Datasets:
Commit
·
7c9f128
1
Parent(s):
3775f9a
Fix `license` metadata (#1)
Browse files- Fix `license` metadata (f5a09e83254988dbe8ef05cfb003f53b4ca546d9)
Co-authored-by: Julien Chaumond <[email protected]>
README.md
CHANGED
@@ -1,82 +1,82 @@
|
|
1 |
-
---
|
2 |
-
annotations_creators:
|
3 |
-
- expert-generated
|
4 |
-
language_creators:
|
5 |
-
- machine-generated
|
6 |
-
|
7 |
-
- en
|
8 |
-
|
9 |
-
- unknown
|
10 |
-
multilinguality:
|
11 |
-
- monolingual
|
12 |
-
pretty_name: SNAP
|
13 |
-
size_categories:
|
14 |
-
- unknown
|
15 |
-
source_datasets:
|
16 |
-
- original
|
17 |
-
task_categories:
|
18 |
-
- structure-prediction
|
19 |
-
task_ids:
|
20 |
-
- structure-prediction-other-word-segmentation
|
21 |
-
---
|
22 |
-
|
23 |
-
# Dataset Card for SNAP
|
24 |
-
|
25 |
-
## Dataset Description
|
26 |
-
|
27 |
-
- **Repository:** [ardax/hashtag-segmentor](https://github.com/ardax/hashtag-segmentor)
|
28 |
-
- **Paper:** [Segmenting hashtags using automatically created training data](http://www.lrec-conf.org/proceedings/lrec2016/pdf/708_Paper.pdf)
|
29 |
-
|
30 |
-
### Dataset Summary
|
31 |
-
|
32 |
-
Automatically segmented 803K SNAP Twitter Data Set hashtags with the heuristic described in the paper "Segmenting hashtags using automatically created training data".
|
33 |
-
|
34 |
-
### Languages
|
35 |
-
|
36 |
-
English
|
37 |
-
|
38 |
-
## Dataset Structure
|
39 |
-
|
40 |
-
### Data Instances
|
41 |
-
|
42 |
-
```
|
43 |
-
{
|
44 |
-
"index": 0,
|
45 |
-
"hashtag": "BrandThunder",
|
46 |
-
"segmentation": "Brand Thunder"
|
47 |
-
}
|
48 |
-
```
|
49 |
-
|
50 |
-
### Data Fields
|
51 |
-
|
52 |
-
- `index`: a numerical index.
|
53 |
-
- `hashtag`: the original hashtag.
|
54 |
-
- `segmentation`: the gold segmentation for the hashtag.
|
55 |
-
|
56 |
-
## Dataset Creation
|
57 |
-
|
58 |
-
- All hashtag segmentation and identifier splitting datasets on this profile have the same basic fields: `hashtag` and `segmentation` or `identifier` and `segmentation`.
|
59 |
-
|
60 |
-
- The only difference between `hashtag` and `segmentation` or between `identifier` and `segmentation` are the whitespace characters. Spell checking, expanding abbreviations or correcting characters to uppercase go into other fields.
|
61 |
-
|
62 |
-
- There is always whitespace between an alphanumeric character and a sequence of any special characters ( such as `_` , `:`, `~` ).
|
63 |
-
|
64 |
-
- If there are any annotations for named entity recognition and other token classification tasks, they are given in a `spans` field.
|
65 |
-
|
66 |
-
## Additional Information
|
67 |
-
|
68 |
-
### Citation Information
|
69 |
-
|
70 |
-
```
|
71 |
-
@inproceedings{celebi2016segmenting,
|
72 |
-
title={Segmenting hashtags using automatically created training data},
|
73 |
-
author={Celebi, Arda and {\"O}zg{\"u}r, Arzucan},
|
74 |
-
booktitle={Proceedings of the Tenth International Conference on Language Resources and Evaluation (LREC'16)},
|
75 |
-
pages={2981--2985},
|
76 |
-
year={2016}
|
77 |
-
}
|
78 |
-
```
|
79 |
-
|
80 |
-
### Contributions
|
81 |
-
|
82 |
-
This dataset was added by [@ruanchaves](https://github.com/ruanchaves) while developing the [hashformers](https://github.com/ruanchaves/hashformers) library.
|
|
|
1 |
+
---
|
2 |
+
annotations_creators:
|
3 |
+
- expert-generated
|
4 |
+
language_creators:
|
5 |
+
- machine-generated
|
6 |
+
language:
|
7 |
+
- en
|
8 |
+
license:
|
9 |
+
- unknown
|
10 |
+
multilinguality:
|
11 |
+
- monolingual
|
12 |
+
pretty_name: SNAP
|
13 |
+
size_categories:
|
14 |
+
- unknown
|
15 |
+
source_datasets:
|
16 |
+
- original
|
17 |
+
task_categories:
|
18 |
+
- structure-prediction
|
19 |
+
task_ids:
|
20 |
+
- structure-prediction-other-word-segmentation
|
21 |
+
---
|
22 |
+
|
23 |
+
# Dataset Card for SNAP
|
24 |
+
|
25 |
+
## Dataset Description
|
26 |
+
|
27 |
+
- **Repository:** [ardax/hashtag-segmentor](https://github.com/ardax/hashtag-segmentor)
|
28 |
+
- **Paper:** [Segmenting hashtags using automatically created training data](http://www.lrec-conf.org/proceedings/lrec2016/pdf/708_Paper.pdf)
|
29 |
+
|
30 |
+
### Dataset Summary
|
31 |
+
|
32 |
+
Automatically segmented 803K SNAP Twitter Data Set hashtags with the heuristic described in the paper "Segmenting hashtags using automatically created training data".
|
33 |
+
|
34 |
+
### Languages
|
35 |
+
|
36 |
+
English
|
37 |
+
|
38 |
+
## Dataset Structure
|
39 |
+
|
40 |
+
### Data Instances
|
41 |
+
|
42 |
+
```
|
43 |
+
{
|
44 |
+
"index": 0,
|
45 |
+
"hashtag": "BrandThunder",
|
46 |
+
"segmentation": "Brand Thunder"
|
47 |
+
}
|
48 |
+
```
|
49 |
+
|
50 |
+
### Data Fields
|
51 |
+
|
52 |
+
- `index`: a numerical index.
|
53 |
+
- `hashtag`: the original hashtag.
|
54 |
+
- `segmentation`: the gold segmentation for the hashtag.
|
55 |
+
|
56 |
+
## Dataset Creation
|
57 |
+
|
58 |
+
- All hashtag segmentation and identifier splitting datasets on this profile have the same basic fields: `hashtag` and `segmentation` or `identifier` and `segmentation`.
|
59 |
+
|
60 |
+
- The only difference between `hashtag` and `segmentation` or between `identifier` and `segmentation` are the whitespace characters. Spell checking, expanding abbreviations or correcting characters to uppercase go into other fields.
|
61 |
+
|
62 |
+
- There is always whitespace between an alphanumeric character and a sequence of any special characters ( such as `_` , `:`, `~` ).
|
63 |
+
|
64 |
+
- If there are any annotations for named entity recognition and other token classification tasks, they are given in a `spans` field.
|
65 |
+
|
66 |
+
## Additional Information
|
67 |
+
|
68 |
+
### Citation Information
|
69 |
+
|
70 |
+
```
|
71 |
+
@inproceedings{celebi2016segmenting,
|
72 |
+
title={Segmenting hashtags using automatically created training data},
|
73 |
+
author={Celebi, Arda and {\"O}zg{\"u}r, Arzucan},
|
74 |
+
booktitle={Proceedings of the Tenth International Conference on Language Resources and Evaluation (LREC'16)},
|
75 |
+
pages={2981--2985},
|
76 |
+
year={2016}
|
77 |
+
}
|
78 |
+
```
|
79 |
+
|
80 |
+
### Contributions
|
81 |
+
|
82 |
+
This dataset was added by [@ruanchaves](https://github.com/ruanchaves) while developing the [hashformers](https://github.com/ruanchaves/hashformers) library.
|