLatencyInjection.scala:245:44, :253:27]
wire _selectQready_T_43 = _Queue4_L2RespInternal_21_io_enq_ready & _selectQready_T_42; // @[L2MemHelperLatencyInjection.scala:182:11, :253:{17,27}]
wire _selectQready_T_44 = _response_latency_injection_q_io_deq_bits_source == 5'h16; // @[L2MemHelperLatencyInjection.scala:245:44, :253:27]
wire _selectQready_T_45 = _Queue4_L2RespInternal_22_io_enq_ready & _selectQready_T_44; // @[L2MemHelperLatencyInjection.scala:182:11, :253:{17,27}]
wire _selectQready_T_46 = _response_latency_injection_q_io_deq_bits_source == 5'h17; // @[L2MemHelperLatencyInjection.scala:245:44, :253:27]
wire _selectQready_T_47 = _Queue4_L2RespInternal_23_io_enq_ready & _selectQready_T_46; // @[L2MemHelperLatencyInjection.scala:182:11, :253:{17,27}]
wire _selectQready_T_48 = _response_latency_injection_q_io_deq_bits_source == 5'h18; // @[L2MemHelperLatencyInjection.scala:245:44, :253:27]
wire _selectQready_T_49 = _Queue4_L2RespInternal_24_io_enq_ready & _selectQready_T_48; // @[L2MemHelperLatencyInjection.scala:182:11, :253:{17,27}]
wire _selectQready_T_50 = _response_latency_injection_q_io_deq_bits_source == 5'h19; // @[L2MemHelperLatencyInjection.scala:245:44, :253:27]
wire _selectQready_T_51 = _Queue4_L2RespInternal_25_io_enq_ready & _selectQready_T_50; // @[L2MemHelperLatencyInjection.scala:182:11, :253:{17,27}]
wire _selectQready_T_52 = _response_latency_injection_q_io_deq_bits_source == 5'h1A; // @[L2MemHelperLatencyInjection.scala:245:44, :253:27]
wire _selectQready_T_53 = _Queue4_L2RespInternal_26_io_enq_ready & _selectQready_T_52; // @[L2MemHelperLatencyInjection.scala:182:11, :253:{17,27}]
wire _selectQready_T_54 = _response_latency_injection_q_io_deq_bits_source == 5'h1B; // @[L2MemHelperLatencyInjection.scala:245:44, :253:27]
wire _selectQready_T_55 = _Queue4_L2RespInternal_27_io_enq_ready & _selectQready_T_54; // @[L2MemHelperLatencyInjection.scala:182:11, :253:{17,27}]
wire _selectQready_T_56 = _response_latency_injection_q_io_deq_bits_source == 5'h1C; // @[L2MemHelperLatencyInjection.scala:245:44, :253:27]
wire _selectQready_T_57 = _Queue4_L2RespInternal_28_io_enq_ready & _selectQready_T_56; // @[L2MemHelperLatencyInjection.scala:182:11, :253:{17,27}]
wire _selectQready_T_58 = _response_latency_injection_q_io_deq_bits_source == 5'h1D; // @[L2MemHelperLatencyInjection.scala:245:44, :253:27]
wire _selectQready_T_59 = _Queue4_L2RespInternal_29_io_enq_ready & _selectQready_T_58; // @[L2MemHelperLatencyInjection.scala:182:11, :253:{17,27}]
wire _selectQready_T_60 = _response_latency_injection_q_io_deq_bits_source == 5'h1E; // @[L2MemHelperLatencyInjection.scala:245:44, :253:27]
wire _selectQready_T_61 = _Queue4_L2RespInternal_30_io_enq_ready & _selectQready_T_60; // @[L2MemHelperLatencyInjection.scala:182:11, :253:{17,27}]
wire _selectQready_T_62 = &_response_latency_injection_q_io_deq_bits_source; // @[L2MemHelperLatencyInjection.scala:245:44, :253:27]
wire _selectQready_T_63 = _Queue4_L2RespInternal_31_io_enq_ready & _selectQready_T_62; // @[L2MemHelperLatencyInjection.scala:182:11, :253:{17,27}]
wire _selectQready_T_64 = _selectQready_T_1 | _selectQready_T_3; // @[L2MemHelperLatencyInjection.scala:253:17, :254:15]
wire _selectQready_T_65 = _selectQready_T_64 | _selectQready_T_5; // @[L2MemHelperLatencyInjection.scala:253:17, :254:15]
wire _selectQready_T_66 = _selectQready_T_65 | _selectQready_T_7; // @[L2MemHelperLatencyInjection.scala:253:17, :254:15]
wire _selectQready_T_67 = _selectQready_T_66 | _selectQready_T_9; // @[L2MemHelperLatencyInjection.scala:253:17, :254:15]
wire _selectQready_T_68 = _selectQready_T_67 | _selectQready_T_11; // @[L2MemHelperLatencyInjection.scala:253:17, :254:15]
wire _selectQready_T_69 = _selectQready_T_68 | _selectQready_T_13; // @[L2MemHelperLatencyInjection.scala:253:17, :254:15]
wire _selectQready_T_70 = _selectQready_T_69 | _selectQready_T_15; // @[L2MemHelperLatencyInjection.scala:253:17, :254:15]
wire _selectQready_T_71 = _selectQready_T_70 | _selectQready_T_17; // @[L2MemHelperLatencyInjection.scala:253:17, :254:15]
wire _selectQready_T_72 = _selectQready_T_71 | _selectQready_T_19; // @[L2MemHelperLatencyInjection.scala:253:17, :254:15]
wire _selectQready_T_73 = _selectQready_T_72 | _selectQready_T_21; // @[L2MemHelperLatencyInjection.scala:253:17, :254:15]
wire _selectQready_T_74 = _selectQready_T_73 | _selectQready_T_23; // @[L2MemHelperLatencyInjection.scala:253:17, :254:15]
wire _selectQready_T_75 = _selectQready_T_74 | _selectQready_T_25; // @[L2MemHelperLatencyInjection.scala:253:17, :254:15]
wire _selectQready_T_76 = _selectQready_T_75 | _selectQready_T_27; // @[L2MemHelperLatencyInjection.scala:253:17, :254:15]
wire _selectQready_T_77 = _selectQready_T_76 | _selectQready_T_29; // @[L2MemHelperLatencyInjection.scala:253:17, :254:15]
wire _selectQready_T_78 = _selectQready_T_77 | _selectQready_T_31; // @[L2MemHelperLatencyInjection.scala:253:17, :254:15]
wire _selectQready_T_79 = _selectQready_T_78 | _selectQready_T_33; // @[L2MemHelperLatencyInjection.scala:253:17, :254:15]
wire _selectQready_T_80 = _selectQready_T_79 | _selectQready_T_35; // @[L2MemHelperLatencyInjection.scala:253:17, :254:15]
wire _selectQready_T_81 = _selectQready_T_80 | _selectQready_T_37; // @[L2MemHelperLatencyInjection.scala:253:17, :254:15]
wire _selectQready_T_82 = _selectQready_T_81 | _selectQready_T_39; // @[L2MemHelperLatencyInjection.scala:253:17, :254:15]
wire _selectQready_T_83 = _selectQready_T_82 | _selectQready_T_41; // @[L2MemHelperLatencyInjection.scala:253:17, :254:15]
wire _selectQready_T_84 = _selectQready_T_83 | _selectQready_T_43; // @[L2MemHelperLatencyInjection.scala:253:17, :254:15]
wire _selectQready_T_85 = _selectQready_T_84 | _selectQready_T_45; // @[L2MemHelperLatencyInjection.scala:253:17, :254:15]
wire _selectQready_T_86 = _selectQready_T_85 | _selectQready_T_47; // @[L2MemHelperLatencyInjection.scala:253:17, :254:15]
wire _selectQready_T_87 = _selectQready_T_86 | _selectQready_T_49; // @[L2MemHelperLatencyInjection.scala:253:17, :254:15]
wire _selectQready_T_88 = _selectQready_T_87 | _selectQready_T_51; // @[L2MemHelperLatencyInjection.scala:253:17, :254:15]
wire _selectQready_T_89 = _selectQready_T_88 | _selectQready_T_53; // @[L2MemHelperLatencyInjection.scala:253:17, :254:15]
wire _selectQready_T_90 = _selectQready_T_89 | _selectQready_T_55; // @[L2MemHelperLatencyInjection.scala:253:17, :254:15]
wire _selectQready_T_91 = _selectQready_T_90 | _selectQready_T_57; // @[L2MemHelperLatencyInjection.scala:253:17, :254:15]
wire _selectQready_T_92 = _selectQready_T_91 | _selectQready_T_59; // @[L2MemHelperLatencyInjection.scala:253:17, :254:15]
wire _selectQready_T_93 = _selectQready_T_92 | _selectQready_T_61; // @[L2MemHelperLatencyInjection.scala:253:17, :254:15]
wire selectQready = _selectQready_T_93 | _selectQready_T_63; // @[L2MemHelperLatencyInjection.scala:253:17, :254:15]
wire _T_57 = selectQready & _response_latency_injection_q_io_deq_valid; // @[Misc.scala:26:53]
wire tags_for_issue_Q_io_enq_valid = _T_57 | _T_4; // @[Misc.scala:26:53]
wire [4:0] tags_for_issue_Q_io_enq_bits = _T_57 ? _response_latency_injection_q_io_deq_bits_source : tags_init_reg[4:0]; // @[Misc.scala:26:53]
reg [63:0] loginfo_cycles_7; // @[Util.scala:18:33]
wire [64:0] _loginfo_cycles_T_14 = {1'h0, loginfo_cycles_7} + 65'h1; // @[Util.scala:18:33, :19:38]
wire [63:0] _loginfo_cycles_T_15 = _loginfo_cycles_T_14[63:0]; // @[Util.scala:19:38]
wire _response_latency_injection_q_io_deq_ready_T = selectQready & _tags_for_issue_Q_io_enq_ready; // @[Misc.scala:26:53]
wire _T_156 = _response_latency_injection_q_io_deq_valid & _tags_for_issue_Q_io_enq_ready; // @[Misc.scala:26:53]
wire _T_160 = _outstanding_req_addr_io_deq_bits_tag == 5'h0; // @[L2MemHelperLatencyInjection.scala:91:36, :287:27]
wire _queueValid_T; // @[L2MemHelperLatencyInjection.scala:287:27]
assign _queueValid_T = _T_160; // @[L2MemHelperLatencyInjection.scala:287:27]
wire resultdata_is_current_q; // @[L2MemHelperLatencyInjection.scala:299:31]
assign resultdata_is_current_q = _T_160; // @[L2MemHelperLatencyInjection.scala:287:27, :299:31]
wire _queueValid_T_1 = _Queue4_L2RespInternal_io_deq_valid & _queueValid_T; // @[L2MemHelperLatencyInjection.scala:182:11, :287:{17,27}]
wire _T_163 = _outstanding_req_addr_io_deq_bits_tag == 5'h1; // @[L2MemHelperLatencyInjection.scala:91:36, :287:27]
wire _queueValid_T_2; // @[L2MemHelperLatencyInjection.scala:287:27]
assign _queueValid_T_2 = _T_163; // @[L2MemHelperLatencyInjection.scala:287:27]
wire resultdata_is_current_q_1; // @[L2MemHelperLatencyInjection.scala:299:31]
assign resultdata_is_current_q_1 = _T_163; // @[L2MemHelperLatencyInjection.scala:287:27, :299:31]
wire _queueValid_T_3 = _Queue4_L2RespInternal_1_io_deq_valid & _queueValid_T_2; // @[L2MemHelperLatencyInjection.scala:182:11, :287:{17,27}]
wire _T_166 = _outstanding_req_addr_io_deq_bits_tag == 5'h2; // @[L2MemHelperLatencyInjection.scala:91:36, :287:27]
wire _queueValid_T_4; // @[L2MemHelperLatencyInjection.scala:287:27]
assign _queueValid_T_4 = _T_166; // @[L2MemHelperLatencyInjection.scala:287:27]
wire resultdata_is_current_q_2; // @[L2MemHelperLatencyInjection.scala:299:31]
assign resultdata_is_current_q_2 = _T_166; // @[L2MemHelperLatencyInjection.scala:287:27, :299:31]
wire _queueValid_T_5 = _Queue4_L2RespInternal_2_io_deq_valid & _queueValid_T_4; // @[L2MemHelperLatencyInjection.scala:182:11, :287:{17,27}]
wire _T_169 = _outstanding_req_addr_io_deq_bits_tag == 5'h3; // @[L2MemHelperLatencyInjection.scala:91:36, :287:27]
wire _queueValid_T_6; // @[L2MemHelperLatencyInjection.scala:287:27]
assign _queueValid_T_6 = _T_169; // @[L2MemHelperLatencyInjection.scala:287:27]
wire resultdata_is_current_q_3; // @[L2MemHelperLatencyInjection.scala:299:31]
assign resultdata_is_current_q_3 = _T_169; // @[L2MemHelperLatencyInjection.scala:287:27, :299:31]
wire _queueValid_T_7 = _Queue4_L2RespInternal_3_io_deq_valid & _queueValid_T_6; // @[L2MemHelperLatencyInjection.scala:182:11, :287:{17,27}]
wire _T_172 = _outstanding_req_addr_io_deq_bits_tag == 5'h4; // @[L2MemHelperLatencyInjection.scala:91:36, :287:27]
wire _queueValid_T_8; // @[L2MemHelperLatencyInjection.scala:287:27]
assign _queueValid_T_8 = _T_172; // @[L2MemHelperLatencyInjection.scala:287:27]
wire resultdata_is_current_q_4; // @[L2MemHelperLatencyInjection.scala:299:31]
assign resultdata_is_current_q_4 = _T_172; // @[L2MemHelperLatencyInjection.scala:287:27, :299:31]
wire _queueValid_T_9 = _Queue4_L2RespInternal_4_io_deq_valid & _queueValid_T_8; // @[L2MemHelperLatencyInjection.scala:182:11, :287:{17,27}]
wire _T_175 = _outstanding_req_addr_io_deq_bits_tag == 5'h5; // @[L2MemHelperLatencyInjection.scala:91:36, :287:27]
wire _queueValid_T_10; // @[L2MemHelperLatencyInjection.scala:287:27]
assign _queueValid_T_10 = _T_175; // @[L2MemHelperLatencyInjection.scala:287:27]
wire resultdata_is_current_q_5; // @[L2MemHelperLatencyInjection.scala:299:31]
assign resultdata_is_current_q_5 = _T_175; // @[L2MemHelperLatencyInjection.scala:287:27, :299:31]
wire _queueValid_T_11 = _Queue4_L2RespInternal_5_io_deq_valid & _queueValid_T_10; // @[L2MemHelperLatencyInjection.scala:182:11, :287:{17,27}]
wire _T_178 = _outstanding_req_addr_io_deq_bits_tag == 5'h6; // @[L2MemHelperLatencyInjection.scala:91:36, :287:27]
wire _queueValid_T_12; // @[L2MemHelperLatencyInjection.scala:287:27]
assign _queueValid_T_12 = _T_178; // @[L2MemHelperLatencyInjection.scala:287:27]
wire resultdata_is_current_q_6; // @[L2MemHelperLatencyInjection.scala:299:31]
assign resultdata_is_current_q_6 = _T_178; // @[L2MemHelperLatencyInjection.scala:287:27, :299:31]
wire _queueValid_T_13 = _Queue4_L2RespInternal_6_io_deq_valid & _queueValid_T_12; // @[L2MemHelperLatencyInjection.scala:182:11, :287:{17,27}]
wire _T_181 = _outstanding_req_addr_io_deq_bits_tag == 5'h7; // @[L2MemHelperLatencyInjection.scala:91:36, :287:27]
wire _queueValid_T_14; // @[L2MemHelperLatencyInjection.scala:287:27]
assign _queueValid_T_14 = _T_181; // @[L2MemHelperLatencyInjection.scala:287:27]
wire resultdata_is_current_q_7; // @[L2MemHelperLatencyInjection.scala:299:31]
assign resultdata_is_current_q_7 = _T_181; // @[L2MemHelperLatencyInjection.scala:287:27, :299:31]
wire _queueValid_T_15 = _Queue4_L2RespInternal_7_io_deq_valid & _queueValid_T_14; // @[L2MemHelperLatencyInjection.scala:182:11, :287:{17,27}]
wire _T_184 = _outstanding_req_addr_io_deq_bits_tag == 5'h8; // @[L2MemHelperLatencyInjection.scala:91:36, :287:27]
wire _queueValid_T_16; // @[L2MemHelperLatencyInjection.scala:287:27]
assign _queueValid_T_16 = _T_184; // @[L2MemHelperLatencyInjection.scala:287:27]
wire resultdata_is_current_q_8; // @[L2MemHelperLatencyInjection.scala:299:31]
assign resultdata_is_current_q_8 = _T_184; // @[L2MemHelperLatencyInjection.scala:287:27, :299:31]
wire _queueValid_T_17 = _Queue4_L2RespInternal_8_io_deq_valid & _queueValid_T_16; // @[L2MemHelperLatencyInjection.scala:182:11, :287:{17,27}]
wire _T_187 = _outstanding_req_addr_io_deq_bits_tag == 5'h9; // @[L2MemHelperLatencyInjection.scala:91:36, :287:27]
wire _queueValid_T_18; // @[L2MemHelperLatencyInjection.scala:287:27]
assign _queueValid_T_18 = _T_187; // @[L2MemHelperLatencyInjection.scala:287:27]
wire resultdata_is_current_q_9; // @[L2MemHelperLatencyInjection.scala:299:31]
assign resultdata_is_current_q_9 = _T_187; // @[L2MemHelperLatencyInjection.scala:287:27, :299:31]
wire _queueValid_T_19 = _Queue4_L2RespInternal_9_io_deq_valid & _queueValid_T_18; // @[L2MemHelperLatencyInjection.scala:182:11, :287:{17,27}]
wire _T_190 = _outstanding_req_addr_io_deq_bits_tag == 5'hA; // @[L2MemHelperLatencyInjection.scala:91:36, :287:27]
wire _queueValid_T_20; // @[L2MemHelperLatencyInjection.scala:287:27]
assign _queueValid_T_20 = _T_190; // @[L2MemHelperLatencyInjection.scala:287:27]
wire resultdata_is_current_q_10; // @[L2MemHelperLatencyInjection.scala:299:31]
assign resultdata_is_current_q_10 = _T_190; // @[L2MemHelperLatencyInjection.scala:287:27, :299:31]
wire _queueValid_T_21 = _Queue4_L2RespInternal_10_io_deq_valid & _queueValid_T_20; // @[L2MemHelperLatencyInjection.scala:182:11, :287:{17,27}]
wire _T_193 = _outstanding_req_addr_io_deq_bits_tag == 5'hB; // @[L2MemHelperLatencyInjection.scala:91:36, :287:27]
wire _queueValid_T_22; // @[L2MemHelperLatencyInjection.scala:287:27]
assign _queueValid_T_22 = _T_193; // @[L2MemHelperLatencyInjection.scala:287:27]
wire resultdata_is_current_q_11; // @[L2MemHelperLatencyInjection.scala:299:31]
assign resultdata_is_current_q_11 = _T_193; // @[L2MemHelperLatencyInjection.scala:287:27, :299:31]
wire _queueValid_T_23 = _Queue4_L2RespInternal_11_io_deq_valid & _queueValid_T_22; // @[L2MemHelperLatencyInjection.scala:182:11, :287:{17,27}]
wire _T_196 = _outstanding_req_addr_io_deq_bits_tag == 5'hC; // @[L2MemHelperLatencyInjection.scala:91:36, :287:27]
wire _queueValid_T_24; // @[L2MemHelperLatencyInjection.scala:287:27]
assign _queueValid_T_24 = _T_196; // @[L2MemHelperLatencyInjection.scala:287:27]
wire resultdata_is_current_q_12; // @[L2MemHelperLatencyInjection.scala:299:31]
assign resultdata_is_current_q_12 = _T_196; // @[L2MemHelperLatencyInjection.scala:287:27, :299:31]
wire _queueValid_T_25 = _Queue4_L2RespInternal_12_io_deq_valid & _queueValid_T_24; // @[L2MemHelperLatencyInjection.scala:182:11, :287:{17,27}]
wire _T_199 = _outstanding_req_addr_io_deq_bits_tag == 5'hD; // @[L2MemHelperLatencyInjection.scala:91:36, :287:27]
wire _queueValid_T_26; // @[L2MemHelperLatencyInjection.scala:287:27]
assign _queueValid_T_26 = _T_199; // @[L2MemHelperLatencyInjection.scala:287:27]
wire resultdata_is_current_q_13; // @[L2MemHelperLatencyInjection.scala:299:31]
assign resultdata_is_current_q_13 = _T_199; // @[L2MemHelperLatencyInjection.scala:287:27, :299:31]
wire _queueValid_T_27 = _Queue4_L2RespInternal_13_io_deq_valid & _queueValid_T_26; // @[L2MemHelperLatencyInjection.scala:182:11, :287:{17,27}]
wire _T_202 = _outstanding_req_addr_io_deq_bits_tag == 5'hE; // @[L2MemHelperLatencyInjection.scala:91:36, :287:27]
wire _queueValid_T_28; // @[L2MemHelperLatencyInjection.scala:287:27]
assign _queueValid_T_28 = _T_202; // @[L2MemHelperLatencyInjection.scala:287:27]
wire resultdata_is_current_q_14; // @[L2MemHelperLatencyInjection.scala:299:31]
assign resultdata_is_current_q_14 = _T_202; // @[L2MemHelperLatencyInjection.scala:287:27, :299:31]
wire _queueValid_T_29 = _Queue4_L2RespInternal_14_io_deq_valid & _queueValid_T_28; // @[L2MemHelperLatencyInjection.scala:182:11, :287:{17,27}]
wire _T_205 = _outstanding_req_addr_io_deq_bits_tag == 5'hF; // @[L2MemHelperLatencyInjection.scala:91:36, :287:27]
wire _queueValid_T_30; // @[L2MemHelperLatencyInjection.scala:287:27]
assign _queueValid_T_30 = _T_205; // @[L2MemHelperLatencyInjection.scala:287:27]
wire resultdata_is_current_q_15; // @[L2MemHelperLatencyInjection.scala:299:31]
assign resultdata_is_current_q_15 = _T_205; // @[L2MemHelperLatencyInjection.scala:287:27, :299:31]
wire _queueValid_T_31 = _Queue4_L2RespInternal_15_io_deq_valid & _queueValid_T_30; // @[L2MemHelperLatencyInjection.scala:182:11, :287:{17,27}]
wire _T_208 = _outstanding_req_addr_io_deq_bits_tag == 5'h10; // @[L2MemHelperLatencyInjection.scala:91:36, :287:27]
wire _queueValid_T_32; // @[L2MemHelperLatencyInjection.scala:287:27]
assign _queueValid_T_32 = _T_208; // @[L2MemHelperLatencyInjection.scala:287:27]
wire resultdata_is_current_q_16; // @[L2MemHelperLatencyInjection.scala:299:31]
assign resultdata_is_current_q_16 = _T_208; // @[L2MemHelperLatencyInjection.scala:287:27, :299:31]
wire _queueValid_T_33 = _Queue4_L2RespInternal_16_io_deq_valid & _queueValid_T_32; // @[L2MemHelperLatencyInjection.scala:182:11, :287:{17,27}]
wire _T_211 = _outstanding_req_addr_io_deq_bits_tag == 5'h11; // @[L2MemHelperLatencyInjection.scala:91:36, :287:27]
wire _queueValid_T_34; // @[L2MemHelperLatencyInjection.scala:287:27]
assign _queueValid_T_34 = _T_211; // @[L2MemHelperLatencyInjection.scala:287:27]
wire resultdata_is_current_q_17; // @[L2MemHelperLatencyInjection.scala:299:31]
assign resultdata_is_current_q_17 = _T_211; // @[L2MemHelperLatencyInjection.scala:287:27, :299:31]
wire _queueValid_T_35 = _Queue4_L2RespInternal_17_io_deq_valid & _queueValid_T_34; // @[L2MemHelperLatencyInjection.scala:182:11, :287:{17,27}]
wire _T_214 = _outstanding_req_addr_io_deq_bits_tag == 5'h12; // @[L2MemHelperLatencyInjection.scala:91:36, :287:27]
wire _queueValid_T_36; // @[L2MemHelperLatencyInjection.scala:287:27]
assign _queueValid_T_36 = _T_214; // @[L2MemHelperLatencyInjection.scala:287:27]
wire resultdata_is_current_q_18; // @[L2MemHelperLatencyInjection.scala:299:31]
assign resultdata_is_current_q_18 = _T_214; // @[L2MemHelperLatencyInjection.scala:287:27, :299:31]
wire _queueValid_T_37 = _Queue4_L2RespInternal_18_io_deq_valid & _queueValid_T_36; // @[L2MemHelperLatencyInjection.scala:182:11, :287:{17,27}]
wire _T_217 = _outstanding_req_addr_io_deq_bits_tag == 5'h13; // @[L2MemHelperLatencyInjection.scala:91:36, :287:27]
wire _queueValid_T_38; // @[L2MemHelperLatencyInjection.scala:287:27]
assign _queueValid_T_38 = _T_217; // @[L2MemHelperLatencyInjection.scala:287:27]
wire resultdata_is_current_q_19; // @[L2MemHelperLatencyInjection.scala:299:31]
assign resultdata_is_current_q_19 = _T_217; // @[L2MemHelperLatencyInjection.scala:287:27, :299:31]
wire _queueValid_T_39 = _Queue4_L2RespInternal_19_io_deq_valid & _queueValid_T_38; // @[L2MemHelperLatencyInjection.scala:182:11, :287:{17,27}]
wire _T_220 = _outstanding_req_addr_io_deq_bits_tag == 5'h14; // @[L2MemHelperLatencyInjection.scala:91:36, :287:27]
wire _queueValid_T_40; // @[L2MemHelperLatencyInjection.scala:287:27]
assign _queueValid_T_40 = _T_220; // @[L2MemHelperLatencyInjection.scala:287:27]
wire resultdata_is_current_q_20; // @[L2MemHelperLatencyInjection.scala:299:31]
assign resultdata_is_current_q_20 = _T_220; // @[L2MemHelperLatencyInjection.scala:287:27, :299:31]
wire _queueValid_T_41 = _Queue4_L2RespInternal_20_io_deq_valid & _queueValid_T_40; // @[L2MemHelperLatencyInjection.scala:182:11, :287:{17,27}]
wire _T_223 = _outstanding_req_addr_io_deq_bits_tag == 5'h15; // @[L2MemHelperLatencyInjection.scala:91:36, :287:27]
wire _queueValid_T_42; // @[L2MemHelperLatencyInjection.scala:287:27]
assign _queueValid_T_42 = _T_223; // @[L2MemHelperLatencyInjection.scala:287:27]
wire resultdata_is_current_q_21; // @[L2MemHelperLatencyInjection.scala:299:31]
assign resultdata_is_current_q_21 = _T_223; // @[L2MemHelperLatencyInjection.scala:287:27, :299:31]
wire _queueValid_T_43 = _Queue4_L2RespInternal_21_io_deq_valid & _queueValid_T_42; // @[L2MemHelperLatencyInjection.scala:182:11, :287:{17,27}]
wire _T_226 = _outstanding_req_addr_io_deq_bits_tag == 5'h16; // @[L2MemHelperLatencyInjection.scala:91:36, :287:27]
wire _queueValid_T_44; // @[L2MemHelperLatencyInjection.scala:287:27]
assign _queueValid_T_44 = _T_226; // @[L2MemHelperLatencyInjection.scala:287:27]
wire resultdata_is_current_q_22; // @[L2MemHelperLatencyInjection.scala:299:31]
assign resultdata_is_current_q_22 = _T_226; // @[L2MemHelperLatencyInjection.scala:287:27, :299:31]
wire _queueValid_T_45 = _Queue4_L2RespInternal_22_io_deq_valid & _queueValid_T_44; // @[L2MemHelperLatencyInjection.scala:182:11, :287:{17,27}]
wire _T_229 = _outstanding_req_addr_io_deq_bits_tag == 5'h17; // @[L2MemHelperLatencyInjection.scala:91:36, :287:27]
wire _queueValid_T_46; // @[L2MemHelperLatencyInjection.scala:287:27]
assign _queueValid_T_46 = _T_229; // @[L2MemHelperLatencyInjection.scala:287:27]
wire resultdata_is_current_q_23; // @[L2MemHelperLatencyInjection.scala:299:31]
assign resultdata_is_current_q_23 = _T_229; // @[L2MemHelperLatencyInjection.scala:287:27, :299:31]
wire _queueValid_T_47 = _Queue4_L2RespInternal_23_io_deq_valid & _queueValid_T_46; // @[L2MemHelperLatencyInjection.scala:182:11, :287:{17,27}]
wire _T_232 = _outstanding_req_addr_io_deq_bits_tag == 5'h18; // @[L2MemHelperLatencyInjection.scala:91:36, :287:27]
wire _queueValid_T_48; // @[L2MemHelperLatencyInjection.scala:287:27]
assign _queueValid_T_48 = _T_232; // @[L2MemHelperLatencyInjection.scala:287:27]
wire resultdata_is_current_q_24; // @[L2MemHelperLatencyInjection.scala:299:31]
assign resultdata_is_current_q_24 = _T_232; // @[L2MemHelperLatencyInjection.scala:287:27, :299:31]
wire _queueValid_T_49 = _Queue4_L2RespInternal_24_io_deq_valid & _queueValid_T_48; // @[L2MemHelperLatencyInjection.scala:182:11, :287:{17,27}]
wire _T_235 = _outstanding_req_addr_io_deq_bits_tag == 5'h19; // @[L2MemHelperLatencyInjection.scala:91:36, :287:27]
wire _queueValid_T_50; // @[L2MemHelperLatencyInjection.scala:287:27]
assign _queueValid_T_50 = _T_235; // @[L2MemHelperLatencyInjection.scala:287:27]
wire resultdata_is_current_q_25; // @[L2MemHelperLatencyInjection.scala:299:31]
assign resultdata_is_current_q_25 = _T_235; // @[L2MemHelperLatencyInjection.scala:287:27, :299:31]
wire _queueValid_T_51 = _Queue4_L2RespInternal_25_io_deq_valid & _queueValid_T_50; // @[L2MemHelperLatencyInjection.scala:182:11, :287:{17,27}]
wire _T_238 = _outstanding_req_addr_io_deq_bits_tag == 5'h1A; // @[L2MemHelperLatencyInjection.scala:91:36, :287:27]
wire _queueValid_T_52; // @[L2MemHelperLatencyInjection.scala:287:27]
assign _queueValid_T_52 = _T_238; // @[L2MemHelperLatencyInjection.scala:287:27]
wire resultdata_is_current_q_26; // @[L2MemHelperLatencyInjection.scala:299:31]
assign resultdata_is_current_q_26 = _T_238; // @[L2MemHelperLatencyInjection.scala:287:27, :299:31]
wire _queueValid_T_53 = _Queue4_L2RespInternal_26_io_deq_valid & _queueValid_T_52; // @[L2MemHelperLatencyInjection.scala:182:11, :287:{17,27}]
wire _T_241 = _outstanding_req_addr_io_deq_bits_tag == 5'h1B; // @[L2MemHelperLatencyInjection.scala:91:36, :287:27]
wire _queueValid_T_54; // @[L2MemHelperLatencyInjection.scala:287:27]
assign _queueValid_T_54 = _T_241; // @[L2MemHelperLatencyInjection.scala:287:27]
wire resultdata_is_current_q_27; // @[L2MemHelperLatencyInjection.scala:299:31]
assign resultdata_is_current_q_27 = _T_241; // @[L2MemHelperLatencyInjection.scala:287:27, :299:31]
wire _queueValid_T_55 = _Queue4_L2RespInternal_27_io_deq_valid & _queueValid_T_54; // @[L2MemHelperLatencyInjection.scala:182:11, :287:{17,27}]
wire _T_244 = _outstanding_req_addr_io_deq_bits_tag == 5'h1C; // @[L2MemHelperLatencyInjection.scala:91:36, :287:27]
wire _queueValid_T_56; // @[L2MemHelperLatencyInjection.scala:287:27]
assign _queueValid_T_56 = _T_244; // @[L2MemHelperLatencyInjection.scala:287:27]
wire resultdata_is_current_q_28; // @[L2MemHelperLatencyInjection.scala:299:31]
assign resultdata_is_current_q_28 = _T_244; // @[L2MemHelperLatencyInjection.scala:287:27, :299:31]
wire _queueValid_T_57 = _Queue4_L2RespInternal_28_io_deq_valid & _queueValid_T_56; // @[L2MemHelperLatencyInjection.scala:182:11, :287:{17,27}]
wire _T_247 = _outstanding_req_addr_io_deq_bits_tag == 5'h1D; // @[L2MemHelperLatencyInjection.scala:91:36, :287:27]
wire _queueValid_T_58; // @[L2MemHelperLatencyInjection.scala:287:27]
assign _queueValid_T_58 = _T_247; // @[L2MemHelperLatencyInjection.scala:287:27]
wire resultdata_is_current_q_29; // @[L2MemHelperLatencyInjection.scala:299:31]
assign resultdata_is_current_q_29 = _T_247; // @[L2MemHelperLatencyInjection.scala:287:27, :299:31]
wire _queueValid_T_59 = _Queue4_L2RespInternal_29_io_deq_valid & _queueValid_T_58; // @[L2MemHelperLatencyInjection.scala:182:11, :287:{17,27}]
wire _T_250 = _outstanding_req_addr_io_deq_bits_tag == 5'h1E; // @[L2MemHelperLatencyInjection.scala:91:36, :287:27]
wire _queueValid_T_60; // @[L2MemHelperLatencyInjection.scala:287:27]
assign _queueValid_T_60 = _T_250; // @[L2MemHelperLatencyInjection.scala:287:27]
wire resultdata_is_current_q_30; // @[L2MemHelperLatencyInjection.scala:299:31]
assign resultdata_is_current_q_30 = _T_250; // @[L2MemHelperLatencyInjection.scala:287:27, :299:31]
wire _queueValid_T_61 = _Queue4_L2RespInternal_30_io_deq_valid & _queueValid_T_60; // @[L2MemHelperLatencyInjection.scala:182:11, :287:{17,27}]
wire _queueValid_T_62 = &_outstanding_req_addr_io_deq_bits_tag; // @[L2MemHelperLatencyInjection.scala:91:36, :287:27]
wire _queueValid_T_63 = _Queue4_L2RespInternal_31_io_deq_valid & _queueValid_T_62; // @[L2MemHelperLatencyInjection.scala:182:11, :287:{17,27}]
wire _queueValid_T_64 = _queueValid_T_1 | _queueValid_T_3; // @[L2MemHelperLatencyInjection.scala:287:17, :288:15]
wire _queueValid_T_65 = _queueValid_T_64 | _queueValid_T_5; // @[L2MemHelperLatencyInjection.scala:287:17, :288:15]
wire _queueValid_T_66 = _queueValid_T_65 | _queueValid_T_7; // @[L2MemHelperLatencyInjection.scala:287:17, :288:15]
wire _queueValid_T_67 = _queueValid_T_66 | _queueValid_T_9; // @[L2MemHelperLatencyInjection.scala:287:17, :288:15]
wire _queueValid_T_68 = _queueValid_T_67 | _queueValid_T_11; // @[L2MemHelperLatencyInjection.scala:287:17, :288:15]
wire _queueValid_T_69 = _queueValid_T_68 | _queueValid_T_13; // @[L2MemHelperLatencyInjection.scala:287:17, :288:15]
wire _queueValid_T_70 = _queueValid_T_69 | _queueValid_T_15; // @[L2MemHelperLatencyInjection.scala:287:17, :288:15]
wire _queueValid_T_71 = _queueValid_T_70 | _queueValid_T_17; // @[L2MemHelperLatencyInjection.scala:287:17, :288:15]
wire _queueValid_T_72 = _queueValid_T_71 | _queueValid_T_19; // @[L2MemHelperLatencyInjection.scala:287:17, :288:15]
wire _queueValid_T_73 = _queueValid_T_72 | _queueValid_T_21; // @[L2MemHelperLatencyInjection.scala:287:17, :288:15]
wire _queueValid_T_74 = _queueValid_T_73 | _queueValid_T_23; // @[L2MemHelperLatencyInjection.scala:287:17, :288:15]
wire _queueValid_T_75 = _queueValid_T_74 | _queueValid_T_25; // @[L2MemHelperLatencyInjection.scala:287:17, :288:15]
wire _queueValid_T_76 = _queueValid_T_75 | _queueValid_T_27; // @[L2MemHelperLatencyInjection.scala:287:17, :288:15]
wire _queueValid_T_77 = _queueValid_T_76 | _queueValid_T_29; // @[L2MemHelperLatencyInjection.scala:287:17, :288:15]
wire _queueValid_T_78 = _queueValid_T_77 | _queueValid_T_31; // @[L2MemHelperLatencyInjection.scala:287:17, :288:15]
wire _queueValid_T_79 = _queueValid_T_78 | _queueValid_T_33; // @[L2MemHelperLatencyInjection.scala:287:17, :288:15]
wire _queueValid_T_80 = _queueValid_T_79 | _queueValid_T_35; // @[L2MemHelperLatencyInjection.scala:287:17, :288:15]
wire _queueValid_T_81 = _queueValid_T_80 | _queueValid_T_37; // @[L2MemHelperLatencyInjection.scala:287:17, :288:15]
wire _queueValid_T_82 = _queueValid_T_81 | _queueValid_T_39; // @[L2MemHelperLatencyInjection.scala:287:17, :288:15]
wire _queueValid_T_83 = _queueValid_T_82 | _queueValid_T_41; // @[L2MemHelperLatencyInjection.scala:287:17, :288:15]
wire _queueValid_T_84 = _queueValid_T_83 | _queueValid_T_43; // @[L2MemHelperLatencyInjection.scala:287:17, :288:15]
wire _queueValid_T_85 = _queueValid_T_84 | _queueValid_T_45; // @[L2MemHelperLatencyInjection.scala:287:17, :288:15]
wire _queueValid_T_86 = _queueValid_T_85 | _queueValid_T_47; // @[L2MemHelperLatencyInjection.scala:287:17, :288:15]
wire _queueValid_T_87 = _queueValid_T_86 | _queueValid_T_49; // @[L2MemHelperLatencyInjection.scala:287:17, :288:15]
wire _queueValid_T_88 = _queueValid_T_87 | _queueValid_T_51; // @[L2MemHelperLatencyInjection.scala:287:17, :288:15]
wire _queueValid_T_89 = _queueValid_T_88 | _queueValid_T_53; // @[L2MemHelperLatencyInjection.scala:287:17, :288:15]
wire _queueValid_T_90 = _queueValid_T_89 | _queueValid_T_55; // @[L2MemHelperLatencyInjection.scala:287:17, :288:15]
wire _queueValid_T_91 = _queueValid_T_90 | _queueValid_T_57; // @[L2MemHelperLatencyInjection.scala:287:17, :288:15]
wire _queueValid_T_92 = _queueValid_T_91 | _queueValid_T_59; // @[L2MemHelperLatencyInjection.scala:287:17, :288:15]
wire _queueValid_T_93 = _queueValid_T_92 | _queueValid_T_61; // @[L2MemHelperLatencyInjection.scala:287:17, :288:15]
wire queueValid = _queueValid_T_93 | _queueValid_T_63; // @[L2MemHelperLatencyInjection.scala:287:17, :288:15]
wire [255:0] resultdata_data; // @[L2MemHelperLatencyInjection.scala:300:20]
wire [7:0] _GEN_12 = {_outstanding_req_addr_io_deq_bits_addrindex, 3'h0}; // @[L2MemHelperLatencyInjection.scala:91:36, :302:78]
wire [7:0] _resultdata_data_T; // @[L2MemHelperLatencyInjection.scala:302:78]
assign _resultdata_data_T = _GEN_12; // @[L2MemHelperLatencyInjection.scala:302:78]
wire [7:0] _resultdata_data_T_2; // @[L2MemHelperLatencyInjection.scala:302:78]
assign _resultdata_data_T_2 = _GEN_12; // @[L2MemHelperLatencyInjection.scala:302:78]
wire [7:0] _resultdata_data_T_4; // @[L2MemHelperLatencyInjection.scala:302:78]
assign _resultdata_data_T_4 = _GEN_12; // @[L2MemHelperLatencyInjection.scala:302:78]
wire [7:0] _resultdata_data_T_6; // @[L2MemHelperLatencyInjection.scala:302:78]
assign _resultdata_data_T_6 = _GEN_12; // @[L2MemHelperLatencyInjection.scala:302:78]
wire [7:0] _resultdata_data_T_8; // @[L2MemHelperLatencyInjection.scala:302:78]
assign _resultdata_data_T_8 = _GEN_12; // @[L2MemHelperLatencyInjection.scala:302:78]
wire [7:0] _resultdata_data_T_10; // @[L2MemHelperLatencyInjection.scala:302:78]
assign _resultdata_data_T_10 = _GEN_12; // @[L2MemHelperLatencyInjection.scala:302:78]
wire [7:0] _resultdata_data_T_12; // @[L2MemHelperLatencyInjection.scala:302:78]
assign _resultdata_data_T_12 = _GEN_12; // @[L2MemHelperLatencyInjection.scala:302:78]
wire [7:0] _resultdata_data_T_14; // @[L2MemHelperLatencyInjection.scala:302:78]
assign _resultdata_data_T_14 = _GEN_12; // @[L2MemHelperLatencyInjection.scala:302:78]
wire [7:0] _resultdata_data_T_16; // @[L2MemHelperLatencyInjection.scala:302:78]
assign _resultdata_data_T_16 = _GEN_12; // @[L2MemHelperLatencyInjection.scala:302:78]
wire [7:0] _resultdata_data_T_18; // @[L2MemHelperLatencyInjection.scala:302:78]
assign _resultdata_data_T_18 = _GEN_12; // @[L2MemHelperLatencyInjection.scala:302:78]
wire [7:0] _resultdata_data_T_20; // @[L2MemHelperLatencyInjection.scala:302:78]
assign _resultdata_data_T_20 = _GEN_12; // @[L2MemHelperLatencyInjection.scala:302:78]
wire [7:0] _resultdata_data_T_22; // @[L2MemHelperLatencyInjection.scala:302:78]
assign _resultdata_data_T_22 = _GEN_12; // @[L2MemHelperLatencyInjection.scala:302:78]
wire [7:0] _resultdata_data_T_24; // @[L2MemHelperLatencyInjection.scala:302:78]
assign _resultdata_data_T_24 = _GEN_12; // @[L2MemHelperLatencyInjection.scala:302:78]
wire [7:0] _resultdata_data_T_26; // @[L2MemHelperLatencyInjection.scala:302:78]
assign _resultdata_data_T_26 = _GEN_12; // @[L2MemHelperLatencyInjection.scala:302:78]
wire [7:0] _resultdata_data_T_28; // @[L2MemHelperLatencyInjection.scala:302:78]
assign _resultdata_data_T_28 = _GEN_12; // @[L2MemHelperLatencyInjection.scala:302:78]
wire [7:0] _resultdata_data_T_30; // @[L2MemHelperLatencyInjection.scala:302:78]
assign _resultdata_data_T_30 = _GEN_12; // @[L2MemHelperLatencyInjection.scala:302:78]
wire [7:0] _resultdata_data_T_32; // @[L2MemHelperLatencyInjection.scala:302:78]
assign _resultdata_data_T_32 = _GEN_12; // @[L2MemHelperLatencyInjection.scala:302:78]
wire [7:0] _resultdata_data_T_34; // @[L2MemHelperLatencyInjection.scala:302:78]
assign _resultdata_data_T_34 = _GEN_12; // @[L2MemHelperLatencyInjection.scala:302:78]
wire [7:0] _resultdata_data_T_36; // @[L2MemHelperLatencyInjection.scala:302:78]
assign _resultdata_data_T_36 = _GEN_12; // @[L2MemHelperLatencyInjection.scala:302:78]
wire [7:0] _resultdata_data_T_38; // @[L2MemHelperLatencyInjection.scala:302:78]
assign _resultdata_data_T_38 = _GEN_12; // @[L2MemHelperLatencyInjection.scala:302:78]
wire [7:0] _resultdata_data_T_40; // @[L2MemHelperLatencyInjection.scala:302:78]
assign _resultdata_data_T_40 = _GEN_12; // @[L2MemHelperLatencyInjection.scala:302:78]
wire [7:0] _resultdata_data_T_42; // @[L2MemHelperLatencyInjection.scala:302:78]
assign _resultdata_data_T_42 = _GEN_12; // @[L2MemHelperLatencyInjection.scala:302:78]
wire [7:0] _resultdata_data_T_44; // @[L2MemHelperLatencyInjection.scala:302:78]
assign _resultdata_data_T_44 = _GEN_12; // @[L2MemHelperLatencyInjection.scala:302:78]
wire [7:0] _resultdata_data_T_46; // @[L2MemHelperLatencyInjection.scala:302:78]
assign _resultdata_data_T_46 = _GEN_12; // @[L2MemHelperLatencyInjection.scala:302:78]
wire [7:0] _resultdata_data_T_48; // @[L2MemHelperLatencyInjection.scala:302:78]
assign _resultdata_data_T_48 = _GEN_12; // @[L2MemHelperLatencyInjection.scala:302:78]
wire [7:0] _resultdata_data_T_50; // @[L2MemHelperLatencyInjection.scala:302:78]
assign _resultdata_data_T_50 = _GEN_12; // @[L2MemHelperLatencyInjection.scala:302:78]
wire [7:0] _resultdata_data_T_52; // @[L2MemHelperLatencyInjection.scala:302:78]
assign _resultdata_data_T_52 = _GEN_12; // @[L2MemHelperLatencyInjection.scala:302:78]
wire [7:0] _resultdata_data_T_54; // @[L2MemHelperLatencyInjection.scala:302:78]
assign _resultdata_data_T_54 = _GEN_12; // @[L2MemHelperLatencyInjection.scala:302:78]
wire [7:0] _resultdata_data_T_56; // @[L2MemHelperLatencyInjection.scala:302:78]
assign _resultdata_data_T_56 = _GEN_12; // @[L2MemHelperLatencyInjection.scala:302:78]
wire [7:0] _resultdata_data_T_58; // @[L2MemHelperLatencyInjection.scala:302:78]
assign _resultdata_data_T_58 = _GEN_12; // @[L2MemHelperLatencyInjection.scala:302:78]
wire [7:0] _resultdata_data_T_60; // @[L2MemHelperLatencyInjection.scala:302:78]
assign _resultdata_data_T_60 = _GEN_12; // @[L2MemHelperLatencyInjection.scala:302:78]
wire [7:0] _resultdata_data_T_62; // @[L2MemHelperLatencyInjection.scala:302:78]
assign _resultdata_data_T_62 = _GEN_12; // @[L2MemHelperLatencyInjection.scala:302:78]
wire [255:0] _resultdata_data_T_1 = _Queue4_L2RespInternal_io_deq_bits_data >> _resultdata_data_T; // @[L2MemHelperLatencyInjection.scala:182:11, :302:{31,78}]
assign resultdata_data = resultdata_is_current_q ? _resultdata_data_T_1 : 256'h0; // @[L2MemHelperLatencyInjection.scala:299:31, :300:20, :301:25, :302:{12,31}, :304:12]
wire [255:0] resultdata_data_1; // @[L2MemHelperLatencyInjection.scala:300:20]
wire [255:0] _resultdata_data_T_3 = _Queue4_L2RespInternal_1_io_deq_bits_data >> _resultdata_data_T_2; // @[L2MemHelperLatencyInjection.scala:182:11, :302:{31,78}]
assign resultdata_data_1 = resultdata_is_current_q_1 ? _resultdata_data_T_3 : 256'h0; // @[L2MemHelperLatencyInjection.scala:299:31, :300:20, :301:25, :302:{12,31}, :304:12]
wire [255:0] resultdata_data_2; // @[L2MemHelperLatencyInjection.scala:300:20]
wire [255:0] _resultdata_data_T_5 = _Queue4_L2RespInternal_2_io_deq_bits_data >> _resultdata_data_T_4; // @[L2MemHelperLatencyInjection.scala:182:11, :302:{31,78}]
assign resultdata_data_2 = resultdata_is_current_q_2 ? _resultdata_data_T_5 : 256'h0; // @[L2MemHelperLatencyInjection.scala:299:31, :300:20, :301:25, :302:{12,31}, :304:12]
wire [255:0] resultdata_data_3; // @[L2MemHelperLatencyInjection.scala:300:20]
wire [255:0] _resultdata_data_T_7 = _Queue4_L2RespInternal_3_io_deq_bits_data >> _resultdata_data_T_6; // @[L2MemHelperLatencyInjection.scala:182:11, :302:{31,78}]
assign resultdata_data_3 = resultdata_is_current_q_3 ? _resultdata_data_T_7 : 256'h0; // @[L2MemHelperLatencyInjection.scala:299:31, :300:20, :301:25, :302:{12,31}, :304:12]
wire [255:0] resultdata_data_4; // @[L2MemHelperLatencyInjection.scala:300:20]
wire [255:0] _resultdata_data_T_9 = _Queue4_L2RespInternal_4_io_deq_bits_data >> _resultdata_data_T_8; // @[L2MemHelperLatencyInjection.scala:182:11, :302:{31,78}]
assign resultdata_data_4 = resultdata_is_current_q_4 ? _resultdata_data_T_9 : 256'h0; // @[L2MemHelperLatencyInjection.scala:299:31, :300:20, :301:25, :302:{12,31}, :304:12]
wire [255:0] resultdata_data_5; // @[L2MemHelperLatencyInjection.scala:300:20]
wire [255:0] _resultdata_data_T_11 = _Queue4_L2RespInternal_5_io_deq_bits_data >> _resultdata_data_T_10; // @[L2MemHelperLatencyInjection.scala:182:11, :302:{31,78}]
assign resultdata_data_5 = resultdata_is_current_q_5 ? _resultdata_data_T_11 : 256'h0; // @[L2MemHelperLatencyInjection.scala:299:31, :300:20, :301:25, :302:{12,31}, :304:12]
wire [255:0] resultdata_data_6; // @[L2MemHelperLatencyInjection.scala:300:20]
wire [255:0] _resultdata_data_T_13 = _Queue4_L2RespInternal_6_io_deq_bits_data >> _resultdata_data_T_12; // @[L2MemHelperLatencyInjection.scala:182:11, :302:{31,78}]
assign resultdata_data_6 = resultdata_is_current_q_6 ? _resultdata_data_T_13 : 256'h0; // @[L2MemHelperLatencyInjection.scala:299:31, :300:20, :301:25, :302:{12,31}, :304:12]
wire [255:0] resultdata_data_7; // @[L2MemHelperLatencyInjection.scala:300:20]
wire [255:0] _resultdata_data_T_15 = _Queue4_L2RespInternal_7_io_deq_bits_data >> _resultdata_data_T_14; // @[L2MemHelperLatencyInjection.scala:182:11, :302:{31,78}]
assign resultdata_data_7 = resultdata_is_current_q_7 ? _resultdata_data_T_15 : 256'h0; // @[L2MemHelperLatencyInjection.scala:299:31, :300:20, :301:25, :302:{12,31}, :304:12]
wire [255:0] resultdata_data_8; // @[L2MemHelperLatencyInjection.scala:300:20]
wire [255:0] _resultdata_data_T_17 = _Queue4_L2RespInternal_8_io_deq_bits_data >> _resultdata_data_T_16; // @[L2MemHelperLatencyInjection.scala:182:11, :302:{31,78}]
assign resultdata_data_8 = resultdata_is_current_q_8 ? _resultdata_data_T_17 : 256'h0; // @[L2MemHelperLatencyInjection.scala:299:31, :300:20, :301:25, :302:{12,31}, :304:12]
wire [255:0] resultdata_data_9; // @[L2MemHelperLatencyInjection.scala:300:20]
wire [255:0] _resultdata_data_T_19 = _Queue4_L2RespInternal_9_io_deq_bits_data >> _resultdata_data_T_18; // @[L2MemHelperLatencyInjection.scala:182:11, :302:{31,78}]
assign resultdata_data_9 = resultdata_is_current_q_9 ? _resultdata_data_T_19 : 256'h0; // @[L2MemHelperLatencyInjection.scala:299:31, :300:20, :301:25, :302:{12,31}, :304:12]
wire [255:0] resultdata_data_10; // @[L2MemHelperLatencyInjection.scala:300:20]
wire [255:0] _resultdata_data_T_21 = _Queue4_L2RespInternal_10_io_deq_bits_data >> _resultdata_data_T_20; // @[L2MemHelperLatencyInjection.scala:182:11, :302:{31,78}]
assign resultdata_data_10 = resultdata_is_current_q_10 ? _resultdata_data_T_21 : 256'h0; // @[L2MemHelperLatencyInjection.scala:299:31, :300:20, :301:25, :302:{12,31}, :304:12]
wire [255:0] resultdata_data_11; // @[L2MemHelperLatencyInjection.scala:300:20]
wire [255:0] _resultdata_data_T_23 = _Queue4_L2RespInternal_11_io_deq_bits_data >> _resultdata_data_T_22; // @[L2MemHelperLatencyInjection.scala:182:11, :302:{31,78}]
assign resultdata_data_11 = resultdata_is_current_q_11 ? _resultdata_data_T_23 : 256'h0; // @[L2MemHelperLatencyInjection.scala:299:31, :300:20, :301:25, :302:{12,31}, :304:12]
wire [255:0] resultdata_data_12; // @[L2MemHelperLatencyInjection.scala:300:20]
wire [255:0] _resultdata_data_T_25 = _Queue4_L2RespInternal_12_io_deq_bits_data >> _resultdata_data_T_24; // @[L2MemHelperLatencyInjection.scala:182:11, :302:{31,78}]
assign resultdata_data_12 = resultdata_is_current_q_12 ? _resultdata_data_T_25 : 256'h0; // @[L2MemHelperLatencyInjection.scala:299:31, :300:20, :301:25, :302:{12,31}, :304:12]
wire [255:0] resultdata_data_13; // @[L2MemHelperLatencyInjection.scala:300:20]
wire [255:0] _resultdata_data_T_27 = _Queue4_L2RespInternal_13_io_deq_bits_data >> _resultdata_data_T_26; // @[L2MemHelperLatencyInjection.scala:182:11, :302:{31,78}]
assign resultdata_data_13 = resultdata_is_current_q_13 ? _resultdata_data_T_27 : 256'h0; // @[L2MemHelperLatencyInjection.scala:299:31, :300:20, :301:25, :302:{12,31}, :304:12]
wire [255:0] resultdata_data_14; // @[L2MemHelperLatencyInjection.scala:300:20]
wire [255:0] _resultdata_data_T_29 = _Queue4_L2RespInternal_14_io_deq_bits_data >> _resultdata_data_T_28; // @[L2MemHelperLatencyInjection.scala:182:11, :302:{31,78}]
assign resultdata_data_14 = resultdata_is_current_q_14 ? _resultdata_data_T_29 : 256'h0; // @[L2MemHelperLatencyInjection.scala:299:31, :300:20, :301:25, :302:{12,31}, :304:12]
wire [255:0] resultdata_data_15; // @[L2MemHelperLatencyInjection.scala:300:20]
wire [255:0] _resultdata_data_T_31 = _Queue4_L2RespInternal_15_io_deq_bits_data >> _resultdata_data_T_30; // @[L2MemHelperLatencyInjection.scala:182:11, :302:{31,78}]
assign resultdata_data_15 = resultdata_is_current_q_15 ? _resultdata_data_T_31 : 256'h0; // @[L2MemHelperLatencyInjection.scala:299:31, :300:20, :301:25, :302:{12,31}, :304:12]
wire [255:0] resultdata_data_16; // @[L2MemHelperLatencyInjection.scala:300:20]
wire [255:0] _resultdata_data_T_33 = _Queue4_L2RespInternal_16_io_deq_bits_data >> _resultdata_data_T_32; // @[L2MemHelperLatencyInjection.scala:182:11, :302:{31,78}]
assign resultdata_data_16 = resultdata_is_current_q_16 ? _resultdata_data_T_33 : 256'h0; // @[L2MemHelperLatencyInjection.scala:299:31, :300:20, :301:25, :302:{12,31}, :304:12]
wire [255:0] resultdata_data_17; // @[L2MemHelperLatencyInjection.scala:300:20]
wire [255:0] _resultdata_data_T_35 = _Queue4_L2RespInternal_17_io_deq_bits_data >> _resultdata_data_T_34; // @[L2MemHelperLatencyInjection.scala:182:11, :302:{31,78}]
assign resultdata_data_17 = resultdata_is_current_q_17 ? _resultdata_data_T_35 : 256'h0; // @[L2MemHelperLatencyInjection.scala:299:31, :300:20, :301:25, :302:{12,31}, :304:12]
wire [255:0] resultdata_data_18; // @[L2MemHelperLatencyInjection.scala:300:20]
wire [255:0] _resultdata_data_T_37 = _Queue4_L2RespInternal_18_io_deq_bits_data >> _resultdata_data_T_36; // @[L2MemHelperLatencyInjection.scala:182:11, :302:{31,78}]
assign resultdata_data_18 = resultdata_is_current_q_18 ? _resultdata_data_T_37 : 256'h0; // @[L2MemHelperLatencyInjection.scala:299:31, :300:20, :301:25, :302:{12,31}, :304:12]
wire [255:0] resultdata_data_19; // @[L2MemHelperLatencyInjection.scala:300:20]
wire [255:0] _resultdata_data_T_39 = _Queue4_L2RespInternal_19_io_deq_bits_data >> _resultdata_data_T_38; // @[L2MemHelperLatencyInjection.scala:182:11, :302:{31,78}]
assign resultdata_data_19 = resultdata_is_current_q_19 ? _resultdata_data_T_39 : 256'h0; // @[L2MemHelperLatencyInjection.scala:299:31, :300:20, :301:25, :302:{12,31}, :304:12]
wire [255:0] resultdata_data_20; // @[L2MemHelperLatencyInjection.scala:300:20]
wire [255:0] _resultdata_data_T_41 = _Queue4_L2RespInternal_20_io_deq_bits_data >> _resultdata_data_T_40; // @[L2MemHelperLatencyInjection.scala:182:11, :302:{31,78}]
assign resultdata_data_20 = resultdata_is_current_q_20 ? _resultdata_data_T_41 : 256'h0; // @[L2MemHelperLatencyInjection.scala:299:31, :300:20, :301:25, :302:{12,31}, :304:12]
wire [255:0] resultdata_data_21; // @[L2MemHelperLatencyInjection.scala:300:20]
wire [255:0] _resultdata_data_T_43 = _Queue4_L2RespInternal_21_io_deq_bits_data >> _resultdata_data_T_42; // @[L2MemHelperLatencyInjection.scala:182:11, :302:{31,78}]
assign resultdata_data_21 = resultdata_is_current_q_21 ? _resultdata_data_T_43 : 256'h0; // @[L2MemHelperLatencyInjection.scala:299:31, :300:20, :301:25, :302:{12,31}, :304:12]
wire [255:0] resultdata_data_22; // @[L2MemHelperLatencyInjection.scala:300:20]
wire [255:0] _resultdata_data_T_45 = _Queue4_L2RespInternal_22_io_deq_bits_data >> _resultdata_data_T_44; // @[L2MemHelperLatencyInjection.scala:182:11, :302:{31,78}]
assign resultdata_data_22 = resultdata_is_current_q_22 ? _resultdata_data_T_45 : 256'h0; // @[L2MemHelperLatencyInjection.scala:299:31, :300:20, :301:25, :302:{12,31}, :304:12]
wire [255:0] resultdata_data_23; // @[L2MemHelperLatencyInjection.scala:300:20]
wire [255:0] _resultdata_data_T_47 = _Queue4_L2RespInternal_23_io_deq_bits_data >> _resultdata_data_T_46; // @[L2MemHelperLatencyInjection.scala:182:11, :302:{31,78}]
assign resultdata_data_23 = resultdata_is_current_q_23 ? _resultdata_data_T_47 : 256'h0; // @[L2MemHelperLatencyInjection.scala:299:31, :300:20, :301:25, :302:{12,31}, :304:12]
wire [255:0] resultdata_data_24; // @[L2MemHelperLatencyInjection.scala:300:20]
wire [255:0] _resultdata_data_T_49 = _Queue4_L2RespInternal_24_io_deq_bits_data >> _resultdata_data_T_48; // @[L2MemHelperLatencyInjection.scala:182:11, :302:{31,78}]
assign resultdata_data_24 = resultdata_is_current_q_24 ? _resultdata_data_T_49 : 256'h0; // @[L2MemHelperLatencyInjection.scala:299:31, :300:20, :301:25, :302:{12,31}, :304:12]
wire [255:0] resultdata_data_25; // @[L2MemHelperLatencyInjection.scala:300:20]
wire [255:0] _resultdata_data_T_51 = _Queue4_L2RespInternal_25_io_deq_bits_data >> _resultdata_data_T_50; // @[L2MemHelperLatencyInjection.scala:182:11, :302:{31,78}]
assign resultdata_data_25 = resultdata_is_current_q_25 ? _resultdata_data_T_51 : 256'h0; // @[L2MemHelperLatencyInjection.scala:299:31, :300:20, :301:25, :302:{12,31}, :304:12]
wire [255:0] resultdata_data_26; // @[L2MemHelperLatencyInjection.scala:300:20]
wire [255:0] _resultdata_data_T_53 = _Queue4_L2RespInternal_26_io_deq_bits_data >> _resultdata_data_T_52; // @[L2MemHelperLatencyInjection.scala:182:11, :302:{31,78}]
assign resultdata_data_26 = resultdata_is_current_q_26 ? _resultdata_data_T_53 : 256'h0; // @[L2MemHelperLatencyInjection.scala:299:31, :300:20, :301:25, :302:{12,31}, :304:12]
wire [255:0] resultdata_data_27; // @[L2MemHelperLatencyInjection.scala:300:20]
wire [255:0] _resultdata_data_T_55 = _Queue4_L2RespInternal_27_io_deq_bits_data >> _resultdata_data_T_54; // @[L2MemHelperLatencyInjection.scala:182:11, :302:{31,78}]
assign resultdata_data_27 = resultdata_is_current_q_27 ? _resultdata_data_T_55 : 256'h0; // @[L2MemHelperLatencyInjection.scala:299:31, :300:20, :301:25, :302:{12,31}, :304:12]
wire [255:0] resultdata_data_28; // @[L2MemHelperLatencyInjection.scala:300:20]
wire [255:0] _resultdata_data_T_57 = _Queue4_L2RespInternal_28_io_deq_bits_data >> _resultdata_data_T_56; // @[L2MemHelperLatencyInjection.scala:182:11, :302:{31,78}]
assign resultdata_data_28 = resultdata_is_current_q_28 ? _resultdata_data_T_57 : 256'h0; // @[L2MemHelperLatencyInjection.scala:299:31, :300:20, :301:25, :302:{12,31}, :304:12]
wire [255:0] resultdata_data_29; // @[L2MemHelperLatencyInjection.scala:300:20]
wire [255:0] _resultdata_data_T_59 = _Queue4_L2RespInternal_29_io_deq_bits_data >> _resultdata_data_T_58; // @[L2MemHelperLatencyInjection.scala:182:11, :302:{31,78}]
assign resultdata_data_29 = resultdata_is_current_q_29 ? _resultdata_data_T_59 : 256'h0; // @[L2MemHelperLatencyInjection.scala:299:31, :300:20, :301:25, :302:{12,31}, :304:12]
wire [255:0] resultdata_data_30; // @[L2MemHelperLatencyInjection.scala:300:20]
wire [255:0] _resultdata_data_T_61 = _Queue4_L2RespInternal_30_io_deq_bits_data >> _resultdata_data_T_60; // @[L2MemHelperLatencyInjection.scala:182:11, :302:{31,78}]
assign resultdata_data_30 = resultdata_is_current_q_30 ? _resultdata_data_T_61 : 256'h0; // @[L2MemHelperLatencyInjection.scala:299:31, :300:20, :301:25, :302:{12,31}, :304:12]
wire resultdata_is_current_q_31 = &_outstanding_req_addr_io_deq_bits_tag; // @[L2MemHelperLatencyInjection.scala:91:36, :287:27, :299:31]
wire [255:0] resultdata_data_31; // @[L2MemHelperLatencyInjection.scala:300:20]
wire [255:0] _resultdata_data_T_63 = _Queue4_L2RespInternal_31_io_deq_bits_data >> _resultdata_data_T_62; // @[L2MemHelperLatencyInjection.scala:182:11, :302:{31,78}]
assign resultdata_data_31 = resultdata_is_current_q_31 ? _resultdata_data_T_63 : 256'h0; // @[L2MemHelperLatencyInjection.scala:299:31, :300:20, :301:25, :302:{12,31}, :304:12]
wire [255:0] _resultdata_T = resultdata_data | resultdata_data_1; // @[L2MemHelperLatencyInjection.scala:300:20, :307:15]
wire [255:0] _resultdata_T_1 = _resultdata_T | resultdata_data_2; // @[L2MemHelperLatencyInjection.scala:300:20, :307:15]
wire [255:0] _resultdata_T_2 = _resultdata_T_1 | resultdata_data_3; // @[L2MemHelperLatencyInjection.scala:300:20, :307:15]
wire [255:0] _resultdata_T_3 = _resultdata_T_2 | resultdata_data_4; // @[L2MemHelperLatencyInjection.scala:300:20, :307:15]
wire [255:0] _resultdata_T_4 = _resultdata_T_3 | resultdata_data_5; // @[L2MemHelperLatencyInjection.scala:300:20, :307:15]
wire [255:0] _resultdata_T_5 = _resultdata_T_4 | resultdata_data_6; // @[L2MemHelperLatencyInjection.scala:300:20, :307:15]
wire [255:0] _resultdata_T_6 = _resultdata_T_5 | resultdata_data_7; // @[L2MemHelperLatencyInjection.scala:300:20, :307:15]
wire [255:0] _resultdata_T_7 = _resultdata_T_6 | resultdata_data_8; // @[L2MemHelperLatencyInjection.scala:300:20, :307:15]
wire [255:0] _resultdata_T_8 = _resultdata_T_7 | resultdata_data_9; // @[L2MemHelperLatencyInjection.scala:300:20, :307:15]
wire [255:0] _resultdata_T_9 = _resultdata_T_8 | resultdata_data_10; // @[L2MemHelperLatencyInjection.scala:300:20, :307:15]
wire [255:0] _resultdata_T_10 = _resultdata_T_9 | resultdata_data_11; // @[L2MemHelperLatencyInjection.scala:300:20, :307:15]
wire [255:0] _resultdata_T_11 = _resultdata_T_10 | resultdata_data_12; // @[L2MemHelperLatencyInjection.scala:300:20, :307:15]
wire [255:0] _resultdata_T_12 = _resultdata_T_11 | resultdata_data_13; // @[L2MemHelperLatencyInjection.scala:300:20, :307:15]
wire [255:0] _resultdata_T_13 = _resultdata_T_12 | resultdata_data_14; // @[L2MemHelperLatencyInjection.scala:300:20, :307:15]
wire [255:0] _resultdata_T_14 = _resultdata_T_13 | resultdata_data_15; // @[L2MemHelperLatencyInjection.scala:300:20, :307:15]
wire [255:0] _resultdata_T_15 = _resultdata_T_14 | resultdata_data_16; // @[L2MemHelperLatencyInjection.scala:300:20, :307:15]
wire [255:0] _resultdata_T_16 = _resultdata_T_15 | resultdata_data_17; // @[L2MemHelperLatencyInjection.scala:300:20, :307:15]
wire [255:0] _resultdata_T_17 = _resultdata_T_16 | resultdata_data_18; // @[L2MemHelperLatencyInjection.scala:300:20, :307:15]
wire [255:0] _resultdata_T_18 = _resultdata_T_17 | resultdata_data_19; // @[L2MemHelperLatencyInjection.scala:300:20, :307:15]
wire [255:0] _resultdata_T_19 = _resultdata_T_18 | resultdata_data_20; // @[L2MemHelperLatencyInjection.scala:300:20, :307:15]
wire [255:0] _resultdata_T_20 = _resultdata_T_19 | resultdata_data_21; // @[L2MemHelperLatencyInjection.scala:300:20, :307:15]
wire [255:0] _resultdata_T_21 = _resultdata_T_20 | resultdata_data_22; // @[L2MemHelperLatencyInjection.scala:300:20, :307:15]
wire [255:0] _resultdata_T_22 = _resultdata_T_21 | resultdata_data_23; // @[L2MemHelperLatencyInjection.scala:300:20, :307:15]
wire [255:0] _resultdata_T_23 = _resultdata_T_22 | resultdata_data_24; // @[L2MemHelperLatencyInjection.scala:300:20, :307:15]
wire [255:0] _resultdata_T_24 = _resultdata_T_23 | resultdata_data_25; // @[L2MemHelperLatencyInjection.scala:300:20, :307:15]
wire [255:0] _resultdata_T_25 = _resultdata_T_24 | resultdata_data_26; // @[L2MemHelperLatencyInjection.scala:300:20, :307:15]
wire [255:0] _resultdata_T_26 = _resultdata_T_25 | resultdata_data_27; // @[L2MemHelperLatencyInjection.scala:300:20, :307:15]
wire [255:0] _resultdata_T_27 = _resultdata_T_26 | resultdata_data_28; // @[L2MemHelperLatencyInjection.scala:300:20, :307:15]
wire [255:0] _resultdata_T_28 = _resultdata_T_27 | resultdata_data_29; // @[L2MemHelperLatencyInjection.scala:300:20, :307:15]
wire [255:0] _resultdata_T_29 = _resultdata_T_28 | resultdata_data_30; // @[L2MemHelperLatencyInjection.scala:300:20, :307:15]
assign resultdata = _resultdata_T_29 | resultdata_data_31; // @[L2MemHelperLatencyInjection.scala:300:20, :307:15]
assign response_output_bits_data = resultdata; // @[L2MemHelperLatencyInjection.scala:53:29, :307:15]
assign _response_output_valid_T = queueValid & _outstanding_req_addr_io_deq_valid; // @[Misc.scala:26:53]
assign response_output_valid = _response_output_valid_T; // @[Misc.scala:26:53]
wire _outstanding_req_addr_io_deq_ready_T = queueValid & response_output_ready; // @[Misc.scala:26:53]
wire _T_252 = response_output_ready & _outstanding_req_addr_io_deq_valid; // @[Misc.scala:26:53]
wire opdata = masterNodeOut_d_bits_opcode[0]; // @[Edges.scala:106:36]
reg [63:0] loginfo_cycles_8; // @[Util.scala:18:33]
wire [64:0] _loginfo_cycles_T_16 = {1'h0, loginfo_cycles_8} + 65'h1; // @[Util.scala:18:33, :19:38]
wire [63:0] _loginfo_cycles_T_17 = _loginfo_cycles_T_16[63:0]; // @[Util.scala:19:38]
reg [63:0] loginfo_cycles_9; // @[Util.scala:18:33]
wire [64:0] _loginfo_cycles_T_18 = {1'h0, loginfo_cycles_9} + 65'h1; // @[Util.scala:18:33, :19:38]
wire [63:0] _loginfo_cycles_T_19 = _loginfo_cycles_T_18[63:0]; // @[Util.scala:19:38]
wire _T_270 = response_output_ready & response_output_valid; // @[Decoupled.scala:51:35]
reg [63:0] loginfo_cycles_10; // @[Util.scala:18:33]
wire [64:0] _loginfo_cycles_T_20 = {1'h0, loginfo_cycles_10} + 65'h1; // @[Util.scala:18:33, :19:38]
wire [63:0] _loginfo_cycles_T_21 = _loginfo_cycles_T_20[63:0]; // @[Util.scala:19:38] |
Generate the Verilog code corresponding to the following Chisel files.
File ShiftReg.scala:
// See LICENSE.SiFive for license details.
package freechips.rocketchip.util
import chisel3._
// Similar to the Chisel ShiftRegister but allows the user to suggest a
// name to the registers that get instantiated, and
// to provide a reset value.
object ShiftRegInit {
def apply[T <: Data](in: T, n: Int, init: T, name: Option[String] = None): T =
(0 until n).foldRight(in) {
case (i, next) => {
val r = RegNext(next, init)
name.foreach { na => r.suggestName(s"${na}_${i}") }
r
}
}
}
/** These wrap behavioral
* shift registers into specific modules to allow for
* backend flows to replace or constrain
* them properly when used for CDC synchronization,
* rather than buffering.
*
* The different types vary in their reset behavior:
* AsyncResetShiftReg -- Asynchronously reset register array
* A W(width) x D(depth) sized array is constructed from D instantiations of a
* W-wide register vector. Functionally identical to AsyncResetSyncrhonizerShiftReg,
* but only used for timing applications
*/
abstract class AbstractPipelineReg(w: Int = 1) extends Module {
val io = IO(new Bundle {
val d = Input(UInt(w.W))
val q = Output(UInt(w.W))
}
)
}
object AbstractPipelineReg {
def apply [T <: Data](gen: => AbstractPipelineReg, in: T, name: Option[String] = None): T = {
val chain = Module(gen)
name.foreach{ chain.suggestName(_) }
chain.io.d := in.asUInt
chain.io.q.asTypeOf(in)
}
}
class AsyncResetShiftReg(w: Int = 1, depth: Int = 1, init: Int = 0, name: String = "pipe") extends AbstractPipelineReg(w) {
require(depth > 0, "Depth must be greater than 0.")
override def desiredName = s"AsyncResetShiftReg_w${w}_d${depth}_i${init}"
val chain = List.tabulate(depth) { i =>
Module (new AsyncResetRegVec(w, init)).suggestName(s"${name}_${i}")
}
chain.last.io.d := io.d
chain.last.io.en := true.B
(chain.init zip chain.tail).foreach { case (sink, source) =>
sink.io.d := source.io.q
sink.io.en := true.B
}
io.q := chain.head.io.q
}
object AsyncResetShiftReg {
def apply [T <: Data](in: T, depth: Int, init: Int = 0, name: Option[String] = None): T =
AbstractPipelineReg(new AsyncResetShiftReg(in.getWidth, depth, init), in, name)
def apply [T <: Data](in: T, depth: Int, name: Option[String]): T =
apply(in, depth, 0, name)
def apply [T <: Data](in: T, depth: Int, init: T, name: Option[String]): T =
apply(in, depth, init.litValue.toInt, name)
def apply [T <: Data](in: T, depth: Int, init: T): T =
apply (in, depth, init.litValue.toInt, None)
}
File AsyncQueue.scala:
// See LICENSE.SiFive for license details.
package freechips.rocketchip.util
import chisel3._
import chisel3.util._
case class AsyncQueueParams(
depth: Int = 8,
sync: Int = 3,
safe: Boolean = true,
// If safe is true, then effort is made to resynchronize the crossing indices when either side is reset.
// This makes it safe/possible to reset one side of the crossing (but not the other) when the queue is empty.
narrow: Boolean = false)
// If narrow is true then the read mux is moved to the source side of the crossing.
// This reduces the number of level shifters in the case where the clock crossing is also a voltage crossing,
// at the expense of a combinational path from the sink to the source and back to the sink.
{
require (depth > 0 && isPow2(depth))
require (sync >= 2)
val bits = log2Ceil(depth)
val wires = if (narrow) 1 else depth
}
object AsyncQueueParams {
// When there is only one entry, we don't need narrow.
def singleton(sync: Int = 3, safe: Boolean = true) = AsyncQueueParams(1, sync, safe, false)
}
class AsyncBundleSafety extends Bundle {
val ridx_valid = Input (Bool())
val widx_valid = Output(Bool())
val source_reset_n = Output(Bool())
val sink_reset_n = Input (Bool())
}
class AsyncBundle[T <: Data](private val gen: T, val params: AsyncQueueParams = AsyncQueueParams()) extends Bundle {
// Data-path synchronization
val mem = Output(Vec(params.wires, gen))
val ridx = Input (UInt((params.bits+1).W))
val widx = Output(UInt((params.bits+1).W))
val index = params.narrow.option(Input(UInt(params.bits.W)))
// Signals used to self-stabilize a safe AsyncQueue
val safe = params.safe.option(new AsyncBundleSafety)
}
object GrayCounter {
def apply(bits: Int, increment: Bool = true.B, clear: Bool = false.B, name: String = "binary"): UInt = {
val incremented = Wire(UInt(bits.W))
val binary = RegNext(next=incremented, init=0.U).suggestName(name)
incremented := Mux(clear, 0.U, binary + increment.asUInt)
incremented ^ (incremented >> 1)
}
}
class AsyncValidSync(sync: Int, desc: String) extends RawModule {
val io = IO(new Bundle {
val in = Input(Bool())
val out = Output(Bool())
})
val clock = IO(Input(Clock()))
val reset = IO(Input(AsyncReset()))
withClockAndReset(clock, reset){
io.out := AsyncResetSynchronizerShiftReg(io.in, sync, Some(desc))
}
}
class AsyncQueueSource[T <: Data](gen: T, params: AsyncQueueParams = AsyncQueueParams()) extends Module {
override def desiredName = s"AsyncQueueSource_${gen.typeName}"
val io = IO(new Bundle {
// These come from the source domain
val enq = Flipped(Decoupled(gen))
// These cross to the sink clock domain
val async = new AsyncBundle(gen, params)
})
val bits = params.bits
val sink_ready = WireInit(true.B)
val mem = Reg(Vec(params.depth, gen)) // This does NOT need to be reset at all.
val widx = withReset(reset.asAsyncReset)(GrayCounter(bits+1, io.enq.fire, !sink_ready, "widx_bin"))
val ridx = AsyncResetSynchronizerShiftReg(io.async.ridx, params.sync, Some("ridx_gray"))
val ready = sink_ready && widx =/= (ridx ^ (params.depth | params.depth >> 1).U)
val index = if (bits == 0) 0.U else io.async.widx(bits-1, 0) ^ (io.async.widx(bits, bits) << (bits-1))
when (io.enq.fire) { mem(index) := io.enq.bits }
val ready_reg = withReset(reset.asAsyncReset)(RegNext(next=ready, init=false.B).suggestName("ready_reg"))
io.enq.ready := ready_reg && sink_ready
val widx_reg = withReset(reset.asAsyncReset)(RegNext(next=widx, init=0.U).suggestName("widx_gray"))
io.async.widx := widx_reg
io.async.index match {
case Some(index) => io.async.mem(0) := mem(index)
case None => io.async.mem := mem
}
io.async.safe.foreach { sio =>
val source_valid_0 = Module(new AsyncValidSync(params.sync, "source_valid_0"))
val source_valid_1 = Module(new AsyncValidSync(params.sync, "source_valid_1"))
val sink_extend = Module(new AsyncValidSync(params.sync, "sink_extend"))
val sink_valid = Module(new AsyncValidSync(params.sync, "sink_valid"))
source_valid_0.reset := (reset.asBool || !sio.sink_reset_n).asAsyncReset
source_valid_1.reset := (reset.asBool || !sio.sink_reset_n).asAsyncReset
sink_extend .reset := (reset.asBool || !sio.sink_reset_n).asAsyncReset
sink_valid .reset := reset.asAsyncReset
source_valid_0.clock := clock
source_valid_1.clock := clock
sink_extend .clock := clock
sink_valid .clock := clock
source_valid_0.io.in := true.B
source_valid_1.io.in := source_valid_0.io.out
sio.widx_valid := source_valid_1.io.out
sink_extend.io.in := sio.ridx_valid
sink_valid.io.in := sink_extend.io.out
sink_ready := sink_valid.io.out
sio.source_reset_n := !reset.asBool
// Assert that if there is stuff in the queue, then reset cannot happen
// Impossible to write because dequeue can occur on the receiving side,
// then reset allowed to happen, but write side cannot know that dequeue
// occurred.
// TODO: write some sort of sanity check assertion for users
// that denote don't reset when there is activity
// assert (!(reset || !sio.sink_reset_n) || !io.enq.valid, "Enqueue while sink is reset and AsyncQueueSource is unprotected")
// assert (!reset_rise || prev_idx_match.asBool, "Sink reset while AsyncQueueSource not empty")
}
}
class AsyncQueueSink[T <: Data](gen: T, params: AsyncQueueParams = AsyncQueueParams()) extends Module {
override def desiredName = s"AsyncQueueSink_${gen.typeName}"
val io = IO(new Bundle {
// These come from the sink domain
val deq = Decoupled(gen)
// These cross to the source clock domain
val async = Flipped(new AsyncBundle(gen, params))
})
val bits = params.bits
val source_ready = WireInit(true.B)
val ridx = withReset(reset.asAsyncReset)(GrayCounter(bits+1, io.deq.fire, !source_ready, "ridx_bin"))
val widx = AsyncResetSynchronizerShiftReg(io.async.widx, params.sync, Some("widx_gray"))
val valid = source_ready && ridx =/= widx
// The mux is safe because timing analysis ensures ridx has reached the register
// On an ASIC, changes to the unread location cannot affect the selected value
// On an FPGA, only one input changes at a time => mem updates don't cause glitches
// The register only latches when the selected valued is not being written
val index = if (bits == 0) 0.U else ridx(bits-1, 0) ^ (ridx(bits, bits) << (bits-1))
io.async.index.foreach { _ := index }
// This register does not NEED to be reset, as its contents will not
// be considered unless the asynchronously reset deq valid register is set.
// It is possible that bits latches when the source domain is reset / has power cut
// This is safe, because isolation gates brought mem low before the zeroed widx reached us
val deq_bits_nxt = io.async.mem(if (params.narrow) 0.U else index)
io.deq.bits := ClockCrossingReg(deq_bits_nxt, en = valid, doInit = false, name = Some("deq_bits_reg"))
val valid_reg = withReset(reset.asAsyncReset)(RegNext(next=valid, init=false.B).suggestName("valid_reg"))
io.deq.valid := valid_reg && source_ready
val ridx_reg = withReset(reset.asAsyncReset)(RegNext(next=ridx, init=0.U).suggestName("ridx_gray"))
io.async.ridx := ridx_reg
io.async.safe.foreach { sio =>
val sink_valid_0 = Module(new AsyncValidSync(params.sync, "sink_valid_0"))
val sink_valid_1 = Module(new AsyncValidSync(params.sync, "sink_valid_1"))
val source_extend = Module(new AsyncValidSync(params.sync, "source_extend"))
val source_valid = Module(new AsyncValidSync(params.sync, "source_valid"))
sink_valid_0 .reset := (reset.asBool || !sio.source_reset_n).asAsyncReset
sink_valid_1 .reset := (reset.asBool || !sio.source_reset_n).asAsyncReset
source_extend.reset := (reset.asBool || !sio.source_reset_n).asAsyncReset
source_valid .reset := reset.asAsyncReset
sink_valid_0 .clock := clock
sink_valid_1 .clock := clock
source_extend.clock := clock
source_valid .clock := clock
sink_valid_0.io.in := true.B
sink_valid_1.io.in := sink_valid_0.io.out
sio.ridx_valid := sink_valid_1.io.out
source_extend.io.in := sio.widx_valid
source_valid.io.in := source_extend.io.out
source_ready := source_valid.io.out
sio.sink_reset_n := !reset.asBool
// TODO: write some sort of sanity check assertion for users
// that denote don't reset when there is activity
//
// val reset_and_extend = !source_ready || !sio.source_reset_n || reset.asBool
// val reset_and_extend_prev = RegNext(reset_and_extend, true.B)
// val reset_rise = !reset_and_extend_prev && reset_and_extend
// val prev_idx_match = AsyncResetReg(updateData=(io.async.widx===io.async.ridx), resetData=0)
// assert (!reset_rise || prev_idx_match.asBool, "Source reset while AsyncQueueSink not empty")
}
}
object FromAsyncBundle
{
// Sometimes it makes sense for the sink to have different sync than the source
def apply[T <: Data](x: AsyncBundle[T]): DecoupledIO[T] = apply(x, x.params.sync)
def apply[T <: Data](x: AsyncBundle[T], sync: Int): DecoupledIO[T] = {
val sink = Module(new AsyncQueueSink(chiselTypeOf(x.mem(0)), x.params.copy(sync = sync)))
sink.io.async <> x
sink.io.deq
}
}
object ToAsyncBundle
{
def apply[T <: Data](x: ReadyValidIO[T], params: AsyncQueueParams = AsyncQueueParams()): AsyncBundle[T] = {
val source = Module(new AsyncQueueSource(chiselTypeOf(x.bits), params))
source.io.enq <> x
source.io.async
}
}
class AsyncQueue[T <: Data](gen: T, params: AsyncQueueParams = AsyncQueueParams()) extends Crossing[T] {
val io = IO(new CrossingIO(gen))
val source = withClockAndReset(io.enq_clock, io.enq_reset) { Module(new AsyncQueueSource(gen, params)) }
val sink = withClockAndReset(io.deq_clock, io.deq_reset) { Module(new AsyncQueueSink (gen, params)) }
source.io.enq <> io.enq
io.deq <> sink.io.deq
sink.io.async <> source.io.async
}
| module AsyncValidSync_178( // @[AsyncQueue.scala:58:7]
input io_in, // @[AsyncQueue.scala:59:14]
output io_out, // @[AsyncQueue.scala:59:14]
input clock, // @[AsyncQueue.scala:63:17]
input reset // @[AsyncQueue.scala:64:17]
);
wire io_in_0 = io_in; // @[AsyncQueue.scala:58:7]
wire _io_out_WIRE; // @[ShiftReg.scala:48:24]
wire io_out_0; // @[AsyncQueue.scala:58:7]
assign io_out_0 = _io_out_WIRE; // @[ShiftReg.scala:48:24]
AsyncResetSynchronizerShiftReg_w1_d3_i0_193 io_out_sink_extend ( // @[ShiftReg.scala:45:23]
.clock (clock),
.reset (reset),
.io_d (io_in_0), // @[AsyncQueue.scala:58:7]
.io_q (_io_out_WIRE)
); // @[ShiftReg.scala:45:23]
assign io_out = io_out_0; // @[AsyncQueue.scala:58:7]
endmodule |
Generate the Verilog code corresponding to the following Chisel files.
File ShiftRegisterPriorityQueue.scala:
package compressacc
import chisel3._
import chisel3.util._
import chisel3.util._
// TODO : support enq & deq at the same cycle
class PriorityQueueStageIO(keyWidth: Int, value: ValueInfo) extends Bundle {
val output_prev = KeyValue(keyWidth, value)
val output_nxt = KeyValue(keyWidth, value)
val input_prev = Flipped(KeyValue(keyWidth, value))
val input_nxt = Flipped(KeyValue(keyWidth, value))
val cmd = Flipped(Valid(UInt(1.W)))
val insert_here = Input(Bool())
val cur_input_keyval = Flipped(KeyValue(keyWidth, value))
val cur_output_keyval = KeyValue(keyWidth, value)
}
class PriorityQueueStage(keyWidth: Int, value: ValueInfo) extends Module {
val io = IO(new PriorityQueueStageIO(keyWidth, value))
dontTouch(io)
val CMD_DEQ = 0.U
val CMD_ENQ = 1.U
val MAX_VALUE = (1 << keyWidth) - 1
val key_reg = RegInit(MAX_VALUE.U(keyWidth.W))
val value_reg = Reg(value)
io.output_prev.key := key_reg
io.output_prev.value := value_reg
io.output_nxt.key := key_reg
io.output_nxt.value := value_reg
io.cur_output_keyval.key := key_reg
io.cur_output_keyval.value := value_reg
when (io.cmd.valid) {
switch (io.cmd.bits) {
is (CMD_DEQ) {
key_reg := io.input_nxt.key
value_reg := io.input_nxt.value
}
is (CMD_ENQ) {
when (io.insert_here) {
key_reg := io.cur_input_keyval.key
value_reg := io.cur_input_keyval.value
} .elsewhen (key_reg >= io.cur_input_keyval.key) {
key_reg := io.input_prev.key
value_reg := io.input_prev.value
} .otherwise {
// do nothing
}
}
}
}
}
object PriorityQueueStage {
def apply(keyWidth: Int, v: ValueInfo): PriorityQueueStage = new PriorityQueueStage(keyWidth, v)
}
// TODO
// - This design is not scalable as the enqued_keyval is broadcasted to all the stages
// - Add pipeline registers later
class PriorityQueueIO(queSize: Int, keyWidth: Int, value: ValueInfo) extends Bundle {
val cnt_bits = log2Ceil(queSize+1)
val counter = Output(UInt(cnt_bits.W))
val enq = Flipped(Decoupled(KeyValue(keyWidth, value)))
val deq = Decoupled(KeyValue(keyWidth, value))
}
class PriorityQueue(queSize: Int, keyWidth: Int, value: ValueInfo) extends Module {
val keyWidthInternal = keyWidth + 1
val CMD_DEQ = 0.U
val CMD_ENQ = 1.U
val io = IO(new PriorityQueueIO(queSize, keyWidthInternal, value))
dontTouch(io)
val MAX_VALUE = ((1 << keyWidthInternal) - 1).U
val cnt_bits = log2Ceil(queSize+1)
// do not consider cases where we are inserting more entries then the queSize
val counter = RegInit(0.U(cnt_bits.W))
io.counter := counter
val full = (counter === queSize.U)
val empty = (counter === 0.U)
io.deq.valid := !empty
io.enq.ready := !full
when (io.enq.fire) {
counter := counter + 1.U
}
when (io.deq.fire) {
counter := counter - 1.U
}
val cmd_valid = io.enq.valid || io.deq.ready
val cmd = Mux(io.enq.valid, CMD_ENQ, CMD_DEQ)
assert(!(io.enq.valid && io.deq.ready))
val stages = Seq.fill(queSize)(Module(new PriorityQueueStage(keyWidthInternal, value)))
for (i <- 0 until (queSize - 1)) {
stages(i+1).io.input_prev <> stages(i).io.output_nxt
stages(i).io.input_nxt <> stages(i+1).io.output_prev
}
stages(queSize-1).io.input_nxt.key := MAX_VALUE
// stages(queSize-1).io.input_nxt.value :=
stages(queSize-1).io.input_nxt.value.symbol := 0.U
// stages(queSize-1).io.input_nxt.value.child(0) := 0.U
// stages(queSize-1).io.input_nxt.value.child(1) := 0.U
stages(0).io.input_prev.key := io.enq.bits.key
stages(0).io.input_prev.value <> io.enq.bits.value
for (i <- 0 until queSize) {
stages(i).io.cmd.valid := cmd_valid
stages(i).io.cmd.bits := cmd
stages(i).io.cur_input_keyval <> io.enq.bits
}
val is_large_or_equal = WireInit(VecInit(Seq.fill(queSize)(false.B)))
for (i <- 0 until queSize) {
is_large_or_equal(i) := (stages(i).io.cur_output_keyval.key >= io.enq.bits.key)
}
val is_large_or_equal_cat = Wire(UInt(queSize.W))
is_large_or_equal_cat := Cat(is_large_or_equal.reverse)
val insert_here_idx = PriorityEncoder(is_large_or_equal_cat)
for (i <- 0 until queSize) {
when (i.U === insert_here_idx) {
stages(i).io.insert_here := true.B
} .otherwise {
stages(i).io.insert_here := false.B
}
}
io.deq.bits <> stages(0).io.output_prev
}
| module PriorityQueueStage_24( // @[ShiftRegisterPriorityQueue.scala:21:7]
input clock, // @[ShiftRegisterPriorityQueue.scala:21:7]
input reset, // @[ShiftRegisterPriorityQueue.scala:21:7]
output [30:0] io_output_prev_key, // @[ShiftRegisterPriorityQueue.scala:22:14]
output [9:0] io_output_prev_value_symbol, // @[ShiftRegisterPriorityQueue.scala:22:14]
output [30:0] io_output_nxt_key, // @[ShiftRegisterPriorityQueue.scala:22:14]
output [9:0] io_output_nxt_value_symbol, // @[ShiftRegisterPriorityQueue.scala:22:14]
input [30:0] io_input_prev_key, // @[ShiftRegisterPriorityQueue.scala:22:14]
input [9:0] io_input_prev_value_symbol, // @[ShiftRegisterPriorityQueue.scala:22:14]
input [30:0] io_input_nxt_key, // @[ShiftRegisterPriorityQueue.scala:22:14]
input [9:0] io_input_nxt_value_symbol, // @[ShiftRegisterPriorityQueue.scala:22:14]
input io_cmd_valid, // @[ShiftRegisterPriorityQueue.scala:22:14]
input io_cmd_bits, // @[ShiftRegisterPriorityQueue.scala:22:14]
input io_insert_here, // @[ShiftRegisterPriorityQueue.scala:22:14]
input [30:0] io_cur_input_keyval_key, // @[ShiftRegisterPriorityQueue.scala:22:14]
input [9:0] io_cur_input_keyval_value_symbol, // @[ShiftRegisterPriorityQueue.scala:22:14]
output [30:0] io_cur_output_keyval_key, // @[ShiftRegisterPriorityQueue.scala:22:14]
output [9:0] io_cur_output_keyval_value_symbol // @[ShiftRegisterPriorityQueue.scala:22:14]
);
wire [30:0] io_input_prev_key_0 = io_input_prev_key; // @[ShiftRegisterPriorityQueue.scala:21:7]
wire [9:0] io_input_prev_value_symbol_0 = io_input_prev_value_symbol; // @[ShiftRegisterPriorityQueue.scala:21:7]
wire [30:0] io_input_nxt_key_0 = io_input_nxt_key; // @[ShiftRegisterPriorityQueue.scala:21:7]
wire [9:0] io_input_nxt_value_symbol_0 = io_input_nxt_value_symbol; // @[ShiftRegisterPriorityQueue.scala:21:7]
wire io_cmd_valid_0 = io_cmd_valid; // @[ShiftRegisterPriorityQueue.scala:21:7]
wire io_cmd_bits_0 = io_cmd_bits; // @[ShiftRegisterPriorityQueue.scala:21:7]
wire io_insert_here_0 = io_insert_here; // @[ShiftRegisterPriorityQueue.scala:21:7]
wire [30:0] io_cur_input_keyval_key_0 = io_cur_input_keyval_key; // @[ShiftRegisterPriorityQueue.scala:21:7]
wire [9:0] io_cur_input_keyval_value_symbol_0 = io_cur_input_keyval_value_symbol; // @[ShiftRegisterPriorityQueue.scala:21:7]
wire [9:0] io_output_prev_value_symbol_0; // @[ShiftRegisterPriorityQueue.scala:21:7]
wire [30:0] io_output_prev_key_0; // @[ShiftRegisterPriorityQueue.scala:21:7]
wire [9:0] io_output_nxt_value_symbol_0; // @[ShiftRegisterPriorityQueue.scala:21:7]
wire [30:0] io_output_nxt_key_0; // @[ShiftRegisterPriorityQueue.scala:21:7]
wire [9:0] io_cur_output_keyval_value_symbol_0; // @[ShiftRegisterPriorityQueue.scala:21:7]
wire [30:0] io_cur_output_keyval_key_0; // @[ShiftRegisterPriorityQueue.scala:21:7]
reg [30:0] key_reg; // @[ShiftRegisterPriorityQueue.scala:30:24]
assign io_output_prev_key_0 = key_reg; // @[ShiftRegisterPriorityQueue.scala:21:7, :30:24]
assign io_output_nxt_key_0 = key_reg; // @[ShiftRegisterPriorityQueue.scala:21:7, :30:24]
assign io_cur_output_keyval_key_0 = key_reg; // @[ShiftRegisterPriorityQueue.scala:21:7, :30:24]
reg [9:0] value_reg_symbol; // @[ShiftRegisterPriorityQueue.scala:31:22]
assign io_output_prev_value_symbol_0 = value_reg_symbol; // @[ShiftRegisterPriorityQueue.scala:21:7, :31:22]
assign io_output_nxt_value_symbol_0 = value_reg_symbol; // @[ShiftRegisterPriorityQueue.scala:21:7, :31:22]
assign io_cur_output_keyval_value_symbol_0 = value_reg_symbol; // @[ShiftRegisterPriorityQueue.scala:21:7, :31:22]
wire _T_2 = key_reg >= io_cur_input_keyval_key_0; // @[ShiftRegisterPriorityQueue.scala:21:7, :30:24, :52:30]
always @(posedge clock) begin // @[ShiftRegisterPriorityQueue.scala:21:7]
if (reset) // @[ShiftRegisterPriorityQueue.scala:21:7]
key_reg <= 31'h7FFFFFFF; // @[ShiftRegisterPriorityQueue.scala:30:24]
else if (io_cmd_valid_0) begin // @[ShiftRegisterPriorityQueue.scala:21:7]
if (io_cmd_bits_0) begin // @[ShiftRegisterPriorityQueue.scala:21:7]
if (io_insert_here_0) // @[ShiftRegisterPriorityQueue.scala:21:7]
key_reg <= io_cur_input_keyval_key_0; // @[ShiftRegisterPriorityQueue.scala:21:7, :30:24]
else if (_T_2) // @[ShiftRegisterPriorityQueue.scala:52:30]
key_reg <= io_input_prev_key_0; // @[ShiftRegisterPriorityQueue.scala:21:7, :30:24]
end
else // @[ShiftRegisterPriorityQueue.scala:21:7]
key_reg <= io_input_nxt_key_0; // @[ShiftRegisterPriorityQueue.scala:21:7, :30:24]
end
if (io_cmd_valid_0) begin // @[ShiftRegisterPriorityQueue.scala:21:7]
if (io_cmd_bits_0) begin // @[ShiftRegisterPriorityQueue.scala:21:7]
if (io_insert_here_0) // @[ShiftRegisterPriorityQueue.scala:21:7]
value_reg_symbol <= io_cur_input_keyval_value_symbol_0; // @[ShiftRegisterPriorityQueue.scala:21:7, :31:22]
else if (_T_2) // @[ShiftRegisterPriorityQueue.scala:52:30]
value_reg_symbol <= io_input_prev_value_symbol_0; // @[ShiftRegisterPriorityQueue.scala:21:7, :31:22]
end
else // @[ShiftRegisterPriorityQueue.scala:21:7]
value_reg_symbol <= io_input_nxt_value_symbol_0; // @[ShiftRegisterPriorityQueue.scala:21:7, :31:22]
end
always @(posedge)
assign io_output_prev_key = io_output_prev_key_0; // @[ShiftRegisterPriorityQueue.scala:21:7]
assign io_output_prev_value_symbol = io_output_prev_value_symbol_0; // @[ShiftRegisterPriorityQueue.scala:21:7]
assign io_output_nxt_key = io_output_nxt_key_0; // @[ShiftRegisterPriorityQueue.scala:21:7]
assign io_output_nxt_value_symbol = io_output_nxt_value_symbol_0; // @[ShiftRegisterPriorityQueue.scala:21:7]
assign io_cur_output_keyval_key = io_cur_output_keyval_key_0; // @[ShiftRegisterPriorityQueue.scala:21:7]
assign io_cur_output_keyval_value_symbol = io_cur_output_keyval_value_symbol_0; // @[ShiftRegisterPriorityQueue.scala:21:7]
endmodule |
Generate the Verilog code corresponding to the following Chisel files.
File util.scala:
//******************************************************************************
// Copyright (c) 2015 - 2019, The Regents of the University of California (Regents).
// All Rights Reserved. See LICENSE and LICENSE.SiFive for license details.
//------------------------------------------------------------------------------
//------------------------------------------------------------------------------
//------------------------------------------------------------------------------
// Utility Functions
//------------------------------------------------------------------------------
//------------------------------------------------------------------------------
package boom.v3.util
import chisel3._
import chisel3.util._
import freechips.rocketchip.rocket.Instructions._
import freechips.rocketchip.rocket._
import freechips.rocketchip.util.{Str}
import org.chipsalliance.cde.config.{Parameters}
import freechips.rocketchip.tile.{TileKey}
import boom.v3.common.{MicroOp}
import boom.v3.exu.{BrUpdateInfo}
/**
* Object to XOR fold a input register of fullLength into a compressedLength.
*/
object Fold
{
def apply(input: UInt, compressedLength: Int, fullLength: Int): UInt = {
val clen = compressedLength
val hlen = fullLength
if (hlen <= clen) {
input
} else {
var res = 0.U(clen.W)
var remaining = input.asUInt
for (i <- 0 to hlen-1 by clen) {
val len = if (i + clen > hlen ) (hlen - i) else clen
require(len > 0)
res = res(clen-1,0) ^ remaining(len-1,0)
remaining = remaining >> len.U
}
res
}
}
}
/**
* Object to check if MicroOp was killed due to a branch mispredict.
* Uses "Fast" branch masks
*/
object IsKilledByBranch
{
def apply(brupdate: BrUpdateInfo, uop: MicroOp): Bool = {
return maskMatch(brupdate.b1.mispredict_mask, uop.br_mask)
}
def apply(brupdate: BrUpdateInfo, uop_mask: UInt): Bool = {
return maskMatch(brupdate.b1.mispredict_mask, uop_mask)
}
}
/**
* Object to return new MicroOp with a new BR mask given a MicroOp mask
* and old BR mask.
*/
object GetNewUopAndBrMask
{
def apply(uop: MicroOp, brupdate: BrUpdateInfo)
(implicit p: Parameters): MicroOp = {
val newuop = WireInit(uop)
newuop.br_mask := uop.br_mask & ~brupdate.b1.resolve_mask
newuop
}
}
/**
* Object to return a BR mask given a MicroOp mask and old BR mask.
*/
object GetNewBrMask
{
def apply(brupdate: BrUpdateInfo, uop: MicroOp): UInt = {
return uop.br_mask & ~brupdate.b1.resolve_mask
}
def apply(brupdate: BrUpdateInfo, br_mask: UInt): UInt = {
return br_mask & ~brupdate.b1.resolve_mask
}
}
object UpdateBrMask
{
def apply(brupdate: BrUpdateInfo, uop: MicroOp): MicroOp = {
val out = WireInit(uop)
out.br_mask := GetNewBrMask(brupdate, uop)
out
}
def apply[T <: boom.v3.common.HasBoomUOP](brupdate: BrUpdateInfo, bundle: T): T = {
val out = WireInit(bundle)
out.uop.br_mask := GetNewBrMask(brupdate, bundle.uop.br_mask)
out
}
def apply[T <: boom.v3.common.HasBoomUOP](brupdate: BrUpdateInfo, bundle: Valid[T]): Valid[T] = {
val out = WireInit(bundle)
out.bits.uop.br_mask := GetNewBrMask(brupdate, bundle.bits.uop.br_mask)
out.valid := bundle.valid && !IsKilledByBranch(brupdate, bundle.bits.uop.br_mask)
out
}
}
/**
* Object to check if at least 1 bit matches in two masks
*/
object maskMatch
{
def apply(msk1: UInt, msk2: UInt): Bool = (msk1 & msk2) =/= 0.U
}
/**
* Object to clear one bit in a mask given an index
*/
object clearMaskBit
{
def apply(msk: UInt, idx: UInt): UInt = (msk & ~(1.U << idx))(msk.getWidth-1, 0)
}
/**
* Object to shift a register over by one bit and concat a new one
*/
object PerformShiftRegister
{
def apply(reg_val: UInt, new_bit: Bool): UInt = {
reg_val := Cat(reg_val(reg_val.getWidth-1, 0).asUInt, new_bit.asUInt).asUInt
reg_val
}
}
/**
* Object to shift a register over by one bit, wrapping the top bit around to the bottom
* (XOR'ed with a new-bit), and evicting a bit at index HLEN.
* This is used to simulate a longer HLEN-width shift register that is folded
* down to a compressed CLEN.
*/
object PerformCircularShiftRegister
{
def apply(csr: UInt, new_bit: Bool, evict_bit: Bool, hlen: Int, clen: Int): UInt = {
val carry = csr(clen-1)
val newval = Cat(csr, new_bit ^ carry) ^ (evict_bit << (hlen % clen).U)
newval
}
}
/**
* Object to increment an input value, wrapping it if
* necessary.
*/
object WrapAdd
{
// "n" is the number of increments, so we wrap at n-1.
def apply(value: UInt, amt: UInt, n: Int): UInt = {
if (isPow2(n)) {
(value + amt)(log2Ceil(n)-1,0)
} else {
val sum = Cat(0.U(1.W), value) + Cat(0.U(1.W), amt)
Mux(sum >= n.U,
sum - n.U,
sum)
}
}
}
/**
* Object to decrement an input value, wrapping it if
* necessary.
*/
object WrapSub
{
// "n" is the number of increments, so we wrap to n-1.
def apply(value: UInt, amt: Int, n: Int): UInt = {
if (isPow2(n)) {
(value - amt.U)(log2Ceil(n)-1,0)
} else {
val v = Cat(0.U(1.W), value)
val b = Cat(0.U(1.W), amt.U)
Mux(value >= amt.U,
value - amt.U,
n.U - amt.U + value)
}
}
}
/**
* Object to increment an input value, wrapping it if
* necessary.
*/
object WrapInc
{
// "n" is the number of increments, so we wrap at n-1.
def apply(value: UInt, n: Int): UInt = {
if (isPow2(n)) {
(value + 1.U)(log2Ceil(n)-1,0)
} else {
val wrap = (value === (n-1).U)
Mux(wrap, 0.U, value + 1.U)
}
}
}
/**
* Object to decrement an input value, wrapping it if
* necessary.
*/
object WrapDec
{
// "n" is the number of increments, so we wrap at n-1.
def apply(value: UInt, n: Int): UInt = {
if (isPow2(n)) {
(value - 1.U)(log2Ceil(n)-1,0)
} else {
val wrap = (value === 0.U)
Mux(wrap, (n-1).U, value - 1.U)
}
}
}
/**
* Object to mask off lower bits of a PC to align to a "b"
* Byte boundary.
*/
object AlignPCToBoundary
{
def apply(pc: UInt, b: Int): UInt = {
// Invert for scenario where pc longer than b
// (which would clear all bits above size(b)).
~(~pc | (b-1).U)
}
}
/**
* Object to rotate a signal left by one
*/
object RotateL1
{
def apply(signal: UInt): UInt = {
val w = signal.getWidth
val out = Cat(signal(w-2,0), signal(w-1))
return out
}
}
/**
* Object to sext a value to a particular length.
*/
object Sext
{
def apply(x: UInt, length: Int): UInt = {
if (x.getWidth == length) return x
else return Cat(Fill(length-x.getWidth, x(x.getWidth-1)), x)
}
}
/**
* Object to translate from BOOM's special "packed immediate" to a 32b signed immediate
* Asking for U-type gives it shifted up 12 bits.
*/
object ImmGen
{
import boom.v3.common.{LONGEST_IMM_SZ, IS_B, IS_I, IS_J, IS_S, IS_U}
def apply(ip: UInt, isel: UInt): SInt = {
val sign = ip(LONGEST_IMM_SZ-1).asSInt
val i30_20 = Mux(isel === IS_U, ip(18,8).asSInt, sign)
val i19_12 = Mux(isel === IS_U || isel === IS_J, ip(7,0).asSInt, sign)
val i11 = Mux(isel === IS_U, 0.S,
Mux(isel === IS_J || isel === IS_B, ip(8).asSInt, sign))
val i10_5 = Mux(isel === IS_U, 0.S, ip(18,14).asSInt)
val i4_1 = Mux(isel === IS_U, 0.S, ip(13,9).asSInt)
val i0 = Mux(isel === IS_S || isel === IS_I, ip(8).asSInt, 0.S)
return Cat(sign, i30_20, i19_12, i11, i10_5, i4_1, i0).asSInt
}
}
/**
* Object to get the FP rounding mode out of a packed immediate.
*/
object ImmGenRm { def apply(ip: UInt): UInt = { return ip(2,0) } }
/**
* Object to get the FP function fype from a packed immediate.
* Note: only works if !(IS_B or IS_S)
*/
object ImmGenTyp { def apply(ip: UInt): UInt = { return ip(9,8) } }
/**
* Object to see if an instruction is a JALR.
*/
object DebugIsJALR
{
def apply(inst: UInt): Bool = {
// TODO Chisel not sure why this won't compile
// val is_jalr = rocket.DecodeLogic(inst, List(Bool(false)),
// Array(
// JALR -> Bool(true)))
inst(6,0) === "b1100111".U
}
}
/**
* Object to take an instruction and output its branch or jal target. Only used
* for a debug assert (no where else would we jump straight from instruction
* bits to a target).
*/
object DebugGetBJImm
{
def apply(inst: UInt): UInt = {
// TODO Chisel not sure why this won't compile
//val csignals =
//rocket.DecodeLogic(inst,
// List(Bool(false), Bool(false)),
// Array(
// BEQ -> List(Bool(true ), Bool(false)),
// BNE -> List(Bool(true ), Bool(false)),
// BGE -> List(Bool(true ), Bool(false)),
// BGEU -> List(Bool(true ), Bool(false)),
// BLT -> List(Bool(true ), Bool(false)),
// BLTU -> List(Bool(true ), Bool(false))
// ))
//val is_br :: nothing :: Nil = csignals
val is_br = (inst(6,0) === "b1100011".U)
val br_targ = Cat(Fill(12, inst(31)), Fill(8,inst(31)), inst(7), inst(30,25), inst(11,8), 0.U(1.W))
val jal_targ= Cat(Fill(12, inst(31)), inst(19,12), inst(20), inst(30,25), inst(24,21), 0.U(1.W))
Mux(is_br, br_targ, jal_targ)
}
}
/**
* Object to return the lowest bit position after the head.
*/
object AgePriorityEncoder
{
def apply(in: Seq[Bool], head: UInt): UInt = {
val n = in.size
val width = log2Ceil(in.size)
val n_padded = 1 << width
val temp_vec = (0 until n_padded).map(i => if (i < n) in(i) && i.U >= head else false.B) ++ in
val idx = PriorityEncoder(temp_vec)
idx(width-1, 0) //discard msb
}
}
/**
* Object to determine whether queue
* index i0 is older than index i1.
*/
object IsOlder
{
def apply(i0: UInt, i1: UInt, head: UInt) = ((i0 < i1) ^ (i0 < head) ^ (i1 < head))
}
/**
* Set all bits at or below the highest order '1'.
*/
object MaskLower
{
def apply(in: UInt) = {
val n = in.getWidth
(0 until n).map(i => in >> i.U).reduce(_|_)
}
}
/**
* Set all bits at or above the lowest order '1'.
*/
object MaskUpper
{
def apply(in: UInt) = {
val n = in.getWidth
(0 until n).map(i => (in << i.U)(n-1,0)).reduce(_|_)
}
}
/**
* Transpose a matrix of Chisel Vecs.
*/
object Transpose
{
def apply[T <: chisel3.Data](in: Vec[Vec[T]]) = {
val n = in(0).size
VecInit((0 until n).map(i => VecInit(in.map(row => row(i)))))
}
}
/**
* N-wide one-hot priority encoder.
*/
object SelectFirstN
{
def apply(in: UInt, n: Int) = {
val sels = Wire(Vec(n, UInt(in.getWidth.W)))
var mask = in
for (i <- 0 until n) {
sels(i) := PriorityEncoderOH(mask)
mask = mask & ~sels(i)
}
sels
}
}
/**
* Connect the first k of n valid input interfaces to k output interfaces.
*/
class Compactor[T <: chisel3.Data](n: Int, k: Int, gen: T) extends Module
{
require(n >= k)
val io = IO(new Bundle {
val in = Vec(n, Flipped(DecoupledIO(gen)))
val out = Vec(k, DecoupledIO(gen))
})
if (n == k) {
io.out <> io.in
} else {
val counts = io.in.map(_.valid).scanLeft(1.U(k.W)) ((c,e) => Mux(e, (c<<1)(k-1,0), c))
val sels = Transpose(VecInit(counts map (c => VecInit(c.asBools)))) map (col =>
(col zip io.in.map(_.valid)) map {case (c,v) => c && v})
val in_readys = counts map (row => (row.asBools zip io.out.map(_.ready)) map {case (c,r) => c && r} reduce (_||_))
val out_valids = sels map (col => col.reduce(_||_))
val out_data = sels map (s => Mux1H(s, io.in.map(_.bits)))
in_readys zip io.in foreach {case (r,i) => i.ready := r}
out_valids zip out_data zip io.out foreach {case ((v,d),o) => o.valid := v; o.bits := d}
}
}
/**
* Create a queue that can be killed with a branch kill signal.
* Assumption: enq.valid only high if not killed by branch (so don't check IsKilled on io.enq).
*/
class BranchKillableQueue[T <: boom.v3.common.HasBoomUOP](gen: T, entries: Int, flush_fn: boom.v3.common.MicroOp => Bool = u => true.B, flow: Boolean = true)
(implicit p: org.chipsalliance.cde.config.Parameters)
extends boom.v3.common.BoomModule()(p)
with boom.v3.common.HasBoomCoreParameters
{
val io = IO(new Bundle {
val enq = Flipped(Decoupled(gen))
val deq = Decoupled(gen)
val brupdate = Input(new BrUpdateInfo())
val flush = Input(Bool())
val empty = Output(Bool())
val count = Output(UInt(log2Ceil(entries).W))
})
val ram = Mem(entries, gen)
val valids = RegInit(VecInit(Seq.fill(entries) {false.B}))
val uops = Reg(Vec(entries, new MicroOp))
val enq_ptr = Counter(entries)
val deq_ptr = Counter(entries)
val maybe_full = RegInit(false.B)
val ptr_match = enq_ptr.value === deq_ptr.value
io.empty := ptr_match && !maybe_full
val full = ptr_match && maybe_full
val do_enq = WireInit(io.enq.fire)
val do_deq = WireInit((io.deq.ready || !valids(deq_ptr.value)) && !io.empty)
for (i <- 0 until entries) {
val mask = uops(i).br_mask
val uop = uops(i)
valids(i) := valids(i) && !IsKilledByBranch(io.brupdate, mask) && !(io.flush && flush_fn(uop))
when (valids(i)) {
uops(i).br_mask := GetNewBrMask(io.brupdate, mask)
}
}
when (do_enq) {
ram(enq_ptr.value) := io.enq.bits
valids(enq_ptr.value) := true.B //!IsKilledByBranch(io.brupdate, io.enq.bits.uop)
uops(enq_ptr.value) := io.enq.bits.uop
uops(enq_ptr.value).br_mask := GetNewBrMask(io.brupdate, io.enq.bits.uop)
enq_ptr.inc()
}
when (do_deq) {
valids(deq_ptr.value) := false.B
deq_ptr.inc()
}
when (do_enq =/= do_deq) {
maybe_full := do_enq
}
io.enq.ready := !full
val out = Wire(gen)
out := ram(deq_ptr.value)
out.uop := uops(deq_ptr.value)
io.deq.valid := !io.empty && valids(deq_ptr.value) && !IsKilledByBranch(io.brupdate, out.uop) && !(io.flush && flush_fn(out.uop))
io.deq.bits := out
io.deq.bits.uop.br_mask := GetNewBrMask(io.brupdate, out.uop)
// For flow queue behavior.
if (flow) {
when (io.empty) {
io.deq.valid := io.enq.valid //&& !IsKilledByBranch(io.brupdate, io.enq.bits.uop)
io.deq.bits := io.enq.bits
io.deq.bits.uop.br_mask := GetNewBrMask(io.brupdate, io.enq.bits.uop)
do_deq := false.B
when (io.deq.ready) { do_enq := false.B }
}
}
private val ptr_diff = enq_ptr.value - deq_ptr.value
if (isPow2(entries)) {
io.count := Cat(maybe_full && ptr_match, ptr_diff)
}
else {
io.count := Mux(ptr_match,
Mux(maybe_full,
entries.asUInt, 0.U),
Mux(deq_ptr.value > enq_ptr.value,
entries.asUInt + ptr_diff, ptr_diff))
}
}
// ------------------------------------------
// Printf helper functions
// ------------------------------------------
object BoolToChar
{
/**
* Take in a Chisel Bool and convert it into a Str
* based on the Chars given
*
* @param c_bool Chisel Bool
* @param trueChar Scala Char if bool is true
* @param falseChar Scala Char if bool is false
* @return UInt ASCII Char for "trueChar" or "falseChar"
*/
def apply(c_bool: Bool, trueChar: Char, falseChar: Char = '-'): UInt = {
Mux(c_bool, Str(trueChar), Str(falseChar))
}
}
object CfiTypeToChars
{
/**
* Get a Vec of Strs that can be used for printing
*
* @param cfi_type specific cfi type
* @return Vec of Strs (must be indexed to get specific char)
*/
def apply(cfi_type: UInt) = {
val strings = Seq("----", "BR ", "JAL ", "JALR")
val multiVec = VecInit(for(string <- strings) yield { VecInit(for (c <- string) yield { Str(c) }) })
multiVec(cfi_type)
}
}
object BpdTypeToChars
{
/**
* Get a Vec of Strs that can be used for printing
*
* @param bpd_type specific bpd type
* @return Vec of Strs (must be indexed to get specific char)
*/
def apply(bpd_type: UInt) = {
val strings = Seq("BR ", "JUMP", "----", "RET ", "----", "CALL", "----", "----")
val multiVec = VecInit(for(string <- strings) yield { VecInit(for (c <- string) yield { Str(c) }) })
multiVec(bpd_type)
}
}
object RobTypeToChars
{
/**
* Get a Vec of Strs that can be used for printing
*
* @param rob_type specific rob type
* @return Vec of Strs (must be indexed to get specific char)
*/
def apply(rob_type: UInt) = {
val strings = Seq("RST", "NML", "RBK", " WT")
val multiVec = VecInit(for(string <- strings) yield { VecInit(for (c <- string) yield { Str(c) }) })
multiVec(rob_type)
}
}
object XRegToChars
{
/**
* Get a Vec of Strs that can be used for printing
*
* @param xreg specific register number
* @return Vec of Strs (must be indexed to get specific char)
*/
def apply(xreg: UInt) = {
val strings = Seq(" x0", " ra", " sp", " gp",
" tp", " t0", " t1", " t2",
" s0", " s1", " a0", " a1",
" a2", " a3", " a4", " a5",
" a6", " a7", " s2", " s3",
" s4", " s5", " s6", " s7",
" s8", " s9", "s10", "s11",
" t3", " t4", " t5", " t6")
val multiVec = VecInit(for(string <- strings) yield { VecInit(for (c <- string) yield { Str(c) }) })
multiVec(xreg)
}
}
object FPRegToChars
{
/**
* Get a Vec of Strs that can be used for printing
*
* @param fpreg specific register number
* @return Vec of Strs (must be indexed to get specific char)
*/
def apply(fpreg: UInt) = {
val strings = Seq(" ft0", " ft1", " ft2", " ft3",
" ft4", " ft5", " ft6", " ft7",
" fs0", " fs1", " fa0", " fa1",
" fa2", " fa3", " fa4", " fa5",
" fa6", " fa7", " fs2", " fs3",
" fs4", " fs5", " fs6", " fs7",
" fs8", " fs9", "fs10", "fs11",
" ft8", " ft9", "ft10", "ft11")
val multiVec = VecInit(for(string <- strings) yield { VecInit(for (c <- string) yield { Str(c) }) })
multiVec(fpreg)
}
}
object BoomCoreStringPrefix
{
/**
* Add prefix to BOOM strings (currently only adds the hartId)
*
* @param strs list of strings
* @return String combining the list with the prefix per line
*/
def apply(strs: String*)(implicit p: Parameters) = {
val prefix = "[C" + s"${p(TileKey).tileId}" + "] "
strs.map(str => prefix + str + "\n").mkString("")
}
}
File tage.scala:
package boom.v3.ifu
import chisel3._
import chisel3.util._
import org.chipsalliance.cde.config.{Field, Parameters}
import freechips.rocketchip.diplomacy._
import freechips.rocketchip.tilelink._
import boom.v3.common._
import boom.v3.util.{BoomCoreStringPrefix, MaskLower, WrapInc}
import scala.math.min
class TageResp extends Bundle {
val ctr = UInt(3.W)
val u = UInt(2.W)
}
class TageTable(val nRows: Int, val tagSz: Int, val histLength: Int, val uBitPeriod: Int)
(implicit p: Parameters) extends BoomModule()(p)
with HasBoomFrontendParameters
{
require(histLength <= globalHistoryLength)
val nWrBypassEntries = 2
val io = IO( new Bundle {
val f1_req_valid = Input(Bool())
val f1_req_pc = Input(UInt(vaddrBitsExtended.W))
val f1_req_ghist = Input(UInt(globalHistoryLength.W))
val f3_resp = Output(Vec(bankWidth, Valid(new TageResp)))
val update_mask = Input(Vec(bankWidth, Bool()))
val update_taken = Input(Vec(bankWidth, Bool()))
val update_alloc = Input(Vec(bankWidth, Bool()))
val update_old_ctr = Input(Vec(bankWidth, UInt(3.W)))
val update_pc = Input(UInt())
val update_hist = Input(UInt())
val update_u_mask = Input(Vec(bankWidth, Bool()))
val update_u = Input(Vec(bankWidth, UInt(2.W)))
})
def compute_folded_hist(hist: UInt, l: Int) = {
val nChunks = (histLength + l - 1) / l
val hist_chunks = (0 until nChunks) map {i =>
hist(min((i+1)*l, histLength)-1, i*l)
}
hist_chunks.reduce(_^_)
}
def compute_tag_and_hash(unhashed_idx: UInt, hist: UInt) = {
val idx_history = compute_folded_hist(hist, log2Ceil(nRows))
val idx = (unhashed_idx ^ idx_history)(log2Ceil(nRows)-1,0)
val tag_history = compute_folded_hist(hist, tagSz)
val tag = ((unhashed_idx >> log2Ceil(nRows)) ^ tag_history)(tagSz-1,0)
(idx, tag)
}
def inc_ctr(ctr: UInt, taken: Bool): UInt = {
Mux(!taken, Mux(ctr === 0.U, 0.U, ctr - 1.U),
Mux(ctr === 7.U, 7.U, ctr + 1.U))
}
val doing_reset = RegInit(true.B)
val reset_idx = RegInit(0.U(log2Ceil(nRows).W))
reset_idx := reset_idx + doing_reset
when (reset_idx === (nRows-1).U) { doing_reset := false.B }
class TageEntry extends Bundle {
val valid = Bool() // TODO: Remove this valid bit
val tag = UInt(tagSz.W)
val ctr = UInt(3.W)
}
val tageEntrySz = 1 + tagSz + 3
val (s1_hashed_idx, s1_tag) = compute_tag_and_hash(fetchIdx(io.f1_req_pc), io.f1_req_ghist)
val hi_us = SyncReadMem(nRows, Vec(bankWidth, Bool()))
val lo_us = SyncReadMem(nRows, Vec(bankWidth, Bool()))
val table = SyncReadMem(nRows, Vec(bankWidth, UInt(tageEntrySz.W)))
val mems = Seq((f"tage_l$histLength", nRows, bankWidth * tageEntrySz))
val s2_tag = RegNext(s1_tag)
val s2_req_rtage = VecInit(table.read(s1_hashed_idx, io.f1_req_valid).map(_.asTypeOf(new TageEntry)))
val s2_req_rhius = hi_us.read(s1_hashed_idx, io.f1_req_valid)
val s2_req_rlous = lo_us.read(s1_hashed_idx, io.f1_req_valid)
val s2_req_rhits = VecInit(s2_req_rtage.map(e => e.valid && e.tag === s2_tag && !doing_reset))
for (w <- 0 until bankWidth) {
// This bit indicates the TAGE table matched here
io.f3_resp(w).valid := RegNext(s2_req_rhits(w))
io.f3_resp(w).bits.u := RegNext(Cat(s2_req_rhius(w), s2_req_rlous(w)))
io.f3_resp(w).bits.ctr := RegNext(s2_req_rtage(w).ctr)
}
val clear_u_ctr = RegInit(0.U((log2Ceil(uBitPeriod) + log2Ceil(nRows) + 1).W))
when (doing_reset) { clear_u_ctr := 1.U } .otherwise { clear_u_ctr := clear_u_ctr + 1.U }
val doing_clear_u = clear_u_ctr(log2Ceil(uBitPeriod)-1,0) === 0.U
val doing_clear_u_hi = doing_clear_u && clear_u_ctr(log2Ceil(uBitPeriod) + log2Ceil(nRows)) === 1.U
val doing_clear_u_lo = doing_clear_u && clear_u_ctr(log2Ceil(uBitPeriod) + log2Ceil(nRows)) === 0.U
val clear_u_idx = clear_u_ctr >> log2Ceil(uBitPeriod)
val (update_idx, update_tag) = compute_tag_and_hash(fetchIdx(io.update_pc), io.update_hist)
val update_wdata = Wire(Vec(bankWidth, new TageEntry))
table.write(
Mux(doing_reset, reset_idx , update_idx),
Mux(doing_reset, VecInit(Seq.fill(bankWidth) { 0.U(tageEntrySz.W) }), VecInit(update_wdata.map(_.asUInt))),
Mux(doing_reset, ~(0.U(bankWidth.W)) , io.update_mask.asUInt).asBools
)
val update_hi_wdata = Wire(Vec(bankWidth, Bool()))
hi_us.write(
Mux(doing_reset, reset_idx, Mux(doing_clear_u_hi, clear_u_idx, update_idx)),
Mux(doing_reset || doing_clear_u_hi, VecInit((0.U(bankWidth.W)).asBools), update_hi_wdata),
Mux(doing_reset || doing_clear_u_hi, ~(0.U(bankWidth.W)), io.update_u_mask.asUInt).asBools
)
val update_lo_wdata = Wire(Vec(bankWidth, Bool()))
lo_us.write(
Mux(doing_reset, reset_idx, Mux(doing_clear_u_lo, clear_u_idx, update_idx)),
Mux(doing_reset || doing_clear_u_lo, VecInit((0.U(bankWidth.W)).asBools), update_lo_wdata),
Mux(doing_reset || doing_clear_u_lo, ~(0.U(bankWidth.W)), io.update_u_mask.asUInt).asBools
)
val wrbypass_tags = Reg(Vec(nWrBypassEntries, UInt(tagSz.W)))
val wrbypass_idxs = Reg(Vec(nWrBypassEntries, UInt(log2Ceil(nRows).W)))
val wrbypass = Reg(Vec(nWrBypassEntries, Vec(bankWidth, UInt(3.W))))
val wrbypass_enq_idx = RegInit(0.U(log2Ceil(nWrBypassEntries).W))
val wrbypass_hits = VecInit((0 until nWrBypassEntries) map { i =>
!doing_reset &&
wrbypass_tags(i) === update_tag &&
wrbypass_idxs(i) === update_idx
})
val wrbypass_hit = wrbypass_hits.reduce(_||_)
val wrbypass_hit_idx = PriorityEncoder(wrbypass_hits)
for (w <- 0 until bankWidth) {
update_wdata(w).ctr := Mux(io.update_alloc(w),
Mux(io.update_taken(w), 4.U,
3.U
),
Mux(wrbypass_hit, inc_ctr(wrbypass(wrbypass_hit_idx)(w), io.update_taken(w)),
inc_ctr(io.update_old_ctr(w), io.update_taken(w))
)
)
update_wdata(w).valid := true.B
update_wdata(w).tag := update_tag
update_hi_wdata(w) := io.update_u(w)(1)
update_lo_wdata(w) := io.update_u(w)(0)
}
when (io.update_mask.reduce(_||_)) {
when (wrbypass_hits.reduce(_||_)) {
wrbypass(wrbypass_hit_idx) := VecInit(update_wdata.map(_.ctr))
} .otherwise {
wrbypass (wrbypass_enq_idx) := VecInit(update_wdata.map(_.ctr))
wrbypass_tags(wrbypass_enq_idx) := update_tag
wrbypass_idxs(wrbypass_enq_idx) := update_idx
wrbypass_enq_idx := WrapInc(wrbypass_enq_idx, nWrBypassEntries)
}
}
}
case class BoomTageParams(
// nSets, histLen, tagSz
tableInfo: Seq[Tuple3[Int, Int, Int]] = Seq(( 128, 2, 7),
( 128, 4, 7),
( 256, 8, 8),
( 256, 16, 8),
( 128, 32, 9),
( 128, 64, 9)),
uBitPeriod: Int = 2048
)
class TageBranchPredictorBank(params: BoomTageParams = BoomTageParams())(implicit p: Parameters) extends BranchPredictorBank()(p)
{
val tageUBitPeriod = params.uBitPeriod
val tageNTables = params.tableInfo.size
class TageMeta extends Bundle
{
val provider = Vec(bankWidth, Valid(UInt(log2Ceil(tageNTables).W)))
val alt_differs = Vec(bankWidth, Output(Bool()))
val provider_u = Vec(bankWidth, Output(UInt(2.W)))
val provider_ctr = Vec(bankWidth, Output(UInt(3.W)))
val allocate = Vec(bankWidth, Valid(UInt(log2Ceil(tageNTables).W)))
}
val f3_meta = Wire(new TageMeta)
override val metaSz = f3_meta.asUInt.getWidth
require(metaSz <= bpdMaxMetaLength)
def inc_u(u: UInt, alt_differs: Bool, mispredict: Bool): UInt = {
Mux(!alt_differs, u,
Mux(mispredict, Mux(u === 0.U, 0.U, u - 1.U),
Mux(u === 3.U, 3.U, u + 1.U)))
}
val tt = params.tableInfo map {
case (n, l, s) => {
val t = Module(new TageTable(n, s, l, params.uBitPeriod))
t.io.f1_req_valid := RegNext(io.f0_valid)
t.io.f1_req_pc := RegNext(io.f0_pc)
t.io.f1_req_ghist := io.f1_ghist
(t, t.mems)
}
}
val tables = tt.map(_._1)
val mems = tt.map(_._2).flatten
val f3_resps = VecInit(tables.map(_.io.f3_resp))
val s1_update_meta = s1_update.bits.meta.asTypeOf(new TageMeta)
val s1_update_mispredict_mask = UIntToOH(s1_update.bits.cfi_idx.bits) &
Fill(bankWidth, s1_update.bits.cfi_mispredicted)
val s1_update_mask = WireInit((0.U).asTypeOf(Vec(tageNTables, Vec(bankWidth, Bool()))))
val s1_update_u_mask = WireInit((0.U).asTypeOf(Vec(tageNTables, Vec(bankWidth, UInt(1.W)))))
val s1_update_taken = Wire(Vec(tageNTables, Vec(bankWidth, Bool())))
val s1_update_old_ctr = Wire(Vec(tageNTables, Vec(bankWidth, UInt(3.W))))
val s1_update_alloc = Wire(Vec(tageNTables, Vec(bankWidth, Bool())))
val s1_update_u = Wire(Vec(tageNTables, Vec(bankWidth, UInt(2.W))))
s1_update_taken := DontCare
s1_update_old_ctr := DontCare
s1_update_alloc := DontCare
s1_update_u := DontCare
for (w <- 0 until bankWidth) {
var altpred = io.resp_in(0).f3(w).taken
val final_altpred = WireInit(io.resp_in(0).f3(w).taken)
var provided = false.B
var provider = 0.U
io.resp.f3(w).taken := io.resp_in(0).f3(w).taken
for (i <- 0 until tageNTables) {
val hit = f3_resps(i)(w).valid
val ctr = f3_resps(i)(w).bits.ctr
when (hit) {
io.resp.f3(w).taken := Mux(ctr === 3.U || ctr === 4.U, altpred, ctr(2))
final_altpred := altpred
}
provided = provided || hit
provider = Mux(hit, i.U, provider)
altpred = Mux(hit, f3_resps(i)(w).bits.ctr(2), altpred)
}
f3_meta.provider(w).valid := provided
f3_meta.provider(w).bits := provider
f3_meta.alt_differs(w) := final_altpred =/= io.resp.f3(w).taken
f3_meta.provider_u(w) := f3_resps(provider)(w).bits.u
f3_meta.provider_ctr(w) := f3_resps(provider)(w).bits.ctr
// Create a mask of tables which did not hit our query, and also contain useless entries
// and also uses a longer history than the provider
val allocatable_slots = (
VecInit(f3_resps.map(r => !r(w).valid && r(w).bits.u === 0.U)).asUInt &
~(MaskLower(UIntToOH(provider)) & Fill(tageNTables, provided))
)
val alloc_lfsr = random.LFSR(tageNTables max 2)
val first_entry = PriorityEncoder(allocatable_slots)
val masked_entry = PriorityEncoder(allocatable_slots & alloc_lfsr)
val alloc_entry = Mux(allocatable_slots(masked_entry),
masked_entry,
first_entry)
f3_meta.allocate(w).valid := allocatable_slots =/= 0.U
f3_meta.allocate(w).bits := alloc_entry
val update_was_taken = (s1_update.bits.cfi_idx.valid &&
(s1_update.bits.cfi_idx.bits === w.U) &&
s1_update.bits.cfi_taken)
when (s1_update.bits.br_mask(w) && s1_update.valid && s1_update.bits.is_commit_update) {
when (s1_update_meta.provider(w).valid) {
val provider = s1_update_meta.provider(w).bits
s1_update_mask(provider)(w) := true.B
s1_update_u_mask(provider)(w) := true.B
val new_u = inc_u(s1_update_meta.provider_u(w),
s1_update_meta.alt_differs(w),
s1_update_mispredict_mask(w))
s1_update_u (provider)(w) := new_u
s1_update_taken (provider)(w) := update_was_taken
s1_update_old_ctr(provider)(w) := s1_update_meta.provider_ctr(w)
s1_update_alloc (provider)(w) := false.B
}
}
}
when (s1_update.valid && s1_update.bits.is_commit_update && s1_update.bits.cfi_mispredicted && s1_update.bits.cfi_idx.valid) {
val idx = s1_update.bits.cfi_idx.bits
val allocate = s1_update_meta.allocate(idx)
when (allocate.valid) {
s1_update_mask (allocate.bits)(idx) := true.B
s1_update_taken(allocate.bits)(idx) := s1_update.bits.cfi_taken
s1_update_alloc(allocate.bits)(idx) := true.B
s1_update_u_mask(allocate.bits)(idx) := true.B
s1_update_u (allocate.bits)(idx) := 0.U
} .otherwise {
val provider = s1_update_meta.provider(idx)
val decr_mask = Mux(provider.valid, ~MaskLower(UIntToOH(provider.bits)), 0.U)
for (i <- 0 until tageNTables) {
when (decr_mask(i)) {
s1_update_u_mask(i)(idx) := true.B
s1_update_u (i)(idx) := 0.U
}
}
}
}
for (i <- 0 until tageNTables) {
for (w <- 0 until bankWidth) {
tables(i).io.update_mask(w) := RegNext(s1_update_mask(i)(w))
tables(i).io.update_taken(w) := RegNext(s1_update_taken(i)(w))
tables(i).io.update_alloc(w) := RegNext(s1_update_alloc(i)(w))
tables(i).io.update_old_ctr(w) := RegNext(s1_update_old_ctr(i)(w))
tables(i).io.update_u_mask(w) := RegNext(s1_update_u_mask(i)(w))
tables(i).io.update_u(w) := RegNext(s1_update_u(i)(w))
}
tables(i).io.update_pc := RegNext(s1_update.bits.pc)
tables(i).io.update_hist := RegNext(s1_update.bits.ghist)
}
//io.f3_meta := Cat(f3_meta.asUInt, micro.io.f3_meta(micro.metaSz-1,0), base.io.f3_meta(base.metaSz-1, 0))
io.f3_meta := f3_meta.asUInt
}
| module TageTable_8( // @[tage.scala:24:7]
input clock, // @[tage.scala:24:7]
input reset, // @[tage.scala:24:7]
input io_f1_req_valid, // @[tage.scala:31:14]
input [39:0] io_f1_req_pc, // @[tage.scala:31:14]
input [63:0] io_f1_req_ghist, // @[tage.scala:31:14]
output io_f3_resp_0_valid, // @[tage.scala:31:14]
output [2:0] io_f3_resp_0_bits_ctr, // @[tage.scala:31:14]
output [1:0] io_f3_resp_0_bits_u, // @[tage.scala:31:14]
output io_f3_resp_1_valid, // @[tage.scala:31:14]
output [2:0] io_f3_resp_1_bits_ctr, // @[tage.scala:31:14]
output [1:0] io_f3_resp_1_bits_u, // @[tage.scala:31:14]
output io_f3_resp_2_valid, // @[tage.scala:31:14]
output [2:0] io_f3_resp_2_bits_ctr, // @[tage.scala:31:14]
output [1:0] io_f3_resp_2_bits_u, // @[tage.scala:31:14]
output io_f3_resp_3_valid, // @[tage.scala:31:14]
output [2:0] io_f3_resp_3_bits_ctr, // @[tage.scala:31:14]
output [1:0] io_f3_resp_3_bits_u, // @[tage.scala:31:14]
input io_update_mask_0, // @[tage.scala:31:14]
input io_update_mask_1, // @[tage.scala:31:14]
input io_update_mask_2, // @[tage.scala:31:14]
input io_update_mask_3, // @[tage.scala:31:14]
input io_update_taken_0, // @[tage.scala:31:14]
input io_update_taken_1, // @[tage.scala:31:14]
input io_update_taken_2, // @[tage.scala:31:14]
input io_update_taken_3, // @[tage.scala:31:14]
input io_update_alloc_0, // @[tage.scala:31:14]
input io_update_alloc_1, // @[tage.scala:31:14]
input io_update_alloc_2, // @[tage.scala:31:14]
input io_update_alloc_3, // @[tage.scala:31:14]
input [2:0] io_update_old_ctr_0, // @[tage.scala:31:14]
input [2:0] io_update_old_ctr_1, // @[tage.scala:31:14]
input [2:0] io_update_old_ctr_2, // @[tage.scala:31:14]
input [2:0] io_update_old_ctr_3, // @[tage.scala:31:14]
input [39:0] io_update_pc, // @[tage.scala:31:14]
input [63:0] io_update_hist, // @[tage.scala:31:14]
input io_update_u_mask_0, // @[tage.scala:31:14]
input io_update_u_mask_1, // @[tage.scala:31:14]
input io_update_u_mask_2, // @[tage.scala:31:14]
input io_update_u_mask_3, // @[tage.scala:31:14]
input [1:0] io_update_u_0, // @[tage.scala:31:14]
input [1:0] io_update_u_1, // @[tage.scala:31:14]
input [1:0] io_update_u_2, // @[tage.scala:31:14]
input [1:0] io_update_u_3 // @[tage.scala:31:14]
);
wire lo_us_MPORT_2_data_3; // @[tage.scala:137:8]
wire lo_us_MPORT_2_data_2; // @[tage.scala:137:8]
wire lo_us_MPORT_2_data_1; // @[tage.scala:137:8]
wire lo_us_MPORT_2_data_0; // @[tage.scala:137:8]
wire hi_us_MPORT_1_data_3; // @[tage.scala:130:8]
wire hi_us_MPORT_1_data_2; // @[tage.scala:130:8]
wire hi_us_MPORT_1_data_1; // @[tage.scala:130:8]
wire hi_us_MPORT_1_data_0; // @[tage.scala:130:8]
wire [11:0] table_MPORT_data_3; // @[tage.scala:123:8]
wire [11:0] table_MPORT_data_2; // @[tage.scala:123:8]
wire [11:0] table_MPORT_data_1; // @[tage.scala:123:8]
wire [11:0] table_MPORT_data_0; // @[tage.scala:123:8]
wire _s2_req_rtage_WIRE_7_valid; // @[tage.scala:97:87]
wire [7:0] _s2_req_rtage_WIRE_7_tag; // @[tage.scala:97:87]
wire [2:0] _s2_req_rtage_WIRE_7_ctr; // @[tage.scala:97:87]
wire _s2_req_rtage_WIRE_5_valid; // @[tage.scala:97:87]
wire [7:0] _s2_req_rtage_WIRE_5_tag; // @[tage.scala:97:87]
wire [2:0] _s2_req_rtage_WIRE_5_ctr; // @[tage.scala:97:87]
wire _s2_req_rtage_WIRE_3_valid; // @[tage.scala:97:87]
wire [7:0] _s2_req_rtage_WIRE_3_tag; // @[tage.scala:97:87]
wire [2:0] _s2_req_rtage_WIRE_3_ctr; // @[tage.scala:97:87]
wire _s2_req_rtage_WIRE_1_valid; // @[tage.scala:97:87]
wire [7:0] _s2_req_rtage_WIRE_1_tag; // @[tage.scala:97:87]
wire [2:0] _s2_req_rtage_WIRE_1_ctr; // @[tage.scala:97:87]
wire [47:0] _table_R0_data; // @[tage.scala:91:27]
wire [3:0] _lo_us_R0_data; // @[tage.scala:90:27]
wire [3:0] _hi_us_R0_data; // @[tage.scala:89:27]
wire io_f1_req_valid_0 = io_f1_req_valid; // @[tage.scala:24:7]
wire [39:0] io_f1_req_pc_0 = io_f1_req_pc; // @[tage.scala:24:7]
wire [63:0] io_f1_req_ghist_0 = io_f1_req_ghist; // @[tage.scala:24:7]
wire io_update_mask_0_0 = io_update_mask_0; // @[tage.scala:24:7]
wire io_update_mask_1_0 = io_update_mask_1; // @[tage.scala:24:7]
wire io_update_mask_2_0 = io_update_mask_2; // @[tage.scala:24:7]
wire io_update_mask_3_0 = io_update_mask_3; // @[tage.scala:24:7]
wire io_update_taken_0_0 = io_update_taken_0; // @[tage.scala:24:7]
wire io_update_taken_1_0 = io_update_taken_1; // @[tage.scala:24:7]
wire io_update_taken_2_0 = io_update_taken_2; // @[tage.scala:24:7]
wire io_update_taken_3_0 = io_update_taken_3; // @[tage.scala:24:7]
wire io_update_alloc_0_0 = io_update_alloc_0; // @[tage.scala:24:7]
wire io_update_alloc_1_0 = io_update_alloc_1; // @[tage.scala:24:7]
wire io_update_alloc_2_0 = io_update_alloc_2; // @[tage.scala:24:7]
wire io_update_alloc_3_0 = io_update_alloc_3; // @[tage.scala:24:7]
wire [2:0] io_update_old_ctr_0_0 = io_update_old_ctr_0; // @[tage.scala:24:7]
wire [2:0] io_update_old_ctr_1_0 = io_update_old_ctr_1; // @[tage.scala:24:7]
wire [2:0] io_update_old_ctr_2_0 = io_update_old_ctr_2; // @[tage.scala:24:7]
wire [2:0] io_update_old_ctr_3_0 = io_update_old_ctr_3; // @[tage.scala:24:7]
wire [39:0] io_update_pc_0 = io_update_pc; // @[tage.scala:24:7]
wire [63:0] io_update_hist_0 = io_update_hist; // @[tage.scala:24:7]
wire io_update_u_mask_0_0 = io_update_u_mask_0; // @[tage.scala:24:7]
wire io_update_u_mask_1_0 = io_update_u_mask_1; // @[tage.scala:24:7]
wire io_update_u_mask_2_0 = io_update_u_mask_2; // @[tage.scala:24:7]
wire io_update_u_mask_3_0 = io_update_u_mask_3; // @[tage.scala:24:7]
wire [1:0] io_update_u_0_0 = io_update_u_0; // @[tage.scala:24:7]
wire [1:0] io_update_u_1_0 = io_update_u_1; // @[tage.scala:24:7]
wire [1:0] io_update_u_2_0 = io_update_u_2; // @[tage.scala:24:7]
wire [1:0] io_update_u_3_0 = io_update_u_3; // @[tage.scala:24:7]
wire update_wdata_0_valid = 1'h1; // @[tage.scala:119:26]
wire update_wdata_1_valid = 1'h1; // @[tage.scala:119:26]
wire update_wdata_2_valid = 1'h1; // @[tage.scala:119:26]
wire update_wdata_3_valid = 1'h1; // @[tage.scala:119:26]
wire [2:0] io_f3_resp_0_bits_ctr_0; // @[tage.scala:24:7]
wire [1:0] io_f3_resp_0_bits_u_0; // @[tage.scala:24:7]
wire io_f3_resp_0_valid_0; // @[tage.scala:24:7]
wire [2:0] io_f3_resp_1_bits_ctr_0; // @[tage.scala:24:7]
wire [1:0] io_f3_resp_1_bits_u_0; // @[tage.scala:24:7]
wire io_f3_resp_1_valid_0; // @[tage.scala:24:7]
wire [2:0] io_f3_resp_2_bits_ctr_0; // @[tage.scala:24:7]
wire [1:0] io_f3_resp_2_bits_u_0; // @[tage.scala:24:7]
wire io_f3_resp_2_valid_0; // @[tage.scala:24:7]
wire [2:0] io_f3_resp_3_bits_ctr_0; // @[tage.scala:24:7]
wire [1:0] io_f3_resp_3_bits_u_0; // @[tage.scala:24:7]
wire io_f3_resp_3_valid_0; // @[tage.scala:24:7]
reg doing_reset; // @[tage.scala:72:28]
reg [7:0] reset_idx; // @[tage.scala:73:26]
wire [8:0] _reset_idx_T = {1'h0, reset_idx} + {8'h0, doing_reset}; // @[tage.scala:72:28, :73:26, :74:26]
wire [7:0] _reset_idx_T_1 = _reset_idx_T[7:0]; // @[tage.scala:74:26]
wire [7:0] idx_history = io_f1_req_ghist_0[7:0]; // @[tage.scala:24:7, :53:11]
wire [7:0] tag_history = io_f1_req_ghist_0[7:0]; // @[tage.scala:24:7, :53:11]
wire [28:0] _tag_T = io_f1_req_pc_0[39:11]; // @[frontend.scala:162:35]
wire [36:0] _idx_T = {_tag_T, io_f1_req_pc_0[10:3] ^ idx_history}; // @[frontend.scala:162:35]
wire [7:0] s1_hashed_idx = _idx_T[7:0]; // @[tage.scala:60:{29,43}]
wire [7:0] _s2_req_rtage_WIRE = s1_hashed_idx; // @[tage.scala:60:43, :97:40]
wire [7:0] _s2_req_rhius_WIRE = s1_hashed_idx; // @[tage.scala:60:43, :98:32]
wire [7:0] _s2_req_rlous_WIRE = s1_hashed_idx; // @[tage.scala:60:43, :99:32]
wire [28:0] _tag_T_1 = {_tag_T[28:8], _tag_T[7:0] ^ tag_history}; // @[tage.scala:53:11, :62:{30,50}]
wire [7:0] s1_tag = _tag_T_1[7:0]; // @[tage.scala:62:{50,64}]
wire [11:0] _s2_req_rtage_WIRE_2 = _table_R0_data[11:0]; // @[tage.scala:91:27, :97:87]
wire [11:0] _s2_req_rtage_WIRE_4 = _table_R0_data[23:12]; // @[tage.scala:91:27, :97:87]
wire [11:0] _s2_req_rtage_WIRE_6 = _table_R0_data[35:24]; // @[tage.scala:91:27, :97:87]
wire [11:0] _s2_req_rtage_WIRE_8 = _table_R0_data[47:36]; // @[tage.scala:91:27, :97:87]
reg [7:0] s2_tag; // @[tage.scala:95:29]
wire _s2_req_rtage_T_2; // @[tage.scala:97:87]
wire [7:0] _s2_req_rtage_T_1; // @[tage.scala:97:87]
wire s2_req_rtage_0_valid = _s2_req_rtage_WIRE_1_valid; // @[tage.scala:97:{29,87}]
wire [2:0] _s2_req_rtage_T; // @[tage.scala:97:87]
wire [7:0] s2_req_rtage_0_tag = _s2_req_rtage_WIRE_1_tag; // @[tage.scala:97:{29,87}]
wire [2:0] s2_req_rtage_0_ctr = _s2_req_rtage_WIRE_1_ctr; // @[tage.scala:97:{29,87}]
assign _s2_req_rtage_T = _s2_req_rtage_WIRE_2[2:0]; // @[tage.scala:97:87]
assign _s2_req_rtage_WIRE_1_ctr = _s2_req_rtage_T; // @[tage.scala:97:87]
assign _s2_req_rtage_T_1 = _s2_req_rtage_WIRE_2[10:3]; // @[tage.scala:97:87]
assign _s2_req_rtage_WIRE_1_tag = _s2_req_rtage_T_1; // @[tage.scala:97:87]
assign _s2_req_rtage_T_2 = _s2_req_rtage_WIRE_2[11]; // @[tage.scala:97:87]
assign _s2_req_rtage_WIRE_1_valid = _s2_req_rtage_T_2; // @[tage.scala:97:87]
wire _s2_req_rtage_T_5; // @[tage.scala:97:87]
wire [7:0] _s2_req_rtage_T_4; // @[tage.scala:97:87]
wire s2_req_rtage_1_valid = _s2_req_rtage_WIRE_3_valid; // @[tage.scala:97:{29,87}]
wire [2:0] _s2_req_rtage_T_3; // @[tage.scala:97:87]
wire [7:0] s2_req_rtage_1_tag = _s2_req_rtage_WIRE_3_tag; // @[tage.scala:97:{29,87}]
wire [2:0] s2_req_rtage_1_ctr = _s2_req_rtage_WIRE_3_ctr; // @[tage.scala:97:{29,87}]
assign _s2_req_rtage_T_3 = _s2_req_rtage_WIRE_4[2:0]; // @[tage.scala:97:87]
assign _s2_req_rtage_WIRE_3_ctr = _s2_req_rtage_T_3; // @[tage.scala:97:87]
assign _s2_req_rtage_T_4 = _s2_req_rtage_WIRE_4[10:3]; // @[tage.scala:97:87]
assign _s2_req_rtage_WIRE_3_tag = _s2_req_rtage_T_4; // @[tage.scala:97:87]
assign _s2_req_rtage_T_5 = _s2_req_rtage_WIRE_4[11]; // @[tage.scala:97:87]
assign _s2_req_rtage_WIRE_3_valid = _s2_req_rtage_T_5; // @[tage.scala:97:87]
wire _s2_req_rtage_T_8; // @[tage.scala:97:87]
wire [7:0] _s2_req_rtage_T_7; // @[tage.scala:97:87]
wire s2_req_rtage_2_valid = _s2_req_rtage_WIRE_5_valid; // @[tage.scala:97:{29,87}]
wire [2:0] _s2_req_rtage_T_6; // @[tage.scala:97:87]
wire [7:0] s2_req_rtage_2_tag = _s2_req_rtage_WIRE_5_tag; // @[tage.scala:97:{29,87}]
wire [2:0] s2_req_rtage_2_ctr = _s2_req_rtage_WIRE_5_ctr; // @[tage.scala:97:{29,87}]
assign _s2_req_rtage_T_6 = _s2_req_rtage_WIRE_6[2:0]; // @[tage.scala:97:87]
assign _s2_req_rtage_WIRE_5_ctr = _s2_req_rtage_T_6; // @[tage.scala:97:87]
assign _s2_req_rtage_T_7 = _s2_req_rtage_WIRE_6[10:3]; // @[tage.scala:97:87]
assign _s2_req_rtage_WIRE_5_tag = _s2_req_rtage_T_7; // @[tage.scala:97:87]
assign _s2_req_rtage_T_8 = _s2_req_rtage_WIRE_6[11]; // @[tage.scala:97:87]
assign _s2_req_rtage_WIRE_5_valid = _s2_req_rtage_T_8; // @[tage.scala:97:87]
wire _s2_req_rtage_T_11; // @[tage.scala:97:87]
wire [7:0] _s2_req_rtage_T_10; // @[tage.scala:97:87]
wire s2_req_rtage_3_valid = _s2_req_rtage_WIRE_7_valid; // @[tage.scala:97:{29,87}]
wire [2:0] _s2_req_rtage_T_9; // @[tage.scala:97:87]
wire [7:0] s2_req_rtage_3_tag = _s2_req_rtage_WIRE_7_tag; // @[tage.scala:97:{29,87}]
wire [2:0] s2_req_rtage_3_ctr = _s2_req_rtage_WIRE_7_ctr; // @[tage.scala:97:{29,87}]
assign _s2_req_rtage_T_9 = _s2_req_rtage_WIRE_8[2:0]; // @[tage.scala:97:87]
assign _s2_req_rtage_WIRE_7_ctr = _s2_req_rtage_T_9; // @[tage.scala:97:87]
assign _s2_req_rtage_T_10 = _s2_req_rtage_WIRE_8[10:3]; // @[tage.scala:97:87]
assign _s2_req_rtage_WIRE_7_tag = _s2_req_rtage_T_10; // @[tage.scala:97:87]
assign _s2_req_rtage_T_11 = _s2_req_rtage_WIRE_8[11]; // @[tage.scala:97:87]
assign _s2_req_rtage_WIRE_7_valid = _s2_req_rtage_T_11; // @[tage.scala:97:87]
wire _s2_req_rhits_T = s2_req_rtage_0_tag == s2_tag; // @[tage.scala:95:29, :97:29, :100:69]
wire _s2_req_rhits_T_1 = s2_req_rtage_0_valid & _s2_req_rhits_T; // @[tage.scala:97:29, :100:{60,69}]
wire _s2_req_rhits_T_2 = ~doing_reset; // @[tage.scala:72:28, :100:83]
wire _s2_req_rhits_T_3 = _s2_req_rhits_T_1 & _s2_req_rhits_T_2; // @[tage.scala:100:{60,80,83}]
wire s2_req_rhits_0 = _s2_req_rhits_T_3; // @[tage.scala:100:{29,80}]
wire _s2_req_rhits_T_4 = s2_req_rtage_1_tag == s2_tag; // @[tage.scala:95:29, :97:29, :100:69]
wire _s2_req_rhits_T_5 = s2_req_rtage_1_valid & _s2_req_rhits_T_4; // @[tage.scala:97:29, :100:{60,69}]
wire _s2_req_rhits_T_6 = ~doing_reset; // @[tage.scala:72:28, :100:83]
wire _s2_req_rhits_T_7 = _s2_req_rhits_T_5 & _s2_req_rhits_T_6; // @[tage.scala:100:{60,80,83}]
wire s2_req_rhits_1 = _s2_req_rhits_T_7; // @[tage.scala:100:{29,80}]
wire _s2_req_rhits_T_8 = s2_req_rtage_2_tag == s2_tag; // @[tage.scala:95:29, :97:29, :100:69]
wire _s2_req_rhits_T_9 = s2_req_rtage_2_valid & _s2_req_rhits_T_8; // @[tage.scala:97:29, :100:{60,69}]
wire _s2_req_rhits_T_10 = ~doing_reset; // @[tage.scala:72:28, :100:83]
wire _s2_req_rhits_T_11 = _s2_req_rhits_T_9 & _s2_req_rhits_T_10; // @[tage.scala:100:{60,80,83}]
wire s2_req_rhits_2 = _s2_req_rhits_T_11; // @[tage.scala:100:{29,80}]
wire _s2_req_rhits_T_12 = s2_req_rtage_3_tag == s2_tag; // @[tage.scala:95:29, :97:29, :100:69]
wire _s2_req_rhits_T_13 = s2_req_rtage_3_valid & _s2_req_rhits_T_12; // @[tage.scala:97:29, :100:{60,69}]
wire _s2_req_rhits_T_14 = ~doing_reset; // @[tage.scala:72:28, :100:83]
wire _s2_req_rhits_T_15 = _s2_req_rhits_T_13 & _s2_req_rhits_T_14; // @[tage.scala:100:{60,80,83}]
wire s2_req_rhits_3 = _s2_req_rhits_T_15; // @[tage.scala:100:{29,80}]
reg io_f3_resp_0_valid_REG; // @[tage.scala:104:38]
assign io_f3_resp_0_valid_0 = io_f3_resp_0_valid_REG; // @[tage.scala:24:7, :104:38]
wire [1:0] _io_f3_resp_0_bits_u_T = {_hi_us_R0_data[0], _lo_us_R0_data[0]}; // @[tage.scala:89:27, :90:27, :105:42]
reg [1:0] io_f3_resp_0_bits_u_REG; // @[tage.scala:105:38]
assign io_f3_resp_0_bits_u_0 = io_f3_resp_0_bits_u_REG; // @[tage.scala:24:7, :105:38]
reg [2:0] io_f3_resp_0_bits_ctr_REG; // @[tage.scala:106:38]
assign io_f3_resp_0_bits_ctr_0 = io_f3_resp_0_bits_ctr_REG; // @[tage.scala:24:7, :106:38]
reg io_f3_resp_1_valid_REG; // @[tage.scala:104:38]
assign io_f3_resp_1_valid_0 = io_f3_resp_1_valid_REG; // @[tage.scala:24:7, :104:38]
wire [1:0] _io_f3_resp_1_bits_u_T = {_hi_us_R0_data[1], _lo_us_R0_data[1]}; // @[tage.scala:89:27, :90:27, :105:42]
reg [1:0] io_f3_resp_1_bits_u_REG; // @[tage.scala:105:38]
assign io_f3_resp_1_bits_u_0 = io_f3_resp_1_bits_u_REG; // @[tage.scala:24:7, :105:38]
reg [2:0] io_f3_resp_1_bits_ctr_REG; // @[tage.scala:106:38]
assign io_f3_resp_1_bits_ctr_0 = io_f3_resp_1_bits_ctr_REG; // @[tage.scala:24:7, :106:38]
reg io_f3_resp_2_valid_REG; // @[tage.scala:104:38]
assign io_f3_resp_2_valid_0 = io_f3_resp_2_valid_REG; // @[tage.scala:24:7, :104:38]
wire [1:0] _io_f3_resp_2_bits_u_T = {_hi_us_R0_data[2], _lo_us_R0_data[2]}; // @[tage.scala:89:27, :90:27, :105:42]
reg [1:0] io_f3_resp_2_bits_u_REG; // @[tage.scala:105:38]
assign io_f3_resp_2_bits_u_0 = io_f3_resp_2_bits_u_REG; // @[tage.scala:24:7, :105:38]
reg [2:0] io_f3_resp_2_bits_ctr_REG; // @[tage.scala:106:38]
assign io_f3_resp_2_bits_ctr_0 = io_f3_resp_2_bits_ctr_REG; // @[tage.scala:24:7, :106:38]
reg io_f3_resp_3_valid_REG; // @[tage.scala:104:38]
assign io_f3_resp_3_valid_0 = io_f3_resp_3_valid_REG; // @[tage.scala:24:7, :104:38]
wire [1:0] _io_f3_resp_3_bits_u_T = {_hi_us_R0_data[3], _lo_us_R0_data[3]}; // @[tage.scala:89:27, :90:27, :105:42]
reg [1:0] io_f3_resp_3_bits_u_REG; // @[tage.scala:105:38]
assign io_f3_resp_3_bits_u_0 = io_f3_resp_3_bits_u_REG; // @[tage.scala:24:7, :105:38]
reg [2:0] io_f3_resp_3_bits_ctr_REG; // @[tage.scala:106:38]
assign io_f3_resp_3_bits_ctr_0 = io_f3_resp_3_bits_ctr_REG; // @[tage.scala:24:7, :106:38]
reg [19:0] clear_u_ctr; // @[tage.scala:109:28]
wire [20:0] _clear_u_ctr_T = {1'h0, clear_u_ctr} + 21'h1; // @[tage.scala:109:28, :110:85]
wire [19:0] _clear_u_ctr_T_1 = _clear_u_ctr_T[19:0]; // @[tage.scala:110:85]
wire [10:0] _doing_clear_u_T = clear_u_ctr[10:0]; // @[tage.scala:109:28, :112:34]
wire doing_clear_u = _doing_clear_u_T == 11'h0; // @[tage.scala:112:{34,61}]
wire _doing_clear_u_hi_T = clear_u_ctr[19]; // @[tage.scala:109:28, :113:54]
wire _doing_clear_u_lo_T = clear_u_ctr[19]; // @[tage.scala:109:28, :113:54, :114:54]
wire _doing_clear_u_hi_T_1 = _doing_clear_u_hi_T; // @[tage.scala:113:{54,95}]
wire doing_clear_u_hi = doing_clear_u & _doing_clear_u_hi_T_1; // @[tage.scala:112:61, :113:{40,95}]
wire _doing_clear_u_lo_T_1 = ~_doing_clear_u_lo_T; // @[tage.scala:114:{54,95}]
wire doing_clear_u_lo = doing_clear_u & _doing_clear_u_lo_T_1; // @[tage.scala:112:61, :114:{40,95}]
wire [8:0] clear_u_idx = clear_u_ctr[19:11]; // @[tage.scala:109:28, :115:33]
wire [7:0] idx_history_1 = io_update_hist_0[7:0]; // @[tage.scala:24:7, :53:11]
wire [7:0] tag_history_1 = io_update_hist_0[7:0]; // @[tage.scala:24:7, :53:11]
wire [28:0] _tag_T_2 = io_update_pc_0[39:11]; // @[frontend.scala:162:35]
wire [36:0] _idx_T_1 = {_tag_T_2, io_update_pc_0[10:3] ^ idx_history_1}; // @[frontend.scala:162:35]
wire [7:0] update_idx = _idx_T_1[7:0]; // @[tage.scala:60:{29,43}]
wire [28:0] _tag_T_3 = {_tag_T_2[28:8], _tag_T_2[7:0] ^ tag_history_1}; // @[tage.scala:53:11, :62:{30,50}]
wire [7:0] update_tag = _tag_T_3[7:0]; // @[tage.scala:62:{50,64}]
wire [7:0] update_wdata_0_tag = update_tag; // @[tage.scala:62:64, :119:26]
wire [7:0] update_wdata_1_tag = update_tag; // @[tage.scala:62:64, :119:26]
wire [7:0] update_wdata_2_tag = update_tag; // @[tage.scala:62:64, :119:26]
wire [7:0] update_wdata_3_tag = update_tag; // @[tage.scala:62:64, :119:26]
wire [2:0] _update_wdata_0_ctr_T_22; // @[tage.scala:155:33]
wire [2:0] _update_wdata_1_ctr_T_22; // @[tage.scala:155:33]
wire [2:0] _update_wdata_2_ctr_T_22; // @[tage.scala:155:33]
wire [2:0] _update_wdata_3_ctr_T_22; // @[tage.scala:155:33]
wire [2:0] update_wdata_0_ctr; // @[tage.scala:119:26]
wire [2:0] update_wdata_1_ctr; // @[tage.scala:119:26]
wire [2:0] update_wdata_2_ctr; // @[tage.scala:119:26]
wire [2:0] update_wdata_3_ctr; // @[tage.scala:119:26]
wire [8:0] hi = {1'h1, update_wdata_0_tag}; // @[tage.scala:119:26, :123:102]
wire [8:0] hi_1 = {1'h1, update_wdata_1_tag}; // @[tage.scala:119:26, :123:102]
wire [8:0] hi_2 = {1'h1, update_wdata_2_tag}; // @[tage.scala:119:26, :123:102]
wire [8:0] hi_3 = {1'h1, update_wdata_3_tag}; // @[tage.scala:119:26, :123:102]
assign table_MPORT_data_0 = doing_reset ? 12'h0 : {hi, update_wdata_0_ctr}; // @[tage.scala:72:28, :119:26, :123:{8,102}]
assign table_MPORT_data_1 = doing_reset ? 12'h0 : {hi_1, update_wdata_1_ctr}; // @[tage.scala:72:28, :119:26, :123:{8,102}]
assign table_MPORT_data_2 = doing_reset ? 12'h0 : {hi_2, update_wdata_2_ctr}; // @[tage.scala:72:28, :119:26, :123:{8,102}]
assign table_MPORT_data_3 = doing_reset ? 12'h0 : {hi_3, update_wdata_3_ctr}; // @[tage.scala:72:28, :119:26, :123:{8,102}]
wire [1:0] lo = {io_update_mask_1_0, io_update_mask_0_0}; // @[tage.scala:24:7, :124:90]
wire [1:0] hi_4 = {io_update_mask_3_0, io_update_mask_2_0}; // @[tage.scala:24:7, :124:90]
wire _update_hi_wdata_0_T; // @[tage.scala:166:44]
wire _update_hi_wdata_1_T; // @[tage.scala:166:44]
wire _update_hi_wdata_2_T; // @[tage.scala:166:44]
wire _update_hi_wdata_3_T; // @[tage.scala:166:44]
wire update_hi_wdata_0; // @[tage.scala:127:29]
wire update_hi_wdata_1; // @[tage.scala:127:29]
wire update_hi_wdata_2; // @[tage.scala:127:29]
wire update_hi_wdata_3; // @[tage.scala:127:29]
wire _T_20 = doing_reset | doing_clear_u_hi; // @[tage.scala:72:28, :113:40, :130:21]
assign hi_us_MPORT_1_data_0 = ~_T_20 & update_hi_wdata_0; // @[tage.scala:127:29, :130:{8,21}]
assign hi_us_MPORT_1_data_1 = ~_T_20 & update_hi_wdata_1; // @[tage.scala:127:29, :130:{8,21}]
assign hi_us_MPORT_1_data_2 = ~_T_20 & update_hi_wdata_2; // @[tage.scala:127:29, :130:{8,21}]
assign hi_us_MPORT_1_data_3 = ~_T_20 & update_hi_wdata_3; // @[tage.scala:127:29, :130:{8,21}]
wire [1:0] _GEN = {io_update_u_mask_1_0, io_update_u_mask_0_0}; // @[tage.scala:24:7, :131:80]
wire [1:0] lo_1; // @[tage.scala:131:80]
assign lo_1 = _GEN; // @[tage.scala:131:80]
wire [1:0] lo_2; // @[tage.scala:138:80]
assign lo_2 = _GEN; // @[tage.scala:131:80, :138:80]
wire [1:0] _GEN_0 = {io_update_u_mask_3_0, io_update_u_mask_2_0}; // @[tage.scala:24:7, :131:80]
wire [1:0] hi_5; // @[tage.scala:131:80]
assign hi_5 = _GEN_0; // @[tage.scala:131:80]
wire [1:0] hi_6; // @[tage.scala:138:80]
assign hi_6 = _GEN_0; // @[tage.scala:131:80, :138:80]
wire _update_lo_wdata_0_T; // @[tage.scala:167:44]
wire _update_lo_wdata_1_T; // @[tage.scala:167:44]
wire _update_lo_wdata_2_T; // @[tage.scala:167:44]
wire _update_lo_wdata_3_T; // @[tage.scala:167:44]
wire update_lo_wdata_0; // @[tage.scala:134:29]
wire update_lo_wdata_1; // @[tage.scala:134:29]
wire update_lo_wdata_2; // @[tage.scala:134:29]
wire update_lo_wdata_3; // @[tage.scala:134:29]
wire _T_33 = doing_reset | doing_clear_u_lo; // @[tage.scala:72:28, :114:40, :137:21]
assign lo_us_MPORT_2_data_0 = ~_T_33 & update_lo_wdata_0; // @[tage.scala:134:29, :137:{8,21}]
assign lo_us_MPORT_2_data_1 = ~_T_33 & update_lo_wdata_1; // @[tage.scala:134:29, :137:{8,21}]
assign lo_us_MPORT_2_data_2 = ~_T_33 & update_lo_wdata_2; // @[tage.scala:134:29, :137:{8,21}]
assign lo_us_MPORT_2_data_3 = ~_T_33 & update_lo_wdata_3; // @[tage.scala:134:29, :137:{8,21}]
reg [7:0] wrbypass_tags_0; // @[tage.scala:141:29]
reg [7:0] wrbypass_tags_1; // @[tage.scala:141:29]
reg [7:0] wrbypass_idxs_0; // @[tage.scala:142:29]
reg [7:0] wrbypass_idxs_1; // @[tage.scala:142:29]
reg [2:0] wrbypass_0_0; // @[tage.scala:143:29]
reg [2:0] wrbypass_0_1; // @[tage.scala:143:29]
reg [2:0] wrbypass_0_2; // @[tage.scala:143:29]
reg [2:0] wrbypass_0_3; // @[tage.scala:143:29]
reg [2:0] wrbypass_1_0; // @[tage.scala:143:29]
reg [2:0] wrbypass_1_1; // @[tage.scala:143:29]
reg [2:0] wrbypass_1_2; // @[tage.scala:143:29]
reg [2:0] wrbypass_1_3; // @[tage.scala:143:29]
reg wrbypass_enq_idx; // @[tage.scala:144:33]
wire _wrbypass_hits_T = ~doing_reset; // @[tage.scala:72:28, :100:83, :147:5]
wire _wrbypass_hits_T_1 = wrbypass_tags_0 == update_tag; // @[tage.scala:62:64, :141:29, :148:22]
wire _wrbypass_hits_T_2 = _wrbypass_hits_T & _wrbypass_hits_T_1; // @[tage.scala:147:{5,18}, :148:22]
wire _wrbypass_hits_T_3 = wrbypass_idxs_0 == update_idx; // @[tage.scala:60:43, :142:29, :149:22]
wire _wrbypass_hits_T_4 = _wrbypass_hits_T_2 & _wrbypass_hits_T_3; // @[tage.scala:147:18, :148:37, :149:22]
wire wrbypass_hits_0 = _wrbypass_hits_T_4; // @[tage.scala:146:33, :148:37]
wire _wrbypass_hits_T_5 = ~doing_reset; // @[tage.scala:72:28, :100:83, :147:5]
wire _wrbypass_hits_T_6 = wrbypass_tags_1 == update_tag; // @[tage.scala:62:64, :141:29, :148:22]
wire _wrbypass_hits_T_7 = _wrbypass_hits_T_5 & _wrbypass_hits_T_6; // @[tage.scala:147:{5,18}, :148:22]
wire _wrbypass_hits_T_8 = wrbypass_idxs_1 == update_idx; // @[tage.scala:60:43, :142:29, :149:22]
wire _wrbypass_hits_T_9 = _wrbypass_hits_T_7 & _wrbypass_hits_T_8; // @[tage.scala:147:18, :148:37, :149:22]
wire wrbypass_hits_1 = _wrbypass_hits_T_9; // @[tage.scala:146:33, :148:37]
wire wrbypass_hit = wrbypass_hits_0 | wrbypass_hits_1; // @[tage.scala:146:33, :151:48]
wire wrbypass_hit_idx = ~wrbypass_hits_0; // @[Mux.scala:50:70]
wire [2:0] _update_wdata_0_ctr_T = io_update_taken_0_0 ? 3'h4 : 3'h3; // @[tage.scala:24:7, :156:10]
wire _update_wdata_0_ctr_T_1 = ~io_update_taken_0_0; // @[tage.scala:24:7, :67:9]
wire [2:0] _GEN_1 = wrbypass_hit_idx ? wrbypass_1_0 : wrbypass_0_0; // @[Mux.scala:50:70]
wire [2:0] _GEN_2 = wrbypass_hit_idx ? wrbypass_1_1 : wrbypass_0_1; // @[Mux.scala:50:70]
wire [2:0] _GEN_3 = wrbypass_hit_idx ? wrbypass_1_2 : wrbypass_0_2; // @[Mux.scala:50:70]
wire [2:0] _GEN_4 = wrbypass_hit_idx ? wrbypass_1_3 : wrbypass_0_3; // @[Mux.scala:50:70]
wire _update_wdata_0_ctr_T_2 = _GEN_1 == 3'h0; // @[tage.scala:67:25]
wire [3:0] _GEN_5 = {1'h0, _GEN_1}; // @[tage.scala:67:{25,43}]
wire [3:0] _update_wdata_0_ctr_T_3 = _GEN_5 - 4'h1; // @[tage.scala:67:43]
wire [2:0] _update_wdata_0_ctr_T_4 = _update_wdata_0_ctr_T_3[2:0]; // @[tage.scala:67:43]
wire [2:0] _update_wdata_0_ctr_T_5 = _update_wdata_0_ctr_T_2 ? 3'h0 : _update_wdata_0_ctr_T_4; // @[tage.scala:67:{20,25,43}]
wire _update_wdata_0_ctr_T_6 = &_GEN_1; // @[tage.scala:67:25, :68:25]
wire [3:0] _update_wdata_0_ctr_T_7 = _GEN_5 + 4'h1; // @[tage.scala:67:43, :68:43]
wire [2:0] _update_wdata_0_ctr_T_8 = _update_wdata_0_ctr_T_7[2:0]; // @[tage.scala:68:43]
wire [2:0] _update_wdata_0_ctr_T_9 = _update_wdata_0_ctr_T_6 ? 3'h7 : _update_wdata_0_ctr_T_8; // @[tage.scala:68:{20,25,43}]
wire [2:0] _update_wdata_0_ctr_T_10 = _update_wdata_0_ctr_T_1 ? _update_wdata_0_ctr_T_5 : _update_wdata_0_ctr_T_9; // @[tage.scala:67:{8,9,20}, :68:20]
wire _update_wdata_0_ctr_T_11 = ~io_update_taken_0_0; // @[tage.scala:24:7, :67:9]
wire _update_wdata_0_ctr_T_12 = io_update_old_ctr_0_0 == 3'h0; // @[tage.scala:24:7, :67:25]
wire [3:0] _GEN_6 = {1'h0, io_update_old_ctr_0_0}; // @[tage.scala:24:7, :67:43]
wire [3:0] _update_wdata_0_ctr_T_13 = _GEN_6 - 4'h1; // @[tage.scala:67:43]
wire [2:0] _update_wdata_0_ctr_T_14 = _update_wdata_0_ctr_T_13[2:0]; // @[tage.scala:67:43]
wire [2:0] _update_wdata_0_ctr_T_15 = _update_wdata_0_ctr_T_12 ? 3'h0 : _update_wdata_0_ctr_T_14; // @[tage.scala:67:{20,25,43}]
wire _update_wdata_0_ctr_T_16 = &io_update_old_ctr_0_0; // @[tage.scala:24:7, :68:25]
wire [3:0] _update_wdata_0_ctr_T_17 = _GEN_6 + 4'h1; // @[tage.scala:67:43, :68:43]
wire [2:0] _update_wdata_0_ctr_T_18 = _update_wdata_0_ctr_T_17[2:0]; // @[tage.scala:68:43]
wire [2:0] _update_wdata_0_ctr_T_19 = _update_wdata_0_ctr_T_16 ? 3'h7 : _update_wdata_0_ctr_T_18; // @[tage.scala:68:{20,25,43}]
wire [2:0] _update_wdata_0_ctr_T_20 = _update_wdata_0_ctr_T_11 ? _update_wdata_0_ctr_T_15 : _update_wdata_0_ctr_T_19; // @[tage.scala:67:{8,9,20}, :68:20]
wire [2:0] _update_wdata_0_ctr_T_21 = wrbypass_hit ? _update_wdata_0_ctr_T_10 : _update_wdata_0_ctr_T_20; // @[tage.scala:67:8, :151:48, :159:10]
assign _update_wdata_0_ctr_T_22 = io_update_alloc_0_0 ? _update_wdata_0_ctr_T : _update_wdata_0_ctr_T_21; // @[tage.scala:24:7, :155:33, :156:10, :159:10]
assign update_wdata_0_ctr = _update_wdata_0_ctr_T_22; // @[tage.scala:119:26, :155:33]
assign _update_hi_wdata_0_T = io_update_u_0_0[1]; // @[tage.scala:24:7, :166:44]
assign update_hi_wdata_0 = _update_hi_wdata_0_T; // @[tage.scala:127:29, :166:44]
assign _update_lo_wdata_0_T = io_update_u_0_0[0]; // @[tage.scala:24:7, :167:44]
assign update_lo_wdata_0 = _update_lo_wdata_0_T; // @[tage.scala:134:29, :167:44]
wire [2:0] _update_wdata_1_ctr_T = io_update_taken_1_0 ? 3'h4 : 3'h3; // @[tage.scala:24:7, :156:10]
wire _update_wdata_1_ctr_T_1 = ~io_update_taken_1_0; // @[tage.scala:24:7, :67:9]
wire _update_wdata_1_ctr_T_2 = _GEN_2 == 3'h0; // @[tage.scala:67:25]
wire [3:0] _GEN_7 = {1'h0, _GEN_2}; // @[tage.scala:67:{25,43}]
wire [3:0] _update_wdata_1_ctr_T_3 = _GEN_7 - 4'h1; // @[tage.scala:67:43]
wire [2:0] _update_wdata_1_ctr_T_4 = _update_wdata_1_ctr_T_3[2:0]; // @[tage.scala:67:43]
wire [2:0] _update_wdata_1_ctr_T_5 = _update_wdata_1_ctr_T_2 ? 3'h0 : _update_wdata_1_ctr_T_4; // @[tage.scala:67:{20,25,43}]
wire _update_wdata_1_ctr_T_6 = &_GEN_2; // @[tage.scala:67:25, :68:25]
wire [3:0] _update_wdata_1_ctr_T_7 = _GEN_7 + 4'h1; // @[tage.scala:67:43, :68:43]
wire [2:0] _update_wdata_1_ctr_T_8 = _update_wdata_1_ctr_T_7[2:0]; // @[tage.scala:68:43]
wire [2:0] _update_wdata_1_ctr_T_9 = _update_wdata_1_ctr_T_6 ? 3'h7 : _update_wdata_1_ctr_T_8; // @[tage.scala:68:{20,25,43}]
wire [2:0] _update_wdata_1_ctr_T_10 = _update_wdata_1_ctr_T_1 ? _update_wdata_1_ctr_T_5 : _update_wdata_1_ctr_T_9; // @[tage.scala:67:{8,9,20}, :68:20]
wire _update_wdata_1_ctr_T_11 = ~io_update_taken_1_0; // @[tage.scala:24:7, :67:9]
wire _update_wdata_1_ctr_T_12 = io_update_old_ctr_1_0 == 3'h0; // @[tage.scala:24:7, :67:25]
wire [3:0] _GEN_8 = {1'h0, io_update_old_ctr_1_0}; // @[tage.scala:24:7, :67:43]
wire [3:0] _update_wdata_1_ctr_T_13 = _GEN_8 - 4'h1; // @[tage.scala:67:43]
wire [2:0] _update_wdata_1_ctr_T_14 = _update_wdata_1_ctr_T_13[2:0]; // @[tage.scala:67:43]
wire [2:0] _update_wdata_1_ctr_T_15 = _update_wdata_1_ctr_T_12 ? 3'h0 : _update_wdata_1_ctr_T_14; // @[tage.scala:67:{20,25,43}]
wire _update_wdata_1_ctr_T_16 = &io_update_old_ctr_1_0; // @[tage.scala:24:7, :68:25]
wire [3:0] _update_wdata_1_ctr_T_17 = _GEN_8 + 4'h1; // @[tage.scala:67:43, :68:43]
wire [2:0] _update_wdata_1_ctr_T_18 = _update_wdata_1_ctr_T_17[2:0]; // @[tage.scala:68:43]
wire [2:0] _update_wdata_1_ctr_T_19 = _update_wdata_1_ctr_T_16 ? 3'h7 : _update_wdata_1_ctr_T_18; // @[tage.scala:68:{20,25,43}]
wire [2:0] _update_wdata_1_ctr_T_20 = _update_wdata_1_ctr_T_11 ? _update_wdata_1_ctr_T_15 : _update_wdata_1_ctr_T_19; // @[tage.scala:67:{8,9,20}, :68:20]
wire [2:0] _update_wdata_1_ctr_T_21 = wrbypass_hit ? _update_wdata_1_ctr_T_10 : _update_wdata_1_ctr_T_20; // @[tage.scala:67:8, :151:48, :159:10]
assign _update_wdata_1_ctr_T_22 = io_update_alloc_1_0 ? _update_wdata_1_ctr_T : _update_wdata_1_ctr_T_21; // @[tage.scala:24:7, :155:33, :156:10, :159:10]
assign update_wdata_1_ctr = _update_wdata_1_ctr_T_22; // @[tage.scala:119:26, :155:33]
assign _update_hi_wdata_1_T = io_update_u_1_0[1]; // @[tage.scala:24:7, :166:44]
assign update_hi_wdata_1 = _update_hi_wdata_1_T; // @[tage.scala:127:29, :166:44]
assign _update_lo_wdata_1_T = io_update_u_1_0[0]; // @[tage.scala:24:7, :167:44]
assign update_lo_wdata_1 = _update_lo_wdata_1_T; // @[tage.scala:134:29, :167:44]
wire [2:0] _update_wdata_2_ctr_T = io_update_taken_2_0 ? 3'h4 : 3'h3; // @[tage.scala:24:7, :156:10]
wire _update_wdata_2_ctr_T_1 = ~io_update_taken_2_0; // @[tage.scala:24:7, :67:9]
wire _update_wdata_2_ctr_T_2 = _GEN_3 == 3'h0; // @[tage.scala:67:25]
wire [3:0] _GEN_9 = {1'h0, _GEN_3}; // @[tage.scala:67:{25,43}]
wire [3:0] _update_wdata_2_ctr_T_3 = _GEN_9 - 4'h1; // @[tage.scala:67:43]
wire [2:0] _update_wdata_2_ctr_T_4 = _update_wdata_2_ctr_T_3[2:0]; // @[tage.scala:67:43]
wire [2:0] _update_wdata_2_ctr_T_5 = _update_wdata_2_ctr_T_2 ? 3'h0 : _update_wdata_2_ctr_T_4; // @[tage.scala:67:{20,25,43}]
wire _update_wdata_2_ctr_T_6 = &_GEN_3; // @[tage.scala:67:25, :68:25]
wire [3:0] _update_wdata_2_ctr_T_7 = _GEN_9 + 4'h1; // @[tage.scala:67:43, :68:43]
wire [2:0] _update_wdata_2_ctr_T_8 = _update_wdata_2_ctr_T_7[2:0]; // @[tage.scala:68:43]
wire [2:0] _update_wdata_2_ctr_T_9 = _update_wdata_2_ctr_T_6 ? 3'h7 : _update_wdata_2_ctr_T_8; // @[tage.scala:68:{20,25,43}]
wire [2:0] _update_wdata_2_ctr_T_10 = _update_wdata_2_ctr_T_1 ? _update_wdata_2_ctr_T_5 : _update_wdata_2_ctr_T_9; // @[tage.scala:67:{8,9,20}, :68:20]
wire _update_wdata_2_ctr_T_11 = ~io_update_taken_2_0; // @[tage.scala:24:7, :67:9]
wire _update_wdata_2_ctr_T_12 = io_update_old_ctr_2_0 == 3'h0; // @[tage.scala:24:7, :67:25]
wire [3:0] _GEN_10 = {1'h0, io_update_old_ctr_2_0}; // @[tage.scala:24:7, :67:43]
wire [3:0] _update_wdata_2_ctr_T_13 = _GEN_10 - 4'h1; // @[tage.scala:67:43]
wire [2:0] _update_wdata_2_ctr_T_14 = _update_wdata_2_ctr_T_13[2:0]; // @[tage.scala:67:43]
wire [2:0] _update_wdata_2_ctr_T_15 = _update_wdata_2_ctr_T_12 ? 3'h0 : _update_wdata_2_ctr_T_14; // @[tage.scala:67:{20,25,43}]
wire _update_wdata_2_ctr_T_16 = &io_update_old_ctr_2_0; // @[tage.scala:24:7, :68:25]
wire [3:0] _update_wdata_2_ctr_T_17 = _GEN_10 + 4'h1; // @[tage.scala:67:43, :68:43]
wire [2:0] _update_wdata_2_ctr_T_18 = _update_wdata_2_ctr_T_17[2:0]; // @[tage.scala:68:43]
wire [2:0] _update_wdata_2_ctr_T_19 = _update_wdata_2_ctr_T_16 ? 3'h7 : _update_wdata_2_ctr_T_18; // @[tage.scala:68:{20,25,43}]
wire [2:0] _update_wdata_2_ctr_T_20 = _update_wdata_2_ctr_T_11 ? _update_wdata_2_ctr_T_15 : _update_wdata_2_ctr_T_19; // @[tage.scala:67:{8,9,20}, :68:20]
wire [2:0] _update_wdata_2_ctr_T_21 = wrbypass_hit ? _update_wdata_2_ctr_T_10 : _update_wdata_2_ctr_T_20; // @[tage.scala:67:8, :151:48, :159:10]
assign _update_wdata_2_ctr_T_22 = io_update_alloc_2_0 ? _update_wdata_2_ctr_T : _update_wdata_2_ctr_T_21; // @[tage.scala:24:7, :155:33, :156:10, :159:10]
assign update_wdata_2_ctr = _update_wdata_2_ctr_T_22; // @[tage.scala:119:26, :155:33]
assign _update_hi_wdata_2_T = io_update_u_2_0[1]; // @[tage.scala:24:7, :166:44]
assign update_hi_wdata_2 = _update_hi_wdata_2_T; // @[tage.scala:127:29, :166:44]
assign _update_lo_wdata_2_T = io_update_u_2_0[0]; // @[tage.scala:24:7, :167:44]
assign update_lo_wdata_2 = _update_lo_wdata_2_T; // @[tage.scala:134:29, :167:44]
wire [2:0] _update_wdata_3_ctr_T = io_update_taken_3_0 ? 3'h4 : 3'h3; // @[tage.scala:24:7, :156:10]
wire _update_wdata_3_ctr_T_1 = ~io_update_taken_3_0; // @[tage.scala:24:7, :67:9]
wire _update_wdata_3_ctr_T_2 = _GEN_4 == 3'h0; // @[tage.scala:67:25]
wire [3:0] _GEN_11 = {1'h0, _GEN_4}; // @[tage.scala:67:{25,43}]
wire [3:0] _update_wdata_3_ctr_T_3 = _GEN_11 - 4'h1; // @[tage.scala:67:43]
wire [2:0] _update_wdata_3_ctr_T_4 = _update_wdata_3_ctr_T_3[2:0]; // @[tage.scala:67:43]
wire [2:0] _update_wdata_3_ctr_T_5 = _update_wdata_3_ctr_T_2 ? 3'h0 : _update_wdata_3_ctr_T_4; // @[tage.scala:67:{20,25,43}]
wire _update_wdata_3_ctr_T_6 = &_GEN_4; // @[tage.scala:67:25, :68:25]
wire [3:0] _update_wdata_3_ctr_T_7 = _GEN_11 + 4'h1; // @[tage.scala:67:43, :68:43]
wire [2:0] _update_wdata_3_ctr_T_8 = _update_wdata_3_ctr_T_7[2:0]; // @[tage.scala:68:43]
wire [2:0] _update_wdata_3_ctr_T_9 = _update_wdata_3_ctr_T_6 ? 3'h7 : _update_wdata_3_ctr_T_8; // @[tage.scala:68:{20,25,43}]
wire [2:0] _update_wdata_3_ctr_T_10 = _update_wdata_3_ctr_T_1 ? _update_wdata_3_ctr_T_5 : _update_wdata_3_ctr_T_9; // @[tage.scala:67:{8,9,20}, :68:20]
wire _update_wdata_3_ctr_T_11 = ~io_update_taken_3_0; // @[tage.scala:24:7, :67:9]
wire _update_wdata_3_ctr_T_12 = io_update_old_ctr_3_0 == 3'h0; // @[tage.scala:24:7, :67:25]
wire [3:0] _GEN_12 = {1'h0, io_update_old_ctr_3_0}; // @[tage.scala:24:7, :67:43]
wire [3:0] _update_wdata_3_ctr_T_13 = _GEN_12 - 4'h1; // @[tage.scala:67:43]
wire [2:0] _update_wdata_3_ctr_T_14 = _update_wdata_3_ctr_T_13[2:0]; // @[tage.scala:67:43]
wire [2:0] _update_wdata_3_ctr_T_15 = _update_wdata_3_ctr_T_12 ? 3'h0 : _update_wdata_3_ctr_T_14; // @[tage.scala:67:{20,25,43}]
wire _update_wdata_3_ctr_T_16 = &io_update_old_ctr_3_0; // @[tage.scala:24:7, :68:25]
wire [3:0] _update_wdata_3_ctr_T_17 = _GEN_12 + 4'h1; // @[tage.scala:67:43, :68:43]
wire [2:0] _update_wdata_3_ctr_T_18 = _update_wdata_3_ctr_T_17[2:0]; // @[tage.scala:68:43]
wire [2:0] _update_wdata_3_ctr_T_19 = _update_wdata_3_ctr_T_16 ? 3'h7 : _update_wdata_3_ctr_T_18; // @[tage.scala:68:{20,25,43}]
wire [2:0] _update_wdata_3_ctr_T_20 = _update_wdata_3_ctr_T_11 ? _update_wdata_3_ctr_T_15 : _update_wdata_3_ctr_T_19; // @[tage.scala:67:{8,9,20}, :68:20]
wire [2:0] _update_wdata_3_ctr_T_21 = wrbypass_hit ? _update_wdata_3_ctr_T_10 : _update_wdata_3_ctr_T_20; // @[tage.scala:67:8, :151:48, :159:10]
assign _update_wdata_3_ctr_T_22 = io_update_alloc_3_0 ? _update_wdata_3_ctr_T : _update_wdata_3_ctr_T_21; // @[tage.scala:24:7, :155:33, :156:10, :159:10]
assign update_wdata_3_ctr = _update_wdata_3_ctr_T_22; // @[tage.scala:119:26, :155:33]
assign _update_hi_wdata_3_T = io_update_u_3_0[1]; // @[tage.scala:24:7, :166:44]
assign update_hi_wdata_3 = _update_hi_wdata_3_T; // @[tage.scala:127:29, :166:44]
assign _update_lo_wdata_3_T = io_update_u_3_0[0]; // @[tage.scala:24:7, :167:44]
assign update_lo_wdata_3 = _update_lo_wdata_3_T; // @[tage.scala:134:29, :167:44]
wire [1:0] _wrbypass_enq_idx_T = {1'h0, wrbypass_enq_idx} + 2'h1; // @[util.scala:203:14]
wire _wrbypass_enq_idx_T_1 = _wrbypass_enq_idx_T[0]; // @[util.scala:203:14]
wire _wrbypass_enq_idx_T_2 = _wrbypass_enq_idx_T_1; // @[util.scala:203:{14,20}]
wire _T_44 = io_update_mask_0_0 | io_update_mask_1_0 | io_update_mask_2_0 | io_update_mask_3_0; // @[tage.scala:24:7, :170:32]
wire _GEN_13 = wrbypass_hit ? wrbypass_hit_idx : wrbypass_enq_idx; // @[Mux.scala:50:70]
wire _GEN_14 = ~_T_44 | wrbypass_hit | wrbypass_enq_idx; // @[tage.scala:141:29, :143:29, :144:33, :151:48, :170:{32,38}, :171:39, :175:39]
wire _GEN_15 = ~_T_44 | wrbypass_hit | ~wrbypass_enq_idx; // @[tage.scala:141:29, :143:29, :144:33, :151:48, :170:{32,38}, :171:39, :175:39]
always @(posedge clock) begin // @[tage.scala:24:7]
if (reset) begin // @[tage.scala:24:7]
doing_reset <= 1'h1; // @[tage.scala:72:28]
reset_idx <= 8'h0; // @[tage.scala:73:26]
clear_u_ctr <= 20'h0; // @[tage.scala:109:28]
wrbypass_enq_idx <= 1'h0; // @[tage.scala:144:33]
end
else begin // @[tage.scala:24:7]
doing_reset <= reset_idx != 8'hFF & doing_reset; // @[tage.scala:72:28, :73:26, :75:{19,36,50}]
reset_idx <= _reset_idx_T_1; // @[tage.scala:73:26, :74:26]
clear_u_ctr <= doing_reset ? 20'h1 : _clear_u_ctr_T_1; // @[tage.scala:72:28, :109:28, :110:{22,36,70,85}]
if (~_T_44 | wrbypass_hit) begin // @[tage.scala:143:29, :144:33, :151:48, :170:{32,38}, :171:39]
end
else // @[tage.scala:144:33, :170:38, :171:39]
wrbypass_enq_idx <= _wrbypass_enq_idx_T_2; // @[util.scala:203:20]
end
s2_tag <= s1_tag; // @[tage.scala:62:64, :95:29]
io_f3_resp_0_valid_REG <= s2_req_rhits_0; // @[tage.scala:100:29, :104:38]
io_f3_resp_0_bits_u_REG <= _io_f3_resp_0_bits_u_T; // @[tage.scala:105:{38,42}]
io_f3_resp_0_bits_ctr_REG <= s2_req_rtage_0_ctr; // @[tage.scala:97:29, :106:38]
io_f3_resp_1_valid_REG <= s2_req_rhits_1; // @[tage.scala:100:29, :104:38]
io_f3_resp_1_bits_u_REG <= _io_f3_resp_1_bits_u_T; // @[tage.scala:105:{38,42}]
io_f3_resp_1_bits_ctr_REG <= s2_req_rtage_1_ctr; // @[tage.scala:97:29, :106:38]
io_f3_resp_2_valid_REG <= s2_req_rhits_2; // @[tage.scala:100:29, :104:38]
io_f3_resp_2_bits_u_REG <= _io_f3_resp_2_bits_u_T; // @[tage.scala:105:{38,42}]
io_f3_resp_2_bits_ctr_REG <= s2_req_rtage_2_ctr; // @[tage.scala:97:29, :106:38]
io_f3_resp_3_valid_REG <= s2_req_rhits_3; // @[tage.scala:100:29, :104:38]
io_f3_resp_3_bits_u_REG <= _io_f3_resp_3_bits_u_T; // @[tage.scala:105:{38,42}]
io_f3_resp_3_bits_ctr_REG <= s2_req_rtage_3_ctr; // @[tage.scala:97:29, :106:38]
if (_GEN_14) begin // @[tage.scala:141:29, :170:38, :171:39, :175:39]
end
else // @[tage.scala:141:29, :170:38, :171:39, :175:39]
wrbypass_tags_0 <= update_tag; // @[tage.scala:62:64, :141:29]
if (_GEN_15) begin // @[tage.scala:141:29, :170:38, :171:39, :175:39]
end
else // @[tage.scala:141:29, :170:38, :171:39, :175:39]
wrbypass_tags_1 <= update_tag; // @[tage.scala:62:64, :141:29]
if (_GEN_14) begin // @[tage.scala:141:29, :142:29, :170:38, :171:39, :175:39, :176:39]
end
else // @[tage.scala:142:29, :170:38, :171:39, :176:39]
wrbypass_idxs_0 <= update_idx; // @[tage.scala:60:43, :142:29]
if (_GEN_15) begin // @[tage.scala:141:29, :142:29, :170:38, :171:39, :175:39, :176:39]
end
else // @[tage.scala:142:29, :170:38, :171:39, :176:39]
wrbypass_idxs_1 <= update_idx; // @[tage.scala:60:43, :142:29]
if (~_T_44 | _GEN_13) begin // @[tage.scala:143:29, :170:{32,38}, :171:39, :172:34, :174:39]
end
else begin // @[tage.scala:143:29, :170:38, :171:39]
wrbypass_0_0 <= update_wdata_0_ctr; // @[tage.scala:119:26, :143:29]
wrbypass_0_1 <= update_wdata_1_ctr; // @[tage.scala:119:26, :143:29]
wrbypass_0_2 <= update_wdata_2_ctr; // @[tage.scala:119:26, :143:29]
wrbypass_0_3 <= update_wdata_3_ctr; // @[tage.scala:119:26, :143:29]
end
if (_T_44 & _GEN_13) begin // @[tage.scala:143:29, :170:{32,38}, :171:39, :172:34, :174:39]
wrbypass_1_0 <= update_wdata_0_ctr; // @[tage.scala:119:26, :143:29]
wrbypass_1_1 <= update_wdata_1_ctr; // @[tage.scala:119:26, :143:29]
wrbypass_1_2 <= update_wdata_2_ctr; // @[tage.scala:119:26, :143:29]
wrbypass_1_3 <= update_wdata_3_ctr; // @[tage.scala:119:26, :143:29]
end
always @(posedge)
hi_us_7 hi_us ( // @[tage.scala:89:27]
.R0_addr (_s2_req_rhius_WIRE), // @[tage.scala:98:32]
.R0_en (io_f1_req_valid_0), // @[tage.scala:24:7]
.R0_clk (clock),
.R0_data (_hi_us_R0_data),
.W0_addr (doing_reset ? reset_idx : doing_clear_u_hi ? clear_u_idx[7:0] : update_idx), // @[tage.scala:60:43, :72:28, :73:26, :113:40, :115:33, :129:{8,36}]
.W0_clk (clock),
.W0_data ({hi_us_MPORT_1_data_3, hi_us_MPORT_1_data_2, hi_us_MPORT_1_data_1, hi_us_MPORT_1_data_0}), // @[tage.scala:89:27, :130:8]
.W0_mask (_T_20 ? 4'hF : {hi_5, lo_1}) // @[tage.scala:130:21, :131:{8,80}]
); // @[tage.scala:89:27]
lo_us_7 lo_us ( // @[tage.scala:90:27]
.R0_addr (_s2_req_rlous_WIRE), // @[tage.scala:99:32]
.R0_en (io_f1_req_valid_0), // @[tage.scala:24:7]
.R0_clk (clock),
.R0_data (_lo_us_R0_data),
.W0_addr (doing_reset ? reset_idx : doing_clear_u_lo ? clear_u_idx[7:0] : update_idx), // @[tage.scala:60:43, :72:28, :73:26, :114:40, :115:33, :136:{8,36}]
.W0_clk (clock),
.W0_data ({lo_us_MPORT_2_data_3, lo_us_MPORT_2_data_2, lo_us_MPORT_2_data_1, lo_us_MPORT_2_data_0}), // @[tage.scala:90:27, :137:8]
.W0_mask (_T_33 ? 4'hF : {hi_6, lo_2}) // @[tage.scala:137:21, :138:{8,80}]
); // @[tage.scala:90:27]
table_7 table_0 ( // @[tage.scala:91:27]
.R0_addr (_s2_req_rtage_WIRE), // @[tage.scala:97:40]
.R0_en (io_f1_req_valid_0), // @[tage.scala:24:7]
.R0_clk (clock),
.R0_data (_table_R0_data),
.W0_addr (doing_reset ? reset_idx : update_idx), // @[tage.scala:60:43, :72:28, :73:26, :122:8]
.W0_clk (clock),
.W0_data ({table_MPORT_data_3, table_MPORT_data_2, table_MPORT_data_1, table_MPORT_data_0}), // @[tage.scala:91:27, :123:8]
.W0_mask (doing_reset ? 4'hF : {hi_4, lo}) // @[tage.scala:72:28, :124:{8,90}]
); // @[tage.scala:91:27]
assign io_f3_resp_0_valid = io_f3_resp_0_valid_0; // @[tage.scala:24:7]
assign io_f3_resp_0_bits_ctr = io_f3_resp_0_bits_ctr_0; // @[tage.scala:24:7]
assign io_f3_resp_0_bits_u = io_f3_resp_0_bits_u_0; // @[tage.scala:24:7]
assign io_f3_resp_1_valid = io_f3_resp_1_valid_0; // @[tage.scala:24:7]
assign io_f3_resp_1_bits_ctr = io_f3_resp_1_bits_ctr_0; // @[tage.scala:24:7]
assign io_f3_resp_1_bits_u = io_f3_resp_1_bits_u_0; // @[tage.scala:24:7]
assign io_f3_resp_2_valid = io_f3_resp_2_valid_0; // @[tage.scala:24:7]
assign io_f3_resp_2_bits_ctr = io_f3_resp_2_bits_ctr_0; // @[tage.scala:24:7]
assign io_f3_resp_2_bits_u = io_f3_resp_2_bits_u_0; // @[tage.scala:24:7]
assign io_f3_resp_3_valid = io_f3_resp_3_valid_0; // @[tage.scala:24:7]
assign io_f3_resp_3_bits_ctr = io_f3_resp_3_bits_ctr_0; // @[tage.scala:24:7]
assign io_f3_resp_3_bits_u = io_f3_resp_3_bits_u_0; // @[tage.scala:24:7]
endmodule |
Generate the Verilog code corresponding to the following Chisel files.
File Pipeline.scala:
package gemmini
import chisel3._
import chisel3.util._
class Pipeline[T <: Data] (gen: T, latency: Int)(comb: Seq[T => T] = Seq.fill(latency+1)((x: T) => x)) extends Module {
val io = IO(new Bundle {
val in = Flipped(Decoupled(gen))
val out = Decoupled(gen)
val busy = Output(Bool())
})
require(comb.size == latency+1, "length of combinational is incorrect")
if (latency == 0) {
io.in.ready := io.out.ready
io.out.valid := io.in.valid
io.out.bits := comb.head(io.in.bits)
io.busy := io.in.valid
} else {
val stages = Reg(Vec(latency, gen))
val valids = RegInit(VecInit(Seq.fill(latency)(false.B)))
val stalling = VecInit(Seq.fill(latency)(false.B))
io.busy := io.in.valid || valids.reduce(_||_)
// Stall signals
io.in.ready := !stalling.head
stalling.last := valids.last && !io.out.ready
(stalling.init, stalling.tail, valids.init).zipped.foreach { case (s1, s2, v1) =>
s1 := v1 && s2
}
// Valid signals
// When the pipeline stage ahead of you isn't stalling, then make yourself invalid
io.out.valid := valids.last
when(io.out.ready) {
valids.last := false.B
}
(valids.init, stalling.tail).zipped.foreach { case (v1, s2) =>
when(!s2) {
v1 := false.B
}
}
// When the pipeline stage behind you is valid then become true
when(io.in.fire) {
valids.head := true.B
}
(valids.tail, valids.init).zipped.foreach { case (v2, v1) =>
when(v1) {
v2 := true.B
}
}
// Stages
when(io.in.fire) {
stages.head := comb.head(io.in.bits)
}
io.out.bits := comb.last(stages.last)
((stages.tail zip stages.init) zip (stalling.tail zip comb.tail.init)).foreach { case ((st2, st1), (s2, c1)) =>
when(!s2) {
st2 := c1(st1)
}
}
}
}
object Pipeline {
def apply[T <: Data](in: ReadyValidIO[T], latency: Int, comb: Seq[T => T]): DecoupledIO[T] = {
val p = Module(new Pipeline(in.bits.cloneType, latency)(comb))
p.io.in <> in
p.io.out
}
def apply[T <: Data](in: ReadyValidIO[T], latency: Int): DecoupledIO[T] = {
val p = Module(new Pipeline(in.bits.cloneType, latency)())
p.io.in <> in
p.io.out
}
}
| module Pipeline_8( // @[Pipeline.scala:6:7]
input clock, // @[Pipeline.scala:6:7]
input reset, // @[Pipeline.scala:6:7]
output io_in_ready, // @[Pipeline.scala:7:14]
input io_in_valid, // @[Pipeline.scala:7:14]
input [127:0] io_in_bits_data, // @[Pipeline.scala:7:14]
input io_in_bits_fromDMA, // @[Pipeline.scala:7:14]
input io_out_ready, // @[Pipeline.scala:7:14]
output io_out_valid, // @[Pipeline.scala:7:14]
output [127:0] io_out_bits_data // @[Pipeline.scala:7:14]
);
wire io_in_valid_0 = io_in_valid; // @[Pipeline.scala:6:7]
wire [127:0] io_in_bits_data_0 = io_in_bits_data; // @[Pipeline.scala:6:7]
wire io_in_bits_fromDMA_0 = io_in_bits_fromDMA; // @[Pipeline.scala:6:7]
wire io_out_ready_0 = io_out_ready; // @[Pipeline.scala:6:7]
wire _valids_WIRE_0 = 1'h0; // @[Pipeline.scala:22:33]
wire _io_in_ready_T; // @[Pipeline.scala:27:20]
wire _io_busy_T; // @[Pipeline.scala:24:28]
wire io_in_ready_0; // @[Pipeline.scala:6:7]
wire [127:0] io_out_bits_data_0; // @[Pipeline.scala:6:7]
wire io_out_bits_fromDMA; // @[Pipeline.scala:6:7]
wire io_out_valid_0; // @[Pipeline.scala:6:7]
wire io_busy; // @[Pipeline.scala:6:7]
reg [127:0] stages_0_data; // @[Pipeline.scala:21:21]
assign io_out_bits_data_0 = stages_0_data; // @[Pipeline.scala:6:7, :21:21]
reg stages_0_fromDMA; // @[Pipeline.scala:21:21]
assign io_out_bits_fromDMA = stages_0_fromDMA; // @[Pipeline.scala:6:7, :21:21]
reg valids_0; // @[Pipeline.scala:22:25]
assign io_out_valid_0 = valids_0; // @[Pipeline.scala:6:7, :22:25]
wire _stalling_0_T_1; // @[Pipeline.scala:28:34]
wire stalling_0; // @[Pipeline.scala:23:27]
assign _io_busy_T = io_in_valid_0 | valids_0; // @[Pipeline.scala:6:7, :22:25, :24:28]
assign io_busy = _io_busy_T; // @[Pipeline.scala:6:7, :24:28]
assign _io_in_ready_T = ~stalling_0; // @[Pipeline.scala:23:27, :27:20]
assign io_in_ready_0 = _io_in_ready_T; // @[Pipeline.scala:6:7, :27:20]
wire _stalling_0_T = ~io_out_ready_0; // @[Pipeline.scala:6:7, :28:37]
assign _stalling_0_T_1 = valids_0 & _stalling_0_T; // @[Pipeline.scala:22:25, :28:{34,37}]
assign stalling_0 = _stalling_0_T_1; // @[Pipeline.scala:23:27, :28:34]
wire _T_1 = io_in_ready_0 & io_in_valid_0; // @[Decoupled.scala:51:35]
always @(posedge clock) begin // @[Pipeline.scala:6:7]
if (_T_1) begin // @[Decoupled.scala:51:35]
stages_0_data <= io_in_bits_data_0; // @[Pipeline.scala:6:7, :21:21]
stages_0_fromDMA <= io_in_bits_fromDMA_0; // @[Pipeline.scala:6:7, :21:21]
end
if (reset) // @[Pipeline.scala:6:7]
valids_0 <= 1'h0; // @[Pipeline.scala:22:25]
else // @[Pipeline.scala:6:7]
valids_0 <= _T_1 | ~io_out_ready_0 & valids_0; // @[Decoupled.scala:51:35]
always @(posedge)
assign io_in_ready = io_in_ready_0; // @[Pipeline.scala:6:7]
assign io_out_valid = io_out_valid_0; // @[Pipeline.scala:6:7]
assign io_out_bits_data = io_out_bits_data_0; // @[Pipeline.scala:6:7]
endmodule |
Generate the Verilog code corresponding to the following Chisel files.
File Buffer.scala:
// See LICENSE.SiFive for license details.
package freechips.rocketchip.tilelink
import chisel3._
import org.chipsalliance.cde.config._
import org.chipsalliance.diplomacy._
import org.chipsalliance.diplomacy.lazymodule._
import freechips.rocketchip.diplomacy.BufferParams
class TLBufferNode (
a: BufferParams,
b: BufferParams,
c: BufferParams,
d: BufferParams,
e: BufferParams)(implicit valName: ValName) extends TLAdapterNode(
clientFn = { p => p.v1copy(minLatency = p.minLatency + b.latency + c.latency) },
managerFn = { p => p.v1copy(minLatency = p.minLatency + a.latency + d.latency) }
) {
override lazy val nodedebugstring = s"a:${a.toString}, b:${b.toString}, c:${c.toString}, d:${d.toString}, e:${e.toString}"
override def circuitIdentity = List(a,b,c,d,e).forall(_ == BufferParams.none)
}
class TLBuffer(
a: BufferParams,
b: BufferParams,
c: BufferParams,
d: BufferParams,
e: BufferParams)(implicit p: Parameters) extends LazyModule
{
def this(ace: BufferParams, bd: BufferParams)(implicit p: Parameters) = this(ace, bd, ace, bd, ace)
def this(abcde: BufferParams)(implicit p: Parameters) = this(abcde, abcde)
def this()(implicit p: Parameters) = this(BufferParams.default)
val node = new TLBufferNode(a, b, c, d, e)
lazy val module = new Impl
class Impl extends LazyModuleImp(this) {
def headBundle = node.out.head._2.bundle
override def desiredName = (Seq("TLBuffer") ++ node.out.headOption.map(_._2.bundle.shortName)).mkString("_")
(node.in zip node.out) foreach { case ((in, edgeIn), (out, edgeOut)) =>
out.a <> a(in .a)
in .d <> d(out.d)
if (edgeOut.manager.anySupportAcquireB && edgeOut.client.anySupportProbe) {
in .b <> b(out.b)
out.c <> c(in .c)
out.e <> e(in .e)
} else {
in.b.valid := false.B
in.c.ready := true.B
in.e.ready := true.B
out.b.ready := true.B
out.c.valid := false.B
out.e.valid := false.B
}
}
}
}
object TLBuffer
{
def apply() (implicit p: Parameters): TLNode = apply(BufferParams.default)
def apply(abcde: BufferParams) (implicit p: Parameters): TLNode = apply(abcde, abcde)
def apply(ace: BufferParams, bd: BufferParams)(implicit p: Parameters): TLNode = apply(ace, bd, ace, bd, ace)
def apply(
a: BufferParams,
b: BufferParams,
c: BufferParams,
d: BufferParams,
e: BufferParams)(implicit p: Parameters): TLNode =
{
val buffer = LazyModule(new TLBuffer(a, b, c, d, e))
buffer.node
}
def chain(depth: Int, name: Option[String] = None)(implicit p: Parameters): Seq[TLNode] = {
val buffers = Seq.fill(depth) { LazyModule(new TLBuffer()) }
name.foreach { n => buffers.zipWithIndex.foreach { case (b, i) => b.suggestName(s"${n}_${i}") } }
buffers.map(_.node)
}
def chainNode(depth: Int, name: Option[String] = None)(implicit p: Parameters): TLNode = {
chain(depth, name)
.reduceLeftOption(_ :*=* _)
.getOrElse(TLNameNode("no_buffer"))
}
}
File Nodes.scala:
// See LICENSE.SiFive for license details.
package freechips.rocketchip.tilelink
import chisel3._
import chisel3.experimental.SourceInfo
import org.chipsalliance.cde.config._
import org.chipsalliance.diplomacy._
import org.chipsalliance.diplomacy.nodes._
import freechips.rocketchip.util.{AsyncQueueParams,RationalDirection}
case object TLMonitorBuilder extends Field[TLMonitorArgs => TLMonitorBase](args => new TLMonitor(args))
object TLImp extends NodeImp[TLMasterPortParameters, TLSlavePortParameters, TLEdgeOut, TLEdgeIn, TLBundle]
{
def edgeO(pd: TLMasterPortParameters, pu: TLSlavePortParameters, p: Parameters, sourceInfo: SourceInfo) = new TLEdgeOut(pd, pu, p, sourceInfo)
def edgeI(pd: TLMasterPortParameters, pu: TLSlavePortParameters, p: Parameters, sourceInfo: SourceInfo) = new TLEdgeIn (pd, pu, p, sourceInfo)
def bundleO(eo: TLEdgeOut) = TLBundle(eo.bundle)
def bundleI(ei: TLEdgeIn) = TLBundle(ei.bundle)
def render(ei: TLEdgeIn) = RenderedEdge(colour = "#000000" /* black */, label = (ei.manager.beatBytes * 8).toString)
override def monitor(bundle: TLBundle, edge: TLEdgeIn): Unit = {
val monitor = Module(edge.params(TLMonitorBuilder)(TLMonitorArgs(edge)))
monitor.io.in := bundle
}
override def mixO(pd: TLMasterPortParameters, node: OutwardNode[TLMasterPortParameters, TLSlavePortParameters, TLBundle]): TLMasterPortParameters =
pd.v1copy(clients = pd.clients.map { c => c.v1copy (nodePath = node +: c.nodePath) })
override def mixI(pu: TLSlavePortParameters, node: InwardNode[TLMasterPortParameters, TLSlavePortParameters, TLBundle]): TLSlavePortParameters =
pu.v1copy(managers = pu.managers.map { m => m.v1copy (nodePath = node +: m.nodePath) })
}
trait TLFormatNode extends FormatNode[TLEdgeIn, TLEdgeOut]
case class TLClientNode(portParams: Seq[TLMasterPortParameters])(implicit valName: ValName) extends SourceNode(TLImp)(portParams) with TLFormatNode
case class TLManagerNode(portParams: Seq[TLSlavePortParameters])(implicit valName: ValName) extends SinkNode(TLImp)(portParams) with TLFormatNode
case class TLAdapterNode(
clientFn: TLMasterPortParameters => TLMasterPortParameters = { s => s },
managerFn: TLSlavePortParameters => TLSlavePortParameters = { s => s })(
implicit valName: ValName)
extends AdapterNode(TLImp)(clientFn, managerFn) with TLFormatNode
case class TLJunctionNode(
clientFn: Seq[TLMasterPortParameters] => Seq[TLMasterPortParameters],
managerFn: Seq[TLSlavePortParameters] => Seq[TLSlavePortParameters])(
implicit valName: ValName)
extends JunctionNode(TLImp)(clientFn, managerFn) with TLFormatNode
case class TLIdentityNode()(implicit valName: ValName) extends IdentityNode(TLImp)() with TLFormatNode
object TLNameNode {
def apply(name: ValName) = TLIdentityNode()(name)
def apply(name: Option[String]): TLIdentityNode = apply(ValName(name.getOrElse("with_no_name")))
def apply(name: String): TLIdentityNode = apply(Some(name))
}
case class TLEphemeralNode()(implicit valName: ValName) extends EphemeralNode(TLImp)()
object TLTempNode {
def apply(): TLEphemeralNode = TLEphemeralNode()(ValName("temp"))
}
case class TLNexusNode(
clientFn: Seq[TLMasterPortParameters] => TLMasterPortParameters,
managerFn: Seq[TLSlavePortParameters] => TLSlavePortParameters)(
implicit valName: ValName)
extends NexusNode(TLImp)(clientFn, managerFn) with TLFormatNode
abstract class TLCustomNode(implicit valName: ValName)
extends CustomNode(TLImp) with TLFormatNode
// Asynchronous crossings
trait TLAsyncFormatNode extends FormatNode[TLAsyncEdgeParameters, TLAsyncEdgeParameters]
object TLAsyncImp extends SimpleNodeImp[TLAsyncClientPortParameters, TLAsyncManagerPortParameters, TLAsyncEdgeParameters, TLAsyncBundle]
{
def edge(pd: TLAsyncClientPortParameters, pu: TLAsyncManagerPortParameters, p: Parameters, sourceInfo: SourceInfo) = TLAsyncEdgeParameters(pd, pu, p, sourceInfo)
def bundle(e: TLAsyncEdgeParameters) = new TLAsyncBundle(e.bundle)
def render(e: TLAsyncEdgeParameters) = RenderedEdge(colour = "#ff0000" /* red */, label = e.manager.async.depth.toString)
override def mixO(pd: TLAsyncClientPortParameters, node: OutwardNode[TLAsyncClientPortParameters, TLAsyncManagerPortParameters, TLAsyncBundle]): TLAsyncClientPortParameters =
pd.copy(base = pd.base.v1copy(clients = pd.base.clients.map { c => c.v1copy (nodePath = node +: c.nodePath) }))
override def mixI(pu: TLAsyncManagerPortParameters, node: InwardNode[TLAsyncClientPortParameters, TLAsyncManagerPortParameters, TLAsyncBundle]): TLAsyncManagerPortParameters =
pu.copy(base = pu.base.v1copy(managers = pu.base.managers.map { m => m.v1copy (nodePath = node +: m.nodePath) }))
}
case class TLAsyncAdapterNode(
clientFn: TLAsyncClientPortParameters => TLAsyncClientPortParameters = { s => s },
managerFn: TLAsyncManagerPortParameters => TLAsyncManagerPortParameters = { s => s })(
implicit valName: ValName)
extends AdapterNode(TLAsyncImp)(clientFn, managerFn) with TLAsyncFormatNode
case class TLAsyncIdentityNode()(implicit valName: ValName) extends IdentityNode(TLAsyncImp)() with TLAsyncFormatNode
object TLAsyncNameNode {
def apply(name: ValName) = TLAsyncIdentityNode()(name)
def apply(name: Option[String]): TLAsyncIdentityNode = apply(ValName(name.getOrElse("with_no_name")))
def apply(name: String): TLAsyncIdentityNode = apply(Some(name))
}
case class TLAsyncSourceNode(sync: Option[Int])(implicit valName: ValName)
extends MixedAdapterNode(TLImp, TLAsyncImp)(
dFn = { p => TLAsyncClientPortParameters(p) },
uFn = { p => p.base.v1copy(minLatency = p.base.minLatency + sync.getOrElse(p.async.sync)) }) with FormatNode[TLEdgeIn, TLAsyncEdgeParameters] // discard cycles in other clock domain
case class TLAsyncSinkNode(async: AsyncQueueParams)(implicit valName: ValName)
extends MixedAdapterNode(TLAsyncImp, TLImp)(
dFn = { p => p.base.v1copy(minLatency = p.base.minLatency + async.sync) },
uFn = { p => TLAsyncManagerPortParameters(async, p) }) with FormatNode[TLAsyncEdgeParameters, TLEdgeOut]
// Rationally related crossings
trait TLRationalFormatNode extends FormatNode[TLRationalEdgeParameters, TLRationalEdgeParameters]
object TLRationalImp extends SimpleNodeImp[TLRationalClientPortParameters, TLRationalManagerPortParameters, TLRationalEdgeParameters, TLRationalBundle]
{
def edge(pd: TLRationalClientPortParameters, pu: TLRationalManagerPortParameters, p: Parameters, sourceInfo: SourceInfo) = TLRationalEdgeParameters(pd, pu, p, sourceInfo)
def bundle(e: TLRationalEdgeParameters) = new TLRationalBundle(e.bundle)
def render(e: TLRationalEdgeParameters) = RenderedEdge(colour = "#00ff00" /* green */)
override def mixO(pd: TLRationalClientPortParameters, node: OutwardNode[TLRationalClientPortParameters, TLRationalManagerPortParameters, TLRationalBundle]): TLRationalClientPortParameters =
pd.copy(base = pd.base.v1copy(clients = pd.base.clients.map { c => c.v1copy (nodePath = node +: c.nodePath) }))
override def mixI(pu: TLRationalManagerPortParameters, node: InwardNode[TLRationalClientPortParameters, TLRationalManagerPortParameters, TLRationalBundle]): TLRationalManagerPortParameters =
pu.copy(base = pu.base.v1copy(managers = pu.base.managers.map { m => m.v1copy (nodePath = node +: m.nodePath) }))
}
case class TLRationalAdapterNode(
clientFn: TLRationalClientPortParameters => TLRationalClientPortParameters = { s => s },
managerFn: TLRationalManagerPortParameters => TLRationalManagerPortParameters = { s => s })(
implicit valName: ValName)
extends AdapterNode(TLRationalImp)(clientFn, managerFn) with TLRationalFormatNode
case class TLRationalIdentityNode()(implicit valName: ValName) extends IdentityNode(TLRationalImp)() with TLRationalFormatNode
object TLRationalNameNode {
def apply(name: ValName) = TLRationalIdentityNode()(name)
def apply(name: Option[String]): TLRationalIdentityNode = apply(ValName(name.getOrElse("with_no_name")))
def apply(name: String): TLRationalIdentityNode = apply(Some(name))
}
case class TLRationalSourceNode()(implicit valName: ValName)
extends MixedAdapterNode(TLImp, TLRationalImp)(
dFn = { p => TLRationalClientPortParameters(p) },
uFn = { p => p.base.v1copy(minLatency = 1) }) with FormatNode[TLEdgeIn, TLRationalEdgeParameters] // discard cycles from other clock domain
case class TLRationalSinkNode(direction: RationalDirection)(implicit valName: ValName)
extends MixedAdapterNode(TLRationalImp, TLImp)(
dFn = { p => p.base.v1copy(minLatency = 1) },
uFn = { p => TLRationalManagerPortParameters(direction, p) }) with FormatNode[TLRationalEdgeParameters, TLEdgeOut]
// Credited version of TileLink channels
trait TLCreditedFormatNode extends FormatNode[TLCreditedEdgeParameters, TLCreditedEdgeParameters]
object TLCreditedImp extends SimpleNodeImp[TLCreditedClientPortParameters, TLCreditedManagerPortParameters, TLCreditedEdgeParameters, TLCreditedBundle]
{
def edge(pd: TLCreditedClientPortParameters, pu: TLCreditedManagerPortParameters, p: Parameters, sourceInfo: SourceInfo) = TLCreditedEdgeParameters(pd, pu, p, sourceInfo)
def bundle(e: TLCreditedEdgeParameters) = new TLCreditedBundle(e.bundle)
def render(e: TLCreditedEdgeParameters) = RenderedEdge(colour = "#ffff00" /* yellow */, e.delay.toString)
override def mixO(pd: TLCreditedClientPortParameters, node: OutwardNode[TLCreditedClientPortParameters, TLCreditedManagerPortParameters, TLCreditedBundle]): TLCreditedClientPortParameters =
pd.copy(base = pd.base.v1copy(clients = pd.base.clients.map { c => c.v1copy (nodePath = node +: c.nodePath) }))
override def mixI(pu: TLCreditedManagerPortParameters, node: InwardNode[TLCreditedClientPortParameters, TLCreditedManagerPortParameters, TLCreditedBundle]): TLCreditedManagerPortParameters =
pu.copy(base = pu.base.v1copy(managers = pu.base.managers.map { m => m.v1copy (nodePath = node +: m.nodePath) }))
}
case class TLCreditedAdapterNode(
clientFn: TLCreditedClientPortParameters => TLCreditedClientPortParameters = { s => s },
managerFn: TLCreditedManagerPortParameters => TLCreditedManagerPortParameters = { s => s })(
implicit valName: ValName)
extends AdapterNode(TLCreditedImp)(clientFn, managerFn) with TLCreditedFormatNode
case class TLCreditedIdentityNode()(implicit valName: ValName) extends IdentityNode(TLCreditedImp)() with TLCreditedFormatNode
object TLCreditedNameNode {
def apply(name: ValName) = TLCreditedIdentityNode()(name)
def apply(name: Option[String]): TLCreditedIdentityNode = apply(ValName(name.getOrElse("with_no_name")))
def apply(name: String): TLCreditedIdentityNode = apply(Some(name))
}
case class TLCreditedSourceNode(delay: TLCreditedDelay)(implicit valName: ValName)
extends MixedAdapterNode(TLImp, TLCreditedImp)(
dFn = { p => TLCreditedClientPortParameters(delay, p) },
uFn = { p => p.base.v1copy(minLatency = 1) }) with FormatNode[TLEdgeIn, TLCreditedEdgeParameters] // discard cycles from other clock domain
case class TLCreditedSinkNode(delay: TLCreditedDelay)(implicit valName: ValName)
extends MixedAdapterNode(TLCreditedImp, TLImp)(
dFn = { p => p.base.v1copy(minLatency = 1) },
uFn = { p => TLCreditedManagerPortParameters(delay, p) }) with FormatNode[TLCreditedEdgeParameters, TLEdgeOut]
File LazyModuleImp.scala:
package org.chipsalliance.diplomacy.lazymodule
import chisel3.{withClockAndReset, Module, RawModule, Reset, _}
import chisel3.experimental.{ChiselAnnotation, CloneModuleAsRecord, SourceInfo}
import firrtl.passes.InlineAnnotation
import org.chipsalliance.cde.config.Parameters
import org.chipsalliance.diplomacy.nodes.Dangle
import scala.collection.immutable.SortedMap
/** Trait describing the actual [[Module]] implementation wrapped by a [[LazyModule]].
*
* This is the actual Chisel module that is lazily-evaluated in the second phase of Diplomacy.
*/
sealed trait LazyModuleImpLike extends RawModule {
/** [[LazyModule]] that contains this instance. */
val wrapper: LazyModule
/** IOs that will be automatically "punched" for this instance. */
val auto: AutoBundle
/** The metadata that describes the [[HalfEdge]]s which generated [[auto]]. */
protected[diplomacy] val dangles: Seq[Dangle]
// [[wrapper.module]] had better not be accessed while LazyModules are still being built!
require(
LazyModule.scope.isEmpty,
s"${wrapper.name}.module was constructed before LazyModule() was run on ${LazyModule.scope.get.name}"
)
/** Set module name. Defaults to the containing LazyModule's desiredName. */
override def desiredName: String = wrapper.desiredName
suggestName(wrapper.suggestedName)
/** [[Parameters]] for chisel [[Module]]s. */
implicit val p: Parameters = wrapper.p
/** instantiate this [[LazyModule]], return [[AutoBundle]] and a unconnected [[Dangle]]s from this module and
* submodules.
*/
protected[diplomacy] def instantiate(): (AutoBundle, List[Dangle]) = {
// 1. It will recursively append [[wrapper.children]] into [[chisel3.internal.Builder]],
// 2. return [[Dangle]]s from each module.
val childDangles = wrapper.children.reverse.flatMap { c =>
implicit val sourceInfo: SourceInfo = c.info
c.cloneProto.map { cp =>
// If the child is a clone, then recursively set cloneProto of its children as well
def assignCloneProtos(bases: Seq[LazyModule], clones: Seq[LazyModule]): Unit = {
require(bases.size == clones.size)
(bases.zip(clones)).map { case (l, r) =>
require(l.getClass == r.getClass, s"Cloned children class mismatch ${l.name} != ${r.name}")
l.cloneProto = Some(r)
assignCloneProtos(l.children, r.children)
}
}
assignCloneProtos(c.children, cp.children)
// Clone the child module as a record, and get its [[AutoBundle]]
val clone = CloneModuleAsRecord(cp.module).suggestName(c.suggestedName)
val clonedAuto = clone("auto").asInstanceOf[AutoBundle]
// Get the empty [[Dangle]]'s of the cloned child
val rawDangles = c.cloneDangles()
require(rawDangles.size == clonedAuto.elements.size)
// Assign the [[AutoBundle]] fields of the cloned record to the empty [[Dangle]]'s
val dangles = (rawDangles.zip(clonedAuto.elements)).map { case (d, (_, io)) => d.copy(dataOpt = Some(io)) }
dangles
}.getOrElse {
// For non-clones, instantiate the child module
val mod = try {
Module(c.module)
} catch {
case e: ChiselException => {
println(s"Chisel exception caught when instantiating ${c.name} within ${this.name} at ${c.line}")
throw e
}
}
mod.dangles
}
}
// Ask each node in this [[LazyModule]] to call [[BaseNode.instantiate]].
// This will result in a sequence of [[Dangle]] from these [[BaseNode]]s.
val nodeDangles = wrapper.nodes.reverse.flatMap(_.instantiate())
// Accumulate all the [[Dangle]]s from this node and any accumulated from its [[wrapper.children]]
val allDangles = nodeDangles ++ childDangles
// Group [[allDangles]] by their [[source]].
val pairing = SortedMap(allDangles.groupBy(_.source).toSeq: _*)
// For each [[source]] set of [[Dangle]]s of size 2, ensure that these
// can be connected as a source-sink pair (have opposite flipped value).
// Make the connection and mark them as [[done]].
val done = Set() ++ pairing.values.filter(_.size == 2).map {
case Seq(a, b) =>
require(a.flipped != b.flipped)
// @todo <> in chisel3 makes directionless connection.
if (a.flipped) {
a.data <> b.data
} else {
b.data <> a.data
}
a.source
case _ => None
}
// Find all [[Dangle]]s which are still not connected. These will end up as [[AutoBundle]] [[IO]] ports on the module.
val forward = allDangles.filter(d => !done(d.source))
// Generate [[AutoBundle]] IO from [[forward]].
val auto = IO(new AutoBundle(forward.map { d => (d.name, d.data, d.flipped) }: _*))
// Pass the [[Dangle]]s which remained and were used to generate the [[AutoBundle]] I/O ports up to the [[parent]] [[LazyModule]]
val dangles = (forward.zip(auto.elements)).map { case (d, (_, io)) =>
if (d.flipped) {
d.data <> io
} else {
io <> d.data
}
d.copy(dataOpt = Some(io), name = wrapper.suggestedName + "_" + d.name)
}
// Push all [[LazyModule.inModuleBody]] to [[chisel3.internal.Builder]].
wrapper.inModuleBody.reverse.foreach {
_()
}
if (wrapper.shouldBeInlined) {
chisel3.experimental.annotate(new ChiselAnnotation {
def toFirrtl = InlineAnnotation(toNamed)
})
}
// Return [[IO]] and [[Dangle]] of this [[LazyModuleImp]].
(auto, dangles)
}
}
/** Actual description of a [[Module]] which can be instantiated by a call to [[LazyModule.module]].
*
* @param wrapper
* the [[LazyModule]] from which the `.module` call is being made.
*/
class LazyModuleImp(val wrapper: LazyModule) extends Module with LazyModuleImpLike {
/** Instantiate hardware of this `Module`. */
val (auto, dangles) = instantiate()
}
/** Actual description of a [[RawModule]] which can be instantiated by a call to [[LazyModule.module]].
*
* @param wrapper
* the [[LazyModule]] from which the `.module` call is being made.
*/
class LazyRawModuleImp(val wrapper: LazyModule) extends RawModule with LazyModuleImpLike {
// These wires are the default clock+reset for all LazyModule children.
// It is recommended to drive these even if you manually drive the [[clock]] and [[reset]] of all of the
// [[LazyRawModuleImp]] children.
// Otherwise, anonymous children ([[Monitor]]s for example) will not have their [[clock]] and/or [[reset]] driven properly.
/** drive clock explicitly. */
val childClock: Clock = Wire(Clock())
/** drive reset explicitly. */
val childReset: Reset = Wire(Reset())
// the default is that these are disabled
childClock := false.B.asClock
childReset := chisel3.DontCare
def provideImplicitClockToLazyChildren: Boolean = false
val (auto, dangles) =
if (provideImplicitClockToLazyChildren) {
withClockAndReset(childClock, childReset) { instantiate() }
} else {
instantiate()
}
}
File MixedNode.scala:
package org.chipsalliance.diplomacy.nodes
import chisel3.{Data, DontCare, Wire}
import chisel3.experimental.SourceInfo
import org.chipsalliance.cde.config.{Field, Parameters}
import org.chipsalliance.diplomacy.ValName
import org.chipsalliance.diplomacy.sourceLine
/** One side metadata of a [[Dangle]].
*
* Describes one side of an edge going into or out of a [[BaseNode]].
*
* @param serial
* the global [[BaseNode.serial]] number of the [[BaseNode]] that this [[HalfEdge]] connects to.
* @param index
* the `index` in the [[BaseNode]]'s input or output port list that this [[HalfEdge]] belongs to.
*/
case class HalfEdge(serial: Int, index: Int) extends Ordered[HalfEdge] {
import scala.math.Ordered.orderingToOrdered
def compare(that: HalfEdge): Int = HalfEdge.unapply(this).compare(HalfEdge.unapply(that))
}
/** [[Dangle]] captures the `IO` information of a [[LazyModule]] and which two [[BaseNode]]s the [[Edges]]/[[Bundle]]
* connects.
*
* [[Dangle]]s are generated by [[BaseNode.instantiate]] using [[MixedNode.danglesOut]] and [[MixedNode.danglesIn]] ,
* [[LazyModuleImp.instantiate]] connects those that go to internal or explicit IO connections in a [[LazyModule]].
*
* @param source
* the source [[HalfEdge]] of this [[Dangle]], which captures the source [[BaseNode]] and the port `index` within
* that [[BaseNode]].
* @param sink
* sink [[HalfEdge]] of this [[Dangle]], which captures the sink [[BaseNode]] and the port `index` within that
* [[BaseNode]].
* @param flipped
* flip or not in [[AutoBundle.makeElements]]. If true this corresponds to `danglesOut`, if false it corresponds to
* `danglesIn`.
* @param dataOpt
* actual [[Data]] for the hardware connection. Can be empty if this belongs to a cloned module
*/
case class Dangle(source: HalfEdge, sink: HalfEdge, flipped: Boolean, name: String, dataOpt: Option[Data]) {
def data = dataOpt.get
}
/** [[Edges]] is a collection of parameters describing the functionality and connection for an interface, which is often
* derived from the interconnection protocol and can inform the parameterization of the hardware bundles that actually
* implement the protocol.
*/
case class Edges[EI, EO](in: Seq[EI], out: Seq[EO])
/** A field available in [[Parameters]] used to determine whether [[InwardNodeImp.monitor]] will be called. */
case object MonitorsEnabled extends Field[Boolean](true)
/** When rendering the edge in a graphical format, flip the order in which the edges' source and sink are presented.
*
* For example, when rendering graphML, yEd by default tries to put the source node vertically above the sink node, but
* [[RenderFlipped]] inverts this relationship. When a particular [[LazyModule]] contains both source nodes and sink
* nodes, flipping the rendering of one node's edge will usual produce a more concise visual layout for the
* [[LazyModule]].
*/
case object RenderFlipped extends Field[Boolean](false)
/** The sealed node class in the package, all node are derived from it.
*
* @param inner
* Sink interface implementation.
* @param outer
* Source interface implementation.
* @param valName
* val name of this node.
* @tparam DI
* Downward-flowing parameters received on the inner side of the node. It is usually a brunch of parameters
* describing the protocol parameters from a source. For an [[InwardNode]], it is determined by the connected
* [[OutwardNode]]. Since it can be connected to multiple sources, this parameter is always a Seq of source port
* parameters.
* @tparam UI
* Upward-flowing parameters generated by the inner side of the node. It is usually a brunch of parameters describing
* the protocol parameters of a sink. For an [[InwardNode]], it is determined itself.
* @tparam EI
* Edge Parameters describing a connection on the inner side of the node. It is usually a brunch of transfers
* specified for a sink according to protocol.
* @tparam BI
* Bundle type used when connecting to the inner side of the node. It is a hardware interface of this sink interface.
* It should extends from [[chisel3.Data]], which represents the real hardware.
* @tparam DO
* Downward-flowing parameters generated on the outer side of the node. It is usually a brunch of parameters
* describing the protocol parameters of a source. For an [[OutwardNode]], it is determined itself.
* @tparam UO
* Upward-flowing parameters received by the outer side of the node. It is usually a brunch of parameters describing
* the protocol parameters from a sink. For an [[OutwardNode]], it is determined by the connected [[InwardNode]].
* Since it can be connected to multiple sinks, this parameter is always a Seq of sink port parameters.
* @tparam EO
* Edge Parameters describing a connection on the outer side of the node. It is usually a brunch of transfers
* specified for a source according to protocol.
* @tparam BO
* Bundle type used when connecting to the outer side of the node. It is a hardware interface of this source
* interface. It should extends from [[chisel3.Data]], which represents the real hardware.
*
* @note
* Call Graph of [[MixedNode]]
* - line `β`: source is process by a function and generate pass to others
* - Arrow `β`: target of arrow is generated by source
*
* {{{
* (from the other node)
* ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ[[InwardNode.uiParams]]ββββββββββββββ
* β β
* (binding node when elaboration) [[OutwardNode.uoParams]]ββββββββββββββββββββββββ[[MixedNode.mapParamsU]]ββββββββββββ β
* [[InwardNode.accPI]] β β β
* β β (based on protocol) β
* β β [[MixedNode.inner.edgeI]] β
* β β β β
* β β β β
* (immobilize after elaboration) (inward port from [[OutwardNode]]) β β β
* [[InwardNode.iBindings]]βββ [[MixedNode.iDirectPorts]]βββββββββββββββββββββ[[MixedNode.iPorts]] [[InwardNode.uiParams]] β
* β β β β β β
* β β β [[OutwardNode.doParams]] β β
* β β β (from the other node) β β
* β β β β β β
* β β β β β β
* β β β ββββββββββ¬βββββββββββββββ€ β
* β β β β β β
* β β β β (based on protocol) β
* β β β β [[MixedNode.inner.edgeI]] β
* β β β β β β
* β β (from the other node) β β β
* β ββββ[[OutwardNode.oPortMapping]] [[OutwardNode.oStar]] β [[MixedNode.edgesIn]]ββββ β
* β β β β β β β
* β β β β β [[MixedNode.in]] β
* β β β β β β β
* β (solve star connection) β β β [[MixedNode.bundleIn]]βββ β
* ββββ[[MixedNode.resolveStar]]βββΌββββββββββββββββββββββββββββββ€ ββββββββββββββββββββββββββββββββββββββ β
* β β β [[MixedNode.bundleOut]]ββ β β
* β β β β β β β
* β β β β [[MixedNode.out]] β β
* β β β β β β β
* β ββββββ[[InwardNode.iPortMapping]] [[InwardNode.iStar]] [[MixedNode.edgesOut]]βββ β β
* β β (from the other node) β β β
* β β β β β β
* β β β [[MixedNode.outer.edgeO]] β β
* β β β (based on protocol) β β
* β β β β β β
* β β β ββββββββββββββββββββββββββββββββββββββββββ€ β β
* β β β β β β β
* β β β β β β β
* β β β β β β β
* (immobilize after elaboration)β β β β β β
* [[OutwardNode.oBindings]]ββ [[MixedNode.oDirectPorts]]ββββ[[MixedNode.oPorts]] [[OutwardNode.doParams]] β β
* β (inward port from [[OutwardNode]]) β β β β
* β βββββββββββββββββββββββββββββββββββββββββββ€ β β β
* β β β β β β
* β β β β β β
* [[OutwardNode.accPO]] β β β β β
* (binding node when elaboration) β [[InwardNode.diParams]]ββββββ[[MixedNode.mapParamsD]]βββββββββββββββββββββββββββββ β β
* β β β β
* β ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ β
* ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
* }}}
*/
abstract class MixedNode[DI, UI, EI, BI <: Data, DO, UO, EO, BO <: Data](
val inner: InwardNodeImp[DI, UI, EI, BI],
val outer: OutwardNodeImp[DO, UO, EO, BO]
)(
implicit valName: ValName)
extends BaseNode
with NodeHandle[DI, UI, EI, BI, DO, UO, EO, BO]
with InwardNode[DI, UI, BI]
with OutwardNode[DO, UO, BO] {
// Generate a [[NodeHandle]] with inward and outward node are both this node.
val inward = this
val outward = this
/** Debug info of nodes binding. */
def bindingInfo: String = s"""$iBindingInfo
|$oBindingInfo
|""".stripMargin
/** Debug info of ports connecting. */
def connectedPortsInfo: String = s"""${oPorts.size} outward ports connected: [${oPorts.map(_._2.name).mkString(",")}]
|${iPorts.size} inward ports connected: [${iPorts.map(_._2.name).mkString(",")}]
|""".stripMargin
/** Debug info of parameters propagations. */
def parametersInfo: String = s"""${doParams.size} downstream outward parameters: [${doParams.mkString(",")}]
|${uoParams.size} upstream outward parameters: [${uoParams.mkString(",")}]
|${diParams.size} downstream inward parameters: [${diParams.mkString(",")}]
|${uiParams.size} upstream inward parameters: [${uiParams.mkString(",")}]
|""".stripMargin
/** For a given node, converts [[OutwardNode.accPO]] and [[InwardNode.accPI]] to [[MixedNode.oPortMapping]] and
* [[MixedNode.iPortMapping]].
*
* Given counts of known inward and outward binding and inward and outward star bindings, return the resolved inward
* stars and outward stars.
*
* This method will also validate the arguments and throw a runtime error if the values are unsuitable for this type
* of node.
*
* @param iKnown
* Number of known-size ([[BIND_ONCE]]) input bindings.
* @param oKnown
* Number of known-size ([[BIND_ONCE]]) output bindings.
* @param iStar
* Number of unknown size ([[BIND_STAR]]) input bindings.
* @param oStar
* Number of unknown size ([[BIND_STAR]]) output bindings.
* @return
* A Tuple of the resolved number of input and output connections.
*/
protected[diplomacy] def resolveStar(iKnown: Int, oKnown: Int, iStar: Int, oStar: Int): (Int, Int)
/** Function to generate downward-flowing outward params from the downward-flowing input params and the current output
* ports.
*
* @param n
* The size of the output sequence to generate.
* @param p
* Sequence of downward-flowing input parameters of this node.
* @return
* A `n`-sized sequence of downward-flowing output edge parameters.
*/
protected[diplomacy] def mapParamsD(n: Int, p: Seq[DI]): Seq[DO]
/** Function to generate upward-flowing input parameters from the upward-flowing output parameters [[uiParams]].
*
* @param n
* Size of the output sequence.
* @param p
* Upward-flowing output edge parameters.
* @return
* A n-sized sequence of upward-flowing input edge parameters.
*/
protected[diplomacy] def mapParamsU(n: Int, p: Seq[UO]): Seq[UI]
/** @return
* The sink cardinality of the node, the number of outputs bound with [[BIND_QUERY]] summed with inputs bound with
* [[BIND_STAR]].
*/
protected[diplomacy] lazy val sinkCard: Int = oBindings.count(_._3 == BIND_QUERY) + iBindings.count(_._3 == BIND_STAR)
/** @return
* The source cardinality of this node, the number of inputs bound with [[BIND_QUERY]] summed with the number of
* output bindings bound with [[BIND_STAR]].
*/
protected[diplomacy] lazy val sourceCard: Int =
iBindings.count(_._3 == BIND_QUERY) + oBindings.count(_._3 == BIND_STAR)
/** @return list of nodes involved in flex bindings with this node. */
protected[diplomacy] lazy val flexes: Seq[BaseNode] =
oBindings.filter(_._3 == BIND_FLEX).map(_._2) ++ iBindings.filter(_._3 == BIND_FLEX).map(_._2)
/** Resolves the flex to be either source or sink and returns the offset where the [[BIND_STAR]] operators begin
* greedily taking up the remaining connections.
*
* @return
* A value >= 0 if it is sink cardinality, a negative value for source cardinality. The magnitude of the return
* value is not relevant.
*/
protected[diplomacy] lazy val flexOffset: Int = {
/** Recursively performs a depth-first search of the [[flexes]], [[BaseNode]]s connected to this node with flex
* operators. The algorithm bottoms out when we either get to a node we have already visited or when we get to a
* connection that is not a flex and can set the direction for us. Otherwise, recurse by visiting the `flexes` of
* each node in the current set and decide whether they should be added to the set or not.
*
* @return
* the mapping of [[BaseNode]] indexed by their serial numbers.
*/
def DFS(v: BaseNode, visited: Map[Int, BaseNode]): Map[Int, BaseNode] = {
if (visited.contains(v.serial) || !v.flexibleArityDirection) {
visited
} else {
v.flexes.foldLeft(visited + (v.serial -> v))((sum, n) => DFS(n, sum))
}
}
/** Determine which [[BaseNode]] are involved in resolving the flex connections to/from this node.
*
* @example
* {{{
* a :*=* b :*=* c
* d :*=* b
* e :*=* f
* }}}
*
* `flexSet` for `a`, `b`, `c`, or `d` will be `Set(a, b, c, d)` `flexSet` for `e` or `f` will be `Set(e,f)`
*/
val flexSet = DFS(this, Map()).values
/** The total number of :*= operators where we're on the left. */
val allSink = flexSet.map(_.sinkCard).sum
/** The total number of :=* operators used when we're on the right. */
val allSource = flexSet.map(_.sourceCard).sum
require(
allSink == 0 || allSource == 0,
s"The nodes ${flexSet.map(_.name)} which are inter-connected by :*=* have ${allSink} :*= operators and ${allSource} :=* operators connected to them, making it impossible to determine cardinality inference direction."
)
allSink - allSource
}
/** @return A value >= 0 if it is sink cardinality, a negative value for source cardinality. */
protected[diplomacy] def edgeArityDirection(n: BaseNode): Int = {
if (flexibleArityDirection) flexOffset
else if (n.flexibleArityDirection) n.flexOffset
else 0
}
/** For a node which is connected between two nodes, select the one that will influence the direction of the flex
* resolution.
*/
protected[diplomacy] def edgeAritySelect(n: BaseNode, l: => Int, r: => Int): Int = {
val dir = edgeArityDirection(n)
if (dir < 0) l
else if (dir > 0) r
else 1
}
/** Ensure that the same node is not visited twice in resolving `:*=`, etc operators. */
private var starCycleGuard = false
/** Resolve all the star operators into concrete indicies. As connections are being made, some may be "star"
* connections which need to be resolved. In some way to determine how many actual edges they correspond to. We also
* need to build up the ranges of edges which correspond to each binding operator, so that We can apply the correct
* edge parameters and later build up correct bundle connections.
*
* [[oPortMapping]]: `Seq[(Int, Int)]` where each item is the range of edges corresponding to that oPort (binding
* operator). [[iPortMapping]]: `Seq[(Int, Int)]` where each item is the range of edges corresponding to that iPort
* (binding operator). [[oStar]]: `Int` the value to return for this node `N` for any `N :*= foo` or `N :*=* foo :*=
* bar` [[iStar]]: `Int` the value to return for this node `N` for any `foo :=* N` or `bar :=* foo :*=* N`
*/
protected[diplomacy] lazy val (
oPortMapping: Seq[(Int, Int)],
iPortMapping: Seq[(Int, Int)],
oStar: Int,
iStar: Int
) = {
try {
if (starCycleGuard) throw StarCycleException()
starCycleGuard = true
// For a given node N...
// Number of foo :=* N
// + Number of bar :=* foo :*=* N
val oStars = oBindings.count { case (_, n, b, _, _) =>
b == BIND_STAR || (b == BIND_FLEX && edgeArityDirection(n) < 0)
}
// Number of N :*= foo
// + Number of N :*=* foo :*= bar
val iStars = iBindings.count { case (_, n, b, _, _) =>
b == BIND_STAR || (b == BIND_FLEX && edgeArityDirection(n) > 0)
}
// 1 for foo := N
// + bar.iStar for bar :*= foo :*=* N
// + foo.iStar for foo :*= N
// + 0 for foo :=* N
val oKnown = oBindings.map { case (_, n, b, _, _) =>
b match {
case BIND_ONCE => 1
case BIND_FLEX => edgeAritySelect(n, 0, n.iStar)
case BIND_QUERY => n.iStar
case BIND_STAR => 0
}
}.sum
// 1 for N := foo
// + bar.oStar for N :*=* foo :=* bar
// + foo.oStar for N :=* foo
// + 0 for N :*= foo
val iKnown = iBindings.map { case (_, n, b, _, _) =>
b match {
case BIND_ONCE => 1
case BIND_FLEX => edgeAritySelect(n, n.oStar, 0)
case BIND_QUERY => n.oStar
case BIND_STAR => 0
}
}.sum
// Resolve star depends on the node subclass to implement the algorithm for this.
val (iStar, oStar) = resolveStar(iKnown, oKnown, iStars, oStars)
// Cumulative list of resolved outward binding range starting points
val oSum = oBindings.map { case (_, n, b, _, _) =>
b match {
case BIND_ONCE => 1
case BIND_FLEX => edgeAritySelect(n, oStar, n.iStar)
case BIND_QUERY => n.iStar
case BIND_STAR => oStar
}
}.scanLeft(0)(_ + _)
// Cumulative list of resolved inward binding range starting points
val iSum = iBindings.map { case (_, n, b, _, _) =>
b match {
case BIND_ONCE => 1
case BIND_FLEX => edgeAritySelect(n, n.oStar, iStar)
case BIND_QUERY => n.oStar
case BIND_STAR => iStar
}
}.scanLeft(0)(_ + _)
// Create ranges for each binding based on the running sums and return
// those along with resolved values for the star operations.
(oSum.init.zip(oSum.tail), iSum.init.zip(iSum.tail), oStar, iStar)
} catch {
case c: StarCycleException => throw c.copy(loop = context +: c.loop)
}
}
/** Sequence of inward ports.
*
* This should be called after all star bindings are resolved.
*
* Each element is: `j` Port index of this binding in the Node's [[oPortMapping]] on the other side of the binding.
* `n` Instance of inward node. `p` View of [[Parameters]] where this connection was made. `s` Source info where this
* connection was made in the source code.
*/
protected[diplomacy] lazy val oDirectPorts: Seq[(Int, InwardNode[DO, UO, BO], Parameters, SourceInfo)] =
oBindings.flatMap { case (i, n, _, p, s) =>
// for each binding operator in this node, look at what it connects to
val (start, end) = n.iPortMapping(i)
(start until end).map { j => (j, n, p, s) }
}
/** Sequence of outward ports.
*
* This should be called after all star bindings are resolved.
*
* `j` Port index of this binding in the Node's [[oPortMapping]] on the other side of the binding. `n` Instance of
* outward node. `p` View of [[Parameters]] where this connection was made. `s` [[SourceInfo]] where this connection
* was made in the source code.
*/
protected[diplomacy] lazy val iDirectPorts: Seq[(Int, OutwardNode[DI, UI, BI], Parameters, SourceInfo)] =
iBindings.flatMap { case (i, n, _, p, s) =>
// query this port index range of this node in the other side of node.
val (start, end) = n.oPortMapping(i)
(start until end).map { j => (j, n, p, s) }
}
// Ephemeral nodes ( which have non-None iForward/oForward) have in_degree = out_degree
// Thus, there must exist an Eulerian path and the below algorithms terminate
@scala.annotation.tailrec
private def oTrace(
tuple: (Int, InwardNode[DO, UO, BO], Parameters, SourceInfo)
): (Int, InwardNode[DO, UO, BO], Parameters, SourceInfo) = tuple match {
case (i, n, p, s) => n.iForward(i) match {
case None => (i, n, p, s)
case Some((j, m)) => oTrace((j, m, p, s))
}
}
@scala.annotation.tailrec
private def iTrace(
tuple: (Int, OutwardNode[DI, UI, BI], Parameters, SourceInfo)
): (Int, OutwardNode[DI, UI, BI], Parameters, SourceInfo) = tuple match {
case (i, n, p, s) => n.oForward(i) match {
case None => (i, n, p, s)
case Some((j, m)) => iTrace((j, m, p, s))
}
}
/** Final output ports after all stars and port forwarding (e.g. [[EphemeralNode]]s) have been resolved.
*
* Each Port is a tuple of:
* - Numeric index of this binding in the [[InwardNode]] on the other end.
* - [[InwardNode]] on the other end of this binding.
* - A view of [[Parameters]] where the binding occurred.
* - [[SourceInfo]] for source-level error reporting.
*/
lazy val oPorts: Seq[(Int, InwardNode[DO, UO, BO], Parameters, SourceInfo)] = oDirectPorts.map(oTrace)
/** Final input ports after all stars and port forwarding (e.g. [[EphemeralNode]]s) have been resolved.
*
* Each Port is a tuple of:
* - numeric index of this binding in [[OutwardNode]] on the other end.
* - [[OutwardNode]] on the other end of this binding.
* - a view of [[Parameters]] where the binding occurred.
* - [[SourceInfo]] for source-level error reporting.
*/
lazy val iPorts: Seq[(Int, OutwardNode[DI, UI, BI], Parameters, SourceInfo)] = iDirectPorts.map(iTrace)
private var oParamsCycleGuard = false
protected[diplomacy] lazy val diParams: Seq[DI] = iPorts.map { case (i, n, _, _) => n.doParams(i) }
protected[diplomacy] lazy val doParams: Seq[DO] = {
try {
if (oParamsCycleGuard) throw DownwardCycleException()
oParamsCycleGuard = true
val o = mapParamsD(oPorts.size, diParams)
require(
o.size == oPorts.size,
s"""Diplomacy has detected a problem with your graph:
|At the following node, the number of outward ports should equal the number of produced outward parameters.
|$context
|$connectedPortsInfo
|Downstreamed inward parameters: [${diParams.mkString(",")}]
|Produced outward parameters: [${o.mkString(",")}]
|""".stripMargin
)
o.map(outer.mixO(_, this))
} catch {
case c: DownwardCycleException => throw c.copy(loop = context +: c.loop)
}
}
private var iParamsCycleGuard = false
protected[diplomacy] lazy val uoParams: Seq[UO] = oPorts.map { case (o, n, _, _) => n.uiParams(o) }
protected[diplomacy] lazy val uiParams: Seq[UI] = {
try {
if (iParamsCycleGuard) throw UpwardCycleException()
iParamsCycleGuard = true
val i = mapParamsU(iPorts.size, uoParams)
require(
i.size == iPorts.size,
s"""Diplomacy has detected a problem with your graph:
|At the following node, the number of inward ports should equal the number of produced inward parameters.
|$context
|$connectedPortsInfo
|Upstreamed outward parameters: [${uoParams.mkString(",")}]
|Produced inward parameters: [${i.mkString(",")}]
|""".stripMargin
)
i.map(inner.mixI(_, this))
} catch {
case c: UpwardCycleException => throw c.copy(loop = context +: c.loop)
}
}
/** Outward edge parameters. */
protected[diplomacy] lazy val edgesOut: Seq[EO] =
(oPorts.zip(doParams)).map { case ((i, n, p, s), o) => outer.edgeO(o, n.uiParams(i), p, s) }
/** Inward edge parameters. */
protected[diplomacy] lazy val edgesIn: Seq[EI] =
(iPorts.zip(uiParams)).map { case ((o, n, p, s), i) => inner.edgeI(n.doParams(o), i, p, s) }
/** A tuple of the input edge parameters and output edge parameters for the edges bound to this node.
*
* If you need to access to the edges of a foreign Node, use this method (in/out create bundles).
*/
lazy val edges: Edges[EI, EO] = Edges(edgesIn, edgesOut)
/** Create actual Wires corresponding to the Bundles parameterized by the outward edges of this node. */
protected[diplomacy] lazy val bundleOut: Seq[BO] = edgesOut.map { e =>
val x = Wire(outer.bundleO(e)).suggestName(s"${valName.value}Out")
// TODO: Don't care unconnected forwarded diplomatic signals for compatibility issue,
// In the future, we should add an option to decide whether allowing unconnected in the LazyModule
x := DontCare
x
}
/** Create actual Wires corresponding to the Bundles parameterized by the inward edges of this node. */
protected[diplomacy] lazy val bundleIn: Seq[BI] = edgesIn.map { e =>
val x = Wire(inner.bundleI(e)).suggestName(s"${valName.value}In")
// TODO: Don't care unconnected forwarded diplomatic signals for compatibility issue,
// In the future, we should add an option to decide whether allowing unconnected in the LazyModule
x := DontCare
x
}
private def emptyDanglesOut: Seq[Dangle] = oPorts.zipWithIndex.map { case ((j, n, _, _), i) =>
Dangle(
source = HalfEdge(serial, i),
sink = HalfEdge(n.serial, j),
flipped = false,
name = wirePrefix + "out",
dataOpt = None
)
}
private def emptyDanglesIn: Seq[Dangle] = iPorts.zipWithIndex.map { case ((j, n, _, _), i) =>
Dangle(
source = HalfEdge(n.serial, j),
sink = HalfEdge(serial, i),
flipped = true,
name = wirePrefix + "in",
dataOpt = None
)
}
/** Create the [[Dangle]]s which describe the connections from this node output to other nodes inputs. */
protected[diplomacy] def danglesOut: Seq[Dangle] = emptyDanglesOut.zipWithIndex.map { case (d, i) =>
d.copy(dataOpt = Some(bundleOut(i)))
}
/** Create the [[Dangle]]s which describe the connections from this node input from other nodes outputs. */
protected[diplomacy] def danglesIn: Seq[Dangle] = emptyDanglesIn.zipWithIndex.map { case (d, i) =>
d.copy(dataOpt = Some(bundleIn(i)))
}
private[diplomacy] var instantiated = false
/** Gather Bundle and edge parameters of outward ports.
*
* Accessors to the result of negotiation to be used within [[LazyModuleImp]] Code. Should only be used within
* [[LazyModuleImp]] code or after its instantiation has completed.
*/
def out: Seq[(BO, EO)] = {
require(
instantiated,
s"$name.out should not be called until after instantiation of its parent LazyModule.module has begun"
)
bundleOut.zip(edgesOut)
}
/** Gather Bundle and edge parameters of inward ports.
*
* Accessors to the result of negotiation to be used within [[LazyModuleImp]] Code. Should only be used within
* [[LazyModuleImp]] code or after its instantiation has completed.
*/
def in: Seq[(BI, EI)] = {
require(
instantiated,
s"$name.in should not be called until after instantiation of its parent LazyModule.module has begun"
)
bundleIn.zip(edgesIn)
}
/** Actually instantiate this node during [[LazyModuleImp]] evaluation. Mark that it's safe to use the Bundle wires,
* instantiate monitors on all input ports if appropriate, and return all the dangles of this node.
*/
protected[diplomacy] def instantiate(): Seq[Dangle] = {
instantiated = true
if (!circuitIdentity) {
(iPorts.zip(in)).foreach { case ((_, _, p, _), (b, e)) => if (p(MonitorsEnabled)) inner.monitor(b, e) }
}
danglesOut ++ danglesIn
}
protected[diplomacy] def cloneDangles(): Seq[Dangle] = emptyDanglesOut ++ emptyDanglesIn
/** Connects the outward part of a node with the inward part of this node. */
protected[diplomacy] def bind(
h: OutwardNode[DI, UI, BI],
binding: NodeBinding
)(
implicit p: Parameters,
sourceInfo: SourceInfo
): Unit = {
val x = this // x := y
val y = h
sourceLine(sourceInfo, " at ", "")
val i = x.iPushed
val o = y.oPushed
y.oPush(
i,
x,
binding match {
case BIND_ONCE => BIND_ONCE
case BIND_FLEX => BIND_FLEX
case BIND_STAR => BIND_QUERY
case BIND_QUERY => BIND_STAR
}
)
x.iPush(o, y, binding)
}
/* Metadata for printing the node graph. */
def inputs: Seq[(OutwardNode[DI, UI, BI], RenderedEdge)] = (iPorts.zip(edgesIn)).map { case ((_, n, p, _), e) =>
val re = inner.render(e)
(n, re.copy(flipped = re.flipped != p(RenderFlipped)))
}
/** Metadata for printing the node graph */
def outputs: Seq[(InwardNode[DO, UO, BO], RenderedEdge)] = oPorts.map { case (i, n, _, _) => (n, n.inputs(i)._2) }
}
| module TLBuffer_a32d64s1k3z4u_1( // @[Buffer.scala:40:9]
input clock, // @[Buffer.scala:40:9]
input reset, // @[Buffer.scala:40:9]
output auto_in_a_ready, // @[LazyModuleImp.scala:107:25]
input auto_in_a_valid, // @[LazyModuleImp.scala:107:25]
input [2:0] auto_in_a_bits_opcode, // @[LazyModuleImp.scala:107:25]
input [3:0] auto_in_a_bits_size, // @[LazyModuleImp.scala:107:25]
input [31:0] auto_in_a_bits_address, // @[LazyModuleImp.scala:107:25]
input [7:0] auto_in_a_bits_mask, // @[LazyModuleImp.scala:107:25]
input [63:0] auto_in_a_bits_data, // @[LazyModuleImp.scala:107:25]
input auto_in_d_ready, // @[LazyModuleImp.scala:107:25]
output auto_in_d_valid, // @[LazyModuleImp.scala:107:25]
output [2:0] auto_in_d_bits_opcode, // @[LazyModuleImp.scala:107:25]
output [1:0] auto_in_d_bits_param, // @[LazyModuleImp.scala:107:25]
output [3:0] auto_in_d_bits_size, // @[LazyModuleImp.scala:107:25]
output auto_in_d_bits_source, // @[LazyModuleImp.scala:107:25]
output [2:0] auto_in_d_bits_sink, // @[LazyModuleImp.scala:107:25]
output auto_in_d_bits_denied, // @[LazyModuleImp.scala:107:25]
output [63:0] auto_in_d_bits_data, // @[LazyModuleImp.scala:107:25]
output auto_in_d_bits_corrupt, // @[LazyModuleImp.scala:107:25]
input auto_out_a_ready, // @[LazyModuleImp.scala:107:25]
output auto_out_a_valid, // @[LazyModuleImp.scala:107:25]
output [2:0] auto_out_a_bits_opcode, // @[LazyModuleImp.scala:107:25]
output [2:0] auto_out_a_bits_param, // @[LazyModuleImp.scala:107:25]
output [3:0] auto_out_a_bits_size, // @[LazyModuleImp.scala:107:25]
output auto_out_a_bits_source, // @[LazyModuleImp.scala:107:25]
output [31:0] auto_out_a_bits_address, // @[LazyModuleImp.scala:107:25]
output [7:0] auto_out_a_bits_mask, // @[LazyModuleImp.scala:107:25]
output [63:0] auto_out_a_bits_data, // @[LazyModuleImp.scala:107:25]
output auto_out_a_bits_corrupt, // @[LazyModuleImp.scala:107:25]
output auto_out_d_ready, // @[LazyModuleImp.scala:107:25]
input auto_out_d_valid, // @[LazyModuleImp.scala:107:25]
input [2:0] auto_out_d_bits_opcode, // @[LazyModuleImp.scala:107:25]
input [1:0] auto_out_d_bits_param, // @[LazyModuleImp.scala:107:25]
input [3:0] auto_out_d_bits_size, // @[LazyModuleImp.scala:107:25]
input auto_out_d_bits_source, // @[LazyModuleImp.scala:107:25]
input [2:0] auto_out_d_bits_sink, // @[LazyModuleImp.scala:107:25]
input auto_out_d_bits_denied, // @[LazyModuleImp.scala:107:25]
input [63:0] auto_out_d_bits_data, // @[LazyModuleImp.scala:107:25]
input auto_out_d_bits_corrupt // @[LazyModuleImp.scala:107:25]
);
wire auto_in_a_valid_0 = auto_in_a_valid; // @[Buffer.scala:40:9]
wire [2:0] auto_in_a_bits_opcode_0 = auto_in_a_bits_opcode; // @[Buffer.scala:40:9]
wire [3:0] auto_in_a_bits_size_0 = auto_in_a_bits_size; // @[Buffer.scala:40:9]
wire [31:0] auto_in_a_bits_address_0 = auto_in_a_bits_address; // @[Buffer.scala:40:9]
wire [7:0] auto_in_a_bits_mask_0 = auto_in_a_bits_mask; // @[Buffer.scala:40:9]
wire [63:0] auto_in_a_bits_data_0 = auto_in_a_bits_data; // @[Buffer.scala:40:9]
wire auto_in_d_ready_0 = auto_in_d_ready; // @[Buffer.scala:40:9]
wire auto_out_a_ready_0 = auto_out_a_ready; // @[Buffer.scala:40:9]
wire auto_out_d_valid_0 = auto_out_d_valid; // @[Buffer.scala:40:9]
wire [2:0] auto_out_d_bits_opcode_0 = auto_out_d_bits_opcode; // @[Buffer.scala:40:9]
wire [1:0] auto_out_d_bits_param_0 = auto_out_d_bits_param; // @[Buffer.scala:40:9]
wire [3:0] auto_out_d_bits_size_0 = auto_out_d_bits_size; // @[Buffer.scala:40:9]
wire auto_out_d_bits_source_0 = auto_out_d_bits_source; // @[Buffer.scala:40:9]
wire [2:0] auto_out_d_bits_sink_0 = auto_out_d_bits_sink; // @[Buffer.scala:40:9]
wire auto_out_d_bits_denied_0 = auto_out_d_bits_denied; // @[Buffer.scala:40:9]
wire [63:0] auto_out_d_bits_data_0 = auto_out_d_bits_data; // @[Buffer.scala:40:9]
wire auto_out_d_bits_corrupt_0 = auto_out_d_bits_corrupt; // @[Buffer.scala:40:9]
wire auto_in_a_bits_source = 1'h0; // @[Decoupled.scala:362:21]
wire auto_in_a_bits_corrupt = 1'h0; // @[Decoupled.scala:362:21]
wire nodeIn_a_bits_source = 1'h0; // @[Decoupled.scala:362:21]
wire nodeIn_a_bits_corrupt = 1'h0; // @[Decoupled.scala:362:21]
wire [2:0] auto_in_a_bits_param = 3'h0; // @[Decoupled.scala:362:21]
wire nodeIn_a_ready; // @[MixedNode.scala:551:17]
wire [2:0] nodeIn_a_bits_param = 3'h0; // @[Decoupled.scala:362:21]
wire nodeIn_a_valid = auto_in_a_valid_0; // @[Buffer.scala:40:9]
wire [2:0] nodeIn_a_bits_opcode = auto_in_a_bits_opcode_0; // @[Buffer.scala:40:9]
wire [3:0] nodeIn_a_bits_size = auto_in_a_bits_size_0; // @[Buffer.scala:40:9]
wire [31:0] nodeIn_a_bits_address = auto_in_a_bits_address_0; // @[Buffer.scala:40:9]
wire [7:0] nodeIn_a_bits_mask = auto_in_a_bits_mask_0; // @[Buffer.scala:40:9]
wire [63:0] nodeIn_a_bits_data = auto_in_a_bits_data_0; // @[Buffer.scala:40:9]
wire nodeIn_d_ready = auto_in_d_ready_0; // @[Buffer.scala:40:9]
wire nodeIn_d_valid; // @[MixedNode.scala:551:17]
wire [2:0] nodeIn_d_bits_opcode; // @[MixedNode.scala:551:17]
wire [1:0] nodeIn_d_bits_param; // @[MixedNode.scala:551:17]
wire [3:0] nodeIn_d_bits_size; // @[MixedNode.scala:551:17]
wire nodeIn_d_bits_source; // @[MixedNode.scala:551:17]
wire [2:0] nodeIn_d_bits_sink; // @[MixedNode.scala:551:17]
wire nodeIn_d_bits_denied; // @[MixedNode.scala:551:17]
wire [63:0] nodeIn_d_bits_data; // @[MixedNode.scala:551:17]
wire nodeIn_d_bits_corrupt; // @[MixedNode.scala:551:17]
wire nodeOut_a_ready = auto_out_a_ready_0; // @[Buffer.scala:40:9]
wire nodeOut_a_valid; // @[MixedNode.scala:542:17]
wire [2:0] nodeOut_a_bits_opcode; // @[MixedNode.scala:542:17]
wire [2:0] nodeOut_a_bits_param; // @[MixedNode.scala:542:17]
wire [3:0] nodeOut_a_bits_size; // @[MixedNode.scala:542:17]
wire nodeOut_a_bits_source; // @[MixedNode.scala:542:17]
wire [31:0] nodeOut_a_bits_address; // @[MixedNode.scala:542:17]
wire [7:0] nodeOut_a_bits_mask; // @[MixedNode.scala:542:17]
wire [63:0] nodeOut_a_bits_data; // @[MixedNode.scala:542:17]
wire nodeOut_a_bits_corrupt; // @[MixedNode.scala:542:17]
wire nodeOut_d_ready; // @[MixedNode.scala:542:17]
wire nodeOut_d_valid = auto_out_d_valid_0; // @[Buffer.scala:40:9]
wire [2:0] nodeOut_d_bits_opcode = auto_out_d_bits_opcode_0; // @[Buffer.scala:40:9]
wire [1:0] nodeOut_d_bits_param = auto_out_d_bits_param_0; // @[Buffer.scala:40:9]
wire [3:0] nodeOut_d_bits_size = auto_out_d_bits_size_0; // @[Buffer.scala:40:9]
wire nodeOut_d_bits_source = auto_out_d_bits_source_0; // @[Buffer.scala:40:9]
wire [2:0] nodeOut_d_bits_sink = auto_out_d_bits_sink_0; // @[Buffer.scala:40:9]
wire nodeOut_d_bits_denied = auto_out_d_bits_denied_0; // @[Buffer.scala:40:9]
wire [63:0] nodeOut_d_bits_data = auto_out_d_bits_data_0; // @[Buffer.scala:40:9]
wire nodeOut_d_bits_corrupt = auto_out_d_bits_corrupt_0; // @[Buffer.scala:40:9]
wire auto_in_a_ready_0; // @[Buffer.scala:40:9]
wire [2:0] auto_in_d_bits_opcode_0; // @[Buffer.scala:40:9]
wire [1:0] auto_in_d_bits_param_0; // @[Buffer.scala:40:9]
wire [3:0] auto_in_d_bits_size_0; // @[Buffer.scala:40:9]
wire auto_in_d_bits_source_0; // @[Buffer.scala:40:9]
wire [2:0] auto_in_d_bits_sink_0; // @[Buffer.scala:40:9]
wire auto_in_d_bits_denied_0; // @[Buffer.scala:40:9]
wire [63:0] auto_in_d_bits_data_0; // @[Buffer.scala:40:9]
wire auto_in_d_bits_corrupt_0; // @[Buffer.scala:40:9]
wire auto_in_d_valid_0; // @[Buffer.scala:40:9]
wire [2:0] auto_out_a_bits_opcode_0; // @[Buffer.scala:40:9]
wire [2:0] auto_out_a_bits_param_0; // @[Buffer.scala:40:9]
wire [3:0] auto_out_a_bits_size_0; // @[Buffer.scala:40:9]
wire auto_out_a_bits_source_0; // @[Buffer.scala:40:9]
wire [31:0] auto_out_a_bits_address_0; // @[Buffer.scala:40:9]
wire [7:0] auto_out_a_bits_mask_0; // @[Buffer.scala:40:9]
wire [63:0] auto_out_a_bits_data_0; // @[Buffer.scala:40:9]
wire auto_out_a_bits_corrupt_0; // @[Buffer.scala:40:9]
wire auto_out_a_valid_0; // @[Buffer.scala:40:9]
wire auto_out_d_ready_0; // @[Buffer.scala:40:9]
assign auto_in_a_ready_0 = nodeIn_a_ready; // @[Buffer.scala:40:9]
assign auto_in_d_valid_0 = nodeIn_d_valid; // @[Buffer.scala:40:9]
assign auto_in_d_bits_opcode_0 = nodeIn_d_bits_opcode; // @[Buffer.scala:40:9]
assign auto_in_d_bits_param_0 = nodeIn_d_bits_param; // @[Buffer.scala:40:9]
assign auto_in_d_bits_size_0 = nodeIn_d_bits_size; // @[Buffer.scala:40:9]
assign auto_in_d_bits_source_0 = nodeIn_d_bits_source; // @[Buffer.scala:40:9]
assign auto_in_d_bits_sink_0 = nodeIn_d_bits_sink; // @[Buffer.scala:40:9]
assign auto_in_d_bits_denied_0 = nodeIn_d_bits_denied; // @[Buffer.scala:40:9]
assign auto_in_d_bits_data_0 = nodeIn_d_bits_data; // @[Buffer.scala:40:9]
assign auto_in_d_bits_corrupt_0 = nodeIn_d_bits_corrupt; // @[Buffer.scala:40:9]
assign auto_out_a_valid_0 = nodeOut_a_valid; // @[Buffer.scala:40:9]
assign auto_out_a_bits_opcode_0 = nodeOut_a_bits_opcode; // @[Buffer.scala:40:9]
assign auto_out_a_bits_param_0 = nodeOut_a_bits_param; // @[Buffer.scala:40:9]
assign auto_out_a_bits_size_0 = nodeOut_a_bits_size; // @[Buffer.scala:40:9]
assign auto_out_a_bits_source_0 = nodeOut_a_bits_source; // @[Buffer.scala:40:9]
assign auto_out_a_bits_address_0 = nodeOut_a_bits_address; // @[Buffer.scala:40:9]
assign auto_out_a_bits_mask_0 = nodeOut_a_bits_mask; // @[Buffer.scala:40:9]
assign auto_out_a_bits_data_0 = nodeOut_a_bits_data; // @[Buffer.scala:40:9]
assign auto_out_a_bits_corrupt_0 = nodeOut_a_bits_corrupt; // @[Buffer.scala:40:9]
assign auto_out_d_ready_0 = nodeOut_d_ready; // @[Buffer.scala:40:9]
TLMonitor_64 monitor ( // @[Nodes.scala:27:25]
.clock (clock),
.reset (reset),
.io_in_a_ready (nodeIn_a_ready), // @[MixedNode.scala:551:17]
.io_in_a_valid (nodeIn_a_valid), // @[MixedNode.scala:551:17]
.io_in_a_bits_opcode (nodeIn_a_bits_opcode), // @[MixedNode.scala:551:17]
.io_in_a_bits_size (nodeIn_a_bits_size), // @[MixedNode.scala:551:17]
.io_in_a_bits_address (nodeIn_a_bits_address), // @[MixedNode.scala:551:17]
.io_in_a_bits_mask (nodeIn_a_bits_mask), // @[MixedNode.scala:551:17]
.io_in_a_bits_data (nodeIn_a_bits_data), // @[MixedNode.scala:551:17]
.io_in_d_ready (nodeIn_d_ready), // @[MixedNode.scala:551:17]
.io_in_d_valid (nodeIn_d_valid), // @[MixedNode.scala:551:17]
.io_in_d_bits_opcode (nodeIn_d_bits_opcode), // @[MixedNode.scala:551:17]
.io_in_d_bits_param (nodeIn_d_bits_param), // @[MixedNode.scala:551:17]
.io_in_d_bits_size (nodeIn_d_bits_size), // @[MixedNode.scala:551:17]
.io_in_d_bits_source (nodeIn_d_bits_source), // @[MixedNode.scala:551:17]
.io_in_d_bits_sink (nodeIn_d_bits_sink), // @[MixedNode.scala:551:17]
.io_in_d_bits_denied (nodeIn_d_bits_denied), // @[MixedNode.scala:551:17]
.io_in_d_bits_data (nodeIn_d_bits_data), // @[MixedNode.scala:551:17]
.io_in_d_bits_corrupt (nodeIn_d_bits_corrupt) // @[MixedNode.scala:551:17]
); // @[Nodes.scala:27:25]
Queue2_TLBundleA_a32d64s1k3z4u_1 nodeOut_a_q ( // @[Decoupled.scala:362:21]
.clock (clock),
.reset (reset),
.io_enq_ready (nodeIn_a_ready),
.io_enq_valid (nodeIn_a_valid), // @[MixedNode.scala:551:17]
.io_enq_bits_opcode (nodeIn_a_bits_opcode), // @[MixedNode.scala:551:17]
.io_enq_bits_size (nodeIn_a_bits_size), // @[MixedNode.scala:551:17]
.io_enq_bits_address (nodeIn_a_bits_address), // @[MixedNode.scala:551:17]
.io_enq_bits_mask (nodeIn_a_bits_mask), // @[MixedNode.scala:551:17]
.io_enq_bits_data (nodeIn_a_bits_data), // @[MixedNode.scala:551:17]
.io_deq_ready (nodeOut_a_ready), // @[MixedNode.scala:542:17]
.io_deq_valid (nodeOut_a_valid),
.io_deq_bits_opcode (nodeOut_a_bits_opcode),
.io_deq_bits_param (nodeOut_a_bits_param),
.io_deq_bits_size (nodeOut_a_bits_size),
.io_deq_bits_source (nodeOut_a_bits_source),
.io_deq_bits_address (nodeOut_a_bits_address),
.io_deq_bits_mask (nodeOut_a_bits_mask),
.io_deq_bits_data (nodeOut_a_bits_data),
.io_deq_bits_corrupt (nodeOut_a_bits_corrupt)
); // @[Decoupled.scala:362:21]
Queue2_TLBundleD_a32d64s1k3z4u_1 nodeIn_d_q ( // @[Decoupled.scala:362:21]
.clock (clock),
.reset (reset),
.io_enq_ready (nodeOut_d_ready),
.io_enq_valid (nodeOut_d_valid), // @[MixedNode.scala:542:17]
.io_enq_bits_opcode (nodeOut_d_bits_opcode), // @[MixedNode.scala:542:17]
.io_enq_bits_param (nodeOut_d_bits_param), // @[MixedNode.scala:542:17]
.io_enq_bits_size (nodeOut_d_bits_size), // @[MixedNode.scala:542:17]
.io_enq_bits_source (nodeOut_d_bits_source), // @[MixedNode.scala:542:17]
.io_enq_bits_sink (nodeOut_d_bits_sink), // @[MixedNode.scala:542:17]
.io_enq_bits_denied (nodeOut_d_bits_denied), // @[MixedNode.scala:542:17]
.io_enq_bits_data (nodeOut_d_bits_data), // @[MixedNode.scala:542:17]
.io_enq_bits_corrupt (nodeOut_d_bits_corrupt), // @[MixedNode.scala:542:17]
.io_deq_ready (nodeIn_d_ready), // @[MixedNode.scala:551:17]
.io_deq_valid (nodeIn_d_valid),
.io_deq_bits_opcode (nodeIn_d_bits_opcode),
.io_deq_bits_param (nodeIn_d_bits_param),
.io_deq_bits_size (nodeIn_d_bits_size),
.io_deq_bits_source (nodeIn_d_bits_source),
.io_deq_bits_sink (nodeIn_d_bits_sink),
.io_deq_bits_denied (nodeIn_d_bits_denied),
.io_deq_bits_data (nodeIn_d_bits_data),
.io_deq_bits_corrupt (nodeIn_d_bits_corrupt)
); // @[Decoupled.scala:362:21]
assign auto_in_a_ready = auto_in_a_ready_0; // @[Buffer.scala:40:9]
assign auto_in_d_valid = auto_in_d_valid_0; // @[Buffer.scala:40:9]
assign auto_in_d_bits_opcode = auto_in_d_bits_opcode_0; // @[Buffer.scala:40:9]
assign auto_in_d_bits_param = auto_in_d_bits_param_0; // @[Buffer.scala:40:9]
assign auto_in_d_bits_size = auto_in_d_bits_size_0; // @[Buffer.scala:40:9]
assign auto_in_d_bits_source = auto_in_d_bits_source_0; // @[Buffer.scala:40:9]
assign auto_in_d_bits_sink = auto_in_d_bits_sink_0; // @[Buffer.scala:40:9]
assign auto_in_d_bits_denied = auto_in_d_bits_denied_0; // @[Buffer.scala:40:9]
assign auto_in_d_bits_data = auto_in_d_bits_data_0; // @[Buffer.scala:40:9]
assign auto_in_d_bits_corrupt = auto_in_d_bits_corrupt_0; // @[Buffer.scala:40:9]
assign auto_out_a_valid = auto_out_a_valid_0; // @[Buffer.scala:40:9]
assign auto_out_a_bits_opcode = auto_out_a_bits_opcode_0; // @[Buffer.scala:40:9]
assign auto_out_a_bits_param = auto_out_a_bits_param_0; // @[Buffer.scala:40:9]
assign auto_out_a_bits_size = auto_out_a_bits_size_0; // @[Buffer.scala:40:9]
assign auto_out_a_bits_source = auto_out_a_bits_source_0; // @[Buffer.scala:40:9]
assign auto_out_a_bits_address = auto_out_a_bits_address_0; // @[Buffer.scala:40:9]
assign auto_out_a_bits_mask = auto_out_a_bits_mask_0; // @[Buffer.scala:40:9]
assign auto_out_a_bits_data = auto_out_a_bits_data_0; // @[Buffer.scala:40:9]
assign auto_out_a_bits_corrupt = auto_out_a_bits_corrupt_0; // @[Buffer.scala:40:9]
assign auto_out_d_ready = auto_out_d_ready_0; // @[Buffer.scala:40:9]
endmodule |
Generate the Verilog code corresponding to the following Chisel files.
File RoundAnyRawFNToRecFN.scala:
/*============================================================================
This Chisel source file is part of a pre-release version of the HardFloat IEEE
Floating-Point Arithmetic Package, by John R. Hauser (with some contributions
from Yunsup Lee and Andrew Waterman, mainly concerning testing).
Copyright 2010, 2011, 2012, 2013, 2014, 2015, 2016, 2017 The Regents of the
University of California. All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
1. Redistributions of source code must retain the above copyright notice,
this list of conditions, and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice,
this list of conditions, and the following disclaimer in the documentation
and/or other materials provided with the distribution.
3. Neither the name of the University nor the names of its contributors may
be used to endorse or promote products derived from this software without
specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS "AS IS", AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ARE
DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
=============================================================================*/
package hardfloat
import chisel3._
import chisel3.util.Fill
import consts._
//----------------------------------------------------------------------------
//----------------------------------------------------------------------------
class
RoundAnyRawFNToRecFN(
inExpWidth: Int,
inSigWidth: Int,
outExpWidth: Int,
outSigWidth: Int,
options: Int
)
extends RawModule
{
override def desiredName = s"RoundAnyRawFNToRecFN_ie${inExpWidth}_is${inSigWidth}_oe${outExpWidth}_os${outSigWidth}"
val io = IO(new Bundle {
val invalidExc = Input(Bool()) // overrides 'infiniteExc' and 'in'
val infiniteExc = Input(Bool()) // overrides 'in' except for 'in.sign'
val in = Input(new RawFloat(inExpWidth, inSigWidth))
// (allowed exponent range has limits)
val roundingMode = Input(UInt(3.W))
val detectTininess = Input(UInt(1.W))
val out = Output(Bits((outExpWidth + outSigWidth + 1).W))
val exceptionFlags = Output(Bits(5.W))
})
//------------------------------------------------------------------------
//------------------------------------------------------------------------
val sigMSBitAlwaysZero = ((options & flRoundOpt_sigMSBitAlwaysZero) != 0)
val effectiveInSigWidth =
if (sigMSBitAlwaysZero) inSigWidth else inSigWidth + 1
val neverUnderflows =
((options &
(flRoundOpt_neverUnderflows | flRoundOpt_subnormsAlwaysExact)
) != 0) ||
(inExpWidth < outExpWidth)
val neverOverflows =
((options & flRoundOpt_neverOverflows) != 0) ||
(inExpWidth < outExpWidth)
val outNaNExp = BigInt(7)<<(outExpWidth - 2)
val outInfExp = BigInt(6)<<(outExpWidth - 2)
val outMaxFiniteExp = outInfExp - 1
val outMinNormExp = (BigInt(1)<<(outExpWidth - 1)) + 2
val outMinNonzeroExp = outMinNormExp - outSigWidth + 1
//------------------------------------------------------------------------
//------------------------------------------------------------------------
val roundingMode_near_even = (io.roundingMode === round_near_even)
val roundingMode_minMag = (io.roundingMode === round_minMag)
val roundingMode_min = (io.roundingMode === round_min)
val roundingMode_max = (io.roundingMode === round_max)
val roundingMode_near_maxMag = (io.roundingMode === round_near_maxMag)
val roundingMode_odd = (io.roundingMode === round_odd)
val roundMagUp =
(roundingMode_min && io.in.sign) || (roundingMode_max && ! io.in.sign)
//------------------------------------------------------------------------
//------------------------------------------------------------------------
val sAdjustedExp =
if (inExpWidth < outExpWidth)
(io.in.sExp +&
((BigInt(1)<<outExpWidth) - (BigInt(1)<<inExpWidth)).S
)(outExpWidth, 0).zext
else if (inExpWidth == outExpWidth)
io.in.sExp
else
io.in.sExp +&
((BigInt(1)<<outExpWidth) - (BigInt(1)<<inExpWidth)).S
val adjustedSig =
if (inSigWidth <= outSigWidth + 2)
io.in.sig<<(outSigWidth - inSigWidth + 2)
else
(io.in.sig(inSigWidth, inSigWidth - outSigWidth - 1) ##
io.in.sig(inSigWidth - outSigWidth - 2, 0).orR
)
val doShiftSigDown1 =
if (sigMSBitAlwaysZero) false.B else adjustedSig(outSigWidth + 2)
val common_expOut = Wire(UInt((outExpWidth + 1).W))
val common_fractOut = Wire(UInt((outSigWidth - 1).W))
val common_overflow = Wire(Bool())
val common_totalUnderflow = Wire(Bool())
val common_underflow = Wire(Bool())
val common_inexact = Wire(Bool())
if (
neverOverflows && neverUnderflows
&& (effectiveInSigWidth <= outSigWidth)
) {
//--------------------------------------------------------------------
//--------------------------------------------------------------------
common_expOut := sAdjustedExp(outExpWidth, 0) + doShiftSigDown1
common_fractOut :=
Mux(doShiftSigDown1,
adjustedSig(outSigWidth + 1, 3),
adjustedSig(outSigWidth, 2)
)
common_overflow := false.B
common_totalUnderflow := false.B
common_underflow := false.B
common_inexact := false.B
} else {
//--------------------------------------------------------------------
//--------------------------------------------------------------------
val roundMask =
if (neverUnderflows)
0.U(outSigWidth.W) ## doShiftSigDown1 ## 3.U(2.W)
else
(lowMask(
sAdjustedExp(outExpWidth, 0),
outMinNormExp - outSigWidth - 1,
outMinNormExp
) | doShiftSigDown1) ##
3.U(2.W)
val shiftedRoundMask = 0.U(1.W) ## roundMask>>1
val roundPosMask = ~shiftedRoundMask & roundMask
val roundPosBit = (adjustedSig & roundPosMask).orR
val anyRoundExtra = (adjustedSig & shiftedRoundMask).orR
val anyRound = roundPosBit || anyRoundExtra
val roundIncr =
((roundingMode_near_even || roundingMode_near_maxMag) &&
roundPosBit) ||
(roundMagUp && anyRound)
val roundedSig: Bits =
Mux(roundIncr,
(((adjustedSig | roundMask)>>2) +& 1.U) &
~Mux(roundingMode_near_even && roundPosBit &&
! anyRoundExtra,
roundMask>>1,
0.U((outSigWidth + 2).W)
),
(adjustedSig & ~roundMask)>>2 |
Mux(roundingMode_odd && anyRound, roundPosMask>>1, 0.U)
)
//*** IF SIG WIDTH IS VERY NARROW, NEED TO ACCOUNT FOR ROUND-EVEN ZEROING
//*** M.S. BIT OF SUBNORMAL SIG?
val sRoundedExp = sAdjustedExp +& (roundedSig>>outSigWidth).asUInt.zext
common_expOut := sRoundedExp(outExpWidth, 0)
common_fractOut :=
Mux(doShiftSigDown1,
roundedSig(outSigWidth - 1, 1),
roundedSig(outSigWidth - 2, 0)
)
common_overflow :=
(if (neverOverflows) false.B else
//*** REWRITE BASED ON BEFORE-ROUNDING EXPONENT?:
(sRoundedExp>>(outExpWidth - 1) >= 3.S))
common_totalUnderflow :=
(if (neverUnderflows) false.B else
//*** WOULD BE GOOD ENOUGH TO USE EXPONENT BEFORE ROUNDING?:
(sRoundedExp < outMinNonzeroExp.S))
val unboundedRange_roundPosBit =
Mux(doShiftSigDown1, adjustedSig(2), adjustedSig(1))
val unboundedRange_anyRound =
(doShiftSigDown1 && adjustedSig(2)) || adjustedSig(1, 0).orR
val unboundedRange_roundIncr =
((roundingMode_near_even || roundingMode_near_maxMag) &&
unboundedRange_roundPosBit) ||
(roundMagUp && unboundedRange_anyRound)
val roundCarry =
Mux(doShiftSigDown1,
roundedSig(outSigWidth + 1),
roundedSig(outSigWidth)
)
common_underflow :=
(if (neverUnderflows) false.B else
common_totalUnderflow ||
//*** IF SIG WIDTH IS VERY NARROW, NEED TO ACCOUNT FOR ROUND-EVEN ZEROING
//*** M.S. BIT OF SUBNORMAL SIG?
(anyRound && ((sAdjustedExp>>outExpWidth) <= 0.S) &&
Mux(doShiftSigDown1, roundMask(3), roundMask(2)) &&
! ((io.detectTininess === tininess_afterRounding) &&
! Mux(doShiftSigDown1,
roundMask(4),
roundMask(3)
) &&
roundCarry && roundPosBit &&
unboundedRange_roundIncr)))
common_inexact := common_totalUnderflow || anyRound
}
//------------------------------------------------------------------------
//------------------------------------------------------------------------
val isNaNOut = io.invalidExc || io.in.isNaN
val notNaN_isSpecialInfOut = io.infiniteExc || io.in.isInf
val commonCase = ! isNaNOut && ! notNaN_isSpecialInfOut && ! io.in.isZero
val overflow = commonCase && common_overflow
val underflow = commonCase && common_underflow
val inexact = overflow || (commonCase && common_inexact)
val overflow_roundMagUp =
roundingMode_near_even || roundingMode_near_maxMag || roundMagUp
val pegMinNonzeroMagOut =
commonCase && common_totalUnderflow && (roundMagUp || roundingMode_odd)
val pegMaxFiniteMagOut = overflow && ! overflow_roundMagUp
val notNaN_isInfOut =
notNaN_isSpecialInfOut || (overflow && overflow_roundMagUp)
val signOut = Mux(isNaNOut, false.B, io.in.sign)
val expOut =
(common_expOut &
~Mux(io.in.isZero || common_totalUnderflow,
(BigInt(7)<<(outExpWidth - 2)).U((outExpWidth + 1).W),
0.U
) &
~Mux(pegMinNonzeroMagOut,
~outMinNonzeroExp.U((outExpWidth + 1).W),
0.U
) &
~Mux(pegMaxFiniteMagOut,
(BigInt(1)<<(outExpWidth - 1)).U((outExpWidth + 1).W),
0.U
) &
~Mux(notNaN_isInfOut,
(BigInt(1)<<(outExpWidth - 2)).U((outExpWidth + 1).W),
0.U
)) |
Mux(pegMinNonzeroMagOut,
outMinNonzeroExp.U((outExpWidth + 1).W),
0.U
) |
Mux(pegMaxFiniteMagOut,
outMaxFiniteExp.U((outExpWidth + 1).W),
0.U
) |
Mux(notNaN_isInfOut, outInfExp.U((outExpWidth + 1).W), 0.U) |
Mux(isNaNOut, outNaNExp.U((outExpWidth + 1).W), 0.U)
val fractOut =
Mux(isNaNOut || io.in.isZero || common_totalUnderflow,
Mux(isNaNOut, (BigInt(1)<<(outSigWidth - 2)).U, 0.U),
common_fractOut
) |
Fill(outSigWidth - 1, pegMaxFiniteMagOut)
io.out := signOut ## expOut ## fractOut
io.exceptionFlags :=
io.invalidExc ## io.infiniteExc ## overflow ## underflow ## inexact
}
//----------------------------------------------------------------------------
//----------------------------------------------------------------------------
class
RoundRawFNToRecFN(expWidth: Int, sigWidth: Int, options: Int)
extends RawModule
{
override def desiredName = s"RoundRawFNToRecFN_e${expWidth}_s${sigWidth}"
val io = IO(new Bundle {
val invalidExc = Input(Bool()) // overrides 'infiniteExc' and 'in'
val infiniteExc = Input(Bool()) // overrides 'in' except for 'in.sign'
val in = Input(new RawFloat(expWidth, sigWidth + 2))
val roundingMode = Input(UInt(3.W))
val detectTininess = Input(UInt(1.W))
val out = Output(Bits((expWidth + sigWidth + 1).W))
val exceptionFlags = Output(Bits(5.W))
})
val roundAnyRawFNToRecFN =
Module(
new RoundAnyRawFNToRecFN(
expWidth, sigWidth + 2, expWidth, sigWidth, options))
roundAnyRawFNToRecFN.io.invalidExc := io.invalidExc
roundAnyRawFNToRecFN.io.infiniteExc := io.infiniteExc
roundAnyRawFNToRecFN.io.in := io.in
roundAnyRawFNToRecFN.io.roundingMode := io.roundingMode
roundAnyRawFNToRecFN.io.detectTininess := io.detectTininess
io.out := roundAnyRawFNToRecFN.io.out
io.exceptionFlags := roundAnyRawFNToRecFN.io.exceptionFlags
}
| module RoundRawFNToRecFN_e8_s24_23( // @[RoundAnyRawFNToRecFN.scala:295:5]
input io_invalidExc, // @[RoundAnyRawFNToRecFN.scala:299:16]
input io_in_isNaN, // @[RoundAnyRawFNToRecFN.scala:299:16]
input io_in_isInf, // @[RoundAnyRawFNToRecFN.scala:299:16]
input io_in_isZero, // @[RoundAnyRawFNToRecFN.scala:299:16]
input io_in_sign, // @[RoundAnyRawFNToRecFN.scala:299:16]
input [9:0] io_in_sExp, // @[RoundAnyRawFNToRecFN.scala:299:16]
input [26:0] io_in_sig, // @[RoundAnyRawFNToRecFN.scala:299:16]
output [32:0] io_out, // @[RoundAnyRawFNToRecFN.scala:299:16]
output [4:0] io_exceptionFlags // @[RoundAnyRawFNToRecFN.scala:299:16]
);
wire io_invalidExc_0 = io_invalidExc; // @[RoundAnyRawFNToRecFN.scala:295:5]
wire io_in_isNaN_0 = io_in_isNaN; // @[RoundAnyRawFNToRecFN.scala:295:5]
wire io_in_isInf_0 = io_in_isInf; // @[RoundAnyRawFNToRecFN.scala:295:5]
wire io_in_isZero_0 = io_in_isZero; // @[RoundAnyRawFNToRecFN.scala:295:5]
wire io_in_sign_0 = io_in_sign; // @[RoundAnyRawFNToRecFN.scala:295:5]
wire [9:0] io_in_sExp_0 = io_in_sExp; // @[RoundAnyRawFNToRecFN.scala:295:5]
wire [26:0] io_in_sig_0 = io_in_sig; // @[RoundAnyRawFNToRecFN.scala:295:5]
wire io_detectTininess = 1'h1; // @[RoundAnyRawFNToRecFN.scala:295:5, :299:16, :310:15]
wire [2:0] io_roundingMode = 3'h0; // @[RoundAnyRawFNToRecFN.scala:295:5, :299:16, :310:15]
wire io_infiniteExc = 1'h0; // @[RoundAnyRawFNToRecFN.scala:295:5, :299:16, :310:15]
wire [32:0] io_out_0; // @[RoundAnyRawFNToRecFN.scala:295:5]
wire [4:0] io_exceptionFlags_0; // @[RoundAnyRawFNToRecFN.scala:295:5]
RoundAnyRawFNToRecFN_ie8_is26_oe8_os24_23 roundAnyRawFNToRecFN ( // @[RoundAnyRawFNToRecFN.scala:310:15]
.io_invalidExc (io_invalidExc_0), // @[RoundAnyRawFNToRecFN.scala:295:5]
.io_in_isNaN (io_in_isNaN_0), // @[RoundAnyRawFNToRecFN.scala:295:5]
.io_in_isInf (io_in_isInf_0), // @[RoundAnyRawFNToRecFN.scala:295:5]
.io_in_isZero (io_in_isZero_0), // @[RoundAnyRawFNToRecFN.scala:295:5]
.io_in_sign (io_in_sign_0), // @[RoundAnyRawFNToRecFN.scala:295:5]
.io_in_sExp (io_in_sExp_0), // @[RoundAnyRawFNToRecFN.scala:295:5]
.io_in_sig (io_in_sig_0), // @[RoundAnyRawFNToRecFN.scala:295:5]
.io_out (io_out_0),
.io_exceptionFlags (io_exceptionFlags_0)
); // @[RoundAnyRawFNToRecFN.scala:310:15]
assign io_out = io_out_0; // @[RoundAnyRawFNToRecFN.scala:295:5]
assign io_exceptionFlags = io_exceptionFlags_0; // @[RoundAnyRawFNToRecFN.scala:295:5]
endmodule |
Generate the Verilog code corresponding to the following Chisel files.
File INToRecFN.scala:
/*============================================================================
This Chisel source file is part of a pre-release version of the HardFloat IEEE
Floating-Point Arithmetic Package, by John R. Hauser (with some contributions
from Yunsup Lee and Andrew Waterman, mainly concerning testing).
Copyright 2010, 2011, 2012, 2013, 2014, 2015, 2016 The Regents of the
University of California. All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
1. Redistributions of source code must retain the above copyright notice,
this list of conditions, and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice,
this list of conditions, and the following disclaimer in the documentation
and/or other materials provided with the distribution.
3. Neither the name of the University nor the names of its contributors may
be used to endorse or promote products derived from this software without
specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS "AS IS", AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ARE
DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
=============================================================================*/
package hardfloat
import chisel3._
import consts._
class INToRecFN(intWidth: Int, expWidth: Int, sigWidth: Int) extends RawModule
{
override def desiredName = s"INToRecFN_i${intWidth}_e${expWidth}_s${sigWidth}"
val io = IO(new Bundle {
val signedIn = Input(Bool())
val in = Input(Bits(intWidth.W))
val roundingMode = Input(UInt(3.W))
val detectTininess = Input(UInt(1.W))
val out = Output(Bits((expWidth + sigWidth + 1).W))
val exceptionFlags = Output(Bits(5.W))
})
//------------------------------------------------------------------------
//------------------------------------------------------------------------
val intAsRawFloat = rawFloatFromIN(io.signedIn, io.in);
val roundAnyRawFNToRecFN =
Module(
new RoundAnyRawFNToRecFN(
intAsRawFloat.expWidth,
intWidth,
expWidth,
sigWidth,
flRoundOpt_sigMSBitAlwaysZero | flRoundOpt_neverUnderflows
))
roundAnyRawFNToRecFN.io.invalidExc := false.B
roundAnyRawFNToRecFN.io.infiniteExc := false.B
roundAnyRawFNToRecFN.io.in := intAsRawFloat
roundAnyRawFNToRecFN.io.roundingMode := io.roundingMode
roundAnyRawFNToRecFN.io.detectTininess := io.detectTininess
io.out := roundAnyRawFNToRecFN.io.out
io.exceptionFlags := roundAnyRawFNToRecFN.io.exceptionFlags
}
File rawFloatFromIN.scala:
/*============================================================================
This Chisel source file is part of a pre-release version of the HardFloat IEEE
Floating-Point Arithmetic Package, by John R. Hauser (with some contributions
from Yunsup Lee and Andrew Waterman, mainly concerning testing).
Copyright 2010, 2011, 2012, 2013, 2014, 2015, 2016, 2017 The Regents of the
University of California. All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
1. Redistributions of source code must retain the above copyright notice,
this list of conditions, and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice,
this list of conditions, and the following disclaimer in the documentation
and/or other materials provided with the distribution.
3. Neither the name of the University nor the names of its contributors may
be used to endorse or promote products derived from this software without
specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS "AS IS", AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ARE
DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
=============================================================================*/
package hardfloat
import chisel3._
import chisel3.util._
object rawFloatFromIN
{
def apply(signedIn: Bool, in: Bits): RawFloat =
{
val expWidth = log2Up(in.getWidth) + 1
//*** CHANGE THIS; CAN BE VERY LARGE:
val extIntWidth = 1<<(expWidth - 1)
val sign = signedIn && in(in.getWidth - 1)
val absIn = Mux(sign, -in.asUInt, in.asUInt)
val extAbsIn = (0.U(extIntWidth.W) ## absIn)(extIntWidth - 1, 0)
val adjustedNormDist = countLeadingZeros(extAbsIn)
val sig =
(extAbsIn<<adjustedNormDist)(
extIntWidth - 1, extIntWidth - in.getWidth)
val out = Wire(new RawFloat(expWidth, in.getWidth))
out.isNaN := false.B
out.isInf := false.B
out.isZero := ! sig(in.getWidth - 1)
out.sign := sign
out.sExp := (2.U(2.W) ## ~adjustedNormDist(expWidth - 2, 0)).zext
out.sig := sig
out
}
}
| module INToRecFN_i64_e8_s24_6( // @[INToRecFN.scala:43:7]
input io_signedIn, // @[INToRecFN.scala:46:16]
input [63:0] io_in, // @[INToRecFN.scala:46:16]
input [2:0] io_roundingMode, // @[INToRecFN.scala:46:16]
output [32:0] io_out, // @[INToRecFN.scala:46:16]
output [4:0] io_exceptionFlags // @[INToRecFN.scala:46:16]
);
wire io_signedIn_0 = io_signedIn; // @[INToRecFN.scala:43:7]
wire [63:0] io_in_0 = io_in; // @[INToRecFN.scala:43:7]
wire [2:0] io_roundingMode_0 = io_roundingMode; // @[INToRecFN.scala:43:7]
wire intAsRawFloat_isNaN = 1'h0; // @[rawFloatFromIN.scala:59:23]
wire intAsRawFloat_isInf = 1'h0; // @[rawFloatFromIN.scala:59:23]
wire io_detectTininess = 1'h1; // @[INToRecFN.scala:43:7]
wire [32:0] io_out_0; // @[INToRecFN.scala:43:7]
wire [4:0] io_exceptionFlags_0; // @[INToRecFN.scala:43:7]
wire _intAsRawFloat_sign_T = io_in_0[63]; // @[rawFloatFromIN.scala:51:34]
wire intAsRawFloat_sign = io_signedIn_0 & _intAsRawFloat_sign_T; // @[rawFloatFromIN.scala:51:{29,34}]
wire intAsRawFloat_sign_0 = intAsRawFloat_sign; // @[rawFloatFromIN.scala:51:29, :59:23]
wire [64:0] _intAsRawFloat_absIn_T = 65'h0 - {1'h0, io_in_0}; // @[rawFloatFromIN.scala:52:31]
wire [63:0] _intAsRawFloat_absIn_T_1 = _intAsRawFloat_absIn_T[63:0]; // @[rawFloatFromIN.scala:52:31]
wire [63:0] intAsRawFloat_absIn = intAsRawFloat_sign ? _intAsRawFloat_absIn_T_1 : io_in_0; // @[rawFloatFromIN.scala:51:29, :52:{24,31}]
wire [127:0] _intAsRawFloat_extAbsIn_T = {64'h0, intAsRawFloat_absIn}; // @[rawFloatFromIN.scala:52:24, :53:44]
wire [63:0] intAsRawFloat_extAbsIn = _intAsRawFloat_extAbsIn_T[63:0]; // @[rawFloatFromIN.scala:53:{44,53}]
wire _intAsRawFloat_adjustedNormDist_T = intAsRawFloat_extAbsIn[0]; // @[rawFloatFromIN.scala:53:53]
wire _intAsRawFloat_adjustedNormDist_T_1 = intAsRawFloat_extAbsIn[1]; // @[rawFloatFromIN.scala:53:53]
wire _intAsRawFloat_adjustedNormDist_T_2 = intAsRawFloat_extAbsIn[2]; // @[rawFloatFromIN.scala:53:53]
wire _intAsRawFloat_adjustedNormDist_T_3 = intAsRawFloat_extAbsIn[3]; // @[rawFloatFromIN.scala:53:53]
wire _intAsRawFloat_adjustedNormDist_T_4 = intAsRawFloat_extAbsIn[4]; // @[rawFloatFromIN.scala:53:53]
wire _intAsRawFloat_adjustedNormDist_T_5 = intAsRawFloat_extAbsIn[5]; // @[rawFloatFromIN.scala:53:53]
wire _intAsRawFloat_adjustedNormDist_T_6 = intAsRawFloat_extAbsIn[6]; // @[rawFloatFromIN.scala:53:53]
wire _intAsRawFloat_adjustedNormDist_T_7 = intAsRawFloat_extAbsIn[7]; // @[rawFloatFromIN.scala:53:53]
wire _intAsRawFloat_adjustedNormDist_T_8 = intAsRawFloat_extAbsIn[8]; // @[rawFloatFromIN.scala:53:53]
wire _intAsRawFloat_adjustedNormDist_T_9 = intAsRawFloat_extAbsIn[9]; // @[rawFloatFromIN.scala:53:53]
wire _intAsRawFloat_adjustedNormDist_T_10 = intAsRawFloat_extAbsIn[10]; // @[rawFloatFromIN.scala:53:53]
wire _intAsRawFloat_adjustedNormDist_T_11 = intAsRawFloat_extAbsIn[11]; // @[rawFloatFromIN.scala:53:53]
wire _intAsRawFloat_adjustedNormDist_T_12 = intAsRawFloat_extAbsIn[12]; // @[rawFloatFromIN.scala:53:53]
wire _intAsRawFloat_adjustedNormDist_T_13 = intAsRawFloat_extAbsIn[13]; // @[rawFloatFromIN.scala:53:53]
wire _intAsRawFloat_adjustedNormDist_T_14 = intAsRawFloat_extAbsIn[14]; // @[rawFloatFromIN.scala:53:53]
wire _intAsRawFloat_adjustedNormDist_T_15 = intAsRawFloat_extAbsIn[15]; // @[rawFloatFromIN.scala:53:53]
wire _intAsRawFloat_adjustedNormDist_T_16 = intAsRawFloat_extAbsIn[16]; // @[rawFloatFromIN.scala:53:53]
wire _intAsRawFloat_adjustedNormDist_T_17 = intAsRawFloat_extAbsIn[17]; // @[rawFloatFromIN.scala:53:53]
wire _intAsRawFloat_adjustedNormDist_T_18 = intAsRawFloat_extAbsIn[18]; // @[rawFloatFromIN.scala:53:53]
wire _intAsRawFloat_adjustedNormDist_T_19 = intAsRawFloat_extAbsIn[19]; // @[rawFloatFromIN.scala:53:53]
wire _intAsRawFloat_adjustedNormDist_T_20 = intAsRawFloat_extAbsIn[20]; // @[rawFloatFromIN.scala:53:53]
wire _intAsRawFloat_adjustedNormDist_T_21 = intAsRawFloat_extAbsIn[21]; // @[rawFloatFromIN.scala:53:53]
wire _intAsRawFloat_adjustedNormDist_T_22 = intAsRawFloat_extAbsIn[22]; // @[rawFloatFromIN.scala:53:53]
wire _intAsRawFloat_adjustedNormDist_T_23 = intAsRawFloat_extAbsIn[23]; // @[rawFloatFromIN.scala:53:53]
wire _intAsRawFloat_adjustedNormDist_T_24 = intAsRawFloat_extAbsIn[24]; // @[rawFloatFromIN.scala:53:53]
wire _intAsRawFloat_adjustedNormDist_T_25 = intAsRawFloat_extAbsIn[25]; // @[rawFloatFromIN.scala:53:53]
wire _intAsRawFloat_adjustedNormDist_T_26 = intAsRawFloat_extAbsIn[26]; // @[rawFloatFromIN.scala:53:53]
wire _intAsRawFloat_adjustedNormDist_T_27 = intAsRawFloat_extAbsIn[27]; // @[rawFloatFromIN.scala:53:53]
wire _intAsRawFloat_adjustedNormDist_T_28 = intAsRawFloat_extAbsIn[28]; // @[rawFloatFromIN.scala:53:53]
wire _intAsRawFloat_adjustedNormDist_T_29 = intAsRawFloat_extAbsIn[29]; // @[rawFloatFromIN.scala:53:53]
wire _intAsRawFloat_adjustedNormDist_T_30 = intAsRawFloat_extAbsIn[30]; // @[rawFloatFromIN.scala:53:53]
wire _intAsRawFloat_adjustedNormDist_T_31 = intAsRawFloat_extAbsIn[31]; // @[rawFloatFromIN.scala:53:53]
wire _intAsRawFloat_adjustedNormDist_T_32 = intAsRawFloat_extAbsIn[32]; // @[rawFloatFromIN.scala:53:53]
wire _intAsRawFloat_adjustedNormDist_T_33 = intAsRawFloat_extAbsIn[33]; // @[rawFloatFromIN.scala:53:53]
wire _intAsRawFloat_adjustedNormDist_T_34 = intAsRawFloat_extAbsIn[34]; // @[rawFloatFromIN.scala:53:53]
wire _intAsRawFloat_adjustedNormDist_T_35 = intAsRawFloat_extAbsIn[35]; // @[rawFloatFromIN.scala:53:53]
wire _intAsRawFloat_adjustedNormDist_T_36 = intAsRawFloat_extAbsIn[36]; // @[rawFloatFromIN.scala:53:53]
wire _intAsRawFloat_adjustedNormDist_T_37 = intAsRawFloat_extAbsIn[37]; // @[rawFloatFromIN.scala:53:53]
wire _intAsRawFloat_adjustedNormDist_T_38 = intAsRawFloat_extAbsIn[38]; // @[rawFloatFromIN.scala:53:53]
wire _intAsRawFloat_adjustedNormDist_T_39 = intAsRawFloat_extAbsIn[39]; // @[rawFloatFromIN.scala:53:53]
wire _intAsRawFloat_adjustedNormDist_T_40 = intAsRawFloat_extAbsIn[40]; // @[rawFloatFromIN.scala:53:53]
wire _intAsRawFloat_adjustedNormDist_T_41 = intAsRawFloat_extAbsIn[41]; // @[rawFloatFromIN.scala:53:53]
wire _intAsRawFloat_adjustedNormDist_T_42 = intAsRawFloat_extAbsIn[42]; // @[rawFloatFromIN.scala:53:53]
wire _intAsRawFloat_adjustedNormDist_T_43 = intAsRawFloat_extAbsIn[43]; // @[rawFloatFromIN.scala:53:53]
wire _intAsRawFloat_adjustedNormDist_T_44 = intAsRawFloat_extAbsIn[44]; // @[rawFloatFromIN.scala:53:53]
wire _intAsRawFloat_adjustedNormDist_T_45 = intAsRawFloat_extAbsIn[45]; // @[rawFloatFromIN.scala:53:53]
wire _intAsRawFloat_adjustedNormDist_T_46 = intAsRawFloat_extAbsIn[46]; // @[rawFloatFromIN.scala:53:53]
wire _intAsRawFloat_adjustedNormDist_T_47 = intAsRawFloat_extAbsIn[47]; // @[rawFloatFromIN.scala:53:53]
wire _intAsRawFloat_adjustedNormDist_T_48 = intAsRawFloat_extAbsIn[48]; // @[rawFloatFromIN.scala:53:53]
wire _intAsRawFloat_adjustedNormDist_T_49 = intAsRawFloat_extAbsIn[49]; // @[rawFloatFromIN.scala:53:53]
wire _intAsRawFloat_adjustedNormDist_T_50 = intAsRawFloat_extAbsIn[50]; // @[rawFloatFromIN.scala:53:53]
wire _intAsRawFloat_adjustedNormDist_T_51 = intAsRawFloat_extAbsIn[51]; // @[rawFloatFromIN.scala:53:53]
wire _intAsRawFloat_adjustedNormDist_T_52 = intAsRawFloat_extAbsIn[52]; // @[rawFloatFromIN.scala:53:53]
wire _intAsRawFloat_adjustedNormDist_T_53 = intAsRawFloat_extAbsIn[53]; // @[rawFloatFromIN.scala:53:53]
wire _intAsRawFloat_adjustedNormDist_T_54 = intAsRawFloat_extAbsIn[54]; // @[rawFloatFromIN.scala:53:53]
wire _intAsRawFloat_adjustedNormDist_T_55 = intAsRawFloat_extAbsIn[55]; // @[rawFloatFromIN.scala:53:53]
wire _intAsRawFloat_adjustedNormDist_T_56 = intAsRawFloat_extAbsIn[56]; // @[rawFloatFromIN.scala:53:53]
wire _intAsRawFloat_adjustedNormDist_T_57 = intAsRawFloat_extAbsIn[57]; // @[rawFloatFromIN.scala:53:53]
wire _intAsRawFloat_adjustedNormDist_T_58 = intAsRawFloat_extAbsIn[58]; // @[rawFloatFromIN.scala:53:53]
wire _intAsRawFloat_adjustedNormDist_T_59 = intAsRawFloat_extAbsIn[59]; // @[rawFloatFromIN.scala:53:53]
wire _intAsRawFloat_adjustedNormDist_T_60 = intAsRawFloat_extAbsIn[60]; // @[rawFloatFromIN.scala:53:53]
wire _intAsRawFloat_adjustedNormDist_T_61 = intAsRawFloat_extAbsIn[61]; // @[rawFloatFromIN.scala:53:53]
wire _intAsRawFloat_adjustedNormDist_T_62 = intAsRawFloat_extAbsIn[62]; // @[rawFloatFromIN.scala:53:53]
wire _intAsRawFloat_adjustedNormDist_T_63 = intAsRawFloat_extAbsIn[63]; // @[rawFloatFromIN.scala:53:53]
wire [5:0] _intAsRawFloat_adjustedNormDist_T_64 = {5'h1F, ~_intAsRawFloat_adjustedNormDist_T_1}; // @[Mux.scala:50:70]
wire [5:0] _intAsRawFloat_adjustedNormDist_T_65 = _intAsRawFloat_adjustedNormDist_T_2 ? 6'h3D : _intAsRawFloat_adjustedNormDist_T_64; // @[Mux.scala:50:70]
wire [5:0] _intAsRawFloat_adjustedNormDist_T_66 = _intAsRawFloat_adjustedNormDist_T_3 ? 6'h3C : _intAsRawFloat_adjustedNormDist_T_65; // @[Mux.scala:50:70]
wire [5:0] _intAsRawFloat_adjustedNormDist_T_67 = _intAsRawFloat_adjustedNormDist_T_4 ? 6'h3B : _intAsRawFloat_adjustedNormDist_T_66; // @[Mux.scala:50:70]
wire [5:0] _intAsRawFloat_adjustedNormDist_T_68 = _intAsRawFloat_adjustedNormDist_T_5 ? 6'h3A : _intAsRawFloat_adjustedNormDist_T_67; // @[Mux.scala:50:70]
wire [5:0] _intAsRawFloat_adjustedNormDist_T_69 = _intAsRawFloat_adjustedNormDist_T_6 ? 6'h39 : _intAsRawFloat_adjustedNormDist_T_68; // @[Mux.scala:50:70]
wire [5:0] _intAsRawFloat_adjustedNormDist_T_70 = _intAsRawFloat_adjustedNormDist_T_7 ? 6'h38 : _intAsRawFloat_adjustedNormDist_T_69; // @[Mux.scala:50:70]
wire [5:0] _intAsRawFloat_adjustedNormDist_T_71 = _intAsRawFloat_adjustedNormDist_T_8 ? 6'h37 : _intAsRawFloat_adjustedNormDist_T_70; // @[Mux.scala:50:70]
wire [5:0] _intAsRawFloat_adjustedNormDist_T_72 = _intAsRawFloat_adjustedNormDist_T_9 ? 6'h36 : _intAsRawFloat_adjustedNormDist_T_71; // @[Mux.scala:50:70]
wire [5:0] _intAsRawFloat_adjustedNormDist_T_73 = _intAsRawFloat_adjustedNormDist_T_10 ? 6'h35 : _intAsRawFloat_adjustedNormDist_T_72; // @[Mux.scala:50:70]
wire [5:0] _intAsRawFloat_adjustedNormDist_T_74 = _intAsRawFloat_adjustedNormDist_T_11 ? 6'h34 : _intAsRawFloat_adjustedNormDist_T_73; // @[Mux.scala:50:70]
wire [5:0] _intAsRawFloat_adjustedNormDist_T_75 = _intAsRawFloat_adjustedNormDist_T_12 ? 6'h33 : _intAsRawFloat_adjustedNormDist_T_74; // @[Mux.scala:50:70]
wire [5:0] _intAsRawFloat_adjustedNormDist_T_76 = _intAsRawFloat_adjustedNormDist_T_13 ? 6'h32 : _intAsRawFloat_adjustedNormDist_T_75; // @[Mux.scala:50:70]
wire [5:0] _intAsRawFloat_adjustedNormDist_T_77 = _intAsRawFloat_adjustedNormDist_T_14 ? 6'h31 : _intAsRawFloat_adjustedNormDist_T_76; // @[Mux.scala:50:70]
wire [5:0] _intAsRawFloat_adjustedNormDist_T_78 = _intAsRawFloat_adjustedNormDist_T_15 ? 6'h30 : _intAsRawFloat_adjustedNormDist_T_77; // @[Mux.scala:50:70]
wire [5:0] _intAsRawFloat_adjustedNormDist_T_79 = _intAsRawFloat_adjustedNormDist_T_16 ? 6'h2F : _intAsRawFloat_adjustedNormDist_T_78; // @[Mux.scala:50:70]
wire [5:0] _intAsRawFloat_adjustedNormDist_T_80 = _intAsRawFloat_adjustedNormDist_T_17 ? 6'h2E : _intAsRawFloat_adjustedNormDist_T_79; // @[Mux.scala:50:70]
wire [5:0] _intAsRawFloat_adjustedNormDist_T_81 = _intAsRawFloat_adjustedNormDist_T_18 ? 6'h2D : _intAsRawFloat_adjustedNormDist_T_80; // @[Mux.scala:50:70]
wire [5:0] _intAsRawFloat_adjustedNormDist_T_82 = _intAsRawFloat_adjustedNormDist_T_19 ? 6'h2C : _intAsRawFloat_adjustedNormDist_T_81; // @[Mux.scala:50:70]
wire [5:0] _intAsRawFloat_adjustedNormDist_T_83 = _intAsRawFloat_adjustedNormDist_T_20 ? 6'h2B : _intAsRawFloat_adjustedNormDist_T_82; // @[Mux.scala:50:70]
wire [5:0] _intAsRawFloat_adjustedNormDist_T_84 = _intAsRawFloat_adjustedNormDist_T_21 ? 6'h2A : _intAsRawFloat_adjustedNormDist_T_83; // @[Mux.scala:50:70]
wire [5:0] _intAsRawFloat_adjustedNormDist_T_85 = _intAsRawFloat_adjustedNormDist_T_22 ? 6'h29 : _intAsRawFloat_adjustedNormDist_T_84; // @[Mux.scala:50:70]
wire [5:0] _intAsRawFloat_adjustedNormDist_T_86 = _intAsRawFloat_adjustedNormDist_T_23 ? 6'h28 : _intAsRawFloat_adjustedNormDist_T_85; // @[Mux.scala:50:70]
wire [5:0] _intAsRawFloat_adjustedNormDist_T_87 = _intAsRawFloat_adjustedNormDist_T_24 ? 6'h27 : _intAsRawFloat_adjustedNormDist_T_86; // @[Mux.scala:50:70]
wire [5:0] _intAsRawFloat_adjustedNormDist_T_88 = _intAsRawFloat_adjustedNormDist_T_25 ? 6'h26 : _intAsRawFloat_adjustedNormDist_T_87; // @[Mux.scala:50:70]
wire [5:0] _intAsRawFloat_adjustedNormDist_T_89 = _intAsRawFloat_adjustedNormDist_T_26 ? 6'h25 : _intAsRawFloat_adjustedNormDist_T_88; // @[Mux.scala:50:70]
wire [5:0] _intAsRawFloat_adjustedNormDist_T_90 = _intAsRawFloat_adjustedNormDist_T_27 ? 6'h24 : _intAsRawFloat_adjustedNormDist_T_89; // @[Mux.scala:50:70]
wire [5:0] _intAsRawFloat_adjustedNormDist_T_91 = _intAsRawFloat_adjustedNormDist_T_28 ? 6'h23 : _intAsRawFloat_adjustedNormDist_T_90; // @[Mux.scala:50:70]
wire [5:0] _intAsRawFloat_adjustedNormDist_T_92 = _intAsRawFloat_adjustedNormDist_T_29 ? 6'h22 : _intAsRawFloat_adjustedNormDist_T_91; // @[Mux.scala:50:70]
wire [5:0] _intAsRawFloat_adjustedNormDist_T_93 = _intAsRawFloat_adjustedNormDist_T_30 ? 6'h21 : _intAsRawFloat_adjustedNormDist_T_92; // @[Mux.scala:50:70]
wire [5:0] _intAsRawFloat_adjustedNormDist_T_94 = _intAsRawFloat_adjustedNormDist_T_31 ? 6'h20 : _intAsRawFloat_adjustedNormDist_T_93; // @[Mux.scala:50:70]
wire [5:0] _intAsRawFloat_adjustedNormDist_T_95 = _intAsRawFloat_adjustedNormDist_T_32 ? 6'h1F : _intAsRawFloat_adjustedNormDist_T_94; // @[Mux.scala:50:70]
wire [5:0] _intAsRawFloat_adjustedNormDist_T_96 = _intAsRawFloat_adjustedNormDist_T_33 ? 6'h1E : _intAsRawFloat_adjustedNormDist_T_95; // @[Mux.scala:50:70]
wire [5:0] _intAsRawFloat_adjustedNormDist_T_97 = _intAsRawFloat_adjustedNormDist_T_34 ? 6'h1D : _intAsRawFloat_adjustedNormDist_T_96; // @[Mux.scala:50:70]
wire [5:0] _intAsRawFloat_adjustedNormDist_T_98 = _intAsRawFloat_adjustedNormDist_T_35 ? 6'h1C : _intAsRawFloat_adjustedNormDist_T_97; // @[Mux.scala:50:70]
wire [5:0] _intAsRawFloat_adjustedNormDist_T_99 = _intAsRawFloat_adjustedNormDist_T_36 ? 6'h1B : _intAsRawFloat_adjustedNormDist_T_98; // @[Mux.scala:50:70]
wire [5:0] _intAsRawFloat_adjustedNormDist_T_100 = _intAsRawFloat_adjustedNormDist_T_37 ? 6'h1A : _intAsRawFloat_adjustedNormDist_T_99; // @[Mux.scala:50:70]
wire [5:0] _intAsRawFloat_adjustedNormDist_T_101 = _intAsRawFloat_adjustedNormDist_T_38 ? 6'h19 : _intAsRawFloat_adjustedNormDist_T_100; // @[Mux.scala:50:70]
wire [5:0] _intAsRawFloat_adjustedNormDist_T_102 = _intAsRawFloat_adjustedNormDist_T_39 ? 6'h18 : _intAsRawFloat_adjustedNormDist_T_101; // @[Mux.scala:50:70]
wire [5:0] _intAsRawFloat_adjustedNormDist_T_103 = _intAsRawFloat_adjustedNormDist_T_40 ? 6'h17 : _intAsRawFloat_adjustedNormDist_T_102; // @[Mux.scala:50:70]
wire [5:0] _intAsRawFloat_adjustedNormDist_T_104 = _intAsRawFloat_adjustedNormDist_T_41 ? 6'h16 : _intAsRawFloat_adjustedNormDist_T_103; // @[Mux.scala:50:70]
wire [5:0] _intAsRawFloat_adjustedNormDist_T_105 = _intAsRawFloat_adjustedNormDist_T_42 ? 6'h15 : _intAsRawFloat_adjustedNormDist_T_104; // @[Mux.scala:50:70]
wire [5:0] _intAsRawFloat_adjustedNormDist_T_106 = _intAsRawFloat_adjustedNormDist_T_43 ? 6'h14 : _intAsRawFloat_adjustedNormDist_T_105; // @[Mux.scala:50:70]
wire [5:0] _intAsRawFloat_adjustedNormDist_T_107 = _intAsRawFloat_adjustedNormDist_T_44 ? 6'h13 : _intAsRawFloat_adjustedNormDist_T_106; // @[Mux.scala:50:70]
wire [5:0] _intAsRawFloat_adjustedNormDist_T_108 = _intAsRawFloat_adjustedNormDist_T_45 ? 6'h12 : _intAsRawFloat_adjustedNormDist_T_107; // @[Mux.scala:50:70]
wire [5:0] _intAsRawFloat_adjustedNormDist_T_109 = _intAsRawFloat_adjustedNormDist_T_46 ? 6'h11 : _intAsRawFloat_adjustedNormDist_T_108; // @[Mux.scala:50:70]
wire [5:0] _intAsRawFloat_adjustedNormDist_T_110 = _intAsRawFloat_adjustedNormDist_T_47 ? 6'h10 : _intAsRawFloat_adjustedNormDist_T_109; // @[Mux.scala:50:70]
wire [5:0] _intAsRawFloat_adjustedNormDist_T_111 = _intAsRawFloat_adjustedNormDist_T_48 ? 6'hF : _intAsRawFloat_adjustedNormDist_T_110; // @[Mux.scala:50:70]
wire [5:0] _intAsRawFloat_adjustedNormDist_T_112 = _intAsRawFloat_adjustedNormDist_T_49 ? 6'hE : _intAsRawFloat_adjustedNormDist_T_111; // @[Mux.scala:50:70]
wire [5:0] _intAsRawFloat_adjustedNormDist_T_113 = _intAsRawFloat_adjustedNormDist_T_50 ? 6'hD : _intAsRawFloat_adjustedNormDist_T_112; // @[Mux.scala:50:70]
wire [5:0] _intAsRawFloat_adjustedNormDist_T_114 = _intAsRawFloat_adjustedNormDist_T_51 ? 6'hC : _intAsRawFloat_adjustedNormDist_T_113; // @[Mux.scala:50:70]
wire [5:0] _intAsRawFloat_adjustedNormDist_T_115 = _intAsRawFloat_adjustedNormDist_T_52 ? 6'hB : _intAsRawFloat_adjustedNormDist_T_114; // @[Mux.scala:50:70]
wire [5:0] _intAsRawFloat_adjustedNormDist_T_116 = _intAsRawFloat_adjustedNormDist_T_53 ? 6'hA : _intAsRawFloat_adjustedNormDist_T_115; // @[Mux.scala:50:70]
wire [5:0] _intAsRawFloat_adjustedNormDist_T_117 = _intAsRawFloat_adjustedNormDist_T_54 ? 6'h9 : _intAsRawFloat_adjustedNormDist_T_116; // @[Mux.scala:50:70]
wire [5:0] _intAsRawFloat_adjustedNormDist_T_118 = _intAsRawFloat_adjustedNormDist_T_55 ? 6'h8 : _intAsRawFloat_adjustedNormDist_T_117; // @[Mux.scala:50:70]
wire [5:0] _intAsRawFloat_adjustedNormDist_T_119 = _intAsRawFloat_adjustedNormDist_T_56 ? 6'h7 : _intAsRawFloat_adjustedNormDist_T_118; // @[Mux.scala:50:70]
wire [5:0] _intAsRawFloat_adjustedNormDist_T_120 = _intAsRawFloat_adjustedNormDist_T_57 ? 6'h6 : _intAsRawFloat_adjustedNormDist_T_119; // @[Mux.scala:50:70]
wire [5:0] _intAsRawFloat_adjustedNormDist_T_121 = _intAsRawFloat_adjustedNormDist_T_58 ? 6'h5 : _intAsRawFloat_adjustedNormDist_T_120; // @[Mux.scala:50:70]
wire [5:0] _intAsRawFloat_adjustedNormDist_T_122 = _intAsRawFloat_adjustedNormDist_T_59 ? 6'h4 : _intAsRawFloat_adjustedNormDist_T_121; // @[Mux.scala:50:70]
wire [5:0] _intAsRawFloat_adjustedNormDist_T_123 = _intAsRawFloat_adjustedNormDist_T_60 ? 6'h3 : _intAsRawFloat_adjustedNormDist_T_122; // @[Mux.scala:50:70]
wire [5:0] _intAsRawFloat_adjustedNormDist_T_124 = _intAsRawFloat_adjustedNormDist_T_61 ? 6'h2 : _intAsRawFloat_adjustedNormDist_T_123; // @[Mux.scala:50:70]
wire [5:0] _intAsRawFloat_adjustedNormDist_T_125 = _intAsRawFloat_adjustedNormDist_T_62 ? 6'h1 : _intAsRawFloat_adjustedNormDist_T_124; // @[Mux.scala:50:70]
wire [5:0] intAsRawFloat_adjustedNormDist = _intAsRawFloat_adjustedNormDist_T_63 ? 6'h0 : _intAsRawFloat_adjustedNormDist_T_125; // @[Mux.scala:50:70]
wire [5:0] _intAsRawFloat_out_sExp_T = intAsRawFloat_adjustedNormDist; // @[Mux.scala:50:70]
wire [126:0] _intAsRawFloat_sig_T = {63'h0, intAsRawFloat_extAbsIn} << intAsRawFloat_adjustedNormDist; // @[Mux.scala:50:70]
wire [63:0] intAsRawFloat_sig = _intAsRawFloat_sig_T[63:0]; // @[rawFloatFromIN.scala:56:{22,41}]
wire _intAsRawFloat_out_isZero_T_1; // @[rawFloatFromIN.scala:62:23]
wire [8:0] _intAsRawFloat_out_sExp_T_3; // @[rawFloatFromIN.scala:64:72]
wire intAsRawFloat_isZero; // @[rawFloatFromIN.scala:59:23]
wire [8:0] intAsRawFloat_sExp; // @[rawFloatFromIN.scala:59:23]
wire [64:0] intAsRawFloat_sig_0; // @[rawFloatFromIN.scala:59:23]
wire _intAsRawFloat_out_isZero_T = intAsRawFloat_sig[63]; // @[rawFloatFromIN.scala:56:41, :62:28]
assign _intAsRawFloat_out_isZero_T_1 = ~_intAsRawFloat_out_isZero_T; // @[rawFloatFromIN.scala:62:{23,28}]
assign intAsRawFloat_isZero = _intAsRawFloat_out_isZero_T_1; // @[rawFloatFromIN.scala:59:23, :62:23]
wire [5:0] _intAsRawFloat_out_sExp_T_1 = ~_intAsRawFloat_out_sExp_T; // @[rawFloatFromIN.scala:64:{36,53}]
wire [7:0] _intAsRawFloat_out_sExp_T_2 = {2'h2, _intAsRawFloat_out_sExp_T_1}; // @[rawFloatFromIN.scala:64:{33,36}]
assign _intAsRawFloat_out_sExp_T_3 = {1'h0, _intAsRawFloat_out_sExp_T_2}; // @[rawFloatFromIN.scala:64:{33,72}]
assign intAsRawFloat_sExp = _intAsRawFloat_out_sExp_T_3; // @[rawFloatFromIN.scala:59:23, :64:72]
assign intAsRawFloat_sig_0 = {1'h0, intAsRawFloat_sig}; // @[rawFloatFromIN.scala:56:41, :59:23, :65:20]
RoundAnyRawFNToRecFN_ie7_is64_oe8_os24_6 roundAnyRawFNToRecFN ( // @[INToRecFN.scala:60:15]
.io_in_isZero (intAsRawFloat_isZero), // @[rawFloatFromIN.scala:59:23]
.io_in_sign (intAsRawFloat_sign_0), // @[rawFloatFromIN.scala:59:23]
.io_in_sExp (intAsRawFloat_sExp), // @[rawFloatFromIN.scala:59:23]
.io_in_sig (intAsRawFloat_sig_0), // @[rawFloatFromIN.scala:59:23]
.io_roundingMode (io_roundingMode_0), // @[INToRecFN.scala:43:7]
.io_out (io_out_0),
.io_exceptionFlags (io_exceptionFlags_0)
); // @[INToRecFN.scala:60:15]
assign io_out = io_out_0; // @[INToRecFN.scala:43:7]
assign io_exceptionFlags = io_exceptionFlags_0; // @[INToRecFN.scala:43:7]
endmodule |
Generate the Verilog code corresponding to the following Chisel files.
File PE.scala:
// See README.md for license details.
package gemmini
import chisel3._
import chisel3.util._
class PEControl[T <: Data : Arithmetic](accType: T) extends Bundle {
val dataflow = UInt(1.W) // TODO make this an Enum
val propagate = UInt(1.W) // Which register should be propagated (and which should be accumulated)?
val shift = UInt(log2Up(accType.getWidth).W) // TODO this isn't correct for Floats
}
class MacUnit[T <: Data](inputType: T, cType: T, dType: T) (implicit ev: Arithmetic[T]) extends Module {
import ev._
val io = IO(new Bundle {
val in_a = Input(inputType)
val in_b = Input(inputType)
val in_c = Input(cType)
val out_d = Output(dType)
})
io.out_d := io.in_c.mac(io.in_a, io.in_b)
}
// TODO update documentation
/**
* A PE implementing a MAC operation. Configured as fully combinational when integrated into a Mesh.
* @param width Data width of operands
*/
class PE[T <: Data](inputType: T, outputType: T, accType: T, df: Dataflow.Value, max_simultaneous_matmuls: Int)
(implicit ev: Arithmetic[T]) extends Module { // Debugging variables
import ev._
val io = IO(new Bundle {
val in_a = Input(inputType)
val in_b = Input(outputType)
val in_d = Input(outputType)
val out_a = Output(inputType)
val out_b = Output(outputType)
val out_c = Output(outputType)
val in_control = Input(new PEControl(accType))
val out_control = Output(new PEControl(accType))
val in_id = Input(UInt(log2Up(max_simultaneous_matmuls).W))
val out_id = Output(UInt(log2Up(max_simultaneous_matmuls).W))
val in_last = Input(Bool())
val out_last = Output(Bool())
val in_valid = Input(Bool())
val out_valid = Output(Bool())
val bad_dataflow = Output(Bool())
})
val cType = if (df == Dataflow.WS) inputType else accType
// When creating PEs that support multiple dataflows, the
// elaboration/synthesis tools often fail to consolidate and de-duplicate
// MAC units. To force mac circuitry to be re-used, we create a "mac_unit"
// module here which just performs a single MAC operation
val mac_unit = Module(new MacUnit(inputType,
if (df == Dataflow.WS) outputType else accType, outputType))
val a = io.in_a
val b = io.in_b
val d = io.in_d
val c1 = Reg(cType)
val c2 = Reg(cType)
val dataflow = io.in_control.dataflow
val prop = io.in_control.propagate
val shift = io.in_control.shift
val id = io.in_id
val last = io.in_last
val valid = io.in_valid
io.out_a := a
io.out_control.dataflow := dataflow
io.out_control.propagate := prop
io.out_control.shift := shift
io.out_id := id
io.out_last := last
io.out_valid := valid
mac_unit.io.in_a := a
val last_s = RegEnable(prop, valid)
val flip = last_s =/= prop
val shift_offset = Mux(flip, shift, 0.U)
// Which dataflow are we using?
val OUTPUT_STATIONARY = Dataflow.OS.id.U(1.W)
val WEIGHT_STATIONARY = Dataflow.WS.id.U(1.W)
// Is c1 being computed on, or propagated forward (in the output-stationary dataflow)?
val COMPUTE = 0.U(1.W)
val PROPAGATE = 1.U(1.W)
io.bad_dataflow := false.B
when ((df == Dataflow.OS).B || ((df == Dataflow.BOTH).B && dataflow === OUTPUT_STATIONARY)) {
when(prop === PROPAGATE) {
io.out_c := (c1 >> shift_offset).clippedToWidthOf(outputType)
io.out_b := b
mac_unit.io.in_b := b.asTypeOf(inputType)
mac_unit.io.in_c := c2
c2 := mac_unit.io.out_d
c1 := d.withWidthOf(cType)
}.otherwise {
io.out_c := (c2 >> shift_offset).clippedToWidthOf(outputType)
io.out_b := b
mac_unit.io.in_b := b.asTypeOf(inputType)
mac_unit.io.in_c := c1
c1 := mac_unit.io.out_d
c2 := d.withWidthOf(cType)
}
}.elsewhen ((df == Dataflow.WS).B || ((df == Dataflow.BOTH).B && dataflow === WEIGHT_STATIONARY)) {
when(prop === PROPAGATE) {
io.out_c := c1
mac_unit.io.in_b := c2.asTypeOf(inputType)
mac_unit.io.in_c := b
io.out_b := mac_unit.io.out_d
c1 := d
}.otherwise {
io.out_c := c2
mac_unit.io.in_b := c1.asTypeOf(inputType)
mac_unit.io.in_c := b
io.out_b := mac_unit.io.out_d
c2 := d
}
}.otherwise {
io.bad_dataflow := true.B
//assert(false.B, "unknown dataflow")
io.out_c := DontCare
io.out_b := DontCare
mac_unit.io.in_b := b.asTypeOf(inputType)
mac_unit.io.in_c := c2
}
when (!valid) {
c1 := c1
c2 := c2
mac_unit.io.in_b := DontCare
mac_unit.io.in_c := DontCare
}
}
File Arithmetic.scala:
// A simple type class for Chisel datatypes that can add and multiply. To add your own type, simply create your own:
// implicit MyTypeArithmetic extends Arithmetic[MyType] { ... }
package gemmini
import chisel3._
import chisel3.util._
import hardfloat._
// Bundles that represent the raw bits of custom datatypes
case class Float(expWidth: Int, sigWidth: Int) extends Bundle {
val bits = UInt((expWidth + sigWidth).W)
val bias: Int = (1 << (expWidth-1)) - 1
}
case class DummySInt(w: Int) extends Bundle {
val bits = UInt(w.W)
def dontCare: DummySInt = {
val o = Wire(new DummySInt(w))
o.bits := 0.U
o
}
}
// The Arithmetic typeclass which implements various arithmetic operations on custom datatypes
abstract class Arithmetic[T <: Data] {
implicit def cast(t: T): ArithmeticOps[T]
}
abstract class ArithmeticOps[T <: Data](self: T) {
def *(t: T): T
def mac(m1: T, m2: T): T // Returns (m1 * m2 + self)
def +(t: T): T
def -(t: T): T
def >>(u: UInt): T // This is a rounding shift! Rounds away from 0
def >(t: T): Bool
def identity: T
def withWidthOf(t: T): T
def clippedToWidthOf(t: T): T // Like "withWidthOf", except that it saturates
def relu: T
def zero: T
def minimum: T
// Optional parameters, which only need to be defined if you want to enable various optimizations for transformers
def divider(denom_t: UInt, options: Int = 0): Option[(DecoupledIO[UInt], DecoupledIO[T])] = None
def sqrt: Option[(DecoupledIO[UInt], DecoupledIO[T])] = None
def reciprocal[U <: Data](u: U, options: Int = 0): Option[(DecoupledIO[UInt], DecoupledIO[U])] = None
def mult_with_reciprocal[U <: Data](reciprocal: U) = self
}
object Arithmetic {
implicit object UIntArithmetic extends Arithmetic[UInt] {
override implicit def cast(self: UInt) = new ArithmeticOps(self) {
override def *(t: UInt) = self * t
override def mac(m1: UInt, m2: UInt) = m1 * m2 + self
override def +(t: UInt) = self + t
override def -(t: UInt) = self - t
override def >>(u: UInt) = {
// The equation we use can be found here: https://riscv.github.io/documents/riscv-v-spec/#_vector_fixed_point_rounding_mode_register_vxrm
// TODO Do we need to explicitly handle the cases where "u" is a small number (like 0)? What is the default behavior here?
val point_five = Mux(u === 0.U, 0.U, self(u - 1.U))
val zeros = Mux(u <= 1.U, 0.U, self.asUInt & ((1.U << (u - 1.U)).asUInt - 1.U)) =/= 0.U
val ones_digit = self(u)
val r = point_five & (zeros | ones_digit)
(self >> u).asUInt + r
}
override def >(t: UInt): Bool = self > t
override def withWidthOf(t: UInt) = self.asTypeOf(t)
override def clippedToWidthOf(t: UInt) = {
val sat = ((1 << (t.getWidth-1))-1).U
Mux(self > sat, sat, self)(t.getWidth-1, 0)
}
override def relu: UInt = self
override def zero: UInt = 0.U
override def identity: UInt = 1.U
override def minimum: UInt = 0.U
}
}
implicit object SIntArithmetic extends Arithmetic[SInt] {
override implicit def cast(self: SInt) = new ArithmeticOps(self) {
override def *(t: SInt) = self * t
override def mac(m1: SInt, m2: SInt) = m1 * m2 + self
override def +(t: SInt) = self + t
override def -(t: SInt) = self - t
override def >>(u: UInt) = {
// The equation we use can be found here: https://riscv.github.io/documents/riscv-v-spec/#_vector_fixed_point_rounding_mode_register_vxrm
// TODO Do we need to explicitly handle the cases where "u" is a small number (like 0)? What is the default behavior here?
val point_five = Mux(u === 0.U, 0.U, self(u - 1.U))
val zeros = Mux(u <= 1.U, 0.U, self.asUInt & ((1.U << (u - 1.U)).asUInt - 1.U)) =/= 0.U
val ones_digit = self(u)
val r = (point_five & (zeros | ones_digit)).asBool
(self >> u).asSInt + Mux(r, 1.S, 0.S)
}
override def >(t: SInt): Bool = self > t
override def withWidthOf(t: SInt) = {
if (self.getWidth >= t.getWidth)
self(t.getWidth-1, 0).asSInt
else {
val sign_bits = t.getWidth - self.getWidth
val sign = self(self.getWidth-1)
Cat(Cat(Seq.fill(sign_bits)(sign)), self).asTypeOf(t)
}
}
override def clippedToWidthOf(t: SInt): SInt = {
val maxsat = ((1 << (t.getWidth-1))-1).S
val minsat = (-(1 << (t.getWidth-1))).S
MuxCase(self, Seq((self > maxsat) -> maxsat, (self < minsat) -> minsat))(t.getWidth-1, 0).asSInt
}
override def relu: SInt = Mux(self >= 0.S, self, 0.S)
override def zero: SInt = 0.S
override def identity: SInt = 1.S
override def minimum: SInt = (-(1 << (self.getWidth-1))).S
override def divider(denom_t: UInt, options: Int = 0): Option[(DecoupledIO[UInt], DecoupledIO[SInt])] = {
// TODO this uses a floating point divider, but we should use an integer divider instead
val input = Wire(Decoupled(denom_t.cloneType))
val output = Wire(Decoupled(self.cloneType))
// We translate our integer to floating-point form so that we can use the hardfloat divider
val expWidth = log2Up(self.getWidth) + 1
val sigWidth = self.getWidth
def sin_to_float(x: SInt) = {
val in_to_rec_fn = Module(new INToRecFN(intWidth = self.getWidth, expWidth, sigWidth))
in_to_rec_fn.io.signedIn := true.B
in_to_rec_fn.io.in := x.asUInt
in_to_rec_fn.io.roundingMode := consts.round_minMag // consts.round_near_maxMag
in_to_rec_fn.io.detectTininess := consts.tininess_afterRounding
in_to_rec_fn.io.out
}
def uin_to_float(x: UInt) = {
val in_to_rec_fn = Module(new INToRecFN(intWidth = self.getWidth, expWidth, sigWidth))
in_to_rec_fn.io.signedIn := false.B
in_to_rec_fn.io.in := x
in_to_rec_fn.io.roundingMode := consts.round_minMag // consts.round_near_maxMag
in_to_rec_fn.io.detectTininess := consts.tininess_afterRounding
in_to_rec_fn.io.out
}
def float_to_in(x: UInt) = {
val rec_fn_to_in = Module(new RecFNToIN(expWidth = expWidth, sigWidth, self.getWidth))
rec_fn_to_in.io.signedOut := true.B
rec_fn_to_in.io.in := x
rec_fn_to_in.io.roundingMode := consts.round_minMag // consts.round_near_maxMag
rec_fn_to_in.io.out.asSInt
}
val self_rec = sin_to_float(self)
val denom_rec = uin_to_float(input.bits)
// Instantiate the hardloat divider
val divider = Module(new DivSqrtRecFN_small(expWidth, sigWidth, options))
input.ready := divider.io.inReady
divider.io.inValid := input.valid
divider.io.sqrtOp := false.B
divider.io.a := self_rec
divider.io.b := denom_rec
divider.io.roundingMode := consts.round_minMag
divider.io.detectTininess := consts.tininess_afterRounding
output.valid := divider.io.outValid_div
output.bits := float_to_in(divider.io.out)
assert(!output.valid || output.ready)
Some((input, output))
}
override def sqrt: Option[(DecoupledIO[UInt], DecoupledIO[SInt])] = {
// TODO this uses a floating point divider, but we should use an integer divider instead
val input = Wire(Decoupled(UInt(0.W)))
val output = Wire(Decoupled(self.cloneType))
input.bits := DontCare
// We translate our integer to floating-point form so that we can use the hardfloat divider
val expWidth = log2Up(self.getWidth) + 1
val sigWidth = self.getWidth
def in_to_float(x: SInt) = {
val in_to_rec_fn = Module(new INToRecFN(intWidth = self.getWidth, expWidth, sigWidth))
in_to_rec_fn.io.signedIn := true.B
in_to_rec_fn.io.in := x.asUInt
in_to_rec_fn.io.roundingMode := consts.round_minMag // consts.round_near_maxMag
in_to_rec_fn.io.detectTininess := consts.tininess_afterRounding
in_to_rec_fn.io.out
}
def float_to_in(x: UInt) = {
val rec_fn_to_in = Module(new RecFNToIN(expWidth = expWidth, sigWidth, self.getWidth))
rec_fn_to_in.io.signedOut := true.B
rec_fn_to_in.io.in := x
rec_fn_to_in.io.roundingMode := consts.round_minMag // consts.round_near_maxMag
rec_fn_to_in.io.out.asSInt
}
val self_rec = in_to_float(self)
// Instantiate the hardloat sqrt
val sqrter = Module(new DivSqrtRecFN_small(expWidth, sigWidth, 0))
input.ready := sqrter.io.inReady
sqrter.io.inValid := input.valid
sqrter.io.sqrtOp := true.B
sqrter.io.a := self_rec
sqrter.io.b := DontCare
sqrter.io.roundingMode := consts.round_minMag
sqrter.io.detectTininess := consts.tininess_afterRounding
output.valid := sqrter.io.outValid_sqrt
output.bits := float_to_in(sqrter.io.out)
assert(!output.valid || output.ready)
Some((input, output))
}
override def reciprocal[U <: Data](u: U, options: Int = 0): Option[(DecoupledIO[UInt], DecoupledIO[U])] = u match {
case Float(expWidth, sigWidth) =>
val input = Wire(Decoupled(UInt(0.W)))
val output = Wire(Decoupled(u.cloneType))
input.bits := DontCare
// We translate our integer to floating-point form so that we can use the hardfloat divider
def in_to_float(x: SInt) = {
val in_to_rec_fn = Module(new INToRecFN(intWidth = self.getWidth, expWidth, sigWidth))
in_to_rec_fn.io.signedIn := true.B
in_to_rec_fn.io.in := x.asUInt
in_to_rec_fn.io.roundingMode := consts.round_near_even // consts.round_near_maxMag
in_to_rec_fn.io.detectTininess := consts.tininess_afterRounding
in_to_rec_fn.io.out
}
val self_rec = in_to_float(self)
val one_rec = in_to_float(1.S)
// Instantiate the hardloat divider
val divider = Module(new DivSqrtRecFN_small(expWidth, sigWidth, options))
input.ready := divider.io.inReady
divider.io.inValid := input.valid
divider.io.sqrtOp := false.B
divider.io.a := one_rec
divider.io.b := self_rec
divider.io.roundingMode := consts.round_near_even
divider.io.detectTininess := consts.tininess_afterRounding
output.valid := divider.io.outValid_div
output.bits := fNFromRecFN(expWidth, sigWidth, divider.io.out).asTypeOf(u)
assert(!output.valid || output.ready)
Some((input, output))
case _ => None
}
override def mult_with_reciprocal[U <: Data](reciprocal: U): SInt = reciprocal match {
case recip @ Float(expWidth, sigWidth) =>
def in_to_float(x: SInt) = {
val in_to_rec_fn = Module(new INToRecFN(intWidth = self.getWidth, expWidth, sigWidth))
in_to_rec_fn.io.signedIn := true.B
in_to_rec_fn.io.in := x.asUInt
in_to_rec_fn.io.roundingMode := consts.round_near_even // consts.round_near_maxMag
in_to_rec_fn.io.detectTininess := consts.tininess_afterRounding
in_to_rec_fn.io.out
}
def float_to_in(x: UInt) = {
val rec_fn_to_in = Module(new RecFNToIN(expWidth = expWidth, sigWidth, self.getWidth))
rec_fn_to_in.io.signedOut := true.B
rec_fn_to_in.io.in := x
rec_fn_to_in.io.roundingMode := consts.round_minMag
rec_fn_to_in.io.out.asSInt
}
val self_rec = in_to_float(self)
val reciprocal_rec = recFNFromFN(expWidth, sigWidth, recip.bits)
// Instantiate the hardloat divider
val muladder = Module(new MulRecFN(expWidth, sigWidth))
muladder.io.roundingMode := consts.round_near_even
muladder.io.detectTininess := consts.tininess_afterRounding
muladder.io.a := self_rec
muladder.io.b := reciprocal_rec
float_to_in(muladder.io.out)
case _ => self
}
}
}
implicit object FloatArithmetic extends Arithmetic[Float] {
// TODO Floating point arithmetic currently switches between recoded and standard formats for every operation. However, it should stay in the recoded format as it travels through the systolic array
override implicit def cast(self: Float): ArithmeticOps[Float] = new ArithmeticOps(self) {
override def *(t: Float): Float = {
val t_rec = recFNFromFN(t.expWidth, t.sigWidth, t.bits)
val self_rec = recFNFromFN(self.expWidth, self.sigWidth, self.bits)
val t_resizer = Module(new RecFNToRecFN(t.expWidth, t.sigWidth, self.expWidth, self.sigWidth))
t_resizer.io.in := t_rec
t_resizer.io.roundingMode := consts.round_near_even // consts.round_near_maxMag
t_resizer.io.detectTininess := consts.tininess_afterRounding
val t_rec_resized = t_resizer.io.out
val muladder = Module(new MulRecFN(self.expWidth, self.sigWidth))
muladder.io.roundingMode := consts.round_near_even // consts.round_near_maxMag
muladder.io.detectTininess := consts.tininess_afterRounding
muladder.io.a := self_rec
muladder.io.b := t_rec_resized
val out = Wire(Float(self.expWidth, self.sigWidth))
out.bits := fNFromRecFN(self.expWidth, self.sigWidth, muladder.io.out)
out
}
override def mac(m1: Float, m2: Float): Float = {
// Recode all operands
val m1_rec = recFNFromFN(m1.expWidth, m1.sigWidth, m1.bits)
val m2_rec = recFNFromFN(m2.expWidth, m2.sigWidth, m2.bits)
val self_rec = recFNFromFN(self.expWidth, self.sigWidth, self.bits)
// Resize m1 to self's width
val m1_resizer = Module(new RecFNToRecFN(m1.expWidth, m1.sigWidth, self.expWidth, self.sigWidth))
m1_resizer.io.in := m1_rec
m1_resizer.io.roundingMode := consts.round_near_even // consts.round_near_maxMag
m1_resizer.io.detectTininess := consts.tininess_afterRounding
val m1_rec_resized = m1_resizer.io.out
// Resize m2 to self's width
val m2_resizer = Module(new RecFNToRecFN(m2.expWidth, m2.sigWidth, self.expWidth, self.sigWidth))
m2_resizer.io.in := m2_rec
m2_resizer.io.roundingMode := consts.round_near_even // consts.round_near_maxMag
m2_resizer.io.detectTininess := consts.tininess_afterRounding
val m2_rec_resized = m2_resizer.io.out
// Perform multiply-add
val muladder = Module(new MulAddRecFN(self.expWidth, self.sigWidth))
muladder.io.op := 0.U
muladder.io.roundingMode := consts.round_near_even // consts.round_near_maxMag
muladder.io.detectTininess := consts.tininess_afterRounding
muladder.io.a := m1_rec_resized
muladder.io.b := m2_rec_resized
muladder.io.c := self_rec
// Convert result to standard format // TODO remove these intermediate recodings
val out = Wire(Float(self.expWidth, self.sigWidth))
out.bits := fNFromRecFN(self.expWidth, self.sigWidth, muladder.io.out)
out
}
override def +(t: Float): Float = {
require(self.getWidth >= t.getWidth) // This just makes it easier to write the resizing code
// Recode all operands
val t_rec = recFNFromFN(t.expWidth, t.sigWidth, t.bits)
val self_rec = recFNFromFN(self.expWidth, self.sigWidth, self.bits)
// Generate 1 as a float
val in_to_rec_fn = Module(new INToRecFN(1, self.expWidth, self.sigWidth))
in_to_rec_fn.io.signedIn := false.B
in_to_rec_fn.io.in := 1.U
in_to_rec_fn.io.roundingMode := consts.round_near_even // consts.round_near_maxMag
in_to_rec_fn.io.detectTininess := consts.tininess_afterRounding
val one_rec = in_to_rec_fn.io.out
// Resize t
val t_resizer = Module(new RecFNToRecFN(t.expWidth, t.sigWidth, self.expWidth, self.sigWidth))
t_resizer.io.in := t_rec
t_resizer.io.roundingMode := consts.round_near_even // consts.round_near_maxMag
t_resizer.io.detectTininess := consts.tininess_afterRounding
val t_rec_resized = t_resizer.io.out
// Perform addition
val muladder = Module(new MulAddRecFN(self.expWidth, self.sigWidth))
muladder.io.op := 0.U
muladder.io.roundingMode := consts.round_near_even // consts.round_near_maxMag
muladder.io.detectTininess := consts.tininess_afterRounding
muladder.io.a := t_rec_resized
muladder.io.b := one_rec
muladder.io.c := self_rec
val result = Wire(Float(self.expWidth, self.sigWidth))
result.bits := fNFromRecFN(self.expWidth, self.sigWidth, muladder.io.out)
result
}
override def -(t: Float): Float = {
val t_sgn = t.bits(t.getWidth-1)
val neg_t = Cat(~t_sgn, t.bits(t.getWidth-2,0)).asTypeOf(t)
self + neg_t
}
override def >>(u: UInt): Float = {
// Recode self
val self_rec = recFNFromFN(self.expWidth, self.sigWidth, self.bits)
// Get 2^(-u) as a recoded float
val shift_exp = Wire(UInt(self.expWidth.W))
shift_exp := self.bias.U - u
val shift_fn = Cat(0.U(1.W), shift_exp, 0.U((self.sigWidth-1).W))
val shift_rec = recFNFromFN(self.expWidth, self.sigWidth, shift_fn)
assert(shift_exp =/= 0.U, "scaling by denormalized numbers is not currently supported")
// Multiply self and 2^(-u)
val muladder = Module(new MulRecFN(self.expWidth, self.sigWidth))
muladder.io.roundingMode := consts.round_near_even // consts.round_near_maxMag
muladder.io.detectTininess := consts.tininess_afterRounding
muladder.io.a := self_rec
muladder.io.b := shift_rec
val result = Wire(Float(self.expWidth, self.sigWidth))
result.bits := fNFromRecFN(self.expWidth, self.sigWidth, muladder.io.out)
result
}
override def >(t: Float): Bool = {
// Recode all operands
val t_rec = recFNFromFN(t.expWidth, t.sigWidth, t.bits)
val self_rec = recFNFromFN(self.expWidth, self.sigWidth, self.bits)
// Resize t to self's width
val t_resizer = Module(new RecFNToRecFN(t.expWidth, t.sigWidth, self.expWidth, self.sigWidth))
t_resizer.io.in := t_rec
t_resizer.io.roundingMode := consts.round_near_even
t_resizer.io.detectTininess := consts.tininess_afterRounding
val t_rec_resized = t_resizer.io.out
val comparator = Module(new CompareRecFN(self.expWidth, self.sigWidth))
comparator.io.a := self_rec
comparator.io.b := t_rec_resized
comparator.io.signaling := false.B
comparator.io.gt
}
override def withWidthOf(t: Float): Float = {
val self_rec = recFNFromFN(self.expWidth, self.sigWidth, self.bits)
val resizer = Module(new RecFNToRecFN(self.expWidth, self.sigWidth, t.expWidth, t.sigWidth))
resizer.io.in := self_rec
resizer.io.roundingMode := consts.round_near_even // consts.round_near_maxMag
resizer.io.detectTininess := consts.tininess_afterRounding
val result = Wire(Float(t.expWidth, t.sigWidth))
result.bits := fNFromRecFN(t.expWidth, t.sigWidth, resizer.io.out)
result
}
override def clippedToWidthOf(t: Float): Float = {
// TODO check for overflow. Right now, we just assume that overflow doesn't happen
val self_rec = recFNFromFN(self.expWidth, self.sigWidth, self.bits)
val resizer = Module(new RecFNToRecFN(self.expWidth, self.sigWidth, t.expWidth, t.sigWidth))
resizer.io.in := self_rec
resizer.io.roundingMode := consts.round_near_even // consts.round_near_maxMag
resizer.io.detectTininess := consts.tininess_afterRounding
val result = Wire(Float(t.expWidth, t.sigWidth))
result.bits := fNFromRecFN(t.expWidth, t.sigWidth, resizer.io.out)
result
}
override def relu: Float = {
val raw = rawFloatFromFN(self.expWidth, self.sigWidth, self.bits)
val result = Wire(Float(self.expWidth, self.sigWidth))
result.bits := Mux(!raw.isZero && raw.sign, 0.U, self.bits)
result
}
override def zero: Float = 0.U.asTypeOf(self)
override def identity: Float = Cat(0.U(2.W), ~(0.U((self.expWidth-1).W)), 0.U((self.sigWidth-1).W)).asTypeOf(self)
override def minimum: Float = Cat(1.U, ~(0.U(self.expWidth.W)), 0.U((self.sigWidth-1).W)).asTypeOf(self)
}
}
implicit object DummySIntArithmetic extends Arithmetic[DummySInt] {
override implicit def cast(self: DummySInt) = new ArithmeticOps(self) {
override def *(t: DummySInt) = self.dontCare
override def mac(m1: DummySInt, m2: DummySInt) = self.dontCare
override def +(t: DummySInt) = self.dontCare
override def -(t: DummySInt) = self.dontCare
override def >>(t: UInt) = self.dontCare
override def >(t: DummySInt): Bool = false.B
override def identity = self.dontCare
override def withWidthOf(t: DummySInt) = self.dontCare
override def clippedToWidthOf(t: DummySInt) = self.dontCare
override def relu = self.dontCare
override def zero = self.dontCare
override def minimum: DummySInt = self.dontCare
}
}
}
| module PE_387( // @[PE.scala:31:7]
input clock, // @[PE.scala:31:7]
input reset, // @[PE.scala:31:7]
input [7:0] io_in_a, // @[PE.scala:35:14]
input [19:0] io_in_b, // @[PE.scala:35:14]
input [19:0] io_in_d, // @[PE.scala:35:14]
output [7:0] io_out_a, // @[PE.scala:35:14]
output [19:0] io_out_b, // @[PE.scala:35:14]
output [19:0] io_out_c, // @[PE.scala:35:14]
input io_in_control_dataflow, // @[PE.scala:35:14]
input io_in_control_propagate, // @[PE.scala:35:14]
input [4:0] io_in_control_shift, // @[PE.scala:35:14]
output io_out_control_dataflow, // @[PE.scala:35:14]
output io_out_control_propagate, // @[PE.scala:35:14]
output [4:0] io_out_control_shift, // @[PE.scala:35:14]
input [2:0] io_in_id, // @[PE.scala:35:14]
output [2:0] io_out_id, // @[PE.scala:35:14]
input io_in_last, // @[PE.scala:35:14]
output io_out_last, // @[PE.scala:35:14]
input io_in_valid, // @[PE.scala:35:14]
output io_out_valid, // @[PE.scala:35:14]
output io_bad_dataflow // @[PE.scala:35:14]
);
wire [19:0] _mac_unit_io_out_d; // @[PE.scala:64:24]
wire [7:0] io_in_a_0 = io_in_a; // @[PE.scala:31:7]
wire [19:0] io_in_b_0 = io_in_b; // @[PE.scala:31:7]
wire [19:0] io_in_d_0 = io_in_d; // @[PE.scala:31:7]
wire io_in_control_dataflow_0 = io_in_control_dataflow; // @[PE.scala:31:7]
wire io_in_control_propagate_0 = io_in_control_propagate; // @[PE.scala:31:7]
wire [4:0] io_in_control_shift_0 = io_in_control_shift; // @[PE.scala:31:7]
wire [2:0] io_in_id_0 = io_in_id; // @[PE.scala:31:7]
wire io_in_last_0 = io_in_last; // @[PE.scala:31:7]
wire io_in_valid_0 = io_in_valid; // @[PE.scala:31:7]
wire io_bad_dataflow_0 = 1'h0; // @[PE.scala:31:7]
wire [7:0] io_out_a_0 = io_in_a_0; // @[PE.scala:31:7]
wire [19:0] _mac_unit_io_in_b_T = io_in_b_0; // @[PE.scala:31:7, :106:37]
wire [19:0] _mac_unit_io_in_b_T_2 = io_in_b_0; // @[PE.scala:31:7, :113:37]
wire [19:0] _mac_unit_io_in_b_T_8 = io_in_b_0; // @[PE.scala:31:7, :137:35]
wire [19:0] c1_lo_1 = io_in_d_0; // @[PE.scala:31:7]
wire [19:0] c2_lo_1 = io_in_d_0; // @[PE.scala:31:7]
wire io_out_control_dataflow_0 = io_in_control_dataflow_0; // @[PE.scala:31:7]
wire io_out_control_propagate_0 = io_in_control_propagate_0; // @[PE.scala:31:7]
wire [4:0] io_out_control_shift_0 = io_in_control_shift_0; // @[PE.scala:31:7]
wire [2:0] io_out_id_0 = io_in_id_0; // @[PE.scala:31:7]
wire io_out_last_0 = io_in_last_0; // @[PE.scala:31:7]
wire io_out_valid_0 = io_in_valid_0; // @[PE.scala:31:7]
wire [19:0] io_out_b_0; // @[PE.scala:31:7]
wire [19:0] io_out_c_0; // @[PE.scala:31:7]
reg [31:0] c1; // @[PE.scala:70:15]
wire [31:0] _io_out_c_zeros_T_1 = c1; // @[PE.scala:70:15]
wire [31:0] _mac_unit_io_in_b_T_6 = c1; // @[PE.scala:70:15, :127:38]
reg [31:0] c2; // @[PE.scala:71:15]
wire [31:0] _io_out_c_zeros_T_10 = c2; // @[PE.scala:71:15]
wire [31:0] _mac_unit_io_in_b_T_4 = c2; // @[PE.scala:71:15, :121:38]
reg last_s; // @[PE.scala:89:25]
wire flip = last_s != io_in_control_propagate_0; // @[PE.scala:31:7, :89:25, :90:21]
wire [4:0] shift_offset = flip ? io_in_control_shift_0 : 5'h0; // @[PE.scala:31:7, :90:21, :91:25]
wire _GEN = shift_offset == 5'h0; // @[PE.scala:91:25]
wire _io_out_c_point_five_T; // @[Arithmetic.scala:101:32]
assign _io_out_c_point_five_T = _GEN; // @[Arithmetic.scala:101:32]
wire _io_out_c_point_five_T_5; // @[Arithmetic.scala:101:32]
assign _io_out_c_point_five_T_5 = _GEN; // @[Arithmetic.scala:101:32]
wire [5:0] _GEN_0 = {1'h0, shift_offset} - 6'h1; // @[PE.scala:91:25]
wire [5:0] _io_out_c_point_five_T_1; // @[Arithmetic.scala:101:53]
assign _io_out_c_point_five_T_1 = _GEN_0; // @[Arithmetic.scala:101:53]
wire [5:0] _io_out_c_zeros_T_2; // @[Arithmetic.scala:102:66]
assign _io_out_c_zeros_T_2 = _GEN_0; // @[Arithmetic.scala:101:53, :102:66]
wire [5:0] _io_out_c_point_five_T_6; // @[Arithmetic.scala:101:53]
assign _io_out_c_point_five_T_6 = _GEN_0; // @[Arithmetic.scala:101:53]
wire [5:0] _io_out_c_zeros_T_11; // @[Arithmetic.scala:102:66]
assign _io_out_c_zeros_T_11 = _GEN_0; // @[Arithmetic.scala:101:53, :102:66]
wire [4:0] _io_out_c_point_five_T_2 = _io_out_c_point_five_T_1[4:0]; // @[Arithmetic.scala:101:53]
wire [31:0] _io_out_c_point_five_T_3 = $signed($signed(c1) >>> _io_out_c_point_five_T_2); // @[PE.scala:70:15]
wire _io_out_c_point_five_T_4 = _io_out_c_point_five_T_3[0]; // @[Arithmetic.scala:101:50]
wire io_out_c_point_five = ~_io_out_c_point_five_T & _io_out_c_point_five_T_4; // @[Arithmetic.scala:101:{29,32,50}]
wire _GEN_1 = shift_offset < 5'h2; // @[PE.scala:91:25]
wire _io_out_c_zeros_T; // @[Arithmetic.scala:102:27]
assign _io_out_c_zeros_T = _GEN_1; // @[Arithmetic.scala:102:27]
wire _io_out_c_zeros_T_9; // @[Arithmetic.scala:102:27]
assign _io_out_c_zeros_T_9 = _GEN_1; // @[Arithmetic.scala:102:27]
wire [4:0] _io_out_c_zeros_T_3 = _io_out_c_zeros_T_2[4:0]; // @[Arithmetic.scala:102:66]
wire [31:0] _io_out_c_zeros_T_4 = 32'h1 << _io_out_c_zeros_T_3; // @[Arithmetic.scala:102:{60,66}]
wire [32:0] _io_out_c_zeros_T_5 = {1'h0, _io_out_c_zeros_T_4} - 33'h1; // @[Arithmetic.scala:102:{60,81}]
wire [31:0] _io_out_c_zeros_T_6 = _io_out_c_zeros_T_5[31:0]; // @[Arithmetic.scala:102:81]
wire [31:0] _io_out_c_zeros_T_7 = _io_out_c_zeros_T_1 & _io_out_c_zeros_T_6; // @[Arithmetic.scala:102:{45,52,81}]
wire [31:0] _io_out_c_zeros_T_8 = _io_out_c_zeros_T ? 32'h0 : _io_out_c_zeros_T_7; // @[Arithmetic.scala:102:{24,27,52}]
wire io_out_c_zeros = |_io_out_c_zeros_T_8; // @[Arithmetic.scala:102:{24,89}]
wire [31:0] _GEN_2 = {27'h0, shift_offset}; // @[PE.scala:91:25]
wire [31:0] _GEN_3 = $signed($signed(c1) >>> _GEN_2); // @[PE.scala:70:15]
wire [31:0] _io_out_c_ones_digit_T; // @[Arithmetic.scala:103:30]
assign _io_out_c_ones_digit_T = _GEN_3; // @[Arithmetic.scala:103:30]
wire [31:0] _io_out_c_T; // @[Arithmetic.scala:107:15]
assign _io_out_c_T = _GEN_3; // @[Arithmetic.scala:103:30, :107:15]
wire io_out_c_ones_digit = _io_out_c_ones_digit_T[0]; // @[Arithmetic.scala:103:30]
wire _io_out_c_r_T = io_out_c_zeros | io_out_c_ones_digit; // @[Arithmetic.scala:102:89, :103:30, :105:38]
wire _io_out_c_r_T_1 = io_out_c_point_five & _io_out_c_r_T; // @[Arithmetic.scala:101:29, :105:{29,38}]
wire io_out_c_r = _io_out_c_r_T_1; // @[Arithmetic.scala:105:{29,53}]
wire [1:0] _io_out_c_T_1 = {1'h0, io_out_c_r}; // @[Arithmetic.scala:105:53, :107:33]
wire [32:0] _io_out_c_T_2 = {_io_out_c_T[31], _io_out_c_T} + {{31{_io_out_c_T_1[1]}}, _io_out_c_T_1}; // @[Arithmetic.scala:107:{15,28,33}]
wire [31:0] _io_out_c_T_3 = _io_out_c_T_2[31:0]; // @[Arithmetic.scala:107:28]
wire [31:0] _io_out_c_T_4 = _io_out_c_T_3; // @[Arithmetic.scala:107:28]
wire _io_out_c_T_5 = $signed(_io_out_c_T_4) > 32'sh7FFFF; // @[Arithmetic.scala:107:28, :125:33]
wire _io_out_c_T_6 = $signed(_io_out_c_T_4) < -32'sh80000; // @[Arithmetic.scala:107:28, :125:60]
wire [31:0] _io_out_c_T_7 = _io_out_c_T_6 ? 32'hFFF80000 : _io_out_c_T_4; // @[Mux.scala:126:16]
wire [31:0] _io_out_c_T_8 = _io_out_c_T_5 ? 32'h7FFFF : _io_out_c_T_7; // @[Mux.scala:126:16]
wire [19:0] _io_out_c_T_9 = _io_out_c_T_8[19:0]; // @[Mux.scala:126:16]
wire [19:0] _io_out_c_T_10 = _io_out_c_T_9; // @[Arithmetic.scala:125:{81,99}]
wire [19:0] _mac_unit_io_in_b_T_1 = _mac_unit_io_in_b_T; // @[PE.scala:106:37]
wire [7:0] _mac_unit_io_in_b_WIRE = _mac_unit_io_in_b_T_1[7:0]; // @[PE.scala:106:37]
wire c1_sign = io_in_d_0[19]; // @[PE.scala:31:7]
wire c2_sign = io_in_d_0[19]; // @[PE.scala:31:7]
wire [1:0] _GEN_4 = {2{c1_sign}}; // @[Arithmetic.scala:117:26, :118:18]
wire [1:0] c1_lo_lo_hi; // @[Arithmetic.scala:118:18]
assign c1_lo_lo_hi = _GEN_4; // @[Arithmetic.scala:118:18]
wire [1:0] c1_lo_hi_hi; // @[Arithmetic.scala:118:18]
assign c1_lo_hi_hi = _GEN_4; // @[Arithmetic.scala:118:18]
wire [1:0] c1_hi_lo_hi; // @[Arithmetic.scala:118:18]
assign c1_hi_lo_hi = _GEN_4; // @[Arithmetic.scala:118:18]
wire [1:0] c1_hi_hi_hi; // @[Arithmetic.scala:118:18]
assign c1_hi_hi_hi = _GEN_4; // @[Arithmetic.scala:118:18]
wire [2:0] c1_lo_lo = {c1_lo_lo_hi, c1_sign}; // @[Arithmetic.scala:117:26, :118:18]
wire [2:0] c1_lo_hi = {c1_lo_hi_hi, c1_sign}; // @[Arithmetic.scala:117:26, :118:18]
wire [5:0] c1_lo = {c1_lo_hi, c1_lo_lo}; // @[Arithmetic.scala:118:18]
wire [2:0] c1_hi_lo = {c1_hi_lo_hi, c1_sign}; // @[Arithmetic.scala:117:26, :118:18]
wire [2:0] c1_hi_hi = {c1_hi_hi_hi, c1_sign}; // @[Arithmetic.scala:117:26, :118:18]
wire [5:0] c1_hi = {c1_hi_hi, c1_hi_lo}; // @[Arithmetic.scala:118:18]
wire [11:0] _c1_T = {c1_hi, c1_lo}; // @[Arithmetic.scala:118:18]
wire [31:0] _c1_T_1 = {_c1_T, c1_lo_1}; // @[Arithmetic.scala:118:{14,18}]
wire [31:0] _c1_T_2 = _c1_T_1; // @[Arithmetic.scala:118:{14,61}]
wire [31:0] _c1_WIRE = _c1_T_2; // @[Arithmetic.scala:118:61]
wire [4:0] _io_out_c_point_five_T_7 = _io_out_c_point_five_T_6[4:0]; // @[Arithmetic.scala:101:53]
wire [31:0] _io_out_c_point_five_T_8 = $signed($signed(c2) >>> _io_out_c_point_five_T_7); // @[PE.scala:71:15]
wire _io_out_c_point_five_T_9 = _io_out_c_point_five_T_8[0]; // @[Arithmetic.scala:101:50]
wire io_out_c_point_five_1 = ~_io_out_c_point_five_T_5 & _io_out_c_point_five_T_9; // @[Arithmetic.scala:101:{29,32,50}]
wire [4:0] _io_out_c_zeros_T_12 = _io_out_c_zeros_T_11[4:0]; // @[Arithmetic.scala:102:66]
wire [31:0] _io_out_c_zeros_T_13 = 32'h1 << _io_out_c_zeros_T_12; // @[Arithmetic.scala:102:{60,66}]
wire [32:0] _io_out_c_zeros_T_14 = {1'h0, _io_out_c_zeros_T_13} - 33'h1; // @[Arithmetic.scala:102:{60,81}]
wire [31:0] _io_out_c_zeros_T_15 = _io_out_c_zeros_T_14[31:0]; // @[Arithmetic.scala:102:81]
wire [31:0] _io_out_c_zeros_T_16 = _io_out_c_zeros_T_10 & _io_out_c_zeros_T_15; // @[Arithmetic.scala:102:{45,52,81}]
wire [31:0] _io_out_c_zeros_T_17 = _io_out_c_zeros_T_9 ? 32'h0 : _io_out_c_zeros_T_16; // @[Arithmetic.scala:102:{24,27,52}]
wire io_out_c_zeros_1 = |_io_out_c_zeros_T_17; // @[Arithmetic.scala:102:{24,89}]
wire [31:0] _GEN_5 = $signed($signed(c2) >>> _GEN_2); // @[PE.scala:71:15]
wire [31:0] _io_out_c_ones_digit_T_1; // @[Arithmetic.scala:103:30]
assign _io_out_c_ones_digit_T_1 = _GEN_5; // @[Arithmetic.scala:103:30]
wire [31:0] _io_out_c_T_11; // @[Arithmetic.scala:107:15]
assign _io_out_c_T_11 = _GEN_5; // @[Arithmetic.scala:103:30, :107:15]
wire io_out_c_ones_digit_1 = _io_out_c_ones_digit_T_1[0]; // @[Arithmetic.scala:103:30]
wire _io_out_c_r_T_2 = io_out_c_zeros_1 | io_out_c_ones_digit_1; // @[Arithmetic.scala:102:89, :103:30, :105:38]
wire _io_out_c_r_T_3 = io_out_c_point_five_1 & _io_out_c_r_T_2; // @[Arithmetic.scala:101:29, :105:{29,38}]
wire io_out_c_r_1 = _io_out_c_r_T_3; // @[Arithmetic.scala:105:{29,53}]
wire [1:0] _io_out_c_T_12 = {1'h0, io_out_c_r_1}; // @[Arithmetic.scala:105:53, :107:33]
wire [32:0] _io_out_c_T_13 = {_io_out_c_T_11[31], _io_out_c_T_11} + {{31{_io_out_c_T_12[1]}}, _io_out_c_T_12}; // @[Arithmetic.scala:107:{15,28,33}]
wire [31:0] _io_out_c_T_14 = _io_out_c_T_13[31:0]; // @[Arithmetic.scala:107:28]
wire [31:0] _io_out_c_T_15 = _io_out_c_T_14; // @[Arithmetic.scala:107:28]
wire _io_out_c_T_16 = $signed(_io_out_c_T_15) > 32'sh7FFFF; // @[Arithmetic.scala:107:28, :125:33]
wire _io_out_c_T_17 = $signed(_io_out_c_T_15) < -32'sh80000; // @[Arithmetic.scala:107:28, :125:60]
wire [31:0] _io_out_c_T_18 = _io_out_c_T_17 ? 32'hFFF80000 : _io_out_c_T_15; // @[Mux.scala:126:16]
wire [31:0] _io_out_c_T_19 = _io_out_c_T_16 ? 32'h7FFFF : _io_out_c_T_18; // @[Mux.scala:126:16]
wire [19:0] _io_out_c_T_20 = _io_out_c_T_19[19:0]; // @[Mux.scala:126:16]
wire [19:0] _io_out_c_T_21 = _io_out_c_T_20; // @[Arithmetic.scala:125:{81,99}]
wire [19:0] _mac_unit_io_in_b_T_3 = _mac_unit_io_in_b_T_2; // @[PE.scala:113:37]
wire [7:0] _mac_unit_io_in_b_WIRE_1 = _mac_unit_io_in_b_T_3[7:0]; // @[PE.scala:113:37]
wire [1:0] _GEN_6 = {2{c2_sign}}; // @[Arithmetic.scala:117:26, :118:18]
wire [1:0] c2_lo_lo_hi; // @[Arithmetic.scala:118:18]
assign c2_lo_lo_hi = _GEN_6; // @[Arithmetic.scala:118:18]
wire [1:0] c2_lo_hi_hi; // @[Arithmetic.scala:118:18]
assign c2_lo_hi_hi = _GEN_6; // @[Arithmetic.scala:118:18]
wire [1:0] c2_hi_lo_hi; // @[Arithmetic.scala:118:18]
assign c2_hi_lo_hi = _GEN_6; // @[Arithmetic.scala:118:18]
wire [1:0] c2_hi_hi_hi; // @[Arithmetic.scala:118:18]
assign c2_hi_hi_hi = _GEN_6; // @[Arithmetic.scala:118:18]
wire [2:0] c2_lo_lo = {c2_lo_lo_hi, c2_sign}; // @[Arithmetic.scala:117:26, :118:18]
wire [2:0] c2_lo_hi = {c2_lo_hi_hi, c2_sign}; // @[Arithmetic.scala:117:26, :118:18]
wire [5:0] c2_lo = {c2_lo_hi, c2_lo_lo}; // @[Arithmetic.scala:118:18]
wire [2:0] c2_hi_lo = {c2_hi_lo_hi, c2_sign}; // @[Arithmetic.scala:117:26, :118:18]
wire [2:0] c2_hi_hi = {c2_hi_hi_hi, c2_sign}; // @[Arithmetic.scala:117:26, :118:18]
wire [5:0] c2_hi = {c2_hi_hi, c2_hi_lo}; // @[Arithmetic.scala:118:18]
wire [11:0] _c2_T = {c2_hi, c2_lo}; // @[Arithmetic.scala:118:18]
wire [31:0] _c2_T_1 = {_c2_T, c2_lo_1}; // @[Arithmetic.scala:118:{14,18}]
wire [31:0] _c2_T_2 = _c2_T_1; // @[Arithmetic.scala:118:{14,61}]
wire [31:0] _c2_WIRE = _c2_T_2; // @[Arithmetic.scala:118:61]
wire [31:0] _mac_unit_io_in_b_T_5 = _mac_unit_io_in_b_T_4; // @[PE.scala:121:38]
wire [7:0] _mac_unit_io_in_b_WIRE_2 = _mac_unit_io_in_b_T_5[7:0]; // @[PE.scala:121:38]
wire [31:0] _mac_unit_io_in_b_T_7 = _mac_unit_io_in_b_T_6; // @[PE.scala:127:38]
wire [7:0] _mac_unit_io_in_b_WIRE_3 = _mac_unit_io_in_b_T_7[7:0]; // @[PE.scala:127:38]
assign io_out_c_0 = io_in_control_dataflow_0 ? (io_in_control_propagate_0 ? c1[19:0] : c2[19:0]) : io_in_control_propagate_0 ? _io_out_c_T_10 : _io_out_c_T_21; // @[PE.scala:31:7, :70:15, :71:15, :102:95, :103:30, :104:16, :111:16, :118:101, :119:30, :120:16, :126:16]
assign io_out_b_0 = io_in_control_dataflow_0 ? _mac_unit_io_out_d : io_in_b_0; // @[PE.scala:31:7, :64:24, :102:95, :103:30, :118:101]
wire [19:0] _mac_unit_io_in_b_T_9 = _mac_unit_io_in_b_T_8; // @[PE.scala:137:35]
wire [7:0] _mac_unit_io_in_b_WIRE_4 = _mac_unit_io_in_b_T_9[7:0]; // @[PE.scala:137:35]
wire [31:0] _GEN_7 = {{12{io_in_d_0[19]}}, io_in_d_0}; // @[PE.scala:31:7, :124:10]
wire [31:0] _GEN_8 = {{12{_mac_unit_io_out_d[19]}}, _mac_unit_io_out_d}; // @[PE.scala:64:24, :108:10]
always @(posedge clock) begin // @[PE.scala:31:7]
if (io_in_valid_0) begin // @[PE.scala:31:7]
if (io_in_control_dataflow_0) begin // @[PE.scala:31:7]
if (io_in_control_dataflow_0 & io_in_control_propagate_0) // @[PE.scala:31:7, :70:15, :118:101, :119:30, :124:10]
c1 <= _GEN_7; // @[PE.scala:70:15, :124:10]
if (~io_in_control_dataflow_0 | io_in_control_propagate_0) begin // @[PE.scala:31:7, :71:15, :118:101, :119:30]
end
else // @[PE.scala:71:15, :118:101, :119:30]
c2 <= _GEN_7; // @[PE.scala:71:15, :124:10]
end
else begin // @[PE.scala:31:7]
c1 <= io_in_control_propagate_0 ? _c1_WIRE : _GEN_8; // @[PE.scala:31:7, :70:15, :103:30, :108:10, :109:10, :115:10]
c2 <= io_in_control_propagate_0 ? _GEN_8 : _c2_WIRE; // @[PE.scala:31:7, :71:15, :103:30, :108:10, :116:10]
end
last_s <= io_in_control_propagate_0; // @[PE.scala:31:7, :89:25]
end
always @(posedge)
MacUnit_131 mac_unit ( // @[PE.scala:64:24]
.clock (clock),
.reset (reset),
.io_in_a (io_in_a_0), // @[PE.scala:31:7]
.io_in_b (io_in_control_dataflow_0 ? (io_in_control_propagate_0 ? _mac_unit_io_in_b_WIRE_2 : _mac_unit_io_in_b_WIRE_3) : io_in_control_propagate_0 ? _mac_unit_io_in_b_WIRE : _mac_unit_io_in_b_WIRE_1), // @[PE.scala:31:7, :102:95, :103:30, :106:{24,37}, :113:{24,37}, :118:101, :119:30, :121:{24,38}, :127:{24,38}]
.io_in_c (io_in_control_dataflow_0 ? {{12{io_in_b_0[19]}}, io_in_b_0} : io_in_control_propagate_0 ? c2 : c1), // @[PE.scala:31:7, :70:15, :71:15, :102:95, :103:30, :107:24, :114:24, :118:101, :122:24]
.io_out_d (_mac_unit_io_out_d)
); // @[PE.scala:64:24]
assign io_out_a = io_out_a_0; // @[PE.scala:31:7]
assign io_out_b = io_out_b_0; // @[PE.scala:31:7]
assign io_out_c = io_out_c_0; // @[PE.scala:31:7]
assign io_out_control_dataflow = io_out_control_dataflow_0; // @[PE.scala:31:7]
assign io_out_control_propagate = io_out_control_propagate_0; // @[PE.scala:31:7]
assign io_out_control_shift = io_out_control_shift_0; // @[PE.scala:31:7]
assign io_out_id = io_out_id_0; // @[PE.scala:31:7]
assign io_out_last = io_out_last_0; // @[PE.scala:31:7]
assign io_out_valid = io_out_valid_0; // @[PE.scala:31:7]
assign io_bad_dataflow = io_bad_dataflow_0; // @[PE.scala:31:7]
endmodule |
Generate the Verilog code corresponding to the following Chisel files.
File Monitor.scala:
// See LICENSE.SiFive for license details.
package freechips.rocketchip.tilelink
import chisel3._
import chisel3.util._
import chisel3.experimental.SourceLine
import org.chipsalliance.cde.config._
import org.chipsalliance.diplomacy._
import freechips.rocketchip.diplomacy.EnableMonitors
import freechips.rocketchip.formal.{MonitorDirection, IfThen, Property, PropertyClass, TestplanTestType, TLMonitorStrictMode}
import freechips.rocketchip.util.PlusArg
case class TLMonitorArgs(edge: TLEdge)
abstract class TLMonitorBase(args: TLMonitorArgs) extends Module
{
val io = IO(new Bundle {
val in = Input(new TLBundle(args.edge.bundle))
})
def legalize(bundle: TLBundle, edge: TLEdge, reset: Reset): Unit
legalize(io.in, args.edge, reset)
}
object TLMonitor {
def apply(enable: Boolean, node: TLNode)(implicit p: Parameters): TLNode = {
if (enable) {
EnableMonitors { implicit p => node := TLEphemeralNode()(ValName("monitor")) }
} else { node }
}
}
class TLMonitor(args: TLMonitorArgs, monitorDir: MonitorDirection = MonitorDirection.Monitor) extends TLMonitorBase(args)
{
require (args.edge.params(TLMonitorStrictMode) || (! args.edge.params(TestplanTestType).formal))
val cover_prop_class = PropertyClass.Default
//Like assert but can flip to being an assumption for formal verification
def monAssert(cond: Bool, message: String): Unit =
if (monitorDir == MonitorDirection.Monitor) {
assert(cond, message)
} else {
Property(monitorDir, cond, message, PropertyClass.Default)
}
def assume(cond: Bool, message: String): Unit =
if (monitorDir == MonitorDirection.Monitor) {
assert(cond, message)
} else {
Property(monitorDir.flip, cond, message, PropertyClass.Default)
}
def extra = {
args.edge.sourceInfo match {
case SourceLine(filename, line, col) => s" (connected at $filename:$line:$col)"
case _ => ""
}
}
def visible(address: UInt, source: UInt, edge: TLEdge) =
edge.client.clients.map { c =>
!c.sourceId.contains(source) ||
c.visibility.map(_.contains(address)).reduce(_ || _)
}.reduce(_ && _)
def legalizeFormatA(bundle: TLBundleA, edge: TLEdge): Unit = {
//switch this flag to turn on diplomacy in error messages
def diplomacyInfo = if (true) "" else "\nThe diplomacy information for the edge is as follows:\n" + edge.formatEdge + "\n"
monAssert (TLMessages.isA(bundle.opcode), "'A' channel has invalid opcode" + extra)
// Reuse these subexpressions to save some firrtl lines
val source_ok = edge.client.contains(bundle.source)
val is_aligned = edge.isAligned(bundle.address, bundle.size)
val mask = edge.full_mask(bundle)
monAssert (visible(edge.address(bundle), bundle.source, edge), "'A' channel carries an address illegal for the specified bank visibility")
//The monitor doesnβt check for acquire T vs acquire B, it assumes that acquire B implies acquire T and only checks for acquire B
//TODO: check for acquireT?
when (bundle.opcode === TLMessages.AcquireBlock) {
monAssert (edge.master.emitsAcquireB(bundle.source, bundle.size) && edge.slave.supportsAcquireBSafe(edge.address(bundle), bundle.size), "'A' channel carries AcquireBlock type which is unexpected using diplomatic parameters" + diplomacyInfo + extra)
monAssert (edge.master.supportsProbe(edge.source(bundle), bundle.size) && edge.slave.emitsProbeSafe(edge.address(bundle), bundle.size), "'A' channel carries AcquireBlock from a client which does not support Probe" + diplomacyInfo + extra)
monAssert (source_ok, "'A' channel AcquireBlock carries invalid source ID" + diplomacyInfo + extra)
monAssert (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'A' channel AcquireBlock smaller than a beat" + extra)
monAssert (is_aligned, "'A' channel AcquireBlock address not aligned to size" + extra)
monAssert (TLPermissions.isGrow(bundle.param), "'A' channel AcquireBlock carries invalid grow param" + extra)
monAssert (~bundle.mask === 0.U, "'A' channel AcquireBlock contains invalid mask" + extra)
monAssert (!bundle.corrupt, "'A' channel AcquireBlock is corrupt" + extra)
}
when (bundle.opcode === TLMessages.AcquirePerm) {
monAssert (edge.master.emitsAcquireB(bundle.source, bundle.size) && edge.slave.supportsAcquireBSafe(edge.address(bundle), bundle.size), "'A' channel carries AcquirePerm type which is unexpected using diplomatic parameters" + diplomacyInfo + extra)
monAssert (edge.master.supportsProbe(edge.source(bundle), bundle.size) && edge.slave.emitsProbeSafe(edge.address(bundle), bundle.size), "'A' channel carries AcquirePerm from a client which does not support Probe" + diplomacyInfo + extra)
monAssert (source_ok, "'A' channel AcquirePerm carries invalid source ID" + diplomacyInfo + extra)
monAssert (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'A' channel AcquirePerm smaller than a beat" + extra)
monAssert (is_aligned, "'A' channel AcquirePerm address not aligned to size" + extra)
monAssert (TLPermissions.isGrow(bundle.param), "'A' channel AcquirePerm carries invalid grow param" + extra)
monAssert (bundle.param =/= TLPermissions.NtoB, "'A' channel AcquirePerm requests NtoB" + extra)
monAssert (~bundle.mask === 0.U, "'A' channel AcquirePerm contains invalid mask" + extra)
monAssert (!bundle.corrupt, "'A' channel AcquirePerm is corrupt" + extra)
}
when (bundle.opcode === TLMessages.Get) {
monAssert (edge.master.emitsGet(bundle.source, bundle.size), "'A' channel carries Get type which master claims it can't emit" + diplomacyInfo + extra)
monAssert (edge.slave.supportsGetSafe(edge.address(bundle), bundle.size, None), "'A' channel carries Get type which slave claims it can't support" + diplomacyInfo + extra)
monAssert (source_ok, "'A' channel Get carries invalid source ID" + diplomacyInfo + extra)
monAssert (is_aligned, "'A' channel Get address not aligned to size" + extra)
monAssert (bundle.param === 0.U, "'A' channel Get carries invalid param" + extra)
monAssert (bundle.mask === mask, "'A' channel Get contains invalid mask" + extra)
monAssert (!bundle.corrupt, "'A' channel Get is corrupt" + extra)
}
when (bundle.opcode === TLMessages.PutFullData) {
monAssert (edge.master.emitsPutFull(bundle.source, bundle.size) && edge.slave.supportsPutFullSafe(edge.address(bundle), bundle.size), "'A' channel carries PutFull type which is unexpected using diplomatic parameters" + diplomacyInfo + extra)
monAssert (source_ok, "'A' channel PutFull carries invalid source ID" + diplomacyInfo + extra)
monAssert (is_aligned, "'A' channel PutFull address not aligned to size" + extra)
monAssert (bundle.param === 0.U, "'A' channel PutFull carries invalid param" + extra)
monAssert (bundle.mask === mask, "'A' channel PutFull contains invalid mask" + extra)
}
when (bundle.opcode === TLMessages.PutPartialData) {
monAssert (edge.master.emitsPutPartial(bundle.source, bundle.size) && edge.slave.supportsPutPartialSafe(edge.address(bundle), bundle.size), "'A' channel carries PutPartial type which is unexpected using diplomatic parameters" + extra)
monAssert (source_ok, "'A' channel PutPartial carries invalid source ID" + diplomacyInfo + extra)
monAssert (is_aligned, "'A' channel PutPartial address not aligned to size" + extra)
monAssert (bundle.param === 0.U, "'A' channel PutPartial carries invalid param" + extra)
monAssert ((bundle.mask & ~mask) === 0.U, "'A' channel PutPartial contains invalid mask" + extra)
}
when (bundle.opcode === TLMessages.ArithmeticData) {
monAssert (edge.master.emitsArithmetic(bundle.source, bundle.size) && edge.slave.supportsArithmeticSafe(edge.address(bundle), bundle.size), "'A' channel carries Arithmetic type which is unexpected using diplomatic parameters" + extra)
monAssert (source_ok, "'A' channel Arithmetic carries invalid source ID" + diplomacyInfo + extra)
monAssert (is_aligned, "'A' channel Arithmetic address not aligned to size" + extra)
monAssert (TLAtomics.isArithmetic(bundle.param), "'A' channel Arithmetic carries invalid opcode param" + extra)
monAssert (bundle.mask === mask, "'A' channel Arithmetic contains invalid mask" + extra)
}
when (bundle.opcode === TLMessages.LogicalData) {
monAssert (edge.master.emitsLogical(bundle.source, bundle.size) && edge.slave.supportsLogicalSafe(edge.address(bundle), bundle.size), "'A' channel carries Logical type which is unexpected using diplomatic parameters" + extra)
monAssert (source_ok, "'A' channel Logical carries invalid source ID" + diplomacyInfo + extra)
monAssert (is_aligned, "'A' channel Logical address not aligned to size" + extra)
monAssert (TLAtomics.isLogical(bundle.param), "'A' channel Logical carries invalid opcode param" + extra)
monAssert (bundle.mask === mask, "'A' channel Logical contains invalid mask" + extra)
}
when (bundle.opcode === TLMessages.Hint) {
monAssert (edge.master.emitsHint(bundle.source, bundle.size) && edge.slave.supportsHintSafe(edge.address(bundle), bundle.size), "'A' channel carries Hint type which is unexpected using diplomatic parameters" + extra)
monAssert (source_ok, "'A' channel Hint carries invalid source ID" + diplomacyInfo + extra)
monAssert (is_aligned, "'A' channel Hint address not aligned to size" + extra)
monAssert (TLHints.isHints(bundle.param), "'A' channel Hint carries invalid opcode param" + extra)
monAssert (bundle.mask === mask, "'A' channel Hint contains invalid mask" + extra)
monAssert (!bundle.corrupt, "'A' channel Hint is corrupt" + extra)
}
}
def legalizeFormatB(bundle: TLBundleB, edge: TLEdge): Unit = {
monAssert (TLMessages.isB(bundle.opcode), "'B' channel has invalid opcode" + extra)
monAssert (visible(edge.address(bundle), bundle.source, edge), "'B' channel carries an address illegal for the specified bank visibility")
// Reuse these subexpressions to save some firrtl lines
val address_ok = edge.manager.containsSafe(edge.address(bundle))
val is_aligned = edge.isAligned(bundle.address, bundle.size)
val mask = edge.full_mask(bundle)
val legal_source = Mux1H(edge.client.find(bundle.source), edge.client.clients.map(c => c.sourceId.start.U)) === bundle.source
when (bundle.opcode === TLMessages.Probe) {
assume (edge.master.supportsProbe(edge.source(bundle), bundle.size) && edge.slave.emitsProbeSafe(edge.address(bundle), bundle.size), "'B' channel carries Probe type which is unexpected using diplomatic parameters" + extra)
assume (address_ok, "'B' channel Probe carries unmanaged address" + extra)
assume (legal_source, "'B' channel Probe carries source that is not first source" + extra)
assume (is_aligned, "'B' channel Probe address not aligned to size" + extra)
assume (TLPermissions.isCap(bundle.param), "'B' channel Probe carries invalid cap param" + extra)
assume (bundle.mask === mask, "'B' channel Probe contains invalid mask" + extra)
assume (!bundle.corrupt, "'B' channel Probe is corrupt" + extra)
}
when (bundle.opcode === TLMessages.Get) {
monAssert (edge.master.supportsGet(edge.source(bundle), bundle.size) && edge.slave.emitsGetSafe(edge.address(bundle), bundle.size), "'B' channel carries Get type which is unexpected using diplomatic parameters" + extra)
monAssert (address_ok, "'B' channel Get carries unmanaged address" + extra)
monAssert (legal_source, "'B' channel Get carries source that is not first source" + extra)
monAssert (is_aligned, "'B' channel Get address not aligned to size" + extra)
monAssert (bundle.param === 0.U, "'B' channel Get carries invalid param" + extra)
monAssert (bundle.mask === mask, "'B' channel Get contains invalid mask" + extra)
monAssert (!bundle.corrupt, "'B' channel Get is corrupt" + extra)
}
when (bundle.opcode === TLMessages.PutFullData) {
monAssert (edge.master.supportsPutFull(edge.source(bundle), bundle.size) && edge.slave.emitsPutFullSafe(edge.address(bundle), bundle.size), "'B' channel carries PutFull type which is unexpected using diplomatic parameters" + extra)
monAssert (address_ok, "'B' channel PutFull carries unmanaged address" + extra)
monAssert (legal_source, "'B' channel PutFull carries source that is not first source" + extra)
monAssert (is_aligned, "'B' channel PutFull address not aligned to size" + extra)
monAssert (bundle.param === 0.U, "'B' channel PutFull carries invalid param" + extra)
monAssert (bundle.mask === mask, "'B' channel PutFull contains invalid mask" + extra)
}
when (bundle.opcode === TLMessages.PutPartialData) {
monAssert (edge.master.supportsPutPartial(edge.source(bundle), bundle.size) && edge.slave.emitsPutPartialSafe(edge.address(bundle), bundle.size), "'B' channel carries PutPartial type which is unexpected using diplomatic parameters" + extra)
monAssert (address_ok, "'B' channel PutPartial carries unmanaged address" + extra)
monAssert (legal_source, "'B' channel PutPartial carries source that is not first source" + extra)
monAssert (is_aligned, "'B' channel PutPartial address not aligned to size" + extra)
monAssert (bundle.param === 0.U, "'B' channel PutPartial carries invalid param" + extra)
monAssert ((bundle.mask & ~mask) === 0.U, "'B' channel PutPartial contains invalid mask" + extra)
}
when (bundle.opcode === TLMessages.ArithmeticData) {
monAssert (edge.master.supportsArithmetic(edge.source(bundle), bundle.size) && edge.slave.emitsArithmeticSafe(edge.address(bundle), bundle.size), "'B' channel carries Arithmetic type unsupported by master" + extra)
monAssert (address_ok, "'B' channel Arithmetic carries unmanaged address" + extra)
monAssert (legal_source, "'B' channel Arithmetic carries source that is not first source" + extra)
monAssert (is_aligned, "'B' channel Arithmetic address not aligned to size" + extra)
monAssert (TLAtomics.isArithmetic(bundle.param), "'B' channel Arithmetic carries invalid opcode param" + extra)
monAssert (bundle.mask === mask, "'B' channel Arithmetic contains invalid mask" + extra)
}
when (bundle.opcode === TLMessages.LogicalData) {
monAssert (edge.master.supportsLogical(edge.source(bundle), bundle.size) && edge.slave.emitsLogicalSafe(edge.address(bundle), bundle.size), "'B' channel carries Logical type unsupported by client" + extra)
monAssert (address_ok, "'B' channel Logical carries unmanaged address" + extra)
monAssert (legal_source, "'B' channel Logical carries source that is not first source" + extra)
monAssert (is_aligned, "'B' channel Logical address not aligned to size" + extra)
monAssert (TLAtomics.isLogical(bundle.param), "'B' channel Logical carries invalid opcode param" + extra)
monAssert (bundle.mask === mask, "'B' channel Logical contains invalid mask" + extra)
}
when (bundle.opcode === TLMessages.Hint) {
monAssert (edge.master.supportsHint(edge.source(bundle), bundle.size) && edge.slave.emitsHintSafe(edge.address(bundle), bundle.size), "'B' channel carries Hint type unsupported by client" + extra)
monAssert (address_ok, "'B' channel Hint carries unmanaged address" + extra)
monAssert (legal_source, "'B' channel Hint carries source that is not first source" + extra)
monAssert (is_aligned, "'B' channel Hint address not aligned to size" + extra)
monAssert (bundle.mask === mask, "'B' channel Hint contains invalid mask" + extra)
monAssert (!bundle.corrupt, "'B' channel Hint is corrupt" + extra)
}
}
def legalizeFormatC(bundle: TLBundleC, edge: TLEdge): Unit = {
monAssert (TLMessages.isC(bundle.opcode), "'C' channel has invalid opcode" + extra)
val source_ok = edge.client.contains(bundle.source)
val is_aligned = edge.isAligned(bundle.address, bundle.size)
val address_ok = edge.manager.containsSafe(edge.address(bundle))
monAssert (visible(edge.address(bundle), bundle.source, edge), "'C' channel carries an address illegal for the specified bank visibility")
when (bundle.opcode === TLMessages.ProbeAck) {
monAssert (address_ok, "'C' channel ProbeAck carries unmanaged address" + extra)
monAssert (source_ok, "'C' channel ProbeAck carries invalid source ID" + extra)
monAssert (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'C' channel ProbeAck smaller than a beat" + extra)
monAssert (is_aligned, "'C' channel ProbeAck address not aligned to size" + extra)
monAssert (TLPermissions.isReport(bundle.param), "'C' channel ProbeAck carries invalid report param" + extra)
monAssert (!bundle.corrupt, "'C' channel ProbeAck is corrupt" + extra)
}
when (bundle.opcode === TLMessages.ProbeAckData) {
monAssert (address_ok, "'C' channel ProbeAckData carries unmanaged address" + extra)
monAssert (source_ok, "'C' channel ProbeAckData carries invalid source ID" + extra)
monAssert (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'C' channel ProbeAckData smaller than a beat" + extra)
monAssert (is_aligned, "'C' channel ProbeAckData address not aligned to size" + extra)
monAssert (TLPermissions.isReport(bundle.param), "'C' channel ProbeAckData carries invalid report param" + extra)
}
when (bundle.opcode === TLMessages.Release) {
monAssert (edge.master.emitsAcquireB(edge.source(bundle), bundle.size) && edge.slave.supportsAcquireBSafe(edge.address(bundle), bundle.size), "'C' channel carries Release type unsupported by manager" + extra)
monAssert (edge.master.supportsProbe(edge.source(bundle), bundle.size) && edge.slave.emitsProbeSafe(edge.address(bundle), bundle.size), "'C' channel carries Release from a client which does not support Probe" + extra)
monAssert (source_ok, "'C' channel Release carries invalid source ID" + extra)
monAssert (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'C' channel Release smaller than a beat" + extra)
monAssert (is_aligned, "'C' channel Release address not aligned to size" + extra)
monAssert (TLPermissions.isReport(bundle.param), "'C' channel Release carries invalid report param" + extra)
monAssert (!bundle.corrupt, "'C' channel Release is corrupt" + extra)
}
when (bundle.opcode === TLMessages.ReleaseData) {
monAssert (edge.master.emitsAcquireB(edge.source(bundle), bundle.size) && edge.slave.supportsAcquireBSafe(edge.address(bundle), bundle.size), "'C' channel carries ReleaseData type unsupported by manager" + extra)
monAssert (edge.master.supportsProbe(edge.source(bundle), bundle.size) && edge.slave.emitsProbeSafe(edge.address(bundle), bundle.size), "'C' channel carries Release from a client which does not support Probe" + extra)
monAssert (source_ok, "'C' channel ReleaseData carries invalid source ID" + extra)
monAssert (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'C' channel ReleaseData smaller than a beat" + extra)
monAssert (is_aligned, "'C' channel ReleaseData address not aligned to size" + extra)
monAssert (TLPermissions.isReport(bundle.param), "'C' channel ReleaseData carries invalid report param" + extra)
}
when (bundle.opcode === TLMessages.AccessAck) {
monAssert (address_ok, "'C' channel AccessAck carries unmanaged address" + extra)
monAssert (source_ok, "'C' channel AccessAck carries invalid source ID" + extra)
monAssert (is_aligned, "'C' channel AccessAck address not aligned to size" + extra)
monAssert (bundle.param === 0.U, "'C' channel AccessAck carries invalid param" + extra)
monAssert (!bundle.corrupt, "'C' channel AccessAck is corrupt" + extra)
}
when (bundle.opcode === TLMessages.AccessAckData) {
monAssert (address_ok, "'C' channel AccessAckData carries unmanaged address" + extra)
monAssert (source_ok, "'C' channel AccessAckData carries invalid source ID" + extra)
monAssert (is_aligned, "'C' channel AccessAckData address not aligned to size" + extra)
monAssert (bundle.param === 0.U, "'C' channel AccessAckData carries invalid param" + extra)
}
when (bundle.opcode === TLMessages.HintAck) {
monAssert (address_ok, "'C' channel HintAck carries unmanaged address" + extra)
monAssert (source_ok, "'C' channel HintAck carries invalid source ID" + extra)
monAssert (is_aligned, "'C' channel HintAck address not aligned to size" + extra)
monAssert (bundle.param === 0.U, "'C' channel HintAck carries invalid param" + extra)
monAssert (!bundle.corrupt, "'C' channel HintAck is corrupt" + extra)
}
}
def legalizeFormatD(bundle: TLBundleD, edge: TLEdge): Unit = {
assume (TLMessages.isD(bundle.opcode), "'D' channel has invalid opcode" + extra)
val source_ok = edge.client.contains(bundle.source)
val sink_ok = bundle.sink < edge.manager.endSinkId.U
val deny_put_ok = edge.manager.mayDenyPut.B
val deny_get_ok = edge.manager.mayDenyGet.B
when (bundle.opcode === TLMessages.ReleaseAck) {
assume (source_ok, "'D' channel ReleaseAck carries invalid source ID" + extra)
assume (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'D' channel ReleaseAck smaller than a beat" + extra)
assume (bundle.param === 0.U, "'D' channel ReleaseeAck carries invalid param" + extra)
assume (!bundle.corrupt, "'D' channel ReleaseAck is corrupt" + extra)
assume (!bundle.denied, "'D' channel ReleaseAck is denied" + extra)
}
when (bundle.opcode === TLMessages.Grant) {
assume (source_ok, "'D' channel Grant carries invalid source ID" + extra)
assume (sink_ok, "'D' channel Grant carries invalid sink ID" + extra)
assume (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'D' channel Grant smaller than a beat" + extra)
assume (TLPermissions.isCap(bundle.param), "'D' channel Grant carries invalid cap param" + extra)
assume (bundle.param =/= TLPermissions.toN, "'D' channel Grant carries toN param" + extra)
assume (!bundle.corrupt, "'D' channel Grant is corrupt" + extra)
assume (deny_put_ok || !bundle.denied, "'D' channel Grant is denied" + extra)
}
when (bundle.opcode === TLMessages.GrantData) {
assume (source_ok, "'D' channel GrantData carries invalid source ID" + extra)
assume (sink_ok, "'D' channel GrantData carries invalid sink ID" + extra)
assume (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'D' channel GrantData smaller than a beat" + extra)
assume (TLPermissions.isCap(bundle.param), "'D' channel GrantData carries invalid cap param" + extra)
assume (bundle.param =/= TLPermissions.toN, "'D' channel GrantData carries toN param" + extra)
assume (!bundle.denied || bundle.corrupt, "'D' channel GrantData is denied but not corrupt" + extra)
assume (deny_get_ok || !bundle.denied, "'D' channel GrantData is denied" + extra)
}
when (bundle.opcode === TLMessages.AccessAck) {
assume (source_ok, "'D' channel AccessAck carries invalid source ID" + extra)
// size is ignored
assume (bundle.param === 0.U, "'D' channel AccessAck carries invalid param" + extra)
assume (!bundle.corrupt, "'D' channel AccessAck is corrupt" + extra)
assume (deny_put_ok || !bundle.denied, "'D' channel AccessAck is denied" + extra)
}
when (bundle.opcode === TLMessages.AccessAckData) {
assume (source_ok, "'D' channel AccessAckData carries invalid source ID" + extra)
// size is ignored
assume (bundle.param === 0.U, "'D' channel AccessAckData carries invalid param" + extra)
assume (!bundle.denied || bundle.corrupt, "'D' channel AccessAckData is denied but not corrupt" + extra)
assume (deny_get_ok || !bundle.denied, "'D' channel AccessAckData is denied" + extra)
}
when (bundle.opcode === TLMessages.HintAck) {
assume (source_ok, "'D' channel HintAck carries invalid source ID" + extra)
// size is ignored
assume (bundle.param === 0.U, "'D' channel HintAck carries invalid param" + extra)
assume (!bundle.corrupt, "'D' channel HintAck is corrupt" + extra)
assume (deny_put_ok || !bundle.denied, "'D' channel HintAck is denied" + extra)
}
}
def legalizeFormatE(bundle: TLBundleE, edge: TLEdge): Unit = {
val sink_ok = bundle.sink < edge.manager.endSinkId.U
monAssert (sink_ok, "'E' channels carries invalid sink ID" + extra)
}
def legalizeFormat(bundle: TLBundle, edge: TLEdge) = {
when (bundle.a.valid) { legalizeFormatA(bundle.a.bits, edge) }
when (bundle.d.valid) { legalizeFormatD(bundle.d.bits, edge) }
if (edge.client.anySupportProbe && edge.manager.anySupportAcquireB) {
when (bundle.b.valid) { legalizeFormatB(bundle.b.bits, edge) }
when (bundle.c.valid) { legalizeFormatC(bundle.c.bits, edge) }
when (bundle.e.valid) { legalizeFormatE(bundle.e.bits, edge) }
} else {
monAssert (!bundle.b.valid, "'B' channel valid and not TL-C" + extra)
monAssert (!bundle.c.valid, "'C' channel valid and not TL-C" + extra)
monAssert (!bundle.e.valid, "'E' channel valid and not TL-C" + extra)
}
}
def legalizeMultibeatA(a: DecoupledIO[TLBundleA], edge: TLEdge): Unit = {
val a_first = edge.first(a.bits, a.fire)
val opcode = Reg(UInt())
val param = Reg(UInt())
val size = Reg(UInt())
val source = Reg(UInt())
val address = Reg(UInt())
when (a.valid && !a_first) {
monAssert (a.bits.opcode === opcode, "'A' channel opcode changed within multibeat operation" + extra)
monAssert (a.bits.param === param, "'A' channel param changed within multibeat operation" + extra)
monAssert (a.bits.size === size, "'A' channel size changed within multibeat operation" + extra)
monAssert (a.bits.source === source, "'A' channel source changed within multibeat operation" + extra)
monAssert (a.bits.address=== address,"'A' channel address changed with multibeat operation" + extra)
}
when (a.fire && a_first) {
opcode := a.bits.opcode
param := a.bits.param
size := a.bits.size
source := a.bits.source
address := a.bits.address
}
}
def legalizeMultibeatB(b: DecoupledIO[TLBundleB], edge: TLEdge): Unit = {
val b_first = edge.first(b.bits, b.fire)
val opcode = Reg(UInt())
val param = Reg(UInt())
val size = Reg(UInt())
val source = Reg(UInt())
val address = Reg(UInt())
when (b.valid && !b_first) {
monAssert (b.bits.opcode === opcode, "'B' channel opcode changed within multibeat operation" + extra)
monAssert (b.bits.param === param, "'B' channel param changed within multibeat operation" + extra)
monAssert (b.bits.size === size, "'B' channel size changed within multibeat operation" + extra)
monAssert (b.bits.source === source, "'B' channel source changed within multibeat operation" + extra)
monAssert (b.bits.address=== address,"'B' channel addresss changed with multibeat operation" + extra)
}
when (b.fire && b_first) {
opcode := b.bits.opcode
param := b.bits.param
size := b.bits.size
source := b.bits.source
address := b.bits.address
}
}
def legalizeADSourceFormal(bundle: TLBundle, edge: TLEdge): Unit = {
// Symbolic variable
val sym_source = Wire(UInt(edge.client.endSourceId.W))
// TODO: Connect sym_source to a fixed value for simulation and to a
// free wire in formal
sym_source := 0.U
// Type casting Int to UInt
val maxSourceId = Wire(UInt(edge.client.endSourceId.W))
maxSourceId := edge.client.endSourceId.U
// Delayed verison of sym_source
val sym_source_d = Reg(UInt(edge.client.endSourceId.W))
sym_source_d := sym_source
// These will be constraints for FV setup
Property(
MonitorDirection.Monitor,
(sym_source === sym_source_d),
"sym_source should remain stable",
PropertyClass.Default)
Property(
MonitorDirection.Monitor,
(sym_source <= maxSourceId),
"sym_source should take legal value",
PropertyClass.Default)
val my_resp_pend = RegInit(false.B)
val my_opcode = Reg(UInt())
val my_size = Reg(UInt())
val a_first = bundle.a.valid && edge.first(bundle.a.bits, bundle.a.fire)
val d_first = bundle.d.valid && edge.first(bundle.d.bits, bundle.d.fire)
val my_a_first_beat = a_first && (bundle.a.bits.source === sym_source)
val my_d_first_beat = d_first && (bundle.d.bits.source === sym_source)
val my_clr_resp_pend = (bundle.d.fire && my_d_first_beat)
val my_set_resp_pend = (bundle.a.fire && my_a_first_beat && !my_clr_resp_pend)
when (my_set_resp_pend) {
my_resp_pend := true.B
} .elsewhen (my_clr_resp_pend) {
my_resp_pend := false.B
}
when (my_a_first_beat) {
my_opcode := bundle.a.bits.opcode
my_size := bundle.a.bits.size
}
val my_resp_size = Mux(my_a_first_beat, bundle.a.bits.size, my_size)
val my_resp_opcode = Mux(my_a_first_beat, bundle.a.bits.opcode, my_opcode)
val my_resp_opcode_legal = Wire(Bool())
when ((my_resp_opcode === TLMessages.Get) || (my_resp_opcode === TLMessages.ArithmeticData) ||
(my_resp_opcode === TLMessages.LogicalData)) {
my_resp_opcode_legal := (bundle.d.bits.opcode === TLMessages.AccessAckData)
} .elsewhen ((my_resp_opcode === TLMessages.PutFullData) || (my_resp_opcode === TLMessages.PutPartialData)) {
my_resp_opcode_legal := (bundle.d.bits.opcode === TLMessages.AccessAck)
} .otherwise {
my_resp_opcode_legal := (bundle.d.bits.opcode === TLMessages.HintAck)
}
monAssert (IfThen(my_resp_pend, !my_a_first_beat),
"Request message should not be sent with a source ID, for which a response message" +
"is already pending (not received until current cycle) for a prior request message" +
"with the same source ID" + extra)
assume (IfThen(my_clr_resp_pend, (my_set_resp_pend || my_resp_pend)),
"Response message should be accepted with a source ID only if a request message with the" +
"same source ID has been accepted or is being accepted in the current cycle" + extra)
assume (IfThen(my_d_first_beat, (my_a_first_beat || my_resp_pend)),
"Response message should be sent with a source ID only if a request message with the" +
"same source ID has been accepted or is being sent in the current cycle" + extra)
assume (IfThen(my_d_first_beat, (bundle.d.bits.size === my_resp_size)),
"If d_valid is 1, then d_size should be same as a_size of the corresponding request" +
"message" + extra)
assume (IfThen(my_d_first_beat, my_resp_opcode_legal),
"If d_valid is 1, then d_opcode should correspond with a_opcode of the corresponding" +
"request message" + extra)
}
def legalizeMultibeatC(c: DecoupledIO[TLBundleC], edge: TLEdge): Unit = {
val c_first = edge.first(c.bits, c.fire)
val opcode = Reg(UInt())
val param = Reg(UInt())
val size = Reg(UInt())
val source = Reg(UInt())
val address = Reg(UInt())
when (c.valid && !c_first) {
monAssert (c.bits.opcode === opcode, "'C' channel opcode changed within multibeat operation" + extra)
monAssert (c.bits.param === param, "'C' channel param changed within multibeat operation" + extra)
monAssert (c.bits.size === size, "'C' channel size changed within multibeat operation" + extra)
monAssert (c.bits.source === source, "'C' channel source changed within multibeat operation" + extra)
monAssert (c.bits.address=== address,"'C' channel address changed with multibeat operation" + extra)
}
when (c.fire && c_first) {
opcode := c.bits.opcode
param := c.bits.param
size := c.bits.size
source := c.bits.source
address := c.bits.address
}
}
def legalizeMultibeatD(d: DecoupledIO[TLBundleD], edge: TLEdge): Unit = {
val d_first = edge.first(d.bits, d.fire)
val opcode = Reg(UInt())
val param = Reg(UInt())
val size = Reg(UInt())
val source = Reg(UInt())
val sink = Reg(UInt())
val denied = Reg(Bool())
when (d.valid && !d_first) {
assume (d.bits.opcode === opcode, "'D' channel opcode changed within multibeat operation" + extra)
assume (d.bits.param === param, "'D' channel param changed within multibeat operation" + extra)
assume (d.bits.size === size, "'D' channel size changed within multibeat operation" + extra)
assume (d.bits.source === source, "'D' channel source changed within multibeat operation" + extra)
assume (d.bits.sink === sink, "'D' channel sink changed with multibeat operation" + extra)
assume (d.bits.denied === denied, "'D' channel denied changed with multibeat operation" + extra)
}
when (d.fire && d_first) {
opcode := d.bits.opcode
param := d.bits.param
size := d.bits.size
source := d.bits.source
sink := d.bits.sink
denied := d.bits.denied
}
}
def legalizeMultibeat(bundle: TLBundle, edge: TLEdge): Unit = {
legalizeMultibeatA(bundle.a, edge)
legalizeMultibeatD(bundle.d, edge)
if (edge.client.anySupportProbe && edge.manager.anySupportAcquireB) {
legalizeMultibeatB(bundle.b, edge)
legalizeMultibeatC(bundle.c, edge)
}
}
//This is left in for almond which doesn't adhere to the tilelink protocol
@deprecated("Use legalizeADSource instead if possible","")
def legalizeADSourceOld(bundle: TLBundle, edge: TLEdge): Unit = {
val inflight = RegInit(0.U(edge.client.endSourceId.W))
val a_first = edge.first(bundle.a.bits, bundle.a.fire)
val d_first = edge.first(bundle.d.bits, bundle.d.fire)
val a_set = WireInit(0.U(edge.client.endSourceId.W))
when (bundle.a.fire && a_first && edge.isRequest(bundle.a.bits)) {
a_set := UIntToOH(bundle.a.bits.source)
assert(!inflight(bundle.a.bits.source), "'A' channel re-used a source ID" + extra)
}
val d_clr = WireInit(0.U(edge.client.endSourceId.W))
val d_release_ack = bundle.d.bits.opcode === TLMessages.ReleaseAck
when (bundle.d.fire && d_first && edge.isResponse(bundle.d.bits) && !d_release_ack) {
d_clr := UIntToOH(bundle.d.bits.source)
assume((a_set | inflight)(bundle.d.bits.source), "'D' channel acknowledged for nothing inflight" + extra)
}
if (edge.manager.minLatency > 0) {
assume(a_set =/= d_clr || !a_set.orR, s"'A' and 'D' concurrent, despite minlatency > 0" + extra)
}
inflight := (inflight | a_set) & ~d_clr
val watchdog = RegInit(0.U(32.W))
val limit = PlusArg("tilelink_timeout",
docstring="Kill emulation after INT waiting TileLink cycles. Off if 0.")
assert (!inflight.orR || limit === 0.U || watchdog < limit, "TileLink timeout expired" + extra)
watchdog := watchdog + 1.U
when (bundle.a.fire || bundle.d.fire) { watchdog := 0.U }
}
def legalizeADSource(bundle: TLBundle, edge: TLEdge): Unit = {
val a_size_bus_size = edge.bundle.sizeBits + 1 //add one so that 0 is not mapped to anything (size 0 -> size 1 in map, size 0 in map means unset)
val a_opcode_bus_size = 3 + 1 //opcode size is 3, but add so that 0 is not mapped to anything
val log_a_opcode_bus_size = log2Ceil(a_opcode_bus_size)
val log_a_size_bus_size = log2Ceil(a_size_bus_size)
def size_to_numfullbits(x: UInt): UInt = (1.U << x) - 1.U //convert a number to that many full bits
val inflight = RegInit(0.U((2 max edge.client.endSourceId).W)) // size up to avoid width error
inflight.suggestName("inflight")
val inflight_opcodes = RegInit(0.U((edge.client.endSourceId << log_a_opcode_bus_size).W))
inflight_opcodes.suggestName("inflight_opcodes")
val inflight_sizes = RegInit(0.U((edge.client.endSourceId << log_a_size_bus_size).W))
inflight_sizes.suggestName("inflight_sizes")
val a_first = edge.first(bundle.a.bits, bundle.a.fire)
a_first.suggestName("a_first")
val d_first = edge.first(bundle.d.bits, bundle.d.fire)
d_first.suggestName("d_first")
val a_set = WireInit(0.U(edge.client.endSourceId.W))
val a_set_wo_ready = WireInit(0.U(edge.client.endSourceId.W))
a_set.suggestName("a_set")
a_set_wo_ready.suggestName("a_set_wo_ready")
val a_opcodes_set = WireInit(0.U((edge.client.endSourceId << log_a_opcode_bus_size).W))
a_opcodes_set.suggestName("a_opcodes_set")
val a_sizes_set = WireInit(0.U((edge.client.endSourceId << log_a_size_bus_size).W))
a_sizes_set.suggestName("a_sizes_set")
val a_opcode_lookup = WireInit(0.U((a_opcode_bus_size - 1).W))
a_opcode_lookup.suggestName("a_opcode_lookup")
a_opcode_lookup := ((inflight_opcodes) >> (bundle.d.bits.source << log_a_opcode_bus_size.U) & size_to_numfullbits(1.U << log_a_opcode_bus_size.U)) >> 1.U
val a_size_lookup = WireInit(0.U((1 << log_a_size_bus_size).W))
a_size_lookup.suggestName("a_size_lookup")
a_size_lookup := ((inflight_sizes) >> (bundle.d.bits.source << log_a_size_bus_size.U) & size_to_numfullbits(1.U << log_a_size_bus_size.U)) >> 1.U
val responseMap = VecInit(Seq(TLMessages.AccessAck, TLMessages.AccessAck, TLMessages.AccessAckData, TLMessages.AccessAckData, TLMessages.AccessAckData, TLMessages.HintAck, TLMessages.Grant, TLMessages.Grant))
val responseMapSecondOption = VecInit(Seq(TLMessages.AccessAck, TLMessages.AccessAck, TLMessages.AccessAckData, TLMessages.AccessAckData, TLMessages.AccessAckData, TLMessages.HintAck, TLMessages.GrantData, TLMessages.Grant))
val a_opcodes_set_interm = WireInit(0.U(a_opcode_bus_size.W))
a_opcodes_set_interm.suggestName("a_opcodes_set_interm")
val a_sizes_set_interm = WireInit(0.U(a_size_bus_size.W))
a_sizes_set_interm.suggestName("a_sizes_set_interm")
when (bundle.a.valid && a_first && edge.isRequest(bundle.a.bits)) {
a_set_wo_ready := UIntToOH(bundle.a.bits.source)
}
when (bundle.a.fire && a_first && edge.isRequest(bundle.a.bits)) {
a_set := UIntToOH(bundle.a.bits.source)
a_opcodes_set_interm := (bundle.a.bits.opcode << 1.U) | 1.U
a_sizes_set_interm := (bundle.a.bits.size << 1.U) | 1.U
a_opcodes_set := (a_opcodes_set_interm) << (bundle.a.bits.source << log_a_opcode_bus_size.U)
a_sizes_set := (a_sizes_set_interm) << (bundle.a.bits.source << log_a_size_bus_size.U)
monAssert(!inflight(bundle.a.bits.source), "'A' channel re-used a source ID" + extra)
}
val d_clr = WireInit(0.U(edge.client.endSourceId.W))
val d_clr_wo_ready = WireInit(0.U(edge.client.endSourceId.W))
d_clr.suggestName("d_clr")
d_clr_wo_ready.suggestName("d_clr_wo_ready")
val d_opcodes_clr = WireInit(0.U((edge.client.endSourceId << log_a_opcode_bus_size).W))
d_opcodes_clr.suggestName("d_opcodes_clr")
val d_sizes_clr = WireInit(0.U((edge.client.endSourceId << log_a_size_bus_size).W))
d_sizes_clr.suggestName("d_sizes_clr")
val d_release_ack = bundle.d.bits.opcode === TLMessages.ReleaseAck
when (bundle.d.valid && d_first && edge.isResponse(bundle.d.bits) && !d_release_ack) {
d_clr_wo_ready := UIntToOH(bundle.d.bits.source)
}
when (bundle.d.fire && d_first && edge.isResponse(bundle.d.bits) && !d_release_ack) {
d_clr := UIntToOH(bundle.d.bits.source)
d_opcodes_clr := size_to_numfullbits(1.U << log_a_opcode_bus_size.U) << (bundle.d.bits.source << log_a_opcode_bus_size.U)
d_sizes_clr := size_to_numfullbits(1.U << log_a_size_bus_size.U) << (bundle.d.bits.source << log_a_size_bus_size.U)
}
when (bundle.d.valid && d_first && edge.isResponse(bundle.d.bits) && !d_release_ack) {
val same_cycle_resp = bundle.a.valid && a_first && edge.isRequest(bundle.a.bits) && (bundle.a.bits.source === bundle.d.bits.source)
assume(((inflight)(bundle.d.bits.source)) || same_cycle_resp, "'D' channel acknowledged for nothing inflight" + extra)
when (same_cycle_resp) {
assume((bundle.d.bits.opcode === responseMap(bundle.a.bits.opcode)) ||
(bundle.d.bits.opcode === responseMapSecondOption(bundle.a.bits.opcode)), "'D' channel contains improper opcode response" + extra)
assume((bundle.a.bits.size === bundle.d.bits.size), "'D' channel contains improper response size" + extra)
} .otherwise {
assume((bundle.d.bits.opcode === responseMap(a_opcode_lookup)) ||
(bundle.d.bits.opcode === responseMapSecondOption(a_opcode_lookup)), "'D' channel contains improper opcode response" + extra)
assume((bundle.d.bits.size === a_size_lookup), "'D' channel contains improper response size" + extra)
}
}
when(bundle.d.valid && d_first && a_first && bundle.a.valid && (bundle.a.bits.source === bundle.d.bits.source) && !d_release_ack) {
assume((!bundle.d.ready) || bundle.a.ready, "ready check")
}
if (edge.manager.minLatency > 0) {
assume(a_set_wo_ready =/= d_clr_wo_ready || !a_set_wo_ready.orR, s"'A' and 'D' concurrent, despite minlatency > 0" + extra)
}
inflight := (inflight | a_set) & ~d_clr
inflight_opcodes := (inflight_opcodes | a_opcodes_set) & ~d_opcodes_clr
inflight_sizes := (inflight_sizes | a_sizes_set) & ~d_sizes_clr
val watchdog = RegInit(0.U(32.W))
val limit = PlusArg("tilelink_timeout",
docstring="Kill emulation after INT waiting TileLink cycles. Off if 0.")
monAssert (!inflight.orR || limit === 0.U || watchdog < limit, "TileLink timeout expired" + extra)
watchdog := watchdog + 1.U
when (bundle.a.fire || bundle.d.fire) { watchdog := 0.U }
}
def legalizeCDSource(bundle: TLBundle, edge: TLEdge): Unit = {
val c_size_bus_size = edge.bundle.sizeBits + 1 //add one so that 0 is not mapped to anything (size 0 -> size 1 in map, size 0 in map means unset)
val c_opcode_bus_size = 3 + 1 //opcode size is 3, but add so that 0 is not mapped to anything
val log_c_opcode_bus_size = log2Ceil(c_opcode_bus_size)
val log_c_size_bus_size = log2Ceil(c_size_bus_size)
def size_to_numfullbits(x: UInt): UInt = (1.U << x) - 1.U //convert a number to that many full bits
val inflight = RegInit(0.U((2 max edge.client.endSourceId).W))
val inflight_opcodes = RegInit(0.U((edge.client.endSourceId << log_c_opcode_bus_size).W))
val inflight_sizes = RegInit(0.U((edge.client.endSourceId << log_c_size_bus_size).W))
inflight.suggestName("inflight")
inflight_opcodes.suggestName("inflight_opcodes")
inflight_sizes.suggestName("inflight_sizes")
val c_first = edge.first(bundle.c.bits, bundle.c.fire)
val d_first = edge.first(bundle.d.bits, bundle.d.fire)
c_first.suggestName("c_first")
d_first.suggestName("d_first")
val c_set = WireInit(0.U(edge.client.endSourceId.W))
val c_set_wo_ready = WireInit(0.U(edge.client.endSourceId.W))
val c_opcodes_set = WireInit(0.U((edge.client.endSourceId << log_c_opcode_bus_size).W))
val c_sizes_set = WireInit(0.U((edge.client.endSourceId << log_c_size_bus_size).W))
c_set.suggestName("c_set")
c_set_wo_ready.suggestName("c_set_wo_ready")
c_opcodes_set.suggestName("c_opcodes_set")
c_sizes_set.suggestName("c_sizes_set")
val c_opcode_lookup = WireInit(0.U((1 << log_c_opcode_bus_size).W))
val c_size_lookup = WireInit(0.U((1 << log_c_size_bus_size).W))
c_opcode_lookup := ((inflight_opcodes) >> (bundle.d.bits.source << log_c_opcode_bus_size.U) & size_to_numfullbits(1.U << log_c_opcode_bus_size.U)) >> 1.U
c_size_lookup := ((inflight_sizes) >> (bundle.d.bits.source << log_c_size_bus_size.U) & size_to_numfullbits(1.U << log_c_size_bus_size.U)) >> 1.U
c_opcode_lookup.suggestName("c_opcode_lookup")
c_size_lookup.suggestName("c_size_lookup")
val c_opcodes_set_interm = WireInit(0.U(c_opcode_bus_size.W))
val c_sizes_set_interm = WireInit(0.U(c_size_bus_size.W))
c_opcodes_set_interm.suggestName("c_opcodes_set_interm")
c_sizes_set_interm.suggestName("c_sizes_set_interm")
when (bundle.c.valid && c_first && edge.isRequest(bundle.c.bits)) {
c_set_wo_ready := UIntToOH(bundle.c.bits.source)
}
when (bundle.c.fire && c_first && edge.isRequest(bundle.c.bits)) {
c_set := UIntToOH(bundle.c.bits.source)
c_opcodes_set_interm := (bundle.c.bits.opcode << 1.U) | 1.U
c_sizes_set_interm := (bundle.c.bits.size << 1.U) | 1.U
c_opcodes_set := (c_opcodes_set_interm) << (bundle.c.bits.source << log_c_opcode_bus_size.U)
c_sizes_set := (c_sizes_set_interm) << (bundle.c.bits.source << log_c_size_bus_size.U)
monAssert(!inflight(bundle.c.bits.source), "'C' channel re-used a source ID" + extra)
}
val c_probe_ack = bundle.c.bits.opcode === TLMessages.ProbeAck || bundle.c.bits.opcode === TLMessages.ProbeAckData
val d_clr = WireInit(0.U(edge.client.endSourceId.W))
val d_clr_wo_ready = WireInit(0.U(edge.client.endSourceId.W))
val d_opcodes_clr = WireInit(0.U((edge.client.endSourceId << log_c_opcode_bus_size).W))
val d_sizes_clr = WireInit(0.U((edge.client.endSourceId << log_c_size_bus_size).W))
d_clr.suggestName("d_clr")
d_clr_wo_ready.suggestName("d_clr_wo_ready")
d_opcodes_clr.suggestName("d_opcodes_clr")
d_sizes_clr.suggestName("d_sizes_clr")
val d_release_ack = bundle.d.bits.opcode === TLMessages.ReleaseAck
when (bundle.d.valid && d_first && edge.isResponse(bundle.d.bits) && d_release_ack) {
d_clr_wo_ready := UIntToOH(bundle.d.bits.source)
}
when (bundle.d.fire && d_first && edge.isResponse(bundle.d.bits) && d_release_ack) {
d_clr := UIntToOH(bundle.d.bits.source)
d_opcodes_clr := size_to_numfullbits(1.U << log_c_opcode_bus_size.U) << (bundle.d.bits.source << log_c_opcode_bus_size.U)
d_sizes_clr := size_to_numfullbits(1.U << log_c_size_bus_size.U) << (bundle.d.bits.source << log_c_size_bus_size.U)
}
when (bundle.d.valid && d_first && edge.isResponse(bundle.d.bits) && d_release_ack) {
val same_cycle_resp = bundle.c.valid && c_first && edge.isRequest(bundle.c.bits) && (bundle.c.bits.source === bundle.d.bits.source)
assume(((inflight)(bundle.d.bits.source)) || same_cycle_resp, "'D' channel acknowledged for nothing inflight" + extra)
when (same_cycle_resp) {
assume((bundle.d.bits.size === bundle.c.bits.size), "'D' channel contains improper response size" + extra)
} .otherwise {
assume((bundle.d.bits.size === c_size_lookup), "'D' channel contains improper response size" + extra)
}
}
when(bundle.d.valid && d_first && c_first && bundle.c.valid && (bundle.c.bits.source === bundle.d.bits.source) && d_release_ack && !c_probe_ack) {
assume((!bundle.d.ready) || bundle.c.ready, "ready check")
}
if (edge.manager.minLatency > 0) {
when (c_set_wo_ready.orR) {
assume(c_set_wo_ready =/= d_clr_wo_ready, s"'C' and 'D' concurrent, despite minlatency > 0" + extra)
}
}
inflight := (inflight | c_set) & ~d_clr
inflight_opcodes := (inflight_opcodes | c_opcodes_set) & ~d_opcodes_clr
inflight_sizes := (inflight_sizes | c_sizes_set) & ~d_sizes_clr
val watchdog = RegInit(0.U(32.W))
val limit = PlusArg("tilelink_timeout",
docstring="Kill emulation after INT waiting TileLink cycles. Off if 0.")
monAssert (!inflight.orR || limit === 0.U || watchdog < limit, "TileLink timeout expired" + extra)
watchdog := watchdog + 1.U
when (bundle.c.fire || bundle.d.fire) { watchdog := 0.U }
}
def legalizeDESink(bundle: TLBundle, edge: TLEdge): Unit = {
val inflight = RegInit(0.U(edge.manager.endSinkId.W))
val d_first = edge.first(bundle.d.bits, bundle.d.fire)
val e_first = true.B
val d_set = WireInit(0.U(edge.manager.endSinkId.W))
when (bundle.d.fire && d_first && edge.isRequest(bundle.d.bits)) {
d_set := UIntToOH(bundle.d.bits.sink)
assume(!inflight(bundle.d.bits.sink), "'D' channel re-used a sink ID" + extra)
}
val e_clr = WireInit(0.U(edge.manager.endSinkId.W))
when (bundle.e.fire && e_first && edge.isResponse(bundle.e.bits)) {
e_clr := UIntToOH(bundle.e.bits.sink)
monAssert((d_set | inflight)(bundle.e.bits.sink), "'E' channel acknowledged for nothing inflight" + extra)
}
// edge.client.minLatency applies to BC, not DE
inflight := (inflight | d_set) & ~e_clr
}
def legalizeUnique(bundle: TLBundle, edge: TLEdge): Unit = {
val sourceBits = log2Ceil(edge.client.endSourceId)
val tooBig = 14 // >16kB worth of flight information gets to be too much
if (sourceBits > tooBig) {
println(s"WARNING: TLMonitor instantiated on a bus with source bits (${sourceBits}) > ${tooBig}; A=>D transaction flight will not be checked")
} else {
if (args.edge.params(TestplanTestType).simulation) {
if (args.edge.params(TLMonitorStrictMode)) {
legalizeADSource(bundle, edge)
legalizeCDSource(bundle, edge)
} else {
legalizeADSourceOld(bundle, edge)
}
}
if (args.edge.params(TestplanTestType).formal) {
legalizeADSourceFormal(bundle, edge)
}
}
if (edge.client.anySupportProbe && edge.manager.anySupportAcquireB) {
// legalizeBCSourceAddress(bundle, edge) // too much state needed to synthesize...
val sinkBits = log2Ceil(edge.manager.endSinkId)
if (sinkBits > tooBig) {
println(s"WARNING: TLMonitor instantiated on a bus with sink bits (${sinkBits}) > ${tooBig}; D=>E transaction flight will not be checked")
} else {
legalizeDESink(bundle, edge)
}
}
}
def legalize(bundle: TLBundle, edge: TLEdge, reset: Reset): Unit = {
legalizeFormat (bundle, edge)
legalizeMultibeat (bundle, edge)
legalizeUnique (bundle, edge)
}
}
File Misc.scala:
// See LICENSE.Berkeley for license details.
// See LICENSE.SiFive for license details.
package freechips.rocketchip.util
import chisel3._
import chisel3.util._
import chisel3.util.random.LFSR
import org.chipsalliance.cde.config.Parameters
import scala.math._
class ParameterizedBundle(implicit p: Parameters) extends Bundle
trait Clocked extends Bundle {
val clock = Clock()
val reset = Bool()
}
object DecoupledHelper {
def apply(rvs: Bool*) = new DecoupledHelper(rvs)
}
class DecoupledHelper(val rvs: Seq[Bool]) {
def fire(exclude: Bool, includes: Bool*) = {
require(rvs.contains(exclude), "Excluded Bool not present in DecoupledHelper! Note that DecoupledHelper uses referential equality for exclusion! If you don't want to exclude anything, use fire()!")
(rvs.filter(_ ne exclude) ++ includes).reduce(_ && _)
}
def fire() = {
rvs.reduce(_ && _)
}
}
object MuxT {
def apply[T <: Data, U <: Data](cond: Bool, con: (T, U), alt: (T, U)): (T, U) =
(Mux(cond, con._1, alt._1), Mux(cond, con._2, alt._2))
def apply[T <: Data, U <: Data, W <: Data](cond: Bool, con: (T, U, W), alt: (T, U, W)): (T, U, W) =
(Mux(cond, con._1, alt._1), Mux(cond, con._2, alt._2), Mux(cond, con._3, alt._3))
def apply[T <: Data, U <: Data, W <: Data, X <: Data](cond: Bool, con: (T, U, W, X), alt: (T, U, W, X)): (T, U, W, X) =
(Mux(cond, con._1, alt._1), Mux(cond, con._2, alt._2), Mux(cond, con._3, alt._3), Mux(cond, con._4, alt._4))
}
/** Creates a cascade of n MuxTs to search for a key value. */
object MuxTLookup {
def apply[S <: UInt, T <: Data, U <: Data](key: S, default: (T, U), mapping: Seq[(S, (T, U))]): (T, U) = {
var res = default
for ((k, v) <- mapping.reverse)
res = MuxT(k === key, v, res)
res
}
def apply[S <: UInt, T <: Data, U <: Data, W <: Data](key: S, default: (T, U, W), mapping: Seq[(S, (T, U, W))]): (T, U, W) = {
var res = default
for ((k, v) <- mapping.reverse)
res = MuxT(k === key, v, res)
res
}
}
object ValidMux {
def apply[T <: Data](v1: ValidIO[T], v2: ValidIO[T]*): ValidIO[T] = {
apply(v1 +: v2.toSeq)
}
def apply[T <: Data](valids: Seq[ValidIO[T]]): ValidIO[T] = {
val out = Wire(Valid(valids.head.bits.cloneType))
out.valid := valids.map(_.valid).reduce(_ || _)
out.bits := MuxCase(valids.head.bits,
valids.map(v => (v.valid -> v.bits)))
out
}
}
object Str
{
def apply(s: String): UInt = {
var i = BigInt(0)
require(s.forall(validChar _))
for (c <- s)
i = (i << 8) | c
i.U((s.length*8).W)
}
def apply(x: Char): UInt = {
require(validChar(x))
x.U(8.W)
}
def apply(x: UInt): UInt = apply(x, 10)
def apply(x: UInt, radix: Int): UInt = {
val rad = radix.U
val w = x.getWidth
require(w > 0)
var q = x
var s = digit(q % rad)
for (i <- 1 until ceil(log(2)/log(radix)*w).toInt) {
q = q / rad
s = Cat(Mux((radix == 10).B && q === 0.U, Str(' '), digit(q % rad)), s)
}
s
}
def apply(x: SInt): UInt = apply(x, 10)
def apply(x: SInt, radix: Int): UInt = {
val neg = x < 0.S
val abs = x.abs.asUInt
if (radix != 10) {
Cat(Mux(neg, Str('-'), Str(' ')), Str(abs, radix))
} else {
val rad = radix.U
val w = abs.getWidth
require(w > 0)
var q = abs
var s = digit(q % rad)
var needSign = neg
for (i <- 1 until ceil(log(2)/log(radix)*w).toInt) {
q = q / rad
val placeSpace = q === 0.U
val space = Mux(needSign, Str('-'), Str(' '))
needSign = needSign && !placeSpace
s = Cat(Mux(placeSpace, space, digit(q % rad)), s)
}
Cat(Mux(needSign, Str('-'), Str(' ')), s)
}
}
private def digit(d: UInt): UInt = Mux(d < 10.U, Str('0')+d, Str(('a'-10).toChar)+d)(7,0)
private def validChar(x: Char) = x == (x & 0xFF)
}
object Split
{
def apply(x: UInt, n0: Int) = {
val w = x.getWidth
(x.extract(w-1,n0), x.extract(n0-1,0))
}
def apply(x: UInt, n1: Int, n0: Int) = {
val w = x.getWidth
(x.extract(w-1,n1), x.extract(n1-1,n0), x.extract(n0-1,0))
}
def apply(x: UInt, n2: Int, n1: Int, n0: Int) = {
val w = x.getWidth
(x.extract(w-1,n2), x.extract(n2-1,n1), x.extract(n1-1,n0), x.extract(n0-1,0))
}
}
object Random
{
def apply(mod: Int, random: UInt): UInt = {
if (isPow2(mod)) random.extract(log2Ceil(mod)-1,0)
else PriorityEncoder(partition(apply(1 << log2Up(mod*8), random), mod))
}
def apply(mod: Int): UInt = apply(mod, randomizer)
def oneHot(mod: Int, random: UInt): UInt = {
if (isPow2(mod)) UIntToOH(random(log2Up(mod)-1,0))
else PriorityEncoderOH(partition(apply(1 << log2Up(mod*8), random), mod)).asUInt
}
def oneHot(mod: Int): UInt = oneHot(mod, randomizer)
private def randomizer = LFSR(16)
private def partition(value: UInt, slices: Int) =
Seq.tabulate(slices)(i => value < (((i + 1) << value.getWidth) / slices).U)
}
object Majority {
def apply(in: Set[Bool]): Bool = {
val n = (in.size >> 1) + 1
val clauses = in.subsets(n).map(_.reduce(_ && _))
clauses.reduce(_ || _)
}
def apply(in: Seq[Bool]): Bool = apply(in.toSet)
def apply(in: UInt): Bool = apply(in.asBools.toSet)
}
object PopCountAtLeast {
private def two(x: UInt): (Bool, Bool) = x.getWidth match {
case 1 => (x.asBool, false.B)
case n =>
val half = x.getWidth / 2
val (leftOne, leftTwo) = two(x(half - 1, 0))
val (rightOne, rightTwo) = two(x(x.getWidth - 1, half))
(leftOne || rightOne, leftTwo || rightTwo || (leftOne && rightOne))
}
def apply(x: UInt, n: Int): Bool = n match {
case 0 => true.B
case 1 => x.orR
case 2 => two(x)._2
case 3 => PopCount(x) >= n.U
}
}
// This gets used everywhere, so make the smallest circuit possible ...
// Given an address and size, create a mask of beatBytes size
// eg: (0x3, 0, 4) => 0001, (0x3, 1, 4) => 0011, (0x3, 2, 4) => 1111
// groupBy applies an interleaved OR reduction; groupBy=2 take 0010 => 01
object MaskGen {
def apply(addr_lo: UInt, lgSize: UInt, beatBytes: Int, groupBy: Int = 1): UInt = {
require (groupBy >= 1 && beatBytes >= groupBy)
require (isPow2(beatBytes) && isPow2(groupBy))
val lgBytes = log2Ceil(beatBytes)
val sizeOH = UIntToOH(lgSize | 0.U(log2Up(beatBytes).W), log2Up(beatBytes)) | (groupBy*2 - 1).U
def helper(i: Int): Seq[(Bool, Bool)] = {
if (i == 0) {
Seq((lgSize >= lgBytes.asUInt, true.B))
} else {
val sub = helper(i-1)
val size = sizeOH(lgBytes - i)
val bit = addr_lo(lgBytes - i)
val nbit = !bit
Seq.tabulate (1 << i) { j =>
val (sub_acc, sub_eq) = sub(j/2)
val eq = sub_eq && (if (j % 2 == 1) bit else nbit)
val acc = sub_acc || (size && eq)
(acc, eq)
}
}
}
if (groupBy == beatBytes) 1.U else
Cat(helper(lgBytes-log2Ceil(groupBy)).map(_._1).reverse)
}
}
File PlusArg.scala:
// See LICENSE.SiFive for license details.
package freechips.rocketchip.util
import chisel3._
import chisel3.experimental._
import chisel3.util.HasBlackBoxResource
@deprecated("This will be removed in Rocket Chip 2020.08", "Rocket Chip 2020.05")
case class PlusArgInfo(default: BigInt, docstring: String)
/** Case class for PlusArg information
*
* @tparam A scala type of the PlusArg value
* @param default optional default value
* @param docstring text to include in the help
* @param doctype description of the Verilog type of the PlusArg value (e.g. STRING, INT)
*/
private case class PlusArgContainer[A](default: Option[A], docstring: String, doctype: String)
/** Typeclass for converting a type to a doctype string
* @tparam A some type
*/
trait Doctypeable[A] {
/** Return the doctype string for some option */
def toDoctype(a: Option[A]): String
}
/** Object containing implementations of the Doctypeable typeclass */
object Doctypes {
/** Converts an Int => "INT" */
implicit val intToDoctype = new Doctypeable[Int] { def toDoctype(a: Option[Int]) = "INT" }
/** Converts a BigInt => "INT" */
implicit val bigIntToDoctype = new Doctypeable[BigInt] { def toDoctype(a: Option[BigInt]) = "INT" }
/** Converts a String => "STRING" */
implicit val stringToDoctype = new Doctypeable[String] { def toDoctype(a: Option[String]) = "STRING" }
}
class plusarg_reader(val format: String, val default: BigInt, val docstring: String, val width: Int) extends BlackBox(Map(
"FORMAT" -> StringParam(format),
"DEFAULT" -> IntParam(default),
"WIDTH" -> IntParam(width)
)) with HasBlackBoxResource {
val io = IO(new Bundle {
val out = Output(UInt(width.W))
})
addResource("/vsrc/plusarg_reader.v")
}
/* This wrapper class has no outputs, making it clear it is a simulation-only construct */
class PlusArgTimeout(val format: String, val default: BigInt, val docstring: String, val width: Int) extends Module {
val io = IO(new Bundle {
val count = Input(UInt(width.W))
})
val max = Module(new plusarg_reader(format, default, docstring, width)).io.out
when (max > 0.U) {
assert (io.count < max, s"Timeout exceeded: $docstring")
}
}
import Doctypes._
object PlusArg
{
/** PlusArg("foo") will return 42.U if the simulation is run with +foo=42
* Do not use this as an initial register value. The value is set in an
* initial block and thus accessing it from another initial is racey.
* Add a docstring to document the arg, which can be dumped in an elaboration
* pass.
*/
def apply(name: String, default: BigInt = 0, docstring: String = "", width: Int = 32): UInt = {
PlusArgArtefacts.append(name, Some(default), docstring)
Module(new plusarg_reader(name + "=%d", default, docstring, width)).io.out
}
/** PlusArg.timeout(name, default, docstring)(count) will use chisel.assert
* to kill the simulation when count exceeds the specified integer argument.
* Default 0 will never assert.
*/
def timeout(name: String, default: BigInt = 0, docstring: String = "", width: Int = 32)(count: UInt): Unit = {
PlusArgArtefacts.append(name, Some(default), docstring)
Module(new PlusArgTimeout(name + "=%d", default, docstring, width)).io.count := count
}
}
object PlusArgArtefacts {
private var artefacts: Map[String, PlusArgContainer[_]] = Map.empty
/* Add a new PlusArg */
@deprecated(
"Use `Some(BigInt)` to specify a `default` value. This will be removed in Rocket Chip 2020.08",
"Rocket Chip 2020.05"
)
def append(name: String, default: BigInt, docstring: String): Unit = append(name, Some(default), docstring)
/** Add a new PlusArg
*
* @tparam A scala type of the PlusArg value
* @param name name for the PlusArg
* @param default optional default value
* @param docstring text to include in the help
*/
def append[A : Doctypeable](name: String, default: Option[A], docstring: String): Unit =
artefacts = artefacts ++
Map(name -> PlusArgContainer(default, docstring, implicitly[Doctypeable[A]].toDoctype(default)))
/* From plus args, generate help text */
private def serializeHelp_cHeader(tab: String = ""): String = artefacts
.map{ case(arg, info) =>
s"""|$tab+$arg=${info.doctype}\\n\\
|$tab${" "*20}${info.docstring}\\n\\
|""".stripMargin ++ info.default.map{ case default =>
s"$tab${" "*22}(default=${default})\\n\\\n"}.getOrElse("")
}.toSeq.mkString("\\n\\\n") ++ "\""
/* From plus args, generate a char array of their names */
private def serializeArray_cHeader(tab: String = ""): String = {
val prettyTab = tab + " " * 44 // Length of 'static const ...'
s"${tab}static const char * verilog_plusargs [] = {\\\n" ++
artefacts
.map{ case(arg, _) => s"""$prettyTab"$arg",\\\n""" }
.mkString("")++
s"${prettyTab}0};"
}
/* Generate C code to be included in emulator.cc that helps with
* argument parsing based on available Verilog PlusArgs */
def serialize_cHeader(): String =
s"""|#define PLUSARG_USAGE_OPTIONS \"EMULATOR VERILOG PLUSARGS\\n\\
|${serializeHelp_cHeader(" "*7)}
|${serializeArray_cHeader()}
|""".stripMargin
}
File package.scala:
// See LICENSE.SiFive for license details.
package freechips.rocketchip
import chisel3._
import chisel3.util._
import scala.math.min
import scala.collection.{immutable, mutable}
package object util {
implicit class UnzippableOption[S, T](val x: Option[(S, T)]) {
def unzip = (x.map(_._1), x.map(_._2))
}
implicit class UIntIsOneOf(private val x: UInt) extends AnyVal {
def isOneOf(s: Seq[UInt]): Bool = s.map(x === _).orR
def isOneOf(u1: UInt, u2: UInt*): Bool = isOneOf(u1 +: u2.toSeq)
}
implicit class VecToAugmentedVec[T <: Data](private val x: Vec[T]) extends AnyVal {
/** Like Vec.apply(idx), but tolerates indices of mismatched width */
def extract(idx: UInt): T = x((idx | 0.U(log2Ceil(x.size).W)).extract(log2Ceil(x.size) - 1, 0))
}
implicit class SeqToAugmentedSeq[T <: Data](private val x: Seq[T]) extends AnyVal {
def apply(idx: UInt): T = {
if (x.size <= 1) {
x.head
} else if (!isPow2(x.size)) {
// For non-power-of-2 seqs, reflect elements to simplify decoder
(x ++ x.takeRight(x.size & -x.size)).toSeq(idx)
} else {
// Ignore MSBs of idx
val truncIdx =
if (idx.isWidthKnown && idx.getWidth <= log2Ceil(x.size)) idx
else (idx | 0.U(log2Ceil(x.size).W))(log2Ceil(x.size)-1, 0)
x.zipWithIndex.tail.foldLeft(x.head) { case (prev, (cur, i)) => Mux(truncIdx === i.U, cur, prev) }
}
}
def extract(idx: UInt): T = VecInit(x).extract(idx)
def asUInt: UInt = Cat(x.map(_.asUInt).reverse)
def rotate(n: Int): Seq[T] = x.drop(n) ++ x.take(n)
def rotate(n: UInt): Seq[T] = {
if (x.size <= 1) {
x
} else {
require(isPow2(x.size))
val amt = n.padTo(log2Ceil(x.size))
(0 until log2Ceil(x.size)).foldLeft(x)((r, i) => (r.rotate(1 << i) zip r).map { case (s, a) => Mux(amt(i), s, a) })
}
}
def rotateRight(n: Int): Seq[T] = x.takeRight(n) ++ x.dropRight(n)
def rotateRight(n: UInt): Seq[T] = {
if (x.size <= 1) {
x
} else {
require(isPow2(x.size))
val amt = n.padTo(log2Ceil(x.size))
(0 until log2Ceil(x.size)).foldLeft(x)((r, i) => (r.rotateRight(1 << i) zip r).map { case (s, a) => Mux(amt(i), s, a) })
}
}
}
// allow bitwise ops on Seq[Bool] just like UInt
implicit class SeqBoolBitwiseOps(private val x: Seq[Bool]) extends AnyVal {
def & (y: Seq[Bool]): Seq[Bool] = (x zip y).map { case (a, b) => a && b }
def | (y: Seq[Bool]): Seq[Bool] = padZip(x, y).map { case (a, b) => a || b }
def ^ (y: Seq[Bool]): Seq[Bool] = padZip(x, y).map { case (a, b) => a ^ b }
def << (n: Int): Seq[Bool] = Seq.fill(n)(false.B) ++ x
def >> (n: Int): Seq[Bool] = x drop n
def unary_~ : Seq[Bool] = x.map(!_)
def andR: Bool = if (x.isEmpty) true.B else x.reduce(_&&_)
def orR: Bool = if (x.isEmpty) false.B else x.reduce(_||_)
def xorR: Bool = if (x.isEmpty) false.B else x.reduce(_^_)
private def padZip(y: Seq[Bool], z: Seq[Bool]): Seq[(Bool, Bool)] = y.padTo(z.size, false.B) zip z.padTo(y.size, false.B)
}
implicit class DataToAugmentedData[T <: Data](private val x: T) extends AnyVal {
def holdUnless(enable: Bool): T = Mux(enable, x, RegEnable(x, enable))
def getElements: Seq[Element] = x match {
case e: Element => Seq(e)
case a: Aggregate => a.getElements.flatMap(_.getElements)
}
}
/** Any Data subtype that has a Bool member named valid. */
type DataCanBeValid = Data { val valid: Bool }
implicit class SeqMemToAugmentedSeqMem[T <: Data](private val x: SyncReadMem[T]) extends AnyVal {
def readAndHold(addr: UInt, enable: Bool): T = x.read(addr, enable) holdUnless RegNext(enable)
}
implicit class StringToAugmentedString(private val x: String) extends AnyVal {
/** converts from camel case to to underscores, also removing all spaces */
def underscore: String = x.tail.foldLeft(x.headOption.map(_.toLower + "") getOrElse "") {
case (acc, c) if c.isUpper => acc + "_" + c.toLower
case (acc, c) if c == ' ' => acc
case (acc, c) => acc + c
}
/** converts spaces or underscores to hyphens, also lowering case */
def kebab: String = x.toLowerCase map {
case ' ' => '-'
case '_' => '-'
case c => c
}
def named(name: Option[String]): String = {
x + name.map("_named_" + _ ).getOrElse("_with_no_name")
}
def named(name: String): String = named(Some(name))
}
implicit def uintToBitPat(x: UInt): BitPat = BitPat(x)
implicit def wcToUInt(c: WideCounter): UInt = c.value
implicit class UIntToAugmentedUInt(private val x: UInt) extends AnyVal {
def sextTo(n: Int): UInt = {
require(x.getWidth <= n)
if (x.getWidth == n) x
else Cat(Fill(n - x.getWidth, x(x.getWidth-1)), x)
}
def padTo(n: Int): UInt = {
require(x.getWidth <= n)
if (x.getWidth == n) x
else Cat(0.U((n - x.getWidth).W), x)
}
// shifts left by n if n >= 0, or right by -n if n < 0
def << (n: SInt): UInt = {
val w = n.getWidth - 1
require(w <= 30)
val shifted = x << n(w-1, 0)
Mux(n(w), shifted >> (1 << w), shifted)
}
// shifts right by n if n >= 0, or left by -n if n < 0
def >> (n: SInt): UInt = {
val w = n.getWidth - 1
require(w <= 30)
val shifted = x << (1 << w) >> n(w-1, 0)
Mux(n(w), shifted, shifted >> (1 << w))
}
// Like UInt.apply(hi, lo), but returns 0.U for zero-width extracts
def extract(hi: Int, lo: Int): UInt = {
require(hi >= lo-1)
if (hi == lo-1) 0.U
else x(hi, lo)
}
// Like Some(UInt.apply(hi, lo)), but returns None for zero-width extracts
def extractOption(hi: Int, lo: Int): Option[UInt] = {
require(hi >= lo-1)
if (hi == lo-1) None
else Some(x(hi, lo))
}
// like x & ~y, but first truncate or zero-extend y to x's width
def andNot(y: UInt): UInt = x & ~(y | (x & 0.U))
def rotateRight(n: Int): UInt = if (n == 0) x else Cat(x(n-1, 0), x >> n)
def rotateRight(n: UInt): UInt = {
if (x.getWidth <= 1) {
x
} else {
val amt = n.padTo(log2Ceil(x.getWidth))
(0 until log2Ceil(x.getWidth)).foldLeft(x)((r, i) => Mux(amt(i), r.rotateRight(1 << i), r))
}
}
def rotateLeft(n: Int): UInt = if (n == 0) x else Cat(x(x.getWidth-1-n,0), x(x.getWidth-1,x.getWidth-n))
def rotateLeft(n: UInt): UInt = {
if (x.getWidth <= 1) {
x
} else {
val amt = n.padTo(log2Ceil(x.getWidth))
(0 until log2Ceil(x.getWidth)).foldLeft(x)((r, i) => Mux(amt(i), r.rotateLeft(1 << i), r))
}
}
// compute (this + y) % n, given (this < n) and (y < n)
def addWrap(y: UInt, n: Int): UInt = {
val z = x +& y
if (isPow2(n)) z(n.log2-1, 0) else Mux(z >= n.U, z - n.U, z)(log2Ceil(n)-1, 0)
}
// compute (this - y) % n, given (this < n) and (y < n)
def subWrap(y: UInt, n: Int): UInt = {
val z = x -& y
if (isPow2(n)) z(n.log2-1, 0) else Mux(z(z.getWidth-1), z + n.U, z)(log2Ceil(n)-1, 0)
}
def grouped(width: Int): Seq[UInt] =
(0 until x.getWidth by width).map(base => x(base + width - 1, base))
def inRange(base: UInt, bounds: UInt) = x >= base && x < bounds
def ## (y: Option[UInt]): UInt = y.map(x ## _).getOrElse(x)
// Like >=, but prevents x-prop for ('x >= 0)
def >== (y: UInt): Bool = x >= y || y === 0.U
}
implicit class OptionUIntToAugmentedOptionUInt(private val x: Option[UInt]) extends AnyVal {
def ## (y: UInt): UInt = x.map(_ ## y).getOrElse(y)
def ## (y: Option[UInt]): Option[UInt] = x.map(_ ## y)
}
implicit class BooleanToAugmentedBoolean(private val x: Boolean) extends AnyVal {
def toInt: Int = if (x) 1 else 0
// this one's snagged from scalaz
def option[T](z: => T): Option[T] = if (x) Some(z) else None
}
implicit class IntToAugmentedInt(private val x: Int) extends AnyVal {
// exact log2
def log2: Int = {
require(isPow2(x))
log2Ceil(x)
}
}
def OH1ToOH(x: UInt): UInt = (x << 1 | 1.U) & ~Cat(0.U(1.W), x)
def OH1ToUInt(x: UInt): UInt = OHToUInt(OH1ToOH(x))
def UIntToOH1(x: UInt, width: Int): UInt = ~((-1).S(width.W).asUInt << x)(width-1, 0)
def UIntToOH1(x: UInt): UInt = UIntToOH1(x, (1 << x.getWidth) - 1)
def trailingZeros(x: Int): Option[Int] = if (x > 0) Some(log2Ceil(x & -x)) else None
// Fill 1s from low bits to high bits
def leftOR(x: UInt): UInt = leftOR(x, x.getWidth, x.getWidth)
def leftOR(x: UInt, width: Integer, cap: Integer = 999999): UInt = {
val stop = min(width, cap)
def helper(s: Int, x: UInt): UInt =
if (s >= stop) x else helper(s+s, x | (x << s)(width-1,0))
helper(1, x)(width-1, 0)
}
// Fill 1s form high bits to low bits
def rightOR(x: UInt): UInt = rightOR(x, x.getWidth, x.getWidth)
def rightOR(x: UInt, width: Integer, cap: Integer = 999999): UInt = {
val stop = min(width, cap)
def helper(s: Int, x: UInt): UInt =
if (s >= stop) x else helper(s+s, x | (x >> s))
helper(1, x)(width-1, 0)
}
def OptimizationBarrier[T <: Data](in: T): T = {
val barrier = Module(new Module {
val io = IO(new Bundle {
val x = Input(chiselTypeOf(in))
val y = Output(chiselTypeOf(in))
})
io.y := io.x
override def desiredName = s"OptimizationBarrier_${in.typeName}"
})
barrier.io.x := in
barrier.io.y
}
/** Similar to Seq.groupBy except this returns a Seq instead of a Map
* Useful for deterministic code generation
*/
def groupByIntoSeq[A, K](xs: Seq[A])(f: A => K): immutable.Seq[(K, immutable.Seq[A])] = {
val map = mutable.LinkedHashMap.empty[K, mutable.ListBuffer[A]]
for (x <- xs) {
val key = f(x)
val l = map.getOrElseUpdate(key, mutable.ListBuffer.empty[A])
l += x
}
map.view.map({ case (k, vs) => k -> vs.toList }).toList
}
def heterogeneousOrGlobalSetting[T](in: Seq[T], n: Int): Seq[T] = in.size match {
case 1 => List.fill(n)(in.head)
case x if x == n => in
case _ => throw new Exception(s"must provide exactly 1 or $n of some field, but got:\n$in")
}
// HeterogeneousBag moved to standalond diplomacy
@deprecated("HeterogeneousBag has been absorbed into standalone diplomacy library", "rocketchip 2.0.0")
def HeterogeneousBag[T <: Data](elts: Seq[T]) = _root_.org.chipsalliance.diplomacy.nodes.HeterogeneousBag[T](elts)
@deprecated("HeterogeneousBag has been absorbed into standalone diplomacy library", "rocketchip 2.0.0")
val HeterogeneousBag = _root_.org.chipsalliance.diplomacy.nodes.HeterogeneousBag
}
File Bundles.scala:
// See LICENSE.SiFive for license details.
package freechips.rocketchip.tilelink
import chisel3._
import freechips.rocketchip.util._
import scala.collection.immutable.ListMap
import chisel3.util.Decoupled
import chisel3.util.DecoupledIO
import chisel3.reflect.DataMirror
abstract class TLBundleBase(val params: TLBundleParameters) extends Bundle
// common combos in lazy policy:
// Put + Acquire
// Release + AccessAck
object TLMessages
{
// A B C D E
def PutFullData = 0.U // . . => AccessAck
def PutPartialData = 1.U // . . => AccessAck
def ArithmeticData = 2.U // . . => AccessAckData
def LogicalData = 3.U // . . => AccessAckData
def Get = 4.U // . . => AccessAckData
def Hint = 5.U // . . => HintAck
def AcquireBlock = 6.U // . => Grant[Data]
def AcquirePerm = 7.U // . => Grant[Data]
def Probe = 6.U // . => ProbeAck[Data]
def AccessAck = 0.U // . .
def AccessAckData = 1.U // . .
def HintAck = 2.U // . .
def ProbeAck = 4.U // .
def ProbeAckData = 5.U // .
def Release = 6.U // . => ReleaseAck
def ReleaseData = 7.U // . => ReleaseAck
def Grant = 4.U // . => GrantAck
def GrantData = 5.U // . => GrantAck
def ReleaseAck = 6.U // .
def GrantAck = 0.U // .
def isA(x: UInt) = x <= AcquirePerm
def isB(x: UInt) = x <= Probe
def isC(x: UInt) = x <= ReleaseData
def isD(x: UInt) = x <= ReleaseAck
def adResponse = VecInit(AccessAck, AccessAck, AccessAckData, AccessAckData, AccessAckData, HintAck, Grant, Grant)
def bcResponse = VecInit(AccessAck, AccessAck, AccessAckData, AccessAckData, AccessAckData, HintAck, ProbeAck, ProbeAck)
def a = Seq( ("PutFullData",TLPermissions.PermMsgReserved),
("PutPartialData",TLPermissions.PermMsgReserved),
("ArithmeticData",TLAtomics.ArithMsg),
("LogicalData",TLAtomics.LogicMsg),
("Get",TLPermissions.PermMsgReserved),
("Hint",TLHints.HintsMsg),
("AcquireBlock",TLPermissions.PermMsgGrow),
("AcquirePerm",TLPermissions.PermMsgGrow))
def b = Seq( ("PutFullData",TLPermissions.PermMsgReserved),
("PutPartialData",TLPermissions.PermMsgReserved),
("ArithmeticData",TLAtomics.ArithMsg),
("LogicalData",TLAtomics.LogicMsg),
("Get",TLPermissions.PermMsgReserved),
("Hint",TLHints.HintsMsg),
("Probe",TLPermissions.PermMsgCap))
def c = Seq( ("AccessAck",TLPermissions.PermMsgReserved),
("AccessAckData",TLPermissions.PermMsgReserved),
("HintAck",TLPermissions.PermMsgReserved),
("Invalid Opcode",TLPermissions.PermMsgReserved),
("ProbeAck",TLPermissions.PermMsgReport),
("ProbeAckData",TLPermissions.PermMsgReport),
("Release",TLPermissions.PermMsgReport),
("ReleaseData",TLPermissions.PermMsgReport))
def d = Seq( ("AccessAck",TLPermissions.PermMsgReserved),
("AccessAckData",TLPermissions.PermMsgReserved),
("HintAck",TLPermissions.PermMsgReserved),
("Invalid Opcode",TLPermissions.PermMsgReserved),
("Grant",TLPermissions.PermMsgCap),
("GrantData",TLPermissions.PermMsgCap),
("ReleaseAck",TLPermissions.PermMsgReserved))
}
/**
* The three primary TileLink permissions are:
* (T)runk: the agent is (or is on inwards path to) the global point of serialization.
* (B)ranch: the agent is on an outwards path to
* (N)one:
* These permissions are permuted by transfer operations in various ways.
* Operations can cap permissions, request for them to be grown or shrunk,
* or for a report on their current status.
*/
object TLPermissions
{
val aWidth = 2
val bdWidth = 2
val cWidth = 3
// Cap types (Grant = new permissions, Probe = permisions <= target)
def toT = 0.U(bdWidth.W)
def toB = 1.U(bdWidth.W)
def toN = 2.U(bdWidth.W)
def isCap(x: UInt) = x <= toN
// Grow types (Acquire = permissions >= target)
def NtoB = 0.U(aWidth.W)
def NtoT = 1.U(aWidth.W)
def BtoT = 2.U(aWidth.W)
def isGrow(x: UInt) = x <= BtoT
// Shrink types (ProbeAck, Release)
def TtoB = 0.U(cWidth.W)
def TtoN = 1.U(cWidth.W)
def BtoN = 2.U(cWidth.W)
def isShrink(x: UInt) = x <= BtoN
// Report types (ProbeAck, Release)
def TtoT = 3.U(cWidth.W)
def BtoB = 4.U(cWidth.W)
def NtoN = 5.U(cWidth.W)
def isReport(x: UInt) = x <= NtoN
def PermMsgGrow:Seq[String] = Seq("Grow NtoB", "Grow NtoT", "Grow BtoT")
def PermMsgCap:Seq[String] = Seq("Cap toT", "Cap toB", "Cap toN")
def PermMsgReport:Seq[String] = Seq("Shrink TtoB", "Shrink TtoN", "Shrink BtoN", "Report TotT", "Report BtoB", "Report NtoN")
def PermMsgReserved:Seq[String] = Seq("Reserved")
}
object TLAtomics
{
val width = 3
// Arithmetic types
def MIN = 0.U(width.W)
def MAX = 1.U(width.W)
def MINU = 2.U(width.W)
def MAXU = 3.U(width.W)
def ADD = 4.U(width.W)
def isArithmetic(x: UInt) = x <= ADD
// Logical types
def XOR = 0.U(width.W)
def OR = 1.U(width.W)
def AND = 2.U(width.W)
def SWAP = 3.U(width.W)
def isLogical(x: UInt) = x <= SWAP
def ArithMsg:Seq[String] = Seq("MIN", "MAX", "MINU", "MAXU", "ADD")
def LogicMsg:Seq[String] = Seq("XOR", "OR", "AND", "SWAP")
}
object TLHints
{
val width = 1
def PREFETCH_READ = 0.U(width.W)
def PREFETCH_WRITE = 1.U(width.W)
def isHints(x: UInt) = x <= PREFETCH_WRITE
def HintsMsg:Seq[String] = Seq("PrefetchRead", "PrefetchWrite")
}
sealed trait TLChannel extends TLBundleBase {
val channelName: String
}
sealed trait TLDataChannel extends TLChannel
sealed trait TLAddrChannel extends TLDataChannel
final class TLBundleA(params: TLBundleParameters)
extends TLBundleBase(params) with TLAddrChannel
{
override def typeName = s"TLBundleA_${params.shortName}"
val channelName = "'A' channel"
// fixed fields during multibeat:
val opcode = UInt(3.W)
val param = UInt(List(TLAtomics.width, TLPermissions.aWidth, TLHints.width).max.W) // amo_opcode || grow perms || hint
val size = UInt(params.sizeBits.W)
val source = UInt(params.sourceBits.W) // from
val address = UInt(params.addressBits.W) // to
val user = BundleMap(params.requestFields)
val echo = BundleMap(params.echoFields)
// variable fields during multibeat:
val mask = UInt((params.dataBits/8).W)
val data = UInt(params.dataBits.W)
val corrupt = Bool() // only applies to *Data messages
}
final class TLBundleB(params: TLBundleParameters)
extends TLBundleBase(params) with TLAddrChannel
{
override def typeName = s"TLBundleB_${params.shortName}"
val channelName = "'B' channel"
// fixed fields during multibeat:
val opcode = UInt(3.W)
val param = UInt(TLPermissions.bdWidth.W) // cap perms
val size = UInt(params.sizeBits.W)
val source = UInt(params.sourceBits.W) // to
val address = UInt(params.addressBits.W) // from
// variable fields during multibeat:
val mask = UInt((params.dataBits/8).W)
val data = UInt(params.dataBits.W)
val corrupt = Bool() // only applies to *Data messages
}
final class TLBundleC(params: TLBundleParameters)
extends TLBundleBase(params) with TLAddrChannel
{
override def typeName = s"TLBundleC_${params.shortName}"
val channelName = "'C' channel"
// fixed fields during multibeat:
val opcode = UInt(3.W)
val param = UInt(TLPermissions.cWidth.W) // shrink or report perms
val size = UInt(params.sizeBits.W)
val source = UInt(params.sourceBits.W) // from
val address = UInt(params.addressBits.W) // to
val user = BundleMap(params.requestFields)
val echo = BundleMap(params.echoFields)
// variable fields during multibeat:
val data = UInt(params.dataBits.W)
val corrupt = Bool() // only applies to *Data messages
}
final class TLBundleD(params: TLBundleParameters)
extends TLBundleBase(params) with TLDataChannel
{
override def typeName = s"TLBundleD_${params.shortName}"
val channelName = "'D' channel"
// fixed fields during multibeat:
val opcode = UInt(3.W)
val param = UInt(TLPermissions.bdWidth.W) // cap perms
val size = UInt(params.sizeBits.W)
val source = UInt(params.sourceBits.W) // to
val sink = UInt(params.sinkBits.W) // from
val denied = Bool() // implies corrupt iff *Data
val user = BundleMap(params.responseFields)
val echo = BundleMap(params.echoFields)
// variable fields during multibeat:
val data = UInt(params.dataBits.W)
val corrupt = Bool() // only applies to *Data messages
}
final class TLBundleE(params: TLBundleParameters)
extends TLBundleBase(params) with TLChannel
{
override def typeName = s"TLBundleE_${params.shortName}"
val channelName = "'E' channel"
val sink = UInt(params.sinkBits.W) // to
}
class TLBundle(val params: TLBundleParameters) extends Record
{
// Emulate a Bundle with elements abcde or ad depending on params.hasBCE
private val optA = Some (Decoupled(new TLBundleA(params)))
private val optB = params.hasBCE.option(Flipped(Decoupled(new TLBundleB(params))))
private val optC = params.hasBCE.option(Decoupled(new TLBundleC(params)))
private val optD = Some (Flipped(Decoupled(new TLBundleD(params))))
private val optE = params.hasBCE.option(Decoupled(new TLBundleE(params)))
def a: DecoupledIO[TLBundleA] = optA.getOrElse(WireDefault(0.U.asTypeOf(Decoupled(new TLBundleA(params)))))
def b: DecoupledIO[TLBundleB] = optB.getOrElse(WireDefault(0.U.asTypeOf(Decoupled(new TLBundleB(params)))))
def c: DecoupledIO[TLBundleC] = optC.getOrElse(WireDefault(0.U.asTypeOf(Decoupled(new TLBundleC(params)))))
def d: DecoupledIO[TLBundleD] = optD.getOrElse(WireDefault(0.U.asTypeOf(Decoupled(new TLBundleD(params)))))
def e: DecoupledIO[TLBundleE] = optE.getOrElse(WireDefault(0.U.asTypeOf(Decoupled(new TLBundleE(params)))))
val elements =
if (params.hasBCE) ListMap("e" -> e, "d" -> d, "c" -> c, "b" -> b, "a" -> a)
else ListMap("d" -> d, "a" -> a)
def tieoff(): Unit = {
DataMirror.specifiedDirectionOf(a.ready) match {
case SpecifiedDirection.Input =>
a.ready := false.B
c.ready := false.B
e.ready := false.B
b.valid := false.B
d.valid := false.B
case SpecifiedDirection.Output =>
a.valid := false.B
c.valid := false.B
e.valid := false.B
b.ready := false.B
d.ready := false.B
case _ =>
}
}
}
object TLBundle
{
def apply(params: TLBundleParameters) = new TLBundle(params)
}
class TLAsyncBundleBase(val params: TLAsyncBundleParameters) extends Bundle
class TLAsyncBundle(params: TLAsyncBundleParameters) extends TLAsyncBundleBase(params)
{
val a = new AsyncBundle(new TLBundleA(params.base), params.async)
val b = Flipped(new AsyncBundle(new TLBundleB(params.base), params.async))
val c = new AsyncBundle(new TLBundleC(params.base), params.async)
val d = Flipped(new AsyncBundle(new TLBundleD(params.base), params.async))
val e = new AsyncBundle(new TLBundleE(params.base), params.async)
}
class TLRationalBundle(params: TLBundleParameters) extends TLBundleBase(params)
{
val a = RationalIO(new TLBundleA(params))
val b = Flipped(RationalIO(new TLBundleB(params)))
val c = RationalIO(new TLBundleC(params))
val d = Flipped(RationalIO(new TLBundleD(params)))
val e = RationalIO(new TLBundleE(params))
}
class TLCreditedBundle(params: TLBundleParameters) extends TLBundleBase(params)
{
val a = CreditedIO(new TLBundleA(params))
val b = Flipped(CreditedIO(new TLBundleB(params)))
val c = CreditedIO(new TLBundleC(params))
val d = Flipped(CreditedIO(new TLBundleD(params)))
val e = CreditedIO(new TLBundleE(params))
}
File Parameters.scala:
// See LICENSE.SiFive for license details.
package freechips.rocketchip.diplomacy
import chisel3._
import chisel3.util.{DecoupledIO, Queue, ReadyValidIO, isPow2, log2Ceil, log2Floor}
import freechips.rocketchip.util.ShiftQueue
/** Options for describing the attributes of memory regions */
object RegionType {
// Define the 'more relaxed than' ordering
val cases = Seq(CACHED, TRACKED, UNCACHED, IDEMPOTENT, VOLATILE, PUT_EFFECTS, GET_EFFECTS)
sealed trait T extends Ordered[T] {
def compare(that: T): Int = cases.indexOf(that) compare cases.indexOf(this)
}
case object CACHED extends T // an intermediate agent may have cached a copy of the region for you
case object TRACKED extends T // the region may have been cached by another master, but coherence is being provided
case object UNCACHED extends T // the region has not been cached yet, but should be cached when possible
case object IDEMPOTENT extends T // gets return most recently put content, but content should not be cached
case object VOLATILE extends T // content may change without a put, but puts and gets have no side effects
case object PUT_EFFECTS extends T // puts produce side effects and so must not be combined/delayed
case object GET_EFFECTS extends T // gets produce side effects and so must not be issued speculatively
}
// A non-empty half-open range; [start, end)
case class IdRange(start: Int, end: Int) extends Ordered[IdRange]
{
require (start >= 0, s"Ids cannot be negative, but got: $start.")
require (start <= end, "Id ranges cannot be negative.")
def compare(x: IdRange) = {
val primary = (this.start - x.start).signum
val secondary = (x.end - this.end).signum
if (primary != 0) primary else secondary
}
def overlaps(x: IdRange) = start < x.end && x.start < end
def contains(x: IdRange) = start <= x.start && x.end <= end
def contains(x: Int) = start <= x && x < end
def contains(x: UInt) =
if (size == 0) {
false.B
} else if (size == 1) { // simple comparison
x === start.U
} else {
// find index of largest different bit
val largestDeltaBit = log2Floor(start ^ (end-1))
val smallestCommonBit = largestDeltaBit + 1 // may not exist in x
val uncommonMask = (1 << smallestCommonBit) - 1
val uncommonBits = (x | 0.U(smallestCommonBit.W))(largestDeltaBit, 0)
// the prefix must match exactly (note: may shift ALL bits away)
(x >> smallestCommonBit) === (start >> smallestCommonBit).U &&
// firrtl constant prop range analysis can eliminate these two:
(start & uncommonMask).U <= uncommonBits &&
uncommonBits <= ((end-1) & uncommonMask).U
}
def shift(x: Int) = IdRange(start+x, end+x)
def size = end - start
def isEmpty = end == start
def range = start until end
}
object IdRange
{
def overlaps(s: Seq[IdRange]) = if (s.isEmpty) None else {
val ranges = s.sorted
(ranges.tail zip ranges.init) find { case (a, b) => a overlaps b }
}
}
// An potentially empty inclusive range of 2-powers [min, max] (in bytes)
case class TransferSizes(min: Int, max: Int)
{
def this(x: Int) = this(x, x)
require (min <= max, s"Min transfer $min > max transfer $max")
require (min >= 0 && max >= 0, s"TransferSizes must be positive, got: ($min, $max)")
require (max == 0 || isPow2(max), s"TransferSizes must be a power of 2, got: $max")
require (min == 0 || isPow2(min), s"TransferSizes must be a power of 2, got: $min")
require (max == 0 || min != 0, s"TransferSize 0 is forbidden unless (0,0), got: ($min, $max)")
def none = min == 0
def contains(x: Int) = isPow2(x) && min <= x && x <= max
def containsLg(x: Int) = contains(1 << x)
def containsLg(x: UInt) =
if (none) false.B
else if (min == max) { log2Ceil(min).U === x }
else { log2Ceil(min).U <= x && x <= log2Ceil(max).U }
def contains(x: TransferSizes) = x.none || (min <= x.min && x.max <= max)
def intersect(x: TransferSizes) =
if (x.max < min || max < x.min) TransferSizes.none
else TransferSizes(scala.math.max(min, x.min), scala.math.min(max, x.max))
// Not a union, because the result may contain sizes contained by neither term
// NOT TO BE CONFUSED WITH COVERPOINTS
def mincover(x: TransferSizes) = {
if (none) {
x
} else if (x.none) {
this
} else {
TransferSizes(scala.math.min(min, x.min), scala.math.max(max, x.max))
}
}
override def toString() = "TransferSizes[%d, %d]".format(min, max)
}
object TransferSizes {
def apply(x: Int) = new TransferSizes(x)
val none = new TransferSizes(0)
def mincover(seq: Seq[TransferSizes]) = seq.foldLeft(none)(_ mincover _)
def intersect(seq: Seq[TransferSizes]) = seq.reduce(_ intersect _)
implicit def asBool(x: TransferSizes) = !x.none
}
// AddressSets specify the address space managed by the manager
// Base is the base address, and mask are the bits consumed by the manager
// e.g: base=0x200, mask=0xff describes a device managing 0x200-0x2ff
// e.g: base=0x1000, mask=0xf0f decribes a device managing 0x1000-0x100f, 0x1100-0x110f, ...
case class AddressSet(base: BigInt, mask: BigInt) extends Ordered[AddressSet]
{
// Forbid misaligned base address (and empty sets)
require ((base & mask) == 0, s"Mis-aligned AddressSets are forbidden, got: ${this.toString}")
require (base >= 0, s"AddressSet negative base is ambiguous: $base") // TL2 address widths are not fixed => negative is ambiguous
// We do allow negative mask (=> ignore all high bits)
def contains(x: BigInt) = ((x ^ base) & ~mask) == 0
def contains(x: UInt) = ((x ^ base.U).zext & (~mask).S) === 0.S
// turn x into an address contained in this set
def legalize(x: UInt): UInt = base.U | (mask.U & x)
// overlap iff bitwise: both care (~mask0 & ~mask1) => both equal (base0=base1)
def overlaps(x: AddressSet) = (~(mask | x.mask) & (base ^ x.base)) == 0
// contains iff bitwise: x.mask => mask && contains(x.base)
def contains(x: AddressSet) = ((x.mask | (base ^ x.base)) & ~mask) == 0
// The number of bytes to which the manager must be aligned
def alignment = ((mask + 1) & ~mask)
// Is this a contiguous memory range
def contiguous = alignment == mask+1
def finite = mask >= 0
def max = { require (finite, "Max cannot be calculated on infinite mask"); base | mask }
// Widen the match function to ignore all bits in imask
def widen(imask: BigInt) = AddressSet(base & ~imask, mask | imask)
// Return an AddressSet that only contains the addresses both sets contain
def intersect(x: AddressSet): Option[AddressSet] = {
if (!overlaps(x)) {
None
} else {
val r_mask = mask & x.mask
val r_base = base | x.base
Some(AddressSet(r_base, r_mask))
}
}
def subtract(x: AddressSet): Seq[AddressSet] = {
intersect(x) match {
case None => Seq(this)
case Some(remove) => AddressSet.enumerateBits(mask & ~remove.mask).map { bit =>
val nmask = (mask & (bit-1)) | remove.mask
val nbase = (remove.base ^ bit) & ~nmask
AddressSet(nbase, nmask)
}
}
}
// AddressSets have one natural Ordering (the containment order, if contiguous)
def compare(x: AddressSet) = {
val primary = (this.base - x.base).signum // smallest address first
val secondary = (x.mask - this.mask).signum // largest mask first
if (primary != 0) primary else secondary
}
// We always want to see things in hex
override def toString() = {
if (mask >= 0) {
"AddressSet(0x%x, 0x%x)".format(base, mask)
} else {
"AddressSet(0x%x, ~0x%x)".format(base, ~mask)
}
}
def toRanges = {
require (finite, "Ranges cannot be calculated on infinite mask")
val size = alignment
val fragments = mask & ~(size-1)
val bits = bitIndexes(fragments)
(BigInt(0) until (BigInt(1) << bits.size)).map { i =>
val off = bitIndexes(i).foldLeft(base) { case (a, b) => a.setBit(bits(b)) }
AddressRange(off, size)
}
}
}
object AddressSet
{
val everything = AddressSet(0, -1)
def misaligned(base: BigInt, size: BigInt, tail: Seq[AddressSet] = Seq()): Seq[AddressSet] = {
if (size == 0) tail.reverse else {
val maxBaseAlignment = base & (-base) // 0 for infinite (LSB)
val maxSizeAlignment = BigInt(1) << log2Floor(size) // MSB of size
val step =
if (maxBaseAlignment == 0 || maxBaseAlignment > maxSizeAlignment)
maxSizeAlignment else maxBaseAlignment
misaligned(base+step, size-step, AddressSet(base, step-1) +: tail)
}
}
def unify(seq: Seq[AddressSet], bit: BigInt): Seq[AddressSet] = {
// Pair terms up by ignoring 'bit'
seq.distinct.groupBy(x => x.copy(base = x.base & ~bit)).map { case (key, seq) =>
if (seq.size == 1) {
seq.head // singleton -> unaffected
} else {
key.copy(mask = key.mask | bit) // pair - widen mask by bit
}
}.toList
}
def unify(seq: Seq[AddressSet]): Seq[AddressSet] = {
val bits = seq.map(_.base).foldLeft(BigInt(0))(_ | _)
AddressSet.enumerateBits(bits).foldLeft(seq) { case (acc, bit) => unify(acc, bit) }.sorted
}
def enumerateMask(mask: BigInt): Seq[BigInt] = {
def helper(id: BigInt, tail: Seq[BigInt]): Seq[BigInt] =
if (id == mask) (id +: tail).reverse else helper(((~mask | id) + 1) & mask, id +: tail)
helper(0, Nil)
}
def enumerateBits(mask: BigInt): Seq[BigInt] = {
def helper(x: BigInt): Seq[BigInt] = {
if (x == 0) {
Nil
} else {
val bit = x & (-x)
bit +: helper(x & ~bit)
}
}
helper(mask)
}
}
case class BufferParams(depth: Int, flow: Boolean, pipe: Boolean)
{
require (depth >= 0, "Buffer depth must be >= 0")
def isDefined = depth > 0
def latency = if (isDefined && !flow) 1 else 0
def apply[T <: Data](x: DecoupledIO[T]) =
if (isDefined) Queue(x, depth, flow=flow, pipe=pipe)
else x
def irrevocable[T <: Data](x: ReadyValidIO[T]) =
if (isDefined) Queue.irrevocable(x, depth, flow=flow, pipe=pipe)
else x
def sq[T <: Data](x: DecoupledIO[T]) =
if (!isDefined) x else {
val sq = Module(new ShiftQueue(x.bits, depth, flow=flow, pipe=pipe))
sq.io.enq <> x
sq.io.deq
}
override def toString() = "BufferParams:%d%s%s".format(depth, if (flow) "F" else "", if (pipe) "P" else "")
}
object BufferParams
{
implicit def apply(depth: Int): BufferParams = BufferParams(depth, false, false)
val default = BufferParams(2)
val none = BufferParams(0)
val flow = BufferParams(1, true, false)
val pipe = BufferParams(1, false, true)
}
case class TriStateValue(value: Boolean, set: Boolean)
{
def update(orig: Boolean) = if (set) value else orig
}
object TriStateValue
{
implicit def apply(value: Boolean): TriStateValue = TriStateValue(value, true)
def unset = TriStateValue(false, false)
}
trait DirectedBuffers[T] {
def copyIn(x: BufferParams): T
def copyOut(x: BufferParams): T
def copyInOut(x: BufferParams): T
}
trait IdMapEntry {
def name: String
def from: IdRange
def to: IdRange
def isCache: Boolean
def requestFifo: Boolean
def maxTransactionsInFlight: Option[Int]
def pretty(fmt: String) =
if (from ne to) { // if the subclass uses the same reference for both from and to, assume its format string has an arity of 5
fmt.format(to.start, to.end, from.start, from.end, s""""$name"""", if (isCache) " [CACHE]" else "", if (requestFifo) " [FIFO]" else "")
} else {
fmt.format(from.start, from.end, s""""$name"""", if (isCache) " [CACHE]" else "", if (requestFifo) " [FIFO]" else "")
}
}
abstract class IdMap[T <: IdMapEntry] {
protected val fmt: String
val mapping: Seq[T]
def pretty: String = mapping.map(_.pretty(fmt)).mkString(",\n")
}
File Edges.scala:
// See LICENSE.SiFive for license details.
package freechips.rocketchip.tilelink
import chisel3._
import chisel3.util._
import chisel3.experimental.SourceInfo
import org.chipsalliance.cde.config.Parameters
import freechips.rocketchip.util._
class TLEdge(
client: TLClientPortParameters,
manager: TLManagerPortParameters,
params: Parameters,
sourceInfo: SourceInfo)
extends TLEdgeParameters(client, manager, params, sourceInfo)
{
def isAligned(address: UInt, lgSize: UInt): Bool = {
if (maxLgSize == 0) true.B else {
val mask = UIntToOH1(lgSize, maxLgSize)
(address & mask) === 0.U
}
}
def mask(address: UInt, lgSize: UInt): UInt =
MaskGen(address, lgSize, manager.beatBytes)
def staticHasData(bundle: TLChannel): Option[Boolean] = {
bundle match {
case _:TLBundleA => {
// Do there exist A messages with Data?
val aDataYes = manager.anySupportArithmetic || manager.anySupportLogical || manager.anySupportPutFull || manager.anySupportPutPartial
// Do there exist A messages without Data?
val aDataNo = manager.anySupportAcquireB || manager.anySupportGet || manager.anySupportHint
// Statically optimize the case where hasData is a constant
if (!aDataYes) Some(false) else if (!aDataNo) Some(true) else None
}
case _:TLBundleB => {
// Do there exist B messages with Data?
val bDataYes = client.anySupportArithmetic || client.anySupportLogical || client.anySupportPutFull || client.anySupportPutPartial
// Do there exist B messages without Data?
val bDataNo = client.anySupportProbe || client.anySupportGet || client.anySupportHint
// Statically optimize the case where hasData is a constant
if (!bDataYes) Some(false) else if (!bDataNo) Some(true) else None
}
case _:TLBundleC => {
// Do there eixst C messages with Data?
val cDataYes = client.anySupportGet || client.anySupportArithmetic || client.anySupportLogical || client.anySupportProbe
// Do there exist C messages without Data?
val cDataNo = client.anySupportPutFull || client.anySupportPutPartial || client.anySupportHint || client.anySupportProbe
if (!cDataYes) Some(false) else if (!cDataNo) Some(true) else None
}
case _:TLBundleD => {
// Do there eixst D messages with Data?
val dDataYes = manager.anySupportGet || manager.anySupportArithmetic || manager.anySupportLogical || manager.anySupportAcquireB
// Do there exist D messages without Data?
val dDataNo = manager.anySupportPutFull || manager.anySupportPutPartial || manager.anySupportHint || manager.anySupportAcquireT
if (!dDataYes) Some(false) else if (!dDataNo) Some(true) else None
}
case _:TLBundleE => Some(false)
}
}
def isRequest(x: TLChannel): Bool = {
x match {
case a: TLBundleA => true.B
case b: TLBundleB => true.B
case c: TLBundleC => c.opcode(2) && c.opcode(1)
// opcode === TLMessages.Release ||
// opcode === TLMessages.ReleaseData
case d: TLBundleD => d.opcode(2) && !d.opcode(1)
// opcode === TLMessages.Grant ||
// opcode === TLMessages.GrantData
case e: TLBundleE => false.B
}
}
def isResponse(x: TLChannel): Bool = {
x match {
case a: TLBundleA => false.B
case b: TLBundleB => false.B
case c: TLBundleC => !c.opcode(2) || !c.opcode(1)
// opcode =/= TLMessages.Release &&
// opcode =/= TLMessages.ReleaseData
case d: TLBundleD => true.B // Grant isResponse + isRequest
case e: TLBundleE => true.B
}
}
def hasData(x: TLChannel): Bool = {
val opdata = x match {
case a: TLBundleA => !a.opcode(2)
// opcode === TLMessages.PutFullData ||
// opcode === TLMessages.PutPartialData ||
// opcode === TLMessages.ArithmeticData ||
// opcode === TLMessages.LogicalData
case b: TLBundleB => !b.opcode(2)
// opcode === TLMessages.PutFullData ||
// opcode === TLMessages.PutPartialData ||
// opcode === TLMessages.ArithmeticData ||
// opcode === TLMessages.LogicalData
case c: TLBundleC => c.opcode(0)
// opcode === TLMessages.AccessAckData ||
// opcode === TLMessages.ProbeAckData ||
// opcode === TLMessages.ReleaseData
case d: TLBundleD => d.opcode(0)
// opcode === TLMessages.AccessAckData ||
// opcode === TLMessages.GrantData
case e: TLBundleE => false.B
}
staticHasData(x).map(_.B).getOrElse(opdata)
}
def opcode(x: TLDataChannel): UInt = {
x match {
case a: TLBundleA => a.opcode
case b: TLBundleB => b.opcode
case c: TLBundleC => c.opcode
case d: TLBundleD => d.opcode
}
}
def param(x: TLDataChannel): UInt = {
x match {
case a: TLBundleA => a.param
case b: TLBundleB => b.param
case c: TLBundleC => c.param
case d: TLBundleD => d.param
}
}
def size(x: TLDataChannel): UInt = {
x match {
case a: TLBundleA => a.size
case b: TLBundleB => b.size
case c: TLBundleC => c.size
case d: TLBundleD => d.size
}
}
def data(x: TLDataChannel): UInt = {
x match {
case a: TLBundleA => a.data
case b: TLBundleB => b.data
case c: TLBundleC => c.data
case d: TLBundleD => d.data
}
}
def corrupt(x: TLDataChannel): Bool = {
x match {
case a: TLBundleA => a.corrupt
case b: TLBundleB => b.corrupt
case c: TLBundleC => c.corrupt
case d: TLBundleD => d.corrupt
}
}
def mask(x: TLAddrChannel): UInt = {
x match {
case a: TLBundleA => a.mask
case b: TLBundleB => b.mask
case c: TLBundleC => mask(c.address, c.size)
}
}
def full_mask(x: TLAddrChannel): UInt = {
x match {
case a: TLBundleA => mask(a.address, a.size)
case b: TLBundleB => mask(b.address, b.size)
case c: TLBundleC => mask(c.address, c.size)
}
}
def address(x: TLAddrChannel): UInt = {
x match {
case a: TLBundleA => a.address
case b: TLBundleB => b.address
case c: TLBundleC => c.address
}
}
def source(x: TLDataChannel): UInt = {
x match {
case a: TLBundleA => a.source
case b: TLBundleB => b.source
case c: TLBundleC => c.source
case d: TLBundleD => d.source
}
}
def addr_hi(x: UInt): UInt = x >> log2Ceil(manager.beatBytes)
def addr_lo(x: UInt): UInt =
if (manager.beatBytes == 1) 0.U else x(log2Ceil(manager.beatBytes)-1, 0)
def addr_hi(x: TLAddrChannel): UInt = addr_hi(address(x))
def addr_lo(x: TLAddrChannel): UInt = addr_lo(address(x))
def numBeats(x: TLChannel): UInt = {
x match {
case _: TLBundleE => 1.U
case bundle: TLDataChannel => {
val hasData = this.hasData(bundle)
val size = this.size(bundle)
val cutoff = log2Ceil(manager.beatBytes)
val small = if (manager.maxTransfer <= manager.beatBytes) true.B else size <= (cutoff).U
val decode = UIntToOH(size, maxLgSize+1) >> cutoff
Mux(hasData, decode | small.asUInt, 1.U)
}
}
}
def numBeats1(x: TLChannel): UInt = {
x match {
case _: TLBundleE => 0.U
case bundle: TLDataChannel => {
if (maxLgSize == 0) {
0.U
} else {
val decode = UIntToOH1(size(bundle), maxLgSize) >> log2Ceil(manager.beatBytes)
Mux(hasData(bundle), decode, 0.U)
}
}
}
}
def firstlastHelper(bits: TLChannel, fire: Bool): (Bool, Bool, Bool, UInt) = {
val beats1 = numBeats1(bits)
val counter = RegInit(0.U(log2Up(maxTransfer / manager.beatBytes).W))
val counter1 = counter - 1.U
val first = counter === 0.U
val last = counter === 1.U || beats1 === 0.U
val done = last && fire
val count = (beats1 & ~counter1)
when (fire) {
counter := Mux(first, beats1, counter1)
}
(first, last, done, count)
}
def first(bits: TLChannel, fire: Bool): Bool = firstlastHelper(bits, fire)._1
def first(x: DecoupledIO[TLChannel]): Bool = first(x.bits, x.fire)
def first(x: ValidIO[TLChannel]): Bool = first(x.bits, x.valid)
def last(bits: TLChannel, fire: Bool): Bool = firstlastHelper(bits, fire)._2
def last(x: DecoupledIO[TLChannel]): Bool = last(x.bits, x.fire)
def last(x: ValidIO[TLChannel]): Bool = last(x.bits, x.valid)
def done(bits: TLChannel, fire: Bool): Bool = firstlastHelper(bits, fire)._3
def done(x: DecoupledIO[TLChannel]): Bool = done(x.bits, x.fire)
def done(x: ValidIO[TLChannel]): Bool = done(x.bits, x.valid)
def firstlast(bits: TLChannel, fire: Bool): (Bool, Bool, Bool) = {
val r = firstlastHelper(bits, fire)
(r._1, r._2, r._3)
}
def firstlast(x: DecoupledIO[TLChannel]): (Bool, Bool, Bool) = firstlast(x.bits, x.fire)
def firstlast(x: ValidIO[TLChannel]): (Bool, Bool, Bool) = firstlast(x.bits, x.valid)
def count(bits: TLChannel, fire: Bool): (Bool, Bool, Bool, UInt) = {
val r = firstlastHelper(bits, fire)
(r._1, r._2, r._3, r._4)
}
def count(x: DecoupledIO[TLChannel]): (Bool, Bool, Bool, UInt) = count(x.bits, x.fire)
def count(x: ValidIO[TLChannel]): (Bool, Bool, Bool, UInt) = count(x.bits, x.valid)
def addr_inc(bits: TLChannel, fire: Bool): (Bool, Bool, Bool, UInt) = {
val r = firstlastHelper(bits, fire)
(r._1, r._2, r._3, r._4 << log2Ceil(manager.beatBytes))
}
def addr_inc(x: DecoupledIO[TLChannel]): (Bool, Bool, Bool, UInt) = addr_inc(x.bits, x.fire)
def addr_inc(x: ValidIO[TLChannel]): (Bool, Bool, Bool, UInt) = addr_inc(x.bits, x.valid)
// Does the request need T permissions to be executed?
def needT(a: TLBundleA): Bool = {
val acq_needT = MuxLookup(a.param, WireDefault(Bool(), DontCare))(Array(
TLPermissions.NtoB -> false.B,
TLPermissions.NtoT -> true.B,
TLPermissions.BtoT -> true.B))
MuxLookup(a.opcode, WireDefault(Bool(), DontCare))(Array(
TLMessages.PutFullData -> true.B,
TLMessages.PutPartialData -> true.B,
TLMessages.ArithmeticData -> true.B,
TLMessages.LogicalData -> true.B,
TLMessages.Get -> false.B,
TLMessages.Hint -> MuxLookup(a.param, WireDefault(Bool(), DontCare))(Array(
TLHints.PREFETCH_READ -> false.B,
TLHints.PREFETCH_WRITE -> true.B)),
TLMessages.AcquireBlock -> acq_needT,
TLMessages.AcquirePerm -> acq_needT))
}
// This is a very expensive circuit; use only if you really mean it!
def inFlight(x: TLBundle): (UInt, UInt) = {
val flight = RegInit(0.U(log2Ceil(3*client.endSourceId+1).W))
val bce = manager.anySupportAcquireB && client.anySupportProbe
val (a_first, a_last, _) = firstlast(x.a)
val (b_first, b_last, _) = firstlast(x.b)
val (c_first, c_last, _) = firstlast(x.c)
val (d_first, d_last, _) = firstlast(x.d)
val (e_first, e_last, _) = firstlast(x.e)
val (a_request, a_response) = (isRequest(x.a.bits), isResponse(x.a.bits))
val (b_request, b_response) = (isRequest(x.b.bits), isResponse(x.b.bits))
val (c_request, c_response) = (isRequest(x.c.bits), isResponse(x.c.bits))
val (d_request, d_response) = (isRequest(x.d.bits), isResponse(x.d.bits))
val (e_request, e_response) = (isRequest(x.e.bits), isResponse(x.e.bits))
val a_inc = x.a.fire && a_first && a_request
val b_inc = x.b.fire && b_first && b_request
val c_inc = x.c.fire && c_first && c_request
val d_inc = x.d.fire && d_first && d_request
val e_inc = x.e.fire && e_first && e_request
val inc = Cat(Seq(a_inc, d_inc) ++ (if (bce) Seq(b_inc, c_inc, e_inc) else Nil))
val a_dec = x.a.fire && a_last && a_response
val b_dec = x.b.fire && b_last && b_response
val c_dec = x.c.fire && c_last && c_response
val d_dec = x.d.fire && d_last && d_response
val e_dec = x.e.fire && e_last && e_response
val dec = Cat(Seq(a_dec, d_dec) ++ (if (bce) Seq(b_dec, c_dec, e_dec) else Nil))
val next_flight = flight + PopCount(inc) - PopCount(dec)
flight := next_flight
(flight, next_flight)
}
def prettySourceMapping(context: String): String = {
s"TL-Source mapping for $context:\n${(new TLSourceIdMap(client)).pretty}\n"
}
}
class TLEdgeOut(
client: TLClientPortParameters,
manager: TLManagerPortParameters,
params: Parameters,
sourceInfo: SourceInfo)
extends TLEdge(client, manager, params, sourceInfo)
{
// Transfers
def AcquireBlock(fromSource: UInt, toAddress: UInt, lgSize: UInt, growPermissions: UInt) = {
require (manager.anySupportAcquireB, s"TileLink: No managers visible from this edge support Acquires, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsAcquireBFast(toAddress, lgSize)
val a = Wire(new TLBundleA(bundle))
a.opcode := TLMessages.AcquireBlock
a.param := growPermissions
a.size := lgSize
a.source := fromSource
a.address := toAddress
a.user := DontCare
a.echo := DontCare
a.mask := mask(toAddress, lgSize)
a.data := DontCare
a.corrupt := false.B
(legal, a)
}
def AcquirePerm(fromSource: UInt, toAddress: UInt, lgSize: UInt, growPermissions: UInt) = {
require (manager.anySupportAcquireB, s"TileLink: No managers visible from this edge support Acquires, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsAcquireBFast(toAddress, lgSize)
val a = Wire(new TLBundleA(bundle))
a.opcode := TLMessages.AcquirePerm
a.param := growPermissions
a.size := lgSize
a.source := fromSource
a.address := toAddress
a.user := DontCare
a.echo := DontCare
a.mask := mask(toAddress, lgSize)
a.data := DontCare
a.corrupt := false.B
(legal, a)
}
def Release(fromSource: UInt, toAddress: UInt, lgSize: UInt, shrinkPermissions: UInt): (Bool, TLBundleC) = {
require (manager.anySupportAcquireB, s"TileLink: No managers visible from this edge support Acquires, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsAcquireBFast(toAddress, lgSize)
val c = Wire(new TLBundleC(bundle))
c.opcode := TLMessages.Release
c.param := shrinkPermissions
c.size := lgSize
c.source := fromSource
c.address := toAddress
c.user := DontCare
c.echo := DontCare
c.data := DontCare
c.corrupt := false.B
(legal, c)
}
def Release(fromSource: UInt, toAddress: UInt, lgSize: UInt, shrinkPermissions: UInt, data: UInt, corrupt: Bool): (Bool, TLBundleC) = {
require (manager.anySupportAcquireB, s"TileLink: No managers visible from this edge support Acquires, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsAcquireBFast(toAddress, lgSize)
val c = Wire(new TLBundleC(bundle))
c.opcode := TLMessages.ReleaseData
c.param := shrinkPermissions
c.size := lgSize
c.source := fromSource
c.address := toAddress
c.user := DontCare
c.echo := DontCare
c.data := data
c.corrupt := corrupt
(legal, c)
}
def Release(fromSource: UInt, toAddress: UInt, lgSize: UInt, shrinkPermissions: UInt, data: UInt): (Bool, TLBundleC) =
Release(fromSource, toAddress, lgSize, shrinkPermissions, data, false.B)
def ProbeAck(b: TLBundleB, reportPermissions: UInt): TLBundleC =
ProbeAck(b.source, b.address, b.size, reportPermissions)
def ProbeAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, reportPermissions: UInt): TLBundleC = {
val c = Wire(new TLBundleC(bundle))
c.opcode := TLMessages.ProbeAck
c.param := reportPermissions
c.size := lgSize
c.source := fromSource
c.address := toAddress
c.user := DontCare
c.echo := DontCare
c.data := DontCare
c.corrupt := false.B
c
}
def ProbeAck(b: TLBundleB, reportPermissions: UInt, data: UInt): TLBundleC =
ProbeAck(b.source, b.address, b.size, reportPermissions, data)
def ProbeAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, reportPermissions: UInt, data: UInt, corrupt: Bool): TLBundleC = {
val c = Wire(new TLBundleC(bundle))
c.opcode := TLMessages.ProbeAckData
c.param := reportPermissions
c.size := lgSize
c.source := fromSource
c.address := toAddress
c.user := DontCare
c.echo := DontCare
c.data := data
c.corrupt := corrupt
c
}
def ProbeAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, reportPermissions: UInt, data: UInt): TLBundleC =
ProbeAck(fromSource, toAddress, lgSize, reportPermissions, data, false.B)
def GrantAck(d: TLBundleD): TLBundleE = GrantAck(d.sink)
def GrantAck(toSink: UInt): TLBundleE = {
val e = Wire(new TLBundleE(bundle))
e.sink := toSink
e
}
// Accesses
def Get(fromSource: UInt, toAddress: UInt, lgSize: UInt) = {
require (manager.anySupportGet, s"TileLink: No managers visible from this edge support Gets, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsGetFast(toAddress, lgSize)
val a = Wire(new TLBundleA(bundle))
a.opcode := TLMessages.Get
a.param := 0.U
a.size := lgSize
a.source := fromSource
a.address := toAddress
a.user := DontCare
a.echo := DontCare
a.mask := mask(toAddress, lgSize)
a.data := DontCare
a.corrupt := false.B
(legal, a)
}
def Put(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt): (Bool, TLBundleA) =
Put(fromSource, toAddress, lgSize, data, false.B)
def Put(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, corrupt: Bool): (Bool, TLBundleA) = {
require (manager.anySupportPutFull, s"TileLink: No managers visible from this edge support Puts, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsPutFullFast(toAddress, lgSize)
val a = Wire(new TLBundleA(bundle))
a.opcode := TLMessages.PutFullData
a.param := 0.U
a.size := lgSize
a.source := fromSource
a.address := toAddress
a.user := DontCare
a.echo := DontCare
a.mask := mask(toAddress, lgSize)
a.data := data
a.corrupt := corrupt
(legal, a)
}
def Put(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, mask: UInt): (Bool, TLBundleA) =
Put(fromSource, toAddress, lgSize, data, mask, false.B)
def Put(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, mask: UInt, corrupt: Bool): (Bool, TLBundleA) = {
require (manager.anySupportPutPartial, s"TileLink: No managers visible from this edge support masked Puts, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsPutPartialFast(toAddress, lgSize)
val a = Wire(new TLBundleA(bundle))
a.opcode := TLMessages.PutPartialData
a.param := 0.U
a.size := lgSize
a.source := fromSource
a.address := toAddress
a.user := DontCare
a.echo := DontCare
a.mask := mask
a.data := data
a.corrupt := corrupt
(legal, a)
}
def Arithmetic(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, atomic: UInt, corrupt: Bool = false.B): (Bool, TLBundleA) = {
require (manager.anySupportArithmetic, s"TileLink: No managers visible from this edge support arithmetic AMOs, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsArithmeticFast(toAddress, lgSize)
val a = Wire(new TLBundleA(bundle))
a.opcode := TLMessages.ArithmeticData
a.param := atomic
a.size := lgSize
a.source := fromSource
a.address := toAddress
a.user := DontCare
a.echo := DontCare
a.mask := mask(toAddress, lgSize)
a.data := data
a.corrupt := corrupt
(legal, a)
}
def Logical(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, atomic: UInt, corrupt: Bool = false.B) = {
require (manager.anySupportLogical, s"TileLink: No managers visible from this edge support logical AMOs, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsLogicalFast(toAddress, lgSize)
val a = Wire(new TLBundleA(bundle))
a.opcode := TLMessages.LogicalData
a.param := atomic
a.size := lgSize
a.source := fromSource
a.address := toAddress
a.user := DontCare
a.echo := DontCare
a.mask := mask(toAddress, lgSize)
a.data := data
a.corrupt := corrupt
(legal, a)
}
def Hint(fromSource: UInt, toAddress: UInt, lgSize: UInt, param: UInt) = {
require (manager.anySupportHint, s"TileLink: No managers visible from this edge support Hints, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsHintFast(toAddress, lgSize)
val a = Wire(new TLBundleA(bundle))
a.opcode := TLMessages.Hint
a.param := param
a.size := lgSize
a.source := fromSource
a.address := toAddress
a.user := DontCare
a.echo := DontCare
a.mask := mask(toAddress, lgSize)
a.data := DontCare
a.corrupt := false.B
(legal, a)
}
def AccessAck(b: TLBundleB): TLBundleC = AccessAck(b.source, address(b), b.size)
def AccessAck(fromSource: UInt, toAddress: UInt, lgSize: UInt) = {
val c = Wire(new TLBundleC(bundle))
c.opcode := TLMessages.AccessAck
c.param := 0.U
c.size := lgSize
c.source := fromSource
c.address := toAddress
c.user := DontCare
c.echo := DontCare
c.data := DontCare
c.corrupt := false.B
c
}
def AccessAck(b: TLBundleB, data: UInt): TLBundleC = AccessAck(b.source, address(b), b.size, data)
def AccessAck(b: TLBundleB, data: UInt, corrupt: Bool): TLBundleC = AccessAck(b.source, address(b), b.size, data, corrupt)
def AccessAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt): TLBundleC = AccessAck(fromSource, toAddress, lgSize, data, false.B)
def AccessAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, corrupt: Bool) = {
val c = Wire(new TLBundleC(bundle))
c.opcode := TLMessages.AccessAckData
c.param := 0.U
c.size := lgSize
c.source := fromSource
c.address := toAddress
c.user := DontCare
c.echo := DontCare
c.data := data
c.corrupt := corrupt
c
}
def HintAck(b: TLBundleB): TLBundleC = HintAck(b.source, address(b), b.size)
def HintAck(fromSource: UInt, toAddress: UInt, lgSize: UInt) = {
val c = Wire(new TLBundleC(bundle))
c.opcode := TLMessages.HintAck
c.param := 0.U
c.size := lgSize
c.source := fromSource
c.address := toAddress
c.user := DontCare
c.echo := DontCare
c.data := DontCare
c.corrupt := false.B
c
}
}
class TLEdgeIn(
client: TLClientPortParameters,
manager: TLManagerPortParameters,
params: Parameters,
sourceInfo: SourceInfo)
extends TLEdge(client, manager, params, sourceInfo)
{
private def myTranspose[T](x: Seq[Seq[T]]): Seq[Seq[T]] = {
val todo = x.filter(!_.isEmpty)
val heads = todo.map(_.head)
val tails = todo.map(_.tail)
if (todo.isEmpty) Nil else { heads +: myTranspose(tails) }
}
// Transfers
def Probe(fromAddress: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt) = {
require (client.anySupportProbe, s"TileLink: No clients visible from this edge support probes, but one of these managers tried to issue one: ${manager.managers}")
val legal = client.supportsProbe(toSource, lgSize)
val b = Wire(new TLBundleB(bundle))
b.opcode := TLMessages.Probe
b.param := capPermissions
b.size := lgSize
b.source := toSource
b.address := fromAddress
b.mask := mask(fromAddress, lgSize)
b.data := DontCare
b.corrupt := false.B
(legal, b)
}
def Grant(fromSink: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt): TLBundleD = Grant(fromSink, toSource, lgSize, capPermissions, false.B)
def Grant(fromSink: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt, denied: Bool) = {
val d = Wire(new TLBundleD(bundle))
d.opcode := TLMessages.Grant
d.param := capPermissions
d.size := lgSize
d.source := toSource
d.sink := fromSink
d.denied := denied
d.user := DontCare
d.echo := DontCare
d.data := DontCare
d.corrupt := false.B
d
}
def Grant(fromSink: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt, data: UInt): TLBundleD = Grant(fromSink, toSource, lgSize, capPermissions, data, false.B, false.B)
def Grant(fromSink: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt, data: UInt, denied: Bool, corrupt: Bool) = {
val d = Wire(new TLBundleD(bundle))
d.opcode := TLMessages.GrantData
d.param := capPermissions
d.size := lgSize
d.source := toSource
d.sink := fromSink
d.denied := denied
d.user := DontCare
d.echo := DontCare
d.data := data
d.corrupt := corrupt
d
}
def ReleaseAck(c: TLBundleC): TLBundleD = ReleaseAck(c.source, c.size, false.B)
def ReleaseAck(toSource: UInt, lgSize: UInt, denied: Bool): TLBundleD = {
val d = Wire(new TLBundleD(bundle))
d.opcode := TLMessages.ReleaseAck
d.param := 0.U
d.size := lgSize
d.source := toSource
d.sink := 0.U
d.denied := denied
d.user := DontCare
d.echo := DontCare
d.data := DontCare
d.corrupt := false.B
d
}
// Accesses
def Get(fromAddress: UInt, toSource: UInt, lgSize: UInt) = {
require (client.anySupportGet, s"TileLink: No clients visible from this edge support Gets, but one of these managers would try to issue one: ${manager.managers}")
val legal = client.supportsGet(toSource, lgSize)
val b = Wire(new TLBundleB(bundle))
b.opcode := TLMessages.Get
b.param := 0.U
b.size := lgSize
b.source := toSource
b.address := fromAddress
b.mask := mask(fromAddress, lgSize)
b.data := DontCare
b.corrupt := false.B
(legal, b)
}
def Put(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt): (Bool, TLBundleB) =
Put(fromAddress, toSource, lgSize, data, false.B)
def Put(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, corrupt: Bool): (Bool, TLBundleB) = {
require (client.anySupportPutFull, s"TileLink: No clients visible from this edge support Puts, but one of these managers would try to issue one: ${manager.managers}")
val legal = client.supportsPutFull(toSource, lgSize)
val b = Wire(new TLBundleB(bundle))
b.opcode := TLMessages.PutFullData
b.param := 0.U
b.size := lgSize
b.source := toSource
b.address := fromAddress
b.mask := mask(fromAddress, lgSize)
b.data := data
b.corrupt := corrupt
(legal, b)
}
def Put(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, mask: UInt): (Bool, TLBundleB) =
Put(fromAddress, toSource, lgSize, data, mask, false.B)
def Put(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, mask: UInt, corrupt: Bool): (Bool, TLBundleB) = {
require (client.anySupportPutPartial, s"TileLink: No clients visible from this edge support masked Puts, but one of these managers would try to request one: ${manager.managers}")
val legal = client.supportsPutPartial(toSource, lgSize)
val b = Wire(new TLBundleB(bundle))
b.opcode := TLMessages.PutPartialData
b.param := 0.U
b.size := lgSize
b.source := toSource
b.address := fromAddress
b.mask := mask
b.data := data
b.corrupt := corrupt
(legal, b)
}
def Arithmetic(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, atomic: UInt, corrupt: Bool = false.B) = {
require (client.anySupportArithmetic, s"TileLink: No clients visible from this edge support arithmetic AMOs, but one of these managers would try to request one: ${manager.managers}")
val legal = client.supportsArithmetic(toSource, lgSize)
val b = Wire(new TLBundleB(bundle))
b.opcode := TLMessages.ArithmeticData
b.param := atomic
b.size := lgSize
b.source := toSource
b.address := fromAddress
b.mask := mask(fromAddress, lgSize)
b.data := data
b.corrupt := corrupt
(legal, b)
}
def Logical(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, atomic: UInt, corrupt: Bool = false.B) = {
require (client.anySupportLogical, s"TileLink: No clients visible from this edge support logical AMOs, but one of these managers would try to request one: ${manager.managers}")
val legal = client.supportsLogical(toSource, lgSize)
val b = Wire(new TLBundleB(bundle))
b.opcode := TLMessages.LogicalData
b.param := atomic
b.size := lgSize
b.source := toSource
b.address := fromAddress
b.mask := mask(fromAddress, lgSize)
b.data := data
b.corrupt := corrupt
(legal, b)
}
def Hint(fromAddress: UInt, toSource: UInt, lgSize: UInt, param: UInt) = {
require (client.anySupportHint, s"TileLink: No clients visible from this edge support Hints, but one of these managers would try to request one: ${manager.managers}")
val legal = client.supportsHint(toSource, lgSize)
val b = Wire(new TLBundleB(bundle))
b.opcode := TLMessages.Hint
b.param := param
b.size := lgSize
b.source := toSource
b.address := fromAddress
b.mask := mask(fromAddress, lgSize)
b.data := DontCare
b.corrupt := false.B
(legal, b)
}
def AccessAck(a: TLBundleA): TLBundleD = AccessAck(a.source, a.size)
def AccessAck(a: TLBundleA, denied: Bool): TLBundleD = AccessAck(a.source, a.size, denied)
def AccessAck(toSource: UInt, lgSize: UInt): TLBundleD = AccessAck(toSource, lgSize, false.B)
def AccessAck(toSource: UInt, lgSize: UInt, denied: Bool) = {
val d = Wire(new TLBundleD(bundle))
d.opcode := TLMessages.AccessAck
d.param := 0.U
d.size := lgSize
d.source := toSource
d.sink := 0.U
d.denied := denied
d.user := DontCare
d.echo := DontCare
d.data := DontCare
d.corrupt := false.B
d
}
def AccessAck(a: TLBundleA, data: UInt): TLBundleD = AccessAck(a.source, a.size, data)
def AccessAck(a: TLBundleA, data: UInt, denied: Bool, corrupt: Bool): TLBundleD = AccessAck(a.source, a.size, data, denied, corrupt)
def AccessAck(toSource: UInt, lgSize: UInt, data: UInt): TLBundleD = AccessAck(toSource, lgSize, data, false.B, false.B)
def AccessAck(toSource: UInt, lgSize: UInt, data: UInt, denied: Bool, corrupt: Bool) = {
val d = Wire(new TLBundleD(bundle))
d.opcode := TLMessages.AccessAckData
d.param := 0.U
d.size := lgSize
d.source := toSource
d.sink := 0.U
d.denied := denied
d.user := DontCare
d.echo := DontCare
d.data := data
d.corrupt := corrupt
d
}
def HintAck(a: TLBundleA): TLBundleD = HintAck(a, false.B)
def HintAck(a: TLBundleA, denied: Bool): TLBundleD = HintAck(a.source, a.size, denied)
def HintAck(toSource: UInt, lgSize: UInt): TLBundleD = HintAck(toSource, lgSize, false.B)
def HintAck(toSource: UInt, lgSize: UInt, denied: Bool) = {
val d = Wire(new TLBundleD(bundle))
d.opcode := TLMessages.HintAck
d.param := 0.U
d.size := lgSize
d.source := toSource
d.sink := 0.U
d.denied := denied
d.user := DontCare
d.echo := DontCare
d.data := DontCare
d.corrupt := false.B
d
}
}
| module TLMonitor_70( // @[Monitor.scala:36:7]
input clock, // @[Monitor.scala:36:7]
input reset, // @[Monitor.scala:36:7]
input io_in_a_ready, // @[Monitor.scala:20:14]
input io_in_a_valid, // @[Monitor.scala:20:14]
input [2:0] io_in_a_bits_opcode, // @[Monitor.scala:20:14]
input [2:0] io_in_a_bits_param, // @[Monitor.scala:20:14]
input [2:0] io_in_a_bits_size, // @[Monitor.scala:20:14]
input [6:0] io_in_a_bits_source, // @[Monitor.scala:20:14]
input [20:0] io_in_a_bits_address, // @[Monitor.scala:20:14]
input [7:0] io_in_a_bits_mask, // @[Monitor.scala:20:14]
input [63:0] io_in_a_bits_data, // @[Monitor.scala:20:14]
input io_in_a_bits_corrupt, // @[Monitor.scala:20:14]
input io_in_d_ready, // @[Monitor.scala:20:14]
input io_in_d_valid, // @[Monitor.scala:20:14]
input [2:0] io_in_d_bits_opcode, // @[Monitor.scala:20:14]
input [2:0] io_in_d_bits_size, // @[Monitor.scala:20:14]
input [6:0] io_in_d_bits_source, // @[Monitor.scala:20:14]
input [63:0] io_in_d_bits_data // @[Monitor.scala:20:14]
);
wire [31:0] _plusarg_reader_1_out; // @[PlusArg.scala:80:11]
wire [31:0] _plusarg_reader_out; // @[PlusArg.scala:80:11]
wire io_in_a_ready_0 = io_in_a_ready; // @[Monitor.scala:36:7]
wire io_in_a_valid_0 = io_in_a_valid; // @[Monitor.scala:36:7]
wire [2:0] io_in_a_bits_opcode_0 = io_in_a_bits_opcode; // @[Monitor.scala:36:7]
wire [2:0] io_in_a_bits_param_0 = io_in_a_bits_param; // @[Monitor.scala:36:7]
wire [2:0] io_in_a_bits_size_0 = io_in_a_bits_size; // @[Monitor.scala:36:7]
wire [6:0] io_in_a_bits_source_0 = io_in_a_bits_source; // @[Monitor.scala:36:7]
wire [20:0] io_in_a_bits_address_0 = io_in_a_bits_address; // @[Monitor.scala:36:7]
wire [7:0] io_in_a_bits_mask_0 = io_in_a_bits_mask; // @[Monitor.scala:36:7]
wire [63:0] io_in_a_bits_data_0 = io_in_a_bits_data; // @[Monitor.scala:36:7]
wire io_in_a_bits_corrupt_0 = io_in_a_bits_corrupt; // @[Monitor.scala:36:7]
wire io_in_d_ready_0 = io_in_d_ready; // @[Monitor.scala:36:7]
wire io_in_d_valid_0 = io_in_d_valid; // @[Monitor.scala:36:7]
wire [2:0] io_in_d_bits_opcode_0 = io_in_d_bits_opcode; // @[Monitor.scala:36:7]
wire [2:0] io_in_d_bits_size_0 = io_in_d_bits_size; // @[Monitor.scala:36:7]
wire [6:0] io_in_d_bits_source_0 = io_in_d_bits_source; // @[Monitor.scala:36:7]
wire [63:0] io_in_d_bits_data_0 = io_in_d_bits_data; // @[Monitor.scala:36:7]
wire io_in_d_bits_sink = 1'h0; // @[Monitor.scala:36:7]
wire io_in_d_bits_denied = 1'h0; // @[Monitor.scala:36:7]
wire io_in_d_bits_corrupt = 1'h0; // @[Monitor.scala:36:7]
wire sink_ok = 1'h0; // @[Monitor.scala:309:31]
wire _c_first_WIRE_ready = 1'h0; // @[Bundles.scala:265:74]
wire _c_first_WIRE_valid = 1'h0; // @[Bundles.scala:265:74]
wire _c_first_WIRE_bits_corrupt = 1'h0; // @[Bundles.scala:265:74]
wire _c_first_WIRE_1_ready = 1'h0; // @[Bundles.scala:265:61]
wire _c_first_WIRE_1_valid = 1'h0; // @[Bundles.scala:265:61]
wire _c_first_WIRE_1_bits_corrupt = 1'h0; // @[Bundles.scala:265:61]
wire _c_first_WIRE_2_ready = 1'h0; // @[Bundles.scala:265:74]
wire _c_first_WIRE_2_valid = 1'h0; // @[Bundles.scala:265:74]
wire _c_first_WIRE_2_bits_corrupt = 1'h0; // @[Bundles.scala:265:74]
wire _c_first_WIRE_3_ready = 1'h0; // @[Bundles.scala:265:61]
wire _c_first_WIRE_3_valid = 1'h0; // @[Bundles.scala:265:61]
wire _c_first_WIRE_3_bits_corrupt = 1'h0; // @[Bundles.scala:265:61]
wire _c_first_T = 1'h0; // @[Decoupled.scala:51:35]
wire c_first_beats1_opdata = 1'h0; // @[Edges.scala:102:36]
wire _c_first_last_T = 1'h0; // @[Edges.scala:232:25]
wire c_first_done = 1'h0; // @[Edges.scala:233:22]
wire _c_set_wo_ready_WIRE_ready = 1'h0; // @[Bundles.scala:265:74]
wire _c_set_wo_ready_WIRE_valid = 1'h0; // @[Bundles.scala:265:74]
wire _c_set_wo_ready_WIRE_bits_corrupt = 1'h0; // @[Bundles.scala:265:74]
wire _c_set_wo_ready_WIRE_1_ready = 1'h0; // @[Bundles.scala:265:61]
wire _c_set_wo_ready_WIRE_1_valid = 1'h0; // @[Bundles.scala:265:61]
wire _c_set_wo_ready_WIRE_1_bits_corrupt = 1'h0; // @[Bundles.scala:265:61]
wire _c_set_WIRE_ready = 1'h0; // @[Bundles.scala:265:74]
wire _c_set_WIRE_valid = 1'h0; // @[Bundles.scala:265:74]
wire _c_set_WIRE_bits_corrupt = 1'h0; // @[Bundles.scala:265:74]
wire _c_set_WIRE_1_ready = 1'h0; // @[Bundles.scala:265:61]
wire _c_set_WIRE_1_valid = 1'h0; // @[Bundles.scala:265:61]
wire _c_set_WIRE_1_bits_corrupt = 1'h0; // @[Bundles.scala:265:61]
wire _c_opcodes_set_interm_WIRE_ready = 1'h0; // @[Bundles.scala:265:74]
wire _c_opcodes_set_interm_WIRE_valid = 1'h0; // @[Bundles.scala:265:74]
wire _c_opcodes_set_interm_WIRE_bits_corrupt = 1'h0; // @[Bundles.scala:265:74]
wire _c_opcodes_set_interm_WIRE_1_ready = 1'h0; // @[Bundles.scala:265:61]
wire _c_opcodes_set_interm_WIRE_1_valid = 1'h0; // @[Bundles.scala:265:61]
wire _c_opcodes_set_interm_WIRE_1_bits_corrupt = 1'h0; // @[Bundles.scala:265:61]
wire _c_sizes_set_interm_WIRE_ready = 1'h0; // @[Bundles.scala:265:74]
wire _c_sizes_set_interm_WIRE_valid = 1'h0; // @[Bundles.scala:265:74]
wire _c_sizes_set_interm_WIRE_bits_corrupt = 1'h0; // @[Bundles.scala:265:74]
wire _c_sizes_set_interm_WIRE_1_ready = 1'h0; // @[Bundles.scala:265:61]
wire _c_sizes_set_interm_WIRE_1_valid = 1'h0; // @[Bundles.scala:265:61]
wire _c_sizes_set_interm_WIRE_1_bits_corrupt = 1'h0; // @[Bundles.scala:265:61]
wire _c_opcodes_set_WIRE_ready = 1'h0; // @[Bundles.scala:265:74]
wire _c_opcodes_set_WIRE_valid = 1'h0; // @[Bundles.scala:265:74]
wire _c_opcodes_set_WIRE_bits_corrupt = 1'h0; // @[Bundles.scala:265:74]
wire _c_opcodes_set_WIRE_1_ready = 1'h0; // @[Bundles.scala:265:61]
wire _c_opcodes_set_WIRE_1_valid = 1'h0; // @[Bundles.scala:265:61]
wire _c_opcodes_set_WIRE_1_bits_corrupt = 1'h0; // @[Bundles.scala:265:61]
wire _c_sizes_set_WIRE_ready = 1'h0; // @[Bundles.scala:265:74]
wire _c_sizes_set_WIRE_valid = 1'h0; // @[Bundles.scala:265:74]
wire _c_sizes_set_WIRE_bits_corrupt = 1'h0; // @[Bundles.scala:265:74]
wire _c_sizes_set_WIRE_1_ready = 1'h0; // @[Bundles.scala:265:61]
wire _c_sizes_set_WIRE_1_valid = 1'h0; // @[Bundles.scala:265:61]
wire _c_sizes_set_WIRE_1_bits_corrupt = 1'h0; // @[Bundles.scala:265:61]
wire _c_probe_ack_WIRE_ready = 1'h0; // @[Bundles.scala:265:74]
wire _c_probe_ack_WIRE_valid = 1'h0; // @[Bundles.scala:265:74]
wire _c_probe_ack_WIRE_bits_corrupt = 1'h0; // @[Bundles.scala:265:74]
wire _c_probe_ack_WIRE_1_ready = 1'h0; // @[Bundles.scala:265:61]
wire _c_probe_ack_WIRE_1_valid = 1'h0; // @[Bundles.scala:265:61]
wire _c_probe_ack_WIRE_1_bits_corrupt = 1'h0; // @[Bundles.scala:265:61]
wire _c_probe_ack_T = 1'h0; // @[Monitor.scala:772:47]
wire _c_probe_ack_WIRE_2_ready = 1'h0; // @[Bundles.scala:265:74]
wire _c_probe_ack_WIRE_2_valid = 1'h0; // @[Bundles.scala:265:74]
wire _c_probe_ack_WIRE_2_bits_corrupt = 1'h0; // @[Bundles.scala:265:74]
wire _c_probe_ack_WIRE_3_ready = 1'h0; // @[Bundles.scala:265:61]
wire _c_probe_ack_WIRE_3_valid = 1'h0; // @[Bundles.scala:265:61]
wire _c_probe_ack_WIRE_3_bits_corrupt = 1'h0; // @[Bundles.scala:265:61]
wire _c_probe_ack_T_1 = 1'h0; // @[Monitor.scala:772:95]
wire c_probe_ack = 1'h0; // @[Monitor.scala:772:71]
wire _same_cycle_resp_WIRE_ready = 1'h0; // @[Bundles.scala:265:74]
wire _same_cycle_resp_WIRE_valid = 1'h0; // @[Bundles.scala:265:74]
wire _same_cycle_resp_WIRE_bits_corrupt = 1'h0; // @[Bundles.scala:265:74]
wire _same_cycle_resp_WIRE_1_ready = 1'h0; // @[Bundles.scala:265:61]
wire _same_cycle_resp_WIRE_1_valid = 1'h0; // @[Bundles.scala:265:61]
wire _same_cycle_resp_WIRE_1_bits_corrupt = 1'h0; // @[Bundles.scala:265:61]
wire _same_cycle_resp_T_3 = 1'h0; // @[Monitor.scala:795:44]
wire _same_cycle_resp_WIRE_2_ready = 1'h0; // @[Bundles.scala:265:74]
wire _same_cycle_resp_WIRE_2_valid = 1'h0; // @[Bundles.scala:265:74]
wire _same_cycle_resp_WIRE_2_bits_corrupt = 1'h0; // @[Bundles.scala:265:74]
wire _same_cycle_resp_WIRE_3_ready = 1'h0; // @[Bundles.scala:265:61]
wire _same_cycle_resp_WIRE_3_valid = 1'h0; // @[Bundles.scala:265:61]
wire _same_cycle_resp_WIRE_3_bits_corrupt = 1'h0; // @[Bundles.scala:265:61]
wire _same_cycle_resp_T_4 = 1'h0; // @[Edges.scala:68:36]
wire _same_cycle_resp_T_5 = 1'h0; // @[Edges.scala:68:51]
wire _same_cycle_resp_T_6 = 1'h0; // @[Edges.scala:68:40]
wire _same_cycle_resp_T_7 = 1'h0; // @[Monitor.scala:795:55]
wire _same_cycle_resp_WIRE_4_ready = 1'h0; // @[Bundles.scala:265:74]
wire _same_cycle_resp_WIRE_4_valid = 1'h0; // @[Bundles.scala:265:74]
wire _same_cycle_resp_WIRE_4_bits_corrupt = 1'h0; // @[Bundles.scala:265:74]
wire _same_cycle_resp_WIRE_5_ready = 1'h0; // @[Bundles.scala:265:61]
wire _same_cycle_resp_WIRE_5_valid = 1'h0; // @[Bundles.scala:265:61]
wire _same_cycle_resp_WIRE_5_bits_corrupt = 1'h0; // @[Bundles.scala:265:61]
wire same_cycle_resp_1 = 1'h0; // @[Monitor.scala:795:88]
wire [2:0] responseMap_0 = 3'h0; // @[Monitor.scala:643:42]
wire [2:0] responseMap_1 = 3'h0; // @[Monitor.scala:643:42]
wire [2:0] responseMapSecondOption_0 = 3'h0; // @[Monitor.scala:644:42]
wire [2:0] responseMapSecondOption_1 = 3'h0; // @[Monitor.scala:644:42]
wire [2:0] _c_first_WIRE_bits_opcode = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_first_WIRE_bits_param = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_first_WIRE_bits_size = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_first_WIRE_1_bits_opcode = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _c_first_WIRE_1_bits_param = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _c_first_WIRE_1_bits_size = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _c_first_WIRE_2_bits_opcode = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_first_WIRE_2_bits_param = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_first_WIRE_2_bits_size = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_first_WIRE_3_bits_opcode = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _c_first_WIRE_3_bits_param = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _c_first_WIRE_3_bits_size = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] c_first_beats1_decode = 3'h0; // @[Edges.scala:220:59]
wire [2:0] c_first_beats1 = 3'h0; // @[Edges.scala:221:14]
wire [2:0] _c_first_count_T = 3'h0; // @[Edges.scala:234:27]
wire [2:0] c_first_count = 3'h0; // @[Edges.scala:234:25]
wire [2:0] _c_first_counter_T = 3'h0; // @[Edges.scala:236:21]
wire [2:0] _c_set_wo_ready_WIRE_bits_opcode = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_set_wo_ready_WIRE_bits_param = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_set_wo_ready_WIRE_bits_size = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_set_wo_ready_WIRE_1_bits_opcode = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _c_set_wo_ready_WIRE_1_bits_param = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _c_set_wo_ready_WIRE_1_bits_size = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _c_set_WIRE_bits_opcode = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_set_WIRE_bits_param = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_set_WIRE_bits_size = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_set_WIRE_1_bits_opcode = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _c_set_WIRE_1_bits_param = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _c_set_WIRE_1_bits_size = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _c_opcodes_set_interm_WIRE_bits_opcode = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_opcodes_set_interm_WIRE_bits_param = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_opcodes_set_interm_WIRE_bits_size = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_opcodes_set_interm_WIRE_1_bits_opcode = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _c_opcodes_set_interm_WIRE_1_bits_param = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _c_opcodes_set_interm_WIRE_1_bits_size = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _c_sizes_set_interm_WIRE_bits_opcode = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_sizes_set_interm_WIRE_bits_param = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_sizes_set_interm_WIRE_bits_size = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_sizes_set_interm_WIRE_1_bits_opcode = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _c_sizes_set_interm_WIRE_1_bits_param = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _c_sizes_set_interm_WIRE_1_bits_size = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _c_opcodes_set_WIRE_bits_opcode = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_opcodes_set_WIRE_bits_param = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_opcodes_set_WIRE_bits_size = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_opcodes_set_WIRE_1_bits_opcode = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _c_opcodes_set_WIRE_1_bits_param = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _c_opcodes_set_WIRE_1_bits_size = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _c_sizes_set_WIRE_bits_opcode = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_sizes_set_WIRE_bits_param = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_sizes_set_WIRE_bits_size = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_sizes_set_WIRE_1_bits_opcode = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _c_sizes_set_WIRE_1_bits_param = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _c_sizes_set_WIRE_1_bits_size = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _c_probe_ack_WIRE_bits_opcode = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_probe_ack_WIRE_bits_param = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_probe_ack_WIRE_bits_size = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_probe_ack_WIRE_1_bits_opcode = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _c_probe_ack_WIRE_1_bits_param = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _c_probe_ack_WIRE_1_bits_size = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _c_probe_ack_WIRE_2_bits_opcode = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_probe_ack_WIRE_2_bits_param = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_probe_ack_WIRE_2_bits_size = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_probe_ack_WIRE_3_bits_opcode = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _c_probe_ack_WIRE_3_bits_param = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _c_probe_ack_WIRE_3_bits_size = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _same_cycle_resp_WIRE_bits_opcode = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _same_cycle_resp_WIRE_bits_param = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _same_cycle_resp_WIRE_bits_size = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _same_cycle_resp_WIRE_1_bits_opcode = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _same_cycle_resp_WIRE_1_bits_param = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _same_cycle_resp_WIRE_1_bits_size = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _same_cycle_resp_WIRE_2_bits_opcode = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _same_cycle_resp_WIRE_2_bits_param = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _same_cycle_resp_WIRE_2_bits_size = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _same_cycle_resp_WIRE_3_bits_opcode = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _same_cycle_resp_WIRE_3_bits_param = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _same_cycle_resp_WIRE_3_bits_size = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _same_cycle_resp_WIRE_4_bits_opcode = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _same_cycle_resp_WIRE_4_bits_param = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _same_cycle_resp_WIRE_4_bits_size = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _same_cycle_resp_WIRE_5_bits_opcode = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _same_cycle_resp_WIRE_5_bits_param = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _same_cycle_resp_WIRE_5_bits_size = 3'h0; // @[Bundles.scala:265:61]
wire _source_ok_T_3 = 1'h1; // @[Parameters.scala:56:32]
wire _source_ok_T_5 = 1'h1; // @[Parameters.scala:57:20]
wire _source_ok_T_9 = 1'h1; // @[Parameters.scala:56:32]
wire _source_ok_T_11 = 1'h1; // @[Parameters.scala:57:20]
wire _source_ok_T_15 = 1'h1; // @[Parameters.scala:56:32]
wire _source_ok_T_17 = 1'h1; // @[Parameters.scala:57:20]
wire _source_ok_T_21 = 1'h1; // @[Parameters.scala:56:32]
wire _source_ok_T_23 = 1'h1; // @[Parameters.scala:57:20]
wire _source_ok_T_61 = 1'h1; // @[Parameters.scala:56:32]
wire _source_ok_T_63 = 1'h1; // @[Parameters.scala:57:20]
wire _source_ok_T_67 = 1'h1; // @[Parameters.scala:56:32]
wire _source_ok_T_69 = 1'h1; // @[Parameters.scala:57:20]
wire _source_ok_T_73 = 1'h1; // @[Parameters.scala:56:32]
wire _source_ok_T_75 = 1'h1; // @[Parameters.scala:57:20]
wire _source_ok_T_79 = 1'h1; // @[Parameters.scala:56:32]
wire _source_ok_T_81 = 1'h1; // @[Parameters.scala:57:20]
wire c_first = 1'h1; // @[Edges.scala:231:25]
wire _c_first_last_T_1 = 1'h1; // @[Edges.scala:232:43]
wire c_first_last = 1'h1; // @[Edges.scala:232:33]
wire [2:0] c_first_counter1 = 3'h7; // @[Edges.scala:230:28]
wire [3:0] _c_first_counter1_T = 4'hF; // @[Edges.scala:230:28]
wire [1:0] io_in_d_bits_param = 2'h0; // @[Monitor.scala:36:7]
wire [63:0] _c_first_WIRE_bits_data = 64'h0; // @[Bundles.scala:265:74]
wire [63:0] _c_first_WIRE_1_bits_data = 64'h0; // @[Bundles.scala:265:61]
wire [63:0] _c_first_WIRE_2_bits_data = 64'h0; // @[Bundles.scala:265:74]
wire [63:0] _c_first_WIRE_3_bits_data = 64'h0; // @[Bundles.scala:265:61]
wire [63:0] _c_set_wo_ready_WIRE_bits_data = 64'h0; // @[Bundles.scala:265:74]
wire [63:0] _c_set_wo_ready_WIRE_1_bits_data = 64'h0; // @[Bundles.scala:265:61]
wire [63:0] _c_set_WIRE_bits_data = 64'h0; // @[Bundles.scala:265:74]
wire [63:0] _c_set_WIRE_1_bits_data = 64'h0; // @[Bundles.scala:265:61]
wire [63:0] _c_opcodes_set_interm_WIRE_bits_data = 64'h0; // @[Bundles.scala:265:74]
wire [63:0] _c_opcodes_set_interm_WIRE_1_bits_data = 64'h0; // @[Bundles.scala:265:61]
wire [63:0] _c_sizes_set_interm_WIRE_bits_data = 64'h0; // @[Bundles.scala:265:74]
wire [63:0] _c_sizes_set_interm_WIRE_1_bits_data = 64'h0; // @[Bundles.scala:265:61]
wire [63:0] _c_opcodes_set_WIRE_bits_data = 64'h0; // @[Bundles.scala:265:74]
wire [63:0] _c_opcodes_set_WIRE_1_bits_data = 64'h0; // @[Bundles.scala:265:61]
wire [63:0] _c_sizes_set_WIRE_bits_data = 64'h0; // @[Bundles.scala:265:74]
wire [63:0] _c_sizes_set_WIRE_1_bits_data = 64'h0; // @[Bundles.scala:265:61]
wire [63:0] _c_probe_ack_WIRE_bits_data = 64'h0; // @[Bundles.scala:265:74]
wire [63:0] _c_probe_ack_WIRE_1_bits_data = 64'h0; // @[Bundles.scala:265:61]
wire [63:0] _c_probe_ack_WIRE_2_bits_data = 64'h0; // @[Bundles.scala:265:74]
wire [63:0] _c_probe_ack_WIRE_3_bits_data = 64'h0; // @[Bundles.scala:265:61]
wire [63:0] _same_cycle_resp_WIRE_bits_data = 64'h0; // @[Bundles.scala:265:74]
wire [63:0] _same_cycle_resp_WIRE_1_bits_data = 64'h0; // @[Bundles.scala:265:61]
wire [63:0] _same_cycle_resp_WIRE_2_bits_data = 64'h0; // @[Bundles.scala:265:74]
wire [63:0] _same_cycle_resp_WIRE_3_bits_data = 64'h0; // @[Bundles.scala:265:61]
wire [63:0] _same_cycle_resp_WIRE_4_bits_data = 64'h0; // @[Bundles.scala:265:74]
wire [63:0] _same_cycle_resp_WIRE_5_bits_data = 64'h0; // @[Bundles.scala:265:61]
wire [20:0] _c_first_WIRE_bits_address = 21'h0; // @[Bundles.scala:265:74]
wire [20:0] _c_first_WIRE_1_bits_address = 21'h0; // @[Bundles.scala:265:61]
wire [20:0] _c_first_WIRE_2_bits_address = 21'h0; // @[Bundles.scala:265:74]
wire [20:0] _c_first_WIRE_3_bits_address = 21'h0; // @[Bundles.scala:265:61]
wire [20:0] _c_set_wo_ready_WIRE_bits_address = 21'h0; // @[Bundles.scala:265:74]
wire [20:0] _c_set_wo_ready_WIRE_1_bits_address = 21'h0; // @[Bundles.scala:265:61]
wire [20:0] _c_set_WIRE_bits_address = 21'h0; // @[Bundles.scala:265:74]
wire [20:0] _c_set_WIRE_1_bits_address = 21'h0; // @[Bundles.scala:265:61]
wire [20:0] _c_opcodes_set_interm_WIRE_bits_address = 21'h0; // @[Bundles.scala:265:74]
wire [20:0] _c_opcodes_set_interm_WIRE_1_bits_address = 21'h0; // @[Bundles.scala:265:61]
wire [20:0] _c_sizes_set_interm_WIRE_bits_address = 21'h0; // @[Bundles.scala:265:74]
wire [20:0] _c_sizes_set_interm_WIRE_1_bits_address = 21'h0; // @[Bundles.scala:265:61]
wire [20:0] _c_opcodes_set_WIRE_bits_address = 21'h0; // @[Bundles.scala:265:74]
wire [20:0] _c_opcodes_set_WIRE_1_bits_address = 21'h0; // @[Bundles.scala:265:61]
wire [20:0] _c_sizes_set_WIRE_bits_address = 21'h0; // @[Bundles.scala:265:74]
wire [20:0] _c_sizes_set_WIRE_1_bits_address = 21'h0; // @[Bundles.scala:265:61]
wire [20:0] _c_probe_ack_WIRE_bits_address = 21'h0; // @[Bundles.scala:265:74]
wire [20:0] _c_probe_ack_WIRE_1_bits_address = 21'h0; // @[Bundles.scala:265:61]
wire [20:0] _c_probe_ack_WIRE_2_bits_address = 21'h0; // @[Bundles.scala:265:74]
wire [20:0] _c_probe_ack_WIRE_3_bits_address = 21'h0; // @[Bundles.scala:265:61]
wire [20:0] _same_cycle_resp_WIRE_bits_address = 21'h0; // @[Bundles.scala:265:74]
wire [20:0] _same_cycle_resp_WIRE_1_bits_address = 21'h0; // @[Bundles.scala:265:61]
wire [20:0] _same_cycle_resp_WIRE_2_bits_address = 21'h0; // @[Bundles.scala:265:74]
wire [20:0] _same_cycle_resp_WIRE_3_bits_address = 21'h0; // @[Bundles.scala:265:61]
wire [20:0] _same_cycle_resp_WIRE_4_bits_address = 21'h0; // @[Bundles.scala:265:74]
wire [20:0] _same_cycle_resp_WIRE_5_bits_address = 21'h0; // @[Bundles.scala:265:61]
wire [6:0] _c_first_WIRE_bits_source = 7'h0; // @[Bundles.scala:265:74]
wire [6:0] _c_first_WIRE_1_bits_source = 7'h0; // @[Bundles.scala:265:61]
wire [6:0] _c_first_WIRE_2_bits_source = 7'h0; // @[Bundles.scala:265:74]
wire [6:0] _c_first_WIRE_3_bits_source = 7'h0; // @[Bundles.scala:265:61]
wire [6:0] _c_set_wo_ready_WIRE_bits_source = 7'h0; // @[Bundles.scala:265:74]
wire [6:0] _c_set_wo_ready_WIRE_1_bits_source = 7'h0; // @[Bundles.scala:265:61]
wire [6:0] _c_set_WIRE_bits_source = 7'h0; // @[Bundles.scala:265:74]
wire [6:0] _c_set_WIRE_1_bits_source = 7'h0; // @[Bundles.scala:265:61]
wire [6:0] _c_opcodes_set_interm_WIRE_bits_source = 7'h0; // @[Bundles.scala:265:74]
wire [6:0] _c_opcodes_set_interm_WIRE_1_bits_source = 7'h0; // @[Bundles.scala:265:61]
wire [6:0] _c_sizes_set_interm_WIRE_bits_source = 7'h0; // @[Bundles.scala:265:74]
wire [6:0] _c_sizes_set_interm_WIRE_1_bits_source = 7'h0; // @[Bundles.scala:265:61]
wire [6:0] _c_opcodes_set_WIRE_bits_source = 7'h0; // @[Bundles.scala:265:74]
wire [6:0] _c_opcodes_set_WIRE_1_bits_source = 7'h0; // @[Bundles.scala:265:61]
wire [6:0] _c_sizes_set_WIRE_bits_source = 7'h0; // @[Bundles.scala:265:74]
wire [6:0] _c_sizes_set_WIRE_1_bits_source = 7'h0; // @[Bundles.scala:265:61]
wire [6:0] _c_probe_ack_WIRE_bits_source = 7'h0; // @[Bundles.scala:265:74]
wire [6:0] _c_probe_ack_WIRE_1_bits_source = 7'h0; // @[Bundles.scala:265:61]
wire [6:0] _c_probe_ack_WIRE_2_bits_source = 7'h0; // @[Bundles.scala:265:74]
wire [6:0] _c_probe_ack_WIRE_3_bits_source = 7'h0; // @[Bundles.scala:265:61]
wire [6:0] _same_cycle_resp_WIRE_bits_source = 7'h0; // @[Bundles.scala:265:74]
wire [6:0] _same_cycle_resp_WIRE_1_bits_source = 7'h0; // @[Bundles.scala:265:61]
wire [6:0] _same_cycle_resp_WIRE_2_bits_source = 7'h0; // @[Bundles.scala:265:74]
wire [6:0] _same_cycle_resp_WIRE_3_bits_source = 7'h0; // @[Bundles.scala:265:61]
wire [6:0] _same_cycle_resp_WIRE_4_bits_source = 7'h0; // @[Bundles.scala:265:74]
wire [6:0] _same_cycle_resp_WIRE_5_bits_source = 7'h0; // @[Bundles.scala:265:61]
wire [15:0] _a_opcode_lookup_T_5 = 16'hF; // @[Monitor.scala:612:57]
wire [15:0] _a_size_lookup_T_5 = 16'hF; // @[Monitor.scala:612:57]
wire [15:0] _d_opcodes_clr_T_3 = 16'hF; // @[Monitor.scala:612:57]
wire [15:0] _d_sizes_clr_T_3 = 16'hF; // @[Monitor.scala:612:57]
wire [15:0] _c_opcode_lookup_T_5 = 16'hF; // @[Monitor.scala:724:57]
wire [15:0] _c_size_lookup_T_5 = 16'hF; // @[Monitor.scala:724:57]
wire [15:0] _d_opcodes_clr_T_9 = 16'hF; // @[Monitor.scala:724:57]
wire [15:0] _d_sizes_clr_T_9 = 16'hF; // @[Monitor.scala:724:57]
wire [16:0] _a_opcode_lookup_T_4 = 17'hF; // @[Monitor.scala:612:57]
wire [16:0] _a_size_lookup_T_4 = 17'hF; // @[Monitor.scala:612:57]
wire [16:0] _d_opcodes_clr_T_2 = 17'hF; // @[Monitor.scala:612:57]
wire [16:0] _d_sizes_clr_T_2 = 17'hF; // @[Monitor.scala:612:57]
wire [16:0] _c_opcode_lookup_T_4 = 17'hF; // @[Monitor.scala:724:57]
wire [16:0] _c_size_lookup_T_4 = 17'hF; // @[Monitor.scala:724:57]
wire [16:0] _d_opcodes_clr_T_8 = 17'hF; // @[Monitor.scala:724:57]
wire [16:0] _d_sizes_clr_T_8 = 17'hF; // @[Monitor.scala:724:57]
wire [15:0] _a_opcode_lookup_T_3 = 16'h10; // @[Monitor.scala:612:51]
wire [15:0] _a_size_lookup_T_3 = 16'h10; // @[Monitor.scala:612:51]
wire [15:0] _d_opcodes_clr_T_1 = 16'h10; // @[Monitor.scala:612:51]
wire [15:0] _d_sizes_clr_T_1 = 16'h10; // @[Monitor.scala:612:51]
wire [15:0] _c_opcode_lookup_T_3 = 16'h10; // @[Monitor.scala:724:51]
wire [15:0] _c_size_lookup_T_3 = 16'h10; // @[Monitor.scala:724:51]
wire [15:0] _d_opcodes_clr_T_7 = 16'h10; // @[Monitor.scala:724:51]
wire [15:0] _d_sizes_clr_T_7 = 16'h10; // @[Monitor.scala:724:51]
wire [1026:0] _c_opcodes_set_T_1 = 1027'h0; // @[Monitor.scala:767:54]
wire [1026:0] _c_sizes_set_T_1 = 1027'h0; // @[Monitor.scala:768:52]
wire [9:0] _c_opcodes_set_T = 10'h0; // @[Monitor.scala:767:79]
wire [9:0] _c_sizes_set_T = 10'h0; // @[Monitor.scala:768:77]
wire [3:0] _c_opcodes_set_interm_T_1 = 4'h1; // @[Monitor.scala:765:61]
wire [3:0] _c_sizes_set_interm_T_1 = 4'h1; // @[Monitor.scala:766:59]
wire [3:0] c_opcodes_set_interm = 4'h0; // @[Monitor.scala:754:40]
wire [3:0] c_sizes_set_interm = 4'h0; // @[Monitor.scala:755:40]
wire [3:0] _c_opcodes_set_interm_T = 4'h0; // @[Monitor.scala:765:53]
wire [3:0] _c_sizes_set_interm_T = 4'h0; // @[Monitor.scala:766:51]
wire [127:0] _c_set_wo_ready_T = 128'h1; // @[OneHot.scala:58:35]
wire [127:0] _c_set_T = 128'h1; // @[OneHot.scala:58:35]
wire [259:0] c_opcodes_set = 260'h0; // @[Monitor.scala:740:34]
wire [259:0] c_sizes_set = 260'h0; // @[Monitor.scala:741:34]
wire [64:0] c_set = 65'h0; // @[Monitor.scala:738:34]
wire [64:0] c_set_wo_ready = 65'h0; // @[Monitor.scala:739:34]
wire [5:0] _c_first_beats1_decode_T_2 = 6'h0; // @[package.scala:243:46]
wire [5:0] _c_first_beats1_decode_T_1 = 6'h3F; // @[package.scala:243:76]
wire [12:0] _c_first_beats1_decode_T = 13'h3F; // @[package.scala:243:71]
wire [2:0] responseMap_6 = 3'h4; // @[Monitor.scala:643:42]
wire [2:0] responseMap_7 = 3'h4; // @[Monitor.scala:643:42]
wire [2:0] responseMapSecondOption_7 = 3'h4; // @[Monitor.scala:644:42]
wire [2:0] responseMapSecondOption_6 = 3'h5; // @[Monitor.scala:644:42]
wire [2:0] responseMap_5 = 3'h2; // @[Monitor.scala:643:42]
wire [2:0] responseMapSecondOption_5 = 3'h2; // @[Monitor.scala:644:42]
wire [2:0] responseMap_2 = 3'h1; // @[Monitor.scala:643:42]
wire [2:0] responseMap_3 = 3'h1; // @[Monitor.scala:643:42]
wire [2:0] responseMap_4 = 3'h1; // @[Monitor.scala:643:42]
wire [2:0] responseMapSecondOption_2 = 3'h1; // @[Monitor.scala:644:42]
wire [2:0] responseMapSecondOption_3 = 3'h1; // @[Monitor.scala:644:42]
wire [2:0] responseMapSecondOption_4 = 3'h1; // @[Monitor.scala:644:42]
wire [3:0] _a_opcode_lookup_T_2 = 4'h4; // @[Monitor.scala:637:123]
wire [3:0] _a_size_lookup_T_2 = 4'h4; // @[Monitor.scala:641:117]
wire [3:0] _d_opcodes_clr_T = 4'h4; // @[Monitor.scala:680:48]
wire [3:0] _d_sizes_clr_T = 4'h4; // @[Monitor.scala:681:48]
wire [3:0] _c_opcode_lookup_T_2 = 4'h4; // @[Monitor.scala:749:123]
wire [3:0] _c_size_lookup_T_2 = 4'h4; // @[Monitor.scala:750:119]
wire [3:0] _d_opcodes_clr_T_6 = 4'h4; // @[Monitor.scala:790:48]
wire [3:0] _d_sizes_clr_T_6 = 4'h4; // @[Monitor.scala:791:48]
wire [2:0] _mask_sizeOH_T = io_in_a_bits_size_0; // @[Misc.scala:202:34]
wire [6:0] _source_ok_uncommonBits_T = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [6:0] _source_ok_uncommonBits_T_1 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [6:0] _source_ok_uncommonBits_T_2 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [6:0] _source_ok_uncommonBits_T_3 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [6:0] _uncommonBits_T = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [6:0] _uncommonBits_T_1 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [6:0] _uncommonBits_T_2 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [6:0] _uncommonBits_T_3 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [6:0] _uncommonBits_T_4 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [6:0] _uncommonBits_T_5 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [6:0] _uncommonBits_T_6 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [6:0] _uncommonBits_T_7 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [6:0] _uncommonBits_T_8 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [6:0] _uncommonBits_T_9 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [6:0] _uncommonBits_T_10 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [6:0] _uncommonBits_T_11 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [6:0] _uncommonBits_T_12 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [6:0] _uncommonBits_T_13 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [6:0] _uncommonBits_T_14 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [6:0] _uncommonBits_T_15 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [6:0] _uncommonBits_T_16 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [6:0] _uncommonBits_T_17 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [6:0] _uncommonBits_T_18 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [6:0] _uncommonBits_T_19 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [6:0] _uncommonBits_T_20 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [6:0] _uncommonBits_T_21 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [6:0] _uncommonBits_T_22 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [6:0] _uncommonBits_T_23 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [6:0] _uncommonBits_T_24 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [6:0] _uncommonBits_T_25 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [6:0] _uncommonBits_T_26 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [6:0] _uncommonBits_T_27 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [6:0] _uncommonBits_T_28 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [6:0] _uncommonBits_T_29 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [6:0] _uncommonBits_T_30 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [6:0] _uncommonBits_T_31 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [6:0] _uncommonBits_T_32 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [6:0] _uncommonBits_T_33 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [6:0] _uncommonBits_T_34 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [6:0] _uncommonBits_T_35 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [6:0] _uncommonBits_T_36 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [6:0] _uncommonBits_T_37 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [6:0] _uncommonBits_T_38 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [6:0] _uncommonBits_T_39 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [6:0] _uncommonBits_T_40 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [6:0] _uncommonBits_T_41 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [6:0] _uncommonBits_T_42 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [6:0] _uncommonBits_T_43 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [6:0] _source_ok_uncommonBits_T_4 = io_in_d_bits_source_0; // @[Monitor.scala:36:7]
wire [6:0] _source_ok_uncommonBits_T_5 = io_in_d_bits_source_0; // @[Monitor.scala:36:7]
wire [6:0] _source_ok_uncommonBits_T_6 = io_in_d_bits_source_0; // @[Monitor.scala:36:7]
wire [6:0] _source_ok_uncommonBits_T_7 = io_in_d_bits_source_0; // @[Monitor.scala:36:7]
wire _source_ok_T = io_in_a_bits_source_0 == 7'h10; // @[Monitor.scala:36:7]
wire _source_ok_WIRE_0 = _source_ok_T; // @[Parameters.scala:1138:31]
wire [1:0] source_ok_uncommonBits = _source_ok_uncommonBits_T[1:0]; // @[Parameters.scala:52:{29,56}]
wire [4:0] _source_ok_T_1 = io_in_a_bits_source_0[6:2]; // @[Monitor.scala:36:7]
wire [4:0] _source_ok_T_7 = io_in_a_bits_source_0[6:2]; // @[Monitor.scala:36:7]
wire [4:0] _source_ok_T_13 = io_in_a_bits_source_0[6:2]; // @[Monitor.scala:36:7]
wire [4:0] _source_ok_T_19 = io_in_a_bits_source_0[6:2]; // @[Monitor.scala:36:7]
wire _source_ok_T_2 = _source_ok_T_1 == 5'h0; // @[Parameters.scala:54:{10,32}]
wire _source_ok_T_4 = _source_ok_T_2; // @[Parameters.scala:54:{32,67}]
wire _source_ok_T_6 = _source_ok_T_4; // @[Parameters.scala:54:67, :56:48]
wire _source_ok_WIRE_1 = _source_ok_T_6; // @[Parameters.scala:1138:31]
wire [1:0] source_ok_uncommonBits_1 = _source_ok_uncommonBits_T_1[1:0]; // @[Parameters.scala:52:{29,56}]
wire _source_ok_T_8 = _source_ok_T_7 == 5'h1; // @[Parameters.scala:54:{10,32}]
wire _source_ok_T_10 = _source_ok_T_8; // @[Parameters.scala:54:{32,67}]
wire _source_ok_T_12 = _source_ok_T_10; // @[Parameters.scala:54:67, :56:48]
wire _source_ok_WIRE_2 = _source_ok_T_12; // @[Parameters.scala:1138:31]
wire [1:0] source_ok_uncommonBits_2 = _source_ok_uncommonBits_T_2[1:0]; // @[Parameters.scala:52:{29,56}]
wire _source_ok_T_14 = _source_ok_T_13 == 5'h2; // @[Parameters.scala:54:{10,32}]
wire _source_ok_T_16 = _source_ok_T_14; // @[Parameters.scala:54:{32,67}]
wire _source_ok_T_18 = _source_ok_T_16; // @[Parameters.scala:54:67, :56:48]
wire _source_ok_WIRE_3 = _source_ok_T_18; // @[Parameters.scala:1138:31]
wire [1:0] source_ok_uncommonBits_3 = _source_ok_uncommonBits_T_3[1:0]; // @[Parameters.scala:52:{29,56}]
wire _source_ok_T_20 = _source_ok_T_19 == 5'h3; // @[Parameters.scala:54:{10,32}]
wire _source_ok_T_22 = _source_ok_T_20; // @[Parameters.scala:54:{32,67}]
wire _source_ok_T_24 = _source_ok_T_22; // @[Parameters.scala:54:67, :56:48]
wire _source_ok_WIRE_4 = _source_ok_T_24; // @[Parameters.scala:1138:31]
wire _source_ok_T_25 = io_in_a_bits_source_0 == 7'h24; // @[Monitor.scala:36:7]
wire _source_ok_WIRE_5 = _source_ok_T_25; // @[Parameters.scala:1138:31]
wire _source_ok_T_26 = io_in_a_bits_source_0 == 7'h25; // @[Monitor.scala:36:7]
wire _source_ok_WIRE_6 = _source_ok_T_26; // @[Parameters.scala:1138:31]
wire _source_ok_T_27 = io_in_a_bits_source_0 == 7'h26; // @[Monitor.scala:36:7]
wire _source_ok_WIRE_7 = _source_ok_T_27; // @[Parameters.scala:1138:31]
wire _source_ok_T_28 = io_in_a_bits_source_0 == 7'h2E; // @[Monitor.scala:36:7]
wire _source_ok_WIRE_8 = _source_ok_T_28; // @[Parameters.scala:1138:31]
wire _source_ok_T_29 = io_in_a_bits_source_0 == 7'h2F; // @[Monitor.scala:36:7]
wire _source_ok_WIRE_9 = _source_ok_T_29; // @[Parameters.scala:1138:31]
wire _source_ok_T_30 = io_in_a_bits_source_0 == 7'h2C; // @[Monitor.scala:36:7]
wire _source_ok_WIRE_10 = _source_ok_T_30; // @[Parameters.scala:1138:31]
wire _source_ok_T_31 = io_in_a_bits_source_0 == 7'h2D; // @[Monitor.scala:36:7]
wire _source_ok_WIRE_11 = _source_ok_T_31; // @[Parameters.scala:1138:31]
wire _source_ok_T_32 = io_in_a_bits_source_0 == 7'h2A; // @[Monitor.scala:36:7]
wire _source_ok_WIRE_12 = _source_ok_T_32; // @[Parameters.scala:1138:31]
wire _source_ok_T_33 = io_in_a_bits_source_0 == 7'h2B; // @[Monitor.scala:36:7]
wire _source_ok_WIRE_13 = _source_ok_T_33; // @[Parameters.scala:1138:31]
wire _source_ok_T_34 = io_in_a_bits_source_0 == 7'h28; // @[Monitor.scala:36:7]
wire _source_ok_WIRE_14 = _source_ok_T_34; // @[Parameters.scala:1138:31]
wire _source_ok_T_35 = io_in_a_bits_source_0 == 7'h29; // @[Monitor.scala:36:7]
wire _source_ok_WIRE_15 = _source_ok_T_35; // @[Parameters.scala:1138:31]
wire _source_ok_T_36 = io_in_a_bits_source_0 == 7'h22; // @[Monitor.scala:36:7]
wire _source_ok_WIRE_16 = _source_ok_T_36; // @[Parameters.scala:1138:31]
wire _source_ok_T_37 = io_in_a_bits_source_0 == 7'h20; // @[Monitor.scala:36:7]
wire _source_ok_WIRE_17 = _source_ok_T_37; // @[Parameters.scala:1138:31]
wire _source_ok_T_38 = io_in_a_bits_source_0 == 7'h21; // @[Monitor.scala:36:7]
wire _source_ok_WIRE_18 = _source_ok_T_38; // @[Parameters.scala:1138:31]
wire _source_ok_T_39 = io_in_a_bits_source_0 == 7'h40; // @[Monitor.scala:36:7]
wire _source_ok_WIRE_19 = _source_ok_T_39; // @[Parameters.scala:1138:31]
wire _source_ok_T_40 = _source_ok_WIRE_0 | _source_ok_WIRE_1; // @[Parameters.scala:1138:31, :1139:46]
wire _source_ok_T_41 = _source_ok_T_40 | _source_ok_WIRE_2; // @[Parameters.scala:1138:31, :1139:46]
wire _source_ok_T_42 = _source_ok_T_41 | _source_ok_WIRE_3; // @[Parameters.scala:1138:31, :1139:46]
wire _source_ok_T_43 = _source_ok_T_42 | _source_ok_WIRE_4; // @[Parameters.scala:1138:31, :1139:46]
wire _source_ok_T_44 = _source_ok_T_43 | _source_ok_WIRE_5; // @[Parameters.scala:1138:31, :1139:46]
wire _source_ok_T_45 = _source_ok_T_44 | _source_ok_WIRE_6; // @[Parameters.scala:1138:31, :1139:46]
wire _source_ok_T_46 = _source_ok_T_45 | _source_ok_WIRE_7; // @[Parameters.scala:1138:31, :1139:46]
wire _source_ok_T_47 = _source_ok_T_46 | _source_ok_WIRE_8; // @[Parameters.scala:1138:31, :1139:46]
wire _source_ok_T_48 = _source_ok_T_47 | _source_ok_WIRE_9; // @[Parameters.scala:1138:31, :1139:46]
wire _source_ok_T_49 = _source_ok_T_48 | _source_ok_WIRE_10; // @[Parameters.scala:1138:31, :1139:46]
wire _source_ok_T_50 = _source_ok_T_49 | _source_ok_WIRE_11; // @[Parameters.scala:1138:31, :1139:46]
wire _source_ok_T_51 = _source_ok_T_50 | _source_ok_WIRE_12; // @[Parameters.scala:1138:31, :1139:46]
wire _source_ok_T_52 = _source_ok_T_51 | _source_ok_WIRE_13; // @[Parameters.scala:1138:31, :1139:46]
wire _source_ok_T_53 = _source_ok_T_52 | _source_ok_WIRE_14; // @[Parameters.scala:1138:31, :1139:46]
wire _source_ok_T_54 = _source_ok_T_53 | _source_ok_WIRE_15; // @[Parameters.scala:1138:31, :1139:46]
wire _source_ok_T_55 = _source_ok_T_54 | _source_ok_WIRE_16; // @[Parameters.scala:1138:31, :1139:46]
wire _source_ok_T_56 = _source_ok_T_55 | _source_ok_WIRE_17; // @[Parameters.scala:1138:31, :1139:46]
wire _source_ok_T_57 = _source_ok_T_56 | _source_ok_WIRE_18; // @[Parameters.scala:1138:31, :1139:46]
wire source_ok = _source_ok_T_57 | _source_ok_WIRE_19; // @[Parameters.scala:1138:31, :1139:46]
wire [12:0] _GEN = 13'h3F << io_in_a_bits_size_0; // @[package.scala:243:71]
wire [12:0] _is_aligned_mask_T; // @[package.scala:243:71]
assign _is_aligned_mask_T = _GEN; // @[package.scala:243:71]
wire [12:0] _a_first_beats1_decode_T; // @[package.scala:243:71]
assign _a_first_beats1_decode_T = _GEN; // @[package.scala:243:71]
wire [12:0] _a_first_beats1_decode_T_3; // @[package.scala:243:71]
assign _a_first_beats1_decode_T_3 = _GEN; // @[package.scala:243:71]
wire [5:0] _is_aligned_mask_T_1 = _is_aligned_mask_T[5:0]; // @[package.scala:243:{71,76}]
wire [5:0] is_aligned_mask = ~_is_aligned_mask_T_1; // @[package.scala:243:{46,76}]
wire [20:0] _is_aligned_T = {15'h0, io_in_a_bits_address_0[5:0] & is_aligned_mask}; // @[package.scala:243:46]
wire is_aligned = _is_aligned_T == 21'h0; // @[Edges.scala:21:{16,24}]
wire [1:0] mask_sizeOH_shiftAmount = _mask_sizeOH_T[1:0]; // @[OneHot.scala:64:49]
wire [3:0] _mask_sizeOH_T_1 = 4'h1 << mask_sizeOH_shiftAmount; // @[OneHot.scala:64:49, :65:12]
wire [2:0] _mask_sizeOH_T_2 = _mask_sizeOH_T_1[2:0]; // @[OneHot.scala:65:{12,27}]
wire [2:0] mask_sizeOH = {_mask_sizeOH_T_2[2:1], 1'h1}; // @[OneHot.scala:65:27]
wire mask_sub_sub_sub_0_1 = io_in_a_bits_size_0 > 3'h2; // @[Misc.scala:206:21]
wire mask_sub_sub_size = mask_sizeOH[2]; // @[Misc.scala:202:81, :209:26]
wire mask_sub_sub_bit = io_in_a_bits_address_0[2]; // @[Misc.scala:210:26]
wire mask_sub_sub_1_2 = mask_sub_sub_bit; // @[Misc.scala:210:26, :214:27]
wire mask_sub_sub_nbit = ~mask_sub_sub_bit; // @[Misc.scala:210:26, :211:20]
wire mask_sub_sub_0_2 = mask_sub_sub_nbit; // @[Misc.scala:211:20, :214:27]
wire _mask_sub_sub_acc_T = mask_sub_sub_size & mask_sub_sub_0_2; // @[Misc.scala:209:26, :214:27, :215:38]
wire mask_sub_sub_0_1 = mask_sub_sub_sub_0_1 | _mask_sub_sub_acc_T; // @[Misc.scala:206:21, :215:{29,38}]
wire _mask_sub_sub_acc_T_1 = mask_sub_sub_size & mask_sub_sub_1_2; // @[Misc.scala:209:26, :214:27, :215:38]
wire mask_sub_sub_1_1 = mask_sub_sub_sub_0_1 | _mask_sub_sub_acc_T_1; // @[Misc.scala:206:21, :215:{29,38}]
wire mask_sub_size = mask_sizeOH[1]; // @[Misc.scala:202:81, :209:26]
wire mask_sub_bit = io_in_a_bits_address_0[1]; // @[Misc.scala:210:26]
wire mask_sub_nbit = ~mask_sub_bit; // @[Misc.scala:210:26, :211:20]
wire mask_sub_0_2 = mask_sub_sub_0_2 & mask_sub_nbit; // @[Misc.scala:211:20, :214:27]
wire _mask_sub_acc_T = mask_sub_size & mask_sub_0_2; // @[Misc.scala:209:26, :214:27, :215:38]
wire mask_sub_0_1 = mask_sub_sub_0_1 | _mask_sub_acc_T; // @[Misc.scala:215:{29,38}]
wire mask_sub_1_2 = mask_sub_sub_0_2 & mask_sub_bit; // @[Misc.scala:210:26, :214:27]
wire _mask_sub_acc_T_1 = mask_sub_size & mask_sub_1_2; // @[Misc.scala:209:26, :214:27, :215:38]
wire mask_sub_1_1 = mask_sub_sub_0_1 | _mask_sub_acc_T_1; // @[Misc.scala:215:{29,38}]
wire mask_sub_2_2 = mask_sub_sub_1_2 & mask_sub_nbit; // @[Misc.scala:211:20, :214:27]
wire _mask_sub_acc_T_2 = mask_sub_size & mask_sub_2_2; // @[Misc.scala:209:26, :214:27, :215:38]
wire mask_sub_2_1 = mask_sub_sub_1_1 | _mask_sub_acc_T_2; // @[Misc.scala:215:{29,38}]
wire mask_sub_3_2 = mask_sub_sub_1_2 & mask_sub_bit; // @[Misc.scala:210:26, :214:27]
wire _mask_sub_acc_T_3 = mask_sub_size & mask_sub_3_2; // @[Misc.scala:209:26, :214:27, :215:38]
wire mask_sub_3_1 = mask_sub_sub_1_1 | _mask_sub_acc_T_3; // @[Misc.scala:215:{29,38}]
wire mask_size = mask_sizeOH[0]; // @[Misc.scala:202:81, :209:26]
wire mask_bit = io_in_a_bits_address_0[0]; // @[Misc.scala:210:26]
wire mask_nbit = ~mask_bit; // @[Misc.scala:210:26, :211:20]
wire mask_eq = mask_sub_0_2 & mask_nbit; // @[Misc.scala:211:20, :214:27]
wire _mask_acc_T = mask_size & mask_eq; // @[Misc.scala:209:26, :214:27, :215:38]
wire mask_acc = mask_sub_0_1 | _mask_acc_T; // @[Misc.scala:215:{29,38}]
wire mask_eq_1 = mask_sub_0_2 & mask_bit; // @[Misc.scala:210:26, :214:27]
wire _mask_acc_T_1 = mask_size & mask_eq_1; // @[Misc.scala:209:26, :214:27, :215:38]
wire mask_acc_1 = mask_sub_0_1 | _mask_acc_T_1; // @[Misc.scala:215:{29,38}]
wire mask_eq_2 = mask_sub_1_2 & mask_nbit; // @[Misc.scala:211:20, :214:27]
wire _mask_acc_T_2 = mask_size & mask_eq_2; // @[Misc.scala:209:26, :214:27, :215:38]
wire mask_acc_2 = mask_sub_1_1 | _mask_acc_T_2; // @[Misc.scala:215:{29,38}]
wire mask_eq_3 = mask_sub_1_2 & mask_bit; // @[Misc.scala:210:26, :214:27]
wire _mask_acc_T_3 = mask_size & mask_eq_3; // @[Misc.scala:209:26, :214:27, :215:38]
wire mask_acc_3 = mask_sub_1_1 | _mask_acc_T_3; // @[Misc.scala:215:{29,38}]
wire mask_eq_4 = mask_sub_2_2 & mask_nbit; // @[Misc.scala:211:20, :214:27]
wire _mask_acc_T_4 = mask_size & mask_eq_4; // @[Misc.scala:209:26, :214:27, :215:38]
wire mask_acc_4 = mask_sub_2_1 | _mask_acc_T_4; // @[Misc.scala:215:{29,38}]
wire mask_eq_5 = mask_sub_2_2 & mask_bit; // @[Misc.scala:210:26, :214:27]
wire _mask_acc_T_5 = mask_size & mask_eq_5; // @[Misc.scala:209:26, :214:27, :215:38]
wire mask_acc_5 = mask_sub_2_1 | _mask_acc_T_5; // @[Misc.scala:215:{29,38}]
wire mask_eq_6 = mask_sub_3_2 & mask_nbit; // @[Misc.scala:211:20, :214:27]
wire _mask_acc_T_6 = mask_size & mask_eq_6; // @[Misc.scala:209:26, :214:27, :215:38]
wire mask_acc_6 = mask_sub_3_1 | _mask_acc_T_6; // @[Misc.scala:215:{29,38}]
wire mask_eq_7 = mask_sub_3_2 & mask_bit; // @[Misc.scala:210:26, :214:27]
wire _mask_acc_T_7 = mask_size & mask_eq_7; // @[Misc.scala:209:26, :214:27, :215:38]
wire mask_acc_7 = mask_sub_3_1 | _mask_acc_T_7; // @[Misc.scala:215:{29,38}]
wire [1:0] mask_lo_lo = {mask_acc_1, mask_acc}; // @[Misc.scala:215:29, :222:10]
wire [1:0] mask_lo_hi = {mask_acc_3, mask_acc_2}; // @[Misc.scala:215:29, :222:10]
wire [3:0] mask_lo = {mask_lo_hi, mask_lo_lo}; // @[Misc.scala:222:10]
wire [1:0] mask_hi_lo = {mask_acc_5, mask_acc_4}; // @[Misc.scala:215:29, :222:10]
wire [1:0] mask_hi_hi = {mask_acc_7, mask_acc_6}; // @[Misc.scala:215:29, :222:10]
wire [3:0] mask_hi = {mask_hi_hi, mask_hi_lo}; // @[Misc.scala:222:10]
wire [7:0] mask = {mask_hi, mask_lo}; // @[Misc.scala:222:10]
wire [1:0] uncommonBits = _uncommonBits_T[1:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_1 = _uncommonBits_T_1[1:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_2 = _uncommonBits_T_2[1:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_3 = _uncommonBits_T_3[1:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_4 = _uncommonBits_T_4[1:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_5 = _uncommonBits_T_5[1:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_6 = _uncommonBits_T_6[1:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_7 = _uncommonBits_T_7[1:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_8 = _uncommonBits_T_8[1:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_9 = _uncommonBits_T_9[1:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_10 = _uncommonBits_T_10[1:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_11 = _uncommonBits_T_11[1:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_12 = _uncommonBits_T_12[1:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_13 = _uncommonBits_T_13[1:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_14 = _uncommonBits_T_14[1:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_15 = _uncommonBits_T_15[1:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_16 = _uncommonBits_T_16[1:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_17 = _uncommonBits_T_17[1:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_18 = _uncommonBits_T_18[1:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_19 = _uncommonBits_T_19[1:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_20 = _uncommonBits_T_20[1:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_21 = _uncommonBits_T_21[1:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_22 = _uncommonBits_T_22[1:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_23 = _uncommonBits_T_23[1:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_24 = _uncommonBits_T_24[1:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_25 = _uncommonBits_T_25[1:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_26 = _uncommonBits_T_26[1:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_27 = _uncommonBits_T_27[1:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_28 = _uncommonBits_T_28[1:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_29 = _uncommonBits_T_29[1:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_30 = _uncommonBits_T_30[1:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_31 = _uncommonBits_T_31[1:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_32 = _uncommonBits_T_32[1:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_33 = _uncommonBits_T_33[1:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_34 = _uncommonBits_T_34[1:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_35 = _uncommonBits_T_35[1:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_36 = _uncommonBits_T_36[1:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_37 = _uncommonBits_T_37[1:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_38 = _uncommonBits_T_38[1:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_39 = _uncommonBits_T_39[1:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_40 = _uncommonBits_T_40[1:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_41 = _uncommonBits_T_41[1:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_42 = _uncommonBits_T_42[1:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_43 = _uncommonBits_T_43[1:0]; // @[Parameters.scala:52:{29,56}]
wire _source_ok_T_58 = io_in_d_bits_source_0 == 7'h10; // @[Monitor.scala:36:7]
wire _source_ok_WIRE_1_0 = _source_ok_T_58; // @[Parameters.scala:1138:31]
wire [1:0] source_ok_uncommonBits_4 = _source_ok_uncommonBits_T_4[1:0]; // @[Parameters.scala:52:{29,56}]
wire [4:0] _source_ok_T_59 = io_in_d_bits_source_0[6:2]; // @[Monitor.scala:36:7]
wire [4:0] _source_ok_T_65 = io_in_d_bits_source_0[6:2]; // @[Monitor.scala:36:7]
wire [4:0] _source_ok_T_71 = io_in_d_bits_source_0[6:2]; // @[Monitor.scala:36:7]
wire [4:0] _source_ok_T_77 = io_in_d_bits_source_0[6:2]; // @[Monitor.scala:36:7]
wire _source_ok_T_60 = _source_ok_T_59 == 5'h0; // @[Parameters.scala:54:{10,32}]
wire _source_ok_T_62 = _source_ok_T_60; // @[Parameters.scala:54:{32,67}]
wire _source_ok_T_64 = _source_ok_T_62; // @[Parameters.scala:54:67, :56:48]
wire _source_ok_WIRE_1_1 = _source_ok_T_64; // @[Parameters.scala:1138:31]
wire [1:0] source_ok_uncommonBits_5 = _source_ok_uncommonBits_T_5[1:0]; // @[Parameters.scala:52:{29,56}]
wire _source_ok_T_66 = _source_ok_T_65 == 5'h1; // @[Parameters.scala:54:{10,32}]
wire _source_ok_T_68 = _source_ok_T_66; // @[Parameters.scala:54:{32,67}]
wire _source_ok_T_70 = _source_ok_T_68; // @[Parameters.scala:54:67, :56:48]
wire _source_ok_WIRE_1_2 = _source_ok_T_70; // @[Parameters.scala:1138:31]
wire [1:0] source_ok_uncommonBits_6 = _source_ok_uncommonBits_T_6[1:0]; // @[Parameters.scala:52:{29,56}]
wire _source_ok_T_72 = _source_ok_T_71 == 5'h2; // @[Parameters.scala:54:{10,32}]
wire _source_ok_T_74 = _source_ok_T_72; // @[Parameters.scala:54:{32,67}]
wire _source_ok_T_76 = _source_ok_T_74; // @[Parameters.scala:54:67, :56:48]
wire _source_ok_WIRE_1_3 = _source_ok_T_76; // @[Parameters.scala:1138:31]
wire [1:0] source_ok_uncommonBits_7 = _source_ok_uncommonBits_T_7[1:0]; // @[Parameters.scala:52:{29,56}]
wire _source_ok_T_78 = _source_ok_T_77 == 5'h3; // @[Parameters.scala:54:{10,32}]
wire _source_ok_T_80 = _source_ok_T_78; // @[Parameters.scala:54:{32,67}]
wire _source_ok_T_82 = _source_ok_T_80; // @[Parameters.scala:54:67, :56:48]
wire _source_ok_WIRE_1_4 = _source_ok_T_82; // @[Parameters.scala:1138:31]
wire _source_ok_T_83 = io_in_d_bits_source_0 == 7'h24; // @[Monitor.scala:36:7]
wire _source_ok_WIRE_1_5 = _source_ok_T_83; // @[Parameters.scala:1138:31]
wire _source_ok_T_84 = io_in_d_bits_source_0 == 7'h25; // @[Monitor.scala:36:7]
wire _source_ok_WIRE_1_6 = _source_ok_T_84; // @[Parameters.scala:1138:31]
wire _source_ok_T_85 = io_in_d_bits_source_0 == 7'h26; // @[Monitor.scala:36:7]
wire _source_ok_WIRE_1_7 = _source_ok_T_85; // @[Parameters.scala:1138:31]
wire _source_ok_T_86 = io_in_d_bits_source_0 == 7'h2E; // @[Monitor.scala:36:7]
wire _source_ok_WIRE_1_8 = _source_ok_T_86; // @[Parameters.scala:1138:31]
wire _source_ok_T_87 = io_in_d_bits_source_0 == 7'h2F; // @[Monitor.scala:36:7]
wire _source_ok_WIRE_1_9 = _source_ok_T_87; // @[Parameters.scala:1138:31]
wire _source_ok_T_88 = io_in_d_bits_source_0 == 7'h2C; // @[Monitor.scala:36:7]
wire _source_ok_WIRE_1_10 = _source_ok_T_88; // @[Parameters.scala:1138:31]
wire _source_ok_T_89 = io_in_d_bits_source_0 == 7'h2D; // @[Monitor.scala:36:7]
wire _source_ok_WIRE_1_11 = _source_ok_T_89; // @[Parameters.scala:1138:31]
wire _source_ok_T_90 = io_in_d_bits_source_0 == 7'h2A; // @[Monitor.scala:36:7]
wire _source_ok_WIRE_1_12 = _source_ok_T_90; // @[Parameters.scala:1138:31]
wire _source_ok_T_91 = io_in_d_bits_source_0 == 7'h2B; // @[Monitor.scala:36:7]
wire _source_ok_WIRE_1_13 = _source_ok_T_91; // @[Parameters.scala:1138:31]
wire _source_ok_T_92 = io_in_d_bits_source_0 == 7'h28; // @[Monitor.scala:36:7]
wire _source_ok_WIRE_1_14 = _source_ok_T_92; // @[Parameters.scala:1138:31]
wire _source_ok_T_93 = io_in_d_bits_source_0 == 7'h29; // @[Monitor.scala:36:7]
wire _source_ok_WIRE_1_15 = _source_ok_T_93; // @[Parameters.scala:1138:31]
wire _source_ok_T_94 = io_in_d_bits_source_0 == 7'h22; // @[Monitor.scala:36:7]
wire _source_ok_WIRE_1_16 = _source_ok_T_94; // @[Parameters.scala:1138:31]
wire _source_ok_T_95 = io_in_d_bits_source_0 == 7'h20; // @[Monitor.scala:36:7]
wire _source_ok_WIRE_1_17 = _source_ok_T_95; // @[Parameters.scala:1138:31]
wire _source_ok_T_96 = io_in_d_bits_source_0 == 7'h21; // @[Monitor.scala:36:7]
wire _source_ok_WIRE_1_18 = _source_ok_T_96; // @[Parameters.scala:1138:31]
wire _source_ok_T_97 = io_in_d_bits_source_0 == 7'h40; // @[Monitor.scala:36:7]
wire _source_ok_WIRE_1_19 = _source_ok_T_97; // @[Parameters.scala:1138:31]
wire _source_ok_T_98 = _source_ok_WIRE_1_0 | _source_ok_WIRE_1_1; // @[Parameters.scala:1138:31, :1139:46]
wire _source_ok_T_99 = _source_ok_T_98 | _source_ok_WIRE_1_2; // @[Parameters.scala:1138:31, :1139:46]
wire _source_ok_T_100 = _source_ok_T_99 | _source_ok_WIRE_1_3; // @[Parameters.scala:1138:31, :1139:46]
wire _source_ok_T_101 = _source_ok_T_100 | _source_ok_WIRE_1_4; // @[Parameters.scala:1138:31, :1139:46]
wire _source_ok_T_102 = _source_ok_T_101 | _source_ok_WIRE_1_5; // @[Parameters.scala:1138:31, :1139:46]
wire _source_ok_T_103 = _source_ok_T_102 | _source_ok_WIRE_1_6; // @[Parameters.scala:1138:31, :1139:46]
wire _source_ok_T_104 = _source_ok_T_103 | _source_ok_WIRE_1_7; // @[Parameters.scala:1138:31, :1139:46]
wire _source_ok_T_105 = _source_ok_T_104 | _source_ok_WIRE_1_8; // @[Parameters.scala:1138:31, :1139:46]
wire _source_ok_T_106 = _source_ok_T_105 | _source_ok_WIRE_1_9; // @[Parameters.scala:1138:31, :1139:46]
wire _source_ok_T_107 = _source_ok_T_106 | _source_ok_WIRE_1_10; // @[Parameters.scala:1138:31, :1139:46]
wire _source_ok_T_108 = _source_ok_T_107 | _source_ok_WIRE_1_11; // @[Parameters.scala:1138:31, :1139:46]
wire _source_ok_T_109 = _source_ok_T_108 | _source_ok_WIRE_1_12; // @[Parameters.scala:1138:31, :1139:46]
wire _source_ok_T_110 = _source_ok_T_109 | _source_ok_WIRE_1_13; // @[Parameters.scala:1138:31, :1139:46]
wire _source_ok_T_111 = _source_ok_T_110 | _source_ok_WIRE_1_14; // @[Parameters.scala:1138:31, :1139:46]
wire _source_ok_T_112 = _source_ok_T_111 | _source_ok_WIRE_1_15; // @[Parameters.scala:1138:31, :1139:46]
wire _source_ok_T_113 = _source_ok_T_112 | _source_ok_WIRE_1_16; // @[Parameters.scala:1138:31, :1139:46]
wire _source_ok_T_114 = _source_ok_T_113 | _source_ok_WIRE_1_17; // @[Parameters.scala:1138:31, :1139:46]
wire _source_ok_T_115 = _source_ok_T_114 | _source_ok_WIRE_1_18; // @[Parameters.scala:1138:31, :1139:46]
wire source_ok_1 = _source_ok_T_115 | _source_ok_WIRE_1_19; // @[Parameters.scala:1138:31, :1139:46]
wire _T_1445 = io_in_a_ready_0 & io_in_a_valid_0; // @[Decoupled.scala:51:35]
wire _a_first_T; // @[Decoupled.scala:51:35]
assign _a_first_T = _T_1445; // @[Decoupled.scala:51:35]
wire _a_first_T_1; // @[Decoupled.scala:51:35]
assign _a_first_T_1 = _T_1445; // @[Decoupled.scala:51:35]
wire [5:0] _a_first_beats1_decode_T_1 = _a_first_beats1_decode_T[5:0]; // @[package.scala:243:{71,76}]
wire [5:0] _a_first_beats1_decode_T_2 = ~_a_first_beats1_decode_T_1; // @[package.scala:243:{46,76}]
wire [2:0] a_first_beats1_decode = _a_first_beats1_decode_T_2[5:3]; // @[package.scala:243:46]
wire _a_first_beats1_opdata_T = io_in_a_bits_opcode_0[2]; // @[Monitor.scala:36:7]
wire _a_first_beats1_opdata_T_1 = io_in_a_bits_opcode_0[2]; // @[Monitor.scala:36:7]
wire a_first_beats1_opdata = ~_a_first_beats1_opdata_T; // @[Edges.scala:92:{28,37}]
wire [2:0] a_first_beats1 = a_first_beats1_opdata ? a_first_beats1_decode : 3'h0; // @[Edges.scala:92:28, :220:59, :221:14]
reg [2:0] a_first_counter; // @[Edges.scala:229:27]
wire [3:0] _a_first_counter1_T = {1'h0, a_first_counter} - 4'h1; // @[Edges.scala:229:27, :230:28]
wire [2:0] a_first_counter1 = _a_first_counter1_T[2:0]; // @[Edges.scala:230:28]
wire a_first = a_first_counter == 3'h0; // @[Edges.scala:229:27, :231:25]
wire _a_first_last_T = a_first_counter == 3'h1; // @[Edges.scala:229:27, :232:25]
wire _a_first_last_T_1 = a_first_beats1 == 3'h0; // @[Edges.scala:221:14, :232:43]
wire a_first_last = _a_first_last_T | _a_first_last_T_1; // @[Edges.scala:232:{25,33,43}]
wire a_first_done = a_first_last & _a_first_T; // @[Decoupled.scala:51:35]
wire [2:0] _a_first_count_T = ~a_first_counter1; // @[Edges.scala:230:28, :234:27]
wire [2:0] a_first_count = a_first_beats1 & _a_first_count_T; // @[Edges.scala:221:14, :234:{25,27}]
wire [2:0] _a_first_counter_T = a_first ? a_first_beats1 : a_first_counter1; // @[Edges.scala:221:14, :230:28, :231:25, :236:21]
reg [2:0] opcode; // @[Monitor.scala:387:22]
reg [2:0] param; // @[Monitor.scala:388:22]
reg [2:0] size; // @[Monitor.scala:389:22]
reg [6:0] source; // @[Monitor.scala:390:22]
reg [20:0] address; // @[Monitor.scala:391:22]
wire _T_1513 = io_in_d_ready_0 & io_in_d_valid_0; // @[Decoupled.scala:51:35]
wire _d_first_T; // @[Decoupled.scala:51:35]
assign _d_first_T = _T_1513; // @[Decoupled.scala:51:35]
wire _d_first_T_1; // @[Decoupled.scala:51:35]
assign _d_first_T_1 = _T_1513; // @[Decoupled.scala:51:35]
wire _d_first_T_2; // @[Decoupled.scala:51:35]
assign _d_first_T_2 = _T_1513; // @[Decoupled.scala:51:35]
wire [12:0] _GEN_0 = 13'h3F << io_in_d_bits_size_0; // @[package.scala:243:71]
wire [12:0] _d_first_beats1_decode_T; // @[package.scala:243:71]
assign _d_first_beats1_decode_T = _GEN_0; // @[package.scala:243:71]
wire [12:0] _d_first_beats1_decode_T_3; // @[package.scala:243:71]
assign _d_first_beats1_decode_T_3 = _GEN_0; // @[package.scala:243:71]
wire [12:0] _d_first_beats1_decode_T_6; // @[package.scala:243:71]
assign _d_first_beats1_decode_T_6 = _GEN_0; // @[package.scala:243:71]
wire [5:0] _d_first_beats1_decode_T_1 = _d_first_beats1_decode_T[5:0]; // @[package.scala:243:{71,76}]
wire [5:0] _d_first_beats1_decode_T_2 = ~_d_first_beats1_decode_T_1; // @[package.scala:243:{46,76}]
wire [2:0] d_first_beats1_decode = _d_first_beats1_decode_T_2[5:3]; // @[package.scala:243:46]
wire d_first_beats1_opdata = io_in_d_bits_opcode_0[0]; // @[Monitor.scala:36:7]
wire d_first_beats1_opdata_1 = io_in_d_bits_opcode_0[0]; // @[Monitor.scala:36:7]
wire d_first_beats1_opdata_2 = io_in_d_bits_opcode_0[0]; // @[Monitor.scala:36:7]
wire [2:0] d_first_beats1 = d_first_beats1_opdata ? d_first_beats1_decode : 3'h0; // @[Edges.scala:106:36, :220:59, :221:14]
reg [2:0] d_first_counter; // @[Edges.scala:229:27]
wire [3:0] _d_first_counter1_T = {1'h0, d_first_counter} - 4'h1; // @[Edges.scala:229:27, :230:28]
wire [2:0] d_first_counter1 = _d_first_counter1_T[2:0]; // @[Edges.scala:230:28]
wire d_first = d_first_counter == 3'h0; // @[Edges.scala:229:27, :231:25]
wire _d_first_last_T = d_first_counter == 3'h1; // @[Edges.scala:229:27, :232:25]
wire _d_first_last_T_1 = d_first_beats1 == 3'h0; // @[Edges.scala:221:14, :232:43]
wire d_first_last = _d_first_last_T | _d_first_last_T_1; // @[Edges.scala:232:{25,33,43}]
wire d_first_done = d_first_last & _d_first_T; // @[Decoupled.scala:51:35]
wire [2:0] _d_first_count_T = ~d_first_counter1; // @[Edges.scala:230:28, :234:27]
wire [2:0] d_first_count = d_first_beats1 & _d_first_count_T; // @[Edges.scala:221:14, :234:{25,27}]
wire [2:0] _d_first_counter_T = d_first ? d_first_beats1 : d_first_counter1; // @[Edges.scala:221:14, :230:28, :231:25, :236:21]
reg [2:0] opcode_1; // @[Monitor.scala:538:22]
reg [2:0] size_1; // @[Monitor.scala:540:22]
reg [6:0] source_1; // @[Monitor.scala:541:22]
reg [64:0] inflight; // @[Monitor.scala:614:27]
reg [259:0] inflight_opcodes; // @[Monitor.scala:616:35]
reg [259:0] inflight_sizes; // @[Monitor.scala:618:33]
wire [5:0] _a_first_beats1_decode_T_4 = _a_first_beats1_decode_T_3[5:0]; // @[package.scala:243:{71,76}]
wire [5:0] _a_first_beats1_decode_T_5 = ~_a_first_beats1_decode_T_4; // @[package.scala:243:{46,76}]
wire [2:0] a_first_beats1_decode_1 = _a_first_beats1_decode_T_5[5:3]; // @[package.scala:243:46]
wire a_first_beats1_opdata_1 = ~_a_first_beats1_opdata_T_1; // @[Edges.scala:92:{28,37}]
wire [2:0] a_first_beats1_1 = a_first_beats1_opdata_1 ? a_first_beats1_decode_1 : 3'h0; // @[Edges.scala:92:28, :220:59, :221:14]
reg [2:0] a_first_counter_1; // @[Edges.scala:229:27]
wire [3:0] _a_first_counter1_T_1 = {1'h0, a_first_counter_1} - 4'h1; // @[Edges.scala:229:27, :230:28]
wire [2:0] a_first_counter1_1 = _a_first_counter1_T_1[2:0]; // @[Edges.scala:230:28]
wire a_first_1 = a_first_counter_1 == 3'h0; // @[Edges.scala:229:27, :231:25]
wire _a_first_last_T_2 = a_first_counter_1 == 3'h1; // @[Edges.scala:229:27, :232:25]
wire _a_first_last_T_3 = a_first_beats1_1 == 3'h0; // @[Edges.scala:221:14, :232:43]
wire a_first_last_1 = _a_first_last_T_2 | _a_first_last_T_3; // @[Edges.scala:232:{25,33,43}]
wire a_first_done_1 = a_first_last_1 & _a_first_T_1; // @[Decoupled.scala:51:35]
wire [2:0] _a_first_count_T_1 = ~a_first_counter1_1; // @[Edges.scala:230:28, :234:27]
wire [2:0] a_first_count_1 = a_first_beats1_1 & _a_first_count_T_1; // @[Edges.scala:221:14, :234:{25,27}]
wire [2:0] _a_first_counter_T_1 = a_first_1 ? a_first_beats1_1 : a_first_counter1_1; // @[Edges.scala:221:14, :230:28, :231:25, :236:21]
wire [5:0] _d_first_beats1_decode_T_4 = _d_first_beats1_decode_T_3[5:0]; // @[package.scala:243:{71,76}]
wire [5:0] _d_first_beats1_decode_T_5 = ~_d_first_beats1_decode_T_4; // @[package.scala:243:{46,76}]
wire [2:0] d_first_beats1_decode_1 = _d_first_beats1_decode_T_5[5:3]; // @[package.scala:243:46]
wire [2:0] d_first_beats1_1 = d_first_beats1_opdata_1 ? d_first_beats1_decode_1 : 3'h0; // @[Edges.scala:106:36, :220:59, :221:14]
reg [2:0] d_first_counter_1; // @[Edges.scala:229:27]
wire [3:0] _d_first_counter1_T_1 = {1'h0, d_first_counter_1} - 4'h1; // @[Edges.scala:229:27, :230:28]
wire [2:0] d_first_counter1_1 = _d_first_counter1_T_1[2:0]; // @[Edges.scala:230:28]
wire d_first_1 = d_first_counter_1 == 3'h0; // @[Edges.scala:229:27, :231:25]
wire _d_first_last_T_2 = d_first_counter_1 == 3'h1; // @[Edges.scala:229:27, :232:25]
wire _d_first_last_T_3 = d_first_beats1_1 == 3'h0; // @[Edges.scala:221:14, :232:43]
wire d_first_last_1 = _d_first_last_T_2 | _d_first_last_T_3; // @[Edges.scala:232:{25,33,43}]
wire d_first_done_1 = d_first_last_1 & _d_first_T_1; // @[Decoupled.scala:51:35]
wire [2:0] _d_first_count_T_1 = ~d_first_counter1_1; // @[Edges.scala:230:28, :234:27]
wire [2:0] d_first_count_1 = d_first_beats1_1 & _d_first_count_T_1; // @[Edges.scala:221:14, :234:{25,27}]
wire [2:0] _d_first_counter_T_1 = d_first_1 ? d_first_beats1_1 : d_first_counter1_1; // @[Edges.scala:221:14, :230:28, :231:25, :236:21]
wire [64:0] a_set; // @[Monitor.scala:626:34]
wire [64:0] a_set_wo_ready; // @[Monitor.scala:627:34]
wire [259:0] a_opcodes_set; // @[Monitor.scala:630:33]
wire [259:0] a_sizes_set; // @[Monitor.scala:632:31]
wire [2:0] a_opcode_lookup; // @[Monitor.scala:635:35]
wire [9:0] _GEN_1 = {1'h0, io_in_d_bits_source_0, 2'h0}; // @[Monitor.scala:36:7, :637:69]
wire [9:0] _a_opcode_lookup_T; // @[Monitor.scala:637:69]
assign _a_opcode_lookup_T = _GEN_1; // @[Monitor.scala:637:69]
wire [9:0] _a_size_lookup_T; // @[Monitor.scala:641:65]
assign _a_size_lookup_T = _GEN_1; // @[Monitor.scala:637:69, :641:65]
wire [9:0] _d_opcodes_clr_T_4; // @[Monitor.scala:680:101]
assign _d_opcodes_clr_T_4 = _GEN_1; // @[Monitor.scala:637:69, :680:101]
wire [9:0] _d_sizes_clr_T_4; // @[Monitor.scala:681:99]
assign _d_sizes_clr_T_4 = _GEN_1; // @[Monitor.scala:637:69, :681:99]
wire [9:0] _c_opcode_lookup_T; // @[Monitor.scala:749:69]
assign _c_opcode_lookup_T = _GEN_1; // @[Monitor.scala:637:69, :749:69]
wire [9:0] _c_size_lookup_T; // @[Monitor.scala:750:67]
assign _c_size_lookup_T = _GEN_1; // @[Monitor.scala:637:69, :750:67]
wire [9:0] _d_opcodes_clr_T_10; // @[Monitor.scala:790:101]
assign _d_opcodes_clr_T_10 = _GEN_1; // @[Monitor.scala:637:69, :790:101]
wire [9:0] _d_sizes_clr_T_10; // @[Monitor.scala:791:99]
assign _d_sizes_clr_T_10 = _GEN_1; // @[Monitor.scala:637:69, :791:99]
wire [259:0] _a_opcode_lookup_T_1 = inflight_opcodes >> _a_opcode_lookup_T; // @[Monitor.scala:616:35, :637:{44,69}]
wire [259:0] _a_opcode_lookup_T_6 = {256'h0, _a_opcode_lookup_T_1[3:0]}; // @[Monitor.scala:637:{44,97}]
wire [259:0] _a_opcode_lookup_T_7 = {1'h0, _a_opcode_lookup_T_6[259:1]}; // @[Monitor.scala:637:{97,152}]
assign a_opcode_lookup = _a_opcode_lookup_T_7[2:0]; // @[Monitor.scala:635:35, :637:{21,152}]
wire [3:0] a_size_lookup; // @[Monitor.scala:639:33]
wire [259:0] _a_size_lookup_T_1 = inflight_sizes >> _a_size_lookup_T; // @[Monitor.scala:618:33, :641:{40,65}]
wire [259:0] _a_size_lookup_T_6 = {256'h0, _a_size_lookup_T_1[3:0]}; // @[Monitor.scala:641:{40,91}]
wire [259:0] _a_size_lookup_T_7 = {1'h0, _a_size_lookup_T_6[259:1]}; // @[Monitor.scala:641:{91,144}]
assign a_size_lookup = _a_size_lookup_T_7[3:0]; // @[Monitor.scala:639:33, :641:{19,144}]
wire [3:0] a_opcodes_set_interm; // @[Monitor.scala:646:40]
wire [3:0] a_sizes_set_interm; // @[Monitor.scala:648:38]
wire _same_cycle_resp_T = io_in_a_valid_0 & a_first_1; // @[Monitor.scala:36:7, :651:26, :684:44]
wire [127:0] _GEN_2 = 128'h1 << io_in_a_bits_source_0; // @[OneHot.scala:58:35]
wire [127:0] _a_set_wo_ready_T; // @[OneHot.scala:58:35]
assign _a_set_wo_ready_T = _GEN_2; // @[OneHot.scala:58:35]
wire [127:0] _a_set_T; // @[OneHot.scala:58:35]
assign _a_set_T = _GEN_2; // @[OneHot.scala:58:35]
assign a_set_wo_ready = _same_cycle_resp_T ? _a_set_wo_ready_T[64:0] : 65'h0; // @[OneHot.scala:58:35]
wire _T_1378 = _T_1445 & a_first_1; // @[Decoupled.scala:51:35]
assign a_set = _T_1378 ? _a_set_T[64:0] : 65'h0; // @[OneHot.scala:58:35]
wire [3:0] _a_opcodes_set_interm_T = {io_in_a_bits_opcode_0, 1'h0}; // @[Monitor.scala:36:7, :657:53]
wire [3:0] _a_opcodes_set_interm_T_1 = {_a_opcodes_set_interm_T[3:1], 1'h1}; // @[Monitor.scala:657:{53,61}]
assign a_opcodes_set_interm = _T_1378 ? _a_opcodes_set_interm_T_1 : 4'h0; // @[Monitor.scala:646:40, :655:{25,70}, :657:{28,61}]
wire [3:0] _a_sizes_set_interm_T = {io_in_a_bits_size_0, 1'h0}; // @[Monitor.scala:36:7, :658:51]
wire [3:0] _a_sizes_set_interm_T_1 = {_a_sizes_set_interm_T[3:1], 1'h1}; // @[Monitor.scala:658:{51,59}]
assign a_sizes_set_interm = _T_1378 ? _a_sizes_set_interm_T_1 : 4'h0; // @[Monitor.scala:648:38, :655:{25,70}, :658:{28,59}]
wire [9:0] _GEN_3 = {1'h0, io_in_a_bits_source_0, 2'h0}; // @[Monitor.scala:36:7, :659:79]
wire [9:0] _a_opcodes_set_T; // @[Monitor.scala:659:79]
assign _a_opcodes_set_T = _GEN_3; // @[Monitor.scala:659:79]
wire [9:0] _a_sizes_set_T; // @[Monitor.scala:660:77]
assign _a_sizes_set_T = _GEN_3; // @[Monitor.scala:659:79, :660:77]
wire [1026:0] _a_opcodes_set_T_1 = {1023'h0, a_opcodes_set_interm} << _a_opcodes_set_T; // @[Monitor.scala:646:40, :659:{54,79}]
assign a_opcodes_set = _T_1378 ? _a_opcodes_set_T_1[259:0] : 260'h0; // @[Monitor.scala:630:33, :655:{25,70}, :659:{28,54}]
wire [1026:0] _a_sizes_set_T_1 = {1023'h0, a_sizes_set_interm} << _a_sizes_set_T; // @[Monitor.scala:648:38, :659:54, :660:{52,77}]
assign a_sizes_set = _T_1378 ? _a_sizes_set_T_1[259:0] : 260'h0; // @[Monitor.scala:632:31, :655:{25,70}, :660:{28,52}]
wire [64:0] d_clr; // @[Monitor.scala:664:34]
wire [64:0] d_clr_wo_ready; // @[Monitor.scala:665:34]
wire [259:0] d_opcodes_clr; // @[Monitor.scala:668:33]
wire [259:0] d_sizes_clr; // @[Monitor.scala:670:31]
wire _GEN_4 = io_in_d_bits_opcode_0 == 3'h6; // @[Monitor.scala:36:7, :673:46]
wire d_release_ack; // @[Monitor.scala:673:46]
assign d_release_ack = _GEN_4; // @[Monitor.scala:673:46]
wire d_release_ack_1; // @[Monitor.scala:783:46]
assign d_release_ack_1 = _GEN_4; // @[Monitor.scala:673:46, :783:46]
wire _T_1424 = io_in_d_valid_0 & d_first_1; // @[Monitor.scala:36:7, :674:26]
wire [127:0] _GEN_5 = 128'h1 << io_in_d_bits_source_0; // @[OneHot.scala:58:35]
wire [127:0] _d_clr_wo_ready_T; // @[OneHot.scala:58:35]
assign _d_clr_wo_ready_T = _GEN_5; // @[OneHot.scala:58:35]
wire [127:0] _d_clr_T; // @[OneHot.scala:58:35]
assign _d_clr_T = _GEN_5; // @[OneHot.scala:58:35]
wire [127:0] _d_clr_wo_ready_T_1; // @[OneHot.scala:58:35]
assign _d_clr_wo_ready_T_1 = _GEN_5; // @[OneHot.scala:58:35]
wire [127:0] _d_clr_T_1; // @[OneHot.scala:58:35]
assign _d_clr_T_1 = _GEN_5; // @[OneHot.scala:58:35]
assign d_clr_wo_ready = _T_1424 & ~d_release_ack ? _d_clr_wo_ready_T[64:0] : 65'h0; // @[OneHot.scala:58:35]
wire _T_1393 = _T_1513 & d_first_1 & ~d_release_ack; // @[Decoupled.scala:51:35]
assign d_clr = _T_1393 ? _d_clr_T[64:0] : 65'h0; // @[OneHot.scala:58:35]
wire [1038:0] _d_opcodes_clr_T_5 = 1039'hF << _d_opcodes_clr_T_4; // @[Monitor.scala:680:{76,101}]
assign d_opcodes_clr = _T_1393 ? _d_opcodes_clr_T_5[259:0] : 260'h0; // @[Monitor.scala:668:33, :678:{25,70,89}, :680:{21,76}]
wire [1038:0] _d_sizes_clr_T_5 = 1039'hF << _d_sizes_clr_T_4; // @[Monitor.scala:681:{74,99}]
assign d_sizes_clr = _T_1393 ? _d_sizes_clr_T_5[259:0] : 260'h0; // @[Monitor.scala:670:31, :678:{25,70,89}, :681:{21,74}]
wire _same_cycle_resp_T_1 = _same_cycle_resp_T; // @[Monitor.scala:684:{44,55}]
wire _same_cycle_resp_T_2 = io_in_a_bits_source_0 == io_in_d_bits_source_0; // @[Monitor.scala:36:7, :684:113]
wire same_cycle_resp = _same_cycle_resp_T_1 & _same_cycle_resp_T_2; // @[Monitor.scala:684:{55,88,113}]
wire [64:0] _inflight_T = inflight | a_set; // @[Monitor.scala:614:27, :626:34, :705:27]
wire [64:0] _inflight_T_1 = ~d_clr; // @[Monitor.scala:664:34, :705:38]
wire [64:0] _inflight_T_2 = _inflight_T & _inflight_T_1; // @[Monitor.scala:705:{27,36,38}]
wire [259:0] _inflight_opcodes_T = inflight_opcodes | a_opcodes_set; // @[Monitor.scala:616:35, :630:33, :706:43]
wire [259:0] _inflight_opcodes_T_1 = ~d_opcodes_clr; // @[Monitor.scala:668:33, :706:62]
wire [259:0] _inflight_opcodes_T_2 = _inflight_opcodes_T & _inflight_opcodes_T_1; // @[Monitor.scala:706:{43,60,62}]
wire [259:0] _inflight_sizes_T = inflight_sizes | a_sizes_set; // @[Monitor.scala:618:33, :632:31, :707:39]
wire [259:0] _inflight_sizes_T_1 = ~d_sizes_clr; // @[Monitor.scala:670:31, :707:56]
wire [259:0] _inflight_sizes_T_2 = _inflight_sizes_T & _inflight_sizes_T_1; // @[Monitor.scala:707:{39,54,56}]
reg [31:0] watchdog; // @[Monitor.scala:709:27]
wire [32:0] _watchdog_T = {1'h0, watchdog} + 33'h1; // @[Monitor.scala:709:27, :714:26]
wire [31:0] _watchdog_T_1 = _watchdog_T[31:0]; // @[Monitor.scala:714:26]
reg [64:0] inflight_1; // @[Monitor.scala:726:35]
wire [64:0] _inflight_T_3 = inflight_1; // @[Monitor.scala:726:35, :814:35]
reg [259:0] inflight_opcodes_1; // @[Monitor.scala:727:35]
wire [259:0] _inflight_opcodes_T_3 = inflight_opcodes_1; // @[Monitor.scala:727:35, :815:43]
reg [259:0] inflight_sizes_1; // @[Monitor.scala:728:35]
wire [259:0] _inflight_sizes_T_3 = inflight_sizes_1; // @[Monitor.scala:728:35, :816:41]
wire [5:0] _d_first_beats1_decode_T_7 = _d_first_beats1_decode_T_6[5:0]; // @[package.scala:243:{71,76}]
wire [5:0] _d_first_beats1_decode_T_8 = ~_d_first_beats1_decode_T_7; // @[package.scala:243:{46,76}]
wire [2:0] d_first_beats1_decode_2 = _d_first_beats1_decode_T_8[5:3]; // @[package.scala:243:46]
wire [2:0] d_first_beats1_2 = d_first_beats1_opdata_2 ? d_first_beats1_decode_2 : 3'h0; // @[Edges.scala:106:36, :220:59, :221:14]
reg [2:0] d_first_counter_2; // @[Edges.scala:229:27]
wire [3:0] _d_first_counter1_T_2 = {1'h0, d_first_counter_2} - 4'h1; // @[Edges.scala:229:27, :230:28]
wire [2:0] d_first_counter1_2 = _d_first_counter1_T_2[2:0]; // @[Edges.scala:230:28]
wire d_first_2 = d_first_counter_2 == 3'h0; // @[Edges.scala:229:27, :231:25]
wire _d_first_last_T_4 = d_first_counter_2 == 3'h1; // @[Edges.scala:229:27, :232:25]
wire _d_first_last_T_5 = d_first_beats1_2 == 3'h0; // @[Edges.scala:221:14, :232:43]
wire d_first_last_2 = _d_first_last_T_4 | _d_first_last_T_5; // @[Edges.scala:232:{25,33,43}]
wire d_first_done_2 = d_first_last_2 & _d_first_T_2; // @[Decoupled.scala:51:35]
wire [2:0] _d_first_count_T_2 = ~d_first_counter1_2; // @[Edges.scala:230:28, :234:27]
wire [2:0] d_first_count_2 = d_first_beats1_2 & _d_first_count_T_2; // @[Edges.scala:221:14, :234:{25,27}]
wire [2:0] _d_first_counter_T_2 = d_first_2 ? d_first_beats1_2 : d_first_counter1_2; // @[Edges.scala:221:14, :230:28, :231:25, :236:21]
wire [3:0] c_opcode_lookup; // @[Monitor.scala:747:35]
wire [3:0] c_size_lookup; // @[Monitor.scala:748:35]
wire [259:0] _c_opcode_lookup_T_1 = inflight_opcodes_1 >> _c_opcode_lookup_T; // @[Monitor.scala:727:35, :749:{44,69}]
wire [259:0] _c_opcode_lookup_T_6 = {256'h0, _c_opcode_lookup_T_1[3:0]}; // @[Monitor.scala:749:{44,97}]
wire [259:0] _c_opcode_lookup_T_7 = {1'h0, _c_opcode_lookup_T_6[259:1]}; // @[Monitor.scala:749:{97,152}]
assign c_opcode_lookup = _c_opcode_lookup_T_7[3:0]; // @[Monitor.scala:747:35, :749:{21,152}]
wire [259:0] _c_size_lookup_T_1 = inflight_sizes_1 >> _c_size_lookup_T; // @[Monitor.scala:728:35, :750:{42,67}]
wire [259:0] _c_size_lookup_T_6 = {256'h0, _c_size_lookup_T_1[3:0]}; // @[Monitor.scala:750:{42,93}]
wire [259:0] _c_size_lookup_T_7 = {1'h0, _c_size_lookup_T_6[259:1]}; // @[Monitor.scala:750:{93,146}]
assign c_size_lookup = _c_size_lookup_T_7[3:0]; // @[Monitor.scala:748:35, :750:{21,146}]
wire [64:0] d_clr_1; // @[Monitor.scala:774:34]
wire [64:0] d_clr_wo_ready_1; // @[Monitor.scala:775:34]
wire [259:0] d_opcodes_clr_1; // @[Monitor.scala:776:34]
wire [259:0] d_sizes_clr_1; // @[Monitor.scala:777:34]
wire _T_1489 = io_in_d_valid_0 & d_first_2; // @[Monitor.scala:36:7, :784:26]
assign d_clr_wo_ready_1 = _T_1489 & d_release_ack_1 ? _d_clr_wo_ready_T_1[64:0] : 65'h0; // @[OneHot.scala:58:35]
wire _T_1471 = _T_1513 & d_first_2 & d_release_ack_1; // @[Decoupled.scala:51:35]
assign d_clr_1 = _T_1471 ? _d_clr_T_1[64:0] : 65'h0; // @[OneHot.scala:58:35]
wire [1038:0] _d_opcodes_clr_T_11 = 1039'hF << _d_opcodes_clr_T_10; // @[Monitor.scala:790:{76,101}]
assign d_opcodes_clr_1 = _T_1471 ? _d_opcodes_clr_T_11[259:0] : 260'h0; // @[Monitor.scala:776:34, :788:{25,70,88}, :790:{21,76}]
wire [1038:0] _d_sizes_clr_T_11 = 1039'hF << _d_sizes_clr_T_10; // @[Monitor.scala:791:{74,99}]
assign d_sizes_clr_1 = _T_1471 ? _d_sizes_clr_T_11[259:0] : 260'h0; // @[Monitor.scala:777:34, :788:{25,70,88}, :791:{21,74}]
wire _same_cycle_resp_T_8 = io_in_d_bits_source_0 == 7'h0; // @[Monitor.scala:36:7, :795:113]
wire [64:0] _inflight_T_4 = ~d_clr_1; // @[Monitor.scala:774:34, :814:46]
wire [64:0] _inflight_T_5 = _inflight_T_3 & _inflight_T_4; // @[Monitor.scala:814:{35,44,46}]
wire [259:0] _inflight_opcodes_T_4 = ~d_opcodes_clr_1; // @[Monitor.scala:776:34, :815:62]
wire [259:0] _inflight_opcodes_T_5 = _inflight_opcodes_T_3 & _inflight_opcodes_T_4; // @[Monitor.scala:815:{43,60,62}]
wire [259:0] _inflight_sizes_T_4 = ~d_sizes_clr_1; // @[Monitor.scala:777:34, :816:58]
wire [259:0] _inflight_sizes_T_5 = _inflight_sizes_T_3 & _inflight_sizes_T_4; // @[Monitor.scala:816:{41,56,58}]
reg [31:0] watchdog_1; // @[Monitor.scala:818:27] |
Generate the Verilog code corresponding to the following Chisel files.
File memory.scala:
//**************************************************************************
// Scratchpad Memory (asynchronous)
//--------------------------------------------------------------------------
//
// Christopher Celio
// 2013 Jun 12
//
// Provides a variable number of ports to the core, and one port to the HTIF
// (host-target interface).
//
// Assumes that if the port is ready, it will be performed immediately.
// For now, don't detect write collisions.
//
// Optionally uses synchronous read (default is async). For example, a 1-stage
// processor can only ever work using asynchronous memory!
package sodor.common
import chisel3._
import chisel3.util._
import chisel3.experimental._
import Constants._
import sodor.common.Util._
trait MemoryOpConstants
{
val MT_X = 0.asUInt(3.W)
val MT_B = 1.asUInt(3.W)
val MT_H = 2.asUInt(3.W)
val MT_W = 3.asUInt(3.W)
val MT_D = 4.asUInt(3.W)
val MT_BU = 5.asUInt(3.W)
val MT_HU = 6.asUInt(3.W)
val MT_WU = 7.asUInt(3.W)
val M_X = "b0".asUInt(1.W)
val M_XRD = "b0".asUInt(1.W) // int load
val M_XWR = "b1".asUInt(1.W) // int store
val DPORT = 0
val IPORT = 1
}
// from the pov of the datapath
class MemPortIo(data_width: Int)(implicit val conf: SodorCoreParams) extends Bundle
{
val req = new DecoupledIO(new MemReq(data_width))
val resp = Flipped(new ValidIO(new MemResp(data_width)))
}
class MemReq(data_width: Int)(implicit val conf: SodorCoreParams) extends Bundle
{
val addr = Output(UInt(conf.xprlen.W))
val data = Output(UInt(data_width.W))
val fcn = Output(UInt(M_X.getWidth.W)) // memory function code
val typ = Output(UInt(MT_X.getWidth.W)) // memory type
// To convert MemPortIO type to sign and size in TileLink format: subtract 1 from type, then take inversed MSB as signedness
// and the remaining two bits as TileLink size
def getTLSize = (typ - 1.U)(1, 0)
def getTLSigned = ~(typ - 1.U)(2)
def setType(tlSigned: Bool, tlSize: UInt) = { typ := Cat(~tlSigned, tlSize + 1.U) }
}
class MemResp(data_width: Int) extends Bundle
{
val data = Output(UInt(data_width.W))
}
// Note: All `size` field in this class are base 2 logarithm
class MemoryModule(numBytes: Int, useAsync: Boolean) {
val addrWidth = log2Ceil(numBytes)
val mem = if (useAsync) Mem(numBytes / 4, Vec(4, UInt(8.W))) else SyncReadMem(numBytes / 4, Vec(4, UInt(8.W)))
// Convert size exponent to actual number of bytes - 1
private def sizeToBytes(size: UInt) = MuxLookup(size, 3.U)(List(0.U -> 0.U, 1.U -> 1.U, 2.U -> 3.U))
private def getMask(bytes: UInt, storeOffset: UInt = 0.U) = {
val mask = ("b00011111".U(8.W) << bytes).apply(7, 4)
val maskWithOffset = (mask << storeOffset).apply(3, 0)
maskWithOffset.asBools.reverse
}
private def splitWord(data: UInt) = VecInit(((data(31, 0).asBools.reverse grouped 8) map (bools => Cat(bools))).toSeq)
// Read function
def read(addr: UInt, size: UInt, signed: Bool) = {
// Create a module to show signal inside
class MemReader extends Module {
val io = IO(new Bundle {
val addr = Input(UInt(addrWidth.W))
val size = Input(UInt(2.W))
val signed = Input(Bool())
val data = Output(UInt(32.W))
val mem_addr = Output(UInt((addrWidth - 2).W))
val mem_data = Input(Vec(4, UInt(8.W)))
})
// Sync argument if needed
val s_offset = if (useAsync) io.addr(1, 0) else RegNext(io.addr(1, 0))
val s_size = if (useAsync) io.size else RegNext(io.size)
val s_signed = if (useAsync) io.signed else RegNext(io.signed)
// Read data from the banks and align
io.mem_addr := io.addr(addrWidth - 1, 2)
val readVec = io.mem_data
val shiftedVec = splitWord(Cat(readVec) >> (s_offset << 3))
// Mask data according to the size
val bytes = sizeToBytes(s_size)
val sign = shiftedVec(3.U - bytes).apply(7)
val masks = getMask(bytes)
val maskedVec = (shiftedVec zip masks) map ({ case (byte, mask) =>
Mux(sign && s_signed, byte | ~Fill(8, mask), byte & Fill(8, mask))
})
io.data := Cat(maskedVec)
}
val memreader = Module(new MemReader)
memreader.io.addr := addr
memreader.io.size := size
memreader.io.signed := signed
memreader.io.mem_data := mem.read(memreader.io.mem_addr)
memreader.io.data
}
def apply(addr: UInt, size: UInt, signed: Bool) = read(addr, size, signed)
// Write function
def write(addr: UInt, data: UInt, size: UInt, en: Bool) = {
// Create a module to show signal inside
class MemWriter extends Module {
val io = IO(new Bundle {
val addr = Input(UInt(addrWidth.W))
val data = Input(UInt(32.W))
val size = Input(UInt(2.W))
val en = Input(Bool())
val mem_addr = Output(UInt((addrWidth - 2).W))
val mem_data = Output(Vec(4, UInt(8.W)))
val mem_masks = Output(Vec(4, Bool()))
})
// Align data and mask
val offset = io.addr(1, 0)
val shiftedVec = splitWord(io.data << (offset << 3))
val masks = getMask(sizeToBytes(io.size), offset)
// Write
io.mem_addr := io.addr(addrWidth - 1, 2)
io.mem_data := shiftedVec
io.mem_masks := VecInit(masks map (mask => mask && io.en))
}
val memwriter = Module(new MemWriter)
memwriter.io.addr := addr
memwriter.io.data := data
memwriter.io.size := size
memwriter.io.en := en
when (en) {
mem.write(memwriter.io.mem_addr, memwriter.io.mem_data, memwriter.io.mem_masks)
}
}
}
// NOTE: the default is enormous (and may crash your computer), but is bound by
// what the fesvr expects the smallest memory size to be. A proper fix would
// be to modify the fesvr to expect smaller sizes.
//for 1,2 and 5 stage need for combinational reads
class ScratchPadMemoryBase(num_core_ports: Int, num_bytes: Int = (1 << 21), useAsync: Boolean = true)(implicit val conf: SodorCoreParams) extends Module
{
val io = IO(new Bundle
{
val core_ports = Vec(num_core_ports, Flipped(new MemPortIo(data_width = conf.xprlen)) )
val debug_port = Flipped(new MemPortIo(data_width = 32))
})
val num_bytes_per_line = 8
val num_lines = num_bytes / num_bytes_per_line
println("\n Sodor Tile: creating Asynchronous Scratchpad Memory of size " + num_lines*num_bytes_per_line/1024 + " kB\n")
val async_data = new MemoryModule(num_bytes, useAsync)
for (i <- 0 until num_core_ports)
{
io.core_ports(i).resp.valid := (if (useAsync) io.core_ports(i).req.valid else RegNext(io.core_ports(i).req.valid, false.B))
io.core_ports(i).req.ready := true.B // for now, no back pressure
}
/////////// DPORT
val req_addri = io.core_ports(DPORT).req.bits.addr
val dport_req = io.core_ports(DPORT).req.bits
val dport_wen = io.core_ports(DPORT).req.valid && dport_req.fcn === M_XWR
io.core_ports(DPORT).resp.bits.data := async_data.read(dport_req.addr, dport_req.getTLSize, dport_req.getTLSigned)
async_data.write(dport_req.addr, dport_req.data, dport_req.getTLSize, dport_wen)
/////////////////
///////////// IPORT
if (num_core_ports == 2){
val iport_req = io.core_ports(IPORT).req.bits
io.core_ports(IPORT).resp.bits.data := async_data.read(iport_req.addr, iport_req.getTLSize, iport_req.getTLSigned)
}
////////////
// DEBUG PORT-------
io.debug_port.req.ready := true.B // for now, no back pressure
io.debug_port.resp.valid := (if (useAsync) io.debug_port.req.valid else RegNext(io.debug_port.req.valid, false.B))
// asynchronous read
val debug_port_req = io.debug_port.req.bits
val debug_port_wen = io.debug_port.req.valid && debug_port_req.fcn === M_XWR
io.debug_port.resp.bits.data := async_data.read(debug_port_req.addr, debug_port_req.getTLSize, debug_port_req.getTLSigned)
async_data.write(debug_port_req.addr, debug_port_req.data, debug_port_req.getTLSize, debug_port_wen)
}
class AsyncScratchPadMemory(num_core_ports: Int, num_bytes: Int = (1 << 21))(implicit conf: SodorCoreParams)
extends ScratchPadMemoryBase(num_core_ports, num_bytes, true)(conf)
class SyncScratchPadMemory(num_core_ports: Int, num_bytes: Int = (1 << 21))(implicit conf: SodorCoreParams)
extends ScratchPadMemoryBase(num_core_ports, num_bytes, false)(conf)
| module AsyncScratchPadMemory( // @[memory.scala:215:7]
input clock, // @[memory.scala:215:7]
input reset, // @[memory.scala:215:7]
input io_core_ports_0_req_valid, // @[memory.scala:174:15]
input [31:0] io_core_ports_0_req_bits_addr, // @[memory.scala:174:15]
input [31:0] io_core_ports_0_req_bits_data, // @[memory.scala:174:15]
input io_core_ports_0_req_bits_fcn, // @[memory.scala:174:15]
input [2:0] io_core_ports_0_req_bits_typ, // @[memory.scala:174:15]
output io_core_ports_0_resp_valid, // @[memory.scala:174:15]
output [31:0] io_core_ports_0_resp_bits_data, // @[memory.scala:174:15]
input io_debug_port_req_valid, // @[memory.scala:174:15]
input [31:0] io_debug_port_req_bits_addr, // @[memory.scala:174:15]
input [31:0] io_debug_port_req_bits_data, // @[memory.scala:174:15]
input io_debug_port_req_bits_fcn, // @[memory.scala:174:15]
input [2:0] io_debug_port_req_bits_typ, // @[memory.scala:174:15]
output io_debug_port_resp_valid, // @[memory.scala:174:15]
output [31:0] io_debug_port_resp_bits_data // @[memory.scala:174:15]
);
wire [18:0] _memwriter_1_io_mem_addr; // @[memory.scala:156:29]
wire [7:0] _memwriter_1_io_mem_data_0; // @[memory.scala:156:29]
wire [7:0] _memwriter_1_io_mem_data_1; // @[memory.scala:156:29]
wire [7:0] _memwriter_1_io_mem_data_2; // @[memory.scala:156:29]
wire [7:0] _memwriter_1_io_mem_data_3; // @[memory.scala:156:29]
wire _memwriter_1_io_mem_masks_0; // @[memory.scala:156:29]
wire _memwriter_1_io_mem_masks_1; // @[memory.scala:156:29]
wire _memwriter_1_io_mem_masks_2; // @[memory.scala:156:29]
wire _memwriter_1_io_mem_masks_3; // @[memory.scala:156:29]
wire [18:0] _io_debug_port_resp_bits_data_memreader_io_mem_addr; // @[memory.scala:120:29]
wire [18:0] _memwriter_io_mem_addr; // @[memory.scala:156:29]
wire [7:0] _memwriter_io_mem_data_0; // @[memory.scala:156:29]
wire [7:0] _memwriter_io_mem_data_1; // @[memory.scala:156:29]
wire [7:0] _memwriter_io_mem_data_2; // @[memory.scala:156:29]
wire [7:0] _memwriter_io_mem_data_3; // @[memory.scala:156:29]
wire _memwriter_io_mem_masks_0; // @[memory.scala:156:29]
wire _memwriter_io_mem_masks_1; // @[memory.scala:156:29]
wire _memwriter_io_mem_masks_2; // @[memory.scala:156:29]
wire _memwriter_io_mem_masks_3; // @[memory.scala:156:29]
wire [18:0] _io_core_ports_0_resp_bits_data_memreader_io_mem_addr; // @[memory.scala:120:29]
wire [31:0] _mem_ext_R0_data; // @[memory.scala:73:31]
wire [31:0] _mem_ext_R1_data; // @[memory.scala:73:31]
wire io_core_ports_0_req_valid_0 = io_core_ports_0_req_valid; // @[memory.scala:215:7]
wire [31:0] io_core_ports_0_req_bits_addr_0 = io_core_ports_0_req_bits_addr; // @[memory.scala:215:7]
wire [31:0] io_core_ports_0_req_bits_data_0 = io_core_ports_0_req_bits_data; // @[memory.scala:215:7]
wire io_core_ports_0_req_bits_fcn_0 = io_core_ports_0_req_bits_fcn; // @[memory.scala:215:7]
wire [2:0] io_core_ports_0_req_bits_typ_0 = io_core_ports_0_req_bits_typ; // @[memory.scala:215:7]
wire io_debug_port_req_valid_0 = io_debug_port_req_valid; // @[memory.scala:215:7]
wire [31:0] io_debug_port_req_bits_addr_0 = io_debug_port_req_bits_addr; // @[memory.scala:215:7]
wire [31:0] io_debug_port_req_bits_data_0 = io_debug_port_req_bits_data; // @[memory.scala:215:7]
wire io_debug_port_req_bits_fcn_0 = io_debug_port_req_bits_fcn; // @[memory.scala:215:7]
wire [2:0] io_debug_port_req_bits_typ_0 = io_debug_port_req_bits_typ; // @[memory.scala:215:7]
wire io_core_ports_0_req_ready = 1'h1; // @[memory.scala:215:7]
wire io_debug_port_req_ready = 1'h1; // @[memory.scala:215:7]
wire io_core_ports_0_resp_valid_0 = io_core_ports_0_req_valid_0; // @[memory.scala:215:7]
wire _dport_wen_T = io_core_ports_0_req_bits_fcn_0; // @[memory.scala:193:68, :215:7]
wire io_debug_port_resp_valid_0 = io_debug_port_req_valid_0; // @[memory.scala:215:7]
wire _debug_port_wen_T = io_debug_port_req_bits_fcn_0; // @[memory.scala:210:71, :215:7]
wire [31:0] io_core_ports_0_resp_bits_data_0; // @[memory.scala:215:7]
wire [31:0] io_debug_port_resp_bits_data_0; // @[memory.scala:215:7]
wire dport_wen = io_core_ports_0_req_valid_0 & _dport_wen_T; // @[memory.scala:193:{51,68}, :215:7]
wire [3:0] _T = {1'h0, io_core_ports_0_req_bits_typ_0} - 4'h1; // @[memory.scala:60:24, :215:7]
wire [3:0] _io_core_ports_0_resp_bits_data_T; // @[memory.scala:60:24]
assign _io_core_ports_0_resp_bits_data_T = _T; // @[memory.scala:60:24]
wire [3:0] _io_core_ports_0_resp_bits_data_T_3; // @[memory.scala:61:27]
assign _io_core_ports_0_resp_bits_data_T_3 = _T; // @[memory.scala:60:24, :61:27]
wire [2:0] _io_core_ports_0_resp_bits_data_T_1 = _io_core_ports_0_resp_bits_data_T[2:0]; // @[memory.scala:60:24]
wire [1:0] _io_core_ports_0_resp_bits_data_T_2 = _io_core_ports_0_resp_bits_data_T_1[1:0]; // @[memory.scala:60:{24,30}]
wire [2:0] _io_core_ports_0_resp_bits_data_T_4 = _io_core_ports_0_resp_bits_data_T_3[2:0]; // @[memory.scala:61:27]
wire _io_core_ports_0_resp_bits_data_T_5 = _io_core_ports_0_resp_bits_data_T_4[2]; // @[memory.scala:61:{27,33}]
wire _io_core_ports_0_resp_bits_data_T_6 = ~_io_core_ports_0_resp_bits_data_T_5; // @[memory.scala:61:{21,33}]
wire debug_port_wen = io_debug_port_req_valid_0 & _debug_port_wen_T; // @[memory.scala:210:{49,71}, :215:7]
wire [3:0] _T_3 = {1'h0, io_debug_port_req_bits_typ_0} - 4'h1; // @[memory.scala:60:24, :215:7]
wire [3:0] _io_debug_port_resp_bits_data_T; // @[memory.scala:60:24]
assign _io_debug_port_resp_bits_data_T = _T_3; // @[memory.scala:60:24]
wire [3:0] _io_debug_port_resp_bits_data_T_3; // @[memory.scala:61:27]
assign _io_debug_port_resp_bits_data_T_3 = _T_3; // @[memory.scala:60:24, :61:27]
wire [2:0] _io_debug_port_resp_bits_data_T_1 = _io_debug_port_resp_bits_data_T[2:0]; // @[memory.scala:60:24]
wire [1:0] _io_debug_port_resp_bits_data_T_2 = _io_debug_port_resp_bits_data_T_1[1:0]; // @[memory.scala:60:{24,30}]
wire [2:0] _io_debug_port_resp_bits_data_T_4 = _io_debug_port_resp_bits_data_T_3[2:0]; // @[memory.scala:61:27]
wire _io_debug_port_resp_bits_data_T_5 = _io_debug_port_resp_bits_data_T_4[2]; // @[memory.scala:61:{27,33}]
wire _io_debug_port_resp_bits_data_T_6 = ~_io_debug_port_resp_bits_data_T_5; // @[memory.scala:61:{21,33}]
mem_524288x32 mem_ext ( // @[memory.scala:73:31]
.R0_addr (_io_debug_port_resp_bits_data_memreader_io_mem_addr), // @[memory.scala:120:29]
.R0_en (1'h1), // @[memory.scala:215:7]
.R0_clk (clock),
.R0_data (_mem_ext_R0_data),
.R1_addr (_io_core_ports_0_resp_bits_data_memreader_io_mem_addr), // @[memory.scala:120:29]
.R1_en (1'h1), // @[memory.scala:215:7]
.R1_clk (clock),
.R1_data (_mem_ext_R1_data),
.W0_addr (_memwriter_1_io_mem_addr), // @[memory.scala:156:29]
.W0_en (debug_port_wen), // @[memory.scala:210:49]
.W0_clk (clock),
.W0_data ({_memwriter_1_io_mem_data_3, _memwriter_1_io_mem_data_2, _memwriter_1_io_mem_data_1, _memwriter_1_io_mem_data_0}), // @[memory.scala:73:31, :156:29]
.W0_mask ({_memwriter_1_io_mem_masks_3, _memwriter_1_io_mem_masks_2, _memwriter_1_io_mem_masks_1, _memwriter_1_io_mem_masks_0}), // @[memory.scala:73:31, :156:29]
.W1_addr (_memwriter_io_mem_addr), // @[memory.scala:156:29]
.W1_en (dport_wen), // @[memory.scala:193:51]
.W1_clk (clock),
.W1_data ({_memwriter_io_mem_data_3, _memwriter_io_mem_data_2, _memwriter_io_mem_data_1, _memwriter_io_mem_data_0}), // @[memory.scala:73:31, :156:29]
.W1_mask ({_memwriter_io_mem_masks_3, _memwriter_io_mem_masks_2, _memwriter_io_mem_masks_1, _memwriter_io_mem_masks_0}) // @[memory.scala:73:31, :156:29]
); // @[memory.scala:73:31]
MemReader io_core_ports_0_resp_bits_data_memreader ( // @[memory.scala:120:29]
.clock (clock),
.reset (reset),
.io_addr (io_core_ports_0_req_bits_addr_0[20:0]), // @[memory.scala:121:25, :215:7]
.io_size (_io_core_ports_0_resp_bits_data_T_2), // @[memory.scala:60:30]
.io_signed (_io_core_ports_0_resp_bits_data_T_6), // @[memory.scala:61:21]
.io_data (io_core_ports_0_resp_bits_data_0),
.io_mem_addr (_io_core_ports_0_resp_bits_data_memreader_io_mem_addr),
.io_mem_data_0 (_mem_ext_R1_data[7:0]), // @[memory.scala:73:31]
.io_mem_data_1 (_mem_ext_R1_data[15:8]), // @[memory.scala:73:31]
.io_mem_data_2 (_mem_ext_R1_data[23:16]), // @[memory.scala:73:31]
.io_mem_data_3 (_mem_ext_R1_data[31:24]) // @[memory.scala:73:31]
); // @[memory.scala:120:29]
MemWriter memwriter ( // @[memory.scala:156:29]
.clock (clock),
.reset (reset),
.io_addr (io_core_ports_0_req_bits_addr_0[20:0]), // @[memory.scala:121:25, :215:7]
.io_data (io_core_ports_0_req_bits_data_0), // @[memory.scala:215:7]
.io_size (_T[1:0]), // @[memory.scala:60:{24,30}]
.io_en (dport_wen), // @[memory.scala:193:51]
.io_mem_addr (_memwriter_io_mem_addr),
.io_mem_data_0 (_memwriter_io_mem_data_0),
.io_mem_data_1 (_memwriter_io_mem_data_1),
.io_mem_data_2 (_memwriter_io_mem_data_2),
.io_mem_data_3 (_memwriter_io_mem_data_3),
.io_mem_masks_0 (_memwriter_io_mem_masks_0),
.io_mem_masks_1 (_memwriter_io_mem_masks_1),
.io_mem_masks_2 (_memwriter_io_mem_masks_2),
.io_mem_masks_3 (_memwriter_io_mem_masks_3)
); // @[memory.scala:156:29]
MemReader_1 io_debug_port_resp_bits_data_memreader ( // @[memory.scala:120:29]
.clock (clock),
.reset (reset),
.io_addr (io_debug_port_req_bits_addr_0[20:0]), // @[memory.scala:121:25, :215:7]
.io_size (_io_debug_port_resp_bits_data_T_2), // @[memory.scala:60:30]
.io_signed (_io_debug_port_resp_bits_data_T_6), // @[memory.scala:61:21]
.io_data (io_debug_port_resp_bits_data_0),
.io_mem_addr (_io_debug_port_resp_bits_data_memreader_io_mem_addr),
.io_mem_data_0 (_mem_ext_R0_data[7:0]), // @[memory.scala:73:31]
.io_mem_data_1 (_mem_ext_R0_data[15:8]), // @[memory.scala:73:31]
.io_mem_data_2 (_mem_ext_R0_data[23:16]), // @[memory.scala:73:31]
.io_mem_data_3 (_mem_ext_R0_data[31:24]) // @[memory.scala:73:31]
); // @[memory.scala:120:29]
MemWriter_1 memwriter_1 ( // @[memory.scala:156:29]
.clock (clock),
.reset (reset),
.io_addr (io_debug_port_req_bits_addr_0[20:0]), // @[memory.scala:121:25, :215:7]
.io_data (io_debug_port_req_bits_data_0), // @[memory.scala:215:7]
.io_size (_T_3[1:0]), // @[memory.scala:60:{24,30}]
.io_en (debug_port_wen), // @[memory.scala:210:49]
.io_mem_addr (_memwriter_1_io_mem_addr),
.io_mem_data_0 (_memwriter_1_io_mem_data_0),
.io_mem_data_1 (_memwriter_1_io_mem_data_1),
.io_mem_data_2 (_memwriter_1_io_mem_data_2),
.io_mem_data_3 (_memwriter_1_io_mem_data_3),
.io_mem_masks_0 (_memwriter_1_io_mem_masks_0),
.io_mem_masks_1 (_memwriter_1_io_mem_masks_1),
.io_mem_masks_2 (_memwriter_1_io_mem_masks_2),
.io_mem_masks_3 (_memwriter_1_io_mem_masks_3)
); // @[memory.scala:156:29]
assign io_core_ports_0_resp_valid = io_core_ports_0_resp_valid_0; // @[memory.scala:215:7]
assign io_core_ports_0_resp_bits_data = io_core_ports_0_resp_bits_data_0; // @[memory.scala:215:7]
assign io_debug_port_resp_valid = io_debug_port_resp_valid_0; // @[memory.scala:215:7]
assign io_debug_port_resp_bits_data = io_debug_port_resp_bits_data_0; // @[memory.scala:215:7]
endmodule |
Generate the Verilog code corresponding to the following Chisel files.
File Buffer.scala:
// See LICENSE.SiFive for license details.
package freechips.rocketchip.tilelink
import chisel3._
import org.chipsalliance.cde.config._
import org.chipsalliance.diplomacy._
import org.chipsalliance.diplomacy.lazymodule._
import freechips.rocketchip.diplomacy.BufferParams
class TLBufferNode (
a: BufferParams,
b: BufferParams,
c: BufferParams,
d: BufferParams,
e: BufferParams)(implicit valName: ValName) extends TLAdapterNode(
clientFn = { p => p.v1copy(minLatency = p.minLatency + b.latency + c.latency) },
managerFn = { p => p.v1copy(minLatency = p.minLatency + a.latency + d.latency) }
) {
override lazy val nodedebugstring = s"a:${a.toString}, b:${b.toString}, c:${c.toString}, d:${d.toString}, e:${e.toString}"
override def circuitIdentity = List(a,b,c,d,e).forall(_ == BufferParams.none)
}
class TLBuffer(
a: BufferParams,
b: BufferParams,
c: BufferParams,
d: BufferParams,
e: BufferParams)(implicit p: Parameters) extends LazyModule
{
def this(ace: BufferParams, bd: BufferParams)(implicit p: Parameters) = this(ace, bd, ace, bd, ace)
def this(abcde: BufferParams)(implicit p: Parameters) = this(abcde, abcde)
def this()(implicit p: Parameters) = this(BufferParams.default)
val node = new TLBufferNode(a, b, c, d, e)
lazy val module = new Impl
class Impl extends LazyModuleImp(this) {
def headBundle = node.out.head._2.bundle
override def desiredName = (Seq("TLBuffer") ++ node.out.headOption.map(_._2.bundle.shortName)).mkString("_")
(node.in zip node.out) foreach { case ((in, edgeIn), (out, edgeOut)) =>
out.a <> a(in .a)
in .d <> d(out.d)
if (edgeOut.manager.anySupportAcquireB && edgeOut.client.anySupportProbe) {
in .b <> b(out.b)
out.c <> c(in .c)
out.e <> e(in .e)
} else {
in.b.valid := false.B
in.c.ready := true.B
in.e.ready := true.B
out.b.ready := true.B
out.c.valid := false.B
out.e.valid := false.B
}
}
}
}
object TLBuffer
{
def apply() (implicit p: Parameters): TLNode = apply(BufferParams.default)
def apply(abcde: BufferParams) (implicit p: Parameters): TLNode = apply(abcde, abcde)
def apply(ace: BufferParams, bd: BufferParams)(implicit p: Parameters): TLNode = apply(ace, bd, ace, bd, ace)
def apply(
a: BufferParams,
b: BufferParams,
c: BufferParams,
d: BufferParams,
e: BufferParams)(implicit p: Parameters): TLNode =
{
val buffer = LazyModule(new TLBuffer(a, b, c, d, e))
buffer.node
}
def chain(depth: Int, name: Option[String] = None)(implicit p: Parameters): Seq[TLNode] = {
val buffers = Seq.fill(depth) { LazyModule(new TLBuffer()) }
name.foreach { n => buffers.zipWithIndex.foreach { case (b, i) => b.suggestName(s"${n}_${i}") } }
buffers.map(_.node)
}
def chainNode(depth: Int, name: Option[String] = None)(implicit p: Parameters): TLNode = {
chain(depth, name)
.reduceLeftOption(_ :*=* _)
.getOrElse(TLNameNode("no_buffer"))
}
}
File ClockDomain.scala:
package freechips.rocketchip.prci
import chisel3._
import org.chipsalliance.cde.config._
import org.chipsalliance.diplomacy.lazymodule._
abstract class Domain(implicit p: Parameters) extends LazyModule with HasDomainCrossing
{
def clockBundle: ClockBundle
lazy val module = new Impl
class Impl extends LazyRawModuleImp(this) {
childClock := clockBundle.clock
childReset := clockBundle.reset
override def provideImplicitClockToLazyChildren = true
// these are just for backwards compatibility with external devices
// that were manually wiring themselves to the domain's clock/reset input:
val clock = IO(Output(chiselTypeOf(clockBundle.clock)))
val reset = IO(Output(chiselTypeOf(clockBundle.reset)))
clock := clockBundle.clock
reset := clockBundle.reset
}
}
abstract class ClockDomain(implicit p: Parameters) extends Domain with HasClockDomainCrossing
class ClockSinkDomain(val clockSinkParams: ClockSinkParameters)(implicit p: Parameters) extends ClockDomain
{
def this(take: Option[ClockParameters] = None, name: Option[String] = None)(implicit p: Parameters) = this(ClockSinkParameters(take = take, name = name))
val clockNode = ClockSinkNode(Seq(clockSinkParams))
def clockBundle = clockNode.in.head._1
override lazy val desiredName = (clockSinkParams.name.toSeq :+ "ClockSinkDomain").mkString
}
class ClockSourceDomain(val clockSourceParams: ClockSourceParameters)(implicit p: Parameters) extends ClockDomain
{
def this(give: Option[ClockParameters] = None, name: Option[String] = None)(implicit p: Parameters) = this(ClockSourceParameters(give = give, name = name))
val clockNode = ClockSourceNode(Seq(clockSourceParams))
def clockBundle = clockNode.out.head._1
override lazy val desiredName = (clockSourceParams.name.toSeq :+ "ClockSourceDomain").mkString
}
abstract class ResetDomain(implicit p: Parameters) extends Domain with HasResetDomainCrossing
File BusWrapper.scala:
// See LICENSE.SiFive for license details.
package freechips.rocketchip.tilelink
import chisel3._
import chisel3.util._
import org.chipsalliance.cde.config._
import org.chipsalliance.diplomacy._
import org.chipsalliance.diplomacy.bundlebridge._
import org.chipsalliance.diplomacy.lazymodule._
import org.chipsalliance.diplomacy.nodes._
import freechips.rocketchip.diplomacy.{AddressSet, NoHandle, NodeHandle, NodeBinding}
// TODO This class should be moved to package subsystem to resolve
// the dependency awkwardness of the following imports
import freechips.rocketchip.devices.tilelink.{BuiltInDevices, CanHaveBuiltInDevices}
import freechips.rocketchip.prci.{
ClockParameters, ClockDomain, ClockGroup, ClockGroupAggregator, ClockSinkNode,
FixedClockBroadcast, ClockGroupEdgeParameters, ClockSinkParameters, ClockSinkDomain,
ClockGroupEphemeralNode, asyncMux, ClockCrossingType, NoCrossing
}
import freechips.rocketchip.subsystem.{
HasTileLinkLocations, CanConnectWithinContextThatHasTileLinkLocations,
CanInstantiateWithinContextThatHasTileLinkLocations
}
import freechips.rocketchip.util.Location
/** Specifies widths of various attachement points in the SoC */
trait HasTLBusParams {
def beatBytes: Int
def blockBytes: Int
def beatBits: Int = beatBytes * 8
def blockBits: Int = blockBytes * 8
def blockBeats: Int = blockBytes / beatBytes
def blockOffset: Int = log2Up(blockBytes)
def dtsFrequency: Option[BigInt]
def fixedClockOpt = dtsFrequency.map(f => ClockParameters(freqMHz = f.toDouble / 1000000.0))
require (isPow2(beatBytes))
require (isPow2(blockBytes))
}
abstract class TLBusWrapper(params: HasTLBusParams, val busName: String)(implicit p: Parameters)
extends ClockDomain
with HasTLBusParams
with CanHaveBuiltInDevices
{
private val clockGroupAggregator = LazyModule(new ClockGroupAggregator(busName){ override def shouldBeInlined = true }).suggestName(busName + "_clock_groups")
private val clockGroup = LazyModule(new ClockGroup(busName){ override def shouldBeInlined = true })
val clockGroupNode = clockGroupAggregator.node // other bus clock groups attach here
val clockNode = clockGroup.node
val fixedClockNode = FixedClockBroadcast(fixedClockOpt) // device clocks attach here
private val clockSinkNode = ClockSinkNode(List(ClockSinkParameters(take = fixedClockOpt)))
clockGroup.node := clockGroupAggregator.node
fixedClockNode := clockGroup.node // first member of group is always domain's own clock
clockSinkNode := fixedClockNode
InModuleBody {
// make sure the above connections work properly because mismatched-by-name signals will just be ignored.
(clockGroup.node.edges.in zip clockGroupAggregator.node.edges.out).zipWithIndex map { case ((in: ClockGroupEdgeParameters , out: ClockGroupEdgeParameters), i) =>
require(in.members.keys == out.members.keys, s"clockGroup := clockGroupAggregator not working as you expect for index ${i}, becuase clockGroup has ${in.members.keys} and clockGroupAggregator has ${out.members.keys}")
}
}
def clockBundle = clockSinkNode.in.head._1
def beatBytes = params.beatBytes
def blockBytes = params.blockBytes
def dtsFrequency = params.dtsFrequency
val dtsClk = fixedClockNode.fixedClockResources(s"${busName}_clock").flatten.headOption
/* If you violate this requirement, you will have a rough time.
* The codebase is riddled with the assumption that this is true.
*/
require(blockBytes >= beatBytes)
def inwardNode: TLInwardNode
def outwardNode: TLOutwardNode
def busView: TLEdge
def prefixNode: Option[BundleBridgeNode[UInt]]
def unifyManagers: List[TLManagerParameters] = ManagerUnification(busView.manager.managers)
def crossOutHelper = this.crossOut(outwardNode)(ValName("bus_xing"))
def crossInHelper = this.crossIn(inwardNode)(ValName("bus_xing"))
def generateSynchronousDomain(domainName: String): ClockSinkDomain = {
val domain = LazyModule(new ClockSinkDomain(take = fixedClockOpt, name = Some(domainName)))
domain.clockNode := fixedClockNode
domain
}
def generateSynchronousDomain: ClockSinkDomain = generateSynchronousDomain("")
protected val addressPrefixNexusNode = BundleBroadcast[UInt](registered = false, default = Some(() => 0.U(1.W)))
def to[T](name: String)(body: => T): T = {
this { LazyScope(s"coupler_to_${name}", s"TLInterconnectCoupler_${busName}_to_${name}") { body } }
}
def from[T](name: String)(body: => T): T = {
this { LazyScope(s"coupler_from_${name}", s"TLInterconnectCoupler_${busName}_from_${name}") { body } }
}
def coupleTo[T](name: String)(gen: TLOutwardNode => T): T =
to(name) { gen(TLNameNode("tl") :*=* outwardNode) }
def coupleFrom[T](name: String)(gen: TLInwardNode => T): T =
from(name) { gen(inwardNode :*=* TLNameNode("tl")) }
def crossToBus(bus: TLBusWrapper, xType: ClockCrossingType, allClockGroupNode: ClockGroupEphemeralNode): NoHandle = {
bus.clockGroupNode := asyncMux(xType, allClockGroupNode, this.clockGroupNode)
coupleTo(s"bus_named_${bus.busName}") {
bus.crossInHelper(xType) :*= TLWidthWidget(beatBytes) :*= _
}
}
def crossFromBus(bus: TLBusWrapper, xType: ClockCrossingType, allClockGroupNode: ClockGroupEphemeralNode): NoHandle = {
bus.clockGroupNode := asyncMux(xType, allClockGroupNode, this.clockGroupNode)
coupleFrom(s"bus_named_${bus.busName}") {
_ :=* TLWidthWidget(bus.beatBytes) :=* bus.crossOutHelper(xType)
}
}
}
trait TLBusWrapperInstantiationLike {
def instantiate(context: HasTileLinkLocations, loc: Location[TLBusWrapper])(implicit p: Parameters): TLBusWrapper
}
trait TLBusWrapperConnectionLike {
val xType: ClockCrossingType
def connect(context: HasTileLinkLocations, master: Location[TLBusWrapper], slave: Location[TLBusWrapper])(implicit p: Parameters): Unit
}
object TLBusWrapperConnection {
/** Backwards compatibility factory for master driving clock and slave setting cardinality */
def crossTo(
xType: ClockCrossingType,
driveClockFromMaster: Option[Boolean] = Some(true),
nodeBinding: NodeBinding = BIND_STAR,
flipRendering: Boolean = false) = {
apply(xType, driveClockFromMaster, nodeBinding, flipRendering)(
slaveNodeView = { case(w, p) => w.crossInHelper(xType)(p) })
}
/** Backwards compatibility factory for slave driving clock and master setting cardinality */
def crossFrom(
xType: ClockCrossingType,
driveClockFromMaster: Option[Boolean] = Some(false),
nodeBinding: NodeBinding = BIND_QUERY,
flipRendering: Boolean = true) = {
apply(xType, driveClockFromMaster, nodeBinding, flipRendering)(
masterNodeView = { case(w, p) => w.crossOutHelper(xType)(p) })
}
/** Factory for making generic connections between TLBusWrappers */
def apply
(xType: ClockCrossingType = NoCrossing,
driveClockFromMaster: Option[Boolean] = None,
nodeBinding: NodeBinding = BIND_ONCE,
flipRendering: Boolean = false)(
slaveNodeView: (TLBusWrapper, Parameters) => TLInwardNode = { case(w, _) => w.inwardNode },
masterNodeView: (TLBusWrapper, Parameters) => TLOutwardNode = { case(w, _) => w.outwardNode },
inject: Parameters => TLNode = { _ => TLTempNode() }) = {
new TLBusWrapperConnection(
xType, driveClockFromMaster, nodeBinding, flipRendering)(
slaveNodeView, masterNodeView, inject)
}
}
/** TLBusWrapperConnection is a parameterization of a connection between two TLBusWrappers.
* It has the following serializable parameters:
* - xType: What type of TL clock crossing adapter to insert between the buses.
* The appropriate half of the crossing adapter ends up inside each bus.
* - driveClockFromMaster: if None, don't bind the bus's diplomatic clockGroupNode,
* otherwise have either the master or the slave bus bind the other one's clockGroupNode,
* assuming the inserted crossing type is not asynchronous.
* - nodeBinding: fine-grained control of multi-edge cardinality resolution for diplomatic bindings within the connection.
* - flipRendering: fine-grained control of the graphML rendering of the connection.
* If has the following non-serializable parameters:
* - slaveNodeView: programmatic control of the specific attachment point within the slave bus.
* - masterNodeView: programmatic control of the specific attachment point within the master bus.
* - injectNode: programmatic injection of additional nodes into the middle of the connection.
* The connect method applies all these parameters to create a diplomatic connection between two Location[TLBusWrapper]s.
*/
class TLBusWrapperConnection
(val xType: ClockCrossingType,
val driveClockFromMaster: Option[Boolean],
val nodeBinding: NodeBinding,
val flipRendering: Boolean)
(slaveNodeView: (TLBusWrapper, Parameters) => TLInwardNode,
masterNodeView: (TLBusWrapper, Parameters) => TLOutwardNode,
inject: Parameters => TLNode)
extends TLBusWrapperConnectionLike
{
def connect(context: HasTileLinkLocations, master: Location[TLBusWrapper], slave: Location[TLBusWrapper])(implicit p: Parameters): Unit = {
val masterTLBus = context.locateTLBusWrapper(master)
val slaveTLBus = context.locateTLBusWrapper(slave)
def bindClocks(implicit p: Parameters) = driveClockFromMaster match {
case Some(true) => slaveTLBus.clockGroupNode := asyncMux(xType, context.allClockGroupsNode, masterTLBus.clockGroupNode)
case Some(false) => masterTLBus.clockGroupNode := asyncMux(xType, context.allClockGroupsNode, slaveTLBus.clockGroupNode)
case None =>
}
def bindTLNodes(implicit p: Parameters) = nodeBinding match {
case BIND_ONCE => slaveNodeView(slaveTLBus, p) := TLWidthWidget(masterTLBus.beatBytes) := inject(p) := masterNodeView(masterTLBus, p)
case BIND_QUERY => slaveNodeView(slaveTLBus, p) :=* TLWidthWidget(masterTLBus.beatBytes) :=* inject(p) :=* masterNodeView(masterTLBus, p)
case BIND_STAR => slaveNodeView(slaveTLBus, p) :*= TLWidthWidget(masterTLBus.beatBytes) :*= inject(p) :*= masterNodeView(masterTLBus, p)
case BIND_FLEX => slaveNodeView(slaveTLBus, p) :*=* TLWidthWidget(masterTLBus.beatBytes) :*=* inject(p) :*=* masterNodeView(masterTLBus, p)
}
if (flipRendering) { FlipRendering { implicit p =>
bindClocks(implicitly[Parameters])
slaveTLBus.from(s"bus_named_${masterTLBus.busName}") {
bindTLNodes(implicitly[Parameters])
}
} } else {
bindClocks(implicitly[Parameters])
masterTLBus.to (s"bus_named_${slaveTLBus.busName}") {
bindTLNodes(implicitly[Parameters])
}
}
}
}
class TLBusWrapperTopology(
val instantiations: Seq[(Location[TLBusWrapper], TLBusWrapperInstantiationLike)],
val connections: Seq[(Location[TLBusWrapper], Location[TLBusWrapper], TLBusWrapperConnectionLike)]
) extends CanInstantiateWithinContextThatHasTileLinkLocations
with CanConnectWithinContextThatHasTileLinkLocations
{
def instantiate(context: HasTileLinkLocations)(implicit p: Parameters): Unit = {
instantiations.foreach { case (loc, params) => context { params.instantiate(context, loc) } }
}
def connect(context: HasTileLinkLocations)(implicit p: Parameters): Unit = {
connections.foreach { case (master, slave, params) => context { params.connect(context, master, slave) } }
}
}
trait HasTLXbarPhy { this: TLBusWrapper =>
private val xbar = LazyModule(new TLXbar(nameSuffix = Some(busName))).suggestName(busName + "_xbar")
override def shouldBeInlined = xbar.node.circuitIdentity
def inwardNode: TLInwardNode = xbar.node
def outwardNode: TLOutwardNode = xbar.node
def busView: TLEdge = xbar.node.edges.in.head
}
case class AddressAdjusterWrapperParams(
blockBytes: Int,
beatBytes: Int,
replication: Option[ReplicatedRegion],
forceLocal: Seq[AddressSet] = Nil,
localBaseAddressDefault: Option[BigInt] = None,
policy: TLFIFOFixer.Policy = TLFIFOFixer.allVolatile,
ordered: Boolean = true
)
extends HasTLBusParams
with TLBusWrapperInstantiationLike
{
val dtsFrequency = None
def instantiate(context: HasTileLinkLocations, loc: Location[TLBusWrapper])(implicit p: Parameters): AddressAdjusterWrapper = {
val aaWrapper = LazyModule(new AddressAdjusterWrapper(this, context.busContextName + "_" + loc.name))
aaWrapper.suggestName(context.busContextName + "_" + loc.name + "_wrapper")
context.tlBusWrapperLocationMap += (loc -> aaWrapper)
aaWrapper
}
}
class AddressAdjusterWrapper(params: AddressAdjusterWrapperParams, name: String)(implicit p: Parameters) extends TLBusWrapper(params, name) {
private val address_adjuster = params.replication.map { r => LazyModule(new AddressAdjuster(r, params.forceLocal, params.localBaseAddressDefault, params.ordered)) }
private val viewNode = TLIdentityNode()
val inwardNode: TLInwardNode = address_adjuster.map(_.node :*=* TLFIFOFixer(params.policy) :*=* viewNode).getOrElse(viewNode)
def outwardNode: TLOutwardNode = address_adjuster.map(_.node).getOrElse(viewNode)
def busView: TLEdge = viewNode.edges.in.head
val prefixNode = address_adjuster.map { a =>
a.prefix := addressPrefixNexusNode
addressPrefixNexusNode
}
val builtInDevices = BuiltInDevices.none
override def shouldBeInlined = !params.replication.isDefined
}
case class TLJBarWrapperParams(
blockBytes: Int,
beatBytes: Int
)
extends HasTLBusParams
with TLBusWrapperInstantiationLike
{
val dtsFrequency = None
def instantiate(context: HasTileLinkLocations, loc: Location[TLBusWrapper])(implicit p: Parameters): TLJBarWrapper = {
val jbarWrapper = LazyModule(new TLJBarWrapper(this, context.busContextName + "_" + loc.name))
jbarWrapper.suggestName(context.busContextName + "_" + loc.name + "_wrapper")
context.tlBusWrapperLocationMap += (loc -> jbarWrapper)
jbarWrapper
}
}
class TLJBarWrapper(params: TLJBarWrapperParams, name: String)(implicit p: Parameters) extends TLBusWrapper(params, name) {
private val jbar = LazyModule(new TLJbar)
val inwardNode: TLInwardNode = jbar.node
val outwardNode: TLOutwardNode = jbar.node
def busView: TLEdge = jbar.node.edges.in.head
val prefixNode = None
val builtInDevices = BuiltInDevices.none
override def shouldBeInlined = jbar.node.circuitIdentity
}
File ClockGroup.scala:
// See LICENSE.SiFive for license details.
package freechips.rocketchip.prci
import org.chipsalliance.cde.config._
import org.chipsalliance.diplomacy._
import org.chipsalliance.diplomacy.lazymodule._
import org.chipsalliance.diplomacy.nodes._
import freechips.rocketchip.resources.FixedClockResource
case class ClockGroupingNode(groupName: String)(implicit valName: ValName)
extends MixedNexusNode(ClockGroupImp, ClockImp)(
dFn = { _ => ClockSourceParameters() },
uFn = { seq => ClockGroupSinkParameters(name = groupName, members = seq) })
{
override def circuitIdentity = outputs.size == 1
}
class ClockGroup(groupName: String)(implicit p: Parameters) extends LazyModule
{
val node = ClockGroupingNode(groupName)
lazy val module = new Impl
class Impl extends LazyRawModuleImp(this) {
val (in, _) = node.in(0)
val (out, _) = node.out.unzip
require (node.in.size == 1)
require (in.member.size == out.size)
(in.member.data zip out) foreach { case (i, o) => o := i }
}
}
object ClockGroup
{
def apply()(implicit p: Parameters, valName: ValName) = LazyModule(new ClockGroup(valName.name)).node
}
case class ClockGroupAggregateNode(groupName: String)(implicit valName: ValName)
extends NexusNode(ClockGroupImp)(
dFn = { _ => ClockGroupSourceParameters() },
uFn = { seq => ClockGroupSinkParameters(name = groupName, members = seq.flatMap(_.members))})
{
override def circuitIdentity = outputs.size == 1
}
class ClockGroupAggregator(groupName: String)(implicit p: Parameters) extends LazyModule
{
val node = ClockGroupAggregateNode(groupName)
override lazy val desiredName = s"ClockGroupAggregator_$groupName"
lazy val module = new Impl
class Impl extends LazyRawModuleImp(this) {
val (in, _) = node.in.unzip
val (out, _) = node.out.unzip
val outputs = out.flatMap(_.member.data)
require (node.in.size == 1, s"Aggregator for groupName: ${groupName} had ${node.in.size} inward edges instead of 1")
require (in.head.member.size == outputs.size)
in.head.member.data.zip(outputs).foreach { case (i, o) => o := i }
}
}
object ClockGroupAggregator
{
def apply()(implicit p: Parameters, valName: ValName) = LazyModule(new ClockGroupAggregator(valName.name)).node
}
class SimpleClockGroupSource(numSources: Int = 1)(implicit p: Parameters) extends LazyModule
{
val node = ClockGroupSourceNode(List.fill(numSources) { ClockGroupSourceParameters() })
lazy val module = new Impl
class Impl extends LazyModuleImp(this) {
val (out, _) = node.out.unzip
out.map { out: ClockGroupBundle =>
out.member.data.foreach { o =>
o.clock := clock; o.reset := reset }
}
}
}
object SimpleClockGroupSource
{
def apply(num: Int = 1)(implicit p: Parameters, valName: ValName) = LazyModule(new SimpleClockGroupSource(num)).node
}
case class FixedClockBroadcastNode(fixedClockOpt: Option[ClockParameters])(implicit valName: ValName)
extends NexusNode(ClockImp)(
dFn = { seq => fixedClockOpt.map(_ => ClockSourceParameters(give = fixedClockOpt)).orElse(seq.headOption).getOrElse(ClockSourceParameters()) },
uFn = { seq => fixedClockOpt.map(_ => ClockSinkParameters(take = fixedClockOpt)).orElse(seq.headOption).getOrElse(ClockSinkParameters()) },
inputRequiresOutput = false) {
def fixedClockResources(name: String, prefix: String = "soc/"): Seq[Option[FixedClockResource]] = Seq(fixedClockOpt.map(t => new FixedClockResource(name, t.freqMHz, prefix)))
}
class FixedClockBroadcast(fixedClockOpt: Option[ClockParameters])(implicit p: Parameters) extends LazyModule
{
val node = new FixedClockBroadcastNode(fixedClockOpt) {
override def circuitIdentity = outputs.size == 1
}
lazy val module = new Impl
class Impl extends LazyRawModuleImp(this) {
val (in, _) = node.in(0)
val (out, _) = node.out.unzip
override def desiredName = s"FixedClockBroadcast_${out.size}"
require (node.in.size == 1, "FixedClockBroadcast can only broadcast a single clock")
out.foreach { _ := in }
}
}
object FixedClockBroadcast
{
def apply(fixedClockOpt: Option[ClockParameters] = None)(implicit p: Parameters, valName: ValName) = LazyModule(new FixedClockBroadcast(fixedClockOpt)).node
}
case class PRCIClockGroupNode()(implicit valName: ValName)
extends NexusNode(ClockGroupImp)(
dFn = { _ => ClockGroupSourceParameters() },
uFn = { _ => ClockGroupSinkParameters("prci", Nil) },
outputRequiresInput = false)
File LazyModuleImp.scala:
package org.chipsalliance.diplomacy.lazymodule
import chisel3.{withClockAndReset, Module, RawModule, Reset, _}
import chisel3.experimental.{ChiselAnnotation, CloneModuleAsRecord, SourceInfo}
import firrtl.passes.InlineAnnotation
import org.chipsalliance.cde.config.Parameters
import org.chipsalliance.diplomacy.nodes.Dangle
import scala.collection.immutable.SortedMap
/** Trait describing the actual [[Module]] implementation wrapped by a [[LazyModule]].
*
* This is the actual Chisel module that is lazily-evaluated in the second phase of Diplomacy.
*/
sealed trait LazyModuleImpLike extends RawModule {
/** [[LazyModule]] that contains this instance. */
val wrapper: LazyModule
/** IOs that will be automatically "punched" for this instance. */
val auto: AutoBundle
/** The metadata that describes the [[HalfEdge]]s which generated [[auto]]. */
protected[diplomacy] val dangles: Seq[Dangle]
// [[wrapper.module]] had better not be accessed while LazyModules are still being built!
require(
LazyModule.scope.isEmpty,
s"${wrapper.name}.module was constructed before LazyModule() was run on ${LazyModule.scope.get.name}"
)
/** Set module name. Defaults to the containing LazyModule's desiredName. */
override def desiredName: String = wrapper.desiredName
suggestName(wrapper.suggestedName)
/** [[Parameters]] for chisel [[Module]]s. */
implicit val p: Parameters = wrapper.p
/** instantiate this [[LazyModule]], return [[AutoBundle]] and a unconnected [[Dangle]]s from this module and
* submodules.
*/
protected[diplomacy] def instantiate(): (AutoBundle, List[Dangle]) = {
// 1. It will recursively append [[wrapper.children]] into [[chisel3.internal.Builder]],
// 2. return [[Dangle]]s from each module.
val childDangles = wrapper.children.reverse.flatMap { c =>
implicit val sourceInfo: SourceInfo = c.info
c.cloneProto.map { cp =>
// If the child is a clone, then recursively set cloneProto of its children as well
def assignCloneProtos(bases: Seq[LazyModule], clones: Seq[LazyModule]): Unit = {
require(bases.size == clones.size)
(bases.zip(clones)).map { case (l, r) =>
require(l.getClass == r.getClass, s"Cloned children class mismatch ${l.name} != ${r.name}")
l.cloneProto = Some(r)
assignCloneProtos(l.children, r.children)
}
}
assignCloneProtos(c.children, cp.children)
// Clone the child module as a record, and get its [[AutoBundle]]
val clone = CloneModuleAsRecord(cp.module).suggestName(c.suggestedName)
val clonedAuto = clone("auto").asInstanceOf[AutoBundle]
// Get the empty [[Dangle]]'s of the cloned child
val rawDangles = c.cloneDangles()
require(rawDangles.size == clonedAuto.elements.size)
// Assign the [[AutoBundle]] fields of the cloned record to the empty [[Dangle]]'s
val dangles = (rawDangles.zip(clonedAuto.elements)).map { case (d, (_, io)) => d.copy(dataOpt = Some(io)) }
dangles
}.getOrElse {
// For non-clones, instantiate the child module
val mod = try {
Module(c.module)
} catch {
case e: ChiselException => {
println(s"Chisel exception caught when instantiating ${c.name} within ${this.name} at ${c.line}")
throw e
}
}
mod.dangles
}
}
// Ask each node in this [[LazyModule]] to call [[BaseNode.instantiate]].
// This will result in a sequence of [[Dangle]] from these [[BaseNode]]s.
val nodeDangles = wrapper.nodes.reverse.flatMap(_.instantiate())
// Accumulate all the [[Dangle]]s from this node and any accumulated from its [[wrapper.children]]
val allDangles = nodeDangles ++ childDangles
// Group [[allDangles]] by their [[source]].
val pairing = SortedMap(allDangles.groupBy(_.source).toSeq: _*)
// For each [[source]] set of [[Dangle]]s of size 2, ensure that these
// can be connected as a source-sink pair (have opposite flipped value).
// Make the connection and mark them as [[done]].
val done = Set() ++ pairing.values.filter(_.size == 2).map {
case Seq(a, b) =>
require(a.flipped != b.flipped)
// @todo <> in chisel3 makes directionless connection.
if (a.flipped) {
a.data <> b.data
} else {
b.data <> a.data
}
a.source
case _ => None
}
// Find all [[Dangle]]s which are still not connected. These will end up as [[AutoBundle]] [[IO]] ports on the module.
val forward = allDangles.filter(d => !done(d.source))
// Generate [[AutoBundle]] IO from [[forward]].
val auto = IO(new AutoBundle(forward.map { d => (d.name, d.data, d.flipped) }: _*))
// Pass the [[Dangle]]s which remained and were used to generate the [[AutoBundle]] I/O ports up to the [[parent]] [[LazyModule]]
val dangles = (forward.zip(auto.elements)).map { case (d, (_, io)) =>
if (d.flipped) {
d.data <> io
} else {
io <> d.data
}
d.copy(dataOpt = Some(io), name = wrapper.suggestedName + "_" + d.name)
}
// Push all [[LazyModule.inModuleBody]] to [[chisel3.internal.Builder]].
wrapper.inModuleBody.reverse.foreach {
_()
}
if (wrapper.shouldBeInlined) {
chisel3.experimental.annotate(new ChiselAnnotation {
def toFirrtl = InlineAnnotation(toNamed)
})
}
// Return [[IO]] and [[Dangle]] of this [[LazyModuleImp]].
(auto, dangles)
}
}
/** Actual description of a [[Module]] which can be instantiated by a call to [[LazyModule.module]].
*
* @param wrapper
* the [[LazyModule]] from which the `.module` call is being made.
*/
class LazyModuleImp(val wrapper: LazyModule) extends Module with LazyModuleImpLike {
/** Instantiate hardware of this `Module`. */
val (auto, dangles) = instantiate()
}
/** Actual description of a [[RawModule]] which can be instantiated by a call to [[LazyModule.module]].
*
* @param wrapper
* the [[LazyModule]] from which the `.module` call is being made.
*/
class LazyRawModuleImp(val wrapper: LazyModule) extends RawModule with LazyModuleImpLike {
// These wires are the default clock+reset for all LazyModule children.
// It is recommended to drive these even if you manually drive the [[clock]] and [[reset]] of all of the
// [[LazyRawModuleImp]] children.
// Otherwise, anonymous children ([[Monitor]]s for example) will not have their [[clock]] and/or [[reset]] driven properly.
/** drive clock explicitly. */
val childClock: Clock = Wire(Clock())
/** drive reset explicitly. */
val childReset: Reset = Wire(Reset())
// the default is that these are disabled
childClock := false.B.asClock
childReset := chisel3.DontCare
def provideImplicitClockToLazyChildren: Boolean = false
val (auto, dangles) =
if (provideImplicitClockToLazyChildren) {
withClockAndReset(childClock, childReset) { instantiate() }
} else {
instantiate()
}
}
File LazyScope.scala:
package org.chipsalliance.diplomacy.lazymodule
import org.chipsalliance.cde.config.Parameters
import org.chipsalliance.diplomacy.ValName
/** Allows dynamic creation of [[Module]] hierarchy and "shoving" logic into a [[LazyModule]]. */
trait LazyScope {
this: LazyModule =>
override def toString: String = s"LazyScope named $name"
/** Evaluate `body` in the current [[LazyModule.scope]] */
def apply[T](body: => T): T = {
// Preserve the previous value of the [[LazyModule.scope]], because when calling [[apply]] function,
// [[LazyModule.scope]] will be altered.
val saved = LazyModule.scope
// [[LazyModule.scope]] stack push.
LazyModule.scope = Some(this)
// Evaluate [[body]] in the current `scope`, saving the result to [[out]].
val out = body
// Check that the `scope` after evaluating `body` is the same as when we started.
require(LazyModule.scope.isDefined, s"LazyScope $name tried to exit, but scope was empty!")
require(
LazyModule.scope.get eq this,
s"LazyScope $name exited before LazyModule ${LazyModule.scope.get.name} was closed"
)
// [[LazyModule.scope]] stack pop.
LazyModule.scope = saved
out
}
}
/** Used to automatically create a level of module hierarchy (a [[SimpleLazyModule]]) within which [[LazyModule]]s can
* be instantiated and connected.
*
* It will instantiate a [[SimpleLazyModule]] to manage evaluation of `body` and evaluate `body` code snippets in this
* scope.
*/
object LazyScope {
/** Create a [[LazyScope]] with an implicit instance name.
*
* @param body
* code executed within the generated [[SimpleLazyModule]].
* @param valName
* instance name of generated [[SimpleLazyModule]].
* @param p
* [[Parameters]] propagated to [[SimpleLazyModule]].
*/
def apply[T](
body: => T
)(
implicit valName: ValName,
p: Parameters
): T = {
apply(valName.value, "SimpleLazyModule", None)(body)(p)
}
/** Create a [[LazyScope]] with an explicitly defined instance name.
*
* @param name
* instance name of generated [[SimpleLazyModule]].
* @param body
* code executed within the generated `SimpleLazyModule`
* @param p
* [[Parameters]] propagated to [[SimpleLazyModule]].
*/
def apply[T](
name: String
)(body: => T
)(
implicit p: Parameters
): T = {
apply(name, "SimpleLazyModule", None)(body)(p)
}
/** Create a [[LazyScope]] with an explicit instance and class name, and control inlining.
*
* @param name
* instance name of generated [[SimpleLazyModule]].
* @param desiredModuleName
* class name of generated [[SimpleLazyModule]].
* @param overrideInlining
* tell FIRRTL that this [[SimpleLazyModule]]'s module should be inlined.
* @param body
* code executed within the generated `SimpleLazyModule`
* @param p
* [[Parameters]] propagated to [[SimpleLazyModule]].
*/
def apply[T](
name: String,
desiredModuleName: String,
overrideInlining: Option[Boolean] = None
)(body: => T
)(
implicit p: Parameters
): T = {
val scope = LazyModule(new SimpleLazyModule with LazyScope {
override lazy val desiredName = desiredModuleName
override def shouldBeInlined = overrideInlining.getOrElse(super.shouldBeInlined)
}).suggestName(name)
scope {
body
}
}
/** Create a [[LazyScope]] to temporarily group children for some reason, but tell Firrtl to inline it.
*
* For example, we might want to control a set of children's clocks but then not keep the parent wrapper.
*
* @param body
* code executed within the generated `SimpleLazyModule`
* @param p
* [[Parameters]] propagated to [[SimpleLazyModule]].
*/
def inline[T](
body: => T
)(
implicit p: Parameters
): T = {
apply("noname", "ShouldBeInlined", Some(false))(body)(p)
}
}
File InitZero.scala:
package chipyard.example
import chisel3._
import chisel3.util._
import freechips.rocketchip.subsystem.{BaseSubsystem, CacheBlockBytes, FBUS}
import org.chipsalliance.cde.config.{Parameters, Field, Config}
import freechips.rocketchip.diplomacy.{LazyModule, LazyModuleImp, IdRange}
import freechips.rocketchip.tilelink._
case class InitZeroConfig(base: BigInt, size: BigInt)
case object InitZeroKey extends Field[Option[InitZeroConfig]](None)
class InitZero(implicit p: Parameters) extends LazyModule {
val node = TLClientNode(Seq(TLMasterPortParameters.v1(Seq(TLClientParameters(
name = "init-zero", sourceId = IdRange(0, 1))))))
lazy val module = new InitZeroModuleImp(this)
}
class InitZeroModuleImp(outer: InitZero) extends LazyModuleImp(outer) {
val config = p(InitZeroKey).get
val (mem, edge) = outer.node.out(0)
val addrBits = edge.bundle.addressBits
val blockBytes = p(CacheBlockBytes)
require(config.size % blockBytes == 0)
val s_init :: s_write :: s_resp :: s_done :: Nil = Enum(4)
val state = RegInit(s_init)
val addr = Reg(UInt(addrBits.W))
val bytesLeft = Reg(UInt(log2Ceil(config.size+1).W))
mem.a.valid := state === s_write
mem.a.bits := edge.Put(
fromSource = 0.U,
toAddress = addr,
lgSize = log2Ceil(blockBytes).U,
data = 0.U)._2
mem.d.ready := state === s_resp
when (state === s_init) {
addr := config.base.U
bytesLeft := config.size.U
state := s_write
}
when (edge.done(mem.a)) {
addr := addr + blockBytes.U
bytesLeft := bytesLeft - blockBytes.U
state := s_resp
}
when (mem.d.fire) {
state := Mux(bytesLeft === 0.U, s_done, s_write)
}
}
trait CanHavePeripheryInitZero { this: BaseSubsystem =>
implicit val p: Parameters
p(InitZeroKey) .map { k =>
val fbus = locateTLBusWrapper(FBUS)
val initZero = fbus { LazyModule(new InitZero()(p)) }
fbus.coupleFrom("init-zero") { _ := initZero.node }
}
}
// DOC include start: WithInitZero
class WithInitZero(base: BigInt, size: BigInt) extends Config((site, here, up) => {
case InitZeroKey => Some(InitZeroConfig(base, size))
})
// DOC include end: WithInitZero
| module FrontBus( // @[ClockDomain.scala:14:9]
output auto_coupler_from_port_named_serial_tl_0_in_buffer_in_a_ready, // @[LazyModuleImp.scala:107:25]
input auto_coupler_from_port_named_serial_tl_0_in_buffer_in_a_valid, // @[LazyModuleImp.scala:107:25]
input [2:0] auto_coupler_from_port_named_serial_tl_0_in_buffer_in_a_bits_opcode, // @[LazyModuleImp.scala:107:25]
input [2:0] auto_coupler_from_port_named_serial_tl_0_in_buffer_in_a_bits_param, // @[LazyModuleImp.scala:107:25]
input [3:0] auto_coupler_from_port_named_serial_tl_0_in_buffer_in_a_bits_size, // @[LazyModuleImp.scala:107:25]
input [3:0] auto_coupler_from_port_named_serial_tl_0_in_buffer_in_a_bits_source, // @[LazyModuleImp.scala:107:25]
input [31:0] auto_coupler_from_port_named_serial_tl_0_in_buffer_in_a_bits_address, // @[LazyModuleImp.scala:107:25]
input [7:0] auto_coupler_from_port_named_serial_tl_0_in_buffer_in_a_bits_mask, // @[LazyModuleImp.scala:107:25]
input [63:0] auto_coupler_from_port_named_serial_tl_0_in_buffer_in_a_bits_data, // @[LazyModuleImp.scala:107:25]
input auto_coupler_from_port_named_serial_tl_0_in_buffer_in_a_bits_corrupt, // @[LazyModuleImp.scala:107:25]
input auto_coupler_from_port_named_serial_tl_0_in_buffer_in_d_ready, // @[LazyModuleImp.scala:107:25]
output auto_coupler_from_port_named_serial_tl_0_in_buffer_in_d_valid, // @[LazyModuleImp.scala:107:25]
output [2:0] auto_coupler_from_port_named_serial_tl_0_in_buffer_in_d_bits_opcode, // @[LazyModuleImp.scala:107:25]
output [1:0] auto_coupler_from_port_named_serial_tl_0_in_buffer_in_d_bits_param, // @[LazyModuleImp.scala:107:25]
output [3:0] auto_coupler_from_port_named_serial_tl_0_in_buffer_in_d_bits_size, // @[LazyModuleImp.scala:107:25]
output [3:0] auto_coupler_from_port_named_serial_tl_0_in_buffer_in_d_bits_source, // @[LazyModuleImp.scala:107:25]
output [2:0] auto_coupler_from_port_named_serial_tl_0_in_buffer_in_d_bits_sink, // @[LazyModuleImp.scala:107:25]
output auto_coupler_from_port_named_serial_tl_0_in_buffer_in_d_bits_denied, // @[LazyModuleImp.scala:107:25]
output [63:0] auto_coupler_from_port_named_serial_tl_0_in_buffer_in_d_bits_data, // @[LazyModuleImp.scala:107:25]
output auto_coupler_from_port_named_serial_tl_0_in_buffer_in_d_bits_corrupt, // @[LazyModuleImp.scala:107:25]
output auto_coupler_from_debug_sb_widget_anon_in_a_ready, // @[LazyModuleImp.scala:107:25]
input auto_coupler_from_debug_sb_widget_anon_in_a_valid, // @[LazyModuleImp.scala:107:25]
input [2:0] auto_coupler_from_debug_sb_widget_anon_in_a_bits_opcode, // @[LazyModuleImp.scala:107:25]
input [3:0] auto_coupler_from_debug_sb_widget_anon_in_a_bits_size, // @[LazyModuleImp.scala:107:25]
input [31:0] auto_coupler_from_debug_sb_widget_anon_in_a_bits_address, // @[LazyModuleImp.scala:107:25]
input [7:0] auto_coupler_from_debug_sb_widget_anon_in_a_bits_data, // @[LazyModuleImp.scala:107:25]
input auto_coupler_from_debug_sb_widget_anon_in_d_ready, // @[LazyModuleImp.scala:107:25]
output auto_coupler_from_debug_sb_widget_anon_in_d_valid, // @[LazyModuleImp.scala:107:25]
output [2:0] auto_coupler_from_debug_sb_widget_anon_in_d_bits_opcode, // @[LazyModuleImp.scala:107:25]
output [1:0] auto_coupler_from_debug_sb_widget_anon_in_d_bits_param, // @[LazyModuleImp.scala:107:25]
output [3:0] auto_coupler_from_debug_sb_widget_anon_in_d_bits_size, // @[LazyModuleImp.scala:107:25]
output [2:0] auto_coupler_from_debug_sb_widget_anon_in_d_bits_sink, // @[LazyModuleImp.scala:107:25]
output auto_coupler_from_debug_sb_widget_anon_in_d_bits_denied, // @[LazyModuleImp.scala:107:25]
output [7:0] auto_coupler_from_debug_sb_widget_anon_in_d_bits_data, // @[LazyModuleImp.scala:107:25]
output auto_coupler_from_debug_sb_widget_anon_in_d_bits_corrupt, // @[LazyModuleImp.scala:107:25]
output auto_fixedClockNode_anon_out_clock, // @[LazyModuleImp.scala:107:25]
output auto_fixedClockNode_anon_out_reset, // @[LazyModuleImp.scala:107:25]
input auto_fbus_clock_groups_in_member_fbus_0_clock, // @[LazyModuleImp.scala:107:25]
input auto_fbus_clock_groups_in_member_fbus_0_reset, // @[LazyModuleImp.scala:107:25]
input auto_bus_xing_out_a_ready, // @[LazyModuleImp.scala:107:25]
output auto_bus_xing_out_a_valid, // @[LazyModuleImp.scala:107:25]
output [2:0] auto_bus_xing_out_a_bits_opcode, // @[LazyModuleImp.scala:107:25]
output [2:0] auto_bus_xing_out_a_bits_param, // @[LazyModuleImp.scala:107:25]
output [3:0] auto_bus_xing_out_a_bits_size, // @[LazyModuleImp.scala:107:25]
output [4:0] auto_bus_xing_out_a_bits_source, // @[LazyModuleImp.scala:107:25]
output [31:0] auto_bus_xing_out_a_bits_address, // @[LazyModuleImp.scala:107:25]
output [7:0] auto_bus_xing_out_a_bits_mask, // @[LazyModuleImp.scala:107:25]
output [63:0] auto_bus_xing_out_a_bits_data, // @[LazyModuleImp.scala:107:25]
output auto_bus_xing_out_a_bits_corrupt, // @[LazyModuleImp.scala:107:25]
output auto_bus_xing_out_d_ready, // @[LazyModuleImp.scala:107:25]
input auto_bus_xing_out_d_valid, // @[LazyModuleImp.scala:107:25]
input [2:0] auto_bus_xing_out_d_bits_opcode, // @[LazyModuleImp.scala:107:25]
input [1:0] auto_bus_xing_out_d_bits_param, // @[LazyModuleImp.scala:107:25]
input [3:0] auto_bus_xing_out_d_bits_size, // @[LazyModuleImp.scala:107:25]
input [4:0] auto_bus_xing_out_d_bits_source, // @[LazyModuleImp.scala:107:25]
input [2:0] auto_bus_xing_out_d_bits_sink, // @[LazyModuleImp.scala:107:25]
input auto_bus_xing_out_d_bits_denied, // @[LazyModuleImp.scala:107:25]
input [63:0] auto_bus_xing_out_d_bits_data, // @[LazyModuleImp.scala:107:25]
input auto_bus_xing_out_d_bits_corrupt // @[LazyModuleImp.scala:107:25]
);
wire _initZero_auto_out_a_valid; // @[InitZero.scala:65:37]
wire [31:0] _initZero_auto_out_a_bits_address; // @[InitZero.scala:65:37]
wire _initZero_auto_out_d_ready; // @[InitZero.scala:65:37]
wire _coupler_from_port_named_serial_tl_0_in_auto_tl_out_a_valid; // @[LazyScope.scala:98:27]
wire [2:0] _coupler_from_port_named_serial_tl_0_in_auto_tl_out_a_bits_opcode; // @[LazyScope.scala:98:27]
wire [2:0] _coupler_from_port_named_serial_tl_0_in_auto_tl_out_a_bits_param; // @[LazyScope.scala:98:27]
wire [3:0] _coupler_from_port_named_serial_tl_0_in_auto_tl_out_a_bits_size; // @[LazyScope.scala:98:27]
wire [3:0] _coupler_from_port_named_serial_tl_0_in_auto_tl_out_a_bits_source; // @[LazyScope.scala:98:27]
wire [31:0] _coupler_from_port_named_serial_tl_0_in_auto_tl_out_a_bits_address; // @[LazyScope.scala:98:27]
wire [7:0] _coupler_from_port_named_serial_tl_0_in_auto_tl_out_a_bits_mask; // @[LazyScope.scala:98:27]
wire [63:0] _coupler_from_port_named_serial_tl_0_in_auto_tl_out_a_bits_data; // @[LazyScope.scala:98:27]
wire _coupler_from_port_named_serial_tl_0_in_auto_tl_out_a_bits_corrupt; // @[LazyScope.scala:98:27]
wire _coupler_from_port_named_serial_tl_0_in_auto_tl_out_d_ready; // @[LazyScope.scala:98:27]
wire _coupler_from_debug_sb_auto_tl_out_a_valid; // @[LazyScope.scala:98:27]
wire [2:0] _coupler_from_debug_sb_auto_tl_out_a_bits_opcode; // @[LazyScope.scala:98:27]
wire [3:0] _coupler_from_debug_sb_auto_tl_out_a_bits_size; // @[LazyScope.scala:98:27]
wire [31:0] _coupler_from_debug_sb_auto_tl_out_a_bits_address; // @[LazyScope.scala:98:27]
wire [7:0] _coupler_from_debug_sb_auto_tl_out_a_bits_mask; // @[LazyScope.scala:98:27]
wire [63:0] _coupler_from_debug_sb_auto_tl_out_a_bits_data; // @[LazyScope.scala:98:27]
wire _coupler_from_debug_sb_auto_tl_out_d_ready; // @[LazyScope.scala:98:27]
wire _buffer_auto_in_a_ready; // @[Buffer.scala:75:28]
wire _buffer_auto_in_d_valid; // @[Buffer.scala:75:28]
wire [2:0] _buffer_auto_in_d_bits_opcode; // @[Buffer.scala:75:28]
wire [1:0] _buffer_auto_in_d_bits_param; // @[Buffer.scala:75:28]
wire [3:0] _buffer_auto_in_d_bits_size; // @[Buffer.scala:75:28]
wire [4:0] _buffer_auto_in_d_bits_source; // @[Buffer.scala:75:28]
wire [2:0] _buffer_auto_in_d_bits_sink; // @[Buffer.scala:75:28]
wire _buffer_auto_in_d_bits_denied; // @[Buffer.scala:75:28]
wire [63:0] _buffer_auto_in_d_bits_data; // @[Buffer.scala:75:28]
wire _buffer_auto_in_d_bits_corrupt; // @[Buffer.scala:75:28]
wire _fbus_xbar_auto_anon_in_2_a_ready; // @[BusWrapper.scala:240:32]
wire _fbus_xbar_auto_anon_in_2_d_valid; // @[BusWrapper.scala:240:32]
wire _fbus_xbar_auto_anon_in_1_a_ready; // @[BusWrapper.scala:240:32]
wire _fbus_xbar_auto_anon_in_1_d_valid; // @[BusWrapper.scala:240:32]
wire [2:0] _fbus_xbar_auto_anon_in_1_d_bits_opcode; // @[BusWrapper.scala:240:32]
wire [1:0] _fbus_xbar_auto_anon_in_1_d_bits_param; // @[BusWrapper.scala:240:32]
wire [3:0] _fbus_xbar_auto_anon_in_1_d_bits_size; // @[BusWrapper.scala:240:32]
wire [3:0] _fbus_xbar_auto_anon_in_1_d_bits_source; // @[BusWrapper.scala:240:32]
wire [2:0] _fbus_xbar_auto_anon_in_1_d_bits_sink; // @[BusWrapper.scala:240:32]
wire _fbus_xbar_auto_anon_in_1_d_bits_denied; // @[BusWrapper.scala:240:32]
wire [63:0] _fbus_xbar_auto_anon_in_1_d_bits_data; // @[BusWrapper.scala:240:32]
wire _fbus_xbar_auto_anon_in_1_d_bits_corrupt; // @[BusWrapper.scala:240:32]
wire _fbus_xbar_auto_anon_in_0_a_ready; // @[BusWrapper.scala:240:32]
wire _fbus_xbar_auto_anon_in_0_d_valid; // @[BusWrapper.scala:240:32]
wire [2:0] _fbus_xbar_auto_anon_in_0_d_bits_opcode; // @[BusWrapper.scala:240:32]
wire [1:0] _fbus_xbar_auto_anon_in_0_d_bits_param; // @[BusWrapper.scala:240:32]
wire [3:0] _fbus_xbar_auto_anon_in_0_d_bits_size; // @[BusWrapper.scala:240:32]
wire [2:0] _fbus_xbar_auto_anon_in_0_d_bits_sink; // @[BusWrapper.scala:240:32]
wire _fbus_xbar_auto_anon_in_0_d_bits_denied; // @[BusWrapper.scala:240:32]
wire [63:0] _fbus_xbar_auto_anon_in_0_d_bits_data; // @[BusWrapper.scala:240:32]
wire _fbus_xbar_auto_anon_in_0_d_bits_corrupt; // @[BusWrapper.scala:240:32]
wire _fbus_xbar_auto_anon_out_a_valid; // @[BusWrapper.scala:240:32]
wire [2:0] _fbus_xbar_auto_anon_out_a_bits_opcode; // @[BusWrapper.scala:240:32]
wire [2:0] _fbus_xbar_auto_anon_out_a_bits_param; // @[BusWrapper.scala:240:32]
wire [3:0] _fbus_xbar_auto_anon_out_a_bits_size; // @[BusWrapper.scala:240:32]
wire [4:0] _fbus_xbar_auto_anon_out_a_bits_source; // @[BusWrapper.scala:240:32]
wire [31:0] _fbus_xbar_auto_anon_out_a_bits_address; // @[BusWrapper.scala:240:32]
wire [7:0] _fbus_xbar_auto_anon_out_a_bits_mask; // @[BusWrapper.scala:240:32]
wire [63:0] _fbus_xbar_auto_anon_out_a_bits_data; // @[BusWrapper.scala:240:32]
wire _fbus_xbar_auto_anon_out_a_bits_corrupt; // @[BusWrapper.scala:240:32]
wire _fbus_xbar_auto_anon_out_d_ready; // @[BusWrapper.scala:240:32]
wire _fixedClockNode_auto_anon_out_0_clock; // @[ClockGroup.scala:115:114]
wire _fixedClockNode_auto_anon_out_0_reset; // @[ClockGroup.scala:115:114]
FixedClockBroadcast_2 fixedClockNode ( // @[ClockGroup.scala:115:114]
.auto_anon_in_clock (auto_fbus_clock_groups_in_member_fbus_0_clock),
.auto_anon_in_reset (auto_fbus_clock_groups_in_member_fbus_0_reset),
.auto_anon_out_1_clock (auto_fixedClockNode_anon_out_clock),
.auto_anon_out_1_reset (auto_fixedClockNode_anon_out_reset),
.auto_anon_out_0_clock (_fixedClockNode_auto_anon_out_0_clock),
.auto_anon_out_0_reset (_fixedClockNode_auto_anon_out_0_reset)
); // @[ClockGroup.scala:115:114]
TLXbar_fbus_i3_o1_a32d64s5k3z4u fbus_xbar ( // @[BusWrapper.scala:240:32]
.clock (_fixedClockNode_auto_anon_out_0_clock), // @[ClockGroup.scala:115:114]
.reset (_fixedClockNode_auto_anon_out_0_reset), // @[ClockGroup.scala:115:114]
.auto_anon_in_2_a_ready (_fbus_xbar_auto_anon_in_2_a_ready),
.auto_anon_in_2_a_valid (_initZero_auto_out_a_valid), // @[InitZero.scala:65:37]
.auto_anon_in_2_a_bits_address (_initZero_auto_out_a_bits_address), // @[InitZero.scala:65:37]
.auto_anon_in_2_d_ready (_initZero_auto_out_d_ready), // @[InitZero.scala:65:37]
.auto_anon_in_2_d_valid (_fbus_xbar_auto_anon_in_2_d_valid),
.auto_anon_in_1_a_ready (_fbus_xbar_auto_anon_in_1_a_ready),
.auto_anon_in_1_a_valid (_coupler_from_port_named_serial_tl_0_in_auto_tl_out_a_valid), // @[LazyScope.scala:98:27]
.auto_anon_in_1_a_bits_opcode (_coupler_from_port_named_serial_tl_0_in_auto_tl_out_a_bits_opcode), // @[LazyScope.scala:98:27]
.auto_anon_in_1_a_bits_param (_coupler_from_port_named_serial_tl_0_in_auto_tl_out_a_bits_param), // @[LazyScope.scala:98:27]
.auto_anon_in_1_a_bits_size (_coupler_from_port_named_serial_tl_0_in_auto_tl_out_a_bits_size), // @[LazyScope.scala:98:27]
.auto_anon_in_1_a_bits_source (_coupler_from_port_named_serial_tl_0_in_auto_tl_out_a_bits_source), // @[LazyScope.scala:98:27]
.auto_anon_in_1_a_bits_address (_coupler_from_port_named_serial_tl_0_in_auto_tl_out_a_bits_address), // @[LazyScope.scala:98:27]
.auto_anon_in_1_a_bits_mask (_coupler_from_port_named_serial_tl_0_in_auto_tl_out_a_bits_mask), // @[LazyScope.scala:98:27]
.auto_anon_in_1_a_bits_data (_coupler_from_port_named_serial_tl_0_in_auto_tl_out_a_bits_data), // @[LazyScope.scala:98:27]
.auto_anon_in_1_a_bits_corrupt (_coupler_from_port_named_serial_tl_0_in_auto_tl_out_a_bits_corrupt), // @[LazyScope.scala:98:27]
.auto_anon_in_1_d_ready (_coupler_from_port_named_serial_tl_0_in_auto_tl_out_d_ready), // @[LazyScope.scala:98:27]
.auto_anon_in_1_d_valid (_fbus_xbar_auto_anon_in_1_d_valid),
.auto_anon_in_1_d_bits_opcode (_fbus_xbar_auto_anon_in_1_d_bits_opcode),
.auto_anon_in_1_d_bits_param (_fbus_xbar_auto_anon_in_1_d_bits_param),
.auto_anon_in_1_d_bits_size (_fbus_xbar_auto_anon_in_1_d_bits_size),
.auto_anon_in_1_d_bits_source (_fbus_xbar_auto_anon_in_1_d_bits_source),
.auto_anon_in_1_d_bits_sink (_fbus_xbar_auto_anon_in_1_d_bits_sink),
.auto_anon_in_1_d_bits_denied (_fbus_xbar_auto_anon_in_1_d_bits_denied),
.auto_anon_in_1_d_bits_data (_fbus_xbar_auto_anon_in_1_d_bits_data),
.auto_anon_in_1_d_bits_corrupt (_fbus_xbar_auto_anon_in_1_d_bits_corrupt),
.auto_anon_in_0_a_ready (_fbus_xbar_auto_anon_in_0_a_ready),
.auto_anon_in_0_a_valid (_coupler_from_debug_sb_auto_tl_out_a_valid), // @[LazyScope.scala:98:27]
.auto_anon_in_0_a_bits_opcode (_coupler_from_debug_sb_auto_tl_out_a_bits_opcode), // @[LazyScope.scala:98:27]
.auto_anon_in_0_a_bits_size (_coupler_from_debug_sb_auto_tl_out_a_bits_size), // @[LazyScope.scala:98:27]
.auto_anon_in_0_a_bits_address (_coupler_from_debug_sb_auto_tl_out_a_bits_address), // @[LazyScope.scala:98:27]
.auto_anon_in_0_a_bits_mask (_coupler_from_debug_sb_auto_tl_out_a_bits_mask), // @[LazyScope.scala:98:27]
.auto_anon_in_0_a_bits_data (_coupler_from_debug_sb_auto_tl_out_a_bits_data), // @[LazyScope.scala:98:27]
.auto_anon_in_0_d_ready (_coupler_from_debug_sb_auto_tl_out_d_ready), // @[LazyScope.scala:98:27]
.auto_anon_in_0_d_valid (_fbus_xbar_auto_anon_in_0_d_valid),
.auto_anon_in_0_d_bits_opcode (_fbus_xbar_auto_anon_in_0_d_bits_opcode),
.auto_anon_in_0_d_bits_param (_fbus_xbar_auto_anon_in_0_d_bits_param),
.auto_anon_in_0_d_bits_size (_fbus_xbar_auto_anon_in_0_d_bits_size),
.auto_anon_in_0_d_bits_sink (_fbus_xbar_auto_anon_in_0_d_bits_sink),
.auto_anon_in_0_d_bits_denied (_fbus_xbar_auto_anon_in_0_d_bits_denied),
.auto_anon_in_0_d_bits_data (_fbus_xbar_auto_anon_in_0_d_bits_data),
.auto_anon_in_0_d_bits_corrupt (_fbus_xbar_auto_anon_in_0_d_bits_corrupt),
.auto_anon_out_a_ready (_buffer_auto_in_a_ready), // @[Buffer.scala:75:28]
.auto_anon_out_a_valid (_fbus_xbar_auto_anon_out_a_valid),
.auto_anon_out_a_bits_opcode (_fbus_xbar_auto_anon_out_a_bits_opcode),
.auto_anon_out_a_bits_param (_fbus_xbar_auto_anon_out_a_bits_param),
.auto_anon_out_a_bits_size (_fbus_xbar_auto_anon_out_a_bits_size),
.auto_anon_out_a_bits_source (_fbus_xbar_auto_anon_out_a_bits_source),
.auto_anon_out_a_bits_address (_fbus_xbar_auto_anon_out_a_bits_address),
.auto_anon_out_a_bits_mask (_fbus_xbar_auto_anon_out_a_bits_mask),
.auto_anon_out_a_bits_data (_fbus_xbar_auto_anon_out_a_bits_data),
.auto_anon_out_a_bits_corrupt (_fbus_xbar_auto_anon_out_a_bits_corrupt),
.auto_anon_out_d_ready (_fbus_xbar_auto_anon_out_d_ready),
.auto_anon_out_d_valid (_buffer_auto_in_d_valid), // @[Buffer.scala:75:28]
.auto_anon_out_d_bits_opcode (_buffer_auto_in_d_bits_opcode), // @[Buffer.scala:75:28]
.auto_anon_out_d_bits_param (_buffer_auto_in_d_bits_param), // @[Buffer.scala:75:28]
.auto_anon_out_d_bits_size (_buffer_auto_in_d_bits_size), // @[Buffer.scala:75:28]
.auto_anon_out_d_bits_source (_buffer_auto_in_d_bits_source), // @[Buffer.scala:75:28]
.auto_anon_out_d_bits_sink (_buffer_auto_in_d_bits_sink), // @[Buffer.scala:75:28]
.auto_anon_out_d_bits_denied (_buffer_auto_in_d_bits_denied), // @[Buffer.scala:75:28]
.auto_anon_out_d_bits_data (_buffer_auto_in_d_bits_data), // @[Buffer.scala:75:28]
.auto_anon_out_d_bits_corrupt (_buffer_auto_in_d_bits_corrupt) // @[Buffer.scala:75:28]
); // @[BusWrapper.scala:240:32]
TLBuffer_a32d64s5k3z4u buffer ( // @[Buffer.scala:75:28]
.clock (_fixedClockNode_auto_anon_out_0_clock), // @[ClockGroup.scala:115:114]
.reset (_fixedClockNode_auto_anon_out_0_reset), // @[ClockGroup.scala:115:114]
.auto_in_a_ready (_buffer_auto_in_a_ready),
.auto_in_a_valid (_fbus_xbar_auto_anon_out_a_valid), // @[BusWrapper.scala:240:32]
.auto_in_a_bits_opcode (_fbus_xbar_auto_anon_out_a_bits_opcode), // @[BusWrapper.scala:240:32]
.auto_in_a_bits_param (_fbus_xbar_auto_anon_out_a_bits_param), // @[BusWrapper.scala:240:32]
.auto_in_a_bits_size (_fbus_xbar_auto_anon_out_a_bits_size), // @[BusWrapper.scala:240:32]
.auto_in_a_bits_source (_fbus_xbar_auto_anon_out_a_bits_source), // @[BusWrapper.scala:240:32]
.auto_in_a_bits_address (_fbus_xbar_auto_anon_out_a_bits_address), // @[BusWrapper.scala:240:32]
.auto_in_a_bits_mask (_fbus_xbar_auto_anon_out_a_bits_mask), // @[BusWrapper.scala:240:32]
.auto_in_a_bits_data (_fbus_xbar_auto_anon_out_a_bits_data), // @[BusWrapper.scala:240:32]
.auto_in_a_bits_corrupt (_fbus_xbar_auto_anon_out_a_bits_corrupt), // @[BusWrapper.scala:240:32]
.auto_in_d_ready (_fbus_xbar_auto_anon_out_d_ready), // @[BusWrapper.scala:240:32]
.auto_in_d_valid (_buffer_auto_in_d_valid),
.auto_in_d_bits_opcode (_buffer_auto_in_d_bits_opcode),
.auto_in_d_bits_param (_buffer_auto_in_d_bits_param),
.auto_in_d_bits_size (_buffer_auto_in_d_bits_size),
.auto_in_d_bits_source (_buffer_auto_in_d_bits_source),
.auto_in_d_bits_sink (_buffer_auto_in_d_bits_sink),
.auto_in_d_bits_denied (_buffer_auto_in_d_bits_denied),
.auto_in_d_bits_data (_buffer_auto_in_d_bits_data),
.auto_in_d_bits_corrupt (_buffer_auto_in_d_bits_corrupt),
.auto_out_a_ready (auto_bus_xing_out_a_ready),
.auto_out_a_valid (auto_bus_xing_out_a_valid),
.auto_out_a_bits_opcode (auto_bus_xing_out_a_bits_opcode),
.auto_out_a_bits_param (auto_bus_xing_out_a_bits_param),
.auto_out_a_bits_size (auto_bus_xing_out_a_bits_size),
.auto_out_a_bits_source (auto_bus_xing_out_a_bits_source),
.auto_out_a_bits_address (auto_bus_xing_out_a_bits_address),
.auto_out_a_bits_mask (auto_bus_xing_out_a_bits_mask),
.auto_out_a_bits_data (auto_bus_xing_out_a_bits_data),
.auto_out_a_bits_corrupt (auto_bus_xing_out_a_bits_corrupt),
.auto_out_d_ready (auto_bus_xing_out_d_ready),
.auto_out_d_valid (auto_bus_xing_out_d_valid),
.auto_out_d_bits_opcode (auto_bus_xing_out_d_bits_opcode),
.auto_out_d_bits_param (auto_bus_xing_out_d_bits_param),
.auto_out_d_bits_size (auto_bus_xing_out_d_bits_size),
.auto_out_d_bits_source (auto_bus_xing_out_d_bits_source),
.auto_out_d_bits_sink (auto_bus_xing_out_d_bits_sink),
.auto_out_d_bits_denied (auto_bus_xing_out_d_bits_denied),
.auto_out_d_bits_data (auto_bus_xing_out_d_bits_data),
.auto_out_d_bits_corrupt (auto_bus_xing_out_d_bits_corrupt)
); // @[Buffer.scala:75:28]
TLInterconnectCoupler_fbus_from_debug_sb coupler_from_debug_sb ( // @[LazyScope.scala:98:27]
.clock (_fixedClockNode_auto_anon_out_0_clock), // @[ClockGroup.scala:115:114]
.reset (_fixedClockNode_auto_anon_out_0_reset), // @[ClockGroup.scala:115:114]
.auto_widget_anon_in_a_ready (auto_coupler_from_debug_sb_widget_anon_in_a_ready),
.auto_widget_anon_in_a_valid (auto_coupler_from_debug_sb_widget_anon_in_a_valid),
.auto_widget_anon_in_a_bits_opcode (auto_coupler_from_debug_sb_widget_anon_in_a_bits_opcode),
.auto_widget_anon_in_a_bits_size (auto_coupler_from_debug_sb_widget_anon_in_a_bits_size),
.auto_widget_anon_in_a_bits_address (auto_coupler_from_debug_sb_widget_anon_in_a_bits_address),
.auto_widget_anon_in_a_bits_data (auto_coupler_from_debug_sb_widget_anon_in_a_bits_data),
.auto_widget_anon_in_d_ready (auto_coupler_from_debug_sb_widget_anon_in_d_ready),
.auto_widget_anon_in_d_valid (auto_coupler_from_debug_sb_widget_anon_in_d_valid),
.auto_widget_anon_in_d_bits_opcode (auto_coupler_from_debug_sb_widget_anon_in_d_bits_opcode),
.auto_widget_anon_in_d_bits_param (auto_coupler_from_debug_sb_widget_anon_in_d_bits_param),
.auto_widget_anon_in_d_bits_size (auto_coupler_from_debug_sb_widget_anon_in_d_bits_size),
.auto_widget_anon_in_d_bits_sink (auto_coupler_from_debug_sb_widget_anon_in_d_bits_sink),
.auto_widget_anon_in_d_bits_denied (auto_coupler_from_debug_sb_widget_anon_in_d_bits_denied),
.auto_widget_anon_in_d_bits_data (auto_coupler_from_debug_sb_widget_anon_in_d_bits_data),
.auto_widget_anon_in_d_bits_corrupt (auto_coupler_from_debug_sb_widget_anon_in_d_bits_corrupt),
.auto_tl_out_a_ready (_fbus_xbar_auto_anon_in_0_a_ready), // @[BusWrapper.scala:240:32]
.auto_tl_out_a_valid (_coupler_from_debug_sb_auto_tl_out_a_valid),
.auto_tl_out_a_bits_opcode (_coupler_from_debug_sb_auto_tl_out_a_bits_opcode),
.auto_tl_out_a_bits_size (_coupler_from_debug_sb_auto_tl_out_a_bits_size),
.auto_tl_out_a_bits_address (_coupler_from_debug_sb_auto_tl_out_a_bits_address),
.auto_tl_out_a_bits_mask (_coupler_from_debug_sb_auto_tl_out_a_bits_mask),
.auto_tl_out_a_bits_data (_coupler_from_debug_sb_auto_tl_out_a_bits_data),
.auto_tl_out_d_ready (_coupler_from_debug_sb_auto_tl_out_d_ready),
.auto_tl_out_d_valid (_fbus_xbar_auto_anon_in_0_d_valid), // @[BusWrapper.scala:240:32]
.auto_tl_out_d_bits_opcode (_fbus_xbar_auto_anon_in_0_d_bits_opcode), // @[BusWrapper.scala:240:32]
.auto_tl_out_d_bits_param (_fbus_xbar_auto_anon_in_0_d_bits_param), // @[BusWrapper.scala:240:32]
.auto_tl_out_d_bits_size (_fbus_xbar_auto_anon_in_0_d_bits_size), // @[BusWrapper.scala:240:32]
.auto_tl_out_d_bits_sink (_fbus_xbar_auto_anon_in_0_d_bits_sink), // @[BusWrapper.scala:240:32]
.auto_tl_out_d_bits_denied (_fbus_xbar_auto_anon_in_0_d_bits_denied), // @[BusWrapper.scala:240:32]
.auto_tl_out_d_bits_data (_fbus_xbar_auto_anon_in_0_d_bits_data), // @[BusWrapper.scala:240:32]
.auto_tl_out_d_bits_corrupt (_fbus_xbar_auto_anon_in_0_d_bits_corrupt) // @[BusWrapper.scala:240:32]
); // @[LazyScope.scala:98:27]
TLInterconnectCoupler_fbus_from_port_named_serial_tl_0_in coupler_from_port_named_serial_tl_0_in ( // @[LazyScope.scala:98:27]
.clock (_fixedClockNode_auto_anon_out_0_clock), // @[ClockGroup.scala:115:114]
.reset (_fixedClockNode_auto_anon_out_0_reset), // @[ClockGroup.scala:115:114]
.auto_buffer_in_a_ready (auto_coupler_from_port_named_serial_tl_0_in_buffer_in_a_ready),
.auto_buffer_in_a_valid (auto_coupler_from_port_named_serial_tl_0_in_buffer_in_a_valid),
.auto_buffer_in_a_bits_opcode (auto_coupler_from_port_named_serial_tl_0_in_buffer_in_a_bits_opcode),
.auto_buffer_in_a_bits_param (auto_coupler_from_port_named_serial_tl_0_in_buffer_in_a_bits_param),
.auto_buffer_in_a_bits_size (auto_coupler_from_port_named_serial_tl_0_in_buffer_in_a_bits_size),
.auto_buffer_in_a_bits_source (auto_coupler_from_port_named_serial_tl_0_in_buffer_in_a_bits_source),
.auto_buffer_in_a_bits_address (auto_coupler_from_port_named_serial_tl_0_in_buffer_in_a_bits_address),
.auto_buffer_in_a_bits_mask (auto_coupler_from_port_named_serial_tl_0_in_buffer_in_a_bits_mask),
.auto_buffer_in_a_bits_data (auto_coupler_from_port_named_serial_tl_0_in_buffer_in_a_bits_data),
.auto_buffer_in_a_bits_corrupt (auto_coupler_from_port_named_serial_tl_0_in_buffer_in_a_bits_corrupt),
.auto_buffer_in_d_ready (auto_coupler_from_port_named_serial_tl_0_in_buffer_in_d_ready),
.auto_buffer_in_d_valid (auto_coupler_from_port_named_serial_tl_0_in_buffer_in_d_valid),
.auto_buffer_in_d_bits_opcode (auto_coupler_from_port_named_serial_tl_0_in_buffer_in_d_bits_opcode),
.auto_buffer_in_d_bits_param (auto_coupler_from_port_named_serial_tl_0_in_buffer_in_d_bits_param),
.auto_buffer_in_d_bits_size (auto_coupler_from_port_named_serial_tl_0_in_buffer_in_d_bits_size),
.auto_buffer_in_d_bits_source (auto_coupler_from_port_named_serial_tl_0_in_buffer_in_d_bits_source),
.auto_buffer_in_d_bits_sink (auto_coupler_from_port_named_serial_tl_0_in_buffer_in_d_bits_sink),
.auto_buffer_in_d_bits_denied (auto_coupler_from_port_named_serial_tl_0_in_buffer_in_d_bits_denied),
.auto_buffer_in_d_bits_data (auto_coupler_from_port_named_serial_tl_0_in_buffer_in_d_bits_data),
.auto_buffer_in_d_bits_corrupt (auto_coupler_from_port_named_serial_tl_0_in_buffer_in_d_bits_corrupt),
.auto_tl_out_a_ready (_fbus_xbar_auto_anon_in_1_a_ready), // @[BusWrapper.scala:240:32]
.auto_tl_out_a_valid (_coupler_from_port_named_serial_tl_0_in_auto_tl_out_a_valid),
.auto_tl_out_a_bits_opcode (_coupler_from_port_named_serial_tl_0_in_auto_tl_out_a_bits_opcode),
.auto_tl_out_a_bits_param (_coupler_from_port_named_serial_tl_0_in_auto_tl_out_a_bits_param),
.auto_tl_out_a_bits_size (_coupler_from_port_named_serial_tl_0_in_auto_tl_out_a_bits_size),
.auto_tl_out_a_bits_source (_coupler_from_port_named_serial_tl_0_in_auto_tl_out_a_bits_source),
.auto_tl_out_a_bits_address (_coupler_from_port_named_serial_tl_0_in_auto_tl_out_a_bits_address),
.auto_tl_out_a_bits_mask (_coupler_from_port_named_serial_tl_0_in_auto_tl_out_a_bits_mask),
.auto_tl_out_a_bits_data (_coupler_from_port_named_serial_tl_0_in_auto_tl_out_a_bits_data),
.auto_tl_out_a_bits_corrupt (_coupler_from_port_named_serial_tl_0_in_auto_tl_out_a_bits_corrupt),
.auto_tl_out_d_ready (_coupler_from_port_named_serial_tl_0_in_auto_tl_out_d_ready),
.auto_tl_out_d_valid (_fbus_xbar_auto_anon_in_1_d_valid), // @[BusWrapper.scala:240:32]
.auto_tl_out_d_bits_opcode (_fbus_xbar_auto_anon_in_1_d_bits_opcode), // @[BusWrapper.scala:240:32]
.auto_tl_out_d_bits_param (_fbus_xbar_auto_anon_in_1_d_bits_param), // @[BusWrapper.scala:240:32]
.auto_tl_out_d_bits_size (_fbus_xbar_auto_anon_in_1_d_bits_size), // @[BusWrapper.scala:240:32]
.auto_tl_out_d_bits_source (_fbus_xbar_auto_anon_in_1_d_bits_source), // @[BusWrapper.scala:240:32]
.auto_tl_out_d_bits_sink (_fbus_xbar_auto_anon_in_1_d_bits_sink), // @[BusWrapper.scala:240:32]
.auto_tl_out_d_bits_denied (_fbus_xbar_auto_anon_in_1_d_bits_denied), // @[BusWrapper.scala:240:32]
.auto_tl_out_d_bits_data (_fbus_xbar_auto_anon_in_1_d_bits_data), // @[BusWrapper.scala:240:32]
.auto_tl_out_d_bits_corrupt (_fbus_xbar_auto_anon_in_1_d_bits_corrupt) // @[BusWrapper.scala:240:32]
); // @[LazyScope.scala:98:27]
InitZero initZero ( // @[InitZero.scala:65:37]
.clock (_fixedClockNode_auto_anon_out_0_clock), // @[ClockGroup.scala:115:114]
.reset (_fixedClockNode_auto_anon_out_0_reset), // @[ClockGroup.scala:115:114]
.auto_out_a_ready (_fbus_xbar_auto_anon_in_2_a_ready), // @[BusWrapper.scala:240:32]
.auto_out_a_valid (_initZero_auto_out_a_valid),
.auto_out_a_bits_address (_initZero_auto_out_a_bits_address),
.auto_out_d_ready (_initZero_auto_out_d_ready),
.auto_out_d_valid (_fbus_xbar_auto_anon_in_2_d_valid) // @[BusWrapper.scala:240:32]
); // @[InitZero.scala:65:37]
endmodule |
Generate the Verilog code corresponding to the following Chisel files.
File Monitor.scala:
// See LICENSE.SiFive for license details.
package freechips.rocketchip.tilelink
import chisel3._
import chisel3.util._
import chisel3.experimental.SourceLine
import org.chipsalliance.cde.config._
import org.chipsalliance.diplomacy._
import freechips.rocketchip.diplomacy.EnableMonitors
import freechips.rocketchip.formal.{MonitorDirection, IfThen, Property, PropertyClass, TestplanTestType, TLMonitorStrictMode}
import freechips.rocketchip.util.PlusArg
case class TLMonitorArgs(edge: TLEdge)
abstract class TLMonitorBase(args: TLMonitorArgs) extends Module
{
val io = IO(new Bundle {
val in = Input(new TLBundle(args.edge.bundle))
})
def legalize(bundle: TLBundle, edge: TLEdge, reset: Reset): Unit
legalize(io.in, args.edge, reset)
}
object TLMonitor {
def apply(enable: Boolean, node: TLNode)(implicit p: Parameters): TLNode = {
if (enable) {
EnableMonitors { implicit p => node := TLEphemeralNode()(ValName("monitor")) }
} else { node }
}
}
class TLMonitor(args: TLMonitorArgs, monitorDir: MonitorDirection = MonitorDirection.Monitor) extends TLMonitorBase(args)
{
require (args.edge.params(TLMonitorStrictMode) || (! args.edge.params(TestplanTestType).formal))
val cover_prop_class = PropertyClass.Default
//Like assert but can flip to being an assumption for formal verification
def monAssert(cond: Bool, message: String): Unit =
if (monitorDir == MonitorDirection.Monitor) {
assert(cond, message)
} else {
Property(monitorDir, cond, message, PropertyClass.Default)
}
def assume(cond: Bool, message: String): Unit =
if (monitorDir == MonitorDirection.Monitor) {
assert(cond, message)
} else {
Property(monitorDir.flip, cond, message, PropertyClass.Default)
}
def extra = {
args.edge.sourceInfo match {
case SourceLine(filename, line, col) => s" (connected at $filename:$line:$col)"
case _ => ""
}
}
def visible(address: UInt, source: UInt, edge: TLEdge) =
edge.client.clients.map { c =>
!c.sourceId.contains(source) ||
c.visibility.map(_.contains(address)).reduce(_ || _)
}.reduce(_ && _)
def legalizeFormatA(bundle: TLBundleA, edge: TLEdge): Unit = {
//switch this flag to turn on diplomacy in error messages
def diplomacyInfo = if (true) "" else "\nThe diplomacy information for the edge is as follows:\n" + edge.formatEdge + "\n"
monAssert (TLMessages.isA(bundle.opcode), "'A' channel has invalid opcode" + extra)
// Reuse these subexpressions to save some firrtl lines
val source_ok = edge.client.contains(bundle.source)
val is_aligned = edge.isAligned(bundle.address, bundle.size)
val mask = edge.full_mask(bundle)
monAssert (visible(edge.address(bundle), bundle.source, edge), "'A' channel carries an address illegal for the specified bank visibility")
//The monitor doesnβt check for acquire T vs acquire B, it assumes that acquire B implies acquire T and only checks for acquire B
//TODO: check for acquireT?
when (bundle.opcode === TLMessages.AcquireBlock) {
monAssert (edge.master.emitsAcquireB(bundle.source, bundle.size) && edge.slave.supportsAcquireBSafe(edge.address(bundle), bundle.size), "'A' channel carries AcquireBlock type which is unexpected using diplomatic parameters" + diplomacyInfo + extra)
monAssert (edge.master.supportsProbe(edge.source(bundle), bundle.size) && edge.slave.emitsProbeSafe(edge.address(bundle), bundle.size), "'A' channel carries AcquireBlock from a client which does not support Probe" + diplomacyInfo + extra)
monAssert (source_ok, "'A' channel AcquireBlock carries invalid source ID" + diplomacyInfo + extra)
monAssert (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'A' channel AcquireBlock smaller than a beat" + extra)
monAssert (is_aligned, "'A' channel AcquireBlock address not aligned to size" + extra)
monAssert (TLPermissions.isGrow(bundle.param), "'A' channel AcquireBlock carries invalid grow param" + extra)
monAssert (~bundle.mask === 0.U, "'A' channel AcquireBlock contains invalid mask" + extra)
monAssert (!bundle.corrupt, "'A' channel AcquireBlock is corrupt" + extra)
}
when (bundle.opcode === TLMessages.AcquirePerm) {
monAssert (edge.master.emitsAcquireB(bundle.source, bundle.size) && edge.slave.supportsAcquireBSafe(edge.address(bundle), bundle.size), "'A' channel carries AcquirePerm type which is unexpected using diplomatic parameters" + diplomacyInfo + extra)
monAssert (edge.master.supportsProbe(edge.source(bundle), bundle.size) && edge.slave.emitsProbeSafe(edge.address(bundle), bundle.size), "'A' channel carries AcquirePerm from a client which does not support Probe" + diplomacyInfo + extra)
monAssert (source_ok, "'A' channel AcquirePerm carries invalid source ID" + diplomacyInfo + extra)
monAssert (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'A' channel AcquirePerm smaller than a beat" + extra)
monAssert (is_aligned, "'A' channel AcquirePerm address not aligned to size" + extra)
monAssert (TLPermissions.isGrow(bundle.param), "'A' channel AcquirePerm carries invalid grow param" + extra)
monAssert (bundle.param =/= TLPermissions.NtoB, "'A' channel AcquirePerm requests NtoB" + extra)
monAssert (~bundle.mask === 0.U, "'A' channel AcquirePerm contains invalid mask" + extra)
monAssert (!bundle.corrupt, "'A' channel AcquirePerm is corrupt" + extra)
}
when (bundle.opcode === TLMessages.Get) {
monAssert (edge.master.emitsGet(bundle.source, bundle.size), "'A' channel carries Get type which master claims it can't emit" + diplomacyInfo + extra)
monAssert (edge.slave.supportsGetSafe(edge.address(bundle), bundle.size, None), "'A' channel carries Get type which slave claims it can't support" + diplomacyInfo + extra)
monAssert (source_ok, "'A' channel Get carries invalid source ID" + diplomacyInfo + extra)
monAssert (is_aligned, "'A' channel Get address not aligned to size" + extra)
monAssert (bundle.param === 0.U, "'A' channel Get carries invalid param" + extra)
monAssert (bundle.mask === mask, "'A' channel Get contains invalid mask" + extra)
monAssert (!bundle.corrupt, "'A' channel Get is corrupt" + extra)
}
when (bundle.opcode === TLMessages.PutFullData) {
monAssert (edge.master.emitsPutFull(bundle.source, bundle.size) && edge.slave.supportsPutFullSafe(edge.address(bundle), bundle.size), "'A' channel carries PutFull type which is unexpected using diplomatic parameters" + diplomacyInfo + extra)
monAssert (source_ok, "'A' channel PutFull carries invalid source ID" + diplomacyInfo + extra)
monAssert (is_aligned, "'A' channel PutFull address not aligned to size" + extra)
monAssert (bundle.param === 0.U, "'A' channel PutFull carries invalid param" + extra)
monAssert (bundle.mask === mask, "'A' channel PutFull contains invalid mask" + extra)
}
when (bundle.opcode === TLMessages.PutPartialData) {
monAssert (edge.master.emitsPutPartial(bundle.source, bundle.size) && edge.slave.supportsPutPartialSafe(edge.address(bundle), bundle.size), "'A' channel carries PutPartial type which is unexpected using diplomatic parameters" + extra)
monAssert (source_ok, "'A' channel PutPartial carries invalid source ID" + diplomacyInfo + extra)
monAssert (is_aligned, "'A' channel PutPartial address not aligned to size" + extra)
monAssert (bundle.param === 0.U, "'A' channel PutPartial carries invalid param" + extra)
monAssert ((bundle.mask & ~mask) === 0.U, "'A' channel PutPartial contains invalid mask" + extra)
}
when (bundle.opcode === TLMessages.ArithmeticData) {
monAssert (edge.master.emitsArithmetic(bundle.source, bundle.size) && edge.slave.supportsArithmeticSafe(edge.address(bundle), bundle.size), "'A' channel carries Arithmetic type which is unexpected using diplomatic parameters" + extra)
monAssert (source_ok, "'A' channel Arithmetic carries invalid source ID" + diplomacyInfo + extra)
monAssert (is_aligned, "'A' channel Arithmetic address not aligned to size" + extra)
monAssert (TLAtomics.isArithmetic(bundle.param), "'A' channel Arithmetic carries invalid opcode param" + extra)
monAssert (bundle.mask === mask, "'A' channel Arithmetic contains invalid mask" + extra)
}
when (bundle.opcode === TLMessages.LogicalData) {
monAssert (edge.master.emitsLogical(bundle.source, bundle.size) && edge.slave.supportsLogicalSafe(edge.address(bundle), bundle.size), "'A' channel carries Logical type which is unexpected using diplomatic parameters" + extra)
monAssert (source_ok, "'A' channel Logical carries invalid source ID" + diplomacyInfo + extra)
monAssert (is_aligned, "'A' channel Logical address not aligned to size" + extra)
monAssert (TLAtomics.isLogical(bundle.param), "'A' channel Logical carries invalid opcode param" + extra)
monAssert (bundle.mask === mask, "'A' channel Logical contains invalid mask" + extra)
}
when (bundle.opcode === TLMessages.Hint) {
monAssert (edge.master.emitsHint(bundle.source, bundle.size) && edge.slave.supportsHintSafe(edge.address(bundle), bundle.size), "'A' channel carries Hint type which is unexpected using diplomatic parameters" + extra)
monAssert (source_ok, "'A' channel Hint carries invalid source ID" + diplomacyInfo + extra)
monAssert (is_aligned, "'A' channel Hint address not aligned to size" + extra)
monAssert (TLHints.isHints(bundle.param), "'A' channel Hint carries invalid opcode param" + extra)
monAssert (bundle.mask === mask, "'A' channel Hint contains invalid mask" + extra)
monAssert (!bundle.corrupt, "'A' channel Hint is corrupt" + extra)
}
}
def legalizeFormatB(bundle: TLBundleB, edge: TLEdge): Unit = {
monAssert (TLMessages.isB(bundle.opcode), "'B' channel has invalid opcode" + extra)
monAssert (visible(edge.address(bundle), bundle.source, edge), "'B' channel carries an address illegal for the specified bank visibility")
// Reuse these subexpressions to save some firrtl lines
val address_ok = edge.manager.containsSafe(edge.address(bundle))
val is_aligned = edge.isAligned(bundle.address, bundle.size)
val mask = edge.full_mask(bundle)
val legal_source = Mux1H(edge.client.find(bundle.source), edge.client.clients.map(c => c.sourceId.start.U)) === bundle.source
when (bundle.opcode === TLMessages.Probe) {
assume (edge.master.supportsProbe(edge.source(bundle), bundle.size) && edge.slave.emitsProbeSafe(edge.address(bundle), bundle.size), "'B' channel carries Probe type which is unexpected using diplomatic parameters" + extra)
assume (address_ok, "'B' channel Probe carries unmanaged address" + extra)
assume (legal_source, "'B' channel Probe carries source that is not first source" + extra)
assume (is_aligned, "'B' channel Probe address not aligned to size" + extra)
assume (TLPermissions.isCap(bundle.param), "'B' channel Probe carries invalid cap param" + extra)
assume (bundle.mask === mask, "'B' channel Probe contains invalid mask" + extra)
assume (!bundle.corrupt, "'B' channel Probe is corrupt" + extra)
}
when (bundle.opcode === TLMessages.Get) {
monAssert (edge.master.supportsGet(edge.source(bundle), bundle.size) && edge.slave.emitsGetSafe(edge.address(bundle), bundle.size), "'B' channel carries Get type which is unexpected using diplomatic parameters" + extra)
monAssert (address_ok, "'B' channel Get carries unmanaged address" + extra)
monAssert (legal_source, "'B' channel Get carries source that is not first source" + extra)
monAssert (is_aligned, "'B' channel Get address not aligned to size" + extra)
monAssert (bundle.param === 0.U, "'B' channel Get carries invalid param" + extra)
monAssert (bundle.mask === mask, "'B' channel Get contains invalid mask" + extra)
monAssert (!bundle.corrupt, "'B' channel Get is corrupt" + extra)
}
when (bundle.opcode === TLMessages.PutFullData) {
monAssert (edge.master.supportsPutFull(edge.source(bundle), bundle.size) && edge.slave.emitsPutFullSafe(edge.address(bundle), bundle.size), "'B' channel carries PutFull type which is unexpected using diplomatic parameters" + extra)
monAssert (address_ok, "'B' channel PutFull carries unmanaged address" + extra)
monAssert (legal_source, "'B' channel PutFull carries source that is not first source" + extra)
monAssert (is_aligned, "'B' channel PutFull address not aligned to size" + extra)
monAssert (bundle.param === 0.U, "'B' channel PutFull carries invalid param" + extra)
monAssert (bundle.mask === mask, "'B' channel PutFull contains invalid mask" + extra)
}
when (bundle.opcode === TLMessages.PutPartialData) {
monAssert (edge.master.supportsPutPartial(edge.source(bundle), bundle.size) && edge.slave.emitsPutPartialSafe(edge.address(bundle), bundle.size), "'B' channel carries PutPartial type which is unexpected using diplomatic parameters" + extra)
monAssert (address_ok, "'B' channel PutPartial carries unmanaged address" + extra)
monAssert (legal_source, "'B' channel PutPartial carries source that is not first source" + extra)
monAssert (is_aligned, "'B' channel PutPartial address not aligned to size" + extra)
monAssert (bundle.param === 0.U, "'B' channel PutPartial carries invalid param" + extra)
monAssert ((bundle.mask & ~mask) === 0.U, "'B' channel PutPartial contains invalid mask" + extra)
}
when (bundle.opcode === TLMessages.ArithmeticData) {
monAssert (edge.master.supportsArithmetic(edge.source(bundle), bundle.size) && edge.slave.emitsArithmeticSafe(edge.address(bundle), bundle.size), "'B' channel carries Arithmetic type unsupported by master" + extra)
monAssert (address_ok, "'B' channel Arithmetic carries unmanaged address" + extra)
monAssert (legal_source, "'B' channel Arithmetic carries source that is not first source" + extra)
monAssert (is_aligned, "'B' channel Arithmetic address not aligned to size" + extra)
monAssert (TLAtomics.isArithmetic(bundle.param), "'B' channel Arithmetic carries invalid opcode param" + extra)
monAssert (bundle.mask === mask, "'B' channel Arithmetic contains invalid mask" + extra)
}
when (bundle.opcode === TLMessages.LogicalData) {
monAssert (edge.master.supportsLogical(edge.source(bundle), bundle.size) && edge.slave.emitsLogicalSafe(edge.address(bundle), bundle.size), "'B' channel carries Logical type unsupported by client" + extra)
monAssert (address_ok, "'B' channel Logical carries unmanaged address" + extra)
monAssert (legal_source, "'B' channel Logical carries source that is not first source" + extra)
monAssert (is_aligned, "'B' channel Logical address not aligned to size" + extra)
monAssert (TLAtomics.isLogical(bundle.param), "'B' channel Logical carries invalid opcode param" + extra)
monAssert (bundle.mask === mask, "'B' channel Logical contains invalid mask" + extra)
}
when (bundle.opcode === TLMessages.Hint) {
monAssert (edge.master.supportsHint(edge.source(bundle), bundle.size) && edge.slave.emitsHintSafe(edge.address(bundle), bundle.size), "'B' channel carries Hint type unsupported by client" + extra)
monAssert (address_ok, "'B' channel Hint carries unmanaged address" + extra)
monAssert (legal_source, "'B' channel Hint carries source that is not first source" + extra)
monAssert (is_aligned, "'B' channel Hint address not aligned to size" + extra)
monAssert (bundle.mask === mask, "'B' channel Hint contains invalid mask" + extra)
monAssert (!bundle.corrupt, "'B' channel Hint is corrupt" + extra)
}
}
def legalizeFormatC(bundle: TLBundleC, edge: TLEdge): Unit = {
monAssert (TLMessages.isC(bundle.opcode), "'C' channel has invalid opcode" + extra)
val source_ok = edge.client.contains(bundle.source)
val is_aligned = edge.isAligned(bundle.address, bundle.size)
val address_ok = edge.manager.containsSafe(edge.address(bundle))
monAssert (visible(edge.address(bundle), bundle.source, edge), "'C' channel carries an address illegal for the specified bank visibility")
when (bundle.opcode === TLMessages.ProbeAck) {
monAssert (address_ok, "'C' channel ProbeAck carries unmanaged address" + extra)
monAssert (source_ok, "'C' channel ProbeAck carries invalid source ID" + extra)
monAssert (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'C' channel ProbeAck smaller than a beat" + extra)
monAssert (is_aligned, "'C' channel ProbeAck address not aligned to size" + extra)
monAssert (TLPermissions.isReport(bundle.param), "'C' channel ProbeAck carries invalid report param" + extra)
monAssert (!bundle.corrupt, "'C' channel ProbeAck is corrupt" + extra)
}
when (bundle.opcode === TLMessages.ProbeAckData) {
monAssert (address_ok, "'C' channel ProbeAckData carries unmanaged address" + extra)
monAssert (source_ok, "'C' channel ProbeAckData carries invalid source ID" + extra)
monAssert (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'C' channel ProbeAckData smaller than a beat" + extra)
monAssert (is_aligned, "'C' channel ProbeAckData address not aligned to size" + extra)
monAssert (TLPermissions.isReport(bundle.param), "'C' channel ProbeAckData carries invalid report param" + extra)
}
when (bundle.opcode === TLMessages.Release) {
monAssert (edge.master.emitsAcquireB(edge.source(bundle), bundle.size) && edge.slave.supportsAcquireBSafe(edge.address(bundle), bundle.size), "'C' channel carries Release type unsupported by manager" + extra)
monAssert (edge.master.supportsProbe(edge.source(bundle), bundle.size) && edge.slave.emitsProbeSafe(edge.address(bundle), bundle.size), "'C' channel carries Release from a client which does not support Probe" + extra)
monAssert (source_ok, "'C' channel Release carries invalid source ID" + extra)
monAssert (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'C' channel Release smaller than a beat" + extra)
monAssert (is_aligned, "'C' channel Release address not aligned to size" + extra)
monAssert (TLPermissions.isReport(bundle.param), "'C' channel Release carries invalid report param" + extra)
monAssert (!bundle.corrupt, "'C' channel Release is corrupt" + extra)
}
when (bundle.opcode === TLMessages.ReleaseData) {
monAssert (edge.master.emitsAcquireB(edge.source(bundle), bundle.size) && edge.slave.supportsAcquireBSafe(edge.address(bundle), bundle.size), "'C' channel carries ReleaseData type unsupported by manager" + extra)
monAssert (edge.master.supportsProbe(edge.source(bundle), bundle.size) && edge.slave.emitsProbeSafe(edge.address(bundle), bundle.size), "'C' channel carries Release from a client which does not support Probe" + extra)
monAssert (source_ok, "'C' channel ReleaseData carries invalid source ID" + extra)
monAssert (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'C' channel ReleaseData smaller than a beat" + extra)
monAssert (is_aligned, "'C' channel ReleaseData address not aligned to size" + extra)
monAssert (TLPermissions.isReport(bundle.param), "'C' channel ReleaseData carries invalid report param" + extra)
}
when (bundle.opcode === TLMessages.AccessAck) {
monAssert (address_ok, "'C' channel AccessAck carries unmanaged address" + extra)
monAssert (source_ok, "'C' channel AccessAck carries invalid source ID" + extra)
monAssert (is_aligned, "'C' channel AccessAck address not aligned to size" + extra)
monAssert (bundle.param === 0.U, "'C' channel AccessAck carries invalid param" + extra)
monAssert (!bundle.corrupt, "'C' channel AccessAck is corrupt" + extra)
}
when (bundle.opcode === TLMessages.AccessAckData) {
monAssert (address_ok, "'C' channel AccessAckData carries unmanaged address" + extra)
monAssert (source_ok, "'C' channel AccessAckData carries invalid source ID" + extra)
monAssert (is_aligned, "'C' channel AccessAckData address not aligned to size" + extra)
monAssert (bundle.param === 0.U, "'C' channel AccessAckData carries invalid param" + extra)
}
when (bundle.opcode === TLMessages.HintAck) {
monAssert (address_ok, "'C' channel HintAck carries unmanaged address" + extra)
monAssert (source_ok, "'C' channel HintAck carries invalid source ID" + extra)
monAssert (is_aligned, "'C' channel HintAck address not aligned to size" + extra)
monAssert (bundle.param === 0.U, "'C' channel HintAck carries invalid param" + extra)
monAssert (!bundle.corrupt, "'C' channel HintAck is corrupt" + extra)
}
}
def legalizeFormatD(bundle: TLBundleD, edge: TLEdge): Unit = {
assume (TLMessages.isD(bundle.opcode), "'D' channel has invalid opcode" + extra)
val source_ok = edge.client.contains(bundle.source)
val sink_ok = bundle.sink < edge.manager.endSinkId.U
val deny_put_ok = edge.manager.mayDenyPut.B
val deny_get_ok = edge.manager.mayDenyGet.B
when (bundle.opcode === TLMessages.ReleaseAck) {
assume (source_ok, "'D' channel ReleaseAck carries invalid source ID" + extra)
assume (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'D' channel ReleaseAck smaller than a beat" + extra)
assume (bundle.param === 0.U, "'D' channel ReleaseeAck carries invalid param" + extra)
assume (!bundle.corrupt, "'D' channel ReleaseAck is corrupt" + extra)
assume (!bundle.denied, "'D' channel ReleaseAck is denied" + extra)
}
when (bundle.opcode === TLMessages.Grant) {
assume (source_ok, "'D' channel Grant carries invalid source ID" + extra)
assume (sink_ok, "'D' channel Grant carries invalid sink ID" + extra)
assume (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'D' channel Grant smaller than a beat" + extra)
assume (TLPermissions.isCap(bundle.param), "'D' channel Grant carries invalid cap param" + extra)
assume (bundle.param =/= TLPermissions.toN, "'D' channel Grant carries toN param" + extra)
assume (!bundle.corrupt, "'D' channel Grant is corrupt" + extra)
assume (deny_put_ok || !bundle.denied, "'D' channel Grant is denied" + extra)
}
when (bundle.opcode === TLMessages.GrantData) {
assume (source_ok, "'D' channel GrantData carries invalid source ID" + extra)
assume (sink_ok, "'D' channel GrantData carries invalid sink ID" + extra)
assume (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'D' channel GrantData smaller than a beat" + extra)
assume (TLPermissions.isCap(bundle.param), "'D' channel GrantData carries invalid cap param" + extra)
assume (bundle.param =/= TLPermissions.toN, "'D' channel GrantData carries toN param" + extra)
assume (!bundle.denied || bundle.corrupt, "'D' channel GrantData is denied but not corrupt" + extra)
assume (deny_get_ok || !bundle.denied, "'D' channel GrantData is denied" + extra)
}
when (bundle.opcode === TLMessages.AccessAck) {
assume (source_ok, "'D' channel AccessAck carries invalid source ID" + extra)
// size is ignored
assume (bundle.param === 0.U, "'D' channel AccessAck carries invalid param" + extra)
assume (!bundle.corrupt, "'D' channel AccessAck is corrupt" + extra)
assume (deny_put_ok || !bundle.denied, "'D' channel AccessAck is denied" + extra)
}
when (bundle.opcode === TLMessages.AccessAckData) {
assume (source_ok, "'D' channel AccessAckData carries invalid source ID" + extra)
// size is ignored
assume (bundle.param === 0.U, "'D' channel AccessAckData carries invalid param" + extra)
assume (!bundle.denied || bundle.corrupt, "'D' channel AccessAckData is denied but not corrupt" + extra)
assume (deny_get_ok || !bundle.denied, "'D' channel AccessAckData is denied" + extra)
}
when (bundle.opcode === TLMessages.HintAck) {
assume (source_ok, "'D' channel HintAck carries invalid source ID" + extra)
// size is ignored
assume (bundle.param === 0.U, "'D' channel HintAck carries invalid param" + extra)
assume (!bundle.corrupt, "'D' channel HintAck is corrupt" + extra)
assume (deny_put_ok || !bundle.denied, "'D' channel HintAck is denied" + extra)
}
}
def legalizeFormatE(bundle: TLBundleE, edge: TLEdge): Unit = {
val sink_ok = bundle.sink < edge.manager.endSinkId.U
monAssert (sink_ok, "'E' channels carries invalid sink ID" + extra)
}
def legalizeFormat(bundle: TLBundle, edge: TLEdge) = {
when (bundle.a.valid) { legalizeFormatA(bundle.a.bits, edge) }
when (bundle.d.valid) { legalizeFormatD(bundle.d.bits, edge) }
if (edge.client.anySupportProbe && edge.manager.anySupportAcquireB) {
when (bundle.b.valid) { legalizeFormatB(bundle.b.bits, edge) }
when (bundle.c.valid) { legalizeFormatC(bundle.c.bits, edge) }
when (bundle.e.valid) { legalizeFormatE(bundle.e.bits, edge) }
} else {
monAssert (!bundle.b.valid, "'B' channel valid and not TL-C" + extra)
monAssert (!bundle.c.valid, "'C' channel valid and not TL-C" + extra)
monAssert (!bundle.e.valid, "'E' channel valid and not TL-C" + extra)
}
}
def legalizeMultibeatA(a: DecoupledIO[TLBundleA], edge: TLEdge): Unit = {
val a_first = edge.first(a.bits, a.fire)
val opcode = Reg(UInt())
val param = Reg(UInt())
val size = Reg(UInt())
val source = Reg(UInt())
val address = Reg(UInt())
when (a.valid && !a_first) {
monAssert (a.bits.opcode === opcode, "'A' channel opcode changed within multibeat operation" + extra)
monAssert (a.bits.param === param, "'A' channel param changed within multibeat operation" + extra)
monAssert (a.bits.size === size, "'A' channel size changed within multibeat operation" + extra)
monAssert (a.bits.source === source, "'A' channel source changed within multibeat operation" + extra)
monAssert (a.bits.address=== address,"'A' channel address changed with multibeat operation" + extra)
}
when (a.fire && a_first) {
opcode := a.bits.opcode
param := a.bits.param
size := a.bits.size
source := a.bits.source
address := a.bits.address
}
}
def legalizeMultibeatB(b: DecoupledIO[TLBundleB], edge: TLEdge): Unit = {
val b_first = edge.first(b.bits, b.fire)
val opcode = Reg(UInt())
val param = Reg(UInt())
val size = Reg(UInt())
val source = Reg(UInt())
val address = Reg(UInt())
when (b.valid && !b_first) {
monAssert (b.bits.opcode === opcode, "'B' channel opcode changed within multibeat operation" + extra)
monAssert (b.bits.param === param, "'B' channel param changed within multibeat operation" + extra)
monAssert (b.bits.size === size, "'B' channel size changed within multibeat operation" + extra)
monAssert (b.bits.source === source, "'B' channel source changed within multibeat operation" + extra)
monAssert (b.bits.address=== address,"'B' channel addresss changed with multibeat operation" + extra)
}
when (b.fire && b_first) {
opcode := b.bits.opcode
param := b.bits.param
size := b.bits.size
source := b.bits.source
address := b.bits.address
}
}
def legalizeADSourceFormal(bundle: TLBundle, edge: TLEdge): Unit = {
// Symbolic variable
val sym_source = Wire(UInt(edge.client.endSourceId.W))
// TODO: Connect sym_source to a fixed value for simulation and to a
// free wire in formal
sym_source := 0.U
// Type casting Int to UInt
val maxSourceId = Wire(UInt(edge.client.endSourceId.W))
maxSourceId := edge.client.endSourceId.U
// Delayed verison of sym_source
val sym_source_d = Reg(UInt(edge.client.endSourceId.W))
sym_source_d := sym_source
// These will be constraints for FV setup
Property(
MonitorDirection.Monitor,
(sym_source === sym_source_d),
"sym_source should remain stable",
PropertyClass.Default)
Property(
MonitorDirection.Monitor,
(sym_source <= maxSourceId),
"sym_source should take legal value",
PropertyClass.Default)
val my_resp_pend = RegInit(false.B)
val my_opcode = Reg(UInt())
val my_size = Reg(UInt())
val a_first = bundle.a.valid && edge.first(bundle.a.bits, bundle.a.fire)
val d_first = bundle.d.valid && edge.first(bundle.d.bits, bundle.d.fire)
val my_a_first_beat = a_first && (bundle.a.bits.source === sym_source)
val my_d_first_beat = d_first && (bundle.d.bits.source === sym_source)
val my_clr_resp_pend = (bundle.d.fire && my_d_first_beat)
val my_set_resp_pend = (bundle.a.fire && my_a_first_beat && !my_clr_resp_pend)
when (my_set_resp_pend) {
my_resp_pend := true.B
} .elsewhen (my_clr_resp_pend) {
my_resp_pend := false.B
}
when (my_a_first_beat) {
my_opcode := bundle.a.bits.opcode
my_size := bundle.a.bits.size
}
val my_resp_size = Mux(my_a_first_beat, bundle.a.bits.size, my_size)
val my_resp_opcode = Mux(my_a_first_beat, bundle.a.bits.opcode, my_opcode)
val my_resp_opcode_legal = Wire(Bool())
when ((my_resp_opcode === TLMessages.Get) || (my_resp_opcode === TLMessages.ArithmeticData) ||
(my_resp_opcode === TLMessages.LogicalData)) {
my_resp_opcode_legal := (bundle.d.bits.opcode === TLMessages.AccessAckData)
} .elsewhen ((my_resp_opcode === TLMessages.PutFullData) || (my_resp_opcode === TLMessages.PutPartialData)) {
my_resp_opcode_legal := (bundle.d.bits.opcode === TLMessages.AccessAck)
} .otherwise {
my_resp_opcode_legal := (bundle.d.bits.opcode === TLMessages.HintAck)
}
monAssert (IfThen(my_resp_pend, !my_a_first_beat),
"Request message should not be sent with a source ID, for which a response message" +
"is already pending (not received until current cycle) for a prior request message" +
"with the same source ID" + extra)
assume (IfThen(my_clr_resp_pend, (my_set_resp_pend || my_resp_pend)),
"Response message should be accepted with a source ID only if a request message with the" +
"same source ID has been accepted or is being accepted in the current cycle" + extra)
assume (IfThen(my_d_first_beat, (my_a_first_beat || my_resp_pend)),
"Response message should be sent with a source ID only if a request message with the" +
"same source ID has been accepted or is being sent in the current cycle" + extra)
assume (IfThen(my_d_first_beat, (bundle.d.bits.size === my_resp_size)),
"If d_valid is 1, then d_size should be same as a_size of the corresponding request" +
"message" + extra)
assume (IfThen(my_d_first_beat, my_resp_opcode_legal),
"If d_valid is 1, then d_opcode should correspond with a_opcode of the corresponding" +
"request message" + extra)
}
def legalizeMultibeatC(c: DecoupledIO[TLBundleC], edge: TLEdge): Unit = {
val c_first = edge.first(c.bits, c.fire)
val opcode = Reg(UInt())
val param = Reg(UInt())
val size = Reg(UInt())
val source = Reg(UInt())
val address = Reg(UInt())
when (c.valid && !c_first) {
monAssert (c.bits.opcode === opcode, "'C' channel opcode changed within multibeat operation" + extra)
monAssert (c.bits.param === param, "'C' channel param changed within multibeat operation" + extra)
monAssert (c.bits.size === size, "'C' channel size changed within multibeat operation" + extra)
monAssert (c.bits.source === source, "'C' channel source changed within multibeat operation" + extra)
monAssert (c.bits.address=== address,"'C' channel address changed with multibeat operation" + extra)
}
when (c.fire && c_first) {
opcode := c.bits.opcode
param := c.bits.param
size := c.bits.size
source := c.bits.source
address := c.bits.address
}
}
def legalizeMultibeatD(d: DecoupledIO[TLBundleD], edge: TLEdge): Unit = {
val d_first = edge.first(d.bits, d.fire)
val opcode = Reg(UInt())
val param = Reg(UInt())
val size = Reg(UInt())
val source = Reg(UInt())
val sink = Reg(UInt())
val denied = Reg(Bool())
when (d.valid && !d_first) {
assume (d.bits.opcode === opcode, "'D' channel opcode changed within multibeat operation" + extra)
assume (d.bits.param === param, "'D' channel param changed within multibeat operation" + extra)
assume (d.bits.size === size, "'D' channel size changed within multibeat operation" + extra)
assume (d.bits.source === source, "'D' channel source changed within multibeat operation" + extra)
assume (d.bits.sink === sink, "'D' channel sink changed with multibeat operation" + extra)
assume (d.bits.denied === denied, "'D' channel denied changed with multibeat operation" + extra)
}
when (d.fire && d_first) {
opcode := d.bits.opcode
param := d.bits.param
size := d.bits.size
source := d.bits.source
sink := d.bits.sink
denied := d.bits.denied
}
}
def legalizeMultibeat(bundle: TLBundle, edge: TLEdge): Unit = {
legalizeMultibeatA(bundle.a, edge)
legalizeMultibeatD(bundle.d, edge)
if (edge.client.anySupportProbe && edge.manager.anySupportAcquireB) {
legalizeMultibeatB(bundle.b, edge)
legalizeMultibeatC(bundle.c, edge)
}
}
//This is left in for almond which doesn't adhere to the tilelink protocol
@deprecated("Use legalizeADSource instead if possible","")
def legalizeADSourceOld(bundle: TLBundle, edge: TLEdge): Unit = {
val inflight = RegInit(0.U(edge.client.endSourceId.W))
val a_first = edge.first(bundle.a.bits, bundle.a.fire)
val d_first = edge.first(bundle.d.bits, bundle.d.fire)
val a_set = WireInit(0.U(edge.client.endSourceId.W))
when (bundle.a.fire && a_first && edge.isRequest(bundle.a.bits)) {
a_set := UIntToOH(bundle.a.bits.source)
assert(!inflight(bundle.a.bits.source), "'A' channel re-used a source ID" + extra)
}
val d_clr = WireInit(0.U(edge.client.endSourceId.W))
val d_release_ack = bundle.d.bits.opcode === TLMessages.ReleaseAck
when (bundle.d.fire && d_first && edge.isResponse(bundle.d.bits) && !d_release_ack) {
d_clr := UIntToOH(bundle.d.bits.source)
assume((a_set | inflight)(bundle.d.bits.source), "'D' channel acknowledged for nothing inflight" + extra)
}
if (edge.manager.minLatency > 0) {
assume(a_set =/= d_clr || !a_set.orR, s"'A' and 'D' concurrent, despite minlatency > 0" + extra)
}
inflight := (inflight | a_set) & ~d_clr
val watchdog = RegInit(0.U(32.W))
val limit = PlusArg("tilelink_timeout",
docstring="Kill emulation after INT waiting TileLink cycles. Off if 0.")
assert (!inflight.orR || limit === 0.U || watchdog < limit, "TileLink timeout expired" + extra)
watchdog := watchdog + 1.U
when (bundle.a.fire || bundle.d.fire) { watchdog := 0.U }
}
def legalizeADSource(bundle: TLBundle, edge: TLEdge): Unit = {
val a_size_bus_size = edge.bundle.sizeBits + 1 //add one so that 0 is not mapped to anything (size 0 -> size 1 in map, size 0 in map means unset)
val a_opcode_bus_size = 3 + 1 //opcode size is 3, but add so that 0 is not mapped to anything
val log_a_opcode_bus_size = log2Ceil(a_opcode_bus_size)
val log_a_size_bus_size = log2Ceil(a_size_bus_size)
def size_to_numfullbits(x: UInt): UInt = (1.U << x) - 1.U //convert a number to that many full bits
val inflight = RegInit(0.U((2 max edge.client.endSourceId).W)) // size up to avoid width error
inflight.suggestName("inflight")
val inflight_opcodes = RegInit(0.U((edge.client.endSourceId << log_a_opcode_bus_size).W))
inflight_opcodes.suggestName("inflight_opcodes")
val inflight_sizes = RegInit(0.U((edge.client.endSourceId << log_a_size_bus_size).W))
inflight_sizes.suggestName("inflight_sizes")
val a_first = edge.first(bundle.a.bits, bundle.a.fire)
a_first.suggestName("a_first")
val d_first = edge.first(bundle.d.bits, bundle.d.fire)
d_first.suggestName("d_first")
val a_set = WireInit(0.U(edge.client.endSourceId.W))
val a_set_wo_ready = WireInit(0.U(edge.client.endSourceId.W))
a_set.suggestName("a_set")
a_set_wo_ready.suggestName("a_set_wo_ready")
val a_opcodes_set = WireInit(0.U((edge.client.endSourceId << log_a_opcode_bus_size).W))
a_opcodes_set.suggestName("a_opcodes_set")
val a_sizes_set = WireInit(0.U((edge.client.endSourceId << log_a_size_bus_size).W))
a_sizes_set.suggestName("a_sizes_set")
val a_opcode_lookup = WireInit(0.U((a_opcode_bus_size - 1).W))
a_opcode_lookup.suggestName("a_opcode_lookup")
a_opcode_lookup := ((inflight_opcodes) >> (bundle.d.bits.source << log_a_opcode_bus_size.U) & size_to_numfullbits(1.U << log_a_opcode_bus_size.U)) >> 1.U
val a_size_lookup = WireInit(0.U((1 << log_a_size_bus_size).W))
a_size_lookup.suggestName("a_size_lookup")
a_size_lookup := ((inflight_sizes) >> (bundle.d.bits.source << log_a_size_bus_size.U) & size_to_numfullbits(1.U << log_a_size_bus_size.U)) >> 1.U
val responseMap = VecInit(Seq(TLMessages.AccessAck, TLMessages.AccessAck, TLMessages.AccessAckData, TLMessages.AccessAckData, TLMessages.AccessAckData, TLMessages.HintAck, TLMessages.Grant, TLMessages.Grant))
val responseMapSecondOption = VecInit(Seq(TLMessages.AccessAck, TLMessages.AccessAck, TLMessages.AccessAckData, TLMessages.AccessAckData, TLMessages.AccessAckData, TLMessages.HintAck, TLMessages.GrantData, TLMessages.Grant))
val a_opcodes_set_interm = WireInit(0.U(a_opcode_bus_size.W))
a_opcodes_set_interm.suggestName("a_opcodes_set_interm")
val a_sizes_set_interm = WireInit(0.U(a_size_bus_size.W))
a_sizes_set_interm.suggestName("a_sizes_set_interm")
when (bundle.a.valid && a_first && edge.isRequest(bundle.a.bits)) {
a_set_wo_ready := UIntToOH(bundle.a.bits.source)
}
when (bundle.a.fire && a_first && edge.isRequest(bundle.a.bits)) {
a_set := UIntToOH(bundle.a.bits.source)
a_opcodes_set_interm := (bundle.a.bits.opcode << 1.U) | 1.U
a_sizes_set_interm := (bundle.a.bits.size << 1.U) | 1.U
a_opcodes_set := (a_opcodes_set_interm) << (bundle.a.bits.source << log_a_opcode_bus_size.U)
a_sizes_set := (a_sizes_set_interm) << (bundle.a.bits.source << log_a_size_bus_size.U)
monAssert(!inflight(bundle.a.bits.source), "'A' channel re-used a source ID" + extra)
}
val d_clr = WireInit(0.U(edge.client.endSourceId.W))
val d_clr_wo_ready = WireInit(0.U(edge.client.endSourceId.W))
d_clr.suggestName("d_clr")
d_clr_wo_ready.suggestName("d_clr_wo_ready")
val d_opcodes_clr = WireInit(0.U((edge.client.endSourceId << log_a_opcode_bus_size).W))
d_opcodes_clr.suggestName("d_opcodes_clr")
val d_sizes_clr = WireInit(0.U((edge.client.endSourceId << log_a_size_bus_size).W))
d_sizes_clr.suggestName("d_sizes_clr")
val d_release_ack = bundle.d.bits.opcode === TLMessages.ReleaseAck
when (bundle.d.valid && d_first && edge.isResponse(bundle.d.bits) && !d_release_ack) {
d_clr_wo_ready := UIntToOH(bundle.d.bits.source)
}
when (bundle.d.fire && d_first && edge.isResponse(bundle.d.bits) && !d_release_ack) {
d_clr := UIntToOH(bundle.d.bits.source)
d_opcodes_clr := size_to_numfullbits(1.U << log_a_opcode_bus_size.U) << (bundle.d.bits.source << log_a_opcode_bus_size.U)
d_sizes_clr := size_to_numfullbits(1.U << log_a_size_bus_size.U) << (bundle.d.bits.source << log_a_size_bus_size.U)
}
when (bundle.d.valid && d_first && edge.isResponse(bundle.d.bits) && !d_release_ack) {
val same_cycle_resp = bundle.a.valid && a_first && edge.isRequest(bundle.a.bits) && (bundle.a.bits.source === bundle.d.bits.source)
assume(((inflight)(bundle.d.bits.source)) || same_cycle_resp, "'D' channel acknowledged for nothing inflight" + extra)
when (same_cycle_resp) {
assume((bundle.d.bits.opcode === responseMap(bundle.a.bits.opcode)) ||
(bundle.d.bits.opcode === responseMapSecondOption(bundle.a.bits.opcode)), "'D' channel contains improper opcode response" + extra)
assume((bundle.a.bits.size === bundle.d.bits.size), "'D' channel contains improper response size" + extra)
} .otherwise {
assume((bundle.d.bits.opcode === responseMap(a_opcode_lookup)) ||
(bundle.d.bits.opcode === responseMapSecondOption(a_opcode_lookup)), "'D' channel contains improper opcode response" + extra)
assume((bundle.d.bits.size === a_size_lookup), "'D' channel contains improper response size" + extra)
}
}
when(bundle.d.valid && d_first && a_first && bundle.a.valid && (bundle.a.bits.source === bundle.d.bits.source) && !d_release_ack) {
assume((!bundle.d.ready) || bundle.a.ready, "ready check")
}
if (edge.manager.minLatency > 0) {
assume(a_set_wo_ready =/= d_clr_wo_ready || !a_set_wo_ready.orR, s"'A' and 'D' concurrent, despite minlatency > 0" + extra)
}
inflight := (inflight | a_set) & ~d_clr
inflight_opcodes := (inflight_opcodes | a_opcodes_set) & ~d_opcodes_clr
inflight_sizes := (inflight_sizes | a_sizes_set) & ~d_sizes_clr
val watchdog = RegInit(0.U(32.W))
val limit = PlusArg("tilelink_timeout",
docstring="Kill emulation after INT waiting TileLink cycles. Off if 0.")
monAssert (!inflight.orR || limit === 0.U || watchdog < limit, "TileLink timeout expired" + extra)
watchdog := watchdog + 1.U
when (bundle.a.fire || bundle.d.fire) { watchdog := 0.U }
}
def legalizeCDSource(bundle: TLBundle, edge: TLEdge): Unit = {
val c_size_bus_size = edge.bundle.sizeBits + 1 //add one so that 0 is not mapped to anything (size 0 -> size 1 in map, size 0 in map means unset)
val c_opcode_bus_size = 3 + 1 //opcode size is 3, but add so that 0 is not mapped to anything
val log_c_opcode_bus_size = log2Ceil(c_opcode_bus_size)
val log_c_size_bus_size = log2Ceil(c_size_bus_size)
def size_to_numfullbits(x: UInt): UInt = (1.U << x) - 1.U //convert a number to that many full bits
val inflight = RegInit(0.U((2 max edge.client.endSourceId).W))
val inflight_opcodes = RegInit(0.U((edge.client.endSourceId << log_c_opcode_bus_size).W))
val inflight_sizes = RegInit(0.U((edge.client.endSourceId << log_c_size_bus_size).W))
inflight.suggestName("inflight")
inflight_opcodes.suggestName("inflight_opcodes")
inflight_sizes.suggestName("inflight_sizes")
val c_first = edge.first(bundle.c.bits, bundle.c.fire)
val d_first = edge.first(bundle.d.bits, bundle.d.fire)
c_first.suggestName("c_first")
d_first.suggestName("d_first")
val c_set = WireInit(0.U(edge.client.endSourceId.W))
val c_set_wo_ready = WireInit(0.U(edge.client.endSourceId.W))
val c_opcodes_set = WireInit(0.U((edge.client.endSourceId << log_c_opcode_bus_size).W))
val c_sizes_set = WireInit(0.U((edge.client.endSourceId << log_c_size_bus_size).W))
c_set.suggestName("c_set")
c_set_wo_ready.suggestName("c_set_wo_ready")
c_opcodes_set.suggestName("c_opcodes_set")
c_sizes_set.suggestName("c_sizes_set")
val c_opcode_lookup = WireInit(0.U((1 << log_c_opcode_bus_size).W))
val c_size_lookup = WireInit(0.U((1 << log_c_size_bus_size).W))
c_opcode_lookup := ((inflight_opcodes) >> (bundle.d.bits.source << log_c_opcode_bus_size.U) & size_to_numfullbits(1.U << log_c_opcode_bus_size.U)) >> 1.U
c_size_lookup := ((inflight_sizes) >> (bundle.d.bits.source << log_c_size_bus_size.U) & size_to_numfullbits(1.U << log_c_size_bus_size.U)) >> 1.U
c_opcode_lookup.suggestName("c_opcode_lookup")
c_size_lookup.suggestName("c_size_lookup")
val c_opcodes_set_interm = WireInit(0.U(c_opcode_bus_size.W))
val c_sizes_set_interm = WireInit(0.U(c_size_bus_size.W))
c_opcodes_set_interm.suggestName("c_opcodes_set_interm")
c_sizes_set_interm.suggestName("c_sizes_set_interm")
when (bundle.c.valid && c_first && edge.isRequest(bundle.c.bits)) {
c_set_wo_ready := UIntToOH(bundle.c.bits.source)
}
when (bundle.c.fire && c_first && edge.isRequest(bundle.c.bits)) {
c_set := UIntToOH(bundle.c.bits.source)
c_opcodes_set_interm := (bundle.c.bits.opcode << 1.U) | 1.U
c_sizes_set_interm := (bundle.c.bits.size << 1.U) | 1.U
c_opcodes_set := (c_opcodes_set_interm) << (bundle.c.bits.source << log_c_opcode_bus_size.U)
c_sizes_set := (c_sizes_set_interm) << (bundle.c.bits.source << log_c_size_bus_size.U)
monAssert(!inflight(bundle.c.bits.source), "'C' channel re-used a source ID" + extra)
}
val c_probe_ack = bundle.c.bits.opcode === TLMessages.ProbeAck || bundle.c.bits.opcode === TLMessages.ProbeAckData
val d_clr = WireInit(0.U(edge.client.endSourceId.W))
val d_clr_wo_ready = WireInit(0.U(edge.client.endSourceId.W))
val d_opcodes_clr = WireInit(0.U((edge.client.endSourceId << log_c_opcode_bus_size).W))
val d_sizes_clr = WireInit(0.U((edge.client.endSourceId << log_c_size_bus_size).W))
d_clr.suggestName("d_clr")
d_clr_wo_ready.suggestName("d_clr_wo_ready")
d_opcodes_clr.suggestName("d_opcodes_clr")
d_sizes_clr.suggestName("d_sizes_clr")
val d_release_ack = bundle.d.bits.opcode === TLMessages.ReleaseAck
when (bundle.d.valid && d_first && edge.isResponse(bundle.d.bits) && d_release_ack) {
d_clr_wo_ready := UIntToOH(bundle.d.bits.source)
}
when (bundle.d.fire && d_first && edge.isResponse(bundle.d.bits) && d_release_ack) {
d_clr := UIntToOH(bundle.d.bits.source)
d_opcodes_clr := size_to_numfullbits(1.U << log_c_opcode_bus_size.U) << (bundle.d.bits.source << log_c_opcode_bus_size.U)
d_sizes_clr := size_to_numfullbits(1.U << log_c_size_bus_size.U) << (bundle.d.bits.source << log_c_size_bus_size.U)
}
when (bundle.d.valid && d_first && edge.isResponse(bundle.d.bits) && d_release_ack) {
val same_cycle_resp = bundle.c.valid && c_first && edge.isRequest(bundle.c.bits) && (bundle.c.bits.source === bundle.d.bits.source)
assume(((inflight)(bundle.d.bits.source)) || same_cycle_resp, "'D' channel acknowledged for nothing inflight" + extra)
when (same_cycle_resp) {
assume((bundle.d.bits.size === bundle.c.bits.size), "'D' channel contains improper response size" + extra)
} .otherwise {
assume((bundle.d.bits.size === c_size_lookup), "'D' channel contains improper response size" + extra)
}
}
when(bundle.d.valid && d_first && c_first && bundle.c.valid && (bundle.c.bits.source === bundle.d.bits.source) && d_release_ack && !c_probe_ack) {
assume((!bundle.d.ready) || bundle.c.ready, "ready check")
}
if (edge.manager.minLatency > 0) {
when (c_set_wo_ready.orR) {
assume(c_set_wo_ready =/= d_clr_wo_ready, s"'C' and 'D' concurrent, despite minlatency > 0" + extra)
}
}
inflight := (inflight | c_set) & ~d_clr
inflight_opcodes := (inflight_opcodes | c_opcodes_set) & ~d_opcodes_clr
inflight_sizes := (inflight_sizes | c_sizes_set) & ~d_sizes_clr
val watchdog = RegInit(0.U(32.W))
val limit = PlusArg("tilelink_timeout",
docstring="Kill emulation after INT waiting TileLink cycles. Off if 0.")
monAssert (!inflight.orR || limit === 0.U || watchdog < limit, "TileLink timeout expired" + extra)
watchdog := watchdog + 1.U
when (bundle.c.fire || bundle.d.fire) { watchdog := 0.U }
}
def legalizeDESink(bundle: TLBundle, edge: TLEdge): Unit = {
val inflight = RegInit(0.U(edge.manager.endSinkId.W))
val d_first = edge.first(bundle.d.bits, bundle.d.fire)
val e_first = true.B
val d_set = WireInit(0.U(edge.manager.endSinkId.W))
when (bundle.d.fire && d_first && edge.isRequest(bundle.d.bits)) {
d_set := UIntToOH(bundle.d.bits.sink)
assume(!inflight(bundle.d.bits.sink), "'D' channel re-used a sink ID" + extra)
}
val e_clr = WireInit(0.U(edge.manager.endSinkId.W))
when (bundle.e.fire && e_first && edge.isResponse(bundle.e.bits)) {
e_clr := UIntToOH(bundle.e.bits.sink)
monAssert((d_set | inflight)(bundle.e.bits.sink), "'E' channel acknowledged for nothing inflight" + extra)
}
// edge.client.minLatency applies to BC, not DE
inflight := (inflight | d_set) & ~e_clr
}
def legalizeUnique(bundle: TLBundle, edge: TLEdge): Unit = {
val sourceBits = log2Ceil(edge.client.endSourceId)
val tooBig = 14 // >16kB worth of flight information gets to be too much
if (sourceBits > tooBig) {
println(s"WARNING: TLMonitor instantiated on a bus with source bits (${sourceBits}) > ${tooBig}; A=>D transaction flight will not be checked")
} else {
if (args.edge.params(TestplanTestType).simulation) {
if (args.edge.params(TLMonitorStrictMode)) {
legalizeADSource(bundle, edge)
legalizeCDSource(bundle, edge)
} else {
legalizeADSourceOld(bundle, edge)
}
}
if (args.edge.params(TestplanTestType).formal) {
legalizeADSourceFormal(bundle, edge)
}
}
if (edge.client.anySupportProbe && edge.manager.anySupportAcquireB) {
// legalizeBCSourceAddress(bundle, edge) // too much state needed to synthesize...
val sinkBits = log2Ceil(edge.manager.endSinkId)
if (sinkBits > tooBig) {
println(s"WARNING: TLMonitor instantiated on a bus with sink bits (${sinkBits}) > ${tooBig}; D=>E transaction flight will not be checked")
} else {
legalizeDESink(bundle, edge)
}
}
}
def legalize(bundle: TLBundle, edge: TLEdge, reset: Reset): Unit = {
legalizeFormat (bundle, edge)
legalizeMultibeat (bundle, edge)
legalizeUnique (bundle, edge)
}
}
File Misc.scala:
// See LICENSE.Berkeley for license details.
// See LICENSE.SiFive for license details.
package freechips.rocketchip.util
import chisel3._
import chisel3.util._
import chisel3.util.random.LFSR
import org.chipsalliance.cde.config.Parameters
import scala.math._
class ParameterizedBundle(implicit p: Parameters) extends Bundle
trait Clocked extends Bundle {
val clock = Clock()
val reset = Bool()
}
object DecoupledHelper {
def apply(rvs: Bool*) = new DecoupledHelper(rvs)
}
class DecoupledHelper(val rvs: Seq[Bool]) {
def fire(exclude: Bool, includes: Bool*) = {
require(rvs.contains(exclude), "Excluded Bool not present in DecoupledHelper! Note that DecoupledHelper uses referential equality for exclusion! If you don't want to exclude anything, use fire()!")
(rvs.filter(_ ne exclude) ++ includes).reduce(_ && _)
}
def fire() = {
rvs.reduce(_ && _)
}
}
object MuxT {
def apply[T <: Data, U <: Data](cond: Bool, con: (T, U), alt: (T, U)): (T, U) =
(Mux(cond, con._1, alt._1), Mux(cond, con._2, alt._2))
def apply[T <: Data, U <: Data, W <: Data](cond: Bool, con: (T, U, W), alt: (T, U, W)): (T, U, W) =
(Mux(cond, con._1, alt._1), Mux(cond, con._2, alt._2), Mux(cond, con._3, alt._3))
def apply[T <: Data, U <: Data, W <: Data, X <: Data](cond: Bool, con: (T, U, W, X), alt: (T, U, W, X)): (T, U, W, X) =
(Mux(cond, con._1, alt._1), Mux(cond, con._2, alt._2), Mux(cond, con._3, alt._3), Mux(cond, con._4, alt._4))
}
/** Creates a cascade of n MuxTs to search for a key value. */
object MuxTLookup {
def apply[S <: UInt, T <: Data, U <: Data](key: S, default: (T, U), mapping: Seq[(S, (T, U))]): (T, U) = {
var res = default
for ((k, v) <- mapping.reverse)
res = MuxT(k === key, v, res)
res
}
def apply[S <: UInt, T <: Data, U <: Data, W <: Data](key: S, default: (T, U, W), mapping: Seq[(S, (T, U, W))]): (T, U, W) = {
var res = default
for ((k, v) <- mapping.reverse)
res = MuxT(k === key, v, res)
res
}
}
object ValidMux {
def apply[T <: Data](v1: ValidIO[T], v2: ValidIO[T]*): ValidIO[T] = {
apply(v1 +: v2.toSeq)
}
def apply[T <: Data](valids: Seq[ValidIO[T]]): ValidIO[T] = {
val out = Wire(Valid(valids.head.bits.cloneType))
out.valid := valids.map(_.valid).reduce(_ || _)
out.bits := MuxCase(valids.head.bits,
valids.map(v => (v.valid -> v.bits)))
out
}
}
object Str
{
def apply(s: String): UInt = {
var i = BigInt(0)
require(s.forall(validChar _))
for (c <- s)
i = (i << 8) | c
i.U((s.length*8).W)
}
def apply(x: Char): UInt = {
require(validChar(x))
x.U(8.W)
}
def apply(x: UInt): UInt = apply(x, 10)
def apply(x: UInt, radix: Int): UInt = {
val rad = radix.U
val w = x.getWidth
require(w > 0)
var q = x
var s = digit(q % rad)
for (i <- 1 until ceil(log(2)/log(radix)*w).toInt) {
q = q / rad
s = Cat(Mux((radix == 10).B && q === 0.U, Str(' '), digit(q % rad)), s)
}
s
}
def apply(x: SInt): UInt = apply(x, 10)
def apply(x: SInt, radix: Int): UInt = {
val neg = x < 0.S
val abs = x.abs.asUInt
if (radix != 10) {
Cat(Mux(neg, Str('-'), Str(' ')), Str(abs, radix))
} else {
val rad = radix.U
val w = abs.getWidth
require(w > 0)
var q = abs
var s = digit(q % rad)
var needSign = neg
for (i <- 1 until ceil(log(2)/log(radix)*w).toInt) {
q = q / rad
val placeSpace = q === 0.U
val space = Mux(needSign, Str('-'), Str(' '))
needSign = needSign && !placeSpace
s = Cat(Mux(placeSpace, space, digit(q % rad)), s)
}
Cat(Mux(needSign, Str('-'), Str(' ')), s)
}
}
private def digit(d: UInt): UInt = Mux(d < 10.U, Str('0')+d, Str(('a'-10).toChar)+d)(7,0)
private def validChar(x: Char) = x == (x & 0xFF)
}
object Split
{
def apply(x: UInt, n0: Int) = {
val w = x.getWidth
(x.extract(w-1,n0), x.extract(n0-1,0))
}
def apply(x: UInt, n1: Int, n0: Int) = {
val w = x.getWidth
(x.extract(w-1,n1), x.extract(n1-1,n0), x.extract(n0-1,0))
}
def apply(x: UInt, n2: Int, n1: Int, n0: Int) = {
val w = x.getWidth
(x.extract(w-1,n2), x.extract(n2-1,n1), x.extract(n1-1,n0), x.extract(n0-1,0))
}
}
object Random
{
def apply(mod: Int, random: UInt): UInt = {
if (isPow2(mod)) random.extract(log2Ceil(mod)-1,0)
else PriorityEncoder(partition(apply(1 << log2Up(mod*8), random), mod))
}
def apply(mod: Int): UInt = apply(mod, randomizer)
def oneHot(mod: Int, random: UInt): UInt = {
if (isPow2(mod)) UIntToOH(random(log2Up(mod)-1,0))
else PriorityEncoderOH(partition(apply(1 << log2Up(mod*8), random), mod)).asUInt
}
def oneHot(mod: Int): UInt = oneHot(mod, randomizer)
private def randomizer = LFSR(16)
private def partition(value: UInt, slices: Int) =
Seq.tabulate(slices)(i => value < (((i + 1) << value.getWidth) / slices).U)
}
object Majority {
def apply(in: Set[Bool]): Bool = {
val n = (in.size >> 1) + 1
val clauses = in.subsets(n).map(_.reduce(_ && _))
clauses.reduce(_ || _)
}
def apply(in: Seq[Bool]): Bool = apply(in.toSet)
def apply(in: UInt): Bool = apply(in.asBools.toSet)
}
object PopCountAtLeast {
private def two(x: UInt): (Bool, Bool) = x.getWidth match {
case 1 => (x.asBool, false.B)
case n =>
val half = x.getWidth / 2
val (leftOne, leftTwo) = two(x(half - 1, 0))
val (rightOne, rightTwo) = two(x(x.getWidth - 1, half))
(leftOne || rightOne, leftTwo || rightTwo || (leftOne && rightOne))
}
def apply(x: UInt, n: Int): Bool = n match {
case 0 => true.B
case 1 => x.orR
case 2 => two(x)._2
case 3 => PopCount(x) >= n.U
}
}
// This gets used everywhere, so make the smallest circuit possible ...
// Given an address and size, create a mask of beatBytes size
// eg: (0x3, 0, 4) => 0001, (0x3, 1, 4) => 0011, (0x3, 2, 4) => 1111
// groupBy applies an interleaved OR reduction; groupBy=2 take 0010 => 01
object MaskGen {
def apply(addr_lo: UInt, lgSize: UInt, beatBytes: Int, groupBy: Int = 1): UInt = {
require (groupBy >= 1 && beatBytes >= groupBy)
require (isPow2(beatBytes) && isPow2(groupBy))
val lgBytes = log2Ceil(beatBytes)
val sizeOH = UIntToOH(lgSize | 0.U(log2Up(beatBytes).W), log2Up(beatBytes)) | (groupBy*2 - 1).U
def helper(i: Int): Seq[(Bool, Bool)] = {
if (i == 0) {
Seq((lgSize >= lgBytes.asUInt, true.B))
} else {
val sub = helper(i-1)
val size = sizeOH(lgBytes - i)
val bit = addr_lo(lgBytes - i)
val nbit = !bit
Seq.tabulate (1 << i) { j =>
val (sub_acc, sub_eq) = sub(j/2)
val eq = sub_eq && (if (j % 2 == 1) bit else nbit)
val acc = sub_acc || (size && eq)
(acc, eq)
}
}
}
if (groupBy == beatBytes) 1.U else
Cat(helper(lgBytes-log2Ceil(groupBy)).map(_._1).reverse)
}
}
File PlusArg.scala:
// See LICENSE.SiFive for license details.
package freechips.rocketchip.util
import chisel3._
import chisel3.experimental._
import chisel3.util.HasBlackBoxResource
@deprecated("This will be removed in Rocket Chip 2020.08", "Rocket Chip 2020.05")
case class PlusArgInfo(default: BigInt, docstring: String)
/** Case class for PlusArg information
*
* @tparam A scala type of the PlusArg value
* @param default optional default value
* @param docstring text to include in the help
* @param doctype description of the Verilog type of the PlusArg value (e.g. STRING, INT)
*/
private case class PlusArgContainer[A](default: Option[A], docstring: String, doctype: String)
/** Typeclass for converting a type to a doctype string
* @tparam A some type
*/
trait Doctypeable[A] {
/** Return the doctype string for some option */
def toDoctype(a: Option[A]): String
}
/** Object containing implementations of the Doctypeable typeclass */
object Doctypes {
/** Converts an Int => "INT" */
implicit val intToDoctype = new Doctypeable[Int] { def toDoctype(a: Option[Int]) = "INT" }
/** Converts a BigInt => "INT" */
implicit val bigIntToDoctype = new Doctypeable[BigInt] { def toDoctype(a: Option[BigInt]) = "INT" }
/** Converts a String => "STRING" */
implicit val stringToDoctype = new Doctypeable[String] { def toDoctype(a: Option[String]) = "STRING" }
}
class plusarg_reader(val format: String, val default: BigInt, val docstring: String, val width: Int) extends BlackBox(Map(
"FORMAT" -> StringParam(format),
"DEFAULT" -> IntParam(default),
"WIDTH" -> IntParam(width)
)) with HasBlackBoxResource {
val io = IO(new Bundle {
val out = Output(UInt(width.W))
})
addResource("/vsrc/plusarg_reader.v")
}
/* This wrapper class has no outputs, making it clear it is a simulation-only construct */
class PlusArgTimeout(val format: String, val default: BigInt, val docstring: String, val width: Int) extends Module {
val io = IO(new Bundle {
val count = Input(UInt(width.W))
})
val max = Module(new plusarg_reader(format, default, docstring, width)).io.out
when (max > 0.U) {
assert (io.count < max, s"Timeout exceeded: $docstring")
}
}
import Doctypes._
object PlusArg
{
/** PlusArg("foo") will return 42.U if the simulation is run with +foo=42
* Do not use this as an initial register value. The value is set in an
* initial block and thus accessing it from another initial is racey.
* Add a docstring to document the arg, which can be dumped in an elaboration
* pass.
*/
def apply(name: String, default: BigInt = 0, docstring: String = "", width: Int = 32): UInt = {
PlusArgArtefacts.append(name, Some(default), docstring)
Module(new plusarg_reader(name + "=%d", default, docstring, width)).io.out
}
/** PlusArg.timeout(name, default, docstring)(count) will use chisel.assert
* to kill the simulation when count exceeds the specified integer argument.
* Default 0 will never assert.
*/
def timeout(name: String, default: BigInt = 0, docstring: String = "", width: Int = 32)(count: UInt): Unit = {
PlusArgArtefacts.append(name, Some(default), docstring)
Module(new PlusArgTimeout(name + "=%d", default, docstring, width)).io.count := count
}
}
object PlusArgArtefacts {
private var artefacts: Map[String, PlusArgContainer[_]] = Map.empty
/* Add a new PlusArg */
@deprecated(
"Use `Some(BigInt)` to specify a `default` value. This will be removed in Rocket Chip 2020.08",
"Rocket Chip 2020.05"
)
def append(name: String, default: BigInt, docstring: String): Unit = append(name, Some(default), docstring)
/** Add a new PlusArg
*
* @tparam A scala type of the PlusArg value
* @param name name for the PlusArg
* @param default optional default value
* @param docstring text to include in the help
*/
def append[A : Doctypeable](name: String, default: Option[A], docstring: String): Unit =
artefacts = artefacts ++
Map(name -> PlusArgContainer(default, docstring, implicitly[Doctypeable[A]].toDoctype(default)))
/* From plus args, generate help text */
private def serializeHelp_cHeader(tab: String = ""): String = artefacts
.map{ case(arg, info) =>
s"""|$tab+$arg=${info.doctype}\\n\\
|$tab${" "*20}${info.docstring}\\n\\
|""".stripMargin ++ info.default.map{ case default =>
s"$tab${" "*22}(default=${default})\\n\\\n"}.getOrElse("")
}.toSeq.mkString("\\n\\\n") ++ "\""
/* From plus args, generate a char array of their names */
private def serializeArray_cHeader(tab: String = ""): String = {
val prettyTab = tab + " " * 44 // Length of 'static const ...'
s"${tab}static const char * verilog_plusargs [] = {\\\n" ++
artefacts
.map{ case(arg, _) => s"""$prettyTab"$arg",\\\n""" }
.mkString("")++
s"${prettyTab}0};"
}
/* Generate C code to be included in emulator.cc that helps with
* argument parsing based on available Verilog PlusArgs */
def serialize_cHeader(): String =
s"""|#define PLUSARG_USAGE_OPTIONS \"EMULATOR VERILOG PLUSARGS\\n\\
|${serializeHelp_cHeader(" "*7)}
|${serializeArray_cHeader()}
|""".stripMargin
}
File package.scala:
// See LICENSE.SiFive for license details.
package freechips.rocketchip
import chisel3._
import chisel3.util._
import scala.math.min
import scala.collection.{immutable, mutable}
package object util {
implicit class UnzippableOption[S, T](val x: Option[(S, T)]) {
def unzip = (x.map(_._1), x.map(_._2))
}
implicit class UIntIsOneOf(private val x: UInt) extends AnyVal {
def isOneOf(s: Seq[UInt]): Bool = s.map(x === _).orR
def isOneOf(u1: UInt, u2: UInt*): Bool = isOneOf(u1 +: u2.toSeq)
}
implicit class VecToAugmentedVec[T <: Data](private val x: Vec[T]) extends AnyVal {
/** Like Vec.apply(idx), but tolerates indices of mismatched width */
def extract(idx: UInt): T = x((idx | 0.U(log2Ceil(x.size).W)).extract(log2Ceil(x.size) - 1, 0))
}
implicit class SeqToAugmentedSeq[T <: Data](private val x: Seq[T]) extends AnyVal {
def apply(idx: UInt): T = {
if (x.size <= 1) {
x.head
} else if (!isPow2(x.size)) {
// For non-power-of-2 seqs, reflect elements to simplify decoder
(x ++ x.takeRight(x.size & -x.size)).toSeq(idx)
} else {
// Ignore MSBs of idx
val truncIdx =
if (idx.isWidthKnown && idx.getWidth <= log2Ceil(x.size)) idx
else (idx | 0.U(log2Ceil(x.size).W))(log2Ceil(x.size)-1, 0)
x.zipWithIndex.tail.foldLeft(x.head) { case (prev, (cur, i)) => Mux(truncIdx === i.U, cur, prev) }
}
}
def extract(idx: UInt): T = VecInit(x).extract(idx)
def asUInt: UInt = Cat(x.map(_.asUInt).reverse)
def rotate(n: Int): Seq[T] = x.drop(n) ++ x.take(n)
def rotate(n: UInt): Seq[T] = {
if (x.size <= 1) {
x
} else {
require(isPow2(x.size))
val amt = n.padTo(log2Ceil(x.size))
(0 until log2Ceil(x.size)).foldLeft(x)((r, i) => (r.rotate(1 << i) zip r).map { case (s, a) => Mux(amt(i), s, a) })
}
}
def rotateRight(n: Int): Seq[T] = x.takeRight(n) ++ x.dropRight(n)
def rotateRight(n: UInt): Seq[T] = {
if (x.size <= 1) {
x
} else {
require(isPow2(x.size))
val amt = n.padTo(log2Ceil(x.size))
(0 until log2Ceil(x.size)).foldLeft(x)((r, i) => (r.rotateRight(1 << i) zip r).map { case (s, a) => Mux(amt(i), s, a) })
}
}
}
// allow bitwise ops on Seq[Bool] just like UInt
implicit class SeqBoolBitwiseOps(private val x: Seq[Bool]) extends AnyVal {
def & (y: Seq[Bool]): Seq[Bool] = (x zip y).map { case (a, b) => a && b }
def | (y: Seq[Bool]): Seq[Bool] = padZip(x, y).map { case (a, b) => a || b }
def ^ (y: Seq[Bool]): Seq[Bool] = padZip(x, y).map { case (a, b) => a ^ b }
def << (n: Int): Seq[Bool] = Seq.fill(n)(false.B) ++ x
def >> (n: Int): Seq[Bool] = x drop n
def unary_~ : Seq[Bool] = x.map(!_)
def andR: Bool = if (x.isEmpty) true.B else x.reduce(_&&_)
def orR: Bool = if (x.isEmpty) false.B else x.reduce(_||_)
def xorR: Bool = if (x.isEmpty) false.B else x.reduce(_^_)
private def padZip(y: Seq[Bool], z: Seq[Bool]): Seq[(Bool, Bool)] = y.padTo(z.size, false.B) zip z.padTo(y.size, false.B)
}
implicit class DataToAugmentedData[T <: Data](private val x: T) extends AnyVal {
def holdUnless(enable: Bool): T = Mux(enable, x, RegEnable(x, enable))
def getElements: Seq[Element] = x match {
case e: Element => Seq(e)
case a: Aggregate => a.getElements.flatMap(_.getElements)
}
}
/** Any Data subtype that has a Bool member named valid. */
type DataCanBeValid = Data { val valid: Bool }
implicit class SeqMemToAugmentedSeqMem[T <: Data](private val x: SyncReadMem[T]) extends AnyVal {
def readAndHold(addr: UInt, enable: Bool): T = x.read(addr, enable) holdUnless RegNext(enable)
}
implicit class StringToAugmentedString(private val x: String) extends AnyVal {
/** converts from camel case to to underscores, also removing all spaces */
def underscore: String = x.tail.foldLeft(x.headOption.map(_.toLower + "") getOrElse "") {
case (acc, c) if c.isUpper => acc + "_" + c.toLower
case (acc, c) if c == ' ' => acc
case (acc, c) => acc + c
}
/** converts spaces or underscores to hyphens, also lowering case */
def kebab: String = x.toLowerCase map {
case ' ' => '-'
case '_' => '-'
case c => c
}
def named(name: Option[String]): String = {
x + name.map("_named_" + _ ).getOrElse("_with_no_name")
}
def named(name: String): String = named(Some(name))
}
implicit def uintToBitPat(x: UInt): BitPat = BitPat(x)
implicit def wcToUInt(c: WideCounter): UInt = c.value
implicit class UIntToAugmentedUInt(private val x: UInt) extends AnyVal {
def sextTo(n: Int): UInt = {
require(x.getWidth <= n)
if (x.getWidth == n) x
else Cat(Fill(n - x.getWidth, x(x.getWidth-1)), x)
}
def padTo(n: Int): UInt = {
require(x.getWidth <= n)
if (x.getWidth == n) x
else Cat(0.U((n - x.getWidth).W), x)
}
// shifts left by n if n >= 0, or right by -n if n < 0
def << (n: SInt): UInt = {
val w = n.getWidth - 1
require(w <= 30)
val shifted = x << n(w-1, 0)
Mux(n(w), shifted >> (1 << w), shifted)
}
// shifts right by n if n >= 0, or left by -n if n < 0
def >> (n: SInt): UInt = {
val w = n.getWidth - 1
require(w <= 30)
val shifted = x << (1 << w) >> n(w-1, 0)
Mux(n(w), shifted, shifted >> (1 << w))
}
// Like UInt.apply(hi, lo), but returns 0.U for zero-width extracts
def extract(hi: Int, lo: Int): UInt = {
require(hi >= lo-1)
if (hi == lo-1) 0.U
else x(hi, lo)
}
// Like Some(UInt.apply(hi, lo)), but returns None for zero-width extracts
def extractOption(hi: Int, lo: Int): Option[UInt] = {
require(hi >= lo-1)
if (hi == lo-1) None
else Some(x(hi, lo))
}
// like x & ~y, but first truncate or zero-extend y to x's width
def andNot(y: UInt): UInt = x & ~(y | (x & 0.U))
def rotateRight(n: Int): UInt = if (n == 0) x else Cat(x(n-1, 0), x >> n)
def rotateRight(n: UInt): UInt = {
if (x.getWidth <= 1) {
x
} else {
val amt = n.padTo(log2Ceil(x.getWidth))
(0 until log2Ceil(x.getWidth)).foldLeft(x)((r, i) => Mux(amt(i), r.rotateRight(1 << i), r))
}
}
def rotateLeft(n: Int): UInt = if (n == 0) x else Cat(x(x.getWidth-1-n,0), x(x.getWidth-1,x.getWidth-n))
def rotateLeft(n: UInt): UInt = {
if (x.getWidth <= 1) {
x
} else {
val amt = n.padTo(log2Ceil(x.getWidth))
(0 until log2Ceil(x.getWidth)).foldLeft(x)((r, i) => Mux(amt(i), r.rotateLeft(1 << i), r))
}
}
// compute (this + y) % n, given (this < n) and (y < n)
def addWrap(y: UInt, n: Int): UInt = {
val z = x +& y
if (isPow2(n)) z(n.log2-1, 0) else Mux(z >= n.U, z - n.U, z)(log2Ceil(n)-1, 0)
}
// compute (this - y) % n, given (this < n) and (y < n)
def subWrap(y: UInt, n: Int): UInt = {
val z = x -& y
if (isPow2(n)) z(n.log2-1, 0) else Mux(z(z.getWidth-1), z + n.U, z)(log2Ceil(n)-1, 0)
}
def grouped(width: Int): Seq[UInt] =
(0 until x.getWidth by width).map(base => x(base + width - 1, base))
def inRange(base: UInt, bounds: UInt) = x >= base && x < bounds
def ## (y: Option[UInt]): UInt = y.map(x ## _).getOrElse(x)
// Like >=, but prevents x-prop for ('x >= 0)
def >== (y: UInt): Bool = x >= y || y === 0.U
}
implicit class OptionUIntToAugmentedOptionUInt(private val x: Option[UInt]) extends AnyVal {
def ## (y: UInt): UInt = x.map(_ ## y).getOrElse(y)
def ## (y: Option[UInt]): Option[UInt] = x.map(_ ## y)
}
implicit class BooleanToAugmentedBoolean(private val x: Boolean) extends AnyVal {
def toInt: Int = if (x) 1 else 0
// this one's snagged from scalaz
def option[T](z: => T): Option[T] = if (x) Some(z) else None
}
implicit class IntToAugmentedInt(private val x: Int) extends AnyVal {
// exact log2
def log2: Int = {
require(isPow2(x))
log2Ceil(x)
}
}
def OH1ToOH(x: UInt): UInt = (x << 1 | 1.U) & ~Cat(0.U(1.W), x)
def OH1ToUInt(x: UInt): UInt = OHToUInt(OH1ToOH(x))
def UIntToOH1(x: UInt, width: Int): UInt = ~((-1).S(width.W).asUInt << x)(width-1, 0)
def UIntToOH1(x: UInt): UInt = UIntToOH1(x, (1 << x.getWidth) - 1)
def trailingZeros(x: Int): Option[Int] = if (x > 0) Some(log2Ceil(x & -x)) else None
// Fill 1s from low bits to high bits
def leftOR(x: UInt): UInt = leftOR(x, x.getWidth, x.getWidth)
def leftOR(x: UInt, width: Integer, cap: Integer = 999999): UInt = {
val stop = min(width, cap)
def helper(s: Int, x: UInt): UInt =
if (s >= stop) x else helper(s+s, x | (x << s)(width-1,0))
helper(1, x)(width-1, 0)
}
// Fill 1s form high bits to low bits
def rightOR(x: UInt): UInt = rightOR(x, x.getWidth, x.getWidth)
def rightOR(x: UInt, width: Integer, cap: Integer = 999999): UInt = {
val stop = min(width, cap)
def helper(s: Int, x: UInt): UInt =
if (s >= stop) x else helper(s+s, x | (x >> s))
helper(1, x)(width-1, 0)
}
def OptimizationBarrier[T <: Data](in: T): T = {
val barrier = Module(new Module {
val io = IO(new Bundle {
val x = Input(chiselTypeOf(in))
val y = Output(chiselTypeOf(in))
})
io.y := io.x
override def desiredName = s"OptimizationBarrier_${in.typeName}"
})
barrier.io.x := in
barrier.io.y
}
/** Similar to Seq.groupBy except this returns a Seq instead of a Map
* Useful for deterministic code generation
*/
def groupByIntoSeq[A, K](xs: Seq[A])(f: A => K): immutable.Seq[(K, immutable.Seq[A])] = {
val map = mutable.LinkedHashMap.empty[K, mutable.ListBuffer[A]]
for (x <- xs) {
val key = f(x)
val l = map.getOrElseUpdate(key, mutable.ListBuffer.empty[A])
l += x
}
map.view.map({ case (k, vs) => k -> vs.toList }).toList
}
def heterogeneousOrGlobalSetting[T](in: Seq[T], n: Int): Seq[T] = in.size match {
case 1 => List.fill(n)(in.head)
case x if x == n => in
case _ => throw new Exception(s"must provide exactly 1 or $n of some field, but got:\n$in")
}
// HeterogeneousBag moved to standalond diplomacy
@deprecated("HeterogeneousBag has been absorbed into standalone diplomacy library", "rocketchip 2.0.0")
def HeterogeneousBag[T <: Data](elts: Seq[T]) = _root_.org.chipsalliance.diplomacy.nodes.HeterogeneousBag[T](elts)
@deprecated("HeterogeneousBag has been absorbed into standalone diplomacy library", "rocketchip 2.0.0")
val HeterogeneousBag = _root_.org.chipsalliance.diplomacy.nodes.HeterogeneousBag
}
File Bundles.scala:
// See LICENSE.SiFive for license details.
package freechips.rocketchip.tilelink
import chisel3._
import freechips.rocketchip.util._
import scala.collection.immutable.ListMap
import chisel3.util.Decoupled
import chisel3.util.DecoupledIO
import chisel3.reflect.DataMirror
abstract class TLBundleBase(val params: TLBundleParameters) extends Bundle
// common combos in lazy policy:
// Put + Acquire
// Release + AccessAck
object TLMessages
{
// A B C D E
def PutFullData = 0.U // . . => AccessAck
def PutPartialData = 1.U // . . => AccessAck
def ArithmeticData = 2.U // . . => AccessAckData
def LogicalData = 3.U // . . => AccessAckData
def Get = 4.U // . . => AccessAckData
def Hint = 5.U // . . => HintAck
def AcquireBlock = 6.U // . => Grant[Data]
def AcquirePerm = 7.U // . => Grant[Data]
def Probe = 6.U // . => ProbeAck[Data]
def AccessAck = 0.U // . .
def AccessAckData = 1.U // . .
def HintAck = 2.U // . .
def ProbeAck = 4.U // .
def ProbeAckData = 5.U // .
def Release = 6.U // . => ReleaseAck
def ReleaseData = 7.U // . => ReleaseAck
def Grant = 4.U // . => GrantAck
def GrantData = 5.U // . => GrantAck
def ReleaseAck = 6.U // .
def GrantAck = 0.U // .
def isA(x: UInt) = x <= AcquirePerm
def isB(x: UInt) = x <= Probe
def isC(x: UInt) = x <= ReleaseData
def isD(x: UInt) = x <= ReleaseAck
def adResponse = VecInit(AccessAck, AccessAck, AccessAckData, AccessAckData, AccessAckData, HintAck, Grant, Grant)
def bcResponse = VecInit(AccessAck, AccessAck, AccessAckData, AccessAckData, AccessAckData, HintAck, ProbeAck, ProbeAck)
def a = Seq( ("PutFullData",TLPermissions.PermMsgReserved),
("PutPartialData",TLPermissions.PermMsgReserved),
("ArithmeticData",TLAtomics.ArithMsg),
("LogicalData",TLAtomics.LogicMsg),
("Get",TLPermissions.PermMsgReserved),
("Hint",TLHints.HintsMsg),
("AcquireBlock",TLPermissions.PermMsgGrow),
("AcquirePerm",TLPermissions.PermMsgGrow))
def b = Seq( ("PutFullData",TLPermissions.PermMsgReserved),
("PutPartialData",TLPermissions.PermMsgReserved),
("ArithmeticData",TLAtomics.ArithMsg),
("LogicalData",TLAtomics.LogicMsg),
("Get",TLPermissions.PermMsgReserved),
("Hint",TLHints.HintsMsg),
("Probe",TLPermissions.PermMsgCap))
def c = Seq( ("AccessAck",TLPermissions.PermMsgReserved),
("AccessAckData",TLPermissions.PermMsgReserved),
("HintAck",TLPermissions.PermMsgReserved),
("Invalid Opcode",TLPermissions.PermMsgReserved),
("ProbeAck",TLPermissions.PermMsgReport),
("ProbeAckData",TLPermissions.PermMsgReport),
("Release",TLPermissions.PermMsgReport),
("ReleaseData",TLPermissions.PermMsgReport))
def d = Seq( ("AccessAck",TLPermissions.PermMsgReserved),
("AccessAckData",TLPermissions.PermMsgReserved),
("HintAck",TLPermissions.PermMsgReserved),
("Invalid Opcode",TLPermissions.PermMsgReserved),
("Grant",TLPermissions.PermMsgCap),
("GrantData",TLPermissions.PermMsgCap),
("ReleaseAck",TLPermissions.PermMsgReserved))
}
/**
* The three primary TileLink permissions are:
* (T)runk: the agent is (or is on inwards path to) the global point of serialization.
* (B)ranch: the agent is on an outwards path to
* (N)one:
* These permissions are permuted by transfer operations in various ways.
* Operations can cap permissions, request for them to be grown or shrunk,
* or for a report on their current status.
*/
object TLPermissions
{
val aWidth = 2
val bdWidth = 2
val cWidth = 3
// Cap types (Grant = new permissions, Probe = permisions <= target)
def toT = 0.U(bdWidth.W)
def toB = 1.U(bdWidth.W)
def toN = 2.U(bdWidth.W)
def isCap(x: UInt) = x <= toN
// Grow types (Acquire = permissions >= target)
def NtoB = 0.U(aWidth.W)
def NtoT = 1.U(aWidth.W)
def BtoT = 2.U(aWidth.W)
def isGrow(x: UInt) = x <= BtoT
// Shrink types (ProbeAck, Release)
def TtoB = 0.U(cWidth.W)
def TtoN = 1.U(cWidth.W)
def BtoN = 2.U(cWidth.W)
def isShrink(x: UInt) = x <= BtoN
// Report types (ProbeAck, Release)
def TtoT = 3.U(cWidth.W)
def BtoB = 4.U(cWidth.W)
def NtoN = 5.U(cWidth.W)
def isReport(x: UInt) = x <= NtoN
def PermMsgGrow:Seq[String] = Seq("Grow NtoB", "Grow NtoT", "Grow BtoT")
def PermMsgCap:Seq[String] = Seq("Cap toT", "Cap toB", "Cap toN")
def PermMsgReport:Seq[String] = Seq("Shrink TtoB", "Shrink TtoN", "Shrink BtoN", "Report TotT", "Report BtoB", "Report NtoN")
def PermMsgReserved:Seq[String] = Seq("Reserved")
}
object TLAtomics
{
val width = 3
// Arithmetic types
def MIN = 0.U(width.W)
def MAX = 1.U(width.W)
def MINU = 2.U(width.W)
def MAXU = 3.U(width.W)
def ADD = 4.U(width.W)
def isArithmetic(x: UInt) = x <= ADD
// Logical types
def XOR = 0.U(width.W)
def OR = 1.U(width.W)
def AND = 2.U(width.W)
def SWAP = 3.U(width.W)
def isLogical(x: UInt) = x <= SWAP
def ArithMsg:Seq[String] = Seq("MIN", "MAX", "MINU", "MAXU", "ADD")
def LogicMsg:Seq[String] = Seq("XOR", "OR", "AND", "SWAP")
}
object TLHints
{
val width = 1
def PREFETCH_READ = 0.U(width.W)
def PREFETCH_WRITE = 1.U(width.W)
def isHints(x: UInt) = x <= PREFETCH_WRITE
def HintsMsg:Seq[String] = Seq("PrefetchRead", "PrefetchWrite")
}
sealed trait TLChannel extends TLBundleBase {
val channelName: String
}
sealed trait TLDataChannel extends TLChannel
sealed trait TLAddrChannel extends TLDataChannel
final class TLBundleA(params: TLBundleParameters)
extends TLBundleBase(params) with TLAddrChannel
{
override def typeName = s"TLBundleA_${params.shortName}"
val channelName = "'A' channel"
// fixed fields during multibeat:
val opcode = UInt(3.W)
val param = UInt(List(TLAtomics.width, TLPermissions.aWidth, TLHints.width).max.W) // amo_opcode || grow perms || hint
val size = UInt(params.sizeBits.W)
val source = UInt(params.sourceBits.W) // from
val address = UInt(params.addressBits.W) // to
val user = BundleMap(params.requestFields)
val echo = BundleMap(params.echoFields)
// variable fields during multibeat:
val mask = UInt((params.dataBits/8).W)
val data = UInt(params.dataBits.W)
val corrupt = Bool() // only applies to *Data messages
}
final class TLBundleB(params: TLBundleParameters)
extends TLBundleBase(params) with TLAddrChannel
{
override def typeName = s"TLBundleB_${params.shortName}"
val channelName = "'B' channel"
// fixed fields during multibeat:
val opcode = UInt(3.W)
val param = UInt(TLPermissions.bdWidth.W) // cap perms
val size = UInt(params.sizeBits.W)
val source = UInt(params.sourceBits.W) // to
val address = UInt(params.addressBits.W) // from
// variable fields during multibeat:
val mask = UInt((params.dataBits/8).W)
val data = UInt(params.dataBits.W)
val corrupt = Bool() // only applies to *Data messages
}
final class TLBundleC(params: TLBundleParameters)
extends TLBundleBase(params) with TLAddrChannel
{
override def typeName = s"TLBundleC_${params.shortName}"
val channelName = "'C' channel"
// fixed fields during multibeat:
val opcode = UInt(3.W)
val param = UInt(TLPermissions.cWidth.W) // shrink or report perms
val size = UInt(params.sizeBits.W)
val source = UInt(params.sourceBits.W) // from
val address = UInt(params.addressBits.W) // to
val user = BundleMap(params.requestFields)
val echo = BundleMap(params.echoFields)
// variable fields during multibeat:
val data = UInt(params.dataBits.W)
val corrupt = Bool() // only applies to *Data messages
}
final class TLBundleD(params: TLBundleParameters)
extends TLBundleBase(params) with TLDataChannel
{
override def typeName = s"TLBundleD_${params.shortName}"
val channelName = "'D' channel"
// fixed fields during multibeat:
val opcode = UInt(3.W)
val param = UInt(TLPermissions.bdWidth.W) // cap perms
val size = UInt(params.sizeBits.W)
val source = UInt(params.sourceBits.W) // to
val sink = UInt(params.sinkBits.W) // from
val denied = Bool() // implies corrupt iff *Data
val user = BundleMap(params.responseFields)
val echo = BundleMap(params.echoFields)
// variable fields during multibeat:
val data = UInt(params.dataBits.W)
val corrupt = Bool() // only applies to *Data messages
}
final class TLBundleE(params: TLBundleParameters)
extends TLBundleBase(params) with TLChannel
{
override def typeName = s"TLBundleE_${params.shortName}"
val channelName = "'E' channel"
val sink = UInt(params.sinkBits.W) // to
}
class TLBundle(val params: TLBundleParameters) extends Record
{
// Emulate a Bundle with elements abcde or ad depending on params.hasBCE
private val optA = Some (Decoupled(new TLBundleA(params)))
private val optB = params.hasBCE.option(Flipped(Decoupled(new TLBundleB(params))))
private val optC = params.hasBCE.option(Decoupled(new TLBundleC(params)))
private val optD = Some (Flipped(Decoupled(new TLBundleD(params))))
private val optE = params.hasBCE.option(Decoupled(new TLBundleE(params)))
def a: DecoupledIO[TLBundleA] = optA.getOrElse(WireDefault(0.U.asTypeOf(Decoupled(new TLBundleA(params)))))
def b: DecoupledIO[TLBundleB] = optB.getOrElse(WireDefault(0.U.asTypeOf(Decoupled(new TLBundleB(params)))))
def c: DecoupledIO[TLBundleC] = optC.getOrElse(WireDefault(0.U.asTypeOf(Decoupled(new TLBundleC(params)))))
def d: DecoupledIO[TLBundleD] = optD.getOrElse(WireDefault(0.U.asTypeOf(Decoupled(new TLBundleD(params)))))
def e: DecoupledIO[TLBundleE] = optE.getOrElse(WireDefault(0.U.asTypeOf(Decoupled(new TLBundleE(params)))))
val elements =
if (params.hasBCE) ListMap("e" -> e, "d" -> d, "c" -> c, "b" -> b, "a" -> a)
else ListMap("d" -> d, "a" -> a)
def tieoff(): Unit = {
DataMirror.specifiedDirectionOf(a.ready) match {
case SpecifiedDirection.Input =>
a.ready := false.B
c.ready := false.B
e.ready := false.B
b.valid := false.B
d.valid := false.B
case SpecifiedDirection.Output =>
a.valid := false.B
c.valid := false.B
e.valid := false.B
b.ready := false.B
d.ready := false.B
case _ =>
}
}
}
object TLBundle
{
def apply(params: TLBundleParameters) = new TLBundle(params)
}
class TLAsyncBundleBase(val params: TLAsyncBundleParameters) extends Bundle
class TLAsyncBundle(params: TLAsyncBundleParameters) extends TLAsyncBundleBase(params)
{
val a = new AsyncBundle(new TLBundleA(params.base), params.async)
val b = Flipped(new AsyncBundle(new TLBundleB(params.base), params.async))
val c = new AsyncBundle(new TLBundleC(params.base), params.async)
val d = Flipped(new AsyncBundle(new TLBundleD(params.base), params.async))
val e = new AsyncBundle(new TLBundleE(params.base), params.async)
}
class TLRationalBundle(params: TLBundleParameters) extends TLBundleBase(params)
{
val a = RationalIO(new TLBundleA(params))
val b = Flipped(RationalIO(new TLBundleB(params)))
val c = RationalIO(new TLBundleC(params))
val d = Flipped(RationalIO(new TLBundleD(params)))
val e = RationalIO(new TLBundleE(params))
}
class TLCreditedBundle(params: TLBundleParameters) extends TLBundleBase(params)
{
val a = CreditedIO(new TLBundleA(params))
val b = Flipped(CreditedIO(new TLBundleB(params)))
val c = CreditedIO(new TLBundleC(params))
val d = Flipped(CreditedIO(new TLBundleD(params)))
val e = CreditedIO(new TLBundleE(params))
}
File Parameters.scala:
// See LICENSE.SiFive for license details.
package freechips.rocketchip.diplomacy
import chisel3._
import chisel3.util.{DecoupledIO, Queue, ReadyValidIO, isPow2, log2Ceil, log2Floor}
import freechips.rocketchip.util.ShiftQueue
/** Options for describing the attributes of memory regions */
object RegionType {
// Define the 'more relaxed than' ordering
val cases = Seq(CACHED, TRACKED, UNCACHED, IDEMPOTENT, VOLATILE, PUT_EFFECTS, GET_EFFECTS)
sealed trait T extends Ordered[T] {
def compare(that: T): Int = cases.indexOf(that) compare cases.indexOf(this)
}
case object CACHED extends T // an intermediate agent may have cached a copy of the region for you
case object TRACKED extends T // the region may have been cached by another master, but coherence is being provided
case object UNCACHED extends T // the region has not been cached yet, but should be cached when possible
case object IDEMPOTENT extends T // gets return most recently put content, but content should not be cached
case object VOLATILE extends T // content may change without a put, but puts and gets have no side effects
case object PUT_EFFECTS extends T // puts produce side effects and so must not be combined/delayed
case object GET_EFFECTS extends T // gets produce side effects and so must not be issued speculatively
}
// A non-empty half-open range; [start, end)
case class IdRange(start: Int, end: Int) extends Ordered[IdRange]
{
require (start >= 0, s"Ids cannot be negative, but got: $start.")
require (start <= end, "Id ranges cannot be negative.")
def compare(x: IdRange) = {
val primary = (this.start - x.start).signum
val secondary = (x.end - this.end).signum
if (primary != 0) primary else secondary
}
def overlaps(x: IdRange) = start < x.end && x.start < end
def contains(x: IdRange) = start <= x.start && x.end <= end
def contains(x: Int) = start <= x && x < end
def contains(x: UInt) =
if (size == 0) {
false.B
} else if (size == 1) { // simple comparison
x === start.U
} else {
// find index of largest different bit
val largestDeltaBit = log2Floor(start ^ (end-1))
val smallestCommonBit = largestDeltaBit + 1 // may not exist in x
val uncommonMask = (1 << smallestCommonBit) - 1
val uncommonBits = (x | 0.U(smallestCommonBit.W))(largestDeltaBit, 0)
// the prefix must match exactly (note: may shift ALL bits away)
(x >> smallestCommonBit) === (start >> smallestCommonBit).U &&
// firrtl constant prop range analysis can eliminate these two:
(start & uncommonMask).U <= uncommonBits &&
uncommonBits <= ((end-1) & uncommonMask).U
}
def shift(x: Int) = IdRange(start+x, end+x)
def size = end - start
def isEmpty = end == start
def range = start until end
}
object IdRange
{
def overlaps(s: Seq[IdRange]) = if (s.isEmpty) None else {
val ranges = s.sorted
(ranges.tail zip ranges.init) find { case (a, b) => a overlaps b }
}
}
// An potentially empty inclusive range of 2-powers [min, max] (in bytes)
case class TransferSizes(min: Int, max: Int)
{
def this(x: Int) = this(x, x)
require (min <= max, s"Min transfer $min > max transfer $max")
require (min >= 0 && max >= 0, s"TransferSizes must be positive, got: ($min, $max)")
require (max == 0 || isPow2(max), s"TransferSizes must be a power of 2, got: $max")
require (min == 0 || isPow2(min), s"TransferSizes must be a power of 2, got: $min")
require (max == 0 || min != 0, s"TransferSize 0 is forbidden unless (0,0), got: ($min, $max)")
def none = min == 0
def contains(x: Int) = isPow2(x) && min <= x && x <= max
def containsLg(x: Int) = contains(1 << x)
def containsLg(x: UInt) =
if (none) false.B
else if (min == max) { log2Ceil(min).U === x }
else { log2Ceil(min).U <= x && x <= log2Ceil(max).U }
def contains(x: TransferSizes) = x.none || (min <= x.min && x.max <= max)
def intersect(x: TransferSizes) =
if (x.max < min || max < x.min) TransferSizes.none
else TransferSizes(scala.math.max(min, x.min), scala.math.min(max, x.max))
// Not a union, because the result may contain sizes contained by neither term
// NOT TO BE CONFUSED WITH COVERPOINTS
def mincover(x: TransferSizes) = {
if (none) {
x
} else if (x.none) {
this
} else {
TransferSizes(scala.math.min(min, x.min), scala.math.max(max, x.max))
}
}
override def toString() = "TransferSizes[%d, %d]".format(min, max)
}
object TransferSizes {
def apply(x: Int) = new TransferSizes(x)
val none = new TransferSizes(0)
def mincover(seq: Seq[TransferSizes]) = seq.foldLeft(none)(_ mincover _)
def intersect(seq: Seq[TransferSizes]) = seq.reduce(_ intersect _)
implicit def asBool(x: TransferSizes) = !x.none
}
// AddressSets specify the address space managed by the manager
// Base is the base address, and mask are the bits consumed by the manager
// e.g: base=0x200, mask=0xff describes a device managing 0x200-0x2ff
// e.g: base=0x1000, mask=0xf0f decribes a device managing 0x1000-0x100f, 0x1100-0x110f, ...
case class AddressSet(base: BigInt, mask: BigInt) extends Ordered[AddressSet]
{
// Forbid misaligned base address (and empty sets)
require ((base & mask) == 0, s"Mis-aligned AddressSets are forbidden, got: ${this.toString}")
require (base >= 0, s"AddressSet negative base is ambiguous: $base") // TL2 address widths are not fixed => negative is ambiguous
// We do allow negative mask (=> ignore all high bits)
def contains(x: BigInt) = ((x ^ base) & ~mask) == 0
def contains(x: UInt) = ((x ^ base.U).zext & (~mask).S) === 0.S
// turn x into an address contained in this set
def legalize(x: UInt): UInt = base.U | (mask.U & x)
// overlap iff bitwise: both care (~mask0 & ~mask1) => both equal (base0=base1)
def overlaps(x: AddressSet) = (~(mask | x.mask) & (base ^ x.base)) == 0
// contains iff bitwise: x.mask => mask && contains(x.base)
def contains(x: AddressSet) = ((x.mask | (base ^ x.base)) & ~mask) == 0
// The number of bytes to which the manager must be aligned
def alignment = ((mask + 1) & ~mask)
// Is this a contiguous memory range
def contiguous = alignment == mask+1
def finite = mask >= 0
def max = { require (finite, "Max cannot be calculated on infinite mask"); base | mask }
// Widen the match function to ignore all bits in imask
def widen(imask: BigInt) = AddressSet(base & ~imask, mask | imask)
// Return an AddressSet that only contains the addresses both sets contain
def intersect(x: AddressSet): Option[AddressSet] = {
if (!overlaps(x)) {
None
} else {
val r_mask = mask & x.mask
val r_base = base | x.base
Some(AddressSet(r_base, r_mask))
}
}
def subtract(x: AddressSet): Seq[AddressSet] = {
intersect(x) match {
case None => Seq(this)
case Some(remove) => AddressSet.enumerateBits(mask & ~remove.mask).map { bit =>
val nmask = (mask & (bit-1)) | remove.mask
val nbase = (remove.base ^ bit) & ~nmask
AddressSet(nbase, nmask)
}
}
}
// AddressSets have one natural Ordering (the containment order, if contiguous)
def compare(x: AddressSet) = {
val primary = (this.base - x.base).signum // smallest address first
val secondary = (x.mask - this.mask).signum // largest mask first
if (primary != 0) primary else secondary
}
// We always want to see things in hex
override def toString() = {
if (mask >= 0) {
"AddressSet(0x%x, 0x%x)".format(base, mask)
} else {
"AddressSet(0x%x, ~0x%x)".format(base, ~mask)
}
}
def toRanges = {
require (finite, "Ranges cannot be calculated on infinite mask")
val size = alignment
val fragments = mask & ~(size-1)
val bits = bitIndexes(fragments)
(BigInt(0) until (BigInt(1) << bits.size)).map { i =>
val off = bitIndexes(i).foldLeft(base) { case (a, b) => a.setBit(bits(b)) }
AddressRange(off, size)
}
}
}
object AddressSet
{
val everything = AddressSet(0, -1)
def misaligned(base: BigInt, size: BigInt, tail: Seq[AddressSet] = Seq()): Seq[AddressSet] = {
if (size == 0) tail.reverse else {
val maxBaseAlignment = base & (-base) // 0 for infinite (LSB)
val maxSizeAlignment = BigInt(1) << log2Floor(size) // MSB of size
val step =
if (maxBaseAlignment == 0 || maxBaseAlignment > maxSizeAlignment)
maxSizeAlignment else maxBaseAlignment
misaligned(base+step, size-step, AddressSet(base, step-1) +: tail)
}
}
def unify(seq: Seq[AddressSet], bit: BigInt): Seq[AddressSet] = {
// Pair terms up by ignoring 'bit'
seq.distinct.groupBy(x => x.copy(base = x.base & ~bit)).map { case (key, seq) =>
if (seq.size == 1) {
seq.head // singleton -> unaffected
} else {
key.copy(mask = key.mask | bit) // pair - widen mask by bit
}
}.toList
}
def unify(seq: Seq[AddressSet]): Seq[AddressSet] = {
val bits = seq.map(_.base).foldLeft(BigInt(0))(_ | _)
AddressSet.enumerateBits(bits).foldLeft(seq) { case (acc, bit) => unify(acc, bit) }.sorted
}
def enumerateMask(mask: BigInt): Seq[BigInt] = {
def helper(id: BigInt, tail: Seq[BigInt]): Seq[BigInt] =
if (id == mask) (id +: tail).reverse else helper(((~mask | id) + 1) & mask, id +: tail)
helper(0, Nil)
}
def enumerateBits(mask: BigInt): Seq[BigInt] = {
def helper(x: BigInt): Seq[BigInt] = {
if (x == 0) {
Nil
} else {
val bit = x & (-x)
bit +: helper(x & ~bit)
}
}
helper(mask)
}
}
case class BufferParams(depth: Int, flow: Boolean, pipe: Boolean)
{
require (depth >= 0, "Buffer depth must be >= 0")
def isDefined = depth > 0
def latency = if (isDefined && !flow) 1 else 0
def apply[T <: Data](x: DecoupledIO[T]) =
if (isDefined) Queue(x, depth, flow=flow, pipe=pipe)
else x
def irrevocable[T <: Data](x: ReadyValidIO[T]) =
if (isDefined) Queue.irrevocable(x, depth, flow=flow, pipe=pipe)
else x
def sq[T <: Data](x: DecoupledIO[T]) =
if (!isDefined) x else {
val sq = Module(new ShiftQueue(x.bits, depth, flow=flow, pipe=pipe))
sq.io.enq <> x
sq.io.deq
}
override def toString() = "BufferParams:%d%s%s".format(depth, if (flow) "F" else "", if (pipe) "P" else "")
}
object BufferParams
{
implicit def apply(depth: Int): BufferParams = BufferParams(depth, false, false)
val default = BufferParams(2)
val none = BufferParams(0)
val flow = BufferParams(1, true, false)
val pipe = BufferParams(1, false, true)
}
case class TriStateValue(value: Boolean, set: Boolean)
{
def update(orig: Boolean) = if (set) value else orig
}
object TriStateValue
{
implicit def apply(value: Boolean): TriStateValue = TriStateValue(value, true)
def unset = TriStateValue(false, false)
}
trait DirectedBuffers[T] {
def copyIn(x: BufferParams): T
def copyOut(x: BufferParams): T
def copyInOut(x: BufferParams): T
}
trait IdMapEntry {
def name: String
def from: IdRange
def to: IdRange
def isCache: Boolean
def requestFifo: Boolean
def maxTransactionsInFlight: Option[Int]
def pretty(fmt: String) =
if (from ne to) { // if the subclass uses the same reference for both from and to, assume its format string has an arity of 5
fmt.format(to.start, to.end, from.start, from.end, s""""$name"""", if (isCache) " [CACHE]" else "", if (requestFifo) " [FIFO]" else "")
} else {
fmt.format(from.start, from.end, s""""$name"""", if (isCache) " [CACHE]" else "", if (requestFifo) " [FIFO]" else "")
}
}
abstract class IdMap[T <: IdMapEntry] {
protected val fmt: String
val mapping: Seq[T]
def pretty: String = mapping.map(_.pretty(fmt)).mkString(",\n")
}
File Edges.scala:
// See LICENSE.SiFive for license details.
package freechips.rocketchip.tilelink
import chisel3._
import chisel3.util._
import chisel3.experimental.SourceInfo
import org.chipsalliance.cde.config.Parameters
import freechips.rocketchip.util._
class TLEdge(
client: TLClientPortParameters,
manager: TLManagerPortParameters,
params: Parameters,
sourceInfo: SourceInfo)
extends TLEdgeParameters(client, manager, params, sourceInfo)
{
def isAligned(address: UInt, lgSize: UInt): Bool = {
if (maxLgSize == 0) true.B else {
val mask = UIntToOH1(lgSize, maxLgSize)
(address & mask) === 0.U
}
}
def mask(address: UInt, lgSize: UInt): UInt =
MaskGen(address, lgSize, manager.beatBytes)
def staticHasData(bundle: TLChannel): Option[Boolean] = {
bundle match {
case _:TLBundleA => {
// Do there exist A messages with Data?
val aDataYes = manager.anySupportArithmetic || manager.anySupportLogical || manager.anySupportPutFull || manager.anySupportPutPartial
// Do there exist A messages without Data?
val aDataNo = manager.anySupportAcquireB || manager.anySupportGet || manager.anySupportHint
// Statically optimize the case where hasData is a constant
if (!aDataYes) Some(false) else if (!aDataNo) Some(true) else None
}
case _:TLBundleB => {
// Do there exist B messages with Data?
val bDataYes = client.anySupportArithmetic || client.anySupportLogical || client.anySupportPutFull || client.anySupportPutPartial
// Do there exist B messages without Data?
val bDataNo = client.anySupportProbe || client.anySupportGet || client.anySupportHint
// Statically optimize the case where hasData is a constant
if (!bDataYes) Some(false) else if (!bDataNo) Some(true) else None
}
case _:TLBundleC => {
// Do there eixst C messages with Data?
val cDataYes = client.anySupportGet || client.anySupportArithmetic || client.anySupportLogical || client.anySupportProbe
// Do there exist C messages without Data?
val cDataNo = client.anySupportPutFull || client.anySupportPutPartial || client.anySupportHint || client.anySupportProbe
if (!cDataYes) Some(false) else if (!cDataNo) Some(true) else None
}
case _:TLBundleD => {
// Do there eixst D messages with Data?
val dDataYes = manager.anySupportGet || manager.anySupportArithmetic || manager.anySupportLogical || manager.anySupportAcquireB
// Do there exist D messages without Data?
val dDataNo = manager.anySupportPutFull || manager.anySupportPutPartial || manager.anySupportHint || manager.anySupportAcquireT
if (!dDataYes) Some(false) else if (!dDataNo) Some(true) else None
}
case _:TLBundleE => Some(false)
}
}
def isRequest(x: TLChannel): Bool = {
x match {
case a: TLBundleA => true.B
case b: TLBundleB => true.B
case c: TLBundleC => c.opcode(2) && c.opcode(1)
// opcode === TLMessages.Release ||
// opcode === TLMessages.ReleaseData
case d: TLBundleD => d.opcode(2) && !d.opcode(1)
// opcode === TLMessages.Grant ||
// opcode === TLMessages.GrantData
case e: TLBundleE => false.B
}
}
def isResponse(x: TLChannel): Bool = {
x match {
case a: TLBundleA => false.B
case b: TLBundleB => false.B
case c: TLBundleC => !c.opcode(2) || !c.opcode(1)
// opcode =/= TLMessages.Release &&
// opcode =/= TLMessages.ReleaseData
case d: TLBundleD => true.B // Grant isResponse + isRequest
case e: TLBundleE => true.B
}
}
def hasData(x: TLChannel): Bool = {
val opdata = x match {
case a: TLBundleA => !a.opcode(2)
// opcode === TLMessages.PutFullData ||
// opcode === TLMessages.PutPartialData ||
// opcode === TLMessages.ArithmeticData ||
// opcode === TLMessages.LogicalData
case b: TLBundleB => !b.opcode(2)
// opcode === TLMessages.PutFullData ||
// opcode === TLMessages.PutPartialData ||
// opcode === TLMessages.ArithmeticData ||
// opcode === TLMessages.LogicalData
case c: TLBundleC => c.opcode(0)
// opcode === TLMessages.AccessAckData ||
// opcode === TLMessages.ProbeAckData ||
// opcode === TLMessages.ReleaseData
case d: TLBundleD => d.opcode(0)
// opcode === TLMessages.AccessAckData ||
// opcode === TLMessages.GrantData
case e: TLBundleE => false.B
}
staticHasData(x).map(_.B).getOrElse(opdata)
}
def opcode(x: TLDataChannel): UInt = {
x match {
case a: TLBundleA => a.opcode
case b: TLBundleB => b.opcode
case c: TLBundleC => c.opcode
case d: TLBundleD => d.opcode
}
}
def param(x: TLDataChannel): UInt = {
x match {
case a: TLBundleA => a.param
case b: TLBundleB => b.param
case c: TLBundleC => c.param
case d: TLBundleD => d.param
}
}
def size(x: TLDataChannel): UInt = {
x match {
case a: TLBundleA => a.size
case b: TLBundleB => b.size
case c: TLBundleC => c.size
case d: TLBundleD => d.size
}
}
def data(x: TLDataChannel): UInt = {
x match {
case a: TLBundleA => a.data
case b: TLBundleB => b.data
case c: TLBundleC => c.data
case d: TLBundleD => d.data
}
}
def corrupt(x: TLDataChannel): Bool = {
x match {
case a: TLBundleA => a.corrupt
case b: TLBundleB => b.corrupt
case c: TLBundleC => c.corrupt
case d: TLBundleD => d.corrupt
}
}
def mask(x: TLAddrChannel): UInt = {
x match {
case a: TLBundleA => a.mask
case b: TLBundleB => b.mask
case c: TLBundleC => mask(c.address, c.size)
}
}
def full_mask(x: TLAddrChannel): UInt = {
x match {
case a: TLBundleA => mask(a.address, a.size)
case b: TLBundleB => mask(b.address, b.size)
case c: TLBundleC => mask(c.address, c.size)
}
}
def address(x: TLAddrChannel): UInt = {
x match {
case a: TLBundleA => a.address
case b: TLBundleB => b.address
case c: TLBundleC => c.address
}
}
def source(x: TLDataChannel): UInt = {
x match {
case a: TLBundleA => a.source
case b: TLBundleB => b.source
case c: TLBundleC => c.source
case d: TLBundleD => d.source
}
}
def addr_hi(x: UInt): UInt = x >> log2Ceil(manager.beatBytes)
def addr_lo(x: UInt): UInt =
if (manager.beatBytes == 1) 0.U else x(log2Ceil(manager.beatBytes)-1, 0)
def addr_hi(x: TLAddrChannel): UInt = addr_hi(address(x))
def addr_lo(x: TLAddrChannel): UInt = addr_lo(address(x))
def numBeats(x: TLChannel): UInt = {
x match {
case _: TLBundleE => 1.U
case bundle: TLDataChannel => {
val hasData = this.hasData(bundle)
val size = this.size(bundle)
val cutoff = log2Ceil(manager.beatBytes)
val small = if (manager.maxTransfer <= manager.beatBytes) true.B else size <= (cutoff).U
val decode = UIntToOH(size, maxLgSize+1) >> cutoff
Mux(hasData, decode | small.asUInt, 1.U)
}
}
}
def numBeats1(x: TLChannel): UInt = {
x match {
case _: TLBundleE => 0.U
case bundle: TLDataChannel => {
if (maxLgSize == 0) {
0.U
} else {
val decode = UIntToOH1(size(bundle), maxLgSize) >> log2Ceil(manager.beatBytes)
Mux(hasData(bundle), decode, 0.U)
}
}
}
}
def firstlastHelper(bits: TLChannel, fire: Bool): (Bool, Bool, Bool, UInt) = {
val beats1 = numBeats1(bits)
val counter = RegInit(0.U(log2Up(maxTransfer / manager.beatBytes).W))
val counter1 = counter - 1.U
val first = counter === 0.U
val last = counter === 1.U || beats1 === 0.U
val done = last && fire
val count = (beats1 & ~counter1)
when (fire) {
counter := Mux(first, beats1, counter1)
}
(first, last, done, count)
}
def first(bits: TLChannel, fire: Bool): Bool = firstlastHelper(bits, fire)._1
def first(x: DecoupledIO[TLChannel]): Bool = first(x.bits, x.fire)
def first(x: ValidIO[TLChannel]): Bool = first(x.bits, x.valid)
def last(bits: TLChannel, fire: Bool): Bool = firstlastHelper(bits, fire)._2
def last(x: DecoupledIO[TLChannel]): Bool = last(x.bits, x.fire)
def last(x: ValidIO[TLChannel]): Bool = last(x.bits, x.valid)
def done(bits: TLChannel, fire: Bool): Bool = firstlastHelper(bits, fire)._3
def done(x: DecoupledIO[TLChannel]): Bool = done(x.bits, x.fire)
def done(x: ValidIO[TLChannel]): Bool = done(x.bits, x.valid)
def firstlast(bits: TLChannel, fire: Bool): (Bool, Bool, Bool) = {
val r = firstlastHelper(bits, fire)
(r._1, r._2, r._3)
}
def firstlast(x: DecoupledIO[TLChannel]): (Bool, Bool, Bool) = firstlast(x.bits, x.fire)
def firstlast(x: ValidIO[TLChannel]): (Bool, Bool, Bool) = firstlast(x.bits, x.valid)
def count(bits: TLChannel, fire: Bool): (Bool, Bool, Bool, UInt) = {
val r = firstlastHelper(bits, fire)
(r._1, r._2, r._3, r._4)
}
def count(x: DecoupledIO[TLChannel]): (Bool, Bool, Bool, UInt) = count(x.bits, x.fire)
def count(x: ValidIO[TLChannel]): (Bool, Bool, Bool, UInt) = count(x.bits, x.valid)
def addr_inc(bits: TLChannel, fire: Bool): (Bool, Bool, Bool, UInt) = {
val r = firstlastHelper(bits, fire)
(r._1, r._2, r._3, r._4 << log2Ceil(manager.beatBytes))
}
def addr_inc(x: DecoupledIO[TLChannel]): (Bool, Bool, Bool, UInt) = addr_inc(x.bits, x.fire)
def addr_inc(x: ValidIO[TLChannel]): (Bool, Bool, Bool, UInt) = addr_inc(x.bits, x.valid)
// Does the request need T permissions to be executed?
def needT(a: TLBundleA): Bool = {
val acq_needT = MuxLookup(a.param, WireDefault(Bool(), DontCare))(Array(
TLPermissions.NtoB -> false.B,
TLPermissions.NtoT -> true.B,
TLPermissions.BtoT -> true.B))
MuxLookup(a.opcode, WireDefault(Bool(), DontCare))(Array(
TLMessages.PutFullData -> true.B,
TLMessages.PutPartialData -> true.B,
TLMessages.ArithmeticData -> true.B,
TLMessages.LogicalData -> true.B,
TLMessages.Get -> false.B,
TLMessages.Hint -> MuxLookup(a.param, WireDefault(Bool(), DontCare))(Array(
TLHints.PREFETCH_READ -> false.B,
TLHints.PREFETCH_WRITE -> true.B)),
TLMessages.AcquireBlock -> acq_needT,
TLMessages.AcquirePerm -> acq_needT))
}
// This is a very expensive circuit; use only if you really mean it!
def inFlight(x: TLBundle): (UInt, UInt) = {
val flight = RegInit(0.U(log2Ceil(3*client.endSourceId+1).W))
val bce = manager.anySupportAcquireB && client.anySupportProbe
val (a_first, a_last, _) = firstlast(x.a)
val (b_first, b_last, _) = firstlast(x.b)
val (c_first, c_last, _) = firstlast(x.c)
val (d_first, d_last, _) = firstlast(x.d)
val (e_first, e_last, _) = firstlast(x.e)
val (a_request, a_response) = (isRequest(x.a.bits), isResponse(x.a.bits))
val (b_request, b_response) = (isRequest(x.b.bits), isResponse(x.b.bits))
val (c_request, c_response) = (isRequest(x.c.bits), isResponse(x.c.bits))
val (d_request, d_response) = (isRequest(x.d.bits), isResponse(x.d.bits))
val (e_request, e_response) = (isRequest(x.e.bits), isResponse(x.e.bits))
val a_inc = x.a.fire && a_first && a_request
val b_inc = x.b.fire && b_first && b_request
val c_inc = x.c.fire && c_first && c_request
val d_inc = x.d.fire && d_first && d_request
val e_inc = x.e.fire && e_first && e_request
val inc = Cat(Seq(a_inc, d_inc) ++ (if (bce) Seq(b_inc, c_inc, e_inc) else Nil))
val a_dec = x.a.fire && a_last && a_response
val b_dec = x.b.fire && b_last && b_response
val c_dec = x.c.fire && c_last && c_response
val d_dec = x.d.fire && d_last && d_response
val e_dec = x.e.fire && e_last && e_response
val dec = Cat(Seq(a_dec, d_dec) ++ (if (bce) Seq(b_dec, c_dec, e_dec) else Nil))
val next_flight = flight + PopCount(inc) - PopCount(dec)
flight := next_flight
(flight, next_flight)
}
def prettySourceMapping(context: String): String = {
s"TL-Source mapping for $context:\n${(new TLSourceIdMap(client)).pretty}\n"
}
}
class TLEdgeOut(
client: TLClientPortParameters,
manager: TLManagerPortParameters,
params: Parameters,
sourceInfo: SourceInfo)
extends TLEdge(client, manager, params, sourceInfo)
{
// Transfers
def AcquireBlock(fromSource: UInt, toAddress: UInt, lgSize: UInt, growPermissions: UInt) = {
require (manager.anySupportAcquireB, s"TileLink: No managers visible from this edge support Acquires, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsAcquireBFast(toAddress, lgSize)
val a = Wire(new TLBundleA(bundle))
a.opcode := TLMessages.AcquireBlock
a.param := growPermissions
a.size := lgSize
a.source := fromSource
a.address := toAddress
a.user := DontCare
a.echo := DontCare
a.mask := mask(toAddress, lgSize)
a.data := DontCare
a.corrupt := false.B
(legal, a)
}
def AcquirePerm(fromSource: UInt, toAddress: UInt, lgSize: UInt, growPermissions: UInt) = {
require (manager.anySupportAcquireB, s"TileLink: No managers visible from this edge support Acquires, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsAcquireBFast(toAddress, lgSize)
val a = Wire(new TLBundleA(bundle))
a.opcode := TLMessages.AcquirePerm
a.param := growPermissions
a.size := lgSize
a.source := fromSource
a.address := toAddress
a.user := DontCare
a.echo := DontCare
a.mask := mask(toAddress, lgSize)
a.data := DontCare
a.corrupt := false.B
(legal, a)
}
def Release(fromSource: UInt, toAddress: UInt, lgSize: UInt, shrinkPermissions: UInt): (Bool, TLBundleC) = {
require (manager.anySupportAcquireB, s"TileLink: No managers visible from this edge support Acquires, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsAcquireBFast(toAddress, lgSize)
val c = Wire(new TLBundleC(bundle))
c.opcode := TLMessages.Release
c.param := shrinkPermissions
c.size := lgSize
c.source := fromSource
c.address := toAddress
c.user := DontCare
c.echo := DontCare
c.data := DontCare
c.corrupt := false.B
(legal, c)
}
def Release(fromSource: UInt, toAddress: UInt, lgSize: UInt, shrinkPermissions: UInt, data: UInt, corrupt: Bool): (Bool, TLBundleC) = {
require (manager.anySupportAcquireB, s"TileLink: No managers visible from this edge support Acquires, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsAcquireBFast(toAddress, lgSize)
val c = Wire(new TLBundleC(bundle))
c.opcode := TLMessages.ReleaseData
c.param := shrinkPermissions
c.size := lgSize
c.source := fromSource
c.address := toAddress
c.user := DontCare
c.echo := DontCare
c.data := data
c.corrupt := corrupt
(legal, c)
}
def Release(fromSource: UInt, toAddress: UInt, lgSize: UInt, shrinkPermissions: UInt, data: UInt): (Bool, TLBundleC) =
Release(fromSource, toAddress, lgSize, shrinkPermissions, data, false.B)
def ProbeAck(b: TLBundleB, reportPermissions: UInt): TLBundleC =
ProbeAck(b.source, b.address, b.size, reportPermissions)
def ProbeAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, reportPermissions: UInt): TLBundleC = {
val c = Wire(new TLBundleC(bundle))
c.opcode := TLMessages.ProbeAck
c.param := reportPermissions
c.size := lgSize
c.source := fromSource
c.address := toAddress
c.user := DontCare
c.echo := DontCare
c.data := DontCare
c.corrupt := false.B
c
}
def ProbeAck(b: TLBundleB, reportPermissions: UInt, data: UInt): TLBundleC =
ProbeAck(b.source, b.address, b.size, reportPermissions, data)
def ProbeAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, reportPermissions: UInt, data: UInt, corrupt: Bool): TLBundleC = {
val c = Wire(new TLBundleC(bundle))
c.opcode := TLMessages.ProbeAckData
c.param := reportPermissions
c.size := lgSize
c.source := fromSource
c.address := toAddress
c.user := DontCare
c.echo := DontCare
c.data := data
c.corrupt := corrupt
c
}
def ProbeAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, reportPermissions: UInt, data: UInt): TLBundleC =
ProbeAck(fromSource, toAddress, lgSize, reportPermissions, data, false.B)
def GrantAck(d: TLBundleD): TLBundleE = GrantAck(d.sink)
def GrantAck(toSink: UInt): TLBundleE = {
val e = Wire(new TLBundleE(bundle))
e.sink := toSink
e
}
// Accesses
def Get(fromSource: UInt, toAddress: UInt, lgSize: UInt) = {
require (manager.anySupportGet, s"TileLink: No managers visible from this edge support Gets, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsGetFast(toAddress, lgSize)
val a = Wire(new TLBundleA(bundle))
a.opcode := TLMessages.Get
a.param := 0.U
a.size := lgSize
a.source := fromSource
a.address := toAddress
a.user := DontCare
a.echo := DontCare
a.mask := mask(toAddress, lgSize)
a.data := DontCare
a.corrupt := false.B
(legal, a)
}
def Put(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt): (Bool, TLBundleA) =
Put(fromSource, toAddress, lgSize, data, false.B)
def Put(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, corrupt: Bool): (Bool, TLBundleA) = {
require (manager.anySupportPutFull, s"TileLink: No managers visible from this edge support Puts, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsPutFullFast(toAddress, lgSize)
val a = Wire(new TLBundleA(bundle))
a.opcode := TLMessages.PutFullData
a.param := 0.U
a.size := lgSize
a.source := fromSource
a.address := toAddress
a.user := DontCare
a.echo := DontCare
a.mask := mask(toAddress, lgSize)
a.data := data
a.corrupt := corrupt
(legal, a)
}
def Put(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, mask: UInt): (Bool, TLBundleA) =
Put(fromSource, toAddress, lgSize, data, mask, false.B)
def Put(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, mask: UInt, corrupt: Bool): (Bool, TLBundleA) = {
require (manager.anySupportPutPartial, s"TileLink: No managers visible from this edge support masked Puts, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsPutPartialFast(toAddress, lgSize)
val a = Wire(new TLBundleA(bundle))
a.opcode := TLMessages.PutPartialData
a.param := 0.U
a.size := lgSize
a.source := fromSource
a.address := toAddress
a.user := DontCare
a.echo := DontCare
a.mask := mask
a.data := data
a.corrupt := corrupt
(legal, a)
}
def Arithmetic(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, atomic: UInt, corrupt: Bool = false.B): (Bool, TLBundleA) = {
require (manager.anySupportArithmetic, s"TileLink: No managers visible from this edge support arithmetic AMOs, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsArithmeticFast(toAddress, lgSize)
val a = Wire(new TLBundleA(bundle))
a.opcode := TLMessages.ArithmeticData
a.param := atomic
a.size := lgSize
a.source := fromSource
a.address := toAddress
a.user := DontCare
a.echo := DontCare
a.mask := mask(toAddress, lgSize)
a.data := data
a.corrupt := corrupt
(legal, a)
}
def Logical(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, atomic: UInt, corrupt: Bool = false.B) = {
require (manager.anySupportLogical, s"TileLink: No managers visible from this edge support logical AMOs, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsLogicalFast(toAddress, lgSize)
val a = Wire(new TLBundleA(bundle))
a.opcode := TLMessages.LogicalData
a.param := atomic
a.size := lgSize
a.source := fromSource
a.address := toAddress
a.user := DontCare
a.echo := DontCare
a.mask := mask(toAddress, lgSize)
a.data := data
a.corrupt := corrupt
(legal, a)
}
def Hint(fromSource: UInt, toAddress: UInt, lgSize: UInt, param: UInt) = {
require (manager.anySupportHint, s"TileLink: No managers visible from this edge support Hints, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsHintFast(toAddress, lgSize)
val a = Wire(new TLBundleA(bundle))
a.opcode := TLMessages.Hint
a.param := param
a.size := lgSize
a.source := fromSource
a.address := toAddress
a.user := DontCare
a.echo := DontCare
a.mask := mask(toAddress, lgSize)
a.data := DontCare
a.corrupt := false.B
(legal, a)
}
def AccessAck(b: TLBundleB): TLBundleC = AccessAck(b.source, address(b), b.size)
def AccessAck(fromSource: UInt, toAddress: UInt, lgSize: UInt) = {
val c = Wire(new TLBundleC(bundle))
c.opcode := TLMessages.AccessAck
c.param := 0.U
c.size := lgSize
c.source := fromSource
c.address := toAddress
c.user := DontCare
c.echo := DontCare
c.data := DontCare
c.corrupt := false.B
c
}
def AccessAck(b: TLBundleB, data: UInt): TLBundleC = AccessAck(b.source, address(b), b.size, data)
def AccessAck(b: TLBundleB, data: UInt, corrupt: Bool): TLBundleC = AccessAck(b.source, address(b), b.size, data, corrupt)
def AccessAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt): TLBundleC = AccessAck(fromSource, toAddress, lgSize, data, false.B)
def AccessAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, corrupt: Bool) = {
val c = Wire(new TLBundleC(bundle))
c.opcode := TLMessages.AccessAckData
c.param := 0.U
c.size := lgSize
c.source := fromSource
c.address := toAddress
c.user := DontCare
c.echo := DontCare
c.data := data
c.corrupt := corrupt
c
}
def HintAck(b: TLBundleB): TLBundleC = HintAck(b.source, address(b), b.size)
def HintAck(fromSource: UInt, toAddress: UInt, lgSize: UInt) = {
val c = Wire(new TLBundleC(bundle))
c.opcode := TLMessages.HintAck
c.param := 0.U
c.size := lgSize
c.source := fromSource
c.address := toAddress
c.user := DontCare
c.echo := DontCare
c.data := DontCare
c.corrupt := false.B
c
}
}
class TLEdgeIn(
client: TLClientPortParameters,
manager: TLManagerPortParameters,
params: Parameters,
sourceInfo: SourceInfo)
extends TLEdge(client, manager, params, sourceInfo)
{
private def myTranspose[T](x: Seq[Seq[T]]): Seq[Seq[T]] = {
val todo = x.filter(!_.isEmpty)
val heads = todo.map(_.head)
val tails = todo.map(_.tail)
if (todo.isEmpty) Nil else { heads +: myTranspose(tails) }
}
// Transfers
def Probe(fromAddress: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt) = {
require (client.anySupportProbe, s"TileLink: No clients visible from this edge support probes, but one of these managers tried to issue one: ${manager.managers}")
val legal = client.supportsProbe(toSource, lgSize)
val b = Wire(new TLBundleB(bundle))
b.opcode := TLMessages.Probe
b.param := capPermissions
b.size := lgSize
b.source := toSource
b.address := fromAddress
b.mask := mask(fromAddress, lgSize)
b.data := DontCare
b.corrupt := false.B
(legal, b)
}
def Grant(fromSink: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt): TLBundleD = Grant(fromSink, toSource, lgSize, capPermissions, false.B)
def Grant(fromSink: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt, denied: Bool) = {
val d = Wire(new TLBundleD(bundle))
d.opcode := TLMessages.Grant
d.param := capPermissions
d.size := lgSize
d.source := toSource
d.sink := fromSink
d.denied := denied
d.user := DontCare
d.echo := DontCare
d.data := DontCare
d.corrupt := false.B
d
}
def Grant(fromSink: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt, data: UInt): TLBundleD = Grant(fromSink, toSource, lgSize, capPermissions, data, false.B, false.B)
def Grant(fromSink: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt, data: UInt, denied: Bool, corrupt: Bool) = {
val d = Wire(new TLBundleD(bundle))
d.opcode := TLMessages.GrantData
d.param := capPermissions
d.size := lgSize
d.source := toSource
d.sink := fromSink
d.denied := denied
d.user := DontCare
d.echo := DontCare
d.data := data
d.corrupt := corrupt
d
}
def ReleaseAck(c: TLBundleC): TLBundleD = ReleaseAck(c.source, c.size, false.B)
def ReleaseAck(toSource: UInt, lgSize: UInt, denied: Bool): TLBundleD = {
val d = Wire(new TLBundleD(bundle))
d.opcode := TLMessages.ReleaseAck
d.param := 0.U
d.size := lgSize
d.source := toSource
d.sink := 0.U
d.denied := denied
d.user := DontCare
d.echo := DontCare
d.data := DontCare
d.corrupt := false.B
d
}
// Accesses
def Get(fromAddress: UInt, toSource: UInt, lgSize: UInt) = {
require (client.anySupportGet, s"TileLink: No clients visible from this edge support Gets, but one of these managers would try to issue one: ${manager.managers}")
val legal = client.supportsGet(toSource, lgSize)
val b = Wire(new TLBundleB(bundle))
b.opcode := TLMessages.Get
b.param := 0.U
b.size := lgSize
b.source := toSource
b.address := fromAddress
b.mask := mask(fromAddress, lgSize)
b.data := DontCare
b.corrupt := false.B
(legal, b)
}
def Put(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt): (Bool, TLBundleB) =
Put(fromAddress, toSource, lgSize, data, false.B)
def Put(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, corrupt: Bool): (Bool, TLBundleB) = {
require (client.anySupportPutFull, s"TileLink: No clients visible from this edge support Puts, but one of these managers would try to issue one: ${manager.managers}")
val legal = client.supportsPutFull(toSource, lgSize)
val b = Wire(new TLBundleB(bundle))
b.opcode := TLMessages.PutFullData
b.param := 0.U
b.size := lgSize
b.source := toSource
b.address := fromAddress
b.mask := mask(fromAddress, lgSize)
b.data := data
b.corrupt := corrupt
(legal, b)
}
def Put(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, mask: UInt): (Bool, TLBundleB) =
Put(fromAddress, toSource, lgSize, data, mask, false.B)
def Put(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, mask: UInt, corrupt: Bool): (Bool, TLBundleB) = {
require (client.anySupportPutPartial, s"TileLink: No clients visible from this edge support masked Puts, but one of these managers would try to request one: ${manager.managers}")
val legal = client.supportsPutPartial(toSource, lgSize)
val b = Wire(new TLBundleB(bundle))
b.opcode := TLMessages.PutPartialData
b.param := 0.U
b.size := lgSize
b.source := toSource
b.address := fromAddress
b.mask := mask
b.data := data
b.corrupt := corrupt
(legal, b)
}
def Arithmetic(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, atomic: UInt, corrupt: Bool = false.B) = {
require (client.anySupportArithmetic, s"TileLink: No clients visible from this edge support arithmetic AMOs, but one of these managers would try to request one: ${manager.managers}")
val legal = client.supportsArithmetic(toSource, lgSize)
val b = Wire(new TLBundleB(bundle))
b.opcode := TLMessages.ArithmeticData
b.param := atomic
b.size := lgSize
b.source := toSource
b.address := fromAddress
b.mask := mask(fromAddress, lgSize)
b.data := data
b.corrupt := corrupt
(legal, b)
}
def Logical(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, atomic: UInt, corrupt: Bool = false.B) = {
require (client.anySupportLogical, s"TileLink: No clients visible from this edge support logical AMOs, but one of these managers would try to request one: ${manager.managers}")
val legal = client.supportsLogical(toSource, lgSize)
val b = Wire(new TLBundleB(bundle))
b.opcode := TLMessages.LogicalData
b.param := atomic
b.size := lgSize
b.source := toSource
b.address := fromAddress
b.mask := mask(fromAddress, lgSize)
b.data := data
b.corrupt := corrupt
(legal, b)
}
def Hint(fromAddress: UInt, toSource: UInt, lgSize: UInt, param: UInt) = {
require (client.anySupportHint, s"TileLink: No clients visible from this edge support Hints, but one of these managers would try to request one: ${manager.managers}")
val legal = client.supportsHint(toSource, lgSize)
val b = Wire(new TLBundleB(bundle))
b.opcode := TLMessages.Hint
b.param := param
b.size := lgSize
b.source := toSource
b.address := fromAddress
b.mask := mask(fromAddress, lgSize)
b.data := DontCare
b.corrupt := false.B
(legal, b)
}
def AccessAck(a: TLBundleA): TLBundleD = AccessAck(a.source, a.size)
def AccessAck(a: TLBundleA, denied: Bool): TLBundleD = AccessAck(a.source, a.size, denied)
def AccessAck(toSource: UInt, lgSize: UInt): TLBundleD = AccessAck(toSource, lgSize, false.B)
def AccessAck(toSource: UInt, lgSize: UInt, denied: Bool) = {
val d = Wire(new TLBundleD(bundle))
d.opcode := TLMessages.AccessAck
d.param := 0.U
d.size := lgSize
d.source := toSource
d.sink := 0.U
d.denied := denied
d.user := DontCare
d.echo := DontCare
d.data := DontCare
d.corrupt := false.B
d
}
def AccessAck(a: TLBundleA, data: UInt): TLBundleD = AccessAck(a.source, a.size, data)
def AccessAck(a: TLBundleA, data: UInt, denied: Bool, corrupt: Bool): TLBundleD = AccessAck(a.source, a.size, data, denied, corrupt)
def AccessAck(toSource: UInt, lgSize: UInt, data: UInt): TLBundleD = AccessAck(toSource, lgSize, data, false.B, false.B)
def AccessAck(toSource: UInt, lgSize: UInt, data: UInt, denied: Bool, corrupt: Bool) = {
val d = Wire(new TLBundleD(bundle))
d.opcode := TLMessages.AccessAckData
d.param := 0.U
d.size := lgSize
d.source := toSource
d.sink := 0.U
d.denied := denied
d.user := DontCare
d.echo := DontCare
d.data := data
d.corrupt := corrupt
d
}
def HintAck(a: TLBundleA): TLBundleD = HintAck(a, false.B)
def HintAck(a: TLBundleA, denied: Bool): TLBundleD = HintAck(a.source, a.size, denied)
def HintAck(toSource: UInt, lgSize: UInt): TLBundleD = HintAck(toSource, lgSize, false.B)
def HintAck(toSource: UInt, lgSize: UInt, denied: Bool) = {
val d = Wire(new TLBundleD(bundle))
d.opcode := TLMessages.HintAck
d.param := 0.U
d.size := lgSize
d.source := toSource
d.sink := 0.U
d.denied := denied
d.user := DontCare
d.echo := DontCare
d.data := DontCare
d.corrupt := false.B
d
}
}
| module TLMonitor_7( // @[Monitor.scala:36:7]
input clock, // @[Monitor.scala:36:7]
input reset, // @[Monitor.scala:36:7]
input io_in_a_ready, // @[Monitor.scala:20:14]
input io_in_a_valid, // @[Monitor.scala:20:14]
input [2:0] io_in_a_bits_opcode, // @[Monitor.scala:20:14]
input [2:0] io_in_a_bits_param, // @[Monitor.scala:20:14]
input [2:0] io_in_a_bits_size, // @[Monitor.scala:20:14]
input [6:0] io_in_a_bits_source, // @[Monitor.scala:20:14]
input [28:0] io_in_a_bits_address, // @[Monitor.scala:20:14]
input [7:0] io_in_a_bits_mask, // @[Monitor.scala:20:14]
input [63:0] io_in_a_bits_data, // @[Monitor.scala:20:14]
input io_in_a_bits_corrupt, // @[Monitor.scala:20:14]
input io_in_d_ready, // @[Monitor.scala:20:14]
input io_in_d_valid, // @[Monitor.scala:20:14]
input [2:0] io_in_d_bits_opcode, // @[Monitor.scala:20:14]
input [2:0] io_in_d_bits_size, // @[Monitor.scala:20:14]
input [6:0] io_in_d_bits_source, // @[Monitor.scala:20:14]
input [63:0] io_in_d_bits_data // @[Monitor.scala:20:14]
);
wire [31:0] _plusarg_reader_1_out; // @[PlusArg.scala:80:11]
wire [31:0] _plusarg_reader_out; // @[PlusArg.scala:80:11]
wire io_in_a_ready_0 = io_in_a_ready; // @[Monitor.scala:36:7]
wire io_in_a_valid_0 = io_in_a_valid; // @[Monitor.scala:36:7]
wire [2:0] io_in_a_bits_opcode_0 = io_in_a_bits_opcode; // @[Monitor.scala:36:7]
wire [2:0] io_in_a_bits_param_0 = io_in_a_bits_param; // @[Monitor.scala:36:7]
wire [2:0] io_in_a_bits_size_0 = io_in_a_bits_size; // @[Monitor.scala:36:7]
wire [6:0] io_in_a_bits_source_0 = io_in_a_bits_source; // @[Monitor.scala:36:7]
wire [28:0] io_in_a_bits_address_0 = io_in_a_bits_address; // @[Monitor.scala:36:7]
wire [7:0] io_in_a_bits_mask_0 = io_in_a_bits_mask; // @[Monitor.scala:36:7]
wire [63:0] io_in_a_bits_data_0 = io_in_a_bits_data; // @[Monitor.scala:36:7]
wire io_in_a_bits_corrupt_0 = io_in_a_bits_corrupt; // @[Monitor.scala:36:7]
wire io_in_d_ready_0 = io_in_d_ready; // @[Monitor.scala:36:7]
wire io_in_d_valid_0 = io_in_d_valid; // @[Monitor.scala:36:7]
wire [2:0] io_in_d_bits_opcode_0 = io_in_d_bits_opcode; // @[Monitor.scala:36:7]
wire [2:0] io_in_d_bits_size_0 = io_in_d_bits_size; // @[Monitor.scala:36:7]
wire [6:0] io_in_d_bits_source_0 = io_in_d_bits_source; // @[Monitor.scala:36:7]
wire [63:0] io_in_d_bits_data_0 = io_in_d_bits_data; // @[Monitor.scala:36:7]
wire io_in_d_bits_sink = 1'h0; // @[Monitor.scala:36:7]
wire io_in_d_bits_denied = 1'h0; // @[Monitor.scala:36:7]
wire io_in_d_bits_corrupt = 1'h0; // @[Monitor.scala:36:7]
wire sink_ok = 1'h0; // @[Monitor.scala:309:31]
wire _c_first_WIRE_ready = 1'h0; // @[Bundles.scala:265:74]
wire _c_first_WIRE_valid = 1'h0; // @[Bundles.scala:265:74]
wire _c_first_WIRE_bits_corrupt = 1'h0; // @[Bundles.scala:265:74]
wire _c_first_WIRE_1_ready = 1'h0; // @[Bundles.scala:265:61]
wire _c_first_WIRE_1_valid = 1'h0; // @[Bundles.scala:265:61]
wire _c_first_WIRE_1_bits_corrupt = 1'h0; // @[Bundles.scala:265:61]
wire _c_first_WIRE_2_ready = 1'h0; // @[Bundles.scala:265:74]
wire _c_first_WIRE_2_valid = 1'h0; // @[Bundles.scala:265:74]
wire _c_first_WIRE_2_bits_corrupt = 1'h0; // @[Bundles.scala:265:74]
wire _c_first_WIRE_3_ready = 1'h0; // @[Bundles.scala:265:61]
wire _c_first_WIRE_3_valid = 1'h0; // @[Bundles.scala:265:61]
wire _c_first_WIRE_3_bits_corrupt = 1'h0; // @[Bundles.scala:265:61]
wire _c_first_T = 1'h0; // @[Decoupled.scala:51:35]
wire c_first_beats1_opdata = 1'h0; // @[Edges.scala:102:36]
wire _c_first_last_T = 1'h0; // @[Edges.scala:232:25]
wire c_first_done = 1'h0; // @[Edges.scala:233:22]
wire _c_set_wo_ready_WIRE_ready = 1'h0; // @[Bundles.scala:265:74]
wire _c_set_wo_ready_WIRE_valid = 1'h0; // @[Bundles.scala:265:74]
wire _c_set_wo_ready_WIRE_bits_corrupt = 1'h0; // @[Bundles.scala:265:74]
wire _c_set_wo_ready_WIRE_1_ready = 1'h0; // @[Bundles.scala:265:61]
wire _c_set_wo_ready_WIRE_1_valid = 1'h0; // @[Bundles.scala:265:61]
wire _c_set_wo_ready_WIRE_1_bits_corrupt = 1'h0; // @[Bundles.scala:265:61]
wire _c_set_WIRE_ready = 1'h0; // @[Bundles.scala:265:74]
wire _c_set_WIRE_valid = 1'h0; // @[Bundles.scala:265:74]
wire _c_set_WIRE_bits_corrupt = 1'h0; // @[Bundles.scala:265:74]
wire _c_set_WIRE_1_ready = 1'h0; // @[Bundles.scala:265:61]
wire _c_set_WIRE_1_valid = 1'h0; // @[Bundles.scala:265:61]
wire _c_set_WIRE_1_bits_corrupt = 1'h0; // @[Bundles.scala:265:61]
wire _c_opcodes_set_interm_WIRE_ready = 1'h0; // @[Bundles.scala:265:74]
wire _c_opcodes_set_interm_WIRE_valid = 1'h0; // @[Bundles.scala:265:74]
wire _c_opcodes_set_interm_WIRE_bits_corrupt = 1'h0; // @[Bundles.scala:265:74]
wire _c_opcodes_set_interm_WIRE_1_ready = 1'h0; // @[Bundles.scala:265:61]
wire _c_opcodes_set_interm_WIRE_1_valid = 1'h0; // @[Bundles.scala:265:61]
wire _c_opcodes_set_interm_WIRE_1_bits_corrupt = 1'h0; // @[Bundles.scala:265:61]
wire _c_sizes_set_interm_WIRE_ready = 1'h0; // @[Bundles.scala:265:74]
wire _c_sizes_set_interm_WIRE_valid = 1'h0; // @[Bundles.scala:265:74]
wire _c_sizes_set_interm_WIRE_bits_corrupt = 1'h0; // @[Bundles.scala:265:74]
wire _c_sizes_set_interm_WIRE_1_ready = 1'h0; // @[Bundles.scala:265:61]
wire _c_sizes_set_interm_WIRE_1_valid = 1'h0; // @[Bundles.scala:265:61]
wire _c_sizes_set_interm_WIRE_1_bits_corrupt = 1'h0; // @[Bundles.scala:265:61]
wire _c_opcodes_set_WIRE_ready = 1'h0; // @[Bundles.scala:265:74]
wire _c_opcodes_set_WIRE_valid = 1'h0; // @[Bundles.scala:265:74]
wire _c_opcodes_set_WIRE_bits_corrupt = 1'h0; // @[Bundles.scala:265:74]
wire _c_opcodes_set_WIRE_1_ready = 1'h0; // @[Bundles.scala:265:61]
wire _c_opcodes_set_WIRE_1_valid = 1'h0; // @[Bundles.scala:265:61]
wire _c_opcodes_set_WIRE_1_bits_corrupt = 1'h0; // @[Bundles.scala:265:61]
wire _c_sizes_set_WIRE_ready = 1'h0; // @[Bundles.scala:265:74]
wire _c_sizes_set_WIRE_valid = 1'h0; // @[Bundles.scala:265:74]
wire _c_sizes_set_WIRE_bits_corrupt = 1'h0; // @[Bundles.scala:265:74]
wire _c_sizes_set_WIRE_1_ready = 1'h0; // @[Bundles.scala:265:61]
wire _c_sizes_set_WIRE_1_valid = 1'h0; // @[Bundles.scala:265:61]
wire _c_sizes_set_WIRE_1_bits_corrupt = 1'h0; // @[Bundles.scala:265:61]
wire _c_probe_ack_WIRE_ready = 1'h0; // @[Bundles.scala:265:74]
wire _c_probe_ack_WIRE_valid = 1'h0; // @[Bundles.scala:265:74]
wire _c_probe_ack_WIRE_bits_corrupt = 1'h0; // @[Bundles.scala:265:74]
wire _c_probe_ack_WIRE_1_ready = 1'h0; // @[Bundles.scala:265:61]
wire _c_probe_ack_WIRE_1_valid = 1'h0; // @[Bundles.scala:265:61]
wire _c_probe_ack_WIRE_1_bits_corrupt = 1'h0; // @[Bundles.scala:265:61]
wire _c_probe_ack_T = 1'h0; // @[Monitor.scala:772:47]
wire _c_probe_ack_WIRE_2_ready = 1'h0; // @[Bundles.scala:265:74]
wire _c_probe_ack_WIRE_2_valid = 1'h0; // @[Bundles.scala:265:74]
wire _c_probe_ack_WIRE_2_bits_corrupt = 1'h0; // @[Bundles.scala:265:74]
wire _c_probe_ack_WIRE_3_ready = 1'h0; // @[Bundles.scala:265:61]
wire _c_probe_ack_WIRE_3_valid = 1'h0; // @[Bundles.scala:265:61]
wire _c_probe_ack_WIRE_3_bits_corrupt = 1'h0; // @[Bundles.scala:265:61]
wire _c_probe_ack_T_1 = 1'h0; // @[Monitor.scala:772:95]
wire c_probe_ack = 1'h0; // @[Monitor.scala:772:71]
wire _same_cycle_resp_WIRE_ready = 1'h0; // @[Bundles.scala:265:74]
wire _same_cycle_resp_WIRE_valid = 1'h0; // @[Bundles.scala:265:74]
wire _same_cycle_resp_WIRE_bits_corrupt = 1'h0; // @[Bundles.scala:265:74]
wire _same_cycle_resp_WIRE_1_ready = 1'h0; // @[Bundles.scala:265:61]
wire _same_cycle_resp_WIRE_1_valid = 1'h0; // @[Bundles.scala:265:61]
wire _same_cycle_resp_WIRE_1_bits_corrupt = 1'h0; // @[Bundles.scala:265:61]
wire _same_cycle_resp_T_3 = 1'h0; // @[Monitor.scala:795:44]
wire _same_cycle_resp_WIRE_2_ready = 1'h0; // @[Bundles.scala:265:74]
wire _same_cycle_resp_WIRE_2_valid = 1'h0; // @[Bundles.scala:265:74]
wire _same_cycle_resp_WIRE_2_bits_corrupt = 1'h0; // @[Bundles.scala:265:74]
wire _same_cycle_resp_WIRE_3_ready = 1'h0; // @[Bundles.scala:265:61]
wire _same_cycle_resp_WIRE_3_valid = 1'h0; // @[Bundles.scala:265:61]
wire _same_cycle_resp_WIRE_3_bits_corrupt = 1'h0; // @[Bundles.scala:265:61]
wire _same_cycle_resp_T_4 = 1'h0; // @[Edges.scala:68:36]
wire _same_cycle_resp_T_5 = 1'h0; // @[Edges.scala:68:51]
wire _same_cycle_resp_T_6 = 1'h0; // @[Edges.scala:68:40]
wire _same_cycle_resp_T_7 = 1'h0; // @[Monitor.scala:795:55]
wire _same_cycle_resp_WIRE_4_ready = 1'h0; // @[Bundles.scala:265:74]
wire _same_cycle_resp_WIRE_4_valid = 1'h0; // @[Bundles.scala:265:74]
wire _same_cycle_resp_WIRE_4_bits_corrupt = 1'h0; // @[Bundles.scala:265:74]
wire _same_cycle_resp_WIRE_5_ready = 1'h0; // @[Bundles.scala:265:61]
wire _same_cycle_resp_WIRE_5_valid = 1'h0; // @[Bundles.scala:265:61]
wire _same_cycle_resp_WIRE_5_bits_corrupt = 1'h0; // @[Bundles.scala:265:61]
wire same_cycle_resp_1 = 1'h0; // @[Monitor.scala:795:88]
wire [2:0] responseMap_0 = 3'h0; // @[Monitor.scala:643:42]
wire [2:0] responseMap_1 = 3'h0; // @[Monitor.scala:643:42]
wire [2:0] responseMapSecondOption_0 = 3'h0; // @[Monitor.scala:644:42]
wire [2:0] responseMapSecondOption_1 = 3'h0; // @[Monitor.scala:644:42]
wire [2:0] _c_first_WIRE_bits_opcode = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_first_WIRE_bits_param = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_first_WIRE_bits_size = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_first_WIRE_1_bits_opcode = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _c_first_WIRE_1_bits_param = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _c_first_WIRE_1_bits_size = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _c_first_WIRE_2_bits_opcode = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_first_WIRE_2_bits_param = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_first_WIRE_2_bits_size = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_first_WIRE_3_bits_opcode = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _c_first_WIRE_3_bits_param = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _c_first_WIRE_3_bits_size = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] c_first_beats1_decode = 3'h0; // @[Edges.scala:220:59]
wire [2:0] c_first_beats1 = 3'h0; // @[Edges.scala:221:14]
wire [2:0] _c_first_count_T = 3'h0; // @[Edges.scala:234:27]
wire [2:0] c_first_count = 3'h0; // @[Edges.scala:234:25]
wire [2:0] _c_first_counter_T = 3'h0; // @[Edges.scala:236:21]
wire [2:0] _c_set_wo_ready_WIRE_bits_opcode = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_set_wo_ready_WIRE_bits_param = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_set_wo_ready_WIRE_bits_size = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_set_wo_ready_WIRE_1_bits_opcode = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _c_set_wo_ready_WIRE_1_bits_param = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _c_set_wo_ready_WIRE_1_bits_size = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _c_set_WIRE_bits_opcode = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_set_WIRE_bits_param = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_set_WIRE_bits_size = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_set_WIRE_1_bits_opcode = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _c_set_WIRE_1_bits_param = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _c_set_WIRE_1_bits_size = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _c_opcodes_set_interm_WIRE_bits_opcode = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_opcodes_set_interm_WIRE_bits_param = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_opcodes_set_interm_WIRE_bits_size = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_opcodes_set_interm_WIRE_1_bits_opcode = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _c_opcodes_set_interm_WIRE_1_bits_param = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _c_opcodes_set_interm_WIRE_1_bits_size = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _c_sizes_set_interm_WIRE_bits_opcode = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_sizes_set_interm_WIRE_bits_param = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_sizes_set_interm_WIRE_bits_size = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_sizes_set_interm_WIRE_1_bits_opcode = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _c_sizes_set_interm_WIRE_1_bits_param = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _c_sizes_set_interm_WIRE_1_bits_size = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _c_opcodes_set_WIRE_bits_opcode = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_opcodes_set_WIRE_bits_param = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_opcodes_set_WIRE_bits_size = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_opcodes_set_WIRE_1_bits_opcode = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _c_opcodes_set_WIRE_1_bits_param = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _c_opcodes_set_WIRE_1_bits_size = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _c_sizes_set_WIRE_bits_opcode = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_sizes_set_WIRE_bits_param = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_sizes_set_WIRE_bits_size = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_sizes_set_WIRE_1_bits_opcode = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _c_sizes_set_WIRE_1_bits_param = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _c_sizes_set_WIRE_1_bits_size = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _c_probe_ack_WIRE_bits_opcode = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_probe_ack_WIRE_bits_param = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_probe_ack_WIRE_bits_size = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_probe_ack_WIRE_1_bits_opcode = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _c_probe_ack_WIRE_1_bits_param = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _c_probe_ack_WIRE_1_bits_size = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _c_probe_ack_WIRE_2_bits_opcode = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_probe_ack_WIRE_2_bits_param = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_probe_ack_WIRE_2_bits_size = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_probe_ack_WIRE_3_bits_opcode = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _c_probe_ack_WIRE_3_bits_param = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _c_probe_ack_WIRE_3_bits_size = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _same_cycle_resp_WIRE_bits_opcode = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _same_cycle_resp_WIRE_bits_param = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _same_cycle_resp_WIRE_bits_size = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _same_cycle_resp_WIRE_1_bits_opcode = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _same_cycle_resp_WIRE_1_bits_param = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _same_cycle_resp_WIRE_1_bits_size = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _same_cycle_resp_WIRE_2_bits_opcode = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _same_cycle_resp_WIRE_2_bits_param = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _same_cycle_resp_WIRE_2_bits_size = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _same_cycle_resp_WIRE_3_bits_opcode = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _same_cycle_resp_WIRE_3_bits_param = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _same_cycle_resp_WIRE_3_bits_size = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _same_cycle_resp_WIRE_4_bits_opcode = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _same_cycle_resp_WIRE_4_bits_param = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _same_cycle_resp_WIRE_4_bits_size = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _same_cycle_resp_WIRE_5_bits_opcode = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _same_cycle_resp_WIRE_5_bits_param = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _same_cycle_resp_WIRE_5_bits_size = 3'h0; // @[Bundles.scala:265:61]
wire _source_ok_T_3 = 1'h1; // @[Parameters.scala:56:32]
wire _source_ok_T_5 = 1'h1; // @[Parameters.scala:57:20]
wire _source_ok_T_9 = 1'h1; // @[Parameters.scala:56:32]
wire _source_ok_T_11 = 1'h1; // @[Parameters.scala:57:20]
wire _source_ok_T_15 = 1'h1; // @[Parameters.scala:56:32]
wire _source_ok_T_17 = 1'h1; // @[Parameters.scala:57:20]
wire _source_ok_T_21 = 1'h1; // @[Parameters.scala:56:32]
wire _source_ok_T_23 = 1'h1; // @[Parameters.scala:57:20]
wire _source_ok_T_39 = 1'h1; // @[Parameters.scala:56:32]
wire _source_ok_T_41 = 1'h1; // @[Parameters.scala:57:20]
wire _source_ok_T_45 = 1'h1; // @[Parameters.scala:56:32]
wire _source_ok_T_47 = 1'h1; // @[Parameters.scala:57:20]
wire _source_ok_T_51 = 1'h1; // @[Parameters.scala:56:32]
wire _source_ok_T_53 = 1'h1; // @[Parameters.scala:57:20]
wire _source_ok_T_57 = 1'h1; // @[Parameters.scala:56:32]
wire _source_ok_T_59 = 1'h1; // @[Parameters.scala:57:20]
wire c_first = 1'h1; // @[Edges.scala:231:25]
wire _c_first_last_T_1 = 1'h1; // @[Edges.scala:232:43]
wire c_first_last = 1'h1; // @[Edges.scala:232:33]
wire [2:0] c_first_counter1 = 3'h7; // @[Edges.scala:230:28]
wire [3:0] _c_first_counter1_T = 4'hF; // @[Edges.scala:230:28]
wire [1:0] io_in_d_bits_param = 2'h0; // @[Monitor.scala:36:7]
wire [63:0] _c_first_WIRE_bits_data = 64'h0; // @[Bundles.scala:265:74]
wire [63:0] _c_first_WIRE_1_bits_data = 64'h0; // @[Bundles.scala:265:61]
wire [63:0] _c_first_WIRE_2_bits_data = 64'h0; // @[Bundles.scala:265:74]
wire [63:0] _c_first_WIRE_3_bits_data = 64'h0; // @[Bundles.scala:265:61]
wire [63:0] _c_set_wo_ready_WIRE_bits_data = 64'h0; // @[Bundles.scala:265:74]
wire [63:0] _c_set_wo_ready_WIRE_1_bits_data = 64'h0; // @[Bundles.scala:265:61]
wire [63:0] _c_set_WIRE_bits_data = 64'h0; // @[Bundles.scala:265:74]
wire [63:0] _c_set_WIRE_1_bits_data = 64'h0; // @[Bundles.scala:265:61]
wire [63:0] _c_opcodes_set_interm_WIRE_bits_data = 64'h0; // @[Bundles.scala:265:74]
wire [63:0] _c_opcodes_set_interm_WIRE_1_bits_data = 64'h0; // @[Bundles.scala:265:61]
wire [63:0] _c_sizes_set_interm_WIRE_bits_data = 64'h0; // @[Bundles.scala:265:74]
wire [63:0] _c_sizes_set_interm_WIRE_1_bits_data = 64'h0; // @[Bundles.scala:265:61]
wire [63:0] _c_opcodes_set_WIRE_bits_data = 64'h0; // @[Bundles.scala:265:74]
wire [63:0] _c_opcodes_set_WIRE_1_bits_data = 64'h0; // @[Bundles.scala:265:61]
wire [63:0] _c_sizes_set_WIRE_bits_data = 64'h0; // @[Bundles.scala:265:74]
wire [63:0] _c_sizes_set_WIRE_1_bits_data = 64'h0; // @[Bundles.scala:265:61]
wire [63:0] _c_probe_ack_WIRE_bits_data = 64'h0; // @[Bundles.scala:265:74]
wire [63:0] _c_probe_ack_WIRE_1_bits_data = 64'h0; // @[Bundles.scala:265:61]
wire [63:0] _c_probe_ack_WIRE_2_bits_data = 64'h0; // @[Bundles.scala:265:74]
wire [63:0] _c_probe_ack_WIRE_3_bits_data = 64'h0; // @[Bundles.scala:265:61]
wire [63:0] _same_cycle_resp_WIRE_bits_data = 64'h0; // @[Bundles.scala:265:74]
wire [63:0] _same_cycle_resp_WIRE_1_bits_data = 64'h0; // @[Bundles.scala:265:61]
wire [63:0] _same_cycle_resp_WIRE_2_bits_data = 64'h0; // @[Bundles.scala:265:74]
wire [63:0] _same_cycle_resp_WIRE_3_bits_data = 64'h0; // @[Bundles.scala:265:61]
wire [63:0] _same_cycle_resp_WIRE_4_bits_data = 64'h0; // @[Bundles.scala:265:74]
wire [63:0] _same_cycle_resp_WIRE_5_bits_data = 64'h0; // @[Bundles.scala:265:61]
wire [28:0] _c_first_WIRE_bits_address = 29'h0; // @[Bundles.scala:265:74]
wire [28:0] _c_first_WIRE_1_bits_address = 29'h0; // @[Bundles.scala:265:61]
wire [28:0] _c_first_WIRE_2_bits_address = 29'h0; // @[Bundles.scala:265:74]
wire [28:0] _c_first_WIRE_3_bits_address = 29'h0; // @[Bundles.scala:265:61]
wire [28:0] _c_set_wo_ready_WIRE_bits_address = 29'h0; // @[Bundles.scala:265:74]
wire [28:0] _c_set_wo_ready_WIRE_1_bits_address = 29'h0; // @[Bundles.scala:265:61]
wire [28:0] _c_set_WIRE_bits_address = 29'h0; // @[Bundles.scala:265:74]
wire [28:0] _c_set_WIRE_1_bits_address = 29'h0; // @[Bundles.scala:265:61]
wire [28:0] _c_opcodes_set_interm_WIRE_bits_address = 29'h0; // @[Bundles.scala:265:74]
wire [28:0] _c_opcodes_set_interm_WIRE_1_bits_address = 29'h0; // @[Bundles.scala:265:61]
wire [28:0] _c_sizes_set_interm_WIRE_bits_address = 29'h0; // @[Bundles.scala:265:74]
wire [28:0] _c_sizes_set_interm_WIRE_1_bits_address = 29'h0; // @[Bundles.scala:265:61]
wire [28:0] _c_opcodes_set_WIRE_bits_address = 29'h0; // @[Bundles.scala:265:74]
wire [28:0] _c_opcodes_set_WIRE_1_bits_address = 29'h0; // @[Bundles.scala:265:61]
wire [28:0] _c_sizes_set_WIRE_bits_address = 29'h0; // @[Bundles.scala:265:74]
wire [28:0] _c_sizes_set_WIRE_1_bits_address = 29'h0; // @[Bundles.scala:265:61]
wire [28:0] _c_probe_ack_WIRE_bits_address = 29'h0; // @[Bundles.scala:265:74]
wire [28:0] _c_probe_ack_WIRE_1_bits_address = 29'h0; // @[Bundles.scala:265:61]
wire [28:0] _c_probe_ack_WIRE_2_bits_address = 29'h0; // @[Bundles.scala:265:74]
wire [28:0] _c_probe_ack_WIRE_3_bits_address = 29'h0; // @[Bundles.scala:265:61]
wire [28:0] _same_cycle_resp_WIRE_bits_address = 29'h0; // @[Bundles.scala:265:74]
wire [28:0] _same_cycle_resp_WIRE_1_bits_address = 29'h0; // @[Bundles.scala:265:61]
wire [28:0] _same_cycle_resp_WIRE_2_bits_address = 29'h0; // @[Bundles.scala:265:74]
wire [28:0] _same_cycle_resp_WIRE_3_bits_address = 29'h0; // @[Bundles.scala:265:61]
wire [28:0] _same_cycle_resp_WIRE_4_bits_address = 29'h0; // @[Bundles.scala:265:74]
wire [28:0] _same_cycle_resp_WIRE_5_bits_address = 29'h0; // @[Bundles.scala:265:61]
wire [6:0] _c_first_WIRE_bits_source = 7'h0; // @[Bundles.scala:265:74]
wire [6:0] _c_first_WIRE_1_bits_source = 7'h0; // @[Bundles.scala:265:61]
wire [6:0] _c_first_WIRE_2_bits_source = 7'h0; // @[Bundles.scala:265:74]
wire [6:0] _c_first_WIRE_3_bits_source = 7'h0; // @[Bundles.scala:265:61]
wire [6:0] _c_set_wo_ready_WIRE_bits_source = 7'h0; // @[Bundles.scala:265:74]
wire [6:0] _c_set_wo_ready_WIRE_1_bits_source = 7'h0; // @[Bundles.scala:265:61]
wire [6:0] _c_set_WIRE_bits_source = 7'h0; // @[Bundles.scala:265:74]
wire [6:0] _c_set_WIRE_1_bits_source = 7'h0; // @[Bundles.scala:265:61]
wire [6:0] _c_opcodes_set_interm_WIRE_bits_source = 7'h0; // @[Bundles.scala:265:74]
wire [6:0] _c_opcodes_set_interm_WIRE_1_bits_source = 7'h0; // @[Bundles.scala:265:61]
wire [6:0] _c_sizes_set_interm_WIRE_bits_source = 7'h0; // @[Bundles.scala:265:74]
wire [6:0] _c_sizes_set_interm_WIRE_1_bits_source = 7'h0; // @[Bundles.scala:265:61]
wire [6:0] _c_opcodes_set_WIRE_bits_source = 7'h0; // @[Bundles.scala:265:74]
wire [6:0] _c_opcodes_set_WIRE_1_bits_source = 7'h0; // @[Bundles.scala:265:61]
wire [6:0] _c_sizes_set_WIRE_bits_source = 7'h0; // @[Bundles.scala:265:74]
wire [6:0] _c_sizes_set_WIRE_1_bits_source = 7'h0; // @[Bundles.scala:265:61]
wire [6:0] _c_probe_ack_WIRE_bits_source = 7'h0; // @[Bundles.scala:265:74]
wire [6:0] _c_probe_ack_WIRE_1_bits_source = 7'h0; // @[Bundles.scala:265:61]
wire [6:0] _c_probe_ack_WIRE_2_bits_source = 7'h0; // @[Bundles.scala:265:74]
wire [6:0] _c_probe_ack_WIRE_3_bits_source = 7'h0; // @[Bundles.scala:265:61]
wire [6:0] _same_cycle_resp_WIRE_bits_source = 7'h0; // @[Bundles.scala:265:74]
wire [6:0] _same_cycle_resp_WIRE_1_bits_source = 7'h0; // @[Bundles.scala:265:61]
wire [6:0] _same_cycle_resp_WIRE_2_bits_source = 7'h0; // @[Bundles.scala:265:74]
wire [6:0] _same_cycle_resp_WIRE_3_bits_source = 7'h0; // @[Bundles.scala:265:61]
wire [6:0] _same_cycle_resp_WIRE_4_bits_source = 7'h0; // @[Bundles.scala:265:74]
wire [6:0] _same_cycle_resp_WIRE_5_bits_source = 7'h0; // @[Bundles.scala:265:61]
wire [15:0] _a_opcode_lookup_T_5 = 16'hF; // @[Monitor.scala:612:57]
wire [15:0] _a_size_lookup_T_5 = 16'hF; // @[Monitor.scala:612:57]
wire [15:0] _d_opcodes_clr_T_3 = 16'hF; // @[Monitor.scala:612:57]
wire [15:0] _d_sizes_clr_T_3 = 16'hF; // @[Monitor.scala:612:57]
wire [15:0] _c_opcode_lookup_T_5 = 16'hF; // @[Monitor.scala:724:57]
wire [15:0] _c_size_lookup_T_5 = 16'hF; // @[Monitor.scala:724:57]
wire [15:0] _d_opcodes_clr_T_9 = 16'hF; // @[Monitor.scala:724:57]
wire [15:0] _d_sizes_clr_T_9 = 16'hF; // @[Monitor.scala:724:57]
wire [16:0] _a_opcode_lookup_T_4 = 17'hF; // @[Monitor.scala:612:57]
wire [16:0] _a_size_lookup_T_4 = 17'hF; // @[Monitor.scala:612:57]
wire [16:0] _d_opcodes_clr_T_2 = 17'hF; // @[Monitor.scala:612:57]
wire [16:0] _d_sizes_clr_T_2 = 17'hF; // @[Monitor.scala:612:57]
wire [16:0] _c_opcode_lookup_T_4 = 17'hF; // @[Monitor.scala:724:57]
wire [16:0] _c_size_lookup_T_4 = 17'hF; // @[Monitor.scala:724:57]
wire [16:0] _d_opcodes_clr_T_8 = 17'hF; // @[Monitor.scala:724:57]
wire [16:0] _d_sizes_clr_T_8 = 17'hF; // @[Monitor.scala:724:57]
wire [15:0] _a_opcode_lookup_T_3 = 16'h10; // @[Monitor.scala:612:51]
wire [15:0] _a_size_lookup_T_3 = 16'h10; // @[Monitor.scala:612:51]
wire [15:0] _d_opcodes_clr_T_1 = 16'h10; // @[Monitor.scala:612:51]
wire [15:0] _d_sizes_clr_T_1 = 16'h10; // @[Monitor.scala:612:51]
wire [15:0] _c_opcode_lookup_T_3 = 16'h10; // @[Monitor.scala:724:51]
wire [15:0] _c_size_lookup_T_3 = 16'h10; // @[Monitor.scala:724:51]
wire [15:0] _d_opcodes_clr_T_7 = 16'h10; // @[Monitor.scala:724:51]
wire [15:0] _d_sizes_clr_T_7 = 16'h10; // @[Monitor.scala:724:51]
wire [1026:0] _c_opcodes_set_T_1 = 1027'h0; // @[Monitor.scala:767:54]
wire [1026:0] _c_sizes_set_T_1 = 1027'h0; // @[Monitor.scala:768:52]
wire [9:0] _c_opcodes_set_T = 10'h0; // @[Monitor.scala:767:79]
wire [9:0] _c_sizes_set_T = 10'h0; // @[Monitor.scala:768:77]
wire [3:0] _c_opcodes_set_interm_T_1 = 4'h1; // @[Monitor.scala:765:61]
wire [3:0] _c_sizes_set_interm_T_1 = 4'h1; // @[Monitor.scala:766:59]
wire [3:0] c_opcodes_set_interm = 4'h0; // @[Monitor.scala:754:40]
wire [3:0] c_sizes_set_interm = 4'h0; // @[Monitor.scala:755:40]
wire [3:0] _c_opcodes_set_interm_T = 4'h0; // @[Monitor.scala:765:53]
wire [3:0] _c_sizes_set_interm_T = 4'h0; // @[Monitor.scala:766:51]
wire [127:0] _c_set_wo_ready_T = 128'h1; // @[OneHot.scala:58:35]
wire [127:0] _c_set_T = 128'h1; // @[OneHot.scala:58:35]
wire [259:0] c_opcodes_set = 260'h0; // @[Monitor.scala:740:34]
wire [259:0] c_sizes_set = 260'h0; // @[Monitor.scala:741:34]
wire [64:0] c_set = 65'h0; // @[Monitor.scala:738:34]
wire [64:0] c_set_wo_ready = 65'h0; // @[Monitor.scala:739:34]
wire [5:0] _c_first_beats1_decode_T_2 = 6'h0; // @[package.scala:243:46]
wire [5:0] _c_first_beats1_decode_T_1 = 6'h3F; // @[package.scala:243:76]
wire [12:0] _c_first_beats1_decode_T = 13'h3F; // @[package.scala:243:71]
wire [2:0] responseMap_6 = 3'h4; // @[Monitor.scala:643:42]
wire [2:0] responseMap_7 = 3'h4; // @[Monitor.scala:643:42]
wire [2:0] responseMapSecondOption_7 = 3'h4; // @[Monitor.scala:644:42]
wire [2:0] responseMapSecondOption_6 = 3'h5; // @[Monitor.scala:644:42]
wire [2:0] responseMap_5 = 3'h2; // @[Monitor.scala:643:42]
wire [2:0] responseMapSecondOption_5 = 3'h2; // @[Monitor.scala:644:42]
wire [2:0] responseMap_2 = 3'h1; // @[Monitor.scala:643:42]
wire [2:0] responseMap_3 = 3'h1; // @[Monitor.scala:643:42]
wire [2:0] responseMap_4 = 3'h1; // @[Monitor.scala:643:42]
wire [2:0] responseMapSecondOption_2 = 3'h1; // @[Monitor.scala:644:42]
wire [2:0] responseMapSecondOption_3 = 3'h1; // @[Monitor.scala:644:42]
wire [2:0] responseMapSecondOption_4 = 3'h1; // @[Monitor.scala:644:42]
wire [3:0] _a_opcode_lookup_T_2 = 4'h4; // @[Monitor.scala:637:123]
wire [3:0] _a_size_lookup_T_2 = 4'h4; // @[Monitor.scala:641:117]
wire [3:0] _d_opcodes_clr_T = 4'h4; // @[Monitor.scala:680:48]
wire [3:0] _d_sizes_clr_T = 4'h4; // @[Monitor.scala:681:48]
wire [3:0] _c_opcode_lookup_T_2 = 4'h4; // @[Monitor.scala:749:123]
wire [3:0] _c_size_lookup_T_2 = 4'h4; // @[Monitor.scala:750:119]
wire [3:0] _d_opcodes_clr_T_6 = 4'h4; // @[Monitor.scala:790:48]
wire [3:0] _d_sizes_clr_T_6 = 4'h4; // @[Monitor.scala:791:48]
wire [2:0] _mask_sizeOH_T = io_in_a_bits_size_0; // @[Misc.scala:202:34]
wire [6:0] _source_ok_uncommonBits_T = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [6:0] _source_ok_uncommonBits_T_1 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [6:0] _source_ok_uncommonBits_T_2 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [6:0] _source_ok_uncommonBits_T_3 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [6:0] _uncommonBits_T = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [6:0] _uncommonBits_T_1 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [6:0] _uncommonBits_T_2 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [6:0] _uncommonBits_T_3 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [6:0] _uncommonBits_T_4 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [6:0] _uncommonBits_T_5 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [6:0] _uncommonBits_T_6 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [6:0] _uncommonBits_T_7 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [6:0] _uncommonBits_T_8 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [6:0] _uncommonBits_T_9 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [6:0] _uncommonBits_T_10 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [6:0] _uncommonBits_T_11 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [6:0] _uncommonBits_T_12 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [6:0] _uncommonBits_T_13 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [6:0] _uncommonBits_T_14 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [6:0] _uncommonBits_T_15 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [6:0] _uncommonBits_T_16 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [6:0] _uncommonBits_T_17 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [6:0] _uncommonBits_T_18 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [6:0] _uncommonBits_T_19 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [6:0] _uncommonBits_T_20 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [6:0] _uncommonBits_T_21 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [6:0] _uncommonBits_T_22 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [6:0] _uncommonBits_T_23 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [6:0] _uncommonBits_T_24 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [6:0] _uncommonBits_T_25 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [6:0] _uncommonBits_T_26 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [6:0] _uncommonBits_T_27 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [6:0] _uncommonBits_T_28 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [6:0] _uncommonBits_T_29 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [6:0] _uncommonBits_T_30 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [6:0] _uncommonBits_T_31 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [6:0] _uncommonBits_T_32 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [6:0] _uncommonBits_T_33 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [6:0] _uncommonBits_T_34 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [6:0] _uncommonBits_T_35 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [6:0] _uncommonBits_T_36 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [6:0] _uncommonBits_T_37 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [6:0] _uncommonBits_T_38 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [6:0] _uncommonBits_T_39 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [6:0] _uncommonBits_T_40 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [6:0] _uncommonBits_T_41 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [6:0] _uncommonBits_T_42 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [6:0] _uncommonBits_T_43 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [6:0] _source_ok_uncommonBits_T_4 = io_in_d_bits_source_0; // @[Monitor.scala:36:7]
wire [6:0] _source_ok_uncommonBits_T_5 = io_in_d_bits_source_0; // @[Monitor.scala:36:7]
wire [6:0] _source_ok_uncommonBits_T_6 = io_in_d_bits_source_0; // @[Monitor.scala:36:7]
wire [6:0] _source_ok_uncommonBits_T_7 = io_in_d_bits_source_0; // @[Monitor.scala:36:7]
wire _source_ok_T = io_in_a_bits_source_0 == 7'h10; // @[Monitor.scala:36:7]
wire _source_ok_WIRE_0 = _source_ok_T; // @[Parameters.scala:1138:31]
wire [1:0] source_ok_uncommonBits = _source_ok_uncommonBits_T[1:0]; // @[Parameters.scala:52:{29,56}]
wire [4:0] _source_ok_T_1 = io_in_a_bits_source_0[6:2]; // @[Monitor.scala:36:7]
wire [4:0] _source_ok_T_7 = io_in_a_bits_source_0[6:2]; // @[Monitor.scala:36:7]
wire [4:0] _source_ok_T_13 = io_in_a_bits_source_0[6:2]; // @[Monitor.scala:36:7]
wire [4:0] _source_ok_T_19 = io_in_a_bits_source_0[6:2]; // @[Monitor.scala:36:7]
wire _source_ok_T_2 = _source_ok_T_1 == 5'h0; // @[Parameters.scala:54:{10,32}]
wire _source_ok_T_4 = _source_ok_T_2; // @[Parameters.scala:54:{32,67}]
wire _source_ok_T_6 = _source_ok_T_4; // @[Parameters.scala:54:67, :56:48]
wire _source_ok_WIRE_1 = _source_ok_T_6; // @[Parameters.scala:1138:31]
wire [1:0] source_ok_uncommonBits_1 = _source_ok_uncommonBits_T_1[1:0]; // @[Parameters.scala:52:{29,56}]
wire _source_ok_T_8 = _source_ok_T_7 == 5'h1; // @[Parameters.scala:54:{10,32}]
wire _source_ok_T_10 = _source_ok_T_8; // @[Parameters.scala:54:{32,67}]
wire _source_ok_T_12 = _source_ok_T_10; // @[Parameters.scala:54:67, :56:48]
wire _source_ok_WIRE_2 = _source_ok_T_12; // @[Parameters.scala:1138:31]
wire [1:0] source_ok_uncommonBits_2 = _source_ok_uncommonBits_T_2[1:0]; // @[Parameters.scala:52:{29,56}]
wire _source_ok_T_14 = _source_ok_T_13 == 5'h2; // @[Parameters.scala:54:{10,32}]
wire _source_ok_T_16 = _source_ok_T_14; // @[Parameters.scala:54:{32,67}]
wire _source_ok_T_18 = _source_ok_T_16; // @[Parameters.scala:54:67, :56:48]
wire _source_ok_WIRE_3 = _source_ok_T_18; // @[Parameters.scala:1138:31]
wire [1:0] source_ok_uncommonBits_3 = _source_ok_uncommonBits_T_3[1:0]; // @[Parameters.scala:52:{29,56}]
wire _source_ok_T_20 = _source_ok_T_19 == 5'h3; // @[Parameters.scala:54:{10,32}]
wire _source_ok_T_22 = _source_ok_T_20; // @[Parameters.scala:54:{32,67}]
wire _source_ok_T_24 = _source_ok_T_22; // @[Parameters.scala:54:67, :56:48]
wire _source_ok_WIRE_4 = _source_ok_T_24; // @[Parameters.scala:1138:31]
wire _source_ok_T_25 = io_in_a_bits_source_0 == 7'h20; // @[Monitor.scala:36:7]
wire _source_ok_WIRE_5 = _source_ok_T_25; // @[Parameters.scala:1138:31]
wire _source_ok_T_26 = io_in_a_bits_source_0 == 7'h21; // @[Monitor.scala:36:7]
wire _source_ok_WIRE_6 = _source_ok_T_26; // @[Parameters.scala:1138:31]
wire _source_ok_T_27 = io_in_a_bits_source_0 == 7'h22; // @[Monitor.scala:36:7]
wire _source_ok_WIRE_7 = _source_ok_T_27; // @[Parameters.scala:1138:31]
wire _source_ok_T_28 = io_in_a_bits_source_0 == 7'h40; // @[Monitor.scala:36:7]
wire _source_ok_WIRE_8 = _source_ok_T_28; // @[Parameters.scala:1138:31]
wire _source_ok_T_29 = _source_ok_WIRE_0 | _source_ok_WIRE_1; // @[Parameters.scala:1138:31, :1139:46]
wire _source_ok_T_30 = _source_ok_T_29 | _source_ok_WIRE_2; // @[Parameters.scala:1138:31, :1139:46]
wire _source_ok_T_31 = _source_ok_T_30 | _source_ok_WIRE_3; // @[Parameters.scala:1138:31, :1139:46]
wire _source_ok_T_32 = _source_ok_T_31 | _source_ok_WIRE_4; // @[Parameters.scala:1138:31, :1139:46]
wire _source_ok_T_33 = _source_ok_T_32 | _source_ok_WIRE_5; // @[Parameters.scala:1138:31, :1139:46]
wire _source_ok_T_34 = _source_ok_T_33 | _source_ok_WIRE_6; // @[Parameters.scala:1138:31, :1139:46]
wire _source_ok_T_35 = _source_ok_T_34 | _source_ok_WIRE_7; // @[Parameters.scala:1138:31, :1139:46]
wire source_ok = _source_ok_T_35 | _source_ok_WIRE_8; // @[Parameters.scala:1138:31, :1139:46]
wire [12:0] _GEN = 13'h3F << io_in_a_bits_size_0; // @[package.scala:243:71]
wire [12:0] _is_aligned_mask_T; // @[package.scala:243:71]
assign _is_aligned_mask_T = _GEN; // @[package.scala:243:71]
wire [12:0] _a_first_beats1_decode_T; // @[package.scala:243:71]
assign _a_first_beats1_decode_T = _GEN; // @[package.scala:243:71]
wire [12:0] _a_first_beats1_decode_T_3; // @[package.scala:243:71]
assign _a_first_beats1_decode_T_3 = _GEN; // @[package.scala:243:71]
wire [5:0] _is_aligned_mask_T_1 = _is_aligned_mask_T[5:0]; // @[package.scala:243:{71,76}]
wire [5:0] is_aligned_mask = ~_is_aligned_mask_T_1; // @[package.scala:243:{46,76}]
wire [28:0] _is_aligned_T = {23'h0, io_in_a_bits_address_0[5:0] & is_aligned_mask}; // @[package.scala:243:46]
wire is_aligned = _is_aligned_T == 29'h0; // @[Edges.scala:21:{16,24}]
wire [1:0] mask_sizeOH_shiftAmount = _mask_sizeOH_T[1:0]; // @[OneHot.scala:64:49]
wire [3:0] _mask_sizeOH_T_1 = 4'h1 << mask_sizeOH_shiftAmount; // @[OneHot.scala:64:49, :65:12]
wire [2:0] _mask_sizeOH_T_2 = _mask_sizeOH_T_1[2:0]; // @[OneHot.scala:65:{12,27}]
wire [2:0] mask_sizeOH = {_mask_sizeOH_T_2[2:1], 1'h1}; // @[OneHot.scala:65:27]
wire mask_sub_sub_sub_0_1 = io_in_a_bits_size_0 > 3'h2; // @[Misc.scala:206:21]
wire mask_sub_sub_size = mask_sizeOH[2]; // @[Misc.scala:202:81, :209:26]
wire mask_sub_sub_bit = io_in_a_bits_address_0[2]; // @[Misc.scala:210:26]
wire mask_sub_sub_1_2 = mask_sub_sub_bit; // @[Misc.scala:210:26, :214:27]
wire mask_sub_sub_nbit = ~mask_sub_sub_bit; // @[Misc.scala:210:26, :211:20]
wire mask_sub_sub_0_2 = mask_sub_sub_nbit; // @[Misc.scala:211:20, :214:27]
wire _mask_sub_sub_acc_T = mask_sub_sub_size & mask_sub_sub_0_2; // @[Misc.scala:209:26, :214:27, :215:38]
wire mask_sub_sub_0_1 = mask_sub_sub_sub_0_1 | _mask_sub_sub_acc_T; // @[Misc.scala:206:21, :215:{29,38}]
wire _mask_sub_sub_acc_T_1 = mask_sub_sub_size & mask_sub_sub_1_2; // @[Misc.scala:209:26, :214:27, :215:38]
wire mask_sub_sub_1_1 = mask_sub_sub_sub_0_1 | _mask_sub_sub_acc_T_1; // @[Misc.scala:206:21, :215:{29,38}]
wire mask_sub_size = mask_sizeOH[1]; // @[Misc.scala:202:81, :209:26]
wire mask_sub_bit = io_in_a_bits_address_0[1]; // @[Misc.scala:210:26]
wire mask_sub_nbit = ~mask_sub_bit; // @[Misc.scala:210:26, :211:20]
wire mask_sub_0_2 = mask_sub_sub_0_2 & mask_sub_nbit; // @[Misc.scala:211:20, :214:27]
wire _mask_sub_acc_T = mask_sub_size & mask_sub_0_2; // @[Misc.scala:209:26, :214:27, :215:38]
wire mask_sub_0_1 = mask_sub_sub_0_1 | _mask_sub_acc_T; // @[Misc.scala:215:{29,38}]
wire mask_sub_1_2 = mask_sub_sub_0_2 & mask_sub_bit; // @[Misc.scala:210:26, :214:27]
wire _mask_sub_acc_T_1 = mask_sub_size & mask_sub_1_2; // @[Misc.scala:209:26, :214:27, :215:38]
wire mask_sub_1_1 = mask_sub_sub_0_1 | _mask_sub_acc_T_1; // @[Misc.scala:215:{29,38}]
wire mask_sub_2_2 = mask_sub_sub_1_2 & mask_sub_nbit; // @[Misc.scala:211:20, :214:27]
wire _mask_sub_acc_T_2 = mask_sub_size & mask_sub_2_2; // @[Misc.scala:209:26, :214:27, :215:38]
wire mask_sub_2_1 = mask_sub_sub_1_1 | _mask_sub_acc_T_2; // @[Misc.scala:215:{29,38}]
wire mask_sub_3_2 = mask_sub_sub_1_2 & mask_sub_bit; // @[Misc.scala:210:26, :214:27]
wire _mask_sub_acc_T_3 = mask_sub_size & mask_sub_3_2; // @[Misc.scala:209:26, :214:27, :215:38]
wire mask_sub_3_1 = mask_sub_sub_1_1 | _mask_sub_acc_T_3; // @[Misc.scala:215:{29,38}]
wire mask_size = mask_sizeOH[0]; // @[Misc.scala:202:81, :209:26]
wire mask_bit = io_in_a_bits_address_0[0]; // @[Misc.scala:210:26]
wire mask_nbit = ~mask_bit; // @[Misc.scala:210:26, :211:20]
wire mask_eq = mask_sub_0_2 & mask_nbit; // @[Misc.scala:211:20, :214:27]
wire _mask_acc_T = mask_size & mask_eq; // @[Misc.scala:209:26, :214:27, :215:38]
wire mask_acc = mask_sub_0_1 | _mask_acc_T; // @[Misc.scala:215:{29,38}]
wire mask_eq_1 = mask_sub_0_2 & mask_bit; // @[Misc.scala:210:26, :214:27]
wire _mask_acc_T_1 = mask_size & mask_eq_1; // @[Misc.scala:209:26, :214:27, :215:38]
wire mask_acc_1 = mask_sub_0_1 | _mask_acc_T_1; // @[Misc.scala:215:{29,38}]
wire mask_eq_2 = mask_sub_1_2 & mask_nbit; // @[Misc.scala:211:20, :214:27]
wire _mask_acc_T_2 = mask_size & mask_eq_2; // @[Misc.scala:209:26, :214:27, :215:38]
wire mask_acc_2 = mask_sub_1_1 | _mask_acc_T_2; // @[Misc.scala:215:{29,38}]
wire mask_eq_3 = mask_sub_1_2 & mask_bit; // @[Misc.scala:210:26, :214:27]
wire _mask_acc_T_3 = mask_size & mask_eq_3; // @[Misc.scala:209:26, :214:27, :215:38]
wire mask_acc_3 = mask_sub_1_1 | _mask_acc_T_3; // @[Misc.scala:215:{29,38}]
wire mask_eq_4 = mask_sub_2_2 & mask_nbit; // @[Misc.scala:211:20, :214:27]
wire _mask_acc_T_4 = mask_size & mask_eq_4; // @[Misc.scala:209:26, :214:27, :215:38]
wire mask_acc_4 = mask_sub_2_1 | _mask_acc_T_4; // @[Misc.scala:215:{29,38}]
wire mask_eq_5 = mask_sub_2_2 & mask_bit; // @[Misc.scala:210:26, :214:27]
wire _mask_acc_T_5 = mask_size & mask_eq_5; // @[Misc.scala:209:26, :214:27, :215:38]
wire mask_acc_5 = mask_sub_2_1 | _mask_acc_T_5; // @[Misc.scala:215:{29,38}]
wire mask_eq_6 = mask_sub_3_2 & mask_nbit; // @[Misc.scala:211:20, :214:27]
wire _mask_acc_T_6 = mask_size & mask_eq_6; // @[Misc.scala:209:26, :214:27, :215:38]
wire mask_acc_6 = mask_sub_3_1 | _mask_acc_T_6; // @[Misc.scala:215:{29,38}]
wire mask_eq_7 = mask_sub_3_2 & mask_bit; // @[Misc.scala:210:26, :214:27]
wire _mask_acc_T_7 = mask_size & mask_eq_7; // @[Misc.scala:209:26, :214:27, :215:38]
wire mask_acc_7 = mask_sub_3_1 | _mask_acc_T_7; // @[Misc.scala:215:{29,38}]
wire [1:0] mask_lo_lo = {mask_acc_1, mask_acc}; // @[Misc.scala:215:29, :222:10]
wire [1:0] mask_lo_hi = {mask_acc_3, mask_acc_2}; // @[Misc.scala:215:29, :222:10]
wire [3:0] mask_lo = {mask_lo_hi, mask_lo_lo}; // @[Misc.scala:222:10]
wire [1:0] mask_hi_lo = {mask_acc_5, mask_acc_4}; // @[Misc.scala:215:29, :222:10]
wire [1:0] mask_hi_hi = {mask_acc_7, mask_acc_6}; // @[Misc.scala:215:29, :222:10]
wire [3:0] mask_hi = {mask_hi_hi, mask_hi_lo}; // @[Misc.scala:222:10]
wire [7:0] mask = {mask_hi, mask_lo}; // @[Misc.scala:222:10]
wire [1:0] uncommonBits = _uncommonBits_T[1:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_1 = _uncommonBits_T_1[1:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_2 = _uncommonBits_T_2[1:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_3 = _uncommonBits_T_3[1:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_4 = _uncommonBits_T_4[1:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_5 = _uncommonBits_T_5[1:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_6 = _uncommonBits_T_6[1:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_7 = _uncommonBits_T_7[1:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_8 = _uncommonBits_T_8[1:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_9 = _uncommonBits_T_9[1:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_10 = _uncommonBits_T_10[1:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_11 = _uncommonBits_T_11[1:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_12 = _uncommonBits_T_12[1:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_13 = _uncommonBits_T_13[1:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_14 = _uncommonBits_T_14[1:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_15 = _uncommonBits_T_15[1:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_16 = _uncommonBits_T_16[1:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_17 = _uncommonBits_T_17[1:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_18 = _uncommonBits_T_18[1:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_19 = _uncommonBits_T_19[1:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_20 = _uncommonBits_T_20[1:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_21 = _uncommonBits_T_21[1:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_22 = _uncommonBits_T_22[1:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_23 = _uncommonBits_T_23[1:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_24 = _uncommonBits_T_24[1:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_25 = _uncommonBits_T_25[1:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_26 = _uncommonBits_T_26[1:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_27 = _uncommonBits_T_27[1:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_28 = _uncommonBits_T_28[1:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_29 = _uncommonBits_T_29[1:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_30 = _uncommonBits_T_30[1:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_31 = _uncommonBits_T_31[1:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_32 = _uncommonBits_T_32[1:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_33 = _uncommonBits_T_33[1:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_34 = _uncommonBits_T_34[1:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_35 = _uncommonBits_T_35[1:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_36 = _uncommonBits_T_36[1:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_37 = _uncommonBits_T_37[1:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_38 = _uncommonBits_T_38[1:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_39 = _uncommonBits_T_39[1:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_40 = _uncommonBits_T_40[1:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_41 = _uncommonBits_T_41[1:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_42 = _uncommonBits_T_42[1:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_43 = _uncommonBits_T_43[1:0]; // @[Parameters.scala:52:{29,56}]
wire _source_ok_T_36 = io_in_d_bits_source_0 == 7'h10; // @[Monitor.scala:36:7]
wire _source_ok_WIRE_1_0 = _source_ok_T_36; // @[Parameters.scala:1138:31]
wire [1:0] source_ok_uncommonBits_4 = _source_ok_uncommonBits_T_4[1:0]; // @[Parameters.scala:52:{29,56}]
wire [4:0] _source_ok_T_37 = io_in_d_bits_source_0[6:2]; // @[Monitor.scala:36:7]
wire [4:0] _source_ok_T_43 = io_in_d_bits_source_0[6:2]; // @[Monitor.scala:36:7]
wire [4:0] _source_ok_T_49 = io_in_d_bits_source_0[6:2]; // @[Monitor.scala:36:7]
wire [4:0] _source_ok_T_55 = io_in_d_bits_source_0[6:2]; // @[Monitor.scala:36:7]
wire _source_ok_T_38 = _source_ok_T_37 == 5'h0; // @[Parameters.scala:54:{10,32}]
wire _source_ok_T_40 = _source_ok_T_38; // @[Parameters.scala:54:{32,67}]
wire _source_ok_T_42 = _source_ok_T_40; // @[Parameters.scala:54:67, :56:48]
wire _source_ok_WIRE_1_1 = _source_ok_T_42; // @[Parameters.scala:1138:31]
wire [1:0] source_ok_uncommonBits_5 = _source_ok_uncommonBits_T_5[1:0]; // @[Parameters.scala:52:{29,56}]
wire _source_ok_T_44 = _source_ok_T_43 == 5'h1; // @[Parameters.scala:54:{10,32}]
wire _source_ok_T_46 = _source_ok_T_44; // @[Parameters.scala:54:{32,67}]
wire _source_ok_T_48 = _source_ok_T_46; // @[Parameters.scala:54:67, :56:48]
wire _source_ok_WIRE_1_2 = _source_ok_T_48; // @[Parameters.scala:1138:31]
wire [1:0] source_ok_uncommonBits_6 = _source_ok_uncommonBits_T_6[1:0]; // @[Parameters.scala:52:{29,56}]
wire _source_ok_T_50 = _source_ok_T_49 == 5'h2; // @[Parameters.scala:54:{10,32}]
wire _source_ok_T_52 = _source_ok_T_50; // @[Parameters.scala:54:{32,67}]
wire _source_ok_T_54 = _source_ok_T_52; // @[Parameters.scala:54:67, :56:48]
wire _source_ok_WIRE_1_3 = _source_ok_T_54; // @[Parameters.scala:1138:31]
wire [1:0] source_ok_uncommonBits_7 = _source_ok_uncommonBits_T_7[1:0]; // @[Parameters.scala:52:{29,56}]
wire _source_ok_T_56 = _source_ok_T_55 == 5'h3; // @[Parameters.scala:54:{10,32}]
wire _source_ok_T_58 = _source_ok_T_56; // @[Parameters.scala:54:{32,67}]
wire _source_ok_T_60 = _source_ok_T_58; // @[Parameters.scala:54:67, :56:48]
wire _source_ok_WIRE_1_4 = _source_ok_T_60; // @[Parameters.scala:1138:31]
wire _source_ok_T_61 = io_in_d_bits_source_0 == 7'h20; // @[Monitor.scala:36:7]
wire _source_ok_WIRE_1_5 = _source_ok_T_61; // @[Parameters.scala:1138:31]
wire _source_ok_T_62 = io_in_d_bits_source_0 == 7'h21; // @[Monitor.scala:36:7]
wire _source_ok_WIRE_1_6 = _source_ok_T_62; // @[Parameters.scala:1138:31]
wire _source_ok_T_63 = io_in_d_bits_source_0 == 7'h22; // @[Monitor.scala:36:7]
wire _source_ok_WIRE_1_7 = _source_ok_T_63; // @[Parameters.scala:1138:31]
wire _source_ok_T_64 = io_in_d_bits_source_0 == 7'h40; // @[Monitor.scala:36:7]
wire _source_ok_WIRE_1_8 = _source_ok_T_64; // @[Parameters.scala:1138:31]
wire _source_ok_T_65 = _source_ok_WIRE_1_0 | _source_ok_WIRE_1_1; // @[Parameters.scala:1138:31, :1139:46]
wire _source_ok_T_66 = _source_ok_T_65 | _source_ok_WIRE_1_2; // @[Parameters.scala:1138:31, :1139:46]
wire _source_ok_T_67 = _source_ok_T_66 | _source_ok_WIRE_1_3; // @[Parameters.scala:1138:31, :1139:46]
wire _source_ok_T_68 = _source_ok_T_67 | _source_ok_WIRE_1_4; // @[Parameters.scala:1138:31, :1139:46]
wire _source_ok_T_69 = _source_ok_T_68 | _source_ok_WIRE_1_5; // @[Parameters.scala:1138:31, :1139:46]
wire _source_ok_T_70 = _source_ok_T_69 | _source_ok_WIRE_1_6; // @[Parameters.scala:1138:31, :1139:46]
wire _source_ok_T_71 = _source_ok_T_70 | _source_ok_WIRE_1_7; // @[Parameters.scala:1138:31, :1139:46]
wire source_ok_1 = _source_ok_T_71 | _source_ok_WIRE_1_8; // @[Parameters.scala:1138:31, :1139:46]
wire _T_1094 = io_in_a_ready_0 & io_in_a_valid_0; // @[Decoupled.scala:51:35]
wire _a_first_T; // @[Decoupled.scala:51:35]
assign _a_first_T = _T_1094; // @[Decoupled.scala:51:35]
wire _a_first_T_1; // @[Decoupled.scala:51:35]
assign _a_first_T_1 = _T_1094; // @[Decoupled.scala:51:35]
wire [5:0] _a_first_beats1_decode_T_1 = _a_first_beats1_decode_T[5:0]; // @[package.scala:243:{71,76}]
wire [5:0] _a_first_beats1_decode_T_2 = ~_a_first_beats1_decode_T_1; // @[package.scala:243:{46,76}]
wire [2:0] a_first_beats1_decode = _a_first_beats1_decode_T_2[5:3]; // @[package.scala:243:46]
wire _a_first_beats1_opdata_T = io_in_a_bits_opcode_0[2]; // @[Monitor.scala:36:7]
wire _a_first_beats1_opdata_T_1 = io_in_a_bits_opcode_0[2]; // @[Monitor.scala:36:7]
wire a_first_beats1_opdata = ~_a_first_beats1_opdata_T; // @[Edges.scala:92:{28,37}]
wire [2:0] a_first_beats1 = a_first_beats1_opdata ? a_first_beats1_decode : 3'h0; // @[Edges.scala:92:28, :220:59, :221:14]
reg [2:0] a_first_counter; // @[Edges.scala:229:27]
wire [3:0] _a_first_counter1_T = {1'h0, a_first_counter} - 4'h1; // @[Edges.scala:229:27, :230:28]
wire [2:0] a_first_counter1 = _a_first_counter1_T[2:0]; // @[Edges.scala:230:28]
wire a_first = a_first_counter == 3'h0; // @[Edges.scala:229:27, :231:25]
wire _a_first_last_T = a_first_counter == 3'h1; // @[Edges.scala:229:27, :232:25]
wire _a_first_last_T_1 = a_first_beats1 == 3'h0; // @[Edges.scala:221:14, :232:43]
wire a_first_last = _a_first_last_T | _a_first_last_T_1; // @[Edges.scala:232:{25,33,43}]
wire a_first_done = a_first_last & _a_first_T; // @[Decoupled.scala:51:35]
wire [2:0] _a_first_count_T = ~a_first_counter1; // @[Edges.scala:230:28, :234:27]
wire [2:0] a_first_count = a_first_beats1 & _a_first_count_T; // @[Edges.scala:221:14, :234:{25,27}]
wire [2:0] _a_first_counter_T = a_first ? a_first_beats1 : a_first_counter1; // @[Edges.scala:221:14, :230:28, :231:25, :236:21]
reg [2:0] opcode; // @[Monitor.scala:387:22]
reg [2:0] param; // @[Monitor.scala:388:22]
reg [2:0] size; // @[Monitor.scala:389:22]
reg [6:0] source; // @[Monitor.scala:390:22]
reg [28:0] address; // @[Monitor.scala:391:22]
wire _T_1162 = io_in_d_ready_0 & io_in_d_valid_0; // @[Decoupled.scala:51:35]
wire _d_first_T; // @[Decoupled.scala:51:35]
assign _d_first_T = _T_1162; // @[Decoupled.scala:51:35]
wire _d_first_T_1; // @[Decoupled.scala:51:35]
assign _d_first_T_1 = _T_1162; // @[Decoupled.scala:51:35]
wire _d_first_T_2; // @[Decoupled.scala:51:35]
assign _d_first_T_2 = _T_1162; // @[Decoupled.scala:51:35]
wire [12:0] _GEN_0 = 13'h3F << io_in_d_bits_size_0; // @[package.scala:243:71]
wire [12:0] _d_first_beats1_decode_T; // @[package.scala:243:71]
assign _d_first_beats1_decode_T = _GEN_0; // @[package.scala:243:71]
wire [12:0] _d_first_beats1_decode_T_3; // @[package.scala:243:71]
assign _d_first_beats1_decode_T_3 = _GEN_0; // @[package.scala:243:71]
wire [12:0] _d_first_beats1_decode_T_6; // @[package.scala:243:71]
assign _d_first_beats1_decode_T_6 = _GEN_0; // @[package.scala:243:71]
wire [5:0] _d_first_beats1_decode_T_1 = _d_first_beats1_decode_T[5:0]; // @[package.scala:243:{71,76}]
wire [5:0] _d_first_beats1_decode_T_2 = ~_d_first_beats1_decode_T_1; // @[package.scala:243:{46,76}]
wire [2:0] d_first_beats1_decode = _d_first_beats1_decode_T_2[5:3]; // @[package.scala:243:46]
wire d_first_beats1_opdata = io_in_d_bits_opcode_0[0]; // @[Monitor.scala:36:7]
wire d_first_beats1_opdata_1 = io_in_d_bits_opcode_0[0]; // @[Monitor.scala:36:7]
wire d_first_beats1_opdata_2 = io_in_d_bits_opcode_0[0]; // @[Monitor.scala:36:7]
wire [2:0] d_first_beats1 = d_first_beats1_opdata ? d_first_beats1_decode : 3'h0; // @[Edges.scala:106:36, :220:59, :221:14]
reg [2:0] d_first_counter; // @[Edges.scala:229:27]
wire [3:0] _d_first_counter1_T = {1'h0, d_first_counter} - 4'h1; // @[Edges.scala:229:27, :230:28]
wire [2:0] d_first_counter1 = _d_first_counter1_T[2:0]; // @[Edges.scala:230:28]
wire d_first = d_first_counter == 3'h0; // @[Edges.scala:229:27, :231:25]
wire _d_first_last_T = d_first_counter == 3'h1; // @[Edges.scala:229:27, :232:25]
wire _d_first_last_T_1 = d_first_beats1 == 3'h0; // @[Edges.scala:221:14, :232:43]
wire d_first_last = _d_first_last_T | _d_first_last_T_1; // @[Edges.scala:232:{25,33,43}]
wire d_first_done = d_first_last & _d_first_T; // @[Decoupled.scala:51:35]
wire [2:0] _d_first_count_T = ~d_first_counter1; // @[Edges.scala:230:28, :234:27]
wire [2:0] d_first_count = d_first_beats1 & _d_first_count_T; // @[Edges.scala:221:14, :234:{25,27}]
wire [2:0] _d_first_counter_T = d_first ? d_first_beats1 : d_first_counter1; // @[Edges.scala:221:14, :230:28, :231:25, :236:21]
reg [2:0] opcode_1; // @[Monitor.scala:538:22]
reg [2:0] size_1; // @[Monitor.scala:540:22]
reg [6:0] source_1; // @[Monitor.scala:541:22]
reg [64:0] inflight; // @[Monitor.scala:614:27]
reg [259:0] inflight_opcodes; // @[Monitor.scala:616:35]
reg [259:0] inflight_sizes; // @[Monitor.scala:618:33]
wire [5:0] _a_first_beats1_decode_T_4 = _a_first_beats1_decode_T_3[5:0]; // @[package.scala:243:{71,76}]
wire [5:0] _a_first_beats1_decode_T_5 = ~_a_first_beats1_decode_T_4; // @[package.scala:243:{46,76}]
wire [2:0] a_first_beats1_decode_1 = _a_first_beats1_decode_T_5[5:3]; // @[package.scala:243:46]
wire a_first_beats1_opdata_1 = ~_a_first_beats1_opdata_T_1; // @[Edges.scala:92:{28,37}]
wire [2:0] a_first_beats1_1 = a_first_beats1_opdata_1 ? a_first_beats1_decode_1 : 3'h0; // @[Edges.scala:92:28, :220:59, :221:14]
reg [2:0] a_first_counter_1; // @[Edges.scala:229:27]
wire [3:0] _a_first_counter1_T_1 = {1'h0, a_first_counter_1} - 4'h1; // @[Edges.scala:229:27, :230:28]
wire [2:0] a_first_counter1_1 = _a_first_counter1_T_1[2:0]; // @[Edges.scala:230:28]
wire a_first_1 = a_first_counter_1 == 3'h0; // @[Edges.scala:229:27, :231:25]
wire _a_first_last_T_2 = a_first_counter_1 == 3'h1; // @[Edges.scala:229:27, :232:25]
wire _a_first_last_T_3 = a_first_beats1_1 == 3'h0; // @[Edges.scala:221:14, :232:43]
wire a_first_last_1 = _a_first_last_T_2 | _a_first_last_T_3; // @[Edges.scala:232:{25,33,43}]
wire a_first_done_1 = a_first_last_1 & _a_first_T_1; // @[Decoupled.scala:51:35]
wire [2:0] _a_first_count_T_1 = ~a_first_counter1_1; // @[Edges.scala:230:28, :234:27]
wire [2:0] a_first_count_1 = a_first_beats1_1 & _a_first_count_T_1; // @[Edges.scala:221:14, :234:{25,27}]
wire [2:0] _a_first_counter_T_1 = a_first_1 ? a_first_beats1_1 : a_first_counter1_1; // @[Edges.scala:221:14, :230:28, :231:25, :236:21]
wire [5:0] _d_first_beats1_decode_T_4 = _d_first_beats1_decode_T_3[5:0]; // @[package.scala:243:{71,76}]
wire [5:0] _d_first_beats1_decode_T_5 = ~_d_first_beats1_decode_T_4; // @[package.scala:243:{46,76}]
wire [2:0] d_first_beats1_decode_1 = _d_first_beats1_decode_T_5[5:3]; // @[package.scala:243:46]
wire [2:0] d_first_beats1_1 = d_first_beats1_opdata_1 ? d_first_beats1_decode_1 : 3'h0; // @[Edges.scala:106:36, :220:59, :221:14]
reg [2:0] d_first_counter_1; // @[Edges.scala:229:27]
wire [3:0] _d_first_counter1_T_1 = {1'h0, d_first_counter_1} - 4'h1; // @[Edges.scala:229:27, :230:28]
wire [2:0] d_first_counter1_1 = _d_first_counter1_T_1[2:0]; // @[Edges.scala:230:28]
wire d_first_1 = d_first_counter_1 == 3'h0; // @[Edges.scala:229:27, :231:25]
wire _d_first_last_T_2 = d_first_counter_1 == 3'h1; // @[Edges.scala:229:27, :232:25]
wire _d_first_last_T_3 = d_first_beats1_1 == 3'h0; // @[Edges.scala:221:14, :232:43]
wire d_first_last_1 = _d_first_last_T_2 | _d_first_last_T_3; // @[Edges.scala:232:{25,33,43}]
wire d_first_done_1 = d_first_last_1 & _d_first_T_1; // @[Decoupled.scala:51:35]
wire [2:0] _d_first_count_T_1 = ~d_first_counter1_1; // @[Edges.scala:230:28, :234:27]
wire [2:0] d_first_count_1 = d_first_beats1_1 & _d_first_count_T_1; // @[Edges.scala:221:14, :234:{25,27}]
wire [2:0] _d_first_counter_T_1 = d_first_1 ? d_first_beats1_1 : d_first_counter1_1; // @[Edges.scala:221:14, :230:28, :231:25, :236:21]
wire [64:0] a_set; // @[Monitor.scala:626:34]
wire [64:0] a_set_wo_ready; // @[Monitor.scala:627:34]
wire [259:0] a_opcodes_set; // @[Monitor.scala:630:33]
wire [259:0] a_sizes_set; // @[Monitor.scala:632:31]
wire [2:0] a_opcode_lookup; // @[Monitor.scala:635:35]
wire [9:0] _GEN_1 = {1'h0, io_in_d_bits_source_0, 2'h0}; // @[Monitor.scala:36:7, :637:69]
wire [9:0] _a_opcode_lookup_T; // @[Monitor.scala:637:69]
assign _a_opcode_lookup_T = _GEN_1; // @[Monitor.scala:637:69]
wire [9:0] _a_size_lookup_T; // @[Monitor.scala:641:65]
assign _a_size_lookup_T = _GEN_1; // @[Monitor.scala:637:69, :641:65]
wire [9:0] _d_opcodes_clr_T_4; // @[Monitor.scala:680:101]
assign _d_opcodes_clr_T_4 = _GEN_1; // @[Monitor.scala:637:69, :680:101]
wire [9:0] _d_sizes_clr_T_4; // @[Monitor.scala:681:99]
assign _d_sizes_clr_T_4 = _GEN_1; // @[Monitor.scala:637:69, :681:99]
wire [9:0] _c_opcode_lookup_T; // @[Monitor.scala:749:69]
assign _c_opcode_lookup_T = _GEN_1; // @[Monitor.scala:637:69, :749:69]
wire [9:0] _c_size_lookup_T; // @[Monitor.scala:750:67]
assign _c_size_lookup_T = _GEN_1; // @[Monitor.scala:637:69, :750:67]
wire [9:0] _d_opcodes_clr_T_10; // @[Monitor.scala:790:101]
assign _d_opcodes_clr_T_10 = _GEN_1; // @[Monitor.scala:637:69, :790:101]
wire [9:0] _d_sizes_clr_T_10; // @[Monitor.scala:791:99]
assign _d_sizes_clr_T_10 = _GEN_1; // @[Monitor.scala:637:69, :791:99]
wire [259:0] _a_opcode_lookup_T_1 = inflight_opcodes >> _a_opcode_lookup_T; // @[Monitor.scala:616:35, :637:{44,69}]
wire [259:0] _a_opcode_lookup_T_6 = {256'h0, _a_opcode_lookup_T_1[3:0]}; // @[Monitor.scala:637:{44,97}]
wire [259:0] _a_opcode_lookup_T_7 = {1'h0, _a_opcode_lookup_T_6[259:1]}; // @[Monitor.scala:637:{97,152}]
assign a_opcode_lookup = _a_opcode_lookup_T_7[2:0]; // @[Monitor.scala:635:35, :637:{21,152}]
wire [3:0] a_size_lookup; // @[Monitor.scala:639:33]
wire [259:0] _a_size_lookup_T_1 = inflight_sizes >> _a_size_lookup_T; // @[Monitor.scala:618:33, :641:{40,65}]
wire [259:0] _a_size_lookup_T_6 = {256'h0, _a_size_lookup_T_1[3:0]}; // @[Monitor.scala:641:{40,91}]
wire [259:0] _a_size_lookup_T_7 = {1'h0, _a_size_lookup_T_6[259:1]}; // @[Monitor.scala:641:{91,144}]
assign a_size_lookup = _a_size_lookup_T_7[3:0]; // @[Monitor.scala:639:33, :641:{19,144}]
wire [3:0] a_opcodes_set_interm; // @[Monitor.scala:646:40]
wire [3:0] a_sizes_set_interm; // @[Monitor.scala:648:38]
wire _same_cycle_resp_T = io_in_a_valid_0 & a_first_1; // @[Monitor.scala:36:7, :651:26, :684:44]
wire [127:0] _GEN_2 = 128'h1 << io_in_a_bits_source_0; // @[OneHot.scala:58:35]
wire [127:0] _a_set_wo_ready_T; // @[OneHot.scala:58:35]
assign _a_set_wo_ready_T = _GEN_2; // @[OneHot.scala:58:35]
wire [127:0] _a_set_T; // @[OneHot.scala:58:35]
assign _a_set_T = _GEN_2; // @[OneHot.scala:58:35]
assign a_set_wo_ready = _same_cycle_resp_T ? _a_set_wo_ready_T[64:0] : 65'h0; // @[OneHot.scala:58:35]
wire _T_1027 = _T_1094 & a_first_1; // @[Decoupled.scala:51:35]
assign a_set = _T_1027 ? _a_set_T[64:0] : 65'h0; // @[OneHot.scala:58:35]
wire [3:0] _a_opcodes_set_interm_T = {io_in_a_bits_opcode_0, 1'h0}; // @[Monitor.scala:36:7, :657:53]
wire [3:0] _a_opcodes_set_interm_T_1 = {_a_opcodes_set_interm_T[3:1], 1'h1}; // @[Monitor.scala:657:{53,61}]
assign a_opcodes_set_interm = _T_1027 ? _a_opcodes_set_interm_T_1 : 4'h0; // @[Monitor.scala:646:40, :655:{25,70}, :657:{28,61}]
wire [3:0] _a_sizes_set_interm_T = {io_in_a_bits_size_0, 1'h0}; // @[Monitor.scala:36:7, :658:51]
wire [3:0] _a_sizes_set_interm_T_1 = {_a_sizes_set_interm_T[3:1], 1'h1}; // @[Monitor.scala:658:{51,59}]
assign a_sizes_set_interm = _T_1027 ? _a_sizes_set_interm_T_1 : 4'h0; // @[Monitor.scala:648:38, :655:{25,70}, :658:{28,59}]
wire [9:0] _GEN_3 = {1'h0, io_in_a_bits_source_0, 2'h0}; // @[Monitor.scala:36:7, :659:79]
wire [9:0] _a_opcodes_set_T; // @[Monitor.scala:659:79]
assign _a_opcodes_set_T = _GEN_3; // @[Monitor.scala:659:79]
wire [9:0] _a_sizes_set_T; // @[Monitor.scala:660:77]
assign _a_sizes_set_T = _GEN_3; // @[Monitor.scala:659:79, :660:77]
wire [1026:0] _a_opcodes_set_T_1 = {1023'h0, a_opcodes_set_interm} << _a_opcodes_set_T; // @[Monitor.scala:646:40, :659:{54,79}]
assign a_opcodes_set = _T_1027 ? _a_opcodes_set_T_1[259:0] : 260'h0; // @[Monitor.scala:630:33, :655:{25,70}, :659:{28,54}]
wire [1026:0] _a_sizes_set_T_1 = {1023'h0, a_sizes_set_interm} << _a_sizes_set_T; // @[Monitor.scala:648:38, :659:54, :660:{52,77}]
assign a_sizes_set = _T_1027 ? _a_sizes_set_T_1[259:0] : 260'h0; // @[Monitor.scala:632:31, :655:{25,70}, :660:{28,52}]
wire [64:0] d_clr; // @[Monitor.scala:664:34]
wire [64:0] d_clr_wo_ready; // @[Monitor.scala:665:34]
wire [259:0] d_opcodes_clr; // @[Monitor.scala:668:33]
wire [259:0] d_sizes_clr; // @[Monitor.scala:670:31]
wire _GEN_4 = io_in_d_bits_opcode_0 == 3'h6; // @[Monitor.scala:36:7, :673:46]
wire d_release_ack; // @[Monitor.scala:673:46]
assign d_release_ack = _GEN_4; // @[Monitor.scala:673:46]
wire d_release_ack_1; // @[Monitor.scala:783:46]
assign d_release_ack_1 = _GEN_4; // @[Monitor.scala:673:46, :783:46]
wire _T_1073 = io_in_d_valid_0 & d_first_1; // @[Monitor.scala:36:7, :674:26]
wire [127:0] _GEN_5 = 128'h1 << io_in_d_bits_source_0; // @[OneHot.scala:58:35]
wire [127:0] _d_clr_wo_ready_T; // @[OneHot.scala:58:35]
assign _d_clr_wo_ready_T = _GEN_5; // @[OneHot.scala:58:35]
wire [127:0] _d_clr_T; // @[OneHot.scala:58:35]
assign _d_clr_T = _GEN_5; // @[OneHot.scala:58:35]
wire [127:0] _d_clr_wo_ready_T_1; // @[OneHot.scala:58:35]
assign _d_clr_wo_ready_T_1 = _GEN_5; // @[OneHot.scala:58:35]
wire [127:0] _d_clr_T_1; // @[OneHot.scala:58:35]
assign _d_clr_T_1 = _GEN_5; // @[OneHot.scala:58:35]
assign d_clr_wo_ready = _T_1073 & ~d_release_ack ? _d_clr_wo_ready_T[64:0] : 65'h0; // @[OneHot.scala:58:35]
wire _T_1042 = _T_1162 & d_first_1 & ~d_release_ack; // @[Decoupled.scala:51:35]
assign d_clr = _T_1042 ? _d_clr_T[64:0] : 65'h0; // @[OneHot.scala:58:35]
wire [1038:0] _d_opcodes_clr_T_5 = 1039'hF << _d_opcodes_clr_T_4; // @[Monitor.scala:680:{76,101}]
assign d_opcodes_clr = _T_1042 ? _d_opcodes_clr_T_5[259:0] : 260'h0; // @[Monitor.scala:668:33, :678:{25,70,89}, :680:{21,76}]
wire [1038:0] _d_sizes_clr_T_5 = 1039'hF << _d_sizes_clr_T_4; // @[Monitor.scala:681:{74,99}]
assign d_sizes_clr = _T_1042 ? _d_sizes_clr_T_5[259:0] : 260'h0; // @[Monitor.scala:670:31, :678:{25,70,89}, :681:{21,74}]
wire _same_cycle_resp_T_1 = _same_cycle_resp_T; // @[Monitor.scala:684:{44,55}]
wire _same_cycle_resp_T_2 = io_in_a_bits_source_0 == io_in_d_bits_source_0; // @[Monitor.scala:36:7, :684:113]
wire same_cycle_resp = _same_cycle_resp_T_1 & _same_cycle_resp_T_2; // @[Monitor.scala:684:{55,88,113}]
wire [64:0] _inflight_T = inflight | a_set; // @[Monitor.scala:614:27, :626:34, :705:27]
wire [64:0] _inflight_T_1 = ~d_clr; // @[Monitor.scala:664:34, :705:38]
wire [64:0] _inflight_T_2 = _inflight_T & _inflight_T_1; // @[Monitor.scala:705:{27,36,38}]
wire [259:0] _inflight_opcodes_T = inflight_opcodes | a_opcodes_set; // @[Monitor.scala:616:35, :630:33, :706:43]
wire [259:0] _inflight_opcodes_T_1 = ~d_opcodes_clr; // @[Monitor.scala:668:33, :706:62]
wire [259:0] _inflight_opcodes_T_2 = _inflight_opcodes_T & _inflight_opcodes_T_1; // @[Monitor.scala:706:{43,60,62}]
wire [259:0] _inflight_sizes_T = inflight_sizes | a_sizes_set; // @[Monitor.scala:618:33, :632:31, :707:39]
wire [259:0] _inflight_sizes_T_1 = ~d_sizes_clr; // @[Monitor.scala:670:31, :707:56]
wire [259:0] _inflight_sizes_T_2 = _inflight_sizes_T & _inflight_sizes_T_1; // @[Monitor.scala:707:{39,54,56}]
reg [31:0] watchdog; // @[Monitor.scala:709:27]
wire [32:0] _watchdog_T = {1'h0, watchdog} + 33'h1; // @[Monitor.scala:709:27, :714:26]
wire [31:0] _watchdog_T_1 = _watchdog_T[31:0]; // @[Monitor.scala:714:26]
reg [64:0] inflight_1; // @[Monitor.scala:726:35]
wire [64:0] _inflight_T_3 = inflight_1; // @[Monitor.scala:726:35, :814:35]
reg [259:0] inflight_opcodes_1; // @[Monitor.scala:727:35]
wire [259:0] _inflight_opcodes_T_3 = inflight_opcodes_1; // @[Monitor.scala:727:35, :815:43]
reg [259:0] inflight_sizes_1; // @[Monitor.scala:728:35]
wire [259:0] _inflight_sizes_T_3 = inflight_sizes_1; // @[Monitor.scala:728:35, :816:41]
wire [5:0] _d_first_beats1_decode_T_7 = _d_first_beats1_decode_T_6[5:0]; // @[package.scala:243:{71,76}]
wire [5:0] _d_first_beats1_decode_T_8 = ~_d_first_beats1_decode_T_7; // @[package.scala:243:{46,76}]
wire [2:0] d_first_beats1_decode_2 = _d_first_beats1_decode_T_8[5:3]; // @[package.scala:243:46]
wire [2:0] d_first_beats1_2 = d_first_beats1_opdata_2 ? d_first_beats1_decode_2 : 3'h0; // @[Edges.scala:106:36, :220:59, :221:14]
reg [2:0] d_first_counter_2; // @[Edges.scala:229:27]
wire [3:0] _d_first_counter1_T_2 = {1'h0, d_first_counter_2} - 4'h1; // @[Edges.scala:229:27, :230:28]
wire [2:0] d_first_counter1_2 = _d_first_counter1_T_2[2:0]; // @[Edges.scala:230:28]
wire d_first_2 = d_first_counter_2 == 3'h0; // @[Edges.scala:229:27, :231:25]
wire _d_first_last_T_4 = d_first_counter_2 == 3'h1; // @[Edges.scala:229:27, :232:25]
wire _d_first_last_T_5 = d_first_beats1_2 == 3'h0; // @[Edges.scala:221:14, :232:43]
wire d_first_last_2 = _d_first_last_T_4 | _d_first_last_T_5; // @[Edges.scala:232:{25,33,43}]
wire d_first_done_2 = d_first_last_2 & _d_first_T_2; // @[Decoupled.scala:51:35]
wire [2:0] _d_first_count_T_2 = ~d_first_counter1_2; // @[Edges.scala:230:28, :234:27]
wire [2:0] d_first_count_2 = d_first_beats1_2 & _d_first_count_T_2; // @[Edges.scala:221:14, :234:{25,27}]
wire [2:0] _d_first_counter_T_2 = d_first_2 ? d_first_beats1_2 : d_first_counter1_2; // @[Edges.scala:221:14, :230:28, :231:25, :236:21]
wire [3:0] c_opcode_lookup; // @[Monitor.scala:747:35]
wire [3:0] c_size_lookup; // @[Monitor.scala:748:35]
wire [259:0] _c_opcode_lookup_T_1 = inflight_opcodes_1 >> _c_opcode_lookup_T; // @[Monitor.scala:727:35, :749:{44,69}]
wire [259:0] _c_opcode_lookup_T_6 = {256'h0, _c_opcode_lookup_T_1[3:0]}; // @[Monitor.scala:749:{44,97}]
wire [259:0] _c_opcode_lookup_T_7 = {1'h0, _c_opcode_lookup_T_6[259:1]}; // @[Monitor.scala:749:{97,152}]
assign c_opcode_lookup = _c_opcode_lookup_T_7[3:0]; // @[Monitor.scala:747:35, :749:{21,152}]
wire [259:0] _c_size_lookup_T_1 = inflight_sizes_1 >> _c_size_lookup_T; // @[Monitor.scala:728:35, :750:{42,67}]
wire [259:0] _c_size_lookup_T_6 = {256'h0, _c_size_lookup_T_1[3:0]}; // @[Monitor.scala:750:{42,93}]
wire [259:0] _c_size_lookup_T_7 = {1'h0, _c_size_lookup_T_6[259:1]}; // @[Monitor.scala:750:{93,146}]
assign c_size_lookup = _c_size_lookup_T_7[3:0]; // @[Monitor.scala:748:35, :750:{21,146}]
wire [64:0] d_clr_1; // @[Monitor.scala:774:34]
wire [64:0] d_clr_wo_ready_1; // @[Monitor.scala:775:34]
wire [259:0] d_opcodes_clr_1; // @[Monitor.scala:776:34]
wire [259:0] d_sizes_clr_1; // @[Monitor.scala:777:34]
wire _T_1138 = io_in_d_valid_0 & d_first_2; // @[Monitor.scala:36:7, :784:26]
assign d_clr_wo_ready_1 = _T_1138 & d_release_ack_1 ? _d_clr_wo_ready_T_1[64:0] : 65'h0; // @[OneHot.scala:58:35]
wire _T_1120 = _T_1162 & d_first_2 & d_release_ack_1; // @[Decoupled.scala:51:35]
assign d_clr_1 = _T_1120 ? _d_clr_T_1[64:0] : 65'h0; // @[OneHot.scala:58:35]
wire [1038:0] _d_opcodes_clr_T_11 = 1039'hF << _d_opcodes_clr_T_10; // @[Monitor.scala:790:{76,101}]
assign d_opcodes_clr_1 = _T_1120 ? _d_opcodes_clr_T_11[259:0] : 260'h0; // @[Monitor.scala:776:34, :788:{25,70,88}, :790:{21,76}]
wire [1038:0] _d_sizes_clr_T_11 = 1039'hF << _d_sizes_clr_T_10; // @[Monitor.scala:791:{74,99}]
assign d_sizes_clr_1 = _T_1120 ? _d_sizes_clr_T_11[259:0] : 260'h0; // @[Monitor.scala:777:34, :788:{25,70,88}, :791:{21,74}]
wire _same_cycle_resp_T_8 = io_in_d_bits_source_0 == 7'h0; // @[Monitor.scala:36:7, :795:113]
wire [64:0] _inflight_T_4 = ~d_clr_1; // @[Monitor.scala:774:34, :814:46]
wire [64:0] _inflight_T_5 = _inflight_T_3 & _inflight_T_4; // @[Monitor.scala:814:{35,44,46}]
wire [259:0] _inflight_opcodes_T_4 = ~d_opcodes_clr_1; // @[Monitor.scala:776:34, :815:62]
wire [259:0] _inflight_opcodes_T_5 = _inflight_opcodes_T_3 & _inflight_opcodes_T_4; // @[Monitor.scala:815:{43,60,62}]
wire [259:0] _inflight_sizes_T_4 = ~d_sizes_clr_1; // @[Monitor.scala:777:34, :816:58]
wire [259:0] _inflight_sizes_T_5 = _inflight_sizes_T_3 & _inflight_sizes_T_4; // @[Monitor.scala:816:{41,56,58}]
reg [31:0] watchdog_1; // @[Monitor.scala:818:27] |
Generate the Verilog code corresponding to the following Chisel files.
File LCG.scala:
// See LICENSE.SiFive for license details.
// See LICENSE.Berkeley for license details.
package freechips.rocketchip.util
import chisel3._
import chisel3.util.Cat
/** A 16-bit psuedo-random generator based on a linear conguential
* generator (LCG). The state is stored in an unitialised register.
* When using the C++ backend, it is straigtforward to arrange a
* random initial value for each uninitialised register, effectively
* seeding each LCG16 instance with a different seed.
*/
class LCG16 extends Module {
val io = IO(new Bundle {
val out = Output(UInt(16.W))
val inc = Input(Bool())
})
val state = Reg(UInt(32.W))
when (io.inc) {
state := state * 1103515245.U(32.W) + 12345.U(32.W)
}
io.out := state(30, 15)
}
/** An n-bit psuedo-random generator made from many instances of a
* 16-bit LCG. Parameter 'width' must be larger than 0.
*/
class LCG(val w: Int) extends Module {
val io = IO(new Bundle {
val out = Output(UInt(w.W))
val inc = Input(Bool())
})
require(w > 0)
val numLCG16s : Int = (w+15)/16
val outs = Seq.fill(numLCG16s) { LCG16(io.inc) }
io.out := Cat(outs)
}
object LCG16 {
def apply(inc: Bool = true.B): UInt = {
val lcg = Module(new LCG16)
lcg.io.inc := inc
lcg.io.out
}
}
object LCG {
def apply(w: Int, inc: Bool = true.B): UInt = {
val lcg = Module(new LCG(w))
lcg.io.inc := inc
lcg.io.out
}
}
| module LCG16_3( // @[LCG.scala:15:7]
input clock, // @[LCG.scala:15:7]
input reset, // @[LCG.scala:15:7]
output [15:0] io_out // @[LCG.scala:16:14]
);
wire io_inc = 1'h1; // @[LCG.scala:15:7, :16:14]
wire [15:0] _io_out_T; // @[LCG.scala:24:18]
wire [15:0] io_out_0; // @[LCG.scala:15:7]
reg [31:0] state; // @[LCG.scala:20:18]
wire [63:0] _state_T = {32'h0, state} * 64'h41C64E6D; // @[LCG.scala:20:18, :22:20]
wire [64:0] _state_T_1 = {1'h0, _state_T} + 65'h3039; // @[LCG.scala:22:{20,41}]
wire [63:0] _state_T_2 = _state_T_1[63:0]; // @[LCG.scala:22:41]
assign _io_out_T = state[30:15]; // @[LCG.scala:20:18, :24:18]
assign io_out_0 = _io_out_T; // @[LCG.scala:15:7, :24:18]
always @(posedge clock) // @[LCG.scala:15:7]
state <= _state_T_2[31:0]; // @[LCG.scala:20:18, :22:{11,41}]
assign io_out = io_out_0; // @[LCG.scala:15:7]
endmodule |
Generate the Verilog code corresponding to the following Chisel files.
File UnsafeAXI4ToTL.scala:
package ara
import chisel3._
import chisel3.util._
import freechips.rocketchip.amba._
import freechips.rocketchip.amba.axi4._
import org.chipsalliance.cde.config.Parameters
import freechips.rocketchip.diplomacy._
import freechips.rocketchip.tilelink._
import freechips.rocketchip.util._
class ReorderData(val dataWidth: Int, val respWidth: Int, val userFields: Seq[BundleFieldBase]) extends Bundle {
val data = UInt(dataWidth.W)
val resp = UInt(respWidth.W)
val last = Bool()
val user = BundleMap(userFields)
}
/** Parameters for [[BaseReservableListBuffer]] and all child classes.
*
* @param numEntries Total number of elements that can be stored in the 'data' RAM
* @param numLists Maximum number of linked lists
* @param numBeats Maximum number of beats per entry
*/
case class ReservableListBufferParameters(numEntries: Int, numLists: Int, numBeats: Int) {
// Avoid zero-width wires when we call 'log2Ceil'
val entryBits = if (numEntries == 1) 1 else log2Ceil(numEntries)
val listBits = if (numLists == 1) 1 else log2Ceil(numLists)
val beatBits = if (numBeats == 1) 1 else log2Ceil(numBeats)
}
case class UnsafeAXI4ToTLNode(numTlTxns: Int, wcorrupt: Boolean)(implicit valName: ValName)
extends MixedAdapterNode(AXI4Imp, TLImp)(
dFn = { case mp =>
TLMasterPortParameters.v2(
masters = mp.masters.zipWithIndex.map { case (m, i) =>
// Support 'numTlTxns' read requests and 'numTlTxns' write requests at once.
val numSourceIds = numTlTxns * 2
TLMasterParameters.v2(
name = m.name,
sourceId = IdRange(i * numSourceIds, (i + 1) * numSourceIds),
nodePath = m.nodePath
)
},
echoFields = mp.echoFields,
requestFields = AMBAProtField() +: mp.requestFields,
responseKeys = mp.responseKeys
)
},
uFn = { mp =>
AXI4SlavePortParameters(
slaves = mp.managers.map { m =>
val maxXfer = TransferSizes(1, mp.beatBytes * (1 << AXI4Parameters.lenBits))
AXI4SlaveParameters(
address = m.address,
resources = m.resources,
regionType = m.regionType,
executable = m.executable,
nodePath = m.nodePath,
supportsWrite = m.supportsPutPartial.intersect(maxXfer),
supportsRead = m.supportsGet.intersect(maxXfer),
interleavedId = Some(0) // TL2 never interleaves D beats
)
},
beatBytes = mp.beatBytes,
minLatency = mp.minLatency,
responseFields = mp.responseFields,
requestKeys = (if (wcorrupt) Seq(AMBACorrupt) else Seq()) ++ mp.requestKeys.filter(_ != AMBAProt)
)
}
)
class UnsafeAXI4ToTL(numTlTxns: Int, wcorrupt: Boolean)(implicit p: Parameters) extends LazyModule {
require(numTlTxns >= 1)
require(isPow2(numTlTxns), s"Number of TileLink transactions ($numTlTxns) must be a power of 2")
val node = UnsafeAXI4ToTLNode(numTlTxns, wcorrupt)
lazy val module = new LazyModuleImp(this) {
(node.in zip node.out) foreach { case ((in, edgeIn), (out, edgeOut)) =>
edgeIn.master.masters.foreach { m =>
require(m.aligned, "AXI4ToTL requires aligned requests")
}
val numIds = edgeIn.master.endId
val beatBytes = edgeOut.slave.beatBytes
val maxTransfer = edgeOut.slave.maxTransfer
val maxBeats = maxTransfer / beatBytes
// Look for an Error device to redirect bad requests
val errorDevs = edgeOut.slave.managers.filter(_.nodePath.last.lazyModule.className == "TLError")
require(!errorDevs.isEmpty, "There is no TLError reachable from AXI4ToTL. One must be instantiated.")
val errorDev = errorDevs.maxBy(_.maxTransfer)
val errorDevAddr = errorDev.address.head.base
require(
errorDev.supportsPutPartial.contains(maxTransfer),
s"Error device supports ${errorDev.supportsPutPartial} PutPartial but must support $maxTransfer"
)
require(
errorDev.supportsGet.contains(maxTransfer),
s"Error device supports ${errorDev.supportsGet} Get but must support $maxTransfer"
)
// All of the read-response reordering logic.
val listBufData = new ReorderData(beatBytes * 8, edgeIn.bundle.respBits, out.d.bits.user.fields)
val listBufParams = ReservableListBufferParameters(numTlTxns, numIds, maxBeats)
val listBuffer = if (numTlTxns > 1) {
Module(new ReservableListBuffer(listBufData, listBufParams))
} else {
Module(new PassthroughListBuffer(listBufData, listBufParams))
}
// To differentiate between read and write transaction IDs, we will set the MSB of the TileLink 'source' field to
// 0 for read requests and 1 for write requests.
val isReadSourceBit = 0.U(1.W)
val isWriteSourceBit = 1.U(1.W)
/* Read request logic */
val rOut = Wire(Decoupled(new TLBundleA(edgeOut.bundle)))
val rBytes1 = in.ar.bits.bytes1()
val rSize = OH1ToUInt(rBytes1)
val rOk = edgeOut.slave.supportsGetSafe(in.ar.bits.addr, rSize)
val rId = if (numTlTxns > 1) {
Cat(isReadSourceBit, listBuffer.ioReservedIndex)
} else {
isReadSourceBit
}
val rAddr = Mux(rOk, in.ar.bits.addr, errorDevAddr.U | in.ar.bits.addr(log2Ceil(beatBytes) - 1, 0))
// Indicates if there are still valid TileLink source IDs left to use.
val canIssueR = listBuffer.ioReserve.ready
listBuffer.ioReserve.bits := in.ar.bits.id
listBuffer.ioReserve.valid := in.ar.valid && rOut.ready
in.ar.ready := rOut.ready && canIssueR
rOut.valid := in.ar.valid && canIssueR
rOut.bits :<= edgeOut.Get(rId, rAddr, rSize)._2
rOut.bits.user :<= in.ar.bits.user
rOut.bits.user.lift(AMBAProt).foreach { rProt =>
rProt.privileged := in.ar.bits.prot(0)
rProt.secure := !in.ar.bits.prot(1)
rProt.fetch := in.ar.bits.prot(2)
rProt.bufferable := in.ar.bits.cache(0)
rProt.modifiable := in.ar.bits.cache(1)
rProt.readalloc := in.ar.bits.cache(2)
rProt.writealloc := in.ar.bits.cache(3)
}
/* Write request logic */
// Strip off the MSB, which identifies the transaction as read vs write.
val strippedResponseSourceId = if (numTlTxns > 1) {
out.d.bits.source((out.d.bits.source).getWidth - 2, 0)
} else {
// When there's only 1 TileLink transaction allowed for read/write, then this field is always 0.
0.U(1.W)
}
// Track when a write request burst is in progress.
val writeBurstBusy = RegInit(false.B)
when(in.w.fire) {
writeBurstBusy := !in.w.bits.last
}
val usedWriteIds = RegInit(0.U(numTlTxns.W))
val canIssueW = !usedWriteIds.andR
val usedWriteIdsSet = WireDefault(0.U(numTlTxns.W))
val usedWriteIdsClr = WireDefault(0.U(numTlTxns.W))
usedWriteIds := (usedWriteIds & ~usedWriteIdsClr) | usedWriteIdsSet
// Since write responses can show up in the middle of a write burst, we need to ensure the write burst ID doesn't
// change mid-burst.
val freeWriteIdOHRaw = Wire(UInt(numTlTxns.W))
val freeWriteIdOH = freeWriteIdOHRaw holdUnless !writeBurstBusy
val freeWriteIdIndex = OHToUInt(freeWriteIdOH)
freeWriteIdOHRaw := ~(leftOR(~usedWriteIds) << 1) & ~usedWriteIds
val wOut = Wire(Decoupled(new TLBundleA(edgeOut.bundle)))
val wBytes1 = in.aw.bits.bytes1()
val wSize = OH1ToUInt(wBytes1)
val wOk = edgeOut.slave.supportsPutPartialSafe(in.aw.bits.addr, wSize)
val wId = if (numTlTxns > 1) {
Cat(isWriteSourceBit, freeWriteIdIndex)
} else {
isWriteSourceBit
}
val wAddr = Mux(wOk, in.aw.bits.addr, errorDevAddr.U | in.aw.bits.addr(log2Ceil(beatBytes) - 1, 0))
// Here, we're taking advantage of the Irrevocable behavior of AXI4 (once 'valid' is asserted it must remain
// asserted until the handshake occurs). We will only accept W-channel beats when we have a valid AW beat, but
// the AW-channel beat won't fire until the final W-channel beat fires. So, we have stable address/size/strb
// bits during a W-channel burst.
in.aw.ready := wOut.ready && in.w.valid && in.w.bits.last && canIssueW
in.w.ready := wOut.ready && in.aw.valid && canIssueW
wOut.valid := in.aw.valid && in.w.valid && canIssueW
wOut.bits :<= edgeOut.Put(wId, wAddr, wSize, in.w.bits.data, in.w.bits.strb)._2
in.w.bits.user.lift(AMBACorrupt).foreach { wOut.bits.corrupt := _ }
wOut.bits.user :<= in.aw.bits.user
wOut.bits.user.lift(AMBAProt).foreach { wProt =>
wProt.privileged := in.aw.bits.prot(0)
wProt.secure := !in.aw.bits.prot(1)
wProt.fetch := in.aw.bits.prot(2)
wProt.bufferable := in.aw.bits.cache(0)
wProt.modifiable := in.aw.bits.cache(1)
wProt.readalloc := in.aw.bits.cache(2)
wProt.writealloc := in.aw.bits.cache(3)
}
// Merge the AXI4 read/write requests into the TL-A channel.
TLArbiter(TLArbiter.roundRobin)(out.a, (0.U, rOut), (in.aw.bits.len, wOut))
/* Read/write response logic */
val okB = Wire(Irrevocable(new AXI4BundleB(edgeIn.bundle)))
val okR = Wire(Irrevocable(new AXI4BundleR(edgeIn.bundle)))
val dResp = Mux(out.d.bits.denied || out.d.bits.corrupt, AXI4Parameters.RESP_SLVERR, AXI4Parameters.RESP_OKAY)
val dHasData = edgeOut.hasData(out.d.bits)
val (_dFirst, dLast, _dDone, dCount) = edgeOut.count(out.d)
val dNumBeats1 = edgeOut.numBeats1(out.d.bits)
// Handle cases where writeack arrives before write is done
val writeEarlyAck = (UIntToOH(strippedResponseSourceId) & usedWriteIds) === 0.U
out.d.ready := Mux(dHasData, listBuffer.ioResponse.ready, okB.ready && !writeEarlyAck)
listBuffer.ioDataOut.ready := okR.ready
okR.valid := listBuffer.ioDataOut.valid
okB.valid := out.d.valid && !dHasData && !writeEarlyAck
listBuffer.ioResponse.valid := out.d.valid && dHasData
listBuffer.ioResponse.bits.index := strippedResponseSourceId
listBuffer.ioResponse.bits.data.data := out.d.bits.data
listBuffer.ioResponse.bits.data.resp := dResp
listBuffer.ioResponse.bits.data.last := dLast
listBuffer.ioResponse.bits.data.user :<= out.d.bits.user
listBuffer.ioResponse.bits.count := dCount
listBuffer.ioResponse.bits.numBeats1 := dNumBeats1
okR.bits.id := listBuffer.ioDataOut.bits.listIndex
okR.bits.data := listBuffer.ioDataOut.bits.payload.data
okR.bits.resp := listBuffer.ioDataOut.bits.payload.resp
okR.bits.last := listBuffer.ioDataOut.bits.payload.last
okR.bits.user :<= listBuffer.ioDataOut.bits.payload.user
// Upon the final beat in a write request, record a mapping from TileLink source ID to AXI write ID. Upon a write
// response, mark the write transaction as complete.
val writeIdMap = Mem(numTlTxns, UInt(log2Ceil(numIds).W))
val writeResponseId = writeIdMap.read(strippedResponseSourceId)
when(wOut.fire) {
writeIdMap.write(freeWriteIdIndex, in.aw.bits.id)
}
when(edgeOut.done(wOut)) {
usedWriteIdsSet := freeWriteIdOH
}
when(okB.fire) {
usedWriteIdsClr := UIntToOH(strippedResponseSourceId, numTlTxns)
}
okB.bits.id := writeResponseId
okB.bits.resp := dResp
okB.bits.user :<= out.d.bits.user
// AXI4 needs irrevocable behaviour
in.r <> Queue.irrevocable(okR, 1, flow = true)
in.b <> Queue.irrevocable(okB, 1, flow = true)
// Unused channels
out.b.ready := true.B
out.c.valid := false.B
out.e.valid := false.B
/* Alignment constraints. The AXI4Fragmenter should guarantee all of these constraints. */
def checkRequest[T <: AXI4BundleA](a: IrrevocableIO[T], reqType: String): Unit = {
val lReqType = reqType.toLowerCase
when(a.valid) {
assert(a.bits.len < maxBeats.U, s"$reqType burst length (%d) must be less than $maxBeats", a.bits.len + 1.U)
// Narrow transfers and FIXED bursts must be single-beat bursts.
when(a.bits.len =/= 0.U) {
assert(
a.bits.size === log2Ceil(beatBytes).U,
s"Narrow $lReqType transfers (%d < $beatBytes bytes) can't be multi-beat bursts (%d beats)",
1.U << a.bits.size,
a.bits.len + 1.U
)
assert(
a.bits.burst =/= AXI4Parameters.BURST_FIXED,
s"Fixed $lReqType bursts can't be multi-beat bursts (%d beats)",
a.bits.len + 1.U
)
}
// Furthermore, the transfer size (a.bits.bytes1() + 1.U) must be naturally-aligned to the address (in
// particular, during both WRAP and INCR bursts), but this constraint is already checked by TileLink
// Monitors. Note that this alignment requirement means that WRAP bursts are identical to INCR bursts.
}
}
checkRequest(in.ar, "Read")
checkRequest(in.aw, "Write")
}
}
}
object UnsafeAXI4ToTL {
def apply(numTlTxns: Int = 1, wcorrupt: Boolean = true)(implicit p: Parameters) = {
val axi42tl = LazyModule(new UnsafeAXI4ToTL(numTlTxns, wcorrupt))
axi42tl.node
}
}
/* ReservableListBuffer logic, and associated classes. */
class ResponsePayload[T <: Data](val data: T, val params: ReservableListBufferParameters) extends Bundle {
val index = UInt(params.entryBits.W)
val count = UInt(params.beatBits.W)
val numBeats1 = UInt(params.beatBits.W)
}
class DataOutPayload[T <: Data](val payload: T, val params: ReservableListBufferParameters) extends Bundle {
val listIndex = UInt(params.listBits.W)
}
/** Abstract base class to unify [[ReservableListBuffer]] and [[PassthroughListBuffer]]. */
abstract class BaseReservableListBuffer[T <: Data](gen: T, params: ReservableListBufferParameters)
extends Module {
require(params.numEntries > 0)
require(params.numLists > 0)
val ioReserve = IO(Flipped(Decoupled(UInt(params.listBits.W))))
val ioReservedIndex = IO(Output(UInt(params.entryBits.W)))
val ioResponse = IO(Flipped(Decoupled(new ResponsePayload(gen, params))))
val ioDataOut = IO(Decoupled(new DataOutPayload(gen, params)))
}
/** A modified version of 'ListBuffer' from 'sifive/block-inclusivecache-sifive'. This module forces users to reserve
* linked list entries (through the 'ioReserve' port) before writing data into those linked lists (through the
* 'ioResponse' port). Each response is tagged to indicate which linked list it is written into. The responses for a
* given linked list can come back out-of-order, but they will be read out through the 'ioDataOut' port in-order.
*
* ==Constructor==
* @param gen Chisel type of linked list data element
* @param params Other parameters
*
* ==Module IO==
* @param ioReserve Index of list to reserve a new element in
* @param ioReservedIndex Index of the entry that was reserved in the linked list, valid when 'ioReserve.fire'
* @param ioResponse Payload containing response data and linked-list-entry index
* @param ioDataOut Payload containing data read from response linked list and linked list index
*/
class ReservableListBuffer[T <: Data](gen: T, params: ReservableListBufferParameters)
extends BaseReservableListBuffer(gen, params) {
val valid = RegInit(0.U(params.numLists.W))
val head = Mem(params.numLists, UInt(params.entryBits.W))
val tail = Mem(params.numLists, UInt(params.entryBits.W))
val used = RegInit(0.U(params.numEntries.W))
val next = Mem(params.numEntries, UInt(params.entryBits.W))
val map = Mem(params.numEntries, UInt(params.listBits.W))
val dataMems = Seq.fill(params.numBeats) { SyncReadMem(params.numEntries, gen) }
val dataIsPresent = RegInit(0.U(params.numEntries.W))
val beats = Mem(params.numEntries, UInt(params.beatBits.W))
// The 'data' SRAM should be single-ported (read-or-write), since dual-ported SRAMs are significantly slower.
val dataMemReadEnable = WireDefault(false.B)
val dataMemWriteEnable = WireDefault(false.B)
assert(!(dataMemReadEnable && dataMemWriteEnable))
// 'freeOH' has a single bit set, which is the least-significant bit that is cleared in 'used'. So, it's the
// lowest-index entry in the 'data' RAM which is free.
val freeOH = Wire(UInt(params.numEntries.W))
val freeIndex = OHToUInt(freeOH)
freeOH := ~(leftOR(~used) << 1) & ~used
ioReservedIndex := freeIndex
val validSet = WireDefault(0.U(params.numLists.W))
val validClr = WireDefault(0.U(params.numLists.W))
val usedSet = WireDefault(0.U(params.numEntries.W))
val usedClr = WireDefault(0.U(params.numEntries.W))
val dataIsPresentSet = WireDefault(0.U(params.numEntries.W))
val dataIsPresentClr = WireDefault(0.U(params.numEntries.W))
valid := (valid & ~validClr) | validSet
used := (used & ~usedClr) | usedSet
dataIsPresent := (dataIsPresent & ~dataIsPresentClr) | dataIsPresentSet
/* Reservation logic signals */
val reserveTail = Wire(UInt(params.entryBits.W))
val reserveIsValid = Wire(Bool())
/* Response logic signals */
val responseIndex = Wire(UInt(params.entryBits.W))
val responseListIndex = Wire(UInt(params.listBits.W))
val responseHead = Wire(UInt(params.entryBits.W))
val responseTail = Wire(UInt(params.entryBits.W))
val nextResponseHead = Wire(UInt(params.entryBits.W))
val nextDataIsPresent = Wire(Bool())
val isResponseInOrder = Wire(Bool())
val isEndOfList = Wire(Bool())
val isLastBeat = Wire(Bool())
val isLastResponseBeat = Wire(Bool())
val isLastUnwindBeat = Wire(Bool())
/* Reservation logic */
reserveTail := tail.read(ioReserve.bits)
reserveIsValid := valid(ioReserve.bits)
ioReserve.ready := !used.andR
// When we want to append-to and destroy the same linked list on the same cycle, we need to take special care that we
// actually start a new list, rather than appending to a list that's about to disappear.
val reserveResponseSameList = ioReserve.bits === responseListIndex
val appendToAndDestroyList =
ioReserve.fire && ioDataOut.fire && reserveResponseSameList && isEndOfList && isLastBeat
when(ioReserve.fire) {
validSet := UIntToOH(ioReserve.bits, params.numLists)
usedSet := freeOH
when(reserveIsValid && !appendToAndDestroyList) {
next.write(reserveTail, freeIndex)
}.otherwise {
head.write(ioReserve.bits, freeIndex)
}
tail.write(ioReserve.bits, freeIndex)
map.write(freeIndex, ioReserve.bits)
}
/* Response logic */
// The majority of the response logic (reading from and writing to the various RAMs) is common between the
// response-from-IO case (ioResponse.fire) and the response-from-unwind case (unwindDataIsValid).
// The read from the 'next' RAM should be performed at the address given by 'responseHead'. However, we only use the
// 'nextResponseHead' signal when 'isResponseInOrder' is asserted (both in the response-from-IO and
// response-from-unwind cases), which implies that 'responseHead' equals 'responseIndex'. 'responseHead' comes after
// two back-to-back RAM reads, so indexing into the 'next' RAM with 'responseIndex' is much quicker.
responseHead := head.read(responseListIndex)
responseTail := tail.read(responseListIndex)
nextResponseHead := next.read(responseIndex)
nextDataIsPresent := dataIsPresent(nextResponseHead)
// Note that when 'isEndOfList' is asserted, 'nextResponseHead' (and therefore 'nextDataIsPresent') is invalid, since
// there isn't a next element in the linked list.
isResponseInOrder := responseHead === responseIndex
isEndOfList := responseHead === responseTail
isLastResponseBeat := ioResponse.bits.count === ioResponse.bits.numBeats1
// When a response's last beat is sent to the output channel, mark it as completed. This can happen in two
// situations:
// 1. We receive an in-order response, which travels straight from 'ioResponse' to 'ioDataOut'. The 'data' SRAM
// reservation was never needed.
// 2. An entry is read out of the 'data' SRAM (within the unwind FSM).
when(ioDataOut.fire && isLastBeat) {
// Mark the reservation as no-longer-used.
usedClr := UIntToOH(responseIndex, params.numEntries)
// If the response is in-order, then we're popping an element from this linked list.
when(isEndOfList) {
// Once we pop the last element from a linked list, mark it as no-longer-present.
validClr := UIntToOH(responseListIndex, params.numLists)
}.otherwise {
// Move the linked list's head pointer to the new head pointer.
head.write(responseListIndex, nextResponseHead)
}
}
// If we get an out-of-order response, then stash it in the 'data' SRAM for later unwinding.
when(ioResponse.fire && !isResponseInOrder) {
dataMemWriteEnable := true.B
when(isLastResponseBeat) {
dataIsPresentSet := UIntToOH(ioResponse.bits.index, params.numEntries)
beats.write(ioResponse.bits.index, ioResponse.bits.numBeats1)
}
}
// Use the 'ioResponse.bits.count' index (AKA the beat number) to select which 'data' SRAM to write to.
val responseCountOH = UIntToOH(ioResponse.bits.count, params.numBeats)
(responseCountOH.asBools zip dataMems) foreach { case (select, seqMem) =>
when(select && dataMemWriteEnable) {
seqMem.write(ioResponse.bits.index, ioResponse.bits.data)
}
}
/* Response unwind logic */
// Unwind FSM state definitions
val sIdle :: sUnwinding :: Nil = Enum(2)
val unwindState = RegInit(sIdle)
val busyUnwinding = unwindState === sUnwinding
val startUnwind = Wire(Bool())
val stopUnwind = Wire(Bool())
when(startUnwind) {
unwindState := sUnwinding
}.elsewhen(stopUnwind) {
unwindState := sIdle
}
assert(!(startUnwind && stopUnwind))
// Start the unwind FSM when there is an old out-of-order response stored in the 'data' SRAM that is now about to
// become the next in-order response. As noted previously, when 'isEndOfList' is asserted, 'nextDataIsPresent' is
// invalid.
//
// Note that since an in-order response from 'ioResponse' to 'ioDataOut' starts the unwind FSM, we don't have to
// worry about overwriting the 'data' SRAM's output when we start the unwind FSM.
startUnwind := ioResponse.fire && isResponseInOrder && isLastResponseBeat && !isEndOfList && nextDataIsPresent
// Stop the unwind FSM when the output channel consumes the final beat of an element from the unwind FSM, and one of
// two things happens:
// 1. We're still waiting for the next in-order response for this list (!nextDataIsPresent)
// 2. There are no more outstanding responses in this list (isEndOfList)
//
// Including 'busyUnwinding' ensures this is a single-cycle pulse, and it never fires while in-order transactions are
// passing from 'ioResponse' to 'ioDataOut'.
stopUnwind := busyUnwinding && ioDataOut.fire && isLastUnwindBeat && (!nextDataIsPresent || isEndOfList)
val isUnwindBurstOver = Wire(Bool())
val startNewBurst = startUnwind || (isUnwindBurstOver && dataMemReadEnable)
// Track the number of beats left to unwind for each list entry. At the start of a new burst, we flop the number of
// beats in this burst (minus 1) into 'unwindBeats1', and we reset the 'beatCounter' counter. With each beat, we
// increment 'beatCounter' until it reaches 'unwindBeats1'.
val unwindBeats1 = Reg(UInt(params.beatBits.W))
val nextBeatCounter = Wire(UInt(params.beatBits.W))
val beatCounter = RegNext(nextBeatCounter)
isUnwindBurstOver := beatCounter === unwindBeats1
when(startNewBurst) {
unwindBeats1 := beats.read(nextResponseHead)
nextBeatCounter := 0.U
}.elsewhen(dataMemReadEnable) {
nextBeatCounter := beatCounter + 1.U
}.otherwise {
nextBeatCounter := beatCounter
}
// When unwinding, feed the next linked-list head pointer (read out of the 'next' RAM) back so we can unwind the next
// entry in this linked list. Only update the pointer when we're actually moving to the next 'data' SRAM entry (which
// happens at the start of reading a new stored burst).
val unwindResponseIndex = RegEnable(nextResponseHead, startNewBurst)
responseIndex := Mux(busyUnwinding, unwindResponseIndex, ioResponse.bits.index)
// Hold 'nextResponseHead' static while we're in the middle of unwinding a multi-beat burst entry. We don't want the
// SRAM read address to shift while reading beats from a burst. Note that this is identical to 'nextResponseHead
// holdUnless startNewBurst', but 'unwindResponseIndex' already implements the 'RegEnable' signal in 'holdUnless'.
val unwindReadAddress = Mux(startNewBurst, nextResponseHead, unwindResponseIndex)
// The 'data' SRAM's output is valid if we read from the SRAM on the previous cycle. The SRAM's output stays valid
// until it is consumed by the output channel (and if we don't read from the SRAM again on that same cycle).
val unwindDataIsValid = RegInit(false.B)
when(dataMemReadEnable) {
unwindDataIsValid := true.B
}.elsewhen(ioDataOut.fire) {
unwindDataIsValid := false.B
}
isLastUnwindBeat := isUnwindBurstOver && unwindDataIsValid
// Indicates if this is the last beat for both 'ioResponse'-to-'ioDataOut' and unwind-to-'ioDataOut' beats.
isLastBeat := Mux(busyUnwinding, isLastUnwindBeat, isLastResponseBeat)
// Select which SRAM to read from based on the beat counter.
val dataOutputVec = Wire(Vec(params.numBeats, gen))
val nextBeatCounterOH = UIntToOH(nextBeatCounter, params.numBeats)
(nextBeatCounterOH.asBools zip dataMems).zipWithIndex foreach { case ((select, seqMem), i) =>
dataOutputVec(i) := seqMem.read(unwindReadAddress, select && dataMemReadEnable)
}
// Select the current 'data' SRAM output beat, and save the output in a register in case we're being back-pressured
// by 'ioDataOut'. This implements the functionality of 'readAndHold', but only on the single SRAM we're reading
// from.
val dataOutput = dataOutputVec(beatCounter) holdUnless RegNext(dataMemReadEnable)
// Mark 'data' burst entries as no-longer-present as they get read out of the SRAM.
when(dataMemReadEnable) {
dataIsPresentClr := UIntToOH(unwindReadAddress, params.numEntries)
}
// As noted above, when starting the unwind FSM, we know the 'data' SRAM's output isn't valid, so it's safe to issue
// a read command. Otherwise, only issue an SRAM read when the next 'unwindState' is 'sUnwinding', and if we know
// we're not going to overwrite the SRAM's current output (the SRAM output is already valid, and it's not going to be
// consumed by the output channel).
val dontReadFromDataMem = unwindDataIsValid && !ioDataOut.ready
dataMemReadEnable := startUnwind || (busyUnwinding && !stopUnwind && !dontReadFromDataMem)
// While unwinding, prevent new reservations from overwriting the current 'map' entry that we're using. We need
// 'responseListIndex' to be coherent for the entire unwind process.
val rawResponseListIndex = map.read(responseIndex)
val unwindResponseListIndex = RegEnable(rawResponseListIndex, startNewBurst)
responseListIndex := Mux(busyUnwinding, unwindResponseListIndex, rawResponseListIndex)
// Accept responses either when they can be passed through to the output channel, or if they're out-of-order and are
// just going to be stashed in the 'data' SRAM. Never accept a response payload when we're busy unwinding, since that
// could result in reading from and writing to the 'data' SRAM in the same cycle, and we want that SRAM to be
// single-ported.
ioResponse.ready := (ioDataOut.ready || !isResponseInOrder) && !busyUnwinding
// Either pass an in-order response to the output channel, or data read from the unwind FSM.
ioDataOut.valid := Mux(busyUnwinding, unwindDataIsValid, ioResponse.valid && isResponseInOrder)
ioDataOut.bits.listIndex := responseListIndex
ioDataOut.bits.payload := Mux(busyUnwinding, dataOutput, ioResponse.bits.data)
// It's an error to get a response that isn't associated with a valid linked list.
when(ioResponse.fire || unwindDataIsValid) {
assert(
valid(responseListIndex),
"No linked list exists at index %d, mapped from %d",
responseListIndex,
responseIndex
)
}
when(busyUnwinding && dataMemReadEnable) {
assert(isResponseInOrder, "Unwind FSM must read entries from SRAM in order")
}
}
/** Specialized version of [[ReservableListBuffer]] for the case of numEntries == 1.
*
* Much of the complex logic in [[ReservableListBuffer]] can disappear in this case. For instance, we don't have to
* reorder any responses, or store any linked lists.
*/
class PassthroughListBuffer[T <: Data](gen: T, params: ReservableListBufferParameters)
extends BaseReservableListBuffer(gen, params) {
require(params.numEntries == 1, s"PassthroughListBuffer is only valid when 'numEntries' (${params.numEntries}) is 1")
val used = RegInit(0.U(params.numEntries.W))
val map = Mem(params.numEntries, UInt(params.listBits.W))
val usedSet = WireDefault(0.U(params.numEntries.W))
val usedClr = WireDefault(0.U(params.numEntries.W))
used := (used & ~usedClr) | usedSet
ioReserve.ready := used === 0.U
// Store which list index was reserved, we need to return this value when we get a response.
when(ioReserve.fire) {
usedSet := 1.U
map.write(0.U, ioReserve.bits)
}
// There's only one valid linked list entry, which is at index 0.
ioReservedIndex := 0.U
val isLastResponseBeat = ioResponse.bits.count === ioResponse.bits.numBeats1
// Mark the linked list as empty when we get the last beat in a response.
// Note that 'ioResponse.fire === ioDataOut.fire'.
when(ioResponse.fire && isLastResponseBeat) {
usedClr := 1.U
}
// Always pass the response data straight through, since we never need to reorder the response data.
ioDataOut.bits.listIndex := map.read(0.U)
ioDataOut.bits.payload := ioResponse.bits.data
ioDataOut.valid := ioResponse.valid
ioResponse.ready := ioDataOut.ready
}
| module dataMems_371( // @[UnsafeAXI4ToTL.scala:365:62]
input [4:0] R0_addr,
input R0_en,
input R0_clk,
output [66:0] R0_data,
input [4:0] W0_addr,
input W0_en,
input W0_clk,
input [66:0] W0_data
);
dataMems_0_ext dataMems_0_ext ( // @[UnsafeAXI4ToTL.scala:365:62]
.R0_addr (R0_addr),
.R0_en (R0_en),
.R0_clk (R0_clk),
.R0_data (R0_data),
.W0_addr (W0_addr),
.W0_en (W0_en),
.W0_clk (W0_clk),
.W0_data (W0_data)
); // @[UnsafeAXI4ToTL.scala:365:62]
endmodule |
Generate the Verilog code corresponding to the following Chisel files.
File package.scala:
// See LICENSE.SiFive for license details.
package freechips.rocketchip
import chisel3._
import chisel3.util._
import scala.math.min
import scala.collection.{immutable, mutable}
package object util {
implicit class UnzippableOption[S, T](val x: Option[(S, T)]) {
def unzip = (x.map(_._1), x.map(_._2))
}
implicit class UIntIsOneOf(private val x: UInt) extends AnyVal {
def isOneOf(s: Seq[UInt]): Bool = s.map(x === _).orR
def isOneOf(u1: UInt, u2: UInt*): Bool = isOneOf(u1 +: u2.toSeq)
}
implicit class VecToAugmentedVec[T <: Data](private val x: Vec[T]) extends AnyVal {
/** Like Vec.apply(idx), but tolerates indices of mismatched width */
def extract(idx: UInt): T = x((idx | 0.U(log2Ceil(x.size).W)).extract(log2Ceil(x.size) - 1, 0))
}
implicit class SeqToAugmentedSeq[T <: Data](private val x: Seq[T]) extends AnyVal {
def apply(idx: UInt): T = {
if (x.size <= 1) {
x.head
} else if (!isPow2(x.size)) {
// For non-power-of-2 seqs, reflect elements to simplify decoder
(x ++ x.takeRight(x.size & -x.size)).toSeq(idx)
} else {
// Ignore MSBs of idx
val truncIdx =
if (idx.isWidthKnown && idx.getWidth <= log2Ceil(x.size)) idx
else (idx | 0.U(log2Ceil(x.size).W))(log2Ceil(x.size)-1, 0)
x.zipWithIndex.tail.foldLeft(x.head) { case (prev, (cur, i)) => Mux(truncIdx === i.U, cur, prev) }
}
}
def extract(idx: UInt): T = VecInit(x).extract(idx)
def asUInt: UInt = Cat(x.map(_.asUInt).reverse)
def rotate(n: Int): Seq[T] = x.drop(n) ++ x.take(n)
def rotate(n: UInt): Seq[T] = {
if (x.size <= 1) {
x
} else {
require(isPow2(x.size))
val amt = n.padTo(log2Ceil(x.size))
(0 until log2Ceil(x.size)).foldLeft(x)((r, i) => (r.rotate(1 << i) zip r).map { case (s, a) => Mux(amt(i), s, a) })
}
}
def rotateRight(n: Int): Seq[T] = x.takeRight(n) ++ x.dropRight(n)
def rotateRight(n: UInt): Seq[T] = {
if (x.size <= 1) {
x
} else {
require(isPow2(x.size))
val amt = n.padTo(log2Ceil(x.size))
(0 until log2Ceil(x.size)).foldLeft(x)((r, i) => (r.rotateRight(1 << i) zip r).map { case (s, a) => Mux(amt(i), s, a) })
}
}
}
// allow bitwise ops on Seq[Bool] just like UInt
implicit class SeqBoolBitwiseOps(private val x: Seq[Bool]) extends AnyVal {
def & (y: Seq[Bool]): Seq[Bool] = (x zip y).map { case (a, b) => a && b }
def | (y: Seq[Bool]): Seq[Bool] = padZip(x, y).map { case (a, b) => a || b }
def ^ (y: Seq[Bool]): Seq[Bool] = padZip(x, y).map { case (a, b) => a ^ b }
def << (n: Int): Seq[Bool] = Seq.fill(n)(false.B) ++ x
def >> (n: Int): Seq[Bool] = x drop n
def unary_~ : Seq[Bool] = x.map(!_)
def andR: Bool = if (x.isEmpty) true.B else x.reduce(_&&_)
def orR: Bool = if (x.isEmpty) false.B else x.reduce(_||_)
def xorR: Bool = if (x.isEmpty) false.B else x.reduce(_^_)
private def padZip(y: Seq[Bool], z: Seq[Bool]): Seq[(Bool, Bool)] = y.padTo(z.size, false.B) zip z.padTo(y.size, false.B)
}
implicit class DataToAugmentedData[T <: Data](private val x: T) extends AnyVal {
def holdUnless(enable: Bool): T = Mux(enable, x, RegEnable(x, enable))
def getElements: Seq[Element] = x match {
case e: Element => Seq(e)
case a: Aggregate => a.getElements.flatMap(_.getElements)
}
}
/** Any Data subtype that has a Bool member named valid. */
type DataCanBeValid = Data { val valid: Bool }
implicit class SeqMemToAugmentedSeqMem[T <: Data](private val x: SyncReadMem[T]) extends AnyVal {
def readAndHold(addr: UInt, enable: Bool): T = x.read(addr, enable) holdUnless RegNext(enable)
}
implicit class StringToAugmentedString(private val x: String) extends AnyVal {
/** converts from camel case to to underscores, also removing all spaces */
def underscore: String = x.tail.foldLeft(x.headOption.map(_.toLower + "") getOrElse "") {
case (acc, c) if c.isUpper => acc + "_" + c.toLower
case (acc, c) if c == ' ' => acc
case (acc, c) => acc + c
}
/** converts spaces or underscores to hyphens, also lowering case */
def kebab: String = x.toLowerCase map {
case ' ' => '-'
case '_' => '-'
case c => c
}
def named(name: Option[String]): String = {
x + name.map("_named_" + _ ).getOrElse("_with_no_name")
}
def named(name: String): String = named(Some(name))
}
implicit def uintToBitPat(x: UInt): BitPat = BitPat(x)
implicit def wcToUInt(c: WideCounter): UInt = c.value
implicit class UIntToAugmentedUInt(private val x: UInt) extends AnyVal {
def sextTo(n: Int): UInt = {
require(x.getWidth <= n)
if (x.getWidth == n) x
else Cat(Fill(n - x.getWidth, x(x.getWidth-1)), x)
}
def padTo(n: Int): UInt = {
require(x.getWidth <= n)
if (x.getWidth == n) x
else Cat(0.U((n - x.getWidth).W), x)
}
// shifts left by n if n >= 0, or right by -n if n < 0
def << (n: SInt): UInt = {
val w = n.getWidth - 1
require(w <= 30)
val shifted = x << n(w-1, 0)
Mux(n(w), shifted >> (1 << w), shifted)
}
// shifts right by n if n >= 0, or left by -n if n < 0
def >> (n: SInt): UInt = {
val w = n.getWidth - 1
require(w <= 30)
val shifted = x << (1 << w) >> n(w-1, 0)
Mux(n(w), shifted, shifted >> (1 << w))
}
// Like UInt.apply(hi, lo), but returns 0.U for zero-width extracts
def extract(hi: Int, lo: Int): UInt = {
require(hi >= lo-1)
if (hi == lo-1) 0.U
else x(hi, lo)
}
// Like Some(UInt.apply(hi, lo)), but returns None for zero-width extracts
def extractOption(hi: Int, lo: Int): Option[UInt] = {
require(hi >= lo-1)
if (hi == lo-1) None
else Some(x(hi, lo))
}
// like x & ~y, but first truncate or zero-extend y to x's width
def andNot(y: UInt): UInt = x & ~(y | (x & 0.U))
def rotateRight(n: Int): UInt = if (n == 0) x else Cat(x(n-1, 0), x >> n)
def rotateRight(n: UInt): UInt = {
if (x.getWidth <= 1) {
x
} else {
val amt = n.padTo(log2Ceil(x.getWidth))
(0 until log2Ceil(x.getWidth)).foldLeft(x)((r, i) => Mux(amt(i), r.rotateRight(1 << i), r))
}
}
def rotateLeft(n: Int): UInt = if (n == 0) x else Cat(x(x.getWidth-1-n,0), x(x.getWidth-1,x.getWidth-n))
def rotateLeft(n: UInt): UInt = {
if (x.getWidth <= 1) {
x
} else {
val amt = n.padTo(log2Ceil(x.getWidth))
(0 until log2Ceil(x.getWidth)).foldLeft(x)((r, i) => Mux(amt(i), r.rotateLeft(1 << i), r))
}
}
// compute (this + y) % n, given (this < n) and (y < n)
def addWrap(y: UInt, n: Int): UInt = {
val z = x +& y
if (isPow2(n)) z(n.log2-1, 0) else Mux(z >= n.U, z - n.U, z)(log2Ceil(n)-1, 0)
}
// compute (this - y) % n, given (this < n) and (y < n)
def subWrap(y: UInt, n: Int): UInt = {
val z = x -& y
if (isPow2(n)) z(n.log2-1, 0) else Mux(z(z.getWidth-1), z + n.U, z)(log2Ceil(n)-1, 0)
}
def grouped(width: Int): Seq[UInt] =
(0 until x.getWidth by width).map(base => x(base + width - 1, base))
def inRange(base: UInt, bounds: UInt) = x >= base && x < bounds
def ## (y: Option[UInt]): UInt = y.map(x ## _).getOrElse(x)
// Like >=, but prevents x-prop for ('x >= 0)
def >== (y: UInt): Bool = x >= y || y === 0.U
}
implicit class OptionUIntToAugmentedOptionUInt(private val x: Option[UInt]) extends AnyVal {
def ## (y: UInt): UInt = x.map(_ ## y).getOrElse(y)
def ## (y: Option[UInt]): Option[UInt] = x.map(_ ## y)
}
implicit class BooleanToAugmentedBoolean(private val x: Boolean) extends AnyVal {
def toInt: Int = if (x) 1 else 0
// this one's snagged from scalaz
def option[T](z: => T): Option[T] = if (x) Some(z) else None
}
implicit class IntToAugmentedInt(private val x: Int) extends AnyVal {
// exact log2
def log2: Int = {
require(isPow2(x))
log2Ceil(x)
}
}
def OH1ToOH(x: UInt): UInt = (x << 1 | 1.U) & ~Cat(0.U(1.W), x)
def OH1ToUInt(x: UInt): UInt = OHToUInt(OH1ToOH(x))
def UIntToOH1(x: UInt, width: Int): UInt = ~((-1).S(width.W).asUInt << x)(width-1, 0)
def UIntToOH1(x: UInt): UInt = UIntToOH1(x, (1 << x.getWidth) - 1)
def trailingZeros(x: Int): Option[Int] = if (x > 0) Some(log2Ceil(x & -x)) else None
// Fill 1s from low bits to high bits
def leftOR(x: UInt): UInt = leftOR(x, x.getWidth, x.getWidth)
def leftOR(x: UInt, width: Integer, cap: Integer = 999999): UInt = {
val stop = min(width, cap)
def helper(s: Int, x: UInt): UInt =
if (s >= stop) x else helper(s+s, x | (x << s)(width-1,0))
helper(1, x)(width-1, 0)
}
// Fill 1s form high bits to low bits
def rightOR(x: UInt): UInt = rightOR(x, x.getWidth, x.getWidth)
def rightOR(x: UInt, width: Integer, cap: Integer = 999999): UInt = {
val stop = min(width, cap)
def helper(s: Int, x: UInt): UInt =
if (s >= stop) x else helper(s+s, x | (x >> s))
helper(1, x)(width-1, 0)
}
def OptimizationBarrier[T <: Data](in: T): T = {
val barrier = Module(new Module {
val io = IO(new Bundle {
val x = Input(chiselTypeOf(in))
val y = Output(chiselTypeOf(in))
})
io.y := io.x
override def desiredName = s"OptimizationBarrier_${in.typeName}"
})
barrier.io.x := in
barrier.io.y
}
/** Similar to Seq.groupBy except this returns a Seq instead of a Map
* Useful for deterministic code generation
*/
def groupByIntoSeq[A, K](xs: Seq[A])(f: A => K): immutable.Seq[(K, immutable.Seq[A])] = {
val map = mutable.LinkedHashMap.empty[K, mutable.ListBuffer[A]]
for (x <- xs) {
val key = f(x)
val l = map.getOrElseUpdate(key, mutable.ListBuffer.empty[A])
l += x
}
map.view.map({ case (k, vs) => k -> vs.toList }).toList
}
def heterogeneousOrGlobalSetting[T](in: Seq[T], n: Int): Seq[T] = in.size match {
case 1 => List.fill(n)(in.head)
case x if x == n => in
case _ => throw new Exception(s"must provide exactly 1 or $n of some field, but got:\n$in")
}
// HeterogeneousBag moved to standalond diplomacy
@deprecated("HeterogeneousBag has been absorbed into standalone diplomacy library", "rocketchip 2.0.0")
def HeterogeneousBag[T <: Data](elts: Seq[T]) = _root_.org.chipsalliance.diplomacy.nodes.HeterogeneousBag[T](elts)
@deprecated("HeterogeneousBag has been absorbed into standalone diplomacy library", "rocketchip 2.0.0")
val HeterogeneousBag = _root_.org.chipsalliance.diplomacy.nodes.HeterogeneousBag
}
File Nodes.scala:
// See LICENSE.SiFive for license details.
package freechips.rocketchip.tilelink
import chisel3._
import chisel3.experimental.SourceInfo
import org.chipsalliance.cde.config._
import org.chipsalliance.diplomacy._
import org.chipsalliance.diplomacy.nodes._
import freechips.rocketchip.util.{AsyncQueueParams,RationalDirection}
case object TLMonitorBuilder extends Field[TLMonitorArgs => TLMonitorBase](args => new TLMonitor(args))
object TLImp extends NodeImp[TLMasterPortParameters, TLSlavePortParameters, TLEdgeOut, TLEdgeIn, TLBundle]
{
def edgeO(pd: TLMasterPortParameters, pu: TLSlavePortParameters, p: Parameters, sourceInfo: SourceInfo) = new TLEdgeOut(pd, pu, p, sourceInfo)
def edgeI(pd: TLMasterPortParameters, pu: TLSlavePortParameters, p: Parameters, sourceInfo: SourceInfo) = new TLEdgeIn (pd, pu, p, sourceInfo)
def bundleO(eo: TLEdgeOut) = TLBundle(eo.bundle)
def bundleI(ei: TLEdgeIn) = TLBundle(ei.bundle)
def render(ei: TLEdgeIn) = RenderedEdge(colour = "#000000" /* black */, label = (ei.manager.beatBytes * 8).toString)
override def monitor(bundle: TLBundle, edge: TLEdgeIn): Unit = {
val monitor = Module(edge.params(TLMonitorBuilder)(TLMonitorArgs(edge)))
monitor.io.in := bundle
}
override def mixO(pd: TLMasterPortParameters, node: OutwardNode[TLMasterPortParameters, TLSlavePortParameters, TLBundle]): TLMasterPortParameters =
pd.v1copy(clients = pd.clients.map { c => c.v1copy (nodePath = node +: c.nodePath) })
override def mixI(pu: TLSlavePortParameters, node: InwardNode[TLMasterPortParameters, TLSlavePortParameters, TLBundle]): TLSlavePortParameters =
pu.v1copy(managers = pu.managers.map { m => m.v1copy (nodePath = node +: m.nodePath) })
}
trait TLFormatNode extends FormatNode[TLEdgeIn, TLEdgeOut]
case class TLClientNode(portParams: Seq[TLMasterPortParameters])(implicit valName: ValName) extends SourceNode(TLImp)(portParams) with TLFormatNode
case class TLManagerNode(portParams: Seq[TLSlavePortParameters])(implicit valName: ValName) extends SinkNode(TLImp)(portParams) with TLFormatNode
case class TLAdapterNode(
clientFn: TLMasterPortParameters => TLMasterPortParameters = { s => s },
managerFn: TLSlavePortParameters => TLSlavePortParameters = { s => s })(
implicit valName: ValName)
extends AdapterNode(TLImp)(clientFn, managerFn) with TLFormatNode
case class TLJunctionNode(
clientFn: Seq[TLMasterPortParameters] => Seq[TLMasterPortParameters],
managerFn: Seq[TLSlavePortParameters] => Seq[TLSlavePortParameters])(
implicit valName: ValName)
extends JunctionNode(TLImp)(clientFn, managerFn) with TLFormatNode
case class TLIdentityNode()(implicit valName: ValName) extends IdentityNode(TLImp)() with TLFormatNode
object TLNameNode {
def apply(name: ValName) = TLIdentityNode()(name)
def apply(name: Option[String]): TLIdentityNode = apply(ValName(name.getOrElse("with_no_name")))
def apply(name: String): TLIdentityNode = apply(Some(name))
}
case class TLEphemeralNode()(implicit valName: ValName) extends EphemeralNode(TLImp)()
object TLTempNode {
def apply(): TLEphemeralNode = TLEphemeralNode()(ValName("temp"))
}
case class TLNexusNode(
clientFn: Seq[TLMasterPortParameters] => TLMasterPortParameters,
managerFn: Seq[TLSlavePortParameters] => TLSlavePortParameters)(
implicit valName: ValName)
extends NexusNode(TLImp)(clientFn, managerFn) with TLFormatNode
abstract class TLCustomNode(implicit valName: ValName)
extends CustomNode(TLImp) with TLFormatNode
// Asynchronous crossings
trait TLAsyncFormatNode extends FormatNode[TLAsyncEdgeParameters, TLAsyncEdgeParameters]
object TLAsyncImp extends SimpleNodeImp[TLAsyncClientPortParameters, TLAsyncManagerPortParameters, TLAsyncEdgeParameters, TLAsyncBundle]
{
def edge(pd: TLAsyncClientPortParameters, pu: TLAsyncManagerPortParameters, p: Parameters, sourceInfo: SourceInfo) = TLAsyncEdgeParameters(pd, pu, p, sourceInfo)
def bundle(e: TLAsyncEdgeParameters) = new TLAsyncBundle(e.bundle)
def render(e: TLAsyncEdgeParameters) = RenderedEdge(colour = "#ff0000" /* red */, label = e.manager.async.depth.toString)
override def mixO(pd: TLAsyncClientPortParameters, node: OutwardNode[TLAsyncClientPortParameters, TLAsyncManagerPortParameters, TLAsyncBundle]): TLAsyncClientPortParameters =
pd.copy(base = pd.base.v1copy(clients = pd.base.clients.map { c => c.v1copy (nodePath = node +: c.nodePath) }))
override def mixI(pu: TLAsyncManagerPortParameters, node: InwardNode[TLAsyncClientPortParameters, TLAsyncManagerPortParameters, TLAsyncBundle]): TLAsyncManagerPortParameters =
pu.copy(base = pu.base.v1copy(managers = pu.base.managers.map { m => m.v1copy (nodePath = node +: m.nodePath) }))
}
case class TLAsyncAdapterNode(
clientFn: TLAsyncClientPortParameters => TLAsyncClientPortParameters = { s => s },
managerFn: TLAsyncManagerPortParameters => TLAsyncManagerPortParameters = { s => s })(
implicit valName: ValName)
extends AdapterNode(TLAsyncImp)(clientFn, managerFn) with TLAsyncFormatNode
case class TLAsyncIdentityNode()(implicit valName: ValName) extends IdentityNode(TLAsyncImp)() with TLAsyncFormatNode
object TLAsyncNameNode {
def apply(name: ValName) = TLAsyncIdentityNode()(name)
def apply(name: Option[String]): TLAsyncIdentityNode = apply(ValName(name.getOrElse("with_no_name")))
def apply(name: String): TLAsyncIdentityNode = apply(Some(name))
}
case class TLAsyncSourceNode(sync: Option[Int])(implicit valName: ValName)
extends MixedAdapterNode(TLImp, TLAsyncImp)(
dFn = { p => TLAsyncClientPortParameters(p) },
uFn = { p => p.base.v1copy(minLatency = p.base.minLatency + sync.getOrElse(p.async.sync)) }) with FormatNode[TLEdgeIn, TLAsyncEdgeParameters] // discard cycles in other clock domain
case class TLAsyncSinkNode(async: AsyncQueueParams)(implicit valName: ValName)
extends MixedAdapterNode(TLAsyncImp, TLImp)(
dFn = { p => p.base.v1copy(minLatency = p.base.minLatency + async.sync) },
uFn = { p => TLAsyncManagerPortParameters(async, p) }) with FormatNode[TLAsyncEdgeParameters, TLEdgeOut]
// Rationally related crossings
trait TLRationalFormatNode extends FormatNode[TLRationalEdgeParameters, TLRationalEdgeParameters]
object TLRationalImp extends SimpleNodeImp[TLRationalClientPortParameters, TLRationalManagerPortParameters, TLRationalEdgeParameters, TLRationalBundle]
{
def edge(pd: TLRationalClientPortParameters, pu: TLRationalManagerPortParameters, p: Parameters, sourceInfo: SourceInfo) = TLRationalEdgeParameters(pd, pu, p, sourceInfo)
def bundle(e: TLRationalEdgeParameters) = new TLRationalBundle(e.bundle)
def render(e: TLRationalEdgeParameters) = RenderedEdge(colour = "#00ff00" /* green */)
override def mixO(pd: TLRationalClientPortParameters, node: OutwardNode[TLRationalClientPortParameters, TLRationalManagerPortParameters, TLRationalBundle]): TLRationalClientPortParameters =
pd.copy(base = pd.base.v1copy(clients = pd.base.clients.map { c => c.v1copy (nodePath = node +: c.nodePath) }))
override def mixI(pu: TLRationalManagerPortParameters, node: InwardNode[TLRationalClientPortParameters, TLRationalManagerPortParameters, TLRationalBundle]): TLRationalManagerPortParameters =
pu.copy(base = pu.base.v1copy(managers = pu.base.managers.map { m => m.v1copy (nodePath = node +: m.nodePath) }))
}
case class TLRationalAdapterNode(
clientFn: TLRationalClientPortParameters => TLRationalClientPortParameters = { s => s },
managerFn: TLRationalManagerPortParameters => TLRationalManagerPortParameters = { s => s })(
implicit valName: ValName)
extends AdapterNode(TLRationalImp)(clientFn, managerFn) with TLRationalFormatNode
case class TLRationalIdentityNode()(implicit valName: ValName) extends IdentityNode(TLRationalImp)() with TLRationalFormatNode
object TLRationalNameNode {
def apply(name: ValName) = TLRationalIdentityNode()(name)
def apply(name: Option[String]): TLRationalIdentityNode = apply(ValName(name.getOrElse("with_no_name")))
def apply(name: String): TLRationalIdentityNode = apply(Some(name))
}
case class TLRationalSourceNode()(implicit valName: ValName)
extends MixedAdapterNode(TLImp, TLRationalImp)(
dFn = { p => TLRationalClientPortParameters(p) },
uFn = { p => p.base.v1copy(minLatency = 1) }) with FormatNode[TLEdgeIn, TLRationalEdgeParameters] // discard cycles from other clock domain
case class TLRationalSinkNode(direction: RationalDirection)(implicit valName: ValName)
extends MixedAdapterNode(TLRationalImp, TLImp)(
dFn = { p => p.base.v1copy(minLatency = 1) },
uFn = { p => TLRationalManagerPortParameters(direction, p) }) with FormatNode[TLRationalEdgeParameters, TLEdgeOut]
// Credited version of TileLink channels
trait TLCreditedFormatNode extends FormatNode[TLCreditedEdgeParameters, TLCreditedEdgeParameters]
object TLCreditedImp extends SimpleNodeImp[TLCreditedClientPortParameters, TLCreditedManagerPortParameters, TLCreditedEdgeParameters, TLCreditedBundle]
{
def edge(pd: TLCreditedClientPortParameters, pu: TLCreditedManagerPortParameters, p: Parameters, sourceInfo: SourceInfo) = TLCreditedEdgeParameters(pd, pu, p, sourceInfo)
def bundle(e: TLCreditedEdgeParameters) = new TLCreditedBundle(e.bundle)
def render(e: TLCreditedEdgeParameters) = RenderedEdge(colour = "#ffff00" /* yellow */, e.delay.toString)
override def mixO(pd: TLCreditedClientPortParameters, node: OutwardNode[TLCreditedClientPortParameters, TLCreditedManagerPortParameters, TLCreditedBundle]): TLCreditedClientPortParameters =
pd.copy(base = pd.base.v1copy(clients = pd.base.clients.map { c => c.v1copy (nodePath = node +: c.nodePath) }))
override def mixI(pu: TLCreditedManagerPortParameters, node: InwardNode[TLCreditedClientPortParameters, TLCreditedManagerPortParameters, TLCreditedBundle]): TLCreditedManagerPortParameters =
pu.copy(base = pu.base.v1copy(managers = pu.base.managers.map { m => m.v1copy (nodePath = node +: m.nodePath) }))
}
case class TLCreditedAdapterNode(
clientFn: TLCreditedClientPortParameters => TLCreditedClientPortParameters = { s => s },
managerFn: TLCreditedManagerPortParameters => TLCreditedManagerPortParameters = { s => s })(
implicit valName: ValName)
extends AdapterNode(TLCreditedImp)(clientFn, managerFn) with TLCreditedFormatNode
case class TLCreditedIdentityNode()(implicit valName: ValName) extends IdentityNode(TLCreditedImp)() with TLCreditedFormatNode
object TLCreditedNameNode {
def apply(name: ValName) = TLCreditedIdentityNode()(name)
def apply(name: Option[String]): TLCreditedIdentityNode = apply(ValName(name.getOrElse("with_no_name")))
def apply(name: String): TLCreditedIdentityNode = apply(Some(name))
}
case class TLCreditedSourceNode(delay: TLCreditedDelay)(implicit valName: ValName)
extends MixedAdapterNode(TLImp, TLCreditedImp)(
dFn = { p => TLCreditedClientPortParameters(delay, p) },
uFn = { p => p.base.v1copy(minLatency = 1) }) with FormatNode[TLEdgeIn, TLCreditedEdgeParameters] // discard cycles from other clock domain
case class TLCreditedSinkNode(delay: TLCreditedDelay)(implicit valName: ValName)
extends MixedAdapterNode(TLCreditedImp, TLImp)(
dFn = { p => p.base.v1copy(minLatency = 1) },
uFn = { p => TLCreditedManagerPortParameters(delay, p) }) with FormatNode[TLCreditedEdgeParameters, TLEdgeOut]
File LazyModuleImp.scala:
package org.chipsalliance.diplomacy.lazymodule
import chisel3.{withClockAndReset, Module, RawModule, Reset, _}
import chisel3.experimental.{ChiselAnnotation, CloneModuleAsRecord, SourceInfo}
import firrtl.passes.InlineAnnotation
import org.chipsalliance.cde.config.Parameters
import org.chipsalliance.diplomacy.nodes.Dangle
import scala.collection.immutable.SortedMap
/** Trait describing the actual [[Module]] implementation wrapped by a [[LazyModule]].
*
* This is the actual Chisel module that is lazily-evaluated in the second phase of Diplomacy.
*/
sealed trait LazyModuleImpLike extends RawModule {
/** [[LazyModule]] that contains this instance. */
val wrapper: LazyModule
/** IOs that will be automatically "punched" for this instance. */
val auto: AutoBundle
/** The metadata that describes the [[HalfEdge]]s which generated [[auto]]. */
protected[diplomacy] val dangles: Seq[Dangle]
// [[wrapper.module]] had better not be accessed while LazyModules are still being built!
require(
LazyModule.scope.isEmpty,
s"${wrapper.name}.module was constructed before LazyModule() was run on ${LazyModule.scope.get.name}"
)
/** Set module name. Defaults to the containing LazyModule's desiredName. */
override def desiredName: String = wrapper.desiredName
suggestName(wrapper.suggestedName)
/** [[Parameters]] for chisel [[Module]]s. */
implicit val p: Parameters = wrapper.p
/** instantiate this [[LazyModule]], return [[AutoBundle]] and a unconnected [[Dangle]]s from this module and
* submodules.
*/
protected[diplomacy] def instantiate(): (AutoBundle, List[Dangle]) = {
// 1. It will recursively append [[wrapper.children]] into [[chisel3.internal.Builder]],
// 2. return [[Dangle]]s from each module.
val childDangles = wrapper.children.reverse.flatMap { c =>
implicit val sourceInfo: SourceInfo = c.info
c.cloneProto.map { cp =>
// If the child is a clone, then recursively set cloneProto of its children as well
def assignCloneProtos(bases: Seq[LazyModule], clones: Seq[LazyModule]): Unit = {
require(bases.size == clones.size)
(bases.zip(clones)).map { case (l, r) =>
require(l.getClass == r.getClass, s"Cloned children class mismatch ${l.name} != ${r.name}")
l.cloneProto = Some(r)
assignCloneProtos(l.children, r.children)
}
}
assignCloneProtos(c.children, cp.children)
// Clone the child module as a record, and get its [[AutoBundle]]
val clone = CloneModuleAsRecord(cp.module).suggestName(c.suggestedName)
val clonedAuto = clone("auto").asInstanceOf[AutoBundle]
// Get the empty [[Dangle]]'s of the cloned child
val rawDangles = c.cloneDangles()
require(rawDangles.size == clonedAuto.elements.size)
// Assign the [[AutoBundle]] fields of the cloned record to the empty [[Dangle]]'s
val dangles = (rawDangles.zip(clonedAuto.elements)).map { case (d, (_, io)) => d.copy(dataOpt = Some(io)) }
dangles
}.getOrElse {
// For non-clones, instantiate the child module
val mod = try {
Module(c.module)
} catch {
case e: ChiselException => {
println(s"Chisel exception caught when instantiating ${c.name} within ${this.name} at ${c.line}")
throw e
}
}
mod.dangles
}
}
// Ask each node in this [[LazyModule]] to call [[BaseNode.instantiate]].
// This will result in a sequence of [[Dangle]] from these [[BaseNode]]s.
val nodeDangles = wrapper.nodes.reverse.flatMap(_.instantiate())
// Accumulate all the [[Dangle]]s from this node and any accumulated from its [[wrapper.children]]
val allDangles = nodeDangles ++ childDangles
// Group [[allDangles]] by their [[source]].
val pairing = SortedMap(allDangles.groupBy(_.source).toSeq: _*)
// For each [[source]] set of [[Dangle]]s of size 2, ensure that these
// can be connected as a source-sink pair (have opposite flipped value).
// Make the connection and mark them as [[done]].
val done = Set() ++ pairing.values.filter(_.size == 2).map {
case Seq(a, b) =>
require(a.flipped != b.flipped)
// @todo <> in chisel3 makes directionless connection.
if (a.flipped) {
a.data <> b.data
} else {
b.data <> a.data
}
a.source
case _ => None
}
// Find all [[Dangle]]s which are still not connected. These will end up as [[AutoBundle]] [[IO]] ports on the module.
val forward = allDangles.filter(d => !done(d.source))
// Generate [[AutoBundle]] IO from [[forward]].
val auto = IO(new AutoBundle(forward.map { d => (d.name, d.data, d.flipped) }: _*))
// Pass the [[Dangle]]s which remained and were used to generate the [[AutoBundle]] I/O ports up to the [[parent]] [[LazyModule]]
val dangles = (forward.zip(auto.elements)).map { case (d, (_, io)) =>
if (d.flipped) {
d.data <> io
} else {
io <> d.data
}
d.copy(dataOpt = Some(io), name = wrapper.suggestedName + "_" + d.name)
}
// Push all [[LazyModule.inModuleBody]] to [[chisel3.internal.Builder]].
wrapper.inModuleBody.reverse.foreach {
_()
}
if (wrapper.shouldBeInlined) {
chisel3.experimental.annotate(new ChiselAnnotation {
def toFirrtl = InlineAnnotation(toNamed)
})
}
// Return [[IO]] and [[Dangle]] of this [[LazyModuleImp]].
(auto, dangles)
}
}
/** Actual description of a [[Module]] which can be instantiated by a call to [[LazyModule.module]].
*
* @param wrapper
* the [[LazyModule]] from which the `.module` call is being made.
*/
class LazyModuleImp(val wrapper: LazyModule) extends Module with LazyModuleImpLike {
/** Instantiate hardware of this `Module`. */
val (auto, dangles) = instantiate()
}
/** Actual description of a [[RawModule]] which can be instantiated by a call to [[LazyModule.module]].
*
* @param wrapper
* the [[LazyModule]] from which the `.module` call is being made.
*/
class LazyRawModuleImp(val wrapper: LazyModule) extends RawModule with LazyModuleImpLike {
// These wires are the default clock+reset for all LazyModule children.
// It is recommended to drive these even if you manually drive the [[clock]] and [[reset]] of all of the
// [[LazyRawModuleImp]] children.
// Otherwise, anonymous children ([[Monitor]]s for example) will not have their [[clock]] and/or [[reset]] driven properly.
/** drive clock explicitly. */
val childClock: Clock = Wire(Clock())
/** drive reset explicitly. */
val childReset: Reset = Wire(Reset())
// the default is that these are disabled
childClock := false.B.asClock
childReset := chisel3.DontCare
def provideImplicitClockToLazyChildren: Boolean = false
val (auto, dangles) =
if (provideImplicitClockToLazyChildren) {
withClockAndReset(childClock, childReset) { instantiate() }
} else {
instantiate()
}
}
File Parameters.scala:
// See LICENSE.SiFive for license details.
package freechips.rocketchip.diplomacy
import chisel3._
import chisel3.util.{DecoupledIO, Queue, ReadyValidIO, isPow2, log2Ceil, log2Floor}
import freechips.rocketchip.util.ShiftQueue
/** Options for describing the attributes of memory regions */
object RegionType {
// Define the 'more relaxed than' ordering
val cases = Seq(CACHED, TRACKED, UNCACHED, IDEMPOTENT, VOLATILE, PUT_EFFECTS, GET_EFFECTS)
sealed trait T extends Ordered[T] {
def compare(that: T): Int = cases.indexOf(that) compare cases.indexOf(this)
}
case object CACHED extends T // an intermediate agent may have cached a copy of the region for you
case object TRACKED extends T // the region may have been cached by another master, but coherence is being provided
case object UNCACHED extends T // the region has not been cached yet, but should be cached when possible
case object IDEMPOTENT extends T // gets return most recently put content, but content should not be cached
case object VOLATILE extends T // content may change without a put, but puts and gets have no side effects
case object PUT_EFFECTS extends T // puts produce side effects and so must not be combined/delayed
case object GET_EFFECTS extends T // gets produce side effects and so must not be issued speculatively
}
// A non-empty half-open range; [start, end)
case class IdRange(start: Int, end: Int) extends Ordered[IdRange]
{
require (start >= 0, s"Ids cannot be negative, but got: $start.")
require (start <= end, "Id ranges cannot be negative.")
def compare(x: IdRange) = {
val primary = (this.start - x.start).signum
val secondary = (x.end - this.end).signum
if (primary != 0) primary else secondary
}
def overlaps(x: IdRange) = start < x.end && x.start < end
def contains(x: IdRange) = start <= x.start && x.end <= end
def contains(x: Int) = start <= x && x < end
def contains(x: UInt) =
if (size == 0) {
false.B
} else if (size == 1) { // simple comparison
x === start.U
} else {
// find index of largest different bit
val largestDeltaBit = log2Floor(start ^ (end-1))
val smallestCommonBit = largestDeltaBit + 1 // may not exist in x
val uncommonMask = (1 << smallestCommonBit) - 1
val uncommonBits = (x | 0.U(smallestCommonBit.W))(largestDeltaBit, 0)
// the prefix must match exactly (note: may shift ALL bits away)
(x >> smallestCommonBit) === (start >> smallestCommonBit).U &&
// firrtl constant prop range analysis can eliminate these two:
(start & uncommonMask).U <= uncommonBits &&
uncommonBits <= ((end-1) & uncommonMask).U
}
def shift(x: Int) = IdRange(start+x, end+x)
def size = end - start
def isEmpty = end == start
def range = start until end
}
object IdRange
{
def overlaps(s: Seq[IdRange]) = if (s.isEmpty) None else {
val ranges = s.sorted
(ranges.tail zip ranges.init) find { case (a, b) => a overlaps b }
}
}
// An potentially empty inclusive range of 2-powers [min, max] (in bytes)
case class TransferSizes(min: Int, max: Int)
{
def this(x: Int) = this(x, x)
require (min <= max, s"Min transfer $min > max transfer $max")
require (min >= 0 && max >= 0, s"TransferSizes must be positive, got: ($min, $max)")
require (max == 0 || isPow2(max), s"TransferSizes must be a power of 2, got: $max")
require (min == 0 || isPow2(min), s"TransferSizes must be a power of 2, got: $min")
require (max == 0 || min != 0, s"TransferSize 0 is forbidden unless (0,0), got: ($min, $max)")
def none = min == 0
def contains(x: Int) = isPow2(x) && min <= x && x <= max
def containsLg(x: Int) = contains(1 << x)
def containsLg(x: UInt) =
if (none) false.B
else if (min == max) { log2Ceil(min).U === x }
else { log2Ceil(min).U <= x && x <= log2Ceil(max).U }
def contains(x: TransferSizes) = x.none || (min <= x.min && x.max <= max)
def intersect(x: TransferSizes) =
if (x.max < min || max < x.min) TransferSizes.none
else TransferSizes(scala.math.max(min, x.min), scala.math.min(max, x.max))
// Not a union, because the result may contain sizes contained by neither term
// NOT TO BE CONFUSED WITH COVERPOINTS
def mincover(x: TransferSizes) = {
if (none) {
x
} else if (x.none) {
this
} else {
TransferSizes(scala.math.min(min, x.min), scala.math.max(max, x.max))
}
}
override def toString() = "TransferSizes[%d, %d]".format(min, max)
}
object TransferSizes {
def apply(x: Int) = new TransferSizes(x)
val none = new TransferSizes(0)
def mincover(seq: Seq[TransferSizes]) = seq.foldLeft(none)(_ mincover _)
def intersect(seq: Seq[TransferSizes]) = seq.reduce(_ intersect _)
implicit def asBool(x: TransferSizes) = !x.none
}
// AddressSets specify the address space managed by the manager
// Base is the base address, and mask are the bits consumed by the manager
// e.g: base=0x200, mask=0xff describes a device managing 0x200-0x2ff
// e.g: base=0x1000, mask=0xf0f decribes a device managing 0x1000-0x100f, 0x1100-0x110f, ...
case class AddressSet(base: BigInt, mask: BigInt) extends Ordered[AddressSet]
{
// Forbid misaligned base address (and empty sets)
require ((base & mask) == 0, s"Mis-aligned AddressSets are forbidden, got: ${this.toString}")
require (base >= 0, s"AddressSet negative base is ambiguous: $base") // TL2 address widths are not fixed => negative is ambiguous
// We do allow negative mask (=> ignore all high bits)
def contains(x: BigInt) = ((x ^ base) & ~mask) == 0
def contains(x: UInt) = ((x ^ base.U).zext & (~mask).S) === 0.S
// turn x into an address contained in this set
def legalize(x: UInt): UInt = base.U | (mask.U & x)
// overlap iff bitwise: both care (~mask0 & ~mask1) => both equal (base0=base1)
def overlaps(x: AddressSet) = (~(mask | x.mask) & (base ^ x.base)) == 0
// contains iff bitwise: x.mask => mask && contains(x.base)
def contains(x: AddressSet) = ((x.mask | (base ^ x.base)) & ~mask) == 0
// The number of bytes to which the manager must be aligned
def alignment = ((mask + 1) & ~mask)
// Is this a contiguous memory range
def contiguous = alignment == mask+1
def finite = mask >= 0
def max = { require (finite, "Max cannot be calculated on infinite mask"); base | mask }
// Widen the match function to ignore all bits in imask
def widen(imask: BigInt) = AddressSet(base & ~imask, mask | imask)
// Return an AddressSet that only contains the addresses both sets contain
def intersect(x: AddressSet): Option[AddressSet] = {
if (!overlaps(x)) {
None
} else {
val r_mask = mask & x.mask
val r_base = base | x.base
Some(AddressSet(r_base, r_mask))
}
}
def subtract(x: AddressSet): Seq[AddressSet] = {
intersect(x) match {
case None => Seq(this)
case Some(remove) => AddressSet.enumerateBits(mask & ~remove.mask).map { bit =>
val nmask = (mask & (bit-1)) | remove.mask
val nbase = (remove.base ^ bit) & ~nmask
AddressSet(nbase, nmask)
}
}
}
// AddressSets have one natural Ordering (the containment order, if contiguous)
def compare(x: AddressSet) = {
val primary = (this.base - x.base).signum // smallest address first
val secondary = (x.mask - this.mask).signum // largest mask first
if (primary != 0) primary else secondary
}
// We always want to see things in hex
override def toString() = {
if (mask >= 0) {
"AddressSet(0x%x, 0x%x)".format(base, mask)
} else {
"AddressSet(0x%x, ~0x%x)".format(base, ~mask)
}
}
def toRanges = {
require (finite, "Ranges cannot be calculated on infinite mask")
val size = alignment
val fragments = mask & ~(size-1)
val bits = bitIndexes(fragments)
(BigInt(0) until (BigInt(1) << bits.size)).map { i =>
val off = bitIndexes(i).foldLeft(base) { case (a, b) => a.setBit(bits(b)) }
AddressRange(off, size)
}
}
}
object AddressSet
{
val everything = AddressSet(0, -1)
def misaligned(base: BigInt, size: BigInt, tail: Seq[AddressSet] = Seq()): Seq[AddressSet] = {
if (size == 0) tail.reverse else {
val maxBaseAlignment = base & (-base) // 0 for infinite (LSB)
val maxSizeAlignment = BigInt(1) << log2Floor(size) // MSB of size
val step =
if (maxBaseAlignment == 0 || maxBaseAlignment > maxSizeAlignment)
maxSizeAlignment else maxBaseAlignment
misaligned(base+step, size-step, AddressSet(base, step-1) +: tail)
}
}
def unify(seq: Seq[AddressSet], bit: BigInt): Seq[AddressSet] = {
// Pair terms up by ignoring 'bit'
seq.distinct.groupBy(x => x.copy(base = x.base & ~bit)).map { case (key, seq) =>
if (seq.size == 1) {
seq.head // singleton -> unaffected
} else {
key.copy(mask = key.mask | bit) // pair - widen mask by bit
}
}.toList
}
def unify(seq: Seq[AddressSet]): Seq[AddressSet] = {
val bits = seq.map(_.base).foldLeft(BigInt(0))(_ | _)
AddressSet.enumerateBits(bits).foldLeft(seq) { case (acc, bit) => unify(acc, bit) }.sorted
}
def enumerateMask(mask: BigInt): Seq[BigInt] = {
def helper(id: BigInt, tail: Seq[BigInt]): Seq[BigInt] =
if (id == mask) (id +: tail).reverse else helper(((~mask | id) + 1) & mask, id +: tail)
helper(0, Nil)
}
def enumerateBits(mask: BigInt): Seq[BigInt] = {
def helper(x: BigInt): Seq[BigInt] = {
if (x == 0) {
Nil
} else {
val bit = x & (-x)
bit +: helper(x & ~bit)
}
}
helper(mask)
}
}
case class BufferParams(depth: Int, flow: Boolean, pipe: Boolean)
{
require (depth >= 0, "Buffer depth must be >= 0")
def isDefined = depth > 0
def latency = if (isDefined && !flow) 1 else 0
def apply[T <: Data](x: DecoupledIO[T]) =
if (isDefined) Queue(x, depth, flow=flow, pipe=pipe)
else x
def irrevocable[T <: Data](x: ReadyValidIO[T]) =
if (isDefined) Queue.irrevocable(x, depth, flow=flow, pipe=pipe)
else x
def sq[T <: Data](x: DecoupledIO[T]) =
if (!isDefined) x else {
val sq = Module(new ShiftQueue(x.bits, depth, flow=flow, pipe=pipe))
sq.io.enq <> x
sq.io.deq
}
override def toString() = "BufferParams:%d%s%s".format(depth, if (flow) "F" else "", if (pipe) "P" else "")
}
object BufferParams
{
implicit def apply(depth: Int): BufferParams = BufferParams(depth, false, false)
val default = BufferParams(2)
val none = BufferParams(0)
val flow = BufferParams(1, true, false)
val pipe = BufferParams(1, false, true)
}
case class TriStateValue(value: Boolean, set: Boolean)
{
def update(orig: Boolean) = if (set) value else orig
}
object TriStateValue
{
implicit def apply(value: Boolean): TriStateValue = TriStateValue(value, true)
def unset = TriStateValue(false, false)
}
trait DirectedBuffers[T] {
def copyIn(x: BufferParams): T
def copyOut(x: BufferParams): T
def copyInOut(x: BufferParams): T
}
trait IdMapEntry {
def name: String
def from: IdRange
def to: IdRange
def isCache: Boolean
def requestFifo: Boolean
def maxTransactionsInFlight: Option[Int]
def pretty(fmt: String) =
if (from ne to) { // if the subclass uses the same reference for both from and to, assume its format string has an arity of 5
fmt.format(to.start, to.end, from.start, from.end, s""""$name"""", if (isCache) " [CACHE]" else "", if (requestFifo) " [FIFO]" else "")
} else {
fmt.format(from.start, from.end, s""""$name"""", if (isCache) " [CACHE]" else "", if (requestFifo) " [FIFO]" else "")
}
}
abstract class IdMap[T <: IdMapEntry] {
protected val fmt: String
val mapping: Seq[T]
def pretty: String = mapping.map(_.pretty(fmt)).mkString(",\n")
}
File MixedNode.scala:
package org.chipsalliance.diplomacy.nodes
import chisel3.{Data, DontCare, Wire}
import chisel3.experimental.SourceInfo
import org.chipsalliance.cde.config.{Field, Parameters}
import org.chipsalliance.diplomacy.ValName
import org.chipsalliance.diplomacy.sourceLine
/** One side metadata of a [[Dangle]].
*
* Describes one side of an edge going into or out of a [[BaseNode]].
*
* @param serial
* the global [[BaseNode.serial]] number of the [[BaseNode]] that this [[HalfEdge]] connects to.
* @param index
* the `index` in the [[BaseNode]]'s input or output port list that this [[HalfEdge]] belongs to.
*/
case class HalfEdge(serial: Int, index: Int) extends Ordered[HalfEdge] {
import scala.math.Ordered.orderingToOrdered
def compare(that: HalfEdge): Int = HalfEdge.unapply(this).compare(HalfEdge.unapply(that))
}
/** [[Dangle]] captures the `IO` information of a [[LazyModule]] and which two [[BaseNode]]s the [[Edges]]/[[Bundle]]
* connects.
*
* [[Dangle]]s are generated by [[BaseNode.instantiate]] using [[MixedNode.danglesOut]] and [[MixedNode.danglesIn]] ,
* [[LazyModuleImp.instantiate]] connects those that go to internal or explicit IO connections in a [[LazyModule]].
*
* @param source
* the source [[HalfEdge]] of this [[Dangle]], which captures the source [[BaseNode]] and the port `index` within
* that [[BaseNode]].
* @param sink
* sink [[HalfEdge]] of this [[Dangle]], which captures the sink [[BaseNode]] and the port `index` within that
* [[BaseNode]].
* @param flipped
* flip or not in [[AutoBundle.makeElements]]. If true this corresponds to `danglesOut`, if false it corresponds to
* `danglesIn`.
* @param dataOpt
* actual [[Data]] for the hardware connection. Can be empty if this belongs to a cloned module
*/
case class Dangle(source: HalfEdge, sink: HalfEdge, flipped: Boolean, name: String, dataOpt: Option[Data]) {
def data = dataOpt.get
}
/** [[Edges]] is a collection of parameters describing the functionality and connection for an interface, which is often
* derived from the interconnection protocol and can inform the parameterization of the hardware bundles that actually
* implement the protocol.
*/
case class Edges[EI, EO](in: Seq[EI], out: Seq[EO])
/** A field available in [[Parameters]] used to determine whether [[InwardNodeImp.monitor]] will be called. */
case object MonitorsEnabled extends Field[Boolean](true)
/** When rendering the edge in a graphical format, flip the order in which the edges' source and sink are presented.
*
* For example, when rendering graphML, yEd by default tries to put the source node vertically above the sink node, but
* [[RenderFlipped]] inverts this relationship. When a particular [[LazyModule]] contains both source nodes and sink
* nodes, flipping the rendering of one node's edge will usual produce a more concise visual layout for the
* [[LazyModule]].
*/
case object RenderFlipped extends Field[Boolean](false)
/** The sealed node class in the package, all node are derived from it.
*
* @param inner
* Sink interface implementation.
* @param outer
* Source interface implementation.
* @param valName
* val name of this node.
* @tparam DI
* Downward-flowing parameters received on the inner side of the node. It is usually a brunch of parameters
* describing the protocol parameters from a source. For an [[InwardNode]], it is determined by the connected
* [[OutwardNode]]. Since it can be connected to multiple sources, this parameter is always a Seq of source port
* parameters.
* @tparam UI
* Upward-flowing parameters generated by the inner side of the node. It is usually a brunch of parameters describing
* the protocol parameters of a sink. For an [[InwardNode]], it is determined itself.
* @tparam EI
* Edge Parameters describing a connection on the inner side of the node. It is usually a brunch of transfers
* specified for a sink according to protocol.
* @tparam BI
* Bundle type used when connecting to the inner side of the node. It is a hardware interface of this sink interface.
* It should extends from [[chisel3.Data]], which represents the real hardware.
* @tparam DO
* Downward-flowing parameters generated on the outer side of the node. It is usually a brunch of parameters
* describing the protocol parameters of a source. For an [[OutwardNode]], it is determined itself.
* @tparam UO
* Upward-flowing parameters received by the outer side of the node. It is usually a brunch of parameters describing
* the protocol parameters from a sink. For an [[OutwardNode]], it is determined by the connected [[InwardNode]].
* Since it can be connected to multiple sinks, this parameter is always a Seq of sink port parameters.
* @tparam EO
* Edge Parameters describing a connection on the outer side of the node. It is usually a brunch of transfers
* specified for a source according to protocol.
* @tparam BO
* Bundle type used when connecting to the outer side of the node. It is a hardware interface of this source
* interface. It should extends from [[chisel3.Data]], which represents the real hardware.
*
* @note
* Call Graph of [[MixedNode]]
* - line `β`: source is process by a function and generate pass to others
* - Arrow `β`: target of arrow is generated by source
*
* {{{
* (from the other node)
* ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ[[InwardNode.uiParams]]ββββββββββββββ
* β β
* (binding node when elaboration) [[OutwardNode.uoParams]]ββββββββββββββββββββββββ[[MixedNode.mapParamsU]]ββββββββββββ β
* [[InwardNode.accPI]] β β β
* β β (based on protocol) β
* β β [[MixedNode.inner.edgeI]] β
* β β β β
* β β β β
* (immobilize after elaboration) (inward port from [[OutwardNode]]) β β β
* [[InwardNode.iBindings]]βββ [[MixedNode.iDirectPorts]]βββββββββββββββββββββ[[MixedNode.iPorts]] [[InwardNode.uiParams]] β
* β β β β β β
* β β β [[OutwardNode.doParams]] β β
* β β β (from the other node) β β
* β β β β β β
* β β β β β β
* β β β ββββββββββ¬βββββββββββββββ€ β
* β β β β β β
* β β β β (based on protocol) β
* β β β β [[MixedNode.inner.edgeI]] β
* β β β β β β
* β β (from the other node) β β β
* β ββββ[[OutwardNode.oPortMapping]] [[OutwardNode.oStar]] β [[MixedNode.edgesIn]]ββββ β
* β β β β β β β
* β β β β β [[MixedNode.in]] β
* β β β β β β β
* β (solve star connection) β β β [[MixedNode.bundleIn]]βββ β
* ββββ[[MixedNode.resolveStar]]βββΌββββββββββββββββββββββββββββββ€ ββββββββββββββββββββββββββββββββββββββ β
* β β β [[MixedNode.bundleOut]]ββ β β
* β β β β β β β
* β β β β [[MixedNode.out]] β β
* β β β β β β β
* β ββββββ[[InwardNode.iPortMapping]] [[InwardNode.iStar]] [[MixedNode.edgesOut]]βββ β β
* β β (from the other node) β β β
* β β β β β β
* β β β [[MixedNode.outer.edgeO]] β β
* β β β (based on protocol) β β
* β β β β β β
* β β β ββββββββββββββββββββββββββββββββββββββββββ€ β β
* β β β β β β β
* β β β β β β β
* β β β β β β β
* (immobilize after elaboration)β β β β β β
* [[OutwardNode.oBindings]]ββ [[MixedNode.oDirectPorts]]ββββ[[MixedNode.oPorts]] [[OutwardNode.doParams]] β β
* β (inward port from [[OutwardNode]]) β β β β
* β βββββββββββββββββββββββββββββββββββββββββββ€ β β β
* β β β β β β
* β β β β β β
* [[OutwardNode.accPO]] β β β β β
* (binding node when elaboration) β [[InwardNode.diParams]]ββββββ[[MixedNode.mapParamsD]]βββββββββββββββββββββββββββββ β β
* β β β β
* β ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ β
* ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
* }}}
*/
abstract class MixedNode[DI, UI, EI, BI <: Data, DO, UO, EO, BO <: Data](
val inner: InwardNodeImp[DI, UI, EI, BI],
val outer: OutwardNodeImp[DO, UO, EO, BO]
)(
implicit valName: ValName)
extends BaseNode
with NodeHandle[DI, UI, EI, BI, DO, UO, EO, BO]
with InwardNode[DI, UI, BI]
with OutwardNode[DO, UO, BO] {
// Generate a [[NodeHandle]] with inward and outward node are both this node.
val inward = this
val outward = this
/** Debug info of nodes binding. */
def bindingInfo: String = s"""$iBindingInfo
|$oBindingInfo
|""".stripMargin
/** Debug info of ports connecting. */
def connectedPortsInfo: String = s"""${oPorts.size} outward ports connected: [${oPorts.map(_._2.name).mkString(",")}]
|${iPorts.size} inward ports connected: [${iPorts.map(_._2.name).mkString(",")}]
|""".stripMargin
/** Debug info of parameters propagations. */
def parametersInfo: String = s"""${doParams.size} downstream outward parameters: [${doParams.mkString(",")}]
|${uoParams.size} upstream outward parameters: [${uoParams.mkString(",")}]
|${diParams.size} downstream inward parameters: [${diParams.mkString(",")}]
|${uiParams.size} upstream inward parameters: [${uiParams.mkString(",")}]
|""".stripMargin
/** For a given node, converts [[OutwardNode.accPO]] and [[InwardNode.accPI]] to [[MixedNode.oPortMapping]] and
* [[MixedNode.iPortMapping]].
*
* Given counts of known inward and outward binding and inward and outward star bindings, return the resolved inward
* stars and outward stars.
*
* This method will also validate the arguments and throw a runtime error if the values are unsuitable for this type
* of node.
*
* @param iKnown
* Number of known-size ([[BIND_ONCE]]) input bindings.
* @param oKnown
* Number of known-size ([[BIND_ONCE]]) output bindings.
* @param iStar
* Number of unknown size ([[BIND_STAR]]) input bindings.
* @param oStar
* Number of unknown size ([[BIND_STAR]]) output bindings.
* @return
* A Tuple of the resolved number of input and output connections.
*/
protected[diplomacy] def resolveStar(iKnown: Int, oKnown: Int, iStar: Int, oStar: Int): (Int, Int)
/** Function to generate downward-flowing outward params from the downward-flowing input params and the current output
* ports.
*
* @param n
* The size of the output sequence to generate.
* @param p
* Sequence of downward-flowing input parameters of this node.
* @return
* A `n`-sized sequence of downward-flowing output edge parameters.
*/
protected[diplomacy] def mapParamsD(n: Int, p: Seq[DI]): Seq[DO]
/** Function to generate upward-flowing input parameters from the upward-flowing output parameters [[uiParams]].
*
* @param n
* Size of the output sequence.
* @param p
* Upward-flowing output edge parameters.
* @return
* A n-sized sequence of upward-flowing input edge parameters.
*/
protected[diplomacy] def mapParamsU(n: Int, p: Seq[UO]): Seq[UI]
/** @return
* The sink cardinality of the node, the number of outputs bound with [[BIND_QUERY]] summed with inputs bound with
* [[BIND_STAR]].
*/
protected[diplomacy] lazy val sinkCard: Int = oBindings.count(_._3 == BIND_QUERY) + iBindings.count(_._3 == BIND_STAR)
/** @return
* The source cardinality of this node, the number of inputs bound with [[BIND_QUERY]] summed with the number of
* output bindings bound with [[BIND_STAR]].
*/
protected[diplomacy] lazy val sourceCard: Int =
iBindings.count(_._3 == BIND_QUERY) + oBindings.count(_._3 == BIND_STAR)
/** @return list of nodes involved in flex bindings with this node. */
protected[diplomacy] lazy val flexes: Seq[BaseNode] =
oBindings.filter(_._3 == BIND_FLEX).map(_._2) ++ iBindings.filter(_._3 == BIND_FLEX).map(_._2)
/** Resolves the flex to be either source or sink and returns the offset where the [[BIND_STAR]] operators begin
* greedily taking up the remaining connections.
*
* @return
* A value >= 0 if it is sink cardinality, a negative value for source cardinality. The magnitude of the return
* value is not relevant.
*/
protected[diplomacy] lazy val flexOffset: Int = {
/** Recursively performs a depth-first search of the [[flexes]], [[BaseNode]]s connected to this node with flex
* operators. The algorithm bottoms out when we either get to a node we have already visited or when we get to a
* connection that is not a flex and can set the direction for us. Otherwise, recurse by visiting the `flexes` of
* each node in the current set and decide whether they should be added to the set or not.
*
* @return
* the mapping of [[BaseNode]] indexed by their serial numbers.
*/
def DFS(v: BaseNode, visited: Map[Int, BaseNode]): Map[Int, BaseNode] = {
if (visited.contains(v.serial) || !v.flexibleArityDirection) {
visited
} else {
v.flexes.foldLeft(visited + (v.serial -> v))((sum, n) => DFS(n, sum))
}
}
/** Determine which [[BaseNode]] are involved in resolving the flex connections to/from this node.
*
* @example
* {{{
* a :*=* b :*=* c
* d :*=* b
* e :*=* f
* }}}
*
* `flexSet` for `a`, `b`, `c`, or `d` will be `Set(a, b, c, d)` `flexSet` for `e` or `f` will be `Set(e,f)`
*/
val flexSet = DFS(this, Map()).values
/** The total number of :*= operators where we're on the left. */
val allSink = flexSet.map(_.sinkCard).sum
/** The total number of :=* operators used when we're on the right. */
val allSource = flexSet.map(_.sourceCard).sum
require(
allSink == 0 || allSource == 0,
s"The nodes ${flexSet.map(_.name)} which are inter-connected by :*=* have ${allSink} :*= operators and ${allSource} :=* operators connected to them, making it impossible to determine cardinality inference direction."
)
allSink - allSource
}
/** @return A value >= 0 if it is sink cardinality, a negative value for source cardinality. */
protected[diplomacy] def edgeArityDirection(n: BaseNode): Int = {
if (flexibleArityDirection) flexOffset
else if (n.flexibleArityDirection) n.flexOffset
else 0
}
/** For a node which is connected between two nodes, select the one that will influence the direction of the flex
* resolution.
*/
protected[diplomacy] def edgeAritySelect(n: BaseNode, l: => Int, r: => Int): Int = {
val dir = edgeArityDirection(n)
if (dir < 0) l
else if (dir > 0) r
else 1
}
/** Ensure that the same node is not visited twice in resolving `:*=`, etc operators. */
private var starCycleGuard = false
/** Resolve all the star operators into concrete indicies. As connections are being made, some may be "star"
* connections which need to be resolved. In some way to determine how many actual edges they correspond to. We also
* need to build up the ranges of edges which correspond to each binding operator, so that We can apply the correct
* edge parameters and later build up correct bundle connections.
*
* [[oPortMapping]]: `Seq[(Int, Int)]` where each item is the range of edges corresponding to that oPort (binding
* operator). [[iPortMapping]]: `Seq[(Int, Int)]` where each item is the range of edges corresponding to that iPort
* (binding operator). [[oStar]]: `Int` the value to return for this node `N` for any `N :*= foo` or `N :*=* foo :*=
* bar` [[iStar]]: `Int` the value to return for this node `N` for any `foo :=* N` or `bar :=* foo :*=* N`
*/
protected[diplomacy] lazy val (
oPortMapping: Seq[(Int, Int)],
iPortMapping: Seq[(Int, Int)],
oStar: Int,
iStar: Int
) = {
try {
if (starCycleGuard) throw StarCycleException()
starCycleGuard = true
// For a given node N...
// Number of foo :=* N
// + Number of bar :=* foo :*=* N
val oStars = oBindings.count { case (_, n, b, _, _) =>
b == BIND_STAR || (b == BIND_FLEX && edgeArityDirection(n) < 0)
}
// Number of N :*= foo
// + Number of N :*=* foo :*= bar
val iStars = iBindings.count { case (_, n, b, _, _) =>
b == BIND_STAR || (b == BIND_FLEX && edgeArityDirection(n) > 0)
}
// 1 for foo := N
// + bar.iStar for bar :*= foo :*=* N
// + foo.iStar for foo :*= N
// + 0 for foo :=* N
val oKnown = oBindings.map { case (_, n, b, _, _) =>
b match {
case BIND_ONCE => 1
case BIND_FLEX => edgeAritySelect(n, 0, n.iStar)
case BIND_QUERY => n.iStar
case BIND_STAR => 0
}
}.sum
// 1 for N := foo
// + bar.oStar for N :*=* foo :=* bar
// + foo.oStar for N :=* foo
// + 0 for N :*= foo
val iKnown = iBindings.map { case (_, n, b, _, _) =>
b match {
case BIND_ONCE => 1
case BIND_FLEX => edgeAritySelect(n, n.oStar, 0)
case BIND_QUERY => n.oStar
case BIND_STAR => 0
}
}.sum
// Resolve star depends on the node subclass to implement the algorithm for this.
val (iStar, oStar) = resolveStar(iKnown, oKnown, iStars, oStars)
// Cumulative list of resolved outward binding range starting points
val oSum = oBindings.map { case (_, n, b, _, _) =>
b match {
case BIND_ONCE => 1
case BIND_FLEX => edgeAritySelect(n, oStar, n.iStar)
case BIND_QUERY => n.iStar
case BIND_STAR => oStar
}
}.scanLeft(0)(_ + _)
// Cumulative list of resolved inward binding range starting points
val iSum = iBindings.map { case (_, n, b, _, _) =>
b match {
case BIND_ONCE => 1
case BIND_FLEX => edgeAritySelect(n, n.oStar, iStar)
case BIND_QUERY => n.oStar
case BIND_STAR => iStar
}
}.scanLeft(0)(_ + _)
// Create ranges for each binding based on the running sums and return
// those along with resolved values for the star operations.
(oSum.init.zip(oSum.tail), iSum.init.zip(iSum.tail), oStar, iStar)
} catch {
case c: StarCycleException => throw c.copy(loop = context +: c.loop)
}
}
/** Sequence of inward ports.
*
* This should be called after all star bindings are resolved.
*
* Each element is: `j` Port index of this binding in the Node's [[oPortMapping]] on the other side of the binding.
* `n` Instance of inward node. `p` View of [[Parameters]] where this connection was made. `s` Source info where this
* connection was made in the source code.
*/
protected[diplomacy] lazy val oDirectPorts: Seq[(Int, InwardNode[DO, UO, BO], Parameters, SourceInfo)] =
oBindings.flatMap { case (i, n, _, p, s) =>
// for each binding operator in this node, look at what it connects to
val (start, end) = n.iPortMapping(i)
(start until end).map { j => (j, n, p, s) }
}
/** Sequence of outward ports.
*
* This should be called after all star bindings are resolved.
*
* `j` Port index of this binding in the Node's [[oPortMapping]] on the other side of the binding. `n` Instance of
* outward node. `p` View of [[Parameters]] where this connection was made. `s` [[SourceInfo]] where this connection
* was made in the source code.
*/
protected[diplomacy] lazy val iDirectPorts: Seq[(Int, OutwardNode[DI, UI, BI], Parameters, SourceInfo)] =
iBindings.flatMap { case (i, n, _, p, s) =>
// query this port index range of this node in the other side of node.
val (start, end) = n.oPortMapping(i)
(start until end).map { j => (j, n, p, s) }
}
// Ephemeral nodes ( which have non-None iForward/oForward) have in_degree = out_degree
// Thus, there must exist an Eulerian path and the below algorithms terminate
@scala.annotation.tailrec
private def oTrace(
tuple: (Int, InwardNode[DO, UO, BO], Parameters, SourceInfo)
): (Int, InwardNode[DO, UO, BO], Parameters, SourceInfo) = tuple match {
case (i, n, p, s) => n.iForward(i) match {
case None => (i, n, p, s)
case Some((j, m)) => oTrace((j, m, p, s))
}
}
@scala.annotation.tailrec
private def iTrace(
tuple: (Int, OutwardNode[DI, UI, BI], Parameters, SourceInfo)
): (Int, OutwardNode[DI, UI, BI], Parameters, SourceInfo) = tuple match {
case (i, n, p, s) => n.oForward(i) match {
case None => (i, n, p, s)
case Some((j, m)) => iTrace((j, m, p, s))
}
}
/** Final output ports after all stars and port forwarding (e.g. [[EphemeralNode]]s) have been resolved.
*
* Each Port is a tuple of:
* - Numeric index of this binding in the [[InwardNode]] on the other end.
* - [[InwardNode]] on the other end of this binding.
* - A view of [[Parameters]] where the binding occurred.
* - [[SourceInfo]] for source-level error reporting.
*/
lazy val oPorts: Seq[(Int, InwardNode[DO, UO, BO], Parameters, SourceInfo)] = oDirectPorts.map(oTrace)
/** Final input ports after all stars and port forwarding (e.g. [[EphemeralNode]]s) have been resolved.
*
* Each Port is a tuple of:
* - numeric index of this binding in [[OutwardNode]] on the other end.
* - [[OutwardNode]] on the other end of this binding.
* - a view of [[Parameters]] where the binding occurred.
* - [[SourceInfo]] for source-level error reporting.
*/
lazy val iPorts: Seq[(Int, OutwardNode[DI, UI, BI], Parameters, SourceInfo)] = iDirectPorts.map(iTrace)
private var oParamsCycleGuard = false
protected[diplomacy] lazy val diParams: Seq[DI] = iPorts.map { case (i, n, _, _) => n.doParams(i) }
protected[diplomacy] lazy val doParams: Seq[DO] = {
try {
if (oParamsCycleGuard) throw DownwardCycleException()
oParamsCycleGuard = true
val o = mapParamsD(oPorts.size, diParams)
require(
o.size == oPorts.size,
s"""Diplomacy has detected a problem with your graph:
|At the following node, the number of outward ports should equal the number of produced outward parameters.
|$context
|$connectedPortsInfo
|Downstreamed inward parameters: [${diParams.mkString(",")}]
|Produced outward parameters: [${o.mkString(",")}]
|""".stripMargin
)
o.map(outer.mixO(_, this))
} catch {
case c: DownwardCycleException => throw c.copy(loop = context +: c.loop)
}
}
private var iParamsCycleGuard = false
protected[diplomacy] lazy val uoParams: Seq[UO] = oPorts.map { case (o, n, _, _) => n.uiParams(o) }
protected[diplomacy] lazy val uiParams: Seq[UI] = {
try {
if (iParamsCycleGuard) throw UpwardCycleException()
iParamsCycleGuard = true
val i = mapParamsU(iPorts.size, uoParams)
require(
i.size == iPorts.size,
s"""Diplomacy has detected a problem with your graph:
|At the following node, the number of inward ports should equal the number of produced inward parameters.
|$context
|$connectedPortsInfo
|Upstreamed outward parameters: [${uoParams.mkString(",")}]
|Produced inward parameters: [${i.mkString(",")}]
|""".stripMargin
)
i.map(inner.mixI(_, this))
} catch {
case c: UpwardCycleException => throw c.copy(loop = context +: c.loop)
}
}
/** Outward edge parameters. */
protected[diplomacy] lazy val edgesOut: Seq[EO] =
(oPorts.zip(doParams)).map { case ((i, n, p, s), o) => outer.edgeO(o, n.uiParams(i), p, s) }
/** Inward edge parameters. */
protected[diplomacy] lazy val edgesIn: Seq[EI] =
(iPorts.zip(uiParams)).map { case ((o, n, p, s), i) => inner.edgeI(n.doParams(o), i, p, s) }
/** A tuple of the input edge parameters and output edge parameters for the edges bound to this node.
*
* If you need to access to the edges of a foreign Node, use this method (in/out create bundles).
*/
lazy val edges: Edges[EI, EO] = Edges(edgesIn, edgesOut)
/** Create actual Wires corresponding to the Bundles parameterized by the outward edges of this node. */
protected[diplomacy] lazy val bundleOut: Seq[BO] = edgesOut.map { e =>
val x = Wire(outer.bundleO(e)).suggestName(s"${valName.value}Out")
// TODO: Don't care unconnected forwarded diplomatic signals for compatibility issue,
// In the future, we should add an option to decide whether allowing unconnected in the LazyModule
x := DontCare
x
}
/** Create actual Wires corresponding to the Bundles parameterized by the inward edges of this node. */
protected[diplomacy] lazy val bundleIn: Seq[BI] = edgesIn.map { e =>
val x = Wire(inner.bundleI(e)).suggestName(s"${valName.value}In")
// TODO: Don't care unconnected forwarded diplomatic signals for compatibility issue,
// In the future, we should add an option to decide whether allowing unconnected in the LazyModule
x := DontCare
x
}
private def emptyDanglesOut: Seq[Dangle] = oPorts.zipWithIndex.map { case ((j, n, _, _), i) =>
Dangle(
source = HalfEdge(serial, i),
sink = HalfEdge(n.serial, j),
flipped = false,
name = wirePrefix + "out",
dataOpt = None
)
}
private def emptyDanglesIn: Seq[Dangle] = iPorts.zipWithIndex.map { case ((j, n, _, _), i) =>
Dangle(
source = HalfEdge(n.serial, j),
sink = HalfEdge(serial, i),
flipped = true,
name = wirePrefix + "in",
dataOpt = None
)
}
/** Create the [[Dangle]]s which describe the connections from this node output to other nodes inputs. */
protected[diplomacy] def danglesOut: Seq[Dangle] = emptyDanglesOut.zipWithIndex.map { case (d, i) =>
d.copy(dataOpt = Some(bundleOut(i)))
}
/** Create the [[Dangle]]s which describe the connections from this node input from other nodes outputs. */
protected[diplomacy] def danglesIn: Seq[Dangle] = emptyDanglesIn.zipWithIndex.map { case (d, i) =>
d.copy(dataOpt = Some(bundleIn(i)))
}
private[diplomacy] var instantiated = false
/** Gather Bundle and edge parameters of outward ports.
*
* Accessors to the result of negotiation to be used within [[LazyModuleImp]] Code. Should only be used within
* [[LazyModuleImp]] code or after its instantiation has completed.
*/
def out: Seq[(BO, EO)] = {
require(
instantiated,
s"$name.out should not be called until after instantiation of its parent LazyModule.module has begun"
)
bundleOut.zip(edgesOut)
}
/** Gather Bundle and edge parameters of inward ports.
*
* Accessors to the result of negotiation to be used within [[LazyModuleImp]] Code. Should only be used within
* [[LazyModuleImp]] code or after its instantiation has completed.
*/
def in: Seq[(BI, EI)] = {
require(
instantiated,
s"$name.in should not be called until after instantiation of its parent LazyModule.module has begun"
)
bundleIn.zip(edgesIn)
}
/** Actually instantiate this node during [[LazyModuleImp]] evaluation. Mark that it's safe to use the Bundle wires,
* instantiate monitors on all input ports if appropriate, and return all the dangles of this node.
*/
protected[diplomacy] def instantiate(): Seq[Dangle] = {
instantiated = true
if (!circuitIdentity) {
(iPorts.zip(in)).foreach { case ((_, _, p, _), (b, e)) => if (p(MonitorsEnabled)) inner.monitor(b, e) }
}
danglesOut ++ danglesIn
}
protected[diplomacy] def cloneDangles(): Seq[Dangle] = emptyDanglesOut ++ emptyDanglesIn
/** Connects the outward part of a node with the inward part of this node. */
protected[diplomacy] def bind(
h: OutwardNode[DI, UI, BI],
binding: NodeBinding
)(
implicit p: Parameters,
sourceInfo: SourceInfo
): Unit = {
val x = this // x := y
val y = h
sourceLine(sourceInfo, " at ", "")
val i = x.iPushed
val o = y.oPushed
y.oPush(
i,
x,
binding match {
case BIND_ONCE => BIND_ONCE
case BIND_FLEX => BIND_FLEX
case BIND_STAR => BIND_QUERY
case BIND_QUERY => BIND_STAR
}
)
x.iPush(o, y, binding)
}
/* Metadata for printing the node graph. */
def inputs: Seq[(OutwardNode[DI, UI, BI], RenderedEdge)] = (iPorts.zip(edgesIn)).map { case ((_, n, p, _), e) =>
val re = inner.render(e)
(n, re.copy(flipped = re.flipped != p(RenderFlipped)))
}
/** Metadata for printing the node graph */
def outputs: Seq[(InwardNode[DO, UO, BO], RenderedEdge)] = oPorts.map { case (i, n, _, _) => (n, n.inputs(i)._2) }
}
File Edges.scala:
// See LICENSE.SiFive for license details.
package freechips.rocketchip.tilelink
import chisel3._
import chisel3.util._
import chisel3.experimental.SourceInfo
import org.chipsalliance.cde.config.Parameters
import freechips.rocketchip.util._
class TLEdge(
client: TLClientPortParameters,
manager: TLManagerPortParameters,
params: Parameters,
sourceInfo: SourceInfo)
extends TLEdgeParameters(client, manager, params, sourceInfo)
{
def isAligned(address: UInt, lgSize: UInt): Bool = {
if (maxLgSize == 0) true.B else {
val mask = UIntToOH1(lgSize, maxLgSize)
(address & mask) === 0.U
}
}
def mask(address: UInt, lgSize: UInt): UInt =
MaskGen(address, lgSize, manager.beatBytes)
def staticHasData(bundle: TLChannel): Option[Boolean] = {
bundle match {
case _:TLBundleA => {
// Do there exist A messages with Data?
val aDataYes = manager.anySupportArithmetic || manager.anySupportLogical || manager.anySupportPutFull || manager.anySupportPutPartial
// Do there exist A messages without Data?
val aDataNo = manager.anySupportAcquireB || manager.anySupportGet || manager.anySupportHint
// Statically optimize the case where hasData is a constant
if (!aDataYes) Some(false) else if (!aDataNo) Some(true) else None
}
case _:TLBundleB => {
// Do there exist B messages with Data?
val bDataYes = client.anySupportArithmetic || client.anySupportLogical || client.anySupportPutFull || client.anySupportPutPartial
// Do there exist B messages without Data?
val bDataNo = client.anySupportProbe || client.anySupportGet || client.anySupportHint
// Statically optimize the case where hasData is a constant
if (!bDataYes) Some(false) else if (!bDataNo) Some(true) else None
}
case _:TLBundleC => {
// Do there eixst C messages with Data?
val cDataYes = client.anySupportGet || client.anySupportArithmetic || client.anySupportLogical || client.anySupportProbe
// Do there exist C messages without Data?
val cDataNo = client.anySupportPutFull || client.anySupportPutPartial || client.anySupportHint || client.anySupportProbe
if (!cDataYes) Some(false) else if (!cDataNo) Some(true) else None
}
case _:TLBundleD => {
// Do there eixst D messages with Data?
val dDataYes = manager.anySupportGet || manager.anySupportArithmetic || manager.anySupportLogical || manager.anySupportAcquireB
// Do there exist D messages without Data?
val dDataNo = manager.anySupportPutFull || manager.anySupportPutPartial || manager.anySupportHint || manager.anySupportAcquireT
if (!dDataYes) Some(false) else if (!dDataNo) Some(true) else None
}
case _:TLBundleE => Some(false)
}
}
def isRequest(x: TLChannel): Bool = {
x match {
case a: TLBundleA => true.B
case b: TLBundleB => true.B
case c: TLBundleC => c.opcode(2) && c.opcode(1)
// opcode === TLMessages.Release ||
// opcode === TLMessages.ReleaseData
case d: TLBundleD => d.opcode(2) && !d.opcode(1)
// opcode === TLMessages.Grant ||
// opcode === TLMessages.GrantData
case e: TLBundleE => false.B
}
}
def isResponse(x: TLChannel): Bool = {
x match {
case a: TLBundleA => false.B
case b: TLBundleB => false.B
case c: TLBundleC => !c.opcode(2) || !c.opcode(1)
// opcode =/= TLMessages.Release &&
// opcode =/= TLMessages.ReleaseData
case d: TLBundleD => true.B // Grant isResponse + isRequest
case e: TLBundleE => true.B
}
}
def hasData(x: TLChannel): Bool = {
val opdata = x match {
case a: TLBundleA => !a.opcode(2)
// opcode === TLMessages.PutFullData ||
// opcode === TLMessages.PutPartialData ||
// opcode === TLMessages.ArithmeticData ||
// opcode === TLMessages.LogicalData
case b: TLBundleB => !b.opcode(2)
// opcode === TLMessages.PutFullData ||
// opcode === TLMessages.PutPartialData ||
// opcode === TLMessages.ArithmeticData ||
// opcode === TLMessages.LogicalData
case c: TLBundleC => c.opcode(0)
// opcode === TLMessages.AccessAckData ||
// opcode === TLMessages.ProbeAckData ||
// opcode === TLMessages.ReleaseData
case d: TLBundleD => d.opcode(0)
// opcode === TLMessages.AccessAckData ||
// opcode === TLMessages.GrantData
case e: TLBundleE => false.B
}
staticHasData(x).map(_.B).getOrElse(opdata)
}
def opcode(x: TLDataChannel): UInt = {
x match {
case a: TLBundleA => a.opcode
case b: TLBundleB => b.opcode
case c: TLBundleC => c.opcode
case d: TLBundleD => d.opcode
}
}
def param(x: TLDataChannel): UInt = {
x match {
case a: TLBundleA => a.param
case b: TLBundleB => b.param
case c: TLBundleC => c.param
case d: TLBundleD => d.param
}
}
def size(x: TLDataChannel): UInt = {
x match {
case a: TLBundleA => a.size
case b: TLBundleB => b.size
case c: TLBundleC => c.size
case d: TLBundleD => d.size
}
}
def data(x: TLDataChannel): UInt = {
x match {
case a: TLBundleA => a.data
case b: TLBundleB => b.data
case c: TLBundleC => c.data
case d: TLBundleD => d.data
}
}
def corrupt(x: TLDataChannel): Bool = {
x match {
case a: TLBundleA => a.corrupt
case b: TLBundleB => b.corrupt
case c: TLBundleC => c.corrupt
case d: TLBundleD => d.corrupt
}
}
def mask(x: TLAddrChannel): UInt = {
x match {
case a: TLBundleA => a.mask
case b: TLBundleB => b.mask
case c: TLBundleC => mask(c.address, c.size)
}
}
def full_mask(x: TLAddrChannel): UInt = {
x match {
case a: TLBundleA => mask(a.address, a.size)
case b: TLBundleB => mask(b.address, b.size)
case c: TLBundleC => mask(c.address, c.size)
}
}
def address(x: TLAddrChannel): UInt = {
x match {
case a: TLBundleA => a.address
case b: TLBundleB => b.address
case c: TLBundleC => c.address
}
}
def source(x: TLDataChannel): UInt = {
x match {
case a: TLBundleA => a.source
case b: TLBundleB => b.source
case c: TLBundleC => c.source
case d: TLBundleD => d.source
}
}
def addr_hi(x: UInt): UInt = x >> log2Ceil(manager.beatBytes)
def addr_lo(x: UInt): UInt =
if (manager.beatBytes == 1) 0.U else x(log2Ceil(manager.beatBytes)-1, 0)
def addr_hi(x: TLAddrChannel): UInt = addr_hi(address(x))
def addr_lo(x: TLAddrChannel): UInt = addr_lo(address(x))
def numBeats(x: TLChannel): UInt = {
x match {
case _: TLBundleE => 1.U
case bundle: TLDataChannel => {
val hasData = this.hasData(bundle)
val size = this.size(bundle)
val cutoff = log2Ceil(manager.beatBytes)
val small = if (manager.maxTransfer <= manager.beatBytes) true.B else size <= (cutoff).U
val decode = UIntToOH(size, maxLgSize+1) >> cutoff
Mux(hasData, decode | small.asUInt, 1.U)
}
}
}
def numBeats1(x: TLChannel): UInt = {
x match {
case _: TLBundleE => 0.U
case bundle: TLDataChannel => {
if (maxLgSize == 0) {
0.U
} else {
val decode = UIntToOH1(size(bundle), maxLgSize) >> log2Ceil(manager.beatBytes)
Mux(hasData(bundle), decode, 0.U)
}
}
}
}
def firstlastHelper(bits: TLChannel, fire: Bool): (Bool, Bool, Bool, UInt) = {
val beats1 = numBeats1(bits)
val counter = RegInit(0.U(log2Up(maxTransfer / manager.beatBytes).W))
val counter1 = counter - 1.U
val first = counter === 0.U
val last = counter === 1.U || beats1 === 0.U
val done = last && fire
val count = (beats1 & ~counter1)
when (fire) {
counter := Mux(first, beats1, counter1)
}
(first, last, done, count)
}
def first(bits: TLChannel, fire: Bool): Bool = firstlastHelper(bits, fire)._1
def first(x: DecoupledIO[TLChannel]): Bool = first(x.bits, x.fire)
def first(x: ValidIO[TLChannel]): Bool = first(x.bits, x.valid)
def last(bits: TLChannel, fire: Bool): Bool = firstlastHelper(bits, fire)._2
def last(x: DecoupledIO[TLChannel]): Bool = last(x.bits, x.fire)
def last(x: ValidIO[TLChannel]): Bool = last(x.bits, x.valid)
def done(bits: TLChannel, fire: Bool): Bool = firstlastHelper(bits, fire)._3
def done(x: DecoupledIO[TLChannel]): Bool = done(x.bits, x.fire)
def done(x: ValidIO[TLChannel]): Bool = done(x.bits, x.valid)
def firstlast(bits: TLChannel, fire: Bool): (Bool, Bool, Bool) = {
val r = firstlastHelper(bits, fire)
(r._1, r._2, r._3)
}
def firstlast(x: DecoupledIO[TLChannel]): (Bool, Bool, Bool) = firstlast(x.bits, x.fire)
def firstlast(x: ValidIO[TLChannel]): (Bool, Bool, Bool) = firstlast(x.bits, x.valid)
def count(bits: TLChannel, fire: Bool): (Bool, Bool, Bool, UInt) = {
val r = firstlastHelper(bits, fire)
(r._1, r._2, r._3, r._4)
}
def count(x: DecoupledIO[TLChannel]): (Bool, Bool, Bool, UInt) = count(x.bits, x.fire)
def count(x: ValidIO[TLChannel]): (Bool, Bool, Bool, UInt) = count(x.bits, x.valid)
def addr_inc(bits: TLChannel, fire: Bool): (Bool, Bool, Bool, UInt) = {
val r = firstlastHelper(bits, fire)
(r._1, r._2, r._3, r._4 << log2Ceil(manager.beatBytes))
}
def addr_inc(x: DecoupledIO[TLChannel]): (Bool, Bool, Bool, UInt) = addr_inc(x.bits, x.fire)
def addr_inc(x: ValidIO[TLChannel]): (Bool, Bool, Bool, UInt) = addr_inc(x.bits, x.valid)
// Does the request need T permissions to be executed?
def needT(a: TLBundleA): Bool = {
val acq_needT = MuxLookup(a.param, WireDefault(Bool(), DontCare))(Array(
TLPermissions.NtoB -> false.B,
TLPermissions.NtoT -> true.B,
TLPermissions.BtoT -> true.B))
MuxLookup(a.opcode, WireDefault(Bool(), DontCare))(Array(
TLMessages.PutFullData -> true.B,
TLMessages.PutPartialData -> true.B,
TLMessages.ArithmeticData -> true.B,
TLMessages.LogicalData -> true.B,
TLMessages.Get -> false.B,
TLMessages.Hint -> MuxLookup(a.param, WireDefault(Bool(), DontCare))(Array(
TLHints.PREFETCH_READ -> false.B,
TLHints.PREFETCH_WRITE -> true.B)),
TLMessages.AcquireBlock -> acq_needT,
TLMessages.AcquirePerm -> acq_needT))
}
// This is a very expensive circuit; use only if you really mean it!
def inFlight(x: TLBundle): (UInt, UInt) = {
val flight = RegInit(0.U(log2Ceil(3*client.endSourceId+1).W))
val bce = manager.anySupportAcquireB && client.anySupportProbe
val (a_first, a_last, _) = firstlast(x.a)
val (b_first, b_last, _) = firstlast(x.b)
val (c_first, c_last, _) = firstlast(x.c)
val (d_first, d_last, _) = firstlast(x.d)
val (e_first, e_last, _) = firstlast(x.e)
val (a_request, a_response) = (isRequest(x.a.bits), isResponse(x.a.bits))
val (b_request, b_response) = (isRequest(x.b.bits), isResponse(x.b.bits))
val (c_request, c_response) = (isRequest(x.c.bits), isResponse(x.c.bits))
val (d_request, d_response) = (isRequest(x.d.bits), isResponse(x.d.bits))
val (e_request, e_response) = (isRequest(x.e.bits), isResponse(x.e.bits))
val a_inc = x.a.fire && a_first && a_request
val b_inc = x.b.fire && b_first && b_request
val c_inc = x.c.fire && c_first && c_request
val d_inc = x.d.fire && d_first && d_request
val e_inc = x.e.fire && e_first && e_request
val inc = Cat(Seq(a_inc, d_inc) ++ (if (bce) Seq(b_inc, c_inc, e_inc) else Nil))
val a_dec = x.a.fire && a_last && a_response
val b_dec = x.b.fire && b_last && b_response
val c_dec = x.c.fire && c_last && c_response
val d_dec = x.d.fire && d_last && d_response
val e_dec = x.e.fire && e_last && e_response
val dec = Cat(Seq(a_dec, d_dec) ++ (if (bce) Seq(b_dec, c_dec, e_dec) else Nil))
val next_flight = flight + PopCount(inc) - PopCount(dec)
flight := next_flight
(flight, next_flight)
}
def prettySourceMapping(context: String): String = {
s"TL-Source mapping for $context:\n${(new TLSourceIdMap(client)).pretty}\n"
}
}
class TLEdgeOut(
client: TLClientPortParameters,
manager: TLManagerPortParameters,
params: Parameters,
sourceInfo: SourceInfo)
extends TLEdge(client, manager, params, sourceInfo)
{
// Transfers
def AcquireBlock(fromSource: UInt, toAddress: UInt, lgSize: UInt, growPermissions: UInt) = {
require (manager.anySupportAcquireB, s"TileLink: No managers visible from this edge support Acquires, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsAcquireBFast(toAddress, lgSize)
val a = Wire(new TLBundleA(bundle))
a.opcode := TLMessages.AcquireBlock
a.param := growPermissions
a.size := lgSize
a.source := fromSource
a.address := toAddress
a.user := DontCare
a.echo := DontCare
a.mask := mask(toAddress, lgSize)
a.data := DontCare
a.corrupt := false.B
(legal, a)
}
def AcquirePerm(fromSource: UInt, toAddress: UInt, lgSize: UInt, growPermissions: UInt) = {
require (manager.anySupportAcquireB, s"TileLink: No managers visible from this edge support Acquires, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsAcquireBFast(toAddress, lgSize)
val a = Wire(new TLBundleA(bundle))
a.opcode := TLMessages.AcquirePerm
a.param := growPermissions
a.size := lgSize
a.source := fromSource
a.address := toAddress
a.user := DontCare
a.echo := DontCare
a.mask := mask(toAddress, lgSize)
a.data := DontCare
a.corrupt := false.B
(legal, a)
}
def Release(fromSource: UInt, toAddress: UInt, lgSize: UInt, shrinkPermissions: UInt): (Bool, TLBundleC) = {
require (manager.anySupportAcquireB, s"TileLink: No managers visible from this edge support Acquires, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsAcquireBFast(toAddress, lgSize)
val c = Wire(new TLBundleC(bundle))
c.opcode := TLMessages.Release
c.param := shrinkPermissions
c.size := lgSize
c.source := fromSource
c.address := toAddress
c.user := DontCare
c.echo := DontCare
c.data := DontCare
c.corrupt := false.B
(legal, c)
}
def Release(fromSource: UInt, toAddress: UInt, lgSize: UInt, shrinkPermissions: UInt, data: UInt, corrupt: Bool): (Bool, TLBundleC) = {
require (manager.anySupportAcquireB, s"TileLink: No managers visible from this edge support Acquires, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsAcquireBFast(toAddress, lgSize)
val c = Wire(new TLBundleC(bundle))
c.opcode := TLMessages.ReleaseData
c.param := shrinkPermissions
c.size := lgSize
c.source := fromSource
c.address := toAddress
c.user := DontCare
c.echo := DontCare
c.data := data
c.corrupt := corrupt
(legal, c)
}
def Release(fromSource: UInt, toAddress: UInt, lgSize: UInt, shrinkPermissions: UInt, data: UInt): (Bool, TLBundleC) =
Release(fromSource, toAddress, lgSize, shrinkPermissions, data, false.B)
def ProbeAck(b: TLBundleB, reportPermissions: UInt): TLBundleC =
ProbeAck(b.source, b.address, b.size, reportPermissions)
def ProbeAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, reportPermissions: UInt): TLBundleC = {
val c = Wire(new TLBundleC(bundle))
c.opcode := TLMessages.ProbeAck
c.param := reportPermissions
c.size := lgSize
c.source := fromSource
c.address := toAddress
c.user := DontCare
c.echo := DontCare
c.data := DontCare
c.corrupt := false.B
c
}
def ProbeAck(b: TLBundleB, reportPermissions: UInt, data: UInt): TLBundleC =
ProbeAck(b.source, b.address, b.size, reportPermissions, data)
def ProbeAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, reportPermissions: UInt, data: UInt, corrupt: Bool): TLBundleC = {
val c = Wire(new TLBundleC(bundle))
c.opcode := TLMessages.ProbeAckData
c.param := reportPermissions
c.size := lgSize
c.source := fromSource
c.address := toAddress
c.user := DontCare
c.echo := DontCare
c.data := data
c.corrupt := corrupt
c
}
def ProbeAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, reportPermissions: UInt, data: UInt): TLBundleC =
ProbeAck(fromSource, toAddress, lgSize, reportPermissions, data, false.B)
def GrantAck(d: TLBundleD): TLBundleE = GrantAck(d.sink)
def GrantAck(toSink: UInt): TLBundleE = {
val e = Wire(new TLBundleE(bundle))
e.sink := toSink
e
}
// Accesses
def Get(fromSource: UInt, toAddress: UInt, lgSize: UInt) = {
require (manager.anySupportGet, s"TileLink: No managers visible from this edge support Gets, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsGetFast(toAddress, lgSize)
val a = Wire(new TLBundleA(bundle))
a.opcode := TLMessages.Get
a.param := 0.U
a.size := lgSize
a.source := fromSource
a.address := toAddress
a.user := DontCare
a.echo := DontCare
a.mask := mask(toAddress, lgSize)
a.data := DontCare
a.corrupt := false.B
(legal, a)
}
def Put(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt): (Bool, TLBundleA) =
Put(fromSource, toAddress, lgSize, data, false.B)
def Put(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, corrupt: Bool): (Bool, TLBundleA) = {
require (manager.anySupportPutFull, s"TileLink: No managers visible from this edge support Puts, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsPutFullFast(toAddress, lgSize)
val a = Wire(new TLBundleA(bundle))
a.opcode := TLMessages.PutFullData
a.param := 0.U
a.size := lgSize
a.source := fromSource
a.address := toAddress
a.user := DontCare
a.echo := DontCare
a.mask := mask(toAddress, lgSize)
a.data := data
a.corrupt := corrupt
(legal, a)
}
def Put(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, mask: UInt): (Bool, TLBundleA) =
Put(fromSource, toAddress, lgSize, data, mask, false.B)
def Put(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, mask: UInt, corrupt: Bool): (Bool, TLBundleA) = {
require (manager.anySupportPutPartial, s"TileLink: No managers visible from this edge support masked Puts, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsPutPartialFast(toAddress, lgSize)
val a = Wire(new TLBundleA(bundle))
a.opcode := TLMessages.PutPartialData
a.param := 0.U
a.size := lgSize
a.source := fromSource
a.address := toAddress
a.user := DontCare
a.echo := DontCare
a.mask := mask
a.data := data
a.corrupt := corrupt
(legal, a)
}
def Arithmetic(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, atomic: UInt, corrupt: Bool = false.B): (Bool, TLBundleA) = {
require (manager.anySupportArithmetic, s"TileLink: No managers visible from this edge support arithmetic AMOs, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsArithmeticFast(toAddress, lgSize)
val a = Wire(new TLBundleA(bundle))
a.opcode := TLMessages.ArithmeticData
a.param := atomic
a.size := lgSize
a.source := fromSource
a.address := toAddress
a.user := DontCare
a.echo := DontCare
a.mask := mask(toAddress, lgSize)
a.data := data
a.corrupt := corrupt
(legal, a)
}
def Logical(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, atomic: UInt, corrupt: Bool = false.B) = {
require (manager.anySupportLogical, s"TileLink: No managers visible from this edge support logical AMOs, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsLogicalFast(toAddress, lgSize)
val a = Wire(new TLBundleA(bundle))
a.opcode := TLMessages.LogicalData
a.param := atomic
a.size := lgSize
a.source := fromSource
a.address := toAddress
a.user := DontCare
a.echo := DontCare
a.mask := mask(toAddress, lgSize)
a.data := data
a.corrupt := corrupt
(legal, a)
}
def Hint(fromSource: UInt, toAddress: UInt, lgSize: UInt, param: UInt) = {
require (manager.anySupportHint, s"TileLink: No managers visible from this edge support Hints, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsHintFast(toAddress, lgSize)
val a = Wire(new TLBundleA(bundle))
a.opcode := TLMessages.Hint
a.param := param
a.size := lgSize
a.source := fromSource
a.address := toAddress
a.user := DontCare
a.echo := DontCare
a.mask := mask(toAddress, lgSize)
a.data := DontCare
a.corrupt := false.B
(legal, a)
}
def AccessAck(b: TLBundleB): TLBundleC = AccessAck(b.source, address(b), b.size)
def AccessAck(fromSource: UInt, toAddress: UInt, lgSize: UInt) = {
val c = Wire(new TLBundleC(bundle))
c.opcode := TLMessages.AccessAck
c.param := 0.U
c.size := lgSize
c.source := fromSource
c.address := toAddress
c.user := DontCare
c.echo := DontCare
c.data := DontCare
c.corrupt := false.B
c
}
def AccessAck(b: TLBundleB, data: UInt): TLBundleC = AccessAck(b.source, address(b), b.size, data)
def AccessAck(b: TLBundleB, data: UInt, corrupt: Bool): TLBundleC = AccessAck(b.source, address(b), b.size, data, corrupt)
def AccessAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt): TLBundleC = AccessAck(fromSource, toAddress, lgSize, data, false.B)
def AccessAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, corrupt: Bool) = {
val c = Wire(new TLBundleC(bundle))
c.opcode := TLMessages.AccessAckData
c.param := 0.U
c.size := lgSize
c.source := fromSource
c.address := toAddress
c.user := DontCare
c.echo := DontCare
c.data := data
c.corrupt := corrupt
c
}
def HintAck(b: TLBundleB): TLBundleC = HintAck(b.source, address(b), b.size)
def HintAck(fromSource: UInt, toAddress: UInt, lgSize: UInt) = {
val c = Wire(new TLBundleC(bundle))
c.opcode := TLMessages.HintAck
c.param := 0.U
c.size := lgSize
c.source := fromSource
c.address := toAddress
c.user := DontCare
c.echo := DontCare
c.data := DontCare
c.corrupt := false.B
c
}
}
class TLEdgeIn(
client: TLClientPortParameters,
manager: TLManagerPortParameters,
params: Parameters,
sourceInfo: SourceInfo)
extends TLEdge(client, manager, params, sourceInfo)
{
private def myTranspose[T](x: Seq[Seq[T]]): Seq[Seq[T]] = {
val todo = x.filter(!_.isEmpty)
val heads = todo.map(_.head)
val tails = todo.map(_.tail)
if (todo.isEmpty) Nil else { heads +: myTranspose(tails) }
}
// Transfers
def Probe(fromAddress: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt) = {
require (client.anySupportProbe, s"TileLink: No clients visible from this edge support probes, but one of these managers tried to issue one: ${manager.managers}")
val legal = client.supportsProbe(toSource, lgSize)
val b = Wire(new TLBundleB(bundle))
b.opcode := TLMessages.Probe
b.param := capPermissions
b.size := lgSize
b.source := toSource
b.address := fromAddress
b.mask := mask(fromAddress, lgSize)
b.data := DontCare
b.corrupt := false.B
(legal, b)
}
def Grant(fromSink: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt): TLBundleD = Grant(fromSink, toSource, lgSize, capPermissions, false.B)
def Grant(fromSink: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt, denied: Bool) = {
val d = Wire(new TLBundleD(bundle))
d.opcode := TLMessages.Grant
d.param := capPermissions
d.size := lgSize
d.source := toSource
d.sink := fromSink
d.denied := denied
d.user := DontCare
d.echo := DontCare
d.data := DontCare
d.corrupt := false.B
d
}
def Grant(fromSink: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt, data: UInt): TLBundleD = Grant(fromSink, toSource, lgSize, capPermissions, data, false.B, false.B)
def Grant(fromSink: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt, data: UInt, denied: Bool, corrupt: Bool) = {
val d = Wire(new TLBundleD(bundle))
d.opcode := TLMessages.GrantData
d.param := capPermissions
d.size := lgSize
d.source := toSource
d.sink := fromSink
d.denied := denied
d.user := DontCare
d.echo := DontCare
d.data := data
d.corrupt := corrupt
d
}
def ReleaseAck(c: TLBundleC): TLBundleD = ReleaseAck(c.source, c.size, false.B)
def ReleaseAck(toSource: UInt, lgSize: UInt, denied: Bool): TLBundleD = {
val d = Wire(new TLBundleD(bundle))
d.opcode := TLMessages.ReleaseAck
d.param := 0.U
d.size := lgSize
d.source := toSource
d.sink := 0.U
d.denied := denied
d.user := DontCare
d.echo := DontCare
d.data := DontCare
d.corrupt := false.B
d
}
// Accesses
def Get(fromAddress: UInt, toSource: UInt, lgSize: UInt) = {
require (client.anySupportGet, s"TileLink: No clients visible from this edge support Gets, but one of these managers would try to issue one: ${manager.managers}")
val legal = client.supportsGet(toSource, lgSize)
val b = Wire(new TLBundleB(bundle))
b.opcode := TLMessages.Get
b.param := 0.U
b.size := lgSize
b.source := toSource
b.address := fromAddress
b.mask := mask(fromAddress, lgSize)
b.data := DontCare
b.corrupt := false.B
(legal, b)
}
def Put(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt): (Bool, TLBundleB) =
Put(fromAddress, toSource, lgSize, data, false.B)
def Put(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, corrupt: Bool): (Bool, TLBundleB) = {
require (client.anySupportPutFull, s"TileLink: No clients visible from this edge support Puts, but one of these managers would try to issue one: ${manager.managers}")
val legal = client.supportsPutFull(toSource, lgSize)
val b = Wire(new TLBundleB(bundle))
b.opcode := TLMessages.PutFullData
b.param := 0.U
b.size := lgSize
b.source := toSource
b.address := fromAddress
b.mask := mask(fromAddress, lgSize)
b.data := data
b.corrupt := corrupt
(legal, b)
}
def Put(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, mask: UInt): (Bool, TLBundleB) =
Put(fromAddress, toSource, lgSize, data, mask, false.B)
def Put(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, mask: UInt, corrupt: Bool): (Bool, TLBundleB) = {
require (client.anySupportPutPartial, s"TileLink: No clients visible from this edge support masked Puts, but one of these managers would try to request one: ${manager.managers}")
val legal = client.supportsPutPartial(toSource, lgSize)
val b = Wire(new TLBundleB(bundle))
b.opcode := TLMessages.PutPartialData
b.param := 0.U
b.size := lgSize
b.source := toSource
b.address := fromAddress
b.mask := mask
b.data := data
b.corrupt := corrupt
(legal, b)
}
def Arithmetic(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, atomic: UInt, corrupt: Bool = false.B) = {
require (client.anySupportArithmetic, s"TileLink: No clients visible from this edge support arithmetic AMOs, but one of these managers would try to request one: ${manager.managers}")
val legal = client.supportsArithmetic(toSource, lgSize)
val b = Wire(new TLBundleB(bundle))
b.opcode := TLMessages.ArithmeticData
b.param := atomic
b.size := lgSize
b.source := toSource
b.address := fromAddress
b.mask := mask(fromAddress, lgSize)
b.data := data
b.corrupt := corrupt
(legal, b)
}
def Logical(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, atomic: UInt, corrupt: Bool = false.B) = {
require (client.anySupportLogical, s"TileLink: No clients visible from this edge support logical AMOs, but one of these managers would try to request one: ${manager.managers}")
val legal = client.supportsLogical(toSource, lgSize)
val b = Wire(new TLBundleB(bundle))
b.opcode := TLMessages.LogicalData
b.param := atomic
b.size := lgSize
b.source := toSource
b.address := fromAddress
b.mask := mask(fromAddress, lgSize)
b.data := data
b.corrupt := corrupt
(legal, b)
}
def Hint(fromAddress: UInt, toSource: UInt, lgSize: UInt, param: UInt) = {
require (client.anySupportHint, s"TileLink: No clients visible from this edge support Hints, but one of these managers would try to request one: ${manager.managers}")
val legal = client.supportsHint(toSource, lgSize)
val b = Wire(new TLBundleB(bundle))
b.opcode := TLMessages.Hint
b.param := param
b.size := lgSize
b.source := toSource
b.address := fromAddress
b.mask := mask(fromAddress, lgSize)
b.data := DontCare
b.corrupt := false.B
(legal, b)
}
def AccessAck(a: TLBundleA): TLBundleD = AccessAck(a.source, a.size)
def AccessAck(a: TLBundleA, denied: Bool): TLBundleD = AccessAck(a.source, a.size, denied)
def AccessAck(toSource: UInt, lgSize: UInt): TLBundleD = AccessAck(toSource, lgSize, false.B)
def AccessAck(toSource: UInt, lgSize: UInt, denied: Bool) = {
val d = Wire(new TLBundleD(bundle))
d.opcode := TLMessages.AccessAck
d.param := 0.U
d.size := lgSize
d.source := toSource
d.sink := 0.U
d.denied := denied
d.user := DontCare
d.echo := DontCare
d.data := DontCare
d.corrupt := false.B
d
}
def AccessAck(a: TLBundleA, data: UInt): TLBundleD = AccessAck(a.source, a.size, data)
def AccessAck(a: TLBundleA, data: UInt, denied: Bool, corrupt: Bool): TLBundleD = AccessAck(a.source, a.size, data, denied, corrupt)
def AccessAck(toSource: UInt, lgSize: UInt, data: UInt): TLBundleD = AccessAck(toSource, lgSize, data, false.B, false.B)
def AccessAck(toSource: UInt, lgSize: UInt, data: UInt, denied: Bool, corrupt: Bool) = {
val d = Wire(new TLBundleD(bundle))
d.opcode := TLMessages.AccessAckData
d.param := 0.U
d.size := lgSize
d.source := toSource
d.sink := 0.U
d.denied := denied
d.user := DontCare
d.echo := DontCare
d.data := data
d.corrupt := corrupt
d
}
def HintAck(a: TLBundleA): TLBundleD = HintAck(a, false.B)
def HintAck(a: TLBundleA, denied: Bool): TLBundleD = HintAck(a.source, a.size, denied)
def HintAck(toSource: UInt, lgSize: UInt): TLBundleD = HintAck(toSource, lgSize, false.B)
def HintAck(toSource: UInt, lgSize: UInt, denied: Bool) = {
val d = Wire(new TLBundleD(bundle))
d.opcode := TLMessages.HintAck
d.param := 0.U
d.size := lgSize
d.source := toSource
d.sink := 0.U
d.denied := denied
d.user := DontCare
d.echo := DontCare
d.data := DontCare
d.corrupt := false.B
d
}
}
File Arbiter.scala:
// See LICENSE.SiFive for license details.
package freechips.rocketchip.tilelink
import chisel3._
import chisel3.util._
import chisel3.util.random.LFSR
import org.chipsalliance.cde.config.Parameters
import freechips.rocketchip.util._
object TLArbiter
{
// (valids, select) => readys
type Policy = (Integer, UInt, Bool) => UInt
val lowestIndexFirst: Policy = (width, valids, select) => ~(leftOR(valids) << 1)(width-1, 0)
val highestIndexFirst: Policy = (width, valids, select) => ~((rightOR(valids) >> 1).pad(width))
val roundRobin: Policy = (width, valids, select) => if (width == 1) 1.U(1.W) else {
val valid = valids(width-1, 0)
assert (valid === valids)
val mask = RegInit(((BigInt(1) << width)-1).U(width-1,0))
val filter = Cat(valid & ~mask, valid)
val unready = (rightOR(filter, width*2, width) >> 1) | (mask << width)
val readys = ~((unready >> width) & unready(width-1, 0))
when (select && valid.orR) {
mask := leftOR(readys & valid, width)
}
readys(width-1, 0)
}
def lowestFromSeq[T <: TLChannel](edge: TLEdge, sink: DecoupledIO[T], sources: Seq[DecoupledIO[T]]): Unit = {
apply(lowestIndexFirst)(sink, sources.map(s => (edge.numBeats1(s.bits), s)):_*)
}
def lowest[T <: TLChannel](edge: TLEdge, sink: DecoupledIO[T], sources: DecoupledIO[T]*): Unit = {
apply(lowestIndexFirst)(sink, sources.toList.map(s => (edge.numBeats1(s.bits), s)):_*)
}
def highest[T <: TLChannel](edge: TLEdge, sink: DecoupledIO[T], sources: DecoupledIO[T]*): Unit = {
apply(highestIndexFirst)(sink, sources.toList.map(s => (edge.numBeats1(s.bits), s)):_*)
}
def robin[T <: TLChannel](edge: TLEdge, sink: DecoupledIO[T], sources: DecoupledIO[T]*): Unit = {
apply(roundRobin)(sink, sources.toList.map(s => (edge.numBeats1(s.bits), s)):_*)
}
def apply[T <: Data](policy: Policy)(sink: DecoupledIO[T], sources: (UInt, DecoupledIO[T])*): Unit = {
if (sources.isEmpty) {
sink.bits := DontCare
} else if (sources.size == 1) {
sink :<>= sources.head._2
} else {
val pairs = sources.toList
val beatsIn = pairs.map(_._1)
val sourcesIn = pairs.map(_._2)
// The number of beats which remain to be sent
val beatsLeft = RegInit(0.U)
val idle = beatsLeft === 0.U
val latch = idle && sink.ready // winner (if any) claims sink
// Who wants access to the sink?
val valids = sourcesIn.map(_.valid)
// Arbitrate amongst the requests
val readys = VecInit(policy(valids.size, Cat(valids.reverse), latch).asBools)
// Which request wins arbitration?
val winner = VecInit((readys zip valids) map { case (r,v) => r&&v })
// Confirm the policy works properly
require (readys.size == valids.size)
// Never two winners
val prefixOR = winner.scanLeft(false.B)(_||_).init
assert((prefixOR zip winner) map { case (p,w) => !p || !w } reduce {_ && _})
// If there was any request, there is a winner
assert (!valids.reduce(_||_) || winner.reduce(_||_))
// Track remaining beats
val maskedBeats = (winner zip beatsIn) map { case (w,b) => Mux(w, b, 0.U) }
val initBeats = maskedBeats.reduce(_ | _) // no winner => 0 beats
beatsLeft := Mux(latch, initBeats, beatsLeft - sink.fire)
// The one-hot source granted access in the previous cycle
val state = RegInit(VecInit(Seq.fill(sources.size)(false.B)))
val muxState = Mux(idle, winner, state)
state := muxState
val allowed = Mux(idle, readys, state)
(sourcesIn zip allowed) foreach { case (s, r) =>
s.ready := sink.ready && r
}
sink.valid := Mux(idle, valids.reduce(_||_), Mux1H(state, valids))
sink.bits :<= Mux1H(muxState, sourcesIn.map(_.bits))
}
}
}
// Synthesizable unit tests
import freechips.rocketchip.unittest._
abstract class DecoupledArbiterTest(
policy: TLArbiter.Policy,
txns: Int,
timeout: Int,
val numSources: Int,
beatsLeftFromIdx: Int => UInt)
(implicit p: Parameters) extends UnitTest(timeout)
{
val sources = Wire(Vec(numSources, DecoupledIO(UInt(log2Ceil(numSources).W))))
dontTouch(sources.suggestName("sources"))
val sink = Wire(DecoupledIO(UInt(log2Ceil(numSources).W)))
dontTouch(sink.suggestName("sink"))
val count = RegInit(0.U(log2Ceil(txns).W))
val lfsr = LFSR(16, true.B)
sources.zipWithIndex.map { case (z, i) => z.bits := i.U }
TLArbiter(policy)(sink, sources.zipWithIndex.map {
case (z, i) => (beatsLeftFromIdx(i), z)
}:_*)
count := count + 1.U
io.finished := count >= txns.U
}
/** This tests that when a specific pattern of source valids are driven,
* a new index from amongst that pattern is always selected,
* unless one of those sources takes multiple beats,
* in which case the same index should be selected until the arbiter goes idle.
*/
class TLDecoupledArbiterRobinTest(txns: Int = 128, timeout: Int = 500000, print: Boolean = false)
(implicit p: Parameters)
extends DecoupledArbiterTest(TLArbiter.roundRobin, txns, timeout, 6, i => i.U)
{
val lastWinner = RegInit((numSources+1).U)
val beatsLeft = RegInit(0.U(log2Ceil(numSources).W))
val first = lastWinner > numSources.U
val valid = lfsr(0)
val ready = lfsr(15)
sink.ready := ready
sources.zipWithIndex.map { // pattern: every even-indexed valid is driven the same random way
case (s, i) => s.valid := (if (i % 2 == 1) false.B else valid)
}
when (sink.fire) {
if (print) { printf("TestRobin: %d\n", sink.bits) }
when (beatsLeft === 0.U) {
assert(lastWinner =/= sink.bits, "Round robin did not pick a new idx despite one being valid.")
lastWinner := sink.bits
beatsLeft := sink.bits
} .otherwise {
assert(lastWinner === sink.bits, "Round robin did not pick the same index over multiple beats")
beatsLeft := beatsLeft - 1.U
}
}
if (print) {
when (!sink.fire) { printf("TestRobin: idle (%d %d)\n", valid, ready) }
}
}
/** This tests that the lowest index is always selected across random single cycle transactions. */
class TLDecoupledArbiterLowestTest(txns: Int = 128, timeout: Int = 500000)(implicit p: Parameters)
extends DecoupledArbiterTest(TLArbiter.lowestIndexFirst, txns, timeout, 15, _ => 0.U)
{
def assertLowest(id: Int): Unit = {
when (sources(id).valid) {
assert((numSources-1 until id by -1).map(!sources(_).fire).foldLeft(true.B)(_&&_), s"$id was valid but a higher valid source was granted ready.")
}
}
sources.zipWithIndex.map { case (s, i) => s.valid := lfsr(i) }
sink.ready := lfsr(15)
when (sink.fire) { (0 until numSources).foreach(assertLowest(_)) }
}
/** This tests that the highest index is always selected across random single cycle transactions. */
class TLDecoupledArbiterHighestTest(txns: Int = 128, timeout: Int = 500000)(implicit p: Parameters)
extends DecoupledArbiterTest(TLArbiter.highestIndexFirst, txns, timeout, 15, _ => 0.U)
{
def assertHighest(id: Int): Unit = {
when (sources(id).valid) {
assert((0 until id).map(!sources(_).fire).foldLeft(true.B)(_&&_), s"$id was valid but a lower valid source was granted ready.")
}
}
sources.zipWithIndex.map { case (s, i) => s.valid := lfsr(i) }
sink.ready := lfsr(15)
when (sink.fire) { (0 until numSources).foreach(assertHighest(_)) }
}
File Xbar.scala:
// See LICENSE.SiFive for license details.
package freechips.rocketchip.tilelink
import chisel3._
import chisel3.util._
import org.chipsalliance.cde.config._
import org.chipsalliance.diplomacy.lazymodule._
import freechips.rocketchip.diplomacy.{AddressDecoder, AddressSet, RegionType, IdRange, TriStateValue}
import freechips.rocketchip.util.BundleField
// Trades off slave port proximity against routing resource cost
object ForceFanout
{
def apply[T](
a: TriStateValue = TriStateValue.unset,
b: TriStateValue = TriStateValue.unset,
c: TriStateValue = TriStateValue.unset,
d: TriStateValue = TriStateValue.unset,
e: TriStateValue = TriStateValue.unset)(body: Parameters => T)(implicit p: Parameters) =
{
body(p.alterPartial {
case ForceFanoutKey => p(ForceFanoutKey) match {
case ForceFanoutParams(pa, pb, pc, pd, pe) =>
ForceFanoutParams(a.update(pa), b.update(pb), c.update(pc), d.update(pd), e.update(pe))
}
})
}
}
private case class ForceFanoutParams(a: Boolean, b: Boolean, c: Boolean, d: Boolean, e: Boolean)
private case object ForceFanoutKey extends Field(ForceFanoutParams(false, false, false, false, false))
class TLXbar(policy: TLArbiter.Policy = TLArbiter.roundRobin, nameSuffix: Option[String] = None)(implicit p: Parameters) extends LazyModule
{
val node = new TLNexusNode(
clientFn = { seq =>
seq(0).v1copy(
echoFields = BundleField.union(seq.flatMap(_.echoFields)),
requestFields = BundleField.union(seq.flatMap(_.requestFields)),
responseKeys = seq.flatMap(_.responseKeys).distinct,
minLatency = seq.map(_.minLatency).min,
clients = (TLXbar.mapInputIds(seq) zip seq) flatMap { case (range, port) =>
port.clients map { client => client.v1copy(
sourceId = client.sourceId.shift(range.start)
)}
}
)
},
managerFn = { seq =>
val fifoIdFactory = TLXbar.relabeler()
seq(0).v1copy(
responseFields = BundleField.union(seq.flatMap(_.responseFields)),
requestKeys = seq.flatMap(_.requestKeys).distinct,
minLatency = seq.map(_.minLatency).min,
endSinkId = TLXbar.mapOutputIds(seq).map(_.end).max,
managers = seq.flatMap { port =>
require (port.beatBytes == seq(0).beatBytes,
s"Xbar ($name with parent $parent) data widths don't match: ${port.managers.map(_.name)} has ${port.beatBytes}B vs ${seq(0).managers.map(_.name)} has ${seq(0).beatBytes}B")
val fifoIdMapper = fifoIdFactory()
port.managers map { manager => manager.v1copy(
fifoId = manager.fifoId.map(fifoIdMapper(_))
)}
}
)
}
){
override def circuitIdentity = outputs.size == 1 && inputs.size == 1
}
lazy val module = new Impl
class Impl extends LazyModuleImp(this) {
if ((node.in.size * node.out.size) > (8*32)) {
println (s"!!! WARNING !!!")
println (s" Your TLXbar ($name with parent $parent) is very large, with ${node.in.size} Masters and ${node.out.size} Slaves.")
println (s"!!! WARNING !!!")
}
val wide_bundle = TLBundleParameters.union((node.in ++ node.out).map(_._2.bundle))
override def desiredName = (Seq("TLXbar") ++ nameSuffix ++ Seq(s"i${node.in.size}_o${node.out.size}_${wide_bundle.shortName}")).mkString("_")
TLXbar.circuit(policy, node.in, node.out)
}
}
object TLXbar
{
def mapInputIds(ports: Seq[TLMasterPortParameters]) = assignRanges(ports.map(_.endSourceId))
def mapOutputIds(ports: Seq[TLSlavePortParameters]) = assignRanges(ports.map(_.endSinkId))
def assignRanges(sizes: Seq[Int]) = {
val pow2Sizes = sizes.map { z => if (z == 0) 0 else 1 << log2Ceil(z) }
val tuples = pow2Sizes.zipWithIndex.sortBy(_._1) // record old index, then sort by increasing size
val starts = tuples.scanRight(0)(_._1 + _).tail // suffix-sum of the sizes = the start positions
val ranges = (tuples zip starts) map { case ((sz, i), st) =>
(if (sz == 0) IdRange(0, 0) else IdRange(st, st + sz), i)
}
ranges.sortBy(_._2).map(_._1) // Restore orignal order
}
def relabeler() = {
var idFactory = 0
() => {
val fifoMap = scala.collection.mutable.HashMap.empty[Int, Int]
(x: Int) => {
if (fifoMap.contains(x)) fifoMap(x) else {
val out = idFactory
idFactory = idFactory + 1
fifoMap += (x -> out)
out
}
}
}
}
def circuit(policy: TLArbiter.Policy, seqIn: Seq[(TLBundle, TLEdge)], seqOut: Seq[(TLBundle, TLEdge)]) {
val (io_in, edgesIn) = seqIn.unzip
val (io_out, edgesOut) = seqOut.unzip
// Not every master need connect to every slave on every channel; determine which connections are necessary
val reachableIO = edgesIn.map { cp => edgesOut.map { mp =>
cp.client.clients.exists { c => mp.manager.managers.exists { m =>
c.visibility.exists { ca => m.address.exists { ma =>
ca.overlaps(ma)}}}}
}.toVector}.toVector
val probeIO = (edgesIn zip reachableIO).map { case (cp, reachableO) =>
(edgesOut zip reachableO).map { case (mp, reachable) =>
reachable && cp.client.anySupportProbe && mp.manager.managers.exists(_.regionType >= RegionType.TRACKED)
}.toVector}.toVector
val releaseIO = (edgesIn zip reachableIO).map { case (cp, reachableO) =>
(edgesOut zip reachableO).map { case (mp, reachable) =>
reachable && cp.client.anySupportProbe && mp.manager.anySupportAcquireB
}.toVector}.toVector
val connectAIO = reachableIO
val connectBIO = probeIO
val connectCIO = releaseIO
val connectDIO = reachableIO
val connectEIO = releaseIO
def transpose[T](x: Seq[Seq[T]]) = if (x.isEmpty) Nil else Vector.tabulate(x(0).size) { i => Vector.tabulate(x.size) { j => x(j)(i) } }
val connectAOI = transpose(connectAIO)
val connectBOI = transpose(connectBIO)
val connectCOI = transpose(connectCIO)
val connectDOI = transpose(connectDIO)
val connectEOI = transpose(connectEIO)
// Grab the port ID mapping
val inputIdRanges = TLXbar.mapInputIds(edgesIn.map(_.client))
val outputIdRanges = TLXbar.mapOutputIds(edgesOut.map(_.manager))
// We need an intermediate size of bundle with the widest possible identifiers
val wide_bundle = TLBundleParameters.union(io_in.map(_.params) ++ io_out.map(_.params))
// Handle size = 1 gracefully (Chisel3 empty range is broken)
def trim(id: UInt, size: Int): UInt = if (size <= 1) 0.U else id(log2Ceil(size)-1, 0)
// Transform input bundle sources (sinks use global namespace on both sides)
val in = Wire(Vec(io_in.size, TLBundle(wide_bundle)))
for (i <- 0 until in.size) {
val r = inputIdRanges(i)
if (connectAIO(i).exists(x=>x)) {
in(i).a.bits.user := DontCare
in(i).a.squeezeAll.waiveAll :<>= io_in(i).a.squeezeAll.waiveAll
in(i).a.bits.source := io_in(i).a.bits.source | r.start.U
} else {
in(i).a := DontCare
io_in(i).a := DontCare
in(i).a.valid := false.B
io_in(i).a.ready := true.B
}
if (connectBIO(i).exists(x=>x)) {
io_in(i).b.squeezeAll :<>= in(i).b.squeezeAll
io_in(i).b.bits.source := trim(in(i).b.bits.source, r.size)
} else {
in(i).b := DontCare
io_in(i).b := DontCare
in(i).b.ready := true.B
io_in(i).b.valid := false.B
}
if (connectCIO(i).exists(x=>x)) {
in(i).c.bits.user := DontCare
in(i).c.squeezeAll.waiveAll :<>= io_in(i).c.squeezeAll.waiveAll
in(i).c.bits.source := io_in(i).c.bits.source | r.start.U
} else {
in(i).c := DontCare
io_in(i).c := DontCare
in(i).c.valid := false.B
io_in(i).c.ready := true.B
}
if (connectDIO(i).exists(x=>x)) {
io_in(i).d.squeezeAll.waiveAll :<>= in(i).d.squeezeAll.waiveAll
io_in(i).d.bits.source := trim(in(i).d.bits.source, r.size)
} else {
in(i).d := DontCare
io_in(i).d := DontCare
in(i).d.ready := true.B
io_in(i).d.valid := false.B
}
if (connectEIO(i).exists(x=>x)) {
in(i).e.squeezeAll :<>= io_in(i).e.squeezeAll
} else {
in(i).e := DontCare
io_in(i).e := DontCare
in(i).e.valid := false.B
io_in(i).e.ready := true.B
}
}
// Transform output bundle sinks (sources use global namespace on both sides)
val out = Wire(Vec(io_out.size, TLBundle(wide_bundle)))
for (o <- 0 until out.size) {
val r = outputIdRanges(o)
if (connectAOI(o).exists(x=>x)) {
out(o).a.bits.user := DontCare
io_out(o).a.squeezeAll.waiveAll :<>= out(o).a.squeezeAll.waiveAll
} else {
out(o).a := DontCare
io_out(o).a := DontCare
out(o).a.ready := true.B
io_out(o).a.valid := false.B
}
if (connectBOI(o).exists(x=>x)) {
out(o).b.squeezeAll :<>= io_out(o).b.squeezeAll
} else {
out(o).b := DontCare
io_out(o).b := DontCare
out(o).b.valid := false.B
io_out(o).b.ready := true.B
}
if (connectCOI(o).exists(x=>x)) {
out(o).c.bits.user := DontCare
io_out(o).c.squeezeAll.waiveAll :<>= out(o).c.squeezeAll.waiveAll
} else {
out(o).c := DontCare
io_out(o).c := DontCare
out(o).c.ready := true.B
io_out(o).c.valid := false.B
}
if (connectDOI(o).exists(x=>x)) {
out(o).d.squeezeAll :<>= io_out(o).d.squeezeAll
out(o).d.bits.sink := io_out(o).d.bits.sink | r.start.U
} else {
out(o).d := DontCare
io_out(o).d := DontCare
out(o).d.valid := false.B
io_out(o).d.ready := true.B
}
if (connectEOI(o).exists(x=>x)) {
io_out(o).e.squeezeAll :<>= out(o).e.squeezeAll
io_out(o).e.bits.sink := trim(out(o).e.bits.sink, r.size)
} else {
out(o).e := DontCare
io_out(o).e := DontCare
out(o).e.ready := true.B
io_out(o).e.valid := false.B
}
}
// Filter a list to only those elements selected
def filter[T](data: Seq[T], mask: Seq[Boolean]) = (data zip mask).filter(_._2).map(_._1)
// Based on input=>output connectivity, create per-input minimal address decode circuits
val requiredAC = (connectAIO ++ connectCIO).distinct
val outputPortFns: Map[Vector[Boolean], Seq[UInt => Bool]] = requiredAC.map { connectO =>
val port_addrs = edgesOut.map(_.manager.managers.flatMap(_.address))
val routingMask = AddressDecoder(filter(port_addrs, connectO))
val route_addrs = port_addrs.map(seq => AddressSet.unify(seq.map(_.widen(~routingMask)).distinct))
// Print the address mapping
if (false) {
println("Xbar mapping:")
route_addrs.foreach { p =>
print(" ")
p.foreach { a => print(s" ${a}") }
println("")
}
println("--")
}
(connectO, route_addrs.map(seq => (addr: UInt) => seq.map(_.contains(addr)).reduce(_ || _)))
}.toMap
// Print the ID mapping
if (false) {
println(s"XBar mapping:")
(edgesIn zip inputIdRanges).zipWithIndex.foreach { case ((edge, id), i) =>
println(s"\t$i assigned ${id} for ${edge.client.clients.map(_.name).mkString(", ")}")
}
println("")
}
val addressA = (in zip edgesIn) map { case (i, e) => e.address(i.a.bits) }
val addressC = (in zip edgesIn) map { case (i, e) => e.address(i.c.bits) }
def unique(x: Vector[Boolean]): Bool = (x.filter(x=>x).size <= 1).B
val requestAIO = (connectAIO zip addressA) map { case (c, i) => outputPortFns(c).map { o => unique(c) || o(i) } }
val requestCIO = (connectCIO zip addressC) map { case (c, i) => outputPortFns(c).map { o => unique(c) || o(i) } }
val requestBOI = out.map { o => inputIdRanges.map { i => i.contains(o.b.bits.source) } }
val requestDOI = out.map { o => inputIdRanges.map { i => i.contains(o.d.bits.source) } }
val requestEIO = in.map { i => outputIdRanges.map { o => o.contains(i.e.bits.sink) } }
val beatsAI = (in zip edgesIn) map { case (i, e) => e.numBeats1(i.a.bits) }
val beatsBO = (out zip edgesOut) map { case (o, e) => e.numBeats1(o.b.bits) }
val beatsCI = (in zip edgesIn) map { case (i, e) => e.numBeats1(i.c.bits) }
val beatsDO = (out zip edgesOut) map { case (o, e) => e.numBeats1(o.d.bits) }
val beatsEI = (in zip edgesIn) map { case (i, e) => e.numBeats1(i.e.bits) }
// Fanout the input sources to the output sinks
val portsAOI = transpose((in zip requestAIO) map { case (i, r) => TLXbar.fanout(i.a, r, edgesOut.map(_.params(ForceFanoutKey).a)) })
val portsBIO = transpose((out zip requestBOI) map { case (o, r) => TLXbar.fanout(o.b, r, edgesIn .map(_.params(ForceFanoutKey).b)) })
val portsCOI = transpose((in zip requestCIO) map { case (i, r) => TLXbar.fanout(i.c, r, edgesOut.map(_.params(ForceFanoutKey).c)) })
val portsDIO = transpose((out zip requestDOI) map { case (o, r) => TLXbar.fanout(o.d, r, edgesIn .map(_.params(ForceFanoutKey).d)) })
val portsEOI = transpose((in zip requestEIO) map { case (i, r) => TLXbar.fanout(i.e, r, edgesOut.map(_.params(ForceFanoutKey).e)) })
// Arbitrate amongst the sources
for (o <- 0 until out.size) {
TLArbiter(policy)(out(o).a, filter(beatsAI zip portsAOI(o), connectAOI(o)):_*)
TLArbiter(policy)(out(o).c, filter(beatsCI zip portsCOI(o), connectCOI(o)):_*)
TLArbiter(policy)(out(o).e, filter(beatsEI zip portsEOI(o), connectEOI(o)):_*)
filter(portsAOI(o), connectAOI(o).map(!_)) foreach { r => r.ready := false.B }
filter(portsCOI(o), connectCOI(o).map(!_)) foreach { r => r.ready := false.B }
filter(portsEOI(o), connectEOI(o).map(!_)) foreach { r => r.ready := false.B }
}
for (i <- 0 until in.size) {
TLArbiter(policy)(in(i).b, filter(beatsBO zip portsBIO(i), connectBIO(i)):_*)
TLArbiter(policy)(in(i).d, filter(beatsDO zip portsDIO(i), connectDIO(i)):_*)
filter(portsBIO(i), connectBIO(i).map(!_)) foreach { r => r.ready := false.B }
filter(portsDIO(i), connectDIO(i).map(!_)) foreach { r => r.ready := false.B }
}
}
def apply(policy: TLArbiter.Policy = TLArbiter.roundRobin, nameSuffix: Option[String] = None)(implicit p: Parameters): TLNode =
{
val xbar = LazyModule(new TLXbar(policy, nameSuffix))
xbar.node
}
// Replicate an input port to each output port
def fanout[T <: TLChannel](input: DecoupledIO[T], select: Seq[Bool], force: Seq[Boolean] = Nil): Seq[DecoupledIO[T]] = {
val filtered = Wire(Vec(select.size, chiselTypeOf(input)))
for (i <- 0 until select.size) {
filtered(i).bits := (if (force.lift(i).getOrElse(false)) IdentityModule(input.bits) else input.bits)
filtered(i).valid := input.valid && (select(i) || (select.size == 1).B)
}
input.ready := Mux1H(select, filtered.map(_.ready))
filtered
}
}
// Synthesizable unit tests
import freechips.rocketchip.unittest._
class TLRAMXbar(nManagers: Int, txns: Int)(implicit p: Parameters) extends LazyModule {
val fuzz = LazyModule(new TLFuzzer(txns))
val model = LazyModule(new TLRAMModel("Xbar"))
val xbar = LazyModule(new TLXbar)
xbar.node := TLDelayer(0.1) := model.node := fuzz.node
(0 until nManagers) foreach { n =>
val ram = LazyModule(new TLRAM(AddressSet(0x0+0x400*n, 0x3ff)))
ram.node := TLFragmenter(4, 256) := TLDelayer(0.1) := xbar.node
}
lazy val module = new Impl
class Impl extends LazyModuleImp(this) with UnitTestModule {
io.finished := fuzz.module.io.finished
}
}
class TLRAMXbarTest(nManagers: Int, txns: Int = 5000, timeout: Int = 500000)(implicit p: Parameters) extends UnitTest(timeout) {
val dut = Module(LazyModule(new TLRAMXbar(nManagers,txns)).module)
dut.io.start := io.start
io.finished := dut.io.finished
}
class TLMulticlientXbar(nManagers: Int, nClients: Int, txns: Int)(implicit p: Parameters) extends LazyModule {
val xbar = LazyModule(new TLXbar)
val fuzzers = (0 until nClients) map { n =>
val fuzz = LazyModule(new TLFuzzer(txns))
xbar.node := TLDelayer(0.1) := fuzz.node
fuzz
}
(0 until nManagers) foreach { n =>
val ram = LazyModule(new TLRAM(AddressSet(0x0+0x400*n, 0x3ff)))
ram.node := TLFragmenter(4, 256) := TLDelayer(0.1) := xbar.node
}
lazy val module = new Impl
class Impl extends LazyModuleImp(this) with UnitTestModule {
io.finished := fuzzers.last.module.io.finished
}
}
class TLMulticlientXbarTest(nManagers: Int, nClients: Int, txns: Int = 5000, timeout: Int = 500000)(implicit p: Parameters) extends UnitTest(timeout) {
val dut = Module(LazyModule(new TLMulticlientXbar(nManagers, nClients, txns)).module)
dut.io.start := io.start
io.finished := dut.io.finished
}
| module TLXbar_sbus_i2_o2_a32d64s6k3z4c( // @[Xbar.scala:74:9]
input clock, // @[Xbar.scala:74:9]
input reset, // @[Xbar.scala:74:9]
output auto_anon_in_1_a_ready, // @[LazyModuleImp.scala:107:25]
input auto_anon_in_1_a_valid, // @[LazyModuleImp.scala:107:25]
input [2:0] auto_anon_in_1_a_bits_opcode, // @[LazyModuleImp.scala:107:25]
input [2:0] auto_anon_in_1_a_bits_param, // @[LazyModuleImp.scala:107:25]
input [3:0] auto_anon_in_1_a_bits_size, // @[LazyModuleImp.scala:107:25]
input [1:0] auto_anon_in_1_a_bits_source, // @[LazyModuleImp.scala:107:25]
input [31:0] auto_anon_in_1_a_bits_address, // @[LazyModuleImp.scala:107:25]
input [7:0] auto_anon_in_1_a_bits_mask, // @[LazyModuleImp.scala:107:25]
input [63:0] auto_anon_in_1_a_bits_data, // @[LazyModuleImp.scala:107:25]
input auto_anon_in_1_a_bits_corrupt, // @[LazyModuleImp.scala:107:25]
input auto_anon_in_1_b_ready, // @[LazyModuleImp.scala:107:25]
output auto_anon_in_1_b_valid, // @[LazyModuleImp.scala:107:25]
output [1:0] auto_anon_in_1_b_bits_param, // @[LazyModuleImp.scala:107:25]
output [31:0] auto_anon_in_1_b_bits_address, // @[LazyModuleImp.scala:107:25]
output auto_anon_in_1_c_ready, // @[LazyModuleImp.scala:107:25]
input auto_anon_in_1_c_valid, // @[LazyModuleImp.scala:107:25]
input [2:0] auto_anon_in_1_c_bits_opcode, // @[LazyModuleImp.scala:107:25]
input [2:0] auto_anon_in_1_c_bits_param, // @[LazyModuleImp.scala:107:25]
input [3:0] auto_anon_in_1_c_bits_size, // @[LazyModuleImp.scala:107:25]
input [1:0] auto_anon_in_1_c_bits_source, // @[LazyModuleImp.scala:107:25]
input [31:0] auto_anon_in_1_c_bits_address, // @[LazyModuleImp.scala:107:25]
input [63:0] auto_anon_in_1_c_bits_data, // @[LazyModuleImp.scala:107:25]
input auto_anon_in_1_c_bits_corrupt, // @[LazyModuleImp.scala:107:25]
input auto_anon_in_1_d_ready, // @[LazyModuleImp.scala:107:25]
output auto_anon_in_1_d_valid, // @[LazyModuleImp.scala:107:25]
output [2:0] auto_anon_in_1_d_bits_opcode, // @[LazyModuleImp.scala:107:25]
output [1:0] auto_anon_in_1_d_bits_param, // @[LazyModuleImp.scala:107:25]
output [3:0] auto_anon_in_1_d_bits_size, // @[LazyModuleImp.scala:107:25]
output [1:0] auto_anon_in_1_d_bits_source, // @[LazyModuleImp.scala:107:25]
output [2:0] auto_anon_in_1_d_bits_sink, // @[LazyModuleImp.scala:107:25]
output auto_anon_in_1_d_bits_denied, // @[LazyModuleImp.scala:107:25]
output [63:0] auto_anon_in_1_d_bits_data, // @[LazyModuleImp.scala:107:25]
output auto_anon_in_1_d_bits_corrupt, // @[LazyModuleImp.scala:107:25]
input auto_anon_in_1_e_valid, // @[LazyModuleImp.scala:107:25]
input [2:0] auto_anon_in_1_e_bits_sink, // @[LazyModuleImp.scala:107:25]
output auto_anon_in_0_a_ready, // @[LazyModuleImp.scala:107:25]
input auto_anon_in_0_a_valid, // @[LazyModuleImp.scala:107:25]
input [2:0] auto_anon_in_0_a_bits_opcode, // @[LazyModuleImp.scala:107:25]
input [2:0] auto_anon_in_0_a_bits_param, // @[LazyModuleImp.scala:107:25]
input [3:0] auto_anon_in_0_a_bits_size, // @[LazyModuleImp.scala:107:25]
input [4:0] auto_anon_in_0_a_bits_source, // @[LazyModuleImp.scala:107:25]
input [31:0] auto_anon_in_0_a_bits_address, // @[LazyModuleImp.scala:107:25]
input [7:0] auto_anon_in_0_a_bits_mask, // @[LazyModuleImp.scala:107:25]
input [63:0] auto_anon_in_0_a_bits_data, // @[LazyModuleImp.scala:107:25]
input auto_anon_in_0_a_bits_corrupt, // @[LazyModuleImp.scala:107:25]
input auto_anon_in_0_d_ready, // @[LazyModuleImp.scala:107:25]
output auto_anon_in_0_d_valid, // @[LazyModuleImp.scala:107:25]
output [2:0] auto_anon_in_0_d_bits_opcode, // @[LazyModuleImp.scala:107:25]
output [1:0] auto_anon_in_0_d_bits_param, // @[LazyModuleImp.scala:107:25]
output [3:0] auto_anon_in_0_d_bits_size, // @[LazyModuleImp.scala:107:25]
output [4:0] auto_anon_in_0_d_bits_source, // @[LazyModuleImp.scala:107:25]
output [2:0] auto_anon_in_0_d_bits_sink, // @[LazyModuleImp.scala:107:25]
output auto_anon_in_0_d_bits_denied, // @[LazyModuleImp.scala:107:25]
output [63:0] auto_anon_in_0_d_bits_data, // @[LazyModuleImp.scala:107:25]
output auto_anon_in_0_d_bits_corrupt, // @[LazyModuleImp.scala:107:25]
input auto_anon_out_1_a_ready, // @[LazyModuleImp.scala:107:25]
output auto_anon_out_1_a_valid, // @[LazyModuleImp.scala:107:25]
output [2:0] auto_anon_out_1_a_bits_opcode, // @[LazyModuleImp.scala:107:25]
output [2:0] auto_anon_out_1_a_bits_param, // @[LazyModuleImp.scala:107:25]
output [2:0] auto_anon_out_1_a_bits_size, // @[LazyModuleImp.scala:107:25]
output [5:0] auto_anon_out_1_a_bits_source, // @[LazyModuleImp.scala:107:25]
output [31:0] auto_anon_out_1_a_bits_address, // @[LazyModuleImp.scala:107:25]
output [7:0] auto_anon_out_1_a_bits_mask, // @[LazyModuleImp.scala:107:25]
output [63:0] auto_anon_out_1_a_bits_data, // @[LazyModuleImp.scala:107:25]
output auto_anon_out_1_a_bits_corrupt, // @[LazyModuleImp.scala:107:25]
output auto_anon_out_1_b_ready, // @[LazyModuleImp.scala:107:25]
input auto_anon_out_1_b_valid, // @[LazyModuleImp.scala:107:25]
input [1:0] auto_anon_out_1_b_bits_param, // @[LazyModuleImp.scala:107:25]
input [31:0] auto_anon_out_1_b_bits_address, // @[LazyModuleImp.scala:107:25]
input auto_anon_out_1_c_ready, // @[LazyModuleImp.scala:107:25]
output auto_anon_out_1_c_valid, // @[LazyModuleImp.scala:107:25]
output [2:0] auto_anon_out_1_c_bits_opcode, // @[LazyModuleImp.scala:107:25]
output [2:0] auto_anon_out_1_c_bits_param, // @[LazyModuleImp.scala:107:25]
output [2:0] auto_anon_out_1_c_bits_size, // @[LazyModuleImp.scala:107:25]
output [5:0] auto_anon_out_1_c_bits_source, // @[LazyModuleImp.scala:107:25]
output [31:0] auto_anon_out_1_c_bits_address, // @[LazyModuleImp.scala:107:25]
output [63:0] auto_anon_out_1_c_bits_data, // @[LazyModuleImp.scala:107:25]
output auto_anon_out_1_c_bits_corrupt, // @[LazyModuleImp.scala:107:25]
output auto_anon_out_1_d_ready, // @[LazyModuleImp.scala:107:25]
input auto_anon_out_1_d_valid, // @[LazyModuleImp.scala:107:25]
input [2:0] auto_anon_out_1_d_bits_opcode, // @[LazyModuleImp.scala:107:25]
input [1:0] auto_anon_out_1_d_bits_param, // @[LazyModuleImp.scala:107:25]
input [2:0] auto_anon_out_1_d_bits_size, // @[LazyModuleImp.scala:107:25]
input [5:0] auto_anon_out_1_d_bits_source, // @[LazyModuleImp.scala:107:25]
input [2:0] auto_anon_out_1_d_bits_sink, // @[LazyModuleImp.scala:107:25]
input auto_anon_out_1_d_bits_denied, // @[LazyModuleImp.scala:107:25]
input [63:0] auto_anon_out_1_d_bits_data, // @[LazyModuleImp.scala:107:25]
input auto_anon_out_1_d_bits_corrupt, // @[LazyModuleImp.scala:107:25]
output auto_anon_out_1_e_valid, // @[LazyModuleImp.scala:107:25]
output [2:0] auto_anon_out_1_e_bits_sink, // @[LazyModuleImp.scala:107:25]
input auto_anon_out_0_a_ready, // @[LazyModuleImp.scala:107:25]
output auto_anon_out_0_a_valid, // @[LazyModuleImp.scala:107:25]
output [2:0] auto_anon_out_0_a_bits_opcode, // @[LazyModuleImp.scala:107:25]
output [2:0] auto_anon_out_0_a_bits_param, // @[LazyModuleImp.scala:107:25]
output [3:0] auto_anon_out_0_a_bits_size, // @[LazyModuleImp.scala:107:25]
output [5:0] auto_anon_out_0_a_bits_source, // @[LazyModuleImp.scala:107:25]
output [28:0] auto_anon_out_0_a_bits_address, // @[LazyModuleImp.scala:107:25]
output [7:0] auto_anon_out_0_a_bits_mask, // @[LazyModuleImp.scala:107:25]
output [63:0] auto_anon_out_0_a_bits_data, // @[LazyModuleImp.scala:107:25]
output auto_anon_out_0_a_bits_corrupt, // @[LazyModuleImp.scala:107:25]
output auto_anon_out_0_d_ready, // @[LazyModuleImp.scala:107:25]
input auto_anon_out_0_d_valid, // @[LazyModuleImp.scala:107:25]
input [2:0] auto_anon_out_0_d_bits_opcode, // @[LazyModuleImp.scala:107:25]
input [1:0] auto_anon_out_0_d_bits_param, // @[LazyModuleImp.scala:107:25]
input [3:0] auto_anon_out_0_d_bits_size, // @[LazyModuleImp.scala:107:25]
input [5:0] auto_anon_out_0_d_bits_source, // @[LazyModuleImp.scala:107:25]
input auto_anon_out_0_d_bits_sink, // @[LazyModuleImp.scala:107:25]
input auto_anon_out_0_d_bits_denied, // @[LazyModuleImp.scala:107:25]
input [63:0] auto_anon_out_0_d_bits_data, // @[LazyModuleImp.scala:107:25]
input auto_anon_out_0_d_bits_corrupt // @[LazyModuleImp.scala:107:25]
);
wire [2:0] out_1_e_bits_sink; // @[Xbar.scala:216:19]
wire [2:0] out_1_d_bits_sink; // @[Xbar.scala:216:19]
wire [3:0] out_1_d_bits_size; // @[Xbar.scala:216:19]
wire [2:0] out_0_d_bits_sink; // @[Xbar.scala:216:19]
wire [5:0] in_1_c_bits_source; // @[Xbar.scala:159:18]
wire [5:0] in_1_a_bits_source; // @[Xbar.scala:159:18]
wire [5:0] in_0_a_bits_source; // @[Xbar.scala:159:18]
wire auto_anon_in_1_a_valid_0 = auto_anon_in_1_a_valid; // @[Xbar.scala:74:9]
wire [2:0] auto_anon_in_1_a_bits_opcode_0 = auto_anon_in_1_a_bits_opcode; // @[Xbar.scala:74:9]
wire [2:0] auto_anon_in_1_a_bits_param_0 = auto_anon_in_1_a_bits_param; // @[Xbar.scala:74:9]
wire [3:0] auto_anon_in_1_a_bits_size_0 = auto_anon_in_1_a_bits_size; // @[Xbar.scala:74:9]
wire [1:0] auto_anon_in_1_a_bits_source_0 = auto_anon_in_1_a_bits_source; // @[Xbar.scala:74:9]
wire [31:0] auto_anon_in_1_a_bits_address_0 = auto_anon_in_1_a_bits_address; // @[Xbar.scala:74:9]
wire [7:0] auto_anon_in_1_a_bits_mask_0 = auto_anon_in_1_a_bits_mask; // @[Xbar.scala:74:9]
wire [63:0] auto_anon_in_1_a_bits_data_0 = auto_anon_in_1_a_bits_data; // @[Xbar.scala:74:9]
wire auto_anon_in_1_a_bits_corrupt_0 = auto_anon_in_1_a_bits_corrupt; // @[Xbar.scala:74:9]
wire auto_anon_in_1_b_ready_0 = auto_anon_in_1_b_ready; // @[Xbar.scala:74:9]
wire auto_anon_in_1_c_valid_0 = auto_anon_in_1_c_valid; // @[Xbar.scala:74:9]
wire [2:0] auto_anon_in_1_c_bits_opcode_0 = auto_anon_in_1_c_bits_opcode; // @[Xbar.scala:74:9]
wire [2:0] auto_anon_in_1_c_bits_param_0 = auto_anon_in_1_c_bits_param; // @[Xbar.scala:74:9]
wire [3:0] auto_anon_in_1_c_bits_size_0 = auto_anon_in_1_c_bits_size; // @[Xbar.scala:74:9]
wire [1:0] auto_anon_in_1_c_bits_source_0 = auto_anon_in_1_c_bits_source; // @[Xbar.scala:74:9]
wire [31:0] auto_anon_in_1_c_bits_address_0 = auto_anon_in_1_c_bits_address; // @[Xbar.scala:74:9]
wire [63:0] auto_anon_in_1_c_bits_data_0 = auto_anon_in_1_c_bits_data; // @[Xbar.scala:74:9]
wire auto_anon_in_1_c_bits_corrupt_0 = auto_anon_in_1_c_bits_corrupt; // @[Xbar.scala:74:9]
wire auto_anon_in_1_d_ready_0 = auto_anon_in_1_d_ready; // @[Xbar.scala:74:9]
wire auto_anon_in_1_e_valid_0 = auto_anon_in_1_e_valid; // @[Xbar.scala:74:9]
wire [2:0] auto_anon_in_1_e_bits_sink_0 = auto_anon_in_1_e_bits_sink; // @[Xbar.scala:74:9]
wire auto_anon_in_0_a_valid_0 = auto_anon_in_0_a_valid; // @[Xbar.scala:74:9]
wire [2:0] auto_anon_in_0_a_bits_opcode_0 = auto_anon_in_0_a_bits_opcode; // @[Xbar.scala:74:9]
wire [2:0] auto_anon_in_0_a_bits_param_0 = auto_anon_in_0_a_bits_param; // @[Xbar.scala:74:9]
wire [3:0] auto_anon_in_0_a_bits_size_0 = auto_anon_in_0_a_bits_size; // @[Xbar.scala:74:9]
wire [4:0] auto_anon_in_0_a_bits_source_0 = auto_anon_in_0_a_bits_source; // @[Xbar.scala:74:9]
wire [31:0] auto_anon_in_0_a_bits_address_0 = auto_anon_in_0_a_bits_address; // @[Xbar.scala:74:9]
wire [7:0] auto_anon_in_0_a_bits_mask_0 = auto_anon_in_0_a_bits_mask; // @[Xbar.scala:74:9]
wire [63:0] auto_anon_in_0_a_bits_data_0 = auto_anon_in_0_a_bits_data; // @[Xbar.scala:74:9]
wire auto_anon_in_0_a_bits_corrupt_0 = auto_anon_in_0_a_bits_corrupt; // @[Xbar.scala:74:9]
wire auto_anon_in_0_d_ready_0 = auto_anon_in_0_d_ready; // @[Xbar.scala:74:9]
wire auto_anon_out_1_a_ready_0 = auto_anon_out_1_a_ready; // @[Xbar.scala:74:9]
wire auto_anon_out_1_b_valid_0 = auto_anon_out_1_b_valid; // @[Xbar.scala:74:9]
wire [1:0] auto_anon_out_1_b_bits_param_0 = auto_anon_out_1_b_bits_param; // @[Xbar.scala:74:9]
wire [31:0] auto_anon_out_1_b_bits_address_0 = auto_anon_out_1_b_bits_address; // @[Xbar.scala:74:9]
wire auto_anon_out_1_c_ready_0 = auto_anon_out_1_c_ready; // @[Xbar.scala:74:9]
wire auto_anon_out_1_d_valid_0 = auto_anon_out_1_d_valid; // @[Xbar.scala:74:9]
wire [2:0] auto_anon_out_1_d_bits_opcode_0 = auto_anon_out_1_d_bits_opcode; // @[Xbar.scala:74:9]
wire [1:0] auto_anon_out_1_d_bits_param_0 = auto_anon_out_1_d_bits_param; // @[Xbar.scala:74:9]
wire [2:0] auto_anon_out_1_d_bits_size_0 = auto_anon_out_1_d_bits_size; // @[Xbar.scala:74:9]
wire [5:0] auto_anon_out_1_d_bits_source_0 = auto_anon_out_1_d_bits_source; // @[Xbar.scala:74:9]
wire [2:0] auto_anon_out_1_d_bits_sink_0 = auto_anon_out_1_d_bits_sink; // @[Xbar.scala:74:9]
wire auto_anon_out_1_d_bits_denied_0 = auto_anon_out_1_d_bits_denied; // @[Xbar.scala:74:9]
wire [63:0] auto_anon_out_1_d_bits_data_0 = auto_anon_out_1_d_bits_data; // @[Xbar.scala:74:9]
wire auto_anon_out_1_d_bits_corrupt_0 = auto_anon_out_1_d_bits_corrupt; // @[Xbar.scala:74:9]
wire auto_anon_out_0_a_ready_0 = auto_anon_out_0_a_ready; // @[Xbar.scala:74:9]
wire auto_anon_out_0_d_valid_0 = auto_anon_out_0_d_valid; // @[Xbar.scala:74:9]
wire [2:0] auto_anon_out_0_d_bits_opcode_0 = auto_anon_out_0_d_bits_opcode; // @[Xbar.scala:74:9]
wire [1:0] auto_anon_out_0_d_bits_param_0 = auto_anon_out_0_d_bits_param; // @[Xbar.scala:74:9]
wire [3:0] auto_anon_out_0_d_bits_size_0 = auto_anon_out_0_d_bits_size; // @[Xbar.scala:74:9]
wire [5:0] auto_anon_out_0_d_bits_source_0 = auto_anon_out_0_d_bits_source; // @[Xbar.scala:74:9]
wire auto_anon_out_0_d_bits_sink_0 = auto_anon_out_0_d_bits_sink; // @[Xbar.scala:74:9]
wire auto_anon_out_0_d_bits_denied_0 = auto_anon_out_0_d_bits_denied; // @[Xbar.scala:74:9]
wire [63:0] auto_anon_out_0_d_bits_data_0 = auto_anon_out_0_d_bits_data; // @[Xbar.scala:74:9]
wire auto_anon_out_0_d_bits_corrupt_0 = auto_anon_out_0_d_bits_corrupt; // @[Xbar.scala:74:9]
wire _readys_T_2 = reset; // @[Arbiter.scala:22:12]
wire _readys_T_12 = reset; // @[Arbiter.scala:22:12]
wire _readys_T_22 = reset; // @[Arbiter.scala:22:12]
wire _readys_T_32 = reset; // @[Arbiter.scala:22:12]
wire [2:0] auto_anon_in_1_b_bits_opcode = 3'h6; // @[Xbar.scala:74:9]
wire [2:0] auto_anon_out_1_b_bits_opcode = 3'h6; // @[Xbar.scala:74:9]
wire [2:0] auto_anon_out_1_b_bits_size = 3'h6; // @[Xbar.scala:74:9]
wire [2:0] anonIn_1_b_bits_opcode = 3'h6; // @[MixedNode.scala:551:17]
wire [2:0] x1_anonOut_b_bits_opcode = 3'h6; // @[MixedNode.scala:542:17]
wire [2:0] x1_anonOut_b_bits_size = 3'h6; // @[MixedNode.scala:542:17]
wire [2:0] in_1_b_bits_opcode = 3'h6; // @[Xbar.scala:159:18]
wire [2:0] out_1_b_bits_opcode = 3'h6; // @[Xbar.scala:216:19]
wire [2:0] portsBIO_filtered_1_0_bits_opcode = 3'h6; // @[Xbar.scala:352:24]
wire [2:0] portsBIO_filtered_1_1_bits_opcode = 3'h6; // @[Xbar.scala:352:24]
wire [3:0] auto_anon_in_1_b_bits_size = 4'h6; // @[Xbar.scala:74:9]
wire [3:0] anonIn_1_b_bits_size = 4'h6; // @[MixedNode.scala:551:17]
wire [3:0] in_1_b_bits_size = 4'h6; // @[Xbar.scala:159:18]
wire [3:0] out_1_b_bits_size = 4'h6; // @[Xbar.scala:216:19]
wire [3:0] portsBIO_filtered_1_0_bits_size = 4'h6; // @[Xbar.scala:352:24]
wire [3:0] portsBIO_filtered_1_1_bits_size = 4'h6; // @[Xbar.scala:352:24]
wire [1:0] auto_anon_in_1_b_bits_source = 2'h0; // @[Xbar.scala:74:9]
wire [1:0] anonIn_1_b_bits_source = 2'h0; // @[MixedNode.scala:551:17]
wire [1:0] in_0_b_bits_param = 2'h0; // @[Xbar.scala:159:18]
wire [1:0] _anonIn_b_bits_source_T = 2'h0; // @[Xbar.scala:156:69]
wire [1:0] out_0_b_bits_param = 2'h0; // @[Xbar.scala:216:19]
wire [1:0] requestBOI_uncommonBits_1 = 2'h0; // @[Parameters.scala:52:56]
wire [1:0] requestBOI_uncommonBits_3 = 2'h0; // @[Parameters.scala:52:56]
wire [1:0] portsBIO_filtered_0_bits_param = 2'h0; // @[Xbar.scala:352:24]
wire [1:0] portsBIO_filtered_1_bits_param = 2'h0; // @[Xbar.scala:352:24]
wire [7:0] auto_anon_in_1_b_bits_mask = 8'hFF; // @[Xbar.scala:74:9]
wire [7:0] auto_anon_out_1_b_bits_mask = 8'hFF; // @[Xbar.scala:74:9]
wire [7:0] anonIn_1_b_bits_mask = 8'hFF; // @[MixedNode.scala:551:17]
wire [7:0] x1_anonOut_b_bits_mask = 8'hFF; // @[MixedNode.scala:542:17]
wire [7:0] in_1_b_bits_mask = 8'hFF; // @[Xbar.scala:159:18]
wire [7:0] out_1_b_bits_mask = 8'hFF; // @[Xbar.scala:216:19]
wire [7:0] portsBIO_filtered_1_0_bits_mask = 8'hFF; // @[Xbar.scala:352:24]
wire [7:0] portsBIO_filtered_1_1_bits_mask = 8'hFF; // @[Xbar.scala:352:24]
wire [63:0] auto_anon_in_1_b_bits_data = 64'h0; // @[Xbar.scala:74:9]
wire [63:0] auto_anon_out_1_b_bits_data = 64'h0; // @[Xbar.scala:74:9]
wire [63:0] anonIn_1_b_bits_data = 64'h0; // @[MixedNode.scala:551:17]
wire [63:0] x1_anonOut_b_bits_data = 64'h0; // @[MixedNode.scala:542:17]
wire [63:0] in_0_b_bits_data = 64'h0; // @[Xbar.scala:159:18]
wire [63:0] in_0_c_bits_data = 64'h0; // @[Xbar.scala:159:18]
wire [63:0] in_1_b_bits_data = 64'h0; // @[Xbar.scala:159:18]
wire [63:0] out_0_b_bits_data = 64'h0; // @[Xbar.scala:216:19]
wire [63:0] out_0_c_bits_data = 64'h0; // @[Xbar.scala:216:19]
wire [63:0] out_1_b_bits_data = 64'h0; // @[Xbar.scala:216:19]
wire [63:0] portsBIO_filtered_0_bits_data = 64'h0; // @[Xbar.scala:352:24]
wire [63:0] portsBIO_filtered_1_bits_data = 64'h0; // @[Xbar.scala:352:24]
wire [63:0] portsBIO_filtered_1_0_bits_data = 64'h0; // @[Xbar.scala:352:24]
wire [63:0] portsBIO_filtered_1_1_bits_data = 64'h0; // @[Xbar.scala:352:24]
wire [63:0] portsCOI_filtered_0_bits_data = 64'h0; // @[Xbar.scala:352:24]
wire [63:0] portsCOI_filtered_1_bits_data = 64'h0; // @[Xbar.scala:352:24]
wire auto_anon_in_1_b_bits_corrupt = 1'h0; // @[Xbar.scala:74:9]
wire auto_anon_out_1_b_bits_corrupt = 1'h0; // @[Xbar.scala:74:9]
wire anonIn_1_b_bits_corrupt = 1'h0; // @[MixedNode.scala:551:17]
wire x1_anonOut_b_bits_corrupt = 1'h0; // @[MixedNode.scala:542:17]
wire in_0_b_valid = 1'h0; // @[Xbar.scala:159:18]
wire in_0_b_bits_corrupt = 1'h0; // @[Xbar.scala:159:18]
wire in_0_c_ready = 1'h0; // @[Xbar.scala:159:18]
wire in_0_c_valid = 1'h0; // @[Xbar.scala:159:18]
wire in_0_c_bits_corrupt = 1'h0; // @[Xbar.scala:159:18]
wire in_0_e_ready = 1'h0; // @[Xbar.scala:159:18]
wire in_0_e_valid = 1'h0; // @[Xbar.scala:159:18]
wire in_1_b_bits_corrupt = 1'h0; // @[Xbar.scala:159:18]
wire out_0_b_ready = 1'h0; // @[Xbar.scala:216:19]
wire out_0_b_valid = 1'h0; // @[Xbar.scala:216:19]
wire out_0_b_bits_corrupt = 1'h0; // @[Xbar.scala:216:19]
wire out_0_c_valid = 1'h0; // @[Xbar.scala:216:19]
wire out_0_c_bits_corrupt = 1'h0; // @[Xbar.scala:216:19]
wire out_0_e_valid = 1'h0; // @[Xbar.scala:216:19]
wire out_1_b_bits_corrupt = 1'h0; // @[Xbar.scala:216:19]
wire _requestBOI_T = 1'h0; // @[Parameters.scala:54:10]
wire _requestBOI_T_6 = 1'h0; // @[Parameters.scala:54:32]
wire _requestBOI_T_8 = 1'h0; // @[Parameters.scala:54:67]
wire requestBOI_0_1 = 1'h0; // @[Parameters.scala:56:48]
wire _requestBOI_T_11 = 1'h0; // @[Parameters.scala:54:32]
wire _requestBOI_T_13 = 1'h0; // @[Parameters.scala:54:67]
wire requestBOI_1_0 = 1'h0; // @[Parameters.scala:56:48]
wire _requestEIO_T = 1'h0; // @[Parameters.scala:54:10]
wire _requestEIO_T_5 = 1'h0; // @[Parameters.scala:54:10]
wire _beatsBO_opdata_T = 1'h0; // @[Edges.scala:97:37]
wire beatsBO_opdata_1 = 1'h0; // @[Edges.scala:97:28]
wire beatsCI_opdata = 1'h0; // @[Edges.scala:102:36]
wire portsBIO_filtered_0_ready = 1'h0; // @[Xbar.scala:352:24]
wire portsBIO_filtered_0_valid = 1'h0; // @[Xbar.scala:352:24]
wire portsBIO_filtered_0_bits_corrupt = 1'h0; // @[Xbar.scala:352:24]
wire portsBIO_filtered_1_ready = 1'h0; // @[Xbar.scala:352:24]
wire portsBIO_filtered_1_valid = 1'h0; // @[Xbar.scala:352:24]
wire portsBIO_filtered_1_bits_corrupt = 1'h0; // @[Xbar.scala:352:24]
wire _portsBIO_filtered_0_valid_T_1 = 1'h0; // @[Xbar.scala:355:40]
wire _portsBIO_filtered_1_valid_T = 1'h0; // @[Xbar.scala:355:54]
wire _portsBIO_filtered_1_valid_T_1 = 1'h0; // @[Xbar.scala:355:40]
wire _portsBIO_out_0_b_ready_T = 1'h0; // @[Mux.scala:30:73]
wire _portsBIO_out_0_b_ready_T_1 = 1'h0; // @[Mux.scala:30:73]
wire _portsBIO_out_0_b_ready_T_2 = 1'h0; // @[Mux.scala:30:73]
wire _portsBIO_out_0_b_ready_WIRE = 1'h0; // @[Mux.scala:30:73]
wire portsBIO_filtered_1_0_ready = 1'h0; // @[Xbar.scala:352:24]
wire portsBIO_filtered_1_0_valid = 1'h0; // @[Xbar.scala:352:24]
wire portsBIO_filtered_1_0_bits_corrupt = 1'h0; // @[Xbar.scala:352:24]
wire portsBIO_filtered_1_1_bits_corrupt = 1'h0; // @[Xbar.scala:352:24]
wire _portsBIO_filtered_0_valid_T_2 = 1'h0; // @[Xbar.scala:355:54]
wire _portsBIO_filtered_0_valid_T_3 = 1'h0; // @[Xbar.scala:355:40]
wire _portsBIO_out_1_b_ready_T = 1'h0; // @[Mux.scala:30:73]
wire portsCOI_filtered_0_ready = 1'h0; // @[Xbar.scala:352:24]
wire portsCOI_filtered_0_valid = 1'h0; // @[Xbar.scala:352:24]
wire portsCOI_filtered_0_bits_corrupt = 1'h0; // @[Xbar.scala:352:24]
wire portsCOI_filtered_1_ready = 1'h0; // @[Xbar.scala:352:24]
wire portsCOI_filtered_1_valid = 1'h0; // @[Xbar.scala:352:24]
wire portsCOI_filtered_1_bits_corrupt = 1'h0; // @[Xbar.scala:352:24]
wire _portsCOI_filtered_0_valid_T_1 = 1'h0; // @[Xbar.scala:355:40]
wire _portsCOI_filtered_1_valid_T_1 = 1'h0; // @[Xbar.scala:355:40]
wire _portsCOI_in_0_c_ready_T = 1'h0; // @[Mux.scala:30:73]
wire _portsCOI_in_0_c_ready_T_1 = 1'h0; // @[Mux.scala:30:73]
wire _portsCOI_in_0_c_ready_T_2 = 1'h0; // @[Mux.scala:30:73]
wire _portsCOI_in_0_c_ready_WIRE = 1'h0; // @[Mux.scala:30:73]
wire portsCOI_filtered_1_0_ready = 1'h0; // @[Xbar.scala:352:24]
wire _portsCOI_in_1_c_ready_T = 1'h0; // @[Mux.scala:30:73]
wire portsEOI_filtered_0_ready = 1'h0; // @[Xbar.scala:352:24]
wire portsEOI_filtered_0_valid = 1'h0; // @[Xbar.scala:352:24]
wire portsEOI_filtered_1_ready = 1'h0; // @[Xbar.scala:352:24]
wire portsEOI_filtered_1_valid = 1'h0; // @[Xbar.scala:352:24]
wire _portsEOI_filtered_0_valid_T = 1'h0; // @[Xbar.scala:355:54]
wire _portsEOI_filtered_0_valid_T_1 = 1'h0; // @[Xbar.scala:355:40]
wire _portsEOI_filtered_1_valid_T_1 = 1'h0; // @[Xbar.scala:355:40]
wire _portsEOI_in_0_e_ready_T = 1'h0; // @[Mux.scala:30:73]
wire _portsEOI_in_0_e_ready_T_1 = 1'h0; // @[Mux.scala:30:73]
wire _portsEOI_in_0_e_ready_T_2 = 1'h0; // @[Mux.scala:30:73]
wire _portsEOI_in_0_e_ready_WIRE = 1'h0; // @[Mux.scala:30:73]
wire portsEOI_filtered_1_0_ready = 1'h0; // @[Xbar.scala:352:24]
wire portsEOI_filtered_1_0_valid = 1'h0; // @[Xbar.scala:352:24]
wire _portsEOI_filtered_0_valid_T_2 = 1'h0; // @[Xbar.scala:355:54]
wire _portsEOI_filtered_0_valid_T_3 = 1'h0; // @[Xbar.scala:355:40]
wire _portsEOI_in_1_e_ready_T = 1'h0; // @[Mux.scala:30:73]
wire _state_WIRE_0 = 1'h0; // @[Arbiter.scala:88:34]
wire _state_WIRE_1 = 1'h0; // @[Arbiter.scala:88:34]
wire _state_WIRE_1_0 = 1'h0; // @[Arbiter.scala:88:34]
wire _state_WIRE_1_1 = 1'h0; // @[Arbiter.scala:88:34]
wire _state_WIRE_2_0 = 1'h0; // @[Arbiter.scala:88:34]
wire _state_WIRE_2_1 = 1'h0; // @[Arbiter.scala:88:34]
wire _state_WIRE_3_0 = 1'h0; // @[Arbiter.scala:88:34]
wire _state_WIRE_3_1 = 1'h0; // @[Arbiter.scala:88:34]
wire auto_anon_in_1_e_ready = 1'h1; // @[Xbar.scala:74:9]
wire auto_anon_out_1_e_ready = 1'h1; // @[Xbar.scala:74:9]
wire anonIn_1_e_ready = 1'h1; // @[MixedNode.scala:551:17]
wire x1_anonOut_e_ready = 1'h1; // @[MixedNode.scala:542:17]
wire in_0_b_ready = 1'h1; // @[Xbar.scala:159:18]
wire in_1_e_ready = 1'h1; // @[Xbar.scala:159:18]
wire out_0_c_ready = 1'h1; // @[Xbar.scala:216:19]
wire out_0_e_ready = 1'h1; // @[Xbar.scala:216:19]
wire out_1_e_ready = 1'h1; // @[Xbar.scala:216:19]
wire _requestCIO_T_4 = 1'h1; // @[Parameters.scala:137:59]
wire requestCIO_0_0 = 1'h1; // @[Xbar.scala:308:107]
wire _requestCIO_T_9 = 1'h1; // @[Parameters.scala:137:59]
wire requestCIO_0_1 = 1'h1; // @[Xbar.scala:308:107]
wire _requestCIO_T_14 = 1'h1; // @[Parameters.scala:137:59]
wire requestCIO_1_0 = 1'h1; // @[Xbar.scala:308:107]
wire _requestCIO_T_19 = 1'h1; // @[Parameters.scala:137:59]
wire requestCIO_1_1 = 1'h1; // @[Xbar.scala:308:107]
wire _requestBOI_T_1 = 1'h1; // @[Parameters.scala:54:32]
wire _requestBOI_T_2 = 1'h1; // @[Parameters.scala:56:32]
wire _requestBOI_T_3 = 1'h1; // @[Parameters.scala:54:67]
wire _requestBOI_T_4 = 1'h1; // @[Parameters.scala:57:20]
wire requestBOI_0_0 = 1'h1; // @[Parameters.scala:56:48]
wire _requestBOI_T_7 = 1'h1; // @[Parameters.scala:56:32]
wire _requestBOI_T_9 = 1'h1; // @[Parameters.scala:57:20]
wire _requestBOI_T_10 = 1'h1; // @[Parameters.scala:54:10]
wire _requestBOI_T_12 = 1'h1; // @[Parameters.scala:56:32]
wire _requestBOI_T_14 = 1'h1; // @[Parameters.scala:57:20]
wire _requestBOI_T_16 = 1'h1; // @[Parameters.scala:54:32]
wire _requestBOI_T_17 = 1'h1; // @[Parameters.scala:56:32]
wire _requestBOI_T_18 = 1'h1; // @[Parameters.scala:54:67]
wire _requestBOI_T_19 = 1'h1; // @[Parameters.scala:57:20]
wire requestBOI_1_1 = 1'h1; // @[Parameters.scala:56:48]
wire _requestDOI_T_2 = 1'h1; // @[Parameters.scala:56:32]
wire _requestDOI_T_4 = 1'h1; // @[Parameters.scala:57:20]
wire _requestDOI_T_7 = 1'h1; // @[Parameters.scala:56:32]
wire _requestDOI_T_9 = 1'h1; // @[Parameters.scala:57:20]
wire _requestDOI_T_12 = 1'h1; // @[Parameters.scala:56:32]
wire _requestDOI_T_14 = 1'h1; // @[Parameters.scala:57:20]
wire _requestDOI_T_17 = 1'h1; // @[Parameters.scala:56:32]
wire _requestDOI_T_19 = 1'h1; // @[Parameters.scala:57:20]
wire _requestEIO_T_1 = 1'h1; // @[Parameters.scala:54:32]
wire _requestEIO_T_2 = 1'h1; // @[Parameters.scala:56:32]
wire _requestEIO_T_3 = 1'h1; // @[Parameters.scala:54:67]
wire _requestEIO_T_4 = 1'h1; // @[Parameters.scala:57:20]
wire requestEIO_0_1 = 1'h1; // @[Parameters.scala:56:48]
wire _requestEIO_T_6 = 1'h1; // @[Parameters.scala:54:32]
wire _requestEIO_T_7 = 1'h1; // @[Parameters.scala:56:32]
wire _requestEIO_T_8 = 1'h1; // @[Parameters.scala:54:67]
wire _requestEIO_T_9 = 1'h1; // @[Parameters.scala:57:20]
wire requestEIO_1_1 = 1'h1; // @[Parameters.scala:56:48]
wire beatsBO_opdata = 1'h1; // @[Edges.scala:97:28]
wire _beatsBO_opdata_T_1 = 1'h1; // @[Edges.scala:97:37]
wire _portsBIO_filtered_0_valid_T = 1'h1; // @[Xbar.scala:355:54]
wire _portsBIO_filtered_1_valid_T_2 = 1'h1; // @[Xbar.scala:355:54]
wire _portsCOI_filtered_0_valid_T = 1'h1; // @[Xbar.scala:355:54]
wire _portsCOI_filtered_1_valid_T = 1'h1; // @[Xbar.scala:355:54]
wire _portsCOI_filtered_0_valid_T_2 = 1'h1; // @[Xbar.scala:355:54]
wire _portsCOI_filtered_1_valid_T_2 = 1'h1; // @[Xbar.scala:355:54]
wire _portsEOI_filtered_1_valid_T = 1'h1; // @[Xbar.scala:355:54]
wire portsEOI_filtered_1_1_ready = 1'h1; // @[Xbar.scala:352:24]
wire _portsEOI_filtered_1_valid_T_2 = 1'h1; // @[Xbar.scala:355:54]
wire _portsEOI_in_1_e_ready_T_1 = 1'h1; // @[Mux.scala:30:73]
wire _portsEOI_in_1_e_ready_T_2 = 1'h1; // @[Mux.scala:30:73]
wire _portsEOI_in_1_e_ready_WIRE = 1'h1; // @[Mux.scala:30:73]
wire [5:0] auto_anon_out_1_b_bits_source = 6'h20; // @[Xbar.scala:74:9]
wire [5:0] x1_anonOut_b_bits_source = 6'h20; // @[MixedNode.scala:542:17]
wire [5:0] in_1_b_bits_source = 6'h20; // @[Xbar.scala:159:18]
wire [5:0] out_1_b_bits_source = 6'h20; // @[Xbar.scala:216:19]
wire [5:0] _requestBOI_uncommonBits_T_2 = 6'h20; // @[Parameters.scala:52:29]
wire [5:0] _requestBOI_uncommonBits_T_3 = 6'h20; // @[Parameters.scala:52:29]
wire [5:0] portsBIO_filtered_1_0_bits_source = 6'h20; // @[Xbar.scala:352:24]
wire [5:0] portsBIO_filtered_1_1_bits_source = 6'h20; // @[Xbar.scala:352:24]
wire [2:0] in_0_b_bits_opcode = 3'h0; // @[Xbar.scala:159:18]
wire [2:0] in_0_c_bits_opcode = 3'h0; // @[Xbar.scala:159:18]
wire [2:0] in_0_c_bits_param = 3'h0; // @[Xbar.scala:159:18]
wire [2:0] in_0_e_bits_sink = 3'h0; // @[Xbar.scala:159:18]
wire [2:0] out_0_b_bits_opcode = 3'h0; // @[Xbar.scala:216:19]
wire [2:0] out_0_c_bits_opcode = 3'h0; // @[Xbar.scala:216:19]
wire [2:0] out_0_c_bits_param = 3'h0; // @[Xbar.scala:216:19]
wire [2:0] out_0_e_bits_sink = 3'h0; // @[Xbar.scala:216:19]
wire [2:0] _requestEIO_uncommonBits_T = 3'h0; // @[Parameters.scala:52:29]
wire [2:0] requestEIO_uncommonBits = 3'h0; // @[Parameters.scala:52:56]
wire [2:0] beatsBO_1 = 3'h0; // @[Edges.scala:221:14]
wire [2:0] portsBIO_filtered_0_bits_opcode = 3'h0; // @[Xbar.scala:352:24]
wire [2:0] portsBIO_filtered_1_bits_opcode = 3'h0; // @[Xbar.scala:352:24]
wire [2:0] portsCOI_filtered_0_bits_opcode = 3'h0; // @[Xbar.scala:352:24]
wire [2:0] portsCOI_filtered_0_bits_param = 3'h0; // @[Xbar.scala:352:24]
wire [2:0] portsCOI_filtered_1_bits_opcode = 3'h0; // @[Xbar.scala:352:24]
wire [2:0] portsCOI_filtered_1_bits_param = 3'h0; // @[Xbar.scala:352:24]
wire [2:0] portsEOI_filtered_0_bits_sink = 3'h0; // @[Xbar.scala:352:24]
wire [2:0] portsEOI_filtered_1_bits_sink = 3'h0; // @[Xbar.scala:352:24]
wire [31:0] in_0_b_bits_address = 32'h0; // @[Xbar.scala:159:18]
wire [31:0] in_0_c_bits_address = 32'h0; // @[Xbar.scala:159:18]
wire [31:0] out_0_b_bits_address = 32'h0; // @[Xbar.scala:216:19]
wire [31:0] out_0_c_bits_address = 32'h0; // @[Xbar.scala:216:19]
wire [31:0] _requestCIO_T = 32'h0; // @[Parameters.scala:137:31]
wire [31:0] _requestCIO_T_5 = 32'h0; // @[Parameters.scala:137:31]
wire [31:0] portsBIO_filtered_0_bits_address = 32'h0; // @[Xbar.scala:352:24]
wire [31:0] portsBIO_filtered_1_bits_address = 32'h0; // @[Xbar.scala:352:24]
wire [31:0] portsCOI_filtered_0_bits_address = 32'h0; // @[Xbar.scala:352:24]
wire [31:0] portsCOI_filtered_1_bits_address = 32'h0; // @[Xbar.scala:352:24]
wire [5:0] in_0_b_bits_source = 6'h0; // @[Xbar.scala:159:18]
wire [5:0] in_0_c_bits_source = 6'h0; // @[Xbar.scala:159:18]
wire [5:0] out_0_b_bits_source = 6'h0; // @[Xbar.scala:216:19]
wire [5:0] out_0_c_bits_source = 6'h0; // @[Xbar.scala:216:19]
wire [5:0] _requestBOI_uncommonBits_T = 6'h0; // @[Parameters.scala:52:29]
wire [5:0] _requestBOI_uncommonBits_T_1 = 6'h0; // @[Parameters.scala:52:29]
wire [5:0] _beatsBO_decode_T_4 = 6'h0; // @[package.scala:243:76]
wire [5:0] portsBIO_filtered_0_bits_source = 6'h0; // @[Xbar.scala:352:24]
wire [5:0] portsBIO_filtered_1_bits_source = 6'h0; // @[Xbar.scala:352:24]
wire [5:0] portsCOI_filtered_0_bits_source = 6'h0; // @[Xbar.scala:352:24]
wire [5:0] portsCOI_filtered_1_bits_source = 6'h0; // @[Xbar.scala:352:24]
wire [3:0] in_0_b_bits_size = 4'h0; // @[Xbar.scala:159:18]
wire [3:0] in_0_c_bits_size = 4'h0; // @[Xbar.scala:159:18]
wire [3:0] out_0_b_bits_size = 4'h0; // @[Xbar.scala:216:19]
wire [3:0] out_0_c_bits_size = 4'h0; // @[Xbar.scala:216:19]
wire [3:0] _requestBOI_T_5 = 4'h0; // @[Parameters.scala:54:10]
wire [3:0] portsBIO_filtered_0_bits_size = 4'h0; // @[Xbar.scala:352:24]
wire [3:0] portsBIO_filtered_1_bits_size = 4'h0; // @[Xbar.scala:352:24]
wire [3:0] portsCOI_filtered_0_bits_size = 4'h0; // @[Xbar.scala:352:24]
wire [3:0] portsCOI_filtered_1_bits_size = 4'h0; // @[Xbar.scala:352:24]
wire [7:0] in_0_b_bits_mask = 8'h0; // @[Xbar.scala:159:18]
wire [7:0] out_0_b_bits_mask = 8'h0; // @[Xbar.scala:216:19]
wire [7:0] portsBIO_filtered_0_bits_mask = 8'h0; // @[Xbar.scala:352:24]
wire [7:0] portsBIO_filtered_1_bits_mask = 8'h0; // @[Xbar.scala:352:24]
wire [8:0] beatsBO_decode = 9'h0; // @[Edges.scala:220:59]
wire [8:0] beatsBO_0 = 9'h0; // @[Edges.scala:221:14]
wire [8:0] beatsCI_decode = 9'h0; // @[Edges.scala:220:59]
wire [8:0] beatsCI_0 = 9'h0; // @[Edges.scala:221:14]
wire [11:0] _beatsBO_decode_T_2 = 12'h0; // @[package.scala:243:46]
wire [11:0] _beatsCI_decode_T_2 = 12'h0; // @[package.scala:243:46]
wire [11:0] _beatsBO_decode_T_1 = 12'hFFF; // @[package.scala:243:76]
wire [11:0] _beatsCI_decode_T_1 = 12'hFFF; // @[package.scala:243:76]
wire [26:0] _beatsBO_decode_T = 27'hFFF; // @[package.scala:243:71]
wire [26:0] _beatsCI_decode_T = 27'hFFF; // @[package.scala:243:71]
wire [2:0] beatsBO_decode_1 = 3'h7; // @[Edges.scala:220:59]
wire [5:0] _beatsBO_decode_T_5 = 6'h3F; // @[package.scala:243:46]
wire [20:0] _beatsBO_decode_T_3 = 21'hFC0; // @[package.scala:243:71]
wire [3:0] _requestBOI_T_15 = 4'h8; // @[Parameters.scala:54:10]
wire [4:0] requestBOI_uncommonBits = 5'h0; // @[Parameters.scala:52:56]
wire [4:0] requestBOI_uncommonBits_2 = 5'h0; // @[Parameters.scala:52:56]
wire [32:0] _requestCIO_T_1 = 33'h0; // @[Parameters.scala:137:41]
wire [32:0] _requestCIO_T_2 = 33'h0; // @[Parameters.scala:137:46]
wire [32:0] _requestCIO_T_3 = 33'h0; // @[Parameters.scala:137:46]
wire [32:0] _requestCIO_T_6 = 33'h0; // @[Parameters.scala:137:41]
wire [32:0] _requestCIO_T_7 = 33'h0; // @[Parameters.scala:137:46]
wire [32:0] _requestCIO_T_8 = 33'h0; // @[Parameters.scala:137:46]
wire [32:0] _requestCIO_T_12 = 33'h0; // @[Parameters.scala:137:46]
wire [32:0] _requestCIO_T_13 = 33'h0; // @[Parameters.scala:137:46]
wire [32:0] _requestCIO_T_17 = 33'h0; // @[Parameters.scala:137:46]
wire [32:0] _requestCIO_T_18 = 33'h0; // @[Parameters.scala:137:46]
wire anonIn_1_a_ready; // @[MixedNode.scala:551:17]
wire anonIn_1_a_valid = auto_anon_in_1_a_valid_0; // @[Xbar.scala:74:9]
wire [2:0] anonIn_1_a_bits_opcode = auto_anon_in_1_a_bits_opcode_0; // @[Xbar.scala:74:9]
wire [2:0] anonIn_1_a_bits_param = auto_anon_in_1_a_bits_param_0; // @[Xbar.scala:74:9]
wire [3:0] anonIn_1_a_bits_size = auto_anon_in_1_a_bits_size_0; // @[Xbar.scala:74:9]
wire [1:0] anonIn_1_a_bits_source = auto_anon_in_1_a_bits_source_0; // @[Xbar.scala:74:9]
wire [31:0] anonIn_1_a_bits_address = auto_anon_in_1_a_bits_address_0; // @[Xbar.scala:74:9]
wire [7:0] anonIn_1_a_bits_mask = auto_anon_in_1_a_bits_mask_0; // @[Xbar.scala:74:9]
wire [63:0] anonIn_1_a_bits_data = auto_anon_in_1_a_bits_data_0; // @[Xbar.scala:74:9]
wire anonIn_1_a_bits_corrupt = auto_anon_in_1_a_bits_corrupt_0; // @[Xbar.scala:74:9]
wire anonIn_1_b_ready = auto_anon_in_1_b_ready_0; // @[Xbar.scala:74:9]
wire anonIn_1_b_valid; // @[MixedNode.scala:551:17]
wire [1:0] anonIn_1_b_bits_param; // @[MixedNode.scala:551:17]
wire [31:0] anonIn_1_b_bits_address; // @[MixedNode.scala:551:17]
wire anonIn_1_c_ready; // @[MixedNode.scala:551:17]
wire anonIn_1_c_valid = auto_anon_in_1_c_valid_0; // @[Xbar.scala:74:9]
wire [2:0] anonIn_1_c_bits_opcode = auto_anon_in_1_c_bits_opcode_0; // @[Xbar.scala:74:9]
wire [2:0] anonIn_1_c_bits_param = auto_anon_in_1_c_bits_param_0; // @[Xbar.scala:74:9]
wire [3:0] anonIn_1_c_bits_size = auto_anon_in_1_c_bits_size_0; // @[Xbar.scala:74:9]
wire [1:0] anonIn_1_c_bits_source = auto_anon_in_1_c_bits_source_0; // @[Xbar.scala:74:9]
wire [31:0] anonIn_1_c_bits_address = auto_anon_in_1_c_bits_address_0; // @[Xbar.scala:74:9]
wire [63:0] anonIn_1_c_bits_data = auto_anon_in_1_c_bits_data_0; // @[Xbar.scala:74:9]
wire anonIn_1_c_bits_corrupt = auto_anon_in_1_c_bits_corrupt_0; // @[Xbar.scala:74:9]
wire anonIn_1_d_ready = auto_anon_in_1_d_ready_0; // @[Xbar.scala:74:9]
wire anonIn_1_d_valid; // @[MixedNode.scala:551:17]
wire [2:0] anonIn_1_d_bits_opcode; // @[MixedNode.scala:551:17]
wire [1:0] anonIn_1_d_bits_param; // @[MixedNode.scala:551:17]
wire [3:0] anonIn_1_d_bits_size; // @[MixedNode.scala:551:17]
wire [1:0] anonIn_1_d_bits_source; // @[MixedNode.scala:551:17]
wire [2:0] anonIn_1_d_bits_sink; // @[MixedNode.scala:551:17]
wire anonIn_1_d_bits_denied; // @[MixedNode.scala:551:17]
wire [63:0] anonIn_1_d_bits_data; // @[MixedNode.scala:551:17]
wire anonIn_1_d_bits_corrupt; // @[MixedNode.scala:551:17]
wire anonIn_1_e_valid = auto_anon_in_1_e_valid_0; // @[Xbar.scala:74:9]
wire anonIn_a_ready; // @[MixedNode.scala:551:17]
wire [2:0] anonIn_1_e_bits_sink = auto_anon_in_1_e_bits_sink_0; // @[Xbar.scala:74:9]
wire anonIn_a_valid = auto_anon_in_0_a_valid_0; // @[Xbar.scala:74:9]
wire [2:0] anonIn_a_bits_opcode = auto_anon_in_0_a_bits_opcode_0; // @[Xbar.scala:74:9]
wire [2:0] anonIn_a_bits_param = auto_anon_in_0_a_bits_param_0; // @[Xbar.scala:74:9]
wire [3:0] anonIn_a_bits_size = auto_anon_in_0_a_bits_size_0; // @[Xbar.scala:74:9]
wire [4:0] anonIn_a_bits_source = auto_anon_in_0_a_bits_source_0; // @[Xbar.scala:74:9]
wire [31:0] anonIn_a_bits_address = auto_anon_in_0_a_bits_address_0; // @[Xbar.scala:74:9]
wire [7:0] anonIn_a_bits_mask = auto_anon_in_0_a_bits_mask_0; // @[Xbar.scala:74:9]
wire [63:0] anonIn_a_bits_data = auto_anon_in_0_a_bits_data_0; // @[Xbar.scala:74:9]
wire anonIn_a_bits_corrupt = auto_anon_in_0_a_bits_corrupt_0; // @[Xbar.scala:74:9]
wire anonIn_d_ready = auto_anon_in_0_d_ready_0; // @[Xbar.scala:74:9]
wire anonIn_d_valid; // @[MixedNode.scala:551:17]
wire [2:0] anonIn_d_bits_opcode; // @[MixedNode.scala:551:17]
wire [1:0] anonIn_d_bits_param; // @[MixedNode.scala:551:17]
wire [3:0] anonIn_d_bits_size; // @[MixedNode.scala:551:17]
wire [4:0] anonIn_d_bits_source; // @[MixedNode.scala:551:17]
wire [2:0] anonIn_d_bits_sink; // @[MixedNode.scala:551:17]
wire anonIn_d_bits_denied; // @[MixedNode.scala:551:17]
wire [63:0] anonIn_d_bits_data; // @[MixedNode.scala:551:17]
wire anonIn_d_bits_corrupt; // @[MixedNode.scala:551:17]
wire x1_anonOut_a_ready = auto_anon_out_1_a_ready_0; // @[Xbar.scala:74:9]
wire x1_anonOut_a_valid; // @[MixedNode.scala:542:17]
wire [2:0] x1_anonOut_a_bits_opcode; // @[MixedNode.scala:542:17]
wire [2:0] x1_anonOut_a_bits_param; // @[MixedNode.scala:542:17]
wire [2:0] x1_anonOut_a_bits_size; // @[MixedNode.scala:542:17]
wire [5:0] x1_anonOut_a_bits_source; // @[MixedNode.scala:542:17]
wire [31:0] x1_anonOut_a_bits_address; // @[MixedNode.scala:542:17]
wire [7:0] x1_anonOut_a_bits_mask; // @[MixedNode.scala:542:17]
wire [63:0] x1_anonOut_a_bits_data; // @[MixedNode.scala:542:17]
wire x1_anonOut_a_bits_corrupt; // @[MixedNode.scala:542:17]
wire x1_anonOut_b_ready; // @[MixedNode.scala:542:17]
wire x1_anonOut_b_valid = auto_anon_out_1_b_valid_0; // @[Xbar.scala:74:9]
wire [1:0] x1_anonOut_b_bits_param = auto_anon_out_1_b_bits_param_0; // @[Xbar.scala:74:9]
wire [31:0] x1_anonOut_b_bits_address = auto_anon_out_1_b_bits_address_0; // @[Xbar.scala:74:9]
wire x1_anonOut_c_ready = auto_anon_out_1_c_ready_0; // @[Xbar.scala:74:9]
wire x1_anonOut_c_valid; // @[MixedNode.scala:542:17]
wire [2:0] x1_anonOut_c_bits_opcode; // @[MixedNode.scala:542:17]
wire [2:0] x1_anonOut_c_bits_param; // @[MixedNode.scala:542:17]
wire [2:0] x1_anonOut_c_bits_size; // @[MixedNode.scala:542:17]
wire [5:0] x1_anonOut_c_bits_source; // @[MixedNode.scala:542:17]
wire [31:0] x1_anonOut_c_bits_address; // @[MixedNode.scala:542:17]
wire [63:0] x1_anonOut_c_bits_data; // @[MixedNode.scala:542:17]
wire x1_anonOut_c_bits_corrupt; // @[MixedNode.scala:542:17]
wire x1_anonOut_d_ready; // @[MixedNode.scala:542:17]
wire x1_anonOut_d_valid = auto_anon_out_1_d_valid_0; // @[Xbar.scala:74:9]
wire [2:0] x1_anonOut_d_bits_opcode = auto_anon_out_1_d_bits_opcode_0; // @[Xbar.scala:74:9]
wire [1:0] x1_anonOut_d_bits_param = auto_anon_out_1_d_bits_param_0; // @[Xbar.scala:74:9]
wire [2:0] x1_anonOut_d_bits_size = auto_anon_out_1_d_bits_size_0; // @[Xbar.scala:74:9]
wire [5:0] x1_anonOut_d_bits_source = auto_anon_out_1_d_bits_source_0; // @[Xbar.scala:74:9]
wire [2:0] x1_anonOut_d_bits_sink = auto_anon_out_1_d_bits_sink_0; // @[Xbar.scala:74:9]
wire x1_anonOut_d_bits_denied = auto_anon_out_1_d_bits_denied_0; // @[Xbar.scala:74:9]
wire [63:0] x1_anonOut_d_bits_data = auto_anon_out_1_d_bits_data_0; // @[Xbar.scala:74:9]
wire x1_anonOut_d_bits_corrupt = auto_anon_out_1_d_bits_corrupt_0; // @[Xbar.scala:74:9]
wire x1_anonOut_e_valid; // @[MixedNode.scala:542:17]
wire [2:0] x1_anonOut_e_bits_sink; // @[MixedNode.scala:542:17]
wire anonOut_a_ready = auto_anon_out_0_a_ready_0; // @[Xbar.scala:74:9]
wire anonOut_a_valid; // @[MixedNode.scala:542:17]
wire [2:0] anonOut_a_bits_opcode; // @[MixedNode.scala:542:17]
wire [2:0] anonOut_a_bits_param; // @[MixedNode.scala:542:17]
wire [3:0] anonOut_a_bits_size; // @[MixedNode.scala:542:17]
wire [5:0] anonOut_a_bits_source; // @[MixedNode.scala:542:17]
wire [28:0] anonOut_a_bits_address; // @[MixedNode.scala:542:17]
wire [7:0] anonOut_a_bits_mask; // @[MixedNode.scala:542:17]
wire [63:0] anonOut_a_bits_data; // @[MixedNode.scala:542:17]
wire anonOut_a_bits_corrupt; // @[MixedNode.scala:542:17]
wire anonOut_d_ready; // @[MixedNode.scala:542:17]
wire anonOut_d_valid = auto_anon_out_0_d_valid_0; // @[Xbar.scala:74:9]
wire [2:0] anonOut_d_bits_opcode = auto_anon_out_0_d_bits_opcode_0; // @[Xbar.scala:74:9]
wire [1:0] anonOut_d_bits_param = auto_anon_out_0_d_bits_param_0; // @[Xbar.scala:74:9]
wire [3:0] anonOut_d_bits_size = auto_anon_out_0_d_bits_size_0; // @[Xbar.scala:74:9]
wire [5:0] anonOut_d_bits_source = auto_anon_out_0_d_bits_source_0; // @[Xbar.scala:74:9]
wire anonOut_d_bits_sink = auto_anon_out_0_d_bits_sink_0; // @[Xbar.scala:74:9]
wire anonOut_d_bits_denied = auto_anon_out_0_d_bits_denied_0; // @[Xbar.scala:74:9]
wire [63:0] anonOut_d_bits_data = auto_anon_out_0_d_bits_data_0; // @[Xbar.scala:74:9]
wire anonOut_d_bits_corrupt = auto_anon_out_0_d_bits_corrupt_0; // @[Xbar.scala:74:9]
wire auto_anon_in_1_a_ready_0; // @[Xbar.scala:74:9]
wire [1:0] auto_anon_in_1_b_bits_param_0; // @[Xbar.scala:74:9]
wire [31:0] auto_anon_in_1_b_bits_address_0; // @[Xbar.scala:74:9]
wire auto_anon_in_1_b_valid_0; // @[Xbar.scala:74:9]
wire auto_anon_in_1_c_ready_0; // @[Xbar.scala:74:9]
wire [2:0] auto_anon_in_1_d_bits_opcode_0; // @[Xbar.scala:74:9]
wire [1:0] auto_anon_in_1_d_bits_param_0; // @[Xbar.scala:74:9]
wire [3:0] auto_anon_in_1_d_bits_size_0; // @[Xbar.scala:74:9]
wire [1:0] auto_anon_in_1_d_bits_source_0; // @[Xbar.scala:74:9]
wire [2:0] auto_anon_in_1_d_bits_sink_0; // @[Xbar.scala:74:9]
wire auto_anon_in_1_d_bits_denied_0; // @[Xbar.scala:74:9]
wire [63:0] auto_anon_in_1_d_bits_data_0; // @[Xbar.scala:74:9]
wire auto_anon_in_1_d_bits_corrupt_0; // @[Xbar.scala:74:9]
wire auto_anon_in_1_d_valid_0; // @[Xbar.scala:74:9]
wire auto_anon_in_0_a_ready_0; // @[Xbar.scala:74:9]
wire [2:0] auto_anon_in_0_d_bits_opcode_0; // @[Xbar.scala:74:9]
wire [1:0] auto_anon_in_0_d_bits_param_0; // @[Xbar.scala:74:9]
wire [3:0] auto_anon_in_0_d_bits_size_0; // @[Xbar.scala:74:9]
wire [4:0] auto_anon_in_0_d_bits_source_0; // @[Xbar.scala:74:9]
wire [2:0] auto_anon_in_0_d_bits_sink_0; // @[Xbar.scala:74:9]
wire auto_anon_in_0_d_bits_denied_0; // @[Xbar.scala:74:9]
wire [63:0] auto_anon_in_0_d_bits_data_0; // @[Xbar.scala:74:9]
wire auto_anon_in_0_d_bits_corrupt_0; // @[Xbar.scala:74:9]
wire auto_anon_in_0_d_valid_0; // @[Xbar.scala:74:9]
wire [2:0] auto_anon_out_1_a_bits_opcode_0; // @[Xbar.scala:74:9]
wire [2:0] auto_anon_out_1_a_bits_param_0; // @[Xbar.scala:74:9]
wire [2:0] auto_anon_out_1_a_bits_size_0; // @[Xbar.scala:74:9]
wire [5:0] auto_anon_out_1_a_bits_source_0; // @[Xbar.scala:74:9]
wire [31:0] auto_anon_out_1_a_bits_address_0; // @[Xbar.scala:74:9]
wire [7:0] auto_anon_out_1_a_bits_mask_0; // @[Xbar.scala:74:9]
wire [63:0] auto_anon_out_1_a_bits_data_0; // @[Xbar.scala:74:9]
wire auto_anon_out_1_a_bits_corrupt_0; // @[Xbar.scala:74:9]
wire auto_anon_out_1_a_valid_0; // @[Xbar.scala:74:9]
wire auto_anon_out_1_b_ready_0; // @[Xbar.scala:74:9]
wire [2:0] auto_anon_out_1_c_bits_opcode_0; // @[Xbar.scala:74:9]
wire [2:0] auto_anon_out_1_c_bits_param_0; // @[Xbar.scala:74:9]
wire [2:0] auto_anon_out_1_c_bits_size_0; // @[Xbar.scala:74:9]
wire [5:0] auto_anon_out_1_c_bits_source_0; // @[Xbar.scala:74:9]
wire [31:0] auto_anon_out_1_c_bits_address_0; // @[Xbar.scala:74:9]
wire [63:0] auto_anon_out_1_c_bits_data_0; // @[Xbar.scala:74:9]
wire auto_anon_out_1_c_bits_corrupt_0; // @[Xbar.scala:74:9]
wire auto_anon_out_1_c_valid_0; // @[Xbar.scala:74:9]
wire auto_anon_out_1_d_ready_0; // @[Xbar.scala:74:9]
wire [2:0] auto_anon_out_1_e_bits_sink_0; // @[Xbar.scala:74:9]
wire auto_anon_out_1_e_valid_0; // @[Xbar.scala:74:9]
wire [2:0] auto_anon_out_0_a_bits_opcode_0; // @[Xbar.scala:74:9]
wire [2:0] auto_anon_out_0_a_bits_param_0; // @[Xbar.scala:74:9]
wire [3:0] auto_anon_out_0_a_bits_size_0; // @[Xbar.scala:74:9]
wire [5:0] auto_anon_out_0_a_bits_source_0; // @[Xbar.scala:74:9]
wire [28:0] auto_anon_out_0_a_bits_address_0; // @[Xbar.scala:74:9]
wire [7:0] auto_anon_out_0_a_bits_mask_0; // @[Xbar.scala:74:9]
wire [63:0] auto_anon_out_0_a_bits_data_0; // @[Xbar.scala:74:9]
wire auto_anon_out_0_a_bits_corrupt_0; // @[Xbar.scala:74:9]
wire auto_anon_out_0_a_valid_0; // @[Xbar.scala:74:9]
wire auto_anon_out_0_d_ready_0; // @[Xbar.scala:74:9]
wire in_0_a_ready; // @[Xbar.scala:159:18]
assign auto_anon_in_0_a_ready_0 = anonIn_a_ready; // @[Xbar.scala:74:9]
wire in_0_a_valid = anonIn_a_valid; // @[Xbar.scala:159:18]
wire [2:0] in_0_a_bits_opcode = anonIn_a_bits_opcode; // @[Xbar.scala:159:18]
wire [2:0] in_0_a_bits_param = anonIn_a_bits_param; // @[Xbar.scala:159:18]
wire [3:0] in_0_a_bits_size = anonIn_a_bits_size; // @[Xbar.scala:159:18]
wire [4:0] _in_0_a_bits_source_T = anonIn_a_bits_source; // @[Xbar.scala:166:55]
wire [31:0] in_0_a_bits_address = anonIn_a_bits_address; // @[Xbar.scala:159:18]
wire [7:0] in_0_a_bits_mask = anonIn_a_bits_mask; // @[Xbar.scala:159:18]
wire [63:0] in_0_a_bits_data = anonIn_a_bits_data; // @[Xbar.scala:159:18]
wire in_0_a_bits_corrupt = anonIn_a_bits_corrupt; // @[Xbar.scala:159:18]
wire in_0_d_ready = anonIn_d_ready; // @[Xbar.scala:159:18]
wire in_0_d_valid; // @[Xbar.scala:159:18]
assign auto_anon_in_0_d_valid_0 = anonIn_d_valid; // @[Xbar.scala:74:9]
wire [2:0] in_0_d_bits_opcode; // @[Xbar.scala:159:18]
assign auto_anon_in_0_d_bits_opcode_0 = anonIn_d_bits_opcode; // @[Xbar.scala:74:9]
wire [1:0] in_0_d_bits_param; // @[Xbar.scala:159:18]
assign auto_anon_in_0_d_bits_param_0 = anonIn_d_bits_param; // @[Xbar.scala:74:9]
wire [3:0] in_0_d_bits_size; // @[Xbar.scala:159:18]
assign auto_anon_in_0_d_bits_size_0 = anonIn_d_bits_size; // @[Xbar.scala:74:9]
wire [4:0] _anonIn_d_bits_source_T; // @[Xbar.scala:156:69]
assign auto_anon_in_0_d_bits_source_0 = anonIn_d_bits_source; // @[Xbar.scala:74:9]
wire [2:0] in_0_d_bits_sink; // @[Xbar.scala:159:18]
assign auto_anon_in_0_d_bits_sink_0 = anonIn_d_bits_sink; // @[Xbar.scala:74:9]
wire in_0_d_bits_denied; // @[Xbar.scala:159:18]
assign auto_anon_in_0_d_bits_denied_0 = anonIn_d_bits_denied; // @[Xbar.scala:74:9]
wire [63:0] in_0_d_bits_data; // @[Xbar.scala:159:18]
assign auto_anon_in_0_d_bits_data_0 = anonIn_d_bits_data; // @[Xbar.scala:74:9]
wire in_0_d_bits_corrupt; // @[Xbar.scala:159:18]
assign auto_anon_in_0_d_bits_corrupt_0 = anonIn_d_bits_corrupt; // @[Xbar.scala:74:9]
wire in_1_a_ready; // @[Xbar.scala:159:18]
assign auto_anon_in_1_a_ready_0 = anonIn_1_a_ready; // @[Xbar.scala:74:9]
wire in_1_a_valid = anonIn_1_a_valid; // @[Xbar.scala:159:18]
wire [2:0] in_1_a_bits_opcode = anonIn_1_a_bits_opcode; // @[Xbar.scala:159:18]
wire [2:0] in_1_a_bits_param = anonIn_1_a_bits_param; // @[Xbar.scala:159:18]
wire [3:0] in_1_a_bits_size = anonIn_1_a_bits_size; // @[Xbar.scala:159:18]
wire [31:0] in_1_a_bits_address = anonIn_1_a_bits_address; // @[Xbar.scala:159:18]
wire [7:0] in_1_a_bits_mask = anonIn_1_a_bits_mask; // @[Xbar.scala:159:18]
wire [63:0] in_1_a_bits_data = anonIn_1_a_bits_data; // @[Xbar.scala:159:18]
wire in_1_a_bits_corrupt = anonIn_1_a_bits_corrupt; // @[Xbar.scala:159:18]
wire in_1_b_ready = anonIn_1_b_ready; // @[Xbar.scala:159:18]
wire in_1_b_valid; // @[Xbar.scala:159:18]
assign auto_anon_in_1_b_valid_0 = anonIn_1_b_valid; // @[Xbar.scala:74:9]
wire [1:0] in_1_b_bits_param; // @[Xbar.scala:159:18]
assign auto_anon_in_1_b_bits_param_0 = anonIn_1_b_bits_param; // @[Xbar.scala:74:9]
wire [31:0] in_1_b_bits_address; // @[Xbar.scala:159:18]
assign auto_anon_in_1_b_bits_address_0 = anonIn_1_b_bits_address; // @[Xbar.scala:74:9]
wire in_1_c_ready; // @[Xbar.scala:159:18]
assign auto_anon_in_1_c_ready_0 = anonIn_1_c_ready; // @[Xbar.scala:74:9]
wire in_1_c_valid = anonIn_1_c_valid; // @[Xbar.scala:159:18]
wire [2:0] in_1_c_bits_opcode = anonIn_1_c_bits_opcode; // @[Xbar.scala:159:18]
wire [2:0] in_1_c_bits_param = anonIn_1_c_bits_param; // @[Xbar.scala:159:18]
wire [3:0] in_1_c_bits_size = anonIn_1_c_bits_size; // @[Xbar.scala:159:18]
wire [31:0] in_1_c_bits_address = anonIn_1_c_bits_address; // @[Xbar.scala:159:18]
wire [63:0] in_1_c_bits_data = anonIn_1_c_bits_data; // @[Xbar.scala:159:18]
wire in_1_c_bits_corrupt = anonIn_1_c_bits_corrupt; // @[Xbar.scala:159:18]
wire in_1_d_ready = anonIn_1_d_ready; // @[Xbar.scala:159:18]
wire in_1_d_valid; // @[Xbar.scala:159:18]
assign auto_anon_in_1_d_valid_0 = anonIn_1_d_valid; // @[Xbar.scala:74:9]
wire [2:0] in_1_d_bits_opcode; // @[Xbar.scala:159:18]
assign auto_anon_in_1_d_bits_opcode_0 = anonIn_1_d_bits_opcode; // @[Xbar.scala:74:9]
wire [1:0] in_1_d_bits_param; // @[Xbar.scala:159:18]
assign auto_anon_in_1_d_bits_param_0 = anonIn_1_d_bits_param; // @[Xbar.scala:74:9]
wire [3:0] in_1_d_bits_size; // @[Xbar.scala:159:18]
assign auto_anon_in_1_d_bits_size_0 = anonIn_1_d_bits_size; // @[Xbar.scala:74:9]
wire [1:0] _anonIn_d_bits_source_T_1; // @[Xbar.scala:156:69]
assign auto_anon_in_1_d_bits_source_0 = anonIn_1_d_bits_source; // @[Xbar.scala:74:9]
wire [2:0] in_1_d_bits_sink; // @[Xbar.scala:159:18]
assign auto_anon_in_1_d_bits_sink_0 = anonIn_1_d_bits_sink; // @[Xbar.scala:74:9]
wire in_1_d_bits_denied; // @[Xbar.scala:159:18]
assign auto_anon_in_1_d_bits_denied_0 = anonIn_1_d_bits_denied; // @[Xbar.scala:74:9]
wire [63:0] in_1_d_bits_data; // @[Xbar.scala:159:18]
assign auto_anon_in_1_d_bits_data_0 = anonIn_1_d_bits_data; // @[Xbar.scala:74:9]
wire in_1_d_bits_corrupt; // @[Xbar.scala:159:18]
assign auto_anon_in_1_d_bits_corrupt_0 = anonIn_1_d_bits_corrupt; // @[Xbar.scala:74:9]
wire in_1_e_valid = anonIn_1_e_valid; // @[Xbar.scala:159:18]
wire [2:0] in_1_e_bits_sink = anonIn_1_e_bits_sink; // @[Xbar.scala:159:18]
wire out_0_a_ready = anonOut_a_ready; // @[Xbar.scala:216:19]
wire out_0_a_valid; // @[Xbar.scala:216:19]
assign auto_anon_out_0_a_valid_0 = anonOut_a_valid; // @[Xbar.scala:74:9]
wire [2:0] out_0_a_bits_opcode; // @[Xbar.scala:216:19]
assign auto_anon_out_0_a_bits_opcode_0 = anonOut_a_bits_opcode; // @[Xbar.scala:74:9]
wire [2:0] out_0_a_bits_param; // @[Xbar.scala:216:19]
assign auto_anon_out_0_a_bits_param_0 = anonOut_a_bits_param; // @[Xbar.scala:74:9]
wire [3:0] out_0_a_bits_size; // @[Xbar.scala:216:19]
assign auto_anon_out_0_a_bits_size_0 = anonOut_a_bits_size; // @[Xbar.scala:74:9]
wire [5:0] out_0_a_bits_source; // @[Xbar.scala:216:19]
assign auto_anon_out_0_a_bits_source_0 = anonOut_a_bits_source; // @[Xbar.scala:74:9]
assign auto_anon_out_0_a_bits_address_0 = anonOut_a_bits_address; // @[Xbar.scala:74:9]
wire [7:0] out_0_a_bits_mask; // @[Xbar.scala:216:19]
assign auto_anon_out_0_a_bits_mask_0 = anonOut_a_bits_mask; // @[Xbar.scala:74:9]
wire [63:0] out_0_a_bits_data; // @[Xbar.scala:216:19]
assign auto_anon_out_0_a_bits_data_0 = anonOut_a_bits_data; // @[Xbar.scala:74:9]
wire out_0_a_bits_corrupt; // @[Xbar.scala:216:19]
assign auto_anon_out_0_a_bits_corrupt_0 = anonOut_a_bits_corrupt; // @[Xbar.scala:74:9]
wire out_0_d_ready; // @[Xbar.scala:216:19]
assign auto_anon_out_0_d_ready_0 = anonOut_d_ready; // @[Xbar.scala:74:9]
wire out_0_d_valid = anonOut_d_valid; // @[Xbar.scala:216:19]
wire [2:0] out_0_d_bits_opcode = anonOut_d_bits_opcode; // @[Xbar.scala:216:19]
wire [1:0] out_0_d_bits_param = anonOut_d_bits_param; // @[Xbar.scala:216:19]
wire [3:0] out_0_d_bits_size = anonOut_d_bits_size; // @[Xbar.scala:216:19]
wire [5:0] out_0_d_bits_source = anonOut_d_bits_source; // @[Xbar.scala:216:19]
wire _out_0_d_bits_sink_T = anonOut_d_bits_sink; // @[Xbar.scala:251:53]
wire out_0_d_bits_denied = anonOut_d_bits_denied; // @[Xbar.scala:216:19]
wire [63:0] out_0_d_bits_data = anonOut_d_bits_data; // @[Xbar.scala:216:19]
wire out_0_d_bits_corrupt = anonOut_d_bits_corrupt; // @[Xbar.scala:216:19]
wire out_1_a_ready = x1_anonOut_a_ready; // @[Xbar.scala:216:19]
wire out_1_a_valid; // @[Xbar.scala:216:19]
assign auto_anon_out_1_a_valid_0 = x1_anonOut_a_valid; // @[Xbar.scala:74:9]
wire [2:0] out_1_a_bits_opcode; // @[Xbar.scala:216:19]
assign auto_anon_out_1_a_bits_opcode_0 = x1_anonOut_a_bits_opcode; // @[Xbar.scala:74:9]
wire [2:0] out_1_a_bits_param; // @[Xbar.scala:216:19]
assign auto_anon_out_1_a_bits_param_0 = x1_anonOut_a_bits_param; // @[Xbar.scala:74:9]
assign auto_anon_out_1_a_bits_size_0 = x1_anonOut_a_bits_size; // @[Xbar.scala:74:9]
wire [5:0] out_1_a_bits_source; // @[Xbar.scala:216:19]
assign auto_anon_out_1_a_bits_source_0 = x1_anonOut_a_bits_source; // @[Xbar.scala:74:9]
wire [31:0] out_1_a_bits_address; // @[Xbar.scala:216:19]
assign auto_anon_out_1_a_bits_address_0 = x1_anonOut_a_bits_address; // @[Xbar.scala:74:9]
wire [7:0] out_1_a_bits_mask; // @[Xbar.scala:216:19]
assign auto_anon_out_1_a_bits_mask_0 = x1_anonOut_a_bits_mask; // @[Xbar.scala:74:9]
wire [63:0] out_1_a_bits_data; // @[Xbar.scala:216:19]
assign auto_anon_out_1_a_bits_data_0 = x1_anonOut_a_bits_data; // @[Xbar.scala:74:9]
wire out_1_a_bits_corrupt; // @[Xbar.scala:216:19]
assign auto_anon_out_1_a_bits_corrupt_0 = x1_anonOut_a_bits_corrupt; // @[Xbar.scala:74:9]
wire out_1_b_ready; // @[Xbar.scala:216:19]
assign auto_anon_out_1_b_ready_0 = x1_anonOut_b_ready; // @[Xbar.scala:74:9]
wire out_1_b_valid = x1_anonOut_b_valid; // @[Xbar.scala:216:19]
wire [1:0] out_1_b_bits_param = x1_anonOut_b_bits_param; // @[Xbar.scala:216:19]
wire [31:0] out_1_b_bits_address = x1_anonOut_b_bits_address; // @[Xbar.scala:216:19]
wire out_1_c_ready = x1_anonOut_c_ready; // @[Xbar.scala:216:19]
wire out_1_c_valid; // @[Xbar.scala:216:19]
assign auto_anon_out_1_c_valid_0 = x1_anonOut_c_valid; // @[Xbar.scala:74:9]
wire [2:0] out_1_c_bits_opcode; // @[Xbar.scala:216:19]
assign auto_anon_out_1_c_bits_opcode_0 = x1_anonOut_c_bits_opcode; // @[Xbar.scala:74:9]
wire [2:0] out_1_c_bits_param; // @[Xbar.scala:216:19]
assign auto_anon_out_1_c_bits_param_0 = x1_anonOut_c_bits_param; // @[Xbar.scala:74:9]
assign auto_anon_out_1_c_bits_size_0 = x1_anonOut_c_bits_size; // @[Xbar.scala:74:9]
wire [5:0] out_1_c_bits_source; // @[Xbar.scala:216:19]
assign auto_anon_out_1_c_bits_source_0 = x1_anonOut_c_bits_source; // @[Xbar.scala:74:9]
wire [31:0] out_1_c_bits_address; // @[Xbar.scala:216:19]
assign auto_anon_out_1_c_bits_address_0 = x1_anonOut_c_bits_address; // @[Xbar.scala:74:9]
wire [63:0] out_1_c_bits_data; // @[Xbar.scala:216:19]
assign auto_anon_out_1_c_bits_data_0 = x1_anonOut_c_bits_data; // @[Xbar.scala:74:9]
wire out_1_c_bits_corrupt; // @[Xbar.scala:216:19]
assign auto_anon_out_1_c_bits_corrupt_0 = x1_anonOut_c_bits_corrupt; // @[Xbar.scala:74:9]
wire out_1_d_ready; // @[Xbar.scala:216:19]
assign auto_anon_out_1_d_ready_0 = x1_anonOut_d_ready; // @[Xbar.scala:74:9]
wire out_1_d_valid = x1_anonOut_d_valid; // @[Xbar.scala:216:19]
wire [2:0] out_1_d_bits_opcode = x1_anonOut_d_bits_opcode; // @[Xbar.scala:216:19]
wire [1:0] out_1_d_bits_param = x1_anonOut_d_bits_param; // @[Xbar.scala:216:19]
wire [5:0] out_1_d_bits_source = x1_anonOut_d_bits_source; // @[Xbar.scala:216:19]
wire [2:0] _out_1_d_bits_sink_T = x1_anonOut_d_bits_sink; // @[Xbar.scala:251:53]
wire out_1_d_bits_denied = x1_anonOut_d_bits_denied; // @[Xbar.scala:216:19]
wire [63:0] out_1_d_bits_data = x1_anonOut_d_bits_data; // @[Xbar.scala:216:19]
wire out_1_d_bits_corrupt = x1_anonOut_d_bits_corrupt; // @[Xbar.scala:216:19]
wire out_1_e_valid; // @[Xbar.scala:216:19]
assign auto_anon_out_1_e_valid_0 = x1_anonOut_e_valid; // @[Xbar.scala:74:9]
wire [2:0] _anonOut_e_bits_sink_T; // @[Xbar.scala:156:69]
assign auto_anon_out_1_e_bits_sink_0 = x1_anonOut_e_bits_sink; // @[Xbar.scala:74:9]
wire _portsAOI_in_0_a_ready_WIRE; // @[Mux.scala:30:73]
assign anonIn_a_ready = in_0_a_ready; // @[Xbar.scala:159:18]
wire [2:0] portsAOI_filtered_0_bits_opcode = in_0_a_bits_opcode; // @[Xbar.scala:159:18, :352:24]
wire [2:0] portsAOI_filtered_1_bits_opcode = in_0_a_bits_opcode; // @[Xbar.scala:159:18, :352:24]
wire [2:0] portsAOI_filtered_0_bits_param = in_0_a_bits_param; // @[Xbar.scala:159:18, :352:24]
wire [2:0] portsAOI_filtered_1_bits_param = in_0_a_bits_param; // @[Xbar.scala:159:18, :352:24]
wire [3:0] portsAOI_filtered_0_bits_size = in_0_a_bits_size; // @[Xbar.scala:159:18, :352:24]
wire [3:0] portsAOI_filtered_1_bits_size = in_0_a_bits_size; // @[Xbar.scala:159:18, :352:24]
wire [5:0] portsAOI_filtered_0_bits_source = in_0_a_bits_source; // @[Xbar.scala:159:18, :352:24]
wire [5:0] portsAOI_filtered_1_bits_source = in_0_a_bits_source; // @[Xbar.scala:159:18, :352:24]
wire [31:0] _requestAIO_T = in_0_a_bits_address; // @[Xbar.scala:159:18]
wire [31:0] portsAOI_filtered_0_bits_address = in_0_a_bits_address; // @[Xbar.scala:159:18, :352:24]
wire [31:0] portsAOI_filtered_1_bits_address = in_0_a_bits_address; // @[Xbar.scala:159:18, :352:24]
wire [7:0] portsAOI_filtered_0_bits_mask = in_0_a_bits_mask; // @[Xbar.scala:159:18, :352:24]
wire [7:0] portsAOI_filtered_1_bits_mask = in_0_a_bits_mask; // @[Xbar.scala:159:18, :352:24]
wire [63:0] portsAOI_filtered_0_bits_data = in_0_a_bits_data; // @[Xbar.scala:159:18, :352:24]
wire [63:0] portsAOI_filtered_1_bits_data = in_0_a_bits_data; // @[Xbar.scala:159:18, :352:24]
wire portsAOI_filtered_0_bits_corrupt = in_0_a_bits_corrupt; // @[Xbar.scala:159:18, :352:24]
wire portsAOI_filtered_1_bits_corrupt = in_0_a_bits_corrupt; // @[Xbar.scala:159:18, :352:24]
wire _in_0_d_valid_T_4; // @[Arbiter.scala:96:24]
assign anonIn_d_valid = in_0_d_valid; // @[Xbar.scala:159:18]
wire [2:0] _in_0_d_bits_WIRE_opcode; // @[Mux.scala:30:73]
assign anonIn_d_bits_opcode = in_0_d_bits_opcode; // @[Xbar.scala:159:18]
wire [1:0] _in_0_d_bits_WIRE_param; // @[Mux.scala:30:73]
assign anonIn_d_bits_param = in_0_d_bits_param; // @[Xbar.scala:159:18]
wire [3:0] _in_0_d_bits_WIRE_size; // @[Mux.scala:30:73]
assign anonIn_d_bits_size = in_0_d_bits_size; // @[Xbar.scala:159:18]
wire [5:0] _in_0_d_bits_WIRE_source; // @[Mux.scala:30:73]
wire [2:0] _in_0_d_bits_WIRE_sink; // @[Mux.scala:30:73]
assign anonIn_d_bits_sink = in_0_d_bits_sink; // @[Xbar.scala:159:18]
wire _in_0_d_bits_WIRE_denied; // @[Mux.scala:30:73]
assign anonIn_d_bits_denied = in_0_d_bits_denied; // @[Xbar.scala:159:18]
wire [63:0] _in_0_d_bits_WIRE_data; // @[Mux.scala:30:73]
assign anonIn_d_bits_data = in_0_d_bits_data; // @[Xbar.scala:159:18]
wire _in_0_d_bits_WIRE_corrupt; // @[Mux.scala:30:73]
assign anonIn_d_bits_corrupt = in_0_d_bits_corrupt; // @[Xbar.scala:159:18]
wire _portsAOI_in_1_a_ready_WIRE; // @[Mux.scala:30:73]
assign anonIn_1_a_ready = in_1_a_ready; // @[Xbar.scala:159:18]
wire [2:0] portsAOI_filtered_1_0_bits_opcode = in_1_a_bits_opcode; // @[Xbar.scala:159:18, :352:24]
wire [2:0] portsAOI_filtered_1_1_bits_opcode = in_1_a_bits_opcode; // @[Xbar.scala:159:18, :352:24]
wire [2:0] portsAOI_filtered_1_0_bits_param = in_1_a_bits_param; // @[Xbar.scala:159:18, :352:24]
wire [2:0] portsAOI_filtered_1_1_bits_param = in_1_a_bits_param; // @[Xbar.scala:159:18, :352:24]
wire [5:0] _in_1_a_bits_source_T; // @[Xbar.scala:166:55]
wire [3:0] portsAOI_filtered_1_0_bits_size = in_1_a_bits_size; // @[Xbar.scala:159:18, :352:24]
wire [3:0] portsAOI_filtered_1_1_bits_size = in_1_a_bits_size; // @[Xbar.scala:159:18, :352:24]
wire [5:0] portsAOI_filtered_1_0_bits_source = in_1_a_bits_source; // @[Xbar.scala:159:18, :352:24]
wire [5:0] portsAOI_filtered_1_1_bits_source = in_1_a_bits_source; // @[Xbar.scala:159:18, :352:24]
wire [31:0] _requestAIO_T_28 = in_1_a_bits_address; // @[Xbar.scala:159:18]
wire [31:0] portsAOI_filtered_1_0_bits_address = in_1_a_bits_address; // @[Xbar.scala:159:18, :352:24]
wire [31:0] portsAOI_filtered_1_1_bits_address = in_1_a_bits_address; // @[Xbar.scala:159:18, :352:24]
wire [7:0] portsAOI_filtered_1_0_bits_mask = in_1_a_bits_mask; // @[Xbar.scala:159:18, :352:24]
wire [7:0] portsAOI_filtered_1_1_bits_mask = in_1_a_bits_mask; // @[Xbar.scala:159:18, :352:24]
wire [63:0] portsAOI_filtered_1_0_bits_data = in_1_a_bits_data; // @[Xbar.scala:159:18, :352:24]
wire [63:0] portsAOI_filtered_1_1_bits_data = in_1_a_bits_data; // @[Xbar.scala:159:18, :352:24]
wire portsAOI_filtered_1_0_bits_corrupt = in_1_a_bits_corrupt; // @[Xbar.scala:159:18, :352:24]
wire portsAOI_filtered_1_1_bits_corrupt = in_1_a_bits_corrupt; // @[Xbar.scala:159:18, :352:24]
wire portsBIO_filtered_1_1_ready = in_1_b_ready; // @[Xbar.scala:159:18, :352:24]
wire portsBIO_filtered_1_1_valid; // @[Xbar.scala:352:24]
assign anonIn_1_b_valid = in_1_b_valid; // @[Xbar.scala:159:18]
wire [1:0] portsBIO_filtered_1_1_bits_param; // @[Xbar.scala:352:24]
assign anonIn_1_b_bits_param = in_1_b_bits_param; // @[Xbar.scala:159:18]
wire [31:0] portsBIO_filtered_1_1_bits_address; // @[Xbar.scala:352:24]
assign anonIn_1_b_bits_address = in_1_b_bits_address; // @[Xbar.scala:159:18]
wire _portsCOI_in_1_c_ready_WIRE; // @[Mux.scala:30:73]
assign anonIn_1_c_ready = in_1_c_ready; // @[Xbar.scala:159:18]
wire _portsCOI_filtered_0_valid_T_3 = in_1_c_valid; // @[Xbar.scala:159:18, :355:40]
wire _portsCOI_filtered_1_valid_T_3 = in_1_c_valid; // @[Xbar.scala:159:18, :355:40]
wire [2:0] portsCOI_filtered_1_0_bits_opcode = in_1_c_bits_opcode; // @[Xbar.scala:159:18, :352:24]
wire [2:0] portsCOI_filtered_1_1_bits_opcode = in_1_c_bits_opcode; // @[Xbar.scala:159:18, :352:24]
wire [2:0] portsCOI_filtered_1_0_bits_param = in_1_c_bits_param; // @[Xbar.scala:159:18, :352:24]
wire [2:0] portsCOI_filtered_1_1_bits_param = in_1_c_bits_param; // @[Xbar.scala:159:18, :352:24]
wire [5:0] _in_1_c_bits_source_T; // @[Xbar.scala:187:55]
wire [3:0] portsCOI_filtered_1_0_bits_size = in_1_c_bits_size; // @[Xbar.scala:159:18, :352:24]
wire [3:0] portsCOI_filtered_1_1_bits_size = in_1_c_bits_size; // @[Xbar.scala:159:18, :352:24]
wire [5:0] portsCOI_filtered_1_0_bits_source = in_1_c_bits_source; // @[Xbar.scala:159:18, :352:24]
wire [5:0] portsCOI_filtered_1_1_bits_source = in_1_c_bits_source; // @[Xbar.scala:159:18, :352:24]
wire [31:0] _requestCIO_T_10 = in_1_c_bits_address; // @[Xbar.scala:159:18]
wire [31:0] _requestCIO_T_15 = in_1_c_bits_address; // @[Xbar.scala:159:18]
wire [31:0] portsCOI_filtered_1_0_bits_address = in_1_c_bits_address; // @[Xbar.scala:159:18, :352:24]
wire [31:0] portsCOI_filtered_1_1_bits_address = in_1_c_bits_address; // @[Xbar.scala:159:18, :352:24]
wire [63:0] portsCOI_filtered_1_0_bits_data = in_1_c_bits_data; // @[Xbar.scala:159:18, :352:24]
wire [63:0] portsCOI_filtered_1_1_bits_data = in_1_c_bits_data; // @[Xbar.scala:159:18, :352:24]
wire portsCOI_filtered_1_0_bits_corrupt = in_1_c_bits_corrupt; // @[Xbar.scala:159:18, :352:24]
wire portsCOI_filtered_1_1_bits_corrupt = in_1_c_bits_corrupt; // @[Xbar.scala:159:18, :352:24]
wire _in_1_d_valid_T_4; // @[Arbiter.scala:96:24]
assign anonIn_1_d_valid = in_1_d_valid; // @[Xbar.scala:159:18]
wire [2:0] _in_1_d_bits_WIRE_opcode; // @[Mux.scala:30:73]
assign anonIn_1_d_bits_opcode = in_1_d_bits_opcode; // @[Xbar.scala:159:18]
wire [1:0] _in_1_d_bits_WIRE_param; // @[Mux.scala:30:73]
assign anonIn_1_d_bits_param = in_1_d_bits_param; // @[Xbar.scala:159:18]
wire [3:0] _in_1_d_bits_WIRE_size; // @[Mux.scala:30:73]
assign anonIn_1_d_bits_size = in_1_d_bits_size; // @[Xbar.scala:159:18]
wire [5:0] _in_1_d_bits_WIRE_source; // @[Mux.scala:30:73]
wire [2:0] _in_1_d_bits_WIRE_sink; // @[Mux.scala:30:73]
assign anonIn_1_d_bits_sink = in_1_d_bits_sink; // @[Xbar.scala:159:18]
wire _in_1_d_bits_WIRE_denied; // @[Mux.scala:30:73]
assign anonIn_1_d_bits_denied = in_1_d_bits_denied; // @[Xbar.scala:159:18]
wire [63:0] _in_1_d_bits_WIRE_data; // @[Mux.scala:30:73]
assign anonIn_1_d_bits_data = in_1_d_bits_data; // @[Xbar.scala:159:18]
wire _in_1_d_bits_WIRE_corrupt; // @[Mux.scala:30:73]
assign anonIn_1_d_bits_corrupt = in_1_d_bits_corrupt; // @[Xbar.scala:159:18]
wire _portsEOI_filtered_1_valid_T_3 = in_1_e_valid; // @[Xbar.scala:159:18, :355:40]
wire [2:0] _requestEIO_uncommonBits_T_1 = in_1_e_bits_sink; // @[Xbar.scala:159:18]
wire [2:0] portsEOI_filtered_1_0_bits_sink = in_1_e_bits_sink; // @[Xbar.scala:159:18, :352:24]
wire [2:0] portsEOI_filtered_1_1_bits_sink = in_1_e_bits_sink; // @[Xbar.scala:159:18, :352:24]
wire [5:0] in_0_d_bits_source; // @[Xbar.scala:159:18]
wire [5:0] in_1_d_bits_source; // @[Xbar.scala:159:18]
assign in_0_a_bits_source = {1'h0, _in_0_a_bits_source_T}; // @[Xbar.scala:159:18, :166:{29,55}]
assign _anonIn_d_bits_source_T = in_0_d_bits_source[4:0]; // @[Xbar.scala:156:69, :159:18]
assign anonIn_d_bits_source = _anonIn_d_bits_source_T; // @[Xbar.scala:156:69]
assign _in_1_a_bits_source_T = {4'h8, anonIn_1_a_bits_source}; // @[Xbar.scala:166:55]
assign in_1_a_bits_source = _in_1_a_bits_source_T; // @[Xbar.scala:159:18, :166:55]
assign _in_1_c_bits_source_T = {4'h8, anonIn_1_c_bits_source}; // @[Xbar.scala:187:55]
assign in_1_c_bits_source = _in_1_c_bits_source_T; // @[Xbar.scala:159:18, :187:55]
assign _anonIn_d_bits_source_T_1 = in_1_d_bits_source[1:0]; // @[Xbar.scala:156:69, :159:18]
assign anonIn_1_d_bits_source = _anonIn_d_bits_source_T_1; // @[Xbar.scala:156:69]
wire _out_0_a_valid_T_4; // @[Arbiter.scala:96:24]
assign anonOut_a_valid = out_0_a_valid; // @[Xbar.scala:216:19]
wire [2:0] _out_0_a_bits_WIRE_opcode; // @[Mux.scala:30:73]
assign anonOut_a_bits_opcode = out_0_a_bits_opcode; // @[Xbar.scala:216:19]
wire [2:0] _out_0_a_bits_WIRE_param; // @[Mux.scala:30:73]
assign anonOut_a_bits_param = out_0_a_bits_param; // @[Xbar.scala:216:19]
wire [3:0] _out_0_a_bits_WIRE_size; // @[Mux.scala:30:73]
assign anonOut_a_bits_size = out_0_a_bits_size; // @[Xbar.scala:216:19]
wire [5:0] _out_0_a_bits_WIRE_source; // @[Mux.scala:30:73]
assign anonOut_a_bits_source = out_0_a_bits_source; // @[Xbar.scala:216:19]
wire [31:0] _out_0_a_bits_WIRE_address; // @[Mux.scala:30:73]
wire [7:0] _out_0_a_bits_WIRE_mask; // @[Mux.scala:30:73]
assign anonOut_a_bits_mask = out_0_a_bits_mask; // @[Xbar.scala:216:19]
wire [63:0] _out_0_a_bits_WIRE_data; // @[Mux.scala:30:73]
assign anonOut_a_bits_data = out_0_a_bits_data; // @[Xbar.scala:216:19]
wire _out_0_a_bits_WIRE_corrupt; // @[Mux.scala:30:73]
assign anonOut_a_bits_corrupt = out_0_a_bits_corrupt; // @[Xbar.scala:216:19]
wire _portsDIO_out_0_d_ready_WIRE; // @[Mux.scala:30:73]
assign anonOut_d_ready = out_0_d_ready; // @[Xbar.scala:216:19]
wire [2:0] portsDIO_filtered_0_bits_opcode = out_0_d_bits_opcode; // @[Xbar.scala:216:19, :352:24]
wire [2:0] portsDIO_filtered_1_bits_opcode = out_0_d_bits_opcode; // @[Xbar.scala:216:19, :352:24]
wire [1:0] portsDIO_filtered_0_bits_param = out_0_d_bits_param; // @[Xbar.scala:216:19, :352:24]
wire [1:0] portsDIO_filtered_1_bits_param = out_0_d_bits_param; // @[Xbar.scala:216:19, :352:24]
wire [3:0] portsDIO_filtered_0_bits_size = out_0_d_bits_size; // @[Xbar.scala:216:19, :352:24]
wire [3:0] portsDIO_filtered_1_bits_size = out_0_d_bits_size; // @[Xbar.scala:216:19, :352:24]
wire [5:0] _requestDOI_uncommonBits_T = out_0_d_bits_source; // @[Xbar.scala:216:19]
wire [5:0] _requestDOI_uncommonBits_T_1 = out_0_d_bits_source; // @[Xbar.scala:216:19]
wire [5:0] portsDIO_filtered_0_bits_source = out_0_d_bits_source; // @[Xbar.scala:216:19, :352:24]
wire [5:0] portsDIO_filtered_1_bits_source = out_0_d_bits_source; // @[Xbar.scala:216:19, :352:24]
wire [2:0] portsDIO_filtered_0_bits_sink = out_0_d_bits_sink; // @[Xbar.scala:216:19, :352:24]
wire [2:0] portsDIO_filtered_1_bits_sink = out_0_d_bits_sink; // @[Xbar.scala:216:19, :352:24]
wire portsDIO_filtered_0_bits_denied = out_0_d_bits_denied; // @[Xbar.scala:216:19, :352:24]
wire portsDIO_filtered_1_bits_denied = out_0_d_bits_denied; // @[Xbar.scala:216:19, :352:24]
wire [63:0] portsDIO_filtered_0_bits_data = out_0_d_bits_data; // @[Xbar.scala:216:19, :352:24]
wire [63:0] portsDIO_filtered_1_bits_data = out_0_d_bits_data; // @[Xbar.scala:216:19, :352:24]
wire portsDIO_filtered_0_bits_corrupt = out_0_d_bits_corrupt; // @[Xbar.scala:216:19, :352:24]
wire portsDIO_filtered_1_bits_corrupt = out_0_d_bits_corrupt; // @[Xbar.scala:216:19, :352:24]
wire _out_1_a_valid_T_4; // @[Arbiter.scala:96:24]
assign x1_anonOut_a_valid = out_1_a_valid; // @[Xbar.scala:216:19]
wire [2:0] _out_1_a_bits_WIRE_opcode; // @[Mux.scala:30:73]
assign x1_anonOut_a_bits_opcode = out_1_a_bits_opcode; // @[Xbar.scala:216:19]
wire [2:0] _out_1_a_bits_WIRE_param; // @[Mux.scala:30:73]
assign x1_anonOut_a_bits_param = out_1_a_bits_param; // @[Xbar.scala:216:19]
wire [3:0] _out_1_a_bits_WIRE_size; // @[Mux.scala:30:73]
wire [5:0] _out_1_a_bits_WIRE_source; // @[Mux.scala:30:73]
assign x1_anonOut_a_bits_source = out_1_a_bits_source; // @[Xbar.scala:216:19]
wire [31:0] _out_1_a_bits_WIRE_address; // @[Mux.scala:30:73]
assign x1_anonOut_a_bits_address = out_1_a_bits_address; // @[Xbar.scala:216:19]
wire [7:0] _out_1_a_bits_WIRE_mask; // @[Mux.scala:30:73]
assign x1_anonOut_a_bits_mask = out_1_a_bits_mask; // @[Xbar.scala:216:19]
wire [63:0] _out_1_a_bits_WIRE_data; // @[Mux.scala:30:73]
assign x1_anonOut_a_bits_data = out_1_a_bits_data; // @[Xbar.scala:216:19]
wire _out_1_a_bits_WIRE_corrupt; // @[Mux.scala:30:73]
assign x1_anonOut_a_bits_corrupt = out_1_a_bits_corrupt; // @[Xbar.scala:216:19]
wire _portsBIO_out_1_b_ready_WIRE; // @[Mux.scala:30:73]
assign x1_anonOut_b_ready = out_1_b_ready; // @[Xbar.scala:216:19]
wire _portsBIO_filtered_1_valid_T_3 = out_1_b_valid; // @[Xbar.scala:216:19, :355:40]
wire [1:0] portsBIO_filtered_1_0_bits_param = out_1_b_bits_param; // @[Xbar.scala:216:19, :352:24]
assign portsBIO_filtered_1_1_bits_param = out_1_b_bits_param; // @[Xbar.scala:216:19, :352:24]
wire [31:0] portsBIO_filtered_1_0_bits_address = out_1_b_bits_address; // @[Xbar.scala:216:19, :352:24]
assign portsBIO_filtered_1_1_bits_address = out_1_b_bits_address; // @[Xbar.scala:216:19, :352:24]
wire portsCOI_filtered_1_1_ready = out_1_c_ready; // @[Xbar.scala:216:19, :352:24]
wire portsCOI_filtered_1_1_valid; // @[Xbar.scala:352:24]
assign x1_anonOut_c_valid = out_1_c_valid; // @[Xbar.scala:216:19]
assign x1_anonOut_c_bits_opcode = out_1_c_bits_opcode; // @[Xbar.scala:216:19]
assign x1_anonOut_c_bits_param = out_1_c_bits_param; // @[Xbar.scala:216:19]
assign x1_anonOut_c_bits_source = out_1_c_bits_source; // @[Xbar.scala:216:19]
assign x1_anonOut_c_bits_address = out_1_c_bits_address; // @[Xbar.scala:216:19]
assign x1_anonOut_c_bits_data = out_1_c_bits_data; // @[Xbar.scala:216:19]
assign x1_anonOut_c_bits_corrupt = out_1_c_bits_corrupt; // @[Xbar.scala:216:19]
wire _portsDIO_out_1_d_ready_WIRE; // @[Mux.scala:30:73]
assign x1_anonOut_d_ready = out_1_d_ready; // @[Xbar.scala:216:19]
wire [2:0] portsDIO_filtered_1_0_bits_opcode = out_1_d_bits_opcode; // @[Xbar.scala:216:19, :352:24]
wire [2:0] portsDIO_filtered_1_1_bits_opcode = out_1_d_bits_opcode; // @[Xbar.scala:216:19, :352:24]
wire [1:0] portsDIO_filtered_1_0_bits_param = out_1_d_bits_param; // @[Xbar.scala:216:19, :352:24]
wire [1:0] portsDIO_filtered_1_1_bits_param = out_1_d_bits_param; // @[Xbar.scala:216:19, :352:24]
wire [3:0] portsDIO_filtered_1_0_bits_size = out_1_d_bits_size; // @[Xbar.scala:216:19, :352:24]
wire [3:0] portsDIO_filtered_1_1_bits_size = out_1_d_bits_size; // @[Xbar.scala:216:19, :352:24]
wire [5:0] _requestDOI_uncommonBits_T_2 = out_1_d_bits_source; // @[Xbar.scala:216:19]
wire [5:0] _requestDOI_uncommonBits_T_3 = out_1_d_bits_source; // @[Xbar.scala:216:19]
wire [5:0] portsDIO_filtered_1_0_bits_source = out_1_d_bits_source; // @[Xbar.scala:216:19, :352:24]
wire [5:0] portsDIO_filtered_1_1_bits_source = out_1_d_bits_source; // @[Xbar.scala:216:19, :352:24]
wire [2:0] portsDIO_filtered_1_0_bits_sink = out_1_d_bits_sink; // @[Xbar.scala:216:19, :352:24]
wire [2:0] portsDIO_filtered_1_1_bits_sink = out_1_d_bits_sink; // @[Xbar.scala:216:19, :352:24]
wire portsDIO_filtered_1_0_bits_denied = out_1_d_bits_denied; // @[Xbar.scala:216:19, :352:24]
wire portsDIO_filtered_1_1_bits_denied = out_1_d_bits_denied; // @[Xbar.scala:216:19, :352:24]
wire [63:0] portsDIO_filtered_1_0_bits_data = out_1_d_bits_data; // @[Xbar.scala:216:19, :352:24]
wire [63:0] portsDIO_filtered_1_1_bits_data = out_1_d_bits_data; // @[Xbar.scala:216:19, :352:24]
wire portsDIO_filtered_1_0_bits_corrupt = out_1_d_bits_corrupt; // @[Xbar.scala:216:19, :352:24]
wire portsDIO_filtered_1_1_bits_corrupt = out_1_d_bits_corrupt; // @[Xbar.scala:216:19, :352:24]
wire portsEOI_filtered_1_1_valid; // @[Xbar.scala:352:24]
assign x1_anonOut_e_valid = out_1_e_valid; // @[Xbar.scala:216:19]
wire [31:0] out_0_a_bits_address; // @[Xbar.scala:216:19]
assign _anonOut_e_bits_sink_T = out_1_e_bits_sink; // @[Xbar.scala:156:69, :216:19]
wire [3:0] out_1_a_bits_size; // @[Xbar.scala:216:19]
wire [3:0] out_1_c_bits_size; // @[Xbar.scala:216:19]
assign anonOut_a_bits_address = out_0_a_bits_address[28:0]; // @[Xbar.scala:216:19, :222:41]
assign out_0_d_bits_sink = {2'h0, _out_0_d_bits_sink_T}; // @[Xbar.scala:216:19, :251:{28,53}]
assign x1_anonOut_a_bits_size = out_1_a_bits_size[2:0]; // @[Xbar.scala:216:19, :222:41]
assign x1_anonOut_c_bits_size = out_1_c_bits_size[2:0]; // @[Xbar.scala:216:19, :241:41]
assign out_1_d_bits_size = {1'h0, x1_anonOut_d_bits_size}; // @[Xbar.scala:216:19, :250:29]
assign out_1_d_bits_sink = _out_1_d_bits_sink_T; // @[Xbar.scala:216:19, :251:53]
assign x1_anonOut_e_bits_sink = _anonOut_e_bits_sink_T; // @[Xbar.scala:156:69]
wire [32:0] _requestAIO_T_1 = {1'h0, _requestAIO_T}; // @[Parameters.scala:137:{31,41}]
wire [32:0] _requestAIO_T_2 = _requestAIO_T_1 & 33'h8C000000; // @[Parameters.scala:137:{41,46}]
wire [32:0] _requestAIO_T_3 = _requestAIO_T_2; // @[Parameters.scala:137:46]
wire _requestAIO_T_4 = _requestAIO_T_3 == 33'h0; // @[Parameters.scala:137:{46,59}]
wire [31:0] _requestAIO_T_5 = {in_0_a_bits_address[31:17], in_0_a_bits_address[16:0] ^ 17'h10000}; // @[Xbar.scala:159:18]
wire [32:0] _requestAIO_T_6 = {1'h0, _requestAIO_T_5}; // @[Parameters.scala:137:{31,41}]
wire [32:0] _requestAIO_T_7 = _requestAIO_T_6 & 33'h8C011000; // @[Parameters.scala:137:{41,46}]
wire [32:0] _requestAIO_T_8 = _requestAIO_T_7; // @[Parameters.scala:137:46]
wire _requestAIO_T_9 = _requestAIO_T_8 == 33'h0; // @[Parameters.scala:137:{46,59}]
wire [31:0] _requestAIO_T_10 = {in_0_a_bits_address[31:28], in_0_a_bits_address[27:0] ^ 28'hC000000}; // @[Xbar.scala:159:18]
wire [32:0] _requestAIO_T_11 = {1'h0, _requestAIO_T_10}; // @[Parameters.scala:137:{31,41}]
wire [32:0] _requestAIO_T_12 = _requestAIO_T_11 & 33'h8C000000; // @[Parameters.scala:137:{41,46}]
wire [32:0] _requestAIO_T_13 = _requestAIO_T_12; // @[Parameters.scala:137:46]
wire _requestAIO_T_14 = _requestAIO_T_13 == 33'h0; // @[Parameters.scala:137:{46,59}]
wire _requestAIO_T_15 = _requestAIO_T_4 | _requestAIO_T_9; // @[Xbar.scala:291:92]
wire _requestAIO_T_16 = _requestAIO_T_15 | _requestAIO_T_14; // @[Xbar.scala:291:92]
wire requestAIO_0_0 = _requestAIO_T_16; // @[Xbar.scala:291:92, :307:107]
wire _portsAOI_filtered_0_valid_T = requestAIO_0_0; // @[Xbar.scala:307:107, :355:54]
wire [31:0] _requestAIO_T_17 = {in_0_a_bits_address[31:28], in_0_a_bits_address[27:0] ^ 28'h8000000}; // @[Xbar.scala:159:18]
wire [32:0] _requestAIO_T_18 = {1'h0, _requestAIO_T_17}; // @[Parameters.scala:137:{31,41}]
wire [32:0] _requestAIO_T_19 = _requestAIO_T_18 & 33'h8C010000; // @[Parameters.scala:137:{41,46}]
wire [32:0] _requestAIO_T_20 = _requestAIO_T_19; // @[Parameters.scala:137:46]
wire _requestAIO_T_21 = _requestAIO_T_20 == 33'h0; // @[Parameters.scala:137:{46,59}]
wire [31:0] _requestAIO_T_22 = in_0_a_bits_address ^ 32'h80000000; // @[Xbar.scala:159:18]
wire [32:0] _requestAIO_T_23 = {1'h0, _requestAIO_T_22}; // @[Parameters.scala:137:{31,41}]
wire [32:0] _requestAIO_T_24 = _requestAIO_T_23 & 33'h80000000; // @[Parameters.scala:137:{41,46}]
wire [32:0] _requestAIO_T_25 = _requestAIO_T_24; // @[Parameters.scala:137:46]
wire _requestAIO_T_26 = _requestAIO_T_25 == 33'h0; // @[Parameters.scala:137:{46,59}]
wire _requestAIO_T_27 = _requestAIO_T_21 | _requestAIO_T_26; // @[Xbar.scala:291:92]
wire requestAIO_0_1 = _requestAIO_T_27; // @[Xbar.scala:291:92, :307:107]
wire _portsAOI_filtered_1_valid_T = requestAIO_0_1; // @[Xbar.scala:307:107, :355:54]
wire [32:0] _requestAIO_T_29 = {1'h0, _requestAIO_T_28}; // @[Parameters.scala:137:{31,41}]
wire [32:0] _requestAIO_T_30 = _requestAIO_T_29 & 33'h8C000000; // @[Parameters.scala:137:{41,46}]
wire [32:0] _requestAIO_T_31 = _requestAIO_T_30; // @[Parameters.scala:137:46]
wire _requestAIO_T_32 = _requestAIO_T_31 == 33'h0; // @[Parameters.scala:137:{46,59}]
wire [31:0] _requestAIO_T_33 = {in_1_a_bits_address[31:17], in_1_a_bits_address[16:0] ^ 17'h10000}; // @[Xbar.scala:159:18]
wire [32:0] _requestAIO_T_34 = {1'h0, _requestAIO_T_33}; // @[Parameters.scala:137:{31,41}]
wire [32:0] _requestAIO_T_35 = _requestAIO_T_34 & 33'h8C011000; // @[Parameters.scala:137:{41,46}]
wire [32:0] _requestAIO_T_36 = _requestAIO_T_35; // @[Parameters.scala:137:46]
wire _requestAIO_T_37 = _requestAIO_T_36 == 33'h0; // @[Parameters.scala:137:{46,59}]
wire [31:0] _requestAIO_T_38 = {in_1_a_bits_address[31:28], in_1_a_bits_address[27:0] ^ 28'hC000000}; // @[Xbar.scala:159:18]
wire [32:0] _requestAIO_T_39 = {1'h0, _requestAIO_T_38}; // @[Parameters.scala:137:{31,41}]
wire [32:0] _requestAIO_T_40 = _requestAIO_T_39 & 33'h8C000000; // @[Parameters.scala:137:{41,46}]
wire [32:0] _requestAIO_T_41 = _requestAIO_T_40; // @[Parameters.scala:137:46]
wire _requestAIO_T_42 = _requestAIO_T_41 == 33'h0; // @[Parameters.scala:137:{46,59}]
wire _requestAIO_T_43 = _requestAIO_T_32 | _requestAIO_T_37; // @[Xbar.scala:291:92]
wire _requestAIO_T_44 = _requestAIO_T_43 | _requestAIO_T_42; // @[Xbar.scala:291:92]
wire requestAIO_1_0 = _requestAIO_T_44; // @[Xbar.scala:291:92, :307:107]
wire _portsAOI_filtered_0_valid_T_2 = requestAIO_1_0; // @[Xbar.scala:307:107, :355:54]
wire [31:0] _requestAIO_T_45 = {in_1_a_bits_address[31:28], in_1_a_bits_address[27:0] ^ 28'h8000000}; // @[Xbar.scala:159:18]
wire [32:0] _requestAIO_T_46 = {1'h0, _requestAIO_T_45}; // @[Parameters.scala:137:{31,41}]
wire [32:0] _requestAIO_T_47 = _requestAIO_T_46 & 33'h8C010000; // @[Parameters.scala:137:{41,46}]
wire [32:0] _requestAIO_T_48 = _requestAIO_T_47; // @[Parameters.scala:137:46]
wire _requestAIO_T_49 = _requestAIO_T_48 == 33'h0; // @[Parameters.scala:137:{46,59}]
wire [31:0] _requestAIO_T_50 = in_1_a_bits_address ^ 32'h80000000; // @[Xbar.scala:159:18]
wire [32:0] _requestAIO_T_51 = {1'h0, _requestAIO_T_50}; // @[Parameters.scala:137:{31,41}]
wire [32:0] _requestAIO_T_52 = _requestAIO_T_51 & 33'h80000000; // @[Parameters.scala:137:{41,46}]
wire [32:0] _requestAIO_T_53 = _requestAIO_T_52; // @[Parameters.scala:137:46]
wire _requestAIO_T_54 = _requestAIO_T_53 == 33'h0; // @[Parameters.scala:137:{46,59}]
wire _requestAIO_T_55 = _requestAIO_T_49 | _requestAIO_T_54; // @[Xbar.scala:291:92]
wire requestAIO_1_1 = _requestAIO_T_55; // @[Xbar.scala:291:92, :307:107]
wire _portsAOI_filtered_1_valid_T_2 = requestAIO_1_1; // @[Xbar.scala:307:107, :355:54]
wire [32:0] _requestCIO_T_11 = {1'h0, _requestCIO_T_10}; // @[Parameters.scala:137:{31,41}]
wire [32:0] _requestCIO_T_16 = {1'h0, _requestCIO_T_15}; // @[Parameters.scala:137:{31,41}]
wire [4:0] requestDOI_uncommonBits = _requestDOI_uncommonBits_T[4:0]; // @[Parameters.scala:52:{29,56}]
wire _requestDOI_T = out_0_d_bits_source[5]; // @[Xbar.scala:216:19]
wire _requestDOI_T_1 = ~_requestDOI_T; // @[Parameters.scala:54:{10,32}]
wire _requestDOI_T_3 = _requestDOI_T_1; // @[Parameters.scala:54:{32,67}]
wire requestDOI_0_0 = _requestDOI_T_3; // @[Parameters.scala:54:67, :56:48]
wire _portsDIO_filtered_0_valid_T = requestDOI_0_0; // @[Xbar.scala:355:54]
wire [1:0] requestDOI_uncommonBits_1 = _requestDOI_uncommonBits_T_1[1:0]; // @[Parameters.scala:52:{29,56}]
wire [3:0] _requestDOI_T_5 = out_0_d_bits_source[5:2]; // @[Xbar.scala:216:19]
wire _requestDOI_T_6 = _requestDOI_T_5 == 4'h8; // @[Parameters.scala:54:{10,32}]
wire _requestDOI_T_8 = _requestDOI_T_6; // @[Parameters.scala:54:{32,67}]
wire requestDOI_0_1 = _requestDOI_T_8; // @[Parameters.scala:54:67, :56:48]
wire _portsDIO_filtered_1_valid_T = requestDOI_0_1; // @[Xbar.scala:355:54]
wire [4:0] requestDOI_uncommonBits_2 = _requestDOI_uncommonBits_T_2[4:0]; // @[Parameters.scala:52:{29,56}]
wire _requestDOI_T_10 = out_1_d_bits_source[5]; // @[Xbar.scala:216:19]
wire _requestDOI_T_11 = ~_requestDOI_T_10; // @[Parameters.scala:54:{10,32}]
wire _requestDOI_T_13 = _requestDOI_T_11; // @[Parameters.scala:54:{32,67}]
wire requestDOI_1_0 = _requestDOI_T_13; // @[Parameters.scala:54:67, :56:48]
wire _portsDIO_filtered_0_valid_T_2 = requestDOI_1_0; // @[Xbar.scala:355:54]
wire [1:0] requestDOI_uncommonBits_3 = _requestDOI_uncommonBits_T_3[1:0]; // @[Parameters.scala:52:{29,56}]
wire [3:0] _requestDOI_T_15 = out_1_d_bits_source[5:2]; // @[Xbar.scala:216:19]
wire _requestDOI_T_16 = _requestDOI_T_15 == 4'h8; // @[Parameters.scala:54:{10,32}]
wire _requestDOI_T_18 = _requestDOI_T_16; // @[Parameters.scala:54:{32,67}]
wire requestDOI_1_1 = _requestDOI_T_18; // @[Parameters.scala:54:67, :56:48]
wire _portsDIO_filtered_1_valid_T_2 = requestDOI_1_1; // @[Xbar.scala:355:54]
wire [2:0] requestEIO_uncommonBits_1 = _requestEIO_uncommonBits_T_1; // @[Parameters.scala:52:{29,56}]
wire [26:0] _beatsAI_decode_T = 27'hFFF << in_0_a_bits_size; // @[package.scala:243:71]
wire [11:0] _beatsAI_decode_T_1 = _beatsAI_decode_T[11:0]; // @[package.scala:243:{71,76}]
wire [11:0] _beatsAI_decode_T_2 = ~_beatsAI_decode_T_1; // @[package.scala:243:{46,76}]
wire [8:0] beatsAI_decode = _beatsAI_decode_T_2[11:3]; // @[package.scala:243:46]
wire _beatsAI_opdata_T = in_0_a_bits_opcode[2]; // @[Xbar.scala:159:18]
wire beatsAI_opdata = ~_beatsAI_opdata_T; // @[Edges.scala:92:{28,37}]
wire [8:0] beatsAI_0 = beatsAI_opdata ? beatsAI_decode : 9'h0; // @[Edges.scala:92:28, :220:59, :221:14]
wire [26:0] _beatsAI_decode_T_3 = 27'hFFF << in_1_a_bits_size; // @[package.scala:243:71]
wire [11:0] _beatsAI_decode_T_4 = _beatsAI_decode_T_3[11:0]; // @[package.scala:243:{71,76}]
wire [11:0] _beatsAI_decode_T_5 = ~_beatsAI_decode_T_4; // @[package.scala:243:{46,76}]
wire [8:0] beatsAI_decode_1 = _beatsAI_decode_T_5[11:3]; // @[package.scala:243:46]
wire _beatsAI_opdata_T_1 = in_1_a_bits_opcode[2]; // @[Xbar.scala:159:18]
wire beatsAI_opdata_1 = ~_beatsAI_opdata_T_1; // @[Edges.scala:92:{28,37}]
wire [8:0] beatsAI_1 = beatsAI_opdata_1 ? beatsAI_decode_1 : 9'h0; // @[Edges.scala:92:28, :220:59, :221:14]
wire [26:0] _beatsCI_decode_T_3 = 27'hFFF << in_1_c_bits_size; // @[package.scala:243:71]
wire [11:0] _beatsCI_decode_T_4 = _beatsCI_decode_T_3[11:0]; // @[package.scala:243:{71,76}]
wire [11:0] _beatsCI_decode_T_5 = ~_beatsCI_decode_T_4; // @[package.scala:243:{46,76}]
wire [8:0] beatsCI_decode_1 = _beatsCI_decode_T_5[11:3]; // @[package.scala:243:46]
wire beatsCI_opdata_1 = in_1_c_bits_opcode[0]; // @[Xbar.scala:159:18]
wire [8:0] beatsCI_1 = beatsCI_opdata_1 ? beatsCI_decode_1 : 9'h0; // @[Edges.scala:102:36, :220:59, :221:14]
wire [26:0] _beatsDO_decode_T = 27'hFFF << out_0_d_bits_size; // @[package.scala:243:71]
wire [11:0] _beatsDO_decode_T_1 = _beatsDO_decode_T[11:0]; // @[package.scala:243:{71,76}]
wire [11:0] _beatsDO_decode_T_2 = ~_beatsDO_decode_T_1; // @[package.scala:243:{46,76}]
wire [8:0] beatsDO_decode = _beatsDO_decode_T_2[11:3]; // @[package.scala:243:46]
wire beatsDO_opdata = out_0_d_bits_opcode[0]; // @[Xbar.scala:216:19]
wire [8:0] beatsDO_0 = beatsDO_opdata ? beatsDO_decode : 9'h0; // @[Edges.scala:106:36, :220:59, :221:14]
wire [20:0] _beatsDO_decode_T_3 = 21'h3F << out_1_d_bits_size; // @[package.scala:243:71]
wire [5:0] _beatsDO_decode_T_4 = _beatsDO_decode_T_3[5:0]; // @[package.scala:243:{71,76}]
wire [5:0] _beatsDO_decode_T_5 = ~_beatsDO_decode_T_4; // @[package.scala:243:{46,76}]
wire [2:0] beatsDO_decode_1 = _beatsDO_decode_T_5[5:3]; // @[package.scala:243:46]
wire beatsDO_opdata_1 = out_1_d_bits_opcode[0]; // @[Xbar.scala:216:19]
wire [2:0] beatsDO_1 = beatsDO_opdata_1 ? beatsDO_decode_1 : 3'h0; // @[Edges.scala:106:36, :220:59, :221:14]
wire _filtered_0_ready_T; // @[Arbiter.scala:94:31]
wire _portsAOI_filtered_0_valid_T_1; // @[Xbar.scala:355:40]
wire _filtered_1_ready_T; // @[Arbiter.scala:94:31]
wire _portsAOI_filtered_1_valid_T_1; // @[Xbar.scala:355:40]
wire portsAOI_filtered_0_ready; // @[Xbar.scala:352:24]
wire portsAOI_filtered_0_valid; // @[Xbar.scala:352:24]
wire portsAOI_filtered_1_ready; // @[Xbar.scala:352:24]
wire portsAOI_filtered_1_valid; // @[Xbar.scala:352:24]
assign _portsAOI_filtered_0_valid_T_1 = in_0_a_valid & _portsAOI_filtered_0_valid_T; // @[Xbar.scala:159:18, :355:{40,54}]
assign portsAOI_filtered_0_valid = _portsAOI_filtered_0_valid_T_1; // @[Xbar.scala:352:24, :355:40]
assign _portsAOI_filtered_1_valid_T_1 = in_0_a_valid & _portsAOI_filtered_1_valid_T; // @[Xbar.scala:159:18, :355:{40,54}]
assign portsAOI_filtered_1_valid = _portsAOI_filtered_1_valid_T_1; // @[Xbar.scala:352:24, :355:40]
wire _portsAOI_in_0_a_ready_T = requestAIO_0_0 & portsAOI_filtered_0_ready; // @[Mux.scala:30:73]
wire _portsAOI_in_0_a_ready_T_1 = requestAIO_0_1 & portsAOI_filtered_1_ready; // @[Mux.scala:30:73]
wire _portsAOI_in_0_a_ready_T_2 = _portsAOI_in_0_a_ready_T | _portsAOI_in_0_a_ready_T_1; // @[Mux.scala:30:73]
assign _portsAOI_in_0_a_ready_WIRE = _portsAOI_in_0_a_ready_T_2; // @[Mux.scala:30:73]
assign in_0_a_ready = _portsAOI_in_0_a_ready_WIRE; // @[Mux.scala:30:73]
wire _filtered_0_ready_T_1; // @[Arbiter.scala:94:31]
wire _portsAOI_filtered_0_valid_T_3; // @[Xbar.scala:355:40]
wire _filtered_1_ready_T_1; // @[Arbiter.scala:94:31]
wire _portsAOI_filtered_1_valid_T_3; // @[Xbar.scala:355:40]
wire portsAOI_filtered_1_0_ready; // @[Xbar.scala:352:24]
wire portsAOI_filtered_1_0_valid; // @[Xbar.scala:352:24]
wire portsAOI_filtered_1_1_ready; // @[Xbar.scala:352:24]
wire portsAOI_filtered_1_1_valid; // @[Xbar.scala:352:24]
assign _portsAOI_filtered_0_valid_T_3 = in_1_a_valid & _portsAOI_filtered_0_valid_T_2; // @[Xbar.scala:159:18, :355:{40,54}]
assign portsAOI_filtered_1_0_valid = _portsAOI_filtered_0_valid_T_3; // @[Xbar.scala:352:24, :355:40]
assign _portsAOI_filtered_1_valid_T_3 = in_1_a_valid & _portsAOI_filtered_1_valid_T_2; // @[Xbar.scala:159:18, :355:{40,54}]
assign portsAOI_filtered_1_1_valid = _portsAOI_filtered_1_valid_T_3; // @[Xbar.scala:352:24, :355:40]
wire _portsAOI_in_1_a_ready_T = requestAIO_1_0 & portsAOI_filtered_1_0_ready; // @[Mux.scala:30:73]
wire _portsAOI_in_1_a_ready_T_1 = requestAIO_1_1 & portsAOI_filtered_1_1_ready; // @[Mux.scala:30:73]
wire _portsAOI_in_1_a_ready_T_2 = _portsAOI_in_1_a_ready_T | _portsAOI_in_1_a_ready_T_1; // @[Mux.scala:30:73]
assign _portsAOI_in_1_a_ready_WIRE = _portsAOI_in_1_a_ready_T_2; // @[Mux.scala:30:73]
assign in_1_a_ready = _portsAOI_in_1_a_ready_WIRE; // @[Mux.scala:30:73]
wire _portsBIO_out_1_b_ready_T_1 = portsBIO_filtered_1_1_ready; // @[Mux.scala:30:73]
assign in_1_b_valid = portsBIO_filtered_1_1_valid; // @[Xbar.scala:159:18, :352:24]
assign in_1_b_bits_param = portsBIO_filtered_1_1_bits_param; // @[Xbar.scala:159:18, :352:24]
assign in_1_b_bits_address = portsBIO_filtered_1_1_bits_address; // @[Xbar.scala:159:18, :352:24]
assign portsBIO_filtered_1_1_valid = _portsBIO_filtered_1_valid_T_3; // @[Xbar.scala:352:24, :355:40]
wire _portsBIO_out_1_b_ready_T_2 = _portsBIO_out_1_b_ready_T_1; // @[Mux.scala:30:73]
assign _portsBIO_out_1_b_ready_WIRE = _portsBIO_out_1_b_ready_T_2; // @[Mux.scala:30:73]
assign out_1_b_ready = _portsBIO_out_1_b_ready_WIRE; // @[Mux.scala:30:73]
wire _portsCOI_in_1_c_ready_T_1 = portsCOI_filtered_1_1_ready; // @[Mux.scala:30:73]
assign out_1_c_valid = portsCOI_filtered_1_1_valid; // @[Xbar.scala:216:19, :352:24]
assign out_1_c_bits_opcode = portsCOI_filtered_1_1_bits_opcode; // @[Xbar.scala:216:19, :352:24]
assign out_1_c_bits_param = portsCOI_filtered_1_1_bits_param; // @[Xbar.scala:216:19, :352:24]
assign out_1_c_bits_size = portsCOI_filtered_1_1_bits_size; // @[Xbar.scala:216:19, :352:24]
assign out_1_c_bits_source = portsCOI_filtered_1_1_bits_source; // @[Xbar.scala:216:19, :352:24]
assign out_1_c_bits_address = portsCOI_filtered_1_1_bits_address; // @[Xbar.scala:216:19, :352:24]
assign out_1_c_bits_data = portsCOI_filtered_1_1_bits_data; // @[Xbar.scala:216:19, :352:24]
assign out_1_c_bits_corrupt = portsCOI_filtered_1_1_bits_corrupt; // @[Xbar.scala:216:19, :352:24]
wire portsCOI_filtered_1_0_valid; // @[Xbar.scala:352:24]
assign portsCOI_filtered_1_0_valid = _portsCOI_filtered_0_valid_T_3; // @[Xbar.scala:352:24, :355:40]
assign portsCOI_filtered_1_1_valid = _portsCOI_filtered_1_valid_T_3; // @[Xbar.scala:352:24, :355:40]
wire _portsCOI_in_1_c_ready_T_2 = _portsCOI_in_1_c_ready_T_1; // @[Mux.scala:30:73]
assign _portsCOI_in_1_c_ready_WIRE = _portsCOI_in_1_c_ready_T_2; // @[Mux.scala:30:73]
assign in_1_c_ready = _portsCOI_in_1_c_ready_WIRE; // @[Mux.scala:30:73]
wire _filtered_0_ready_T_2; // @[Arbiter.scala:94:31]
wire _portsDIO_filtered_0_valid_T_1; // @[Xbar.scala:355:40]
wire _filtered_1_ready_T_2; // @[Arbiter.scala:94:31]
wire _portsDIO_filtered_1_valid_T_1; // @[Xbar.scala:355:40]
wire portsDIO_filtered_0_ready; // @[Xbar.scala:352:24]
wire portsDIO_filtered_0_valid; // @[Xbar.scala:352:24]
wire portsDIO_filtered_1_ready; // @[Xbar.scala:352:24]
wire portsDIO_filtered_1_valid; // @[Xbar.scala:352:24]
assign _portsDIO_filtered_0_valid_T_1 = out_0_d_valid & _portsDIO_filtered_0_valid_T; // @[Xbar.scala:216:19, :355:{40,54}]
assign portsDIO_filtered_0_valid = _portsDIO_filtered_0_valid_T_1; // @[Xbar.scala:352:24, :355:40]
assign _portsDIO_filtered_1_valid_T_1 = out_0_d_valid & _portsDIO_filtered_1_valid_T; // @[Xbar.scala:216:19, :355:{40,54}]
assign portsDIO_filtered_1_valid = _portsDIO_filtered_1_valid_T_1; // @[Xbar.scala:352:24, :355:40]
wire _portsDIO_out_0_d_ready_T = requestDOI_0_0 & portsDIO_filtered_0_ready; // @[Mux.scala:30:73]
wire _portsDIO_out_0_d_ready_T_1 = requestDOI_0_1 & portsDIO_filtered_1_ready; // @[Mux.scala:30:73]
wire _portsDIO_out_0_d_ready_T_2 = _portsDIO_out_0_d_ready_T | _portsDIO_out_0_d_ready_T_1; // @[Mux.scala:30:73]
assign _portsDIO_out_0_d_ready_WIRE = _portsDIO_out_0_d_ready_T_2; // @[Mux.scala:30:73]
assign out_0_d_ready = _portsDIO_out_0_d_ready_WIRE; // @[Mux.scala:30:73]
wire _filtered_0_ready_T_3; // @[Arbiter.scala:94:31]
wire _portsDIO_filtered_0_valid_T_3; // @[Xbar.scala:355:40]
wire _filtered_1_ready_T_3; // @[Arbiter.scala:94:31]
wire _portsDIO_filtered_1_valid_T_3; // @[Xbar.scala:355:40]
wire portsDIO_filtered_1_0_ready; // @[Xbar.scala:352:24]
wire portsDIO_filtered_1_0_valid; // @[Xbar.scala:352:24]
wire portsDIO_filtered_1_1_ready; // @[Xbar.scala:352:24]
wire portsDIO_filtered_1_1_valid; // @[Xbar.scala:352:24]
assign _portsDIO_filtered_0_valid_T_3 = out_1_d_valid & _portsDIO_filtered_0_valid_T_2; // @[Xbar.scala:216:19, :355:{40,54}]
assign portsDIO_filtered_1_0_valid = _portsDIO_filtered_0_valid_T_3; // @[Xbar.scala:352:24, :355:40]
assign _portsDIO_filtered_1_valid_T_3 = out_1_d_valid & _portsDIO_filtered_1_valid_T_2; // @[Xbar.scala:216:19, :355:{40,54}]
assign portsDIO_filtered_1_1_valid = _portsDIO_filtered_1_valid_T_3; // @[Xbar.scala:352:24, :355:40]
wire _portsDIO_out_1_d_ready_T = requestDOI_1_0 & portsDIO_filtered_1_0_ready; // @[Mux.scala:30:73]
wire _portsDIO_out_1_d_ready_T_1 = requestDOI_1_1 & portsDIO_filtered_1_1_ready; // @[Mux.scala:30:73]
wire _portsDIO_out_1_d_ready_T_2 = _portsDIO_out_1_d_ready_T | _portsDIO_out_1_d_ready_T_1; // @[Mux.scala:30:73]
assign _portsDIO_out_1_d_ready_WIRE = _portsDIO_out_1_d_ready_T_2; // @[Mux.scala:30:73]
assign out_1_d_ready = _portsDIO_out_1_d_ready_WIRE; // @[Mux.scala:30:73]
assign out_1_e_valid = portsEOI_filtered_1_1_valid; // @[Xbar.scala:216:19, :352:24]
assign out_1_e_bits_sink = portsEOI_filtered_1_1_bits_sink; // @[Xbar.scala:216:19, :352:24]
assign portsEOI_filtered_1_1_valid = _portsEOI_filtered_1_valid_T_3; // @[Xbar.scala:352:24, :355:40]
reg [8:0] beatsLeft; // @[Arbiter.scala:60:30]
wire idle = beatsLeft == 9'h0; // @[Arbiter.scala:60:30, :61:28]
wire latch = idle & out_0_a_ready; // @[Xbar.scala:216:19]
wire [1:0] _readys_T = {portsAOI_filtered_1_0_valid, portsAOI_filtered_0_valid}; // @[Xbar.scala:352:24]
wire [1:0] readys_valid = _readys_T; // @[Arbiter.scala:21:23, :68:51]
wire _readys_T_1 = readys_valid == _readys_T; // @[Arbiter.scala:21:23, :22:19, :68:51]
wire _readys_T_3 = ~_readys_T_2; // @[Arbiter.scala:22:12]
wire _readys_T_4 = ~_readys_T_1; // @[Arbiter.scala:22:{12,19}]
reg [1:0] readys_mask; // @[Arbiter.scala:23:23]
wire [1:0] _readys_filter_T = ~readys_mask; // @[Arbiter.scala:23:23, :24:30]
wire [1:0] _readys_filter_T_1 = readys_valid & _readys_filter_T; // @[Arbiter.scala:21:23, :24:{28,30}]
wire [3:0] readys_filter = {_readys_filter_T_1, readys_valid}; // @[Arbiter.scala:21:23, :24:{21,28}]
wire [2:0] _readys_unready_T = readys_filter[3:1]; // @[package.scala:262:48]
wire [3:0] _readys_unready_T_1 = {readys_filter[3], readys_filter[2:0] | _readys_unready_T}; // @[package.scala:262:{43,48}]
wire [3:0] _readys_unready_T_2 = _readys_unready_T_1; // @[package.scala:262:43, :263:17]
wire [2:0] _readys_unready_T_3 = _readys_unready_T_2[3:1]; // @[package.scala:263:17]
wire [3:0] _readys_unready_T_4 = {readys_mask, 2'h0}; // @[Arbiter.scala:23:23, :25:66]
wire [3:0] readys_unready = {1'h0, _readys_unready_T_3} | _readys_unready_T_4; // @[Arbiter.scala:25:{52,58,66}]
wire [1:0] _readys_readys_T = readys_unready[3:2]; // @[Arbiter.scala:25:58, :26:29]
wire [1:0] _readys_readys_T_1 = readys_unready[1:0]; // @[Arbiter.scala:25:58, :26:48]
wire [1:0] _readys_readys_T_2 = _readys_readys_T & _readys_readys_T_1; // @[Arbiter.scala:26:{29,39,48}]
wire [1:0] readys_readys = ~_readys_readys_T_2; // @[Arbiter.scala:26:{18,39}]
wire [1:0] _readys_T_7 = readys_readys; // @[Arbiter.scala:26:18, :30:11]
wire _readys_T_5 = |readys_valid; // @[Arbiter.scala:21:23, :27:27]
wire _readys_T_6 = latch & _readys_T_5; // @[Arbiter.scala:27:{18,27}, :62:24]
wire [1:0] _readys_mask_T = readys_readys & readys_valid; // @[Arbiter.scala:21:23, :26:18, :28:29]
wire [2:0] _readys_mask_T_1 = {_readys_mask_T, 1'h0}; // @[package.scala:253:48]
wire [1:0] _readys_mask_T_2 = _readys_mask_T_1[1:0]; // @[package.scala:253:{48,53}]
wire [1:0] _readys_mask_T_3 = _readys_mask_T | _readys_mask_T_2; // @[package.scala:253:{43,53}]
wire [1:0] _readys_mask_T_4 = _readys_mask_T_3; // @[package.scala:253:43, :254:17]
wire _readys_T_8 = _readys_T_7[0]; // @[Arbiter.scala:30:11, :68:76]
wire readys_0 = _readys_T_8; // @[Arbiter.scala:68:{27,76}]
wire _readys_T_9 = _readys_T_7[1]; // @[Arbiter.scala:30:11, :68:76]
wire readys_1 = _readys_T_9; // @[Arbiter.scala:68:{27,76}]
wire _winner_T = readys_0 & portsAOI_filtered_0_valid; // @[Xbar.scala:352:24]
wire winner_0 = _winner_T; // @[Arbiter.scala:71:{27,69}]
wire _winner_T_1 = readys_1 & portsAOI_filtered_1_0_valid; // @[Xbar.scala:352:24]
wire winner_1 = _winner_T_1; // @[Arbiter.scala:71:{27,69}]
wire prefixOR_1 = winner_0; // @[Arbiter.scala:71:27, :76:48]
wire _prefixOR_T = prefixOR_1 | winner_1; // @[Arbiter.scala:71:27, :76:48]
wire _out_0_a_valid_T = portsAOI_filtered_0_valid | portsAOI_filtered_1_0_valid; // @[Xbar.scala:352:24]
wire [8:0] maskedBeats_0 = winner_0 ? beatsAI_0 : 9'h0; // @[Edges.scala:221:14]
wire [8:0] maskedBeats_1 = winner_1 ? beatsAI_1 : 9'h0; // @[Edges.scala:221:14]
wire [8:0] initBeats = maskedBeats_0 | maskedBeats_1; // @[Arbiter.scala:82:69, :84:44]
wire _beatsLeft_T = out_0_a_ready & out_0_a_valid; // @[Decoupled.scala:51:35]
wire [9:0] _beatsLeft_T_1 = {1'h0, beatsLeft} - {9'h0, _beatsLeft_T}; // @[Decoupled.scala:51:35]
wire [8:0] _beatsLeft_T_2 = _beatsLeft_T_1[8:0]; // @[Arbiter.scala:85:52]
wire [8:0] _beatsLeft_T_3 = latch ? initBeats : _beatsLeft_T_2; // @[Arbiter.scala:62:24, :84:44, :85:{23,52}]
reg state_0; // @[Arbiter.scala:88:26]
reg state_1; // @[Arbiter.scala:88:26]
wire muxState_0 = idle ? winner_0 : state_0; // @[Arbiter.scala:61:28, :71:27, :88:26, :89:25]
wire muxState_1 = idle ? winner_1 : state_1; // @[Arbiter.scala:61:28, :71:27, :88:26, :89:25]
wire allowed_0 = idle ? readys_0 : state_0; // @[Arbiter.scala:61:28, :68:27, :88:26, :92:24]
wire allowed_1 = idle ? readys_1 : state_1; // @[Arbiter.scala:61:28, :68:27, :88:26, :92:24]
assign _filtered_0_ready_T = out_0_a_ready & allowed_0; // @[Xbar.scala:216:19]
assign portsAOI_filtered_0_ready = _filtered_0_ready_T; // @[Xbar.scala:352:24]
assign _filtered_0_ready_T_1 = out_0_a_ready & allowed_1; // @[Xbar.scala:216:19]
assign portsAOI_filtered_1_0_ready = _filtered_0_ready_T_1; // @[Xbar.scala:352:24]
wire _out_0_a_valid_T_1 = state_0 & portsAOI_filtered_0_valid; // @[Mux.scala:30:73]
wire _out_0_a_valid_T_2 = state_1 & portsAOI_filtered_1_0_valid; // @[Mux.scala:30:73]
wire _out_0_a_valid_T_3 = _out_0_a_valid_T_1 | _out_0_a_valid_T_2; // @[Mux.scala:30:73]
wire _out_0_a_valid_WIRE = _out_0_a_valid_T_3; // @[Mux.scala:30:73]
assign _out_0_a_valid_T_4 = idle ? _out_0_a_valid_T : _out_0_a_valid_WIRE; // @[Mux.scala:30:73]
assign out_0_a_valid = _out_0_a_valid_T_4; // @[Xbar.scala:216:19]
wire [2:0] _out_0_a_bits_WIRE_10; // @[Mux.scala:30:73]
assign out_0_a_bits_opcode = _out_0_a_bits_WIRE_opcode; // @[Mux.scala:30:73]
wire [2:0] _out_0_a_bits_WIRE_9; // @[Mux.scala:30:73]
assign out_0_a_bits_param = _out_0_a_bits_WIRE_param; // @[Mux.scala:30:73]
wire [3:0] _out_0_a_bits_WIRE_8; // @[Mux.scala:30:73]
assign out_0_a_bits_size = _out_0_a_bits_WIRE_size; // @[Mux.scala:30:73]
wire [5:0] _out_0_a_bits_WIRE_7; // @[Mux.scala:30:73]
assign out_0_a_bits_source = _out_0_a_bits_WIRE_source; // @[Mux.scala:30:73]
wire [31:0] _out_0_a_bits_WIRE_6; // @[Mux.scala:30:73]
assign out_0_a_bits_address = _out_0_a_bits_WIRE_address; // @[Mux.scala:30:73]
wire [7:0] _out_0_a_bits_WIRE_3; // @[Mux.scala:30:73]
assign out_0_a_bits_mask = _out_0_a_bits_WIRE_mask; // @[Mux.scala:30:73]
wire [63:0] _out_0_a_bits_WIRE_2; // @[Mux.scala:30:73]
assign out_0_a_bits_data = _out_0_a_bits_WIRE_data; // @[Mux.scala:30:73]
wire _out_0_a_bits_WIRE_1; // @[Mux.scala:30:73]
assign out_0_a_bits_corrupt = _out_0_a_bits_WIRE_corrupt; // @[Mux.scala:30:73]
wire _out_0_a_bits_T = muxState_0 & portsAOI_filtered_0_bits_corrupt; // @[Mux.scala:30:73]
wire _out_0_a_bits_T_1 = muxState_1 & portsAOI_filtered_1_0_bits_corrupt; // @[Mux.scala:30:73]
wire _out_0_a_bits_T_2 = _out_0_a_bits_T | _out_0_a_bits_T_1; // @[Mux.scala:30:73]
assign _out_0_a_bits_WIRE_1 = _out_0_a_bits_T_2; // @[Mux.scala:30:73]
assign _out_0_a_bits_WIRE_corrupt = _out_0_a_bits_WIRE_1; // @[Mux.scala:30:73]
wire [63:0] _out_0_a_bits_T_3 = muxState_0 ? portsAOI_filtered_0_bits_data : 64'h0; // @[Mux.scala:30:73]
wire [63:0] _out_0_a_bits_T_4 = muxState_1 ? portsAOI_filtered_1_0_bits_data : 64'h0; // @[Mux.scala:30:73]
wire [63:0] _out_0_a_bits_T_5 = _out_0_a_bits_T_3 | _out_0_a_bits_T_4; // @[Mux.scala:30:73]
assign _out_0_a_bits_WIRE_2 = _out_0_a_bits_T_5; // @[Mux.scala:30:73]
assign _out_0_a_bits_WIRE_data = _out_0_a_bits_WIRE_2; // @[Mux.scala:30:73]
wire [7:0] _out_0_a_bits_T_6 = muxState_0 ? portsAOI_filtered_0_bits_mask : 8'h0; // @[Mux.scala:30:73]
wire [7:0] _out_0_a_bits_T_7 = muxState_1 ? portsAOI_filtered_1_0_bits_mask : 8'h0; // @[Mux.scala:30:73]
wire [7:0] _out_0_a_bits_T_8 = _out_0_a_bits_T_6 | _out_0_a_bits_T_7; // @[Mux.scala:30:73]
assign _out_0_a_bits_WIRE_3 = _out_0_a_bits_T_8; // @[Mux.scala:30:73]
assign _out_0_a_bits_WIRE_mask = _out_0_a_bits_WIRE_3; // @[Mux.scala:30:73]
wire [31:0] _out_0_a_bits_T_9 = muxState_0 ? portsAOI_filtered_0_bits_address : 32'h0; // @[Mux.scala:30:73]
wire [31:0] _out_0_a_bits_T_10 = muxState_1 ? portsAOI_filtered_1_0_bits_address : 32'h0; // @[Mux.scala:30:73]
wire [31:0] _out_0_a_bits_T_11 = _out_0_a_bits_T_9 | _out_0_a_bits_T_10; // @[Mux.scala:30:73]
assign _out_0_a_bits_WIRE_6 = _out_0_a_bits_T_11; // @[Mux.scala:30:73]
assign _out_0_a_bits_WIRE_address = _out_0_a_bits_WIRE_6; // @[Mux.scala:30:73]
wire [5:0] _out_0_a_bits_T_12 = muxState_0 ? portsAOI_filtered_0_bits_source : 6'h0; // @[Mux.scala:30:73]
wire [5:0] _out_0_a_bits_T_13 = muxState_1 ? portsAOI_filtered_1_0_bits_source : 6'h0; // @[Mux.scala:30:73]
wire [5:0] _out_0_a_bits_T_14 = _out_0_a_bits_T_12 | _out_0_a_bits_T_13; // @[Mux.scala:30:73]
assign _out_0_a_bits_WIRE_7 = _out_0_a_bits_T_14; // @[Mux.scala:30:73]
assign _out_0_a_bits_WIRE_source = _out_0_a_bits_WIRE_7; // @[Mux.scala:30:73]
wire [3:0] _out_0_a_bits_T_15 = muxState_0 ? portsAOI_filtered_0_bits_size : 4'h0; // @[Mux.scala:30:73]
wire [3:0] _out_0_a_bits_T_16 = muxState_1 ? portsAOI_filtered_1_0_bits_size : 4'h0; // @[Mux.scala:30:73]
wire [3:0] _out_0_a_bits_T_17 = _out_0_a_bits_T_15 | _out_0_a_bits_T_16; // @[Mux.scala:30:73]
assign _out_0_a_bits_WIRE_8 = _out_0_a_bits_T_17; // @[Mux.scala:30:73]
assign _out_0_a_bits_WIRE_size = _out_0_a_bits_WIRE_8; // @[Mux.scala:30:73]
wire [2:0] _out_0_a_bits_T_18 = muxState_0 ? portsAOI_filtered_0_bits_param : 3'h0; // @[Mux.scala:30:73]
wire [2:0] _out_0_a_bits_T_19 = muxState_1 ? portsAOI_filtered_1_0_bits_param : 3'h0; // @[Mux.scala:30:73]
wire [2:0] _out_0_a_bits_T_20 = _out_0_a_bits_T_18 | _out_0_a_bits_T_19; // @[Mux.scala:30:73]
assign _out_0_a_bits_WIRE_9 = _out_0_a_bits_T_20; // @[Mux.scala:30:73]
assign _out_0_a_bits_WIRE_param = _out_0_a_bits_WIRE_9; // @[Mux.scala:30:73]
wire [2:0] _out_0_a_bits_T_21 = muxState_0 ? portsAOI_filtered_0_bits_opcode : 3'h0; // @[Mux.scala:30:73]
wire [2:0] _out_0_a_bits_T_22 = muxState_1 ? portsAOI_filtered_1_0_bits_opcode : 3'h0; // @[Mux.scala:30:73]
wire [2:0] _out_0_a_bits_T_23 = _out_0_a_bits_T_21 | _out_0_a_bits_T_22; // @[Mux.scala:30:73]
assign _out_0_a_bits_WIRE_10 = _out_0_a_bits_T_23; // @[Mux.scala:30:73]
assign _out_0_a_bits_WIRE_opcode = _out_0_a_bits_WIRE_10; // @[Mux.scala:30:73]
reg [8:0] beatsLeft_1; // @[Arbiter.scala:60:30]
wire idle_1 = beatsLeft_1 == 9'h0; // @[Arbiter.scala:60:30, :61:28]
wire latch_1 = idle_1 & out_1_a_ready; // @[Xbar.scala:216:19]
wire [1:0] _readys_T_10 = {portsAOI_filtered_1_1_valid, portsAOI_filtered_1_valid}; // @[Xbar.scala:352:24]
wire [1:0] readys_valid_1 = _readys_T_10; // @[Arbiter.scala:21:23, :68:51]
wire _readys_T_11 = readys_valid_1 == _readys_T_10; // @[Arbiter.scala:21:23, :22:19, :68:51]
wire _readys_T_13 = ~_readys_T_12; // @[Arbiter.scala:22:12]
wire _readys_T_14 = ~_readys_T_11; // @[Arbiter.scala:22:{12,19}]
reg [1:0] readys_mask_1; // @[Arbiter.scala:23:23]
wire [1:0] _readys_filter_T_2 = ~readys_mask_1; // @[Arbiter.scala:23:23, :24:30]
wire [1:0] _readys_filter_T_3 = readys_valid_1 & _readys_filter_T_2; // @[Arbiter.scala:21:23, :24:{28,30}]
wire [3:0] readys_filter_1 = {_readys_filter_T_3, readys_valid_1}; // @[Arbiter.scala:21:23, :24:{21,28}]
wire [2:0] _readys_unready_T_5 = readys_filter_1[3:1]; // @[package.scala:262:48]
wire [3:0] _readys_unready_T_6 = {readys_filter_1[3], readys_filter_1[2:0] | _readys_unready_T_5}; // @[package.scala:262:{43,48}]
wire [3:0] _readys_unready_T_7 = _readys_unready_T_6; // @[package.scala:262:43, :263:17]
wire [2:0] _readys_unready_T_8 = _readys_unready_T_7[3:1]; // @[package.scala:263:17]
wire [3:0] _readys_unready_T_9 = {readys_mask_1, 2'h0}; // @[Arbiter.scala:23:23, :25:66]
wire [3:0] readys_unready_1 = {1'h0, _readys_unready_T_8} | _readys_unready_T_9; // @[Arbiter.scala:25:{52,58,66}]
wire [1:0] _readys_readys_T_3 = readys_unready_1[3:2]; // @[Arbiter.scala:25:58, :26:29]
wire [1:0] _readys_readys_T_4 = readys_unready_1[1:0]; // @[Arbiter.scala:25:58, :26:48]
wire [1:0] _readys_readys_T_5 = _readys_readys_T_3 & _readys_readys_T_4; // @[Arbiter.scala:26:{29,39,48}]
wire [1:0] readys_readys_1 = ~_readys_readys_T_5; // @[Arbiter.scala:26:{18,39}]
wire [1:0] _readys_T_17 = readys_readys_1; // @[Arbiter.scala:26:18, :30:11]
wire _readys_T_15 = |readys_valid_1; // @[Arbiter.scala:21:23, :27:27]
wire _readys_T_16 = latch_1 & _readys_T_15; // @[Arbiter.scala:27:{18,27}, :62:24]
wire [1:0] _readys_mask_T_5 = readys_readys_1 & readys_valid_1; // @[Arbiter.scala:21:23, :26:18, :28:29]
wire [2:0] _readys_mask_T_6 = {_readys_mask_T_5, 1'h0}; // @[package.scala:253:48]
wire [1:0] _readys_mask_T_7 = _readys_mask_T_6[1:0]; // @[package.scala:253:{48,53}]
wire [1:0] _readys_mask_T_8 = _readys_mask_T_5 | _readys_mask_T_7; // @[package.scala:253:{43,53}]
wire [1:0] _readys_mask_T_9 = _readys_mask_T_8; // @[package.scala:253:43, :254:17]
wire _readys_T_18 = _readys_T_17[0]; // @[Arbiter.scala:30:11, :68:76]
wire readys_1_0 = _readys_T_18; // @[Arbiter.scala:68:{27,76}]
wire _readys_T_19 = _readys_T_17[1]; // @[Arbiter.scala:30:11, :68:76]
wire readys_1_1 = _readys_T_19; // @[Arbiter.scala:68:{27,76}]
wire _winner_T_2 = readys_1_0 & portsAOI_filtered_1_valid; // @[Xbar.scala:352:24]
wire winner_1_0 = _winner_T_2; // @[Arbiter.scala:71:{27,69}]
wire _winner_T_3 = readys_1_1 & portsAOI_filtered_1_1_valid; // @[Xbar.scala:352:24]
wire winner_1_1 = _winner_T_3; // @[Arbiter.scala:71:{27,69}]
wire prefixOR_1_1 = winner_1_0; // @[Arbiter.scala:71:27, :76:48]
wire _prefixOR_T_1 = prefixOR_1_1 | winner_1_1; // @[Arbiter.scala:71:27, :76:48]
wire _out_1_a_valid_T = portsAOI_filtered_1_valid | portsAOI_filtered_1_1_valid; // @[Xbar.scala:352:24]
wire [8:0] maskedBeats_0_1 = winner_1_0 ? beatsAI_0 : 9'h0; // @[Edges.scala:221:14]
wire [8:0] maskedBeats_1_1 = winner_1_1 ? beatsAI_1 : 9'h0; // @[Edges.scala:221:14]
wire [8:0] initBeats_1 = maskedBeats_0_1 | maskedBeats_1_1; // @[Arbiter.scala:82:69, :84:44]
wire _beatsLeft_T_4 = out_1_a_ready & out_1_a_valid; // @[Decoupled.scala:51:35]
wire [9:0] _beatsLeft_T_5 = {1'h0, beatsLeft_1} - {9'h0, _beatsLeft_T_4}; // @[Decoupled.scala:51:35]
wire [8:0] _beatsLeft_T_6 = _beatsLeft_T_5[8:0]; // @[Arbiter.scala:85:52]
wire [8:0] _beatsLeft_T_7 = latch_1 ? initBeats_1 : _beatsLeft_T_6; // @[Arbiter.scala:62:24, :84:44, :85:{23,52}]
reg state_1_0; // @[Arbiter.scala:88:26]
reg state_1_1; // @[Arbiter.scala:88:26]
wire muxState_1_0 = idle_1 ? winner_1_0 : state_1_0; // @[Arbiter.scala:61:28, :71:27, :88:26, :89:25]
wire muxState_1_1 = idle_1 ? winner_1_1 : state_1_1; // @[Arbiter.scala:61:28, :71:27, :88:26, :89:25]
wire allowed_1_0 = idle_1 ? readys_1_0 : state_1_0; // @[Arbiter.scala:61:28, :68:27, :88:26, :92:24]
wire allowed_1_1 = idle_1 ? readys_1_1 : state_1_1; // @[Arbiter.scala:61:28, :68:27, :88:26, :92:24]
assign _filtered_1_ready_T = out_1_a_ready & allowed_1_0; // @[Xbar.scala:216:19]
assign portsAOI_filtered_1_ready = _filtered_1_ready_T; // @[Xbar.scala:352:24]
assign _filtered_1_ready_T_1 = out_1_a_ready & allowed_1_1; // @[Xbar.scala:216:19]
assign portsAOI_filtered_1_1_ready = _filtered_1_ready_T_1; // @[Xbar.scala:352:24]
wire _out_1_a_valid_T_1 = state_1_0 & portsAOI_filtered_1_valid; // @[Mux.scala:30:73]
wire _out_1_a_valid_T_2 = state_1_1 & portsAOI_filtered_1_1_valid; // @[Mux.scala:30:73]
wire _out_1_a_valid_T_3 = _out_1_a_valid_T_1 | _out_1_a_valid_T_2; // @[Mux.scala:30:73]
wire _out_1_a_valid_WIRE = _out_1_a_valid_T_3; // @[Mux.scala:30:73]
assign _out_1_a_valid_T_4 = idle_1 ? _out_1_a_valid_T : _out_1_a_valid_WIRE; // @[Mux.scala:30:73]
assign out_1_a_valid = _out_1_a_valid_T_4; // @[Xbar.scala:216:19]
wire [2:0] _out_1_a_bits_WIRE_10; // @[Mux.scala:30:73]
assign out_1_a_bits_opcode = _out_1_a_bits_WIRE_opcode; // @[Mux.scala:30:73]
wire [2:0] _out_1_a_bits_WIRE_9; // @[Mux.scala:30:73]
assign out_1_a_bits_param = _out_1_a_bits_WIRE_param; // @[Mux.scala:30:73]
wire [3:0] _out_1_a_bits_WIRE_8; // @[Mux.scala:30:73]
assign out_1_a_bits_size = _out_1_a_bits_WIRE_size; // @[Mux.scala:30:73]
wire [5:0] _out_1_a_bits_WIRE_7; // @[Mux.scala:30:73]
assign out_1_a_bits_source = _out_1_a_bits_WIRE_source; // @[Mux.scala:30:73]
wire [31:0] _out_1_a_bits_WIRE_6; // @[Mux.scala:30:73]
assign out_1_a_bits_address = _out_1_a_bits_WIRE_address; // @[Mux.scala:30:73]
wire [7:0] _out_1_a_bits_WIRE_3; // @[Mux.scala:30:73]
assign out_1_a_bits_mask = _out_1_a_bits_WIRE_mask; // @[Mux.scala:30:73]
wire [63:0] _out_1_a_bits_WIRE_2; // @[Mux.scala:30:73]
assign out_1_a_bits_data = _out_1_a_bits_WIRE_data; // @[Mux.scala:30:73]
wire _out_1_a_bits_WIRE_1; // @[Mux.scala:30:73]
assign out_1_a_bits_corrupt = _out_1_a_bits_WIRE_corrupt; // @[Mux.scala:30:73]
wire _out_1_a_bits_T = muxState_1_0 & portsAOI_filtered_1_bits_corrupt; // @[Mux.scala:30:73]
wire _out_1_a_bits_T_1 = muxState_1_1 & portsAOI_filtered_1_1_bits_corrupt; // @[Mux.scala:30:73]
wire _out_1_a_bits_T_2 = _out_1_a_bits_T | _out_1_a_bits_T_1; // @[Mux.scala:30:73]
assign _out_1_a_bits_WIRE_1 = _out_1_a_bits_T_2; // @[Mux.scala:30:73]
assign _out_1_a_bits_WIRE_corrupt = _out_1_a_bits_WIRE_1; // @[Mux.scala:30:73]
wire [63:0] _out_1_a_bits_T_3 = muxState_1_0 ? portsAOI_filtered_1_bits_data : 64'h0; // @[Mux.scala:30:73]
wire [63:0] _out_1_a_bits_T_4 = muxState_1_1 ? portsAOI_filtered_1_1_bits_data : 64'h0; // @[Mux.scala:30:73]
wire [63:0] _out_1_a_bits_T_5 = _out_1_a_bits_T_3 | _out_1_a_bits_T_4; // @[Mux.scala:30:73]
assign _out_1_a_bits_WIRE_2 = _out_1_a_bits_T_5; // @[Mux.scala:30:73]
assign _out_1_a_bits_WIRE_data = _out_1_a_bits_WIRE_2; // @[Mux.scala:30:73]
wire [7:0] _out_1_a_bits_T_6 = muxState_1_0 ? portsAOI_filtered_1_bits_mask : 8'h0; // @[Mux.scala:30:73]
wire [7:0] _out_1_a_bits_T_7 = muxState_1_1 ? portsAOI_filtered_1_1_bits_mask : 8'h0; // @[Mux.scala:30:73]
wire [7:0] _out_1_a_bits_T_8 = _out_1_a_bits_T_6 | _out_1_a_bits_T_7; // @[Mux.scala:30:73]
assign _out_1_a_bits_WIRE_3 = _out_1_a_bits_T_8; // @[Mux.scala:30:73]
assign _out_1_a_bits_WIRE_mask = _out_1_a_bits_WIRE_3; // @[Mux.scala:30:73]
wire [31:0] _out_1_a_bits_T_9 = muxState_1_0 ? portsAOI_filtered_1_bits_address : 32'h0; // @[Mux.scala:30:73]
wire [31:0] _out_1_a_bits_T_10 = muxState_1_1 ? portsAOI_filtered_1_1_bits_address : 32'h0; // @[Mux.scala:30:73]
wire [31:0] _out_1_a_bits_T_11 = _out_1_a_bits_T_9 | _out_1_a_bits_T_10; // @[Mux.scala:30:73]
assign _out_1_a_bits_WIRE_6 = _out_1_a_bits_T_11; // @[Mux.scala:30:73]
assign _out_1_a_bits_WIRE_address = _out_1_a_bits_WIRE_6; // @[Mux.scala:30:73]
wire [5:0] _out_1_a_bits_T_12 = muxState_1_0 ? portsAOI_filtered_1_bits_source : 6'h0; // @[Mux.scala:30:73]
wire [5:0] _out_1_a_bits_T_13 = muxState_1_1 ? portsAOI_filtered_1_1_bits_source : 6'h0; // @[Mux.scala:30:73]
wire [5:0] _out_1_a_bits_T_14 = _out_1_a_bits_T_12 | _out_1_a_bits_T_13; // @[Mux.scala:30:73]
assign _out_1_a_bits_WIRE_7 = _out_1_a_bits_T_14; // @[Mux.scala:30:73]
assign _out_1_a_bits_WIRE_source = _out_1_a_bits_WIRE_7; // @[Mux.scala:30:73]
wire [3:0] _out_1_a_bits_T_15 = muxState_1_0 ? portsAOI_filtered_1_bits_size : 4'h0; // @[Mux.scala:30:73]
wire [3:0] _out_1_a_bits_T_16 = muxState_1_1 ? portsAOI_filtered_1_1_bits_size : 4'h0; // @[Mux.scala:30:73]
wire [3:0] _out_1_a_bits_T_17 = _out_1_a_bits_T_15 | _out_1_a_bits_T_16; // @[Mux.scala:30:73]
assign _out_1_a_bits_WIRE_8 = _out_1_a_bits_T_17; // @[Mux.scala:30:73]
assign _out_1_a_bits_WIRE_size = _out_1_a_bits_WIRE_8; // @[Mux.scala:30:73]
wire [2:0] _out_1_a_bits_T_18 = muxState_1_0 ? portsAOI_filtered_1_bits_param : 3'h0; // @[Mux.scala:30:73]
wire [2:0] _out_1_a_bits_T_19 = muxState_1_1 ? portsAOI_filtered_1_1_bits_param : 3'h0; // @[Mux.scala:30:73]
wire [2:0] _out_1_a_bits_T_20 = _out_1_a_bits_T_18 | _out_1_a_bits_T_19; // @[Mux.scala:30:73]
assign _out_1_a_bits_WIRE_9 = _out_1_a_bits_T_20; // @[Mux.scala:30:73]
assign _out_1_a_bits_WIRE_param = _out_1_a_bits_WIRE_9; // @[Mux.scala:30:73]
wire [2:0] _out_1_a_bits_T_21 = muxState_1_0 ? portsAOI_filtered_1_bits_opcode : 3'h0; // @[Mux.scala:30:73]
wire [2:0] _out_1_a_bits_T_22 = muxState_1_1 ? portsAOI_filtered_1_1_bits_opcode : 3'h0; // @[Mux.scala:30:73]
wire [2:0] _out_1_a_bits_T_23 = _out_1_a_bits_T_21 | _out_1_a_bits_T_22; // @[Mux.scala:30:73]
assign _out_1_a_bits_WIRE_10 = _out_1_a_bits_T_23; // @[Mux.scala:30:73]
assign _out_1_a_bits_WIRE_opcode = _out_1_a_bits_WIRE_10; // @[Mux.scala:30:73]
reg [8:0] beatsLeft_2; // @[Arbiter.scala:60:30]
wire idle_2 = beatsLeft_2 == 9'h0; // @[Arbiter.scala:60:30, :61:28]
wire latch_2 = idle_2 & in_0_d_ready; // @[Xbar.scala:159:18]
wire [1:0] _readys_T_20 = {portsDIO_filtered_1_0_valid, portsDIO_filtered_0_valid}; // @[Xbar.scala:352:24]
wire [1:0] readys_valid_2 = _readys_T_20; // @[Arbiter.scala:21:23, :68:51]
wire _readys_T_21 = readys_valid_2 == _readys_T_20; // @[Arbiter.scala:21:23, :22:19, :68:51]
wire _readys_T_23 = ~_readys_T_22; // @[Arbiter.scala:22:12]
wire _readys_T_24 = ~_readys_T_21; // @[Arbiter.scala:22:{12,19}]
reg [1:0] readys_mask_2; // @[Arbiter.scala:23:23]
wire [1:0] _readys_filter_T_4 = ~readys_mask_2; // @[Arbiter.scala:23:23, :24:30]
wire [1:0] _readys_filter_T_5 = readys_valid_2 & _readys_filter_T_4; // @[Arbiter.scala:21:23, :24:{28,30}]
wire [3:0] readys_filter_2 = {_readys_filter_T_5, readys_valid_2}; // @[Arbiter.scala:21:23, :24:{21,28}]
wire [2:0] _readys_unready_T_10 = readys_filter_2[3:1]; // @[package.scala:262:48]
wire [3:0] _readys_unready_T_11 = {readys_filter_2[3], readys_filter_2[2:0] | _readys_unready_T_10}; // @[package.scala:262:{43,48}]
wire [3:0] _readys_unready_T_12 = _readys_unready_T_11; // @[package.scala:262:43, :263:17]
wire [2:0] _readys_unready_T_13 = _readys_unready_T_12[3:1]; // @[package.scala:263:17]
wire [3:0] _readys_unready_T_14 = {readys_mask_2, 2'h0}; // @[Arbiter.scala:23:23, :25:66]
wire [3:0] readys_unready_2 = {1'h0, _readys_unready_T_13} | _readys_unready_T_14; // @[Arbiter.scala:25:{52,58,66}]
wire [1:0] _readys_readys_T_6 = readys_unready_2[3:2]; // @[Arbiter.scala:25:58, :26:29]
wire [1:0] _readys_readys_T_7 = readys_unready_2[1:0]; // @[Arbiter.scala:25:58, :26:48]
wire [1:0] _readys_readys_T_8 = _readys_readys_T_6 & _readys_readys_T_7; // @[Arbiter.scala:26:{29,39,48}]
wire [1:0] readys_readys_2 = ~_readys_readys_T_8; // @[Arbiter.scala:26:{18,39}]
wire [1:0] _readys_T_27 = readys_readys_2; // @[Arbiter.scala:26:18, :30:11]
wire _readys_T_25 = |readys_valid_2; // @[Arbiter.scala:21:23, :27:27]
wire _readys_T_26 = latch_2 & _readys_T_25; // @[Arbiter.scala:27:{18,27}, :62:24]
wire [1:0] _readys_mask_T_10 = readys_readys_2 & readys_valid_2; // @[Arbiter.scala:21:23, :26:18, :28:29]
wire [2:0] _readys_mask_T_11 = {_readys_mask_T_10, 1'h0}; // @[package.scala:253:48]
wire [1:0] _readys_mask_T_12 = _readys_mask_T_11[1:0]; // @[package.scala:253:{48,53}]
wire [1:0] _readys_mask_T_13 = _readys_mask_T_10 | _readys_mask_T_12; // @[package.scala:253:{43,53}]
wire [1:0] _readys_mask_T_14 = _readys_mask_T_13; // @[package.scala:253:43, :254:17]
wire _readys_T_28 = _readys_T_27[0]; // @[Arbiter.scala:30:11, :68:76]
wire readys_2_0 = _readys_T_28; // @[Arbiter.scala:68:{27,76}]
wire _readys_T_29 = _readys_T_27[1]; // @[Arbiter.scala:30:11, :68:76]
wire readys_2_1 = _readys_T_29; // @[Arbiter.scala:68:{27,76}]
wire _winner_T_4 = readys_2_0 & portsDIO_filtered_0_valid; // @[Xbar.scala:352:24]
wire winner_2_0 = _winner_T_4; // @[Arbiter.scala:71:{27,69}]
wire _winner_T_5 = readys_2_1 & portsDIO_filtered_1_0_valid; // @[Xbar.scala:352:24]
wire winner_2_1 = _winner_T_5; // @[Arbiter.scala:71:{27,69}]
wire prefixOR_1_2 = winner_2_0; // @[Arbiter.scala:71:27, :76:48]
wire _prefixOR_T_2 = prefixOR_1_2 | winner_2_1; // @[Arbiter.scala:71:27, :76:48]
wire _in_0_d_valid_T = portsDIO_filtered_0_valid | portsDIO_filtered_1_0_valid; // @[Xbar.scala:352:24]
wire [8:0] maskedBeats_0_2 = winner_2_0 ? beatsDO_0 : 9'h0; // @[Edges.scala:221:14]
wire [2:0] maskedBeats_1_2 = winner_2_1 ? beatsDO_1 : 3'h0; // @[Edges.scala:221:14]
wire [8:0] initBeats_2 = {maskedBeats_0_2[8:3], maskedBeats_0_2[2:0] | maskedBeats_1_2}; // @[Arbiter.scala:82:69, :84:44]
wire _beatsLeft_T_8 = in_0_d_ready & in_0_d_valid; // @[Decoupled.scala:51:35]
wire [9:0] _beatsLeft_T_9 = {1'h0, beatsLeft_2} - {9'h0, _beatsLeft_T_8}; // @[Decoupled.scala:51:35]
wire [8:0] _beatsLeft_T_10 = _beatsLeft_T_9[8:0]; // @[Arbiter.scala:85:52]
wire [8:0] _beatsLeft_T_11 = latch_2 ? initBeats_2 : _beatsLeft_T_10; // @[Arbiter.scala:62:24, :84:44, :85:{23,52}]
reg state_2_0; // @[Arbiter.scala:88:26]
reg state_2_1; // @[Arbiter.scala:88:26]
wire muxState_2_0 = idle_2 ? winner_2_0 : state_2_0; // @[Arbiter.scala:61:28, :71:27, :88:26, :89:25]
wire muxState_2_1 = idle_2 ? winner_2_1 : state_2_1; // @[Arbiter.scala:61:28, :71:27, :88:26, :89:25]
wire allowed_2_0 = idle_2 ? readys_2_0 : state_2_0; // @[Arbiter.scala:61:28, :68:27, :88:26, :92:24]
wire allowed_2_1 = idle_2 ? readys_2_1 : state_2_1; // @[Arbiter.scala:61:28, :68:27, :88:26, :92:24]
assign _filtered_0_ready_T_2 = in_0_d_ready & allowed_2_0; // @[Xbar.scala:159:18]
assign portsDIO_filtered_0_ready = _filtered_0_ready_T_2; // @[Xbar.scala:352:24]
assign _filtered_0_ready_T_3 = in_0_d_ready & allowed_2_1; // @[Xbar.scala:159:18]
assign portsDIO_filtered_1_0_ready = _filtered_0_ready_T_3; // @[Xbar.scala:352:24]
wire _in_0_d_valid_T_1 = state_2_0 & portsDIO_filtered_0_valid; // @[Mux.scala:30:73]
wire _in_0_d_valid_T_2 = state_2_1 & portsDIO_filtered_1_0_valid; // @[Mux.scala:30:73]
wire _in_0_d_valid_T_3 = _in_0_d_valid_T_1 | _in_0_d_valid_T_2; // @[Mux.scala:30:73]
wire _in_0_d_valid_WIRE = _in_0_d_valid_T_3; // @[Mux.scala:30:73]
assign _in_0_d_valid_T_4 = idle_2 ? _in_0_d_valid_T : _in_0_d_valid_WIRE; // @[Mux.scala:30:73]
assign in_0_d_valid = _in_0_d_valid_T_4; // @[Xbar.scala:159:18]
wire [2:0] _in_0_d_bits_WIRE_10; // @[Mux.scala:30:73]
assign in_0_d_bits_opcode = _in_0_d_bits_WIRE_opcode; // @[Mux.scala:30:73]
wire [1:0] _in_0_d_bits_WIRE_9; // @[Mux.scala:30:73]
assign in_0_d_bits_param = _in_0_d_bits_WIRE_param; // @[Mux.scala:30:73]
wire [3:0] _in_0_d_bits_WIRE_8; // @[Mux.scala:30:73]
assign in_0_d_bits_size = _in_0_d_bits_WIRE_size; // @[Mux.scala:30:73]
wire [5:0] _in_0_d_bits_WIRE_7; // @[Mux.scala:30:73]
assign in_0_d_bits_source = _in_0_d_bits_WIRE_source; // @[Mux.scala:30:73]
wire [2:0] _in_0_d_bits_WIRE_6; // @[Mux.scala:30:73]
assign in_0_d_bits_sink = _in_0_d_bits_WIRE_sink; // @[Mux.scala:30:73]
wire _in_0_d_bits_WIRE_5; // @[Mux.scala:30:73]
assign in_0_d_bits_denied = _in_0_d_bits_WIRE_denied; // @[Mux.scala:30:73]
wire [63:0] _in_0_d_bits_WIRE_2; // @[Mux.scala:30:73]
assign in_0_d_bits_data = _in_0_d_bits_WIRE_data; // @[Mux.scala:30:73]
wire _in_0_d_bits_WIRE_1; // @[Mux.scala:30:73]
assign in_0_d_bits_corrupt = _in_0_d_bits_WIRE_corrupt; // @[Mux.scala:30:73]
wire _in_0_d_bits_T = muxState_2_0 & portsDIO_filtered_0_bits_corrupt; // @[Mux.scala:30:73]
wire _in_0_d_bits_T_1 = muxState_2_1 & portsDIO_filtered_1_0_bits_corrupt; // @[Mux.scala:30:73]
wire _in_0_d_bits_T_2 = _in_0_d_bits_T | _in_0_d_bits_T_1; // @[Mux.scala:30:73]
assign _in_0_d_bits_WIRE_1 = _in_0_d_bits_T_2; // @[Mux.scala:30:73]
assign _in_0_d_bits_WIRE_corrupt = _in_0_d_bits_WIRE_1; // @[Mux.scala:30:73]
wire [63:0] _in_0_d_bits_T_3 = muxState_2_0 ? portsDIO_filtered_0_bits_data : 64'h0; // @[Mux.scala:30:73]
wire [63:0] _in_0_d_bits_T_4 = muxState_2_1 ? portsDIO_filtered_1_0_bits_data : 64'h0; // @[Mux.scala:30:73]
wire [63:0] _in_0_d_bits_T_5 = _in_0_d_bits_T_3 | _in_0_d_bits_T_4; // @[Mux.scala:30:73]
assign _in_0_d_bits_WIRE_2 = _in_0_d_bits_T_5; // @[Mux.scala:30:73]
assign _in_0_d_bits_WIRE_data = _in_0_d_bits_WIRE_2; // @[Mux.scala:30:73]
wire _in_0_d_bits_T_6 = muxState_2_0 & portsDIO_filtered_0_bits_denied; // @[Mux.scala:30:73]
wire _in_0_d_bits_T_7 = muxState_2_1 & portsDIO_filtered_1_0_bits_denied; // @[Mux.scala:30:73]
wire _in_0_d_bits_T_8 = _in_0_d_bits_T_6 | _in_0_d_bits_T_7; // @[Mux.scala:30:73]
assign _in_0_d_bits_WIRE_5 = _in_0_d_bits_T_8; // @[Mux.scala:30:73]
assign _in_0_d_bits_WIRE_denied = _in_0_d_bits_WIRE_5; // @[Mux.scala:30:73]
wire [2:0] _in_0_d_bits_T_9 = muxState_2_0 ? portsDIO_filtered_0_bits_sink : 3'h0; // @[Mux.scala:30:73]
wire [2:0] _in_0_d_bits_T_10 = muxState_2_1 ? portsDIO_filtered_1_0_bits_sink : 3'h0; // @[Mux.scala:30:73]
wire [2:0] _in_0_d_bits_T_11 = _in_0_d_bits_T_9 | _in_0_d_bits_T_10; // @[Mux.scala:30:73]
assign _in_0_d_bits_WIRE_6 = _in_0_d_bits_T_11; // @[Mux.scala:30:73]
assign _in_0_d_bits_WIRE_sink = _in_0_d_bits_WIRE_6; // @[Mux.scala:30:73]
wire [5:0] _in_0_d_bits_T_12 = muxState_2_0 ? portsDIO_filtered_0_bits_source : 6'h0; // @[Mux.scala:30:73]
wire [5:0] _in_0_d_bits_T_13 = muxState_2_1 ? portsDIO_filtered_1_0_bits_source : 6'h0; // @[Mux.scala:30:73]
wire [5:0] _in_0_d_bits_T_14 = _in_0_d_bits_T_12 | _in_0_d_bits_T_13; // @[Mux.scala:30:73]
assign _in_0_d_bits_WIRE_7 = _in_0_d_bits_T_14; // @[Mux.scala:30:73]
assign _in_0_d_bits_WIRE_source = _in_0_d_bits_WIRE_7; // @[Mux.scala:30:73]
wire [3:0] _in_0_d_bits_T_15 = muxState_2_0 ? portsDIO_filtered_0_bits_size : 4'h0; // @[Mux.scala:30:73]
wire [3:0] _in_0_d_bits_T_16 = muxState_2_1 ? portsDIO_filtered_1_0_bits_size : 4'h0; // @[Mux.scala:30:73]
wire [3:0] _in_0_d_bits_T_17 = _in_0_d_bits_T_15 | _in_0_d_bits_T_16; // @[Mux.scala:30:73]
assign _in_0_d_bits_WIRE_8 = _in_0_d_bits_T_17; // @[Mux.scala:30:73]
assign _in_0_d_bits_WIRE_size = _in_0_d_bits_WIRE_8; // @[Mux.scala:30:73]
wire [1:0] _in_0_d_bits_T_18 = muxState_2_0 ? portsDIO_filtered_0_bits_param : 2'h0; // @[Mux.scala:30:73]
wire [1:0] _in_0_d_bits_T_19 = muxState_2_1 ? portsDIO_filtered_1_0_bits_param : 2'h0; // @[Mux.scala:30:73]
wire [1:0] _in_0_d_bits_T_20 = _in_0_d_bits_T_18 | _in_0_d_bits_T_19; // @[Mux.scala:30:73]
assign _in_0_d_bits_WIRE_9 = _in_0_d_bits_T_20; // @[Mux.scala:30:73]
assign _in_0_d_bits_WIRE_param = _in_0_d_bits_WIRE_9; // @[Mux.scala:30:73]
wire [2:0] _in_0_d_bits_T_21 = muxState_2_0 ? portsDIO_filtered_0_bits_opcode : 3'h0; // @[Mux.scala:30:73]
wire [2:0] _in_0_d_bits_T_22 = muxState_2_1 ? portsDIO_filtered_1_0_bits_opcode : 3'h0; // @[Mux.scala:30:73]
wire [2:0] _in_0_d_bits_T_23 = _in_0_d_bits_T_21 | _in_0_d_bits_T_22; // @[Mux.scala:30:73]
assign _in_0_d_bits_WIRE_10 = _in_0_d_bits_T_23; // @[Mux.scala:30:73]
assign _in_0_d_bits_WIRE_opcode = _in_0_d_bits_WIRE_10; // @[Mux.scala:30:73]
reg [8:0] beatsLeft_3; // @[Arbiter.scala:60:30]
wire idle_3 = beatsLeft_3 == 9'h0; // @[Arbiter.scala:60:30, :61:28]
wire latch_3 = idle_3 & in_1_d_ready; // @[Xbar.scala:159:18]
wire [1:0] _readys_T_30 = {portsDIO_filtered_1_1_valid, portsDIO_filtered_1_valid}; // @[Xbar.scala:352:24]
wire [1:0] readys_valid_3 = _readys_T_30; // @[Arbiter.scala:21:23, :68:51]
wire _readys_T_31 = readys_valid_3 == _readys_T_30; // @[Arbiter.scala:21:23, :22:19, :68:51]
wire _readys_T_33 = ~_readys_T_32; // @[Arbiter.scala:22:12]
wire _readys_T_34 = ~_readys_T_31; // @[Arbiter.scala:22:{12,19}]
reg [1:0] readys_mask_3; // @[Arbiter.scala:23:23]
wire [1:0] _readys_filter_T_6 = ~readys_mask_3; // @[Arbiter.scala:23:23, :24:30]
wire [1:0] _readys_filter_T_7 = readys_valid_3 & _readys_filter_T_6; // @[Arbiter.scala:21:23, :24:{28,30}]
wire [3:0] readys_filter_3 = {_readys_filter_T_7, readys_valid_3}; // @[Arbiter.scala:21:23, :24:{21,28}]
wire [2:0] _readys_unready_T_15 = readys_filter_3[3:1]; // @[package.scala:262:48]
wire [3:0] _readys_unready_T_16 = {readys_filter_3[3], readys_filter_3[2:0] | _readys_unready_T_15}; // @[package.scala:262:{43,48}]
wire [3:0] _readys_unready_T_17 = _readys_unready_T_16; // @[package.scala:262:43, :263:17]
wire [2:0] _readys_unready_T_18 = _readys_unready_T_17[3:1]; // @[package.scala:263:17]
wire [3:0] _readys_unready_T_19 = {readys_mask_3, 2'h0}; // @[Arbiter.scala:23:23, :25:66]
wire [3:0] readys_unready_3 = {1'h0, _readys_unready_T_18} | _readys_unready_T_19; // @[Arbiter.scala:25:{52,58,66}]
wire [1:0] _readys_readys_T_9 = readys_unready_3[3:2]; // @[Arbiter.scala:25:58, :26:29]
wire [1:0] _readys_readys_T_10 = readys_unready_3[1:0]; // @[Arbiter.scala:25:58, :26:48]
wire [1:0] _readys_readys_T_11 = _readys_readys_T_9 & _readys_readys_T_10; // @[Arbiter.scala:26:{29,39,48}]
wire [1:0] readys_readys_3 = ~_readys_readys_T_11; // @[Arbiter.scala:26:{18,39}]
wire [1:0] _readys_T_37 = readys_readys_3; // @[Arbiter.scala:26:18, :30:11]
wire _readys_T_35 = |readys_valid_3; // @[Arbiter.scala:21:23, :27:27]
wire _readys_T_36 = latch_3 & _readys_T_35; // @[Arbiter.scala:27:{18,27}, :62:24]
wire [1:0] _readys_mask_T_15 = readys_readys_3 & readys_valid_3; // @[Arbiter.scala:21:23, :26:18, :28:29]
wire [2:0] _readys_mask_T_16 = {_readys_mask_T_15, 1'h0}; // @[package.scala:253:48]
wire [1:0] _readys_mask_T_17 = _readys_mask_T_16[1:0]; // @[package.scala:253:{48,53}]
wire [1:0] _readys_mask_T_18 = _readys_mask_T_15 | _readys_mask_T_17; // @[package.scala:253:{43,53}]
wire [1:0] _readys_mask_T_19 = _readys_mask_T_18; // @[package.scala:253:43, :254:17]
wire _readys_T_38 = _readys_T_37[0]; // @[Arbiter.scala:30:11, :68:76]
wire readys_3_0 = _readys_T_38; // @[Arbiter.scala:68:{27,76}]
wire _readys_T_39 = _readys_T_37[1]; // @[Arbiter.scala:30:11, :68:76]
wire readys_3_1 = _readys_T_39; // @[Arbiter.scala:68:{27,76}]
wire _winner_T_6 = readys_3_0 & portsDIO_filtered_1_valid; // @[Xbar.scala:352:24]
wire winner_3_0 = _winner_T_6; // @[Arbiter.scala:71:{27,69}]
wire _winner_T_7 = readys_3_1 & portsDIO_filtered_1_1_valid; // @[Xbar.scala:352:24]
wire winner_3_1 = _winner_T_7; // @[Arbiter.scala:71:{27,69}]
wire prefixOR_1_3 = winner_3_0; // @[Arbiter.scala:71:27, :76:48]
wire _prefixOR_T_3 = prefixOR_1_3 | winner_3_1; // @[Arbiter.scala:71:27, :76:48]
wire _in_1_d_valid_T = portsDIO_filtered_1_valid | portsDIO_filtered_1_1_valid; // @[Xbar.scala:352:24] |
Generate the Verilog code corresponding to the following Chisel files.
File ShiftReg.scala:
// See LICENSE.SiFive for license details.
package freechips.rocketchip.util
import chisel3._
// Similar to the Chisel ShiftRegister but allows the user to suggest a
// name to the registers that get instantiated, and
// to provide a reset value.
object ShiftRegInit {
def apply[T <: Data](in: T, n: Int, init: T, name: Option[String] = None): T =
(0 until n).foldRight(in) {
case (i, next) => {
val r = RegNext(next, init)
name.foreach { na => r.suggestName(s"${na}_${i}") }
r
}
}
}
/** These wrap behavioral
* shift registers into specific modules to allow for
* backend flows to replace or constrain
* them properly when used for CDC synchronization,
* rather than buffering.
*
* The different types vary in their reset behavior:
* AsyncResetShiftReg -- Asynchronously reset register array
* A W(width) x D(depth) sized array is constructed from D instantiations of a
* W-wide register vector. Functionally identical to AsyncResetSyncrhonizerShiftReg,
* but only used for timing applications
*/
abstract class AbstractPipelineReg(w: Int = 1) extends Module {
val io = IO(new Bundle {
val d = Input(UInt(w.W))
val q = Output(UInt(w.W))
}
)
}
object AbstractPipelineReg {
def apply [T <: Data](gen: => AbstractPipelineReg, in: T, name: Option[String] = None): T = {
val chain = Module(gen)
name.foreach{ chain.suggestName(_) }
chain.io.d := in.asUInt
chain.io.q.asTypeOf(in)
}
}
class AsyncResetShiftReg(w: Int = 1, depth: Int = 1, init: Int = 0, name: String = "pipe") extends AbstractPipelineReg(w) {
require(depth > 0, "Depth must be greater than 0.")
override def desiredName = s"AsyncResetShiftReg_w${w}_d${depth}_i${init}"
val chain = List.tabulate(depth) { i =>
Module (new AsyncResetRegVec(w, init)).suggestName(s"${name}_${i}")
}
chain.last.io.d := io.d
chain.last.io.en := true.B
(chain.init zip chain.tail).foreach { case (sink, source) =>
sink.io.d := source.io.q
sink.io.en := true.B
}
io.q := chain.head.io.q
}
object AsyncResetShiftReg {
def apply [T <: Data](in: T, depth: Int, init: Int = 0, name: Option[String] = None): T =
AbstractPipelineReg(new AsyncResetShiftReg(in.getWidth, depth, init), in, name)
def apply [T <: Data](in: T, depth: Int, name: Option[String]): T =
apply(in, depth, 0, name)
def apply [T <: Data](in: T, depth: Int, init: T, name: Option[String]): T =
apply(in, depth, init.litValue.toInt, name)
def apply [T <: Data](in: T, depth: Int, init: T): T =
apply (in, depth, init.litValue.toInt, None)
}
File SynchronizerReg.scala:
// See LICENSE.SiFive for license details.
package freechips.rocketchip.util
import chisel3._
import chisel3.util.{RegEnable, Cat}
/** These wrap behavioral
* shift and next registers into specific modules to allow for
* backend flows to replace or constrain
* them properly when used for CDC synchronization,
* rather than buffering.
*
*
* These are built up of *ResetSynchronizerPrimitiveShiftReg,
* intended to be replaced by the integrator's metastable flops chains or replaced
* at this level if they have a multi-bit wide synchronizer primitive.
* The different types vary in their reset behavior:
* NonSyncResetSynchronizerShiftReg -- Register array which does not have a reset pin
* AsyncResetSynchronizerShiftReg -- Asynchronously reset register array, constructed from W instantiations of D deep
* 1-bit-wide shift registers.
* SyncResetSynchronizerShiftReg -- Synchronously reset register array, constructed similarly to AsyncResetSynchronizerShiftReg
*
* [Inferred]ResetSynchronizerShiftReg -- TBD reset type by chisel3 reset inference.
*
* ClockCrossingReg -- Not made up of SynchronizerPrimitiveShiftReg. This is for single-deep flops which cross
* Clock Domains.
*/
object SynchronizerResetType extends Enumeration {
val NonSync, Inferred, Sync, Async = Value
}
// Note: this should not be used directly.
// Use the companion object to generate this with the correct reset type mixin.
private class SynchronizerPrimitiveShiftReg(
sync: Int,
init: Boolean,
resetType: SynchronizerResetType.Value)
extends AbstractPipelineReg(1) {
val initInt = if (init) 1 else 0
val initPostfix = resetType match {
case SynchronizerResetType.NonSync => ""
case _ => s"_i${initInt}"
}
override def desiredName = s"${resetType.toString}ResetSynchronizerPrimitiveShiftReg_d${sync}${initPostfix}"
val chain = List.tabulate(sync) { i =>
val reg = if (resetType == SynchronizerResetType.NonSync) Reg(Bool()) else RegInit(init.B)
reg.suggestName(s"sync_$i")
}
chain.last := io.d.asBool
(chain.init zip chain.tail).foreach { case (sink, source) =>
sink := source
}
io.q := chain.head.asUInt
}
private object SynchronizerPrimitiveShiftReg {
def apply (in: Bool, sync: Int, init: Boolean, resetType: SynchronizerResetType.Value): Bool = {
val gen: () => SynchronizerPrimitiveShiftReg = resetType match {
case SynchronizerResetType.NonSync =>
() => new SynchronizerPrimitiveShiftReg(sync, init, resetType)
case SynchronizerResetType.Async =>
() => new SynchronizerPrimitiveShiftReg(sync, init, resetType) with RequireAsyncReset
case SynchronizerResetType.Sync =>
() => new SynchronizerPrimitiveShiftReg(sync, init, resetType) with RequireSyncReset
case SynchronizerResetType.Inferred =>
() => new SynchronizerPrimitiveShiftReg(sync, init, resetType)
}
AbstractPipelineReg(gen(), in)
}
}
// Note: This module may end up with a non-AsyncReset type reset.
// But the Primitives within will always have AsyncReset type.
class AsyncResetSynchronizerShiftReg(w: Int = 1, sync: Int, init: Int)
extends AbstractPipelineReg(w) {
require(sync > 1, s"Sync must be greater than 1, not ${sync}.")
override def desiredName = s"AsyncResetSynchronizerShiftReg_w${w}_d${sync}_i${init}"
val output = Seq.tabulate(w) { i =>
val initBit = ((init >> i) & 1) > 0
withReset(reset.asAsyncReset){
SynchronizerPrimitiveShiftReg(io.d(i), sync, initBit, SynchronizerResetType.Async)
}
}
io.q := Cat(output.reverse)
}
object AsyncResetSynchronizerShiftReg {
def apply [T <: Data](in: T, sync: Int, init: Int, name: Option[String] = None): T =
AbstractPipelineReg(new AsyncResetSynchronizerShiftReg(in.getWidth, sync, init), in, name)
def apply [T <: Data](in: T, sync: Int, name: Option[String]): T =
apply (in, sync, 0, name)
def apply [T <: Data](in: T, sync: Int): T =
apply (in, sync, 0, None)
def apply [T <: Data](in: T, sync: Int, init: T, name: Option[String]): T =
apply(in, sync, init.litValue.toInt, name)
def apply [T <: Data](in: T, sync: Int, init: T): T =
apply (in, sync, init.litValue.toInt, None)
}
// Note: This module may end up with a non-Bool type reset.
// But the Primitives within will always have Bool reset type.
@deprecated("SyncResetSynchronizerShiftReg is unecessary with Chisel3 inferred resets. Use ResetSynchronizerShiftReg which will use the inferred reset type.", "rocket-chip 1.2")
class SyncResetSynchronizerShiftReg(w: Int = 1, sync: Int, init: Int) extends AbstractPipelineReg(w) {
require(sync > 1, s"Sync must be greater than 1, not ${sync}.")
override def desiredName = s"SyncResetSynchronizerShiftReg_w${w}_d${sync}_i${init}"
val output = Seq.tabulate(w) { i =>
val initBit = ((init >> i) & 1) > 0
withReset(reset.asBool){
SynchronizerPrimitiveShiftReg(io.d(i), sync, initBit, SynchronizerResetType.Sync)
}
}
io.q := Cat(output.reverse)
}
object SyncResetSynchronizerShiftReg {
def apply [T <: Data](in: T, sync: Int, init: Int, name: Option[String] = None): T =
if (sync == 0) in else AbstractPipelineReg(new SyncResetSynchronizerShiftReg(in.getWidth, sync, init), in, name)
def apply [T <: Data](in: T, sync: Int, name: Option[String]): T =
apply (in, sync, 0, name)
def apply [T <: Data](in: T, sync: Int): T =
apply (in, sync, 0, None)
def apply [T <: Data](in: T, sync: Int, init: T, name: Option[String]): T =
apply(in, sync, init.litValue.toInt, name)
def apply [T <: Data](in: T, sync: Int, init: T): T =
apply (in, sync, init.litValue.toInt, None)
}
class ResetSynchronizerShiftReg(w: Int = 1, sync: Int, init: Int) extends AbstractPipelineReg(w) {
require(sync > 1, s"Sync must be greater than 1, not ${sync}.")
override def desiredName = s"ResetSynchronizerShiftReg_w${w}_d${sync}_i${init}"
val output = Seq.tabulate(w) { i =>
val initBit = ((init >> i) & 1) > 0
SynchronizerPrimitiveShiftReg(io.d(i), sync, initBit, SynchronizerResetType.Inferred)
}
io.q := Cat(output.reverse)
}
object ResetSynchronizerShiftReg {
def apply [T <: Data](in: T, sync: Int, init: Int, name: Option[String] = None): T =
AbstractPipelineReg(new ResetSynchronizerShiftReg(in.getWidth, sync, init), in, name)
def apply [T <: Data](in: T, sync: Int, name: Option[String]): T =
apply (in, sync, 0, name)
def apply [T <: Data](in: T, sync: Int): T =
apply (in, sync, 0, None)
def apply [T <: Data](in: T, sync: Int, init: T, name: Option[String]): T =
apply(in, sync, init.litValue.toInt, name)
def apply [T <: Data](in: T, sync: Int, init: T): T =
apply (in, sync, init.litValue.toInt, None)
}
class SynchronizerShiftReg(w: Int = 1, sync: Int = 3) extends AbstractPipelineReg(w) {
require(sync > 1, s"Sync must be greater than 1, not ${sync}.")
override def desiredName = s"SynchronizerShiftReg_w${w}_d${sync}"
val output = Seq.tabulate(w) { i =>
SynchronizerPrimitiveShiftReg(io.d(i), sync, false, SynchronizerResetType.NonSync)
}
io.q := Cat(output.reverse)
}
object SynchronizerShiftReg {
def apply [T <: Data](in: T, sync: Int, name: Option[String] = None): T =
if (sync == 0) in else AbstractPipelineReg(new SynchronizerShiftReg(in.getWidth, sync), in, name)
def apply [T <: Data](in: T, sync: Int): T =
apply (in, sync, None)
def apply [T <: Data](in: T): T =
apply (in, 3, None)
}
class ClockCrossingReg(w: Int = 1, doInit: Boolean) extends Module {
override def desiredName = s"ClockCrossingReg_w${w}"
val io = IO(new Bundle{
val d = Input(UInt(w.W))
val q = Output(UInt(w.W))
val en = Input(Bool())
})
val cdc_reg = if (doInit) RegEnable(io.d, 0.U(w.W), io.en) else RegEnable(io.d, io.en)
io.q := cdc_reg
}
object ClockCrossingReg {
def apply [T <: Data](in: T, en: Bool, doInit: Boolean, name: Option[String] = None): T = {
val cdc_reg = Module(new ClockCrossingReg(in.getWidth, doInit))
name.foreach{ cdc_reg.suggestName(_) }
cdc_reg.io.d := in.asUInt
cdc_reg.io.en := en
cdc_reg.io.q.asTypeOf(in)
}
}
| module AsyncResetSynchronizerPrimitiveShiftReg_d3_i0_79( // @[SynchronizerReg.scala:68:19]
input clock, // @[SynchronizerReg.scala:68:19]
input reset, // @[SynchronizerReg.scala:68:19]
input io_d, // @[ShiftReg.scala:36:14]
output io_q // @[ShiftReg.scala:36:14]
);
wire io_d_0 = io_d; // @[SynchronizerReg.scala:68:19]
wire _sync_2_T = io_d_0; // @[SynchronizerReg.scala:54:22, :68:19]
wire io_q_0; // @[SynchronizerReg.scala:68:19]
reg sync_0; // @[SynchronizerReg.scala:51:87]
assign io_q_0 = sync_0; // @[SynchronizerReg.scala:51:87, :68:19]
reg sync_1; // @[SynchronizerReg.scala:51:87]
reg sync_2; // @[SynchronizerReg.scala:51:87]
always @(posedge clock or posedge reset) begin // @[SynchronizerReg.scala:68:19]
if (reset) begin // @[SynchronizerReg.scala:68:19]
sync_0 <= 1'h0; // @[SynchronizerReg.scala:51:87]
sync_1 <= 1'h0; // @[SynchronizerReg.scala:51:87]
sync_2 <= 1'h0; // @[SynchronizerReg.scala:51:87]
end
else begin // @[SynchronizerReg.scala:68:19]
sync_0 <= sync_1; // @[SynchronizerReg.scala:51:87]
sync_1 <= sync_2; // @[SynchronizerReg.scala:51:87]
sync_2 <= _sync_2_T; // @[SynchronizerReg.scala:51:87, :54:22]
end
always @(posedge, posedge) |
Generate the Verilog code corresponding to the following Chisel files.
File MulRecFN.scala:
/*============================================================================
This Chisel source file is part of a pre-release version of the HardFloat IEEE
Floating-Point Arithmetic Package, by John R. Hauser (ported from Verilog to
Chisel by Andrew Waterman).
Copyright 2019, 2020 The Regents of the University of California. All rights
reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
1. Redistributions of source code must retain the above copyright notice,
this list of conditions, and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice,
this list of conditions, and the following disclaimer in the documentation
and/or other materials provided with the distribution.
3. Neither the name of the University nor the names of its contributors may
be used to endorse or promote products derived from this software without
specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS "AS IS", AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ARE
DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
=============================================================================*/
package hardfloat
import chisel3._
import chisel3.util._
import consts._
//----------------------------------------------------------------------------
//----------------------------------------------------------------------------
class MulFullRawFN(expWidth: Int, sigWidth: Int) extends chisel3.RawModule
{
val io = IO(new Bundle {
val a = Input(new RawFloat(expWidth, sigWidth))
val b = Input(new RawFloat(expWidth, sigWidth))
val invalidExc = Output(Bool())
val rawOut = Output(new RawFloat(expWidth, sigWidth*2 - 1))
})
/*------------------------------------------------------------------------
*------------------------------------------------------------------------*/
val notSigNaN_invalidExc = (io.a.isInf && io.b.isZero) || (io.a.isZero && io.b.isInf)
val notNaN_isInfOut = io.a.isInf || io.b.isInf
val notNaN_isZeroOut = io.a.isZero || io.b.isZero
val notNaN_signOut = io.a.sign ^ io.b.sign
val common_sExpOut = io.a.sExp + io.b.sExp - (1<<expWidth).S
val common_sigOut = (io.a.sig * io.b.sig)(sigWidth*2 - 1, 0)
/*------------------------------------------------------------------------
*------------------------------------------------------------------------*/
io.invalidExc := isSigNaNRawFloat(io.a) || isSigNaNRawFloat(io.b) || notSigNaN_invalidExc
io.rawOut.isInf := notNaN_isInfOut
io.rawOut.isZero := notNaN_isZeroOut
io.rawOut.sExp := common_sExpOut
io.rawOut.isNaN := io.a.isNaN || io.b.isNaN
io.rawOut.sign := notNaN_signOut
io.rawOut.sig := common_sigOut
}
class MulRawFN(expWidth: Int, sigWidth: Int) extends chisel3.RawModule
{
val io = IO(new Bundle {
val a = Input(new RawFloat(expWidth, sigWidth))
val b = Input(new RawFloat(expWidth, sigWidth))
val invalidExc = Output(Bool())
val rawOut = Output(new RawFloat(expWidth, sigWidth + 2))
})
val mulFullRaw = Module(new MulFullRawFN(expWidth, sigWidth))
mulFullRaw.io.a := io.a
mulFullRaw.io.b := io.b
io.invalidExc := mulFullRaw.io.invalidExc
io.rawOut := mulFullRaw.io.rawOut
io.rawOut.sig := {
val sig = mulFullRaw.io.rawOut.sig
Cat(sig >> (sigWidth - 2), sig(sigWidth - 3, 0).orR)
}
}
//----------------------------------------------------------------------------
//----------------------------------------------------------------------------
class MulRecFN(expWidth: Int, sigWidth: Int) extends chisel3.RawModule
{
val io = IO(new Bundle {
val a = Input(UInt((expWidth + sigWidth + 1).W))
val b = Input(UInt((expWidth + sigWidth + 1).W))
val roundingMode = Input(UInt(3.W))
val detectTininess = Input(Bool())
val out = Output(UInt((expWidth + sigWidth + 1).W))
val exceptionFlags = Output(UInt(5.W))
})
//------------------------------------------------------------------------
//------------------------------------------------------------------------
val mulRawFN = Module(new MulRawFN(expWidth, sigWidth))
mulRawFN.io.a := rawFloatFromRecFN(expWidth, sigWidth, io.a)
mulRawFN.io.b := rawFloatFromRecFN(expWidth, sigWidth, io.b)
//------------------------------------------------------------------------
//------------------------------------------------------------------------
val roundRawFNToRecFN =
Module(new RoundRawFNToRecFN(expWidth, sigWidth, 0))
roundRawFNToRecFN.io.invalidExc := mulRawFN.io.invalidExc
roundRawFNToRecFN.io.infiniteExc := false.B
roundRawFNToRecFN.io.in := mulRawFN.io.rawOut
roundRawFNToRecFN.io.roundingMode := io.roundingMode
roundRawFNToRecFN.io.detectTininess := io.detectTininess
io.out := roundRawFNToRecFN.io.out
io.exceptionFlags := roundRawFNToRecFN.io.exceptionFlags
}
File rawFloatFromRecFN.scala:
/*============================================================================
This Chisel source file is part of a pre-release version of the HardFloat IEEE
Floating-Point Arithmetic Package, by John R. Hauser (with some contributions
from Yunsup Lee and Andrew Waterman, mainly concerning testing).
Copyright 2010, 2011, 2012, 2013, 2014, 2015, 2016 The Regents of the
University of California. All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
1. Redistributions of source code must retain the above copyright notice,
this list of conditions, and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice,
this list of conditions, and the following disclaimer in the documentation
and/or other materials provided with the distribution.
3. Neither the name of the University nor the names of its contributors may
be used to endorse or promote products derived from this software without
specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS "AS IS", AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ARE
DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
=============================================================================*/
package hardfloat
import chisel3._
import chisel3.util._
/*----------------------------------------------------------------------------
| In the result, no more than one of 'isNaN', 'isInf', and 'isZero' will be
| set.
*----------------------------------------------------------------------------*/
object rawFloatFromRecFN
{
def apply(expWidth: Int, sigWidth: Int, in: Bits): RawFloat =
{
val exp = in(expWidth + sigWidth - 1, sigWidth - 1)
val isZero = exp(expWidth, expWidth - 2) === 0.U
val isSpecial = exp(expWidth, expWidth - 1) === 3.U
val out = Wire(new RawFloat(expWidth, sigWidth))
out.isNaN := isSpecial && exp(expWidth - 2)
out.isInf := isSpecial && ! exp(expWidth - 2)
out.isZero := isZero
out.sign := in(expWidth + sigWidth)
out.sExp := exp.zext
out.sig := 0.U(1.W) ## ! isZero ## in(sigWidth - 2, 0)
out
}
}
| module MulRecFN_55( // @[MulRecFN.scala:100:7]
input [32:0] io_a, // @[MulRecFN.scala:102:16]
input [32:0] io_b, // @[MulRecFN.scala:102:16]
output [32:0] io_out // @[MulRecFN.scala:102:16]
);
wire _mulRawFN_io_invalidExc; // @[MulRecFN.scala:113:26]
wire _mulRawFN_io_rawOut_isNaN; // @[MulRecFN.scala:113:26]
wire _mulRawFN_io_rawOut_isInf; // @[MulRecFN.scala:113:26]
wire _mulRawFN_io_rawOut_isZero; // @[MulRecFN.scala:113:26]
wire _mulRawFN_io_rawOut_sign; // @[MulRecFN.scala:113:26]
wire [9:0] _mulRawFN_io_rawOut_sExp; // @[MulRecFN.scala:113:26]
wire [26:0] _mulRawFN_io_rawOut_sig; // @[MulRecFN.scala:113:26]
wire [32:0] io_a_0 = io_a; // @[MulRecFN.scala:100:7]
wire [32:0] io_b_0 = io_b; // @[MulRecFN.scala:100:7]
wire io_detectTininess = 1'h1; // @[MulRecFN.scala:100:7, :102:16, :121:15]
wire [2:0] io_roundingMode = 3'h0; // @[MulRecFN.scala:100:7, :102:16, :121:15]
wire [32:0] io_out_0; // @[MulRecFN.scala:100:7]
wire [4:0] io_exceptionFlags; // @[MulRecFN.scala:100:7]
wire [8:0] mulRawFN_io_a_exp = io_a_0[31:23]; // @[rawFloatFromRecFN.scala:51:21]
wire [2:0] _mulRawFN_io_a_isZero_T = mulRawFN_io_a_exp[8:6]; // @[rawFloatFromRecFN.scala:51:21, :52:28]
wire mulRawFN_io_a_isZero = _mulRawFN_io_a_isZero_T == 3'h0; // @[rawFloatFromRecFN.scala:52:{28,53}]
wire mulRawFN_io_a_out_isZero = mulRawFN_io_a_isZero; // @[rawFloatFromRecFN.scala:52:53, :55:23]
wire [1:0] _mulRawFN_io_a_isSpecial_T = mulRawFN_io_a_exp[8:7]; // @[rawFloatFromRecFN.scala:51:21, :53:28]
wire mulRawFN_io_a_isSpecial = &_mulRawFN_io_a_isSpecial_T; // @[rawFloatFromRecFN.scala:53:{28,53}]
wire _mulRawFN_io_a_out_isNaN_T_1; // @[rawFloatFromRecFN.scala:56:33]
wire _mulRawFN_io_a_out_isInf_T_2; // @[rawFloatFromRecFN.scala:57:33]
wire _mulRawFN_io_a_out_sign_T; // @[rawFloatFromRecFN.scala:59:25]
wire [9:0] _mulRawFN_io_a_out_sExp_T; // @[rawFloatFromRecFN.scala:60:27]
wire [24:0] _mulRawFN_io_a_out_sig_T_3; // @[rawFloatFromRecFN.scala:61:44]
wire mulRawFN_io_a_out_isNaN; // @[rawFloatFromRecFN.scala:55:23]
wire mulRawFN_io_a_out_isInf; // @[rawFloatFromRecFN.scala:55:23]
wire mulRawFN_io_a_out_sign; // @[rawFloatFromRecFN.scala:55:23]
wire [9:0] mulRawFN_io_a_out_sExp; // @[rawFloatFromRecFN.scala:55:23]
wire [24:0] mulRawFN_io_a_out_sig; // @[rawFloatFromRecFN.scala:55:23]
wire _mulRawFN_io_a_out_isNaN_T = mulRawFN_io_a_exp[6]; // @[rawFloatFromRecFN.scala:51:21, :56:41]
wire _mulRawFN_io_a_out_isInf_T = mulRawFN_io_a_exp[6]; // @[rawFloatFromRecFN.scala:51:21, :56:41, :57:41]
assign _mulRawFN_io_a_out_isNaN_T_1 = mulRawFN_io_a_isSpecial & _mulRawFN_io_a_out_isNaN_T; // @[rawFloatFromRecFN.scala:53:53, :56:{33,41}]
assign mulRawFN_io_a_out_isNaN = _mulRawFN_io_a_out_isNaN_T_1; // @[rawFloatFromRecFN.scala:55:23, :56:33]
wire _mulRawFN_io_a_out_isInf_T_1 = ~_mulRawFN_io_a_out_isInf_T; // @[rawFloatFromRecFN.scala:57:{36,41}]
assign _mulRawFN_io_a_out_isInf_T_2 = mulRawFN_io_a_isSpecial & _mulRawFN_io_a_out_isInf_T_1; // @[rawFloatFromRecFN.scala:53:53, :57:{33,36}]
assign mulRawFN_io_a_out_isInf = _mulRawFN_io_a_out_isInf_T_2; // @[rawFloatFromRecFN.scala:55:23, :57:33]
assign _mulRawFN_io_a_out_sign_T = io_a_0[32]; // @[rawFloatFromRecFN.scala:59:25]
assign mulRawFN_io_a_out_sign = _mulRawFN_io_a_out_sign_T; // @[rawFloatFromRecFN.scala:55:23, :59:25]
assign _mulRawFN_io_a_out_sExp_T = {1'h0, mulRawFN_io_a_exp}; // @[rawFloatFromRecFN.scala:51:21, :60:27]
assign mulRawFN_io_a_out_sExp = _mulRawFN_io_a_out_sExp_T; // @[rawFloatFromRecFN.scala:55:23, :60:27]
wire _mulRawFN_io_a_out_sig_T = ~mulRawFN_io_a_isZero; // @[rawFloatFromRecFN.scala:52:53, :61:35]
wire [1:0] _mulRawFN_io_a_out_sig_T_1 = {1'h0, _mulRawFN_io_a_out_sig_T}; // @[rawFloatFromRecFN.scala:61:{32,35}]
wire [22:0] _mulRawFN_io_a_out_sig_T_2 = io_a_0[22:0]; // @[rawFloatFromRecFN.scala:61:49]
assign _mulRawFN_io_a_out_sig_T_3 = {_mulRawFN_io_a_out_sig_T_1, _mulRawFN_io_a_out_sig_T_2}; // @[rawFloatFromRecFN.scala:61:{32,44,49}]
assign mulRawFN_io_a_out_sig = _mulRawFN_io_a_out_sig_T_3; // @[rawFloatFromRecFN.scala:55:23, :61:44]
wire [8:0] mulRawFN_io_b_exp = io_b_0[31:23]; // @[rawFloatFromRecFN.scala:51:21]
wire [2:0] _mulRawFN_io_b_isZero_T = mulRawFN_io_b_exp[8:6]; // @[rawFloatFromRecFN.scala:51:21, :52:28]
wire mulRawFN_io_b_isZero = _mulRawFN_io_b_isZero_T == 3'h0; // @[rawFloatFromRecFN.scala:52:{28,53}]
wire mulRawFN_io_b_out_isZero = mulRawFN_io_b_isZero; // @[rawFloatFromRecFN.scala:52:53, :55:23]
wire [1:0] _mulRawFN_io_b_isSpecial_T = mulRawFN_io_b_exp[8:7]; // @[rawFloatFromRecFN.scala:51:21, :53:28]
wire mulRawFN_io_b_isSpecial = &_mulRawFN_io_b_isSpecial_T; // @[rawFloatFromRecFN.scala:53:{28,53}]
wire _mulRawFN_io_b_out_isNaN_T_1; // @[rawFloatFromRecFN.scala:56:33]
wire _mulRawFN_io_b_out_isInf_T_2; // @[rawFloatFromRecFN.scala:57:33]
wire _mulRawFN_io_b_out_sign_T; // @[rawFloatFromRecFN.scala:59:25]
wire [9:0] _mulRawFN_io_b_out_sExp_T; // @[rawFloatFromRecFN.scala:60:27]
wire [24:0] _mulRawFN_io_b_out_sig_T_3; // @[rawFloatFromRecFN.scala:61:44]
wire mulRawFN_io_b_out_isNaN; // @[rawFloatFromRecFN.scala:55:23]
wire mulRawFN_io_b_out_isInf; // @[rawFloatFromRecFN.scala:55:23]
wire mulRawFN_io_b_out_sign; // @[rawFloatFromRecFN.scala:55:23]
wire [9:0] mulRawFN_io_b_out_sExp; // @[rawFloatFromRecFN.scala:55:23]
wire [24:0] mulRawFN_io_b_out_sig; // @[rawFloatFromRecFN.scala:55:23]
wire _mulRawFN_io_b_out_isNaN_T = mulRawFN_io_b_exp[6]; // @[rawFloatFromRecFN.scala:51:21, :56:41]
wire _mulRawFN_io_b_out_isInf_T = mulRawFN_io_b_exp[6]; // @[rawFloatFromRecFN.scala:51:21, :56:41, :57:41]
assign _mulRawFN_io_b_out_isNaN_T_1 = mulRawFN_io_b_isSpecial & _mulRawFN_io_b_out_isNaN_T; // @[rawFloatFromRecFN.scala:53:53, :56:{33,41}]
assign mulRawFN_io_b_out_isNaN = _mulRawFN_io_b_out_isNaN_T_1; // @[rawFloatFromRecFN.scala:55:23, :56:33]
wire _mulRawFN_io_b_out_isInf_T_1 = ~_mulRawFN_io_b_out_isInf_T; // @[rawFloatFromRecFN.scala:57:{36,41}]
assign _mulRawFN_io_b_out_isInf_T_2 = mulRawFN_io_b_isSpecial & _mulRawFN_io_b_out_isInf_T_1; // @[rawFloatFromRecFN.scala:53:53, :57:{33,36}]
assign mulRawFN_io_b_out_isInf = _mulRawFN_io_b_out_isInf_T_2; // @[rawFloatFromRecFN.scala:55:23, :57:33]
assign _mulRawFN_io_b_out_sign_T = io_b_0[32]; // @[rawFloatFromRecFN.scala:59:25]
assign mulRawFN_io_b_out_sign = _mulRawFN_io_b_out_sign_T; // @[rawFloatFromRecFN.scala:55:23, :59:25]
assign _mulRawFN_io_b_out_sExp_T = {1'h0, mulRawFN_io_b_exp}; // @[rawFloatFromRecFN.scala:51:21, :60:27]
assign mulRawFN_io_b_out_sExp = _mulRawFN_io_b_out_sExp_T; // @[rawFloatFromRecFN.scala:55:23, :60:27]
wire _mulRawFN_io_b_out_sig_T = ~mulRawFN_io_b_isZero; // @[rawFloatFromRecFN.scala:52:53, :61:35]
wire [1:0] _mulRawFN_io_b_out_sig_T_1 = {1'h0, _mulRawFN_io_b_out_sig_T}; // @[rawFloatFromRecFN.scala:61:{32,35}]
wire [22:0] _mulRawFN_io_b_out_sig_T_2 = io_b_0[22:0]; // @[rawFloatFromRecFN.scala:61:49]
assign _mulRawFN_io_b_out_sig_T_3 = {_mulRawFN_io_b_out_sig_T_1, _mulRawFN_io_b_out_sig_T_2}; // @[rawFloatFromRecFN.scala:61:{32,44,49}]
assign mulRawFN_io_b_out_sig = _mulRawFN_io_b_out_sig_T_3; // @[rawFloatFromRecFN.scala:55:23, :61:44]
MulRawFN_55 mulRawFN ( // @[MulRecFN.scala:113:26]
.io_a_isNaN (mulRawFN_io_a_out_isNaN), // @[rawFloatFromRecFN.scala:55:23]
.io_a_isInf (mulRawFN_io_a_out_isInf), // @[rawFloatFromRecFN.scala:55:23]
.io_a_isZero (mulRawFN_io_a_out_isZero), // @[rawFloatFromRecFN.scala:55:23]
.io_a_sign (mulRawFN_io_a_out_sign), // @[rawFloatFromRecFN.scala:55:23]
.io_a_sExp (mulRawFN_io_a_out_sExp), // @[rawFloatFromRecFN.scala:55:23]
.io_a_sig (mulRawFN_io_a_out_sig), // @[rawFloatFromRecFN.scala:55:23]
.io_b_isNaN (mulRawFN_io_b_out_isNaN), // @[rawFloatFromRecFN.scala:55:23]
.io_b_isInf (mulRawFN_io_b_out_isInf), // @[rawFloatFromRecFN.scala:55:23]
.io_b_isZero (mulRawFN_io_b_out_isZero), // @[rawFloatFromRecFN.scala:55:23]
.io_b_sign (mulRawFN_io_b_out_sign), // @[rawFloatFromRecFN.scala:55:23]
.io_b_sExp (mulRawFN_io_b_out_sExp), // @[rawFloatFromRecFN.scala:55:23]
.io_b_sig (mulRawFN_io_b_out_sig), // @[rawFloatFromRecFN.scala:55:23]
.io_invalidExc (_mulRawFN_io_invalidExc),
.io_rawOut_isNaN (_mulRawFN_io_rawOut_isNaN),
.io_rawOut_isInf (_mulRawFN_io_rawOut_isInf),
.io_rawOut_isZero (_mulRawFN_io_rawOut_isZero),
.io_rawOut_sign (_mulRawFN_io_rawOut_sign),
.io_rawOut_sExp (_mulRawFN_io_rawOut_sExp),
.io_rawOut_sig (_mulRawFN_io_rawOut_sig)
); // @[MulRecFN.scala:113:26]
RoundRawFNToRecFN_e8_s24_135 roundRawFNToRecFN ( // @[MulRecFN.scala:121:15]
.io_invalidExc (_mulRawFN_io_invalidExc), // @[MulRecFN.scala:113:26]
.io_in_isNaN (_mulRawFN_io_rawOut_isNaN), // @[MulRecFN.scala:113:26]
.io_in_isInf (_mulRawFN_io_rawOut_isInf), // @[MulRecFN.scala:113:26]
.io_in_isZero (_mulRawFN_io_rawOut_isZero), // @[MulRecFN.scala:113:26]
.io_in_sign (_mulRawFN_io_rawOut_sign), // @[MulRecFN.scala:113:26]
.io_in_sExp (_mulRawFN_io_rawOut_sExp), // @[MulRecFN.scala:113:26]
.io_in_sig (_mulRawFN_io_rawOut_sig), // @[MulRecFN.scala:113:26]
.io_out (io_out_0),
.io_exceptionFlags (io_exceptionFlags)
); // @[MulRecFN.scala:121:15]
assign io_out = io_out_0; // @[MulRecFN.scala:100:7]
endmodule |
Generate the Verilog code corresponding to the following Chisel files.
File package.scala:
// See LICENSE.SiFive for license details.
package freechips.rocketchip
import chisel3._
import chisel3.util._
import scala.math.min
import scala.collection.{immutable, mutable}
package object util {
implicit class UnzippableOption[S, T](val x: Option[(S, T)]) {
def unzip = (x.map(_._1), x.map(_._2))
}
implicit class UIntIsOneOf(private val x: UInt) extends AnyVal {
def isOneOf(s: Seq[UInt]): Bool = s.map(x === _).orR
def isOneOf(u1: UInt, u2: UInt*): Bool = isOneOf(u1 +: u2.toSeq)
}
implicit class VecToAugmentedVec[T <: Data](private val x: Vec[T]) extends AnyVal {
/** Like Vec.apply(idx), but tolerates indices of mismatched width */
def extract(idx: UInt): T = x((idx | 0.U(log2Ceil(x.size).W)).extract(log2Ceil(x.size) - 1, 0))
}
implicit class SeqToAugmentedSeq[T <: Data](private val x: Seq[T]) extends AnyVal {
def apply(idx: UInt): T = {
if (x.size <= 1) {
x.head
} else if (!isPow2(x.size)) {
// For non-power-of-2 seqs, reflect elements to simplify decoder
(x ++ x.takeRight(x.size & -x.size)).toSeq(idx)
} else {
// Ignore MSBs of idx
val truncIdx =
if (idx.isWidthKnown && idx.getWidth <= log2Ceil(x.size)) idx
else (idx | 0.U(log2Ceil(x.size).W))(log2Ceil(x.size)-1, 0)
x.zipWithIndex.tail.foldLeft(x.head) { case (prev, (cur, i)) => Mux(truncIdx === i.U, cur, prev) }
}
}
def extract(idx: UInt): T = VecInit(x).extract(idx)
def asUInt: UInt = Cat(x.map(_.asUInt).reverse)
def rotate(n: Int): Seq[T] = x.drop(n) ++ x.take(n)
def rotate(n: UInt): Seq[T] = {
if (x.size <= 1) {
x
} else {
require(isPow2(x.size))
val amt = n.padTo(log2Ceil(x.size))
(0 until log2Ceil(x.size)).foldLeft(x)((r, i) => (r.rotate(1 << i) zip r).map { case (s, a) => Mux(amt(i), s, a) })
}
}
def rotateRight(n: Int): Seq[T] = x.takeRight(n) ++ x.dropRight(n)
def rotateRight(n: UInt): Seq[T] = {
if (x.size <= 1) {
x
} else {
require(isPow2(x.size))
val amt = n.padTo(log2Ceil(x.size))
(0 until log2Ceil(x.size)).foldLeft(x)((r, i) => (r.rotateRight(1 << i) zip r).map { case (s, a) => Mux(amt(i), s, a) })
}
}
}
// allow bitwise ops on Seq[Bool] just like UInt
implicit class SeqBoolBitwiseOps(private val x: Seq[Bool]) extends AnyVal {
def & (y: Seq[Bool]): Seq[Bool] = (x zip y).map { case (a, b) => a && b }
def | (y: Seq[Bool]): Seq[Bool] = padZip(x, y).map { case (a, b) => a || b }
def ^ (y: Seq[Bool]): Seq[Bool] = padZip(x, y).map { case (a, b) => a ^ b }
def << (n: Int): Seq[Bool] = Seq.fill(n)(false.B) ++ x
def >> (n: Int): Seq[Bool] = x drop n
def unary_~ : Seq[Bool] = x.map(!_)
def andR: Bool = if (x.isEmpty) true.B else x.reduce(_&&_)
def orR: Bool = if (x.isEmpty) false.B else x.reduce(_||_)
def xorR: Bool = if (x.isEmpty) false.B else x.reduce(_^_)
private def padZip(y: Seq[Bool], z: Seq[Bool]): Seq[(Bool, Bool)] = y.padTo(z.size, false.B) zip z.padTo(y.size, false.B)
}
implicit class DataToAugmentedData[T <: Data](private val x: T) extends AnyVal {
def holdUnless(enable: Bool): T = Mux(enable, x, RegEnable(x, enable))
def getElements: Seq[Element] = x match {
case e: Element => Seq(e)
case a: Aggregate => a.getElements.flatMap(_.getElements)
}
}
/** Any Data subtype that has a Bool member named valid. */
type DataCanBeValid = Data { val valid: Bool }
implicit class SeqMemToAugmentedSeqMem[T <: Data](private val x: SyncReadMem[T]) extends AnyVal {
def readAndHold(addr: UInt, enable: Bool): T = x.read(addr, enable) holdUnless RegNext(enable)
}
implicit class StringToAugmentedString(private val x: String) extends AnyVal {
/** converts from camel case to to underscores, also removing all spaces */
def underscore: String = x.tail.foldLeft(x.headOption.map(_.toLower + "") getOrElse "") {
case (acc, c) if c.isUpper => acc + "_" + c.toLower
case (acc, c) if c == ' ' => acc
case (acc, c) => acc + c
}
/** converts spaces or underscores to hyphens, also lowering case */
def kebab: String = x.toLowerCase map {
case ' ' => '-'
case '_' => '-'
case c => c
}
def named(name: Option[String]): String = {
x + name.map("_named_" + _ ).getOrElse("_with_no_name")
}
def named(name: String): String = named(Some(name))
}
implicit def uintToBitPat(x: UInt): BitPat = BitPat(x)
implicit def wcToUInt(c: WideCounter): UInt = c.value
implicit class UIntToAugmentedUInt(private val x: UInt) extends AnyVal {
def sextTo(n: Int): UInt = {
require(x.getWidth <= n)
if (x.getWidth == n) x
else Cat(Fill(n - x.getWidth, x(x.getWidth-1)), x)
}
def padTo(n: Int): UInt = {
require(x.getWidth <= n)
if (x.getWidth == n) x
else Cat(0.U((n - x.getWidth).W), x)
}
// shifts left by n if n >= 0, or right by -n if n < 0
def << (n: SInt): UInt = {
val w = n.getWidth - 1
require(w <= 30)
val shifted = x << n(w-1, 0)
Mux(n(w), shifted >> (1 << w), shifted)
}
// shifts right by n if n >= 0, or left by -n if n < 0
def >> (n: SInt): UInt = {
val w = n.getWidth - 1
require(w <= 30)
val shifted = x << (1 << w) >> n(w-1, 0)
Mux(n(w), shifted, shifted >> (1 << w))
}
// Like UInt.apply(hi, lo), but returns 0.U for zero-width extracts
def extract(hi: Int, lo: Int): UInt = {
require(hi >= lo-1)
if (hi == lo-1) 0.U
else x(hi, lo)
}
// Like Some(UInt.apply(hi, lo)), but returns None for zero-width extracts
def extractOption(hi: Int, lo: Int): Option[UInt] = {
require(hi >= lo-1)
if (hi == lo-1) None
else Some(x(hi, lo))
}
// like x & ~y, but first truncate or zero-extend y to x's width
def andNot(y: UInt): UInt = x & ~(y | (x & 0.U))
def rotateRight(n: Int): UInt = if (n == 0) x else Cat(x(n-1, 0), x >> n)
def rotateRight(n: UInt): UInt = {
if (x.getWidth <= 1) {
x
} else {
val amt = n.padTo(log2Ceil(x.getWidth))
(0 until log2Ceil(x.getWidth)).foldLeft(x)((r, i) => Mux(amt(i), r.rotateRight(1 << i), r))
}
}
def rotateLeft(n: Int): UInt = if (n == 0) x else Cat(x(x.getWidth-1-n,0), x(x.getWidth-1,x.getWidth-n))
def rotateLeft(n: UInt): UInt = {
if (x.getWidth <= 1) {
x
} else {
val amt = n.padTo(log2Ceil(x.getWidth))
(0 until log2Ceil(x.getWidth)).foldLeft(x)((r, i) => Mux(amt(i), r.rotateLeft(1 << i), r))
}
}
// compute (this + y) % n, given (this < n) and (y < n)
def addWrap(y: UInt, n: Int): UInt = {
val z = x +& y
if (isPow2(n)) z(n.log2-1, 0) else Mux(z >= n.U, z - n.U, z)(log2Ceil(n)-1, 0)
}
// compute (this - y) % n, given (this < n) and (y < n)
def subWrap(y: UInt, n: Int): UInt = {
val z = x -& y
if (isPow2(n)) z(n.log2-1, 0) else Mux(z(z.getWidth-1), z + n.U, z)(log2Ceil(n)-1, 0)
}
def grouped(width: Int): Seq[UInt] =
(0 until x.getWidth by width).map(base => x(base + width - 1, base))
def inRange(base: UInt, bounds: UInt) = x >= base && x < bounds
def ## (y: Option[UInt]): UInt = y.map(x ## _).getOrElse(x)
// Like >=, but prevents x-prop for ('x >= 0)
def >== (y: UInt): Bool = x >= y || y === 0.U
}
implicit class OptionUIntToAugmentedOptionUInt(private val x: Option[UInt]) extends AnyVal {
def ## (y: UInt): UInt = x.map(_ ## y).getOrElse(y)
def ## (y: Option[UInt]): Option[UInt] = x.map(_ ## y)
}
implicit class BooleanToAugmentedBoolean(private val x: Boolean) extends AnyVal {
def toInt: Int = if (x) 1 else 0
// this one's snagged from scalaz
def option[T](z: => T): Option[T] = if (x) Some(z) else None
}
implicit class IntToAugmentedInt(private val x: Int) extends AnyVal {
// exact log2
def log2: Int = {
require(isPow2(x))
log2Ceil(x)
}
}
def OH1ToOH(x: UInt): UInt = (x << 1 | 1.U) & ~Cat(0.U(1.W), x)
def OH1ToUInt(x: UInt): UInt = OHToUInt(OH1ToOH(x))
def UIntToOH1(x: UInt, width: Int): UInt = ~((-1).S(width.W).asUInt << x)(width-1, 0)
def UIntToOH1(x: UInt): UInt = UIntToOH1(x, (1 << x.getWidth) - 1)
def trailingZeros(x: Int): Option[Int] = if (x > 0) Some(log2Ceil(x & -x)) else None
// Fill 1s from low bits to high bits
def leftOR(x: UInt): UInt = leftOR(x, x.getWidth, x.getWidth)
def leftOR(x: UInt, width: Integer, cap: Integer = 999999): UInt = {
val stop = min(width, cap)
def helper(s: Int, x: UInt): UInt =
if (s >= stop) x else helper(s+s, x | (x << s)(width-1,0))
helper(1, x)(width-1, 0)
}
// Fill 1s form high bits to low bits
def rightOR(x: UInt): UInt = rightOR(x, x.getWidth, x.getWidth)
def rightOR(x: UInt, width: Integer, cap: Integer = 999999): UInt = {
val stop = min(width, cap)
def helper(s: Int, x: UInt): UInt =
if (s >= stop) x else helper(s+s, x | (x >> s))
helper(1, x)(width-1, 0)
}
def OptimizationBarrier[T <: Data](in: T): T = {
val barrier = Module(new Module {
val io = IO(new Bundle {
val x = Input(chiselTypeOf(in))
val y = Output(chiselTypeOf(in))
})
io.y := io.x
override def desiredName = s"OptimizationBarrier_${in.typeName}"
})
barrier.io.x := in
barrier.io.y
}
/** Similar to Seq.groupBy except this returns a Seq instead of a Map
* Useful for deterministic code generation
*/
def groupByIntoSeq[A, K](xs: Seq[A])(f: A => K): immutable.Seq[(K, immutable.Seq[A])] = {
val map = mutable.LinkedHashMap.empty[K, mutable.ListBuffer[A]]
for (x <- xs) {
val key = f(x)
val l = map.getOrElseUpdate(key, mutable.ListBuffer.empty[A])
l += x
}
map.view.map({ case (k, vs) => k -> vs.toList }).toList
}
def heterogeneousOrGlobalSetting[T](in: Seq[T], n: Int): Seq[T] = in.size match {
case 1 => List.fill(n)(in.head)
case x if x == n => in
case _ => throw new Exception(s"must provide exactly 1 or $n of some field, but got:\n$in")
}
// HeterogeneousBag moved to standalond diplomacy
@deprecated("HeterogeneousBag has been absorbed into standalone diplomacy library", "rocketchip 2.0.0")
def HeterogeneousBag[T <: Data](elts: Seq[T]) = _root_.org.chipsalliance.diplomacy.nodes.HeterogeneousBag[T](elts)
@deprecated("HeterogeneousBag has been absorbed into standalone diplomacy library", "rocketchip 2.0.0")
val HeterogeneousBag = _root_.org.chipsalliance.diplomacy.nodes.HeterogeneousBag
}
| module OptimizationBarrier_EntryData_47( // @[package.scala:267:30]
input clock, // @[package.scala:267:30]
input reset, // @[package.scala:267:30]
input [19:0] io_x_ppn, // @[package.scala:268:18]
input io_x_u, // @[package.scala:268:18]
input io_x_g, // @[package.scala:268:18]
input io_x_ae, // @[package.scala:268:18]
input io_x_sw, // @[package.scala:268:18]
input io_x_sx, // @[package.scala:268:18]
input io_x_sr, // @[package.scala:268:18]
input io_x_pw, // @[package.scala:268:18]
input io_x_px, // @[package.scala:268:18]
input io_x_pr, // @[package.scala:268:18]
input io_x_pal, // @[package.scala:268:18]
input io_x_paa, // @[package.scala:268:18]
input io_x_eff, // @[package.scala:268:18]
input io_x_c, // @[package.scala:268:18]
input io_x_fragmented_superpage, // @[package.scala:268:18]
output [19:0] io_y_ppn, // @[package.scala:268:18]
output io_y_u, // @[package.scala:268:18]
output io_y_g, // @[package.scala:268:18]
output io_y_ae, // @[package.scala:268:18]
output io_y_sw, // @[package.scala:268:18]
output io_y_sx, // @[package.scala:268:18]
output io_y_sr, // @[package.scala:268:18]
output io_y_pw, // @[package.scala:268:18]
output io_y_px, // @[package.scala:268:18]
output io_y_pr, // @[package.scala:268:18]
output io_y_pal, // @[package.scala:268:18]
output io_y_paa, // @[package.scala:268:18]
output io_y_eff, // @[package.scala:268:18]
output io_y_c, // @[package.scala:268:18]
output io_y_fragmented_superpage // @[package.scala:268:18]
);
wire [19:0] io_x_ppn_0 = io_x_ppn; // @[package.scala:267:30]
wire io_x_u_0 = io_x_u; // @[package.scala:267:30]
wire io_x_g_0 = io_x_g; // @[package.scala:267:30]
wire io_x_ae_0 = io_x_ae; // @[package.scala:267:30]
wire io_x_sw_0 = io_x_sw; // @[package.scala:267:30]
wire io_x_sx_0 = io_x_sx; // @[package.scala:267:30]
wire io_x_sr_0 = io_x_sr; // @[package.scala:267:30]
wire io_x_pw_0 = io_x_pw; // @[package.scala:267:30]
wire io_x_px_0 = io_x_px; // @[package.scala:267:30]
wire io_x_pr_0 = io_x_pr; // @[package.scala:267:30]
wire io_x_pal_0 = io_x_pal; // @[package.scala:267:30]
wire io_x_paa_0 = io_x_paa; // @[package.scala:267:30]
wire io_x_eff_0 = io_x_eff; // @[package.scala:267:30]
wire io_x_c_0 = io_x_c; // @[package.scala:267:30]
wire io_x_fragmented_superpage_0 = io_x_fragmented_superpage; // @[package.scala:267:30]
wire [19:0] io_y_ppn_0 = io_x_ppn_0; // @[package.scala:267:30]
wire io_y_u_0 = io_x_u_0; // @[package.scala:267:30]
wire io_y_g_0 = io_x_g_0; // @[package.scala:267:30]
wire io_y_ae_0 = io_x_ae_0; // @[package.scala:267:30]
wire io_y_sw_0 = io_x_sw_0; // @[package.scala:267:30]
wire io_y_sx_0 = io_x_sx_0; // @[package.scala:267:30]
wire io_y_sr_0 = io_x_sr_0; // @[package.scala:267:30]
wire io_y_pw_0 = io_x_pw_0; // @[package.scala:267:30]
wire io_y_px_0 = io_x_px_0; // @[package.scala:267:30]
wire io_y_pr_0 = io_x_pr_0; // @[package.scala:267:30]
wire io_y_pal_0 = io_x_pal_0; // @[package.scala:267:30]
wire io_y_paa_0 = io_x_paa_0; // @[package.scala:267:30]
wire io_y_eff_0 = io_x_eff_0; // @[package.scala:267:30]
wire io_y_c_0 = io_x_c_0; // @[package.scala:267:30]
wire io_y_fragmented_superpage_0 = io_x_fragmented_superpage_0; // @[package.scala:267:30]
assign io_y_ppn = io_y_ppn_0; // @[package.scala:267:30]
assign io_y_u = io_y_u_0; // @[package.scala:267:30]
assign io_y_g = io_y_g_0; // @[package.scala:267:30]
assign io_y_ae = io_y_ae_0; // @[package.scala:267:30]
assign io_y_sw = io_y_sw_0; // @[package.scala:267:30]
assign io_y_sx = io_y_sx_0; // @[package.scala:267:30]
assign io_y_sr = io_y_sr_0; // @[package.scala:267:30]
assign io_y_pw = io_y_pw_0; // @[package.scala:267:30]
assign io_y_px = io_y_px_0; // @[package.scala:267:30]
assign io_y_pr = io_y_pr_0; // @[package.scala:267:30]
assign io_y_pal = io_y_pal_0; // @[package.scala:267:30]
assign io_y_paa = io_y_paa_0; // @[package.scala:267:30]
assign io_y_eff = io_y_eff_0; // @[package.scala:267:30]
assign io_y_c = io_y_c_0; // @[package.scala:267:30]
assign io_y_fragmented_superpage = io_y_fragmented_superpage_0; // @[package.scala:267:30]
endmodule |
Generate the Verilog code corresponding to the following Chisel files.
File Error.scala:
// See LICENSE.SiFive for license details.
package freechips.rocketchip.devices.tilelink
import chisel3._
import chisel3.util._
import org.chipsalliance.cde.config._
import org.chipsalliance.diplomacy.lazymodule._
import freechips.rocketchip.resources.SimpleDevice
import freechips.rocketchip.tilelink.{TLArbiter, TLMessages, TLPermissions}
/** Adds a /dev/null slave that generates TL error response messages */
class TLError(params: DevNullParams, buffer: Boolean = true, beatBytes: Int = 4)(implicit p: Parameters)
extends DevNullDevice(params,
minLatency = if (buffer) 1 else 0,
beatBytes, new SimpleDevice("error-device", Seq("sifive,error0")))
{
lazy val module = new Impl
class Impl extends LazyModuleImp(this) {
import TLMessages._
import TLPermissions._
val (in, edge) = node.in(0)
val a = if (buffer) {Queue(in.a, 1)} else in.a
val da = Wire(chiselTypeOf(in.d))
val idle = RegInit(true.B)
val a_last = edge.last(a)
val (da_first, da_last, _) = edge.firstlast(da)
assert (idle || da_first) // we only send Grant, never GrantData => simplified flow control below
a.ready := (da.ready && da_last && idle) || !a_last
da.valid := a.valid && a_last && idle
da.bits.opcode := TLMessages.adResponse(a.bits.opcode)
da.bits.param := 0.U // toT, but error grants must be handled transiently (ie: you don't keep permissions)
da.bits.size := a.bits.size
da.bits.source := a.bits.source
da.bits.sink := 0.U
da.bits.denied := true.B
da.bits.data := 0.U
da.bits.corrupt := edge.hasData(da.bits)
if (params.acquire) {
val c = if (buffer) {Queue(in.c, 1)} else in.c
val dc = Wire(chiselTypeOf(in.d))
val c_last = edge.last(c)
val dc_last = edge.last(dc)
// Only allow one Grant in-flight at a time
when (da.fire && da.bits.opcode === Grant) { idle := false.B }
when (in.e.fire) { idle := true.B }
c.ready := (dc.ready && dc_last) || !c_last
dc.valid := c.valid && c_last
// ReleaseAck is not allowed to report failure
dc.bits.opcode := ReleaseAck
dc.bits.param := VecInit(toB, toN, toN)(c.bits.param(1,0))
dc.bits.size := c.bits.size
dc.bits.source := c.bits.source
dc.bits.sink := 0.U
dc.bits.denied := false.B
dc.bits.data := 0.U
dc.bits.corrupt := false.B
// Combine response channels
TLArbiter.lowest(edge, in.d, dc, da)
} else {
in.d <> da
}
// We never probe or issue B requests
in.b.valid := false.B
// Sink GrantAcks
in.e.ready := true.B
}
}
File package.scala:
// See LICENSE.SiFive for license details.
package freechips.rocketchip
import chisel3._
import chisel3.util._
import scala.math.min
import scala.collection.{immutable, mutable}
package object util {
implicit class UnzippableOption[S, T](val x: Option[(S, T)]) {
def unzip = (x.map(_._1), x.map(_._2))
}
implicit class UIntIsOneOf(private val x: UInt) extends AnyVal {
def isOneOf(s: Seq[UInt]): Bool = s.map(x === _).orR
def isOneOf(u1: UInt, u2: UInt*): Bool = isOneOf(u1 +: u2.toSeq)
}
implicit class VecToAugmentedVec[T <: Data](private val x: Vec[T]) extends AnyVal {
/** Like Vec.apply(idx), but tolerates indices of mismatched width */
def extract(idx: UInt): T = x((idx | 0.U(log2Ceil(x.size).W)).extract(log2Ceil(x.size) - 1, 0))
}
implicit class SeqToAugmentedSeq[T <: Data](private val x: Seq[T]) extends AnyVal {
def apply(idx: UInt): T = {
if (x.size <= 1) {
x.head
} else if (!isPow2(x.size)) {
// For non-power-of-2 seqs, reflect elements to simplify decoder
(x ++ x.takeRight(x.size & -x.size)).toSeq(idx)
} else {
// Ignore MSBs of idx
val truncIdx =
if (idx.isWidthKnown && idx.getWidth <= log2Ceil(x.size)) idx
else (idx | 0.U(log2Ceil(x.size).W))(log2Ceil(x.size)-1, 0)
x.zipWithIndex.tail.foldLeft(x.head) { case (prev, (cur, i)) => Mux(truncIdx === i.U, cur, prev) }
}
}
def extract(idx: UInt): T = VecInit(x).extract(idx)
def asUInt: UInt = Cat(x.map(_.asUInt).reverse)
def rotate(n: Int): Seq[T] = x.drop(n) ++ x.take(n)
def rotate(n: UInt): Seq[T] = {
if (x.size <= 1) {
x
} else {
require(isPow2(x.size))
val amt = n.padTo(log2Ceil(x.size))
(0 until log2Ceil(x.size)).foldLeft(x)((r, i) => (r.rotate(1 << i) zip r).map { case (s, a) => Mux(amt(i), s, a) })
}
}
def rotateRight(n: Int): Seq[T] = x.takeRight(n) ++ x.dropRight(n)
def rotateRight(n: UInt): Seq[T] = {
if (x.size <= 1) {
x
} else {
require(isPow2(x.size))
val amt = n.padTo(log2Ceil(x.size))
(0 until log2Ceil(x.size)).foldLeft(x)((r, i) => (r.rotateRight(1 << i) zip r).map { case (s, a) => Mux(amt(i), s, a) })
}
}
}
// allow bitwise ops on Seq[Bool] just like UInt
implicit class SeqBoolBitwiseOps(private val x: Seq[Bool]) extends AnyVal {
def & (y: Seq[Bool]): Seq[Bool] = (x zip y).map { case (a, b) => a && b }
def | (y: Seq[Bool]): Seq[Bool] = padZip(x, y).map { case (a, b) => a || b }
def ^ (y: Seq[Bool]): Seq[Bool] = padZip(x, y).map { case (a, b) => a ^ b }
def << (n: Int): Seq[Bool] = Seq.fill(n)(false.B) ++ x
def >> (n: Int): Seq[Bool] = x drop n
def unary_~ : Seq[Bool] = x.map(!_)
def andR: Bool = if (x.isEmpty) true.B else x.reduce(_&&_)
def orR: Bool = if (x.isEmpty) false.B else x.reduce(_||_)
def xorR: Bool = if (x.isEmpty) false.B else x.reduce(_^_)
private def padZip(y: Seq[Bool], z: Seq[Bool]): Seq[(Bool, Bool)] = y.padTo(z.size, false.B) zip z.padTo(y.size, false.B)
}
implicit class DataToAugmentedData[T <: Data](private val x: T) extends AnyVal {
def holdUnless(enable: Bool): T = Mux(enable, x, RegEnable(x, enable))
def getElements: Seq[Element] = x match {
case e: Element => Seq(e)
case a: Aggregate => a.getElements.flatMap(_.getElements)
}
}
/** Any Data subtype that has a Bool member named valid. */
type DataCanBeValid = Data { val valid: Bool }
implicit class SeqMemToAugmentedSeqMem[T <: Data](private val x: SyncReadMem[T]) extends AnyVal {
def readAndHold(addr: UInt, enable: Bool): T = x.read(addr, enable) holdUnless RegNext(enable)
}
implicit class StringToAugmentedString(private val x: String) extends AnyVal {
/** converts from camel case to to underscores, also removing all spaces */
def underscore: String = x.tail.foldLeft(x.headOption.map(_.toLower + "") getOrElse "") {
case (acc, c) if c.isUpper => acc + "_" + c.toLower
case (acc, c) if c == ' ' => acc
case (acc, c) => acc + c
}
/** converts spaces or underscores to hyphens, also lowering case */
def kebab: String = x.toLowerCase map {
case ' ' => '-'
case '_' => '-'
case c => c
}
def named(name: Option[String]): String = {
x + name.map("_named_" + _ ).getOrElse("_with_no_name")
}
def named(name: String): String = named(Some(name))
}
implicit def uintToBitPat(x: UInt): BitPat = BitPat(x)
implicit def wcToUInt(c: WideCounter): UInt = c.value
implicit class UIntToAugmentedUInt(private val x: UInt) extends AnyVal {
def sextTo(n: Int): UInt = {
require(x.getWidth <= n)
if (x.getWidth == n) x
else Cat(Fill(n - x.getWidth, x(x.getWidth-1)), x)
}
def padTo(n: Int): UInt = {
require(x.getWidth <= n)
if (x.getWidth == n) x
else Cat(0.U((n - x.getWidth).W), x)
}
// shifts left by n if n >= 0, or right by -n if n < 0
def << (n: SInt): UInt = {
val w = n.getWidth - 1
require(w <= 30)
val shifted = x << n(w-1, 0)
Mux(n(w), shifted >> (1 << w), shifted)
}
// shifts right by n if n >= 0, or left by -n if n < 0
def >> (n: SInt): UInt = {
val w = n.getWidth - 1
require(w <= 30)
val shifted = x << (1 << w) >> n(w-1, 0)
Mux(n(w), shifted, shifted >> (1 << w))
}
// Like UInt.apply(hi, lo), but returns 0.U for zero-width extracts
def extract(hi: Int, lo: Int): UInt = {
require(hi >= lo-1)
if (hi == lo-1) 0.U
else x(hi, lo)
}
// Like Some(UInt.apply(hi, lo)), but returns None for zero-width extracts
def extractOption(hi: Int, lo: Int): Option[UInt] = {
require(hi >= lo-1)
if (hi == lo-1) None
else Some(x(hi, lo))
}
// like x & ~y, but first truncate or zero-extend y to x's width
def andNot(y: UInt): UInt = x & ~(y | (x & 0.U))
def rotateRight(n: Int): UInt = if (n == 0) x else Cat(x(n-1, 0), x >> n)
def rotateRight(n: UInt): UInt = {
if (x.getWidth <= 1) {
x
} else {
val amt = n.padTo(log2Ceil(x.getWidth))
(0 until log2Ceil(x.getWidth)).foldLeft(x)((r, i) => Mux(amt(i), r.rotateRight(1 << i), r))
}
}
def rotateLeft(n: Int): UInt = if (n == 0) x else Cat(x(x.getWidth-1-n,0), x(x.getWidth-1,x.getWidth-n))
def rotateLeft(n: UInt): UInt = {
if (x.getWidth <= 1) {
x
} else {
val amt = n.padTo(log2Ceil(x.getWidth))
(0 until log2Ceil(x.getWidth)).foldLeft(x)((r, i) => Mux(amt(i), r.rotateLeft(1 << i), r))
}
}
// compute (this + y) % n, given (this < n) and (y < n)
def addWrap(y: UInt, n: Int): UInt = {
val z = x +& y
if (isPow2(n)) z(n.log2-1, 0) else Mux(z >= n.U, z - n.U, z)(log2Ceil(n)-1, 0)
}
// compute (this - y) % n, given (this < n) and (y < n)
def subWrap(y: UInt, n: Int): UInt = {
val z = x -& y
if (isPow2(n)) z(n.log2-1, 0) else Mux(z(z.getWidth-1), z + n.U, z)(log2Ceil(n)-1, 0)
}
def grouped(width: Int): Seq[UInt] =
(0 until x.getWidth by width).map(base => x(base + width - 1, base))
def inRange(base: UInt, bounds: UInt) = x >= base && x < bounds
def ## (y: Option[UInt]): UInt = y.map(x ## _).getOrElse(x)
// Like >=, but prevents x-prop for ('x >= 0)
def >== (y: UInt): Bool = x >= y || y === 0.U
}
implicit class OptionUIntToAugmentedOptionUInt(private val x: Option[UInt]) extends AnyVal {
def ## (y: UInt): UInt = x.map(_ ## y).getOrElse(y)
def ## (y: Option[UInt]): Option[UInt] = x.map(_ ## y)
}
implicit class BooleanToAugmentedBoolean(private val x: Boolean) extends AnyVal {
def toInt: Int = if (x) 1 else 0
// this one's snagged from scalaz
def option[T](z: => T): Option[T] = if (x) Some(z) else None
}
implicit class IntToAugmentedInt(private val x: Int) extends AnyVal {
// exact log2
def log2: Int = {
require(isPow2(x))
log2Ceil(x)
}
}
def OH1ToOH(x: UInt): UInt = (x << 1 | 1.U) & ~Cat(0.U(1.W), x)
def OH1ToUInt(x: UInt): UInt = OHToUInt(OH1ToOH(x))
def UIntToOH1(x: UInt, width: Int): UInt = ~((-1).S(width.W).asUInt << x)(width-1, 0)
def UIntToOH1(x: UInt): UInt = UIntToOH1(x, (1 << x.getWidth) - 1)
def trailingZeros(x: Int): Option[Int] = if (x > 0) Some(log2Ceil(x & -x)) else None
// Fill 1s from low bits to high bits
def leftOR(x: UInt): UInt = leftOR(x, x.getWidth, x.getWidth)
def leftOR(x: UInt, width: Integer, cap: Integer = 999999): UInt = {
val stop = min(width, cap)
def helper(s: Int, x: UInt): UInt =
if (s >= stop) x else helper(s+s, x | (x << s)(width-1,0))
helper(1, x)(width-1, 0)
}
// Fill 1s form high bits to low bits
def rightOR(x: UInt): UInt = rightOR(x, x.getWidth, x.getWidth)
def rightOR(x: UInt, width: Integer, cap: Integer = 999999): UInt = {
val stop = min(width, cap)
def helper(s: Int, x: UInt): UInt =
if (s >= stop) x else helper(s+s, x | (x >> s))
helper(1, x)(width-1, 0)
}
def OptimizationBarrier[T <: Data](in: T): T = {
val barrier = Module(new Module {
val io = IO(new Bundle {
val x = Input(chiselTypeOf(in))
val y = Output(chiselTypeOf(in))
})
io.y := io.x
override def desiredName = s"OptimizationBarrier_${in.typeName}"
})
barrier.io.x := in
barrier.io.y
}
/** Similar to Seq.groupBy except this returns a Seq instead of a Map
* Useful for deterministic code generation
*/
def groupByIntoSeq[A, K](xs: Seq[A])(f: A => K): immutable.Seq[(K, immutable.Seq[A])] = {
val map = mutable.LinkedHashMap.empty[K, mutable.ListBuffer[A]]
for (x <- xs) {
val key = f(x)
val l = map.getOrElseUpdate(key, mutable.ListBuffer.empty[A])
l += x
}
map.view.map({ case (k, vs) => k -> vs.toList }).toList
}
def heterogeneousOrGlobalSetting[T](in: Seq[T], n: Int): Seq[T] = in.size match {
case 1 => List.fill(n)(in.head)
case x if x == n => in
case _ => throw new Exception(s"must provide exactly 1 or $n of some field, but got:\n$in")
}
// HeterogeneousBag moved to standalond diplomacy
@deprecated("HeterogeneousBag has been absorbed into standalone diplomacy library", "rocketchip 2.0.0")
def HeterogeneousBag[T <: Data](elts: Seq[T]) = _root_.org.chipsalliance.diplomacy.nodes.HeterogeneousBag[T](elts)
@deprecated("HeterogeneousBag has been absorbed into standalone diplomacy library", "rocketchip 2.0.0")
val HeterogeneousBag = _root_.org.chipsalliance.diplomacy.nodes.HeterogeneousBag
}
File Nodes.scala:
// See LICENSE.SiFive for license details.
package freechips.rocketchip.tilelink
import chisel3._
import chisel3.experimental.SourceInfo
import org.chipsalliance.cde.config._
import org.chipsalliance.diplomacy._
import org.chipsalliance.diplomacy.nodes._
import freechips.rocketchip.util.{AsyncQueueParams,RationalDirection}
case object TLMonitorBuilder extends Field[TLMonitorArgs => TLMonitorBase](args => new TLMonitor(args))
object TLImp extends NodeImp[TLMasterPortParameters, TLSlavePortParameters, TLEdgeOut, TLEdgeIn, TLBundle]
{
def edgeO(pd: TLMasterPortParameters, pu: TLSlavePortParameters, p: Parameters, sourceInfo: SourceInfo) = new TLEdgeOut(pd, pu, p, sourceInfo)
def edgeI(pd: TLMasterPortParameters, pu: TLSlavePortParameters, p: Parameters, sourceInfo: SourceInfo) = new TLEdgeIn (pd, pu, p, sourceInfo)
def bundleO(eo: TLEdgeOut) = TLBundle(eo.bundle)
def bundleI(ei: TLEdgeIn) = TLBundle(ei.bundle)
def render(ei: TLEdgeIn) = RenderedEdge(colour = "#000000" /* black */, label = (ei.manager.beatBytes * 8).toString)
override def monitor(bundle: TLBundle, edge: TLEdgeIn): Unit = {
val monitor = Module(edge.params(TLMonitorBuilder)(TLMonitorArgs(edge)))
monitor.io.in := bundle
}
override def mixO(pd: TLMasterPortParameters, node: OutwardNode[TLMasterPortParameters, TLSlavePortParameters, TLBundle]): TLMasterPortParameters =
pd.v1copy(clients = pd.clients.map { c => c.v1copy (nodePath = node +: c.nodePath) })
override def mixI(pu: TLSlavePortParameters, node: InwardNode[TLMasterPortParameters, TLSlavePortParameters, TLBundle]): TLSlavePortParameters =
pu.v1copy(managers = pu.managers.map { m => m.v1copy (nodePath = node +: m.nodePath) })
}
trait TLFormatNode extends FormatNode[TLEdgeIn, TLEdgeOut]
case class TLClientNode(portParams: Seq[TLMasterPortParameters])(implicit valName: ValName) extends SourceNode(TLImp)(portParams) with TLFormatNode
case class TLManagerNode(portParams: Seq[TLSlavePortParameters])(implicit valName: ValName) extends SinkNode(TLImp)(portParams) with TLFormatNode
case class TLAdapterNode(
clientFn: TLMasterPortParameters => TLMasterPortParameters = { s => s },
managerFn: TLSlavePortParameters => TLSlavePortParameters = { s => s })(
implicit valName: ValName)
extends AdapterNode(TLImp)(clientFn, managerFn) with TLFormatNode
case class TLJunctionNode(
clientFn: Seq[TLMasterPortParameters] => Seq[TLMasterPortParameters],
managerFn: Seq[TLSlavePortParameters] => Seq[TLSlavePortParameters])(
implicit valName: ValName)
extends JunctionNode(TLImp)(clientFn, managerFn) with TLFormatNode
case class TLIdentityNode()(implicit valName: ValName) extends IdentityNode(TLImp)() with TLFormatNode
object TLNameNode {
def apply(name: ValName) = TLIdentityNode()(name)
def apply(name: Option[String]): TLIdentityNode = apply(ValName(name.getOrElse("with_no_name")))
def apply(name: String): TLIdentityNode = apply(Some(name))
}
case class TLEphemeralNode()(implicit valName: ValName) extends EphemeralNode(TLImp)()
object TLTempNode {
def apply(): TLEphemeralNode = TLEphemeralNode()(ValName("temp"))
}
case class TLNexusNode(
clientFn: Seq[TLMasterPortParameters] => TLMasterPortParameters,
managerFn: Seq[TLSlavePortParameters] => TLSlavePortParameters)(
implicit valName: ValName)
extends NexusNode(TLImp)(clientFn, managerFn) with TLFormatNode
abstract class TLCustomNode(implicit valName: ValName)
extends CustomNode(TLImp) with TLFormatNode
// Asynchronous crossings
trait TLAsyncFormatNode extends FormatNode[TLAsyncEdgeParameters, TLAsyncEdgeParameters]
object TLAsyncImp extends SimpleNodeImp[TLAsyncClientPortParameters, TLAsyncManagerPortParameters, TLAsyncEdgeParameters, TLAsyncBundle]
{
def edge(pd: TLAsyncClientPortParameters, pu: TLAsyncManagerPortParameters, p: Parameters, sourceInfo: SourceInfo) = TLAsyncEdgeParameters(pd, pu, p, sourceInfo)
def bundle(e: TLAsyncEdgeParameters) = new TLAsyncBundle(e.bundle)
def render(e: TLAsyncEdgeParameters) = RenderedEdge(colour = "#ff0000" /* red */, label = e.manager.async.depth.toString)
override def mixO(pd: TLAsyncClientPortParameters, node: OutwardNode[TLAsyncClientPortParameters, TLAsyncManagerPortParameters, TLAsyncBundle]): TLAsyncClientPortParameters =
pd.copy(base = pd.base.v1copy(clients = pd.base.clients.map { c => c.v1copy (nodePath = node +: c.nodePath) }))
override def mixI(pu: TLAsyncManagerPortParameters, node: InwardNode[TLAsyncClientPortParameters, TLAsyncManagerPortParameters, TLAsyncBundle]): TLAsyncManagerPortParameters =
pu.copy(base = pu.base.v1copy(managers = pu.base.managers.map { m => m.v1copy (nodePath = node +: m.nodePath) }))
}
case class TLAsyncAdapterNode(
clientFn: TLAsyncClientPortParameters => TLAsyncClientPortParameters = { s => s },
managerFn: TLAsyncManagerPortParameters => TLAsyncManagerPortParameters = { s => s })(
implicit valName: ValName)
extends AdapterNode(TLAsyncImp)(clientFn, managerFn) with TLAsyncFormatNode
case class TLAsyncIdentityNode()(implicit valName: ValName) extends IdentityNode(TLAsyncImp)() with TLAsyncFormatNode
object TLAsyncNameNode {
def apply(name: ValName) = TLAsyncIdentityNode()(name)
def apply(name: Option[String]): TLAsyncIdentityNode = apply(ValName(name.getOrElse("with_no_name")))
def apply(name: String): TLAsyncIdentityNode = apply(Some(name))
}
case class TLAsyncSourceNode(sync: Option[Int])(implicit valName: ValName)
extends MixedAdapterNode(TLImp, TLAsyncImp)(
dFn = { p => TLAsyncClientPortParameters(p) },
uFn = { p => p.base.v1copy(minLatency = p.base.minLatency + sync.getOrElse(p.async.sync)) }) with FormatNode[TLEdgeIn, TLAsyncEdgeParameters] // discard cycles in other clock domain
case class TLAsyncSinkNode(async: AsyncQueueParams)(implicit valName: ValName)
extends MixedAdapterNode(TLAsyncImp, TLImp)(
dFn = { p => p.base.v1copy(minLatency = p.base.minLatency + async.sync) },
uFn = { p => TLAsyncManagerPortParameters(async, p) }) with FormatNode[TLAsyncEdgeParameters, TLEdgeOut]
// Rationally related crossings
trait TLRationalFormatNode extends FormatNode[TLRationalEdgeParameters, TLRationalEdgeParameters]
object TLRationalImp extends SimpleNodeImp[TLRationalClientPortParameters, TLRationalManagerPortParameters, TLRationalEdgeParameters, TLRationalBundle]
{
def edge(pd: TLRationalClientPortParameters, pu: TLRationalManagerPortParameters, p: Parameters, sourceInfo: SourceInfo) = TLRationalEdgeParameters(pd, pu, p, sourceInfo)
def bundle(e: TLRationalEdgeParameters) = new TLRationalBundle(e.bundle)
def render(e: TLRationalEdgeParameters) = RenderedEdge(colour = "#00ff00" /* green */)
override def mixO(pd: TLRationalClientPortParameters, node: OutwardNode[TLRationalClientPortParameters, TLRationalManagerPortParameters, TLRationalBundle]): TLRationalClientPortParameters =
pd.copy(base = pd.base.v1copy(clients = pd.base.clients.map { c => c.v1copy (nodePath = node +: c.nodePath) }))
override def mixI(pu: TLRationalManagerPortParameters, node: InwardNode[TLRationalClientPortParameters, TLRationalManagerPortParameters, TLRationalBundle]): TLRationalManagerPortParameters =
pu.copy(base = pu.base.v1copy(managers = pu.base.managers.map { m => m.v1copy (nodePath = node +: m.nodePath) }))
}
case class TLRationalAdapterNode(
clientFn: TLRationalClientPortParameters => TLRationalClientPortParameters = { s => s },
managerFn: TLRationalManagerPortParameters => TLRationalManagerPortParameters = { s => s })(
implicit valName: ValName)
extends AdapterNode(TLRationalImp)(clientFn, managerFn) with TLRationalFormatNode
case class TLRationalIdentityNode()(implicit valName: ValName) extends IdentityNode(TLRationalImp)() with TLRationalFormatNode
object TLRationalNameNode {
def apply(name: ValName) = TLRationalIdentityNode()(name)
def apply(name: Option[String]): TLRationalIdentityNode = apply(ValName(name.getOrElse("with_no_name")))
def apply(name: String): TLRationalIdentityNode = apply(Some(name))
}
case class TLRationalSourceNode()(implicit valName: ValName)
extends MixedAdapterNode(TLImp, TLRationalImp)(
dFn = { p => TLRationalClientPortParameters(p) },
uFn = { p => p.base.v1copy(minLatency = 1) }) with FormatNode[TLEdgeIn, TLRationalEdgeParameters] // discard cycles from other clock domain
case class TLRationalSinkNode(direction: RationalDirection)(implicit valName: ValName)
extends MixedAdapterNode(TLRationalImp, TLImp)(
dFn = { p => p.base.v1copy(minLatency = 1) },
uFn = { p => TLRationalManagerPortParameters(direction, p) }) with FormatNode[TLRationalEdgeParameters, TLEdgeOut]
// Credited version of TileLink channels
trait TLCreditedFormatNode extends FormatNode[TLCreditedEdgeParameters, TLCreditedEdgeParameters]
object TLCreditedImp extends SimpleNodeImp[TLCreditedClientPortParameters, TLCreditedManagerPortParameters, TLCreditedEdgeParameters, TLCreditedBundle]
{
def edge(pd: TLCreditedClientPortParameters, pu: TLCreditedManagerPortParameters, p: Parameters, sourceInfo: SourceInfo) = TLCreditedEdgeParameters(pd, pu, p, sourceInfo)
def bundle(e: TLCreditedEdgeParameters) = new TLCreditedBundle(e.bundle)
def render(e: TLCreditedEdgeParameters) = RenderedEdge(colour = "#ffff00" /* yellow */, e.delay.toString)
override def mixO(pd: TLCreditedClientPortParameters, node: OutwardNode[TLCreditedClientPortParameters, TLCreditedManagerPortParameters, TLCreditedBundle]): TLCreditedClientPortParameters =
pd.copy(base = pd.base.v1copy(clients = pd.base.clients.map { c => c.v1copy (nodePath = node +: c.nodePath) }))
override def mixI(pu: TLCreditedManagerPortParameters, node: InwardNode[TLCreditedClientPortParameters, TLCreditedManagerPortParameters, TLCreditedBundle]): TLCreditedManagerPortParameters =
pu.copy(base = pu.base.v1copy(managers = pu.base.managers.map { m => m.v1copy (nodePath = node +: m.nodePath) }))
}
case class TLCreditedAdapterNode(
clientFn: TLCreditedClientPortParameters => TLCreditedClientPortParameters = { s => s },
managerFn: TLCreditedManagerPortParameters => TLCreditedManagerPortParameters = { s => s })(
implicit valName: ValName)
extends AdapterNode(TLCreditedImp)(clientFn, managerFn) with TLCreditedFormatNode
case class TLCreditedIdentityNode()(implicit valName: ValName) extends IdentityNode(TLCreditedImp)() with TLCreditedFormatNode
object TLCreditedNameNode {
def apply(name: ValName) = TLCreditedIdentityNode()(name)
def apply(name: Option[String]): TLCreditedIdentityNode = apply(ValName(name.getOrElse("with_no_name")))
def apply(name: String): TLCreditedIdentityNode = apply(Some(name))
}
case class TLCreditedSourceNode(delay: TLCreditedDelay)(implicit valName: ValName)
extends MixedAdapterNode(TLImp, TLCreditedImp)(
dFn = { p => TLCreditedClientPortParameters(delay, p) },
uFn = { p => p.base.v1copy(minLatency = 1) }) with FormatNode[TLEdgeIn, TLCreditedEdgeParameters] // discard cycles from other clock domain
case class TLCreditedSinkNode(delay: TLCreditedDelay)(implicit valName: ValName)
extends MixedAdapterNode(TLCreditedImp, TLImp)(
dFn = { p => p.base.v1copy(minLatency = 1) },
uFn = { p => TLCreditedManagerPortParameters(delay, p) }) with FormatNode[TLCreditedEdgeParameters, TLEdgeOut]
File LazyModuleImp.scala:
package org.chipsalliance.diplomacy.lazymodule
import chisel3.{withClockAndReset, Module, RawModule, Reset, _}
import chisel3.experimental.{ChiselAnnotation, CloneModuleAsRecord, SourceInfo}
import firrtl.passes.InlineAnnotation
import org.chipsalliance.cde.config.Parameters
import org.chipsalliance.diplomacy.nodes.Dangle
import scala.collection.immutable.SortedMap
/** Trait describing the actual [[Module]] implementation wrapped by a [[LazyModule]].
*
* This is the actual Chisel module that is lazily-evaluated in the second phase of Diplomacy.
*/
sealed trait LazyModuleImpLike extends RawModule {
/** [[LazyModule]] that contains this instance. */
val wrapper: LazyModule
/** IOs that will be automatically "punched" for this instance. */
val auto: AutoBundle
/** The metadata that describes the [[HalfEdge]]s which generated [[auto]]. */
protected[diplomacy] val dangles: Seq[Dangle]
// [[wrapper.module]] had better not be accessed while LazyModules are still being built!
require(
LazyModule.scope.isEmpty,
s"${wrapper.name}.module was constructed before LazyModule() was run on ${LazyModule.scope.get.name}"
)
/** Set module name. Defaults to the containing LazyModule's desiredName. */
override def desiredName: String = wrapper.desiredName
suggestName(wrapper.suggestedName)
/** [[Parameters]] for chisel [[Module]]s. */
implicit val p: Parameters = wrapper.p
/** instantiate this [[LazyModule]], return [[AutoBundle]] and a unconnected [[Dangle]]s from this module and
* submodules.
*/
protected[diplomacy] def instantiate(): (AutoBundle, List[Dangle]) = {
// 1. It will recursively append [[wrapper.children]] into [[chisel3.internal.Builder]],
// 2. return [[Dangle]]s from each module.
val childDangles = wrapper.children.reverse.flatMap { c =>
implicit val sourceInfo: SourceInfo = c.info
c.cloneProto.map { cp =>
// If the child is a clone, then recursively set cloneProto of its children as well
def assignCloneProtos(bases: Seq[LazyModule], clones: Seq[LazyModule]): Unit = {
require(bases.size == clones.size)
(bases.zip(clones)).map { case (l, r) =>
require(l.getClass == r.getClass, s"Cloned children class mismatch ${l.name} != ${r.name}")
l.cloneProto = Some(r)
assignCloneProtos(l.children, r.children)
}
}
assignCloneProtos(c.children, cp.children)
// Clone the child module as a record, and get its [[AutoBundle]]
val clone = CloneModuleAsRecord(cp.module).suggestName(c.suggestedName)
val clonedAuto = clone("auto").asInstanceOf[AutoBundle]
// Get the empty [[Dangle]]'s of the cloned child
val rawDangles = c.cloneDangles()
require(rawDangles.size == clonedAuto.elements.size)
// Assign the [[AutoBundle]] fields of the cloned record to the empty [[Dangle]]'s
val dangles = (rawDangles.zip(clonedAuto.elements)).map { case (d, (_, io)) => d.copy(dataOpt = Some(io)) }
dangles
}.getOrElse {
// For non-clones, instantiate the child module
val mod = try {
Module(c.module)
} catch {
case e: ChiselException => {
println(s"Chisel exception caught when instantiating ${c.name} within ${this.name} at ${c.line}")
throw e
}
}
mod.dangles
}
}
// Ask each node in this [[LazyModule]] to call [[BaseNode.instantiate]].
// This will result in a sequence of [[Dangle]] from these [[BaseNode]]s.
val nodeDangles = wrapper.nodes.reverse.flatMap(_.instantiate())
// Accumulate all the [[Dangle]]s from this node and any accumulated from its [[wrapper.children]]
val allDangles = nodeDangles ++ childDangles
// Group [[allDangles]] by their [[source]].
val pairing = SortedMap(allDangles.groupBy(_.source).toSeq: _*)
// For each [[source]] set of [[Dangle]]s of size 2, ensure that these
// can be connected as a source-sink pair (have opposite flipped value).
// Make the connection and mark them as [[done]].
val done = Set() ++ pairing.values.filter(_.size == 2).map {
case Seq(a, b) =>
require(a.flipped != b.flipped)
// @todo <> in chisel3 makes directionless connection.
if (a.flipped) {
a.data <> b.data
} else {
b.data <> a.data
}
a.source
case _ => None
}
// Find all [[Dangle]]s which are still not connected. These will end up as [[AutoBundle]] [[IO]] ports on the module.
val forward = allDangles.filter(d => !done(d.source))
// Generate [[AutoBundle]] IO from [[forward]].
val auto = IO(new AutoBundle(forward.map { d => (d.name, d.data, d.flipped) }: _*))
// Pass the [[Dangle]]s which remained and were used to generate the [[AutoBundle]] I/O ports up to the [[parent]] [[LazyModule]]
val dangles = (forward.zip(auto.elements)).map { case (d, (_, io)) =>
if (d.flipped) {
d.data <> io
} else {
io <> d.data
}
d.copy(dataOpt = Some(io), name = wrapper.suggestedName + "_" + d.name)
}
// Push all [[LazyModule.inModuleBody]] to [[chisel3.internal.Builder]].
wrapper.inModuleBody.reverse.foreach {
_()
}
if (wrapper.shouldBeInlined) {
chisel3.experimental.annotate(new ChiselAnnotation {
def toFirrtl = InlineAnnotation(toNamed)
})
}
// Return [[IO]] and [[Dangle]] of this [[LazyModuleImp]].
(auto, dangles)
}
}
/** Actual description of a [[Module]] which can be instantiated by a call to [[LazyModule.module]].
*
* @param wrapper
* the [[LazyModule]] from which the `.module` call is being made.
*/
class LazyModuleImp(val wrapper: LazyModule) extends Module with LazyModuleImpLike {
/** Instantiate hardware of this `Module`. */
val (auto, dangles) = instantiate()
}
/** Actual description of a [[RawModule]] which can be instantiated by a call to [[LazyModule.module]].
*
* @param wrapper
* the [[LazyModule]] from which the `.module` call is being made.
*/
class LazyRawModuleImp(val wrapper: LazyModule) extends RawModule with LazyModuleImpLike {
// These wires are the default clock+reset for all LazyModule children.
// It is recommended to drive these even if you manually drive the [[clock]] and [[reset]] of all of the
// [[LazyRawModuleImp]] children.
// Otherwise, anonymous children ([[Monitor]]s for example) will not have their [[clock]] and/or [[reset]] driven properly.
/** drive clock explicitly. */
val childClock: Clock = Wire(Clock())
/** drive reset explicitly. */
val childReset: Reset = Wire(Reset())
// the default is that these are disabled
childClock := false.B.asClock
childReset := chisel3.DontCare
def provideImplicitClockToLazyChildren: Boolean = false
val (auto, dangles) =
if (provideImplicitClockToLazyChildren) {
withClockAndReset(childClock, childReset) { instantiate() }
} else {
instantiate()
}
}
File Edges.scala:
// See LICENSE.SiFive for license details.
package freechips.rocketchip.tilelink
import chisel3._
import chisel3.util._
import chisel3.experimental.SourceInfo
import org.chipsalliance.cde.config.Parameters
import freechips.rocketchip.util._
class TLEdge(
client: TLClientPortParameters,
manager: TLManagerPortParameters,
params: Parameters,
sourceInfo: SourceInfo)
extends TLEdgeParameters(client, manager, params, sourceInfo)
{
def isAligned(address: UInt, lgSize: UInt): Bool = {
if (maxLgSize == 0) true.B else {
val mask = UIntToOH1(lgSize, maxLgSize)
(address & mask) === 0.U
}
}
def mask(address: UInt, lgSize: UInt): UInt =
MaskGen(address, lgSize, manager.beatBytes)
def staticHasData(bundle: TLChannel): Option[Boolean] = {
bundle match {
case _:TLBundleA => {
// Do there exist A messages with Data?
val aDataYes = manager.anySupportArithmetic || manager.anySupportLogical || manager.anySupportPutFull || manager.anySupportPutPartial
// Do there exist A messages without Data?
val aDataNo = manager.anySupportAcquireB || manager.anySupportGet || manager.anySupportHint
// Statically optimize the case where hasData is a constant
if (!aDataYes) Some(false) else if (!aDataNo) Some(true) else None
}
case _:TLBundleB => {
// Do there exist B messages with Data?
val bDataYes = client.anySupportArithmetic || client.anySupportLogical || client.anySupportPutFull || client.anySupportPutPartial
// Do there exist B messages without Data?
val bDataNo = client.anySupportProbe || client.anySupportGet || client.anySupportHint
// Statically optimize the case where hasData is a constant
if (!bDataYes) Some(false) else if (!bDataNo) Some(true) else None
}
case _:TLBundleC => {
// Do there eixst C messages with Data?
val cDataYes = client.anySupportGet || client.anySupportArithmetic || client.anySupportLogical || client.anySupportProbe
// Do there exist C messages without Data?
val cDataNo = client.anySupportPutFull || client.anySupportPutPartial || client.anySupportHint || client.anySupportProbe
if (!cDataYes) Some(false) else if (!cDataNo) Some(true) else None
}
case _:TLBundleD => {
// Do there eixst D messages with Data?
val dDataYes = manager.anySupportGet || manager.anySupportArithmetic || manager.anySupportLogical || manager.anySupportAcquireB
// Do there exist D messages without Data?
val dDataNo = manager.anySupportPutFull || manager.anySupportPutPartial || manager.anySupportHint || manager.anySupportAcquireT
if (!dDataYes) Some(false) else if (!dDataNo) Some(true) else None
}
case _:TLBundleE => Some(false)
}
}
def isRequest(x: TLChannel): Bool = {
x match {
case a: TLBundleA => true.B
case b: TLBundleB => true.B
case c: TLBundleC => c.opcode(2) && c.opcode(1)
// opcode === TLMessages.Release ||
// opcode === TLMessages.ReleaseData
case d: TLBundleD => d.opcode(2) && !d.opcode(1)
// opcode === TLMessages.Grant ||
// opcode === TLMessages.GrantData
case e: TLBundleE => false.B
}
}
def isResponse(x: TLChannel): Bool = {
x match {
case a: TLBundleA => false.B
case b: TLBundleB => false.B
case c: TLBundleC => !c.opcode(2) || !c.opcode(1)
// opcode =/= TLMessages.Release &&
// opcode =/= TLMessages.ReleaseData
case d: TLBundleD => true.B // Grant isResponse + isRequest
case e: TLBundleE => true.B
}
}
def hasData(x: TLChannel): Bool = {
val opdata = x match {
case a: TLBundleA => !a.opcode(2)
// opcode === TLMessages.PutFullData ||
// opcode === TLMessages.PutPartialData ||
// opcode === TLMessages.ArithmeticData ||
// opcode === TLMessages.LogicalData
case b: TLBundleB => !b.opcode(2)
// opcode === TLMessages.PutFullData ||
// opcode === TLMessages.PutPartialData ||
// opcode === TLMessages.ArithmeticData ||
// opcode === TLMessages.LogicalData
case c: TLBundleC => c.opcode(0)
// opcode === TLMessages.AccessAckData ||
// opcode === TLMessages.ProbeAckData ||
// opcode === TLMessages.ReleaseData
case d: TLBundleD => d.opcode(0)
// opcode === TLMessages.AccessAckData ||
// opcode === TLMessages.GrantData
case e: TLBundleE => false.B
}
staticHasData(x).map(_.B).getOrElse(opdata)
}
def opcode(x: TLDataChannel): UInt = {
x match {
case a: TLBundleA => a.opcode
case b: TLBundleB => b.opcode
case c: TLBundleC => c.opcode
case d: TLBundleD => d.opcode
}
}
def param(x: TLDataChannel): UInt = {
x match {
case a: TLBundleA => a.param
case b: TLBundleB => b.param
case c: TLBundleC => c.param
case d: TLBundleD => d.param
}
}
def size(x: TLDataChannel): UInt = {
x match {
case a: TLBundleA => a.size
case b: TLBundleB => b.size
case c: TLBundleC => c.size
case d: TLBundleD => d.size
}
}
def data(x: TLDataChannel): UInt = {
x match {
case a: TLBundleA => a.data
case b: TLBundleB => b.data
case c: TLBundleC => c.data
case d: TLBundleD => d.data
}
}
def corrupt(x: TLDataChannel): Bool = {
x match {
case a: TLBundleA => a.corrupt
case b: TLBundleB => b.corrupt
case c: TLBundleC => c.corrupt
case d: TLBundleD => d.corrupt
}
}
def mask(x: TLAddrChannel): UInt = {
x match {
case a: TLBundleA => a.mask
case b: TLBundleB => b.mask
case c: TLBundleC => mask(c.address, c.size)
}
}
def full_mask(x: TLAddrChannel): UInt = {
x match {
case a: TLBundleA => mask(a.address, a.size)
case b: TLBundleB => mask(b.address, b.size)
case c: TLBundleC => mask(c.address, c.size)
}
}
def address(x: TLAddrChannel): UInt = {
x match {
case a: TLBundleA => a.address
case b: TLBundleB => b.address
case c: TLBundleC => c.address
}
}
def source(x: TLDataChannel): UInt = {
x match {
case a: TLBundleA => a.source
case b: TLBundleB => b.source
case c: TLBundleC => c.source
case d: TLBundleD => d.source
}
}
def addr_hi(x: UInt): UInt = x >> log2Ceil(manager.beatBytes)
def addr_lo(x: UInt): UInt =
if (manager.beatBytes == 1) 0.U else x(log2Ceil(manager.beatBytes)-1, 0)
def addr_hi(x: TLAddrChannel): UInt = addr_hi(address(x))
def addr_lo(x: TLAddrChannel): UInt = addr_lo(address(x))
def numBeats(x: TLChannel): UInt = {
x match {
case _: TLBundleE => 1.U
case bundle: TLDataChannel => {
val hasData = this.hasData(bundle)
val size = this.size(bundle)
val cutoff = log2Ceil(manager.beatBytes)
val small = if (manager.maxTransfer <= manager.beatBytes) true.B else size <= (cutoff).U
val decode = UIntToOH(size, maxLgSize+1) >> cutoff
Mux(hasData, decode | small.asUInt, 1.U)
}
}
}
def numBeats1(x: TLChannel): UInt = {
x match {
case _: TLBundleE => 0.U
case bundle: TLDataChannel => {
if (maxLgSize == 0) {
0.U
} else {
val decode = UIntToOH1(size(bundle), maxLgSize) >> log2Ceil(manager.beatBytes)
Mux(hasData(bundle), decode, 0.U)
}
}
}
}
def firstlastHelper(bits: TLChannel, fire: Bool): (Bool, Bool, Bool, UInt) = {
val beats1 = numBeats1(bits)
val counter = RegInit(0.U(log2Up(maxTransfer / manager.beatBytes).W))
val counter1 = counter - 1.U
val first = counter === 0.U
val last = counter === 1.U || beats1 === 0.U
val done = last && fire
val count = (beats1 & ~counter1)
when (fire) {
counter := Mux(first, beats1, counter1)
}
(first, last, done, count)
}
def first(bits: TLChannel, fire: Bool): Bool = firstlastHelper(bits, fire)._1
def first(x: DecoupledIO[TLChannel]): Bool = first(x.bits, x.fire)
def first(x: ValidIO[TLChannel]): Bool = first(x.bits, x.valid)
def last(bits: TLChannel, fire: Bool): Bool = firstlastHelper(bits, fire)._2
def last(x: DecoupledIO[TLChannel]): Bool = last(x.bits, x.fire)
def last(x: ValidIO[TLChannel]): Bool = last(x.bits, x.valid)
def done(bits: TLChannel, fire: Bool): Bool = firstlastHelper(bits, fire)._3
def done(x: DecoupledIO[TLChannel]): Bool = done(x.bits, x.fire)
def done(x: ValidIO[TLChannel]): Bool = done(x.bits, x.valid)
def firstlast(bits: TLChannel, fire: Bool): (Bool, Bool, Bool) = {
val r = firstlastHelper(bits, fire)
(r._1, r._2, r._3)
}
def firstlast(x: DecoupledIO[TLChannel]): (Bool, Bool, Bool) = firstlast(x.bits, x.fire)
def firstlast(x: ValidIO[TLChannel]): (Bool, Bool, Bool) = firstlast(x.bits, x.valid)
def count(bits: TLChannel, fire: Bool): (Bool, Bool, Bool, UInt) = {
val r = firstlastHelper(bits, fire)
(r._1, r._2, r._3, r._4)
}
def count(x: DecoupledIO[TLChannel]): (Bool, Bool, Bool, UInt) = count(x.bits, x.fire)
def count(x: ValidIO[TLChannel]): (Bool, Bool, Bool, UInt) = count(x.bits, x.valid)
def addr_inc(bits: TLChannel, fire: Bool): (Bool, Bool, Bool, UInt) = {
val r = firstlastHelper(bits, fire)
(r._1, r._2, r._3, r._4 << log2Ceil(manager.beatBytes))
}
def addr_inc(x: DecoupledIO[TLChannel]): (Bool, Bool, Bool, UInt) = addr_inc(x.bits, x.fire)
def addr_inc(x: ValidIO[TLChannel]): (Bool, Bool, Bool, UInt) = addr_inc(x.bits, x.valid)
// Does the request need T permissions to be executed?
def needT(a: TLBundleA): Bool = {
val acq_needT = MuxLookup(a.param, WireDefault(Bool(), DontCare))(Array(
TLPermissions.NtoB -> false.B,
TLPermissions.NtoT -> true.B,
TLPermissions.BtoT -> true.B))
MuxLookup(a.opcode, WireDefault(Bool(), DontCare))(Array(
TLMessages.PutFullData -> true.B,
TLMessages.PutPartialData -> true.B,
TLMessages.ArithmeticData -> true.B,
TLMessages.LogicalData -> true.B,
TLMessages.Get -> false.B,
TLMessages.Hint -> MuxLookup(a.param, WireDefault(Bool(), DontCare))(Array(
TLHints.PREFETCH_READ -> false.B,
TLHints.PREFETCH_WRITE -> true.B)),
TLMessages.AcquireBlock -> acq_needT,
TLMessages.AcquirePerm -> acq_needT))
}
// This is a very expensive circuit; use only if you really mean it!
def inFlight(x: TLBundle): (UInt, UInt) = {
val flight = RegInit(0.U(log2Ceil(3*client.endSourceId+1).W))
val bce = manager.anySupportAcquireB && client.anySupportProbe
val (a_first, a_last, _) = firstlast(x.a)
val (b_first, b_last, _) = firstlast(x.b)
val (c_first, c_last, _) = firstlast(x.c)
val (d_first, d_last, _) = firstlast(x.d)
val (e_first, e_last, _) = firstlast(x.e)
val (a_request, a_response) = (isRequest(x.a.bits), isResponse(x.a.bits))
val (b_request, b_response) = (isRequest(x.b.bits), isResponse(x.b.bits))
val (c_request, c_response) = (isRequest(x.c.bits), isResponse(x.c.bits))
val (d_request, d_response) = (isRequest(x.d.bits), isResponse(x.d.bits))
val (e_request, e_response) = (isRequest(x.e.bits), isResponse(x.e.bits))
val a_inc = x.a.fire && a_first && a_request
val b_inc = x.b.fire && b_first && b_request
val c_inc = x.c.fire && c_first && c_request
val d_inc = x.d.fire && d_first && d_request
val e_inc = x.e.fire && e_first && e_request
val inc = Cat(Seq(a_inc, d_inc) ++ (if (bce) Seq(b_inc, c_inc, e_inc) else Nil))
val a_dec = x.a.fire && a_last && a_response
val b_dec = x.b.fire && b_last && b_response
val c_dec = x.c.fire && c_last && c_response
val d_dec = x.d.fire && d_last && d_response
val e_dec = x.e.fire && e_last && e_response
val dec = Cat(Seq(a_dec, d_dec) ++ (if (bce) Seq(b_dec, c_dec, e_dec) else Nil))
val next_flight = flight + PopCount(inc) - PopCount(dec)
flight := next_flight
(flight, next_flight)
}
def prettySourceMapping(context: String): String = {
s"TL-Source mapping for $context:\n${(new TLSourceIdMap(client)).pretty}\n"
}
}
class TLEdgeOut(
client: TLClientPortParameters,
manager: TLManagerPortParameters,
params: Parameters,
sourceInfo: SourceInfo)
extends TLEdge(client, manager, params, sourceInfo)
{
// Transfers
def AcquireBlock(fromSource: UInt, toAddress: UInt, lgSize: UInt, growPermissions: UInt) = {
require (manager.anySupportAcquireB, s"TileLink: No managers visible from this edge support Acquires, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsAcquireBFast(toAddress, lgSize)
val a = Wire(new TLBundleA(bundle))
a.opcode := TLMessages.AcquireBlock
a.param := growPermissions
a.size := lgSize
a.source := fromSource
a.address := toAddress
a.user := DontCare
a.echo := DontCare
a.mask := mask(toAddress, lgSize)
a.data := DontCare
a.corrupt := false.B
(legal, a)
}
def AcquirePerm(fromSource: UInt, toAddress: UInt, lgSize: UInt, growPermissions: UInt) = {
require (manager.anySupportAcquireB, s"TileLink: No managers visible from this edge support Acquires, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsAcquireBFast(toAddress, lgSize)
val a = Wire(new TLBundleA(bundle))
a.opcode := TLMessages.AcquirePerm
a.param := growPermissions
a.size := lgSize
a.source := fromSource
a.address := toAddress
a.user := DontCare
a.echo := DontCare
a.mask := mask(toAddress, lgSize)
a.data := DontCare
a.corrupt := false.B
(legal, a)
}
def Release(fromSource: UInt, toAddress: UInt, lgSize: UInt, shrinkPermissions: UInt): (Bool, TLBundleC) = {
require (manager.anySupportAcquireB, s"TileLink: No managers visible from this edge support Acquires, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsAcquireBFast(toAddress, lgSize)
val c = Wire(new TLBundleC(bundle))
c.opcode := TLMessages.Release
c.param := shrinkPermissions
c.size := lgSize
c.source := fromSource
c.address := toAddress
c.user := DontCare
c.echo := DontCare
c.data := DontCare
c.corrupt := false.B
(legal, c)
}
def Release(fromSource: UInt, toAddress: UInt, lgSize: UInt, shrinkPermissions: UInt, data: UInt, corrupt: Bool): (Bool, TLBundleC) = {
require (manager.anySupportAcquireB, s"TileLink: No managers visible from this edge support Acquires, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsAcquireBFast(toAddress, lgSize)
val c = Wire(new TLBundleC(bundle))
c.opcode := TLMessages.ReleaseData
c.param := shrinkPermissions
c.size := lgSize
c.source := fromSource
c.address := toAddress
c.user := DontCare
c.echo := DontCare
c.data := data
c.corrupt := corrupt
(legal, c)
}
def Release(fromSource: UInt, toAddress: UInt, lgSize: UInt, shrinkPermissions: UInt, data: UInt): (Bool, TLBundleC) =
Release(fromSource, toAddress, lgSize, shrinkPermissions, data, false.B)
def ProbeAck(b: TLBundleB, reportPermissions: UInt): TLBundleC =
ProbeAck(b.source, b.address, b.size, reportPermissions)
def ProbeAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, reportPermissions: UInt): TLBundleC = {
val c = Wire(new TLBundleC(bundle))
c.opcode := TLMessages.ProbeAck
c.param := reportPermissions
c.size := lgSize
c.source := fromSource
c.address := toAddress
c.user := DontCare
c.echo := DontCare
c.data := DontCare
c.corrupt := false.B
c
}
def ProbeAck(b: TLBundleB, reportPermissions: UInt, data: UInt): TLBundleC =
ProbeAck(b.source, b.address, b.size, reportPermissions, data)
def ProbeAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, reportPermissions: UInt, data: UInt, corrupt: Bool): TLBundleC = {
val c = Wire(new TLBundleC(bundle))
c.opcode := TLMessages.ProbeAckData
c.param := reportPermissions
c.size := lgSize
c.source := fromSource
c.address := toAddress
c.user := DontCare
c.echo := DontCare
c.data := data
c.corrupt := corrupt
c
}
def ProbeAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, reportPermissions: UInt, data: UInt): TLBundleC =
ProbeAck(fromSource, toAddress, lgSize, reportPermissions, data, false.B)
def GrantAck(d: TLBundleD): TLBundleE = GrantAck(d.sink)
def GrantAck(toSink: UInt): TLBundleE = {
val e = Wire(new TLBundleE(bundle))
e.sink := toSink
e
}
// Accesses
def Get(fromSource: UInt, toAddress: UInt, lgSize: UInt) = {
require (manager.anySupportGet, s"TileLink: No managers visible from this edge support Gets, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsGetFast(toAddress, lgSize)
val a = Wire(new TLBundleA(bundle))
a.opcode := TLMessages.Get
a.param := 0.U
a.size := lgSize
a.source := fromSource
a.address := toAddress
a.user := DontCare
a.echo := DontCare
a.mask := mask(toAddress, lgSize)
a.data := DontCare
a.corrupt := false.B
(legal, a)
}
def Put(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt): (Bool, TLBundleA) =
Put(fromSource, toAddress, lgSize, data, false.B)
def Put(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, corrupt: Bool): (Bool, TLBundleA) = {
require (manager.anySupportPutFull, s"TileLink: No managers visible from this edge support Puts, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsPutFullFast(toAddress, lgSize)
val a = Wire(new TLBundleA(bundle))
a.opcode := TLMessages.PutFullData
a.param := 0.U
a.size := lgSize
a.source := fromSource
a.address := toAddress
a.user := DontCare
a.echo := DontCare
a.mask := mask(toAddress, lgSize)
a.data := data
a.corrupt := corrupt
(legal, a)
}
def Put(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, mask: UInt): (Bool, TLBundleA) =
Put(fromSource, toAddress, lgSize, data, mask, false.B)
def Put(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, mask: UInt, corrupt: Bool): (Bool, TLBundleA) = {
require (manager.anySupportPutPartial, s"TileLink: No managers visible from this edge support masked Puts, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsPutPartialFast(toAddress, lgSize)
val a = Wire(new TLBundleA(bundle))
a.opcode := TLMessages.PutPartialData
a.param := 0.U
a.size := lgSize
a.source := fromSource
a.address := toAddress
a.user := DontCare
a.echo := DontCare
a.mask := mask
a.data := data
a.corrupt := corrupt
(legal, a)
}
def Arithmetic(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, atomic: UInt, corrupt: Bool = false.B): (Bool, TLBundleA) = {
require (manager.anySupportArithmetic, s"TileLink: No managers visible from this edge support arithmetic AMOs, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsArithmeticFast(toAddress, lgSize)
val a = Wire(new TLBundleA(bundle))
a.opcode := TLMessages.ArithmeticData
a.param := atomic
a.size := lgSize
a.source := fromSource
a.address := toAddress
a.user := DontCare
a.echo := DontCare
a.mask := mask(toAddress, lgSize)
a.data := data
a.corrupt := corrupt
(legal, a)
}
def Logical(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, atomic: UInt, corrupt: Bool = false.B) = {
require (manager.anySupportLogical, s"TileLink: No managers visible from this edge support logical AMOs, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsLogicalFast(toAddress, lgSize)
val a = Wire(new TLBundleA(bundle))
a.opcode := TLMessages.LogicalData
a.param := atomic
a.size := lgSize
a.source := fromSource
a.address := toAddress
a.user := DontCare
a.echo := DontCare
a.mask := mask(toAddress, lgSize)
a.data := data
a.corrupt := corrupt
(legal, a)
}
def Hint(fromSource: UInt, toAddress: UInt, lgSize: UInt, param: UInt) = {
require (manager.anySupportHint, s"TileLink: No managers visible from this edge support Hints, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsHintFast(toAddress, lgSize)
val a = Wire(new TLBundleA(bundle))
a.opcode := TLMessages.Hint
a.param := param
a.size := lgSize
a.source := fromSource
a.address := toAddress
a.user := DontCare
a.echo := DontCare
a.mask := mask(toAddress, lgSize)
a.data := DontCare
a.corrupt := false.B
(legal, a)
}
def AccessAck(b: TLBundleB): TLBundleC = AccessAck(b.source, address(b), b.size)
def AccessAck(fromSource: UInt, toAddress: UInt, lgSize: UInt) = {
val c = Wire(new TLBundleC(bundle))
c.opcode := TLMessages.AccessAck
c.param := 0.U
c.size := lgSize
c.source := fromSource
c.address := toAddress
c.user := DontCare
c.echo := DontCare
c.data := DontCare
c.corrupt := false.B
c
}
def AccessAck(b: TLBundleB, data: UInt): TLBundleC = AccessAck(b.source, address(b), b.size, data)
def AccessAck(b: TLBundleB, data: UInt, corrupt: Bool): TLBundleC = AccessAck(b.source, address(b), b.size, data, corrupt)
def AccessAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt): TLBundleC = AccessAck(fromSource, toAddress, lgSize, data, false.B)
def AccessAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, corrupt: Bool) = {
val c = Wire(new TLBundleC(bundle))
c.opcode := TLMessages.AccessAckData
c.param := 0.U
c.size := lgSize
c.source := fromSource
c.address := toAddress
c.user := DontCare
c.echo := DontCare
c.data := data
c.corrupt := corrupt
c
}
def HintAck(b: TLBundleB): TLBundleC = HintAck(b.source, address(b), b.size)
def HintAck(fromSource: UInt, toAddress: UInt, lgSize: UInt) = {
val c = Wire(new TLBundleC(bundle))
c.opcode := TLMessages.HintAck
c.param := 0.U
c.size := lgSize
c.source := fromSource
c.address := toAddress
c.user := DontCare
c.echo := DontCare
c.data := DontCare
c.corrupt := false.B
c
}
}
class TLEdgeIn(
client: TLClientPortParameters,
manager: TLManagerPortParameters,
params: Parameters,
sourceInfo: SourceInfo)
extends TLEdge(client, manager, params, sourceInfo)
{
private def myTranspose[T](x: Seq[Seq[T]]): Seq[Seq[T]] = {
val todo = x.filter(!_.isEmpty)
val heads = todo.map(_.head)
val tails = todo.map(_.tail)
if (todo.isEmpty) Nil else { heads +: myTranspose(tails) }
}
// Transfers
def Probe(fromAddress: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt) = {
require (client.anySupportProbe, s"TileLink: No clients visible from this edge support probes, but one of these managers tried to issue one: ${manager.managers}")
val legal = client.supportsProbe(toSource, lgSize)
val b = Wire(new TLBundleB(bundle))
b.opcode := TLMessages.Probe
b.param := capPermissions
b.size := lgSize
b.source := toSource
b.address := fromAddress
b.mask := mask(fromAddress, lgSize)
b.data := DontCare
b.corrupt := false.B
(legal, b)
}
def Grant(fromSink: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt): TLBundleD = Grant(fromSink, toSource, lgSize, capPermissions, false.B)
def Grant(fromSink: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt, denied: Bool) = {
val d = Wire(new TLBundleD(bundle))
d.opcode := TLMessages.Grant
d.param := capPermissions
d.size := lgSize
d.source := toSource
d.sink := fromSink
d.denied := denied
d.user := DontCare
d.echo := DontCare
d.data := DontCare
d.corrupt := false.B
d
}
def Grant(fromSink: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt, data: UInt): TLBundleD = Grant(fromSink, toSource, lgSize, capPermissions, data, false.B, false.B)
def Grant(fromSink: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt, data: UInt, denied: Bool, corrupt: Bool) = {
val d = Wire(new TLBundleD(bundle))
d.opcode := TLMessages.GrantData
d.param := capPermissions
d.size := lgSize
d.source := toSource
d.sink := fromSink
d.denied := denied
d.user := DontCare
d.echo := DontCare
d.data := data
d.corrupt := corrupt
d
}
def ReleaseAck(c: TLBundleC): TLBundleD = ReleaseAck(c.source, c.size, false.B)
def ReleaseAck(toSource: UInt, lgSize: UInt, denied: Bool): TLBundleD = {
val d = Wire(new TLBundleD(bundle))
d.opcode := TLMessages.ReleaseAck
d.param := 0.U
d.size := lgSize
d.source := toSource
d.sink := 0.U
d.denied := denied
d.user := DontCare
d.echo := DontCare
d.data := DontCare
d.corrupt := false.B
d
}
// Accesses
def Get(fromAddress: UInt, toSource: UInt, lgSize: UInt) = {
require (client.anySupportGet, s"TileLink: No clients visible from this edge support Gets, but one of these managers would try to issue one: ${manager.managers}")
val legal = client.supportsGet(toSource, lgSize)
val b = Wire(new TLBundleB(bundle))
b.opcode := TLMessages.Get
b.param := 0.U
b.size := lgSize
b.source := toSource
b.address := fromAddress
b.mask := mask(fromAddress, lgSize)
b.data := DontCare
b.corrupt := false.B
(legal, b)
}
def Put(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt): (Bool, TLBundleB) =
Put(fromAddress, toSource, lgSize, data, false.B)
def Put(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, corrupt: Bool): (Bool, TLBundleB) = {
require (client.anySupportPutFull, s"TileLink: No clients visible from this edge support Puts, but one of these managers would try to issue one: ${manager.managers}")
val legal = client.supportsPutFull(toSource, lgSize)
val b = Wire(new TLBundleB(bundle))
b.opcode := TLMessages.PutFullData
b.param := 0.U
b.size := lgSize
b.source := toSource
b.address := fromAddress
b.mask := mask(fromAddress, lgSize)
b.data := data
b.corrupt := corrupt
(legal, b)
}
def Put(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, mask: UInt): (Bool, TLBundleB) =
Put(fromAddress, toSource, lgSize, data, mask, false.B)
def Put(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, mask: UInt, corrupt: Bool): (Bool, TLBundleB) = {
require (client.anySupportPutPartial, s"TileLink: No clients visible from this edge support masked Puts, but one of these managers would try to request one: ${manager.managers}")
val legal = client.supportsPutPartial(toSource, lgSize)
val b = Wire(new TLBundleB(bundle))
b.opcode := TLMessages.PutPartialData
b.param := 0.U
b.size := lgSize
b.source := toSource
b.address := fromAddress
b.mask := mask
b.data := data
b.corrupt := corrupt
(legal, b)
}
def Arithmetic(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, atomic: UInt, corrupt: Bool = false.B) = {
require (client.anySupportArithmetic, s"TileLink: No clients visible from this edge support arithmetic AMOs, but one of these managers would try to request one: ${manager.managers}")
val legal = client.supportsArithmetic(toSource, lgSize)
val b = Wire(new TLBundleB(bundle))
b.opcode := TLMessages.ArithmeticData
b.param := atomic
b.size := lgSize
b.source := toSource
b.address := fromAddress
b.mask := mask(fromAddress, lgSize)
b.data := data
b.corrupt := corrupt
(legal, b)
}
def Logical(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, atomic: UInt, corrupt: Bool = false.B) = {
require (client.anySupportLogical, s"TileLink: No clients visible from this edge support logical AMOs, but one of these managers would try to request one: ${manager.managers}")
val legal = client.supportsLogical(toSource, lgSize)
val b = Wire(new TLBundleB(bundle))
b.opcode := TLMessages.LogicalData
b.param := atomic
b.size := lgSize
b.source := toSource
b.address := fromAddress
b.mask := mask(fromAddress, lgSize)
b.data := data
b.corrupt := corrupt
(legal, b)
}
def Hint(fromAddress: UInt, toSource: UInt, lgSize: UInt, param: UInt) = {
require (client.anySupportHint, s"TileLink: No clients visible from this edge support Hints, but one of these managers would try to request one: ${manager.managers}")
val legal = client.supportsHint(toSource, lgSize)
val b = Wire(new TLBundleB(bundle))
b.opcode := TLMessages.Hint
b.param := param
b.size := lgSize
b.source := toSource
b.address := fromAddress
b.mask := mask(fromAddress, lgSize)
b.data := DontCare
b.corrupt := false.B
(legal, b)
}
def AccessAck(a: TLBundleA): TLBundleD = AccessAck(a.source, a.size)
def AccessAck(a: TLBundleA, denied: Bool): TLBundleD = AccessAck(a.source, a.size, denied)
def AccessAck(toSource: UInt, lgSize: UInt): TLBundleD = AccessAck(toSource, lgSize, false.B)
def AccessAck(toSource: UInt, lgSize: UInt, denied: Bool) = {
val d = Wire(new TLBundleD(bundle))
d.opcode := TLMessages.AccessAck
d.param := 0.U
d.size := lgSize
d.source := toSource
d.sink := 0.U
d.denied := denied
d.user := DontCare
d.echo := DontCare
d.data := DontCare
d.corrupt := false.B
d
}
def AccessAck(a: TLBundleA, data: UInt): TLBundleD = AccessAck(a.source, a.size, data)
def AccessAck(a: TLBundleA, data: UInt, denied: Bool, corrupt: Bool): TLBundleD = AccessAck(a.source, a.size, data, denied, corrupt)
def AccessAck(toSource: UInt, lgSize: UInt, data: UInt): TLBundleD = AccessAck(toSource, lgSize, data, false.B, false.B)
def AccessAck(toSource: UInt, lgSize: UInt, data: UInt, denied: Bool, corrupt: Bool) = {
val d = Wire(new TLBundleD(bundle))
d.opcode := TLMessages.AccessAckData
d.param := 0.U
d.size := lgSize
d.source := toSource
d.sink := 0.U
d.denied := denied
d.user := DontCare
d.echo := DontCare
d.data := data
d.corrupt := corrupt
d
}
def HintAck(a: TLBundleA): TLBundleD = HintAck(a, false.B)
def HintAck(a: TLBundleA, denied: Bool): TLBundleD = HintAck(a.source, a.size, denied)
def HintAck(toSource: UInt, lgSize: UInt): TLBundleD = HintAck(toSource, lgSize, false.B)
def HintAck(toSource: UInt, lgSize: UInt, denied: Bool) = {
val d = Wire(new TLBundleD(bundle))
d.opcode := TLMessages.HintAck
d.param := 0.U
d.size := lgSize
d.source := toSource
d.sink := 0.U
d.denied := denied
d.user := DontCare
d.echo := DontCare
d.data := DontCare
d.corrupt := false.B
d
}
}
| module TLError( // @[Error.scala:21:9]
input clock, // @[Error.scala:21:9]
input reset, // @[Error.scala:21:9]
output auto_in_a_ready, // @[LazyModuleImp.scala:107:25]
input auto_in_a_valid, // @[LazyModuleImp.scala:107:25]
input [2:0] auto_in_a_bits_opcode, // @[LazyModuleImp.scala:107:25]
input [2:0] auto_in_a_bits_param, // @[LazyModuleImp.scala:107:25]
input [3:0] auto_in_a_bits_size, // @[LazyModuleImp.scala:107:25]
input [6:0] auto_in_a_bits_source, // @[LazyModuleImp.scala:107:25]
input [13:0] auto_in_a_bits_address, // @[LazyModuleImp.scala:107:25]
input [7:0] auto_in_a_bits_mask, // @[LazyModuleImp.scala:107:25]
input [63:0] auto_in_a_bits_data, // @[LazyModuleImp.scala:107:25]
input auto_in_a_bits_corrupt, // @[LazyModuleImp.scala:107:25]
input auto_in_d_ready, // @[LazyModuleImp.scala:107:25]
output auto_in_d_valid, // @[LazyModuleImp.scala:107:25]
output [2:0] auto_in_d_bits_opcode, // @[LazyModuleImp.scala:107:25]
output [3:0] auto_in_d_bits_size, // @[LazyModuleImp.scala:107:25]
output [6:0] auto_in_d_bits_source, // @[LazyModuleImp.scala:107:25]
output auto_in_d_bits_corrupt // @[LazyModuleImp.scala:107:25]
);
wire [2:0] da_bits_opcode; // @[Error.scala:38:21]
wire _a_q_io_enq_ready; // @[Decoupled.scala:362:21]
wire _a_q_io_deq_valid; // @[Decoupled.scala:362:21]
wire [2:0] _a_q_io_deq_bits_opcode; // @[Decoupled.scala:362:21]
wire [3:0] _a_q_io_deq_bits_size; // @[Decoupled.scala:362:21]
wire [6:0] _a_q_io_deq_bits_source; // @[Decoupled.scala:362:21]
wire [7:0][2:0] _GEN = '{3'h4, 3'h4, 3'h2, 3'h1, 3'h1, 3'h1, 3'h0, 3'h0};
wire [26:0] _GEN_0 = {23'h0, _a_q_io_deq_bits_size}; // @[Decoupled.scala:362:21]
wire [26:0] _a_last_beats1_decode_T = 27'hFFF << _GEN_0; // @[package.scala:243:71]
wire [8:0] a_last_beats1 = _a_q_io_deq_bits_opcode[2] ? 9'h0 : ~(_a_last_beats1_decode_T[11:3]); // @[Decoupled.scala:362:21]
reg [8:0] a_last_counter; // @[Edges.scala:229:27]
wire a_last = a_last_counter == 9'h1 | a_last_beats1 == 9'h0; // @[Edges.scala:221:14, :229:27, :232:{25,33,43}]
wire [26:0] _r_beats1_decode_T = 27'hFFF << _GEN_0; // @[package.scala:243:71]
wire [8:0] r_beats1 = da_bits_opcode[0] ? ~(_r_beats1_decode_T[11:3]) : 9'h0; // @[package.scala:243:{46,71,76}]
reg [8:0] r_counter; // @[Edges.scala:229:27]
wire a_q_io_deq_ready = auto_in_d_ready & (r_counter == 9'h1 | r_beats1 == 9'h0) | ~a_last; // @[Edges.scala:221:14, :229:27, :232:{25,33,43}]
wire da_valid = _a_q_io_deq_valid & a_last; // @[Decoupled.scala:362:21]
assign da_bits_opcode = _GEN[_a_q_io_deq_bits_opcode]; // @[Decoupled.scala:362:21]
always @(posedge clock) begin // @[Error.scala:21:9]
if (reset) begin // @[Error.scala:21:9]
a_last_counter <= 9'h0; // @[Edges.scala:229:27]
r_counter <= 9'h0; // @[Edges.scala:229:27]
end
else begin // @[Error.scala:21:9]
if (a_q_io_deq_ready & _a_q_io_deq_valid) // @[Decoupled.scala:51:35, :362:21]
a_last_counter <= a_last_counter == 9'h0 ? a_last_beats1 : a_last_counter - 9'h1; // @[Edges.scala:221:14, :229:27, :230:28, :231:25, :236:21]
if (auto_in_d_ready & da_valid) // @[Decoupled.scala:51:35]
r_counter <= r_counter == 9'h0 ? r_beats1 : r_counter - 9'h1; // @[Edges.scala:221:14, :229:27, :230:28, :231:25, :236:21]
end
always @(posedge) |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.